Science.gov

Sample records for adaptor protein fadd

  1. Fas-associated protein with death domain (FADD) regulates autophagy through promoting the expression of Ras homolog enriched in brain (Rheb) in human breast adenocarcinoma cells

    PubMed Central

    He, Liangqiang; Ren, Yongzhe; Zheng, Qianqian; Wang, Lu; Lai, Yueyang; Guan, Shengwen; Zhang, Xiaoxin; Zhang, Rong; Wang, Jie; Chen, Dianhua; Yang, Yunwen; Zhuang, Hongqin; Cheng, Wei; Zhang, Jing; Hua, Zi-chun

    2016-01-01

    FADD (Fas-associated protein with death domain) is a classical adaptor protein in apoptosis. Increasing evidences have shown that FADD is also implicated in cell cycle progression, proliferation and tumorigenesis. The role of FADD in cancer remains largely unexplored. In this study, In Silico Analysis using Oncomine and Kaplan Meier plotter revealed that FADD is significantly up-regulated in breast cancer tissues and closely associated with a poor prognosis in patients with breast cancer. To better understanding the FADD functions in breast cancer, we performed proteomics analysis by LC-MS/MS detection and found that Rheb–mTORC1 pathway was dysregulated in MCF-7 cells when FADD knockdown. The mTORC1 pathway is a key regulator in many processes, including cell growth, metabolism and autophagy. Here, FADD interference down-regulated Rheb expression and repressed mTORC1 activity in breast cancer cell lines. The autophagy was induced by FADD deficiency in MCF7 or MDA-231 cells but rescued by recovering Rheb expression. Similarly, growth defect in FADD-knockdown cells was also restored by Rheb overexpression. These findings implied a novel role of FADD in tumor progression via Rheb–mTORC1 pathway in breast cancer. PMID:27013580

  2. Tumor-targeted delivery of a C-terminally truncated FADD (N-FADD) significantly suppresses the B16F10 melanoma via enhancing apoptosis

    PubMed Central

    Yang, Yun-Wen; Zhang, Chun-Mei; Huang, Xian-Jie; Zhang, Xiao-Xin; Zhang, Lin-Kai; Li, Jia-Huang; Hua, Zi-Chun

    2016-01-01

    Fas-associated protein with death domain (FADD), a pivotal adaptor protein transmitting apoptotic signals, is indispensable for the induction of extrinsic apoptosis. However, overexpression of FADD can form large, filamentous aggregates, termed death effector filaments (DEFs) by self-association and initiate apoptosis independent of receptor cross-linking. A mutant of FADD, which is truncated of the C-terminal tail (m-FADD, 182–205 aa) named N-FADD (m-FADD, 1–181 aa), can dramatically up-regulate the strength of FADD self-association and increase apoptosis. In this study, it was found that over-expression of FADD or N-FADD caused apoptosis of B16F10 cells in vitro, even more, N-FADD showed a more potent apoptotic effect than FADD. Meanwhile, Attenuated Salmonella Typhimurium strain VNP20009 was engineered to express FADD or N-FADD under the control of a hypoxia-induced NirB promoter and each named VNP-pN-FADD and VNP-pN-N-FADD. The results showed both VNP-pN-FADD and VNP-pN-N-FADD delayed tumor growth in B16F10 mice model, while VNP-pN-N-FADD suppressed melanoma growth more significantly than VNP-pN-FADD. Additionally, VNP-pN-FADD and VNP-pN-N-FADD induced apoptosis of tumor cells by activating caspase-dependent apoptotic pathway. Our results show that N-FADD is a more potent apoptotic inducer and VNP20009-mediated targeted expression of N-FADD provides a possible cancer gene therapeutic approach for the treatment of melanoma. PMID:27767039

  3. Lethal activity of FADD death domain in renal tubular epithelial cells.

    PubMed

    Justo, P; Sanz, A B; Lorz, C; Egido, J; Ortiz, A

    2006-06-01

    Fas-associated death domain (FADD) is an adaptor protein that is required for the transmission of the death signal from lethal receptors of the tumor necrosis factor superfamily. FADD contains a death domain (DD) and a death effector domain (DED). As death receptors contribute to renal tubular injury and tubular cell FADD increases in acute renal failure, we have studied the function of FADD in tubular epithelium. FADD expression was studied in kidney samples from mice. In order to study the contribution of FADD to renal tubular cell survival, FADD or FADD-DD were overexpressed in murine tubular epithelium. FADD is expressed in renal tubules of the healthy kidney. Both FADD and FADD-DD induce apoptosis in primary cultures of murine tubular epithelium and in the murine cortical tubular cell line. Death induced by FADD-DD has apoptotic morphology, but differs from death receptor-induced apoptosis in that it is not blocked by inhibitors of caspases. Neither an inhibitor of serine proteases nor overexpression of antiapoptotic BclxL prevented cell death. However, the combination of caspase and serine protease inhibition was protective. FADD and FADD-DD overexpression decreased nuclear factor kappa B activity. These data suggest that FADD has a death regulatory function in renal tubular cells that is independent of death receptors. FADD-DD is sufficient to induce apoptosis in these cells. This information is relevant to understanding the role of FADD in tubular injury.

  4. MiR-7a is an important mediator in Fas-associated protein with death domain (FADD)-regulated expression of focal adhesion kinase (FAK)

    PubMed Central

    Liu, Yingting; Cui, Hongen; Huang, Xianjie; Zhu, Bo; Guan, Shengwen; Cheng, Wei; Lai, Yueyang; Zhang, Xiaoxin; Hua, Zi-Chun

    2016-01-01

    Fas-associated protein with death domain (FADD), a classical adaptor protein mediating apoptotic stimuli-induced cell death, has been reported to engage in several non-apoptotic processes such as T cell and cardiac development and tumorigenesis. Recently, there are several reports about the FADD's involvement in cell migration, however the underlying mechanism remains elusive. Here, we present a new finding that FADD could regulate the expression of FAK, a non-receptor protein tyrosine kinase overexpressed in many cancers, and played an important role in cell migration in murine MEF and melanoma cells with different metastatic potential, B16F10 and B16F1. Moreover, miR-7a, a tumor suppressor which prohibits cell migration and invasion, was up-regulated in FADD-deficient cells. And FAK was verified to be the direct target gene of miR-7a in B16F10 cells. Furthermore, we demonstrate that miR-7a was a necessary mediator in FADD-regulated FAK expression. In contrast to its classical apoptotic role, FADD interference could reduce the rate of cell migration, which could be rescued by inhibiting miR-7a expression. Taken together, our data provide a novel explanation regarding how FADD regulates cell migration in murine melanoma cells. PMID:27286445

  5. Clinical Implications of FADD Gene Amplification and Protein Overexpression in Taiwanese Oral Cavity Squamous Cell Carcinomas

    PubMed Central

    Chien, Huei-Tzu; Cheng, Sou-De; Chuang, Wen-Yu; Liao, Chun-Ta; Wang, Hung-Ming; Huang, Shiang-Fu

    2016-01-01

    Amplification of 11q13.3 is a frequent event in human cancers, including head and neck squamous cell carcinoma. This chromosome region contains several genes that are potentially cancer drivers, including FADD (Fas associated via death domain), an apoptotic effector that was previously identified as a novel oncogene in laryngeal/pharyngeal cancer. This study was designed to explore the role of FADD in oral squamous cell carcinomas (OSCCs) samples from Taiwanese patients, by assessing copy number variations (CNVs) and protein expression and the clinical implications of these factors in 339 male OSCCs. The intensity of FADD protein expression, as determined by immunohistochemistry, was strongly correlated with gene copy number amplification, as analyzed using a TaqMan CNV assay. Both FADD gene copy number amplification and high protein expression were significantly associated with lymph node metastasis (P < 0.001). Patients with both FADD copy number amplification and high protein expression had the shortest disease-free survival (DFS; P = 0.074 and P = 0.002) and overall survival (OS; P = 0.011 and P = 0.027). After adjusting for primary tumor status, tumor differentiation, lymph node metastasis and age at diagnosis, DFS was still significantly lower in patients with either copy number amplification or high protein expression (hazard ratio [H.R.] = 1.483; 95% confidence interval [C.I.], 1.044–2.106). In conclusion, our data reveal that FADD gene copy number and protein expression can be considered potential prognostic markers and are closely associated with lymph node metastasis in patients with OSCC in Taiwan. PMID:27764170

  6. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling.

    PubMed

    Carty, Michael; Goodbody, Rory; Schröder, Martina; Stack, Julianne; Moynagh, Paul N; Bowie, Andrew G

    2006-10-01

    Toll-like receptors discriminate between different pathogen-associated molecules and activate signaling cascades that lead to immune responses. The specificity of Toll-like receptor signaling occurs by means of adaptor proteins containing Toll-interleukin 1 receptor (TIR) domains. Activating functions have been assigned to four TIR adaptors: MyD88, Mal, TRIF and TRAM. Here we characterize a fifth TIR adaptor, SARM, as a negative regulator of TRIF-dependent Toll-like receptor signaling. Expression of SARM blocked gene induction 'downstream' of TRIF but not of MyD88. SARM associated with TRIF, and 'knockdown' of endogenous SARM expression by interfering RNA led to enhanced TRIF-dependent cytokine and chemokine induction. Thus, the fifth mammalian TIR adaptor SARM is a negative regulator of Toll-like receptor signaling.

  7. [Construction of mammalian cell expression vector for pAcGFP-bFADD fusion protein and its expression in CHO-K1 cell].

    PubMed

    Yang, Runjun; Xu, Shangzhong; Zhang, Lupei; Li, Junya; Gao, Xue

    2008-11-01

    Fas-associated death domain (FADD) is a signal connection protein in Fas/FasL apoptotic path which might play a key role on apoptosis by transferring apoptotic signal. To reveal the intracellular signal transduction molecules involved in the procedure of follicular development in bovine ovary, we cloned FADD gene in bovine ovary tissue with RT-PCR, deleted the termination codon in its cDNA and directionally cloned the amplified FADD gene into eukaryotic expression vector pAcGFP-N1 including AcGFP, successfully constructed the fusion protein recombinant plasmid. After identifying by restrictive enzyme Bgl II/EcoR I and sequencing, transfected pAcGFP-bFADD into CHO-K1 cell mediated by Lipofectamine 2000, observed the expression of AcGFP and detected the transcription and expression of FADD by RT-PCR and Western blotting. The results showed that the cattle FADD was successfully cloned, the pAcGFP-bFADD fusion protein recombinant plasmid was successfully constructed by introducing Bgl II, EcoR I cloning site at two ends of FADD open reading frame and inserting a Kozak sequence before start codon. AcGFP expression was detected as early as 24 h after transfection. The percentage of AcGFP positive cells reached about 65% after 24 h. A 654 bp transcription was amplified by RT-PCR, and 51.4 kD target protein was detected by Western blotting. Construction of pAcGFP-bFADD recombinant plasmid should be helpful for further understanding the mechanism of regulation of FADD on bovine oocytes formation and development.

  8. The FasFADD death domain complex structure reveals the basis of DISC assembly and disease mutations

    SciTech Connect

    Wang, Liwei; Yang, Jin Kuk; Kabaleeswaran, Venkataraman; Rice, Amanda J.; Cruz, Anthony C.; Park, Ah Young; Yin, Qian; Damko, Ermelinda; Jang, Se Bok; Raunser, Stefan; Robinson, Carol V.; Siegel, Richard M.; Walz, Thomas; Wu, Hao

    2010-10-10

    The death-inducing signaling complex (DISC) formed by the death receptor Fas, the adaptor protein FADD and caspase-8 mediates the extrinsic apoptotic program. Mutations in Fas that disrupt the DISC cause autoimmune lymphoproliferative syndrome (ALPS). Here we show that the Fas-FADD death domain (DD) complex forms an asymmetric oligomeric structure composed of 5-7 Fas DD and 5 FADD DD, whose interfaces harbor ALPS-associated mutations. Structure-based mutations disrupt the Fas-FADD interaction in vitro and in living cells; the severity of a mutation correlates with the number of occurrences of a particular interaction in the structure. The highly oligomeric structure explains the requirement for hexameric or membrane-bound FasL in Fas signaling. It also predicts strong dominant negative effects from Fas mutations, which are confirmed by signaling assays. The structure optimally positions the FADD death effector domain (DED) to interact with the caspase-8 DED for caspase recruitment and higher-order aggregation.

  9. Modulation of lipoprotein receptor functions by intracellular adaptor proteins.

    PubMed

    Stolt, Peggy C; Bock, Hans H

    2006-10-01

    Members of the low density lipoprotein (LDL) receptor gene family are critically involved in a wide range of physiological processes including lipid and vitamin homeostasis, cellular migration, neurodevelopment, and synaptic plasticity, to name a few. Lipoprotein receptors exert these diverse biological functions by acting as cellular uptake receptors or by inducing intracellular signaling cascades. It was discovered that a short sequence in the intracellular region of all lipoprotein receptors, Asn-Pro-X-Tyr (NPXY) is important for mediating either endocytosis or signal transduction events, and that this motif serves as a binding site for phosphotyrosine-binding (PTB) domain containing scaffold proteins. These molecular adaptors connect the transmembrane receptors with the endocytosis machinery and regulate cellular trafficking, or function as assembly sites for dynamic multi-protein signaling complexes. Whereas the LDL receptor represents the archetype of an endocytic lipoprotein receptor, the structurally closely related apolipoprotein E receptor 2 (apoER2) and very low density lipoprotein (VLDL) receptor activate a kinase-dependent intracellular signaling cascade after binding to the neuronal signaling molecule Reelin. This review focuses on two related PTB domain containing adaptor proteins that mediate these divergent lipoprotein receptor responses, ARH (autosomal recessive hypercholesterolemia protein) and Dab1 (disabled-1), and discusses the structural and molecular basis of this different behaviour.

  10. The adaptor protein ARH escorts megalin to and through endosomes.

    PubMed

    Nagai, Masaaki; Meerloo, Timo; Takeda, Tetsuro; Farquhar, Marilyn Gist

    2003-12-01

    Megalin is an endocytic receptor that binds multiple ligands and is essential for many physiological processes such as brain development and uptake of proteins by the kidney tubule, yolk sac, and thyroid. The cytoplasmic tail of megalin contains two FXNPXY motifs. Autosomal recessive hypercholesterolemia (ARH) is an adaptor protein that binds to the FXNPXY motif of the low-density lipoprotein receptor as well as clathrin and AP-2. We found that ARH also binds to the first FXNPXY motif of megalin in two-hybrid, pull-down and coimmunoprecipitation assays. ARH colocalizes with megalin in clathrin coated pits and in recycling endosomes in the Golgi region. When cells are treated with nocodazole, the recycling endosomes containing megalin and ARH disperse. On internalization of megalin, ARH and megalin are first seen in clathrin coated pits followed by sequential localization in early endosomes and tubular recycling endosomes in the pericentriolar region followed by their reappearance at the cell surface. Expression of ARH in Madin-Darby canine kidney cells expressing megalin mini-receptors enhances megalin-mediated uptake of 125I-lactoferrin, a megalin ligand. These results show that ARH facilitates endocytosis of megalin, escorts megalin along its endocytic route and raise the possibility that transport through the endosomal system is selective and requires interaction with specific adaptor proteins.

  11. Adaptor Protein 1A Facilitates Dengue Virus Replication

    PubMed Central

    Yasamut, Umpa; Tongmuang, Nopprarat; Yenchitsomanus, Pa-thai; Junking, Mutita; Noisakran, Sansanee; Puttikhunt, Chunya; Chu, Justin Jang Hann; Limjindaporn, Thawornchai

    2015-01-01

    Rearrangement of membrane structure induced by dengue virus (DENV) is essential for replication, and requires host cellular machinery. Adaptor protein complex (AP)-1 is a host component, which can be recruited to components required for membrane rearrangement. Therefore, dysfunction of AP-1 may affect membrane organization, thereby decreasing replication of virus in infected cells. In the present study, AP-1-dependent traffic inhibitor inhibited DENV protein expression and virion production. We further clarified the role of AP-1A in the life cycle of DENV by RNA interference. AP-1A was not involved in DENV entry into cells. However, it facilitated DENV RNA replication. Viral RNA level was reduced significantly in Huh7 cells transfected with AP-1A small interfering RNA (siRNA) compared with control siRNA. Transfection of naked DENV viral RNA into Huh7 cells transfected with AP-1A siRNA resulted in less viral RNA and virion production than transfection into Huh7 cells transfected with control siRNA. Huh7 cells transfected with AP-1A siRNA showed greater modification of membrane structures and fewer vesicular packets compared with cells transfected with control siRNA. Therefore, AP-1A may partly control DENV-induced rearrangement of membrane structures required for viral replication. PMID:26090672

  12. Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump

    PubMed Central

    Hinchliffe, Philip; Greene, Nicholas P.; Paterson, Neil G.; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2014-01-01

    Periplasmic adaptor proteins are key components of bacterial tripartite efflux pumps. The 2.85 Å resolution structure of an MFS (major facilitator superfamily) pump adaptor, Aquifex aeolicus EmrA, shows linearly arranged α-helical coiled-coil, lipoyl, and β-barrel domains, but lacks the fourth membrane-proximal domain shown in other pumps to interact with the inner membrane transporter. The adaptor α-hairpin, which binds outer membrane TolC, is exceptionally long at 127 Å, and the β-barrel contains a conserved disordered loop. The structure extends the view of adaptors as flexible, modular components that mediate diverse pump assembly, and suggests that in MFS tripartite pumps a hexamer of adaptors could provide a periplasmic seal. PMID:24996185

  13. Alternative Splicing in CaV2.2 Regulates Neuronal Trafficking via Adaptor Protein Complex-1 Adaptor Protein Motifs

    PubMed Central

    Macabuag, Natsuko

    2015-01-01

    N-type voltage-gated calcium (CaV2.2) channels are expressed in neurons and targeted to the plasma membrane of presynaptic terminals, facilitating neurotransmitter release. Here, we find that the adaptor protein complex-1 (AP-1) mediates trafficking of CaV2.2 from the trans-Golgi network to the cell surface. Examination of splice variants of CaV2.2, containing either exon 37a (selectively expressed in nociceptors) or 37b in the proximal C terminus, reveal that canonical AP-1 binding motifs, YxxΦ and [DE]xxxL[LI], present only in exon 37a, enhance intracellular trafficking of exon 37a-containing CaV2.2 to the axons and plasma membrane of rat DRG neurons. Finally, we identify differential effects of dopamine-2 receptor (D2R) and its agonist-induced activation on trafficking of CaV2.2 isoforms. D2R slowed the endocytosis of CaV2.2 containing exon 37b, but not exon 37a, and activation by the agonist quinpirole reversed the effect of the D2R. Our work thus reveals key mechanisms involved in the trafficking of N-type calcium channels. SIGNIFICANCE STATEMENT CaV2.2 channels are important for neurotransmitter release, but how they are trafficked is still poorly understood. Here, we describe a novel mechanism for trafficking of CaV2.2 from the trans-Golgi network to the cell surface which is mediated by the adaptor protein AP-1. Alternative splicing of exon 37 produces CaV2.2-exon 37a, selectively expressed in nociceptors, or CaV2.2-exon 37b, which is the major splice isoform. Our study reveals that canonical AP-1 binding motifs (YxxΦ and [DE]xxxL[LI]), present in exon 37a, but not 37b, enhance intracellular trafficking of exon 37a-containing CaV2.2 to axons and plasma membrane of DRG neurons. Interaction of APs with CaV2.2 channels may also be key underlying mechanisms for differential effects of the dopamine D2 receptor on trafficking of CaV2.2 splice variants. PMID:26511252

  14. The alpha-chain of the nascent polypeptide-associated complex binds to and regulates FADD function.

    PubMed

    Stilo, Romania; Liguoro, Domenico; di Jeso, Bruno; Leonardi, Antonio; Vito, Pasquale

    2003-04-18

    FADD protein is a critical mediator of signal transduction pathways activated by several members of the TNF-receptor gene superfamily. Recently, an induced proximity model has been proposed to interpret FADD-mediated signaling events. According to this model, FADD facilitates signaling by inducing clusters of effector molecules in proximity of the activated receptor complex. An important corollary of the induced-proximity model is that FADD protein should not form oligomers in the absence of receptor stimulation. Here we show that, in the absence of death receptor stimulation, FADD is found associated to the alpha chain of the nascent polypeptide-associated complex (NAC). Exposure to TNF results in disruption of FADD/NAC complex. Expression of NAC regulates formation of FADD oligomers and modulates FADD-mediated signaling. Thus, our observation indicates that NAC may serve as an intracellular regulator of FADD function.

  15. The Exosome Is Recruited to RNA Substrates through Specific Adaptor Proteins.

    PubMed

    Thoms, Matthias; Thomson, Emma; Baßler, Jochen; Gnädig, Marén; Griesel, Sabine; Hurt, Ed

    2015-08-27

    The exosome regulates the processing, degradation, and surveillance of a plethora of RNA species. However, little is known about how the exosome recognizes and is recruited to its diverse substrates. We report the identification of adaptor proteins that recruit the exosome-associated helicase, Mtr4, to unique RNA substrates. Nop53, the yeast homolog of the tumor suppressor PICT1, targets Mtr4 to pre-ribosomal particles for exosome-mediated processing, while a second adaptor Utp18 recruits Mtr4 to cleaved rRNA fragments destined for degradation by the exosome. Both Nop53 and Utp18 contain the same consensus motif, through which they dock to the "arch" domain of Mtr4 and target it to specific substrates. These findings show that the exosome employs a general mechanism of recruitment to defined substrates and that this process is regulated through adaptor proteins.

  16. Identification of Cargo for Adaptor Protein (AP) Complexes 3 and 4 by Sucrose Gradient Profiling.

    PubMed

    Pertl-Obermeyer, Heidi; Wu, Xu Na; Schrodt, Jens; Müdsam, Christina; Obermeyer, Gerhard; Schulze, Waltraud X

    2016-09-01

    Intracellular vesicle trafficking is a fundamental process in eukaryotic cells. It enables cellular polarity and exchange of proteins between subcellular compartments such as the plasma membrane or the vacuole. Adaptor protein complexes participate in the vesicle formation by specific selection of the transported cargo. We investigated the role of the adaptor protein complex 3 (AP-3) and adaptor protein complex 4 (AP-4) in this selection process by screening for AP-3 and AP-4 dependent cargo proteins. Specific cargo proteins are expected to be mis-targeted in knock-out mutants of adaptor protein complex components. Thus, we screened for altered distribution profiles across a density gradient of membrane proteins in wild type versus ap-3β and ap-4β knock-out mutants. In ap-3β mutants, especially proteins with transport functions, such as aquaporins and plasma membrane ATPase, as well as vesicle trafficking proteins showed differential protein distribution profiles across the density gradient. In the ap-4β mutant aquaporins but also proteins from lipid metabolism were differentially distributed. These proteins also showed differential phosphorylation patterns in ap-3β and ap-4β compared with wild type. Other proteins, such as receptor kinases were depleted from the AP-3 mutant membrane system, possibly because of degradation after mis-targeting. In AP-4 mutants, membrane fractions were depleted for cytochrome P450 proteins, cell wall proteins and receptor kinases. Analysis of water transport capacity in wild type and mutant mesophyll cells confirmed aquaporins as cargo proteins of AP-3 and AP-4. The combination of organelle density gradients with proteome analysis turned out as a suitable experimental strategy for large-scale analyses of protein trafficking.

  17. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export.

    PubMed

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M; Brandl, Holger; Schwich, Oliver D; Steiner, Michaela C; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M

    2016-03-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends.

  18. Either fadD1 or fadD2, Which Encode acyl-CoA Synthetase, Is Essential for the Survival of Haemophilus parasuis SC096

    PubMed Central

    Feng, Saixiang; Xu, Chenggang; Yang, Kaijie; Wang, Haihong; Fan, Huiying; Liao, Ming

    2017-01-01

    In Haemophilus parasuis, the genes HAPS_0217 and HAPS_1695 are predicted to encode long-chain fatty acid-CoA ligases (FACSs). These proteins contain ATP/AMP signature motifs and FACS conserved motifs that are homologous to those in Escherichia coli FadD (EcFadD). In this study, we demonstrate that HAPS_0217 and HAPS_1695 can functionally replace EcFadD in the E. coli fadD mutant JW1794, and were thus designated fadD1 and fadD2, respectively. An evaluation of kinetic parameters indicated that FadD1 and FadD2 have a substrate preference for long-chain fatty acids. Moreover, FadD2 exhibited substrate inhibition in the presence of high concentrations of oleic acid. Single mutants of each of the fadD genes were easily constructed, whereas double mutants were not. These results were further confirmed using genomic site-directed mutagenesis, which supported the idea that H. parasuis requires either fadD1 or fadD2 for survival. The fadD1 mutant exhibited slower growth than the wild-type strain SC096, and its complementation resulted in a restored phenotype. The wild-type strain did not grow on chemically defined medium without the addition of oleic acid, indicating that lipids are a vital nutrient for this bacterium. Additionally, strains with a disrupted fadD1 gene also exhibited increased sensitivity to quinolone antibiotics, including levofloxacin, enrofloxacin, ciprofloxacin and nalidixic acid. PMID:28361037

  19. Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes.

    PubMed

    Theos, Alexander C; Tenza, Danièle; Martina, José A; Hurbain, Ilse; Peden, Andrew A; Sviderskaya, Elena V; Stewart, Abigail; Robinson, Margaret S; Bennett, Dorothy C; Cutler, Daniel F; Bonifacino, Juan S; Marks, Michael S; Raposo, Graça

    2005-11-01

    Specialized cells exploit adaptor protein complexes for unique post-Golgi sorting events, providing a unique model system to specify adaptor function. Here, we show that AP-3 and AP-1 function independently in sorting of the melanocyte-specific protein tyrosinase from endosomes to the melanosome, a specialized lysosome-related organelle distinguishable from lysosomes. AP-3 and AP-1 localize in melanocytes primarily to clathrin-coated buds on tubular early endosomes near melanosomes. Both adaptors recognize the tyrosinase dileucine-based melanosome sorting signal, and tyrosinase largely colocalizes with each adaptor on endosomes. In AP-3-deficient melanocytes, tyrosinase accumulates inappropriately in vacuolar and multivesicular endosomes. Nevertheless, a substantial fraction still accumulates on melanosomes, concomitant with increased association with endosomal AP-1. Our data indicate that AP-3 and AP-1 function in partially redundant pathways to transfer tyrosinase from distinct endosomal subdomains to melanosomes and that the AP-3 pathway ensures that tyrosinase averts entrapment on internal membranes of forming multivesicular bodies.

  20. The role of Tks adaptor proteins in invadopodia formation, growth and metastasis of melanoma

    PubMed Central

    Iizuka, Shinji; Abdullah, Christopher; Buschman, Matthew D.; Diaz, Begoña; Courtneidge, Sara A.

    2016-01-01

    Metastatic cancer cells are characterized by their ability to degrade and invade through extracellular matrix. We previously showed that the Tks adaptor proteins, Tks4 and Tks5, are required for invadopodia formation and/or function in Src-transformed fibroblasts and a number of human cancer cell types. In this study, we investigated the role of Tks adaptor proteins in melanoma cell invasion and metastasis. Knockdown of either Tks4 or Tks5 in both mouse and human melanoma cell lines resulted in a decreased ability to form invadopodia and degrade extracellular matrix. In addition, Tks-knockdown melanoma cells had decreased proliferation in a 3-dimensional type l collagen matrix, but not in 2-dimensional culture conditions. We also investigated the role of Tks proteins in melanoma progression in vivo using xenografts and experimental metastasis assays. Consistent with our in vitro results, reduction of Tks proteins markedly reduced subcutaneous melanoma growth as well as metastatic growth in the lung. We explored the clinical relevance of Tks protein expression in human melanoma specimens using a tissue microarray. Compared to non-malignant nevi, both Tks proteins were highly expressed in melanoma tissues. Moreover, metastatic melanoma cases showed higher expression of Tks5 than primary melanoma cases. Taken together, these findings suggest the importance of Tks adaptor proteins in melanoma growth and metastasis in vivo, likely via functional invadopodia formation. PMID:27802184

  1. Nuclear Translocation of Crk Adaptor Proteins by the Influenza A Virus NS1 Protein

    PubMed Central

    Ylösmäki, Leena; Fagerlund, Riku; Kuisma, Inka; Julkunen, Ilkka; Saksela, Kalle

    2016-01-01

    The non-structural protein-1 (NS1) of many influenza A strains, especially those of avian origin, contains an SH3 ligand motif, which binds tightly to the cellular adaptor proteins Crk (Chicken tumor virus number 10 (CT10) regulator of kinase) and Crk-like adapter protein (CrkL). This interaction has been shown to potentiate NS1-induced activation of the phosphatidylinositol 3-kinase (PI3K), but additional effects on the host cell physiology may exist. Here we show that NS1 can induce an efficient translocation of Crk proteins from the cytoplasm into the nucleus, which results in an altered pattern of nuclear protein tyrosine phosphorylation. This was not observed using NS1 proteins deficient in SH3 binding or engineered to be exclusively cytoplasmic, indicating a physical role for NS1 as a carrier in the nuclear translocation of Crk. These data further emphasize the role of Crk proteins as host cell interaction partners of NS1, and highlight the potential for host cell manipulation gained by a viral protein simply via acquiring a short SH3 binding motif. PMID:27092521

  2. The Lnk adaptor protein: a key regulator of normal and pathological hematopoiesis.

    PubMed

    Velazquez, Laura

    2012-12-01

    The development and function of blood cells are regulated by specific growth factors/cytokines and their receptors' signaling pathways. In this way, these factors influence cell survival, proliferation and differentiation of hematopoietic cells. Central to this positive and/or negative control are the adaptor proteins. Since their identification 10 years ago, members of the Lnk adaptor protein family have proved to be important activators and/or inhibitors in the hematopoietic, immune and vascular system. In particular, the generation of animal and cellular models for the Lnk and APS proteins has helped establish the physiological role of these molecules through the identification of their specific signaling pathways and the characterization of their binding partners. Moreover, the recent identification of mutations in the LNK gene in myeloproliferative disorders, as well as the correlation of a single nucleotide polymorphism on LNK with hematological, immune and vascular diseases have suggested its involvement in the pathophysiology of these malignancies. The latter findings have thus raised the possibility of addressing Lnk signaling for the treatment of certain human diseases. This review therefore describes the pathophysiological role of this adaptor protein in hematological malignancies and the potential benefits of Lnk therapeutic targeting.

  3. Science Signaling Podcast for 12 July 2016: Adaptor proteins limit signaling.

    PubMed

    Wiley, H Steven; VanHook, Annalisa M

    2016-07-12

    This Podcast features an interview with Steven Wiley, senior author of a Research Article that appears in the 12 July 2016 issue of Science Signaling, about how the abundance of adaptor proteins and feedback regulators affect the flow of information downstream of the epidermal growth factor receptor (EGFR). Information flows through a signaling pathway by sequential interactions between core components of the pathway, many of which have enzymatic activity. Adaptor proteins do not directly participate in relaying the signal and do not have enzymatic activity, but are important for signaling because they facilitate interactions between the core components. Using quantitative methods, Shi et al demonstrated that core components of the EGFR pathway were highly abundant in both normal cells and cancer cells. However, adaptor proteins were present in much lower abundance in both cell types, indicating that it is the abundance of these proteins that limit signaling downstream of EGFR. The authors also found that differences in EGFR signaling between different cell types likely resulted from the variable abundance of feedback regulators.Listen to Podcast.

  4. Binding of AP-2 adaptor complex to brain membrane is regulated by phosphorylation of proteins

    SciTech Connect

    Alberdi, A. . E-mail: aalberdi@fcm.uncu.edu.ar; Sartor, T.; Sosa, M.A.

    2005-05-13

    Phosphorylation of proteins appears as a key process in early steps of clathrin coated vesicle formation. Here, we report that treatment of post-nuclear fraction with alkaline phosphatase induced redistribution of {alpha} subunits of AP-2 adaptor complex to cytosol and this effect was higher in the {alpha}2 subunit. A high serine phosphorylation status of {alpha} subunits correlated with the higher affinity of AP-2 to membranes. Using a simple binding assay, where membranes were incubated with either purified adaptors or cytosols, we observed an inhibitory effect of tyrphostin, a tyrosine kinase inhibitor, on the binding of AP-2 to membranes, but also an unexpected decrease induced by the phosphatase inhibitor cyclosporine. We also show an inhibitory effect of ATP mediated by cytosolic proteins, although it could not be related to the phosphorylation of AP-2, suggesting an action upstream a cascade of phosphorylations that participate in the regulation of the assembly of AP-2 to membranes.

  5. Crocetin exploits p53-induced death domain (PIDD) and FAS-associated death domain (FADD) proteins to induce apoptosis in colorectal cancer

    PubMed Central

    Ray, Pallab; Guha, Deblina; Chakraborty, Juni; Banerjee, Shuvomoy; Adhikary, Arghya; Chakraborty, Samik; Das, Tanya; Sa, Gaurisankar

    2016-01-01

    Tumor suppressor p53 preserves the genomic integrity by restricting anomaly at the gene level. The hotspots for mutation in half of all colon cancers reside in p53. Hence, in a p53-mutated cellular milieu targeting cancer cells may be achievable by targeting the paralogue(s) of p53. Here we have shown the effectiveness of crocetin, a dietary component, in inducing apoptosis of colon cancer cells with varying p53 status. In wild-type p53-expressing cancer cells, p53 in one hand transactivates BAX and in parallel up-regulates p53-induced death domain protein (PIDD) that in turn cleaves and activates BID through caspase-2. Both BAX and t-BID converge at mitochondria to alter the transmembrane potential thereby leading to caspase-9 and caspase-3-mediated apoptosis. In contrast, in functional p53-impaired cells, this phytochemical exploits p53-paralogue p73, which up-regulates FAS to cleave BID through FAS-FADD-caspase-8-pathway. These findings not only underline the phenomenon of functional switch-over from p53 to p73 in p53-impaired condition, but also validate p73 as a promising and potential target for cancer therapy in absence of functional p53. PMID:27622714

  6. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling

    PubMed Central

    Birge, Raymond B; Kalodimos, Charalampos; Inagaki, Fuyuhiko; Tanaka, Shinya

    2009-01-01

    The Crk adaptor proteins (Crk and CrkL) constitute an integral part of a network of essential signal transduction pathways in humans and other organisms that act as major convergence points in tyrosine kinase signaling. Crk proteins integrate signals from a wide variety of sources, including growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. Mounting evidence indicates that dysregulation of Crk proteins is associated with human diseases, including cancer and susceptibility to pathogen infections. Recent structural work has identified new and unusual insights into the regulation of Crk proteins, providing a rationale for how Crk can sense diverse signals and produce a myriad of biological responses. PMID:19426560

  7. Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein.

    PubMed

    He, X; Li, Y; Schembri-King, J; Jakes, S; Hayashi, J

    2000-08-01

    Human Lnk (hLnk) is an adaptor protein with multiple functional domains that regulates T cell activation signaling. In order to identify cellular Lnk binding partners, a yeast two-hybrid screening of human spleen cDNA library was carried out using human hLnk as bait. A polypeptide sequence identical to the C-terminal segment of the actin binding protein (ABP-280) was identified as a hLnk binding protein. The expressed hLnk and the FLAG tagged C-terminal 673 amino acid residues of ABP-280 or the endogenous ABP-280 in COS-7 cells could be co-immunoprecipitated using antibodies either to hLnk, FLAG or ABP-280, respectively. Furthermore, immunofluorescence confocal microscope showed that hLnk and ABP-280 co-localized at the plasma membrane and at juxtanuclear region of COS-7 cells. In Jurkat cells, the endogenous hLnk also associates with the endogenous ABP-280 indicating that the association of these two proteins is physiological. The interacting domains of both proteins were mapped using yeast two-hybrid assays. Our results indicate that hLnk binds to the residues 2006-2454 (repeats 19-23C) of ABP-280. The domain in hLnk that associates with ABP-280 was mapped to an interdomain region of 56 amino acids between pleckstrin homology and Src homology 2 domains. These results suggest that hLnk may exert its regulatory role through its association with ABP-280.

  8. Tetraspan cargo adaptors usher GPI-anchored proteins into multivesicular bodies

    PubMed Central

    MacDonald, Chris; Stamnes, Mark A; Katzmann, David J; Piper, Robert C

    2015-01-01

    Ubiquitinated membrane proteins are sorted into intralumenal endosomal vesicles on their way for degradation in lysosomes. Here we summarize the discovery of the Cos proteins, which work to organize and segregate ubiquitinated cargo prior to its incorporation into intralumenal vesicles of the multivesicular body (MVB). Importantly, cargoes such as GPI-anchored proteins (GPI-APs) that cannot undergo ubiquitination, rely entirely on Cos proteins for sorting into intralumenal vesicles using the same pathway that depends on ESCRTs and ubiquitin ligases that typical polytopic membrane proteins do. Here we show Cos proteins provide functions as not only adaptor proteins for ubiquitin ligases, but also as cargo carriers that can physically usher a variety of other proteins into the MVB pathway. We then discuss the significance of this new sorting model and the broader implications for this cargo adaptor mechanism, whereby yeast Cos proteins, and their likely animal analogs, provide a ubiquitin sorting signal in trans to enable sorting of a membrane protein network into intralumenal vesicles. PMID:26505929

  9. Differential Regulation of Clathrin and Its Adaptor Proteins during Membrane Recruitment for Endocytosis1[OPEN

    PubMed Central

    Wang, Chao; Hu, Tianwei; Yan, Xu; Meng, Tingting; Wang, Yutong; Wang, Qingmei; Zhang, Xiaoyue; Gu, Ying; Sánchez-Rodríguez, Clara; Gadeyne, Astrid; Lin, Jinxing

    2016-01-01

    In plants, clathrin-mediated endocytosis (CME) is dependent on the function of clathrin and its accessory heterooligomeric adaptor protein complexes, ADAPTOR PROTEIN2 (AP-2) and the TPLATE complex (TPC), and is negatively regulated by the hormones auxin and salicylic acid (SA). The details for how clathrin and its adaptor complexes are recruited to the plasma membrane (PM) to regulate CME, however, are poorly understood. We found that SA and the pharmacological CME inhibitor tyrphostin A23 reduce the membrane association of clathrin and AP-2, but not that of the TPC, whereas auxin solely affected clathrin membrane association, in Arabidopsis (Arabidopsis thaliana). Genetic and pharmacological experiments revealed that loss of AP2μ or AP2σ partially affected the membrane association of other AP-2 subunits and that the AP-2 subunit AP2σ, but not AP2μ, was required for SA- and tyrphostin A23-dependent inhibition of CME. Furthermore, we show that although AP-2 and the TPC are both required for the PM recruitment of clathrin in wild-type cells, the TPC is necessary for clathrin PM association in AP-2-deficient cells. These results indicate that developmental signals may differentially modulate the membrane recruitment of clathrin and its core accessory complexes to regulate the process of CME in plant cells. PMID:26945051

  10. The Fas-FADD Death Domain Complex Structure Unravels Signalling by Receptor Clustering

    SciTech Connect

    Scott, F.; Stec, B; Pop, C; Dobaczewska, M; Lee, J; Monosov, E; Robinson, H; Salvesen, G; Schwarzenbacher, R; Riedl, S

    2009-01-01

    The death inducing signalling complex (DISC) formed by Fas receptor, FADD (Fas-associated death domain protein) and caspase 8 is a pivotal trigger of apoptosis1, 2, 3. The Fas-FADD DISC represents a receptor platform, which once assembled initiates the induction of programmed cell death. A highly oligomeric network of homotypic protein interactions comprised of the death domains of Fas and FADD is at the centre of DISC formation4, 5. Thus, characterizing the mechanistic basis for the Fas-FADD interaction is crucial for understanding DISC signalling but has remained unclear largely because of a lack of structural data. We have successfully formed and isolated the human Fas-FADD death domain complex and report the 2.7 A crystal structure. The complex shows a tetrameric arrangement of four FADD death domains bound to four Fas death domains. We show that an opening of the Fas death domain exposes the FADD binding site and simultaneously generates a Fas-Fas bridge. The result is a regulatory Fas-FADD complex bridge governed by weak protein-protein interactions revealing a model where the complex itself functions as a mechanistic switch. This switch prevents accidental DISC assembly, yet allows for highly processive DISC formation and clustering upon a sufficient stimulus. In addition to depicting a previously unknown mode of death domain interactions, these results further uncover a mechanism for receptor signalling solely by oligomerization and clustering events.

  11. The polarity protein Par3 regulates APP trafficking and processing through the endocytic adaptor protein Numb.

    PubMed

    Sun, Miao; Asghar, Suwaiba Z; Zhang, Huaye

    2016-09-01

    The processing of amyloid precursor protein (APP) into β-amyloid peptide (Aβ) is a key step in the pathogenesis of Alzheimer's disease (AD), and trafficking dysregulations of APP and its secretases contribute significantly to altered APP processing. Here we show that the cell polarity protein Par3 plays an important role in APP processing and trafficking. We found that the expression of full length Par3 is significantly decreased in AD patients. Overexpression of Par3 promotes non-amyloidogenic APP processing, while depletion of Par3 induces intracellular accumulation of Aβ. We further show that Par3 functions by regulating APP trafficking. Loss of Par3 decreases surface expression of APP by targeting APP to the late endosome/lysosome pathway. Finally, we show that the effects of Par3 are mediated through the endocytic adaptor protein Numb, and Par3 functions by interfering with the interaction between Numb and APP. Together, our studies show a novel role for Par3 in regulating APP processing and trafficking.

  12. Adaptor protein Nck1 interacts with p120 Ras GTPase-activating protein and regulates its activity.

    PubMed

    Ger, Marija; Zitkus, Zigmantas; Valius, Mindaugas

    2011-10-01

    Adaptor protein Nck1 binds a number of intracellular proteins and influences various signaling pathways. Here we show that Nck1 directly binds and activates the GTPase-activating protein of Ras (RasGAP), which is responsible for the down-regulation of Ras. The first and the third SH3 domains of Nck1 and the NH(2)-terminal proline-rich sequence of RasGAP contribute most to the complex formation causing direct molecular interaction between the two proteins. Cell adhesion to the substrate is obligatory for the Nck1 and RasGAP association, as cell detachment makes RasGAP incapable of associating with Nck1. This leads to the complex dissipation, decrease of RasGAP activity and the increase of H-Ras-GTP level in the detached cells. Our findings reveal unexpected feature of adaptor protein Nck1 as the regulator of RasGAP activity.

  13. A role for the adaptor proteins TRAM and TRIF in toll-like receptor 2 signaling.

    PubMed

    Nilsen, Nadra J; Vladimer, Gregory I; Stenvik, Jørgen; Orning, M Pontus A; Zeid-Kilani, Maria V; Bugge, Marit; Bergstroem, Bjarte; Conlon, Joseph; Husebye, Harald; Hise, Amy G; Fitzgerald, Katherine A; Espevik, Terje; Lien, Egil

    2015-02-06

    Toll-like receptors (TLRs) are involved in sensing invading microbes by host innate immunity. TLR2 recognizes bacterial lipoproteins/lipopeptides, and lipopolysaccharide activates TLR4. TLR2 and TLR4 signal via the Toll/interleukin-1 receptor adaptors MyD88 and MAL, leading to NF-κB activation. TLR4 also utilizes the adaptors TRAM and TRIF, resulting in activation of interferon regulatory factor (IRF) 3. Here, we report a new role for TRAM and TRIF in TLR2 regulation and signaling. Interestingly, we observed that TLR2-mediated induction of the chemokine Ccl5 was impaired in TRAM or TRIF deficient macrophages. Inhibition of endocytosis reduced Ccl5 release, and the data also suggested that TRAM and TLR2 co-localize in early endosomes, supporting the hypothesis that signaling may occur from an intracellular compartment. Ccl5 release following lipoprotein challenge additionally involved the kinase Tbk-1 and Irf3, as well as MyD88 and Irf1. Induction of Interferon-β and Ccl4 by lipoproteins was also partially impaired in cells lacking TRIF cells. Our results show a novel function of TRAM and TRIF in TLR2-mediated signal transduction, and the findings broaden our understanding of how Toll/interleukin-1 receptor adaptor proteins may participate in signaling downstream from TLR2.

  14. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins

    PubMed Central

    Zhao, Baoyu; Shu, Chang; Gao, Xinsheng; Sankaran, Banumathi; Du, Fenglei; Shelton, Catherine L.; Herr, Andrew B.; Ji, Jun-Yuan; Li, Pingwei

    2016-01-01

    Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)–like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses. PMID:27302953

  15. The adaptor protein Dab2 sorts LDL receptors into coated pits independently of AP-2 and ARH.

    PubMed

    Maurer, Meghan E; Cooper, Jonathan A

    2006-10-15

    Clathrin-mediated endocytosis requires cargo-specific adaptor proteins that recognize specific receptors and recruit them into coated pits. ARH [also called low-density lipoprotein receptor (LDLR) adaptor protein] serves as an adaptor for LDLR endocytosis in liver. However, ARH is dispensable for LDL uptake by some other cell types. Here, we show that the adaptor Dab2 plays a major role in LDLR internalization in HeLa cells and fibroblasts. Dab2 mediates internalization of LDLRs but not transferrin receptors independently of ARH and the classic clathrin adaptor AP-2. If Dab2 is absent, ARH can mediate LDLR endocytosis, but its action requires AP-2. Furthermore, the rate of LDLR endocytosis is decreased when Dab2 is absent and Dab2, but not ARH, catalyzes the efficient clustering of LDLR into coated pits. Dab2 activity requires its binding to clathrin, LDLR and phospholipids. Dab2 is also involved in moving LDLRs off filopodia. We suggest that Dab2 is a cargo-specific endocytic adaptor protein, stably associating with phospholipids and clathrin to sort LDLR to nascent-coated pits, whereas ARH might accelerate later steps in LDLR endocytosis in cooperation with AP-2.

  16. The interaction between the adaptor protein APS and Enigma is involved in actin organisation.

    PubMed

    Barrès, Romain; Gonzalez, Teresa; Le Marchand-Brustel, Yannick; Tanti, Jean-François

    2005-08-15

    APS (adaptor protein with PH and SH2 domains) is an adaptor protein phosphorylated by several tyrosine kinase receptors including the insulin receptor. To identify novel binding partners of APS, we performed yeast two-hybrid screening. We identified Enigma, a PDZ and LIM domain-containing protein that was previously shown to be associated with the actin cytoskeleton. In HEK 293 cells, Enigma interacted specifically with APS, but not with the APS-related protein SH2-B. This interaction required the NPTY motif of APS and the LIM domains of Enigma. In NIH-3T3 cells that express the insulin receptor, Enigma and APS were partially co-localised with F-actin in small ruffling structures. Insulin increased the complex formation between APS and Enigma and their co-localisation in large F-actin containing ruffles. While in NIH-3T3 and HeLa cells the co-expression of both Enigma and APS did not modify the actin cytoskeleton organisation, expression of Enigma alone led to the formation of F-actin clusters. Similar alteration in actin cytoskeleton organisation was observed in cells expressing both Enigma and APS with a mutation in the NPTY motif. These results identify Enigma as a novel APS-binding protein and suggest that the APS/Enigma complex plays a critical role in actin cytoskeleton organisation.

  17. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52

    NASA Astrophysics Data System (ADS)

    Jo, Chulman; Gundemir, Soner; Pritchard, Susanne; Jin, Youngnam N.; Rahman, Irfan; Johnson, Gail V. W.

    2014-03-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor in the defence against oxidative stress. Here we provide evidence that activation of the Nrf2 pathway reduces the levels of phosphorylated tau by induction of an autophagy adaptor protein NDP52 (also known as CALCOCO2) in neurons. The expression of NDP52, which we show has three antioxidant response elements (AREs) in its promoter region, is strongly induced by Nrf2, and its overexpression facilitates clearance of phosphorylated tau in the presence of an autophagy stimulator. In Nrf2-knockout mice, phosphorylated and sarkosyl-insoluble tau accumulates in the brains concurrent with decreased levels of NDP52. Moreover, NDP52 associates with phosphorylated tau from brain cortical samples of Alzheimer disease cases, and the amount of phosphorylated tau in sarkosyl-insoluble fractions is inversely proportional to that of NDP52. These results suggest that NDP52 plays a key role in autophagy-mediated degradation of phosphorylated tau in vivo.

  18. The role of small adaptor proteins in the control of oncogenic signaling driven by tyrosine kinases in human cancer

    PubMed Central

    Naudin, Cécile; Chevalier, Clément; Roche, Serge

    2016-01-01

    Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology. PMID:26788993

  19. Synthetic Protein Scaffolds Based on Peptide Motifs and Cognate Adaptor Domains for Improving Metabolic Productivity

    PubMed Central

    Horn, Anselm H. C.; Sticht, Heinrich

    2015-01-01

    The efficiency of many cellular processes relies on the defined interaction among different proteins within the same metabolic or signaling pathway. Consequently, a spatial colocalization of functionally interacting proteins has frequently emerged during evolution. This concept has been adapted within the synthetic biology community for the purpose of creating artificial scaffolds. A recent advancement of this concept is the use of peptide motifs and their cognate adaptor domains. SH2, SH3, GBD, and PDZ domains have been used most often in research studies to date. The approach has been successfully applied to the synthesis of a variety of target molecules including catechin, D-glucaric acid, H2, hydrochinone, resveratrol, butyrate, gamma-aminobutyric acid, and mevalonate. Increased production levels of up to 77-fold have been observed compared to non-scaffolded systems. A recent extension of this concept is the creation of a covalent linkage between peptide motifs and adaptor domains, which leads to a more stable association of the scaffolded systems and thus bears the potential to further enhance metabolic productivity. PMID:26636078

  20. A highly versatile adaptor protein for the tethering of growth factors to gelatin-based biomaterials.

    PubMed

    Addi, Cyril; Murschel, Frédéric; Liberelle, Benoît; Riahi, Nesrine; De Crescenzo, Gregory

    2017-03-01

    In the field of tissue engineering, the tethering of growth factors to tissue scaffolds in an oriented manner can enhance their activity and increase their half-life. We chose to investigate the capture of the basic Fibroblast Growth Factor (bFGF) and the Epidermal Growth Factor (EGF) on a gelatin layer, as a model for the functionalization of collagen-based biomaterials. Our strategy relies on the use of two high affinity interactions, that is, the one between two distinct coil peptides as well as the one occurring between a collagen-binding domain (CBD) and gelatin. We expressed a chimeric protein to be used as an adaptor that comprises one of the coil peptides and a CBD derived from the human fibronectin. We proved that it has the ability to bind simultaneously to a gelatin substrate and to form a heterodimeric coiled-coil domain with recombinant growth factors being tagged with the complementary coil peptide. The tethering of the growth factors was characterized by ELISA and surface plasmon resonance-based biosensing. The bioactivity of the immobilized bFGF and EGF was evaluated by a human umbilical vein endothelial cell proliferation assay and a vascular smooth muscle cell survival assay. We found that the tethering of EGF preserved its mitogenic and anti-apoptotic activity. In the case of bFGF, when captured via our adaptor protein, changes in its natural mode of interaction with gelatin were observed.

  1. Adaptor protein-3: A key player in RBL-2H3 mast cell mediator release

    PubMed Central

    da Silva, Elaine Zayas Marcelino; Freitas-Filho, Edismauro Garcia; de Souza-Júnior, Devandir Antonio; daSilva, Luis Lamberti Pinto; Jamur, Maria Celia

    2017-01-01

    Mast cell (MC) secretory granules are Lysosome-Related Organelles (LROs) whose biogenesis is associated with the post-Golgi secretory and endocytic pathways in which the sorting of proteins destined for a specific organelle relies on the recognition of sorting signals by adaptor proteins that direct their incorporation into transport vesicles. The adaptor protein 3 (AP-3) complex mediates protein trafficking between the trans-Golgi network (TGN) and late endosomes, lysosomes, and LROs. AP-3 has a recognized role in LROs biogenesis and regulated secretion in several cell types, including many immune cells such as neutrophils, natural killer cells, and cytotoxic T lymphocytes. However, the relevance of AP-3 for these processes in MCs has not been previously investigated. AP-3 was found to be expressed and distributed in a punctate fashion in rat peritoneal mast cells ex vivo. The rat MC line RBL-2H3 was used as a model system to investigate the role of AP-3 in mast cell secretory granule biogenesis and mediator release. By immunofluorescence and immunoelectron microscopy, AP-3 was localized both to the TGN and early endosomes indicating that AP-3 dependent sorting of proteins to MC secretory granules originates in these organelles. ShRNA mediated depletion of the AP-3 δ subunit was shown to destabilize the AP-3 complex in RBL-2H3 MCs. AP-3 knockdown significantly affected MC regulated secretion of β-hexosaminidase without affecting total cellular enzyme levels. Morphometric evaluation of MC secretory granules by electron microscopy revealed that the area of MC secretory granules in AP-3 knockdown MCs was significantly increased, indicating that AP-3 is involved in MC secretory granule biogenesis. Furthermore, AP-3 knockdown had a selective impact on the secretion of newly formed and newly synthesized mediators. These results show for the first time that AP-3 plays a critical role in secretory granule biogenesis and mediator release in MCs. PMID:28273137

  2. Characterization of the adaptor protein ARH expression in the brain and ARH molecular interactions.

    PubMed

    Mameza, Marie Germaine; Lockard, Jon M; Zamora, Eduardo; Hillefors, Mi; Lavina, Zeno Scotto; Kaplan, Barry B

    2007-11-01

    Previously, pA134 was identified as one of the mRNAs present in the squid giant axon. Comparative sequence analyses revealed that the pA134 gene product manifested significant similarity to the mammalian lipoprotein receptor adaptor protein also known as ARH (autosomal recessive hypercholesterolemia). ARH mRNA and protein displayed very similar pattern of expression throughout the mouse brain. Significant levels of expression were observed in cells with a predominantly neuronal profile in the cerebellum, brainstem, olfactory bulb, hippocampus, and cortex. A yeast two hybrid screen for ARH protein interactions in mouse brain identified the following binders: amyloid precursor-like protein 1, low density lipoprotein receptor-related protein (LRP) 1, LRP8, and GABA receptor-associated protein-like 1. The interactions of ARH with LRP1 and GABA receptor-associated protein-like 1 were subsequently verified by co-immunoprecipitation of the protein complexes from transfected human embryonic kidney cells. The presence of ARH mRNA in axon of primary sympathetic neurons was established by RT-PCR analyses and confirmed by in situ hybridization. Taken together, our data suggest that ARH is a multifunctional protein whose spectrum of function in the brain goes beyond the traditionally known metabolism of lipoproteins, and that ARH may be locally synthesized in the axon.

  3. The role of palmitoylation and transmembrane domain in sorting of transmembrane adaptor proteins.

    PubMed

    Chum, Tomáš; Glatzová, Daniela; Kvíčalová, Zuzana; Malínský, Jan; Brdička, Tomáš; Cebecauer, Marek

    2016-01-01

    Plasma membrane proteins synthesised at the endoplasmic reticulum are delivered to the cell surface via sorting pathways. Hydrophobic mismatch theory based on the length of the transmembrane domain (TMD) dominates discussion about determinants required for protein sorting to the plasma membrane. Transmembrane adaptor proteins (TRAP) are involved in signalling events which take place at the plasma membrane. Members of this protein family have TMDs of varying length. We were interested in whether palmitoylation or other motifs contribute to the effective sorting of TRAP proteins. We found that palmitoylation is essential for some, but not all, TRAP proteins independent of their TMD length. We also provide evidence that palmitoylation and proximal sequences can modulate sorting of artificial proteins with TMDs of suboptimal length. Our observations point to a unique character of each TMD defined by its primary amino acid sequence and its impact on membrane protein localisation. We conclude that, in addition to the TMD length, secondary sorting determinants such as palmitoylation or flanking sequences have evolved for the localisation of membrane proteins.

  4. Roles of BLOC-1 and Adaptor Protein-3 Complexes in Cargo Sorting to Synaptic Vesicles

    PubMed Central

    Newell-Litwa, Karen; Salazar, Gloria; Smith, Yoland

    2009-01-01

    Neuronal lysosomes and their biogenesis mechanisms are primarily thought to clear metabolites and proteins whose abnormal accumulation leads to neurodegenerative disease pathology. However, it remains unknown whether lysosomal sorting mechanisms regulate the levels of membrane proteins within synaptic vesicles. Using high-resolution deconvolution microscopy, we identified early endosomal compartments where both selected synaptic vesicle and lysosomal membrane proteins coexist with the adaptor protein complex 3 (AP-3) in neuronal cells. From these early endosomes, both synaptic vesicle membrane proteins and characteristic AP-3 lysosomal cargoes can be similarly sorted to brain synaptic vesicles and PC12 synaptic-like microvesicles. Mouse knockouts for two Hermansky–Pudlak complexes involved in lysosomal biogenesis from early endosomes, the ubiquitous isoform of AP-3 (Ap3b1−/−) and muted, defective in the biogenesis of lysosome-related organelles complex 1 (BLOC-1), increased the content of characteristic synaptic vesicle proteins and known AP-3 lysosomal proteins in isolated synaptic vesicle fractions. These phenotypes contrast with those of the mouse knockout for the neuronal AP-3 isoform involved in synaptic vesicle biogenesis (Ap3b2−/−), in which the content of select proteins was reduced in synaptic vesicles. Our results demonstrate that lysosomal and lysosome-related organelle biogenesis mechanisms regulate steady-state synaptic vesicle protein composition from shared early endosomes. PMID:19144828

  5. Molecular basis of substrate selection by the N-end rule adaptor protein ClpS

    SciTech Connect

    Román-Hernández, Giselle; Grant, Robert A.; Sauer, Robert T.; Baker, Tania A.

    2009-06-19

    The N-end rule is a conserved degradation pathway that relates the stability of a protein to its N-terminal amino acid. Here, we present crystal structures of ClpS, the bacterial N-end rule adaptor, alone and engaged with peptides containing N-terminal phenylalanine, leucine, and tryptophan. These structures, together with a previous structure of ClpS bound to an N-terminal tyrosine, illustrate the molecular basis of recognition of the complete set of primary N-end rule amino acids. In each case, the alpha-amino group and side chain of the N-terminal residue are the major determinants of recognition. The binding pocket for the N-end residue is preformed in the free adaptor, and only small adjustments are needed to accommodate N-end rule residues having substantially different sizes and shapes. M53A ClpS is known to mediate degradation of an expanded repertoire of substrates, including those with N-terminal valine or isoleucine. A structure of Met53A ClpS engaged with an N-end rule tryptophan reveals an essentially wild-type mechanism of recognition, indicating that the Met(53) side chain directly enforces specificity by clashing with and excluding beta-branched side chains. Finally, experimental and structural data suggest mechanisms that make proteins with N-terminal methionine bind very poorly to ClpS, explaining why these high-abundance proteins are not degraded via the N-end rule pathway in the cell.

  6. FADD null mouse embryonic fibroblasts undergo apoptosis after photosensitization with the silicon phthalocyanine Pc 4.

    PubMed

    Nagy, B; Yeh, W C; Mak, T W; Chiu, S M; Separovic, D

    2001-01-01

    Oxidative stress, such as photodynamic therapy with the silicon phthalocyanine Pc 4 (Pc 4-PDT), can induce apoptosis and tumor necrosis factor alpha (TNF) production. TNF receptors, as well as other death receptors, have been implicated in stress-induced apoptosis. To assess directly the role of FADD, a death receptor-associated protein, in induction of apoptosis post-Pc 4-PDT, embryonic fibroblasts from FADD knock out (k/o) and wild-type (wt) mice were used. Pc 4-PDT induced casp-3 activation and apoptosis in both cell types. In the presence of zVAD, a pancaspase inhibitor, Pc 4-PDT-induced apoptosis was abrogated in both cell lines. Fumonisin B1 (FB), an inhibitor of ceramide synthase, had no effect on apoptosis after Pc 4-PDT in either cell line. Similar to Pc 4-PDT, exogenous C6-ceramide bypassed FADD deficiency and induced zVAD-sensitive apoptosis. In contrast to Pc 4 photosensitization, TNF did not induce either apoptosis or ceramide accumulation in FADD k/o cells. In the absence of FADD deficiency, TNF-induced apoptosis was zVAD-sensitive and FB-insensitive. Induced ceramide levels remained elevated after cotreatment with TNF and zVAD in FADD wt cells. Taken together, these data provide genetic evidence for a lack of FADD requirement in Pc 4-PDT- or C6-ceramide-induced apoptosis. FB-sensitive ceramide production accompanies, but does not suffice, for apoptosis after Pc 4 photosensitization or TNF.

  7. Interaction with the adaptor protein Shc prevents aberrant Erk activation in the absence of extracellular stimulus

    PubMed Central

    Suen, Kin Man; Lin, Chi-Chuan; George, Roger; Melo, Fernando A.; Biggs, Eleanor R.; Ahmed, Zamal; Drake, Melanie N.; Arur, Swathi; Arold, Stefan T.; Ladbury, John E.

    2014-01-01

    Control mechanisms that prevent aberrant signaling are necessary to maintain cellular homeostasis. We describe a novel mechanism by which the adaptor protein Shc binds directly to the MAP-kinase Erk, preventing its activation in the absence of extracellular stimulus. The Shc–Erk complex restricts Erk nuclear translocation, restraining Erk-dependent transcription of genes, including those responsible for oncogenic growth. The complex is formed through unique binding sites on both the Shc PTB domain and N-terminal lobe of Erk. Upon receptor tyrosine kinase stimulation, a conformational change within Shc—induced through interaction with the phosphorylated receptor—releases Erk allowing it to fulfill its role in signaling. Thus, in addition to its established role in promoting MAP-kinase signaling in stimulated cells, Shc negatively regulates Erk activation in the absence of growth factors and thus could be considered as a tumor suppressor in human cells. PMID:23584453

  8. The Rai (Shc C) adaptor protein regulates the neuronal stress response and protects against cerebral ischemia

    PubMed Central

    Troglio, Flavia; Echart, Cinara; Gobbi, Alberto; Pawson, Tony; Pelicci, Pier Giuseppe; De Simoni, Maria Grazia; Pelicci, Giuliana

    2004-01-01

    Rai (Shc C or N-Shc) is a neuron-specific member of the family of Shc-like adaptor proteins. Rai functions in the cytoplasmic propagation of Ret-dependent survival signals and regulates, in vivo, the number of sympathetic neurons. We report here a function of Rai, i.e., the regulation of the neuronal adaptive response to environmental stresses. We demonstrate that (i) primary cultures of cortical neurons from Rai-/- mice are more sensitive to apoptosis induced by hypoxia or oxidative stress; (ii) in Rai-/- mice, ischemia/reperfusion injury induces severe neurological deficits, increased apoptosis and size of the infarct area, and significantly higher mortality; and (iii) Rai functions as a stress-response gene that increases phosphatidylinositol 3-kinase activation and Akt phosphorylation after hypoxic or oxidation insults. These data suggest that Rai has a functional neuroprotective role in brain injury, with possible implications in the treatment of stroke. PMID:15494442

  9. Unexpected diversity in Shisa-like proteins suggests the importance of their roles as transmembrane adaptors.

    PubMed

    Pei, Jimin; Grishin, Nick V

    2012-03-01

    The Shisa family of single-transmembrane proteins is characterized by an N-terminal cysteine-rich domain and a proline-rich C-terminal region. Its founding member, Xenopus Shisa, promotes head development by antagonizing Wnt and FGF signaling. Recently, a mouse brain-specific Shisa protein CKAMP44 (Shisa9) was shown to play an important role in AMPA receptor desensitization. We used sequence similarity searches against protein, genome and EST databases to study the evolutionary origin and phylogenetic distribution of Shisa homologs. In addition to nine Shisa subfamilies in vertebrates, we detected distantly related Shisa homologs that possess an N-terminal domain with six conserved cysteines. These Shisa-like proteins include FAM159 and KIAA1644 mainly from vertebrates, and members from various bilaterian invertebrates and Porifera, suggesting their presence in the last common ancestor of Metazoa. Shisa-like genes have undergone large expansions in Branchiostoma floridae and Saccoglossus kowalevskii, and appear to have been lost in certain insects. Pattern-based searches against eukaryotic proteomes also uncovered several other families of predicted single-transmembrane proteins with a similar cysteine-rich domain. We refer to these proteins (Shisa/Shisa-like, WBP1/VOPP1, CX, DUF2650, TMEM92, and CYYR1) as STMC6 proteins (single-transmembrane proteins with conserved 6 cysteines). STMC6 genes are widespread in Metazoa, with the human genome containing 17 members. Frequent occurrences of PY motifs in STMC6 proteins suggest that most of them could interact with WW-domain-containing proteins, such as the NEDD4 family E3 ubiquitin ligases, and could play critical roles in protein degradation and sorting. STMC6 proteins are likely transmembrane adaptors that regulate membrane proteins such as cell surface receptors.

  10. SH2B1 (SH2-B) and JAK2: a multifunctional adaptor protein and kinase made for each other.

    PubMed

    Maures, Travis J; Kurzer, Jason H; Carter-Su, Christin

    2007-01-01

    Src homology 2 (SH2) B adaptor protein 1 (SH2B1; originally named SH2-B) is a member of a family of adaptor proteins that influences a variety of signaling pathways mediated by Janus kinase (JAK) and receptor tyrosine kinases. Although SH2B1 performs classical adaptor functions, such as recruitment of specific proteins to activated receptors, it also demonstrates a unique ability to enhance the kinase activity of the cytokine receptor-associated tyrosine kinase JAK2, as well as that of several receptor tyrosine kinases. SH2B1 is also among a small number of adaptor proteins shown to undergo nucleocytoplasmic shuttling, although its exact role within the nucleus is not yet clear. Deletion of the SH2B1 gene results in severe obesity and both leptin and insulin resistance, as well as infertility, which might be a consequence of resistance to insulin-like growth factor I. Thus, knockout mice support a role for SH2B1 as a positive regulator of JAK2 signaling pathways initiated by leptin, as well as of pathways initiated by insulin and, potentially, by insulin-like growth factor I.

  11. Transcriptional repression of Kruppel like factor-2 by the adaptor protein p66shc

    PubMed Central

    Kumar, Ajay; Hoffman, Timothy A.; DeRicco, Jeremy; Naqvi, Asma; Jain, Mukesh K.; Irani, Kaikobad

    2009-01-01

    The adaptor protein p66shc promotes cellular oxidative stress and apoptosis. Here, we demonstrate a novel mechanistic relationship between p66shc and the kruppel like factor-2 (KLF2) transcription factor and show that this relationship has biological relevance to p66shc-regulated cellular oxidant level, as well as KLF2-induced target gene expression. Genetic knockout of p66shc in mouse embryonic fibroblasts (MEFs) stimulates activity of the core KLF2 promoter and increases KLF2 mRNA and protein expression. Similarly, shRNA-induced knockdown of p66shc increases KLF2-promoter activity in HeLa cells. The increase in KLF2-promoter activity in p66shc-knockout MEFs is dependent on a myocyte enhancing factor-2A (MEF2A)-binding sequence in the core KLF2 promoter. Short-hairpin RNA-induced knockdown of p66shc in endothelial cells also stimulates KLF2 mRNA and protein expression, as well as expression of the endothelial KLF2 target gene thrombomodulin. MEF2A protein and mRNA are more abundant in p66shc-knockout MEFs, resulting in greater occupancy of the KLF2 promoter by MEF2A. In endothelial cells, the increase in KLF2 and thrombomodulin protein by shRNA-induced decrease in p66shc expression is partly abrogated by knockdown of MEF2A. Finally, knockdown of KLF2 abolishes the decrease in the cellular reactive oxygen species hydrogen peroxide observed with knockdown of p66shc, and KLF2 overexpression suppresses cellular hydrogen peroxide levels, independent of p66shc expression. These findings illustrate a novel mechanism by which p66shc promotes cellular oxidative stress, through suppression of MEF2A expression and consequent repression of KLF2 transcription.—Kumar, A., Hoffman, T. A., DeRicco, J., Naqvi, A., Jain, M. K., Irani, K. Transcriptional repression of Kruppel like factor-2 by the adaptor protein p66shc. PMID:19696221

  12. PHF6 Degrees of Separation: The Multifaceted Roles of a Chromatin Adaptor Protein

    PubMed Central

    Todd, Matthew A.M.; Ivanochko, Danton; Picketts, David J.

    2015-01-01

    The importance of chromatin regulation to human disease is highlighted by the growing number of mutations identified in genes encoding chromatin remodeling proteins. While such mutations were first identified in severe developmental disorders, or in specific cancers, several genes have been implicated in both, including the plant homeodomain finger protein 6 (PHF6) gene. Indeed, germline mutations in PHF6 are the cause of the Börjeson–Forssman–Lehmann X-linked intellectual disability syndrome (BFLS), while somatic PHF6 mutations have been identified in T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). Studies from different groups over the last few years have made a significant impact towards a functional understanding of PHF6 protein function. In this review, we summarize the current knowledge of PHF6 with particular emphasis on how it interfaces with a distinct set of interacting partners and its functional roles in the nucleoplasm and nucleolus. Overall, PHF6 is emerging as a key chromatin adaptor protein critical to the regulation of neurogenesis and hematopoiesis. PMID:26103525

  13. ARH is a modular adaptor protein that interacts with the LDL receptor, clathrin, and AP-2.

    PubMed

    He, Guocheng; Gupta, Sarita; Yi, Ming; Michaely, Peter; Hobbs, Helen H; Cohen, Jonathan C

    2002-11-15

    Mutations in the phosphotyrosine binding domain protein ARH cause autosomal recessive hypercholesterolemia, a disorder caused by defective internalization of low density lipoprotein receptors (LDLR) in the liver. To examine the function of ARH, we used pull-down experiments to test for interactions between ARH, the LDLR, and proteins involved in clathrin-mediated endocytosis. The phosphotyrosine binding domain of ARH interacted with the internalization sequence (NPVY) in the cytoplasmic tail of LDLR in a sequence-specific manner. Mutations in the NPVY sequence that were previously shown to decrease LDLR internalization abolished in vitro binding to ARH. Recombinant ARH bound purified bovine clathrin with high affinity (K(D), approximately 44 nm). The interaction between ARH and clathrin was mapped to a canonical clathrin box sequence (LLDLE) in ARH and to the N-terminal domain of the clathrin heavy chain. A highly conserved 20-amino acid sequence in the C-terminal region of ARH bound the beta(2)-adaptin subunit of AP-2. Mutation of a glutamic acid residue in the appendage domain of beta(2)-adaptin that is required for interaction with the adapter protein beta-arrestin markedly reduced binding to ARH. These data are consistent with the hypothesis that ARH functions as an adaptor protein that couples LDLR to the endocytic machinery.

  14. A Disease-associated Mutant of NLRC4 Shows Enhanced Interaction with SUG1 Leading to Constitutive FADD-dependent Caspase-8 Activation and Cell Death.

    PubMed

    Raghawan, Akhouri Kishore; Sripada, Anand; Gopinath, Gayathri; Pushpanjali, Pendyala; Kumar, Yatender; Radha, Vegesna; Swarup, Ghanshyam

    2017-01-27

    Nod-like receptor family card containing 4 (NLRC4)/Ipaf is involved in recognition of pathogen-associated molecular patterns leading to caspase-1 activation and cytokine release, which mediate protective innate immune response. Point mutations in NLRC4 cause autoinflammatory syndromes. Although all the mutations result in constitutive caspase-1 activation, their phenotypic presentations are different, implying that these mutations cause different alterations in properties of NLRC4. NLRC4 interacts with SUG1 and induces caspase-8-mediated cell death. Here, we show that one of the autoinflammatory syndrome-causing mutants of NLRC4, H443P, but not T337A and V341A, constitutively activates caspase-8 and induces apoptotic cell death in human lung epithelial cells. Compared with wild type NLRC4, the H443P mutant shows stronger interaction with SUG1 and with ubiquitinated cellular proteins. Phosphorylation of NLRC4 at Ser(533) plays a crucial role in caspase-8 activation and cell death. However, H443P mutant does not require Ser(533) phosphorylation for caspase-8 activation and cell death. Caspase-8 activation by NLRC4 and its H443P mutant are dependent on the adaptor protein FADD. A phosphomimicking mutant of NLRC4, S533D does not require SUG1 activity for inducing cell death. Ubiquitin-tagged NLRC4 could induce cell death and activate caspase-8 independent of Ser(533) phosphorylation. Our work suggests that SUG1-mediated signaling results in enhanced ubiquitination and regulates FADD-dependent caspase-8 activation by NLRC4. We show that the autoinflammation-associated H443P mutant is altered in interaction with SUG1 and ubiquitinated proteins, triggering constitutive caspase-8-mediated cell death dependent on FADD but independent of Ser(533) phosphorylation.

  15. Functions of Adaptor Protein (AP)-3 and AP-1 in Tyrosinase Sorting from Endosomes to MelanosomesD⃞

    PubMed Central

    Theos, Alexander C.; Tenza, Danièle; Martina, José A.; Hurbain, Ilse; Peden, Andrew A.; Sviderskaya, Elena V.; Stewart, Abigail; Robinson, Margaret S.; Bennett, Dorothy C.; Cutler, Daniel F.; Bonifacino, Juan S.; Marks, Michael S.; Raposo, Graça

    2005-01-01

    Specialized cells exploit adaptor protein complexes for unique post-Golgi sorting events, providing a unique model system to specify adaptor function. Here, we show that AP-3 and AP-1 function independently in sorting of the melanocyte-specific protein tyrosinase from endosomes to the melanosome, a specialized lysosome-related organelle distinguishable from lysosomes. AP-3 and AP-1 localize in melanocytes primarily to clathrin-coated buds on tubular early endosomes near melanosomes. Both adaptors recognize the tyrosinase dileucine-based melanosome sorting signal, and tyrosinase largely colocalizes with each adaptor on endosomes. In AP-3-deficient melanocytes, tyrosinase accumulates inappropriately in vacuolar and multivesicular endosomes. Nevertheless, a substantial fraction still accumulates on melanosomes, concomitant with increased association with endosomal AP-1. Our data indicate that AP-3 and AP-1 function in partially redundant pathways to transfer tyrosinase from distinct endosomal subdomains to melanosomes and that the AP-3 pathway ensures that tyrosinase averts entrapment on internal membranes of forming multivesicular bodies. PMID:16162817

  16. Losses, Expansions, and Novel Subunit Discovery of Adaptor Protein Complexes in Haptophyte Algae.

    PubMed

    Lee, Laura J Y; Klute, Mary J; Herman, Emily K; Read, Betsy; Dacks, Joel B

    2015-11-01

    The phylum Haptophyta (Diaphoratickes) contains marine algae that perform biomineralization, extruding large, distinctive calcium carbonate scales (coccoliths) that completely cover the cell. Coccolith production is an important part of global carbon cycling; however, the membrane trafficking pathway by which they are secreted has not yet been elucidated. In most eukaryotes, post-Golgi membrane trafficking involves five heterotetrameric adaptor protein (AP) complexes, which impart cargo selection specificity. To better understand coccolith secretion, we performed comparative genomic, phylogenetic, and transcriptomic analyses of the AP complexes in Emiliania huxleyi strains 92A, Van556, EH2, and CCMP1516, and related haptophytes Gephyrocapsa oceanica and Isochrysis galbana; the latter has lost the ability to biomineralize. We show that haptophytes have a modified membrane trafficking system (MTS), as we found both AP subunit losses and duplications. Additionally, we identified a single conserved subunit of the AP-related TSET complex, whose expression suggests a functional role in membrane trafficking. Finally, we detected novel alpha adaptin ear and gamma adaptin ear proteins, the first of their kind to be described outside of opisthokonts. These novel ear proteins and the sculpting of the MTS may support the capacity for biomineralization in haptophytes, enhancing their ability to perform this highly specialized form of secretion.

  17. Activity-Regulated Cytoskeleton-Associated Protein Controls AMPAR Endocytosis through a Direct Interaction with Clathrin-Adaptor Protein 2123

    PubMed Central

    Wall, Mark J.; P. de Almeida, Luciana; Wauters, Sandrine C.; Januário, Yunan C.; Müller, Jürgen

    2016-01-01

    Abstract The activity-regulated cytoskeleton-associated (Arc) protein controls synaptic strength by facilitating AMPA receptor (AMPAR) endocytosis. Here we demonstrate that Arc targets AMPAR to be internalized through a direct interaction with the clathrin-adaptor protein 2 (AP-2). We show that Arc overexpression in dissociated hippocampal neurons obtained from C57BL/6 mouse reduces the density of AMPAR GluA1 subunits at the cell surface and reduces the amplitude and rectification of AMPAR-mediated miniature-EPSCs (mEPSCs). Mutations of Arc, that prevent the AP-2 interaction reduce Arc-mediated endocytosis of GluA1 and abolish the reduction in AMPAR-mediated mEPSC amplitude and rectification. Depletion of the AP-2 subunit µ2 blocks the Arc-mediated reduction in mEPSC amplitude, an effect that is restored by reintroducing µ2. The Arc–AP-2 interaction plays an important role in homeostatic synaptic scaling as the Arc-dependent decrease in mEPSC amplitude, induced by a chronic increase in neuronal activity, is inhibited by AP-2 depletion. These data provide a mechanism to explain how activity-dependent expression of Arc decisively controls the fate of AMPAR at the cell surface and modulates synaptic strength, via the direct interaction with the endocytic clathrin adaptor AP-2. PMID:27257628

  18. Impairment of dendritic cell functions in patients with adaptor protein-3 complex deficiency.

    PubMed

    Prandini, Alberto; Salvi, Valentina; Colombo, Francesca; Moratto, Daniele; Lorenzi, Luisa; Vermi, William; De Francesco, Maria Antonia; Notarangelo, Lucia Dora; Porta, Fulvio; Plebani, Alessandro; Facchetti, Fabio; Sozzani, Silvano; Badolato, Raffaele

    2016-06-30

    Hermansky-Pudlak syndrome type 2 (HPS2) is a primary immunodeficiency due to adaptor protein-3 (AP-3) complex deficiency. HPS2 patients present neutropenia, partial albinism, and impaired lysosomal vesicles formation in hematopoietic cells. Given the role of dendritic cells (DCs) in the immune response, we studied monocyte-derived DCs (moDCs) and plasmacytoid DCs (pDCs) in two HPS2 siblings. Mature HPS2 moDCs showed impaired expression of CD83 and DC-lysosome-associated membrane protein (LAMP), low levels of MIP1-β/CCL4, MIG/CXCL9, and severe defect of interleukin-12 (IL-12) secretion. DCs in lymph-node biopsies from the same patients showed a diffuse cytoplasm reactivity in a large fraction of DC-LAMP(+) cells, instead of the classical dot-like stain. In addition, analysis of pDC-related functions of blood-circulating mononuclear cells revealed reduced interferon-α secretion in response to herpes simplex virus-1 (HSV-1), whereas granzyme-B induction upon IL-3/IL-10 stimulation was normal. Finally, T-cell costimulatory activity, as measured by mixed lymphocyte reaction assay, was lower in patients, suggesting that function and maturation of DCs is abnormal in patients with HPS2.

  19. Molecular protein adaptor with genetically encoded interaction sites guiding the hierarchical assembly of plasmonically active nanoparticle architectures

    NASA Astrophysics Data System (ADS)

    Schreiber, Andreas; Huber, Matthias C.; Cölfen, Helmut; Schiller, Stefan M.

    2015-03-01

    The control over the defined assembly of nano-objects with nm-precision is important to create systems and materials with enhanced properties, for example, metamaterials. In nature, the precise assembly of inorganic nano-objects with unique features, for example, magnetosomes, is accomplished by efficient and reliable recognition schemes involving protein effectors. Here we present a molecular approach using protein-based ‘adaptors/connectors’ with genetically encoded interaction sites to guide the assembly and functionality of different plasmonically active gold nanoparticle architectures (AuNP). The interaction of the defined geometricaly shaped protein adaptors with the AuNP induces the self-assembly of nanoarchitectures ranging from AuNP encapsulation to one-dimensional chain-like structures, complex networks and stars. Synthetic biology and bionanotechnology are applied to co-translationally encode unnatural amino acids as additional site-specific modification sites to generate functionalized biohybrid nanoarchitectures. This protein adaptor-based nano-object assembly approach might be expanded to other inorganic nano-objects creating biohybrid materials with unique electronic, photonic, plasmonic and magnetic properties.

  20. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case.

    PubMed

    Halova, Ivana; Draber, Petr

    2016-01-01

    The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.

  1. The small G-protein Arf6GTP recruits the AP-2 adaptor complex to membranes.

    PubMed

    Paleotti, Olivia; Macia, Eric; Luton, Frederic; Klein, Stephanie; Partisani, Mariagrazia; Chardin, Pierre; Kirchhausen, Tom; Franco, Michel

    2005-06-03

    The small GTP-binding protein ADP-ribosylation factor 6 (Arf6) is involved in plasma membrane/endosomes trafficking. However, precisely how the activation of Arf6 regulates vesicular transport is still unclear. Here, we show that, in vitro, recombinant Arf6GTP recruits purified clathrin-adaptor complex AP-2 (but not AP-1) onto phospholipid liposomes in the absence of phosphoinositides. We also show that phosphoinositides and Arf6 tightly cooperate to translocate AP-2 to the membrane. In vivo, Arf6GTP (but not Arf6GDP) was found associated to AP-2. The expression of the GTP-locked mutant of Arf6 leads to the plasma membrane redistribution of AP-2 in Arf6GTP-enriched areas. Finally, we demonstrated that the expression of the GTP-locked mutant of Arf6 inhibits transferrin receptor internalization without affecting its recycling. Altogether, our results demonstrated that Arf6GTP interacts specifically with AP-2 and promotes its membrane recruitment. These findings strongly suggest that Arf6 plays a major role in clathrin-mediated endocytosis by directly controlling the assembly of the AP-2/clathrin coat.

  2. Adaptor Protein 2 (AP-2) complex is essential for functional axogenesis in hippocampal neurons

    PubMed Central

    Kyung, Jae Won; Cho, In Ha; Lee, Sukmook; Song, Woo Keun; Ryan, Timothy A.; Hoppa, Michael B.; Kim, Sung Hyun

    2017-01-01

    The complexity and diversity of a neural network requires regulated elongation and branching of axons, as well as the formation of synapses between neurons. In the present study we explore the role of AP-2, a key endocytic adaptor protein complex, in the development of rat hippocampal neurons. We found that the loss of AP-2 during the early stage of development resulted in impaired axon extension and failed maturation of the axon initial segment (AIS). Normally the AIS performs two tasks in concert, stabilizing neural polarity and generating action potentials. In AP-2 silenced axons polarity is established, however there is a failure to establish action potential firing. Consequently, this impairs activity-driven Ca2+ influx and exocytosis at nerve terminals. In contrast, removal of AP-2 from older neurons does not impair axonal growth or signaling and synaptic function. Our data reveal that AP-2 has important roles in functional axogenesis by proper extension of axon as well as the formation of AIS during the early step of neurodevelopment. PMID:28139716

  3. Tyrosine phosphorylation-independent regulation of lipopolysaccharide-mediated response by the transmembrane adaptor protein LAB.

    PubMed

    Zhu, Minghua; Fuller, Deirdre M; Ou-Yang, Chih-wen; Sullivan, Sarah A; Zhang, Weiguo

    2012-03-15

    Linker for activation of B cells (LAB)/non-T cell activation linker is a transmembrane adaptor protein that functions in immunoreceptor-mediated signaling. Published studies have shown that LAB has both positive and negative roles in regulating TCR and high-affinity Fc receptor-mediated signaling and cellular function. In this study, we showed that LAB was also expressed in dendritic cells and that LAB deficiency affected LPS-mediated signaling and cytokine production. LPS-mediated MAPK activation was enhanced in LAB(-/-) bone marrow-derived dendritic cells. These bone marrow-derived dendritic cells also produced more TNF-α, IL-6, and IL-10 than wild-type cells. Moreover, LAB(-/-) mice were hyperresponsive to LPS-induced septic shock. These data indicated that LAB has a negative role in LPS-mediated responses. By using LAB knockin mice, which harbor mutations at five membrane-distal tyrosines, we further showed that, in contrast to its role in immunoreceptor-mediated signaling, LAB function in LPS-mediated signaling pathway did not depend on its tyrosine phosphorylation. Our study suggested a novel mechanism by which LAB functions in the regulation of innate immunity.

  4. The p66(Shc) adaptor protein controls oxidative stress response in early bovine embryos.

    PubMed

    Betts, Dean H; Bain, Nathan T; Madan, Pavneesh

    2014-01-01

    The in vitro production of mammalian embryos suffers from high frequencies of developmental failure due to excessive levels of permanent embryo arrest and apoptosis caused by oxidative stress. The p66Shc stress adaptor protein controls oxidative stress response of somatic cells by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidant gene expression. We have previously demonstrated a strong relationship with elevated p66Shc levels, reduced antioxidant levels and greater intracellular ROS generation with the high incidence of permanent cell cycle arrest of 2-4 cell embryos cultured under high oxygen tensions or after oxidant treatment. The main objective of this study was to establish a functional role for p66Shc in regulating the oxidative stress response during early embryo development. Using RNA interference in bovine zygotes we show that p66Shc knockdown embryos exhibited increased MnSOD levels, reduced intracellular ROS and DNA damage that resulted in a greater propensity for development to the blastocyst stage. P66Shc knockdown embryos were stress resistant exhibiting significantly reduced intracellular ROS levels, DNA damage, permanent 2-4 cell embryo arrest and diminished apoptosis frequencies after oxidant treatment. The results of this study demonstrate that p66Shc controls the oxidative stress response in early mammalian embryos. Small molecule inhibition of p66Shc may be a viable clinical therapy to increase the developmental potential of in vitro produced mammalian embryos.

  5. The SH2B1 adaptor protein associates with a proximal region of the erythropoietin receptor.

    PubMed

    Javadi, Mojib; Hofstätter, Edda; Stickle, Natalie; Beattie, Bryan K; Jaster, Robert; Carter-Su, Christin; Barber, Dwayne L

    2012-07-27

    Gene targeting experiments have shown that the cytokine erythropoietin (EPO), its cognate erythropoietin receptor (EPO-R), and associated Janus tyrosine kinase, JAK2, are all essential for erythropoiesis. Structural-functional and murine knock-in experiments have suggested that EPO-R Tyr-343 is important in EPO-mediated mitogenesis. Although Stat5 binds to EPO-R phosphotyrosine 343, the initial Stat5-deficient mice did not have profound erythroid abnormalities suggesting that additional Src homology 2 (SH2) domain-containing effectors may bind to EPO-R Tyr-343 and couple to downstream signaling pathways. We have utilized cloning of ligand target (COLT) screening to demonstrate that EPO-R Tyr(P)-343 and Tyr(P)-401 bind to the SH2 domain-containing adaptor protein SH2B1β. Immunoprecipitation and in vitro mixing experiments reveal that EPO-R binds to SH2B1 in an SH2 domain-dependent manner and that the sequence that confers SH2B1 binding to the EPO-R is pYXXL. Previous studies have shown that SH2B1 binds directly to JAK2, but we show that in hematopoietic cells, SH2B1β preferentially associates with the EPO-R. SH2B1 is capable of constitutive association with EPO-R, which is necessary for its optimal SH2-dependent recruitment to EPO-R-Tyr(P)-343/Tyr(P)-401. We also demonstrate that SH2B1 is responsive to EPO stimulation and becomes phosphorylated, most likely on serines/threonines, in an EPO dose- and time-dependent manner. In the absence of SH2B1, we observe enhanced activation of signaling pathways downstream of the EPO-R, indicating that SH2B1 is a negative regulator of EPO signaling.

  6. The endocytic adaptor protein ARH associates with motor and centrosomal proteins and is involved in centrosome assembly and cytokinesis.

    PubMed

    Lehtonen, Sanna; Shah, Mehul; Nielsen, Rikke; Iino, Noriaki; Ryan, Jennifer J; Zhou, Huilin; Farquhar, Marilyn G

    2008-07-01

    Numerous proteins involved in endocytosis at the plasma membrane have been shown to be present at novel intracellular locations and to have previously unrecognized functions. ARH (autosomal recessive hypercholesterolemia) is an endocytic clathrin-associated adaptor protein that sorts members of the LDL receptor superfamily (LDLR, megalin, LRP). We report here that ARH also associates with centrosomes in several cell types. ARH interacts with centrosomal (gamma-tubulin and GPC2 and GPC3) and motor (dynein heavy and intermediate chains) proteins. ARH cofractionates with gamma-tubulin on isolated centrosomes, and gamma-tubulin and ARH interact on isolated membrane vesicles. During mitosis, ARH sequentially localizes to the nuclear membrane, kinetochores, spindle poles and the midbody. Arh(-/-) embryonic fibroblasts (MEFs) show smaller or absent centrosomes suggesting ARH plays a role in centrosome assembly. Rat-1 fibroblasts depleted of ARH by siRNA and Arh(-/-) MEFs exhibit a slower rate of growth and prolonged cytokinesis. Taken together the data suggest that the defects in centrosome assembly in ARH depleted cells may give rise to cell cycle and mitotic/cytokinesis defects. We propose that ARH participates in centrosomal and mitotic dynamics by interacting with centrosomal proteins. Whether the centrosomal and mitotic functions of ARH are related to its endocytic role remains to be established.

  7. The structure and polymerase-recognition mechanism of the crucial adaptor protein AND-1 in the human replisome.

    PubMed

    Guan, Chengcheng; Li, Jun; Sun, Dapeng; Liu, Yingfang; Liang, Huanhuan

    2017-04-05

    DNA replication in eukaryotic cells is performed by a multi-protein complex called the replisome, which consists of helicases, polymerases and adaptor molecules. Human acidic nucleoplasmic DNA-binding protein 1 (AND-1), also known as WD repeat and HMG-box DNA binding protein 1 (WDHD1), is an adaptor molecule crucial for DNA replication. While structural information for the AND-1 yeast ortholog is available, the mechanistic details for how human AND-1 protein anchors the lagging-strand DNA polymerase α (Pol α) to the DNA helicase complex (Cdc45-MCM2-7-GINS, CMG) await elucidation. Here, we report the structures of the N-terminal WD40 and SepB domains of human AND-1, as well as a biochemical analysis of the C-terminal HMG domain. We show that AND-1 exists as a homo-trimer mediated by the SepB domain. Mutant study results suggested that a positively charged groove within the SepB domain provides binding sites for Pol α. Different from its ortholog protein in budding yeast, human AND-1 is recruited to the CMG complex mediated by unknown participants other than GINS. In addition, we show that AND-1 binds to DNA in vitro, using its C-terminal HMG domain. In conclusion, our findings provide important insights into the mechanistic details of human AND-1 function, advancing our understanding of replisome formation during eukaryotic replication.

  8. Ste50 adaptor protein governs sexual differentiation of Cryptococcus neoformans via the pheromone response MAPK signaling pathway

    PubMed Central

    Jung, Kwang-Woo; Kim, Seo-Young; Okagaki, Laura H.; Nielsen, Kirsten; Bahn, Yong-Sun

    2010-01-01

    The mitogen-activated protein kinase (MAPK) pathways control diverse cellular functions in pathogenic fungi, including sexual differentiation, stress-response, and maintenance of cell wall integrity. Here we characterized a C. neoformans gene, which is homologous to the yeast Ste50 that is known to play an important role in mating pheromone response and stress response as an adaptor protein to the Ste11 MAPK kinase kinase in Saccharomyces cerevisiae. The C. neoformans Ste50 was not involved in any of the stress responses or virulence factor production (capsule and melanin) that are controlled by the HOG and Ras/cAMP signaling pathways. However, Ste50 was required for mating in both serotype A and serotype D C. neoformans strains. The ste50Δ mutant was completely defective in cell-cell fusion and mating pheromone production. Double mutation of the STE50 gene blocked increased production of pheromone and the hyper-filamentation phenotype of cells deleted of the CRG1 gene, which encodes the RGS protein that negatively regulates pheromone responsive G-protein signaling via the MAPK pathway. Regardless of the presence of the basidiomycota-specific SH3 domains of Ste50 that are known to be required for full virulence of Ustilago maydis, Ste50 was dispensable for virulence of C. neoformans in a murine model of cryptococcosis. In conclusion, the Ste50 adaptor protein controls sexual differentiation of C. neoformans via the pheromone-responsive MAPK pathway but is not required for virulence. PMID:20971202

  9. Crystal structure of FadD32, an enzyme essential for mycolic acid biosynthesis in mycobacteria.

    PubMed

    Li, Wenjuan; Gu, Shoujin; Fleming, Joy; Bi, Lijun

    2015-12-02

    Fatty acid degradation protein D32 (FadD32), an enzyme required for mycolic acid biosynthesis and essential for mycobacterial growth, has recently been identified as a valid and promising target for anti-tuberculosis drug development. Here we report the crystal structures of Mycobacterium smegmatis FadD32 in the apo and ATP-bound states at 2.4 Å and 2.25 Å resolution, respectively. FadD32 consists of two globular domains connected by a flexible linker. ATP binds in a cleft at the interface between the N- and C-terminal domains and its binding induces significant local conformational changes in FadD32. The binding sites of meromycolic acid and phosphopantetheine are identified by structural comparison with other members of the adenylating enzyme superfamily. These results will improve our understanding of the catalytic mechanism of FadD32 and help in the design of inhibitors of this essential enzyme.

  10. Dissecting nuclear Wingless signalling: recruitment of the transcriptional co-activator Pygopus by a chain of adaptor proteins.

    PubMed

    Städeli, Reto; Basler, Konrad

    2005-11-01

    Members of the Wingless (Wg)/Wnt family of secreted glycoproteins control cell fate during embryonic development and adult homeostasis. Wnt signals regulate the expression of target genes by activating a conserved signal transduction pathway. Upon receptor activation, the signal is transmitted intracellularly by stabilization of Armadillo (Arm)/beta-catenin. Arm/beta-catenin translocates to the nucleus, interacts with DNA-binding factors of the Pangolin (Pan)/TCF/LEF class and activates transcription of target genes in cooperation with the recently identified proteins Legless/BCL9 (Lgs) and Pygopus (Pygo). Here, we analyse the mode of action of Pan, Arm, Lgs, and Pygo in Drosophila cultured cells. We provide evidence that together these four proteins form a 'chain of adaptors' linking the NH2-terminal homology domain (NHD) of Pygo to the DNA-binding domain of Pan. We show that the NHD has potent transcriptional activation capacity, which differs from that of acidic activator domains and depends on a conserved NPF tripeptide. A single point mutation within this NPF motif abolishes the transcriptional activity of the Pygo NHD in vitro and strongly reduces Wg signalling in vivo. Together, our results suggest that the transcriptional output of Wg pathway activity largely relies on a 'chain of adaptors' design to direct the Pygo NHD to Wg target promoters in an Arm-dependent manner.

  11. The modular adaptor protein autosomal recessive hypercholesterolemia (ARH) promotes low density lipoprotein receptor clustering into clathrin-coated pits.

    PubMed

    Garuti, Rita; Jones, Christopher; Li, Wei-Ping; Michaely, Peter; Herz, Joachim; Gerard, Robert D; Cohen, Jonathan C; Hobbs, Helen H

    2005-12-09

    Autosomal recessive hypercholesterolemia is characterized by a cell type-specific defect in low density lipoprotein receptor (LDLR) endocytosis. LDLR-mediated uptake of LDL is impaired in the liver, but not in fibroblasts of subjects with this disorder. The disease is caused by mutations in ARH, which encodes a putative adaptor protein that interacts with the cytoplasmic tail of the LDLR, phospholipids, and two components of the clathrin endocytic machinery, clathrin and adaptor protein-2 (AP-2) in vitro. To determine the physiological relevance of these interactions, we examined the effect of mutations in the ARH on LDLR location and function in polarized hepatocytes (WIF-B). The integrity of the FDNPVY sequence in the LDLR cytoplasmic tail was required for ARH-associated LDLR clustering into clathrin-coated pits. The phosphotyrosine binding domain of ARH plus either the clathrin box or the AP-2 binding region were required for both clustering and internalization of the LDLR. Parallel studies performed in vivo with the same recombinant forms of ARH in livers of Arh(-/-) mice confirmed the relevance of the cell culture findings. These results demonstrate that ARH must bind the LDLR tail and either clathrin or AP-2 to promote receptor clustering and internalization of LDL.

  12. The Cellulosome System of Acetivibrio cellulolyticus Includes a Novel Type of Adaptor Protein and a Cell Surface Anchoring Protein

    PubMed Central

    Xu, Qi; Gao, Wenchen; Ding, Shi-You; Kenig, Rina; Shoham, Yuval; Bayer, Edward A.; Lamed, Raphael

    2003-01-01

    designated ScaA. In addition, ScaB is thought to assume the role of an adaptor protein, which connects the primary scaffoldin (ScaA) to the cohesin-containing anchoring scaffoldin (ScaC). The cellulosome system of A. cellulolyticus thus appears to exhibit a special type of organization that reflects the function of the ScaB adaptor protein. The intercalation of three multiple cohesin-containing scaffoldins results in marked amplification of the number of enzyme subunits per cellulosome unit. At least 96 enzymes can apparently be incorporated into an individual A. cellulolyticus cellulosome. The role of such amplified enzyme incorporation and the resultant proximity of the enzymes within the cellulosome complex presumably contribute to the enhanced synergistic action and overall efficient digestion of recalcitrant forms of cellulose. Comparison of the emerging organization of the A. cellulolyticus cellulosome with the organizations in other cellulolytic bacteria revealed the diversity of the supramolecular architecture. PMID:12867464

  13. The Grb2 adaptor.

    PubMed

    Chardin, P; Cussac, D; Maignan, S; Ducruix, A

    1995-08-01

    Grb2 is an 'adaptor' protein made of one SH2 and two SH3 domains. The SH3 domains bind to prolinerich motifs in the C-terminal part of the ras exchange factor Sos. Binding of the Grb2 SH2 domain to phosphotyrosine motifs on receptors, or other adaptor proteins such as Shc, recruits this Grb2/Sos complex at the plasma membrane where Sos stimulates nucleotide exchange on ras, then ras activates raf and leads to MAP kinase activation. The structure of Grb2, the precise motifs recognised by its SH2 and SH3 domains, the way Grb2 performs its function, a possible regulation of its association with Sos, and its ability to complex with other proteins in vivo, are discussed.

  14. Multiple interactions drive adaptor-mediated recruitment of the ubiquitin ligase rsp5 to membrane proteins in vivo and in vitro.

    PubMed

    Sullivan, James A; Lewis, Michael J; Nikko, Elina; Pelham, Hugh R B

    2007-07-01

    Recognition of membrane proteins by the Nedd4/Rsp5 ubiquitin ligase family is a critical step in their targeting to the multivesicular body pathway. Some substrates contain "PY" motifs (PPxY), which bind to WW domains in the ligase. Others lack PY motifs and instead rely on adaptors that recruit the ligase to them. To investigate the mechanism of adaptor-mediated ubiquitination, we have characterized the interactions between the adaptor Bsd2, the ubiquitin ligase Rsp5, and the membrane proteins Cps1, Tre1, and Smf1 from Saccharomyces cerevisiae. We have reconstituted adaptor-mediated modification of Cps1 and Tre1 in vitro, and we show that two PY motifs in Bsd2 and two WW domains (WW2 and WW3) in Rsp5 are crucial for this. The binding of a weak noncanonical DMAPSY motif in Bsd2 to WW3 is an absolute requirement for Bsd2 adaptor function. We show that sorting of the manganese transporter Smf1, which requires both Bsd2 and Tre1, depends upon two PY motifs in Bsd2 and one motif in Tre1 but only two WW domains in Rsp5. We suggest that sequential assembly of first a Bsd2/Rsp5 complex, then a Tre1/Bsd2/Rsp5 complex followed by a rearrangement of PY-WW interactions is required for the ubiquitination of Smf1.

  15. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING

    DOE PAGES

    Shi, Heping; Wu, Jiaxi; Chen, Zhijian J.; ...

    2015-07-06

    Cyclic GMP-AMP containing a unique combination of mixed phosphodiester linkages (2'3'-cGAMP) is an endogenous second messenger molecule that activates the type-I IFN pathway upon binding to the homodimer of the adaptor protein STING on the surface of endoplasmic reticulum membrane. However, the preferential binding of the asymmetric ligand 2'3'-cGAMP to the symmetric dimer of STING represents a physicochemical enigma. In this paper, we show that 2'3'-cGAMP, but not its linkage isomers, adopts an organized free-ligand conformation that resembles the STING-bound conformation and pays low entropy and enthalpy costs in converting into the active conformation. Finally, our results demonstrate that analysesmore » of free-ligand conformations can be as important as analyses of protein conformations in understanding protein–ligand interactions.« less

  16. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING

    PubMed Central

    Shi, Heping; Wu, Jiaxi; Chen, Zhijian J.; Chen, Chuo

    2015-01-01

    Cyclic GMP-AMP containing a unique combination of mixed phosphodiester linkages (2′3′-cGAMP) is an endogenous second messenger molecule that activates the type-I IFN pathway upon binding to the homodimer of the adaptor protein STING on the surface of endoplasmic reticulum membrane. However, the preferential binding of the asymmetric ligand 2′3′-cGAMP to the symmetric dimer of STING represents a physicochemical enigma. Here we show that 2′3′-cGAMP, but not its linkage isomers, adopts an organized free-ligand conformation that resembles the STING-bound conformation and pays low entropy and enthalpy costs in converting into the active conformation. Our results demonstrate that analyses of free-ligand conformations can be as important as analyses of protein conformations in understanding protein–ligand interactions. PMID:26150511

  17. Deficiency of the adaptor protein SLy1 results in a natural killer cell ribosomopathy affecting tumor clearance.

    PubMed

    Arefanian, Saeed; Schäll, Daniel; Chang, Stephanie; Ghasemi, Reza; Higashikubo, Ryuji; Zheleznyak, Alex; Guo, Yizhan; Yu, Jinsheng; Asgharian, Hosseinali; Li, Wenjun; Gelman, Andrew E; Kreisel, Daniel; French, Anthony R; Zaher, Hani; Plougastel-Douglas, Beatrice; Maggi, Leonard; Yokoyama, Wayne; Beer-Hammer, Sandra; Krupnick, Alexander S

    2016-01-01

    Individuals with robust natural killer (NK) cell function incur lower rates of malignancies. To expand our understanding of genetic factors contributing to this phenomenon, we analyzed NK cells from cancer resistant and susceptible strains of mice. We identified a correlation between NK levels of the X-chromosome-located adaptor protein SLy1 and immunologic susceptibility to cancer. Unlike the case for T or B lymphocytes, where SLy1 shuttles between the cytoplasm and nucleus to facilitate signal transduction, in NK cells SLy1 functions as a ribosomal protein and is located solely in the cytoplasm. In its absence, ribosomal instability results in p53-mediated NK cell senescence and decreased clearance of malignancies. NK defects are reversible under inflammatory conditions and viral clearance is not impacted by SLy1 deficiency. Our work defines a previously unappreciated X-linked ribosomopathy that results in a specific and subtle NK cell dysfunction leading to immunologic susceptibility to cancer.

  18. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING

    SciTech Connect

    Shi, Heping; Wu, Jiaxi; Chen, Zhijian J.; Chen, Chuo

    2015-07-06

    Cyclic GMP-AMP containing a unique combination of mixed phosphodiester linkages (2'3'-cGAMP) is an endogenous second messenger molecule that activates the type-I IFN pathway upon binding to the homodimer of the adaptor protein STING on the surface of endoplasmic reticulum membrane. However, the preferential binding of the asymmetric ligand 2'3'-cGAMP to the symmetric dimer of STING represents a physicochemical enigma. In this paper, we show that 2'3'-cGAMP, but not its linkage isomers, adopts an organized free-ligand conformation that resembles the STING-bound conformation and pays low entropy and enthalpy costs in converting into the active conformation. Finally, our results demonstrate that analyses of free-ligand conformations can be as important as analyses of protein conformations in understanding protein–ligand interactions.

  19. Regulation of in vitro and in vivo immune functions by the cytosolic adaptor protein SKAP-HOM.

    PubMed

    Togni, M; Swanson, K D; Reimann, S; Kliche, S; Pearce, A C; Simeoni, L; Reinhold, D; Wienands, J; Neel, B G; Schraven, B; Gerber, A

    2005-09-01

    SKAP-HOM is a cytosolic adaptor protein representing a specific substrate for the Src family protein tyrosine kinase Fyn. Previously, several groups have provided experimental evidence that SKAP-HOM (most likely in cooperation with the cytosolic adaptor protein ADAP) is involved in regulating leukocyte adhesion. To further assess the physiological role of SKAP-HOM, we investigated the immune system of SKAP-HOM-deficient mice. Our data show that T-cell responses towards a variety of stimuli are unaffected in the absence of SKAP-HOM. Similarly, B-cell receptor (BCR)-mediated total tyrosine phosphorylation and phosphorylation of Erk, p38, and JNK, as well as immunoreceptor-mediated Ca(2+) responses, are normal in SKAP-HOM(-/-) animals. However, despite apparently normal membrane-proximal signaling events, BCR-mediated proliferation is strongly attenuated in the absence of SKAP-HOM(-/-). In addition, adhesion of activated B cells to fibronectin (a ligand for beta1 integrins) as well as to ICAM-1 (a ligand for beta2 integrins) is strongly reduced. In vivo, the loss of SKAP-HOM results in a less severe clinical course of experimental autoimmune encephalomyelitis following immunization of mice with the encephalitogenic peptide of MOG (myelin oligodendrocyte glycoprotein). This is accompanied by strongly reduced serum levels of MOG-specific antibodies and lower MOG-specific T-cell responses. In summary, our data suggest that SKAP-HOM is required for proper activation of the immune system, likely by regulating the cross-talk between immunoreceptors and integrins.

  20. Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature.

    PubMed

    Abou Jamra, Rami; Philippe, Orianne; Raas-Rothschild, Annick; Eck, Sebastian H; Graf, Elisabeth; Buchert, Rebecca; Borck, Guntram; Ekici, Arif; Brockschmidt, Felix F; Nöthen, Markus M; Munnich, Arnold; Strom, Tim M; Reis, Andre; Colleaux, Laurence

    2011-06-10

    Intellectual disability inherited in an autosomal-recessive fashion represents an important fraction of severe cognitive-dysfunction disorders. Yet, the extreme heterogeneity of these conditions markedly hampers gene identification. Here, we report on eight affected individuals who were from three consanguineous families and presented with severe intellectual disability, absent speech, shy character, stereotypic laughter, muscular hypotonia that progressed to spastic paraplegia, microcephaly, foot deformity, decreased muscle mass of the lower limbs, inability to walk, and growth retardation. Using a combination of autozygosity mapping and either Sanger sequencing of candidate genes or next-generation exome sequencing, we identified one mutation in each of three genes encoding adaptor protein complex 4 (AP4) subunits: a nonsense mutation in AP4S1 (NM_007077.3: c.124C>T, p.Arg42(∗)), a frameshift mutation in AP4B1 (NM_006594.2: c.487_488insTAT, p.Glu163_Ser739delinsVal), and a splice mutation in AP4E1 (NM_007347.3: c.542+1_542+4delGTAA, r.421_542del, p.Glu181Glyfs(∗)20). Adaptor protein complexes (AP1-4) are ubiquitously expressed, evolutionarily conserved heterotetrameric complexes that mediate different types of vesicle formation and the selection of cargo molecules for inclusion into these vesicles. Interestingly, two mutations affecting AP4M1 and AP4E1 have recently been found to cause cerebral palsy associated with severe intellectual disability. Combined with previous observations, these results support the hypothesis that AP4-complex-mediated trafficking plays a crucial role in brain development and functioning and demonstrate the existence of a clinically recognizable syndrome due to deficiency of the AP4 complex.

  1. Tarp regulates early Chlamydia-induced host cell survival through interactions with the human adaptor protein SHC1.

    PubMed

    Mehlitz, Adrian; Banhart, Sebastian; Mäurer, André P; Kaushansky, Alexis; Gordus, Andrew G; Zielecki, Julia; Macbeath, Gavin; Meyer, Thomas F

    2010-07-12

    Many bacterial pathogens translocate effector proteins into host cells to manipulate host cell functions. Here, we used a protein microarray comprising virtually all human SRC homology 2 (SH2) and phosphotyrosine binding domains to comprehensively and quantitatively assess interactions between host cell proteins and the early phase Chlamydia trachomatis effector protein translocated actin-recruiting phosphoprotein (Tarp), which is rapidly tyrosine phosphorylated upon host cell entry. We discovered numerous novel interactions between human SH2 domains and phosphopeptides derived from Tarp. The adaptor protein SHC1 was among Tarp's strongest interaction partners. Transcriptome analysis of SHC1-dependent gene regulation during infection indicated that SHC1 regulates apoptosis- and growth-related genes. SHC1 knockdown sensitized infected host cells to tumor necrosis factor-induced apoptosis. Collectively, our findings reveal a critical role for SHC1 in early C. trachomatis-induced cell survival and suggest that Tarp functions as a multivalent phosphorylation-dependent signaling hub that is important during the early phase of chlamydial infection.

  2. Identification of an adaptor protein that facilitates Nrf2-Keap1 complex formation and modulates antioxidant response.

    PubMed

    Zhang, Yuxue; Hou, Yongfan; Liu, Chunchun; Li, Yinlong; Guo, Weiwei; Wu, Jiu-Lin; Xu, Daqian; You, Xue; Pan, Yi; Chen, Yan

    2016-08-01

    Nrf2 plays a key role in the protection of the body against environmental stress via inducible expression of detoxification and antioxidant enzymes. Keap1 functions as a sensor for oxidative and electrophilic stresses and promotes Nrf2 degradation via its E3 ligase activity. Modulation of the Nrf2-Keap1 pathway has been extensively explored as a strategy to combat against drug toxicity and stress-induced diseases. Here we report a new player that modulates the Nrf2-Keap1 pathway. PAQR3, a membrane protein specifically localized in the Golgi apparatus, negatively regulates the expression of an array of Nrf2 target genes and alters cellular level of reactive oxygen species. PAQR3 tethers Nrf2 and Keap1, but not small MAF proteins to the Golgi apparatus. PAQR3 interacts with both Nrf2 and Keap1 and facilitates the interaction of Nrf2 with Keap1. PAQR3 promotes ubiquitination and degradation of Nrf2. Disruption of PAQR3 interaction with Nrf2 and Keap1 by a synthetic peptide reduces Nrf2 ubiquitination and elevates expression of Nrf2 target genes. At the animal level, deletion of PAQR3 increases Nrf2 protein level and the expression of Nrf2 target genes. In conclusion, our study pinpoints that PAQR3 functions as an adaptor protein to promote Nrf2-Keap1 complex formation, thereby modulating the Nrf2-Keap2 pathway and playing an important role in controlling antioxidant response of the cell.

  3. Rap1-GTP-interacting Adaptor Molecule (RIAM) Protein Controls Invasion and Growth of Melanoma Cells*

    PubMed Central

    Hernández-Varas, Pablo; Coló, Georgina P.; Bartolomé, Ruben A.; Paterson, Andrew; Medraño-Fernández, Iria; Arellano-Sánchez, Nohemí; Cabañas, Carlos; Sánchez-Mateos, Paloma; Lafuente, Esther M.; Boussiotis, Vassiliki A.; Strömblad, Staffan; Teixidó, Joaquin

    2011-01-01

    The Mig-10/RIAM/lamellipodin (MRL) family member Rap1-GTP-interacting adaptor molecule (RIAM) interacts with active Rap1, a small GTPase that is frequently activated in tumors such as melanoma and prostate cancer. We show here that RIAM is expressed in metastatic human melanoma cells and that both RIAM and Rap1 are required for BLM melanoma cell invasion. RIAM silencing in melanoma cells led to inhibition of tumor growth and to delayed metastasis in a severe combined immunodeficiency xenograft model. Defective invasion of RIAM-silenced melanoma cells arose from impairment in persistent cell migration directionality, which was associated with deficient activation of a Vav2-RhoA-ROCK-myosin light chain pathway. Expression of constitutively active Vav2 and RhoA in cells depleted for RIAM partially rescued their invasion, indicating that Vav2 and RhoA mediate RIAM function. These results suggest that inhibition of cell invasion in RIAM-silenced melanoma cells is likely based on altered cell contractility and cell polarization. Furthermore, we show that RIAM depletion reduces β1 integrin-dependent melanoma cell adhesion, which correlates with decreased activation of both Erk1/2 MAPK and phosphatidylinositol 3-kinase, two central molecules controlling cell growth and cell survival. In addition to causing inhibition of cell proliferation, RIAM silencing led to higher susceptibility to cell apoptosis. Together, these data suggest that defective activation of these kinases in RIAM-silenced cells could account for inhibition of melanoma cell growth and that RIAM might contribute to the dissemination of melanoma cells. PMID:21454517

  4. The cytoskeleton adaptor protein ankyrin-1 is upregulated by p53 following DNA damage and alters cell migration

    PubMed Central

    Hall, A E; Lu, W-T; Godfrey, J D; Antonov, A V; Paicu, C; Moxon, S; Dalmay, T; Wilczynska, A; Muller, P A J; Bushell, M

    2016-01-01

    The integrity of the genome is maintained by a host of surveillance and repair mechanisms that are pivotal for cellular function. The tumour suppressor protein p53 is a major component of the DNA damage response pathway and plays a vital role in the maintenance of cell-cycle checkpoints. Here we show that a microRNA, miR-486, and its host gene ankyrin-1 (ANK1) are induced by p53 following DNA damage. Strikingly, the cytoskeleton adaptor protein ankyrin-1 was induced over 80-fold following DNA damage. ANK1 is upregulated in response to a variety of DNA damage agents in a range of cell types. We demonstrate that miR-486-5p is involved in controlling G1/S transition following DNA damage, whereas the induction of the ankyrin-1 protein alters the structure of the actin cytoskeleton and sustains limited cell migration during DNA damage. Importantly, we found that higher ANK1 expression correlates with decreased survival in cancer patients. Thus, these observations highlight ANK1 as an important effector downstream of the p53 pathway. PMID:27054339

  5. Signaling adaptor protein SH2B1 enhances neurite outgrowth and accelerates the maturation of human induced neurons.

    PubMed

    Hsu, Yi-Chao; Chen, Su-Liang; Wang, Ya-Jean; Chen, Yun-Hsiang; Wang, Dan-Yen; Chen, Linyi; Chen, Chia-Hsiang; Chen, Hwei-Hsien; Chiu, Ing-Ming

    2014-06-01

    Recent advances in somatic cell reprogramming have highlighted the plasticity of the somatic epigenome, particularly through demonstrations of direct lineage reprogramming of adult mouse and human fibroblasts to induced pluripotent stem cells (iPSCs) and induced neurons (iNs) under defined conditions. However, human cells appear to be less plastic and have a higher epigenetic hurdle for reprogramming to both iPSCs and iNs. Here, we show that SH2B adaptor protein 1β (SH2B1) can enhance neurite outgrowth of iNs reprogrammed from human fibroblasts as early as day 14, when combined with miR124 and transcription factors BRN2 and MYT1L (IBM) under defined conditions. These SH2B1-enhanced iNs (S-IBM) showed canonical neuronal morphology, and expressed multiple neuronal markers, such as TuJ1, NeuN, and synapsin, and functional proteins for neurotransmitter release, such as GABA, vGluT2, and tyrosine hydroxylase. Importantly, SH2B1 accelerated mature process of functional neurons and exhibited action potentials as early as day 14; without SH2B1, the IBM iNs do not exhibit action potentials until day 21. Our data demonstrate that SH2B1 can enhance neurite outgrowth and accelerate the maturation of human iNs under defined conditions. This approach will facilitate the application of iNs in regenerative medicine and in vitro disease modeling.

  6. Adaptor protein disabled-2 modulates low density lipoprotein receptor synthesis in fibroblasts from patients with autosomal recessive hypercholesterolaemia.

    PubMed

    Eden, Emily R; Sun, Xi-Ming; Patel, Dilipkumar D; Soutar, Anne K

    2007-11-15

    Autosomal recessive hypercholesterolaemia (ARH), characterized clinically by severe inherited hypercholesterolaemia, is caused by recessive null mutations in LDLRAP1 (formerly ARH). Immortalized lymphocytes and monocyte-macrophages, and presumably hepatocytes, from ARH patients fail to take up and degrade plasma low density lipoproteins (LDL) because they lack LDLRAP1, a cargo-specific adaptor required for clathrin-mediated endocytosis of the LDL receptor. Surprisingly, LDL-receptor function is normal in ARH patients' skin fibroblasts in culture. Disabled-2 (Dab2) has been implicated previously in clathrin-mediated internalization of LDL-receptor family members, and we show here that Dab2 is highly expressed in skin fibroblasts, but not in lymphocytes. SiRNA-depletion of Dab2 profoundly reduced LDL-receptor activity in ARH fibroblasts as a result of profound reduction in LDL-receptor protein, but not mRNA; heterologous expression of murine Dab2 reversed this effect. In contrast, LDL-receptor protein content was unchanged in Dab-2-depleted control cells. Incorporation of 35S-labelled amino acids into LDL receptor protein revealed a corresponding apparent reduction in accumulation of newly synthesized LDL-receptor protein on depletion of Dab2 in ARH, but not in control, cells. This reduction in LDL-receptor protein in Dab2-depleted ARH cells could not be reversed by treatment of the cells with proteasomal or lysosomal inhibitors. Thus, we propose a novel role for Dab2 in ARH fibroblasts, where it is apparently required to allow normal translation of LDL receptor mRNA.

  7. Bivalent Motif-Ear Interactions Mediate the Association of the Accessory Protein Tepsin with the AP-4 Adaptor Complex.

    PubMed

    Mattera, Rafael; Guardia, Carlos M; Sidhu, Sachdev S; Bonifacino, Juan S

    2015-12-25

    The heterotetrameric (ϵ-β4-μ4-σ4) complex adaptor protein 4 (AP-4) is a component of a non-clathrin coat involved in protein sorting at the trans-Golgi network (TGN). Considerable interest in this complex has arisen from the recent discovery that mutations in each of its four subunits are the cause of a congenital intellectual disability and movement disorder in humans. Despite its physiological importance, the structure and function of this coat remain poorly understood. To investigate the assembly of the AP-4 coat, we dissected the determinants of interaction of AP-4 with its only known accessory protein, the ENTH/VHS-domain-containing protein tepsin. Using a variety of protein interaction assays, we found that tepsin comprises two phylogenetically conserved peptide motifs, [GS]LFXG[ML]X[LV] and S[AV]F[SA]FLN, within its C-terminal unstructured region, which interact with the C-terminal ear (or appendage) domains of the β4 and ϵ subunits of AP-4, respectively. Structure-based mutational analyses mapped the binding site for the [GS]LFXG[ML]X[LV] motif to a conserved, hydrophobic surface on the β4-ear platform fold. Both peptide-ear interactions are required for efficient association of tepsin with AP-4, and for recruitment of tepsin to the TGN. The bivalency of the interactions increases the avidity of tepsin for AP-4 and may enable cross-linking of multiple AP-4 heterotetramers, thus contributing to the assembly of the AP-4 coat. In addition to revealing critical aspects of this coat, our findings extend the paradigm of peptide-ear interactions, previously established for clathrin-AP-1/AP-2 coats, to a non-clathrin coat.

  8. New insight into the functions of the interleukin-17 receptor adaptor protein Act1 in psoriatic arthritis

    PubMed Central

    2012-01-01

    Recent genome-wide association studies have implicated the tumor necrosis factor receptor-associated factor 3-interacting protein 2 (TRAF3IP2) gene and its product, nuclear factor-kappa-B activator 1 (Act1), in the development of psoriatic arthritis (PsA). The high level of sequence homology of the TRAF3IP2 (Act1) gene across the animal kingdom and the presence of the Act1 protein in multiple cell types strongly suggest that the protein is of importance in normal cellular function. Act1 is an adaptor protein for the interleukin-17 (IL-17) receptor, and recent observations have highlighted the significance of IL-17 signaling and localized inflammation in autoimmune diseases. This review summarizes data from recent genome-wide association studies as well as immunological and molecular investigations of Act1. Together, these studies provide new insight into the role of IL-17 signaling in PsA. It is well established that IL-17 activation of tumor necrosis factor receptor-associated factor 6 (TRAF6) signaling pathways normally leads to nuclear factor-kappa-B-mediated inflammation. However, the dominant PsA-associated TRAF3IP2 (Act1) gene single-nucleotide polymorphism (rs33980500) results in decreased binding of Act1 to TRAF6. This key mutation in Act1 could lead to a greater association of the IL-17 receptor with TRAF2/TRAF5 and this in turn suggests an alternative function for IL-17 in PsA. The recent observations described and discussed in this review raise the clinically significant possibility of redefining the immunological role of IL-17 in PsA and provide a basis for defining future studies to elucidate the molecular and cellular functions of Act1. PMID:23116200

  9. The Adaptor Protein-1 μ1B Subunit Expands the Repertoire of Basolateral Sorting Signal Recognition in Epithelial Cells

    PubMed Central

    Guo, Xiaoli; Mattera, Rafael; Ren, Xuefeng; Chen, Yu; Retamal, Claudio; González, Alfonso; Bonifacino, Juan S.

    2014-01-01

    SUMMARY An outstanding question in protein sorting is why polarized epithelial cells express two isoforms of the μ1 subunit of the AP-1 clathrin adaptor complex: the ubiquitous μ1A and the epithelial-specific μ1B. Previous studies led to the notion that μ1A and μ1B mediate basolateral sorting predominantly from the trans-Golgi network (TGN) and recycling endosomes, respectively. Using improved analytical tools, however, we find that μ1A and μ1B largely colocalize with each other. They also colocalize to similar extents with TGN and recycling endosome markers, as well as with basolateral cargoes transiting biosynthetic and endocytic-recycling routes. Instead, the two isoforms differ in their signal-recognition specificity. In particular, μ1B preferentially binds a subset of signals from cargoes that are sorted basolaterally in a μ1B-dependent manner. We conclude that expression of distinct μ1 isoforms in epithelial cells expands the repertoire of signals recognized by AP-1 for sorting of a broader range of cargoes to the basolateral surface. PMID:24229647

  10. Dual Activation of TRIF and MyD88 Adaptor Proteins by Angiotensin II Evokes Opposing Effects on Pressure, Cardiac Hypertrophy and Inflammatory Gene Expression

    PubMed Central

    Singh, Madhu V.; Cicha, Michael Z.; Meyerholz, David K.; Chapleau, Mark W.; Abboud, François M.

    2015-01-01

    Hypertension is recognized as an immune disorder whereby immune cells play a defining role in the genesis and progression of the disease. The innate immune system and its component toll-like receptors (TLRs) are key determinants of the immunological outcome through their pro-inflammatory response. TLR activated signaling pathways utilize several adaptor proteins of which adaptor proteins MyD88 and TRIF define two major inflammatory pathways. In this study, we compared the contributions of MyD88 and TRIF adaptor proteins to angiotensin II (Ang II)-induced hypertension and cardiac hypertrophy in mice. Deletion of MyD88 did not prevent cardiac hypertrophy and the pressor response to Ang II tended to increase. Moreover, the increase in inflammatory gene expression (Tnfa, Nox4 and Agtr1a) was significantly greater in the heart and kidney of MyD88-deficient mice compared with wild type mice. Thus, pathways involving MyD88 may actually restrain the inflammatory responses. On the other hand, in mice with non-functional TRIF (Trifmut mice), Ang II induced hypertension and cardiac hypertrophy were abrogated, and pro-inflammatory gene expression in heart and kidneys was unchanged or decreased. Our results indicate that Ang II induces activation of a pro-inflammatory innate immune response, causing hypertension, and cardiac hypertrophy. These effects require functional adaptor protein TRIF-mediated pathways. However, the common MyD88 dependent signaling pathway, which is also activated simultaneously by Ang II, paradoxically exerts a negative regulatory influence on these responses. PMID:26195481

  11. Nuclear IKKbeta is an adaptor protein for IkappaBalpha ubiquitination and degradation in UV-induced NF-kappaB activation.

    PubMed

    Tsuchiya, Yoshihiro; Asano, Tomoichiro; Nakayama, Keiko; Kato, Tomohisa; Karin, Michael; Kamata, Hideaki

    2010-08-27

    Proinflammatory cytokines activate NF-kappaB using the IkappaB kinase (IKK) complex that phosphorylates inhibitory proteins (IkappaBs) at N-terminal sites resulting in their ubiquitination and degradation in the cytoplasm. Although ultraviolet (UV) irradiation does not lead to IKK activity, it activates NF-kappaB by an unknown mechanism through IkappaBalpha degradation without N-terminal phosphorylation. Here, we describe an adaptor function of nuclear IKKbeta in UV-induced IkappaBalpha degradation. UV irradiation induces the nuclear translocation of IkappaBalpha and association with IKKbeta, which constitutively interacts with beta-TrCP through heterogeneous ribonucleoprotein-U (hnRNP-U) leading to IkappaBalpha ubiquitination and degradation. Furthermore, casein kinase 2 (CK2) and p38 associate with IKKbeta and promote IkappaBalpha degradation by phosphorylation at C-terminal sites. Thus, nuclear IKKbeta acts as an adaptor protein for IkappaBalpha degradation in UV-induced NF-kappaB activation. NF-kappaB activated by the nuclear IKKbeta adaptor protein suppresses anti-apoptotic gene expression and promotes UV-induced cell death.

  12. Comparative analysis of adaptor-mediated clathrin assembly reveals general principles for adaptor clustering.

    PubMed

    Pucadyil, Thomas J; Holkar, Sachin S

    2016-10-15

    Clathrin-mediated endocytosis (CME) manages the sorting and uptake of the bulk of membrane proteins (or cargo) from the plasma membrane. CME is initiated by the formation of clathrin-coated pits (CCPs), in which adaptors nucleate clathrin assembly. Clathrin adaptors display diversity in both the type and number of evolutionarily conserved clathrin-binding boxes. How this diversity relates to the process of adaptor clustering as clathrin assembles around a growing pit remains unclear. Using real-time, fluorescence microscopy-based assays, we compare the formation kinetics and distribution of clathrin assemblies on membranes that display five unique clathrin adaptors. Correlations between equilibrium and kinetic parameters of clathrin assembly to the eventual adaptor distribution indicate that adaptor clustering is determined not by the amount of clathrin recruited or the degree of clathrin clustered but instead by the rate of clathrin assembly. Together our results emphasize the need to analyze kinetics of protein interactions to better understand mechanisms that regulate CME.

  13. Adaptor Protein-1 Complex Affects the Endocytic Trafficking and Function of Peptidylglycine α-Amidating Monooxygenase, a Luminal Cuproenzyme.

    PubMed

    Bonnemaison, Mathilde L; Bäck, Nils; Duffy, Megan E; Ralle, Martina; Mains, Richard E; Eipper, Betty A

    2015-08-28

    The adaptor protein-1 complex (AP-1), which transports cargo between the trans-Golgi network and endosomes, plays a role in the trafficking of Atp7a, a copper-transporting P-type ATPase, and peptidylglycine α-amidating monooxygenase (PAM), a copper-dependent membrane enzyme. Lack of any of the four AP-1 subunits impairs function, and patients with MEDNIK syndrome, a rare genetic disorder caused by lack of expression of the σ1A subunit, exhibit clinical and biochemical signs of impaired copper homeostasis. To explore the role of AP-1 in copper homeostasis in neuroendocrine cells, we used corticotrope tumor cells in which AP-1 function was diminished by reducing expression of its μ1A subunit. Copper levels were unchanged when AP-1 function was impaired, but cellular levels of Atp7a declined slightly. The ability of PAM to function was assessed by monitoring 18-kDa fragment-NH2 production from proopiomelanocortin. Reduced AP-1 function made 18-kDa fragment amidation more sensitive to inhibition by bathocuproine disulfonate, a cell-impermeant Cu(I) chelator. The endocytic trafficking of PAM was altered, and PAM-1 accumulated on the cell surface when AP-1 levels were reduced. Reduced AP-1 function increased the Atp7a presence in early/recycling endosomes but did not alter the ability of copper to stimulate its appearance on the plasma membrane. Co-immunoprecipitation of a small fraction of PAM and Atp7a supports the suggestion that copper can be transferred directly from Atp7a to PAM, a process that can occur only when both proteins are present in the same subcellular compartment. Altered luminal cuproenzyme function may contribute to deficits observed when the AP-1 function is compromised.

  14. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection

    PubMed Central

    Pérez-Núñez, Daniel; García-Urdiales, Eduardo; Martínez-Bonet, Marta; Nogal, María L.; Barroso, Susana; Revilla, Yolanda; Madrid, Ricardo

    2015-01-01

    African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity. PMID:25915900

  15. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection.

    PubMed

    Pérez-Núñez, Daniel; García-Urdiales, Eduardo; Martínez-Bonet, Marta; Nogal, María L; Barroso, Susana; Revilla, Yolanda; Madrid, Ricardo

    2015-01-01

    African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity.

  16. Endocytosis of megalin by visceral endoderm cells requires the Dab2 adaptor protein.

    PubMed

    Maurer, Meghan E; Cooper, Jonathan A

    2005-11-15

    Rapid endocytosis of lipoprotein receptors involves NPxY signals contained in their cytoplasmic tails. Several proteins, including ARH and Dab2, can bind these sequences, but their importance for endocytosis may vary in different cell types. The lipoprotein receptor megalin is expressed in the visceral endoderm (VE), a polarized epithelium that supplies maternal nutrients to the early mammalian embryo. Dab2 is also expressed in the VE, and is required for embryo growth and gastrulation. Here, we show that ARH is absent from the VE, and Dab2 is required for uptake of megalin, its co-receptor cubilin, and a cubilin ligand, transferrin, from the brush border of the VE into intracellular vesicles. By making isoform-specific knock-in mice, we show that the p96 splice form of Dab2, which binds endocytic proteins, can fully rescue endocytosis. The more abundant p67 isoform, which lacks some endocytic protein binding sites, only partly rescues endocytosis. Endocytosis of cubilin is also impaired in VE and in mid-gestation visceral yolk sac when p96 is absent. These studies suggest that Dab2 p96 mediates endocytosis of megalin in the VE. In addition, rescue of embryonic viability correlates with endocytosis, suggesting that endocytosis mediated by Dab2 is important for normal development.

  17. Crystal structures of the Toll/Interleukin-1 receptor (TIR) domains from the Brucella protein TcpB and host adaptor TIRAP reveal mechanisms of molecular mimicry.

    PubMed

    Snyder, Greg A; Deredge, Daniel; Waldhuber, Anna; Fresquez, Theresa; Wilkins, David Z; Smith, Patrick T; Durr, Susi; Cirl, Christine; Jiang, Jiansheng; Jennings, William; Luchetti, Timothy; Snyder, Nathaniel; Sundberg, Eric J; Wintrode, Patrick; Miethke, Thomas; Xiao, T Sam

    2014-01-10

    The Toll/IL-1 receptor (TIR) domains are crucial innate immune signaling modules. Microbial TIR domain-containing proteins inhibit Toll-like receptor (TLR) signaling through molecular mimicry. The TIR domain-containing protein TcpB from Brucella inhibits TLR signaling through interaction with host adaptor proteins TIRAP/Mal and MyD88. To characterize the microbial mimicry of host proteins, we have determined the X-ray crystal structures of the TIR domains from the Brucella protein TcpB and the host adaptor protein TIRAP. We have further characterized homotypic interactions of TcpB using hydrogen/deuterium exchange mass spectrometry and heterotypic TcpB and TIRAP interaction by co-immunoprecipitation and NF-κB reporter assays. The crystal structure of the TcpB TIR domain reveals the microtubule-binding site encompassing the BB loop as well as a symmetrical dimer mediated by the DD and EE loops. This dimerization interface is validated by peptide mapping through hydrogen/deuterium exchange mass spectrometry. The human TIRAP TIR domain crystal structure reveals a unique N-terminal TIR domain fold containing a disulfide bond formed by Cys(89) and Cys(134). A comparison between the TcpB and TIRAP crystal structures reveals substantial conformational differences in the region that encompasses the BB loop. These findings underscore the similarities and differences in the molecular features found in the microbial and host TIR domains, which suggests mechanisms of bacterial mimicry of host signaling adaptor proteins, such as TIRAP.

  18. New function of the adaptor protein SH2B1 in brain-derived neurotrophic factor-induced neurite outgrowth.

    PubMed

    Shih, Chien-Hung; Chen, Chien-Jen; Chen, Linyi

    2013-01-01

    Neurite outgrowth is an essential process for the establishment of the nervous system. Brain-derived neurotrophic factor (BDNF) binds to its receptor TrkB and regulates axonal and dendritic morphology of neurons through signal transduction and gene expression. SH2B1 is a signaling adaptor protein that regulates cellular signaling in various physiological processes. The purpose of this study is to investigate the role of SH2B1 in the development of the central nervous system. In this study, we show that knocking down SH2B1 reduces neurite formation of cortical neurons whereas overexpression of SH2B1β promotes the development of hippocampal neurons. We further demonstrate that SH2B1β promotes BDNF-induced neurite outgrowth and signaling using the established PC12 cells stably expressing TrkB, SH2B1β or SH2B1β mutants. Our data indicate that overexpressing SH2B1β enhances BDNF-induced MEK-ERK1/2, and PI3K-AKT signaling pathways. Inhibition of MEK-ERK1/2 and PI3K-AKT pathways by specific inhibitors suggest that these two pathways are required for SH2B1β-promoted BDNF-induced neurite outgrowth. Moreover, SH2B1β enhances BDNF-stimulated phosphorylation of signal transducer and activator of transcription 3 at serine 727. Finally, our data indicate that the SH2 domain and tyrosine phosphorylation of SH2B1β contribute to BDNF-induced signaling pathways and neurite outgrowth. Taken together, these findings demonstrate that SH2B1β promotes BDNF-induced neurite outgrowth through enhancing pathways involved MEK-ERK1/2 and PI3K-AKT.

  19. The adaptor protein SH2B3 (Lnk) negatively regulates neurite outgrowth of PC12 cells and cortical neurons.

    PubMed

    Wang, Tien-Cheng; Chiu, Hsun; Chang, Yu-Jung; Hsu, Tai-Yu; Chiu, Ing-Ming; Chen, Linyi

    2011-01-01

    SH2B adaptor protein family members (SH2B1-3) regulate various physiological responses through affecting signaling, gene expression, and cell adhesion. SH2B1 and SH2B2 were reported to enhance nerve growth factor (NGF)-induced neuronal differentiation in PC12 cells, a well-established neuronal model system. In contrast, SH2B3 was reported to inhibit cell proliferation during the development of immune system. No study so far addresses the role of SH2B3 in the nervous system. In this study, we provide evidence suggesting that SH2B3 is expressed in the cortex of embryonic rat brain. Overexpression of SH2B3 not only inhibits NGF-induced differentiation of PC12 cells but also reduces neurite outgrowth of primary cortical neurons. SH2B3 does so by repressing NGF-induced activation of PLCγ, MEK-ERK1/2 and PI3K-AKT pathways and the expression of Egr-1. SH2B3 is capable of binding to phosphorylated NGF receptor, TrkA, as well as SH2B1β. Our data further demonstrate that overexpression of SH2B3 reduces the interaction between SH2B1β and TrkA. Consistent with this finding, overexpressing the SH2 domain of SH2B3 is sufficient to inhibit NGF-induced neurite outgrowth. Together, our data demonstrate that SH2B3, unlike the other two family members, inhibits neuronal differentiation of PC12 cells and primary cortical neurons. Its inhibitory mechanism is likely through the competition of TrkA binding with the positive-acting SH2B1 and SH2B2.

  20. Structural and Functional Characterization of Cargo-Binding Sites on the μ4-Subunit of Adaptor Protein Complex 4

    PubMed Central

    Ross, Breyan H.; Lin, Yimo; Corales, Esteban A.; Burgos, Patricia V.; Mardones, Gonzalo A.

    2014-01-01

    Adaptor protein (AP) complexes facilitate protein trafficking by playing key roles in the selection of cargo molecules to be sorted in post-Golgi compartments. Four AP complexes (AP-1 to AP-4) contain a medium-sized subunit (μ1-μ4) that recognizes YXXØ-sequences (Ø is a bulky hydrophobic residue), which are sorting signals in transmembrane proteins. A conserved, canonical region in μ subunits mediates recognition of YXXØ-signals by means of a critical aspartic acid. Recently we found that a non-canonical YXXØ-signal on the cytosolic tail of the Alzheimer's disease amyloid precursor protein (APP) binds to a distinct region of the μ4 subunit of the AP-4 complex. In this study we aimed to determine the functionality of both binding sites of μ4 on the recognition of the non-canonical YXXØ-signal of APP. We found that substitutions in either binding site abrogated the interaction with the APP-tail in yeast-two hybrid experiments. Further characterization by isothermal titration calorimetry showed instead loss of binding to the APP signal with only the substitution R283D at the non-canonical site, in contrast to a decrease in binding affinity with the substitution D190A at the canonical site. We solved the crystal structure of the C-terminal domain of the D190A mutant bound to this non-canonical YXXØ-signal. This structure showed no significant difference compared to that of wild-type μ4. Both differential scanning fluorimetry and limited proteolysis analyses demonstrated that the D190A substitution rendered μ4 less stable, suggesting an explanation for its lower binding affinity to the APP signal. Finally, in contrast to overexpression of the D190A mutant, and acting in a dominant-negative manner, overexpression of μ4 with either a F255A or a R283D substitution at the non-canonical site halted APP transport at the Golgi apparatus. Together, our analyses support that the functional recognition of the non-canonical YXXØ-signal of APP is limited to the non

  1. The adaptor protein Cindr regulates JNK activity to maintain epithelial sheet integrity.

    PubMed

    Yasin, Hannah W R; van Rensburg, Samuel H; Feiler, Christina E; Johnson, Ruth I

    2016-02-15

    Epithelia are essential barrier tissues that must be appropriately maintained for their correct function. To achieve this a plethora of protein interactions regulate epithelial cell number, structure and adhesion, and differentiation. Here we show that Cindr (the Drosophila Cin85 and Cd2ap ortholog) is required to maintain epithelial integrity. Reducing Cindr triggered cell delamination and movement. Most delaminating cells died. These behaviors were consistent with JNK activation previously associated with loss of epithelial integrity in response to ectopic oncogene activity. We confirmed a novel interaction between Cindr and Drosophila JNK (dJNK), which when perturbed caused inappropriate JNK signaling. Genetically reducing JNK signaling activity suppressed the effects of reducing Cindr. Furthermore, ectopic JNK signaling phenocopied loss of Cindr and was partially rescued by concomitant cindr over-expression. Thus, correct Cindr-dJNK stoichiometry is essential to maintain epithelial integrity and disturbing this balance may contribute to the pathogenesis of disease states, including cancer.

  2. Dengue Virus Subverts Host Innate Immunity by Targeting Adaptor Protein MAVS

    PubMed Central

    He, Zhenjian; Zhu, Xun; Wen, Weitao; Yuan, Jie; Hu, Yiwen; Chen, Jiahui; An, Shu; Dong, Xinhuai; Lin, Cuiji; Yu, Jianchen; Wu, Jueheng; Yang, Yi; Cai, Junchao; Li, Jun

    2016-01-01

    ABSTRACT Dengue virus (DENV) is the most common mosquito-borne virus infecting humans and is currently a serious global health challenge. To establish infection in its host cells, DENV must subvert the production and/or antiviral effects of interferon (IFN). The aim of this study was to understand the mechanisms by which DENV suppresses IFN production. We determined that DENV NS4A interacts with mitochondrial antiviral signaling protein (MAVS), which was previously found to activate NF-κB and IFN regulatory factor 3 (IRF3), thus inducing type I IFN in the mitochondrion-associated endoplasmic reticulum membranes (MAMs). We further demonstrated that NS4A is associated with the N-terminal CARD-like (CL) domain and the C-terminal transmembrane (TM) domain of MAVS. This association prevented the binding of MAVS to RIG-I, resulting in the repression of RIG-I-induced IRF3 activation and, consequently, the abrogation of IFN production. Collectively, our findings illustrate a new molecular mechanism by which DENV evades the host immune system and suggest new targets for anti-DENV strategies. IMPORTANCE Type I interferon (IFN) constitutes the first line of host defense against invading viruses. To successfully establish infection, dengue virus (DENV) must counteract either the production or the function of IFN. The mechanism by which DENV suppresses IFN production is poorly understood and characterized. In this study, we demonstrate that the DENV NS4A protein plays an important role in suppressing interferon production through binding MAVS and disrupting the RIG-I–MAVS interaction in mitochondrion-associated endoplasmic reticulum membranes (MAMs). Our study reveals that MAVS is a novel host target of NS4A and provides a molecular mechanism for DENV evasion of the host innate immune response. These findings have important implications for understanding the pathogenesis of DENV and may provide new insights into using NS4A as a therapeutic and/or prevention target. PMID

  3. The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion.

    PubMed

    Paul, Viktoria Désirée; Mühlenhoff, Ulrich; Stümpfig, Martin; Seebacher, Jan; Kugler, Karl G; Renicke, Christian; Taxis, Christof; Gavin, Anne-Claude; Pierik, Antonio J; Lill, Roland

    2015-07-16

    Cytosolic and nuclear iron-sulfur (Fe-S) proteins are involved in many essential pathways including translation and DNA maintenance. Their maturation requires the cytosolic Fe-S protein assembly (CIA) machinery. To identify new CIA proteins we employed systematic protein interaction approaches and discovered the essential proteins Yae1 and Lto1 as binding partners of the CIA targeting complex. Depletion of Yae1 or Lto1 results in defective Fe-S maturation of the ribosome-associated ABC protein Rli1, but surprisingly no other tested targets. Yae1 and Lto1 facilitate Fe-S cluster assembly on Rli1 in a chain of binding events. Lto1 uses its conserved C-terminal tryptophan for binding the CIA targeting complex, the deca-GX3 motifs in both Yae1 and Lto1 facilitate their complex formation, and Yae1 recruits Rli1. Human YAE1D1 and the cancer-related ORAOV1 can replace their yeast counterparts demonstrating evolutionary conservation. Collectively, the Yae1-Lto1 complex functions as a target-specific adaptor that recruits apo-Rli1 to the generic CIA machinery.

  4. The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion

    PubMed Central

    Paul, Viktoria Désirée; Mühlenhoff, Ulrich; Stümpfig, Martin; Seebacher, Jan; Kugler, Karl G; Renicke, Christian; Taxis, Christof; Gavin, Anne-Claude; Pierik, Antonio J; Lill, Roland

    2015-01-01

    Cytosolic and nuclear iron-sulfur (Fe-S) proteins are involved in many essential pathways including translation and DNA maintenance. Their maturation requires the cytosolic Fe-S protein assembly (CIA) machinery. To identify new CIA proteins we employed systematic protein interaction approaches and discovered the essential proteins Yae1 and Lto1 as binding partners of the CIA targeting complex. Depletion of Yae1 or Lto1 results in defective Fe-S maturation of the ribosome-associated ABC protein Rli1, but surprisingly no other tested targets. Yae1 and Lto1 facilitate Fe-S cluster assembly on Rli1 in a chain of binding events. Lto1 uses its conserved C-terminal tryptophan for binding the CIA targeting complex, the deca-GX3 motifs in both Yae1 and Lto1 facilitate their complex formation, and Yae1 recruits Rli1. Human YAE1D1 and the cancer-related ORAOV1 can replace their yeast counterparts demonstrating evolutionary conservation. Collectively, the Yae1-Lto1 complex functions as a target-specific adaptor that recruits apo-Rli1 to the generic CIA machinery. DOI: http://dx.doi.org/10.7554/eLife.08231.001 PMID:26182403

  5. Diarylcoumarins inhibit mycolic acid biosynthesis and kill Mycobacterium tuberculosis by targeting FadD32

    PubMed Central

    Stanley, Sarah A.; Kawate, Tomohiko; Iwase, Noriaki; Shimizu, Motohisa; Clatworthy, Anne E.; Kazyanskaya, Edward; Sacchettini, James C.; Ioerger, Thomas R.; Siddiqi, Noman A.; Minami, Shoko; Aquadro, John A.; Schmidt Grant, Sarah; Rubin, Eric J.; Hung, Deborah T.

    2013-01-01

    Infection with the bacterial pathogen Mycobacterium tuberculosis imposes an enormous burden on global public health. New antibiotics are urgently needed to combat the global tuberculosis pandemic; however, the development of new small molecules is hindered by a lack of validated drug targets. Here, we describe the identification of a 4,6-diaryl-5,7-dimethyl coumarin series that kills M. tuberculosis by inhibiting fatty acid degradation protein D32 (FadD32), an enzyme that is required for biosynthesis of cell-wall mycolic acids. These substituted coumarin inhibitors directly inhibit the acyl-acyl carrier protein synthetase activity of FadD32. They effectively block bacterial replication both in vitro and in animal models of tuberculosis, validating FadD32 as a target for antibiotic development that works in the same pathway as the established antibiotic isoniazid. Targeting new steps in well-validated biosynthetic pathways in antitubercular therapy is a powerful strategy that removes much of the usual uncertainty surrounding new targets and in vivo clinical efficacy, while circumventing existing resistance to established targets. PMID:23798446

  6. The adaptor protein 3BP2 associates with VAV guanine nucleotide exchange factors to regulate NFAT activation by the B-cell antigen receptor.

    PubMed

    Foucault, Isabelle; Le Bras, Séverine; Charvet, Céline; Moon, Chéol; Altman, Amnon; Deckert, Marcel

    2005-02-01

    Engagement of the B-cell antigen receptor (BCR) activates kinases of the Src and Syk families and signaling complexes assembled by adaptor proteins, which dictate B-cell fate and function. The adaptor 3BP2/SH3BP2, an Abl Src homology domain 3 (SH3)-binding and Syk-kinases interacting protein, exhibits positive regulatory roles in T, natural killer (NK), and basophilic cells. However, its involvement in BCR signaling is completely unknown. Here we show that 3BP2 is tyrosine phosphorylated following BCR aggregation on B lymphoma cells, and that 3BP2 is a substrate for Syk and Fyn, but not Btk. To further explore the function of 3BP2 in B cells, we screened a yeast 2-hybrid B-lymphocyte library and found 3BP2 as a binding partner of Vav proteins. The interaction between 3BP2 and Vav proteins involved both constitutive and inducible mechanisms. 3BP2 also interacted with other components of the BCR signaling pathway, including Syk and phospholipase C gamma (PLC-gamma). Furthermore, overexpression and RNAi blocking experiments showed that 3BP2 regulated BCR-mediated activation of nuclear factor of activated T cells (NFATs). Finally, evidence was provided that 3BP2 functionally cooperates with Vav proteins and Rho GTPases to activate NFATs. Our results show that 3BP2 may regulate BCR-mediated gene activation through Vav proteins.

  7. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  8. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  9. Palmitoylation of protease-activated receptor-1 regulates adaptor protein complex-2 and -3 interaction with tyrosine-based motifs and endocytic sorting.

    PubMed

    Canto, Isabel; Trejo, JoAnn

    2013-05-31

    Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor for the coagulant protease thrombin. Thrombin binds to and cleaves the N terminus of PAR1, generating a new N terminus that functions as a tethered ligand that cannot diffuse away. In addition to rapid desensitization, PAR1 trafficking is critical for the regulation of cellular responses. PAR1 displays constitutive and agonist-induced internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), which binds to a distal tyrosine-based motif localized within the C-terminal tail (C-tail) domain. Once internalized, PAR1 is sorted from endosomes to lysosomes via AP-3 interaction with a second C-tail tyrosine motif proximal to the transmembrane domain. However, the regulatory processes that control adaptor protein recognition of PAR1 C-tail tyrosine-based motifs are not known. Here, we report that palmitoylation of PAR1 is critical for regulating proper utilization of tyrosine-based motifs and endocytic sorting. We show that PAR1 is basally palmitoylated at highly conserved C-tail cysteines. A palmitoylation-deficient PAR1 mutant is competent to signal and exhibits a marked increase in constitutive internalization and lysosomal degradation compared with wild type receptor. Intriguingly, enhanced constitutive internalization of PAR1 is mediated by AP-2 and requires the proximal tyrosine-based motif rather than the distal tyrosine motif used by wild type receptor. Moreover, palmitoylation-deficient PAR1 displays increased degradation that is mediated by AP-3. These findings suggest that palmitoylation of PAR1 regulates appropriate utilization of tyrosine-based motifs by adaptor proteins and endocytic trafficking, processes that are critical for maintaining appropriate expression of PAR1 at the cell surface.

  10. Phosphorylation of APP-CTF-AICD domains and interaction with adaptor proteins: signal transduction and/or transcriptional role--relevance for Alzheimer pathology.

    PubMed

    Schettini, Gennaro; Govoni, Stefano; Racchi, Marco; Rodriguez, Guido

    2010-12-01

    In recent decades, the study of the amyloid precursor protein (APP) and of its proteolytic products carboxy terminal fragment (CTF), APP intracellular C-terminal domain (AICD) and amyloid beta has been mostly focussed on the role of APP as a producer of the toxic amyloid beta peptide. Here, we reconsider the role of APP suggesting, in a provocative way, the protein as a central player in a putative signalling pathway. We highlight the presence in the cytosolic tail of APP of the YENPTY motif which is typical of tyrosine kinase receptors, the phosphorylation of the tyrosine, serine and threonine residues, the kinases involved and the interaction with intracellular adaptor proteins. In particular, we examine the interaction with Shc and Grb2 regulators, which through the activation of Ras proteins elicit downstream signalling events such as the MAPK pathway. The review also addresses the interaction of APP, CTFs and AICD with other adaptor proteins and in particular with Fe65 for nuclear transcriptional activity and the importance of phosphorylation for sorting the secretases involved in the amyloidogenic or non-amyloidogenic pathways. We provide a novel perspective on Alzheimer's disease pathogenesis, focussing on the perturbation of the physiological activities of APP-CTFs and AICD as an alternative perspective from that which normally focuses on the accumulation of neurotoxic proteolytic fragments.

  11. Adaptor protein 2–mediated endocytosis of the β-secretase BACE1 is dispensable for amyloid precursor protein processing

    PubMed Central

    Prabhu, Yogikala; Burgos, Patricia V.; Schindler, Christina; Farías, Ginny G.; Magadár, Javier G.; Bonifacino, Juan S.

    2012-01-01

    The β-site amyloid precursor protein (APP)–cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease that catalyzes the proteolytic processing of APP and other plasma membrane protein precursors. BACE1 cycles between the trans-Golgi network (TGN), the plasma membrane, and endosomes by virtue of signals contained within its cytosolic C-terminal domain. One of these signals is the DXXLL-motif sequence DISLL, which controls transport between the TGN and endosomes via interaction with GGA proteins. Here we show that the DISLL sequence is embedded within a longer [DE]XXXL[LI]-motif sequence, DDISLL, which mediates internalization from the plasma membrane by interaction with the clathrin-associated, heterotetrameric adaptor protein 2 (AP-2) complex. Mutation of this signal or knockdown of either AP-2 or clathrin decreases endosomal localization and increases plasma membrane localization of BACE1. Remarkably, internalization-defective BACE1 is able to cleave an APP mutant that itself cannot be delivered to endosomes. The drug brefeldin A reversibly prevents BACE1-catalyzed APP cleavage, ruling out that this reaction occurs in the endoplasmic reticulum (ER) or ER–Golgi intermediate compartment. Taken together, these observations support the notion that BACE1 is capable of cleaving APP in late compartments of the secretory pathway. PMID:22553349

  12. Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in SEDPHAT: application to adaptor protein complexes in cell signaling.

    PubMed

    Houtman, Jon C D; Brown, Patrick H; Bowden, Brent; Yamaguchi, Hiroshi; Appella, Ettore; Samelson, Lawrence E; Schuck, Peter

    2007-01-01

    Multisite interactions and the formation of ternary or higher-order protein complexes are ubiquitous features of protein interactions. Cooperativity between different ligands is a hallmark for information transfer, and is frequently critical for the biological function. We describe a new computational platform for the global analysis of isothermal titration calorimetry (ITC) data for the study of binary and ternary multisite interactions, implemented as part of the public domain multimethod analysis software SEDPHAT. The global analysis of titrations performed in different orientations was explored, and the potential for unraveling cooperativity parameters in multisite interactions was assessed in theory and experiment. To demonstrate the practical potential and limitations of global analyses of ITC titrations for the study of cooperative multiprotein interactions, we have examined the interactions of three proteins that are critical for signal transduction after T-cell activation, LAT, Grb2, and Sos1. We have shown previously that multivalent interactions between these three molecules promote the assembly of large multiprotein complexes important for T-cell receptor activation. By global analysis of the heats of binding observed in sets of ITC injections in different orientations, which allowed us to follow the formation of binary and ternary complexes, we observed negative and positive cooperativity that may be important to control the pathway of assembly and disassembly of adaptor protein particles.

  13. The adaptor protein DCAF7 mediates the interaction of the adenovirus E1A oncoprotein with the protein kinases DYRK1A and HIPK2

    PubMed Central

    Glenewinkel, Florian; Cohen, Michael J.; King, Cason R.; Kaspar, Sophie; Bamberg-Lemper, Simone; Mymryk, Joe S.; Becker, Walter

    2016-01-01

    DYRK1A is a constitutively active protein kinase that has a critical role in growth and development which functions by regulating cell proliferation, differentiation and survival. DCAF7 (also termed WDR68 or HAN11) is a cellular binding partner of DYRK1A and also regulates signalling by the protein kinase HIPK2. DCAF7 is an evolutionarily conserved protein with a single WD40 repeat domain and has no catalytic activity. We have defined a DCAF7 binding motif of 12 amino acids in the N-terminal domain of class 1 DYRKs that is functionally conserved in DYRK1 orthologs from Xenopus, Danio rerio and the slime mold Dictyostelium discoideum. A similar sequence was essential for DCAF7 binding to HIPK2, whereas the closely related HIPK1 family member did not bind DCAF7. Immunoprecipitation and pulldown experiments identified DCAF7 as an adaptor for the association of the adenovirus E1A protein with DYRK1A and HIPK2. Furthermore, DCAF7 was required for the hyperphosphorylation of E1A in DYRK1A or HIPK2 overexpressing cells. Our results characterize DCAF7 as a substrate recruiting subunit of DYRK1A and HIPK2 and suggest that it is required for the negative effect of DYRK1A on E1A-induced oncogenic transformation. PMID:27307198

  14. Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis.

    PubMed

    Paczkowski, Jon E; Richardson, Brian C; Fromme, J Christopher

    2015-07-01

    Cargo adaptors sort transmembrane protein cargos into nascent vesicles by binding directly to their cytosolic domains. Recent studies have revealed previously unappreciated roles for cargo adaptors and regulatory mechanisms governing their function. The adaptor protein (AP)-1 and AP-2 clathrin adaptors switch between open and closed conformations that ensure they function at the right place at the right time. The exomer cargo adaptor has a direct role in remodeling the membrane for vesicle fission. Several different cargo adaptors functioning in distinct trafficking pathways at the Golgi are similarly regulated through bivalent binding to the ADP-ribosylation factor 1 (Arf1) GTPase, potentially enabling regulation by a threshold concentration of Arf1. Taken together, these studies highlight that cargo adaptors do more than just adapt cargos.

  15. The Adaptor Protein Myd88 Is a Key Signaling Molecule in the Pathogenesis of Irinotecan-Induced Intestinal Mucositis.

    PubMed

    Wong, Deysi V T; Lima-Júnior, Roberto C P; Carvalho, Cibele B M; Borges, Vanessa F; Wanderley, Carlos W S; Bem, Amanda X C; Leite, Caio A V G; Teixeira, Maraiza A; Batista, Gabriela L P; Silva, Rangel L; Cunha, Thiago M; Brito, Gerly A C; Almeida, Paulo R C; Cunha, Fernando Q; Ribeiro, Ronaldo A

    2015-01-01

    Intestinal mucositis is a common side effect of irinotecan-based anticancer regimens. Mucositis causes cell damage, bacterial/endotoxin translocation and production of cytokines including IL-1 and IL-18. These molecules and toll-like receptors (TLRs) activate a common signaling pathway that involves the Myeloid Differentiation adaptor protein, MyD88, whose role in intestinal mucositis is unknown. Then, we evaluated the involvement of TLRs and MyD88 in the pathogenesis of irinotecan-induced intestinal mucositis. MyD88-, TLR2- or TLR9-knockout mice and C57BL/6 (WT) mice were given either saline or irinotecan (75 mg/kg, i.p. for 4 days). On day 7, animal survival, diarrhea and bacteremia were assessed, and following euthanasia, samples of the ileum were obtained for morphometric analysis, myeloperoxidase (MPO) assay and measurement of pro-inflammatory markers. Irinotecan reduced the animal survival (50%) and induced a pronounced diarrhea, increased bacteremia, neutrophil accumulation in the intestinal tissue, intestinal damage and more than twofold increased expression of MyD88 (200%), TLR9 (400%), TRAF6 (236%), IL-1β (405%), IL-18 (365%), COX-2 (2,777%) and NF-κB (245%) in the WT animals when compared with saline-injected group (P<0.05). Genetic deletion of MyD88, TLR2 or TLR9 effectively controlled the signs of intestinal injury when compared with irinotecan-administered WT controls (P<0.05). In contrast to the MyD88-/- and TLR2-/- mice, the irinotecan-injected TLR9-/- mice showed a reduced survival, a marked diarrhea and an enhanced expression of IL-18 versus irinotecan-injected WT controls. Additionally, the expression of MyD88 was reduced in the TLR2-/- or TLR9-/- mice. This study shows a critical role of the MyD88-mediated TLR2 and TLR9 signaling in the pathogenesis of irinotecan-induced intestinal mucositis.

  16. The Adaptor Protein Myd88 Is a Key Signaling Molecule in the Pathogenesis of Irinotecan-Induced Intestinal Mucositis

    PubMed Central

    Wong, Deysi V. T.; Lima-Júnior, Roberto C. P.; Carvalho, Cibele B. M.; Borges, Vanessa F.; Wanderley, Carlos W. S.; Bem, Amanda X. C.; Leite, Caio A. V. G.; Teixeira, Maraiza A.; Batista, Gabriela L. P.; Silva, Rangel L.; Cunha, Thiago M.; Brito, Gerly A. C.; Almeida, Paulo R. C.; Cunha, Fernando Q.; Ribeiro, Ronaldo A.

    2015-01-01

    Intestinal mucositis is a common side effect of irinotecan-based anticancer regimens. Mucositis causes cell damage, bacterial/endotoxin translocation and production of cytokines including IL–1 and IL–18. These molecules and toll-like receptors (TLRs) activate a common signaling pathway that involves the Myeloid Differentiation adaptor protein, MyD88, whose role in intestinal mucositis is unknown. Then, we evaluated the involvement of TLRs and MyD88 in the pathogenesis of irinotecan-induced intestinal mucositis. MyD88-, TLR2- or TLR9-knockout mice and C57BL/6 (WT) mice were given either saline or irinotecan (75 mg/kg, i.p. for 4 days). On day 7, animal survival, diarrhea and bacteremia were assessed, and following euthanasia, samples of the ileum were obtained for morphometric analysis, myeloperoxidase (MPO) assay and measurement of pro-inflammatory markers. Irinotecan reduced the animal survival (50%) and induced a pronounced diarrhea, increased bacteremia, neutrophil accumulation in the intestinal tissue, intestinal damage and more than twofold increased expression of MyD88 (200%), TLR9 (400%), TRAF6 (236%), IL–1β (405%), IL–18 (365%), COX–2 (2,777%) and NF-κB (245%) in the WT animals when compared with saline-injected group (P<0.05). Genetic deletion of MyD88, TLR2 or TLR9 effectively controlled the signs of intestinal injury when compared with irinotecan-administered WT controls (P<0.05). In contrast to the MyD88-/- and TLR2-/- mice, the irinotecan-injected TLR9-/- mice showed a reduced survival, a marked diarrhea and an enhanced expression of IL–18 versus irinotecan-injected WT controls. Additionally, the expression of MyD88 was reduced in the TLR2-/- or TLR9-/- mice. This study shows a critical role of the MyD88-mediated TLR2 and TLR9 signaling in the pathogenesis of irinotecan-induced intestinal mucositis. PMID:26440613

  17. Structural determinants for binding of sorting nexin 17 (SNX17) to the cytoplasmic adaptor protein Krev interaction trapped 1 (KRIT1).

    PubMed

    Stiegler, Amy L; Zhang, Rong; Liu, Weizhi; Boggon, Titus J

    2014-09-05

    Sorting nexin 17 (SNX17) is a member of the family of cytoplasmic sorting nexin adaptor proteins that regulate endosomal trafficking of cell surface proteins. SNX17 localizes to early endosomes where it directly binds NPX(Y/F) motifs in the cytoplasmic tails of its target receptors to mediate their rates of endocytic internalization, recycling, and/or degradation. SNX17 has also been implicated in mediating cell signaling and can interact with cytoplasmic proteins. KRIT1 (Krev interaction trapped 1), a cytoplasmic adaptor protein associated with cerebral cavernous malformations, has previously been shown to interact with SNX17. Here, we demonstrate that SNX17 indeed binds directly to KRIT1 and map the binding to the second Asn-Pro-Xaa-Tyr/Phe (NPX(Y/F)) motif in KRIT1. We further characterize the interaction as being mediated by the FERM domain of SNX17. We present the co-crystal structure of SNX17-FERM with the KRIT1-NPXF2 peptide to 3.0 Å resolution and demonstrate that the interaction is highly similar in structure and binding affinity to that between SNX17 and P-selectin. We verify the molecular details of the interaction by site-directed mutagenesis and pulldown assay and thereby confirm that the major binding site for SNX17 is confined to the NPXF2 motif in KRIT1. Taken together, our results verify a direct interaction between SNX17 and KRIT1 and classify KRIT1 as a SNX17 binding partner.

  18. Mitochondrial antiviral signaling adaptor mediated apoptosis in H3N2 swine influenza virus infection is inhibited by viral protein NS1 in vitro.

    PubMed

    Zhang, Jinqiu; Miao, Jinfeng; Hou, Jibo; Lu, Chengping

    2015-05-15

    We investigated the in vitro role of mitochondrial antiviral signaling adaptor (MAVS) in apoptosis induced by H3N2 swine influenza virus infection and the influence of viral NS1 (nonstructural protein 1) protein on this process. H3N2 swine influenza virus (SIV, A/Swine/Shandong/3/2005) was co-cultured with human lung epithelial A549 cells. The relationship of MAVS expression to SIV replication and apoptosis, and the influence of viral proteins on MAVS functions were studied. The data indicate that in response to SIV infection, MAVS was significantly upregulated at both the transcriptional and protein levels in the early stages of infection. Its expression and localization to mitochondria are necessary for apoptosis of epithelial cells induced by H3N2 swine influenza virus. Viral protein NS1 can antagonize MAVS-mediated apoptosis. These findings indicate that MAVS have a role in regulating innate mitochondrial responses to viral infection.

  19. Impaired Lysosomal Integral Membrane Protein 2-dependent Peroxiredoxin 6 Delivery to Lamellar Bodies Accounts for Altered Alveolar Phospholipid Content in Adaptor Protein-3-deficient pearl Mice.

    PubMed

    Kook, Seunghyi; Wang, Ping; Young, Lisa R; Schwake, Michael; Saftig, Paul; Weng, Xialian; Meng, Ying; Neculai, Dante; Marks, Michael S; Gonzales, Linda; Beers, Michael F; Guttentag, Susan

    2016-04-15

    The Hermansky Pudlak syndromes (HPS) constitute a family of disorders characterized by oculocutaneous albinism and bleeding diathesis, often associated with lethal lung fibrosis. HPS results from mutations in genes of membrane trafficking complexes that facilitate delivery of cargo to lysosome-related organelles. Among the affected lysosome-related organelles are lamellar bodies (LB) within alveolar type 2 cells (AT2) in which surfactant components are assembled, modified, and stored. AT2 from HPS patients and mouse models of HPS exhibit enlarged LB with increased phospholipid content, but the mechanism underlying these defects is unknown. We now show that AT2 in the pearl mouse model of HPS type 2 lacking the adaptor protein 3 complex (AP-3) fails to accumulate the soluble enzyme peroxiredoxin 6 (PRDX6) in LB. This defect reflects impaired AP-3-dependent trafficking of PRDX6 to LB, because pearl mouse AT2 cells harbor a normal total PRDX6 content. AP-3-dependent targeting of PRDX6 to LB requires the transmembrane protein LIMP-2/SCARB2, a known AP-3-dependent cargo protein that functions as a carrier for lysosomal proteins in other cell types. Depletion of LB PRDX6 in AP-3- or LIMP-2/SCARB2-deficient mice correlates with phospholipid accumulation in lamellar bodies and with defective intraluminal degradation of LB disaturated phosphatidylcholine. Furthermore, AP-3-dependent LB targeting is facilitated by protein/protein interaction between LIMP-2/SCARB2 and PRDX6 in vitro and in vivo Our data provide the first evidence for an AP-3-dependent cargo protein required for the maturation of LB in AT2 and suggest that the loss of PRDX6 activity contributes to the pathogenic changes in LB phospholipid homeostasis found HPS2 patients.

  20. The Cell Signaling Adaptor Protein EPS-8 Is Essential for C. elegans Epidermal Elongation and Interacts with the Ankyrin Repeat Protein VAB-19

    PubMed Central

    Ding, Mei; King, Ryan S.; Berry, Emily C.; Wang, Ying; Hardin, Jeff; Chisholm, Andrew D.

    2008-01-01

    Background The epidermal cells of the C. elegans embryo undergo coordinated cell shape changes that result in the morphogenetic process of elongation. The cytoskeletal ankyrin repeat protein VAB-19 is required for cell shape changes and localizes to cell-matrix attachment structures. The molecular functions of VAB-19 in this process are obscure, as no previous interactors for VAB-19 have been described. Methodology/Principal Findings In screens for VAB-19 binding proteins we identified the signaling adaptor EPS-8. Within C. elegans epidermal cells, EPS-8 and VAB-19 colocalize at cell-matrix attachment structures. The central domain of EPS-8 is necessary and sufficient for its interaction with VAB-19. eps-8 null mutants, like vab-19 mutants, are defective in epidermal elongation and in epidermal-muscle attachment. The eps-8 locus encodes two isoforms, EPS-8A and EPS-8B, that appear to act redundantly in epidermal elongation. The function of EPS-8 in epidermal development involves its N-terminal PTB and central domains, and is independent of its C-terminal SH3 and actin-binding domains. VAB-19 appears to act earlier in the biogenesis of attachment structures and may recruit EPS-8 to these structures. Conclusions/Significance EPS-8 and VAB-19 define a novel pathway acting at cell-matrix attachments to regulate epithelial cell shape. This is the first report of a role for EPS-8 proteins in cell-matrix attachments. The existence of EPS-8B-like isoforms in Drosophila suggests this function of EPS-8 proteins could be conserved among other organisms. PMID:18833327

  1. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    SciTech Connect

    Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon; Nguyen, Hong-Hoa; Yang, Jun-Mo; Kang, Jong-Sun; Hahn, Myong-Joon

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer APPL1 regulates the protein level of EGFR in response to EGF stimulation. Black-Right-Pointing-Pointer Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. Black-Right-Pointing-Pointer Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.

  2. Adaptor protein ARH is recruited to the plasma membrane by low density lipoprotein (LDL) binding and modulates endocytosis of the LDL/LDL receptor complex in hepatocytes.

    PubMed

    Sirinian, Maria Isabella; Belleudi, Francesca; Campagna, Filomena; Ceridono, Mara; Garofalo, Tina; Quagliarini, Fabiana; Verna, Roberto; Calandra, Sebastiano; Bertolini, Stefano; Sorice, Maurizio; Torrisi, Maria Rosaria; Arca, Marcello

    2005-11-18

    ARH is a newly discovered adaptor protein required for the efficient activity of low density lipoprotein receptor (LDLR) in selected tissues. Individuals lacking ARH have severe hypercholesterolemia due to an impaired hepatic clearance of LDL. It has been demonstrated that ARH is required for the efficient internalization of the LDL-LDLR complex and to stabilize the association of the receptor with LDL in Epstein-Barr virus-immortalized B lymphocytes. However, little information is available on the role of ARH in liver cells. Here we provide evidence that ARH is codistributed with LDLR on the basolateral area in confluent HepG2-polarized cells. This distribution is not modified by the overexpression of LDLR. Conversely, the activation of the LDLR-mediated endocytosis, but not the binding of LDL to LDLR, promotes a significant colocalization of ARH with LDL-LDLR complex that peaked at 2 min at 37 degrees C. To further assess the role of ARH in LDL-LDLR complex internalization, we depleted ARH protein using the RNA interference technique. Twenty-four hours after transfection with ARH-specific RNA interference, ARH protein was depleted in HepG2 cells by more than 70%. Quantitative immunofluorescence analysis revealed that the depletion of ARH caused about 80% reduction in LDL internalization. Moreover, our findings indicate that ARH is associated with other proteins of the endocytic machinery. We suggest that ARH is an endocytic sorting adaptor that actively participates in the internalization of the LDL-LDLR complex, possibly enhancing the efficiency of its packaging into the endocytic vesicles.

  3. Recruitment of the adaptor protein 2 complex by the human immunodeficiency virus type 2 envelope protein is necessary for high levels of virus release.

    PubMed

    Noble, Beth; Abada, Paolo; Nunez-Iglesias, Juan; Cannon, Paula M

    2006-03-01

    The envelope (Env) protein of human immunodeficiency virus type 2 (HIV-2) and the HIV-1 Vpu protein stimulate the release of retroviral particles from human cells that restrict virus production, an activity that we call the enhancement of virus release (EVR). We have previously shown that two separate domains in the HIV-2 envelope protein are required for this activity: a glycine-tyrosine-x-x-hydrophobic (GYxxtheta) motif in the cytoplasmic tail and an unmapped region in the ectodomain of the protein. We here report that the cellular partner of the GYxxtheta motif is the adaptor protein complex AP-2. The mutation of this motif or the depletion of AP-2 by RNA interference abrogated EVR activity and changed the cellular distribution of the Env from a predominantly punctate pattern to a more diffuse distribution. Since the L domain of equine infectious anemia virus (EIAV) contains a Yxxtheta motif that interacts with AP-2, we used both wild-type and L domain-defective particles of HIV-1 and EIAV to examine whether the HIV-2 Env EVR function was analogous to L domain activity. We observed that the production of all particles was stimulated by HIV-2 Env or Vpu, suggesting that the L domain and EVR activities play independent roles in the release of retroviruses. Interestingly, we found that the cytoplasmic tail of the murine leukemia virus (MLV) Env could functionally substitute for the HIV-2 Env tail, but it did so in a manner that did not require a Yxxtheta motif or AP-2. The cellular distribution of the chimeric HIV-2/MLV Env was significantly less punctate than the wild-type Env, although confocal analysis revealed an overlap in the steady-state locations of the two proteins. Taken together, these data suggest that the essential GYxxtheta motif in the HIV-2 Env tail recruits AP-2 in order to direct Env to a cellular pathway or location that is necessary for its ability to enhance virus release but that an alternate mechanism provided by the MLV Env tail can

  4. Recruitment of the Adaptor Protein 2 Complex by the Human Immunodeficiency Virus Type 2 Envelope Protein Is Necessary for High Levels of Virus Release†

    PubMed Central

    Noble, Beth; Abada, Paolo; Nunez-Iglesias, Juan; Cannon, Paula M.

    2006-01-01

    The envelope (Env) protein of human immunodeficiency virus type 2 (HIV-2) and the HIV-1 Vpu protein stimulate the release of retroviral particles from human cells that restrict virus production, an activity that we call the enhancement of virus release (EVR). We have previously shown that two separate domains in the HIV-2 envelope protein are required for this activity: a glycine-tyrosine-x-x-hydrophobic (GYxxθ) motif in the cytoplasmic tail and an unmapped region in the ectodomain of the protein. We here report that the cellular partner of the GYxxθ motif is the adaptor protein complex AP-2. The mutation of this motif or the depletion of AP-2 by RNA interference abrogated EVR activity and changed the cellular distribution of the Env from a predominantly punctate pattern to a more diffuse distribution. Since the L domain of equine infectious anemia virus (EIAV) contains a Yxxθ motif that interacts with AP-2, we used both wild-type and L domain-defective particles of HIV-1 and EIAV to examine whether the HIV-2 Env EVR function was analogous to L domain activity. We observed that the production of all particles was stimulated by HIV-2 Env or Vpu, suggesting that the L domain and EVR activities play independent roles in the release of retroviruses. Interestingly, we found that the cytoplasmic tail of the murine leukemia virus (MLV) Env could functionally substitute for the HIV-2 Env tail, but it did so in a manner that did not require a Yxxθ motif or AP-2. The cellular distribution of the chimeric HIV-2/MLV Env was significantly less punctate than the wild-type Env, although confocal analysis revealed an overlap in the steady-state locations of the two proteins. Taken together, these data suggest that the essential GYxxθ motif in the HIV-2 Env tail recruits AP-2 in order to direct Env to a cellular pathway or location that is necessary for its ability to enhance virus release but that an alternate mechanism provided by the MLV Env tail can functionally substitute

  5. Cross-talk between Tetraspanin CD9 and Transmembrane Adaptor Protein Non-T Cell Activation Linker (NTAL) in Mast Cell Activation and Chemotaxis*

    PubMed Central

    Hálová, Ivana; Dráberová, Lubica; Bambousková, Monika; Machyna, Martin; Stegurová, Lucie; Smrž, Daniel; Dráber, Petr

    2013-01-01

    Chemotaxis, a process leading to movement of cells toward increasing concentrations of chemoattractants, is essential, among others, for recruitment of mast cells within target tissues where they play an important role in innate and adaptive immunity. Chemotaxis is driven by chemoattractants, produced by various cell types, as well as by intrinsic cellular regulators, which are poorly understood. In this study we prepared a new mAb specific for the tetraspanin CD9. Binding of the antibody to bone marrow-derived mast cells triggered activation events that included cell degranulation, Ca2+ response, dephosphorylation of ezrin/radixin/moesin (ERM) family proteins, and potent tyrosine phosphorylation of the non-T cell activation linker (NTAL) but only weak phosphorylation of the linker for activation of T cells (LAT). Phosphorylation of the NTAL was observed with whole antibody but not with its F(ab)2 or Fab fragments. This indicated involvement of the Fcγ receptors. As documented by electron microscopy of isolated plasma membrane sheets, CD9 colocalized with the high-affinity IgE receptor (FcϵRI) and NTAL but not with LAT. Further tests showed that both anti-CD9 antibody and its F(ab)2 fragment inhibited mast cell chemotaxis toward antigen. Experiments with bone marrow-derived mast cells deficient in NTAL and/or LAT revealed different roles of these two adaptors in antigen-driven chemotaxis. The combined data indicate that chemotaxis toward antigen is controlled in mast cells by a cross-talk among FcϵRI, tetraspanin CD9, transmembrane adaptor proteins NTAL and LAT, and cytoskeleton-regulatory proteins of the ERM family. PMID:23443658

  6. Interactions of the Cytoplasmic Domains of Human and Simian Retroviral Transmembrane Proteins with Components of the Clathrin Adaptor Complexes Modulate Intracellular and Cell Surface Expression of Envelope Glycoproteins

    PubMed Central

    Berlioz-Torrent, Clarisse; Shacklett, Barbara L.; Erdtmann, Lars; Delamarre, Lelia; Bouchaert, Isabelle; Sonigo, Pierre; Dokhelar, Marie Christine; Benarous, Richard

    1999-01-01

    The cytoplasmic domains of the transmembrane (TM) envelope proteins (TM-CDs) of most retroviruses have a Tyr-based motif, YXXØ, in their membrane-proximal regions. This signal is involved in the trafficking and endocytosis of membrane receptors via clathrin-associated AP-1 and AP-2 adaptor complexes. We have used CD8-TM-CD chimeras to investigate the role of the Tyr-based motif of human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), and human T-leukemia virus type 1 (HTLV-1) TM-CDs in the cell surface expression of the envelope glycoprotein. Flow cytometry and confocal microscopy studies showed that this motif is a major determinant of the cell surface expression of the CD8-HTLV chimera. The YXXØ motif also plays a key role in subcellular distribution of the envelope of lentiviruses HIV-1 and SIV. However, these viruses, which encode TM proteins with a long cytoplasmic domain, have additional determinants distal to the YXXØ motif that participate in regulating cell surface expression. We have also used the yeast two-hybrid system and in vitro binding assays to demonstrate that all three retroviral YXXØ motifs interact with the μ1 and μ2 subunits of AP complexes and that the C-terminal regions of HIV-1 and SIV TM proteins interact with the β2 adaptin subunit. The TM-CDs of HTLV-1, HIV-1, and SIV also interact with the whole AP complexes. These results clearly demonstrate that the cell surface expression of retroviral envelope glycoproteins is governed by interactions with adaptor complexes. The YXXØ-based signal is the major determinant of this interaction for the HTLV-1 TM, which contains a short cytoplasmic domain, whereas the lentiviruses HIV-1 and SIV have additional determinants distal to this signal that are also involved. PMID:9882340

  7. Inflammasome adaptor protein Apoptosis-associated speck-like protein containing CARD (ASC) is critical for the immune response and survival in west Nile virus encephalitis.

    PubMed

    Kumar, Mukesh; Roe, Kelsey; Orillo, Beverly; Muruve, Daniel A; Nerurkar, Vivek R; Gale, Michael; Verma, Saguna

    2013-04-01

    West Nile virus (WNV) is a neurotropic flavivirus that has emerged globally as a significant cause of viral encephalitis in humans. The WNV-induced innate immune response, including production of antiviral cytokines, is critical for controlling virus infection. The adaptor protein ASC mediates a critical step in innate immune signaling by bridging the interaction between the pathogen recognition receptors and caspase 1 in inflammasome complexes, but its role in WNV immunopathogenesis is not defined. Here, we demonstrate that ASC is essential for interleukin-1β (IL-1β) production and development of effective host immunity against WNV. ASC-deficient mice exhibited increased susceptibility to WNV infection, and reduced survival was associated with enhanced virus replication in the peripheral tissues and central nervous system (CNS). Infection of cultured bone marrow-derived dendritic cells showed that ASC was essential for the activation of caspase 1, a key component of inflammasome assembly. ASC(-/-) mice exhibited attenuated levels of proinflammatory cytokines in the serum. Intriguingly, infected ASC(-/-) mice also displayed reduced levels of alpha interferon (IFN-α) and IgM in the serum, indicating the overall protective role of ASC in restricting WNV infection. However, brains from ASC(-/-) mice displayed unrestrained inflammation, including elevated levels of proinflammatory cytokines and chemokines, such as IFN-γ, CCL2, and CCL5, which correlated with more pronounced activation of the astrocytes, enhanced infiltration of peripheral immune cells in the CNS, and increased neuronal cell death. Collectively, our data provide new insights into the role of ASC as an essential modulator of inflammasome-dependent and -independent immune responses to effectively control WNV infection.

  8. Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis

    PubMed Central

    Paczkowski, Jon E.; Richardson, Brian C.; Fromme, J. Christopher

    2015-01-01

    Cargo adaptors sort transmembrane protein cargos into nascent vesicles by binding directly to their cytosolic domains. Recent studies have revealed previously unappreciated roles for cargo adaptors and regulatory mechanisms governing their function. The AP-1 and AP-2 clathrin adaptors switch between open and closed conformations that ensure they function at the right place at the right time. The exomer cargo adaptor plays a direct role in remodeling the membrane for vesicle fission. Several different cargo adaptors functioning in distinct trafficking pathways at the Golgi are similarly regulated through bivalent binding to the Arf1 GTPase, potentially enabling regulation by a threshold concentration of Arf1. Taken together, these studies highlight that cargo adaptors do more than just adapt cargos. PMID:25795254

  9. Endocytic adaptors – social networking at the plasma membrane

    PubMed Central

    Reider, Amanda; Wendland, Beverly

    2011-01-01

    Receptor-mediated endocytosis is a dynamic process that is crucial for maintaining plasma membrane composition and controlling cell-signaling pathways. A variety of entry routes have evolved to ensure that the vast array of molecules on the cell surface can be differentially internalized by endocytosis. This diversity has extended to include a growing list of endocytic adaptor proteins, which are thought to initiate the internalization process. The key function of adaptors is to select the proteins that should be removed from the cell surface. Thus, they have a central role in defining the physiology of a cell. This has made the study of adaptor proteins a very active area of research that is ripe for exciting future discoveries. Here, we review recent work on how adaptors mediate endocytosis and address the following questions: what characteristics define an endocytic adaptor protein? What roles do these proteins fulfill in addition to selecting cargo and how might adaptors function in clathrin-independent endocytic pathways? Through the findings discussed in this Commentary, we hope to stimulate further characterization of known adaptors and expansion of the known repertoire by identification of new adaptors. PMID:21536832

  10. A putative TIR domain protein from Helicobacter pylori is dimeric in solution and interacts with human TLR adaptor Myeloid Differentiation Primary Response 88.

    PubMed

    Türköz, Burcu Kaplan

    2017-03-06

    Helicobacter pylori is an important human pathogen capable of causing persistent infection with minimal immune response. The first line of defense during H. pylori infection is through gastric epithelial cells that present Toll like receptors (TLR), a family of bacterial proteins which share homology with the Toll/IL1 receptor (TIR) domain. Bacterial TIR proteins (BTP) mimic human TIR domain proteins and act on MyD88 signaling pathways to suppress TLR signaling. H. pylori might also produce a similar protein. A putative H. pylori BTP was found based on sequence homology and the corresponding gene hp1437 was inserted into an expression vector in fusion with an N-terminal cleavable 6his-tag. The recombinant protein, 6his-HP1437 was purified using nickel affinity chromatography with a yield of 8 mg/ L culture. Oligomerization of HP1437 was investigated by size-exclusion chromatography. Our results show that HP1437 forms dimers in solution similar to other BTPs. Furthermore, GST pull down assays identify an interaction between HP1437 and human TIR domain adaptor MyD88. This study suggests that HP1437 has the characteristic features of BTPs and may play a direct role in reduced immune response against H. pylori by binding to MyD88 and pave the way for an in-depth characterization of this putative novel H. pylori virulence factor.

  11. The Adaptor Complex AP-4 Regulates Vacuolar Protein Sorting at the trans-Golgi Network by Interacting with VACUOLAR SORTING RECEPTOR1.

    PubMed

    Fuji, Kentaro; Shirakawa, Makoto; Shimono, Yuki; Kunieda, Tadashi; Fukao, Yoichiro; Koumoto, Yasuko; Takahashi, Hideyuki; Hara-Nishimura, Ikuko; Shimada, Tomoo

    2016-01-01

    Adaptor protein (AP) complexes play critical roles in protein sorting among different post-Golgi pathways by recognizing specific cargo protein motifs. Among the five AP complexes (AP-1-AP-5) in plants, AP-4 is one of the most poorly understood; the AP-4 components, AP-4 cargo motifs, and AP-4 functional mechanism are not known. Here, we identify the AP-4 components and show that the AP-4 complex regulates receptor-mediated vacuolar protein sorting by recognizing VACUOLAR SORTING RECEPTOR1 (VSR1), which was originally identified as a sorting receptor for seed storage proteins to target protein storage vacuoles in Arabidopsis (Arabidopsis thaliana). From the vacuolar sorting mutant library GREEN FLUORESCENT SEED (GFS), we isolated three gfs mutants that accumulate abnormally high levels of VSR1 in seeds and designated them as gfs4, gfs5, and gfs6. Their responsible genes encode three (AP4B, AP4M, and AP4S) of the four subunits of the AP-4 complex, respectively, and an Arabidopsis mutant (ap4e) lacking the fourth subunit, AP4E, also had the same phenotype. Mass spectrometry demonstrated that these four proteins form a complex in vivo. The four mutants showed defects in the vacuolar sorting of the major storage protein 12S globulins, indicating a role for the AP-4 complex in vacuolar protein transport. AP4M bound to the tyrosine-based motif of VSR1. AP4M localized at the trans-Golgi network (TGN) subdomain that is distinct from the AP-1-localized TGN subdomain. This study provides a novel function for the AP-4 complex in VSR1-mediated vacuolar protein sorting at the specialized domain of the TGN.

  12. AP-1/σ1A and AP-1/σ1B adaptor-proteins differentially regulate neuronal early endosome maturation via the Rab5/Vps34-pathway

    PubMed Central

    Candiello, Ermes; Kratzke, Manuel; Wenzel, Dirk; Cassel, Dan; Schu, Peter

    2016-01-01

    The σ1 subunit of the AP-1 clathrin-coated-vesicle adaptor-protein complex is expressed as three isoforms. Tissues express σ1A and one of the σ1B and σ1C isoforms. Brain is the tissue with the highest σ1A and σ1B expression. σ1B-deficiency leads to severe mental retardation, accumulation of early endosomes in synapses and fewer synaptic vesicles, whose recycling is slowed down. AP-1/σ1A and AP-1/σ1B regulate maturation of these early endosomes into multivesicular body late endosomes, thereby controlling synaptic vesicle protein transport into a degradative pathway. σ1A binds ArfGAP1, and with higher affinity brain-specific ArfGAP1, which bind Rabex-5. AP-1/σ1A-ArfGAP1-Rabex-5 complex formation leads to more endosomal Rabex-5 and enhanced, Rab5GTP-stimulated Vps34 PI3-kinase activity, which is essential for multivesicular body endosome formation. Formation of AP-1/σ1A-ArfGAP1-Rabex-5 complexes is prevented by σ1B binding of Rabex-5 and the amount of endosomal Rabex-5 is reduced. AP-1 complexes differentially regulate endosome maturation and coordinate protein recycling and degradation, revealing a novel molecular mechanism by which they regulate protein transport besides their established function in clathrin-coated-vesicle formation. PMID:27411398

  13. Crystal structure of human programmed cell death 10 complexed with inositol-(1,3,4,5)-tetrakisphosphate: a novel adaptor protein involved in human cerebral cavernous malformation.

    PubMed

    Ding, Jingjin; Wang, Xiaoyan; Li, De-Feng; Hu, Yonglin; Zhang, Ying; Wang, Da-Cheng

    2010-09-03

    Programmed cell death 10 (PDCD10) is a novel adaptor protein involved in human cerebral cavernous malformation, a common vascular lesion mostly occurring in the central nervous system. By interacting with different signal proteins, PDCD10 could regulate various physiological processes in the cell. The crystal structure of human PDCD10 complexed with inositol-(1,3,4,5)-tetrakisphosphate has been determined at 2.3A resolution. The structure reveals an integrated dimer via a unique assembly that has never been observed before. Each PDCD10 monomer contains two independent domains: an N-terminal domain with a new fold involved in the tight dimer assembly and a C-terminal four-helix bundle domain that closely resembles the focal adhesion targeting domain of focal adhesion kinase. An eight-residue flexible linker connects the two domains, potentially conferring mobility onto the C-terminal domain, resulting in the conformational variability of PDCD10. A variable basic cleft on the top of the dimer interface binds to phosphatidylinositide and regulates the intracellular localization of PDCD10. Two potential sites, respectively located on the two domains, are critical for recruiting different binding partners, such as germinal center kinase III proteins and the focal adhesion protein paxillin.

  14. AP-1/σ1A and AP-1/σ1B adaptor-proteins differentially regulate neuronal early endosome maturation via the Rab5/Vps34-pathway.

    PubMed

    Candiello, Ermes; Kratzke, Manuel; Wenzel, Dirk; Cassel, Dan; Schu, Peter

    2016-07-14

    The σ1 subunit of the AP-1 clathrin-coated-vesicle adaptor-protein complex is expressed as three isoforms. Tissues express σ1A and one of the σ1B and σ1C isoforms. Brain is the tissue with the highest σ1A and σ1B expression. σ1B-deficiency leads to severe mental retardation, accumulation of early endosomes in synapses and fewer synaptic vesicles, whose recycling is slowed down. AP-1/σ1A and AP-1/σ1B regulate maturation of these early endosomes into multivesicular body late endosomes, thereby controlling synaptic vesicle protein transport into a degradative pathway. σ1A binds ArfGAP1, and with higher affinity brain-specific ArfGAP1, which bind Rabex-5. AP-1/σ1A-ArfGAP1-Rabex-5 complex formation leads to more endosomal Rabex-5 and enhanced, Rab5(GTP)-stimulated Vps34 PI3-kinase activity, which is essential for multivesicular body endosome formation. Formation of AP-1/σ1A-ArfGAP1-Rabex-5 complexes is prevented by σ1B binding of Rabex-5 and the amount of endosomal Rabex-5 is reduced. AP-1 complexes differentially regulate endosome maturation and coordinate protein recycling and degradation, revealing a novel molecular mechanism by which they regulate protein transport besides their established function in clathrin-coated-vesicle formation.

  15. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 {mu}1A (AP-1 mu1A)

    SciTech Connect

    Sawasdee, Nunghathai; Junking, Mutita; Ngaojanlar, Piengpaga; Sukomon, Nattakan; Ungsupravate, Duangporn; Limjindaporn, Thawornchai; Akkarapatumwong, Varaporn; Noisakran, Sansanee; Yenchitsomanus, Pa-thai

    2010-10-08

    Research highlights: {yields} Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. {yields} Adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) was firstly reported to interact with kAE1. {yields} The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. {yields} AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. {yields} AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl{sup -}) and bicarbonate (HCO{sub 3}{sup -}) exchange at the basolateral membrane of kidney {alpha}-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange at the basolateral membrane and failure of proton (H{sup +}) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1

  16. Comparative analysis of adaptor-mediated clathrin assembly reveals general principles for adaptor clustering

    PubMed Central

    Pucadyil, Thomas J.; Holkar, Sachin S.

    2016-01-01

    Clathrin-mediated endocytosis (CME) manages the sorting and uptake of the bulk of membrane proteins (or cargo) from the plasma membrane. CME is initiated by the formation of clathrin-coated pits (CCPs), in which adaptors nucleate clathrin assembly. Clathrin adaptors display diversity in both the type and number of evolutionarily conserved clathrin-binding boxes. How this diversity relates to the process of adaptor clustering as clathrin assembles around a growing pit remains unclear. Using real-time, fluorescence microscopy–based assays, we compare the formation kinetics and distribution of clathrin assemblies on membranes that display five unique clathrin adaptors. Correlations between equilibrium and kinetic parameters of clathrin assembly to the eventual adaptor distribution indicate that adaptor clustering is determined not by the amount of clathrin recruited or the degree of clathrin clustered but instead by the rate of clathrin assembly. Together our results emphasize the need to analyze kinetics of protein interactions to better understand mechanisms that regulate CME. PMID:27559129

  17. Regulation of insulin and type 1 insulin-like growth factor signaling and action by the Grb10/14 and SH2B1/B2 adaptor proteins.

    PubMed

    Desbuquois, Bernard; Carré, Nadège; Burnol, Anne-Françoise

    2013-02-01

    The effects of insulin and type 1 insulin-like growth factor (IGF-1) on metabolism, growth and survival are mediated by their association with specific receptor tyrosine kinases, which results in both receptor and substrate phosphorylation. Phosphotyrosine residues on receptors and substrates provide docking sites for signaling proteins containing SH2 (Src homology 2) domains, including molecular adaptors. This review focuses on the regulation of insulin/IGF-1 signaling and action by two adaptor families with a similar domain organization: the growth factor receptor-bound proteins Grb7/10/14 and the SH2B proteins. Both Grb10/14 and SH2B1/B2 associate with the activation loop of insulin/IGF-1 receptors through their SH2 domains, but association of Grb10/14 also involves their unique BPS domain. Consistent with Grb14 binding as a pseudosubstrate to the kinase active site, insulin/IGF-induced activation of receptors and downstream signaling pathways in cultured cells is inhibited by Grb10/14 adaptors, but is potentiated by SH2B1/B2 adaptors. Accordingly, Grb10 and Grb14 knockout mice show improved insulin/IGF sensitivity in vivo, and, for Grb10, overgrowth and increased skeketal muscle and pancreatic β-cell mass. Conversely, SH2B1-depleted mice display insulin and IGF-1 resistance, with peripheral depletion leading to reduced adiposity and neuronal depletion leading to obesity through associated leptin resistance. Grb10/14 and SH2B1 adaptors also modulate insulin/IGF-1 action by interacting with signaling components downstream of receptors and exert several tissue-specific effects. The identification of Grb10/14 and SH2B1 as physiological regulators of insulin signaling and action, together with observations that variants at their gene loci are associated with obesity and/or insulin resistance, highlight them as potential therapeutic targets for these conditions.

  18. Induction of androgen formation in the male by a TAT-VDAC1 fusion peptide blocking 14-3-3ɛ protein adaptor and mitochondrial VDAC1 interactions.

    PubMed

    Aghazadeh, Yasaman; Martinez-Arguelles, Daniel B; Fan, Jinjiang; Culty, Martine; Papadopoulos, Vassilios

    2014-10-01

    Low testosterone (T), a major cause of male hypogonadism and infertility, is linked to mood changes, fatigue, osteoporosis, reduced bone-mass index, and aging. The treatment of choice, T replacement therapy, has been linked with increased risk for prostate cancer and luteinizing hormone (LH) suppression, and shown to lead to infertility, cardiovascular diseases, and obesity. Alternate methods to induce T with lower side effects are desirable. In search of the mechanisms regulating T synthesis in the testes, we identified the 14-3-3ɛ protein adaptor as a negative regulator of steroidogenesis. Steroidogenesis begins in mitochondria. 14-3-3ɛ interacts with the outer mitochondrial membrane voltage-dependent anion channel (VDAC1) protein, forming a scaffold that limits the availability of cholesterol for steroidogenesis. We report the development of a tool able to induce endogenous T formation. Peptides able to penetrate testes conjugated to 14-3-3ɛ site of interaction with VDAC1 blocked 14-3-3ɛ-VDAC1 interactions while at the same time increased VDAC1-translocator protein (18 kDa) interactions that induced steroid formation in rat testes, leading to increased serum T levels. These peptides rescued intratesticular and serum T formation in adult male rats treated with gonadotropin-releasing hormone antagonist, which dampened LH and T production.

  19. Induction of Androgen Formation in the Male by a TAT-VDAC1 Fusion Peptide Blocking 14-3-3ɛ Protein Adaptor and Mitochondrial VDAC1 Interactions

    PubMed Central

    Aghazadeh, Yasaman; Martinez-Arguelles, Daniel B; Fan, Jinjiang; Culty, Martine; Papadopoulos, Vassilios

    2014-01-01

    Low testosterone (T), a major cause of male hypogonadism and infertility, is linked to mood changes, fatigue, osteoporosis, reduced bone-mass index, and aging. The treatment of choice, T replacement therapy, has been linked with increased risk for prostate cancer and luteinizing hormone (LH) suppression, and shown to lead to infertility, cardiovascular diseases, and obesity. Alternate methods to induce T with lower side effects are desirable. In search of the mechanisms regulating T synthesis in the testes, we identified the 14-3-3ɛ protein adaptor as a negative regulator of steroidogenesis. Steroidogenesis begins in mitochondria. 14-3-3ɛ interacts with the outer mitochondrial membrane voltage-dependent anion channel (VDAC1) protein, forming a scaffold that limits the availability of cholesterol for steroidogenesis. We report the development of a tool able to induce endogenous T formation. Peptides able to penetrate testes conjugated to 14-3-3ɛ site of interaction with VDAC1 blocked 14-3-3ɛ-VDAC1 interactions while at the same time increased VDAC1-translocator protein (18 kDa) interactions that induced steroid formation in rat testes, leading to increased serum T levels. These peptides rescued intratesticular and serum T formation in adult male rats treated with gonadotropin-releasing hormone antagonist, which dampened LH and T production. PMID:24947306

  20. Molecular cloning of the mouse grb2 gene: differential interaction of the Grb2 adaptor protein with epidermal growth factor and nerve growth factor receptors.

    PubMed Central

    Suen, K L; Bustelo, X R; Pawson, T; Barbacid, M

    1993-01-01

    We report the isolation and molecular characterization of the mouse grb2 gene. The product of this gene, the Grb2 protein, is highly related to the Caenorhabditis elegans sem-5 gene product and the human GRB2 protein and displays the same SH3-SH2-SH3 structural motifs. In situ hybridization studies revealed that the mouse grb2 gene is widely expressed throughout embryonic development (E9.5 to P0). However, grb2 transcripts are not uniformly distributed, and in certain tissues (e.g., thymus) they appear to be regulated during development. Recent genetic and biochemical evidence has implicated the Grb2 protein in the signaling pathways that link cell surface tyrosine kinase receptors with Ras. We have investigated the association of the Grb2 protein with epidermal growth factor (EGF) and nerve growth factor (NGF) receptors in PC12 pheochromocytoma cells. EGF treatment of PC12 cells results in the rapid association of Grb2 with the activated EGF receptors, an interaction mediated by the Grb2 SH2 domain. However, Grb2 does not bind to NGF-activated Trk receptors. Mitogenic signaling of NGF in NIH 3T3 cells ectopically expressing Trk receptors also takes place without detectable association between Grb2 and Trk. These results suggest that whereas EGF and NGF can activate the Ras signaling pathway in PC12 cells, only the EGF receptor is likely to do so through a direct interaction with Grb2. Finally, binding studies with glutathione S-transferase fusion proteins indicate that Grb2 binds two distinct subsets of proteins which are individually recognized by its SH2 and SH3 domains. These observations add further support to the concept that Grb2 is a modular adaptor protein. Images PMID:7689150

  1. The association between the SH2-containing inositol polyphosphate 5-Phosphatase 2 (SHIP2) and the adaptor protein APS has an impact on biochemical properties of both partners.

    PubMed

    Onnockx, Sheela; De Schutter, Julie; Blockmans, Marianne; Xie, Jingwei; Jacobs, Christine; Vanderwinden, Jean-Marie; Erneux, Christophe; Pirson, Isabelle

    2008-01-01

    SHIP2 (SH2-containing inositol polyphosphate 5-phosphatase 2) is a phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) 5-phosphatase containing various motifs susceptible to mediate protein-protein interaction. In cell models, SHIP2 negatively regulates insulin signalling through its catalytic PtdIns(3,4,5)P(3) 5-phosphatase activity. We have previously reported that SHIP2 interacts with the c-Cbl associated protein (CAP) and c-Cbl, proteins implicated in the insulin cellular response regulating the small G protein TC10. The first steps of the TC10 pathway are the recruitment and tyrosine phosphorylation by the insulin receptor of the adaptor protein with Pleckstrin Homology and Src Homology 2 domains (APS). Herein, we show that SHIP2 can directly interact with APS in 3T3-L1 adipocytes and in transfected CHO-IR cells (Chinese hamster ovary cells stably transfected with the insulin receptor). Upon insulin stimulation, APS and SHIP2 are recruited to cell membranes as seen by immunofluorescence studies, which is consistent with their interaction. We also observed that SHIP2 negatively regulates APS insulin-induced tyrosine phosphorylation and consequently inhibits APS association with c-Cbl. APS, which specifically interacts with SHIP2, but not PTEN, in turn, increases the PtdIns(3,4,5)P(3) 5-phosphatase activity of SHIP2 in an inositol phosphatase assay. Co-transfection of SHIP2 and APS in CHO-IR cells further increases the inhibitory effect of SHIP2 on Akt insulin-induced phosphorylation. Therefore, the interaction between APS and SHIP2 provides to both proteins potential negative regulatory mechanisms to act on the insulin cascade.

  2. Role of adaptor proteins and clathrin in the trafficking of human kidney anion exchanger 1 (kAE1) to the cell surface.

    PubMed

    Junking, Mutita; Sawasdee, Nunghathai; Duangtum, Natapol; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2014-07-01

    Kidney anion exchanger 1 (kAE1) plays an important role in acid-base homeostasis by mediating chloride/bicarbornate (Cl-/HCO3-) exchange at the basolateral membrane of α-intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease - distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans-Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral-related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non-polarized kidney cells. By using RNA interference, co-immunoprecipitation, yellow fluorescent protein-based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin (but not AP-1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral-related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid-secreting α-intercalated cells.

  3. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions

    SciTech Connect

    Dougherty, Gerard W.; Chopp, Treasa; Qi Shengmei; Cutler, Mary Lou . E-mail: mcutler@usuhs.mil

    2005-05-15

    Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5 domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion.

  4. Protein Interaction Profiling of the p97 Adaptor UBXD1 Points to a Role for the Complex in Modulating ERGIC-53 Trafficking*

    PubMed Central

    Haines, Dale S.; Lee, J. Eugene; Beauparlant, Stephen L.; Kyle, Dane B.; den Besten, Willem; Sweredoski, Michael J.; Graham, Robert L. J.; Hess, Sonja; Deshaies, Raymond J.

    2012-01-01

    UBXD1 is a member of the poorly understood subfamily of p97 adaptors that do not harbor a ubiquitin association domain or bind ubiquitin-modified proteins. Of clinical importance, p97 mutants found in familial neurodegenerative conditions Inclusion Body Myopathy Paget's disease of the bone and/or Frontotemporal Dementia and Amyotrophic Lateral Sclerosis are defective at interacting with UBXD1, indicating that functions regulated by a p97-UBXD1 complex are altered in these diseases. We have performed liquid chromatography-mass spectrometric analysis of UBXD1-interacting proteins to identify pathways in which UBXD1 functions. UBXD1 displays prominent association with ERGIC-53, a hexameric type I integral membrane protein that functions in protein trafficking. The UBXD1-ERGIC-53 interaction requires the N-terminal 10 residues of UBXD1 and the C-terminal cytoplasmic 12 amino acid tail of ERGIC-53. Use of p97 and E1 enzyme inhibitors indicate that complex formation between UBXD1 and ERGIC-53 requires the ATPase activity of p97, but not ubiquitin modification. We also performed SILAC-based quantitative proteomic profiling to identify ERGIC-53 interacting proteins. This analysis identified known (e.g. COPI subunits) and novel (Rab3GAP1/2 complex involved in the fusion of vesicles at the cell membrane) interactions that are also mediated through the C terminus of the protein. Immunoprecipitation and Western blotting analysis confirmed the proteomic interaction data and it also revealed that an UBXD1-Rab3GAP association requires the ERGIC-53 binding domain of UBXD1. Localization studies indicate that UBXD1 modules the sub-cellular trafficking of ERGIC-53, including promoting movement to the cell membrane. We propose that p97-UBXD1 modulates the trafficking of ERGIC-53-containing vesicles by controlling the interaction of transport factors with the cytoplasmic tail of ERGIC-53. PMID:22337587

  5. Deregulated FADD expression and phosphorylation in T-cell lymphoblastic lymphoma

    PubMed Central

    Marín-Rubio, José L.; de Arriba, María C.; Cobos-Fernández, María A.; González-Sánchez, Laura; Ors, Inmaculada; Sastre, Isabel; Fernández-Piqueras, José; Villa-Morales, María

    2016-01-01

    In the present work, we show that T-cell lymphoblastic lymphoma cells exhibit a reduction of FADD availability in the cytoplasm, which may contribute to impaired apoptosis. In addition, we observe a reduction of FADD phosphorylation that inversely correlates with the proliferation capacity and tumor aggressiveness. The resultant balance between FADD-dependent apoptotic and non-apoptotic abilities may define the outcome of the tumor. Thus, we propose that FADD expression and phosphorylation can be reliable biomarkers with prognostic value for T-LBL stratification. PMID:27556297

  6. The role of Drp1 adaptor proteins MiD49 and MiD51 in mitochondrial fission: implications for human disease.

    PubMed

    Atkins, Kathleen; Dasgupta, Asish; Chen, Kuang-Hueih; Mewburn, Jeff; Archer, Stephen L

    2016-11-01

    Mitochondrial morphology is governed by the balance of mitochondrial fusion, mediated by mitofusins and optic atrophy 1 (OPA1), and fission, mediated by dynamin-related protein 1 (Drp1). Disordered mitochondrial dynamics alters metabolism, proliferation, apoptosis and mitophagy, contributing to human diseases, including neurodegenerative syndromes, pulmonary arterial hypertension (PAH), cancer and ischemia/reperfusion injury. Post-translational regulation of Drp1 (by phosphorylation and SUMOylation) is an established means of modulating Drp1 activation and translocation to the outer mitochondrial membrane (OMM). This review focuses on Drp1 adaptor proteins that also regulate fission. The proteins include fission 1 (Fis1), mitochondrial fission factor (Mff) and mitochondrial dynamics proteins of 49 kDa and 51 kDa (MiD49, MiD51). Heterologous MiD overexpression sequesters inactive Drp1 on the OMM, promoting fusion; conversely, increased endogenous MiD creates focused Drp1 multimers that optimize OMM scission. The triggers that activate MiD-bound Drp1 in disease states are unknown; however, MiD51 has a unique capacity for ADP binding at its nucleotidyltransferase domain. Without ADP, MiD51 inhibits Drp1, whereas ADP promotes MiD51-mediated fission, suggesting a link between metabolism and fission. Confusion over whether MiDs mediate fusion (by sequestering inactive Drp1) or fission (by guiding Drp1 assembly) relates to a failure to consider cell types used and to distinguish endogenous compared with heterologous changes in expression. We speculate that endogenous MiDs serve as Drp1-binding partners that are dysregulated in disease states and may be important targets for inhibiting cell proliferation and ischemia/reperfusion injury. Moreover, it appears that the composition of the fission apparatus varies between disease states and amongst individuals. MiDs may be important targets for inhibiting cell proliferation and attenuating ischemia/reperfusion injury.

  7. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster.

    PubMed

    Rodriguez-Fernandez, Imilce A; Dell'Angelica, Esteban C

    2015-01-01

    The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions--which together covered most of the autosomal chromosomes-to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated in

  8. Adaptor protein cerebral cavernous malformation 3 (CCM3) mediates phosphorylation of the cytoskeletal proteins ezrin/radixin/moesin by mammalian Ste20-4 to protect cells from oxidative stress.

    PubMed

    Fidalgo, Miguel; Guerrero, Ana; Fraile, María; Iglesias, Cristina; Pombo, Celia M; Zalvide, Juan

    2012-03-30

    While studying the functions of CCM3/PDCD10, a gene encoding an adaptor protein whose mutation results in vascular malformations, we have found that it is involved in a novel response to oxidative stress that results in phosphorylation and activation of the ezrin/radixin/moesin (ERM) family of proteins. This phosphorylation protects cells from accidental cell death induced by oxidative stress. We also present evidence that ERM phosphorylation is performed by the GCKIII kinase Mst4, which is activated and relocated to the cell periphery after oxidative stress. The cellular levels of Mst4 and its activation after oxidative stress depend on the presence of CCM3, as absence of the latter impairs the phosphorylation of ERM proteins and enhances death of cells exposed to reactive oxygen species. These findings shed new light on the response of cells to oxidative stress and identify an important pathophysiological situation in which ERM proteins and their phosphorylation play a significant role.

  9. Transforming growth factor-beta suppresses nonmetastatic colon cancer through Smad4 and adaptor protein ELF at an early stage of tumorigenesis.

    PubMed

    Tang, Yi; Katuri, Varalakshmi; Srinivasan, Radhika; Fogt, Franz; Redman, Robert; Anand, Girish; Said, Anan; Fishbein, Thomas; Zasloff, Michael; Reddy, E Premkumar; Mishra, Bibhuti; Mishra, Lopa

    2005-05-15

    Although transforming growth factor-beta (TGF-beta) is both a suppressor and promoter of tumorigenesis, its contribution to early tumor suppression and staging remains largely unknown. In search of the mechanism of early tumor suppression, we identified the adaptor protein ELF, a beta-spectrin from stem/progenitor cells committed to foregut lineage. ELF activates and modulates Smad4 activation of TGF-beta to confer cell polarity, to maintain cell architecture, and to inhibit epithelial-to-mesenchymal transition. Analysis of development of colon cancer in (adult) elf+/-/Smad4+/-, elf+/-, Smad4+/-, and gut epithelial cells from elf-/- mutant mouse embryos pinpoints the defect to hyperplasia/adenoma transition. Further analysis of the role of ELF in human colorectal cancer confirms reduced expression of ELF in Dukes' B1 stage tissues (P < 0.05) and of Smad4 in advanced colon cancers (P < 0.05). This study indicates that by modulating Smad 4, ELF has a key role in TGF-beta signaling in the suppression of early colon cancer.

  10. The adaptor protein SAP directly associates with PECAM-1 and regulates PECAM-1-mediated-cell adhesion in T-like cell lines.

    PubMed

    Proust, Richard; Crouin, Catherine; Gandji, Leslie Yewakon; Bertoglio, Jacques; Gesbert, Franck

    2014-04-01

    SAP is a small cytosolic adaptor protein expressed in hematopoietic lineages whose main function is to regulate intracellular signaling pathways induced by the triggering of members of the SLAM receptor family. In this paper, we have identified the adhesion molecule PECAM-1 as a new partner for SAP in a conditional yeast two-hybrid screen. PECAM-1 is an immunoglobulin-like molecule expressed by endothelial cells and leukocytes, which possesses both pro- and anti-inflammatory properties. However, little is known about PECAM-1 functions in T cells. We show that SAP directly and specifically interacts with the cytosolic tyrosine 686 of PECAM-1. We generated different T-like cell lines in which SAP or PECAM-1 are expressed or down modulated and we demonstrate that a diminished SAP expression correlates with a diminished PECAM-1-mediated adhesion. Although SAP has mainly been shown to associate with SLAM receptors, we evidence here that SAP is a new actor downstream of PECAM-1.

  11. The modular adaptor protein ARH is required for low density lipoprotein (LDL) binding and internalization but not for LDL receptor clustering in coated pits.

    PubMed

    Michaely, Peter; Li, Wei-Ping; Anderson, Richard G W; Cohen, Jonathan C; Hobbs, Helen H

    2004-08-06

    ARH is an adaptor protein required for efficient endocytosis of low density lipoprotein (LDL) receptors (LDLRs) in selected tissues. Individuals lacking ARH (ARH-/-) have severe hypercholesterolemia due to impaired hepatic clearance of LDL. Immortalized lymphocytes, but not fibroblasts, from ARH-deficient subjects fail to internalize LDL. To further define the role of ARH in LDLR function, we compared the subcellular distribution of the LDLR in lymphocytes from normal and ARH-/- subjects. In normal lymphocytes LDLRs were predominantly located in intracellular compartments, whereas in ARH-/- cells the receptors were almost exclusively on the plasma membrane. Biochemical assays and quantification of LDLR by electron microscopy indicated that ARH-/- lymphocytes had >20-fold more LDLR on the cell surface and a approximately 27-fold excess of LDLR outside of coated pits. The accumulation of LDLR on the cell surface was not due to failure of receptors to localize in coated pits since the number of LDLRs in coated pits was similar in ARH-/- and normal cells. Despite the dramatic increase in cell surface receptors, LDL binding was only 2-fold higher in the ARH-/- lymphocytes. These findings indicate that ARH is required not only for internalization of the LDL.LDLR complex but also for efficient binding of LDL to the receptor and suggest that ARH stabilizes the associations of the receptor with LDL and with the invaginating portion of the budding pit, thereby increasing the efficiency of LDL internalization.

  12. A novel class of antihyperlipidemic agents with low density lipoprotein receptor up-regulation via the adaptor protein autosomal recessive hypercholesterolemia.

    PubMed

    Asano, Shigehiro; Ban, Hitoshi; Tsuboya, Norie; Uno, Shinsaku; Kino, Kouichi; Ioriya, Katsuhisa; Kitano, Masafumi; Ueno, Yoshihide

    2010-04-22

    We have previously reported compound 2 as a inhibitor of acyl-coenzyme A:cholesterol O-acyltransferase (ACAT) and up-regulator of the low density lipoprotein receptor (LDL-R) expression. In this study we focused on compound 2, a unique LDL-R up-regulator, and describe the discovery of a novel class of up-regulators of LDL-R. Replacement the methylene urea linker in compound 2 with an acylsulfonamide linker kept a potent LDL-R up-regulatory activity, and subsequent optimization work gave compound 39 as a highly potent LDL-R up-regulator (39; EC(25) = 0.047 microM). Compound 39 showed no ACAT inhibitory activity even at 1 microM. The sodium salts of compound 39 reduced plasma total and LDL cholesterol levels in a dose-dependent manner in an experimental animal model of hyperlipidemia. Moreover, we revealed in this study using RNA interference that autosomal recessive hypercholesterolemia (ARH), an adaptor protein of LDL-R, is essential for compound 39 up-regulation of LDL-R expression.

  13. Disruption of adaptor protein 2μ (AP-2μ) in cochlear hair cells impairs vesicle reloading of synaptic release sites and hearing.

    PubMed

    Jung, SangYong; Maritzen, Tanja; Wichmann, Carolin; Jing, Zhizi; Neef, Andreas; Revelo, Natalia H; Al-Moyed, Hanan; Meese, Sandra; Wojcik, Sonja M; Panou, Iliana; Bulut, Haydar; Schu, Peter; Ficner, Ralf; Reisinger, Ellen; Rizzoli, Silvio O; Neef, Jakob; Strenzke, Nicola; Haucke, Volker; Moser, Tobias

    2015-11-03

    Active zones (AZs) of inner hair cells (IHCs) indefatigably release hundreds of vesicles per second, requiring each release site to reload vesicles at tens per second. Here, we report that the endocytic adaptor protein 2μ (AP-2μ) is required for release site replenishment and hearing. We show that hair cell-specific disruption of AP-2μ slows IHC exocytosis immediately after fusion of the readily releasable pool of vesicles, despite normal abundance of membrane-proximal vesicles and intact endocytic membrane retrieval. Sound-driven postsynaptic spiking was reduced in a use-dependent manner, and the altered interspike interval statistics suggested a slowed reloading of release sites. Sustained strong stimulation led to accumulation of endosome-like vacuoles, fewer clathrin-coated endocytic intermediates, and vesicle depletion of the membrane-distal synaptic ribbon in AP-2μ-deficient IHCs, indicating a further role of AP-2μ in clathrin-dependent vesicle reformation on a timescale of many seconds. Finally, we show that AP-2 sorts its IHC-cargo otoferlin. We propose that binding of AP-2 to otoferlin facilitates replenishment of release sites, for example, via speeding AZ clearance of exocytosed material, in addition to a role of AP-2 in synaptic vesicle reformation.

  14. Nck-2, a Novel Src Homology2/3-containing Adaptor Protein That Interacts with the LIM-only Protein PINCH and Components of Growth Factor Receptor Kinase-signaling Pathways

    PubMed Central

    Tu, Yizeng; Li, Fugang; Wu, Chuanyue

    1998-01-01

    Many of the protein–protein interactions that are essential for eukaryotic intracellular signal transduction are mediated by protein binding modules including SH2, SH3, and LIM domains. Nck is a SH3- and SH2-containing adaptor protein implicated in coordinating various signaling pathways, including those of growth factor receptors and cell adhesion receptors. We report here the identification, cloning, and characterization of a widely expressed, Nck-related adaptor protein termed Nck-2. Nck-2 comprises primarily three N-terminal SH3 domains and one C-terminal SH2 domain. We show that Nck-2 interacts with PINCH, a LIM-only protein implicated in integrin-linked kinase signaling. The PINCH-Nck-2 interaction is mediated by the fourth LIM domain of PINCH and the third SH3 domain of Nck-2. Furthermore, we show that Nck-2 is capable of recognizing several key components of growth factor receptor kinase-signaling pathways including EGF receptors, PDGF receptor-β, and IRS-1. The association of Nck-2 with EGF receptors was regulated by EGF stimulation and involved largely the SH2 domain of Nck-2, although the SH3 domains of Nck-2 also contributed to the complex formation. The association of Nck-2 with PDGF receptor-β was dependent on PDGF activation and was mediated solely by the SH2 domain of Nck-2. Additionally, we have detected a stable association between Nck-2 and IRS-1 that was mediated primarily via the second and third SH3 domain of Nck-2. Thus, Nck-2 associates with PINCH and components of different growth factor receptor-signaling pathways via distinct mechanisms. Finally, we provide evidence indicating that a fraction of the Nck-2 and/or Nck-1 proteins are associated with the cytoskeleton. These results identify a novel Nck-related SH2- and SH3-domain–containing protein and suggest that it may function as an adaptor protein connecting the growth factor receptor-signaling pathways with the integrin-signaling pathways. PMID:9843575

  15. The interaction of the cellular export adaptor protein Aly/REF with ICP27 contributes to the efficiency of herpes simplex virus 1 mRNA export.

    PubMed

    Tian, Xiaochen; Devi-Rao, Gayathri; Golovanov, Alexander P; Sandri-Goldin, Rozanne M

    2013-07-01

    Herpes simplex virus 1 (HSV-1) protein ICP27 enables viral mRNA export by accessing the cellular mRNA export receptor TAP/NXF, which guides mRNA through the nuclear pore complex. ICP27 binds viral mRNAs and interacts with TAP/NXF, providing a link to the cellular mRNA export pathway. ICP27 also interacts with the mRNA export adaptor protein Aly/REF, which binds cellular mRNAs and also interacts with TAP/NXF. Studies using small interfering RNA (siRNA) knockdown indicated that Aly/REF is not required for cellular mRNA export, and similar knockdown studies during HSV-1 infection led us to conclude that Aly/REF may be dispensable for viral RNA export. Recently, the structural basis of the interaction of ICP27 with Aly/REF was elucidated at atomic resolution, and it was shown that three ICP27 residues, W105, R107, and L108, interface with the RNA recognition motif (RRM) domain of Aly/REF. Here, to determine the role the interaction of ICP27 and Aly/REF plays during infection, these residues were mutated to alanine, and a recombinant virus, WRL-A, was constructed. Virus production was reduced about 10-fold during WRL-A infection, and export of ICP27 protein and most viral mRNAs was less efficient. We conclude that interaction of ICP27 with Aly/REF contributes to efficient viral mRNA export.

  16. The Sho1 Adaptor Protein Links Oxidative Stress to Morphogenesis and Cell Wall Biosynthesis in the Fungal Pathogen Candida albicans† ‡

    PubMed Central

    Román, Elvira; Nombela, César; Pla, Jesús

    2005-01-01

    The Sho1 adaptor protein is an important element of one of the two upstream branches of the high-osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase pathway in Saccharomyces cerevisiae, a signal transduction cascade involved in adaptation to stress. In the present work, we describe its role in the pathogenic yeast Candida albicans by the construction of mutants altered in this gene. We report here that sho1 mutants are sensitive to oxidative stress but that Sho1 has a minor role in the transmission of the phosphorylation signal to the Hog1 MAP kinase in response to oxidative stress, which mainly occurs through a putative Sln1-Ssk1 branch of the HOG pathway. Genetic analysis revealed that double ssk1 sho1 mutants were still able to grow on high-osmolarity media and activate Hog1 in response to this stress, indicating the existence of alternative inputs of the pathway. We also demonstrate that the Cek1 MAP kinase is constitutively active in hog1 and ssk1 mutants, a phenotypic trait that correlates with their resistance to the cell wall inhibitor Congo red, and that Sho1 is essential for the activation of the Cek1 MAP kinase under different conditions that require active cell growth and/or cell wall remodeling, such as the resumption of growth upon exit from the stationary phase. sho1 mutants are also sensitive to certain cell wall interfering compounds (Congo red, calcofluor white), presenting an altered cell wall structure (as shown by the ability to aggregate), and are defective in morphogenesis on different media, such as SLAD and Spider, that stimulate hyphal growth. These results reveal a role for the Sho1 protein in linking oxidative stress, cell wall biogenesis, and morphogenesis in this important human fungal pathogen. PMID:16287872

  17. Enigma interacts with adaptor protein with PH and SH2 domains to control insulin-induced actin cytoskeleton remodeling and glucose transporter 4 translocation.

    PubMed

    Barrès, Romain; Grémeaux, Thierry; Gual, Philippe; Gonzalez, Teresa; Gugenheim, Jean; Tran, Albert; Le Marchand-Brustel, Yannick; Tanti, Jean-François

    2006-11-01

    APS (adaptor protein with PH and SH2 domains) initiates a phosphatidylinositol 3-kinase-independent pathway involved in insulin-stimulated glucose transport. We recently identified Enigma, a PDZ and LIM domain-containing protein, as a partner of APS and showed that APS-Enigma complex plays a critical role in actin cytoskeleton organization in fibroblastic cells. Because actin rearrangement is important for insulin-induced glucose transporter 4 (Glut 4) translocation, we studied the potential involvement of Enigma in insulin-induced glucose transport in 3T3-L1 adipocytes. Enigma mRNA was expressed in differentiated adipocytes and APS and Enigma were colocalized with cortical actin. Expression of an APS mutant unable to bind Enigma increased the insulin-induced Glut 4 translocation to the plasma membrane. By contrast, overexpression of Enigma inhibited insulin-stimulated glucose transport and Glut 4 translocation without alterations in proximal insulin signaling. This inhibitory effect was prevented with the deletion of the LIM domains of Enigma. Using time-lapse fluorescent microscopy of green fluorescent protein-actin, we demonstrated that the overexpression of Enigma altered insulin-induced actin rearrangements, whereas the expression of Enigma without its LIM domains was without effect. A physiological link between increased expression of Enigma and an alteration in insulin-induced glucose uptake was suggested by the increase in Enigma mRNA expression in adipose tissue of diabetic obese patients. Taken together, these data strongly suggest that the interaction between APS and Enigma is involved in insulin-induced Glut 4 translocation by regulating cortical actin remodeling and raise the possibility that modification of APS/Enigma ratio could participate in the alteration of insulin-induced glucose uptake in adipose tissue.

  18. Adaptor protein CRK induces epithelial–mesenchymal transition and metastasis of bladder cancer cells through HGF/c-Met feedback loop

    PubMed Central

    Matsumoto, Ryuji; Tsuda, Masumi; Wang, Lei; Maishi, Nako; Abe, Takashige; Kimura, Taichi; Tanino, Mishie; Nishihara, Hiroshi; Hida, Kyoko; Ohba, Yusuke; Shinohara, Nobuo; Nonomura, Katsuya; Tanaka, Shinya

    2015-01-01

    We have previously reported that an adaptor protein CRK, including CRK-I and CRK-II, plays essential roles in the malignant potential of various aggressive human cancers, suggesting the validity of targeting CRK in molecular targeted therapy of a wide range of cancers. Nevertheless, the role of CRK in human bladder cancer with marked invasion, characterized by distant metastasis and poor prognosis, remains obscure. In the present study, immunohistochemistry indicated a striking enhancement of CRK-I/-II, but not CRK-like, in human bladder cancer tissues compared to normal urothelium. We established CRK-knockdown bladder cancer cells using 5637 and UM-UC-3, which showed a significant decline in cell migration, invasion, and proliferation. It is noteworthy that an elimination of CRK conferred suppressed phosphorylation of c-Met and the downstream scaffold protein Gab1 in a hepatocyte growth factor-dependent and -independent manner. In epithelial–mesenchymal transition-related molecules, E-cadherin was upregulated by CRK elimination, whereas N-cadherin, vimentin, and Zeb1 were downregulated. A similar effect was observed following treatment with c-Met inhibitor SU11274. Depletion of CRK significantly decreased cell proliferation of 5637 and UM-UC-3, consistent with reduced activity of ERK. An orthotopic xenograft model with bioluminescent imaging revealed that CRK knockdown significantly attenuated not only tumor volume but also the number of circulating tumor cells, resulted in a complete abrogation of metastasis. Taken together, this evidence uncovered essential roles of CRK in invasive bladder cancer through the hepatocyte growth factor/c-Met/CRK feedback loop for epithelial–mesenchymal transition induction. Thus, CRK might be a potent molecular target in bladder cancer, particularly for preventing metastasis, leading to the resolution of clinically longstanding critical issues. PMID:25816892

  19. Calcyon, a mammalian specific NEEP21 family member, interacts with adaptor protein complex 3 (AP-3) and regulates targeting of AP-3 cargoes.

    PubMed

    Muthusamy, Nagendran; Faundez, Victor; Bergson, Clare

    2012-10-01

    Calcyon is a neural enriched, single transmembrane protein that interacts with clathrin light chain and stimulates clathrin assembly and clathrin-mediated endocytosis. A similar property is shared by the heterotetrameric adaptor protein (AP) complexes AP-1, AP-2, and AP-3 which recruit cargoes for insertion into clathrin coated transport vesicles. Here we report that AP medium (μ) subunits interact with a YXXØ-type tyrosine motif located at residues 133-136 in the cytoplasmic domain of calcyon. Site specific mutagenesis of the critical tyrosine and bulky hydrophobic residues tyrosine 133 and methionine 136 preferentially abrogated binding of the ubiquitous and neuronal isoforms of μ3, and also impacted μ1 and μ2 binding to a lesser degree. The relevance of these interactions was explored in vivo using mice harboring null alleles of calcyon. As seen in the mutagenesis studies, calcyon deletion in mice preferentially altered the subcellular distribution of AP-3 suggesting that calcyon could regulate membrane-bound pools of AP-3 and AP-3 function. To test this hypothesis, we focused on the hilar region of hippocampus, where levels of calcyon, AP-3, and AP-3 cargoes are abundant. We analyzed brain cryosections from control and calcyon null mice for zinc transporter 3 (ZnT3), and phosphatidylinositol-4-kinase type II alpha (PI4KIIα), two well-defined AP-3 cargoes. Confocal microscopy indicated that ZnT3 and PI4KIIα are significantly reduced in the hippocampal mossy fibers of calcyon knock-out brain, a phenotype previously described in AP-3 deficiencies. Altogether, our data suggest that calcyon directly interacts with μ3A and μ3B, and regulates the subcellular distribution of AP-3 and the targeting of AP-3 cargoes.

  20. CALCYON, A MAMMALIAN SPECIFIC NEEP21 FAMILY MEMBER, INTERACTS WITH ADAPTOR PROTEIN COMPLEX 3 (AP-3) AND REGULATES TARGETING OF AP-3 CARGOES

    PubMed Central

    Muthusamy, Nagendran; Faundez, Victor; Bergson, Clare

    2013-01-01

    Calcyon is a neural enriched, single transmembrane protein that interacts with clathrin light chain (CLC) and stimulates clathrin assembly and clathrin mediated endocytosis (CME). A similar property is shared by the heterotetrameric adaptor protein (AP) complexes AP-1, AP-2, and AP-3 which recruit cargoes for insertion into clathrin coated transport vesicles. Here we report that AP medium (µ) subunits interact with a YXXØ-type tyrosine motif located at residues 133–136 in the cytoplasmic domain of calcyon. Site specific mutagenesis of the critical tyrosine and bulky hydrophobic residues tyrosine 133 and methionine 136 preferentially abrogated binding of the ubiquitous and neuronal isoforms of µ3, and also impacted µ1 and µ2 binding but to a lesser degree. The relevance of these interactions was explored in vivo using mice harboring null-alleles of calcyon. As seen in the mutagenesis studies, calcyon deletion in mice preferentially altered the subcellular distribution of AP-3 suggesting that calcyon could regulate membrane-bound pools of AP-3 and AP-3 function. To test this hypothesis, we focused on the hilar region of hippocampus, where levels of calcyon, AP-3, and AP-3 cargoes are abundant. We analyzed brain cryosections from control and calcyon null mice for zinc transporter 3 (ZnT3), and phosphatidylinositol-4-kinase type II alpha (PI4KIIα), two well-defined AP-3 cargoes. Confocal microscopy indicated that ZnT3 and PI4KIIα are significantly reduced in the hippocampal mossy fibers of calcyon knock-out brain, a phenotype previously described in AP-3 deficiencies. Altogether, our data suggest that calcyon directly interacts with µ3A and µ3B, and regulates the subcellular distribution of AP-3 and the targeting of AP-3 cargoes. PMID:22650988

  1. Cell-based Fluorescence Complementation Reveals a Role for HIV-1 Nef Protein Dimerization in AP-2 Adaptor Recruitment and CD4 Co-receptor Down-regulation.

    PubMed

    Shu, Sherry T; Emert-Sedlak, Lori A; Smithgall, Thomas E

    2017-02-17

    The HIV-1 Nef accessory factor enhances viral infectivity, immune evasion, and AIDS progression. Nef triggers rapid down-regulation of CD4 via the endocytic adaptor protein 2 (AP-2) complex, a process linked to enhanced viral infectivity and immune escape. Here, we describe a bimolecular fluorescence complementation (BiFC) assay to visualize the interaction of Nef with AP-2 and CD4 in living cells. Interacting protein pairs were fused to complementary non-fluorescent fragments of YFP and co-expressed in 293T cells. Nef interactions with both CD4 and AP-2 resulted in complementation of YFP and a bright fluorescent signal by confocal microcopy that localized to the cell periphery. Co-expression of the AP-2 α subunit enhanced the Nef·AP-2 σ2 subunit BiFC signal and vice versa, suggesting that the AP-2 α-σ2 hemicomplex interacts cooperatively with Nef. Mutagenesis of Nef amino acids Arg-134, Glu-174, and Asp-175, which stabilize Nef for AP-2 α-σ2 binding in a recent co-crystal structure, substantially reduced AP-2 interaction without affecting CD4 binding. A dimerization-defective mutant of Nef failed to interact with either CD4 or AP-2 in the BiFC assay, indicating that Nef quaternary structure is required for CD4 and AP-2 recruitment as well as CD4 down-regulation. A small molecule previously shown to bind the Nef dimerization interface also reduced Nef interactions with AP-2 and CD4 and restored CD4 expression to the surface of HIV-infected cells. Our findings provide a mechanistic explanation for previous observations that dimerization-defective Nef mutants fail to down-regulate CD4 and validate the Nef dimerization interface as a target site for antiretroviral drug development.

  2. SH2 domain–containing adaptor protein B expressed in dendritic cells is involved in T-cell homeostasis by regulating dendritic cell–mediated Th2 immunity

    PubMed Central

    2017-01-01

    Purpose The Src homology 2 domain–containing adaptor protein B (SHB) is widely expressed in immune cells and acts as an important regulator for hematopoietic cell function. SHB silencing induces Th2 immunity in mice. SHB is also involved in T-cell homeostasis in vivo. However, SHB has not yet been studied and addressed in association with dendritic cells (DCs). Materials and Methods The effects of SHB expression on the immunogenicity of DCs were assessed by Shb gene silencing in mouse bone marrow–derived DCs (BMDCs). After silencing, surface phenotype, cytokine expression profile, and T-cell stimulation capacity of BMDCs were examined. We investigated the signaling pathways involved in SHB expression during BMDC development. We also examined the immunogenicity of SHB-knockdown (SHBKD) BMDCs in a mouse atopic dermatitis model. Results SHB was steadily expressed in mouse splenic DCs and in in vitro–generated BMDCs in both immature and mature stages. SHB expression was contingent on activation of the mitogen- activated protein kinase/Foxa2 signaling pathway during DC development. SHBKD increased the expression of MHC class II and costimulatory molecules without affecting the cytokine expression of BMDCs. When co-cultured with T cells, SHBKD in BMDCs significantly induced CD4+ T-cell proliferation and the expression of Th2 cytokines, while the regulatory T cell (Treg) population was downregulated. In mouse atopic dermatitis model, mice inoculated with SHBKD DCs developed more severe symptoms of atopic dermatitis compared with mice injected with control DCs. Conclusion SHB expression in DCs plays an important role in T-cell homeostasis in vivo by regulating DC-mediated Th2 polarization. PMID:28168174

  3. An adaptor hierarchy regulates proteolysis during a bacterial cell cycle

    PubMed Central

    Joshi, Kamal Kishore; Bergé, Matthieu; Radhakrishnan, Sunish Kumar; Viollier, Patrick Henri; Chien, Peter

    2015-01-01

    Summary Regulated protein degradation is essential. The timed destruction of crucial proteins by the ClpXP protease drives cell-cycle progression in the bacterium Caulobacter crescentus. Although ClpXP is active alone, additional factors are inexplicably required for cell-cycle dependent proteolysis. Here, we show that these factors constitute an adaptor hierarchy where different substrates are destroyed based on the degree of adaptor assembly. The hierarchy builds upon priming of ClpXP by the adaptor CpdR, which promotes degradation of one class of substrates and also recruits the adaptor RcdA to degrade a second class of substrates. Adding the PopA adaptor promotes destruction of a third class of substrates, while inhibiting degradation of the second class. We dissect RcdA to generate bespoke adaptors, identifying critical substrate elements needed for RcdA recognition and uncovering additional cell-cycle dependent ClpXP substrates. Our work reveals how hierarchical adaptors and primed proteases orchestrate regulated proteolysis during bacterial cell-cycle progression. PMID:26451486

  4. SmShb, the SH2-Containing Adaptor Protein B of Schistosoma mansoni Regulates Venus Kinase Receptor Signaling Pathways.

    PubMed

    Morel, Marion; Vanderstraete, Mathieu; Cailliau, Katia; Hahnel, Steffen; Grevelding, Christoph G; Dissous, Colette

    2016-01-01

    Venus kinase receptors (VKRs) are invertebrate receptor tyrosine kinases (RTKs) formed by an extracellular Venus Fly Trap (VFT) ligand binding domain associated via a transmembrane domain with an intracellular tyrosine kinase (TK) domain. Schistosoma mansoni VKRs, SmVKR1 and SmVKR2, are both implicated in reproductive activities of the parasite. In this work, we show that the SH2 domain-containing protein SmShb is a partner of the phosphorylated form of SmVKR1. Expression of these proteins in Xenopus oocytes allowed us to demonstrate that the SH2 domain of SmShb interacts with the phosphotyrosine residue (pY979) located in the juxtamembrane region of SmVKR1. This interaction leads to phosphorylation of SmShb on tyrosines and promotes SmVKR1 signaling towards the JNK pathway. SmShb transcripts are expressed in all parasite stages and they were found in ovary and testes of adult worms, suggesting a possible colocalization of SmShb and SmVKR1 proteins. Silencing of SmShb in adult S. mansoni resulted in an accumulation of mature sperm in testes, indicating a possible role of SmShb in gametogenesis.

  5. SmShb, the SH2-Containing Adaptor Protein B of Schistosoma mansoni Regulates Venus Kinase Receptor Signaling Pathways

    PubMed Central

    Morel, Marion; Vanderstraete, Mathieu; Cailliau, Katia; Hahnel, Steffen; Grevelding, Christoph G.; Dissous, Colette

    2016-01-01

    Venus kinase receptors (VKRs) are invertebrate receptor tyrosine kinases (RTKs) formed by an extracellular Venus Fly Trap (VFT) ligand binding domain associated via a transmembrane domain with an intracellular tyrosine kinase (TK) domain. Schistosoma mansoni VKRs, SmVKR1 and SmVKR2, are both implicated in reproductive activities of the parasite. In this work, we show that the SH2 domain-containing protein SmShb is a partner of the phosphorylated form of SmVKR1. Expression of these proteins in Xenopus oocytes allowed us to demonstrate that the SH2 domain of SmShb interacts with the phosphotyrosine residue (pY979) located in the juxtamembrane region of SmVKR1. This interaction leads to phosphorylation of SmShb on tyrosines and promotes SmVKR1 signaling towards the JNK pathway. SmShb transcripts are expressed in all parasite stages and they were found in ovary and testes of adult worms, suggesting a possible colocalization of SmShb and SmVKR1 proteins. Silencing of SmShb in adult S. mansoni resulted in an accumulation of mature sperm in testes, indicating a possible role of SmShb in gametogenesis. PMID:27636711

  6. The adaptor protein SAP regulates type II NKT-cell development, cytokine production, and cytotoxicity against lymphoma.

    PubMed

    Weng, Xiufang; Liao, Chia-Min; Bagchi, Sreya; Cardell, Susanna L; Stein, Paul L; Wang, Chyung-Ru

    2014-12-01

    CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT-cell TCR transgenic mouse model, we demonstrated that CD1d-expressing hematopoietic cells, but not thymic epithelial cells, meditate efficient selection of type II NKT cells. Furthermore, we showed that SAP regulates type II NKT-cell development by controlling early growth response 2 protein and promyelocytic leukemia zinc finger expression. SAP-deficient 24αβ transgenic T cells (24αβ T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αβ T cells was associated with reduced IFN regulatory factor 4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP.

  7. The Mu Subunit of Plasmodium falciparum Clathrin-Associated Adaptor Protein 2 Modulates In Vitro Parasite Response to Artemisinin and Quinine

    PubMed Central

    Henriques, Gisela; van Schalkwyk, Donelly A.; Burrow, Rebekah; Warhurst, David C.; Thompson, Eloise; Baker, David A.; Fidock, David A.; Hallett, Rachel; Flueck, Christian

    2015-01-01

    The emergence of drug-resistant parasites is a serious threat faced by malaria control programs. Understanding the genetic basis of resistance is critical to the success of treatment and intervention strategies. A novel locus associated with antimalarial resistance, ap2-mu (encoding the mu chain of the adaptor protein 2 [AP2] complex), was recently identified in studies on the rodent malaria parasite Plasmodium chabaudi (pcap2-mu). Furthermore, analysis in Kenyan malaria patients of polymorphisms in the Plasmodium falciparum ap2-mu homologue, pfap2-mu, found evidence that differences in the amino acid encoded by codon 160 are associated with enhanced parasite survival in vivo following combination treatments which included artemisinin derivatives. Here, we characterize the role of pfap2-mu in mediating the in vitro antimalarial drug response of P. falciparum by generating transgenic parasites constitutively expressing codon 160 encoding either the wild-type Ser (Ser160) or the Asn mutant (160Asn) form of pfap2-mu. Transgenic parasites carrying the pfap2-mu 160Asn allele were significantly less sensitive to dihydroartemisinin using a standard 48-h in vitro test, providing direct evidence of an altered parasite response to artemisinin. Our data also provide evidence that pfap2-mu variants can modulate parasite sensitivity to quinine. No evidence was found that pfap2-mu variants contribute to the slow-clearance phenotype exhibited by P. falciparum in Cambodian patients treated with artesunate monotherapy. These findings provide compelling evidence that pfap2-mu can modulate P. falciparum responses to multiple drugs. We propose that this gene should be evaluated further as a potential molecular marker of antimalarial resistance. PMID:25691625

  8. The Mu subunit of Plasmodium falciparum clathrin-associated adaptor protein 2 modulates in vitro parasite response to artemisinin and quinine.

    PubMed

    Henriques, Gisela; van Schalkwyk, Donelly A; Burrow, Rebekah; Warhurst, David C; Thompson, Eloise; Baker, David A; Fidock, David A; Hallett, Rachel; Flueck, Christian; Sutherland, Colin J

    2015-05-01

    The emergence of drug-resistant parasites is a serious threat faced by malaria control programs. Understanding the genetic basis of resistance is critical to the success of treatment and intervention strategies. A novel locus associated with antimalarial resistance, ap2-mu (encoding the mu chain of the adaptor protein 2 [AP2] complex), was recently identified in studies on the rodent malaria parasite Plasmodium chabaudi (pcap2-mu). Furthermore, analysis in Kenyan malaria patients of polymorphisms in the Plasmodium falciparum ap2-mu homologue, pfap2-mu, found evidence that differences in the amino acid encoded by codon 160 are associated with enhanced parasite survival in vivo following combination treatments which included artemisinin derivatives. Here, we characterize the role of pfap2-mu in mediating the in vitro antimalarial drug response of P. falciparum by generating transgenic parasites constitutively expressing codon 160 encoding either the wild-type Ser (Ser160) or the Asn mutant (160Asn) form of pfap2-mu. Transgenic parasites carrying the pfap2-mu 160Asn allele were significantly less sensitive to dihydroartemisinin using a standard 48-h in vitro test, providing direct evidence of an altered parasite response to artemisinin. Our data also provide evidence that pfap2-mu variants can modulate parasite sensitivity to quinine. No evidence was found that pfap2-mu variants contribute to the slow-clearance phenotype exhibited by P. falciparum in Cambodian patients treated with artesunate monotherapy. These findings provide compelling evidence that pfap2-mu can modulate P. falciparum responses to multiple drugs. We propose that this gene should be evaluated further as a potential molecular marker of antimalarial resistance.

  9. Direct interactions of adaptor protein complexes 1 and 2 with the copper transporter ATP7A mediate its anterograde and retrograde trafficking

    PubMed Central

    Yi, Ling; Kaler, Stephen G.

    2015-01-01

    ATP7A is a P-type ATPase in which diverse mutations lead to X-linked recessive Menkes disease or occipital horn syndrome. Recently, two previously unknown ATP7A missense mutations, T994I and P1386S, were shown to cause an isolated distal motor neuropathy without clinical or biochemical features of other ATP7A disorders. These mutant alleles cause subtle defects in ATP7A intracellular trafficking, resulting in preferential plasma membrane localization compared with wild-type ATP7A. We reported previously that ATP7AP1386S causes unstable insertion of the eighth and final transmembrane segment, preventing proper position of the carboxyl-terminal tail in a proportion of mutant molecules. Here, we utilize this and other naturally occurring and engineered mutant ATP7A alleles to identify mechanisms of normal ATP7A trafficking. We show that adaptor protein (AP) complexes 1 and 2 physically interact with ATP7A and that binding is mediated in part by a carboxyl-terminal di-leucine motif. In contrast to other ATP7A missense mutations, ATP7AP1386S partially disturbs interactions with both APs, leading to abnormal axonal localization in transfected NSC-34 motor neurons and altered calcium-signaling following glutamate stimulation. Our results imply that AP-1 normally tethers ATP7A at the trans-Golgi network in the somatodendritic segments of motor neurons and that alterations affecting the ATP7A carboxyl-terminal tail induce release of the copper transporter to the axons or axonal membranes. The latter effects are intensified by diminished interaction with AP-2, impeding ATP7A retrograde trafficking. Taken together, these findings further illuminate the normal molecular mechanisms of ATP7A trafficking and suggest a pathophysiological basis for ATP7A-related distal motor neuropathy. PMID:25574028

  10. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster

    PubMed Central

    Rodriguez-Fernandez, Imilce A.; Dell’Angelica, Esteban C.

    2015-01-01

    The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions–which together covered most of the autosomal chromosomes–to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated

  11. Role of an adaptor protein Lin-7B in brain development: possible involvement in autism spectrum disorders.

    PubMed

    Mizuno, Makoto; Matsumoto, Ayumi; Hamada, Nanako; Ito, Hidenori; Miyauchi, Akihiko; Jimbo, Eriko F; Momoi, Mariko Y; Tabata, Hidenori; Yamagata, Takanori; Nagata, Koh-Ichi

    2015-01-01

    Using comparative genomic hybridization analysis for an autism spectrum disorder (ASD) patient, a 73-Kb duplication at 19q13.33 (nt. 49 562 755-49 635 956) including LIN7B and 5 other genes was detected. We then identified a novel frameshift mutation in LIN7B in another ASD patient. Since LIN7B encodes a scaffold protein essential for neuronal function, we analyzed the role of Lin-7B in the development of cerebral cortex. Acute knockdown of Lin-7B with in utero electroporation caused a delay in neuronal migration during corticogenesis. When Lin-7B was knocked down in cortical neurons in one hemisphere, their axons failed to extend efficiently into the contralateral hemisphere after leaving the corpus callosum. Meanwhile, enhanced expression of Lin-7B had no effects on both cortical neuron migration and axon growth. Notably, silencing of Lin-7B did not affect the proliferation of neuronal progenitors and stem cells. Taken together, Lin-7B was found to play a pivotal role in corticogenesis through the regulation of excitatory neuron migration and interhemispheric axon growth, while further analyses are required to directly link functional defects of Lin-7B to ASD pathophysiology. Lin-7 plays a pivotal role as a scaffold protein in synaptic development and plasticity. Based on genetic analyses we identified mutations in LIN-7B gene in some ASD (autism-spectrum disorder) patients. Functional defects in Lin-7B caused abnormal neuronal migration and interhemispheric axon growth during mouse brain development. Thus, functional deficiency in Lin-7B could be implicated in clinical phenotypes in some ASD patients through bringing about abnormal cortical architecture.

  12. A combined LDL receptor/LDL receptor adaptor protein 1 mutation as the cause for severe familial hypercholesterolemia.

    PubMed

    Soufi, Muhidien; Rust, Stephan; Walter, Michael; Schaefer, Juergen R

    2013-05-25

    Familial hypercholesterolemia (FH) results from impaired catabolism of plasma low density lipoproteins (LDL), thus leading to high cholesterol, atherosclerosis, and a high risk of premature myocardial infarction. FH is commonly caused by defects of the LDL receptor or its main ligand apoB, together mediating cellular uptake and clearance of plasma LDL. In some cases FH is inherited by mutations in the genes of PCSK9 and LDLRAP1 (ARH) in a dominant or recessive trait. The encoded proteins are required for LDL receptor stability and internalization within the LDLR pathway. To detect the underlying genetic defect in a family of Turkish descent showing unregular inheritance of severe FH, we screened the four candidate genes by denaturing gradient gel electrophoresis (DGGE) mutation analysis. We identified different combinatory mixtures of LDLR- and LDLRAP1-gene defects as the cause for severe familial hypercholesterolemia in this family. We also show for the first time that a heterozygous LDLR mutation combined with a homozygous LDLRAP1 mutation produces a more severe hypercholesterolemia phenotype in the same family than a homozygous LDLR mutation alone.

  13. Stac adaptor proteins regulate trafficking and function of muscle and neuronal L-type Ca2+ channels.

    PubMed

    Polster, Alexander; Perni, Stefano; Bichraoui, Hicham; Beam, Kurt G

    2015-01-13

    Excitation-contraction (EC) coupling in skeletal muscle depends upon trafficking of CaV1.1, the principal subunit of the dihydropyridine receptor (DHPR) (L-type Ca(2+) channel), to plasma membrane regions at which the DHPRs interact with type 1 ryanodine receptors (RyR1) in the sarcoplasmic reticulum. A distinctive feature of this trafficking is that CaV1.1 expresses poorly or not at all in mammalian cells that are not of muscle origin (e.g., tsA201 cells), in which all of the other nine CaV isoforms have been successfully expressed. Here, we tested whether plasma membrane trafficking of CaV1.1 in tsA201 cells is promoted by the adapter protein Stac3, because recent work has shown that genetic deletion of Stac3 in skeletal muscle causes the loss of EC coupling. Using fluorescently tagged constructs, we found that Stac3 and CaV1.1 traffic together to the tsA201 plasma membrane, whereas CaV1.1 is retained intracellularly when Stac3 is absent. Moreover, L-type Ca(2+) channel function in tsA201 cells coexpressing Stac3 and CaV1.1 is quantitatively similar to that in myotubes, despite the absence of RyR1. Although Stac3 is not required for surface expression of CaV1.2, the principle subunit of the cardiac/brain L-type Ca(2+) channel, Stac3 does bind to CaV1.2 and, as a result, greatly slows the rate of current inactivation, with Stac2 acting similarly. Overall, these results indicate that Stac3 is an essential chaperone of CaV1.1 in skeletal muscle and that in the brain, Stac2 and Stac3 may significantly modulate CaV1.2 function.

  14. Structural Basis for Small G Protein Effector Interaction of Ras-related Protein 1 (Rap1) and Adaptor Protein Krev Interaction Trapped 1 (KRIT1)

    SciTech Connect

    Li, Xiaofeng; Zhang, Rong; Draheim, Kyle M.; Liu, Weizhi; Calderwood, David A.; Boggon, Titus J.

    2012-09-17

    Cerebral cavernous malformations (CCMs) affect 0.1-0.5% of the population resulting in leaky vasculature and severe neurological defects. KRIT1 (Krev interaction trapped-1) mutations associate with {approx}40% of familial CCMs. KRIT1 is an effector of Ras-related protein 1 (Rap1) GTPase. Rap1 relocalizes KRIT1 from microtubules to cell membranes to impact integrin activation, potentially important for CCM pathology. We report the 1.95 {angstrom} co-crystal structure of KRIT1 FERM domain in complex with Rap1. Rap1-KRIT1 interaction encompasses an extended surface, including Rap1 Switch I and II and KRIT1 FERM F1 and F2 lobes. Rap1 binds KRIT1-F1 lobe using a GTPase-ubiquitin-like fold interaction but binds KRIT1-F2 lobe by a novel interaction. Point mutagenesis confirms the interaction. High similarity between KRIT1-F2/F3 and talin is revealed. Additionally, the mechanism for FERM domains acting as GTPase effectors is suggested. Finally, structure-based alignment of each lobe suggests classification of FERM domains as ERM-like and TMFK-like (talin-myosin-FAK-KRIT-like) and that FERM lobes resemble domain 'modules.'

  15. The Clathrin Adaptor Proteins ARH, Dab2, and Numb Play Distinct Roles in Niemann-Pick C1-Like 1 Versus Low Density Lipoprotein Receptor-mediated Cholesterol Uptake*

    PubMed Central

    Wei, Jian; Fu, Zhen-Yan; Li, Pei-Shan; Miao, Hong-Hua; Li, Bo-Liang; Ma, Yi-Tong; Song, Bao-Liang

    2014-01-01

    The uptake of circulating low density lipoproteins (LDL) is mediated by LDL receptor (LDLR) through clathrin-dependent endocytosis. At the early stage of this process, adaptor proteins ARH and Dab2 specifically bind the endocytic signal motif in LDLR and recruit clathrin/AP2 to initiate internalization. On the other hand, intestinal cholesterol is absorbed by Niemann-Pick C1-Like 1 (NPC1L1) through clathrin-dependent endocytosis. Another adaptor protein, Numb recognizes the endocytic motif in NPC1L1 C terminus and couples NPC1L1 to endocytic machinery. The ARH, Dab2, and Numb proteins contain a homogeneous phosphotyrosine binding (PTB) domain that directly binds endocytic motifs. Because ARH, Dab2, and Numb are all PTB domain family members, the emerging mystery is whether these adaptors act complementally in LDLR and NPC1L1 endocytosis. Here, we found that ARH and Dab2 did not bind NPC1L1 and were not required for NPC1L1 internalization. Similarly, Numb lacked the ability to interact with the LDLR C terminus and was dispensable for LDL uptake. Only the Numb isoforms with shorter PTB domain could facilitate NPC1L1 endocytosis. Besides the reported function in intestinal cholesterol absorption, Numb also mediated cholesterol reabsorption from bile in liver. We further identified a Numb variant with G595D substitution in humans of low blood LDL-cholesterol. The G595D substitution impaired NPC1L1 internalization and cholesterol reabsorption, due to attenuating affinity of Numb to clathrin/AP2. These results demonstrate that Numb specifically regulates NPC1L1-mediated cholesterol absorption both in human intestine and liver, distinct from ARH and Dab2, which selectively participate in LDLR-mediated LDL uptake. PMID:25331956

  16. The clathrin adaptor proteins ARH, Dab2, and numb play distinct roles in Niemann-Pick C1-Like 1 versus low density lipoprotein receptor-mediated cholesterol uptake.

    PubMed

    Wei, Jian; Fu, Zhen-Yan; Li, Pei-Shan; Miao, Hong-Hua; Li, Bo-Liang; Ma, Yi-Tong; Song, Bao-Liang

    2014-11-28

    The uptake of circulating low density lipoproteins (LDL) is mediated by LDL receptor (LDLR) through clathrin-dependent endocytosis. At the early stage of this process, adaptor proteins ARH and Dab2 specifically bind the endocytic signal motif in LDLR and recruit clathrin/AP2 to initiate internalization. On the other hand, intestinal cholesterol is absorbed by Niemann-Pick C1-Like 1 (NPC1L1) through clathrin-dependent endocytosis. Another adaptor protein, Numb recognizes the endocytic motif in NPC1L1 C terminus and couples NPC1L1 to endocytic machinery. The ARH, Dab2, and Numb proteins contain a homogeneous phosphotyrosine binding (PTB) domain that directly binds endocytic motifs. Because ARH, Dab2, and Numb are all PTB domain family members, the emerging mystery is whether these adaptors act complementally in LDLR and NPC1L1 endocytosis. Here, we found that ARH and Dab2 did not bind NPC1L1 and were not required for NPC1L1 internalization. Similarly, Numb lacked the ability to interact with the LDLR C terminus and was dispensable for LDL uptake. Only the Numb isoforms with shorter PTB domain could facilitate NPC1L1 endocytosis. Besides the reported function in intestinal cholesterol absorption, Numb also mediated cholesterol reabsorption from bile in liver. We further identified a Numb variant with G595D substitution in humans of low blood LDL-cholesterol. The G595D substitution impaired NPC1L1 internalization and cholesterol reabsorption, due to attenuating affinity of Numb to clathrin/AP2. These results demonstrate that Numb specifically regulates NPC1L1-mediated cholesterol absorption both in human intestine and liver, distinct from ARH and Dab2, which selectively participate in LDLR-mediated LDL uptake.

  17. Adaptor protein-2 sigma subunit mutations causing familial hypocalciuric hypercalcaemia type 3 (FHH3) demonstrate genotype–phenotype correlations, codon bias and dominant-negative effects

    PubMed Central

    Hannan, Fadil M.; Howles, Sarah A.; Rogers, Angela; Cranston, Treena; Gorvin, Caroline M.; Babinsky, Valerie N.; Reed, Anita A.; Thakker, Clare E.; Bockenhauer, Detlef; Brown, Rosalind S.; Connell, John M.; Cook, Jacqueline; Darzy, Ken; Ehtisham, Sarah; Graham, Una; Hulse, Tony; Hunter, Steven J.; Izatt, Louise; Kumar, Dhavendra; McKenna, Malachi J.; McKnight, John A.; Morrison, Patrick J.; Mughal, M. Zulf; O'Halloran, Domhnall; Pearce, Simon H.; Porteous, Mary E.; Rahman, Mushtaqur; Richardson, Tristan; Robinson, Robert; Scheers, Isabelle; Siddique, Haroon; van't Hoff, William G.; Wang, Timothy; Whyte, Michael P.; Nesbit, M. Andrew; Thakker, Rajesh V.

    2015-01-01

    The adaptor protein-2 sigma subunit (AP2σ2) is pivotal for clathrin-mediated endocytosis of plasma membrane constituents such as the calcium-sensing receptor (CaSR). Mutations of the AP2σ2 Arg15 residue result in familial hypocalciuric hypercalcaemia type 3 (FHH3), a disorder of extracellular calcium (Ca2+o) homeostasis. To elucidate the role of AP2σ2 in Ca2+o regulation, we investigated 65 FHH probands, without other FHH-associated mutations, for AP2σ2 mutations, characterized their functional consequences and investigated the genetic mechanisms leading to FHH3. AP2σ2 mutations were identified in 17 probands, comprising 5 Arg15Cys, 4 Arg15His and 8 Arg15Leu mutations. A genotype–phenotype correlation was observed with the Arg15Leu mutation leading to marked hypercalcaemia. FHH3 probands harboured additional phenotypes such as cognitive dysfunction. All three FHH3-causing AP2σ2 mutations impaired CaSR signal transduction in a dominant-negative manner. Mutational bias was observed at the AP2σ2 Arg15 residue as other predicted missense substitutions (Arg15Gly, Arg15Pro and Arg15Ser), which also caused CaSR loss-of-function, were not detected in FHH probands, and these mutations were found to reduce the numbers of CaSR-expressing cells. FHH3 probands had significantly greater serum calcium (sCa) and magnesium (sMg) concentrations with reduced urinary calcium to creatinine clearance ratios (CCCR) in comparison with FHH1 probands with CaSR mutations, and a calculated index of sCa × sMg/100 × CCCR, which was ≥ 5.0, had a diagnostic sensitivity and specificity of 83 and 86%, respectively, for FHH3. Thus, our studies demonstrate AP2σ2 mutations to result in a more severe FHH phenotype with genotype–phenotype correlations, and a dominant-negative mechanism of action with mutational bias at the Arg15 residue. PMID:26082470

  18. Ionizing Radiation and Chemotherapeutic Drugs Induce Apoptosis in Lymphocytes in the Absence of FAS or Fadd/Mort1 Signaling

    PubMed Central

    Newton, Kim; Strasser, Andreas

    2000-01-01

    Ionizing radiation and cytotoxic drugs used in the treatment of cancer induce apoptosis in many cell types, including tumor cells. It has been reported that tumor cells treated with anticancer drugs increase surface expression of Fas ligand (FasL) and are killed by autocrine or paracrine apoptosis signaling through Fas (Friesen, C., I. Herr, P.H. Krammer, and K.-M. Debatin. 1996. Nat. Med. 2:574–577). We show that lymphocytes that cannot be killed by FasL, such as those from Fas-deficient lpr mice or transgenic mice expressing a dominant negative mutant of Fas-associated death domain protein (FADD/MORT1), are as sensitive as normal lymphocytes to killing by gamma radiation or the cytotoxic drugs cis-platin, doxorubicin, and etoposide. In contrast, p53 deficiency or constitutive expression of Bcl-2 markedly increased the resistance of lymphocytes to gamma radiation or anticancer drugs but had no effect on killing by FasL. Consistent with these observations, lpr and wild-type T cells both had a reduced capacity for mitogen-induced proliferation after drug treatment, whereas bcl-2 transgenic or p53-deficient T cells retained significant clonogenic potential. These results demonstrate that apoptosis induced by ionizing radiation or anticancer drugs requires p53 and is regulated by the Bcl-2 protein family but does not require signals transduced by Fas and FADD/MORT1. PMID:10620618

  19. FADD Expression as a Prognosticator in Early-Stage Glottic Squamous Cell Carcinoma of the Larynx Treated Primarily With Radiotherapy

    SciTech Connect

    Schrijvers, Michiel L.; Pattje, Wouter J.; Slagter-Menkema, Lorian; Mastik, Mirjam F.; Gibcus, Johan H.; Langendijk, Johannes A.; Wal, Jacqueline E. van der; Laan, Bernard F.A.M. vn der

    2012-07-15

    Purpose: We recently reported on the identification of the Fas-associated death domain (FADD) as a possible driver of the chromosome 11q13 amplicon and the association between increased FADD expression and disease-specific survival in advanced-stage laryngeal carcinoma. The aim of this study was to examine whether expression of FADD and its Ser194-phosphorylated isoform (pFADD) predicts local control in patients with early-stage glottic carcinoma primarily treated with radiotherapy only. Methods and Materials: Immunohistochemical staining for FADD and pFADD was performed on pretreatment biopsy specimens of 92 patients with T1-T2 glottic squamous cell carcinoma primarily treated with radiotherapy between 1996 and 2005. Cox regression analysis was used to correlate expression levels with local control. Results: High levels of pFADD were associated with significantly better local control (hazard ratio, 2.40; 95% confidence interval, 1.04-5.55; p = 0.040). FADD overexpression showed a trend toward better local control (hazard ratio, 3.656; 95% confidence interval, 0.853-15.663; p = 0.081). Multivariate Cox regression analysis showed that high pFADD expression was the best predictor of local control after radiotherapy. Conclusions: This study showed that expression of phosphorylated FADD is a new prognostic biomarker for better local control after radiotherapy in patients with early-stage glottic carcinomas.

  20. Noncanonical Role of the PDZ4 Domain of the Adaptor Protein PDZK1 in the Regulation of the Hepatic High Density Lipoprotein Receptor Scavenger Receptor Class B, Type I (SR-BI)*

    PubMed Central

    Tsukamoto, Kosuke; Wales, Thomas E.; Daniels, Kathleen; Pal, Rinku; Sheng, Ren; Cho, Wonhwa; Stafford, Walter; Engen, John R.; Krieger, Monty; Kocher, Olivier

    2013-01-01

    The four PDZ (PDZ1 to PDZ4) domain-containing adaptor protein PDZK1 controls the expression, localization, and function of the HDL receptor scavenger receptor class B, type I (SR-BI), in hepatocytes in vivo. This control depends on both the PDZ4 domain and the binding of SR-BI's cytoplasmic C terminus to the canonical peptide-binding sites of either the PDZ1 or PDZ3 domain (no binding to PDZ2 or PDZ4). Using transgenic mice expressing in the liver domain deletion (ΔPDZ2 or ΔPDZ3), domain replacement (PDZ2→1), or target peptide binding-negative (PDZ4(G389P)) mutants of PDZK1, we found that neither PDZ2 nor PDZ3 nor the canonical target peptide binding activity of PDZ4 were necessary for hepatic SR-BI regulatory activity. Immunohistochemical studies established that the localization of PDZK1 on hepatocyte cell surface membranes in vivo is dependent on its PDZ4 domain and the presence of SR-BI. Analytical ultracentrifugation and hydrogen deuterium exchange mass spectrometry suggested that the requirement of PDZ4 for localization and SR-BI regulation is not due to PDZ4-mediated oligomerization or induction of conformational changes in the PDZ123 portion of PDZK1. However, surface plasmon resonance analysis showed that PDZ4, but not the other PDZ domains, can bind vesicles that mimic the plasma membrane. Thus, PDZ4 may potentiate PDZK1's regulation of SR-BI by promoting its lipid-mediated attachment to the cytoplasmic membrane. Our results show that not all of the PDZ domains of a multi-PDZ domain-containing adaptor protein are required for its biological activities and that both canonical target peptide binding and noncanonical (peptide binding-independent) capacities of PDZ domains may be employed by a single such adaptor for optimal in vivo activity. PMID:23720744

  1. A fadD mutant of Sinorhizobium meliloti shows multicellular swarming migration and is impaired in nodulation efficiency on alfalfa roots.

    PubMed

    Soto, María José; Fernández-Pascual, Mercedes; Sanjuan, Juan; Olivares, José

    2002-01-01

    Swarming is a form of bacterial translocation that involves cell differentiation and is characterized by a rapid and co-ordinated population migration across solid surfaces. We have isolated a Tn5 mutant of Sinorhizobium meliloti GR4 showing conditional swarming. Swarm cells from the mutant strain QS77 induced on semi-solid minimal medium in response to different signals are hyperflagellated and about twice as long as wild-type cells. Genetic and physiological characterization of the mutant strain indicates that QS77 is altered in a gene encoding a homologue of the FadD protein (long-chain fatty acyl-CoA ligase) of several microorganisms. Interestingly and similar to a less virulent Xanthomonas campestris fadD(rpfB) mutant, QS77 is impaired in establishing an association with its host plant. In trans expression of multicopy fadD restored growth on oleate, control of motility and the symbiotic phenotype of QS77, as well as acyl-CoA synthetase activity of an Escherichia coli fadD mutant. The S. meliloti QS77 strain shows a reduction in nod gene expression as well as a differential regulation of motility genes in response to environmental conditions. These data suggest that, in S. meliloti, fatty acid derivatives may act as intracellular signals controlling motility and symbiotic performance through gene expression.

  2. Requirement of gene fadD33 for the growth of Mycobacterium tuberculosis in a hepatocyte cell line.

    PubMed

    Rindi, L; Bonanni, D; Lari, N; Garzelli, C

    2004-04-01

    Gene fadD33 of Mycobacterium tuberculosis, one of the 36 homologues of gene fadD of Escherichia coli identified in the M. tuberculosis genome, predictively encodes an acyl-CoA synthase, an enzyme involved in fatty acids metabolism. The gene is underexpressed in the attenuated strain M. tuberculosis H37Ra relative to virulent H37Rv and plays a role in M. tuberculosis virulence in BALB/c mice by supporting mycobacterial replication in the liver. In the present paper, we investigated the role of fadD33 expression in bacterial growth within the hepatocyte cell line HepG2, as well as in human monocyte-derived THP-1 cells and peripheral blood mononuclear cells. M. tuberculosis H37Rv proved able to grow within HepG2 cells, while the intracellular replication of M. tuberculosis H37Ra was markedly impaired; complementation of strain H37Ra with gene fadD33 restored its replication to the levels of H37Rv. Moreover, disruption of gene fadD33 by allelic exchange mutagenesis reduced the intracellular growth of M. tuberculosis H37Rv, and complementation of the fadD33-disrupted mutant with gene fadD33 restored bacterial replication. Conversely, fadD33 expression proved unable to influence M. tuberculosis growth in human phagocytes, as fadD33-disrupted M. tuberculosis H37Rv mutant, as well as fadD33-complemented M. tuberculosis H37Ra, grew within THP-1 cells and peripheral monocytes basically at the same rates as parent H37Rv and H37Ra strains. The results of these experiments indicate that gene fadD33 expression confers growth advantage to M. tuberculosis in immortalized hepatocytes, but not in macrophages, thus emphasizing the importance of fadD33 in liver-specific replication of M. tuberculosis.

  3. Structural analysis of intermolecular interactions in the kinesin adaptor complex fasciculation and elongation protein zeta 1/ short coiled-coil protein (FEZ1/SCOCO).

    PubMed

    Alborghetti, Marcos Rodrigo; Furlan, Ariane da Silva; da Silva, Júlio César; Sforça, Maurício Luís; Honorato, Rodrigo Vargas; Granato, Daniela Campos; dos Santos Migueleti, Deivid Lucas; Neves, Jorge L; de Oliveira, Paulo Sergio Lopes; Paes-Leme, Adriana Franco; Zeri, Ana Carolina de Mattos; de Torriani, Iris Concepcion Linares; Kobarg, Jörg

    2013-01-01

    Cytoskeleton and protein trafficking processes, including vesicle transport to synapses, are key processes in neuronal differentiation and axon outgrowth. The human protein FEZ1 (fasciculation and elongation protein zeta 1 / UNC-76, in C. elegans), SCOCO (short coiled-coil protein / UNC-69) and kinesins (e.g. kinesin heavy chain / UNC116) are involved in these processes. Exploiting the feature of FEZ1 protein as a bivalent adapter of transport mediated by kinesins and FEZ1 protein interaction with SCOCO (proteins involved in the same path of axonal growth), we investigated the structural aspects of intermolecular interactions involved in this complex formation by NMR (Nuclear Magnetic Resonance), cross-linking coupled with mass spectrometry (MS), SAXS (Small Angle X-ray Scattering) and molecular modelling. The topology of homodimerization was accessed through NMR (Nuclear Magnetic Resonance) studies of the region involved in this process, corresponding to FEZ1 (92-194). Through studies involving the protein in its monomeric configuration (reduced) and dimeric state, we propose that homodimerization occurs with FEZ1 chains oriented in an anti-parallel topology. We demonstrate that the interaction interface of FEZ1 and SCOCO defined by MS and computational modelling is in accordance with that previously demonstrated for UNC-76 and UNC-69. SAXS and literature data support a heterotetrameric complex model. These data provide details about the interaction interfaces probably involved in the transport machinery assembly and open perspectives to understand and interfere in this assembly and its involvement in neuronal differentiation and axon outgrowth.

  4. Structural Analysis of Intermolecular Interactions in the Kinesin Adaptor Complex Fasciculation and Elongation Protein Zeta 1/ Short Coiled-Coil Protein (FEZ1/SCOCO)

    PubMed Central

    da Silva, Júlio César; Sforça, Maurício Luís; Honorato, Rodrigo Vargas; Granato, Daniela Campos; dos Santos Migueleti, Deivid Lucas; Neves, Jorge L.; de Oliveira, Paulo Sergio Lopes; Paes-Leme, Adriana Franco; Zeri, Ana Carolina de Mattos; de Torriani, Iris Concepcion Linares; Kobarg, Jörg

    2013-01-01

    Cytoskeleton and protein trafficking processes, including vesicle transport to synapses, are key processes in neuronal differentiation and axon outgrowth. The human protein FEZ1 (fasciculation and elongation protein zeta 1 / UNC-76, in C. elegans), SCOCO (short coiled-coil protein / UNC-69) and kinesins (e.g. kinesin heavy chain / UNC116) are involved in these processes. Exploiting the feature of FEZ1 protein as a bivalent adapter of transport mediated by kinesins and FEZ1 protein interaction with SCOCO (proteins involved in the same path of axonal growth), we investigated the structural aspects of intermolecular interactions involved in this complex formation by NMR (Nuclear Magnetic Resonance), cross-linking coupled with mass spectrometry (MS), SAXS (Small Angle X-ray Scattering) and molecular modelling. The topology of homodimerization was accessed through NMR (Nuclear Magnetic Resonance) studies of the region involved in this process, corresponding to FEZ1 (92-194). Through studies involving the protein in its monomeric configuration (reduced) and dimeric state, we propose that homodimerization occurs with FEZ1 chains oriented in an anti-parallel topology. We demonstrate that the interaction interface of FEZ1 and SCOCO defined by MS and computational modelling is in accordance with that previously demonstrated for UNC-76 and UNC-69. SAXS and literature data support a heterotetrameric complex model. These data provide details about the interaction interfaces probably involved in the transport machinery assembly and open perspectives to understand and interfere in this assembly and its involvement in neuronal differentiation and axon outgrowth. PMID:24116125

  5. Molecular cloning and characterization of GhAPm, a gene encoding the μ subunit of the clathrin-associated adaptor protein complex that is associated with cotton (Gossypium hirsutum) fiber development.

    PubMed

    Zhou, Tao; Zhang, Rui; Yang, Dawei; Guo, Sandui

    2011-06-01

    The clathrin-associated adaptor protein (AP) complexes are the primary clathrin adaptors that contribute to the formation of clathrin-coated vesicles (CCVs). The GhAPm gene (GenBank accession number: GU359054), which encodes the medium subunit of the AP complexes, was cloned from cotton by rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The full-length cDNA was 1590 bp in size and encoded an open reading frame (ORF) of 416 amino acids with a molecular weight of 46 kDa. The GhAPm protein shared 81-85% identity at the amino acid level with the AP complex μ subunits isolated from Vitis vinifera, Glycine max, Populus trichocarpa, Ricinus communis and Arabidopsis thaliana, respectively. The corresponding genomic DNA, containing eight exons and seven introns, was isolated and analyzed. Also, a 5'-flanking region was analyzed, and a group of putative cis-acting elements were identified. DNA gel blot analysis showed that there is only one GhAPm gene in the cotton genome. Real-time RT-PCR analysis revealed that GhAPm is expressed in the root, stem, leaf, petal, ovule, and fiber. However, the interesting finding is that GhAPm expression level was shown to increase steadily as the cotton fiber develops. In 30 DPA fibers, expression increases sharply and arrives at a peak then the expression levels decrease rapidly. Based on these data, we propose that GhAPm has a critical role in cotton membrane trafficking and fiber development.

  6. Targeting signals and subunit interactions in coated vesicle adaptor complexes

    PubMed Central

    1995-01-01

    There are two clathrin-coated vesicle adaptor complexes in the cell, one associated with the plasma membrane and one associated with the TGN. The subunit composition of the plasma membrane adaptor complex is alpha-adaptin, beta-adaptin, AP50, and AP17; while that of the TGN adaptor complex is gamma-adaptin, beta'-adaptin, AP47, and AP19. To search for adaptor targeting signals, we have constructed chimeras between alpha-adaptin and gamma-adaptin within their NH2-terminal domains. We have identified stretches of sequence in the two proteins between amino acids approximately 130 and 330-350 that are essential for targeting. Immunoprecipitation reveals that this region determines whether a construct coassemblies with AP50 and AP17, or with AP47 and AP19. These observations suggest that these other subunits may play an important role in targeting. In contrast, beta- and beta'-adaptins are clearly not involved in this event. Chimeras between the alpha- and gamma-adaptin COOH-terminal domains reveal the presence of a second targeting signal. We have further investigated the interactions between the adaptor subunits using the yeast two-hybrid system. Interactions can be detected between the beta/beta'-adaptins and the alpha/gamma- adaptins, between the beta/beta'-adaptins and the AP50/AP47 subunits, between alpha-adaptin and AP17, and between gamma-adaptin and AP19. These results indicate that the adaptor subunits act in concert to target the complex to the appropriate membrane. PMID:7593184

  7. The CB1/VR1 agonist arvanil induces apoptosis through an FADD/caspase-8-dependent pathway

    PubMed Central

    Sancho, Rocío; de la Vega, Laureano; Appendino, Giovanni; Di Marzo, Vincenzo; Macho, Antonio; Muñoz, Eduardo

    2003-01-01

    Arvanil (N-arachidonoylvanillamine), a nonpungent capsaicin–anandamide hybrid molecule, has been shown to exert biological activities through VR1/CB1-dependent and -independent pathways. We have found that arvanil induces dose-dependent apoptosis in the lymphoid Jurkat T-cell line, but not in peripheral blood T lymphocytes. Apoptosis was assessed by DNA fragmentation through cell cycle and TUNEL analyses. Arvanil-induced apoptosis was initiated independently of any specific phase of the cell cycle, and it was inhibited by specific caspase-8 and -3 inhibitors and by the activation of protein kinase C. In addition, kinetic analysis by Western blots and fluorimetry showed that arvanil rapidly activates caspase-8, -7 and -3, and induces PARP cleavage. The arvanil-mediated apoptotic response was greatly inhibited in the Jurkat-FADDDN cell line, which constitutively expresses a negative dominant form of the adapter molecule Fas-associated death domain (FADD). This cell line does not undergo apoptosis in response to Fas (CD95) stimulation. Using a cytofluorimetric approach, we have found that arvanil induced the production of reactive oxygen species (ROS) in both Jurkat-FADD+ and Jurkat-FADDDN cell lines. However, ROS accumulation only plays a residual role in arvanil-induced apoptosis. These results demonstrate that arvanil-induced apoptosis is essentially mediated through a mechanism that is typical of type II cells, and implicates the death-inducing signalling complex and the activation of caspase-8. This arvanil-apoptotic activity is TRPV1 and CB-independent, and can be of importance for the development of potential anti-inflammatory and antitumoral drugs. PMID:14530215

  8. Expression of FADD and cFLIPL balances mitochondrial integrity and redox signaling to substantiate apoptotic cell death.

    PubMed

    Ranjan, Kishu; Pathak, Chandramani

    2016-11-01

    FADD and cFLIP both are pivotal components of death receptor signaling. The cellular signaling of apoptosis accomplished with death receptors and mitochondria follows independent pathways for cell death. FADD and cFLIP both have an important role in the regulation of apoptotic and non-apoptotic functions. Dysregulated expression of FADD and cFLIP is associated with resistance to apoptosis in cancer cells. Mitochondria are known to play critical role in maintaining cellular respiration and homeostasis in the cells as well as transduces various signals to determine the fate of cell death. However, involvement of FADD and cFLIP in regulation of mitochondrial integrity and programmed cell death signaling to define the fate of cells remains elusive. In the present study, we explored that, induced expression of FADD challenges the mitochondrial integrity and pulverizes the membrane potential by altering the expression of Bcl-2 and cytochrome c. In contrast, mutant of FADD was unable to affect the mitochondrial integrity. Interestingly, expression of FADD and cFLIP helps to balance redox potential by regulating the anti-oxidant levels. Further, we noticed that, knockdown of cFLIPL and induced expression of FADD rapidly accumulate intracellular ROS accompanied by JNK1 activation to substantiate apoptosis. Notably, the ectopic expression of cFLIPL resists the sensitivity of cancer cells against apoptosis inducers Etoposide and HA14-1. Altogether, our findings suggest that FADD and cFLIPL are important modulators of mitochondrial-associated apoptosis apart from the death receptor signaling.

  9. TLR4 acts as a death receptor for ultraviolet radiation (UVR) through IRAK-independent and FADD-dependent pathway in macrophages.

    PubMed

    Zhou, Hua; Harberts, Erin; Fishelevich, Rita; Gaspari, Anthony A

    2016-12-01

    UVR-induced apoptosis in cutaneous antigen presenting cells (APC) causes systemic immune suppression and is dependent on TLR4/MyD88 signalling, but the apoptotic signalling pathways have not been defined. Macrophages pretreated with lipopolysaccharide (LPS) were unresponsive to subsequent LPS treatment, however, but were susceptible to UVR-induced apoptosis. Macrophage survival and apoptotic events after UVR were also unaffected by treatment with TLR4 antagonists, a blocking IgG or a TLR4 analog antagonist, suggesting that UVR cell death is independent of a soluble ligand. After UVR, IRAK4(KDKI) (catalytically inactive IRAK4) and wild-type (WT) macrophages show equivalent levels of survival, as measured by MTT assay, and apoptosis, as measured by cleaved caspase-3. Furthermore, in macrophages from both mice, UVR activated caspase-8 and PARP, while inactivating Rip3. This finding is supported by a lack of IRAK1 degradation after UVR, compared to treatment with TLR2 or TLR4 agonists. UVR induced association of MyD88 with FADD, an extrinsic apoptotic pathway protein, but not IRAK4. UVR-induced migration of FADD to the cell membrane of WT macrophages, but not MyD88(-/-) macrophages, was observed (confocal microscopy). Co-immunoprecipitation using an epitope-tagged MyD88 revealed that FADD, but not TRADD, was recruited to MyD88 within 30 minutes of UVR exposure. UVR engages TLR4/MyD88 as a death signalling complex, rather than the classical inflammatory signalling pathway triggered by PAMP recognition of TLR4. These studies provide the rationale for the future development of topical TLR4 modulating therapies to interfere with this UVB-mediated apoptosis and the associated negative consequences of immune suppression.

  10. Differential Recognition Preferences of the Three Src Homology 3 (SH3) Domains from the Adaptor CD2-associated Protein (CD2AP) and Direct Association with Ras and Rab Interactor 3 (RIN3)*

    PubMed Central

    Rouka, Evgenia; Simister, Philip C.; Janning, Melanie; Kumbrink, Joerg; Konstantinou, Tassos; Muniz, João R. C.; Joshi, Dhira; O'Reilly, Nicola; Volkmer, Rudolf; Ritter, Brigitte; Knapp, Stefan; von Delft, Frank; Kirsch, Kathrin H.; Feller, Stephan M.

    2015-01-01

    CD2AP is an adaptor protein involved in membrane trafficking, with essential roles in maintaining podocyte function within the kidney glomerulus. CD2AP contains three Src homology 3 (SH3) domains that mediate multiple protein-protein interactions. However, a detailed comparison of the molecular binding preferences of each SH3 remained unexplored, as well as the discovery of novel interactors. Thus, we studied the binding properties of each SH3 domain to the known interactor Casitas B-lineage lymphoma protein (c-CBL), conducted a peptide array screen based on the recognition motif PxPxPR and identified 40 known or novel candidate binding proteins, such as RIN3, a RAB5-activating guanine nucleotide exchange factor. CD2AP SH3 domains 1 and 2 generally bound with similar characteristics and specificities, whereas the SH3-3 domain bound more weakly to most peptide ligands tested yet recognized an unusually extended sequence in ALG-2-interacting protein X (ALIX). RIN3 peptide scanning arrays revealed two CD2AP binding sites, recognized by all three SH3 domains, but SH3-3 appeared non-functional in precipitation experiments. RIN3 recruited CD2AP to RAB5a-positive early endosomes via these interaction sites. Permutation arrays and isothermal titration calorimetry data showed that the preferred binding motif is Px(P/A)xPR. Two high-resolution crystal structures (1.65 and 1.11 Å) of CD2AP SH3-1 and SH3-2 solved in complex with RIN3 epitopes 1 and 2, respectively, indicated that another extended motif is relevant in epitope 2. In conclusion, we have discovered novel interaction candidates for CD2AP and characterized subtle yet significant differences in the recognition preferences of its three SH3 domains for c-CBL, ALIX, and RIN3. PMID:26296892

  11. Differential Recognition Preferences of the Three Src Homology 3 (SH3) Domains from the Adaptor CD2-associated Protein (CD2AP) and Direct Association with Ras and Rab Interactor 3 (RIN3).

    PubMed

    Rouka, Evgenia; Simister, Philip C; Janning, Melanie; Kumbrink, Joerg; Konstantinou, Tassos; Muniz, João R C; Joshi, Dhira; O'Reilly, Nicola; Volkmer, Rudolf; Ritter, Brigitte; Knapp, Stefan; von Delft, Frank; Kirsch, Kathrin H; Feller, Stephan M

    2015-10-16

    CD2AP is an adaptor protein involved in membrane trafficking, with essential roles in maintaining podocyte function within the kidney glomerulus. CD2AP contains three Src homology 3 (SH3) domains that mediate multiple protein-protein interactions. However, a detailed comparison of the molecular binding preferences of each SH3 remained unexplored, as well as the discovery of novel interactors. Thus, we studied the binding properties of each SH3 domain to the known interactor Casitas B-lineage lymphoma protein (c-CBL), conducted a peptide array screen based on the recognition motif PxPxPR and identified 40 known or novel candidate binding proteins, such as RIN3, a RAB5-activating guanine nucleotide exchange factor. CD2AP SH3 domains 1 and 2 generally bound with similar characteristics and specificities, whereas the SH3-3 domain bound more weakly to most peptide ligands tested yet recognized an unusually extended sequence in ALG-2-interacting protein X (ALIX). RIN3 peptide scanning arrays revealed two CD2AP binding sites, recognized by all three SH3 domains, but SH3-3 appeared non-functional in precipitation experiments. RIN3 recruited CD2AP to RAB5a-positive early endosomes via these interaction sites. Permutation arrays and isothermal titration calorimetry data showed that the preferred binding motif is Px(P/A)xPR. Two high-resolution crystal structures (1.65 and 1.11 Å) of CD2AP SH3-1 and SH3-2 solved in complex with RIN3 epitopes 1 and 2, respectively, indicated that another extended motif is relevant in epitope 2. In conclusion, we have discovered novel interaction candidates for CD2AP and characterized subtle yet significant differences in the recognition preferences of its three SH3 domains for c-CBL, ALIX, and RIN3.

  12. Non-redundant and complementary functions of adaptor proteins TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling

    PubMed Central

    Vallabhapurapu, Sivakumar; Matsuzawa, Atsushi; Zhang, WeiZhou; Tseng, Ping-Hui; Keats, Jonathan J.; Wang, Haopeng; Vignali, Dario A. A.; Bergsagel, P. Leif; Karin, Michael

    2009-01-01

    The adaptor and signaling proteins TRAF2, TRAF3 and cIAP1 and cIAP2 were suggested to inhibit alternative nuclear factor kappa B (NF-κB) signaling in resting cells by targeting NF-κB inducing kinase (NIK) to ubiquitin-dependent degradation, thus preventing processing of the NF-κB2 precursor protein p100 to release p52. However, the respective functions of TRAF2 and TRAF3 in NIK degradation and activation of alternative NF-κB signaling has remained elusive. We now show that CD40 or BAFF receptor activation resulted in TRAF3 degradation in a cIAP1-cIAP2- and TRAF2- dependent way due to enhanced cIAP1, cIAP2 TRAF3-directed ubiquitin ligase activity. Receptor-induced activation of cIAP1 and cIAP2 correlated with their K63-linked ubiquitination by TRAF2. Degradation of TRAF3 prevented association of NIK with the cIAP1-cIAP2-TRAF2 ubiquitin ligase complex, which resulted in NIK stabilization and NF-κB2-p100 processing. Constitutive activation of this pathway causes perinatal lethality and lymphoid defects. PMID:18997792

  13. Decreased linear ubiquitination of NEMO and FADD on apoptosis with caspase-mediated cleavage of HOIP.

    PubMed

    Goto, Eiji; Tokunaga, Fuminori

    2017-02-09

    NF-κB is crucial to regulate immune and inflammatory responses and cell survival. LUBAC generates a linear ubiquitin chain and activates NF-κB through ubiquitin ligase (E3) activity in the HOIP subunit. Here, we show that HOIP is predominantly cleaved by caspase at Asp390 upon apoptosis, and that is subjected to proteasomal degradation. We identified that FADD, as well as NEMO, is a substrate for LUBAC. Although the C-terminal fragment of HOIP retains NF-κB activity, linear ubiquitination of NEMO and FADD decreases upon apoptosis. Moreover, the N-terminal fragment of HOIP binds with deubiquitinases, such as OTULIN and CYLD-SPATA2. These results indicate that caspase-mediated cleavage of HOIP divides critical functional regions of HOIP, and that this regulates linear (de)ubiquitination of substrates upon apoptosis.

  14. The Fe65 adaptor protein interacts through its PID1 domain with the transcription factor CP2/LSF/LBP1.

    PubMed

    Zambrano, N; Minopoli, G; de Candia, P; Russo, T

    1998-08-07

    The neural protein Fe65 possesses three putative protein-protein interaction domains: one WW domain and two phosphotyrosine interaction/phosphotyrosine binding domains (PID1 and PID2); the most C-terminal of these domains (PID2) interacts in vivo with the Alzheimer's beta-amyloid precursor protein, whereas the WW domain binds to Mena, the mammalian homolog of Drosophila-enabled protein. By the interaction trap procedure, we isolated a cDNA clone encoding a possible ligand of the N-terminal PID/PTB domain of Fe65 (PID1). Sequence analysis of this clone revealed that this ligand corresponded to the previously identified transcription factor CP2/LSF/LBP1. Co-immunoprecipitation experiments demonstrated that the interaction between Fe65 and CP2/LSF/LBP1 also takes place in vivo between the native molecules. The localization of both proteins was studied using fractionated cellular extracts. These experiments demonstrated that the various isoforms of CP2/LSF/LBP1 are differently distributed among subcellular fractions. At least one isoform, derived from alternative splicing (LSF-ID), is present outside the nucleus; Fe65 was found in both fractions. Furthermore, transfection experiments with an HA-tagged CP2/LSF/LBP1 cDNA demonstrated that Fe65 interacts also with the nuclear form of CP2/LSF/LBP1. Considering that the analysis of Fe65 distribution in fractionated cell extracts demonstrated that this protein is present both in nuclear and non-nuclear fractions, we examined the expression of Fe65 deletion mutants in the two fractions. This analysis allowed us to observe that a small region N-terminal to the WW domain is phosphorylated and is necessary for the presence of Fe65 in the nuclear fraction.

  15. The adaptor molecule signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is essential in mechanisms involving the Fyn tyrosine kinase for induction and progression of collagen-induced arthritis.

    PubMed

    Zhong, Ming-Chao; Veillette, André

    2013-11-01

    Signaling lymphocytic activation molecule-associated protein (SAP) is an Src homology 2 domain-only adaptor involved in multiple immune cell functions. It has also been linked to immunodeficiencies and autoimmune diseases, such as systemic lupus erythematosus. Here, we examined the role and mechanism of action of SAP in autoimmunity using a mouse model of autoimmune arthritis, collagen-induced arthritis (CIA). We found that SAP was essential for development of CIA in response to collagen immunization. It was also required for production of collagen-specific antibodies, which play a key role in disease pathogenesis. These effects required SAP expression in T cells, not in B cells. In mice immunized with a high dose of collagen, the activity of SAP was nearly independent of its ability to bind the protein tyrosine kinase Fyn and correlated with the capacity of SAP to promote full differentiation of follicular T helper (TFH) cells. However, with a lower dose of collagen, the role of SAP was more dependent on Fyn binding, suggesting that additional mechanisms other than TFH cell differentiation were involved. Further studies suggested that this might be due to a role of the SAP-Fyn interaction in natural killer T cell development through the ability of SAP-Fyn to promote Vav-1 activation. We also found that removal of SAP expression during progression of CIA attenuated disease severity. However, it had no effect on disease when CIA was clinically established. Together, these results indicate that SAP plays an essential role in CIA because of Fyn-independent and Fyn-dependent effects on TFH cells and, possibly, other T cell types.

  16. Arabidopsis BPM proteins function as substrate adaptors to a cullin3-based E3 ligase to affect fatty acid metabolism in plants.

    PubMed

    Chen, Liyuan; Lee, Joo Hyun; Weber, Henriette; Tohge, Takayuki; Witt, Sandra; Roje, Sanja; Fernie, Alisdair R; Hellmann, Hanjo

    2013-06-01

    Regulation of transcriptional processes is a critical mechanism that enables efficient coordination of the synthesis of required proteins in response to environmental and cellular changes. Transcription factors require accurate activity regulation because they play a critical role as key mediators assuring specific expression of target genes. In this work, we show that cullin3-based E3 ligases have the potential to interact with a broad range of ethylene response factor (ERF)/APETALA2 (AP2) transcription factors, mediated by Math-BTB/POZ (for Meprin and TRAF [tumor necrosis factor receptor associated factor] homolog)-Broad complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) proteins. The assembly with an E3 ligase causes degradation of their substrates via the 26S proteasome, as demonstrated for the wrinkled1 ERF/AP2 protein. Furthermore, loss of Math-BTB/POZ proteins widely affects plant development and causes altered fatty acid contents in mutant seeds. Overall, this work demonstrates a link between fatty acid metabolism and E3 ligase activities in plants and establishes CUL3-based E3 ligases as key regulators in transcriptional processes that involve ERF/AP2 family members.

  17. FadD Is Required for Utilization of Endogenous Fatty Acids Released from Membrane Lipids ▿ †

    PubMed Central

    Pech-Canul, Ángel; Nogales, Joaquina; Miranda-Molina, Alfonso; Álvarez, Laura; Geiger, Otto; Soto, María José; López-Lara, Isabel M.

    2011-01-01

    FadD is an acyl coenzyme A (CoA) synthetase responsible for the activation of exogenous long-chain fatty acids (LCFA) into acyl-CoAs. Mutation of fadD in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti promotes swarming motility and leads to defects in nodulation of alfalfa plants. In this study, we found that S. meliloti fadD mutants accumulated a mixture of free fatty acids during the stationary phase of growth. The composition of the free fatty acid pool and the results obtained after specific labeling of esterified fatty acids with a Δ5-desaturase (Δ5-Des) were in agreement with membrane phospholipids being the origin of the released fatty acids. Escherichia coli fadD mutants also accumulated free fatty acids released from membrane lipids in the stationary phase. This phenomenon did not occur in a mutant of E. coli with a deficient FadL fatty acid transporter, suggesting that the accumulation of fatty acids in fadD mutants occurs inside the cell. Our results indicate that, besides the activation of exogenous LCFA, in bacteria FadD plays a major role in the activation of endogenous fatty acids released from membrane lipids. Furthermore, expression analysis performed with S. meliloti revealed that a functional FadD is required for the upregulation of genes involved in fatty acid degradation and suggested that in the wild-type strain, the fatty acids released from membrane lipids are degraded by β-oxidation in the stationary phase of growth. PMID:21926226

  18. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM.

    PubMed

    Couillault, Carole; Pujol, Nathalie; Reboul, Jérôme; Sabatier, Laurence; Guichou, Jean-François; Kohara, Yuji; Ewbank, Jonathan J

    2004-05-01

    Both plants and animals respond to infection by synthesizing compounds that directly inhibit or kill invading pathogens. We report here the identification of infection-inducible antimicrobial peptides in Caenorhabditis elegans. Expression of two of these peptides, NLP-29 and NLP-31, was differentially regulated by fungal and bacterial infection and was controlled in part by tir-1, which encodes an ortholog of SARM, a Toll-interleukin 1 receptor (TIR) domain protein. Inactivation of tir-1 by RNA interference caused increased susceptibility to infection. We identify protein partners for TIR-1 and show that the small GTPase Rab1 and the f subunit of ATP synthase participate specifically in the control of antimicrobial peptide gene expression. As the activity of tir-1 was independent of the single nematode Toll-like receptor, TIR-1 may represent a component of a previously uncharacterized, but conserved, innate immune signaling pathway.

  19. Palmitic acid increases pro-oxidant adaptor protein p66Shc expression and affects vascularization factors in angiogenic mononuclear cells: Action of resveratrol.

    PubMed

    Favre, Julie; Yildirim, Cansu; Leyen, Thomas A; Chen, Weena J Y; van Genugten, Renate E; van Golen, Larissa W; Garcia-Vallejo, Juan-Jesus; Musters, Rene; Baggen, Josefien; Fontijn, Ruud; van der Pouw Kraan, Tineke; Serné, Erik; Koolwijk, Pieter; Diamant, Michaela; Horrevoets, Anton J G

    2015-12-01

    A defect in neo-vascularization process involving circulating angiogenic mononuclear cells (CACs) dysfunction is associated with diabetes. We showed that oxidative stress was elevated in CACs cultured from blood of individuals with metabolic syndrome (MetS) and diabetes. We then assessed the action of palmitic acid (PA), a deregulated and increased NEFA in metabolic disorders, focusing on its oxidant potential. We observed that the phyto-polyphenol resveratrol normalized oxidative stress both in CACs isolated from MetS patients or treated with PA. Resveratrol further decreased the deleterious action of PA on gene expression of vascularization factors (TNFα, VEGF-A, SDF1α, PECAM-1, VEGFR2, Tie2 and CXCR4) and improved CAC motility. Particularly, resveratrol abolished the PA-induced over-expression of the pro-oxidant protein p66Shc. Neither KLF2 nor SIRT1, previously shown in resveratrol and p66Shc action, was directly involved. Silencing p66Shc normalized PA action on VEGF-A and TNFα specifically, without abolishing the PA-induced oxidative stress, which suggests a deleterious role of p66Shc independently of any major modulation of the cellular oxidative status in a high NEFA levels context. Besides showing that resveratrol reverses PA-induced harmful effects on human CAC function, certainly through profound cellular modifications, we establish p66Shc as a major therapeutic target in metabolic disorders, independent from glycemic control.

  20. The E3 Ubiquitin Ligase Adaptor Protein Skp1 Is Glycosylated by an Evolutionarily Conserved Pathway That Regulates Protist Growth and Development*♦

    PubMed Central

    Rahman, Kazi; Zhao, Peng; Mandalasi, Msano; van der Wel, Hanke; Wells, Lance; Blader, Ira J.; West, Christopher M.

    2016-01-01

    Toxoplasma gondii is a protist parasite of warm-blooded animals that causes disease by proliferating intracellularly in muscle and the central nervous system. Previous studies showed that a prolyl 4-hydroxylase related to animal HIFα prolyl hydroxylases is required for optimal parasite proliferation, especially at low O2. We also observed that Pro-154 of Skp1, a subunit of the Skp1/Cullin-1/F-box protein (SCF)-class of E3-ubiquitin ligases, is a natural substrate of this enzyme. In an unrelated protist, Dictyostelium discoideum, Skp1 hydroxyproline is modified by five sugars via the action of three glycosyltransferases, Gnt1, PgtA, and AgtA, which are required for optimal O2-dependent development. We show here that TgSkp1 hydroxyproline is modified by a similar pentasaccharide, based on mass spectrometry, and that assembly of the first three sugars is dependent on Toxoplasma homologs of Gnt1 and PgtA. Reconstitution of the glycosyltransferase reactions in extracts with radioactive sugar nucleotide substrates and appropriate Skp1 glycoforms, followed by chromatographic analysis of acid hydrolysates of the reaction products, confirmed the predicted sugar identities as GlcNAc, Gal, and Fuc. Disruptions of gnt1 or pgtA resulted in decreased parasite growth. Off target effects were excluded based on restoration of the normal glycan chain and growth upon genetic complementation. By analogy to Dictyostelium Skp1, the mechanism may involve regulation of assembly of the SCF complex. Understanding the mechanism of Toxoplasma Skp1 glycosylation is expected to help develop it as a drug target for control of the pathogen, as the glycosyltransferases are absent from mammalian hosts. PMID:26719340

  1. The E3 Ubiquitin Ligase Adaptor Protein Skp1 Is Glycosylated by an Evolutionarily Conserved Pathway That Regulates Protist Growth and Development.

    PubMed

    Rahman, Kazi; Zhao, Peng; Mandalasi, Msano; van der Wel, Hanke; Wells, Lance; Blader, Ira J; West, Christopher M

    2016-02-26

    Toxoplasma gondii is a protist parasite of warm-blooded animals that causes disease by proliferating intracellularly in muscle and the central nervous system. Previous studies showed that a prolyl 4-hydroxylase related to animal HIFα prolyl hydroxylases is required for optimal parasite proliferation, especially at low O2. We also observed that Pro-154 of Skp1, a subunit of the Skp1/Cullin-1/F-box protein (SCF)-class of E3-ubiquitin ligases, is a natural substrate of this enzyme. In an unrelated protist, Dictyostelium discoideum, Skp1 hydroxyproline is modified by five sugars via the action of three glycosyltransferases, Gnt1, PgtA, and AgtA, which are required for optimal O2-dependent development. We show here that TgSkp1 hydroxyproline is modified by a similar pentasaccharide, based on mass spectrometry, and that assembly of the first three sugars is dependent on Toxoplasma homologs of Gnt1 and PgtA. Reconstitution of the glycosyltransferase reactions in extracts with radioactive sugar nucleotide substrates and appropriate Skp1 glycoforms, followed by chromatographic analysis of acid hydrolysates of the reaction products, confirmed the predicted sugar identities as GlcNAc, Gal, and Fuc. Disruptions of gnt1 or pgtA resulted in decreased parasite growth. Off target effects were excluded based on restoration of the normal glycan chain and growth upon genetic complementation. By analogy to Dictyostelium Skp1, the mechanism may involve regulation of assembly of the SCF complex. Understanding the mechanism of Toxoplasma Skp1 glycosylation is expected to help develop it as a drug target for control of the pathogen, as the glycosyltransferases are absent from mammalian hosts.

  2. Phosphorylation of the adaptor protein SH2B1β regulates its ability to enhance growth hormone-dependent macrophage motility.

    PubMed

    Su, Hsiao-Wen; Lanning, Nathan J; Morris, David L; Argetsinger, Lawrence S; Lumeng, Carey N; Carter-Su, Christin

    2013-04-15

    Previous studies have shown that growth hormone (GH) recruits the adapter protein SH2B1β to the GH-activated, GH receptor-associated tyrosine kinase JAK2, implicating SH2B1β in GH-dependent actin cytoskeleton remodeling, and suggesting that phosphorylation at serines 161 and 165 in SH2B1β releases SH2B1β from the plasma membrane. Here, we examined the role of SH2B1β in GH regulation of macrophage migration. We show that GH stimulates migration of cultured RAW264.7 macrophages, and primary cultures of peritoneal and bone marrow-derived macrophages. SH2B1β overexpression enhances, whereas SH2B1 knockdown inhibits, GH-dependent motility of RAW macrophages. At least two independent mechanisms regulate the SH2B1β-mediated changes in motility. In response to GH, tyrosines 439 and 494 in SH2B1β are phosphorylated. Mutating these tyrosines in SH2B1β decreases both basal and GH-stimulated macrophage migration. In addition, mutating the polybasic nuclear localization sequence (NLS) in SH2B1β or creating the phosphomimetics SH2B1β(S161E) or SH2B1β(S165E), all of which release SH2B1β from the plasma membrane, enhances macrophage motility. Conversely, SH2B1β(S161/165A) exhibits increased localization at the plasma membrane and decreased macrophage migration. Mutating the NLS or the nearby serine residues does not alter GH-dependent phosphorylation on tyrosines 439 and 494 in SH2B1β. Mutating tyrosines 439 and 494 does not affect localization of SH2B1β at the plasma membrane or movement of SH2B1β into focal adhesions. Taken together, these results suggest that SH2B1β enhances GH-stimulated macrophage motility via mechanisms involving phosphorylation of SH2B1β on tyrosines 439 and 494 and movement of SH2B1β out of the plasma membrane (e.g. as a result of phosphorylation of serines 161 and 165).

  3. Co-Operation Between FADD and Bin1 in Prostate Cancer Apoptosis

    DTIC Science & Technology

    2006-04-01

    F., Rao, A, Barclay, W ., Thomas, L.R., Grant, K.W, Cramer, S.D. and Thorburn, A. (2005) “Selective inactivation of a FADD-dependent apoptosis and...Brouck- aert G, Van Loo G, et al. Cell Death Differ 2001;8(8):829–40. [53] Vercammen D, Brouckaert G, Denecker G, Van de Craen M, Declercq W , Fiers W ...et al. J Exp Med 1998;188(5):919–30. [54] Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W , et al. J Exp Med 1998;187(9):1477

  4. Analysis of methylation and mRNA expression status ofFADD andFAS genes in patients with oral squamous cell carcinoma

    PubMed Central

    Saberi, Eshaghali; Jamali, Sara; Rigi-Ladez, Mohammad A.; Augend, Arsalan

    2014-01-01

    Background: Apoptosis is an important mechanism that is responsible for the physiological deletion of harmful, damaged, or unwanted cells. Changed expression of apoptosis-related genes may lead to abnormal cell proliferation and finally to tumorigenesis. Our aims were to analyze the promoter methylation and gene expression profiles of FADD and FAS genes in risk of OSCC. Material and Methods: we analyze the promoter methylation status of FADD and FAS genes using Methylation - Specific PCR (MSP) in 86 OSCC tissues were kept in paraffin and 68 normal oral tissues applied as control. Also, FADD and FAS genes expression were analyzed in 19 cases and 20 normal specimens by Real-Time Reverse-Transcripts PCR. Results: Aberrant promoter methylation of FADD and FAS genes were detected in 12.79 % (11 of 86) and 60.46 % (52 of 86) of the OSCC cases, respectively, with a significant difference between cases and healthy controls for both FADD and FAS genes (P<0.001). The gene expression analysis showed statistically significant difference between cases and healthy controls for both FADD (p<0.02) and FAS (p<0.007) genes. Conclusions: To the best our knowledge, the data of this study are the first report regarding, the effect of promoter hypermethylation of the FADD and FAS genes in development of OSCC. To confirm the data, it is recommended doing further study in large sample sizes in various genetic populations. Key words:OSCC, FADD, FAS, DNA methylation, gene expression. PMID:25129245

  5. Adaptor assembly for coupling turbine blades to rotor disks

    SciTech Connect

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell

    2014-09-23

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is described. The adaptor assembly includes a turbine blade having a blade root and an adaptor body having an adaptor root. The adaptor body defines a slot having an open end configured to receive the blade root of the turbine blade such that the adaptor root of the adaptor body and the blade root of the turbine blade are adjacent to one another when the blade root of the turbine blade is positioned within the slot. Both the adaptor root of the adaptor body and the blade root of the turbine blade are configured to be received within the root slot of the rotor disk.

  6. THREADED ADAPTOR FOR LUGGED PIPE ENDS

    DOEpatents

    Robb, J.E.

    1962-06-01

    An adaptor is designed for enabling a threaded part to be connected to a member at a region having lugs normally receiving bayonet slots of another part for attachment of the latter. It has been found desirable to replace a closure cap connected in a bayonet joint to the end of a coolant tube containing nuclear- reactor fuel elements, with a threaded valve. An adaptor is used which has J- slots receiving lugs on the end of the reactor tube, a thread for connection with the valve, and gear-tooth section enabling a gear-type of tool to rotate the adaptor to seal the valve to the end of the reactor tube. (AEC)

  7. Styles of Creativity: Adaptors and Innovators in a Singapore Context

    ERIC Educational Resources Information Center

    Ee, Jessie; Seng, Tan Oon; Kwang, Ng Aik

    2007-01-01

    Kirton (1976) described two creative styles, namely adaptors and innovators. Adaptors prefer to "do things better" whilst, innovators prefer to "do things differently". This study explored the relationship between two creative styles (adaptor and innovator) and the Big Five personality traits (extraversion, agreeableness, conscientiousness,…

  8. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  9. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  10. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  11. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  12. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  13. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  14. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  15. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  16. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  17. DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides.

    PubMed

    Dowler, S; Currie, R A; Downes, C P; Alessi, D R

    1999-08-15

    We have identified a novel 280 amino acid protein which contains a putative myristoylation site at its N-terminus followed by an Src homology (SH2) domain and a pleckstrin homology (PH) domain at its C-terminus. It has been termed dual adaptor for phosphotyrosine and 3-phosphoinositides (DAPP1). DAPP1 is widely expressed and exhibits high-affinity interactions with PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2), but not with other phospholipids tested. These observations predict that DAPP1 will interact with both tyrosine phosphorylated proteins and 3-phosphoinositides and may therefore play a role in regulating the location and/or activity of such proteins(s) in response to agonists that elevate PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2).

  18. TIR domain-containing adaptor SARM is a late addition to the ongoing microbe-host dialog.

    PubMed

    Zhang, Qing; Zmasek, Christian M; Cai, Xiaohui; Godzik, Adam

    2011-04-01

    Toll/interleukin-1 receptor (TIR) domain-containing proteins play important roles in defense against pathogens in both animals and plants, connecting the immunity signaling pathways via a chain of specific protein-protein interactions. Among them is SARM, the only TIR domain-containing adaptor that can negatively regulate TLR signaling. By extensive phylogenetic analysis, we show here that SARM is closely related to bacterial proteins with TIR domains, suggesting that this family has a different evolutionary history from other animal TIR-containing adaptors, possibly emerging via a lateral gene transfer from bacteria to animals. We also show evidence of several similar, independent transfer events, none of which, however, survived in vertebrates. An evolutionary relationship between the animal SARM adaptor and bacterial proteins with TIR domains illustrates the possible role that bacterial TIR-containing proteins play in regulating eukaryotic immune responses and how this mechanism was possibly adapted by the eukaryotes themselves.

  19. Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation

    SciTech Connect

    Reider, Amanda; Barker, Sarah L.; Mishra, Sanjay K.; Im, Young Jun; Maldonado-Báez, Lymarie; Hurley, James H.; Traub, Linton M.; Wendland, Beverly

    2010-10-28

    Internalization of diverse transmembrane cargos from the plasma membrane requires a similarly diverse array of specialized adaptors, yet only a few adaptors have been characterized. We report the identification of the muniscin family of endocytic adaptors that is conserved from yeast to human beings. Solving the structures of yeast muniscin domains confirmed the unique combination of an N-terminal domain homologous to the crescent-shaped membrane-tubulating EFC/F-BAR domains and a C-terminal domain homologous to cargo-binding {mu} homology domains ({mu}HDs). In vitro and in vivo assays confirmed membrane-tubulation activity for muniscin EFC/F-BAR domains. The {mu}HD domain has conserved interactions with the endocytic adaptor/scaffold Ede1/eps15, which influences muniscin localization. The transmembrane protein Mid2, earlier implicated in polarized Rho1 signalling, was identified as a cargo of the yeast adaptor protein. These and other data suggest a model in which the muniscins provide a combined adaptor/membrane-tubulation activity that is important for regulating endocytosis.

  20. Neuronal Roles of the Bicaudal D Family of Motor Adaptors.

    PubMed

    Budzinska, M; Wicher, K B; Terenzio, M

    2017-01-01

    All cell types rely on active intracellular cargo transport to shuttle essential cellular components such as proteins, lipids, RNA, and even organelles from the center to the periphery and vice versa. Additionally, several signaling pathways take advantage of intracellular transport to propagate their signals by moving activated receptors and protein effectors to specific locations inside the cell. Neurons particularly, being a very polarized cell type, are highly dependent on molecular motors for the anterograde and retrograde delivery of essential cellular components and signaling molecules. For these reasons, motor adaptor proteins have been extensively investigated in regard to their role in physiology and pathology of the nervous system. In this chapter, we will concentrate on a family of motor adaptor proteins, Bicaudal D (BICD), and their function in the context of the nervous system. BicD was originally described as essential for the correct localization of maternal mRNAs in Drosophila's oocyte and a regulator of the Golgi to ER retrograde transport in mammalian cells. Both mammalian BICD1 and BICD2 are highly expressed in the nervous system during development, and their importance in neuronal homeostasis has been recently under scrutiny. Several mutations in BICD2 have been linked to the development of neuromuscular diseases, and BICD2 knockout (KO) mice display migration defects of the radial cerebellar granule cells. More in line with the overall topic of this book, BICD1 was identified as a novel regulator of neurotrophin (NT) signaling as its deletion leads to defective sorting of ligand-activated NT receptors with dramatic consequences on the NT-mediated signaling pathway.

  1. Scaffold functions of 14-3-3 adaptors in B cell immunoglobulin class switch DNA recombination.

    PubMed

    Lam, Tonika; Thomas, Lisa M; White, Clayton A; Li, Guideng; Pone, Egest J; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.

  2. Adaptor assembly for coupling turbine blades to rotor disks

    SciTech Connect

    Delvaux, John McConnel; Garcia-Crespo, Andres Jose; Joyce, Kilmer Joseph; Tindell, Allan Randall

    2014-06-03

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is disclosed. The adaptor assembly may generally include an adaptor body having a root configured to be received within the root slot. The adaptor body may also define a slot having an open end configured to receive the blade root. The adaptor body may further define a channel. The adaptor assembly may also include a plate having an outwardly extending foot. The foot may be configured to be received within the channel. Additionally, the plate may be configured to cover at least a portion of the open end of the slot when the foot is received within the channel.

  3. An organized co-assembly of clathrin adaptors is essential for endocytosis.

    PubMed

    Skruzny, Michal; Desfosses, Ambroise; Prinz, Simone; Dodonova, Svetlana O; Gieras, Anna; Uetrecht, Charlotte; Jakobi, Arjen J; Abella, Marc; Hagen, Wim J H; Schulz, Joachim; Meijers, Rob; Rybin, Vladimir; Briggs, John A G; Sachse, Carsten; Kaksonen, Marko

    2015-04-20

    Clathrin-mediated endocytosis, the main trafficking route from the plasma membrane to the cytoplasm, is critical to many fundamental cellular processes. Clathrin, coupled to the membrane by adaptor proteins, is thought to play a major structural role in endocytosis by self-assembling into a cage-like lattice around the forming vesicle. Although clathrin adaptors are essential for endocytosis, little is known about their structural role in this process. Here we show that the membrane-binding domains of two conserved clathrin adaptors, Sla2 and Ent1, co-assemble in a PI(4,5)P2-dependent manner to form organized lattices on membranes. We determined the structure of the co-assembled lattice by electron cryo-microscopy and designed mutations that specifically impair the lattice formation in vitro. We show that these mutations block endocytosis in vivo. We suggest that clathrin adaptors not only link the polymerized clathrin to the membrane but also form an oligomeric structure, which is essential for membrane remodeling during endocytosis.

  4. SCIMP is a transmembrane non-TIR TLR adaptor that promotes proinflammatory cytokine production from macrophages

    PubMed Central

    Luo, Lin; Bokil, Nilesh J.; Wall, Adam A.; Kapetanovic, Ronan; Lansdaal, Natalie M.; Marceline, Faustine; Burgess, Belinda J.; Tong, Samuel J.; Guo, Zhong; Alexandrov, Kirill; Ross, Ian L.; Hibbs, Margaret L.; Stow, Jennifer L.; Sweet, Matthew J.

    2017-01-01

    Danger signals activate Toll-like receptors (TLRs), thereby initiating inflammatory responses. Canonical TLR signalling, via Toll/Interleukin-1 receptor domain (TIR)-containing adaptors and proinflammatory transcription factors such as NF-κB, occurs in many cell types; however, additional mechanisms are required for specificity of inflammatory responses in innate immune cells. Here we show that SCIMP, an immune-restricted, transmembrane adaptor protein (TRAP), promotes selective proinflammatory cytokine responses by direct modulation of TLR4. SCIMP is a non-TIR-containing adaptor, binding directly to the TLR4-TIR domain in response to lipopolysaccharide. In macrophages, SCIMP is constitutively associated with the Lyn tyrosine kinase, is required for tyrosine phosphorylation of TLR4, and facilitates TLR-inducible production of the proinflammatory cytokines IL-6 and IL-12p40. Point mutations in SCIMP abrogating TLR4 binding also prevent SCIMP-mediated cytokine production. SCIMP is, therefore, an immune-specific TLR adaptor that shapes host defence and inflammation. PMID:28098138

  5. Novel Toll/IL-1 Receptor Homologous Region Adaptors Act as Negative Regulators in Amphioxus TLR Signaling.

    PubMed

    Peng, Jian; Tao, Xin; Li, Rui; Hu, Jingru; Ruan, Jie; Wang, Ruihua; Yang, Manyi; Yang, Rirong; Dong, Xiangru; Chen, Shangwu; Xu, Anlong; Yuan, Shaochun

    2015-10-01

    Studies have shown that the basal chordate amphioxus possesses an extraordinarily complex TLR system, including 39 TLRs and at least 40 Toll/IL-1R homologous region (TIR) adaptors. Besides homologs to MyD88 and TIR domain-containing adaptor molecule (TICAM), most amphioxus TIR adaptors exhibit domain architectures that are not observed in other species. To reveal how these novel TIR adaptors function in amphioxus Branchiostoma belcheri tsingtauense (bbt), four representatives, bbtTIRA, bbtTIRB, bbtTIRC, and bbtTIRD, were selected for functional analyses. We found bbtTIRA to show a unique inhibitory role in amphioxus TICAM-mediated pathway by interacting with bbtTICAM and bbt receptor interacting protein 1b, whereas bbtTIRC specifically inhibits the amphioxus MyD88-dependent pathway by interacting with bbtMyD88 and depressing the polyubiquitination of bbt TNFR-associated factor 6. Although both bbtTIRB and bbtTIRD are located on endosomes, the TIR domain of bbtTIRB can interact with bbtMyD88 in the cytosol, whereas the TIR domain of bbtTIRD is enclosed in endosome, suggesting that bbtTIRD may be a redundant gene in amphioxus. This study indicated that most expanded TIR adaptors play nonredundant regulatory roles in amphioxus TLR signaling, adding a new layer to understanding the diversity and complexity of innate immunity at basal chordate.

  6. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor... entitled “Guidance for the Submission of Research and Marketing Applications for Permanent Pacemaker...

  7. Meta-Analyses of Microarray Datasets Identifies ANO1 and FADD as Prognostic Markers of Head and Neck Cancer

    PubMed Central

    Reddy, Ram Bhupal; Bhat, Anupama Rajan; James, Bonney Lee; Govindan, Sindhu Valiyaveedan; Mathew, Rohit; DR, Ravindra; Hedne, Naveen; Illiayaraja, Jeyaram; Kekatpure, Vikram; Khora, Samanta S.; Hicks, Wesley; Tata, Pramila; Kuriakose, Moni A.; Suresh, Amritha

    2016-01-01

    The head and neck squamous cell carcinoma (HNSCC) transcriptome has been profiled extensively, nevertheless, identifying biomarkers that are clinically relevant and thereby with translational benefit, has been a major challenge. The objective of this study was to use a meta-analysis based approach to catalog candidate biomarkers with high potential for clinical application in HNSCC. Data from publically available microarray series (N = 20) profiled using Agilent (4X44K G4112F) and Affymetrix (HGU133A, U133A_2, U133Plus 2) platforms was downloaded and analyzed in a platform/chip-specific manner (GeneSpring software v12.5, Agilent, USA). Principal Component Analysis (PCA) and clustering analysis was carried out iteratively for segregating outliers; 140 normal and 277 tumor samples from 15 series were included in the final analysis. The analyses identified 181 differentially expressed, concordant and statistically significant genes; STRING analysis revealed interactions between 122 of them, with two major gene clusters connected by multiple nodes (MYC, FOS and HSPA4). Validation in the HNSCC-specific database (N = 528) in The Cancer Genome Atlas (TCGA) identified a panel (ECT2, ANO1, TP63, FADD, EXT1, NCBP2) that was altered in 30% of the samples. Validation in treatment naïve (Group I; N = 12) and post treatment (Group II; N = 12) patients identified 8 genes significantly associated with the disease (Area under curve>0.6). Correlation with recurrence/re-recurrence showed ANO1 had highest efficacy (sensitivity: 0.8, specificity: 0.6) to predict failure in Group I. UBE2V2, PLAC8, FADD and TTK showed high sensitivity (1.00) in Group I while UBE2V2 and CRYM were highly sensitive (>0.8) in predicting re-recurrence in Group II. Further, TCGA analysis showed that ANO1 and FADD, located at 11q13, were co-expressed at transcript level and significantly associated with overall and disease-free survival (p<0.05). The meta-analysis approach adopted in this study has identified

  8. The myxoma virus m-t5 ankyrin repeat host range protein is a novel adaptor that coordinately links the cellular signaling pathways mediated by Akt and Skp1 in virus-infected cells.

    PubMed

    Werden, Steven J; Lanchbury, Jerry; Shattuck, Donna; Neff, Chris; Dufford, Max; McFadden, Grant

    2009-12-01

    Most poxviruses express multiple proteins containing ankyrin (ANK) repeats accounting for a large superfamily of related but unique determinants of poxviral tropism. Recently, select members of this novel family of poxvirus proteins have drawn considerable attention for their potential roles in modulating intracellular signaling networks during viral infection. The rabbit-specific poxvirus, myxoma virus (MYXV), encodes four unique ANK repeat proteins, termed M-T5, M148, M149, and M150, all of which include a carboxy-terminal PRANC domain which closely resembles a cellular protein motif called the F-box domain. Here, we show that each MYXV-encoded ANK repeat protein, including M-T5, interacts directly with the Skp1 component of the host SCF ubiquitin ligase complex, and that the binding of M-T5 to cullin 1 is indirect via binding to Skp1 in the host SCF complex. To understand the significance of these virus-host protein interactions, the various binding domains of M-T5 were mapped. The N-terminal ANK repeats I and II were identified as being important for interaction with Akt, whereas the C-terminal PRANC/F-box-like domain was essential for binding to Skp1. We also report that M-T5 can bind Akt and the host SCF complex (via Skp1) simultaneously in MYXV-infected cells. Finally, we report that M-T5 specifically mediates the relocalization of Akt from the nucleus to the cytoplasm during infection with the wild-type MYXV, but not the M-T5 knockout version of the virus. These results indicate that ANK/PRANC proteins play a critical role in reprogramming disparate cellular signaling cascades to establish a new cellular environment more favorable for virus replication.

  9. Systematic VCP-UBXD Adaptor Network Proteomics Identifies a Role for UBXN10 in Regulating Ciliogenesis

    PubMed Central

    Raman, Malavika; Sergeev, Mikhail; Garnaas, Maija; Lydeard, John R.; Huttlin, Edward L.; Goessling, Wolfram; Shah, Jagesh V.; Harper, J. Wade

    2015-01-01

    The AAA-ATPase VCP (also known as p97 or CDC48) uses ATP hydrolysis to “segregate” ubiquitinated proteins from their binding partners. VCP acts via UBX-domain containing adaptors that provide target specificity, but targets and functions of UBXD proteins remain poorly understood. Through systematic proteomic analysis of UBXD proteins in human cells, we reveal a network of over 195 interacting proteins, implicating VCP in diverse cellular pathways. We have explored one such complex between an unstudied adaptor UBXN10 and the intraflagellar transport B (IFT-B) complex, which regulates anterograde transport into cilia. UBXN10 localizes to cilia in a VCP-dependent manner and both VCP and UBXN10 are required for ciliogenesis. Pharmacological inhibition of VCP destabilized the IFT-B complex and increased trafficking rates. Depletion of UBXN10 in zebrafish embryos causes defects in left-right asymmetry, which depends on functional cilia. This study provides a resource for exploring the landscape of UBXD proteins in biology and identifies an unexpected requirement for VCP-UBXN10 in ciliogenesis. PMID:26389662

  10. Elucidation of Novel Structural Scaffold in Rohu TLR2 and Its Binding Site Analysis with Peptidoglycan, Lipoteichoic Acid and Zymosan Ligands, and Downstream MyD88 Adaptor Protein

    PubMed Central

    Sahoo, Bikash Ranjan; Basu, Madhubanti; Swain, Banikalyan; Dikhit, Manas Ranjan; Jayasankar, Pallipuram; Samanta, Mrinal

    2013-01-01

    Toll-like receptors (TLRs) play key roles in sensing wide array of microbial signatures and induction of innate immunity. TLR2 in fish resembles higher eukaryotes by sensing peptidoglycan (PGN) and lipoteichoic acid (LTA) of bacterial cell wall and zymosan of yeasts. However, in fish TLR2, no study yet describes the ligand binding motifs in the leucine rich repeat regions (LRRs) of the extracellular domain (ECD) and important amino acids in TLR2-TIR (toll/interleukin-1 receptor) domain that could be engaged in transmitting downstream signaling. We predicted these in a commercially important freshwater fish species rohu (Labeo rohita) by constructing 3D models of TLR2-ECD, TLR2-TIR, and MyD88-TIR by comparative modeling followed by 40 ns (nanosecond) molecular dynamics simulation (MDS) for TLR2-ECD and 20 ns MDS for TLR2-TIR and MyD88-TIR. Protein (TLR2-ECD)–ligands (PGN, LTA, and zymosan) docking in rohu by AutoDock4.0, FlexX2.1, and GOLD4.1 anticipated LRR16–19, LRR12–14, and LRR20-CT as the most important ligand binding motifs. Protein (TLR2-TIR)—protein (MyD88-TIR) interaction by HADDOCK and ZDOCK predicted BB loop, αB-helix, αC-helix, and CD loop in TLR2-TIR and BB loop, αB-helix, and CD loop in MyD88-TIR as the critical binding domains. This study provides ligands recognition and downstream signaling. PMID:23956969

  11. Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission.

    PubMed

    Palmer, Catherine S; Elgass, Kirstin D; Parton, Robert G; Osellame, Laura D; Stojanovski, Diana; Ryan, Michael T

    2013-09-20

    Drp1 (dynamin-related protein 1) is recruited to both mitochondrial and peroxisomal membranes to execute fission. Fis1 and Mff are Drp1 receptor/effector proteins of mitochondria and peroxisomes. Recently, MiD49 and MiD51 were also shown to recruit Drp1 to the mitochondrial surface; however, different reports have ascribed opposing roles in fission and fusion. Here, we show that MiD49 or MiD51 overexpression blocked fission by acting in a dominant-negative manner by sequestering Drp1 specifically at mitochondria, causing unopposed fusion events at mitochondria along with elongation of peroxisomes. Mitochondrial elongation caused by MiD49/51 overexpression required the action of fusion mediators mitofusins 1 and 2. Furthermore, at low level overexpression when MiD49 and MiD51 form discrete foci at mitochondria, mitochondrial fission events still occurred. Unlike Fis1 and Mff, MiD49 and MiD51 were not targeted to the peroxisomal surface, suggesting that they specifically act to facilitate Drp1-directed fission at mitochondria. Moreover, when MiD49 or MiD51 was targeted to the surface of peroxisomes or lysosomes, Drp1 was specifically recruited to these organelles. Moreover, the Drp1 recruitment activity of MiD49/51 appeared stronger than that of Mff or Fis1. We conclude that MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and suggest that they provide specificity to the division of mitochondria.

  12. In vitro and in vivo Analysis of the Binding of the C Terminus of the HDL Receptor Scavenger Receptor Class B type I (SR-BI) to the PDZ1 Domain of its Cytoplasmic Adaptor Protein PDZK1

    SciTech Connect

    O Kocher; G Birrane; K Tsukamoto; S Fenske; A Yesilaltay; R Pal; K Daniels; J Ladias; M Krieger

    2011-12-31

    The PDZ1 domain of the four PDZ domain-containing protein PDZK1 has been reported to bind the C terminus of the HDL receptor scavenger receptor class B, type I (SR-BI), and to control hepatic SR-BI expression and function. We generated wild-type (WT) and mutant murine PDZ1 domains, the mutants bearing single amino acid substitutions in their carboxylate binding loop (Lys(14)-Xaa(4)-Asn(19)-Tyr-Gly-Phe-Phe-Leu(24)), and measured their binding affinity for a 7-residue peptide corresponding to the C terminus of SR-BI ((503)VLQEAKL(509)). The Y20A and G21Y substitutions abrogated all binding activity. Surprisingly, binding affinities (K(d)) of the K14A and F22A mutants were 3.2 and 4.0 ?M, respectively, similar to 2.6 ?M measured for the WT PDZ1. To understand these findings, we determined the high resolution structure of WT PDZ1 bound to a 5-residue sequence from the C-terminal SR-BI ((505)QEAKL(509)) using x-ray crystallography. In addition, we incorporated the K14A and Y20A substitutions into full-length PDZK1 liver-specific transgenes and expressed them in WT and PDZK1 knock-out mice. In WT mice, the transgenes did not alter endogenous hepatic SR-BI protein expression (intracellular distribution or amount) or lipoprotein metabolism (total plasma cholesterol, lipoprotein size distribution). In PDZK1 knock-out mice, as expected, the K14A mutant behaved like wild-type PDZK1 and completely corrected their hepatic SR-BI and plasma lipoprotein abnormalities. Unexpectedly, the 10-20-fold overexpressed Y20A mutant also substantially, but not completely, corrected these abnormalities. The results suggest that there may be an additional site(s) within PDZK1 that bind(s) SR-BI and mediate(s) productive SR-BI-PDZK1 interaction previously attributed exclusively to the canonical binding of the C-terminal SR-BI to PDZ1.

  13. A liquid crystal of ascorbyl palmitate, used as vaccine platform, provides sustained release of antigen and has intrinsic pro-inflammatory and adjuvant activities which are dependent on MyD88 adaptor protein.

    PubMed

    Sánchez Vallecillo, María F; Minguito de la Escalera, María M; Aguirre, María V; Ullio Gamboa, Gabriela V; Palma, Santiago D; González-Cintado, Leticia; Chiodetti, Ana L; Soldano, Germán; Morón, Gabriel; Allemandi, Daniel A; Ardavín, Carlos; Pistoresi-Palencia, María C; Maletto, Belkys A

    2015-09-28

    Modern subunit vaccines require the development of new adjuvant strategies. Recently, we showed that CpG-ODN formulated with a liquid crystal nanostructure formed by self-assembly of 6-O-ascorbyl palmitate (Coa-ASC16) is an attractive system for promoting an antigen-specific immune response to weak antigens. Here, we showed that after subcutaneous injection of mice with near-infrared fluorescent dye-labeled OVA antigen formulated with Coa-ASC16, the dye-OVA was retained at the injection site for a longer period than when soluble dye-OVA was administered. Coa-ASC16 alone elicited a local inflammation, but how this material triggers this response has not been described yet. Although it is known that some materials used as a platform are not immunologically inert, very few studies have directly focused on this topic. In this study, we explored the underlying mechanisms concerning the interaction between Coa-ASC16 and the immune system and we found that the whole inflammatory response elicited by Coa-ASC16 (leukocyte recruitment and IL-1β, IL-6 and IL-12 production) was dependent on the MyD88 protein. TLR2, TLR4, TLR7 and NLRP3-inflammasome signaling were not required for induction of this inflammatory response. Coa-ASC16 induced local release of self-DNA, and in TLR9-deficient mice IL-6 production was absent. In addition, Coa-ASC16 revealed an intrinsic adjuvant activity which was affected by MyD88 and IL-6 absence. Taken together these results indicate that Coa-ASC16 used as a vaccine platform is effective due to the combination of the controlled release of antigen and its intrinsic pro-inflammatory activity. Understanding how Coa-ASC16 works might have significant implications for rational vaccine design.

  14. Serine residues in the LAT adaptor are essential for TCR-dependent signal transduction.

    PubMed

    Martínez-Florensa, Mario; García-Blesa, Antonio; Yélamos, José; Muñoz-Suano, Alba; Domínguez-Villar, Margarita; Valdor, Rut; Alonso, Antonio; García-Cózar, Francisco; Aparicio, Pedro; Malissen, Bernard; Aguado, Enrique

    2011-01-01

    The adaptor protein LAT has a prominent role in the transduction of intracellular signals elicited by the TCR/CD3 complex. Upon TCR engagement, LAT becomes tyrosine-phosphorylated and thereby, recruits to the membrane several proteins implicated in the activation of downstream signaling pathways. However, little is known about the role of other conserved motifs present in the LAT sequence. Here, we report that the adaptor LAT contains several conserved serine-based motifs, which are essential for proper signal transduction through the TCR. Mutation of these serine motifs in the human T cell line Jurkat prevents proper calcium influx, MAPK activation, and IL-2 production in response to TCR/CD3 stimulation. Moreover, this mutant form of LAT has a reduced ability to bind to PLC-γ1 and SLP-76, although phosphorylation of tyrosine residues 132, 171, and 191 is not decreased, raising a possible role for the serine-based motifs of LAT for the binding of important partners. The functional role of LAT serine-based motifs in signal transduction could be mediated by an effect on tyrosine phosphorylation, as their mutation significantly diminishes the phosphorylation of tyrosine residue 226. In addition, these serine motifs seem to have a regulatory role, given that upon their mutation, ZAP-70 shows enhanced phosphorylation. Therefore, the LAT serine-based motifs likely regulate signaling pathways that are essential for T cell physiology.

  15. Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays

    DOEpatents

    Li, Zheng; Chen, Wei

    2016-07-05

    A drift detector array, preferably a silicon drift detector (SDD) array, that uses a low current biasing adaptor is disclosed. The biasing adaptor is customizable for any desired geometry of the drift detector single cell with minimum drift time of carriers. The biasing adaptor has spiral shaped ion-implants that generate the desired voltage profile. The biasing adaptor can be processed on the same wafer as the drift detector array and only one biasing adaptor chip/side is needed for one drift detector array to generate the voltage profiles on the front side and back side of the detector array.

  16. NFκB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP

    PubMed Central

    Kreuz, Sebastian; Siegmund, Daniela; Rumpf, Jost-Julian; Samel, Dierk; Leverkus, Martin; Janssen, Ottmar; Häcker, Georg; Dittrich-Breiholz, Oliver; Kracht, Michael; Scheurich, Peter; Wajant, Harald

    2004-01-01

    Fas (APO-1/CD95) is the prototypic death receptor, and the molecular mechanisms of Fas-induced apoptosis are comparably well understood. Here, we show that Fas activates NFκB via a pathway involving RIP, FADD, and caspase-8. Remarkably, the enzymatic activity of the latter was dispensable for Fas-induced NFκB signaling pointing to a scaffolding-related function of caspase-8 in nonapoptotic Fas signaling. NFκB was activated by overexpressed FLIPL and FLIPS in a cell type–specific manner. However, in the context of Fas signaling both isoforms blocked FasL-induced NFκB activation. Moreover, down-regulation of both endogenous FLIP isoforms or of endogenous FLIPL alone was sufficient to enhance FasL-induced expression of the NFκB target gene IL8. As NFκB signaling is inhibited during apoptosis, FasL-induced NFκB activation was most prominent in cells that were protected by Bcl2 expression or caspase inhibitors and expressed no or minute amounts of FLIP. Thus, protection against Fas-induced apoptosis in a FLIP-independent manner converted a proapoptotic Fas signal into an inflammatory NFκB-related response. PMID:15289496

  17. Distinct Roles for TGN/Endosome Epsin-like Adaptors Ent3p and Ent5p

    PubMed Central

    Costaguta, Giancarlo; Duncan, Mara C.; Fernández, G. Esteban; Huang, Grace H.

    2006-01-01

    Clathrin adaptors are key factors in clathrin-coated vesicle formation, coupling clathrin to cargo and/or the lipid bilayer. A physically interacting network of three classes of adaptors participate in clathrin-mediated traffic between the trans-Golgi network (TGN) and endosomes: AP-1, Gga proteins, and epsin-like proteins. Here we investigate functional relationships within this network through transport assays and protein localization analysis in living yeast cells. We observed that epsin-like protein Ent3p preferentially localized with Gga2p, whereas Ent5p distributed equally between AP-1 and Gga2p. Ent3p was mislocalized in Gga-deficient but not in AP-1–deficient cells. In contrast, Ent5p retained localization in cells lacking either or both AP-1 and Gga proteins. The Ent proteins were dispensable for AP-1 or Gga localization. Synthetic genetic growth and α-factor maturation defects were observed when ent5Δ but not ent3Δ was introduced together with deletions of the GGA genes. In AP-1–deficient cells, ent3Δ and to a lesser extent ent5Δ caused minor α-factor maturation defects, but together resulted in a near-lethal phenotype. Deletions of ENT3 and ENT5 also displayed synthetic defects similar to, but less severe than, synthetic effects of AP-1 and Gga inactivation. These results differentiate Ent3p and Ent5p function in vivo, suggesting that Ent3p acts primarily with Gga proteins, whereas Ent5p acts with both AP-1 and Gga proteins but is more critical for AP-1–mediated transport. The data also support a model in which the Ent adaptors provide important accessory functions to AP-1 and Gga proteins in TGN/endosome traffic. PMID:16790491

  18. Interaction of amphiphysins with AP-1 clathrin adaptors at the membrane.

    PubMed

    Huser, Sonja; Suri, Gregor; Crottet, Pascal; Spiess, Martin

    2013-02-15

    The assembly of clathrin/AP (adaptor protein)-1-coated vesicles on the trans-Golgi network and endosomes is much less studied than that of clathrin/AP-2 vesicles at the plasma membrane for endocytosis. In vitro, the association of AP-1 with protein-free liposomes had been shown to require phosphoinositides, Arf1 (ADP-ribosylation factor 1)-GTP and additional cytosolic factor(s). We have purified an active fraction from brain cytosol and found it to contain amphiphysin 1 and 2 and endophilin A1, three proteins known to be involved in the formation of AP-2/clathrin coats at the plasma membrane. Assays with bacterially expressed and purified proteins showed that AP-1 stabilization on liposomes depends on amphiphysin 2 or the amphiphysin 1/2 heterodimer. Activity is independent of the SH3 (Src homology 3) domain, but requires interaction of the WDLW motif with γ-adaptin. Endogenous amphiphysin in neurons and transfected protein in cell lines co-localize perinuclearly with AP-1 at the trans-Golgi network. This localization depends on interaction of clathrin and the adaptor sequence in the amphiphysins and is sensitive to brefeldin A, which inhibits Arf1-dependent AP-1 recruitment. Interaction between AP-1 and amphiphysin 1/2 in vivo was demonstrated by co-immunoprecipitation after cross-linking. These results suggest an involvement of amphiphysins not only with AP-2 at the plasma membrane, but also in AP-1/clathrin coat formation at the trans-Golgi network.

  19. Adaptor for Measuring Principal Strains with Tuckerman Strain Gage

    NASA Technical Reports Server (NTRS)

    Mcpherson, A E

    1943-01-01

    An adapter is described which uses three Tuckerman optical strain gages to measure the displacement of the three vortices of an equilateral triangle along lines 120 degrees apart. These displacements are substituted in well-known equations in order to compute the magnitude and direction of the principal strains. Tests of the adaptor indicate that principal strains over a gage length of 1.42 inch may be measured with a systematic error not exceeding 4 percent and a mean observational error of the order of + or minus 0.000006. The maximum observed error in strain was of the order of 0.00006. The directions of principal strains for unidirectional stress were measured with the adaptor with an average error of the order of 1 degree.

  20. Modulation of TCR responsiveness by the Grb2-family adaptor, Gads.

    PubMed

    Lugassy, Jennie; Corso, Jasmin; Beach, Dvora; Petrik, Thomas; Oellerich, Thomas; Urlaub, Henning; Yablonski, Deborah

    2015-01-01

    T cell antigen receptor (TCR) signaling depends on three interacting adaptor proteins: SLP-76, Gads, and LAT. Their mechanisms of signaling have been extensively explored, with the aid of fortuitously isolated LAT- and SLP-76-deficient T cell lines, but no such tools were available for Gads, a Grb2-family adaptor that bridges the TCR-inducible interaction between SLP-76 and LAT. TALEN-directed genome editing was applied to disrupt the first coding exon of human Gads in the Jurkat T cell line. Gads was dispensable for TCR-induced phosphorylation of SLP-76, but was a dose-dependent amplifier of TCR-induced CD69 expression. Gads conferred responsiveness to weak TCR stimuli, leading to PLC-γ1 phosphorylation and calcium flux. TALEN-derived, Gads-deficient T cell lines provide a uniquely tractable genetic platform for exploring its regulatory features, such as Gads phosphorylation at T262, which we observed by mass spectrometry. Upon mutation of this site, TCR responsiveness and sensitivity to weak TCR stimuli were increased. This study demonstrates the feasibility of TALEN-based reverse genetics in Jurkat T cells, while enriching our understanding of Gads as a regulated modulator of TCR sensitivity.

  1. SH2B1beta adaptor is a key enhancer of RET tyrosine kinase signaling.

    PubMed

    Donatello, S; Fiorino, A; Degl'Innocenti, D; Alberti, L; Miranda, C; Gorla, L; Bongarzone, I; Rizzetti, M G; Pierotti, M A; Borrello, M G

    2007-10-04

    The RET gene encodes two main isoforms of a receptor tyrosine kinase (RTK) implicated in various human diseases. Activating germ-line point mutations are responsible for multiple endocrine neoplasia type 2-associated medullary thyroid carcinomas, inactivating germ-line mutations for Hirschsprung's disease, while somatic rearrangements (RET/PTCs) are specific to papillary thyroid carcinomas. SH2B1beta, a member of the SH2B adaptors family, and binding partner for several RTKs, has been recently described to interact with proto-RET. Here, we show that both RET isoforms and its oncogenic derivatives bind to SH2B1beta through the SRC homology 2 (SH2) domain and a kinase activity-dependent mechanism. As a result, RET phosphorylates SH2B1beta, which in turn enhances its autophosphorylation, kinase activity, and downstream signaling. RET tyrosine residues 905 and 981 are important determinants for functional binding of the adaptor, as removal of both autophosphorylation sites displaces its recruitment. Binding of SH2B1beta appears to protect RET from dephosphorylation by protein tyrosine phosphatases, and might represent a likely mechanism contributing to its upregulation. Thus, overexpression of SH2B1beta, by enhancing phosphorylation/activation of RET transducers, potentiates the cellular differentiation and the neoplastic transformation thereby induced, and counteracts the action of RET inhibitors. Overall, our results identify SH2B1beta as a key enhancer of RET physiologic and pathologic activities.

  2. Stepping stone: a cytohesin adaptor for membrane cytoskeleton restraint in the syncytial Drosophila embryo

    PubMed Central

    Liu, Jiangshu; Lee, Donghoon M.; Yu, Cao Guo; Angers, Stephane; Harris, Tony J. C.

    2015-01-01

    Cytohesin Arf-GEFs are conserved plasma membrane regulators. The sole Drosophila cytohesin, Steppke, restrains Rho1-dependent membrane cytoskeleton activity at the base of plasma membrane furrows of the syncytial embryo. By mass spectrometry, we identified a single major Steppke-interacting protein from syncytial embryos, which we named Stepping stone (Sstn). By sequence, Sstn seems to be a divergent homologue of the mammalian cytohesin adaptor FRMD4A. Our experiments supported this relationship. Specifically, heterophilic coiled-coil interactions linked Sstn and Steppke in vivo and in vitro, whereas a separate C-terminal region was required for Sstn localization to furrows. Sstn mutant and RNAi embryos displayed abnormal, Rho1-dependent membrane cytoskeleton expansion from the base of pseudocleavage and cellularization furrows, closely mimicking Steppke loss-of-function embryos. Elevating Sstn furrow levels had no effect on the steppke phenotype, but elevating Steppke furrow levels reversed the sstn phenotype, suggesting that Steppke acts downstream of Sstn and that additional mechanisms can recruit Steppke to furrows. Finally, the coiled-coil domain of Steppke was required for Sstn binding and in addition homodimerization, and its removal disrupted Steppke furrow localization and activity in vivo. Overall we propose that Sstn acts as a cytohesin adaptor that promotes Steppke activity for localized membrane cytoskeleton restraint in the syncytial Drosophila embryo. PMID:25540427

  3. Crk Adaptors Negatively Regulate Actin Polymerization in Pedestals Formed by Enteropathogenic Escherichia coli (EPEC) by Binding to Tir Effector

    PubMed Central

    Martín-Villa, José Manuel; Benito-León, María; Martinez-Quiles, Narcisa

    2014-01-01

    Infections by enteropathogenic Escherichia coli (EPEC) cause diarrhea linked to high infant mortality in developing countries. EPEC adheres to epithelial cells and induces the formation of actin pedestals. Actin polymerization is driven fundamentally through signaling mediated by Tir bacterial effector protein, which inserts in the plasma membrane of the infected cell. Tir binds Nck adaptor proteins, which in turn recruit and activate N-WASP, a ubiquitous member of the Wiskott-Aldrich syndrome family of proteins. N-WASP activates the Arp2/3 complex to promote actin polymerization. Other proteins aside from components of the Tir-Nck-N-WASP pathway are recruited to the pedestals but their functions are unknown. Here we investigate the function of two alternatively spliced isoforms of Crk adaptors (CrkI/II) and the paralog protein CrkL during pedestal formation by EPEC. We found that the Crk isoforms act as redundant inhibitors of pedestal formation. The SH2 domain of CrkII and CrkL binds to phosphorylated tyrosine 474 of Tir and competes with Nck to bind Tir, preventing its recruitment to pedestals and thereby inhibiting actin polymerization. EPEC infection induces phosphorylation of the major regulatory tyrosine in CrkII and CrkL, possibly preventing the SH2 domain of these proteins from interacting with Tir. Phosphorylated CrkII and CrkL proteins localize specifically to the plasma membrane in contact with EPEC. Our study uncovers a novel role for Crk adaptors at pedestals, opening a new perspective in how these oncoproteins regulate actin polymerization. PMID:24675776

  4. The hypoxic regulator of sterol synthesis Nro1 is a nuclear import adaptor

    PubMed Central

    Yeh, Tzu-Lan; Lee, Chih-Yung S.; Amzel, L. Mario; Espenshade, Peter J.; Bianchet, Mario A.

    2011-01-01

    SUMMARY Fission yeast protein Sre1, the homolog of the mammalian sterol regulatory element binding protein (SREBP), is a hypoxic transcription factor required for sterol homeostasis and low oxygen growth. Nro1 regulates the stability of the N-terminal transcription factor domain of Sre1 (Sre1N) by inhibiting the action of the prolyl 4-hydroxylase-like Ofd1 in an oxygen-dependent manner. The crystal structure of Nro1 determined at 2.2 Å resolution shows an all-α-helical fold that can be divided into two domains: a small N-terminal domain and a larger C-terminal HEAT-repeat domain. Follow-up studies showed that Nro1 defines a new class of nuclear import adaptor that functions both in Ofd1 nuclear localization and in the oxygen-dependent inhibition of Ofd1 to control the hypoxic response. PMID:21481773

  5. The Hypoxic Regulator of Sterol Synthesis Nro1 Is a Nuclear Import Adaptor

    SciTech Connect

    T Yeh; C Lee; L Amzel; P Espenshade; M Bianchet

    2011-12-31

    Fission yeast protein Sre1, the homolog of the mammalian sterol regulatory element-binding protein (SREBP), is a hypoxic transcription factor required for sterol homeostasis and low-oxygen growth. Nro1 regulates the stability of the N-terminal transcription factor domain of Sre1 (Sre1N) by inhibiting the action of the prolyl 4-hydroxylase-like Ofd1 in an oxygen-dependent manner. The crystal structure of Nro1 determined at 2.2 {angstrom} resolution shows an all-{alpha}-helical fold that can be divided into two domains: a small N-terminal domain, and a larger C-terminal HEAT-repeat domain. Follow-up studies showed that Nro1 defines a new class of nuclear import adaptor that functions both in Ofd1 nuclear localization and in the oxygen-dependent inhibition of Ofd1 to control the hypoxic response.

  6. The AP-2 adaptor beta2 appendage scaffolds alternate cargo endocytosis.

    PubMed

    Keyel, Peter A; Thieman, James R; Roth, Robyn; Erkan, Elif; Everett, Eric T; Watkins, Simon C; Heuser, John E; Traub, Linton M

    2008-12-01

    The independently folded appendages of the large alpha and beta2 subunits of the endocytic adaptor protein (AP)-2 complex coordinate proper assembly and operation of endocytic components during clathrin-mediated endocytosis. The beta2 subunit appendage contains a common binding site for beta-arrestin or the autosomal recessive hypercholesterolemia (ARH) protein. To determine the importance of this interaction surface in living cells, we used small interfering RNA-based gene silencing. The effect of extinguishing beta2 subunit expression on the internalization of transferrin is considerably weaker than an AP-2 alpha subunit knockdown. We show the mild sorting defect is due to fortuitous substitution of the beta2 chain with the closely related endogenous beta1 subunit of the AP-1 adaptor complex. Simultaneous silencing of both beta1 and beta2 subunit transcripts recapitulates the strong alpha subunit RNA interference (RNAi) phenotype and results in loss of ARH from endocytic clathrin coats. An RNAi-insensitive beta2-yellow fluorescent protein (YFP) expressed in the beta1 + beta2-silenced background restores cellular AP-2 levels, robust transferrin internalization, and ARH colocalization with cell surface clathrin. The importance of the beta appendage platform subdomain over clathrin for precise deposition of ARH at clathrin assembly zones is revealed by a beta2-YFP with a disrupted ARH binding interface, which does not restore ARH colocalization with clathrin. We also show a beta-arrestin 1 mutant, which engages coated structures in the absence of any G protein-coupled receptor stimulation, colocalizes with beta2-YFP and clathrin even in the absence of an operational clathrin binding sequence. These findings argue against ARH and beta-arrestin binding to a site upon the beta2 appendage platform that is later obstructed by polymerized clathrin. We conclude that ARH and beta-arrestin depend on a privileged beta2 appendage site for proper cargo recruitment to clathrin

  7. Absence of the inflammasome adaptor ASC reduces hypoxia-induced pulmonary hypertension in mice.

    PubMed

    Cero, Fadila Telarevic; Hillestad, Vigdis; Sjaastad, Ivar; Yndestad, Arne; Aukrust, Pål; Ranheim, Trine; Lunde, Ida Gjervold; Olsen, Maria Belland; Lien, Egil; Zhang, Lili; Haugstad, Solveig Bjærum; Løberg, Else Marit; Christensen, Geir; Larsen, Karl-Otto; Skjønsberg, Ole Henning

    2015-08-15

    Pulmonary hypertension is a serious condition that can lead to premature death. The mechanisms involved are incompletely understood although a role for the immune system has been suggested. Inflammasomes are part of the innate immune system and consist of the effector caspase-1 and a receptor, where nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) is the best characterized and interacts with the adaptor protein apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC). To investigate whether ASC and NLRP3 inflammasome components are involved in hypoxia-induced pulmonary hypertension, we utilized mice deficient in ASC and NLRP3. Active caspase-1, IL-18, and IL-1β, which are regulated by inflammasomes, were measured in lung homogenates in wild-type (WT), ASC(-/-), and NLRP3(-/-) mice, and phenotypical changes related to pulmonary hypertension and right ventricular remodeling were characterized after hypoxic exposure. Right ventricular systolic pressure (RVSP) of ASC(-/-) mice was significantly lower than in WT exposed to hypoxia (40.8 ± 1.5 mmHg vs. 55.8 ± 2.4 mmHg, P < 0.001), indicating a substantially reduced pulmonary hypertension in mice lacking ASC. Magnetic resonance imaging further supported these findings by demonstrating reduced right ventricular remodeling. RVSP of NLRP3(-/-) mice exposed to hypoxia was not significantly altered compared with WT hypoxia. Whereas hypoxia increased protein levels of caspase-1, IL-18, and IL-1β in WT and NLRP3(-/-) mice, this response was absent in ASC(-/-) mice. Moreover, ASC(-/-) mice displayed reduced muscularization and collagen deposition around arteries. In conclusion, hypoxia-induced elevated right ventricular pressure and remodeling were attenuated in mice lacking the inflammasome adaptor protein ASC, suggesting that inflammasomes play an important role in the pathogenesis of pulmonary hypertension.

  8. Structural Analysis of the Interaction between Dishevelled2 and Clathrin AP-2 Adaptor, A Critical Step in Noncanonical Wnt Signaling

    SciTech Connect

    Yu, Anan; Xing, Yi; Harrison, Stephen C.; Kirchhausen, Tomas

    2010-10-14

    Wnt association with its receptor, Frizzled (Fz), and recruitment by the latter of an adaptor, Dishevelled (Dvl), initiates signaling through at least two distinct pathways (canonical and noncanonical). Endocytosis and compartmentalization help determine the signaling outcome. Our previous work has shown that Dvl2 links at least one Frizzled family member (Fz4) to clathrin-mediated endocytosis by interacting with the {mu}2 subunit of the AP-2 clathrin adaptor, through both a classical endocytic tyrosine motif and a so-called DEP domain. We report here the crystal structure of a chimeric protein that mimics the Dvl2-{mu}2 complex. The DEP domain binds at one end of the elongated, C-terminal domain of {mu}2. This domain:domain interface shows that parts of the {mu}2 surface distinct from the tyrosine-motif site can help recruit specific receptors or adaptors into a clathrin coated pit. Mutation of residues at the DEP-{mu}2 contact or in the tyrosine motif reduce affinity of Dvl2 for {mu}2 and block efficient internalization of Fz4 in response to ligation by Wnt5a. The crystal structure has thus allowed us to identify the specific interaction that leads to Frizzled uptake and to downstream, noncanonical signaling events.

  9. STING Requires the Adaptor TRIF to Trigger Innate Immune Responses to Microbial Infection.

    PubMed

    Wang, Xin; Majumdar, Tanmay; Kessler, Patricia; Ozhegov, Evgeny; Zhang, Ying; Chattopadhyay, Saurabh; Barik, Sailen; Sen, Ganes C

    2016-09-14

    The intracellular microbial nucleic acid sensors, TLR3 and STING, recognize pathogen molecules and signal to activate the interferon pathway. The TIR-domain containing protein TRIF is the sole adaptor of TLR3. Here, we report an essential role for TRIF in STING signaling: various activators of STING could not induce genes in the absence of TRIF. TRIF and STING interacted directly, through their carboxy-terminal domains, to promote STING dimerization, intermembrane translocation, and signaling. Herpes simplex virus (HSV), which triggers the STING signaling pathway and is controlled by it, replicated more efficiently in the absence of TRIF, and HSV-infected TRIF(-/-) mice displayed pronounced pathology. Our results indicate that defective STING signaling may be responsible for the observed genetic association between TRIF mutations and herpes simplex encephalitis in patients.

  10. Internal Amino Acids Promote Gap1 Permease Ubiquitylation via TORC1/Npr1/14-3-3-Dependent Control of the Bul Arrestin-Like Adaptors

    PubMed Central

    Merhi, Ahmad

    2012-01-01

    Ubiquitylation of many plasma membrane proteins promotes their endocytosis followed by degradation in the lysosome. The yeast general amino acid permease, Gap1, is ubiquitylated and downregulated when a good nitrogen source like ammonium is provided to cells growing on a poor nitrogen source. This ubiquitylation requires the Rsp5 ubiquitin ligase and the redundant arrestin-like Bul1 and Bul2 adaptors. Previous studies have shown that Gap1 ubiquitylation involves the TORC1 kinase complex, which inhibits the Sit4 phosphatase. This causes inactivation of the protein kinase Npr1, which protects Gap1 against ubiquitylation. However, the mechanisms inducing Gap1 ubiquitylation after Npr1 inactivation remain unknown. We here show that on a poor nitrogen source, the Bul adaptors are phosphorylated in an Npr1-dependent manner and bound to 14-3-3 proteins that protect Gap1 against downregulation. After ammonium is added and converted to amino acids, the Bul proteins are dephosphorylated, dissociate from the 14-3-3 proteins, and undergo ubiquitylation. Furthermore, dephosphorylation of Bul requires the Sit4 phosphatase, which is essential to Gap1 downregulation. The data support the emerging concept that permease ubiquitylation results from activation of the arrestin-like adaptors of the Rsp5 ubiquitin ligase, this coinciding with their dephosphorylation, dissociation from the inhibitory 14-3-3 proteins, and ubiquitylation. PMID:22966204

  11. Machines of destruction - AAA+ proteases and the adaptors that control them.

    PubMed

    Gur, Eyal; Ottofueling, Ralf; Dougan, David A

    2013-01-01

    Bacteria are frequently exposed to changes in environmental conditions, such as fluctuations in temperature, pH or the availability of nutrients. These assaults can be detrimental to cell as they often result in a proteotoxic stress, which can cause the accumulation of unfolded proteins. In order to restore a productive folding environment in the cell, bacteria have evolved a network of proteins, known as the protein quality control (PQC) network, which is composed of both chaperones and AAA+ proteases. These AAA+ proteases form a major part of this PQC network, as they are responsible for the removal of unwanted and damaged proteins. They also play an important role in the turnover of specific regulatory or tagged proteins. In this review, we describe the general features of an AAA+ protease, and using two of the best-characterised AAA+ proteases in Escherichia coli (ClpAP and ClpXP) as a model for all AAA+ proteases, we provide a detailed mechanistic description of how these machines work. Specifically, the review examines the physiological role of these machines, as well as the substrates and the adaptor proteins that modulate their substrate specificity.

  12. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex.

    PubMed

    Ortega, Davi R; Zhulin, Igor B

    2016-02-01

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex.

  13. Evolutionary genomics suggests that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex

    DOE PAGES

    Ortega, Davi R.; Zhulin, Igor B.; Punta, Marco

    2016-02-04

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linkingmore » the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Altogether, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex.« less

  14. Evolutionary genomics suggests that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex

    SciTech Connect

    Ortega, Davi R.; Zhulin, Igor B.; Punta, Marco

    2016-02-04

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Altogether, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex.

  15. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex

    PubMed Central

    Ortega, Davi R.; Zhulin, Igor B.

    2016-01-01

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a “phosphate sink” possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex. PMID:26844549

  16. Clathrin Terminal Domain-Ligand Interactions Regulate Sorting of Mannose 6-Phosphate Receptors Mediated by AP-1 and GGA Adaptors*

    PubMed Central

    Stahlschmidt, Wiebke; Robertson, Mark J.; Robinson, Phillip J.; McCluskey, Adam; Haucke, Volker

    2014-01-01

    Clathrin plays important roles in intracellular membrane traffic including endocytosis of plasma membrane proteins and receptors and protein sorting between the trans-Golgi network (TGN) and endosomes. Whether clathrin serves additional roles in receptor recycling, degradative sorting, or constitutive secretion has remained somewhat controversial. Here we have used acute pharmacological perturbation of clathrin terminal domain (TD) function to dissect the role of clathrin in intracellular membrane traffic. We report that internalization of major histocompatibility complex I (MHCI) is inhibited in cells depleted of clathrin or its major clathrin adaptor complex 2 (AP-2), a phenotype mimicked by application of Pitstop® inhibitors of clathrin TD function. Hence, MHCI endocytosis occurs via a clathrin/AP-2-dependent pathway. Acute perturbation of clathrin also impairs the dynamics of intracellular clathrin/adaptor complex 1 (AP-1)- or GGA (Golgi-localized, γ-ear-containing, Arf-binding protein)-coated structures at the TGN/endosomal interface, resulting in the peripheral dispersion of mannose 6-phosphate receptors. By contrast, secretory traffic of vesicular stomatitis virus G protein, recycling of internalized transferrin from endosomes, or degradation of EGF receptor proceeds unperturbed in cells with impaired clathrin TD function. These data indicate that clathrin is required for the function of AP-1- and GGA-coated carriers at the TGN but may be dispensable for outward traffic en route to the plasma membrane. PMID:24407285

  17. Clathrin terminal domain-ligand interactions regulate sorting of mannose 6-phosphate receptors mediated by AP-1 and GGA adaptors.

    PubMed

    Stahlschmidt, Wiebke; Robertson, Mark J; Robinson, Phillip J; McCluskey, Adam; Haucke, Volker

    2014-02-21

    Clathrin plays important roles in intracellular membrane traffic including endocytosis of plasma membrane proteins and receptors and protein sorting between the trans-Golgi network (TGN) and endosomes. Whether clathrin serves additional roles in receptor recycling, degradative sorting, or constitutive secretion has remained somewhat controversial. Here we have used acute pharmacological perturbation of clathrin terminal domain (TD) function to dissect the role of clathrin in intracellular membrane traffic. We report that internalization of major histocompatibility complex I (MHCI) is inhibited in cells depleted of clathrin or its major clathrin adaptor complex 2 (AP-2), a phenotype mimicked by application of Pitstop® inhibitors of clathrin TD function. Hence, MHCI endocytosis occurs via a clathrin/AP-2-dependent pathway. Acute perturbation of clathrin also impairs the dynamics of intracellular clathrin/adaptor complex 1 (AP-1)- or GGA (Golgi-localized, γ-ear-containing, Arf-binding protein)-coated structures at the TGN/endosomal interface, resulting in the peripheral dispersion of mannose 6-phosphate receptors. By contrast, secretory traffic of vesicular stomatitis virus G protein, recycling of internalized transferrin from endosomes, or degradation of EGF receptor proceeds unperturbed in cells with impaired clathrin TD function. These data indicate that clathrin is required for the function of AP-1- and GGA-coated carriers at the TGN but may be dispensable for outward traffic en route to the plasma membrane.

  18. Cutting edge: the "death" adaptor CRADD/RAIDD targets BCL10 and suppresses agonist-induced cytokine expression in T lymphocytes.

    PubMed

    Lin, Qing; Liu, Yan; Moore, Daniel J; Elizer, Sydney K; Veach, Ruth A; Hawiger, Jacek; Ruley, H Earl

    2012-03-15

    The expression of proinflammatory cytokines and chemokines in response to TCR agonists is regulated by the caspase-recruitment domain membrane-associated guanylate kinase 1 (CARMA1) signalosome through the coordinated assembly of complexes containing the BCL10 adaptor protein. We describe a novel mechanism to negatively regulate the CARMA1 signalosome by the "death" adaptor protein caspase and receptor interacting protein adaptor with death domain (CRADD)/receptor interacting protein-associated ICH-1/CED-3 homologous protein with a death domain. We show that CRADD interacts with BCL10 through its caspase recruitment domain and suppresses interactions between BCL10 and CARMA1. TCR agonist-induced interaction between CRADD and BCL10 coincides with reduction of its complex formation with CARMA1 in wild-type, as compared with Cradd-deficient, primary cells. Finally, Cradd-deficient spleen cells, CD4(+) T cells, and mice respond to T cell agonists with strikingly higher production of proinflammatory mediators, including IFN-γ, IL-2, TNF-α, and IL-17. These results define a novel role for CRADD as a negative regulator of the CARMA1 signalosome and suppressor of Th1- and Th17-mediated inflammatory responses.

  19. The adaptor molecule CARD9 is essential for tuberculosis control.

    PubMed

    Dorhoi, Anca; Desel, Christiane; Yeremeev, Vladimir; Pradl, Lydia; Brinkmann, Volker; Mollenkopf, Hans-Joachim; Hanke, Karin; Gross, Olaf; Ruland, Jürgen; Kaufmann, Stefan H E

    2010-04-12

    The cross talk between host and pathogen starts with recognition of bacterial signatures through pattern recognition receptors (PRRs), which mobilize downstream signaling cascades. We investigated the role of the cytosolic adaptor caspase recruitment domain family, member 9 (CARD9) in tuberculosis. This adaptor was critical for full activation of innate immunity by converging signals downstream of multiple PRRs. Card9(-/-) mice succumbed early after aerosol infection, with higher mycobacterial burden, pyogranulomatous pneumonia, accelerated granulocyte recruitment, and higher abundance of proinflammatory cytokines and granulocyte colony-stimulating factor (G-CSF) in serum and lung. Neutralization of G-CSF and neutrophil depletion significantly prolonged survival, indicating that an exacerbated systemic inflammatory disease triggered lethality of Card9(-/-) mice. CARD9 deficiency had no apparent effect on T cell responses, but a marked impact on the hematopoietic compartment. Card9(-/-) granulocytes failed to produce IL-10 after Mycobacterium tuberculosis infection, suggesting that an absent antiinflammatory feedback loop accounted for granulocyte-dominated pathology, uncontrolled bacterial replication, and, ultimately, death of infected Card9(-/-) mice. Our data provide evidence that deregulated innate responses trigger excessive lung inflammation and demonstrate a pivotal role of CARD9 signaling in autonomous innate host defense against tuberculosis.

  20. Analysis of Arf1 GTPase-dependent membrane binding and remodeling using the exomer secretory vesicle cargo adaptor

    PubMed Central

    Paczkowski, Jon E.; Fromme, J. Christopher

    2016-01-01

    Summary Protein-protein and protein-membrane interactions play a critical role in shaping biological membranes through direct physical contact with the membrane surface. This is particularly evident in many steps of membrane trafficking, in which proteins deform the membrane and induce fission to form transport carriers. The small GTPase Arf1 and related proteins have the ability to remodel membranes by insertion of an amphipathic helix into the membrane. Arf1 and the exomer cargo adaptor coordinate cargo sorting into subset of secretory vesicle carriers in the model organism Saccharomyces cerevisiae. Here, we detail the assays we used to explore the cooperative action of Arf1 and exomer to bind and remodel membranes. We expect these methods are broadly applicable to other small GTPase/effector systems where investigation of membrane binding and remodeling is of interest. PMID:27632000

  1. A Big-Five Personality Profile of the Adaptor and Innovator.

    ERIC Educational Resources Information Center

    Kwang, Ng Aik; Rodrigues, Daphne

    2002-01-01

    A study explored the relationship between two creative types (adaptor and innovator) and the Big Five personality traits (extraversion, agreeableness, conscientiousness, neuroticism, and openness to experience), in 164 teachers in Singapore. Adaptors were significantly more conscientious than innovators, while innovators were significantly more…

  2. 21 CFR 870.4290 - Cardiopulmonary bypass adaptor, stopcock, manifold, or fitting.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., or fitting. 870.4290 Section 870.4290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 870.4290 Cardiopulmonary bypass adaptor, stopcock, manifold, or fitting. (a) Identification. A cardiopulmonary bypass adaptor, stopcock, manifold, or fitting is a device used in cardiovascular...

  3. Probing heterobivalent binding to the endocytic AP-2 adaptor complex by DNA-based spatial screening.

    PubMed

    Diezmann, F; von Kleist, L; Haucke, V; Seitz, O

    2015-08-07

    The double helical DNA scaffold offers a unique set of properties, which are particularly useful for studies of multivalency in biomolecular interactions: (i) multivalent ligand displays can be formed upon nucleic acid hybridization in a self-assembly process, which facilitates spatial screening (ii) valency and spatial arrangement of the ligand display can be precisely controlled and (iii) the flexibility of the ligand display can be adjusted by integrating nick sites and unpaired template regions. Herein we describe the use of DNA-based spatial screening for the characterization of the adaptor complex 2 (AP-2), a central interaction hub within the endocytic protein network in clathrin-mediated endocytosis. AP-2 is comprised of a core domain and two, so-called appendage domains, the α- and the β2-ear, which associate with cytoplasmatic proteins required for the formation or maturation of clathrin/AP-2 coated pits. Each appendage domain has two binding grooves which recognize distinct peptide motives with micromolar affinity. This provides opportunities for enhanced interactions with protein molecules that contain two (or more) different peptide motives. To determine whether a particular, spatial arrangement of binding motifs is required for high affinity binding we probed the distance-affinity relationships by means of DNA-programmed spatial screening with self-assembled peptide-DNA complexes. By using trimolecular and tetramolecular assemblies two different peptides were positioned in 2-22 nucleotide distance. The binding data obtained with both recombinant protein in well-defined buffer systems and native AP-2 in brain extract suggests that the two binding sites of the AP-2 α-appendage can cooperate to provide up to 40-fold enhancement of affinity compared to the monovalent interaction. The distance between the two recognized peptide motives was less important provided that the DNA duplex segments were connected by flexible, single strand segments. By

  4. A single common portal for clathrin-mediated endocytosis of distinct cargo governed by cargo-selective adaptors.

    PubMed

    Keyel, Peter A; Mishra, Sanjay K; Roth, Robyn; Heuser, John E; Watkins, Simon C; Traub, Linton M

    2006-10-01

    Sorting of transmembrane cargo into clathrin-coated vesicles requires endocytic adaptors, yet RNA interference (RNAi)-mediated gene silencing of the AP-2 adaptor complex only disrupts internalization of a subset of clathrin-dependent cargo. This suggests alternate clathrin-associated sorting proteins participate in cargo capture at the cell surface, and a provocative recent proposal is that discrete endocytic cargo are sorted into compositionally and functionally distinct clathrin coats. We show here that the FXNPXY-type internalization signal within cytosolic domain of the LDL receptor is recognized redundantly by two phosphotyrosine-binding domain proteins, Dab2 and ARH; diminishing both proteins by RNAi leads to conspicuous LDL receptor accumulation at the cell surface. AP-2-dependent uptake of transferrin ensues relatively normally in the absence of Dab2 and ARH, clearly revealing delegation of sorting operations at the bud site. AP-2, Dab2, ARH, transferrin, and LDL receptors are all present within the vast majority of clathrin structures at the surface, challenging the general existence of specialized clathrin coats for segregated internalization of constitutively internalized cargo. However, Dab2 expression is exceptionally low in hepatocytes, likely accounting for the pathological hypercholesterolemia that accompanies ARH loss.

  5. ATM-Dependent Phosphorylation of All Three Members of the MRN Complex: From Sensor to Adaptor

    PubMed Central

    Lavin, Martin F.; Kozlov, Sergei; Gatei, Magtouf; Kijas, Amanda W.

    2015-01-01

    The recognition, signalling and repair of DNA double strand breaks (DSB) involves the participation of a multitude of proteins and post-translational events that ensure maintenance of genome integrity. Amongst the proteins involved are several which when mutated give rise to genetic disorders characterised by chromosomal abnormalities, cancer predisposition, neurodegeneration and other pathologies. ATM (mutated in ataxia-telangiectasia (A-T) and members of the Mre11/Rad50/Nbs1 (MRN complex) play key roles in this process. The MRN complex rapidly recognises and locates to DNA DSB where it acts to recruit and assist in ATM activation. ATM, in the company of several other DNA damage response proteins, in turn phosphorylates all three members of the MRN complex to initiate downstream signalling. While ATM has hundreds of substrates, members of the MRN complex play a pivotal role in mediating the downstream signalling events that give rise to cell cycle control, DNA repair and ultimately cell survival or apoptosis. Here we focus on the interplay between ATM and the MRN complex in initiating signaling of breaks and more specifically on the adaptor role of the MRN complex in mediating ATM signalling to downstream substrates to control different cellular processes. PMID:26512707

  6. ATM-Dependent Phosphorylation of All Three Members of the MRN Complex: From Sensor to Adaptor.

    PubMed

    Lavin, Martin F; Kozlov, Sergei; Gatei, Magtouf; Kijas, Amanda W

    2015-10-23

    The recognition, signalling and repair of DNA double strand breaks (DSB) involves the participation of a multitude of proteins and post-translational events that ensure maintenance of genome integrity. Amongst the proteins involved are several which when mutated give rise to genetic disorders characterised by chromosomal abnormalities, cancer predisposition, neurodegeneration and other pathologies. ATM (mutated in ataxia-telangiectasia (A-T) and members of the Mre11/Rad50/Nbs1 (MRN complex) play key roles in this process. The MRN complex rapidly recognises and locates to DNA DSB where it acts to recruit and assist in ATM activation. ATM, in the company of several other DNA damage response proteins, in turn phosphorylates all three members of the MRN complex to initiate downstream signalling. While ATM has hundreds of substrates, members of the MRN complex play a pivotal role in mediating the downstream signalling events that give rise to cell cycle control, DNA repair and ultimately cell survival or apoptosis. Here we focus on the interplay between ATM and the MRN complex in initiating signaling of breaks and more specifically on the adaptor role of the MRN complex in mediating ATM signalling to downstream substrates to control different cellular processes.

  7. Competitive and Cooperative Interactions Mediate RNA Transfer from Herpesvirus Saimiri ORF57 to the Mammalian Export Adaptor ALYREF

    PubMed Central

    Tunnicliffe, Richard B.; Hautbergue, Guillaume M.; Wilson, Stuart A.; Kalra, Priti; Golovanov, Alexander P.

    2014-01-01

    The essential herpesvirus adaptor protein HVS ORF57, which has homologs in all other herpesviruses, promotes viral mRNA export by utilizing the cellular mRNA export machinery. ORF57 protein specifically recognizes viral mRNA transcripts, and binds to proteins of the cellular transcription-export (TREX) complex, in particular ALYREF. This interaction introduces viral mRNA to the NXF1 pathway, subsequently directing it to the nuclear pore for export to the cytoplasm. Here we have used a range of techniques to reveal the sites for direct contact between RNA and ORF57 in the absence and presence of ALYREF. A binding site within ORF57 was characterized which recognizes specific viral mRNA motifs. When ALYREF is present, part of this ORF57 RNA binding site, composed of an α-helix, binds preferentially to ALYREF. This competitively displaces viral RNA from the α-helix, but contact with RNA is still maintained by a flanking region. At the same time, the flexible N-terminal domain of ALYREF comes into contact with the viral RNA, which becomes engaged in an extensive network of synergistic interactions with both ALYREF and ORF57. Transfer of RNA to ALYREF in the ternary complex, and involvement of individual ORF57 residues in RNA recognition, were confirmed by UV cross-linking and mutagenesis. The atomic-resolution structure of the ORF57-ALYREF interface was determined, which noticeably differed from the homologous ICP27-ALYREF structure. Together, the data provides the first site-specific description of how viral mRNA is locked by a herpes viral adaptor protein in complex with cellular ALYREF, giving herpesvirus access to the cellular mRNA export machinery. The NMR strategy used may be more generally applicable to the study of fuzzy protein-protein-RNA complexes which involve flexible polypeptide regions. PMID:24550725

  8. Artificial Neural Network for the Prediction of Tyrosine-Based Sorting Signal Recognition by Adaptor Complexes

    PubMed Central

    Mukherjee, Debarati; Hanna, Claudia B.; Aguilar, R. Claudio

    2012-01-01

    Sorting of transmembrane proteins to various intracellular compartments depends on specific signals present within their cytosolic domains. Among these sorting signals, the tyrosine-based motif (YXXØ) is one of the best characterized and is recognized by μ-subunits of the four clathrin-associated adaptor complexes (AP-1 to AP-4). Despite their overlap in specificity, each μ-subunit has a distinct sequence preference dependent on the nature of the X-residues. Moreover, combinations of these residues exert cooperative or inhibitory effects towards interaction with the various APs. This complexity makes it impossible to predict a priori, the specificity of a given tyrosine-signal for a particular μ-subunit. Here, we describe the results obtained with a computational approach based on the Artificial Neural Network (ANN) paradigm that addresses the issue of tyrosine-signal specificity, enabling the prediction of YXXØ-μ interactions with accuracies over 90%. Therefore, this approach constitutes a powerful tool to help predict mechanisms of intracellular protein sorting. PMID:22505811

  9. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation.

    PubMed

    Das, Rupali; Bassiri, Hamid; Guan, Peng; Wiener, Susan; Banerjee, Pinaki P; Zhong, Ming-Chao; Veillette, André; Orange, Jordan S; Nichols, Kim E

    2013-04-25

    The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.

  10. Sub-cellular distribution of UNC-104(KIF1A) upon binding to adaptors as UNC-16(JIP3), DNC-1(DCTN1/Glued) and SYD-2(Liprin-α) in C. elegans neurons.

    PubMed

    Hsu, C-C; Moncaleano, J D; Wagner, O I

    2011-03-10

    The accumulation of cargo (tau, amyloid precursor protein, neurofilaments etc.) in neurons is a hallmark of various neurodegenerative diseases while we have only little knowledge how axonal transport is regulated. Kinesin-3 UNC-104(KIF1A) is the major transporter of synaptic vesicles and recent reports suggest that a cargo itself can affect the motor's activity. Inspecting an interactome map, we identify three putative UNC-104 interactors, namely UNC-16(JIP3), DNC-1(DCTN1/Glued) and SYD-2(Liprin-α), known to be adaptors in essential neuronal protein complexes. We then employed the novel method bimolecular fluorescence complementation (BiFC) assay to visualize motor-adaptor complexes in the nervous system of living C. elegans. Interestingly, the binding of UNC-104 to each adaptor protein results in different sub-cellular distributions and has distinctive effects on the motor's motility. Specifically, if UNC-104 bound to UNC-16, the motor is primarily localized in the soma of neurons while bound to DNC-1, the motor is basically found in axonal termini. On the other hand, if UNC-104 is bound to SYD-2 we identify motor populations mostly along axons. Therefore, these three adaptors inherit different functions in steering the motor to specific sub-cellular locations in the neuron.

  11. A dual-band adaptor for infrared imaging

    SciTech Connect

    McLean, A. G.; Ahn, J-W.; Maingi, R.; Gray, T. K.; Roquemore, A. L.

    2012-05-15

    A novel imaging adaptor providing the capability to extend a standard single-band infrared (IR) camera into a two-color or dual-band device has been developed for application to high-speed IR thermography on the National Spherical Tokamak Experiment (NSTX). Temperature measurement with two-band infrared imaging has the advantage of being mostly independent of surface emissivity, which may vary significantly in the liquid lithium divertor installed on NSTX as compared to that of an all-carbon first wall. In order to take advantage of the high-speed capability of the existing IR camera at NSTX (1.6-6.2 kHz frame rate), a commercial visible-range optical splitter was extensively modified to operate in the medium wavelength and long wavelength IR. This two-band IR adapter utilizes a dichroic beamsplitter, which reflects 4-6 {mu}m wavelengths and transmits 7-10 {mu}m wavelength radiation, each with >95% efficiency and projects each IR channel image side-by-side on the camera's detector. Cutoff filters are used in each IR channel, and ZnSe imaging optics and mirrors optimized for broadband IR use are incorporated into the design. In-situ and ex-situ temperature calibration and preliminary data of the NSTX divertor during plasma discharges are presented, with contrasting results for dual-band vs. single-band IR operation.

  12. A dual-band adaptor for infrared imaging

    SciTech Connect

    McLean, Adam G; Ahn, J.W.; Maingi, Rajesh; Gray, T. K.; Roquemore, L.

    2012-01-01

    A novel imaging adaptor providing the capability to extend a standard single-band infrared (IR) camera into a two-color or dual-band device has been developed for application to high-speed IR thermography on the National Spherical Tokamak Experiment (NSTX). Temperature measurement with two-band infrared imaging has the advantage of being mostly independent of surface emissivity, which may vary significantly in the liquid lithium divertor installed on NSTX as compared to that of an all-carbon first wall. In order to take advantage of the high-speed capability of the existing IR camera at NSTX (1.6-6.2 kHz frame rate), a commercial visible-range optical splitter was extensively modified to operate in the medium wavelength and long wavelength IR. This two-band IR adapter utilizes a dichroic beamsplitter, which reflects 4-6 mu m wavelengths and transmits 7-10 mu m wavelength radiation, each with >95% efficiency and projects each IR channel image side-by-side on the camera's detector. Cutoff filters are used in each IR channel, and ZnSe imaging optics and mirrors optimized for broadband IR use are incorporated into the design. In-situ and ex-situ temperature calibration and preliminary data of the NSTX divertor during plasma discharges are presented, with contrasting results for dual-band vs. single-band IR operation.

  13. Biophysical basis of the binding of WWOX tumor suppressor to WBP1 and WBP2 adaptors.

    PubMed

    McDonald, Caleb B; Buffa, Laura; Bar-Mag, Tomer; Salah, Zaidoun; Bhat, Vikas; Mikles, David C; Deegan, Brian J; Seldeen, Kenneth L; Malhotra, Arun; Sudol, Marius; Aqeilan, Rami I; Nawaz, Zafar; Farooq, Amjad

    2012-09-07

    The WW-containing oxidoreductase (WWOX) tumor suppressor participates in a diverse array of cellular activities by virtue of its ability to recognize WW-binding protein 1 (WBP1) and WW-binding protein 2 (WBP2) signaling adaptors among a wide variety of other ligands. Herein, using a multitude of biophysical techniques, we provide evidence that while the WW1 domain of WWOX binds to PPXY motifs within WBP1 and WBP2 in a physiologically relevant manner, the WW2 domain exhibits no affinity toward any of these PPXY motifs. Importantly, our data suggest that while R25/W44 residues located within the binding pocket of a triple-stranded β-fold of WW1 domain are critical for the recognition of PPXY ligands, they are replaced by the chemically distinct E66/Y85 duo at structurally equivalent positions within the WW2 domain, thereby accounting for its failure to bind PPXY ligands. Predictably, not only does the introduction of E66R/Y85W double substitution within the WW2 domain result in gain of function but the resulting engineered domain, hereinafter referred to as WW2_RW, also appears to be a much stronger binding partner of WBP1 and WBP2 than the wild-type WW1 domain. We also show that while the WW1 domain is structurally disordered and folds upon ligand binding, the WW2 domain not only adopts a fully structured conformation but also aids stabilization and ligand binding to WW1 domain. This salient observation implies that the WW2 domain likely serves as a chaperone to augment the physiological function of WW1 domain within WWOX. Collectively, our study lays the groundwork for understanding the molecular basis of a key protein-protein interaction pertinent to human health and disease.

  14. SARM: a novel Toll-like receptor adaptor, is functionally conserved from arthropod to human.

    PubMed

    Belinda, Loh Wei-Ching; Wei, Wang Xiao; Hanh, Bui Thi Hong; Lei, Luan Xiao; Bow, Ho; Ling, Ding Jeak

    2008-03-01

    Sterile-alpha and Armadillo motif containing protein (SARM) was recently identified as the fifth member of the Toll-like receptor (TLR) adaptor family. Whilst the Caenorhabditis elegans SARM homologue, TIR-1, is crucial for efficient immune responses against bacterial infections, human SARM was demonstrated to function as a specific inhibitor of TRIF-dependent TLR signaling. The opposing role of SARM in C. elegans and human is intriguing, prompting us to seek clarification on the enigmatic function of SARM in an ancient species which relies solely on innate immunity for survival. Here, we report the discovery of a primitive but functional SARM (CrSARM) in the immune defense of a "living fossil", the horseshoe crab, Carcinoscorpius rotundicauda. CrSARM shares numerous signature motifs and displays significant homology with vertebrate and invertebrate SARM homologues. CrSARM downregulates TRIF-dependent TLR signaling suggesting the conservation of SARM function from horseshoe crab to human. During infection by Pseudomonas aeruginosa, CrSARM is rapidly upregulated within 3h and strongly repressed at 6h, coinciding with the timing of bacterial clearance, thus demonstrating its dynamic role in innate immunity. Furthermore, yeast-two-hybrid screening revealed several potential interaction partners of CrSARM implying the role of SARM in downregulating TLR signaling events. Altogether, our study shows that, although C. elegans SARM upregulates immune signaling, its disparate role as a suppressor of TLR signaling, specifically via TRIF and not MyD88, is well-conserved from horseshoe crab to human.

  15. The Inflammasome Adaptor ASC Induces Procaspase-8 Death Effector Domain Filaments*

    PubMed Central

    Vajjhala, Parimala R.; Lu, Alvin; Brown, Darren L.; Pang, Siew Wai; Sagulenko, Vitaliya; Sester, David P.; Cridland, Simon O.; Hill, Justine M.; Schroder, Kate; Stow, Jennifer L.; Wu, Hao; Stacey, Katryn J.

    2015-01-01

    Inflammasomes mediate inflammatory and cell death responses to pathogens and cellular stress signals via activation of procaspases-1 and -8. During inflammasome assembly, activated receptors of the NLR or PYHIN family recruit the adaptor protein ASC and initiate polymerization of its pyrin domain (PYD) into filaments. We show that ASC filaments in turn nucleate procaspase-8 death effector domain (DED) filaments in vitro and in vivo. Interaction between ASC PYD and procaspase-8 tandem DEDs optimally required both DEDs and represents an unusual heterotypic interaction between domains of the death fold superfamily. Analysis of ASC PYD mutants showed that interaction surfaces that mediate procaspase-8 interaction overlap with those required for ASC self-association and interaction with the PYDs of inflammasome initiators. Our data indicate that multiple types of death fold domain filaments form at inflammasomes and that PYD/DED and homotypic PYD interaction modes are similar. Interestingly, we observed condensation of procaspase-8 filaments containing the catalytic domain, suggesting that procaspase-8 interactions within and/or between filaments may be involved in caspase-8 activation. Procaspase-8 filaments may also be relevant to apoptosis induced by death receptors. PMID:26468282

  16. How HIV-1 Nef hijacks the AP-2 clathrin adaptor to downregulate CD4.

    PubMed

    Ren, Xuefeng; Park, Sang Yoon; Bonifacino, Juan S; Hurley, James H

    2014-01-01

    The Nef protein of HIV-1 downregulates the cell surface co-receptor CD4 by hijacking the clathrin adaptor complex AP-2. The structural basis for the hijacking of AP-2 by Nef is revealed by a 2.9 Å crystal structure of Nef bound to the α and σ2 subunits of AP-2. Nef binds to AP-2 via its central loop (residues 149-179) and its core. The determinants for Nef binding include residues that directly contact AP-2 and others that stabilize the binding-competent conformation of the central loop. Residues involved in both direct and indirect interactions are required for the binding of Nef to AP-2 and for downregulation of CD4. These results lead to a model for the docking of the full AP-2 tetramer to membranes as bound to Nef, such that the cytosolic tail of CD4 is situated to interact with its binding site on Nef. DOI: http://dx.doi.org/10.7554/eLife.01754.001.

  17. Ascent Heating Thermal Analysis on Spacecraft Adaptor Fairings

    NASA Technical Reports Server (NTRS)

    Wang, Xiao Yen; Yuko, James; Motil, Brian

    2011-01-01

    When the Crew Exploration Vehicle (CEV) is launched, the spacecraft adaptor (SA) fairings that cover the CEV service module (SM) are exposed to aero heating. Thermal analysis is performed to compute the fairing temperatures and to investigate whether the temperatures are within the material limits for nominal ascent aeroheating case. The ascent heating is analyzed by using computational fluid dynamics (CFD) and engineering codes at Marshall Space Flight Center. The aeroheating environment data used for this work is known as Thermal Environment 3 (TE3) heating data. One of the major concerns is with the SA fairings covering the CEV SM and the SM/crew launch vehicle (CLV) flange interface. The TE3 heating rate is a function of time, wall temperature, and the spatial locations. The implementation of the TE3 heating rate as boundary conditions in the thermal analysis becomes challenging. The ascent heating thermal analysis on SA fairings and SM/CLV flange interface are performed using two commercial software packages: Cullimore & Ring (C&R) Thermal Desktop (TD) 5.1 and MSC Patran 2007r1 b. TD is the pre-and post-processor for SINDA, which is a finite-difference-based solver. In TD, the geometry is built and meshed, the boundary conditions are defined, and then SINDA is used to compute temperatures. MSC Pthermal is a finite-element- based thermal solver. MSC Patran is the pre- and post-processor for Pthermal. Regarding the boundary conditions, the convection, contact resistance, and heat load can be imposed in different ways in both programs. These two software packages are used to build the thermal model for the same analysis to validate each other and show the differences in the modeling details.

  18. Inclined selective plane illumination microscopy adaptor for conventional microscopes.

    PubMed

    Cutrale, Francesco; Gratton, Enrico

    2012-11-01

    Driven by the biological sciences, there is an increased need for imaging modalities capable of live cell imaging with high spatial and temporal resolution. To achieve this goal in a comprehensive manner, three-dimensional acquisitions are necessary. Ideal features of a modern microscope system should include high imaging speed, high contrast ratio, low photo-bleaching and photo-toxicity, good resolution in a 3D context, and mosaic acquisition for large samples. Given the importance of collecting data in live sample further increases the technical challenges required to solve these issues. This work presents a practical version of a microscopy method, Selective Plane Illumination Microscopy re-introduced by Huisken et al. (Science2004,305,1007-1009). This method is gaining importance in the biomedical field, but its use is limited by difficulties associated with unconventional microscope design which employs two objectives and a particular kind of sample preparation needed to insert the sample between the objectives. Based on the selective plane illumination principle but with a design similar to the Total Internal Reflection Fluorescence microscope, Dunsby (Dunsby, Opt Express 2008,16,20306-20316) demonstrated the oblique plane microscope (OPM) using a single objective which uses conventional sample preparation protocols. However, the Dunsby instrument was not intended to be part of a commercial microscope. In this work, we describe a system with the advantages of OPM and that can be used as an adaptor to commonly used microscopes, such as IX-71 Olympus, simplifying the construction of the OPM and increasing performance of a conventional microscope. We named our design inclined selective plane illumination microscope (iSPIM).

  19. Biophysical Basis of the Binding of WWOX Tumor Suppressor to WBP1 and WBP2 Adaptors

    PubMed Central

    McDonald, Caleb B.; Buffa, Laura; Bar-Mag, Tomer; Salah, Zaidoun; Bhat, Vikas; Mikles, David C.; Deegan, Brian J.; Seldeen, Kenneth L.; Malhotra, Arun; Sudol, Marius; Aqeilan, Rami I.; Nawaz, Zafar; Farooq, Amjad

    2012-01-01

    The WWOX tumor suppressor participates in a diverse array of cellular activities by virtue of its ability to recognize WBP1 and WBP2 signaling adaptors among a wide variety of other ligands. Herein, using a multitude of biophysical techniques, we provide evidence that while the WW1 domain of WWOX binds to PPXY motifs within WBP1 and WBP2 in a physiologically-relevant manner, the WW2 domain exhibits no affinity toward any of these PPXY motifs. Importantly, our data suggest that while R25/W44 residues located within the binding pocket of triple-stranded β-fold of WW1 domain are critical for the recognition of PPXY ligands, they are replaced by the chemically-distinct E66/Y85 duo at structurally-equivalent positions within the WW2 domain, thereby accounting for its failure to bind PPXY ligands. Predictably, introduction of E66R/Y85W double-substitution within the WW2 domain not only results in gain-of-function but the resulting engineered domain, hereinafter referred to as WW2_RW, also appears to be a much stronger binding partner of WBP1 and WBP2 than the wild type WW1 domain. We also show that while the WW1 domain is structurally disordered and folds upon ligand binding, the WW2 domain not only adopts a fully structured conformation but also aids stabilization and ligand binding to WW1 domain. This salient observation implies that the WW2 domain likely serves as a chaperone to augment the physiological function of WW1 domain within WWOX. Collectively, our study lays the groundwork for understanding the molecular basis of a key protein-protein interaction pertinent to human health and disease. PMID:22634283

  20. miR-181 interacts with signaling adaptor molecule DENN/MADD and enhances TNF-induced cell death

    PubMed Central

    Ghorbani, Samira; Talebi, Farideh; Ghasemi, Sedigheh; Jahanbazi Jahan Abad, Ali; Vojgani, Mohammed; Noorbakhsh, Farshid

    2017-01-01

    MicroRNAs are small noncoding RNAs, which regulate the expression of protein coding transcripts through mRNA degradation or translational inhibition. Numerous reports have highlighted the role of miRNAs in regulating cell death pathways including the expression of genes involved in the induction of apoptosis. Tumor necrosis factor alpha (TNF-α) is a proinflammatory cytokine which can send pro-death signals through its receptor TNFR1. Diverse adaptor molecules including DENN/MADD adaptor protein have been shown to modulate TNF-α pro-death signaling via recruitment of MAP kinases to TNFR1 and activation of pro-survival NFκB signaling. Herein, we investigated the role of microRNA-181 (miR-181) in regulating DENN/MADD expression levels and its subsequent effects on TNF-α-induced cell death. Using bioinformatics analyses followed by luciferase reporter assays we showed that miR-181 interacts with the 3’ UTR of DENN/MADD transcripts. miR-181 overexpression also led to decreased endogenous DENN/MADD mRNA levels in L929 murine fibroblasts. Flow cytometric analysis of miR-181 transfected cells showed this miRNA accentuates mitochondrial membrane potential loss caused by TNF-α. These findings were associated with enhanced apoptosis of L929 cells following TNF-α treatment. Overall, these data point to the potential role of miR-181 in regulating TNF-α pro-death signaling, which could be of importance from pathogenesis and therapeutic perspectives in inflammatory disorders associated with tissue degeneration and cell death. PMID:28323882

  1. AP-1 clathrin adaptor and CG8538/Aftiphilin are involved in Notch signaling during eye development in Drosophila melanogaster.

    PubMed

    Kametaka, Satoshi; Kametaka, Ai; Yonekura, Shinichi; Haruta, Mineyuki; Takenoshita, Seiichi; Goto, Satoshi; Waguri, Satoshi

    2012-02-01

    Clathrin adaptor protein complex-1 (AP-1) and its accessory proteins play a role in the sorting of integral membrane proteins at the trans-Golgi network and endosomes. Their physiological functions in complex organisms, however, are not fully understood. In this study, we found that CG8538p, an uncharacterized Drosophila protein, shares significant structural and functional characteristics with Aftiphilin, a mammalian AP-1 accessory protein. The Drosophila Aftiphilin was shown to interact directly with the ear domain of γ-adaptin of Drosophila AP-1, but not with the GAE domain of Drosophila GGA. In S2 cells, Drosophila Aftiphilin and AP-1 formed a complex and colocalized at the Golgi compartment. Moreover, tissue-specific depletion of AP-1 or Aftiphilin in the developing eyes resulted in a disordered alignment of photoreceptor neurons in larval stage and roughened eyes with aberrant ommatidia in adult flies. Furthermore, AP-1-depleted photoreceptor neurons showed an intracellular accumulation of a Notch regulator, Scabrous, and downregulation of Notch by promoting its degradation in the lysosomes. These results suggest that AP-1 and Aftiphilin are cooperatively involved in the intracellular trafficking of Notch during eye development in Drosophila.

  2. Genetic Deletion of the Clathrin Adaptor GGA3 Reduces Anxiety and Alters GABAergic Transmission

    PubMed Central

    Albrecht, David; Lomoio, Selene; Haydon, Philip G.; Moss, Stephen J.; Tesco, Giuseppina

    2016-01-01

    Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) is a monomeric clathrin adaptor that has been shown to regulate the trafficking of the Beta-site APP-cleaving enzyme (BACE1), which is required for production of the Alzheimer’s disease (AD)-associated amyloid βpeptide. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that depletion of GGA3 results in increased BACE1 levels and activity owing to impaired lysosomal trafficking and degradation. We further demonstrated the role of GGA3 in the regulation of BACE1 in vivo by showing that BACE1 levels are increased in the brain of GGA3 null mice. We report here that GGA3 deletion results in novelty-induced hyperactivity and decreased anxiety-like behaviors. Given the pivotal role of GABAergic transmission in the regulation of anxiety-like behaviors, we performed electrophysiological recordings in hippocampal slices and found increased phasic and decreased tonic inhibition in the dentate gyrus granule cells (DGGC). Moreover, we found that the number of inhibitory synapses is increased in the dentate gyrus of GGA3 null mice in further support of the electrophysiological data. Thus, the increased GABAergic transmission is a leading candidate mechanism underlying the reduced anxiety-like behaviors observed in GGA3 null mice. All together these findings suggest that GGA3 plays a key role in GABAergic transmission. Since BACE1 levels are elevated in the brain of GGA3 null mice, it is possible that at least some of these phenotypes are a consequence of increased processing of BACE1 substrates. PMID:27192432

  3. The adaptor 3BP2 is required for KIT receptor expression and human mast cell survival

    PubMed Central

    Ainsua-Enrich, Erola; Serrano-Candelas, Eva; Álvarez-Errico, Damiana; Picado, César; Sayós, Joan; Rivera, Juan; Martín, Margarita

    2015-01-01

    3BP2 is a cytoplasmic adaptor protein that acts as a positive regulator in mast cell FcεRI-dependent signaling. The KIT receptor whose ligand is the stem cell factor (SCF) is necessary for mast cell development, proliferation and survival as well as for optimal IgE-dependent signal. Activating mutations in KIT have been associated with several diseases including mastocytosis. In the present work, we found that 3BP2 silencing impairs KIT signaling pathways, thus affecting PI3K and MAP kinase pathways in human mast cells from HMC-1, LAD2 (human mast cell lines) and CD34+-derived mast cells. Unexpectedly, silencing of 3BP2 reduces KIT expression in normal human mast cells as well as in HMC-1 cells where KIT is mutated, thus increasing cellular apoptosis and caspase 3/7 activity. 3BP2 silencing reduces KIT transcription expression levels. Interestingly, 3BP2 silencing decreased MITF expression, a transcription factor involved in KIT expression. Reconstitution of 3BP2 in knockdown cells leads to reversal of KIT expression as well as survival phenotype. Accordingly MITF reconstitution enhances KIT expression levels in 3BP2 silenced cells. Moreover, downregulation of KIT expression by miRNA221 overexpression or the proteasome inhibitor bortezomib also reduced 3BP2 and MITF expression. Furthermore, KIT tyrosine activity inhibition reduced 3BP2 and MITF expression, demonstrating again a tight and reciprocal relationship between these molecules. Taken together, our results show that 3BP2 regulates human mast cell survival and participates in KIT-mediated signal transduction by directly controlling KIT receptor expression, suggesting its potential as a therapeutic target in mast cell-mediated inflammatory diseases and deregulated KIT disorders. PMID:25810396

  4. Role of the clathrin adaptor PICALM in normal hematopoiesis and polycythemia vera pathophysiology.

    PubMed

    Ishikawa, Yuichi; Maeda, Manami; Pasham, Mithun; Aguet, Francois; Tacheva-Grigorova, Silvia K; Masuda, Takeshi; Yi, Hai; Lee, Sung-Uk; Xu, Jian; Teruya-Feldstein, Julie; Ericsson, Maria; Mullally, Ann; Heuser, John; Kirchhausen, Tom; Maeda, Takahiro

    2015-04-01

    Clathrin-dependent endocytosis is an essential cellular process shared by all cell types. Despite this, precisely how endocytosis is regulated in a cell-type-specific manner and how this key pathway functions physiologically or pathophysiologically remain largely unknown. PICALM, which encodes the clathrin adaptor protein PICALM, was originally identified as a component of the CALM/AF10 leukemia oncogene. Here we show, by employing a series of conditional Picalm knockout mice, that PICALM critically regulates transferrin uptake in erythroid cells by functioning as a cell-type-specific regulator of transferrin receptor endocytosis. While transferrin receptor is essential for the development of all hematopoietic lineages, Picalm was dispensable for myeloid and B-lymphoid development. Furthermore, global Picalm inactivation in adult mice did not cause gross defects in mouse fitness, except for anemia and a coat color change. Freeze-etch electron microscopy of primary erythroblasts and live-cell imaging of murine embryonic fibroblasts revealed that Picalm function is required for efficient clathrin coat maturation. We showed that the PICALM PIP2 binding domain is necessary for transferrin receptor endocytosis in erythroblasts and absolutely essential for erythroid development from mouse hematopoietic stem/progenitor cells in an erythroid culture system. We further showed that Picalm deletion entirely abrogated the disease phenotype in a Jak2(V617F) knock-in murine model of polycythemia vera. Our findings provide new insights into the regulation of cell-type-specific transferrin receptor endocytosis in vivo. They also suggest a new strategy to block cellular uptake of transferrin-bound iron, with therapeutic potential for disorders characterized by inappropriate red blood cell production, such as polycythemia vera.

  5. Role of the clathrin adaptor PICALM in normal hematopoiesis and polycythemia vera pathophysiology

    PubMed Central

    Ishikawa, Yuichi; Maeda, Manami; Pasham, Mithun; Aguet, Francois; Tacheva-Grigorova, Silvia K.; Masuda, Takeshi; Yi, Hai; Lee, Sung-Uk; Xu, Jian; Teruya-Feldstein, Julie; Ericsson, Maria; Mullally, Ann; Heuser, John; Kirchhausen, Tom; Maeda, Takahiro

    2015-01-01

    Clathrin-dependent endocytosis is an essential cellular process shared by all cell types. Despite this, precisely how endocytosis is regulated in a cell-type-specific manner and how this key pathway functions physiologically or pathophysiologically remain largely unknown. PICALM, which encodes the clathrin adaptor protein PICALM, was originally identified as a component of the CALM/AF10 leukemia oncogene. Here we show, by employing a series of conditional Picalm knockout mice, that PICALM critically regulates transferrin uptake in erythroid cells by functioning as a cell-type-specific regulator of transferrin receptor endocytosis. While transferrin receptor is essential for the development of all hematopoietic lineages, Picalm was dispensable for myeloid and B-lymphoid development. Furthermore, global Picalm inactivation in adult mice did not cause gross defects in mouse fitness, except for anemia and a coat color change. Freeze-etch electron microscopy of primary erythroblasts and live-cell imaging of murine embryonic fibroblasts revealed that Picalm function is required for efficient clathrin coat maturation. We showed that the PICALM PIP2 binding domain is necessary for transferrin receptor endocytosis in erythroblasts and absolutely essential for erythroid development from mouse hematopoietic stem/progenitor cells in an erythroid culture system. We further showed that Picalm deletion entirely abrogated the disease phenotype in a Jak2V617F knock-in murine model of polycythemia vera. Our findings provide new insights into the regulation of cell-type-specific transferrin receptor endocytosis in vivo. They also suggest a new strategy to block cellular uptake of transferrin-bound iron, with therapeutic potential for disorders characterized by inappropriate red blood cell production, such as polycythemia vera. PMID:25552701

  6. Death receptor-independent FADD signalling triggers hepatitis and hepatocellular carcinoma in mice with liver parenchymal cell-specific NEMO knockout.

    PubMed

    Ehlken, H; Krishna-Subramanian, S; Ochoa-Callejero, L; Kondylis, V; Nadi, N E; Straub, B K; Schirmacher, P; Walczak, H; Kollias, G; Pasparakis, M

    2014-11-01

    Hepatocellular carcinoma (HCC) usually develops in the context of chronic hepatitis triggered by viruses or toxic substances causing hepatocyte death, inflammation and compensatory proliferation of liver cells. Death receptors of the TNFR superfamily regulate cell death and inflammation and are implicated in liver disease and cancer. Liver parenchymal cell-specific ablation of NEMO/IKKγ, a subunit of the IκB kinase (IKK) complex that is essential for the activation of canonical NF-κB signalling, sensitized hepatocytes to apoptosis and caused the spontaneous development of chronic hepatitis and HCC in mice. Here we show that hepatitis and HCC development in NEMO(LPC-KO) mice is triggered by death receptor-independent FADD-mediated hepatocyte apoptosis. TNF deficiency in all cells or conditional LPC-specific ablation of TNFR1, Fas or TRAIL-R did not prevent hepatocyte apoptosis, hepatitis and HCC development in NEMO(LPC-KO) mice. To address potential functional redundancies between death receptors we generated and analysed NEMO(LPC-KO) mice with combined LPC-specific deficiency of TNFR1, Fas and TRAIL-R and found that also simultaneous lack of all three death receptors did not prevent hepatocyte apoptosis, chronic hepatitis and HCC development. However, LPC-specific combined deficiency in TNFR1, Fas and TRAIL-R protected the NEMO-deficient liver from LPS-induced liver failure, showing that different mechanisms trigger spontaneous and LPS-induced hepatocyte apoptosis in NEMO(LPC-KO) mice. In addition, NK cell depletion did not prevent liver damage and hepatitis. Moreover, NEMO(LPC-KO) mice crossed into a RAG-1-deficient genetic background-developed hepatitis and HCC. Collectively, these results show that the spontaneous development of hepatocyte apoptosis, chronic hepatitis and HCC in NEMO(LPC-KO) mice occurs independently of death receptor signalling, NK cells and B and T lymphocytes, arguing against an immunological trigger as the critical stimulus driving

  7. The Sam68 nuclear body is composed of two RNase-sensitive substructures joined by the adaptor HNRNPL

    PubMed Central

    Yamashita, Seisuke; Goshima, Naoki

    2016-01-01

    The mammalian cell nucleus contains membraneless suborganelles referred to as nuclear bodies (NBs). Some NBs are formed with an architectural RNA (arcRNA) as the structural core. Here, we searched for new NBs that are built on unidentified arcRNAs by screening for ribonuclease (RNase)-sensitive NBs using 32,651 fluorescently tagged human cDNA clones. We identified 32 tagged proteins that required RNA for their localization in distinct nuclear foci. Among them, seven RNA-binding proteins commonly localized in the Sam68 nuclear body (SNB), which was disrupted by RNase treatment. Knockdown of each SNB protein revealed that SNBs are composed of two distinct RNase-sensitive substructures. One substructure is present as a distinct NB, termed the DBC1 body, in certain conditions, and the more dynamic substructure including Sam68 joins to form the intact SNB. HNRNPL acts as the adaptor to combine the two substructures and form the intact SNB through the interaction of two sets of RNA recognition motifs with the putative arcRNAs in the respective substructures. PMID:27377249

  8. Dephosphorylation of the adaptor LAT and phospholipase C-γ by SHP-1 inhibits natural killer cell cytotoxicity.

    PubMed

    Matalon, Omri; Fried, Sophia; Ben-Shmuel, Aviad; Pauker, Maor H; Joseph, Noah; Keizer, Danielle; Piterburg, Marina; Barda-Saad, Mira

    2016-05-24

    Natural killer (NK) cells discriminate between healthy cells and virally infected or transformed self-cells by tuning activating and inhibitory signals received through cell surface receptors. Inhibitory receptors inhibit NK cell function by recruiting and activating the tyrosine phosphatase Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-1 (SHP-1) to the plasma membrane. However, to date, the guanine nucleotide exchange factor VAV1 is the only direct SHP-1 substrate identified in NK cells. We reveal that the adaptor protein linker for activation of T cells (LAT) as well as phospholipase C-γ1 (PLC-γ1) and PLC-γ2 are SHP-1 substrates. Dephosphorylation of Tyr(132) in LAT by SHP-1 in NK cells abrogated the recruitment of PLC-γ1 and PLC-γ2 to the immunological synapse between the NK cell and a cancer cell target, which reduced NK cell degranulation and target cell killing. Furthermore, the ubiquitylation of LAT by the E3 ubiquitin ligases c-Cbl and Cbl-b, which was induced by LAT phosphorylation, led to the degradation of LAT in response to the engagement of inhibitory receptors on NK cells, which abrogated NK cell cytotoxicity. Knockdown of the Cbl proteins blocked LAT ubiquitylation, which promoted NK cell function. Expression of a ubiquitylation-resistant mutant LAT blocked inhibitory receptor signaling, enabling cells to become activated. Together, these data identify previously uncharacterized SHP-1 substrates and inhibitory mechanisms that determine the response of NK cells.

  9. EAT-2, a SAP-like adaptor, controls NK cell activation through phospholipase Cγ, Ca++, and Erk, leading to granule polarization.

    PubMed

    Pérez-Quintero, Luis-Alberto; Roncagalli, Romain; Guo, Huaijian; Latour, Sylvain; Davidson, Dominique; Veillette, André

    2014-04-07

    Ewing's sarcoma-associated transcript 2 (EAT-2) is an Src homology 2 domain-containing intracellular adaptor related to signaling lymphocytic activation molecule (SLAM)-associated protein (SAP), the X-linked lymphoproliferative gene product. Both EAT-2 and SAP are expressed in natural killer (NK) cells, and their combined expression is essential for NK cells to kill abnormal hematopoietic cells. SAP mediates this function by coupling SLAM family receptors to the protein tyrosine kinase Fyn and the exchange factor Vav, thereby promoting conjugate formation between NK cells and target cells. We used a variety of genetic, biochemical, and imaging approaches to define the molecular and cellular mechanisms by which EAT-2 controls NK cell activation. We found that EAT-2 mediates its effects in NK cells by linking SLAM family receptors to phospholipase Cγ, calcium fluxes, and Erk kinase. These signals are triggered by one or two tyrosines located in the carboxyl-terminal tail of EAT-2 but not found in SAP. Unlike SAP, EAT-2 does not enhance conjugate formation. Rather, it accelerates polarization and exocytosis of cytotoxic granules toward hematopoietic target cells. Hence, EAT-2 promotes NK cell activation by molecular and cellular mechanisms distinct from those of SAP. These findings explain the cooperative and essential function of these two adaptors in NK cell activation.

  10. A novel conserved phosphotyrosine motif in the Drosophila fibroblast growth factor signaling adaptor Dof with a redundant role in signal transmission.

    PubMed

    Csiszar, Agnes; Vogelsang, Elisabeth; Beug, Hartmut; Leptin, Maria

    2010-04-01

    The fibroblast growth factor receptor (FGFR) signals through adaptors constitutively associated with the receptor. In Drosophila melanogaster, the FGFR-specific adaptor protein Downstream-of-FGFR (Dof) becomes phosphorylated upon receptor activation at several tyrosine residues, one of which recruits Corkscrew (Csw), the Drosophila homolog of SHP2, which provides a molecular link to mitogen-activated protein kinase (MAPK) activation. However, the Csw pathway is not the only link from Dof to MAPK. In this study, we identify a novel phosphotyrosine motif present in four copies in Dof and also found in other insect and vertebrate signaling molecules. We show that these motifs are phosphorylated and contribute to FGF signal transduction. They constitute one of three sets of phosphotyrosines that act redundantly in signal transmission: (i) a Csw binding site, (ii) four consensus Grb2 recognition sites, and (iii) four novel tyrosine motifs. We show that Src64B binds to Dof and that Src kinases contribute to FGFR-dependent MAPK activation. Phosphorylation of the novel tyrosine motifs is required for the interaction of Dof with Src64B. Thus, Src64B recruitment to Dof through the novel phosphosites can provide a new link to MAPK activation and other cellular responses. This may give a molecular explanation for the involvement of Src kinases in FGF-dependent developmental events.

  11. ER Adaptor SCAP Translocates and Recruits IRF3 to Perinuclear Microsome Induced by Cytosolic Microbial DNAs

    PubMed Central

    Yu, Huansha; Liu, Xing; Huang, Lulu; Wang, Qiang; Liu, Heng; Cui, Ye; Tang, Yijun; Zhang, Peng; Wang, Chen

    2016-01-01

    Stimulator of interferon genes (STING, also known as MITA, ERIS or MPYS) induces the activation of TBK1 kinase and IRF3 transcription factor, upon sensing of microbial DNAs. How IRF3 is recruited onto the STING signalosome remains unknown. We report here that silencing of the ER adaptor SCAP markedly impairs the IRF3-responsive gene expression induced by STING. Scap knockdown mice are more susceptible to HSV-1 infection. Interestingly, SCAP translocates from ER, via Golgi, to perinuclear microsome in a STING-dependent manner. Mechanistically, the N-terminal transmembrane domain of SCAP interacts with STING, and the C-terminal cytosolic domain of SCAP binds to IRF3, thus recruiting IRF3 onto STING signalosome. Mis-localization of SCAP abolishes its antiviral function. Collectively, this study characterizes SCAP as an essential adaptor in the STING signaling pathway, uncovering a critical missing link in DNAs-triggered host antiviral responses. PMID:26900919

  12. The murine Nck SH2/SH3 adaptors are important for the development of mesoderm-derived embryonic structures and for regulating the cellular actin network.

    PubMed

    Bladt, Friedhelm; Aippersbach, Elke; Gelkop, Sigal; Strasser, Geraldine A; Nash, Piers; Tafuri, Anna; Gertler, Frank B; Pawson, Tony

    2003-07-01

    Mammalian Nck1 and Nck2 are closely related adaptor proteins that possess three SH3 domains, followed by an SH2 domain, and are implicated in coupling phosphotyrosine signals to polypeptides that regulate the actin cytoskeleton. However, the in vivo functions of Nck1 and Nck2 have not been defined. We have mutated the murine Nck1 and Nck2 genes and incorporated beta-galactosidase reporters into the mutant loci. In mouse embryos, the two Nck genes have broad and overlapping expression patterns. They are functionally redundant in the sense that mice deficient for either Nck1 or Nck2 are viable, whereas inactivation of both Nck1 and Nck2 results in profound defects in mesoderm-derived notochord and embryonic lethality at embryonic day 9.5. Fibroblast cell lines derived from Nck1(-/-) Nck2(-/-) embryos have defects in cell motility and in the organization of the lamellipodial actin network. These data suggest that the Nck SH2/SH3 adaptors have important functions in the development of mesodermal structures during embryogenesis, potentially linked to a role in cell movement and cytoskeletal organization.

  13. The innate immunity adaptor SARM translocates to the nucleus to stabilize lamins and prevent DNA fragmentation in response to pro-apoptotic signaling.

    PubMed

    Sethman, Chad R; Hawiger, Jacek

    2013-01-01

    Sterile alpha and armadillo-motif containing protein (SARM), a highly conserved and structurally unique member of the MyD88 family of Toll-like receptor adaptors, plays an important role in innate immunity signaling and apoptosis. Its exact mechanism of intracellular action remains unclear. Apoptosis is an ancient and ubiquitous process of programmed cell death that results in disruption of the nuclear lamina and, ultimately, dismantling of the nucleus. In addition to supporting the nuclear membrane, lamins serve important roles in chromatin organization, epigenetic regulation, transcription, nuclear transport, and mitosis. Mutations and other damage that destabilize nuclear lamins (laminopathies) underlie a number of intractable human diseases. Here, we report that SARM translocates to the nucleus of human embryonic kidney cells by using its amino-terminal Armadillo repeat region. Within the nucleus, SARM forms a previously unreported lattice akin to the nuclear lamina scaffold. Moreover, we show that SARM protects lamins from apoptotic degradation and reduces internucleosomal DNA fragmentation in response to signaling induced by the proinflammatory cytokine Tumor Necrosis Factor alpha. These findings indicate an important link between the innate immunity adaptor SARM and stabilization of nuclear lamins during inflammation-driven apoptosis in human cells.

  14. The immune adaptor molecule SARM modulates tumor necrosis factor alpha production and microglia activation in the brainstem and restricts West Nile Virus pathogenesis.

    PubMed

    Szretter, Kristy J; Samuel, Melanie A; Gilfillan, Susan; Fuchs, Anja; Colonna, Marco; Diamond, Michael S

    2009-09-01

    Sterile alpha and HEAT/Armadillo motif (SARM) is a highly conserved Toll/interleukin-1 receptor (TIR)-containing adaptor protein that is believed to negatively regulate signaling of the pathogen recognition receptors Toll-like receptor 3 (TLR3) and TLR4. To test its physiological function in the context of a microbial infection, we generated SARM(-/-) mice and evaluated the impact of this deficiency on the pathogenesis of West Nile virus (WNV), a neurotropic flavivirus that requires TLR signaling to restrict infection. Although SARM was preferentially expressed in cells of the central nervous system (CNS), studies with primary macrophages, neurons, or astrocytes showed no difference in viral growth kinetics. In contrast, viral replication was increased specifically in the brainstem of SARM(-/-) mice, and this was associated with enhanced mortality after inoculation with a virulent WNV strain. A deficiency of SARM was also linked to reduced levels of tumor necrosis factor alpha (TNF-alpha), decreased microglia activation, and increased neuronal death in the brainstem after WNV infection. Thus, SARM appears to be unique among the TIR adaptor molecules, since it functions to restrict viral infection and neuronal injury in a brain region-specific manner, possibly by modulating the activation of resident CNS inflammatory cells.

  15. Bcl-XL cooperatively associates with the Bap31 complex in the endoplasmic reticulum, dependent on procaspase-8 and Ced-4 adaptor.

    PubMed

    Ng, F W; Shore, G C

    1998-02-06

    Bap31 is a polytopic integral membrane protein of the endoplasmic reticulum and forms a complex with Bcl-2/Bcl-XL and procaspase-8 (Ng, F. W. H., Nguyen, M., Kwan, T., Branton, P. E., Nicholson, W. D., Cromlish, J. A., and Shore, G. C. (1997) J. Cell Biol. 139, 327-338). In co-transfected human cells, procaspase-8 is capable of interacting with Ced-4, an important adaptor molecule in Caenorhabditis elegans that binds to and activates the C. elegans procaspase, proCed-3. Here, we show that the predicted death effector homology domain within the cytosolic region of Bap31 interacts with Ced-4 and contributes to recruitment of procaspase-8. Bcl-XL, which binds directly but weakly to the polytopic transmembrane region of Bap31, indirectly and cooperatively associates with the Bap31 cytosolic domain, dependent on the presence of procaspase-8 and Ced-4. Ced-4Deltac does not interact with Bcl-XL but rather displaces it from Bap31, suggesting that an endogenous Ced-4-like adaptor is a normal constituent of the Bap31 complex and is required for stable association of Bcl-XL with Bap31 in vivo. These findings indicate that Bap31 is capable of recruiting essential components of a core death regulatory machinery.

  16. Use of Conversion Adaptors to Clone Antigen Genes in Lambda gt11

    DTIC Science & Technology

    1987-01-01

    gradients of 19, 30, and 50%. with 4 units ofT 4 DNA ligase for 60 min at Chromosomal DNA was prepared by dode- 16°C. Because the adaptor-insert...0.75 M and 6.5%. respectively. After chill- Biotec. Madison. WI) and 0.5 unit of T4 ing on ice for I h. the mixture was centri- DNA ligase , in 5ul of

  17. Adaptor Scaffoldins: An Original Strategy for Extended Designer Cellulosomes, Inspired from Nature

    PubMed Central

    Stern, Johanna; Moraïs, Sarah; Lamed, Raphael

    2016-01-01

    ABSTRACT Designer cellulosomes consist of chimeric cohesin-bearing scaffoldins for the controlled incorporation of recombinant dockerin-containing enzymes. The largest designer cellulosome reported to date is a chimeric scaffoldin that contains 6 cohesins. This scaffoldin represented a technical limit of sorts, since adding another cohesin proved problematic, owing to resultant low expression levels, instability (cleavage) of the scaffoldin polypeptide, and limited numbers of available cohesin-dockerin specificities—the hallmark of designer cellulosomes. Nevertheless, increasing the number of enzymes integrated into designer cellulosomes is critical, in order to further enhance degradation of plant cell wall material. Adaptor scaffoldins comprise an intermediate type of scaffoldin that can both incorporate various enzymes and attach to an additional scaffoldin. Using this strategy, we constructed an efficient form of adaptor scaffoldin that possesses three type I cohesins for enzyme integration, a single type II dockerin for interaction with an additional scaffoldin, and a carbohydrate-binding module for targeting to the cellulosic substrate. In parallel, we designed a hexavalent scaffoldin capable of connecting to the adaptor scaffoldin by the incorporation of an appropriate type II cohesin. The resultant extended designer cellulosome comprised 8 recombinant enzymes—4 xylanases and 4 cellulases—thereby representing a potent enzymatic cocktail for solubilization of natural lignocellulosic substrates. The contribution of the adaptor scaffoldin clearly demonstrated that proximity between the two scaffoldins and their composite set of enzymes is crucial for optimized degradation. After 72 h of incubation, the performance of the extended designer cellulosome was determined to be approximately 70% compared to that of native cellulosomes. PMID:27048796

  18. The 50 kDa protein subunit of assembly polypeptide (AP) AP-2 adaptor from clathrin-coated vesicles is phosphorylated on threonine-156 by AP-1 and a soluble AP50 kinase which co-purifies with the assembly polypeptides.

    PubMed Central

    Pauloin, A; Thurieau, C

    1993-01-01

    AP50 is a subunit of the assembly polypeptide (AP) subclass AP-2 from bovine brain coated vesicles. It can be phosphorylated in vivo and in vitro on a threonine residue by means of the AP50 kinase activity associated with AP. We have undertaken an analysis of the amino acid sequence around the AP50 phosphorylation site. After phosphorylation in vitro of AP50 followed by tryptic cleavage, only one radioactive peptide was isolated following Mono-Q ion-exchange f.p.l.c. and reverse-phase h.p.l.c. The amino acid sequence of this peptide: Glu146-Glu-Gln-Ser-Gln-Ile-Thr-Ser-Gln-Val-Thr*-Gly-Gly-Ile-Gly-Tr p-Arg162, displayed two threonine residues. Analysis of the yield and radioactivity of the product from automated Edman degradation indicated that only Thr-156 was phosphorylated, reflecting the presence of a single phosphorylation site in AP50. AP phosphorylated the corresponding synthetic peptide on the same threonyl residue. We demonstrated that AP50 was a phosphorylation substrate unable to autophosphorylate. The enzyme involved in the AP50 phosphorylation was shown to be associated with AP-1 and with a soluble protein complex co-purified with APs but resolved from the latter by hydroxyapatite-column exclusion chromatography. This AP50 kinase activity corresponded to a 280 kDa protein complex according to gel-filtration data. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8257432

  19. Adaptor-dependent degradation of a cell-cycle regulator uses a unique substrate architecture.

    PubMed

    Rood, Keith L; Clark, Nathaniel E; Stoddard, Patrick R; Garman, Scott C; Chien, Peter

    2012-07-03

    In Caulobacter crescentus, the ClpXP protease degrades several crucial cell-cycle regulators, including the phosphodiesterase PdeA. Degradation of PdeA requires the response regulator CpdR and signals a morphological transition in concert with initiation of DNA replication. Here, we report the structure of a Per-Arnt-Sim (PAS) domain of PdeA and show that it is necessary for CpdR-dependent degradation in vivo and in vitro. CpdR acts as an adaptor, tethering the amino-terminal PAS domain to ClpXP and promoting recognition of the weak carboxyl-terminal degron of PdeA, a combination that ensures processive proteolysis. We identify sites on the PAS domain needed for CpdR recognition and find that one subunit of the PdeA dimer can be delivered to ClpXP by its partner. Finally, we show that improper stabilization of PdeA in vivo alters cellular behavior. These results introduce an adaptor/substrate pair for ClpXP and reveal broad diversity in adaptor-mediated proteolysis.

  20. Quantitative proteomics analysis of signalosome dynamics in primary T cells identifies the surface receptor CD6 as a Lat adaptor-independent TCR signaling hub.

    PubMed

    Roncagalli, Romain; Hauri, Simon; Fiore, Fréderic; Liang, Yinming; Chen, Zhi; Sansoni, Amandine; Kanduri, Kartiek; Joly, Rachel; Malzac, Aurélie; Lähdesmäki, Harri; Lahesmaa, Riitta; Yamasaki, Sho; Saito, Takashi; Malissen, Marie; Aebersold, Ruedi; Gstaiger, Matthias; Malissen, Bernard

    2014-04-01

    T cell antigen receptor (TCR)-mediated activation of T cells requires the interaction of dozens of proteins. Here we used quantitative mass spectrometry and activated primary CD4(+) T cells from mice in which a tag for affinity purification was knocked into several genes to determine the composition and dynamics of multiprotein complexes that formed around the kinase Zap70 and the adaptors Lat and SLP-76. Most of the 112 high-confidence time-resolved protein interactions we observed were previously unknown. The surface receptor CD6 was able to initiate its own signaling pathway by recruiting SLP-76 and the guanine nucleotide-exchange factor Vav1 regardless of the presence of Lat. Our findings provide a more complete model of TCR signaling in which CD6 constitutes a signaling hub that contributes to the diversification of TCR signaling.

  1. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation

    SciTech Connect

    Zawawi, M.S.F.; Dharmapatni, A.A.S.S.K.; Cantley, M.D.; McHugh, K.P.; Haynes, D.R.; Crotti, T.N.

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Calcineurin/NFAT inhibitors FK506 and VIVIT treated human PBMC derived osteoclasts in vitro. Black-Right-Pointing-Pointer Differential regulation of ITAM receptors and adaptor molecules by calcineurin/NFAT inhibitors. Black-Right-Pointing-Pointer FK506 and VIVIT suppress ITAM factors during late phase osteoclast differentiation. -- Abstract: Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcR{gamma}) and DNAX-activating protein 12 kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin ({beta}3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10 days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real

  2. The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects

    PubMed Central

    Herruzo, Esther; Ontoso, David; González-Arranz, Sara; Cavero, Santiago; Lechuga, Ana; San-Segundo, Pedro A.

    2016-01-01

    Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes. PMID:27257060

  3. p130Cas Scaffolds the Signalosome To Direct Adaptor-Effector Cross Talk during Kaposi's Sarcoma-Associated Herpesvirus Trafficking in Human Microvascular Dermal Endothelial Cells

    PubMed Central

    Bandyopadhyay, Chirosree; Veettil, Mohanan Valiya; Dutta, Sujoy

    2014-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with cell surface receptors, such as heparan sulfate, integrins (α3β1, αVβ3, and αVβ5), and EphrinA2 (EphA2), and activates focal adhesion kinase (FAK), Src, phosphoinositol 3-kinase (PI3-K), c-Cbl, and RhoA GTPase signal molecules early during lipid raft (LR)-dependent productive macropinocytic entry into human dermal microvascular endothelial cells. Our recent studies have identified CIB1 as a signal amplifier facilitating EphA2 phosphorylation and subsequent cytoskeletal cross talk during KSHV macropinocytosis. Although CIB1 lacks an enzymatic activity and traditional adaptor domain or known interacting sequence, it associated with the KSHV entry signal complex and the CIB1-KSHV association was sustained over 30 min postinfection. To identify factors scaffolding the EphA2-CIB1 signal axis, the role of major cellular scaffold protein p130Cas (Crk-associated substrate of Src) was investigated. Inhibitor and small interfering RNA (siRNA) studies demonstrated that KSHV induced p130Cas in an EphA2-, CIB1-, and Src-dependent manner. p130Cas and Crk were associated with KSHV, LRs, EphA2, and CIB1 early during infection. Live-cell microscopy and biochemical studies demonstrated that p130Cas knockdown did not affect KSHV entry but significantly reduced productive nuclear trafficking of viral DNA and routed KSHV to lysosomal degradation. p130Cas aided in scaffolding adaptor Crk to downstream guanine nucleotide exchange factor phospho-C3G possibly to coordinate GTPase signaling during KSHV trafficking. Collectively, these studies demonstrate that p130Cas acts as a bridging molecule between the KSHV-induced entry signal complex and the downstream trafficking signalosome in endothelial cells and suggest that simultaneous targeting of KSHV entry receptors with p130Cas would be an attractive potential avenue for therapeutic intervention in KSHV infection. IMPORTANCE Eukaryotic cell adaptor molecules

  4. A conserved serine residue regulates the stability of Drosophila Salvador and human WW domain-containing adaptor 45 through proteasomal degradation.

    PubMed

    Wu, Di; Wu, Shian

    2013-04-19

    The Hippo (Hpo) pathway is a conserved tumor suppressor pathway that controls organ size through the coordinated regulation of apoptosis and proliferation. Drosophila Salvador (Sav), which limits organ size, is a core component of the Hpo pathway. In this study, Ser-17 was shown to be important for the stability of Sav. Alanine mutation of Ser-17 promoted the proteasomal degradation of Sav. Destabilization and stabilization of the Sav protein mediated by alanine mutation of Ser-17 and by Hpo, respectively, were independent of each other. This implies that the stability of Sav is controlled by two mechanisms, one that is Ser-17-dependent and Hpo-independent, and another that is Ser-17-independent and Hpo-dependent. These dual mechanisms also regulated the human counterpart of Drosophila Sav, WW domain-containing adaptor 45 (WW45). The conservation of this regulation adds to its significance in normal physiology and tumorigenesis.

  5. DNA as Tunable Adaptor for siRNA Polyplex Stabilization and Functionalization

    PubMed Central

    Heissig, Philipp; Klein, Philipp M.; Hadwiger, Philipp; Wagner, Ernst

    2016-01-01

    siRNA and microRNA are promising therapeutic agents, which are engaged in a natural mechanism called RNA interference that modulates gene expression posttranscriptionally. For intracellular delivery of such nucleic acid triggers, we use sequence-defined cationic polymers manufactured through solid phase chemistry. They consist of an oligoethanamino amide core for siRNA complexation and optional domains for nanoparticle shielding and cell targeting. Due to the small size of siRNA, electrostatic complexes with polycations are less stable, and consequently intracellular delivery is less efficient. Here we use DNA oligomers as adaptors to increase size and charge of cargo siRNA, resulting in increased polyplex stability, which in turn boosts transfection efficiency. Extending a single siRNA with a 181-nucleotide DNA adaptor is sufficient to provide maximum gene silencing aided by cationic polymers. Interestingly, this simple strategy was far more effective than merging defined numbers (4–10) of siRNA units into one DNA scaffolded construct. For DNA attachment, the 3′ end of the siRNA passenger strand was beneficial over the 5′ end. The impact of the attachment site however was resolved by introducing bioreducible disulfides at the connection point. We also show that DNA adaptors provide the opportunity to readily link additional functional domains to siRNA. Exemplified by the covalent conjugation of the endosomolytic influenza peptide INF-7 to siRNA via a DNA backbone strand and complexing this construct with a targeting polymer, we could form a highly functional polyethylene glycol–shielded polyplex to downregulate a luciferase gene in folate receptor–positive cells. PMID:26928236

  6. Burn to leg: full thickness lower limb burn associated with laptop power adaptor.

    PubMed

    Patel, Shivali M; Leon-Villapalos, Jorge

    2011-03-10

    There has been much media attention in recent years on laptops and their accessories overheating and even causing fires. Here, the authors report a case of a laptop power adaptor causing a full thickness burn requiring surgical intervention in a young, fit man. The total contact time was less than 1 h. Initial surgical management involved debridement and allografting of the wound due to a concomitant cellulitis. A week later, once the cellulitis had resolved, an autograft was applied. The graft take was satisfactory (100%) and the patient had a good postoperative outcome.

  7. The γ/σ1 and α/σ2 Hemicomplexes of Clathrin Adaptors AP-1 and AP-2 Harbor the Dileucine Recognition Site

    PubMed Central

    Doray, Balraj; Lee, Intaek; Knisely, Jane; Bu, Guojun

    2007-01-01

    The clathrin adaptors AP-1 and AP-2 bind cargo proteins via two types of motifs: tyrosine-based Yxxφ and dileucine-based [DE]XXXL[LI]. Although it is well established that Yxxφ motifs bind to the μ subunits of AP-1 or AP-2, dileucine motifs have been reported to bind to either the μ or β subunits of these adaptors as well as the γ/σ1 hemicomplex of AP-1. To clarify this controversy, the various subunits of AP-1 and AP-2 were expressed individually and in hemicomplex form in insect cells, and they were used in glutathione S-transferase pull-down assays to determine their binding properties. We report that the γ/σ1 or α/σ2 hemicomplexes bound the dileucine-based motifs of several proteins quite strongly, whereas binding by the β1/μ1 and β2/μ2 hemicomplexes, and the individual β or μ subunits, was extremely weak or undetectable. The γ/σ1 and α/σ2 hemicomplexes displayed substantial differences in their preference for particular dileucine-based motifs. Most strikingly, an aspartate at position −4 compromised binding to the γ/σ1 hemicomplex, whereas minimally affecting binding to α/σ2. There was an excellent correlation between binding to the α/σ2 hemicomplex and in vivo internalization mediated by the dileucine-based sorting signals. These findings provide new insights into the trafficking mechanisms of D/EXXXL[LI]-mediated sorting signals. PMID:17360967

  8. Solution structure of the focal adhesion adaptor PINCH LIM1 domain and characterization of its interaction with the integrin-linked kinase ankyrin repeat domain.

    PubMed

    Velyvis, A; Yang, Y; Wu, C; Qin, J

    2001-02-16

    PINCH is a recently identified adaptor protein that comprises an array of five LIM domains. PINCH functions through LIM-mediated protein-protein interactions that are involved in cell adhesion, growth, and differentiation. The LIM1 domain of PINCH interacts with integrin-linked kinase (ILK), thereby mediating focal adhesions via a specific integrin/ILK signaling pathway. We have solved the NMR structure of the PINCH LIM1 domain and characterized its binding to ILK. LIM1 contains two contiguous zinc fingers of the CCHC and CCCH types and adopts a global fold similar to that of functionally distinct LIM domains from cysteine-rich protein and cysteine-rich intestinal protein families with CCHC and CCCC zinc finger types. Gel-filtration and NMR experiments demonstrated a 1:1 complex between PINCH LIM1 and the ankyrin repeat domain of ILK. A chemical shift mapping experiment identified regions in PINCH LIM1 that are important for interaction with ILK. Comparison of surface features between PINCH LIM1 and other functionally different LIM domains indicated that the LIM motif might have a highly variable mode in recognizing various target proteins.

  9. The adaptor protein soc-1/Gab1 modifies growth factor receptor output in Caenorhabditis elegans.

    PubMed

    Hopper, Neil A

    2006-05-01

    Previous genetic analysis has shown that dos/soc-1/Gab1 functions positively in receptor tyrosine kinase (RTK)-stimulated Ras/Map kinase signaling through the recruitment of csw/ptp-2/Shp2. Using sensitized assays in Caenorhabditis elegans for let-23/Egfr and daf-2/InsR (insulin receptor-like) signaling, it is shown that soc-1/Gab1 inhibits phospholipase C-gamma (PLCgamma) and phosphatidylinositol 3'-kinase (PI3K)-mediated signaling. Furthermore, as well as stimulating Ras/Map kinase signaling, soc-1/Gab1 stimulates a poorly defined signaling pathway that represses class 2 daf-2 phenotypes. In addition, it is shown that SOC-1 binds the C-terminal SH3 domain of SEM-5. This binding is likely to be functional as the sem-5(n2195)G201R mutation, which disrupts SOC-1 binding, behaves in a qualitatively similar manner to a soc-1 null allele in all assays for let-23/Egfr and daf-2/InsR signaling that were examined. Further genetic analysis suggests that ptp-2/Shp2 mediates the negative function of soc-1/Gab1 in PI3K-mediated signaling, as well as the positive function in Ras/Map kinase signaling. Other effectors of soc-1/Gab1 are likely to inhibit PLCgamma-mediated signaling and stimulate the poorly defined signaling pathway that represses class 2 daf-2 phenotypes. Thus, the recruitment of soc-1/Gab1, and its effectors, into the RTK-signaling complex modifies the cellular response by enhancing Ras/Map kinase signaling while inhibiting PI3K and PLCgamma-mediated signaling.

  10. Role of Crk Adaptor Proteins in Cellular Migration and Invasion in Human Breast Cancer

    DTIC Science & Technology

    2009-03-01

    1.428792063 0.0133908 1.133118 0.04257 fat mass and obesity associated LOC400987 1.431640246 0.0287546 1.198525 0.01584 similar to ankyrin repeat ...form bone metastases. Loss of Crk was associated with a significant decrease in the formation of bone metastases, as well as growth at both the primary...proliferation or anchorage independent growth in the presence of serum, albeit loss of Crk did impair the ability of breast cancer cells to grow in soft

  11. The Role of Crk Adaptor Proteins in Breast Tumorigenesis and Bone Metastasis

    DTIC Science & Technology

    2012-09-01

    signature and the basal molecular subtypes found within breast cancer cell lines. Heatmap of the Crk signature in the Neve breast cancer cell line...metastasis to bone. Cancer Cell 2003, 3:537-549. 16. Minn AJ, Gupta GP, Siegel PM, Bos PD , Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massague J...prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genomics 2008, 9:239. 27. Neve RM, Chin K

  12. Role of Crk Adaptor Proteins in Cellular Migration and Invasion in Human Breast Cancer

    DTIC Science & Technology

    2008-03-01

    mice and cell lines have been established. One CrkII tumor has been identified as a fibroadenoma . The tumor is positive for CrkII, CK8, CK14, PCNA...mice were of a diverse phenotype, 7 including fibroadenomas and squamous adenocarcinoma (Figure 5). No metastatic lesions were found in any...animals. The fibroadenomas consisted of several differentiated epithelial cells (CK8, CK14) interspersed within regions of mesenchymal-like cell

  13. NRAGE, a p75NTR adaptor protein, is required for developmental apoptosis in vivo.

    PubMed

    Bertrand, M J M; Kenchappa, R S; Andrieu, D; Leclercq-Smekens, M; Nguyen, H N T; Carter, B D; Muscatelli, F; Barker, P A; De Backer, O

    2008-12-01

    NRAGE (also known as Maged1, Dlxin) is a member of the MAGE gene family that may play a role in the neuronal apoptosis that is regulated by the p75 neurotrophin receptor (p75NTR). To test this hypothesis in vivo, we generated NRAGE knockout mice and found that NRAGE deletion caused a defect in developmental apoptosis of sympathetic neurons of the superior cervical ganglia, similar to that observed in p75NTR knockout mice. Primary sympathetic neurons derived from NRAGE knockout mice were resistant to apoptosis induced by brain-derived neurotrophic factor (BDNF), a pro-apoptotic p75NTR ligand, and NRAGE-deficient sympathetic neurons show attenuated BDNF-dependent JNK activation. Hair follicle catagen is an apoptosis-like process that is dependent on p75NTR signaling; we show that NRAGE and p75NTR show regulated co-expression in the hair follicle and that identical defects in hair follicle catagen are present in NRAGE and p75NTR knockout mice. Interestingly, NRAGE knockout mice have severe defects in motoneuron apoptosis that are not observed in p75NTR knockout animals, raising the possibility that NRAGE may facilitate apoptosis induced by receptors other than p75NTR. Together, these studies demonstrate that NRAGE plays an important role in apoptotic-signaling in vivo.

  14. Role of Crk Adaptor Proteins in Cellular Migration and Invasion in Human Breast Cancer

    DTIC Science & Technology

    2007-03-01

    1833-TR has a higher propensity to form bone metastases compared to the parental cell line when injected into the left cardiac ventricle (12). The...Crk ablation will act to prevent or lessen the formation of bone and lung metastases in these models. If this is true, these experiments will...missed at this particular time point (20 weeks) (Appendix 12). In addition to tumor development, hyperplasia and precocious lobuloaveolar development

  15. Discovery of a Unique Clp Component, ClpF, in Chloroplasts: A Proposed Binary ClpF-ClpS1 Adaptor Complex Functions in Substrate Recognition and Delivery[OPEN

    PubMed Central

    Nishimura, Kenji; Apitz, Janina; Friso, Giulia; Kim, Jitae; Ponnala, Lalit; Grimm, Bernhard

    2015-01-01

    Clp proteases are found in prokaryotes, mitochondria, and plastids where they play crucial roles in maintaining protein homeostasis (proteostasis). The plant plastid Clp machinery comprises a hetero-oligomeric ClpPRT proteolytic core, ATP-dependent chaperones ClpC and ClpD, and an adaptor protein, ClpS1. ClpS1 selects substrates to the ClpPR protease-ClpC chaperone complex for degradation, but the underlying substrate recognition and delivery mechanisms are currently unclear. Here, we characterize a ClpS1-interacting protein in Arabidopsis thaliana, ClpF, which can interact with the Clp substrate glutamyl-tRNA reductase. ClpF and ClpS1 mutually stimulate their association with ClpC. ClpF, which is only found in photosynthetic eukaryotes, contains bacterial uvrB/C and YccV protein domains and a unique N-terminal domain. We propose a testable model in which ClpS1 and ClpF form a binary adaptor for selective substrate recognition and delivery to ClpC, reflecting an evolutionary adaptation of the Clp system to the plastid proteome. PMID:26419670

  16. Effectiveness of Needleless Vial Adaptors and Blunt Cannulas for Drug Administration in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Hailey, M.; Bayuse, T.

    2010-01-01

    Fluid Isolation in the medication vial: Air/ fluid isolation maneuvers were used to move the medication to the septum end of vial. This isolation may be achieved in multiple ways based on the experience of the astronaut with fluid management in microgravity. If vial adaptors/blunt cannula or syringe assembly is inserted into the to vial before fluid isolation commences, the stability of this assembly should be considered in an effort to limit the risk of "slinging off" of the vial during isolation. Alternatively, fluid isolation can be performed prior to attaching the syringe/vial adaptor assembly. Terrestrial practices for medication withdrawal from a nonvented vial require injection of an equivalent amount of air as the expected medication volume prior to withdrawing liquid. In microgravity, this action is still valid, however the injection of additional air into the vial creates a multitude of micro bubbles and increases the volume of medication mixed with air that then must be withdrawn to achieve the desired drug volume in syringe. This practice is more likely to be required when using vials >30ml in size and injection volumes >10mL. It is felt that based on the microgravity flight, the practice of air injection is more of a hindrance than help.

  17. The AP-3 adaptor complex mediates sorting of yeast and mammalian PQ-loop-family basic amino acid transporters to the vacuolar/lysosomal membrane

    PubMed Central

    Llinares, Elisa; Barry, Abdoulaye Oury; André, Bruno

    2015-01-01

    The limiting membrane of lysosomes in animal cells and that of the vacuole in yeast include a wide variety of transporters, but little is known about how these proteins reach their destination membrane. The mammalian PQLC2 protein catalyzes efflux of basic amino acids from the lysosome, and the similar Ypq1, −2, and −3 proteins of yeast perform an equivalent function at the vacuole. We here show that the Ypq proteins are delivered to the vacuolar membrane via the alkaline phosphatase (ALP) trafficking pathway, which requires the AP-3 adaptor complex. When traffic via this pathway is deficient, the Ypq proteins pass through endosomes from where Ypq1 and Ypq2 properly reach the vacuolar membrane whereas Ypq3 is missorted to the vacuolar lumen via the multivesicular body pathway. When produced in yeast, PQLC2 also reaches the vacuolar membrane via the ALP pathway, but tends to sort to the vacuolar lumen if AP-3 is defective. Finally, in HeLa cells, inhibiting the synthesis of an AP-3 subunit also impairs sorting of PQLC2 to lysosomes. Our results suggest the existence of a conserved AP-3-dependent trafficking pathway for proper delivery of basic amino acid exporters to the yeast vacuole and to lysosomes of human cells. PMID:26577948

  18. The giardial ENTH protein participates in lysosomal protein trafficking and endocytosis.

    PubMed

    Feliziani, Constanza; Zamponi, Nahuel; Gottig, Natalia; Rópolo, Andrea S; Lanfredi-Rangel, Adriana; Touz, Maria C

    2015-03-01

    In the protozoa parasite Giardia lamblia, endocytosis and lysosomal protein trafficking are vital parasite-specific processes that involve the action of the adaptor complexes AP-1 and AP-2 and clathrin. In this work, we have identified a single gene in Giardia encoding a protein containing an ENTH domain that defines monomeric adaptor proteins of the epsin family. This domain is present in the epsin or epsin-related (epsinR) adaptor proteins, which are implicated in endocytosis and Golgi-to-endosome protein trafficking, respectively, in other eukaryotic cells. We found that GlENTHp (for G. lamblia ENTH protein) localized in the cytosol, strongly interacted with PI3,4,5P3, was associated with the alpha subunit of AP-2, clathrin and ubiquitin and was involved in receptor-mediated endocytosis. It also bonded PI4P, the gamma subunit of AP-1 and was implicated in ER-to-PV trafficking. Alteration of the GlENTHp function severely affected trophozoite growth showing an unusual accumulation of dense material in the lysosome-like peripheral vacuoles (PVs), indicating that GlENTHp might be implicated in the maintenance of PV homeostasis. In this study, we showed evidence suggesting that GlENTHp might function as a monomeric adaptor protein supporting the findings of other group indicating that GlENTHp might be placed at the beginning of the ENTH family.

  19. The late endosomal adaptor p14 is a macrophage host-defense factor against Salmonella infection.

    PubMed

    Taub, Nicole; Nairz, Manfred; Hilber, Diana; Hess, Michael W; Weiss, Günter; Huber, Lukas A

    2012-06-01

    The outcome of an infection depends on the balance between host resistance and bacterial virulence. Here, we show that the late endosomal adaptor p14 (also known as LAMTOR2) is one of the components for cellular host defense against the intracellular pathogen Salmonella enterica serovar Typhimurium. During Salmonella infection, the complex of p14 and MP1 is required for the accurately timed transport of Salmonella through the endolysosomal system. Loss of p14 opens a time window that allows Salmonella to populate a replication niche, in which early and late antimicrobial effector systems, comprising NADPH phagocytic oxidase and inducible nitric oxide synthase, respectively, are inappropriately activated. Thus, p14 supports the accurate transport of Salmonella through the endolysosomal system, thereby limiting bacterial replication in both, professional phagocytes and in non-phagocytic cells in vitro, and helps mice to successfully battle Salmonella infection in vivo.

  20. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71.

    PubMed

    Wang, Xiangxi; Peng, Wei; Ren, Jingshan; Hu, Zhongyu; Xu, Jiwei; Lou, Zhiyong; Li, Xumei; Yin, Weidong; Shen, Xinliang; Porta, Claudine; Walter, Thomas S; Evans, Gwyndaf; Axford, Danny; Owen, Robin; Rowlands, David J; Wang, Junzhi; Stuart, David I; Fry, Elizabeth E; Rao, Zihe

    2012-03-04

    Enterovirus 71 (EV71) is a major agent of hand, foot and mouth disease in children that can cause severe central nervous system disease and death. No vaccine or antiviral therapy is available. High-resolution structural analysis of the mature virus and natural empty particles shows that the mature virus is structurally similar to other enteroviruses. In contrast, the empty particles are markedly expanded and resemble elusive enterovirus-uncoating intermediates not previously characterized in atomic detail. Hydrophobic pockets in the EV71 capsid are collapsed in this expanded particle, providing a detailed explanation of the mechanism for receptor-binding triggered virus uncoating. These structures provide a model for enterovirus uncoating in which the VP1 GH loop acts as an adaptor-sensor for cellular receptor attachment, converting heterologous inputs to a generic uncoating mechanism, highlighting new opportunities for therapeutic intervention.

  1. The two faces of the inflammasome adaptor ASC in epithelial skin carcinogenesis.

    PubMed

    Yazdi, Amir S; Drexler, Stefan K

    2015-01-01

    The development of tumours is a multistep process during which cells acquire the capability to sustain proliferation, evade growth suppressors and/or resist cell death. One factor, which is increasingly recognised to influence tumour progression, is the inflammatory environment of the tumour. The responsible molecular mechanisms and signalling pathways are only beginning to emerge. One major pathway able to induce potent inflammation is the activation of the inflammasome and the subsequent secretion of the pro-inflammatory cytokines IL-1β and IL-18. Both these cytokines have been implicated in tumour-genesis/progression. However, evidence for the role of inflammasomes in this process is still scarce and mainly derived from murine colitis associated tumour models. In this short review we discuss current knowledge on the role of inflammasomes in epithelial cancer of the gut and skin with a special focus on the complex role of the inflammasome adaptor ASC in epithelial skin carcinogenesis.

  2. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71

    PubMed Central

    Wang, Xiangxi; Peng, Wei; Ren, Jingshan; Hu, Zhongyu; Xu, Jiwei; Lou, Zhiyong; Li, Xumei; Yin, Weidong; Shen, Xinliang; Porta, Claudine; Walter, Thomas S.; Evans, Gwyndaf; Axford, Danny; Owen, Robin; Rowlands, David J.; Wang, Junzhi; Stuart, David I.; Fry, Elizabeth E.; Rao, Zihe

    2012-01-01

    Enterovirus 71 (EV71), a major agent of hand-foot-and-mouth disease in children, can cause severe central nervous system disease and mortality. At present no vaccine or antiviral therapy is available. We have determined high-resolution structures for the mature virus and natural empty particles. The structure of the mature virus is similar to that of other enteroviruses, whilst the empty particles are dramatically expanded, with notable fissures, resembling elusive enterovirus uncoating intermediates not previously characterized in atomic detail. Hydrophobic capsid pockets within the EV71 capsid are collapsed in this expanded particle, providing a detailed explanation of the mechanism for receptor-binding triggered virus uncoating. The results provide a paradigm for enterovirus uncoating, in which the VP1 GH loop acts as an adaptor-sensor for the attachment of cellular receptors, converting heterologous inputs to a generic uncoating mechanism, spotlighting novel points for therapeutic intervention. PMID:22388738

  3. Role of toll-like receptors and their adaptors in adjuvant immunotherapy for cancer.

    PubMed

    Seya, Tsukasa; Akazawa, Takashi; Uehori, Junji; Matsumoto, Misako; Azuma, Ichiro; Toyoshima, Kumao

    2003-01-01

    The potentiation of immune responses to tumor-associated antigen (Ag) is a pivotal issue in immunotherapy for cancer and thus requires the use of adjuvants, which are involved in efficient antibody (Ab) production and killer cell induction. The efficacy for tumor regression of a number of adjuvants that have been applied to immunotherapy in humans and tumor-bearing animal models has been tested without understanding of the function of adjuvants. Recent findings on the function of Toll-like receptors (TLRs) and their adaptors facilitated the elucidation of the molecular basis of adjuvant activity. TLR signaling was found to induce interferons (IFNs), chemokines and proinflammatory cytokines and mature dendritic cells (DCs) for enhanced efficiency in antigen presentation. The mediators then play a crucial role in the organization of acquired immunity and, together with matured DCs, activate cytotoxic T cells (CTL) and NK cells. These TLR outputs vary among adjuvants, which may depend on adjuvant-specific selection of appropriate sets of TLRs and their adaptors. Here we review how a variety of host immune responses are induced by an individual adjuvant to confer an adjuvant-specific anti-tumor immunity. We elaborate specifically on two adjuvants, BCG-cell wall skeleton and double-stranded RNA (dsRNA). The former activates TLR2/4 on DCs and induces tumor-specific CTL allowing general application to patients with surgically dissected cancer and improving prognosis, while the latter activates TLR3 on DCs to release type 1 IFN that induces tumor cell apoptosis and NK-mediated tumor cytotoxicity.

  4. Effectiveness of Needles Vial Adaptors and Blunt Cannulas for Drug Administration in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Hailey, Melinda; Bayuse, Tina

    2009-01-01

    The need for a new system of injectable medications aboard the International Space Station (ISS) was identified. It is desired that this system fly medications in their original manufacturer's packaging, allowing the system to comply with United States Pharmacopeia (USP) guidelines while minimizing the resupply frequency due to medication expiration. Pre-filled syringes are desired, however, the evolving nature of the healthcare marketplace requires flexibility in the redesign. If medications must be supplied in a vial, a system is required that allows for the safe withdrawal of medication from the vial into a syringe for administration in microgravity. During two reduced gravity flights, the effectiveness of two versions of a blunt cannula and needleless vial adaptors was evaluated to facilitate the withdrawal of liquid medication from a vial into a syringe for injection. Other parameters assessed included the ability to withdraw the required amount of medication and whether this is dependent on vial size, liquid, or the total volume of fluid within the vial. Injectable medications proposed for flight on ISS were used for this evaluation. Due to differing sizes of vials and the fluid properties of the medications, the needleless vial adaptors proved to be too cumbersome to recommend for use on the ISS. The blunt cannula, specifically the plastic version, proved to be more effective at removing medication from the various sizes of vials and are the recommended hardware for ISS. Fluid isolation within the vials and syringes is an important step in preparing medication for injection regardless of the hardware used. Although isolation is a challenge in the relatively short parabolas during flight, it is not an obstacle for sustained microgravity. This presentation will provide an overview of the products tested as well as the challenges identified during the microgravity flights.

  5. Tailed pooled suppression subtractive hybridization (PSSH) adaptors do not alter efficiency.

    PubMed

    Gerrish, Robert S; Gill, Steven R

    2010-11-01

    Suppression Subtractive Hybridization (SSH) and its derivative, Pooled Suppression Subtractive hybridization (PSSH), are powerful tools used to study variances larger than ~100 bp in prokaryotic genome structure. The initial steps involve ligating an oligonucleotide of known sequence (the "adaptor") to a fragmented genome to facilitate amplification, subtraction and downstream sequencing. SSH results in the creation of a library of unique DNA fragments which have been traditionally analyzed via Sanger sequencing. Numerous next generation sequencing technologies have entered the market yet SSH is incompatible with these platforms. This is due to the high level of sequence conservation of the oligonucleotide used for SSH. This rigid adherence is partly because it has yet to be determined if alteration of this oligonucleotide will have a deleterious impact on subtraction efficiency. The subtraction occurs when non-unique fragments are inhibited by a secondary self-pairing structure which requires exact nucleotide sequence. We determine if appending custom sequence to the 5' terminal ends of these oligonucleotides during the nested PCR stages of PSSH will reduce subtraction efficiency. We compare a pool of ten S. aureus clinical isolates with a standard PSSH and custom tailed-PSSH. We detected no statistically significant difference between their subtraction efficiencies. Our observations suggest that the adaptor's terminal ends may be labeled during the nested PCR step. This produces libraries labeled with custom sequence. This does not lead to loss of subtraction efficiency and would be invaluable for groups wishing to combine SSH or PSSH with their own downstream applications, such as a high throughput sequencing platform.

  6. Nck adaptors, besides promoting N-WASP mediated actin-nucleation activity at pedestals, influence the cellular levels of enteropathogenic Escherichia coli Tir effector

    PubMed Central

    Nieto-Pelegrin, Elvira; Kenny, Brendan; Martinez-Quiles, Narcisa

    2014-01-01

    Enteropathogenic Escherichia coli (EPEC) binding to human intestinal cells triggers the formation of disease-associated actin rich structures called pedestals. The latter process requires the delivery, via a Type 3 secretion system, of the translocated Intimin receptor (Tir) protein into the host plasma membrane where binding of a host kinase-modified form to the bacterial surface protein Intimin triggers pedestal formation. Tir-Intimin interaction recruits the Nck adaptor to a Tir tyrosine phosphorylated residue where it activates neural Wiskott-Aldrich syndrome protein (N-WASP); initiating the major pathway to actin polymerization mediated by the actin-related protein (Arp) 2/3 complex. Previous studies with Nck-deficient mouse embryonic fibroblasts (MEFs) identified a key role for Nck in pedestal formation, presumed to reflect a lack of N-WASP activation. Here, we show the defect relates to reduced amounts of Tir within Nck-deficient cells. Indeed, Tir delivery and, thus, pedestal formation defects were much greater for MEFs than HeLa (human epithelial) cells. Crucially, the levels of two other effectors (EspB/EspF) within Nck-deficient MEFs were not reduced unlike that of Map (Mitochondrial associated protein) which, like Tir, requires CesT chaperone function for efficient delivery. Interestingly, drugs blocking various host protein degradation pathways failed to increase Tir cellular levels unlike an inhibitor of deacetylase activity (Trichostatin A; TSA). Treatments with TSA resulted in significant recovery of Tir levels, potentiation of actin polymerization and improvement in bacterial attachment to cells. Our findings have important implications for the current model of Tir-mediated actin polymerization and opens new lines of research in this area. PMID:25482634

  7. Cerebral cavernous malformation proteins at a glance.

    PubMed

    Draheim, Kyle M; Fisher, Oriana S; Boggon, Titus J; Calderwood, David A

    2014-02-15

    Loss-of-function mutations in genes encoding KRIT1 (also known as CCM1), CCM2 (also known as OSM and malcavernin) or PDCD10 (also known as CCM3) cause cerebral cavernous malformations (CCMs). These abnormalities are characterized by dilated leaky blood vessels, especially in the neurovasculature, that result in increased risk of stroke, focal neurological defects and seizures. The three CCM proteins can exist in a trimeric complex, and each of these essential multi-domain adaptor proteins also interacts with a range of signaling, cytoskeletal and adaptor proteins, presumably accounting for their roles in a range of basic cellular processes including cell adhesion, migration, polarity and apoptosis. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of current models of CCM protein function focusing on how known protein-protein interactions might contribute to cellular phenotypes and highlighting gaps in our current understanding.

  8. Binding of the cSH3 domain of Grb2 adaptor to two distinct RXXK motifs within Gab1 docker employs differential mechanisms.

    PubMed

    McDonald, Caleb B; Seldeen, Kenneth L; Deegan, Brian J; Bhat, Vikas; Farooq, Amjad

    2011-01-01

    A ubiquitous component of cellular signaling machinery, Gab1 docker plays a pivotal role in routing extracellular information in the form of growth factors and cytokines to downstream targets such as transcription factors within the nucleus. Here, using isothermal titration calorimetry (ITC) in combination with macromolecular modeling (MM), we show that although Gab1 contains four distinct RXXK motifs, designated G1, G2, G3, and G4, only G1 and G2 motifs bind to the cSH3 domain of Grb2 adaptor and do so with distinct mechanisms. Thus, while the G1 motif strictly requires the PPRPPKP consensus sequence for high-affinity binding to the cSH3 domain, the G2 motif displays preference for the PXVXRXLKPXR consensus. Such sequential differences in the binding of G1 and G2 motifs arise from their ability to adopt distinct polyproline type II (PPII)- and 3(10) -helical conformations upon binding to the cSH3 domain, respectively. Collectively, our study provides detailed biophysical insights into a key protein-protein interaction involved in a diverse array of signaling cascades central to health and disease.

  9. Binding of the cSH3 Domain of Grb2 Adaptor to Two Distinct RXXK Motifs within Gab1 Docker Employs Differential Mechanisms

    PubMed Central

    McDonald, Caleb B.; Seldeen, Kenneth L.; Deegan, Brian J.; Bhat, Vikas; Farooq, Amjad

    2010-01-01

    A ubiquitous component of cellular signaling machinery, Gab1 docker plays a pivotal role in routing extracellular information in the form of growth factors and cytokines to downstream targets such as transcription factors within the nucleus. Here, using isothermal titration calorimetry (ITC) in combination with macromolecular modeling (MM), we show that although Gab1 contains four distinct RXXK motifs, designated G1, G2, G3 and G4, only G1 and G2 motifs bind to the cSH3 domain of Grb2 adaptor and do so with distinct mechanisms. Thus, while the G1 motif strictly requires the PPRPPKP consensus sequence for high-affinity binding to the cSH3 domain, the G2 motif displays preference for the PXVXRXLKPXR consensus. Such sequential differences in the binding of G1 and G2 motifs arise from their ability to adopt distinct polyproline type II (PPII)- and 310-helical conformations upon binding to the cSH3 domain, respectively. Collectively, our study provides detailed biophysical insights into a key protein-protein interaction involved in a diverse array of signaling cascades central to health and disease. PMID:21472810

  10. Characterization of C-terminal adaptors, UFD-2 and UFD-3, of CDC-48 on the polyglutamine aggregation in C. elegans.

    PubMed

    Murayama, Yuki; Ogura, Teru; Yamanaka, Kunitoshi

    2015-03-27

    CDC-48 (also called VCP or p97 in mammals and Cdc48p in yeast) is a AAA (ATPases associated with diverse cellular activities) chaperone and participates in a wide range of cellular activities including modulation of protein complexes and protein aggregates. UFD-2 and UFD-3, C-terminal adaptors for CDC-48, reportedly bind to CDC-48 in a mutually exclusive manner and they may modulate the fate of substrates for CDC-48. However, their cellular functions have not yet been elucidated. In this study, we found that CDC-48 preferentially interacts with UFD-3 in Caenorhabditis elegans. We also found that the number of polyglutamine (polyQ) aggregates was reduced in the ufd-3 deletion mutant but not in the ufd-2 deletion mutant. Furthermore, the lifespan and motility of the ufd-3 deletion mutant, where polyQ40::GFP was expressed, were greatly decreased. Taken together, we propose that UFD-3 may promote the formation of polyQ aggregates to reduce the polyQ toxicity in C. elegans.

  11. Targeting of pro-apoptotic TLR adaptor SARM to mitochondria: definition of the critical region and residues in the signal sequence.

    PubMed

    Panneerselvam, Porkodi; Singh, Laishram Pradeepkumar; Ho, Bow; Chen, Jianzhu; Ding, Jeak Ling

    2012-03-01

    The fifth and the most well-conserved member of the TLR (Toll-like receptor) adaptor, SARM (sterile α- and HEAT/armadillo-motif-containing protein), has been reported to be an important mediator of apoptosis. However, the exact cellular localization of SARM with respect to its role is unclear. In the present study we show that SARM specifically co-localizes with mitochondria. Endogenous SARM is mainly found in the mitochondria. We demonstrate that the N-terminal 27 amino acids (S27) of SARM, which is hydrophobic and polybasic, acts as a mitochondria-targeting signal sequence, associating SARM to the mitochondria. The S27 peptide has an inherent ability to bind to lipids and mitochondria. This sequence effectively translocates the soluble EGFP (enhanced green fluorescence protein) reporter into the mitochondria. Positioning S27 downstream of the EGFP abrogates its mitochondria-targeting ability. Transmission electron microscopy confirms the ability of S27 to import EGFP into the mitochondria. Importantly, by mutagenesis study, we delineated the specificity of the mitochondria-targeting ability to the arginine residue at the 14th position. The R14A SARM mutant also showed reduced apoptotic potential when compared with the wild-type. Taken together, S27, which is a bona fide signal sequence that targets SARM to the mitochondria, explains the pro-apoptotic activity of SARM.

  12. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation.

    PubMed

    Zawawi, M S F; Dharmapatni, A A S S K; Cantley, M D; McHugh, K P; Haynes, D R; Crotti, T N

    2012-10-19

    Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcRγ) and DNAX-activating protein 12kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin (β3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that FK506 treatment significantly (p<0.05) reduced the expression of NFATc1, CathK, OSCAR, FcRγ, TREM2 and DAP12 during the terminal stage of osteoclast formation. VIVIT treatment significantly (p<0.05) decreased CathK, OSCAR, FcRγ, and AnnVIII, gene expression. This data suggest FK506 and VIVIT act differently in targeting the

  13. Preparation of next-generation sequencing libraries using Nextera™ technology: simultaneous DNA fragmentation and adaptor tagging by in vitro transposition.

    PubMed

    Caruccio, Nicholas

    2011-01-01

    DNA library preparation is a common entry point and bottleneck for next-generation sequencing. Current methods generally consist of distinct steps that often involve significant sample loss and hands-on time: DNA fragmentation, end-polishing, and adaptor-ligation. In vitro transposition with Nextera™ Transposomes simultaneously fragments and covalently tags the target DNA, thereby combining these three distinct steps into a single reaction. Platform-specific sequencing adaptors can be added, and the sample can be enriched and bar-coded using limited-cycle PCR to prepare di-tagged DNA fragment libraries. Nextera technology offers a streamlined, efficient, and high-throughput method for generating bar-coded libraries compatible with multiple next-generation sequencing platforms.

  14. Identification of CMS as a cytosolic adaptor of the human pTalpha chain involved in pre-TCR function.

    PubMed

    Navarro, María N; Nusspaumer, Gretel; Fuentes, Patricia; González-García, Sara; Alcain, Juan; Toribio, María L

    2007-12-15

    The T-cell receptor beta (TCRbeta)/pre-TCRalpha (pTalpha) pre-TCR complex (pre-TCR) signals the expansion and differentiation of de-veloping thymocytes. Functional pro-perties of the pre-TCR rely on its unique pTalpha chain, which suggests the participation of specific intracellular adaptors. However, pTalpha-interacting molecules remain unknown. Here, we identified a polyproline-arginine sequence in the human pTalpha cytoplasmic tail that interacted in vitro with SH3 domains of the CIN85/CMS family of adaptors, and mediated the recruitment of multiprotein complexes involving all (CMS, CIN85, and CD2BP3) members. Supporting the physiologic relevance of this interaction, we found that 1 such adaptor, CMS, interacted in vivo with human pTalpha, and its expression was selectively up-regulated during human thymopoiesis in pre-TCR-activated thymocytes. Upon activation, pre-TCR clustering was induced, and CMS and polymerized actin were simultaneously recruited to the pre-TCR activation site. CMS also associated via its C-terminal region to the actin cytoskeleton in the endocytic compartment, where it colocalized with internalized pTalpha in traffic to lysosomal degradation. Notably, deletion of the pTalpha CIN85/CMS-binding motif impaired pre-TCR-mediated Ca(2+) mobilization and NFAT transcriptional activity, and precluded activation induced by overexpression of a CMS-SH3 N-terminal mutant. These results provide the first molecular evidence for a pTalpha intracellular adaptor involved in pre-TCR function.

  15. HIV-1 Nucleocapsid Mimics the Membrane Adaptor Syntenin PDZ to Gain Access to ESCRTs and Promote Virus Budding.

    PubMed

    Sette, Paola; O'Connor, Sarah K; Yerramilli, V Siddartha; Dussupt, Vincent; Nagashima, Kunio; Chutiraka, Kasana; Lingappa, Jaisri; Scarlata, Suzanne; Bouamr, Fadila

    2016-03-09

    HIV-1 recruits cellular endosomal sorting complexes required for transport (ESCRTs) to bud virions from the membrane. Disruption of the viral nucleocapsid (NC) domain integrity affects HIV-1 budding. However, the molecular mechanisms of NC's involvement in HIV budding remain unclear. We find that NC mimics the PDZ domains of syntenin, a membrane-binding adaptor involved in cell-to-cell contact/communication, to capture the Bro1 domain of ALIX, which is an ESCRTs recruiting cellular adaptor. NC binds membranes via basic residues in either the distal or proximal zinc fingers, and NC-membrane binding is essential for Bro1 capture and HIV-1 budding. Removal of RNA enhances NC membrane binding, suggesting a dynamic competition between membrane lipids and RNA for the same binding sites in NC. Remarkably, syntenin PDZ can substitute for NC function in HIV-1 budding. Thus, NC mimics syntenin PDZs to function as a membrane-binding adaptor critical for HIV-1 budding at specific microdomains of the membrane.

  16. HIV-1 Nucleocapsid mimics the membrane adaptor Syntenin to gain access to ESCRTs and promote virus budding

    PubMed Central

    Sette, Paola; O’Connor, Sarah K.; Yerramilli, V. Siddartha; Dussupt, Vincent; Nagashima, Kunio; Chutiraka, Kasana; Lingappa, Jaisri; Scarlata, Suzanne; Bouamr, Fadila

    2016-01-01

    Summary HIV-1 recruits cellular Endosomal Sorting Complexes Required for Transport (ESCRTs) to bud virions from the membrane. Disruption of the viral nucleocapsid (NC) domain integrity affects HIV-1 budding. However, the molecular mechanisms of NC’s involvement in HIV budding remain unclear. We find that NC mimics the PDZ domains of syntenin, a membrane-binding adaptor involved in cell-to-cell contact/communication, to capture the Bro1 domain of ALIX, which is an ESCRTs recruiting cellular adaptor. NC binds membranes via basic residues in either the distal or proximal zinc fingers and NC-membrane binding is essential for Bro1 capture and HIV-1 budding. Removal of RNA enhances NC membrane binding suggesting a dynamic competition between membrane lipids and RNA for same binding sites in NC. Remarkably, syntenin PDZ can substitute for NC function in HIV-1 budding. Thus, NC mimics syntenin PDZs to function as a membrane-binding adaptor critical for HIV-1 budding at microdomains of the membrane. PMID:26962944

  17. Cutting edge: DNA sensing via the STING adaptor in myeloid dendritic cells induces potent tolerogenic responses.

    PubMed

    Huang, Lei; Li, Lingqian; Lemos, Henrique; Chandler, Phillip R; Pacholczyk, Gabriela; Baban, Babak; Barber, Glen N; Hayakawa, Yoshihiro; McGaha, Tracy L; Ravishankar, Buvana; Munn, David H; Mellor, Andrew L

    2013-10-01

    Cytosolic DNA sensing via the stimulator of IFN genes (STING) adaptor incites autoimmunity by inducing type I IFN (IFN-αβ). In this study, we show that DNA is also sensed via STING to suppress immunity by inducing IDO. STING gene ablation abolished IFN-αβ and IDO induction by dendritic cells (DCs) after DNA nanoparticle (DNP) treatment. Marginal zone macrophages, some DCs, and myeloid cells ingested DNPs, but CD11b(+) DCs were the only cells to express IFN-β, whereas CD11b(+) non-DCs were major IL-1β producers. STING ablation also abolished DNP-induced regulatory responses by DCs and regulatory T cells, and hallmark regulatory responses to apoptotic cells were also abrogated. Moreover, systemic cyclic diguanylate monophosphate treatment to activate STING induced selective IFN-β expression by CD11b(+) DCs and suppressed Th1 responses to immunization. Thus, previously unrecognized functional diversity among physiologic innate immune cells regarding DNA sensing via STING is pivotal in driving immune responses to DNA.

  18. Structural basis for recruitment and activation of the AP-1 clathrin adaptor complex by Arf1.

    PubMed

    Ren, Xuefeng; Farías, Ginny G; Canagarajah, Bertram J; Bonifacino, Juan S; Hurley, James H

    2013-02-14

    AP-1 is a clathrin adaptor complex that sorts cargo between the trans-Golgi network and endosomes. AP-1 recruitment to these compartments requires Arf1-GTP. The crystal structure of the tetrameric core of AP-1 in complex with Arf1-GTP, together with biochemical analyses, shows that Arf1 activates cargo binding by unlocking AP-1. Unlocking is driven by two molecules of Arf1 that bridge two copies of AP-1 at two interaction sites. The GTP-dependent switch I and II regions of Arf1 bind to the N terminus of the β1 subunit of one AP-1 complex, while the back side of Arf1 binds to the central part of the γ subunit trunk of a second AP-1 complex. A third Arf1 interaction site near the N terminus of the γ subunit is important for recruitment, but not activation. These observations lead to a model for the recruitment and activation of AP-1 by Arf1.

  19. IL-1β-Induced Downregulation of the Multifunctional PDZ Adaptor PDZK1 Is Attenuated by ERK Inhibition, RXRα, or PPARα Stimulation in Enterocytes

    PubMed Central

    Luo, Min; Yeruva, Sunil; Liu, Yongjian; Chodisetti, Giriprakash; Riederer, Brigitte; Menon, Manoj B.; Tachibana, Keisuke; Doi, Takefumi; Seidler, Ursula E.

    2017-01-01

    Background: The PDZ adaptor protein PDZK1 modulates the membrane expression and function of a variety of intestinal receptors and ion/nutrient transporters. Its expression is strongly decreased in inflamed intestinal mucosa of mice and IBD patients. Aim and Methods: We investigated whether the inflammation-associated PDZK1 downregulation is a direct consequence of proinflammatory cytokine release by treating intestinal Caco-2BBE cells with TNF-α, IFN-γ, and IL-1β, and analysing PDZK1 promotor activity, mRNA and protein expression. Results: IL-1β was found to significantly decrease PDZK1 promoter activity, mRNA and protein expression in Caco-2BBE cells. A distal region of the hPDZK1 promoter was identified to be important for basal expression and IL-1β-responsiveness. This region harbors the retinoid acid response element RARE as well as binding sites for transcription factors involved in IL-β downstream signaling. ERK1/2 inhibition by the specific MEK1/2 inhibitors PD98059/U0126 significantly attenuated the IL-1β mediated downregulation of PDZK1, while NF-κB, p38 MAPK, and JNK inhibition did not. Expression of the nuclear receptors RXRα and PPARα was decreased in inflamed colonic-mucosa of ulcerative colitis patients and in IL-1β-treated Caco2-BBE cells. Moreover, the RAR/RXR ligand 9-cis retinoic acid and the PPARα-agonist GW7647 stimulated PDZK1 mRNA and protein expression and attenuated IL-1β-mediated inhibition. Conclusions: The strong decrease in PDZK1 expression during intestinal inflammation may be in part a consequence of IL-1β-mediated RXRα and PPARα repression and can be attenuated by agonists for either nuclear receptor, or by ERK1/2 inhibition. The negative consequences of inflammation-induced PDZK1 downregulation on epithelial transport-function may thus be amenable to pharmacological therapy. PMID:28223944

  20. A conserved serine residue regulates the stability of Drosophila Salvador and human WW domain-containing adaptor 45 through proteasomal degradation

    SciTech Connect

    Wu, Di Wu, Shian

    2013-04-19

    Highlights: •Ser-17 is key for the stability of Drosophila Sav. •Ala mutation of Ser-17 promotes the proteasomal degradation of Sav. •Ser-17 residue is not the main target of Hpo-induced Sav stabilization. •Hpo-dependent and -independent mechanisms regulate Sav stability. •This mechanism is conserved in the homologue of Sav, human WW45. -- Abstract: The Hippo (Hpo) pathway is a conserved tumor suppressor pathway that controls organ size through the coordinated regulation of apoptosis and proliferation. Drosophila Salvador (Sav), which limits organ size, is a core component of the Hpo pathway. In this study, Ser-17 was shown to be important for the stability of Sav. Alanine mutation of Ser-17 promoted the proteasomal degradation of Sav. Destabilization and stabilization of the Sav protein mediated by alanine mutation of Ser-17 and by Hpo, respectively, were independent of each other. This implies that the stability of Sav is controlled by two mechanisms, one that is Ser-17-dependent and Hpo-independent, and another that is Ser-17-independent and Hpo-dependent. These dual mechanisms also regulated the human counterpart of Drosophila Sav, WW domain-containing adaptor 45 (WW45). The conservation of this regulation adds to its significance in normal physiology and tumorigenesis.

  1. Negative Regulation of the Endocytic Adaptor Disabled-2 (Dab2) in Mitosis*

    PubMed Central

    Chetrit, David; Barzilay, Lior; Horn, Galit; Bielik, Tom; Smorodinsky, Nechama I.; Ehrlich, Marcelo

    2011-01-01

    Mitotic cells undergo extensive changes in shape and size through the altered regulation and function of their membrane trafficking machinery. Disabled 2 (Dab2), a multidomain cargo-specific endocytic adaptor and a mediator of signal transduction, is a potential integrator of trafficking and signaling. Dab2 binds effectors of signaling and trafficking that localize to different intracellular compartments. Thus, differential localization is a putative regulatory mechanism of Dab2 function. Furthermore, Dab2 is phosphorylated in mitosis and is thus regulated in the cell cycle. However, a detailed description of the intracellular localization of Dab2 in the different phases of mitosis and an understanding of the functional consequences of its phosphorylation are lacking. Here, we show that Dab2 is progressively displaced from the membrane in mitosis. This phenomenon is paralleled by a loss of co-localization with clathrin. Both phenomena culminate in metaphase/anaphase and undergo partial recovery in cytokinesis. Treatment with 2-methoxyestradiol, which arrests cells at the spindle assembly checkpoint, induces the same effects observed in metaphase cells. Moreover, 2-methoxyestradiol also induced Dab2 phosphorylation and reduced Dab2/clathrin interactions, endocytic vesicle motility, clathrin exchange dynamics, and the internalization of a receptor endowed with an NPXY endocytic signal. Serine/threonine to alanine mutations, of residues localized to the central region of Dab2, attenuated its phosphorylation, reduced its membrane displacement, and maintained its endocytic abilities in mitosis. We propose that the negative regulation of Dab2 is part of an accommodation of the cell to the altered physicochemical conditions prevalent in mitosis, aimed at allowing endocytic activity throughout the cell cycle. PMID:21097498

  2. Hydrological Modeling Reproducibility Through Data Management and Adaptors for Model Interoperability

    NASA Astrophysics Data System (ADS)

    Turner, M. A.

    2015-12-01

    Because of a lack of centralized planning and no widely-adopted standards among hydrological modeling research groups, research communities, and the data management teams meant to support research, there is chaos when it comes to data formats, spatio-temporal resolutions, ontologies, and data availability. All this makes true scientific reproducibility and collaborative integrated modeling impossible without some glue to piece it all together. Our Virtual Watershed Integrated Modeling System provides the tools and modeling framework hydrologists need to accelerate and fortify new scientific investigations by tracking provenance and providing adaptors for integrated, collaborative hydrologic modeling and data management. Under global warming trends where water resources are under increasing stress, reproducible hydrological modeling will be increasingly important to improve transparency and understanding of the scientific facts revealed through modeling. The Virtual Watershed Data Engine is capable of ingesting a wide variety of heterogeneous model inputs, outputs, model configurations, and metadata. We will demonstrate one example, starting from real-time raw weather station data packaged with station metadata. Our integrated modeling system will then create gridded input data via geostatistical methods along with error and uncertainty estimates. These gridded data are then used as input to hydrological models, all of which are available as web services wherever feasible. Models may be integrated in a data-centric way where the outputs too are tracked and used as inputs to "downstream" models. This work is part of an ongoing collaborative Tri-state (New Mexico, Nevada, Idaho) NSF EPSCoR Project, WC-WAVE, comprised of researchers from multiple universities in each of the three states. The tools produced and presented here have been developed collaboratively alongside watershed scientists to address specific modeling problems with an eye on the bigger picture of

  3. Molecular basis for association of PIPKI gamma-p90 with clathrin adaptor AP-2.

    PubMed

    Kahlfeldt, Nina; Vahedi-Faridi, Ardeschir; Koo, Seong Joo; Schäfer, Johannes G; Krainer, Georg; Keller, Sandro; Saenger, Wolfram; Krauss, Michael; Haucke, Volker

    2010-01-22

    Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) is an essential determinant in clathrin-mediated endocytosis (CME). In mammals three type I phosphatidylinositol-4-phosphate 5-kinase (PIPK) enzymes are expressed, with the I gamma-p90 isoform being highly expressed in the brain where it regulates synaptic vesicle (SV) exo-/endocytosis at nerve terminals. How precisely PI(4,5)P(2) metabolism is controlled spatially and temporally is still uncertain, but recent data indicate that direct interactions between type I PIPK and components of the endocytic machinery, in particular the AP-2 adaptor complex, are involved. Here we demonstrated that PIPKI gamma-p90 associates with both the mu and beta2 subunits of AP-2 via multiple sites. Crystallographic data show that a peptide derived from the splice insert of the human PIPKI gamma-p90 tail binds to a cognate recognition site on the sandwich subdomain of the beta2 appendage. Partly overlapping aromatic and hydrophobic residues within the same peptide also can engage the C-terminal sorting signal binding domain of AP-2mu, thereby potentially competing with the sorting of conventional YXXØ motif-containing cargo. Biochemical and structure-based mutagenesis analysis revealed that association of the tail domain of PIPKI gamma-p90 with AP-2 involves both of these sites. Accordingly the ability of overexpressed PIPKI gamma tail to impair endocytosis of SVs in primary neurons largely depends on its association with AP-2 beta and AP-2mu. Our data also suggest that interactions between AP-2 and the tail domain of PIPKI gamma-p90 may serve to regulate complex formation and enzymatic activity. We postulate a model according to which multiple interactions between PIPKI gamma-p90 and AP-2 lead to spatiotemporally controlled PI(4,5)P(2) synthesis during clathrin-mediated SV endocytosis.

  4. Cell cycle deregulation and loss of stem cell phenotype in the subventricular zone of TGF-beta adaptor elf-/- mouse brain.

    PubMed

    Golestaneh, Nady; Tang, Yi; Katuri, Varalakshmi; Jogunoori, Wilma; Mishra, Lopa; Mishra, Bibhuti

    2006-09-07

    The mammalian forebrain subependyma contains neural stem cells and other proliferating progenitor cells. Recent studies have shown the importance of TGF-beta family members and their adaptor proteins in the inhibition of proliferation in the nervous system. Previously, we have demonstrated that TGF-beta induces phosphorylation and association of ELF (embryonic liver fodrin) with Smad3 and Smad4 resulting in nuclear translocation. Elf(-/-) mice manifest abnormal neuronal differentiation, with loss of neuroepithelial progenitor cell phenotype in the subventricular zone (SVZ) with dramatic marginal cell hyperplasia and loss of nestin expression. Here, we have analyzed the expression of cell cycle-associated proteins cdk4, mdm2, p21, and pRb family members in the brain of elf(-/-) mice to verify the role of elf in the regulation of neural precursor cells in the mammalian brain. Increased proliferation in SVZ cells of the mutant mice coincided with higher levels of cdk4 and mdm2 expression. A lesser degree of apoptosis was observed in the mutant mice compared to the wild-type control. Elf(-/-) embryos showed elevated levels of hyperphosphorylated forms of pRb, p130 and p107 and decreased level of p21 compared to the wild-type control. These results establish a critical role for elf in the development of a SVZ neuroepithelial stem cell phenotype and regulation of neuroepithelial cell proliferation, suggesting that a mutation in the elf locus renders the cells susceptible to a faster entry into S phase of cell cycle and resistance to senescence and apoptotic stimuli.

  5. DEDD, a novel death effector domain-containing protein, targeted to the nucleolus.

    PubMed Central

    Stegh, A H; Schickling, O; Ehret, A; Scaffidi, C; Peterhänsel, C; Hofmann, T G; Grummt, I; Krammer, P H; Peter, M E

    1998-01-01

    The CD95 signaling pathway comprises proteins that contain one or two death effector domains (DED), such as FADD/Mort1 or caspase-8. Here we describe a novel 37 kDa protein, DEDD, that contains an N-terminal DED. DEDD is highly conserved between human and mouse (98. 7% identity) and is ubiquitously expressed. Overexpression of DEDD in 293T cells induced weak apoptosis, mainly through its DED by which it interacts with FADD and caspase-8. Endogenous DEDD was found in the cytoplasm and translocated into the nucleus upon stimulation of CD95. Immunocytological studies revealed that overexpressed DEDD directly translocated into the nucleus, where it co-localizes in the nucleolus with UBF, a basal factor required for RNA polymerase I transcription. Consistent with its nuclear localization, DEDD contains two nuclear localization signals and the C-terminal part shares sequence homology with histones. Recombinant DEDD binds to both DNA and reconstituted mononucleosomes and inhibits transcription in a reconstituted in vitro system. The results suggest that DEDD is a final target of a chain of events by which the CD95-induced apoptotic signal is transferred into the nucleolus to shut off cellular biosynthetic activities. PMID:9774341

  6. Adaptor Identity Modulates Adaptation Effects in Familiar Face Identification and Their Neural Correlates

    PubMed Central

    Walther, Christian; Schweinberger, Stefan R.; Kovács, Gyula

    2013-01-01

    Adaptation-related aftereffects (AEs) show how face perception can be altered by recent perceptual experiences. Along with contrastive behavioural biases, modulations of the early event-related potentials (ERPs) were typically reported on categorical levels. Nevertheless, the role of the adaptor stimulus per se for face identity-specific AEs is not completely understood and was therefore investigated in the present study. Participants were adapted to faces (S1s) varying systematically on a morphing continuum between pairs of famous identities (identities A and B), or to Fourier phase-randomized faces, and had to match the subsequently presented ambiguous faces (S2s; 50/50% identity A/B) to one of the respective original faces. We found that S1s identical with or near to the original identities led to strong contrastive biases with more identity B responses following A adaptation and vice versa. In addition, the closer S1s were to the 50/50% S2 on the morphing continuum, the smaller the magnitude of the AE was. The relation between S1s and AE was, however, not linear. Additionally, stronger AEs were accompanied by faster reaction times. Analyses of the simultaneously recorded ERPs revealed categorical adaptation effects starting at 100 ms post-stimulus onset, that were most pronounced at around 125–240 ms for occipito-temporal sites over both hemispheres. S1-specific amplitude modulations were found at around 300–400 ms. Response-specific analyses of ERPs showed reduced voltages starting at around 125 ms when the S1 biased perception in a contrastive way as compared to when it did not. Our results suggest that face identity AEs do not only depend on physical differences between S1 and S2, but also on perceptual factors, such as the ambiguity of S1. Furthermore, short-term plasticity of face identity processing might work in parallel to object-category processing, and is reflected in the first 400 ms of the ERP. PMID:23990908

  7. Adaptor identity modulates adaptation effects in familiar face identification and their neural correlates.

    PubMed

    Walther, Christian; Schweinberger, Stefan R; Kovács, Gyula

    2013-01-01

    Adaptation-related aftereffects (AEs) show how face perception can be altered by recent perceptual experiences. Along with contrastive behavioural biases, modulations of the early event-related potentials (ERPs) were typically reported on categorical levels. Nevertheless, the role of the adaptor stimulus per se for face identity-specific AEs is not completely understood and was therefore investigated in the present study. Participants were adapted to faces (S1s) varying systematically on a morphing continuum between pairs of famous identities (identities A and B), or to Fourier phase-randomized faces, and had to match the subsequently presented ambiguous faces (S2s; 50/50% identity A/B) to one of the respective original faces. We found that S1s identical with or near to the original identities led to strong contrastive biases with more identity B responses following A adaptation and vice versa. In addition, the closer S1s were to the 50/50% S2 on the morphing continuum, the smaller the magnitude of the AE was. The relation between S1s and AE was, however, not linear. Additionally, stronger AEs were accompanied by faster reaction times. Analyses of the simultaneously recorded ERPs revealed categorical adaptation effects starting at 100 ms post-stimulus onset, that were most pronounced at around 125-240 ms for occipito-temporal sites over both hemispheres. S1-specific amplitude modulations were found at around 300-400 ms. Response-specific analyses of ERPs showed reduced voltages starting at around 125 ms when the S1 biased perception in a contrastive way as compared to when it did not. Our results suggest that face identity AEs do not only depend on physical differences between S1 and S2, but also on perceptual factors, such as the ambiguity of S1. Furthermore, short-term plasticity of face identity processing might work in parallel to object-category processing, and is reflected in the first 400 ms of the ERP.

  8. Unintended attenuation in the Leksell Gamma Knife registered Perfexion trade mark sign calibration-phantom adaptor and its effect on dose calibration

    SciTech Connect

    Bhatnagar, Jagdish P.; Novotny, Josef Jr.; Quader, Mubina A.; Bednarz, Greg; Huq, M. Saiful

    2009-04-15

    The calibration of Leksell Gamma Knife Perfexion (LGK PFX) is performed using a spherical polystyrene phantom 160 mm in diameter, which is provided by the manufacturer. This is the same phantom that has been used with LGK models U, B, C, and 4C. The polystyrene phantom is held in irradiation position by an aluminum adaptor, which has stainless steel side-fixation screws. The phantom adaptor partially attenuates the beams from sectors 3 and 7 by 3.2% and 4.6%, respectively. This unintended attenuation introduces a systematic error in dose calibration. The overall effect of phantom-adaptor attenuation on output calibration of the LGK PFX unit is to underestimate output by about 1.0%.

  9. Septins: Regulators of Protein Stability

    PubMed Central

    Vagin, Olga; Beenhouwer, David O.

    2016-01-01

    Septins are small GTPases that play a role in several important cellular processes. In this review, we focus on the roles of septins in protein stabilization. Septins may regulate protein stability by: (1) interacting with proteins involved in degradation pathways, (2) regulating the interaction between transmembrane proteins and cytoskeletal proteins, (3) affecting the mobility of transmembrane proteins in lipid bilayers, and (4) modulating the interaction of proteins with their adaptor or signaling proteins. In this context, we discuss the role of septins in protecting four different proteins from degradation. First we consider botulinum neurotoxin serotype A (BoNT/A) and the contribution of septins to its extraordinarily long intracellular persistence. Next, we discuss the role of septins in stabilizing the receptor tyrosine kinases EGFR and ErbB2. Finally, we consider the contribution of septins in protecting hypoxia-inducible factor 1α (HIF-1α) from degradation. PMID:28066764

  10. MyD88 Adaptor-Dependent Microbial Sensing by Regulatory T Cells Promotes Mucosal Tolerance and Enforces Commensalism.

    PubMed

    Wang, Sen; Charbonnier, Louis-Marie; Noval Rivas, Magali; Georgiev, Peter; Li, Ning; Gerber, Georg; Bry, Lynn; Chatila, Talal A

    2015-08-18

    Commensal microbiota promote mucosal tolerance in part by engaging regulatory T (Treg) cells via Toll-like receptors (TLRs). We report that Treg-cell-specific deletion of the TLR adaptor MyD88 resulted in deficiency of intestinal Treg cells, a reciprocal increase in T helper 17 (Th17) cells and heightened interleukin-17 (IL-17)-dependent inflammation in experimental colitis. It also precipitated dysbiosis with overgrowth of segmented filamentous bacteria (SFB) and increased microbial loads in deep tissues. The Th17 cell dysregulation and bacterial dysbiosis were linked to impaired anti-microbial intestinal IgA responses, related to defective MyD88 adaptor- and Stat3 transcription factor-dependent T follicular regulatory and helper cell differentiation in the Peyer's patches. These findings establish an essential role for MyD88-dependent microbial sensing by Treg cells in enforcing mucosal tolerance and maintaining commensalism by promoting intestinal Treg cell formation and anti-commensal IgA responses.

  11. Recruitment of the inhibitor Cand1 to the cullin substrate adaptor site mediates interaction to the neddylation site

    PubMed Central

    Helmstaedt, Kerstin; Schwier, Elke U.; Christmann, Martin; Nahlik, Krystyna; Westermann, Mieke; Harting, Rebekka; Grond, Stephanie; Busch, Silke; Braus, Gerhard H.

    2011-01-01

    Cand1 inhibits cullin RING ubiquitin ligases by binding unneddylated cullins. The Cand1 N-terminus blocks the cullin neddylation site, whereas the C-terminus inhibits cullin adaptor interaction. These Cand1 binding sites can be separated into two functional polypeptides which bind sequentially. C-terminal Cand1 can directly bind to unneddylated cullins in the nucleus without blocking the neddylation site. The smaller N-terminal Cand1 cannot bind to the cullin neddylation region without C-terminal Cand1. The separation of a single cand1 into two independent genes represents the in vivo situation of the fungus Aspergillus nidulans, where C-terminal Cand1 recruits smaller N-terminal Cand1 in the cytoplasm. Either deletion results in an identical developmental and secondary metabolism phenotype in fungi, which resembles csn mutants deficient in the COP9 signalosome (CSN) deneddylase. We propose a two-step Cand1 binding to unneddylated cullins which initiates at the adaptor binding site and subsequently blocks the neddylation site after CSN has left. PMID:21119001

  12. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  13. Lenalidomide inhibits proliferation of Namalwa CSN.70 cells and interferes with Gab1 phosphorylation and adaptor protein complex assembly.

    PubMed

    Gandhi, Anita K; Kang, Jian; Naziruddin, Syedah; Parton, Anastasia; Schafer, Peter H; Stirling, David I

    2006-07-01

    Lenalidomide (Revlimid, CC-5013) belongs to a line of compounds known as immunomodulatory drugs (IMiDs) that are under clinical investigation in hematopoietic and solid tumor cancers. Lenalidomide efficacy has been reported in clinical trials of multiple myeloma and myelodysplastic syndromes (MDS), particularly in MDS patients with a del 5q cytogenetic abnormality, with or without other cytogenetic abnormalities. Here we report that lenalidomide inhibits proliferation of chromosome 5 deleted hematopoietic tumor cell lines in vitro, whether from the B cell, T cell, or myeloid lineage. There was diversity in the responses of the various cell lines to lenalidomide, with one undergoing cell cycle arrest, and others undergoing apoptosis. In the most lenalidomide-sensitive chromosome 5 deleted cell line, Namalwa CSN.70, the compound induced G0/G1 cell cycle arrest, inhibited Akt and Gab1 phosphorylation, and inhibited the ability of Gab1 to associate with a receptor tyrosine kinase. Lenalidomide also enhanced AP-1 transcriptional activity in Namalwa, but not in the other cell lines tested. These studies provide evidence for the mechanism of action of lenalidomide in chromosome 5 deleted hematopoietic tumors in vitro, and may provide a better understanding of the drug's activity in clinical applications.

  14. A Patient-Controlled Analgesia Adaptor to Mitigate Postsurgical Pain for Combat Casualties With Multiple Limb Amputation: A Case Series.

    PubMed

    Pasquina, Paul F; Isaacson, Brad M; Johnson, Elizabeth; Rhoades, Daniel S; Lindholm, Mark P; Grindle, Garrett G; Cooper, Rory A

    2016-08-01

    The use of explosive armaments during Operation Iraqi Freedom, Operation Enduring Freedom, and Operation New Dawn has resulted in a significant number of injured U.S. service members. These weapons often generate substantial extremity trauma requiring multiple surgical procedures to preserve life, limb, and restore function. For those individuals who require multiple surgeries, the use of patient-controlled analgesia (PCA) devices can be an effective way to achieve adequate pain management and promote successful rehabilitation and recovery during inpatient treatment. A subpopulation of patients are unable to independently control a PCA device because of severe multiple limb dysfunction and/or loss. In response to the needs of these patients, our team designed and developed a custom adaptor to assist service members who would otherwise not be able to use a PCA. Patient feedback of the device indicated a positive response, improved independence, and overall satisfaction during inpatient hospitalization.

  15. A single domain antibody fragment that recognizes the adaptor ASC defines the role of ASC domains in inflammasome assembly

    PubMed Central

    Schmidt, Florian I.; Lu, Alvin; Chen, Jeff W.; Ruan, Jianbin; Tang, Catherine

    2016-01-01

    Myeloid cells assemble inflammasomes in response to infection or cell damage; cytosolic sensors activate pro–caspase-1, indirectly for the most part, via the adaptors ASC and NLRC4. This leads to secretion of proinflammatory cytokines and pyroptosis. To explore complex formation under physiological conditions, we generated an alpaca single domain antibody, VHHASC, which specifically recognizes the CARD of human ASC via its type II interface. VHHASC not only impairs ASCCARD interactions in vitro, but also inhibits inflammasome activation in response to NLRP3, AIM2, and NAIP triggers when expressed in living cells, highlighting a role of ASC in all three types of inflammasomes. VHHASC leaves the Pyrin domain of ASC functional and stabilizes a filamentous intermediate of inflammasome activation. Incorporation of VHHASC-EGFP into these structures allowed the visualization of endogenous ASCPYD filaments for the first time. These data revealed that cross-linking of ASCPYD filaments via ASCCARD mediates the assembly of ASC foci. PMID:27069117

  16. Protein

    MedlinePlus

    ... Search for: Harvard T.H. Chan School of Public Health Email People Departments Calendar Careers Give my.harvard ... Nutrition Source Harvard T.H. Chan School of Public Health > The Nutrition Source > What Should I Eat? > Protein ...

  17. Protein

    MedlinePlus

    ... Go lean with protein. • Choose lean meats and poultry. Lean beef cuts include round steaks (top loin, ... main dishes. • Use nuts to replace meat or poultry, not in addition to meat or poultry (i. ...

  18. Overcoming Resistance of Prostate Cancer to TRAIL-Mediated Apoptosis

    DTIC Science & Technology

    2004-06-01

    cancer cells are uniformly sensitize cells to TRAIL-induced cell death by the proteasome inhibitor PS341 that has now been approved by the FDA for...DISC), which comprises the adaptor vector (Ref. 11; a gift of Scott W. Lowe, Cold Spring Harbor Laboratory). protein Fas-associated death domain (FADD...incubation with TRAIL used a recently developed experimental system that mimics step- (I jig/ml) for 20 min at 37°C. The cells were washed in ice- cold PBS

  19. Akt-phosphorylated mitogen-activated kinase-activating death domain protein (MADD) inhibits TRAIL-induced apoptosis by blocking Fas-associated death domain (FADD) association with death receptor 4.

    PubMed

    Li, Peifeng; Jayarama, Shankar; Ganesh, Lakshmy; Mordi, David; Carr, Ryan; Kanteti, Prasad; Hay, Nissim; Prabhakar, Bellur S

    2010-07-16

    MADD plays an essential role in cancer cell survival. Abrogation of endogenous MADD expression results in significant spontaneous apoptosis and enhanced susceptibility to tumor necrosis factor alpha-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. However, the regulation of MADD function is largely unknown. Here, we demonstrate that endogenous MADD is phosphorylated at three highly conserved sites by Akt, and only the phosphorylated MADD can directly interact with the TRAIL receptor DR4 thereby preventing Fas-associated death domain recruitment. However, in cells susceptible to TRAIL treatment, TRAIL induces a reduction in MADD phosphorylation levels resulting in MADD dissociation from, and Fas-associated death domain association with DR4, which allows death-inducing signaling complex (DISC) formation leading to apoptosis. Thus, the pro-survival function of MADD is dependent upon its phosphorylation by Akt. Because Akt is active in most cancer cells and phosphorylated MADD confers resistance to TRAIL-induced apoptosis, co-targeting Akt-MADD axis is likely to increase efficacy of TRAIL-based therapies.

  20. Sorting of the Alzheimer's Disease Amyloid Precursor Protein Mediated by the AP-4 Complex

    SciTech Connect

    Burgos, Patricia V.; Mardones, Gonzalo A.; Rojas, Adriana L.; daSilva, Luis L.P.; Prabhu, Yogikala; Hurley, James H.; Bonifacino, Juan S.

    2010-08-12

    Adaptor protein 4 (AP-4) is the most recently discovered and least well-characterized member of the family of heterotetrameric adaptor protein (AP) complexes that mediate sorting of transmembrane cargo in post-Golgi compartments. Herein, we report the interaction of an YKFFE sequence from the cytosolic tail of the Alzheimer's disease amyloid precursor protein (APP) with the {micro}4 subunit of AP-4. Biochemical and X-ray crystallographic analyses reveal that the properties of the APP sequence and the location of the binding site on 4 are distinct from those of other signal-adaptor interactions. Disruption of the APP-AP-4 interaction decreases localization of APP to endosomes and enhances {gamma}-secretase-catalyzed cleavage of APP to the pathogenic amyloid-{beta} peptide. These findings demonstrate that APP and AP-4 engage in a distinct type of signal-adaptor interaction that mediates transport of APP from the trans-Golgi network (TGN) to endosomes, thereby reducing amyloidogenic processing of the protein.

  1. Spatio-temporal modeling of signaling protein recruitment to EGFR

    PubMed Central

    2010-01-01

    Background A stochastic simulator was implemented to study EGFR signal initiation in 3D with single molecule detail. The model considers previously unexplored contributions to receptor-adaptor coupling, such as receptor clustering and diffusive properties of both receptors and binding partners. The agent-based and rule-based approach permits consideration of combinatorial complexity, a problem associated with multiple phosphorylation sites and the potential for simultaneous binding of adaptors. Results The model was used to simulate recruitment of four different signaling molecules (Grb2, PLCγ1, Stat5, Shc) to the phosphorylated EGFR tail, with rules based on coarse-grained prediction of spatial constraints. Parameters were derived in part from quantitative immunoblotting, immunoprecipitation and electron microscopy data. Results demonstrate that receptor clustering increases the efficiency of individual adaptor retainment on activated EGFR, an effect that is overridden if crowding is imposed by receptor overexpression. Simultaneous docking of multiple proteins is highly dependent on receptor-adaptor stability and independent of clustering. Conclusions Overall, we propose that receptor density, reaction kinetics and membrane spatial organization all contribute to signaling efficiency and influence the carcinogenesis process. PMID:20459599

  2. Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes.

    PubMed

    Saint-Pol, Agnès; Yélamos, Belén; Amessou, Mohamed; Mills, Ian G; Dugast, Marc; Tenza, Danièle; Schu, Peter; Antony, Claude; McMahon, Harvey T; Lamaze, Christophe; Johannes, Ludger

    2004-04-01

    Retrograde transport links early/recycling endosomes to the trans-Golgi network (TGN), thereby connecting the endocytic and the biosynthetic/secretory pathways. To determine how internalized molecules are targeted to the retrograde route, we have interfered with the function of clathrin and that of two proteins that interact with it, AP1 and epsinR. We found that the glycosphingolipid binding bacterial Shiga toxin entered cells efficiently when clathrin expression was inhibited. However, retrograde transport of Shiga toxin to the TGN was strongly inhibited. This allowed us to show that for Shiga toxin, retrograde sorting on early/recycling endosomes depends on clathrin and epsinR, but not AP1. EpsinR was also involved in retrograde transport of two endogenous proteins, TGN38/46 and mannose 6-phosphate receptor. In conclusion, our work reveals the existence of clathrin-independent and -dependent transport steps in the retrograde route, and establishes a function for clathrin and epsinR at the endosome-TGN interface.

  3. The ClpS adaptor mediates staged delivery of N-end-rule substrates to the AAA+ ClpAP protease

    PubMed Central

    Román-Hernández, Giselle; Hou, Jennifer Y.; Grant, Robert A.; Sauer, Robert T.; Baker, Tania A.

    2011-01-01

    Summary The ClpS adaptor delivers N-end-rule substrates to ClpAP, an energy-dependent AAA+ protease, for degradation. How ClpS binds specific N-end residues is known in atomic detail and clarified here, but the delivery mechanism is poorly understood. We show that substrate binding is enhanced when ClpS binds hexameric ClpA. Reciprocally, N-end-rule substrates increase ClpS affinity for ClpA6. Enhanced binding requires the N-end residue and peptide bond of the substrate, as well as multiple aspects of ClpS, including, a side chain that contacts the substrate α-amino group and the flexible N-terminal extension (NTE). Finally, enhancement also needs the N domain and AAA+ rings of ClpA, connected by a long linker. The NTE can be engaged by the ClpA translocation pore, but ClpS resists unfolding/degradation. We propose a staged-delivery model that illustrates how intimate contacts between the substrate, adaptor, and protease reprogram specificity and coordinate handoff from the adaptor to the protease. PMID:21777811

  4. Clathrin, AP-2, and the NPXY-binding subset of alternate endocytic adaptors facilitate FimH-mediated bacterial invasion of host cells.

    PubMed

    Eto, Danelle S; Gordon, Hannah B; Dhakal, Bijaya K; Jones, Tiffani A; Mulvey, Matthew A

    2008-12-01

    The FimH adhesin, localized at the distal tips of type 1 pili, binds mannose-containing glycoprotein receptors like alpha3beta1 integrins and stimulates bacterial entry into target host cells. Strains of uropathogenic Escherichia coli (UPEC), the major cause of urinary tract infections, utilize FimH to invade bladder epithelial cells. Here we set out to define the mechanism by which UPEC enters host cells by investigating four of the major entry routes known to be exploited by invasive pathogens: caveolae, clathrin, macropinocytosis and secretory lysosomes. Using pharmacological inhibitors in combination with RNA interference against specific endocytic pathway components, mutant host cell lines and a mouse infection model system, we found that type 1 pili-dependent bacterial invasion of host cells occurs via a cholesterol- and dynamin-dependent phagocytosis-like mechanism. This process did not require caveolae or secretory lysosomes, but was modulated by calcium levels, clathrin, and cooperative input from the primary clathrin adaptor AP-2 and a subset of alternate adaptors comprised of Numb, ARH and Dab2. These alternate clathrin adaptors recognize NPXY motifs, as found within the cytosolic tail of beta1 integrin, suggesting a functional link between the engagement of integrin receptors by FimH and the clathrin-dependent uptake of type 1-piliated bacteria.

  5. Molecular cloning and functional analysis of the duck TIR domain-containing adaptor inducing IFN-β (TRIF) gene.

    PubMed

    Wei, Xiaoqin; Qian, Wei; Sizhu, Suolang; Shi, Lijuan; Jin, Meilin; Zhou, Hongbo

    2016-12-01

    Toll-like receptors (TLRs) trigger the innate immune response by responding to specific components of microorganisms. The TIR domain-containing adaptor inducing IFN-β (TRIF) plays an essential role in mammalian TLR-mediated signaling. The role of TRIF in ducks (duTRIF) remains poorly understood. In this study, we cloned and characterized the full-length coding sequence of duTRIF from duck embryo fibroblasts (DEFs). In healthy ducks, duTRIF transcripts were broadly expressed in different tissues, with higher expression levels in the spleen and liver. Using quantitative real-time PCR (qRT-PCR), we demonstrated the upregulation of duTRIF in DEFs infected with AIV or DTMUV, and DEFs treated with Poly I:C or LPS. Overexpression of duTRIF was able to induce the NF-κB and IFN-β expression. Furthermore, the IFN induction function of duTRIF was impaired when Ala517 was mutated to Pro or His. Taken together, these results suggested that duTRIF regulated duck innate immune responses.

  6. Immune Functions in Mice Lacking Clnk, an SLP-76-Related Adaptor Expressed in a Subset of Immune Cells

    PubMed Central

    Utting, Oliver; Sedgmen, Bradley J.; Watts, Tania H.; Shi, Xiaoshu; Rottapel, Robert; Iulianella, Angelo; Lohnes, David; Veillette, André

    2004-01-01

    The SLP-76 family of immune cell-specific adaptors is composed of three distinct members named SLP-76, Blnk, and Clnk. They have been implicated in the signaling pathways coupled to immunoreceptors such as the antigen receptors and Fc receptors. Previous studies using gene-targeted mice and deficient cell lines showed that SLP-76 plays a central role in T-cell development and activation. Moreover, it is essential for normal mast cell and platelet activation. In contrast, Blnk is necessary for B-cell development and activation. While the precise function of Clnk is not known, it was reported that Clnk is selectively expressed in mast cells, natural killer (NK) cells, and previously activated T-cells. Moreover, ectopic expression of Clnk was shown to rescue T-cell receptor-mediated signal transduction in an SLP-76-deficient T-cell line, suggesting that, like its relatives, Clnk is involved in the positive regulation of immunoreceptor signaling. Stimulatory effects of Clnk on immunoreceptor signaling were also reported to occur in transfected B-cell and basophil leukemia cell lines. Herein, we attempted to address the physiological role of Clnk in immune cells by the generation of Clnk-deficient mice. The results of our studies demonstrated that Clnk is dispensable for normal differentiation and function of T cells, mast cells, and NK cells. Hence, unlike its relatives, Clnk is not essential for normal immune functions. PMID:15199160

  7. Basolateral sorting of chloride channel 2 is mediated by interactions between a dileucine motif and the clathrin adaptor AP-1

    PubMed Central

    de la Fuente-Ortega, Erwin; Gravotta, Diego; Bay, Andres Perez; Benedicto, Ignacio; Carvajal-Gonzalez, Jose Maria; Lehmann, Guillermo L.; Lagos, Carlos F.; Rodríguez-Boulan, Enrique

    2015-01-01

    In spite of the many key cellular functions of chloride channels, the mechanisms that mediate their subcellular localization are largely unknown. ClC-2 is a ubiquitous chloride channel usually localized to the basolateral domain of epithelia that regulates cell volume, ion transport, and acid–base balance; mice knocked out for ClC-2 are blind and sterile. Previous work suggested that CLC-2 is sorted basolaterally by TIFS812LL, a dileucine motif in CLC-2's C-terminal domain. However, our in silico modeling of ClC-2 suggested that this motif was buried within the channel's dimerization interface and identified two cytoplasmically exposed dileucine motifs, ESMI623LL and QVVA635LL, as candidate sorting signals. Alanine mutagenesis and trafficking assays support a scenario in which ESMI623LL acts as the authentic basolateral signal of ClC-2. Silencing experiments and yeast three-hybrid assays demonstrated that both ubiquitous (AP-1A) and epithelium-specific (AP-1B) forms of the tetrameric clathrin adaptor AP-1 are capable of carrying out basolateral sorting of ClC-2 through interactions of ESMI623LL with a highly conserved pocket in their γ1-σ1A hemicomplex. PMID:25739457

  8. Usefulness of the Paralens™ Fluorescent Microscope Adaptor for the Identification of Mycobacteria in Both Field and Laboratory Settings

    PubMed Central

    Kuhn, Walter; Armstrong, Derek; Atteberry, Suzanne; Dewbrey, Euline; Smith, Diane; Hooper, Nancy

    2010-01-01

    The presence of acid-fast bacilli (AFB) in laboratories has traditionally been demonstrated using the fluorochrome method, which requires a fluorescent microscope or the Ziehl-Neelsen (ZN) method employing light microscopy. Low sensitivity of the ZN method and high costs of fluoroscopy make the need for a more effective means of diagnosis a top priority, especially in developing countries where the burden of tuberculosis is high. The QBC ParaLens™ attachment (QBC Diagnostic Inc., Port Matilda, PA) is a substitute for conventional fluoroscopy in the identification of AFB. To evaluate the efficacy of the ParaLens LED (light-emitting diode) system, the authors performed a two-part study, looking at usefulness, functionality and durability in urban/rural health clinics around the world, as well as in a controlled state public health laboratory setting. In the field, the ParaLens was durable and functioned well with various power sources and lighting conditions. Results from the state laboratory indicated agreement between standard fluorescent microscopy and fluorescent microscopy using the ParaLens. This adaptor is a welcome addition to laboratories in resource-limited settings as a useful alternative to conventional fluoroscopy for detection of mycobacterial species. PMID:20556200

  9. Adapting for endocytosis: roles for endocytic sorting adaptors in directing neural development

    PubMed Central

    Yap, Chan Choo; Winckler, Bettina

    2015-01-01

    Proper cortical development depends on the orchestrated actions of a multitude of guidance receptors and adhesion molecules and their downstream signaling. The levels of these receptors on the surface and their precise locations can greatly affect guidance outcomes. Trafficking of receptors to a particular surface locale and removal by endocytosis thus feed crucially into the final guidance outcomes. In addition, endocytosis of receptors can affect downstream signaling (both quantitatively and qualitatively) and regulated endocytosis of guidance receptors is thus an important component of ensuring proper neural development. We will discuss the cell biology of regulated endocytosis and the impact on neural development. We focus our discussion on endocytic accessory proteins (EAPs) (such as numb and disabled) and how they regulate endocytosis and subsequent post-endocytic trafficking of their cognate receptors (such as Notch, TrkB, β-APP, VLDLR, and ApoER2). PMID:25904845

  10. Adapting for endocytosis: roles for endocytic sorting adaptors in directing neural development.

    PubMed

    Yap, Chan Choo; Winckler, Bettina

    2015-01-01

    Proper cortical development depends on the orchestrated actions of a multitude of guidance receptors and adhesion molecules and their downstream signaling. The levels of these receptors on the surface and their precise locations can greatly affect guidance outcomes. Trafficking of receptors to a particular surface locale and removal by endocytosis thus feed crucially into the final guidance outcomes. In addition, endocytosis of receptors can affect downstream signaling (both quantitatively and qualitatively) and regulated endocytosis of guidance receptors is thus an important component of ensuring proper neural development. We will discuss the cell biology of regulated endocytosis and the impact on neural development. We focus our discussion on endocytic accessory proteins (EAPs) (such as numb and disabled) and how they regulate endocytosis and subsequent post-endocytic trafficking of their cognate receptors (such as Notch, TrkB, β-APP, VLDLR, and ApoER2).

  11. RIAM (Rap1-interacting adaptor molecule) regulates complement-dependent phagocytosis.

    PubMed

    Medraño-Fernandez, Iria; Reyes, Raquel; Olazabal, Isabel; Rodriguez, Elena; Sanchez-Madrid, Francisco; Boussiotis, Vassiliki A; Reche, Pedro A; Cabañas, Carlos; Lafuente, Esther M

    2013-07-01

    Phagocytosis mediated by the complement receptor CR3 (also known as integrin αMß2 or Mac-1) is regulated by the recruitment of talin to the cytoplasmic tail of the ß2 integrin subunit. Talin recruitment to this integrin is dependent on Rap1 activation. However, the mechanism by which Rap1 regulates this event and CR3-dependent phagocytosis remains largely unknown. In the present work, we examined the role of the Rap1 effector RIAM, a talin-binding protein, in the regulation of complement-mediated phagocytosis. Using the human myeloid cell lines HL-60 and THP-1, we determined that knockdown of RIAM impaired αMß2 integrin affinity changes induced by stimuli fMLP and LPS. Phagocytosis of complement-opsonized RBC particles, but not of IgG-opsonized RBC particles, was impaired in RIAM knockdown cells. Rap1 activation via EPAC induced by 8-pCPT-2'-O-Me-cAMP resulted in an increase of complement-mediated phagocytosis that was abrogated by knockdown of RIAM in HL-60 and THP-1 cell lines and in macrophages derived from primary monocytes. Furthermore, recruitment of talin to ß2 integrin during complement-mediated phagocytosis was reduced in RIAM knockdown cells. These results indicate that RIAM is a critical component of the phagocytosis machinery downstream of Rap1 and mediates its function by recruiting talin to the phagocytic complement receptors.

  12. TIFA, an inflammatory signaling adaptor, is tumor suppressive for liver cancer.

    PubMed

    Shen, W; Chang, A; Wang, J; Zhou, W; Gao, R; Li, J; Xu, Y; Luo, X; Xiang, R; Luo, N; Stupack, D G

    2015-10-26

    TIFA (TNF receptor associated factor (TRAF)-interacting protein with a Forkhead-associated (FHA) domain), also called T2BP, was first identified using a yeast two-hybrid screening. TIFA contains a FHA domain, which directly binds phosphothreonine and phosphoserine, and a consensus TRAF6-binding motif. TIFA-mediated oligomerization and poly-ubiquitinylation of TRAF6 mediates signaling downstream of the Tumor necrosis factor alpha receptor 1 (TNFaR-I) and interleukin-1/Toll-like receptor 4 (TLR4) pathways. Examining TIFA expression in hepatocellular carcinoma (HCC) tissues microarrays, we noted marked decreases TIFA reactivity in tumor versus control samples. In agreement, we found that HCC cell lines show reduced TIFA expression levels versus normal liver controls. Reconstituting TIFA expression in HCC cell lines promoted two independent apoptosis signaling pathways: the induction of p53 and cell cycle arrest, and the activation of caspase-8 and caspase-3. In contrast, the expression of a non-oligomerizing mutant of TIFA impacted cells minimally, and suppression of TIFA expression protected cells from apoptosis. Mice bearing TIFA overexpression hepatocellular xenografts develop smaller tumors versus TIFA mutant tumors; terminal deoxynucleotidyl transferase dUTP nick end labeling staining demonstrates increased cell apoptosis, and decreased proliferation, reflecting cell cycle arrest. Interestingly, p53 has a greater role in decreased proliferation than cell death, as it appeared dispensable for TIFA-induced cell killing. The findings demonstrate a novel suppressive role of TIFA in HCC progression via promotion of cell death independent of p53.

  13. TIFA, an inflammatory signaling adaptor, is tumor suppressive for liver cancer

    PubMed Central

    Shen, W; Chang, A; Wang, J; Zhou, W; Gao, R; Li, J; Xu, Y; Luo, X; Xiang, R; Luo, N; Stupack, D G

    2015-01-01

    TIFA (TNF receptor associated factor (TRAF)-interacting protein with a Forkhead-associated (FHA) domain), also called T2BP, was first identified using a yeast two-hybrid screening. TIFA contains a FHA domain, which directly binds phosphothreonine and phosphoserine, and a consensus TRAF6-binding motif. TIFA-mediated oligomerization and poly-ubiquitinylation of TRAF6 mediates signaling downstream of the Tumor necrosis factor alpha receptor 1 (TNFaR-I) and interleukin-1/Toll-like receptor 4 (TLR4) pathways. Examining TIFA expression in hepatocellular carcinoma (HCC) tissues microarrays, we noted marked decreases TIFA reactivity in tumor versus control samples. In agreement, we found that HCC cell lines show reduced TIFA expression levels versus normal liver controls. Reconstituting TIFA expression in HCC cell lines promoted two independent apoptosis signaling pathways: the induction of p53 and cell cycle arrest, and the activation of caspase-8 and caspase-3. In contrast, the expression of a non-oligomerizing mutant of TIFA impacted cells minimally, and suppression of TIFA expression protected cells from apoptosis. Mice bearing TIFA overexpression hepatocellular xenografts develop smaller tumors versus TIFA mutant tumors; terminal deoxynucleotidyl transferase dUTP nick end labeling staining demonstrates increased cell apoptosis, and decreased proliferation, reflecting cell cycle arrest. Interestingly, p53 has a greater role in decreased proliferation than cell death, as it appeared dispensable for TIFA-induced cell killing. The findings demonstrate a novel suppressive role of TIFA in HCC progression via promotion of cell death independent of p53. PMID:26501855

  14. DYNC1H1 mutations associated with neurological diseases compromise processivity of dynein–dynactin–cargo adaptor complexes

    PubMed Central

    Hoang, Ha Thi; Schlager, Max A.; Carter, Andrew P.

    2017-01-01

    Mutations in the human DYNC1H1 gene are associated with neurological diseases. DYNC1H1 encodes the heavy chain of cytoplasmic dynein-1, a 1.4-MDa motor complex that traffics organelles, vesicles, and macromolecules toward microtubule minus ends. The effects of the DYNC1H1 mutations on dynein motility, and consequently their links to neuropathology, are not understood. Here, we address this issue using a recombinant expression system for human dynein coupled to single-molecule resolution in vitro motility assays. We functionally characterize 14 DYNC1H1 mutations identified in humans diagnosed with malformations in cortical development (MCD) or spinal muscular atrophy with lower extremity predominance (SMALED), as well as three mutations that cause motor and sensory defects in mice. Two of the human mutations, R1962C and H3822P, strongly interfere with dynein’s core mechanochemical properties. The remaining mutations selectively compromise the processive mode of dynein movement that is activated by binding to the accessory complex dynactin and the cargo adaptor Bicaudal-D2 (BICD2). Mutations with the strongest effects on dynein motility in vitro are associated with MCD. The vast majority of mutations do not affect binding of dynein to dynactin and BICD2 and are therefore expected to result in linkage of cargos to dynein–dynactin complexes that have defective long-range motility. This observation offers an explanation for the dominant effects of DYNC1H1 mutations in vivo. Collectively, our results suggest that compromised processivity of cargo–motor assemblies contributes to human neurological disease and provide insight into the influence of different regions of the heavy chain on dynein motility. PMID:28196890

  15. DYNC1H1 mutations associated with neurological diseases compromise processivity of dynein-dynactin-cargo adaptor complexes.

    PubMed

    Hoang, Ha Thi; Schlager, Max A; Carter, Andrew P; Bullock, Simon L

    2017-02-28

    Mutations in the human DYNC1H1 gene are associated with neurological diseases. DYNC1H1 encodes the heavy chain of cytoplasmic dynein-1, a 1.4-MDa motor complex that traffics organelles, vesicles, and macromolecules toward microtubule minus ends. The effects of the DYNC1H1 mutations on dynein motility, and consequently their links to neuropathology, are not understood. Here, we address this issue using a recombinant expression system for human dynein coupled to single-molecule resolution in vitro motility assays. We functionally characterize 14 DYNC1H1 mutations identified in humans diagnosed with malformations in cortical development (MCD) or spinal muscular atrophy with lower extremity predominance (SMALED), as well as three mutations that cause motor and sensory defects in mice. Two of the human mutations, R1962C and H3822P, strongly interfere with dynein's core mechanochemical properties. The remaining mutations selectively compromise the processive mode of dynein movement that is activated by binding to the accessory complex dynactin and the cargo adaptor Bicaudal-D2 (BICD2). Mutations with the strongest effects on dynein motility in vitro are associated with MCD. The vast majority of mutations do not affect binding of dynein to dynactin and BICD2 and are therefore expected to result in linkage of cargos to dynein-dynactin complexes that have defective long-range motility. This observation offers an explanation for the dominant effects of DYNC1H1 mutations in vivo. Collectively, our results suggest that compromised processivity of cargo-motor assemblies contributes to human neurological disease and provide insight into the influence of different regions of the heavy chain on dynein motility.

  16. Development of novel on-chip, customer-design spiral biasing adaptor on for Si drift detectors and detector arrays for X-ray and nuclear physics experiments

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Chen, Wei

    2014-11-01

    A novel on-chip, customer-design spiral biasing adaptor (SBA) has been developed. A single SBA is used for biasing a Si drift detector (SDD) and SDD array. The use of an SBA reduces the biasing current. This paper shows the calculation of the geometry of an SBA and an SDD to get the best drift field in the SDD and SDD array. Prototype SBAs have been fabricated to verify the concept. Electrical measurements on these SBAs are in agreement with the expectations. The new SDD array with an SBA can be used for X-ray detection and in nuclear physics experiments.

  17. Border Security: The Role of RIPK3 in Epithelium Homeostasis

    PubMed Central

    Moriwaki, Kenta; Balaji, Sakthi; Chan, Francis Ka-Ming

    2016-01-01

    Receptor interacting protein kinase 3 (RIPK3) is a crucial inducer of necroptosis. Its activity is controlled by interaction with other signal adaptors through the “RIP homotypic interaction motif” (RHIM). Recent studies revealed a critical function for RIPK3 in the maintenance of epithelial tissue integrity. In mice with genetic deficiency of the apoptosis adaptors FADD or caspase 8, RIPK3 promotes necroptotic cell death of epithelial cells, leading to excessive and lethal inflammation. In contrast, when FADD and caspase 8 functions are intact, RIPK3 serves as a protector of intestinal epithelial integrity by promoting injury-induced wound repair. In the latter case, RIPK3 promotes optimal cytokine expression by cells of hematopoietic origin. Specifically, bone marrow derived dendritic cells (BMDCs) have an obligate requirement for RIPK3 for optimal secretion of mature IL-1β and other inflammatory cytokines in response to toll-like receptor 4 (TLR4) stimulation. RIPK3 promotes cytokine expression through two complementary mechanisms: NF-κB dependent gene transcription and processing of pro-IL-1β. We propose that RIPK3 functions in different cell compartments to mediate inflammation through distinct mechanisms. PMID:27446921

  18. Rapid whole genome sequencing of Miyazaki-Bali/2007 Pteropine orthoreovirus by modified rolling circular amplification with adaptor ligation – next generation sequencing

    PubMed Central

    Singh, Harpal; Yoshikawa, Tomoki; Kobayashi, Takeshi; Fukushi, Shuetsu; Tani, Hideki; Taniguchi, Satoshi; Fukuma, Aiko; Yang, Ming; Sugamata, Masami; Shimojima, Masayuki; Saijo, Masayuki

    2015-01-01

    The emergence of orthoreoviruses as the causative agent of human respiratory illness over the past few years has led to a demand to determine their viral genome sequences. The whole genome sequencing of such RNA viruses using traditional methods, such as Sanger dideoxy sequencing following rapid amplification of cDNA ends presents a laborious challenge due to the numerous preparatory steps required before sequencing can commence. We developed a practical, time-efficient novel combination method capable of reducing the total time required from months to less than a week in the determination of whole genome sequence of Pteropine orthoreoviruses (PRV); through a combination of viral RNA purification and enrichment, adaptor ligation, reverse transcription, cDNA circularization and amplification, and next generation sequencing. We propose to call the method “modified rolling circular amplification with adaptor ligation – next generation sequencing (mRCA-NGS)”. Here, we describe the technological focus and advantage of mRCA-NGS and its expansive application, exemplified through the phylogenetic understanding of the Miyazaki-Bali/2007 PRV. PMID:26558341

  19. TIR-Domain-Containing Adaptor-Inducing Interferon-β (TRIF) Mediates Antibacterial Defense during Gram-Negative Pneumonia by Inducing Interferon-x03B3.

    PubMed

    van Lieshout, Miriam H P; Florquin, Sandrine; Vanʼt Veer, Cornelis; de Vos, Alex F; van der Poll, Tom

    2015-01-01

    Klebsiella pneumoniae is an important cause of Gram-negative pneumonia and sepsis. Mice deficient for TIR-domain-containing adaptor-inducing interferon-β (TRIF) demonstrate enhanced bacterial growth and dissemination during Klebsiella pneumonia. We show here that the impaired antibacterial defense of TRIF mutant mice is associated with absent interferon (IFN)-x03B3; production in the lungs. IFN-x03B3; production by splenocytes in response to K. pneumoniae in vitro was critically dependent on Toll-like receptor 4 (TLR4), the common TLR adaptor myeloid differentiation primary response gene (MyD88) and TRIF. Reconstitution of TRIF mutant mice with recombinant IFN-x03B3; via the airways reduced bacterial loads in lungs and distant body sites to levels measured in wild-type mice, and partially restored pulmonary cytokine levels. The IFN-x03B3;-induced, improved, enhanced antibacterial response in TRIF mutant mice occurred at the expense of increased hepatocellular injury. These data indicate that TRIF mediates antibacterial defense during Gram-negative pneumonia, at least in part, by inducing IFN-x03B3; at the primary site of infection.

  20. Ubiquitin in the peroxisomal protein import pathway.

    PubMed

    Francisco, Tânia; Rodrigues, Tony A; Pinto, Manuel P; Carvalho, Andreia F; Azevedo, Jorge E; Grou, Cláudia P

    2014-03-01

    PEX5 is the shuttling receptor for newly synthesized peroxisomal matrix proteins. Alone, or with the help of an adaptor protein, this receptor binds peroxisomal matrix proteins in the cytosol and transports them to the peroxisomal membrane docking/translocation module (DTM). The interaction between cargo-loaded PEX5 and the DTM ultimately results in its insertion into the DTM with the concomitant translocation of the cargo protein across the organelle membrane. PEX5 is not consumed in this event; rather it is dislocated back into the cytosol so that it can promote additional rounds of protein transportation. Remarkably, the data collected in recent years indicate that dislocation is preceded by monoubiquitination of PEX5 at a conserved cysteine residue. This mandatory modification is not the only type of ubiquitination occurring at the DTM. Indeed, several findings suggest that defective receptors jamming the DTM are polyubiquitinated and targeted to the proteasome for degradation.

  1. Reciprocal influence of connexins and apical junction proteins on their expressions and functions

    PubMed Central

    Derangeon, Mickaël; Spray, David C.; Bourmeyster, Nicolas; Sarrouilhe, Denis; Hervé, Jean-Claude

    2009-01-01

    Membranes of adjacent cells form intercellular junctional complexes to mechanically anchor neighbour cells (anchoring junctions), to seal the paracellular space and to prevent diffusion of integral proteins within the plasma membrane (tight junctions) and to allow cell-to-cell diffusion of small ions and molecules (gap junctions). These different types of specialised plasma membrane microdomains, sharing common adaptor molecules, particularly zonula occludens proteins, frequently present intermingled relationships where the different proteins co-assemble into macromolecular complexes and their expressions are co-ordinately regulated. Proteins forming gap junction channels (connexins, particularly) and proteins fulfilling cell attachment or forming tight junction strands mutually influence expression and functions of one another. PMID:19046940

  2. Depletion of the ubiquitin-binding adaptor molecule SQSTM1/p62 from macrophages harboring cftr ΔF508 mutation improves the delivery of Burkholderia cenocepacia to the autophagic machinery.

    PubMed

    Abdulrahman, Basant A; Khweek, Arwa Abu; Akhter, Anwari; Caution, Kyle; Tazi, Mia; Hassan, Hoda; Zhang, Yucheng; Rowland, Patrick D; Malhotra, Sankalp; Aeffner, Famke; Davis, Ian C; Valvano, Miguel A; Amer, Amal O

    2013-01-18

    Cystic fibrosis is the most common inherited lethal disease in Caucasians. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), of which the cftr ΔF508 mutation is the most common. ΔF508 macrophages are intrinsically defective in autophagy because of the sequestration of essential autophagy molecules within unprocessed CFTR aggregates. Defective autophagy allows Burkholderia cenocepacia (B. cepacia) to survive and replicate in ΔF508 macrophages. Infection by B. cepacia poses a great risk to cystic fibrosis patients because it causes accelerated lung inflammation and, in some cases, a lethal necrotizing pneumonia. Autophagy is a cell survival mechanism whereby an autophagosome engulfs non-functional organelles and delivers them to the lysosome for degradation. The ubiquitin binding adaptor protein SQSTM1/p62 is required for the delivery of several ubiquitinated cargos to the autophagosome. In WT macrophages, p62 depletion and overexpression lead to increased and decreased bacterial intracellular survival, respectively. In contrast, depletion of p62 in ΔF508 macrophages results in decreased bacterial survival, whereas overexpression of p62 leads to increased B. cepacia intracellular growth. Interestingly, the depletion of p62 from ΔF508 macrophages results in the release of the autophagy molecule beclin1 (BECN1) from the mutant CFTR aggregates and allows its redistribution and recruitment to the B. cepacia vacuole, mediating the acquisition of the autophagy marker LC3 and bacterial clearance via autophagy. These data demonstrate that p62 differentially dictates the fate of B. cepacia infection in WT and ΔF508 macrophages.

  3. Depletion of the Ubiquitin-binding Adaptor Molecule SQSTM1/p62 from Macrophages Harboring cftr ΔF508 Mutation Improves the Delivery of Burkholderia cenocepacia to the Autophagic Machinery*

    PubMed Central

    Abdulrahman, Basant A.; Khweek, Arwa Abu; Akhter, Anwari; Caution, Kyle; Tazi, Mia; Hassan, Hoda; Zhang, Yucheng; Rowland, Patrick D.; Malhotra, Sankalp; Aeffner, Famke; Davis, Ian C.; Valvano, Miguel A.; Amer, Amal O.

    2013-01-01

    Cystic fibrosis is the most common inherited lethal disease in Caucasians. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), of which the cftr ΔF508 mutation is the most common. ΔF508 macrophages are intrinsically defective in autophagy because of the sequestration of essential autophagy molecules within unprocessed CFTR aggregates. Defective autophagy allows Burkholderia cenocepacia (B. cepacia) to survive and replicate in ΔF508 macrophages. Infection by B. cepacia poses a great risk to cystic fibrosis patients because it causes accelerated lung inflammation and, in some cases, a lethal necrotizing pneumonia. Autophagy is a cell survival mechanism whereby an autophagosome engulfs non-functional organelles and delivers them to the lysosome for degradation. The ubiquitin binding adaptor protein SQSTM1/p62 is required for the delivery of several ubiquitinated cargos to the autophagosome. In WT macrophages, p62 depletion and overexpression lead to increased and decreased bacterial intracellular survival, respectively. In contrast, depletion of p62 in ΔF508 macrophages results in decreased bacterial survival, whereas overexpression of p62 leads to increased B. cepacia intracellular growth. Interestingly, the depletion of p62 from ΔF508 macrophages results in the release of the autophagy molecule beclin1 (BECN1) from the mutant CFTR aggregates and allows its redistribution and recruitment to the B. cepacia vacuole, mediating the acquisition of the autophagy marker LC3 and bacterial clearance via autophagy. These data demonstrate that p62 differentially dictates the fate of B. cepacia infection in WT and ΔF508 macrophages. PMID:23148214

  4. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway

    SciTech Connect

    Shi, T.; Niepel, M.; McDermott, J. E.; Gao, Y.; Nicora, C. D.; Chrisler, W. B.; Markillie, L. M.; Petyuk, V. A.; Smith, R. D.; Rodland, K. D.; Sorger, P. K.; Qian, W. -J.; Wiley, H. S.

    2016-07-12

    It is not known whether cancer cells generally show quantitative differences in the expression of signaling pathway proteins that could dysregulate signal transduction. To explore this issue, we first defined the primary components of the EGF-MAPK pathway in normal human mammary epithelial cells, identifying 16 core proteins and 10 feedback regulators. We then quantified their absolute abundance across a panel of normal and cancer cell lines. We found that core pathway proteins were expressed at very similar levels across all cell types. In contrast, the EGFR and transcriptionally controlled feedback regulators were expressed at highly variable levels. The absolute abundance of most core pathway proteins was between 50,000- 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower levels (2,000-5,000 per cell). MAPK signaling showed saturation in all cells between 3,000-10,000 occupied EGFR, consistent with the idea that low adaptor levels limit signaling. Our results suggest that the core MAPK pathway is essentially invariant across different cell types, with cell- specific differences in signaling likely due to variable levels of feedback regulators. The low abundance of adaptors relative to the EGFR could be responsible for previous observation of saturable signaling, endocytosis, and high affinity EGFR.

  5. Intrinsically disordered proteins drive membrane curvature

    NASA Astrophysics Data System (ADS)

    Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.

    2015-07-01

    Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.

  6. Intrinsically disordered proteins drive membrane curvature

    PubMed Central

    Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.

    2015-01-01

    Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures. PMID:26204806

  7. Intrinsically disordered proteins drive membrane curvature.

    PubMed

    Busch, David J; Houser, Justin R; Hayden, Carl C; Sherman, Michael B; Lafer, Eileen M; Stachowiak, Jeanne C

    2015-07-24

    Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.

  8. Small-Molecule Stabilization of 14-3-3 Protein-Protein Interactions Stimulates Axon Regeneration.

    PubMed

    Kaplan, Andrew; Morquette, Barbara; Kroner, Antje; Leong, SooYuen; Madwar, Carolin; Sanz, Ricardo; Banerjee, Sara L; Antel, Jack; Bisson, Nicolas; David, Samuel; Fournier, Alyson E

    2017-03-08

    Damaged central nervous system (CNS) neurons have a poor ability to spontaneously regenerate, causing persistent functional deficits after injury. Therapies that stimulate axon growth are needed to repair CNS damage. 14-3-3 adaptors are hub proteins that are attractive targets to manipulate cell signaling. We identify a positive role for 14-3-3s in axon growth and uncover a developmental regulation of the phosphorylation and function of 14-3-3s. We show that fusicoccin-A (FC-A), a small-molecule stabilizer of 14-3-3 protein-protein interactions, stimulates axon growth in vitro and regeneration in vivo. We show that FC-A stabilizes a complex between 14-3-3 and the stress response regulator GCN1, inducing GCN1 turnover and neurite outgrowth. These findings show that 14-3-3 adaptor protein complexes are druggable targets and identify a new class of small molecules that may be further optimized for the repair of CNS damage.

  9. The origin of polynucleotide-directed protein synthesis

    NASA Technical Reports Server (NTRS)

    Orgel, Leslie E.

    1989-01-01

    If protein synthesis evolved in an RNA world it was probably preceded by simpler processes by means of which interaction with amino acids conferred selective advantage on replicating RNA molecules. It is suggested that at first the simple attachment of amino acids to the 2'(3') termini of RNA templates favored initiation of replication at the end of the template rather than at internal positions. The second stage in the evolution of protein synthesis would probably have been the association of pairs of charged RNA adaptors in such a way as to favor noncoded formation of peptides. Only after this process had become efficient could coded synthesis have begun.

  10. Cooperative and selective roles of the WW domains of the yeast Nedd4-like ubiquitin ligase Rsp5 in the recognition of the arrestin-like adaptors Bul1 and Bul2.

    PubMed

    Watanabe, Daisuke; Murai, Hiroki; Tanahashi, Ryoya; Nakamura, Keishi; Sasaki, Toshiya; Takagi, Hiroshi

    The ubiquitin ligase Rsp5, which is the only yeast Saccharomyces cerevisiae member of the Nedd4-family, recognizes and ubiquitinates various substrate proteins through the functions of three conserved WW domains. To elucidate the role of each WW domain in endocytosis of the general amino acid permease Gap1 via interaction with the arrestin-like adaptor proteins Bul1 and Bul2 (Bul1/2), we investigated the effects of the double mutations that abrogate the recognition of PY motifs on target proteins (rsp5(W257F/P260A), rsp5(W359F/P362A), and rsp5(W415F/P418A)) and the alanine substitutions of the conserved threonine residues that are regarded as putative phosphorylation sites (rsp5(T255A), RSP5(T357A), and rsp5(T413A)), both of which are located within each WW domain. The rsp5(W257F/P260A), rsp5(W359F/P362A), and rsp5(W415F/P418A) mutations increased sensitivity to the proline analog azetidine-2-carboxylate (AZC), defective endocytosis of Gap1, and impaired interactions with Bul1. These results demonstrate that molecular recognition by each WW domain is responsible for the cooperative interaction with Bul1. Intriguingly, the RSP5(T357A) mutation enhanced AZC tolerance and endocytosis of Gap1, although rsp5(T255A) and rsp5(T413A) decreased both of them. While rsp5(T255A), RSP5(T357A), and rsp5(T413A) impaired the interaction of Rsp5 with Bul1, the RSP5(T357A) mutation specifically augmented the interaction with Bul2. The AZC tolerance enhanced by RSP5(T357A) was fully abolished by combining with each of the rsp5(W257F/P260A), rsp5(W359F/P362A), or rsp5(W415F/P418A) mutations. It was thus suggested that Thr357 in the WW2 domain has a unique role in preventing from the constitutive activation of Bul1/2-mediated endocytosis of Gap1. Taken together, our results highlight the cooperative and specific roles of WW domains in the regulation of Bul1/2-mediated cellular events.

  11. The adaptor TRAF3 restrains the lineage determination of thymic regulatory T cells by modulating signaling via the receptor for IL-2.

    PubMed

    Yi, Zuoan; Lin, Wai Wai; Stunz, Laura L; Bishop, Gail A

    2014-09-01

    The number of Foxp3+ regulatory T cells (Treg cells) must be tightly controlled for efficient suppression of autoimmunity with no impairment of normal immune responses. Here we found that the adaptor TRAF3 was intrinsically required for restraining the lineage determination of thymic Treg cells. T cell-specific deficiency in TRAF3 resulted in a two- to threefold greater frequency of Treg cells, due to the more efficient transition of precursors of Treg cells into Foxp3+ Treg cells. TRAF3 dampened interleukin 2 (IL-2) signaling by facilitating recruitment of the tyrosine phosphatase TCPTP to the IL-2 receptor complex, which resulted in dephosphorylation of the signaling molecules Jak1 and Jak3 and negative regulation of signaling via Jak and the transcription factor STAT5. Our results identify a role for TRAF3 as an important negative regulator of signaling via the IL-2 receptor that affects the development of Treg cells.

  12. Phosphoprotein enriched in astrocytes (PEA)-15: A potential therapeutic target in multiple disease states

    PubMed Central

    Greig, Fiona H.; Nixon, Graeme F.

    2014-01-01

    Phosphoprotein enriched in astrocytes-15 (PEA-15) is a cytoplasmic protein that sits at an important junction in intracellular signalling and can regulate diverse cellular processes, such as proliferation and apoptosis, dependent upon stimulation. Regulation of these processes occurs by virtue of the unique interaction of PEA-15 with other signalling proteins. PEA-15 acts as a cytoplasmic tether for the mitogen-activated protein kinases, extracellular signal-regulated kinase 1/2 (ERK1/2) preventing nuclear localisation. In order to release ERK1/2, PEA-15 requires to be phosphorylated via several potential pathways. PEA-15 (and its phosphorylation state) therefore regulates many ERK1/2-dependent processes, including proliferation, via regulating ERK1/2 nuclear translocation. In addition, PEA-15 contains a death effector domain (DED) which allows interaction with other DED-containing proteins. PEA-15 can bind the DED-containing apoptotic adaptor molecule, Fas-associated death domain protein (FADD) which is also dependent on the phosphorylation status of PEA-15. PEA-15 binding of FADD can inhibit apoptosis as bound FADD cannot participate in the assembly of apoptotic signalling complexes. Through these protein–protein interactions, PEA-15-regulated cellular effects have now been investigated in a number of disease-related studies. Changes in PEA-15 expression and regulation have been observed in diabetes mellitus, cancer, neurological disorders and the cardiovascular system. These changes have been suggested to contribute to the pathology related to each of these disease states. As such, new therapeutic targets based around PEA-15 and its associated interactions are now being uncovered and could provide novel avenues for treatment strategies in multiple diseases. PMID:24657708

  13. The tyrosine-sorting motif of the vacuolar sorting receptor VSR4 from Arabidopsis thaliana, which is involved in the interaction between VSR4 and AP1M2, μ1-adaptin type 2 of clathrin adaptor complex 1 subunits, participates in the post-Golgi sorting of VSR4.

    PubMed

    Nishimura, Kohji; Matsunami, Erika; Yoshida, Shohei; Kohata, Shuhei; Yamauchi, Junji; Jisaka, Mitsuo; Nagaya, Tsutomu; Yokota, Kazushige; Nakagawa, Tsuyoshi

    2016-01-01

    μ1-Adaptin of adaptor protein (AP) 1 complex, AP1M, is generally accepted to load cargo proteins into clathrin-coated vesicles (CCVs) at the trans-Golgi network through its binding to cargo-recognition sequences (CRSs). Plant vacuolar-sorting receptors (VSRs) function in sorting vacuolar proteins, which are reportedly mediated by CCV. We herein investigated the involvement of CRSs of Arabidopsis thaliana VSR4 in the sorting of VSR4. The results obtained showed the increased localization of VSR4 at the plasma membrane or vacuoles by mutations in CRSs including the tyrosine-sorting motif YMPL or acidic dileucine-like motif EIRAIM, respectively. Interaction analysis using the bimolecular fluorescence complementation (BiFC) system, V10-BiFC, which we developed, indicated an interaction between VSR4 and AP1M2, AP1M type 2, which was attenuated by a YMPL mutation, but not influenced by an EIRAIM mutation. These results demonstrated the significance of the recognition of YMPL in VSR4 by AP1M2 for the post-Golgi sorting of VSR4.

  14. Interaction of Heat Shock Protein Cpn10 with the Cyclin E/Cdk2 Substrate Nuclear Protein Ataxia-Telangiectasia (NPAT) Is Involved in Regulating Histone Transcription.

    PubMed

    Ling Zheng, Li; Wang, Fei Ya; Cong, Xiao Xia; Shen, Yue; Rao, Xi Sheng; Huang, Dao Sheng; Fan, Wei; Yi, Peng; Wang, Xin Bao; Zheng, Lei; Zhou, Yi Ting; Luo, Yan

    2015-12-04

    Precise modulation of histone gene transcription is critical for cell cycle progression. As a direct substrate of Cyclin E/CDK2, nuclear protein ataxia-telangiectasia (NPAT) is a crucial factor in regulating histone transcription and cell cycle progression. Here we identified that Cpn10/HSPE, a 10-kDa heat shock protein, is a novel interacting partner of NPAT. A pool of Cpn10 is colocalized with NPAT foci during G1 and S phases in nuclei. Gain- and loss-of-function experiments unraveled an essential role of Cpn10 in histone transcription. A conserved DLFD motif within Cpn10 was critical for targeting NPAT and modulating histone transcription. More importantly, knockdown of Cpn10 disrupted the focus formation of both NPAT and FADD-like interleukin-1β-converting enzyme-associated huge protein without affecting Coilin-positive Cajal bodies. Finally, Cpn10 is important for S phase progression and cell proliferation. Taken together, our finding revealed a novel role of Cpn10 in the spatial regulation of NPAT signaling and disclosed a previously unappreciated link between the heat shock protein and histone transcription regulation.

  15. Interaction of Heat Shock Protein Cpn10 with the Cyclin E/Cdk2 Substrate Nuclear Protein Ataxia-Telangiectasia (NPAT) Is Involved in Regulating Histone Transcription*

    PubMed Central

    Ling Zheng, Li; Wang, Fei Ya; Cong, Xiao Xia; Shen, Yue; Rao, Xi Sheng; Huang, Dao Sheng; Fan, Wei; Yi, Peng; Wang, Xin Bao; Zheng, Lei; Zhou, Yi Ting; Luo, Yan

    2015-01-01

    Precise modulation of histone gene transcription is critical for cell cycle progression. As a direct substrate of Cyclin E/CDK2, nuclear protein ataxia-telangiectasia (NPAT) is a crucial factor in regulating histone transcription and cell cycle progression. Here we identified that Cpn10/HSPE, a 10-kDa heat shock protein, is a novel interacting partner of NPAT. A pool of Cpn10 is colocalized with NPAT foci during G1 and S phases in nuclei. Gain- and loss-of-function experiments unraveled an essential role of Cpn10 in histone transcription. A conserved DLFD motif within Cpn10 was critical for targeting NPAT and modulating histone transcription. More importantly, knockdown of Cpn10 disrupted the focus formation of both NPAT and FADD-like interleukin-1β-converting enzyme-associated huge protein without affecting Coilin-positive Cajal bodies. Finally, Cpn10 is important for S phase progression and cell proliferation. Taken together, our finding revealed a novel role of Cpn10 in the spatial regulation of NPAT signaling and disclosed a previously unappreciated link between the heat shock protein and histone transcription regulation. PMID:26429916

  16. Translocator protein-mediated pharmacology of cholesterol transport and steroidogenesis.

    PubMed

    Papadopoulos, Vassilios; Aghazadeh, Yasaman; Fan, Jinjiang; Campioli, Enrico; Zirkin, Barry; Midzak, Andrew

    2015-06-15

    Steroidogenesis begins with cholesterol transfer into mitochondria through the transduceosome, a complex composed of cytosolic proteins that include steroidogenesis acute regulatory protein (STAR), 14-3-3 adaptor proteins, and the outer mitochondrial membrane proteins Translocator Protein (TSPO) and Voltage-Dependent Anion Channel (VDAC). TSPO is a drug- and cholesterol-binding protein found at particularly high levels in steroid synthesizing cells. Its aberrant expression has been linked to cancer, neurodegeneration, neuropsychiatric disorders and primary hypogonadism. Brain steroids serve as local regulators of neural development and excitability. Reduced levels of these steroids have been linked to depression, anxiety and neurodegeneration. Reduced serum testosterone is common among subfertile young men and aging men, and is associated with depression, metabolic syndrome and reduced sexual function. Although testosterone-replacement therapy is available, there are undesired side-effects. TSPO drug ligands have been proposed as therapeutic agents to regulate steroid levels in the brain and testis.

  17. SR Proteins: Binders, Regulators, and Connectors of RNA

    PubMed Central

    Jeong, Sunjoo

    2017-01-01

    Serine and arginine-rich (SR) proteins are RNA-binding proteins (RBPs) known as constitutive and alternative splicing regulators. As splicing is linked to transcriptional and post-transcriptional steps, SR proteins are implicated in the regulation of multiple aspects of the gene expression program. Recent global analyses of SR-RNA interaction maps have advanced our understanding of SR-regulated gene expression. Diverse SR proteins play partially overlapping but distinct roles in transcription-coupled splicing and mRNA processing in the nucleus. In addition, shuttling SR proteins act as adaptors for mRNA export and as regulators for translation in the cytoplasm. This mini-review will summarize the roles of SR proteins as RNA binders, regulators, and connectors from transcription in the nucleus to translation in the cytoplasm. PMID:28152302

  18. How anchoring proteins shape pain.

    PubMed

    Fischer, Michael J M; McNaughton, Peter A

    2014-09-01

    Cellular responsiveness to external stimuli can be altered by extracellular mediators which activate membrane receptors, in turn signalling to the intracellular space via calcium, cyclic nucleotides, membrane lipids or enzyme activity. These signalling events trigger a cascade leading to an effector which can be a channel, an enzyme or a transcription factor. The effectiveness of these intracellular events is enhanced when they are maintained in close proximity by anchoring proteins, which assemble complexes of signalling molecules such as kinases together with their targets, and in this way enhance both the speed and the precision of intracellular signalling. The A kinase anchoring protein (AKAP) family are adaptor proteins originally named for their ability to associate Protein Kinase A and its targets, but several other enzymes bound by AKAPs have now been found and a wide variety of target structures has been described. This review provides an overview of anchoring proteins involved in pain signalling. The key anchoring proteins and their ion channel targets in primary sensory neurons responding to painful stimuli (nociceptors) are discussed.

  19. TLR signaling adaptor protein MyD88 in primary sensory neurons contributes to persistent inflammatory and neuropathic pain and neuroinflammation

    PubMed Central

    Liu, Xing-Jun; Liu, Tong; Chen, Gang; Wang, Bing; Yu, Xiao-Lu; Yin, Cui; Ji, Ru-Rong

    2016-01-01

    Increasing evidence suggests that neuro-immune and neuro-glial interactions are critically involved in chronic pain sensitization. It is well studied how immune/glial mediators sensitize pain, but how sensory neurons control neuroinflammation remains unclear. We employed Myd88 conditional knockout (CKO) mice, in which Myd88 was deleted in sodium channel subunit Nav1.8-expressing primary sensory neurons, to examine the unique role of neuronal MyD88 in regulating acute and chronic pain, and possible underlying mechanisms. We found that baseline pain and the formalin induced acute inflammatory pain were intact in CKO mice. However, the late phase inflammatory pain following complete Freund’s adjuvant injection and the late phase neuropathic pain following chronic constriction injury (CCI), were reduced in CKO mice. CCI induced up-regulation of MyD88 and chemokine C-C motif ligand 2 expression in DRG neurons and macrophage infiltration into DRGs, and microglia activation in spinal dorsal horns in wild-type mice, but all these changes were compromised in CKO mice. Finally, the pain hypersensitivity induced by intraplantar IL-1β was reduced in CKO mice. Our findings suggest that MyD88 in primary sensory neurons plays an active role in regulating IL-1β signaling and neuroinflammation in the peripheral and the central nervous systems, and contributes to the maintenance of persistent pain. PMID:27312666

  20. Expression of the p66Shc protein adaptor is regulated by the activator of transcription STAT4 in normal and chronic lymphocytic leukemia B cells

    PubMed Central

    Cattaneo, Francesca; Patrussi, Laura; Capitani, Nagaja; Frezzato, Federica; D'Elios, Mario Milco; Trentin, Livio; Semenzato, Gianpietro; Baldari, Cosima T.

    2016-01-01

    p66Shc attenuates mitogenic, prosurvival and chemotactic signaling and promotes apoptosis in lymphocytes. Consistently, p66Shc deficiency contributes to the survival and trafficking abnormalities of chronic lymphocytic leukemia (CLL) B cells. The mechanism of p66shc silencing in CLL B cells is methylation-independent, at variance with other cancer cell types. Here we identify STAT4 as a novel transcriptional regulator of p66Shc in B cells. Chromatin immunoprecipitation and reporter gene assays showed that STAT4 binds to and activates the p66shc promoter. Silencing or overexpression of STAT4 resulted in a co-modulation of p66Shc. IL-12-dependent STAT4 activation caused a coordinate increase in STAT4 and p66Shc expression, which correlated with enhanced B cell apoptosis. Treatment with the STAT4 inhibitor lisofylline reverted partly this effect, suggesting that STAT4 phosphorylation is not essential for but enhances p66shc transcription. Additionally, we demonstrate that CLL B lymphocytes have a STAT4 expression defect which partly accounts for their p66Shc deficiency, as supported by reconstitution experiments. Finally, we show that p66Shc participates in a positive feedback loop to promote STAT4 expression. These results provide new insights into the mechanism of p66Shc expression in B cells and its defect in CLL, identifying the STAT4/IL-12 pathway as a potential therapeutic target in this neoplasia. PMID:27494881

  1. Assembling Fe/S-clusters and modifying tRNAs: ancient co-factors meet ancient adaptors.

    PubMed

    Alfonzo, Juan D; Lukeš, Julius

    2011-06-01

    Trypanosoma brucei undergoes two clearly distinct develomental stages: in the insect vector (procyclic stage) the cells generate the bulk of their energy through respiration, whereas in the bloodstream of the mammalian host (bloodstream stage) they grow mostly glycolytically. Several mitochondrial respiratory proteins require iron-sulfur clusters for activity, and their activation coincides with developmental changes. Likewise some tRNA modification enzymes either require iron-sulfur clusters or use components of the iron-sulfur cluster assembly pathway for activity. These enzymes affect the anticodon loop of various tRNAs and can impact protein synthesis. Herein, the possibility of these pathways being integrated and exploited by T. brucei to carefully coordinate energy demands to translational rates in response to enviromental changes is examined.

  2. CUL3 and protein kinases

    PubMed Central

    Metzger, Thibaud; Kleiss, Charlotte; Sumara, Izabela

    2013-01-01

    Posttranslational mechanisms drive fidelity of cellular processes. Phosphorylation and ubiquitination of substrates represent very common, covalent, posttranslational modifications and are often co-regulated. Phosphorylation may play a critical role both by directly regulating E3-ubiquitin ligases and/or by ensuring specificity of the ubiquitination substrate. Importantly, many kinases are not only critical regulatory components of these pathways but also represent themselves the direct ubiquitination substrates. Recent data suggest the role of CUL3-based ligases in both proteolytic and non-proteolytic regulation of protein kinases. Our own recent study identified the mitotic kinase PLK1 as a direct target of the CUL3 E3-ligase complex containing BTB-KELCH adaptor protein KLHL22.1 In this study, we aim at gaining mechanistic insights into CUL3-mediated regulation of the substrates, in particular protein kinases, by analyzing mechanisms of interaction between KLHL22 and PLK1. We find that kinase activity of PLK1 is redundant for its targeting for CUL3-ubiquitination. Moreover, CUL3/KLHL22 may contact 2 distinct motifs within PLK1 protein, consistent with the bivalent mode of substrate targeting found in other CUL3-based complexes. We discuss these findings in the context of the existing knowledge on other protein kinases and substrates targeted by CUL3-based E3-ligases. PMID:24067371

  3. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway

    PubMed Central

    Shi, Tujin; Niepel, Mario; McDermott, Jason E.; Gao, Yuqian; Nicora, Carrie D.; Chrisler, William B.; Markillie, Lye M.; Petyuk, Vladislav A.; Smith, Richard D.; Rodland, Karin D.; Sorger, Peter K.; Qian, Wei-Jun; Wiley, H. Steven

    2016-01-01

    Various genetic mutations associated with cancer are known to alter cell signaling, but it is not clear whether they dysregulate signaling pathways by altering the abundance of pathway proteins. Using a combination of RNA sequencing and ultrasensitive targeted proteomics, we defined the primary components—16 core proteins and 10 feedback regulators—of the epidermal growth factor receptor (EGFR)–mitogen-activated protein kinase (MAPK) pathway in normal human mammary epithelial cells and then quantified their absolute abundance across a panel of normal and breast cancer cell lines as well as fibroblasts. We found that core pathway proteins were present at very similar concentrations across all cell types, with a variance similar to that of proteins previously shown to display conserved abundances across species. In contrast, EGFR and transcriptionally controlled feedback regulators were present at highly variable concentrations. The absolute abundance of most core proteins was between 50,000 and 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower amounts (2000 to 5000 copies per cell). MAPK signaling showed saturation in all cells between 3000 and 10,000 occupied EGFRs, consistent with the idea that adaptors limit signaling. Our results suggest that the relative stoichiometry of core MAPK pathway proteins is very similar across different cell types, with cell-specific differences mostly restricted to variable amounts of feedback regulators and receptors. The low abundance of adaptors relative to EGFR could be responsible for previous observations that only a fraction of total cell surface EGFR is capable of rapid endocytosis, high-affinity binding, and mitogenic signaling. PMID:27405981

  4. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway.

    PubMed

    Shi, Tujin; Niepel, Mario; McDermott, Jason E; Gao, Yuqian; Nicora, Carrie D; Chrisler, William B; Markillie, Lye M; Petyuk, Vladislav A; Smith, Richard D; Rodland, Karin D; Sorger, Peter K; Qian, Wei-Jun; Wiley, H Steven

    2016-07-12

    Various genetic mutations associated with cancer are known to alter cell signaling, but it is not clear whether they dysregulate signaling pathways by altering the abundance of pathway proteins. Using a combination of RNA sequencing and ultrasensitive targeted proteomics, we defined the primary components-16 core proteins and 10 feedback regulators-of the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway in normal human mammary epithelial cells and then quantified their absolute abundance across a panel of normal and breast cancer cell lines as well as fibroblasts. We found that core pathway proteins were present at very similar concentrations across all cell types, with a variance similar to that of proteins previously shown to display conserved abundances across species. In contrast, EGFR and transcriptionally controlled feedback regulators were present at highly variable concentrations. The absolute abundance of most core proteins was between 50,000 and 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower amounts (2000 to 5000 copies per cell). MAPK signaling showed saturation in all cells between 3000 and 10,000 occupied EGFRs, consistent with the idea that adaptors limit signaling. Our results suggest that the relative stoichiometry of core MAPK pathway proteins is very similar across different cell types, with cell-specific differences mostly restricted to variable amounts of feedback regulators and receptors. The low abundance of adaptors relative to EGFR could be responsible for previous observations that only a fraction of total cell surface EGFR is capable of rapid endocytosis, high-affinity binding, and mitogenic signaling.

  5. Biophysical analysis of binding of WW domains of the YAP2 transcriptional regulator to PPXY motifs within WBP1 and WBP2 adaptors.

    PubMed

    McDonald, Caleb B; McIntosh, Samantha K N; Mikles, David C; Bhat, Vikas; Deegan, Brian J; Seldeen, Kenneth L; Saeed, Ali M; Buffa, Laura; Sudol, Marius; Nawaz, Zafar; Farooq, Amjad

    2011-11-08

    The YAP2 transcriptional regulator mediates a plethora of cellular functions, including the newly discovered Hippo tumor suppressor pathway, by virtue of its ability to recognize WBP1 and WBP2 signaling adaptors among a wide variety of other ligands. Herein, using isothermal titration calorimery and circular dichroism in combination with molecular modeling and molecular dynamics, we provide evidence that the WW1 and WW2 domains of YAP2 recognize various PPXY motifs within WBP1 and WBP2 in a highly promiscuous and subtle manner. Thus, although both WW domains strictly require the integrity of the consensus PPXY sequence, nonconsensus residues within and flanking this motif are not critical for high-affinity binding, implying that they most likely play a role in stabilizing the polyproline type II helical conformation of the PPXY ligands. Of particular interest is the observation that both WW domains bind to a PPXYXG motif with highest affinity, implicating a preference for a nonbulky and flexible glycine one residue to the C-terminal side of the consensus tyrosine. Importantly, a large set of residues within both WW domains and the PPXY motifs appear to undergo rapid fluctuations on a nanosecond time scale, suggesting that WW-ligand interactions are highly dynamic and that such conformational entropy may be an integral part of the reversible and temporal nature of cellular signaling cascades. Collectively, our study sheds light on the molecular determinants of a key WW-ligand interaction pertinent to cellular functions in health and disease.

  6. Daxx plays a novel role in T cell survival but is dispensable in Fas-induced apoptosis

    PubMed Central

    Dowling, John P.; Curcione, Christine; Kurup, Drishya; Zhang, Jianke

    2017-01-01

    Daxx was originally isolated as a Fas-binding protein. However, the in vivo function of Daxx in Fas-induced apoptosis has remained enigmatic. Fas plays an important role in homeostasis in the immune system. Fas gene mutations lead to autoimmune-lymphoproliferation (lpr) diseases characterized by hyperplasia of secondary lymphoid organs. It is well established that the FADD adaptor binds to Fas, and recruits/activates caspase 8. However, additional proteins including Daxx have also been indicated to associate with Fas. It was proposed that Daxx mediates a parallel apoptotic pathway that is independent of FADD and caspase 8, but signals through ASK1-mediated apoptotic pathway. However, because the deletion of Daxx leads to embryonic lethality, the in vivo function of Daxx has not been properly analyzed. In the current study, analysis was performed using a conditional mutant mouse in which Daxx was deleted specifically in T cells. The data show that Daxx-/- T cells were able to undergo normal Fas-induced apoptosis. While containing normal thymocyte populations, the T cell-specific Daxx-/- mice have a reduced peripheral T cell pool. Importantly, Daxx-deficient T cells displayed increased death responses upon activation through TCR stimulation. These results unequivocally demonstrated that Daxx does not mediate Fas-induced apoptosis, but rather that it plays a critical role in survival responses in primary mature T cells. PMID:28301594

  7. Mechanisms and function of substrate recruitment by F-box proteins

    PubMed Central

    Skaar, Jeffrey R.; Pagan, Julia K.; Pagano, Michele

    2013-01-01

    S phase kinase-associated protein 1 (SKP1)–cullin 1 (CUL1)–F-box protein (SCF) ubiquitin ligase complexes use a family of F-box proteins as substrate adaptors to mediate the degradation of a large number of regulatory proteins involved in diverse processes. The dysregulation of SCF complexes and their substrates contributes to multiple pathologies. In the 14 years since the identification and annotation of the F-box protein family, the continued identification and characterization of novel substrates has greatly expanded our knowledge of the regulation of substrate targeting and the roles of F-box proteins in biological processes. Here, we focus on the evolution of our understanding of substrate recruitment by F-box proteins, the dysregulation of substrate recruitment in disease and potential avenues for F-box protein-directed disease therapies. PMID:23657496

  8. The MRL proteins: adapting cell adhesion, migration and growth.

    PubMed

    Coló, Georgina P; Lafuente, Esther M; Teixidó, Joaquin

    2012-01-01

    MIG-10, RIAM and Lamellipodin (Lpd) are the founding members of the MRL family of multi-adaptor molecules. These proteins have common domain structures but display distinct functions in cell migration and adhesion, signaling, and in cell growth. The binding of RIAM with active Rap1 and with talin provides these MRL molecules with important regulatory roles on integrin-mediated cell adhesion and migration. Furthermore, RIAM and Lpd can regulate actin dynamics through their binding to actin regulatory Ena/VASP proteins. Recent data generated with the Drosophila MRL ortholog called Pico and with RIAM in melanoma cells indicate that these proteins can also regulate cell growth. As MRL proteins represent a relatively new family, many questions on their structure-function relationships remain unanswered, including regulation of their expression, post-translational modifications, new interactions, involvement in signaling and their knockout mice phenotype.

  9. BC-box protein domain-related mechanism for VHL protein degradation

    PubMed Central

    Pozzebon, Maria Elena; Varadaraj, Archana; Mattoscio, Domenico; Jaffray, Ellis G.; Miccolo, Claudia; Galimberti, Viviana; Tommasino, Massimo; Hay, Ronald T.; Chiocca, Susanna

    2013-01-01

    The tumor suppressor VHL (von Hippel–Lindau) protein is a substrate receptor for Ubiquitin Cullin Ring Ligase complexes (CRLs), containing a BC-box domain that associates to the adaptor Elongin B/C. VHL targets hypoxia-inducible factor 1α to proteasome-dependent degradation. Gam1 is an adenoviral protein, which also possesses a BC-box domain that interacts with the host Elongin B/C, thereby acting as a viral substrate receptor. Gam1 associates with both Cullin2 and Cullin5 to form CRL complexes targeting the host protein SUMO enzyme SAE1 for proteasomal degradation. We show that Gam1 protein expression induces VHL protein degradation leading to hypoxia-inducible factor 1α stabilization and induction of its downstream targets. We also characterize the CRL-dependent mechanism that drives VHL protein degradation via proteasome. Interestingly, expression of Suppressor of Cytokine Signaling (SOCS) domain-containing viral proteins and cellular BC-box proteins leads to VHL protein degradation, in a SOCS domain-containing manner. Our work underscores the exquisite ability of viral domains to uncover new regulatory mechanisms by hijacking key cellular proteins. PMID:24145437

  10. Coexistence of Phases in a Protein Heterodimer

    PubMed Central

    Krokhotin, Andrey; Liwo, Adam; Niemi, Antti J.; Scheraga, Harold A.

    2012-01-01

    A heterodimer consisting of two or more different kinds of proteins can display an enormous number of distinct molecular architectures. The conformational entropy is an essential ingredient in the Helmholtz free energy and, consequently, these heterodimers can have a very complex phase structure. Here, it is proposed that there is a state of proteins, in which the different components of a heterodimer exist in different phases. For this purpose, the structures in the protein data bank (PDB) have been analyzed, with radius of gyration as the order parameter. Two major classes of heterodimers with their protein components coexisting in different phases have been identified. An example is the PDB structure 3DXC. This is a transcriptionally active dimer. One of the components is an isoform of the intra-cellular domain of the Alzheimer-disease related amyloid precursor protein (AICD), and the other is a nuclear multidomain adaptor protein in the Fe65 family. It is concluded from the radius of gyration that neither of the two components in this dimer is in its own collapsed phase, corresponding to a biologically active protein. The UNRES energy function has been utilized to confirm that, if the two components are separated from each other, each of them collapses. The results presented in this work show that heterodimers whose protein components coexist in different phases, can have intriguing physical properties with potentially important biological consequences. PMID:22830730

  11. Identification and isolation of stimulator of interferon genes (STING): an innate immune sensory and adaptor gene from camelids.

    PubMed

    Premraj, A; Aleyas, A G; Nautiyal, B; Rasool, T J

    2013-10-01

    The mechanism by which type I interferon-mediated antiviral response is mounted by hosts against invading pathogen is an intriguing one. Of late, an endoplasmic reticulum transmembrane protein encoded by a gene called stimulator of interferon genes (STING) is implicated in the innate signalling pathways and has been identified and cloned in few mammalian species including human, mouse and pig. In this article, we report the identification of STING from three different species of a highly conserved family of mammals - the camelids. cDNAs encoding the STING of Old World camels - dromedary camel (Camelus dromedarius) and bactrian camel (Camelus bactrianus) and a New World camel - llama (Llama glama) were amplified using conserved primers and RACE. The complete STING cDNA of dromedary camel is 2171 bp long with a 706-bp 5' untranslated regions (UTR), an 1137-bp open reading frame (ORF) and a 328-bp 3' UTR. Sequence and phylogenetic analysis of the ORF of STING from these three camelids indicate high level of similarity among camelids and conservation of critical amino acid residues across different species. Quantitative real-time PCR analysis revealed high levels of STING mRNA expression in blood, spleen, lymph node and lung. The identification of camelid STING will help in better understanding of the role of this molecule in the innate immunity of the camelids and other mammals.

  12. Fit-to-Flow (F2F) interconnects: universal reversible adhesive-free microfluidic adaptors for lab-on-a-chip systems.

    PubMed

    Chen, Arnold; Pan, Tingrui

    2011-02-21

    World-to-chip (macro-to-micro) interface continues to be one of the most complicated, ineffective, and unreliable components in the development of emerging lab-on-a-chip systems involving integrated microfluidic operations. A number of irreversible (e.g., adhesive gluing) and reversible techniques (e.g., press fitting) have attempted to provide dedicated fluidic passage from standard tubing to miniature on-chip devices, none of which completely addresses the above concerns. In this paper, we present standardized adhesive-free microfluidic adaptors, referred to as Fit-to-Flow (F2F) Interconnects, to achieve reliable hermetic seal, high-density tube packing, self-aligned plug-in, reworkable connectivity, straightforward scalability and expandability, and applicability to broad lab-on-a-chip platforms; analogous to the modular plug-and-play USB architecture employed in modern electronics. Specifically, two distinct physical packaging mechanisms are applied, with one utilizing induced tensile stress in elastomeric socket to establish reversible seal and the other using negative pressure to provide on demand vacuum shield, both of which can be adapted to a variety of experimental configurations. The non-leaking performance (up to 336 kPa) along with high tube-packing density (of 1 tube/mm(2)) and accurate self-guided alignment (of 10 μm) have been characterized. In addition, a 3D microfluidic mixer and a 6-level chemical gradient generator paired with the corresponding F2F Interconnects have been devised to illustrate the applicability of the universal fluidic connections to classic lab-on-a-chip operations.

  13. Molecular characterization of transgenic shallots (Allium cepa L.) by adaptor ligation PCR (AL-PCR) and sequencing of genomic DNA flanking T-DNA borders.

    PubMed

    Zheng, S J; Henken, B; Sofiari, E; Jacobsen, E; Krens, F A; Kik, C

    2001-06-01

    Genomic DNA blot hybridization is traditionally used to demonstrate that, via genetic transformation, foreign genes are integrated into host genomes. However, in large genome species, such as Allium cepa L., the use of genomic DNA blot hybridization is pushed towards its limits, because a considerable quantity of DNA is needed to obtain enough genome copies for a clear hybridization pattern. Furthermore, genomic DNA blot hybridization is a time-consuming method. Adaptor ligation PCR (AL-PCR) of genomic DNA flanking T-DNA borders does not have these drawbacks and seems to be an adequate alternative to genomic DNA blot hybridization. Using AL-PCR we proved that T-DNA was integrated into the A. cepa genome of three transgenic lines transformed with Agrobacterium tumefaciens EHA 105 (pCAMBIA 1301). The AL-PCR patterns obtained were specific and reproducible for a given transgenic line. The results showed that T-DNA integration took place and gave insight in the number of T-DNA copies present. Comparison of AL-PCR and previously obtained genomic DNA blot hybridization results pointed towards complex T-DNA integration patterns in some of the transgenic plants. After cloning and sequencing the AL-PCR products, the junctions between plant genomic DNA and the T-DNA insert could be analysed in great detail. For example it was shown that upon T-DNA integration a 66 bp genomic sequence was deleted, and no filler DNA was inserted. Primers located within the left and right flanking genomic DNA in transgenic shallot plants were used to recover the target site of T-DNA integration.

  14. Analytical reduction of combinatorial complexity arising from multiple protein modification sites

    PubMed Central

    Birtwistle, Marc R.

    2015-01-01

    Combinatorial complexity is a major obstacle to ordinary differential equation (ODE) modelling of biochemical networks. For example, a protein with 10 sites that can each be unphosphorylated, phosphorylated or bound to adaptor protein requires 310 ODEs. This problem is often dealt with by making ad hoc assumptions which have unclear validity and disallow modelling of site-specific dynamics. Such site-specific dynamics, however, are important in many biological systems. We show here that for a common biological situation where adaptors bind modified sites, binding is slow relative to modification/demodification, and binding to one modified site hinders binding to other sites, for a protein with n modification sites and m adaptor proteins the number of ODEs needed to simulate the site-specific dynamics of biologically relevant, lumped bound adaptor states is independent of the number of modification sites and equal to m + 1, giving a significant reduction in system size. These considerations can be relaxed considerably while retaining reasonably accurate descriptions of the true system dynamics. We apply the theory to model, using only 11 ODEs, the dynamics of ligand-induced phosphorylation of nine tyrosines on epidermal growth factor receptor (EGFR) and primary recruitment of six signalling proteins (Grb2, PI3K, PLCγ1, SHP2, RasA1 and Shc1). The model quantitatively accounts for experimentally determined site-specific phosphorylation and dephosphorylation rates, differential affinities of binding proteins for the phosphorylated sites and binding protein expression levels. Analysis suggests that local concentration of site-specific phosphatases such as SHP2 in membrane subdomains by a factor of approximately 107 is critical for effective site-specific regulation. We further show how our framework can be extended with minimal effort to consider binding cooperativity between Grb2 and c-Cbl, which is important for receptor trafficking. Our theory has potentially broad

  15. Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation

    PubMed Central

    Köttgen, Michael; Benzing, Thomas; Simmen, Thomas; Tauber, Robert; Buchholz, Björn; Feliciangeli, Sylvain; Huber, Tobias B; Schermer, Bernhard; Kramer-Zucker, Albrecht; Höpker, Katja; Simmen, Katia Carmine; Tschucke, Christoph Carl; Sandford, Richard; Kim, Emily; Thomas, Gary; Walz, Gerd

    2005-01-01

    The trafficking of ion channels to the plasma membrane is tightly controlled to ensure the proper regulation of intracellular ion homeostasis and signal transduction. Mutations of polycystin-2, a member of the TRP family of cation channels, cause autosomal dominant polycystic kidney disease, a disorder characterized by renal cysts and progressive renal failure. Polycystin-2 functions as a calcium-permeable nonselective cation channel; however, it is disputed whether polycystin-2 resides and acts at the plasma membrane or endoplasmic reticulum (ER). We show that the subcellular localization and function of polycystin-2 are directed by phosphofurin acidic cluster sorting protein (PACS)-1 and PACS-2, two adaptor proteins that recognize an acidic cluster in the carboxy-terminal domain of polycystin-2. Binding to these adaptor proteins is regulated by the phosphorylation of polycystin-2 by the protein kinase casein kinase 2, required for the routing of polycystin-2 between ER, Golgi and plasma membrane compartments. Our paradigm that polycystin-2 is sorted to and active at both ER and plasma membrane reconciles the previously incongruent views of its localization and function. Furthermore, PACS proteins may represent a novel molecular mechanism for ion channel trafficking, directing acidic cluster-containing ion channels to distinct subcellular compartments. PMID:15692563

  16. The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins.

    PubMed Central

    O'Neill, R E; Talon, J; Palese, P

    1998-01-01

    Nuclear import and export of viral nucleic acids is crucial for the replication cycle of many viruses, and elucidation of the mechanism of these steps may provide a paradigm for understanding general biological processes. Influenza virus replicates its RNA genome in the nucleus of infected cells. The influenza virus NS2 protein, which had no previously assigned function, was shown to mediate the nuclear export of virion RNAs by acting as an adaptor between viral ribonucleoprotein complexes and the nuclear export machinery of the cell. A functional domain on the NS2 with characteristics of a nuclear export signal was mapped: it interacts with cellular nucleoporins, can functionally replace the effector domain of the human immunodeficiency virus type 1 (HIV-1) Rev protein and mediates rapid nuclear export when cross-linked to a reporter protein. Microinjection of anti-NS2 antibodies into infected cells inhibited nuclear export of viral ribonucleoproteins, suggesting that the Rev-like NS2 mediates this process. Therefore, we have renamed this Rev-like factor the influenza virus nuclear export protein or NEP. We propose a model by which NEP acts as a protein adaptor molecule bridging viral ribonucleoproteins and the nuclear pore complex. PMID:9427762

  17. Kelch Domain of Gigaxonin Interacts with Intermediate Filament Proteins Affected in Giant Axonal Neuropathy

    PubMed Central

    Johnson-Kerner, Bethany L.; Garcia Diaz, Alejandro; Ekins, Sean; Wichterle, Hynek

    2015-01-01

    Patients with giant axonal neuropathy (GAN) show progressive loss of motor and sensory function starting in childhood and typically live for less than 30 years. GAN is caused by autosomal recessive mutations leading to low levels of gigaxonin (GIG), a ubiquitously-expressed BTB/Kelch cytoplasmic protein believed to be an E3 ligase substrate adaptor. GAN pathology is characterized by aggregates of intermediate filaments (IFs) in multiple tissues. To delineate the molecular pathway between GIG deficiency and IF pathology, we undertook a proteomic screen to identify the normal binding partners of GIG. Prominent among them were several classes of IFs, including the neurofilament subunits whose accumulation leads to the axonal swellings for which GAN is named. We showed these interactions were dependent on the Kelch domain of GIG. Furthermore, we identified the E3 ligase MYCBP2 and the heat shock proteins HSP90AA1/AB1 as interactors with the BTB domain that may result in the ubiquitination and subsequent degradation of intermediate filaments. Our open-ended proteomic screen provides support to GIG’s role as an adaptor protein, linking IF proteins through its Kelch domain to the ubiquitin pathway proteins via its BTB domain, and points to future approaches for reversing the phenotype in human patients. PMID:26460568

  18. Temporal regulation of EGF signaling networks by the scaffold protein Shc1

    PubMed Central

    Zheng, Yong; Zhang, Cunjie; Croucher, David R.; Soliman, Mohamed A.; St-Denis, Nicole; Pasculescu, Adrian; Taylor, Lorne; Tate, Stephen A.; Hardy, Rod W.; Colwill, Karen; Dai, Anna Yue; Bagshaw, Rick; Dennis, James W.; Gingras, Anne-Claude; Daly, Roger J.; Pawson, Tony

    2016-01-01

    Cell-surface receptors frequently employ scaffold proteins to recruit cytoplasmic targets, but the rationale for this is uncertain. Activated receptor tyrosine kinases, for example, engage scaffolds such as Shc1 that contain phosphotyrosine (pTyr) binding (PTB) domains. Using quantitative mass spectrometry, we find that Shc1 responds to epidermal growth factor (EGF) stimulation through multiple waves of distinct phosphorylation events and protein interactions. Following stimulation, Shc1 rapidly binds a group of proteins that activate pro-mitogenic/survival pathways dependent on recruitment of the Grb2 adaptor to Shc1 pTyr sites. Akt-mediated feedback phosphorylation of Shc1 Ser29 then recruits the Ptpn12 tyrosine phosphatase. This is followed by a sub-network of proteins involved in cytoskeletal reorganization, trafficking and signal termination that binds Shc1 with delayed kinetics, largely through the SgK269 pseudokinase/adaptor protein. Ptpn12 acts as a switch to convert Shc1 from pTyr/Grb2-based signaling to SgK269-mediated pathways that regulate cell invasion and morphogenesis. The Shc1 scaffold therefore directs the temporal flow of signaling information following EGF stimulation. PMID:23846654

  19. The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15.

    PubMed Central

    Sengar, A S; Wang, W; Bishay, J; Cohen, S; Egan, S E

    1999-01-01

    Clathrin-mediated endocytosis is a multistep process which requires interaction between a number of conserved proteins. We have cloned two mammalian genes which code for a number of endocytic adaptor proteins. Two of these proteins, termed Ese1 and Ese2, contain two N-terminal EH domains, a central coiled-coil domain and five C-terminal SH3 domains. Ese1 is constitutively associated with Eps15 proteins to form a complex with at least 14 protein-protein interaction surfaces. Yeast two-hybrid assays have revealed that Ese1 EH and SH3 domains bind epsin family proteins and dynamin, respectively. Overexpression of Ese1 is sufficient to block clathrin-mediated endocytosis in cultured cells, presumably through disruption of higher order protein complexes, which are assembled on the endogenous Ese1-Eps15 scaffold. The Ese1-Eps15 scaffold therefore links dynamin, epsin and other endocytic pathway components. PMID:10064583

  20. Ankyrin repeat-rich membrane spanning/Kidins220 protein interacts with mammalian Septin 5.

    PubMed

    Park, Han Jeong; Park, Hwan-Woo; Lee, Shin-Jae; Arevalo, Juan Carlos; Park, Young-Seok; Lee, Seung-Pyo; Paik, Ki-Suk; Chao, Moses V; Chang, Mi-Sook

    2010-08-01

    Neurotrophin receptors utilize specific adaptor proteins to activate signaling pathways involved in various neuronal functions, such as neurite outgrowth and cytoskeletal remodeling. The Ankyrin-Repeat Rich Membrane Spanning (ARMS)/kinase D-interacting substrate-220 kDa (Kidins220) serves as a unique downstream adaptor protein of Trk receptor tyrosine kinases. To gain insight into the role of ARMS/Kidins220, a yeast two-hybrid screen of a rat dorsal root ganglion library was performed using the C-terminal region of ARMS/Kidins220 as bait. The screen identified a mammalian septin, Septin 5 (Sept5), as an interacting protein. Co-immunoprecipitation using lysates from transiently transfected HEK-293 cells revealed the specific interaction between ARMS/Kidins220 and Sept5. Endogenous ARMS/Kidins220 and Sept5 proteins were colocalized in primary hippocampal neurons and were also predominantly expressed at the plasma membrane and in the tips of growing neurites in nerve growth factor-treated PC12 cells. Mapping of Sept5 domains important for ARMS/Kidins220 binding revealed a highly conserved N-terminal region of Sept5. The direct interaction between ARMS/Kidins220 and Sept5 suggests a possible role of ARMS/Kidins220 as a functional link between neurotrophin receptors and septins to mediate neurotrophin-induced intracellular signaling events, such as neurite outgrowth and cytoskeletal remodeling.

  1. Ratcheting up protein translocation with anthrax toxin

    PubMed Central

    Feld, Geoffrey K; Brown, Michael J; Krantz, Bryan A

    2012-01-01

    Energy-consuming nanomachines catalyze the directed movement of biopolymers in the cell. They are found both dissolved in the aqueous cytosol as well as embedded in lipid bilayers. Inquiries into the molecular mechanism of nanomachine-catalyzed biopolymer transport have revealed that these machines are equipped with molecular parts, including adjustable clamps, levers, and adaptors, which interact favorably with substrate polypeptides. Biological nanomachines that catalyze protein transport, known as translocases, often require that their substrate proteins unfold before translocation. An unstructured protein chain is likely entropically challenging to bind, push, or pull in a directional manner, especially in a way that produces an unfolding force. A number of ingenious solutions to this problem are now evident in the anthrax toxin system, a model used to study protein translocation. Here we highlight molecular ratchets and current research on anthrax toxin translocation. A picture is emerging of proton-gradient-driven anthrax toxin translocation, and its associated ratchet mechanism likely applies broadly to other systems. We suggest a cyclical thermodynamic order-to-disorder mechanism (akin to a heat-engine cycle) is central to underlying protein translocation: peptide substrates nonspecifically bind to molecular clamps, which possess adjustable affinities; polypeptide substrates compress into helical structures; these clamps undergo proton-gated switching; and the substrate subsequently expands regaining its unfolded state conformational entropy upon translocation. PMID:22374876

  2. The Brucella TIR-like protein TcpB interacts with the death domain of MyD88.

    PubMed

    Chaudhary, Anu; Ganguly, Kumkum; Cabantous, Stéphanie; Waldo, Geoffrey S; Micheva-Viteva, Sofiya N; Nag, Kamalika; Hlavacek, William S; Tung, Chang-Shung

    2012-01-06

    The pathogen Brucella melitensis secretes a Toll/interleukin-1 receptor (TIR) domain containing protein that abrogates host innate immune responses. In this study, we have characterized the biochemical interactions of Brucella TIR-like protein TcpB with host innate immune adaptor proteins. Using protein-fragment complementation assays based on Gaussia luciferase and green fluorescent protein, we find that TcpB interacts directly with MyD88 and that this interaction is significantly stronger than the interaction of TcpB with TIRAP, the only other adaptor protein that detectably interacts with TcpB. Surprisingly, the TcpB-MyD88 interaction depends on the death domain (DD) of MyD88, and TcpB does not interact with the isolated TIR domain of MyD88. TcpB disrupts MyD88(DD)-MyD88(DD), MyD88(DD)-MyD88(TIR) and MyD88(DD)-MyD88 interactions but not MyD88-MyD88 or MyD88(TIR)-MyD88(TIR) interactions. Structural models consistent with these results suggest how TcpB might inhibit TLR signaling by targeting MyD88 via a DD-TIR domain interface.

  3. The RNAissance family: SR proteins as multifaceted regulators of gene expression.

    PubMed

    Howard, Jonathan M; Sanford, Jeremy R

    2015-01-01

    Serine and arginine-rich (SR) proteins play multiple roles in the eukaryotic gene expression pathway. Initially described as constitutive and alternative splicing factors, now it is clear that SR proteins are key determinants of exon identity and function as molecular adaptors, linking the pre-messenger RNA (pre-mRNA) to the splicing machinery. In addition, now SR proteins are implicated in many aspects of mRNA and noncoding RNA (ncRNA) processing well beyond splicing. These unexpected roles, including RNA transcription, export, translation, and decay, may prove to be the rule rather than the exception. To simply define, this family of RNA-binding proteins as splicing factors belies the broader roles of SR proteins in post-transcriptional gene expression.

  4. Rassf Proteins as Modulators of Mst1 Kinase Activity

    PubMed Central

    Bitra, Aruna; Sistla, Srinivas; Mariam, Jessy; Malvi, Harshada; Anand, Ruchi

    2017-01-01

    Rassf1A/5 tumor suppressors serve as adaptor proteins possessing a modular architecture with the C-terminal consisting of a coiled-coil SARAH (Salvador-Rassf-Hippo) domain and the central portion being composed of Ras associated (RA) domain. Here, we investigate the effect of Rassf effectors on Mst1 function by mapping the interaction of various domains of Rassf1A/5 and Mst1 kinase using surface plasmon resonance (SPR). The results revealed that apart from the C-terminal SARAH domain of Mst1 which interacts to form heterodimers with Rassf1A/5, the N-terminal kinase domain of Mst1 plays a crucial role in the stabilization of this complex. In addition, SPR experiments show that the RA domains play an important role in fine-tuning the Mst1-Rassf interaction, with Rassf5 being a preferred partner over a similar Rassf1A construct. It was also demonstrated that the activity profile of Mst1 in presence of Rassf adaptors completely switches. A Rassf-Mst1 complexed version of the kinase becomes apoptotic by positively regulating Mst1-H2B mediated serine 14 histone H2B phosphorylation, a hallmark of chromatin condensation. In contrast, the heterodimerization of Mst1 with Rassf1A/5 suppresses the phosphorylation of FoxO, thereby inhibiting the downstream Mst1-FoxO signalling pathway. PMID:28327630

  5. Vaccinia Virus Immunomodulator A46: A Lipid and Protein-Binding Scaffold for Sequestering Host TIR-Domain Proteins

    PubMed Central

    Radakovics, Katharina; Smith, Terry K.; Bobik, Nina; Round, Adam; Djinović-Carugo, Kristina; Usón, Isabel

    2016-01-01

    Vaccinia virus interferes with early events of the activation pathway of the transcriptional factor NF-kB by binding to numerous host TIR-domain containing adaptor proteins. We have previously determined the X-ray structure of the A46 C-terminal domain; however, the structure and function of the A46 N-terminal domain and its relationship to the C-terminal domain have remained unclear. Here, we biophysically characterize residues 1–83 of the N-terminal domain of A46 and present the X-ray structure at 1.55 Å. Crystallographic phases were obtained by a recently developed ab initio method entitled ARCIMBOLDO_BORGES that employs tertiary structure libraries extracted from the Protein Data Bank; data analysis revealed an all β-sheet structure. This is the first such structure solved by this method which should be applicable to any protein composed entirely of β-sheets. The A46(1–83) structure itself is a β-sandwich containing a co-purified molecule of myristic acid inside a hydrophobic pocket and represents a previously unknown lipid-binding fold. Mass spectrometry analysis confirmed the presence of long-chain fatty acids in both N-terminal and full-length A46; mutation of the hydrophobic pocket reduced the lipid content. Using a combination of high resolution X-ray structures of the N- and C-terminal domains and SAXS analysis of full-length protein A46(1–240), we present here a structural model of A46 in a tetrameric assembly. Integrating affinity measurements and structural data, we propose how A46 simultaneously interferes with several TIR-domain containing proteins to inhibit NF-κB activation and postulate that A46 employs a bipartite binding arrangement to sequester the host immune adaptors TRAM and MyD88. PMID:27973613

  6. Wilms Tumor Gene on X Chromosome (WTX) Inhibits Degradation of NRF2 Protein through Competitive Binding to KEAP1 Protein*

    PubMed Central

    Camp, Nathan D.; James, Richard G.; Dawson, David W.; Yan, Feng; Davison, James M.; Houck, Scott A.; Tang, Xiaobo; Zheng, Ning; Major, Michael B.; Moon, Randall T.

    2012-01-01

    WTX is a tumor suppressor protein that is lost or mutated in up to 30% of cases of Wilms tumor. Among its known functions, WTX interacts with the β-transducin repeat containing family of ubiquitin ligase adaptors and promotes the ubiquitination and degradation of the transcription factor β-catenin, a key control point in the WNT/β-catenin signaling pathway. Here, we report that WTX interacts with a second ubiquitin ligase adaptor, KEAP1, which functions to regulate the ubiquitination of the transcription factor NRF2, a key control point in the antioxidant response. Surprisingly, we find that unlike its ability to promote the ubiquitination of β-catenin, WTX inhibits the ubiquitination of NRF2. WTX and NRF2 compete for binding to KEAP1, and thus loss of WTX leads to rapid ubiquitination and degradation of NRF2 and a reduced response to cytotoxic insult. These results expand our understanding of the molecular mechanisms of WTX and reveal a novel regulatory mechanism governing the antioxidant response. PMID:22215675

  7. Nuclear localization of amyloid-β precursor protein-binding protein Fe65 is dependent on regulated intramembrane proteolysis

    PubMed Central

    Koistinen, Niina A.; Edlund, Anna K.; Menon, Preeti K.; Ivanova, Elena V.; Bacanu, Smaranda

    2017-01-01

    Fe65 is an adaptor protein involved in both processing and signaling of the Alzheimer-associated amyloid-β precursor protein, APP. Here, the subcellular localization was further investigated using TAP-tagged Fe65 constructs expressed in human neuroblastoma cells. Our results indicate that PTB2 rather than the WW domain is important for the nuclear localization of Fe65. Electrophoretic mobility shift of Fe65 caused by phosphorylation was not detected in the nuclear fraction, suggesting that phosphorylation could restrict nuclear localization of Fe65. Furthermore, both ADAM10 and γ-secretase inhibitors decreased nuclear Fe65 in a similar way indicating an important role also of α-secretase in regulating nuclear translocation. PMID:28323844

  8. CB1 Cannabinoid Receptors and their Associated Proteins

    PubMed Central

    Howlett, Allyn C.; Blume, Lawrence C.; Dalton, George D.

    2011-01-01

    CB1 receptors are G-protein coupled receptors (GPCRs) abundant in neurons, in which they modulate neurotransmission. The CB1 receptor influence on memory and learning is well recognized, and disease states associated with CB1 receptors are observed in addiction disorders, motor dysfunction, schizophrenia, and in bipolar, depression, and anxiety disorders. Beyond the brain, CB1 receptors also function in liver and adipose tissues, vascular as well as cardiac tissue, reproductive tissues and bone. Signal transduction by CB1 receptors occurs through interaction with Gi/o proteins to inhibit adenylyl cyclase, activate mitogen-activated protein kinases (MAPK), inhibit voltage-gated Ca2+ channels, activate K+ currents (Kir), and influence Nitric Oxide (NO) signaling. CB1 receptors are observed in internal organelles as well as plasma membrane. β-Arrestins, adaptor protein AP-3, and G-protein receptor-associated sorting protein 1 (GASP1) modulate cellular trafficking. Cannabinoid Receptor Interacting Protein 1a (CRIP1a) is an accessory protein whose function has not been delineated. Factor Associated with Neutral sphingomyelinase (FAN) regulates ceramide signaling. Such diversity in cellular signaling and modulation by interacting proteins suggests that agonists and allosteric modulators could be developed to specifically regulate unique, cell type-specific responses. PMID:20166926

  9. A high affinity RIM-binding protein/Aplip1 interaction prevents the formation of ectopic axonal active zones

    PubMed Central

    Siebert, Matthias; Böhme, Mathias A; Driller, Jan H; Babikir, Husam; Mampell, Malou M; Rey, Ulises; Ramesh, Niraja; Matkovic, Tanja; Holton, Nicole; Reddy-Alla, Suneel; Göttfert, Fabian; Kamin, Dirk; Quentin, Christine; Klinedinst, Susan; Andlauer, Till FM; Hell, Stefan W; Collins, Catherine A; Wahl, Markus C; Loll, Bernhard; Sigrist, Stephan J

    2015-01-01

    Synaptic vesicles (SVs) fuse at active zones (AZs) covered by a protein scaffold, at Drosophila synapses comprised of ELKS family member Bruchpilot (BRP) and RIM-binding protein (RBP). We here demonstrate axonal co-transport of BRP and RBP using intravital live imaging, with both proteins co-accumulating in axonal aggregates of several transport mutants. RBP, via its C-terminal Src-homology 3 (SH3) domains, binds Aplip1/JIP1, a transport adaptor involved in kinesin-dependent SV transport. We show in atomic detail that RBP C-terminal SH3 domains bind a proline-rich (PxxP) motif of Aplip1/JIP1 with submicromolar affinity. Pointmutating this PxxP motif provoked formation of ectopic AZ-like structures at axonal membranes. Direct interactions between AZ proteins and transport adaptors seem to provide complex avidity and shield synaptic interaction surfaces of pre-assembled scaffold protein transport complexes, thus, favouring physiological synaptic AZ assembly over premature assembly at axonal membranes. DOI: http://dx.doi.org/10.7554/eLife.06935.001 PMID:26274777

  10. ENTH and ANTH domain proteins participate in AP2-independent clathrin-mediated endocytosis

    PubMed Central

    Manna, Paul T.; Gadelha, Catarina; Puttick, Amy E.; Field, Mark C.

    2015-01-01

    ABSTRACT Clathrin-mediated endocytosis (CME) is a major route of entry into eukaryotic cells. A core of evolutionarily ancient genes encodes many components of this system but much of our mechanistic understanding of CME is derived from a phylogenetically narrow sampling of a few model organisms. In the parasite Trypanosoma brucei, which is distantly related to the better characterised animals and fungi, exceptionally fast endocytic turnover aids its evasion of the host immune system. Although clathrin is absolutely essential for this process, the adaptor protein complex 2 (AP2) has been secondarily lost, suggesting mechanistic divergence. Here, we characterise two phosphoinositide-binding monomeric clathrin adaptors, T. brucei (Tb)EpsinR and TbCALM, which in trypanosomes are represented by single genes, unlike the expansions present in animals and fungi. Depletion of these gene products reveals essential, but partially redundant, activities in CME. Ultrastructural analysis of TbCALM and TbEpsinR double-knockdown cells demonstrated severe defects to clathrin-coated pit formation and morphology associated with a dramatic inhibition of endocytosis. Depletion of TbCALM alone, however, produced a distinct lysosomal segregation phenotype, indicating an additional non-redundant role for this protein. Therefore, TbEpsinR and TbCALM represent ancient phosphoinositide-binding proteins with distinct and vital roles in AP2-independent endocytosis. PMID:25908855

  11. Programmable DNA scaffolds for spatially-ordered protein assembly

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Arun Richard

    2016-02-01

    Ever since the notion of using DNA as a material was realized, it has been employed in the construction of complex structures that facilitate the assembly of nanoparticles or macromolecules with nanometer-scale precision. Specifically, tiles fashioned from DNA strands and DNA origami sheets have been shown to be suitable as scaffolds for immobilizing proteins with excellent control over their spatial positioning. Supramolecular assembly of proteins into periodic arrays in one or more dimensions is one of the most challenging aspects in the design of scaffolds for biomolecular investigations and macromolecular crystallization. This review provides a brief overview of how various biomolecular interactions with high degree of specificity such as streptavidin-biotin, antigen-antibody, and aptamer-protein interactions have been used to fabricate linear and multidimensional assemblies of structurally intact and functional proteins. The use of DNA-binding proteins as adaptors, polyamide recognition on DNA scaffolds and oligonucleotide linkers for protein assembly are also discussed.Ever since the notion of using DNA as a material was realized, it has been employed in the construction of complex structures that facilitate the assembly of nanoparticles or macromolecules with nanometer-scale precision. Specifically, tiles fashioned from DNA strands and DNA origami sheets have been shown to be suitable as scaffolds for immobilizing proteins with excellent control over their spatial positioning. Supramolecular assembly of proteins into periodic arrays in one or more dimensions is one of the most challenging aspects in the design of scaffolds for biomolecular investigations and macromolecular crystallization. This review provides a brief overview of how various biomolecular interactions with high degree of specificity such as streptavidin-biotin, antigen-antibody, and aptamer-protein interactions have been used to fabricate linear and multidimensional assemblies of structurally

  12. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes.

    PubMed

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying; Billiar, Timothy R

    2012-06-22

    Tumor necrosis factor α (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF+ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC complex upon the binding of TNF to TNFR1. In conclusion, our study shows that cAMP prevents TNF+ActD-induced apoptosis in rat hepatocytes by inhibiting DISC complex formation.

  13. [Modification and expression of insecticidal protein structural gene of Bacillus thuringiensis var. aizawai 7-29].

    PubMed

    Guo, S; Hong, Z; Wang, J; Wang, M; Yu, M; Fan, Y

    1992-06-01

    The regulative region (181bp) and the fifth toxic active domain (217bp) were removed from the insecticidal protein gene of Bacillus thuringiensis var. aizawai 7-29. After the synthesis of the adaptor (15bp) that contains initiation codon (ATG) and the PCR synthesis of the fifth toxic active domain (229bp) that contains stop codon (TAA), were inserted into on 5' truncated and 3' truncated of the coding fod N-terminal peptid's DNA fragment, that to become a modified structural gene. The modified structural gene can be play initiatic translation-function and stop translation-function during translation of insecticidal protein. The insecticidal protein was determined by western blotting, showed the expression of modified structural gene in Escherichia coli JM 103. The bioassay of insecticidal proteins showed the 3' truncated and 5' truncated of insecticidal gene was higher toxic active than the 3' truncated of insecticidal gene in Escherichia coli JM 103.

  14. Identification of novel CBP interacting proteins in embryonic orofacial tissue

    SciTech Connect

    Yin Xiaolong; Warner, Dennis R.; Roberts, Emily A.; Pisano, M. Michele; Greene, Robert M. . E-mail: greene@louisville.edu

    2005-04-15

    cAMP response element-binding protein (CREB)-binding protein (CBP) plays an important role as a general co-integrator of multiple signaling pathways and interacts with a large number of transcription factors and co-factors, through its numerous protein-binding domains. To identify nuclear factors associated with CBP in developing orofacial tissue, a yeast two-hybrid screen of a cDNA library derived from orofacial tissue from gestational day 11 to 13 mouse embryos was conducted. Using the carboxy terminus (amino acid residues 1676-2441) of CBP as bait, several novel proteins that bind CBP were identified, including an Msx-interacting-zinc finger protein, CDC42 interaction protein 4/thyroid hormone receptor interactor 10, SH3-domain GRB2-like 1, CCR4-NOT transcription complex subunit 3, adaptor protein complex AP-1 {beta}1 subunit, eukaryotic translation initiation factor 2B subunit 1 ({alpha}), and cyclin G-associated kinase. Results of the yeast two-hybrid screen were confirmed by glutathione S-transferase pull-down assays. The identification of these proteins as novel CBP-binding partners allows exploration of new mechanisms by which CBP regulates and integrates diverse cell signaling pathways.

  15. Expression of the cellular FLICE-inhibitory protein (c-FLIP) protects Hodgkin's lymphoma cells from autonomous Fas-mediated death.

    PubMed

    Dutton, A; O'Neil, J D; Milner, A E; Reynolds, G M; Starczynski, J; Crocker, J; Young, L S; Murray, P G

    2004-04-27

    Hodgkin's lymphoma (HL) is characterized by the presence of malignant so-called Hodgkin's/Reed-Sternberg (HRS) cells, which display resistance to certain apoptotic stimuli, including a lack of sensitivity to Fas-mediated cell death. However, the mechanisms responsible for their resistance to apoptosis inducers have not been elucidated. Here we confirm that both HL-derived cell lines and the HRS cells of primary HL tissues express Fas ligand (FasL) along with the inhibitory c-FLIP protein. Down-regulation of cellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein (c-FLIP) through the use of specific small inhibitory RNAs (siRNAs) leads to reduced viability of the L428 and L591 HL-derived cell lines. To determine whether endogenous FasL was responsible for the reduction in cell viability observed after down-regulation of c-FLIP, L428 and L591 cells were treated with c-FLIP-specific siRNAs with and without siRNAs directed to FasL. Treatment of these cells with both c-FLIP- and FasL-specific siRNAs in combination restored cell viability to near control levels. Our results provide a mechanism whereby HRS cells are protected from autonomous FasL-mediated cell death while preserving their ability to evade immunosurveillance. Targeting c-FLIP could provide a novel approach to the treatment of HL.

  16. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-mediated signaling contributes to innate immune responses in the lung during Escherichia coli pneumonia.

    PubMed

    Jeyaseelan, Samithamby; Young, Scott K; Fessler, Michael B; Liu, Yuhong; Malcolm, Kenneth C; Yamamoto, Masahiro; Akira, Shizuo; Worthen, G Scott

    2007-03-01

    Bacterial pneumonia remains a serious disease and is associated with neutrophil recruitment. Innate immunity is pivotal for the elimination of bacteria, and TLRs are essential in this process. Toll/IL-1R domain-containing adaptor inducing IFN-beta (TRIF) is an adaptor for TLR3 and TLR4, and is associated with the MyD88-independent cascade. However, the importance of TRIF in immune responses against pulmonary bacterial pathogens is not well understood. We investigated the involvement of TRIF in a murine model of Escherichia coli pneumonia. TRIF(-/-) mice infected with E. coli display attenuated neutrophil migration; NF-kappaB activation; and TNF-alpha, IL-6, and LPS-induced C-X-C chemokine production in the lungs. In addition, E. coli-induced phosphorylation of JNK, ERK, and p38 MAPK was detected in bone marrow-derived macrophages (BMMs) of TRIF(+/+) mice, but attenuated in BMMs of TRIF(-/-) mice. Furthermore, E. coli-induced TNF-alpha and IL-6 production was attenuated in BMMs of TRIF(-/-) mice. E. coli LPS-induced late MAPK activation, and TNF-alpha and IL-6 production were abolished in BMMs of TRIF(-/-) mice. Moreover, TRIF is not required for LPS-induced neutrophil influx, and keratinocyte cell-derived chemokine, MIP-2, and LPS-induced C-X-C chemokine production in the lungs. Using TLR3(-/-) mice, we ruled out the role of TLR3-mediated TRIF-dependent neutrophil influx during E. coli pneumonia. A TLR4-blocking Ab inhibited E. coli-induced TNF-alpha and IL-6 in BMMs of both TRIF(-/-) and TRIF(+/+) mice, suggesting that TRIF-mediated signaling involves TLR4. We also found that TRIF is critical to control E. coli burden in the lungs and E. coli dissemination. Thus, rapid activation of TRIF-dependent TLR4-mediated signaling cascade serves to augment pulmonary host defense against a Gram-negative pathogen.

  17. Proteome analysis of microtubule-associated proteins and their interacting partners from mammalian brain.

    PubMed

    Kozielski, Frank; Riaz, Tahira; DeBonis, Salvatore; Koehler, Christian J; Kroening, Mario; Panse, Isabel; Strozynski, Margarita; Donaldson, Ian M; Thiede, Bernd

    2011-07-01

    The microtubule (MT) cytoskeleton is essential for a variety of cellular processes. MTs are finely regulated by distinct classes of MT-associated proteins (MAPs), which themselves bind to and are regulated by a large number of additional proteins. We have carried out proteome analyses of tubulin-rich and tubulin-depleted MAPs and their interacting partners isolated from bovine brain. In total, 573 proteins were identified giving us unprecedented access to brain-specific MT-associated proteins from mammalian brain. Most of the standard MAPs were identified and at least 500 proteins have been reported as being associated with MTs. We identified protein complexes with a large number of subunits such as brain-specific motor/adaptor/cargo complexes for kinesins, dynein, and dynactin, and proteins of an RNA-transporting granule. About 25% of the identified proteins were also found in the synaptic vesicle proteome. Analysis of the MS/MS data revealed many posttranslational modifications, amino acid changes, and alternative splice variants, particularly in tau, a key protein implicated in Alzheimer's disease. Bioinformatic analysis of known protein-protein interactions of the identified proteins indicated that the number of MAPs and their associated proteins is larger than previously anticipated and that our database will be a useful resource to identify novel binding partners.

  18. Sequestosome 1/p62, a scaffolding protein, is a newly identified partner of IRS-1 protein.

    PubMed

    Geetha, Thangiah; Zheng, Chen; Vishwaprakash, Nilmini; Broderick, Tom L; Babu, Jeganathan Ramesh

    2012-08-24

    Defects in the insulin-signaling pathway may lead to the development of skeletal muscle insulin resistance, which is one of the earliest abnormalities detected in individuals with the metabolic syndrome and predisposes them to develop type 2 diabetes. Previous studies have shown that deletion of the mouse sequestosome 1/p62 gene results in mature-onset obesity that progresses to insulin and leptin resistance and, ultimately, type 2 diabetes. Sequestosome 1/p62 is involved in receptor-mediated signal transduction and functions as an intracellular signal modulator or adaptor protein. Insulin receptor substrate-1 (IRS-1) plays a central role in transducing the insulin signal via phosphorylation, protein-protein interactions, and protein modifications. Mapping studies demonstrated that the SH(2) domain at the amino terminus of sequestosome 1/p62 interacts with IRS-1 upon insulin stimulation. Further, IRS-1 interacts with p62 through its YMXM motifs at Tyr-608, Tyr-628, and/or Tyr-658 in a manner similar to its interaction with p85 of phosphoinositol 3-kinase. Overexpression of p62 increased phosphorylation of Akt, GLUT4 translocation, and glucose uptake, providing evidence that p62 participates in the insulin-signaling pathway through its interactions with IRS-1.

  19. Sequestosome 1/p62, a Scaffolding Protein, Is a Newly Identified Partner of IRS-1 Protein*

    PubMed Central

    Geetha, Thangiah; Zheng, Chen; Vishwaprakash, Nilmini; Broderick, Tom L.; Babu, Jeganathan Ramesh

    2012-01-01

    Defects in the insulin-signaling pathway may lead to the development of skeletal muscle insulin resistance, which is one of the earliest abnormalities detected in individuals with the metabolic syndrome and predisposes them to develop type 2 diabetes. Previous studies have shown that deletion of the mouse sequestosome 1/p62 gene results in mature-onset obesity that progresses to insulin and leptin resistance and, ultimately, type 2 diabetes. Sequestosome 1/p62 is involved in receptor-mediated signal transduction and functions as an intracellular signal modulator or adaptor protein. Insulin receptor substrate-1 (IRS-1) plays a central role in transducing the insulin signal via phosphorylation, protein-protein interactions, and protein modifications. Mapping studies demonstrated that the SH2 domain at the amino terminus of sequestosome 1/p62 interacts with IRS-1 upon insulin stimulation. Further, IRS-1 interacts with p62 through its YMXM motifs at Tyr-608, Tyr-628, and/or Tyr-658 in a manner similar to its interaction with p85 of phosphoinositol 3-kinase. Overexpression of p62 increased phosphorylation of Akt, GLUT4 translocation, and glucose uptake, providing evidence that p62 participates in the insulin-signaling pathway through its interactions with IRS-1. PMID:22761437

  20. Regulation of cargo-selective endocytosis by dynamin 2 GTPase-activating protein girdin.

    PubMed

    Weng, Liang; Enomoto, Atsushi; Miyoshi, Hiroshi; Takahashi, Kiyofumi; Asai, Naoya; Morone, Nobuhiro; Jiang, Ping; An, Jian; Kato, Takuya; Kuroda, Keisuke; Watanabe, Takashi; Asai, Masato; Ishida-Takagishi, Maki; Murakumo, Yoshiki; Nakashima, Hideki; Kaibuchi, Kozo; Takahashi, Masahide

    2014-09-17

    In clathrin-mediated endocytosis (CME), specificity and selectivity for cargoes are thought to be tightly regulated by cargo-specific adaptors for distinct cellular functions. Here, we show that the actin-binding protein girdin is a regulator of cargo-selective CME. Girdin interacts with dynamin 2, a GTPase that excises endocytic vesicles from the plasma membrane, and functions as its GTPase-activating protein. Interestingly, girdin depletion leads to the defect in clathrin-coated pit formation in the center of cells. Also, we find that girdin differentially interacts with some cargoes, which competitively prevents girdin from interacting with dynamin 2 and confers the cargo selectivity for CME. Therefore, girdin regulates transferrin and E-cadherin endocytosis in the center of cells and their subsequent polarized intracellular localization, but has no effect on integrin and epidermal growth factor receptor endocytosis that occurs at the cell periphery. Our results reveal that girdin regulates selective CME via a mechanism involving dynamin 2, but not by operating as a cargo-specific adaptor.

  1. Cherry Valley Ducks Mitochondrial Antiviral-Signaling Protein-Mediated Signaling Pathway and Antiviral Activity Research

    PubMed Central

    Li, Ning; Hong, Tianqi; Li, Rong; Wang, Yao; Guo, Mengjiao; Cao, Zongxi; Cai, Yumei; Liu, Sidang; Chai, Tongjie; Wei, Liangmeng

    2016-01-01

    Mitochondrial antiviral-signaling protein (MAVS), an adaptor protein of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs)-mediated signal pathway, is involved in innate immunity. In this study, Cherry Valley duck MAVS (duMAVS) was cloned from the spleen and analyzed. duMAVS was determined to have a caspase activation and recruitment domain at N-terminal, followed by a proline-rich domain and a transmembrane domain at C-terminal. Quantitative real-time PCR indicated that duMAVS was expressed in all tissues tested across a broad expression spectrum. The expression of duMAVS was significantly upregulated after infection with duck Tembusu virus (DTMUV). Overexpression of duMAVS could drive the activation of interferon (IFN)-β, nuclear factor-κB, interferon regulatory factor 7, and many downstream factors (such as Mx, PKR, OAS, and IL-8) in duck embryo fibroblast cells. What is more, RNA interference further confirmed that duMAVS was an important adaptor for IFN-β activation. The antiviral assay showed that duMAVS could suppress the various viral replications (DTMUV, novel reovirus, and duck plague virus) at early stages of infection. Overall, these results showed that the main signal pathway mediated by duMAVS and it had a broad-spectrum antiviral ability. This research will be helpful to better understanding the innate immune system of ducks. PMID:27708647

  2. The autosomal recessive hypercholesterolemia (ARH) protein interfaces directly with the clathrin-coat machinery.

    PubMed

    Mishra, Sanjay K; Watkins, Simon C; Traub, Linton M

    2002-12-10

    The low density lipoprotein (LDL) receptor plays a pivotal role in cholesterol metabolism. Inherited mutations that disturb the activity of the receptor lead to elevations in plasma cholesterol levels and early-onset coronary atherosclerosis. Defects in either the LDL receptor or apolipoprotein B, the proteinaceous component of LDL particles that binds the LDL receptor, elevate circulating LDL-cholesterol levels in an autosomal-dominant fashion, with heterozygotes displaying values between homozygous and normal individuals. Rarely, similar clinical phenotypes occur with a recessive pattern of inheritance, and several genetic lesions in the autosomal recessive hypercholesterolemia (ARH) gene on chromosome 1 have been mapped in this class of patients. ARH has an N-terminal phosphotyrosine-binding (PTB) domain evolutionarily related to that found in Disabled-2 and numb, two endocytic proteins. PTB domains bind to the consensus sequence FXNPXY, corresponding to the internalization motif of the LDL receptor. We show here that in addition to the FXNPXY sequence, ARH binds directly to soluble clathrin trimers and to clathrin adaptors by a mode involving the independently folded appendage domain of the beta subunit. At steady state, ARH colocalizes with endocytic proteins in HeLa cells, and the LDL receptor fluxes through peripheral ARH-positive sites before delivery to early endosomes. Because ARH also binds directly to phosphoinositides, which regulate clathrin bud assembly at the cell surface, our data suggest that in ARH patients, defective sorting adaptor function in hepatocytes leads to faulty LDL receptor traffic and hypercholesterolemia.

  3. Modulation of the Unfolded Protein Response by Tauroursodeoxycholic Acid Counteracts Apoptotic Cell Death and Fibrosis in a Mouse Model for Secondary Biliary Liver Fibrosis

    PubMed Central

    Paridaens, Annelies; Raevens, Sarah; Devisscher, Lindsey; Bogaerts, Eliene; Verhelst, Xavier; Hoorens, Anne; van Vlierberghe, Hans; Van Grunsven, Leo A.; Geerts, Anja; Colle, Isabelle

    2017-01-01

    The role of endoplasmic reticulum stress and the unfolded protein response (UPR) in cholestatic liver disease and fibrosis is not fully unraveled. Tauroursodeoxycholic acid (TUDCA), a hydrophilic bile acid, has been shown to reduce endoplasmic reticulum (ER) stress and counteract apoptosis in different pathologies. We aimed to investigate the therapeutic potential of TUDCA in experimental secondary biliary liver fibrosis in mice, induced by common bile duct ligation. The kinetics of the hepatic UPR and apoptosis during the development of biliary fibrosis was studied by measuring markers at six different timepoints post-surgery by qPCR and Western blot. Next, we investigated the therapeutic potential of TUDCA, 10 mg/kg/day in drinking water, on liver damage (AST/ALT levels) and fibrosis (Sirius red-staining), in both a preventive and therapeutic setting. Common bile duct ligation resulted in the increased protein expression of CCAAT/enhancer-binding protein homologous protein (CHOP) at all timepoints, along with upregulation of pro-apoptotic caspase 3 and 12, tumor necrosis factor receptor superfamily, member 1A (TNFRsf1a) and Fas-Associated protein with Death Domain (FADD) expression. Treatment with TUDCA led to a significant reduction of liver fibrosis, accompanied by a slight reduction of liver damage, decreased hepatic protein expression of CHOP and reduced gene and protein expression of pro-apoptotic markers. These data indicate that TUDCA exerts a beneficial effect on liver fibrosis in a model of cholestatic liver disease, and suggest that this effect might, at least in part, be attributed to decreased hepatic UPR signaling and apoptotic cell death. PMID:28117681

  4. Spatially organized aggregation of misfolded proteins as cellular stress defense strategy.

    PubMed

    Miller, Stephanie B M; Mogk, Axel; Bukau, Bernd

    2015-04-10

    An evolutionary conserved response of cells to proteotoxic stress is the organized sequestration of misfolded proteins into subcellular deposition sites. In Saccharomyces cerevisiae, three major sequestration sites for misfolded proteins exist, IPOD (insoluble protein deposit), INQ (intranuclear quality control compartment) [former JUNQ (juxtanuclear quality control compartment)] and CytoQ. IPOD is perivacuolar and predominantly sequesters amyloidogenic proteins. INQ and CytoQs are stress-induced deposits for misfolded proteins residing in the nucleus and the cytosol, respectively, and requiring cell-compartment-specific aggregases, nuclear Btn2 and cytosolic Hsp42 for formation. The organized aggregation of misfolded proteins is proposed to serve several purposes collectively increasing cellular fitness and survival under proteotoxic stress. These include (i) shielding of cellular processes from interference by toxic protein conformers, (ii) reducing the substrate burden for protein quality control systems upon immediate stress, (iii) orchestrating chaperone and protease functions for efficient repair or degradation of damaged proteins [this involves initial extraction of aggregated molecules via the Hsp70/Hsp104 bi-chaperone system followed by either refolding or proteasomal degradation or removal of entire aggregates by selective autophagy (aggrephagy) involving the adaptor protein Cue5] and (iv) enabling asymmetric retention of protein aggregates during cell division, thereby allowing for damage clearance in daughter cells. Regulated protein aggregation thus serves cytoprotective functions vital for the maintenance of cell integrity and survival even under adverse stress conditions and during aging.

  5. Dopamine receptor-interacting proteins: the Ca(2+) connection in dopamine signaling.

    PubMed

    Bergson, Clare; Levenson, Robert; Goldman-Rakic, Patricia S; Lidow, Michael S

    2003-09-01

    Abnormal activity of the dopamine system has been implicated in several psychiatric and neurological illnesses; however, lack of knowledge about the precise sites of dopamine dysfunction has compromised our ability to improve the efficacy and safety of dopamine-related drugs used in treatment modalities. Recent work suggests that dopamine transmission is regulated via the concerted efforts of a cohort of cytoskeletal, adaptor and signaling proteins called dopamine receptor-interacting proteins (DRIPs). The discovery that two DRIPs, calcyon and neuronal Ca(2+) sensor 1 (NCS-1), are upregulated in schizophrenia highlights the possibility that altered protein interactions and defects in Ca(2+) homeostasis might contribute to abnormalities in the brain dopamine system in neuropsychiatric diseases.

  6. Overproduction, purification, crystallization and preliminary X-ray analysis of human Fe65-PTB2 in complex with the amyloid precursor protein intracellular domain

    SciTech Connect

    Radzimanowski, Jens; Beyreuther, Konrad; Sinning, Irmgard; Wild, Klemens

    2008-05-01

    Alzheimer’s disease is characterized by proteolytic processing of the amyloid precursor protein (APP), which releases the aggregation-prone amyloid-β (Aβ) peptide and liberates the intracellular domain (AICD) that interacts with various adaptor proteins. The crystallized AICD–Fe65-PTB2 complex is of central importance for APP translocation, nuclear signalling, processing and Aβ generation. Alzheimer’s disease is associated with typical brain deposits (senile plaques) that mainly contain the neurotoxic amyloid β peptide. This peptide results from proteolytic processing of the type I transmembrane protein amyloid precursor protein (APP). During this proteolytic pathway the APP intracellular domain (AICD) is released into the cytosol, where it associates with various adaptor proteins. The interaction of the AICD with the C-terminal phosphotyrosine-binding domain of Fe65 (Fe65-PTB2) regulates APP translocation, signalling and processing. Human AICD and Fe65-PTB2 have been cloned, overproduced and purified in large amounts in Escherichia coli. A complex of Fe65-PTB2 with the C-terminal 32 amino acids of the AICD gave well diffracting hexagonal crystals and data have been collected to 2.1 Å resolution. Initial phases obtained by the molecular-replacement method are of good quality and revealed well defined electron density for the substrate peptide.

  7. Functional dissection of an AP-2 beta2 appendage-binding sequence within the autosomal recessive hypercholesterolemia protein.

    PubMed

    Mishra, Sanjay K; Keyel, Peter A; Edeling, Melissa A; Dupin, Amie L; Owen, David J; Traub, Linton M

    2005-05-13

    The autosomal recessive hypercholesterolemia (ARH) protein plays a critical role in regulating plasma low density lipoprotein (LDL) levels. Inherited defects in ARH lead to a hypercholesterolemia that closely phenocopies that caused by a defective LDL receptor. The elevated serum LDL-cholesterol levels typical of ARH patients and the pronounced accumulation of the LDL receptor at the cell surface of hepatocytes in ARH-null mice argue that ARH operates by promoting the internalization of the LDL receptor within clathrin-coated vesicles. ARH contains an amino-terminal phosphotyrosine-binding domain that associates physically with the LDL receptor internalization sequence and with phosphoinositides. The carboxyl-terminal half of ARH contains a clathrin-binding sequence and a separate AP-2 adaptor binding region providing a plausible mechanism for how ARH can act as an endocytic adaptor or CLASP (clathrin-associated sorting protein) to couple LDL receptors with the clathrin machinery. Because the interaction with AP-2 is highly selective for the independently folded appendage domain of the beta2 subunit, we have characterized the ARH beta2 appendage-binding sequence in detail. Unlike the known alpha appendage-binding motifs, ARH requires an extensive sequence tract to bind the beta appendage with comparably high affinity. A minimal 16-residue sequence functions autonomously and depends upon ARH residues Asp253, Phe259, Leu262, and Arg266. We suggested that biased beta subunit engagement by ARH and the only other beta2 appendage selective adaptor, beta-arrestin, promotes efficient incorporation of this mechanistically distinct subset of CLASPs into clathrin-coated buds.

  8. Epigenetic gene silencing by the SRY protein is mediated by a KRAB-O protein that recruits the KAP1 co-repressor machinery.

    PubMed

    Peng, Hongzhuang; Ivanov, Alexey V; Oh, Hyun J; Lau, Yun-Fai C; Rauscher, Frank J

    2009-12-18

    The sex determination transcription factor SRY is a cell fate-determining transcription factor that mediates testis differentiation during embryogenesis. It may function by repressing the ovarian determinant gene, RSPO1, action in the ovarian developmental pathway and activates genes, such as SOX9, important for testis differentiation at the onset of gonadogenesis. Further, altered expression of SRY and related SOX genes contribute to oncogenesis in many human cancers. Little is known of the mechanisms by which SRY regulates its target genes. Recently a KRAB domain protein (KRAB-O) that lacks a zinc finger motif has been demonstrated to interact with SRY and hypothesized to function as an adaptor molecule for SRY by tethering the KAP1-NuRD-SETDB1-HP1 silencing machinery to repress SRY targets. We have critically examined this hypothesis by reconstituting and characterizing SRY-KRAB-O-KAP1 interactions. These recombinant molecules can form a ternary complex by direct and high affinity interactions. The KRAB-O protein can simultaneously bind KAP1 and SRY in a noncompetitive but also noncooperative manner. An extensive mutagenesis analysis suggests that different surfaces on KRAB-O are utilized for these independent interactions. Transcriptional repression by SRY requires binding to KRAB-O, thus bridging to the KAP1 repression machinery. This repression machinery is recruited to SRY target promoters in chromatin templates via SRY. These results suggest that SRY has co-opted the KRAB-O protein to recruit the KAP1 repression machinery to sex determination target genes. Other KRAB domain proteins, which lack a zinc finger DNA-binding motif, may function in similar roles as adaptor proteins for epigenetic gene silencing.

  9. SR proteins SRp20 and 9G8 contribute to efficient export of herpes simplex virus 1 mRNAs

    SciTech Connect

    Escudero-Paunetto, Laurimar; Li Ling; Hernandez, Felicia P.; Sandri-Goldin, Rozanne M.

    2010-06-05

    Herpes simplex virus 1 (HSV-1) mRNAs are exported to the cytoplasm through the export receptor TAP/NFX1. HSV-1 multifunctional protein ICP27 interacts with TAP/NXF1, binds viral RNAs, and is required for efficient viral RNA export. In ICP27 mutant infections, viral RNA export is reduced but not ablated, indicating that other export adaptors can aid in viral RNA export. Export adaptor protein Aly/REF is recruited to viral replication compartments, however, Aly/REF knockdown has little effect on viral RNA export. SR proteins SRp20 and 9G8 interact with TAP/NXF1 and mediate export of some cellular RNAs. We report that siRNA knockdown of SRp20 or 9G8 resulted in about a 10 fold decrease in virus yields and in nuclear accumulation of poly(A+) RNA. In infected cells depleted of SRp20, newly transcribed Bromouridine-labeled RNA also accumulated in the nucleus. We conclude that SRp20 and 9G8 contribute to HSV-1 RNA export.

  10. MicroRNA-17-5p regulated apoptosis-related protein expression and radiosensitivity in oral squamous cell carcinoma caused by betel nut chewing

    PubMed Central

    Wu, Szu-Yuan; Wu, Alexander T.H.; Liu, Shing-Hwa

    2016-01-01

    Betel nut chewing is associated with oral cavity cancer. Radiotherapy is one of the therapeutic approaches. Here, we used miR-17-5p antisense oligonucleotides (AS-ODNs) and human apoptosis protein array to clarify which apoptosis-related proteins are increased or decreased by miR-17-5p in betel nut chewing- oral squamous cell carcinoma OC3 cells. Furthermore, miR-17-5p AS-ODN was used to evaluate the radio-sensitization effects both in vitro and in vivo. An OC3 xenograft tumor model in severe combined immunodeficiency mice was used to determine the effect of miR-17-5p AS ODN on tumor irradiation. We simultaneously detected the relative expressions of 35 apoptosis-related proteins in irradiated OC3 cells that were treated with miR-17-5p AS-ODN or a control ODN. Several proteins, including p21, p53, TNF RI, FADD, cIAP-1, HIF-1α, and TRAIL R1, were found to be up- or downregulated by miR-17-5p in OC3 cells; their expression patterns were also confirmed by Western blotting. We further clarified the role of p53 in irradiated OC3 cells, using a p53 overexpression strategy. The results revealed that the enhancement of p53 expression significantly enhanced radiation-induced G2/M arrest of the OC3 cells. In the in vivo study, treatment of miR-17-5p AS-ODN before irradiation significantly enhanced p53 expression and reduced tumor growth. These results suggest that miR-17-5p increases or decreases apoptosis-related proteins in irradiated OC3 cells; its effect on p53 protein expression contributes to the modulation of the radiosensitivity of the OC3 cells. PMID:27285985

  11. MicroRNA-17-5p regulated apoptosis-related protein expression and radiosensitivity in oral squamous cell carcinoma caused by betel nut chewing.

    PubMed

    Wu, Szu-Yuan; Wu, Alexander T H; Liu, Shing-Hwa

    2016-08-09

    Betel nut chewing is associated with oral cavity cancer. Radiotherapy is one of the therapeutic approaches. Here, we used miR-17-5p antisense oligonucleotides (AS-ODNs) and human apoptosis protein array to clarify which apoptosis-related proteins are increased or decreased by miR-17-5p in betel nut chewing- oral squamous cell carcinoma OC3 cells. Furthermore, miR-17-5p AS-ODN was used to evaluate the radio-sensitization effects both in vitro and in vivo. An OC3 xenograft tumor model in severe combined immunodeficiency mice was used to determine the effect of miR-17-5p AS ODN on tumor irradiation. We simultaneously detected the relative expressions of 35 apoptosis-related proteins in irradiated OC3 cells that were treated with miR-17-5p AS-ODN or a control ODN. Several proteins, including p21, p53, TNF RI, FADD, cIAP-1, HIF-1α, and TRAIL R1, were found to be up- or downregulated by miR-17-5p in OC3 cells; their expression patterns were also confirmed by Western blotting. We further clarified the role of p53 in irradiated OC3 cells, using a p53 overexpression strategy. The results revealed that the enhancement of p53 expression significantly enhanced radiation-induced G2/M arrest of the OC3 cells. In the in vivo study, treatment of miR-17-5p AS-ODN before irradiation significantly enhanced p53 expression and reduced tumor growth. These results suggest that miR-17-5p increases or decreases apoptosis-related proteins in irradiated OC3 cells; its effect on p53 protein expression contributes to the modulation of the radiosensitivity of the OC3 cells.

  12. Structural Basis for the Recognition of Tyrosine-based Sorting Signals by the μ3A Subunit of the AP-3 Adaptor Complex*

    PubMed Central

    Mardones, Gonzalo A.; Burgos, Patricia V.; Lin, Yimo; Kloer, Daniel P.; Magadán, Javier G.; Hurley, James H.; Bonifacino, Juan S.

    2013-01-01

    Tyrosine-based signals fitting the YXXØ motif mediate sorting of transmembrane proteins to endosomes, lysosomes, the basolateral plasma membrane of polarized epithelial cells, and the somatodendritic domain of neurons through interactions with the homologous μ1, μ2, μ3, and μ4 subunits of the corresponding AP-1, AP-2, AP-3, and AP-4 complexes. Previous x-ray crystallographic analyses identified distinct binding sites for YXXØ signals on μ2 and μ4, which were located on opposite faces of the proteins. To elucidate the mode of recognition of YXXØ signals by other members of the μ family, we solved the crystal structure at 1.85 Å resolution of the C-terminal domain of the μ3 subunit of AP-3 (isoform A) in complex with a peptide encoding a YXXØ signal (SDYQRL) from the trans-Golgi network protein TGN38. The μ3A C-terminal domain consists of an immunoglobulin-like β-sandwich organized into two subdomains, A and B. The YXXØ signal binds in an extended conformation to a site on μ3A subdomain A, at a location similar to the YXXØ-binding site on μ2 but not μ4. The binding sites on μ3A and μ2 exhibit similarities and differences that account for the ability of both proteins to bind distinct sets of YXXØ signals. Biochemical analyses confirm the identification of the μ3A site and show that this protein binds YXXØ signals with 14–19 μm affinity. The surface electrostatic potential of μ3A is less basic than that of μ2, in part explaining the association of AP-3 with intracellular membranes having less acidic phosphoinositides. PMID:23404500

  13. Structural basis for the recognition of tyrosine-based sorting signals by the μ3A subunit of the AP-3 adaptor complex.

    PubMed

    Mardones, Gonzalo A; Burgos, Patricia V; Lin, Yimo; Kloer, Daniel P; Magadán, Javier G; Hurley, James H; Bonifacino, Juan S

    2013-03-29

    Tyrosine-based signals fitting the YXXØ motif mediate sorting of transmembrane proteins to endosomes, lysosomes, the basolateral plasma membrane of polarized epithelial cells, and the somatodendritic domain of neurons through interactions with the homologous μ1, μ2, μ3, and μ4 subunits of the corresponding AP-1, AP-2, AP-3, and AP-4 complexes. Previous x-ray crystallographic analyses identified distinct binding sites for YXXØ signals on μ2 and μ4, which were located on opposite faces of the proteins. To elucidate the mode of recognition of YXXØ signals by other members of the μ family, we solved the crystal structure at 1.85 Å resolution of the C-terminal domain of the μ3 subunit of AP-3 (isoform A) in complex with a peptide encoding a YXXØ signal (SDYQRL) from the trans-Golgi network protein TGN38. The μ3A C-terminal domain consists of an immunoglobulin-like β-sandwich organized into two subdomains, A and B. The YXXØ signal binds in an extended conformation to a site on μ3A subdomain A, at a location similar to the YXXØ-binding site on μ2 but not μ4. The binding sites on μ3A and μ2 exhibit similarities and differences that account for the ability of both proteins to bind distinct sets of YXXØ signals. Biochemical analyses confirm the identification of the μ3A site and show that this protein binds YXXØ signals with 14-19 μm affinity. The surface electrostatic potential of μ3A is less basic than that of μ2, in part explaining the association of AP-3 with intracellular membranes having less acidic phosphoinositides.

  14. 14-3-3 proteins: key regulators of cell division, signalling and apoptosis.

    PubMed

    van Hemert, M J; Steensma, H Y; van Heusden, G P

    2001-10-01

    The 14-3-3 proteins constitute a family of conserved proteins present in all eukaryotic organisms so far investigated. These proteins have attracted interest because they are involved in important cellular processes such as signal transduction, cell-cycle control, apoptosis, stress response and malignant transformation and because at least 100 different binding partners for the 14-3-3 proteins have been reported. Although the exact function of 14-3-3 proteins is still unknown, they are known to (1) act as adaptor molecules stimulating protein-protein interactions, (2) regulate the subcellular localisation of proteins and (3) activate or inhibit enzymes. In this review, we discuss the role of the 14-3-3 proteins in three cellular processes: cell cycle control, signal transduction and apoptosis. These processes are regulated by the 14-3-3 proteins at multiple steps. The 14-3-3 proteins have an overall inhibitory effect on cell cycle progression and apoptosis, whereas in signal transduction they may act as stimulatory or inhibitory factors. This article contains supplementary material which may be viewed at the BioEssays website at http://www.interscience.wiley.com/jpages/0265-9247/Suppmat/23/v23_10.936.

  15. mRNA and protein dataset of autophagy markers (LC3 and p62) in several cell lines

    PubMed Central

    Gómez-Sánchez, Rubén; Yakhine-Diop, Sokhna M.S.; Rodríguez-Arribas, Mario; Bravo-San Pedro, José M.; Martínez-Chacón, Guadalupe; Uribe-Carretero, Elisabet; Pinheiro de Castro, Diana C.J.; Pizarro-Estrella, Elisa; Fuentes, José M.; González-Polo, Rosa A.

    2016-01-01

    We characterized the dynamics of autophagy in vitro using four different cell systems and analyzing markers widely used in this field, i.e. LC3 (microtubule-associated protein 1 light chain 3; protein recruited from the cytosol (LC3-I) to the autophagosomal membrane where it is lipidated (LC3-II)) and p62/SQSTM1 (adaptor protein that serves as a link between LC3 and ubiquitinated substrates), (Klionsky et al., 2016) [1]. Data provided include analyses of protein levels of LC3 and p62 by Western-blotting and endogenous immunofluorescence experiments, but also p62 mRNA levels obtained by quantitative PCR (qPCR). To monitor the turnover of these autophagy markers and, thus, measure the flux of this pathway, cells were under starvation conditions and/or treated with bafilomycin A1 (Baf. A1) to block fusion of autophagosomes with lysosomes. PMID:27054171

  16. Novel activation domain derived from Che-1 cofactor coupled with the artificial protein Jazz drives utrophin upregulation.

    PubMed

    Desantis, Agata; Onori, Annalisa; Di Certo, Maria Grazia; Mattei, Elisabetta; Fanciulli, Maurizio; Passananti, Claudio; Corbi, Nicoletta

    2009-02-01

    Our aim is to upregulate the expression level of the dystrophin related gene utrophin in Duchenne muscular dystrophy, thus complementing the lack of dystrophin functions. To this end, we have engineered synthetic zinc finger based transcription factors. We have previously shown that the artificial three-zinc finger protein named Jazz fused with the Vp16 activation domain, is able to bind utrophin promoter A and to increase the endogenous level of utrophin in transgenic mice. Here, we report on an innovative artificial protein, named CJ7, that consists of Jazz DNA binding domain fused to a novel activation domain derived from the regulatory multivalent adaptor protein Che-1/AATF. This transcriptional activation domain is 100 amino acids in size and it is very powerful as compared to the Vp16 activation domain. We show that CJ7 protein efficiently promotes transcription and accumulation of the acetylated form of histone H3 on the genomic utrophin promoter locus.

  17. mRNA and protein dataset of autophagy markers (LC3 and p62) in several cell lines.

    PubMed

    Gómez-Sánchez, Rubén; Yakhine-Diop, Sokhna M S; Rodríguez-Arribas, Mario; Bravo-San Pedro, José M; Martínez-Chacón, Guadalupe; Uribe-Carretero, Elisabet; Pinheiro de Castro, Diana C J; Pizarro-Estrella, Elisa; Fuentes, José M; González-Polo, Rosa A

    2016-06-01

    We characterized the dynamics of autophagy in vitro using four different cell systems and analyzing markers widely used in this field, i.e. LC3 (microtubule-associated protein 1 light chain 3; protein recruited from the cytosol (LC3-I) to the autophagosomal membrane where it is lipidated (LC3-II)) and p62/SQSTM1 (adaptor protein that serves as a link between LC3 and ubiquitinated substrates), (Klionsky et al., 2016) [1]. Data provided include analyses of protein levels of LC3 and p62 by Western-blotting and endogenous immunofluorescence experiments, but also p62 mRNA levels obtained by quantitative PCR (qPCR). To monitor the turnover of these autophagy markers and, thus, measure the flux of this pathway, cells were under starvation conditions and/or treated with bafilomycin A1 (Baf. A1) to block fusion of autophagosomes with lysosomes.

  18. Activity-dependent Protein Dynamics Define Interconnected Cores of Co-regulated Postsynaptic Proteins*

    PubMed Central

    Trinidad, Jonathan C.; Thalhammer, Agnes; Burlingame, Alma L.; Schoepfer, Ralf

    2013-01-01

    Synapses are highly dynamic structures that mediate cell–cell communication in the central nervous system. Their molecular composition is altered in an activity-dependent fashion, which modulates the efficacy of subsequent synaptic transmission events. Whereas activity-dependent trafficking of individual key synaptic proteins into and out of the synapse has been characterized previously, global activity-dependent changes in the synaptic