Science.gov

Sample records for adaptor protein involved

  1. The interaction between the adaptor protein APS and Enigma is involved in actin organisation.

    PubMed

    Barrès, Romain; Gonzalez, Teresa; Le Marchand-Brustel, Yannick; Tanti, Jean-François

    2005-08-15

    APS (adaptor protein with PH and SH2 domains) is an adaptor protein phosphorylated by several tyrosine kinase receptors including the insulin receptor. To identify novel binding partners of APS, we performed yeast two-hybrid screening. We identified Enigma, a PDZ and LIM domain-containing protein that was previously shown to be associated with the actin cytoskeleton. In HEK 293 cells, Enigma interacted specifically with APS, but not with the APS-related protein SH2-B. This interaction required the NPTY motif of APS and the LIM domains of Enigma. In NIH-3T3 cells that express the insulin receptor, Enigma and APS were partially co-localised with F-actin in small ruffling structures. Insulin increased the complex formation between APS and Enigma and their co-localisation in large F-actin containing ruffles. While in NIH-3T3 and HeLa cells the co-expression of both Enigma and APS did not modify the actin cytoskeleton organisation, expression of Enigma alone led to the formation of F-actin clusters. Similar alteration in actin cytoskeleton organisation was observed in cells expressing both Enigma and APS with a mutation in the NPTY motif. These results identify Enigma as a novel APS-binding protein and suggest that the APS/Enigma complex plays a critical role in actin cytoskeleton organisation.

  2. The endocytic adaptor protein ARH associates with motor and centrosomal proteins and is involved in centrosome assembly and cytokinesis.

    PubMed

    Lehtonen, Sanna; Shah, Mehul; Nielsen, Rikke; Iino, Noriaki; Ryan, Jennifer J; Zhou, Huilin; Farquhar, Marilyn G

    2008-07-01

    Numerous proteins involved in endocytosis at the plasma membrane have been shown to be present at novel intracellular locations and to have previously unrecognized functions. ARH (autosomal recessive hypercholesterolemia) is an endocytic clathrin-associated adaptor protein that sorts members of the LDL receptor superfamily (LDLR, megalin, LRP). We report here that ARH also associates with centrosomes in several cell types. ARH interacts with centrosomal (gamma-tubulin and GPC2 and GPC3) and motor (dynein heavy and intermediate chains) proteins. ARH cofractionates with gamma-tubulin on isolated centrosomes, and gamma-tubulin and ARH interact on isolated membrane vesicles. During mitosis, ARH sequentially localizes to the nuclear membrane, kinetochores, spindle poles and the midbody. Arh(-/-) embryonic fibroblasts (MEFs) show smaller or absent centrosomes suggesting ARH plays a role in centrosome assembly. Rat-1 fibroblasts depleted of ARH by siRNA and Arh(-/-) MEFs exhibit a slower rate of growth and prolonged cytokinesis. Taken together the data suggest that the defects in centrosome assembly in ARH depleted cells may give rise to cell cycle and mitotic/cytokinesis defects. We propose that ARH participates in centrosomal and mitotic dynamics by interacting with centrosomal proteins. Whether the centrosomal and mitotic functions of ARH are related to its endocytic role remains to be established.

  3. Crystal structure of human programmed cell death 10 complexed with inositol-(1,3,4,5)-tetrakisphosphate: a novel adaptor protein involved in human cerebral cavernous malformation.

    PubMed

    Ding, Jingjin; Wang, Xiaoyan; Li, De-Feng; Hu, Yonglin; Zhang, Ying; Wang, Da-Cheng

    2010-09-03

    Programmed cell death 10 (PDCD10) is a novel adaptor protein involved in human cerebral cavernous malformation, a common vascular lesion mostly occurring in the central nervous system. By interacting with different signal proteins, PDCD10 could regulate various physiological processes in the cell. The crystal structure of human PDCD10 complexed with inositol-(1,3,4,5)-tetrakisphosphate has been determined at 2.3A resolution. The structure reveals an integrated dimer via a unique assembly that has never been observed before. Each PDCD10 monomer contains two independent domains: an N-terminal domain with a new fold involved in the tight dimer assembly and a C-terminal four-helix bundle domain that closely resembles the focal adhesion targeting domain of focal adhesion kinase. An eight-residue flexible linker connects the two domains, potentially conferring mobility onto the C-terminal domain, resulting in the conformational variability of PDCD10. A variable basic cleft on the top of the dimer interface binds to phosphatidylinositide and regulates the intracellular localization of PDCD10. Two potential sites, respectively located on the two domains, are critical for recruiting different binding partners, such as germinal center kinase III proteins and the focal adhesion protein paxillin.

  4. SH2 domain–containing adaptor protein B expressed in dendritic cells is involved in T-cell homeostasis by regulating dendritic cell–mediated Th2 immunity

    PubMed Central

    2017-01-01

    Purpose The Src homology 2 domain–containing adaptor protein B (SHB) is widely expressed in immune cells and acts as an important regulator for hematopoietic cell function. SHB silencing induces Th2 immunity in mice. SHB is also involved in T-cell homeostasis in vivo. However, SHB has not yet been studied and addressed in association with dendritic cells (DCs). Materials and Methods The effects of SHB expression on the immunogenicity of DCs were assessed by Shb gene silencing in mouse bone marrow–derived DCs (BMDCs). After silencing, surface phenotype, cytokine expression profile, and T-cell stimulation capacity of BMDCs were examined. We investigated the signaling pathways involved in SHB expression during BMDC development. We also examined the immunogenicity of SHB-knockdown (SHBKD) BMDCs in a mouse atopic dermatitis model. Results SHB was steadily expressed in mouse splenic DCs and in in vitro–generated BMDCs in both immature and mature stages. SHB expression was contingent on activation of the mitogen- activated protein kinase/Foxa2 signaling pathway during DC development. SHBKD increased the expression of MHC class II and costimulatory molecules without affecting the cytokine expression of BMDCs. When co-cultured with T cells, SHBKD in BMDCs significantly induced CD4+ T-cell proliferation and the expression of Th2 cytokines, while the regulatory T cell (Treg) population was downregulated. In mouse atopic dermatitis model, mice inoculated with SHBKD DCs developed more severe symptoms of atopic dermatitis compared with mice injected with control DCs. Conclusion SHB expression in DCs plays an important role in T-cell homeostasis in vivo by regulating DC-mediated Th2 polarization. PMID:28168174

  5. Role of an adaptor protein Lin-7B in brain development: possible involvement in autism spectrum disorders.

    PubMed

    Mizuno, Makoto; Matsumoto, Ayumi; Hamada, Nanako; Ito, Hidenori; Miyauchi, Akihiko; Jimbo, Eriko F; Momoi, Mariko Y; Tabata, Hidenori; Yamagata, Takanori; Nagata, Koh-Ichi

    2015-01-01

    Using comparative genomic hybridization analysis for an autism spectrum disorder (ASD) patient, a 73-Kb duplication at 19q13.33 (nt. 49 562 755-49 635 956) including LIN7B and 5 other genes was detected. We then identified a novel frameshift mutation in LIN7B in another ASD patient. Since LIN7B encodes a scaffold protein essential for neuronal function, we analyzed the role of Lin-7B in the development of cerebral cortex. Acute knockdown of Lin-7B with in utero electroporation caused a delay in neuronal migration during corticogenesis. When Lin-7B was knocked down in cortical neurons in one hemisphere, their axons failed to extend efficiently into the contralateral hemisphere after leaving the corpus callosum. Meanwhile, enhanced expression of Lin-7B had no effects on both cortical neuron migration and axon growth. Notably, silencing of Lin-7B did not affect the proliferation of neuronal progenitors and stem cells. Taken together, Lin-7B was found to play a pivotal role in corticogenesis through the regulation of excitatory neuron migration and interhemispheric axon growth, while further analyses are required to directly link functional defects of Lin-7B to ASD pathophysiology. Lin-7 plays a pivotal role as a scaffold protein in synaptic development and plasticity. Based on genetic analyses we identified mutations in LIN-7B gene in some ASD (autism-spectrum disorder) patients. Functional defects in Lin-7B caused abnormal neuronal migration and interhemispheric axon growth during mouse brain development. Thus, functional deficiency in Lin-7B could be implicated in clinical phenotypes in some ASD patients through bringing about abnormal cortical architecture.

  6. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling.

    PubMed

    Carty, Michael; Goodbody, Rory; Schröder, Martina; Stack, Julianne; Moynagh, Paul N; Bowie, Andrew G

    2006-10-01

    Toll-like receptors discriminate between different pathogen-associated molecules and activate signaling cascades that lead to immune responses. The specificity of Toll-like receptor signaling occurs by means of adaptor proteins containing Toll-interleukin 1 receptor (TIR) domains. Activating functions have been assigned to four TIR adaptors: MyD88, Mal, TRIF and TRAM. Here we characterize a fifth TIR adaptor, SARM, as a negative regulator of TRIF-dependent Toll-like receptor signaling. Expression of SARM blocked gene induction 'downstream' of TRIF but not of MyD88. SARM associated with TRIF, and 'knockdown' of endogenous SARM expression by interfering RNA led to enhanced TRIF-dependent cytokine and chemokine induction. Thus, the fifth mammalian TIR adaptor SARM is a negative regulator of Toll-like receptor signaling.

  7. Modulation of lipoprotein receptor functions by intracellular adaptor proteins.

    PubMed

    Stolt, Peggy C; Bock, Hans H

    2006-10-01

    Members of the low density lipoprotein (LDL) receptor gene family are critically involved in a wide range of physiological processes including lipid and vitamin homeostasis, cellular migration, neurodevelopment, and synaptic plasticity, to name a few. Lipoprotein receptors exert these diverse biological functions by acting as cellular uptake receptors or by inducing intracellular signaling cascades. It was discovered that a short sequence in the intracellular region of all lipoprotein receptors, Asn-Pro-X-Tyr (NPXY) is important for mediating either endocytosis or signal transduction events, and that this motif serves as a binding site for phosphotyrosine-binding (PTB) domain containing scaffold proteins. These molecular adaptors connect the transmembrane receptors with the endocytosis machinery and regulate cellular trafficking, or function as assembly sites for dynamic multi-protein signaling complexes. Whereas the LDL receptor represents the archetype of an endocytic lipoprotein receptor, the structurally closely related apolipoprotein E receptor 2 (apoER2) and very low density lipoprotein (VLDL) receptor activate a kinase-dependent intracellular signaling cascade after binding to the neuronal signaling molecule Reelin. This review focuses on two related PTB domain containing adaptor proteins that mediate these divergent lipoprotein receptor responses, ARH (autosomal recessive hypercholesterolemia protein) and Dab1 (disabled-1), and discusses the structural and molecular basis of this different behaviour.

  8. Adaptor Protein 1A Facilitates Dengue Virus Replication

    PubMed Central

    Yasamut, Umpa; Tongmuang, Nopprarat; Yenchitsomanus, Pa-thai; Junking, Mutita; Noisakran, Sansanee; Puttikhunt, Chunya; Chu, Justin Jang Hann; Limjindaporn, Thawornchai

    2015-01-01

    Rearrangement of membrane structure induced by dengue virus (DENV) is essential for replication, and requires host cellular machinery. Adaptor protein complex (AP)-1 is a host component, which can be recruited to components required for membrane rearrangement. Therefore, dysfunction of AP-1 may affect membrane organization, thereby decreasing replication of virus in infected cells. In the present study, AP-1-dependent traffic inhibitor inhibited DENV protein expression and virion production. We further clarified the role of AP-1A in the life cycle of DENV by RNA interference. AP-1A was not involved in DENV entry into cells. However, it facilitated DENV RNA replication. Viral RNA level was reduced significantly in Huh7 cells transfected with AP-1A small interfering RNA (siRNA) compared with control siRNA. Transfection of naked DENV viral RNA into Huh7 cells transfected with AP-1A siRNA resulted in less viral RNA and virion production than transfection into Huh7 cells transfected with control siRNA. Huh7 cells transfected with AP-1A siRNA showed greater modification of membrane structures and fewer vesicular packets compared with cells transfected with control siRNA. Therefore, AP-1A may partly control DENV-induced rearrangement of membrane structures required for viral replication. PMID:26090672

  9. Alternative Splicing in CaV2.2 Regulates Neuronal Trafficking via Adaptor Protein Complex-1 Adaptor Protein Motifs

    PubMed Central

    Macabuag, Natsuko

    2015-01-01

    N-type voltage-gated calcium (CaV2.2) channels are expressed in neurons and targeted to the plasma membrane of presynaptic terminals, facilitating neurotransmitter release. Here, we find that the adaptor protein complex-1 (AP-1) mediates trafficking of CaV2.2 from the trans-Golgi network to the cell surface. Examination of splice variants of CaV2.2, containing either exon 37a (selectively expressed in nociceptors) or 37b in the proximal C terminus, reveal that canonical AP-1 binding motifs, YxxΦ and [DE]xxxL[LI], present only in exon 37a, enhance intracellular trafficking of exon 37a-containing CaV2.2 to the axons and plasma membrane of rat DRG neurons. Finally, we identify differential effects of dopamine-2 receptor (D2R) and its agonist-induced activation on trafficking of CaV2.2 isoforms. D2R slowed the endocytosis of CaV2.2 containing exon 37b, but not exon 37a, and activation by the agonist quinpirole reversed the effect of the D2R. Our work thus reveals key mechanisms involved in the trafficking of N-type calcium channels. SIGNIFICANCE STATEMENT CaV2.2 channels are important for neurotransmitter release, but how they are trafficked is still poorly understood. Here, we describe a novel mechanism for trafficking of CaV2.2 from the trans-Golgi network to the cell surface which is mediated by the adaptor protein AP-1. Alternative splicing of exon 37 produces CaV2.2-exon 37a, selectively expressed in nociceptors, or CaV2.2-exon 37b, which is the major splice isoform. Our study reveals that canonical AP-1 binding motifs (YxxΦ and [DE]xxxL[LI]), present in exon 37a, but not 37b, enhance intracellular trafficking of exon 37a-containing CaV2.2 to axons and plasma membrane of DRG neurons. Interaction of APs with CaV2.2 channels may also be key underlying mechanisms for differential effects of the dopamine D2 receptor on trafficking of CaV2.2 splice variants. PMID:26511252

  10. The adaptor molecule signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is essential in mechanisms involving the Fyn tyrosine kinase for induction and progression of collagen-induced arthritis.

    PubMed

    Zhong, Ming-Chao; Veillette, André

    2013-11-01

    Signaling lymphocytic activation molecule-associated protein (SAP) is an Src homology 2 domain-only adaptor involved in multiple immune cell functions. It has also been linked to immunodeficiencies and autoimmune diseases, such as systemic lupus erythematosus. Here, we examined the role and mechanism of action of SAP in autoimmunity using a mouse model of autoimmune arthritis, collagen-induced arthritis (CIA). We found that SAP was essential for development of CIA in response to collagen immunization. It was also required for production of collagen-specific antibodies, which play a key role in disease pathogenesis. These effects required SAP expression in T cells, not in B cells. In mice immunized with a high dose of collagen, the activity of SAP was nearly independent of its ability to bind the protein tyrosine kinase Fyn and correlated with the capacity of SAP to promote full differentiation of follicular T helper (TFH) cells. However, with a lower dose of collagen, the role of SAP was more dependent on Fyn binding, suggesting that additional mechanisms other than TFH cell differentiation were involved. Further studies suggested that this might be due to a role of the SAP-Fyn interaction in natural killer T cell development through the ability of SAP-Fyn to promote Vav-1 activation. We also found that removal of SAP expression during progression of CIA attenuated disease severity. However, it had no effect on disease when CIA was clinically established. Together, these results indicate that SAP plays an essential role in CIA because of Fyn-independent and Fyn-dependent effects on TFH cells and, possibly, other T cell types.

  11. The adaptor protein ARH escorts megalin to and through endosomes.

    PubMed

    Nagai, Masaaki; Meerloo, Timo; Takeda, Tetsuro; Farquhar, Marilyn Gist

    2003-12-01

    Megalin is an endocytic receptor that binds multiple ligands and is essential for many physiological processes such as brain development and uptake of proteins by the kidney tubule, yolk sac, and thyroid. The cytoplasmic tail of megalin contains two FXNPXY motifs. Autosomal recessive hypercholesterolemia (ARH) is an adaptor protein that binds to the FXNPXY motif of the low-density lipoprotein receptor as well as clathrin and AP-2. We found that ARH also binds to the first FXNPXY motif of megalin in two-hybrid, pull-down and coimmunoprecipitation assays. ARH colocalizes with megalin in clathrin coated pits and in recycling endosomes in the Golgi region. When cells are treated with nocodazole, the recycling endosomes containing megalin and ARH disperse. On internalization of megalin, ARH and megalin are first seen in clathrin coated pits followed by sequential localization in early endosomes and tubular recycling endosomes in the pericentriolar region followed by their reappearance at the cell surface. Expression of ARH in Madin-Darby canine kidney cells expressing megalin mini-receptors enhances megalin-mediated uptake of 125I-lactoferrin, a megalin ligand. These results show that ARH facilitates endocytosis of megalin, escorts megalin along its endocytic route and raise the possibility that transport through the endosomal system is selective and requires interaction with specific adaptor proteins.

  12. The adaptor protein Dab2 sorts LDL receptors into coated pits independently of AP-2 and ARH.

    PubMed

    Maurer, Meghan E; Cooper, Jonathan A

    2006-10-15

    Clathrin-mediated endocytosis requires cargo-specific adaptor proteins that recognize specific receptors and recruit them into coated pits. ARH [also called low-density lipoprotein receptor (LDLR) adaptor protein] serves as an adaptor for LDLR endocytosis in liver. However, ARH is dispensable for LDL uptake by some other cell types. Here, we show that the adaptor Dab2 plays a major role in LDLR internalization in HeLa cells and fibroblasts. Dab2 mediates internalization of LDLRs but not transferrin receptors independently of ARH and the classic clathrin adaptor AP-2. If Dab2 is absent, ARH can mediate LDLR endocytosis, but its action requires AP-2. Furthermore, the rate of LDLR endocytosis is decreased when Dab2 is absent and Dab2, but not ARH, catalyzes the efficient clustering of LDLR into coated pits. Dab2 activity requires its binding to clathrin, LDLR and phospholipids. Dab2 is also involved in moving LDLRs off filopodia. We suggest that Dab2 is a cargo-specific endocytic adaptor protein, stably associating with phospholipids and clathrin to sort LDLR to nascent-coated pits, whereas ARH might accelerate later steps in LDLR endocytosis in cooperation with AP-2.

  13. The Lnk adaptor protein: a key regulator of normal and pathological hematopoiesis.

    PubMed

    Velazquez, Laura

    2012-12-01

    The development and function of blood cells are regulated by specific growth factors/cytokines and their receptors' signaling pathways. In this way, these factors influence cell survival, proliferation and differentiation of hematopoietic cells. Central to this positive and/or negative control are the adaptor proteins. Since their identification 10 years ago, members of the Lnk adaptor protein family have proved to be important activators and/or inhibitors in the hematopoietic, immune and vascular system. In particular, the generation of animal and cellular models for the Lnk and APS proteins has helped establish the physiological role of these molecules through the identification of their specific signaling pathways and the characterization of their binding partners. Moreover, the recent identification of mutations in the LNK gene in myeloproliferative disorders, as well as the correlation of a single nucleotide polymorphism on LNK with hematological, immune and vascular diseases have suggested its involvement in the pathophysiology of these malignancies. The latter findings have thus raised the possibility of addressing Lnk signaling for the treatment of certain human diseases. This review therefore describes the pathophysiological role of this adaptor protein in hematological malignancies and the potential benefits of Lnk therapeutic targeting.

  14. A role for the adaptor proteins TRAM and TRIF in toll-like receptor 2 signaling.

    PubMed

    Nilsen, Nadra J; Vladimer, Gregory I; Stenvik, Jørgen; Orning, M Pontus A; Zeid-Kilani, Maria V; Bugge, Marit; Bergstroem, Bjarte; Conlon, Joseph; Husebye, Harald; Hise, Amy G; Fitzgerald, Katherine A; Espevik, Terje; Lien, Egil

    2015-02-06

    Toll-like receptors (TLRs) are involved in sensing invading microbes by host innate immunity. TLR2 recognizes bacterial lipoproteins/lipopeptides, and lipopolysaccharide activates TLR4. TLR2 and TLR4 signal via the Toll/interleukin-1 receptor adaptors MyD88 and MAL, leading to NF-κB activation. TLR4 also utilizes the adaptors TRAM and TRIF, resulting in activation of interferon regulatory factor (IRF) 3. Here, we report a new role for TRAM and TRIF in TLR2 regulation and signaling. Interestingly, we observed that TLR2-mediated induction of the chemokine Ccl5 was impaired in TRAM or TRIF deficient macrophages. Inhibition of endocytosis reduced Ccl5 release, and the data also suggested that TRAM and TLR2 co-localize in early endosomes, supporting the hypothesis that signaling may occur from an intracellular compartment. Ccl5 release following lipoprotein challenge additionally involved the kinase Tbk-1 and Irf3, as well as MyD88 and Irf1. Induction of Interferon-β and Ccl4 by lipoproteins was also partially impaired in cells lacking TRIF cells. Our results show a novel function of TRAM and TRIF in TLR2-mediated signal transduction, and the findings broaden our understanding of how Toll/interleukin-1 receptor adaptor proteins may participate in signaling downstream from TLR2.

  15. Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump

    PubMed Central

    Hinchliffe, Philip; Greene, Nicholas P.; Paterson, Neil G.; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2014-01-01

    Periplasmic adaptor proteins are key components of bacterial tripartite efflux pumps. The 2.85 Å resolution structure of an MFS (major facilitator superfamily) pump adaptor, Aquifex aeolicus EmrA, shows linearly arranged α-helical coiled-coil, lipoyl, and β-barrel domains, but lacks the fourth membrane-proximal domain shown in other pumps to interact with the inner membrane transporter. The adaptor α-hairpin, which binds outer membrane TolC, is exceptionally long at 127 Å, and the β-barrel contains a conserved disordered loop. The structure extends the view of adaptors as flexible, modular components that mediate diverse pump assembly, and suggests that in MFS tripartite pumps a hexamer of adaptors could provide a periplasmic seal. PMID:24996185

  16. Roles of BLOC-1 and Adaptor Protein-3 Complexes in Cargo Sorting to Synaptic Vesicles

    PubMed Central

    Newell-Litwa, Karen; Salazar, Gloria; Smith, Yoland

    2009-01-01

    Neuronal lysosomes and their biogenesis mechanisms are primarily thought to clear metabolites and proteins whose abnormal accumulation leads to neurodegenerative disease pathology. However, it remains unknown whether lysosomal sorting mechanisms regulate the levels of membrane proteins within synaptic vesicles. Using high-resolution deconvolution microscopy, we identified early endosomal compartments where both selected synaptic vesicle and lysosomal membrane proteins coexist with the adaptor protein complex 3 (AP-3) in neuronal cells. From these early endosomes, both synaptic vesicle membrane proteins and characteristic AP-3 lysosomal cargoes can be similarly sorted to brain synaptic vesicles and PC12 synaptic-like microvesicles. Mouse knockouts for two Hermansky–Pudlak complexes involved in lysosomal biogenesis from early endosomes, the ubiquitous isoform of AP-3 (Ap3b1−/−) and muted, defective in the biogenesis of lysosome-related organelles complex 1 (BLOC-1), increased the content of characteristic synaptic vesicle proteins and known AP-3 lysosomal proteins in isolated synaptic vesicle fractions. These phenotypes contrast with those of the mouse knockout for the neuronal AP-3 isoform involved in synaptic vesicle biogenesis (Ap3b2−/−), in which the content of select proteins was reduced in synaptic vesicles. Our results demonstrate that lysosomal and lysosome-related organelle biogenesis mechanisms regulate steady-state synaptic vesicle protein composition from shared early endosomes. PMID:19144828

  17. Adaptor protein-3: A key player in RBL-2H3 mast cell mediator release

    PubMed Central

    da Silva, Elaine Zayas Marcelino; Freitas-Filho, Edismauro Garcia; de Souza-Júnior, Devandir Antonio; daSilva, Luis Lamberti Pinto; Jamur, Maria Celia

    2017-01-01

    Mast cell (MC) secretory granules are Lysosome-Related Organelles (LROs) whose biogenesis is associated with the post-Golgi secretory and endocytic pathways in which the sorting of proteins destined for a specific organelle relies on the recognition of sorting signals by adaptor proteins that direct their incorporation into transport vesicles. The adaptor protein 3 (AP-3) complex mediates protein trafficking between the trans-Golgi network (TGN) and late endosomes, lysosomes, and LROs. AP-3 has a recognized role in LROs biogenesis and regulated secretion in several cell types, including many immune cells such as neutrophils, natural killer cells, and cytotoxic T lymphocytes. However, the relevance of AP-3 for these processes in MCs has not been previously investigated. AP-3 was found to be expressed and distributed in a punctate fashion in rat peritoneal mast cells ex vivo. The rat MC line RBL-2H3 was used as a model system to investigate the role of AP-3 in mast cell secretory granule biogenesis and mediator release. By immunofluorescence and immunoelectron microscopy, AP-3 was localized both to the TGN and early endosomes indicating that AP-3 dependent sorting of proteins to MC secretory granules originates in these organelles. ShRNA mediated depletion of the AP-3 δ subunit was shown to destabilize the AP-3 complex in RBL-2H3 MCs. AP-3 knockdown significantly affected MC regulated secretion of β-hexosaminidase without affecting total cellular enzyme levels. Morphometric evaluation of MC secretory granules by electron microscopy revealed that the area of MC secretory granules in AP-3 knockdown MCs was significantly increased, indicating that AP-3 is involved in MC secretory granule biogenesis. Furthermore, AP-3 knockdown had a selective impact on the secretion of newly formed and newly synthesized mediators. These results show for the first time that AP-3 plays a critical role in secretory granule biogenesis and mediator release in MCs. PMID:28273137

  18. The role of palmitoylation and transmembrane domain in sorting of transmembrane adaptor proteins.

    PubMed

    Chum, Tomáš; Glatzová, Daniela; Kvíčalová, Zuzana; Malínský, Jan; Brdička, Tomáš; Cebecauer, Marek

    2016-01-01

    Plasma membrane proteins synthesised at the endoplasmic reticulum are delivered to the cell surface via sorting pathways. Hydrophobic mismatch theory based on the length of the transmembrane domain (TMD) dominates discussion about determinants required for protein sorting to the plasma membrane. Transmembrane adaptor proteins (TRAP) are involved in signalling events which take place at the plasma membrane. Members of this protein family have TMDs of varying length. We were interested in whether palmitoylation or other motifs contribute to the effective sorting of TRAP proteins. We found that palmitoylation is essential for some, but not all, TRAP proteins independent of their TMD length. We also provide evidence that palmitoylation and proximal sequences can modulate sorting of artificial proteins with TMDs of suboptimal length. Our observations point to a unique character of each TMD defined by its primary amino acid sequence and its impact on membrane protein localisation. We conclude that, in addition to the TMD length, secondary sorting determinants such as palmitoylation or flanking sequences have evolved for the localisation of membrane proteins.

  19. Molecular protein adaptor with genetically encoded interaction sites guiding the hierarchical assembly of plasmonically active nanoparticle architectures

    NASA Astrophysics Data System (ADS)

    Schreiber, Andreas; Huber, Matthias C.; Cölfen, Helmut; Schiller, Stefan M.

    2015-03-01

    The control over the defined assembly of nano-objects with nm-precision is important to create systems and materials with enhanced properties, for example, metamaterials. In nature, the precise assembly of inorganic nano-objects with unique features, for example, magnetosomes, is accomplished by efficient and reliable recognition schemes involving protein effectors. Here we present a molecular approach using protein-based ‘adaptors/connectors’ with genetically encoded interaction sites to guide the assembly and functionality of different plasmonically active gold nanoparticle architectures (AuNP). The interaction of the defined geometricaly shaped protein adaptors with the AuNP induces the self-assembly of nanoarchitectures ranging from AuNP encapsulation to one-dimensional chain-like structures, complex networks and stars. Synthetic biology and bionanotechnology are applied to co-translationally encode unnatural amino acids as additional site-specific modification sites to generate functionalized biohybrid nanoarchitectures. This protein adaptor-based nano-object assembly approach might be expanded to other inorganic nano-objects creating biohybrid materials with unique electronic, photonic, plasmonic and magnetic properties.

  20. The Exosome Is Recruited to RNA Substrates through Specific Adaptor Proteins.

    PubMed

    Thoms, Matthias; Thomson, Emma; Baßler, Jochen; Gnädig, Marén; Griesel, Sabine; Hurt, Ed

    2015-08-27

    The exosome regulates the processing, degradation, and surveillance of a plethora of RNA species. However, little is known about how the exosome recognizes and is recruited to its diverse substrates. We report the identification of adaptor proteins that recruit the exosome-associated helicase, Mtr4, to unique RNA substrates. Nop53, the yeast homolog of the tumor suppressor PICT1, targets Mtr4 to pre-ribosomal particles for exosome-mediated processing, while a second adaptor Utp18 recruits Mtr4 to cleaved rRNA fragments destined for degradation by the exosome. Both Nop53 and Utp18 contain the same consensus motif, through which they dock to the "arch" domain of Mtr4 and target it to specific substrates. These findings show that the exosome employs a general mechanism of recruitment to defined substrates and that this process is regulated through adaptor proteins.

  1. Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation

    SciTech Connect

    Reider, Amanda; Barker, Sarah L.; Mishra, Sanjay K.; Im, Young Jun; Maldonado-Báez, Lymarie; Hurley, James H.; Traub, Linton M.; Wendland, Beverly

    2010-10-28

    Internalization of diverse transmembrane cargos from the plasma membrane requires a similarly diverse array of specialized adaptors, yet only a few adaptors have been characterized. We report the identification of the muniscin family of endocytic adaptors that is conserved from yeast to human beings. Solving the structures of yeast muniscin domains confirmed the unique combination of an N-terminal domain homologous to the crescent-shaped membrane-tubulating EFC/F-BAR domains and a C-terminal domain homologous to cargo-binding {mu} homology domains ({mu}HDs). In vitro and in vivo assays confirmed membrane-tubulation activity for muniscin EFC/F-BAR domains. The {mu}HD domain has conserved interactions with the endocytic adaptor/scaffold Ede1/eps15, which influences muniscin localization. The transmembrane protein Mid2, earlier implicated in polarized Rho1 signalling, was identified as a cargo of the yeast adaptor protein. These and other data suggest a model in which the muniscins provide a combined adaptor/membrane-tubulation activity that is important for regulating endocytosis.

  2. Identification of Cargo for Adaptor Protein (AP) Complexes 3 and 4 by Sucrose Gradient Profiling.

    PubMed

    Pertl-Obermeyer, Heidi; Wu, Xu Na; Schrodt, Jens; Müdsam, Christina; Obermeyer, Gerhard; Schulze, Waltraud X

    2016-09-01

    Intracellular vesicle trafficking is a fundamental process in eukaryotic cells. It enables cellular polarity and exchange of proteins between subcellular compartments such as the plasma membrane or the vacuole. Adaptor protein complexes participate in the vesicle formation by specific selection of the transported cargo. We investigated the role of the adaptor protein complex 3 (AP-3) and adaptor protein complex 4 (AP-4) in this selection process by screening for AP-3 and AP-4 dependent cargo proteins. Specific cargo proteins are expected to be mis-targeted in knock-out mutants of adaptor protein complex components. Thus, we screened for altered distribution profiles across a density gradient of membrane proteins in wild type versus ap-3β and ap-4β knock-out mutants. In ap-3β mutants, especially proteins with transport functions, such as aquaporins and plasma membrane ATPase, as well as vesicle trafficking proteins showed differential protein distribution profiles across the density gradient. In the ap-4β mutant aquaporins but also proteins from lipid metabolism were differentially distributed. These proteins also showed differential phosphorylation patterns in ap-3β and ap-4β compared with wild type. Other proteins, such as receptor kinases were depleted from the AP-3 mutant membrane system, possibly because of degradation after mis-targeting. In AP-4 mutants, membrane fractions were depleted for cytochrome P450 proteins, cell wall proteins and receptor kinases. Analysis of water transport capacity in wild type and mutant mesophyll cells confirmed aquaporins as cargo proteins of AP-3 and AP-4. The combination of organelle density gradients with proteome analysis turned out as a suitable experimental strategy for large-scale analyses of protein trafficking.

  3. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export.

    PubMed

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M; Brandl, Holger; Schwich, Oliver D; Steiner, Michaela C; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M

    2016-03-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends.

  4. ARH is a modular adaptor protein that interacts with the LDL receptor, clathrin, and AP-2.

    PubMed

    He, Guocheng; Gupta, Sarita; Yi, Ming; Michaely, Peter; Hobbs, Helen H; Cohen, Jonathan C

    2002-11-15

    Mutations in the phosphotyrosine binding domain protein ARH cause autosomal recessive hypercholesterolemia, a disorder caused by defective internalization of low density lipoprotein receptors (LDLR) in the liver. To examine the function of ARH, we used pull-down experiments to test for interactions between ARH, the LDLR, and proteins involved in clathrin-mediated endocytosis. The phosphotyrosine binding domain of ARH interacted with the internalization sequence (NPVY) in the cytoplasmic tail of LDLR in a sequence-specific manner. Mutations in the NPVY sequence that were previously shown to decrease LDLR internalization abolished in vitro binding to ARH. Recombinant ARH bound purified bovine clathrin with high affinity (K(D), approximately 44 nm). The interaction between ARH and clathrin was mapped to a canonical clathrin box sequence (LLDLE) in ARH and to the N-terminal domain of the clathrin heavy chain. A highly conserved 20-amino acid sequence in the C-terminal region of ARH bound the beta(2)-adaptin subunit of AP-2. Mutation of a glutamic acid residue in the appendage domain of beta(2)-adaptin that is required for interaction with the adapter protein beta-arrestin markedly reduced binding to ARH. These data are consistent with the hypothesis that ARH functions as an adaptor protein that couples LDLR to the endocytic machinery.

  5. Losses, Expansions, and Novel Subunit Discovery of Adaptor Protein Complexes in Haptophyte Algae.

    PubMed

    Lee, Laura J Y; Klute, Mary J; Herman, Emily K; Read, Betsy; Dacks, Joel B

    2015-11-01

    The phylum Haptophyta (Diaphoratickes) contains marine algae that perform biomineralization, extruding large, distinctive calcium carbonate scales (coccoliths) that completely cover the cell. Coccolith production is an important part of global carbon cycling; however, the membrane trafficking pathway by which they are secreted has not yet been elucidated. In most eukaryotes, post-Golgi membrane trafficking involves five heterotetrameric adaptor protein (AP) complexes, which impart cargo selection specificity. To better understand coccolith secretion, we performed comparative genomic, phylogenetic, and transcriptomic analyses of the AP complexes in Emiliania huxleyi strains 92A, Van556, EH2, and CCMP1516, and related haptophytes Gephyrocapsa oceanica and Isochrysis galbana; the latter has lost the ability to biomineralize. We show that haptophytes have a modified membrane trafficking system (MTS), as we found both AP subunit losses and duplications. Additionally, we identified a single conserved subunit of the AP-related TSET complex, whose expression suggests a functional role in membrane trafficking. Finally, we detected novel alpha adaptin ear and gamma adaptin ear proteins, the first of their kind to be described outside of opisthokonts. These novel ear proteins and the sculpting of the MTS may support the capacity for biomineralization in haptophytes, enhancing their ability to perform this highly specialized form of secretion.

  6. Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes.

    PubMed

    Theos, Alexander C; Tenza, Danièle; Martina, José A; Hurbain, Ilse; Peden, Andrew A; Sviderskaya, Elena V; Stewart, Abigail; Robinson, Margaret S; Bennett, Dorothy C; Cutler, Daniel F; Bonifacino, Juan S; Marks, Michael S; Raposo, Graça

    2005-11-01

    Specialized cells exploit adaptor protein complexes for unique post-Golgi sorting events, providing a unique model system to specify adaptor function. Here, we show that AP-3 and AP-1 function independently in sorting of the melanocyte-specific protein tyrosinase from endosomes to the melanosome, a specialized lysosome-related organelle distinguishable from lysosomes. AP-3 and AP-1 localize in melanocytes primarily to clathrin-coated buds on tubular early endosomes near melanosomes. Both adaptors recognize the tyrosinase dileucine-based melanosome sorting signal, and tyrosinase largely colocalizes with each adaptor on endosomes. In AP-3-deficient melanocytes, tyrosinase accumulates inappropriately in vacuolar and multivesicular endosomes. Nevertheless, a substantial fraction still accumulates on melanosomes, concomitant with increased association with endosomal AP-1. Our data indicate that AP-3 and AP-1 function in partially redundant pathways to transfer tyrosinase from distinct endosomal subdomains to melanosomes and that the AP-3 pathway ensures that tyrosinase averts entrapment on internal membranes of forming multivesicular bodies.

  7. The role of Tks adaptor proteins in invadopodia formation, growth and metastasis of melanoma

    PubMed Central

    Iizuka, Shinji; Abdullah, Christopher; Buschman, Matthew D.; Diaz, Begoña; Courtneidge, Sara A.

    2016-01-01

    Metastatic cancer cells are characterized by their ability to degrade and invade through extracellular matrix. We previously showed that the Tks adaptor proteins, Tks4 and Tks5, are required for invadopodia formation and/or function in Src-transformed fibroblasts and a number of human cancer cell types. In this study, we investigated the role of Tks adaptor proteins in melanoma cell invasion and metastasis. Knockdown of either Tks4 or Tks5 in both mouse and human melanoma cell lines resulted in a decreased ability to form invadopodia and degrade extracellular matrix. In addition, Tks-knockdown melanoma cells had decreased proliferation in a 3-dimensional type l collagen matrix, but not in 2-dimensional culture conditions. We also investigated the role of Tks proteins in melanoma progression in vivo using xenografts and experimental metastasis assays. Consistent with our in vitro results, reduction of Tks proteins markedly reduced subcutaneous melanoma growth as well as metastatic growth in the lung. We explored the clinical relevance of Tks protein expression in human melanoma specimens using a tissue microarray. Compared to non-malignant nevi, both Tks proteins were highly expressed in melanoma tissues. Moreover, metastatic melanoma cases showed higher expression of Tks5 than primary melanoma cases. Taken together, these findings suggest the importance of Tks adaptor proteins in melanoma growth and metastasis in vivo, likely via functional invadopodia formation. PMID:27802184

  8. AP-1 clathrin adaptor and CG8538/Aftiphilin are involved in Notch signaling during eye development in Drosophila melanogaster.

    PubMed

    Kametaka, Satoshi; Kametaka, Ai; Yonekura, Shinichi; Haruta, Mineyuki; Takenoshita, Seiichi; Goto, Satoshi; Waguri, Satoshi

    2012-02-01

    Clathrin adaptor protein complex-1 (AP-1) and its accessory proteins play a role in the sorting of integral membrane proteins at the trans-Golgi network and endosomes. Their physiological functions in complex organisms, however, are not fully understood. In this study, we found that CG8538p, an uncharacterized Drosophila protein, shares significant structural and functional characteristics with Aftiphilin, a mammalian AP-1 accessory protein. The Drosophila Aftiphilin was shown to interact directly with the ear domain of γ-adaptin of Drosophila AP-1, but not with the GAE domain of Drosophila GGA. In S2 cells, Drosophila Aftiphilin and AP-1 formed a complex and colocalized at the Golgi compartment. Moreover, tissue-specific depletion of AP-1 or Aftiphilin in the developing eyes resulted in a disordered alignment of photoreceptor neurons in larval stage and roughened eyes with aberrant ommatidia in adult flies. Furthermore, AP-1-depleted photoreceptor neurons showed an intracellular accumulation of a Notch regulator, Scabrous, and downregulation of Notch by promoting its degradation in the lysosomes. These results suggest that AP-1 and Aftiphilin are cooperatively involved in the intracellular trafficking of Notch during eye development in Drosophila.

  9. Nuclear Translocation of Crk Adaptor Proteins by the Influenza A Virus NS1 Protein

    PubMed Central

    Ylösmäki, Leena; Fagerlund, Riku; Kuisma, Inka; Julkunen, Ilkka; Saksela, Kalle

    2016-01-01

    The non-structural protein-1 (NS1) of many influenza A strains, especially those of avian origin, contains an SH3 ligand motif, which binds tightly to the cellular adaptor proteins Crk (Chicken tumor virus number 10 (CT10) regulator of kinase) and Crk-like adapter protein (CrkL). This interaction has been shown to potentiate NS1-induced activation of the phosphatidylinositol 3-kinase (PI3K), but additional effects on the host cell physiology may exist. Here we show that NS1 can induce an efficient translocation of Crk proteins from the cytoplasm into the nucleus, which results in an altered pattern of nuclear protein tyrosine phosphorylation. This was not observed using NS1 proteins deficient in SH3 binding or engineered to be exclusively cytoplasmic, indicating a physical role for NS1 as a carrier in the nuclear translocation of Crk. These data further emphasize the role of Crk proteins as host cell interaction partners of NS1, and highlight the potential for host cell manipulation gained by a viral protein simply via acquiring a short SH3 binding motif. PMID:27092521

  10. Ste50 adaptor protein governs sexual differentiation of Cryptococcus neoformans via the pheromone response MAPK signaling pathway

    PubMed Central

    Jung, Kwang-Woo; Kim, Seo-Young; Okagaki, Laura H.; Nielsen, Kirsten; Bahn, Yong-Sun

    2010-01-01

    The mitogen-activated protein kinase (MAPK) pathways control diverse cellular functions in pathogenic fungi, including sexual differentiation, stress-response, and maintenance of cell wall integrity. Here we characterized a C. neoformans gene, which is homologous to the yeast Ste50 that is known to play an important role in mating pheromone response and stress response as an adaptor protein to the Ste11 MAPK kinase kinase in Saccharomyces cerevisiae. The C. neoformans Ste50 was not involved in any of the stress responses or virulence factor production (capsule and melanin) that are controlled by the HOG and Ras/cAMP signaling pathways. However, Ste50 was required for mating in both serotype A and serotype D C. neoformans strains. The ste50Δ mutant was completely defective in cell-cell fusion and mating pheromone production. Double mutation of the STE50 gene blocked increased production of pheromone and the hyper-filamentation phenotype of cells deleted of the CRG1 gene, which encodes the RGS protein that negatively regulates pheromone responsive G-protein signaling via the MAPK pathway. Regardless of the presence of the basidiomycota-specific SH3 domains of Ste50 that are known to be required for full virulence of Ustilago maydis, Ste50 was dispensable for virulence of C. neoformans in a murine model of cryptococcosis. In conclusion, the Ste50 adaptor protein controls sexual differentiation of C. neoformans via the pheromone-responsive MAPK pathway but is not required for virulence. PMID:20971202

  11. Science Signaling Podcast for 12 July 2016: Adaptor proteins limit signaling.

    PubMed

    Wiley, H Steven; VanHook, Annalisa M

    2016-07-12

    This Podcast features an interview with Steven Wiley, senior author of a Research Article that appears in the 12 July 2016 issue of Science Signaling, about how the abundance of adaptor proteins and feedback regulators affect the flow of information downstream of the epidermal growth factor receptor (EGFR). Information flows through a signaling pathway by sequential interactions between core components of the pathway, many of which have enzymatic activity. Adaptor proteins do not directly participate in relaying the signal and do not have enzymatic activity, but are important for signaling because they facilitate interactions between the core components. Using quantitative methods, Shi et al demonstrated that core components of the EGFR pathway were highly abundant in both normal cells and cancer cells. However, adaptor proteins were present in much lower abundance in both cell types, indicating that it is the abundance of these proteins that limit signaling downstream of EGFR. The authors also found that differences in EGFR signaling between different cell types likely resulted from the variable abundance of feedback regulators.Listen to Podcast.

  12. Binding of AP-2 adaptor complex to brain membrane is regulated by phosphorylation of proteins

    SciTech Connect

    Alberdi, A. . E-mail: aalberdi@fcm.uncu.edu.ar; Sartor, T.; Sosa, M.A.

    2005-05-13

    Phosphorylation of proteins appears as a key process in early steps of clathrin coated vesicle formation. Here, we report that treatment of post-nuclear fraction with alkaline phosphatase induced redistribution of {alpha} subunits of AP-2 adaptor complex to cytosol and this effect was higher in the {alpha}2 subunit. A high serine phosphorylation status of {alpha} subunits correlated with the higher affinity of AP-2 to membranes. Using a simple binding assay, where membranes were incubated with either purified adaptors or cytosols, we observed an inhibitory effect of tyrphostin, a tyrosine kinase inhibitor, on the binding of AP-2 to membranes, but also an unexpected decrease induced by the phosphatase inhibitor cyclosporine. We also show an inhibitory effect of ATP mediated by cytosolic proteins, although it could not be related to the phosphorylation of AP-2, suggesting an action upstream a cascade of phosphorylations that participate in the regulation of the assembly of AP-2 to membranes.

  13. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling

    PubMed Central

    Birge, Raymond B; Kalodimos, Charalampos; Inagaki, Fuyuhiko; Tanaka, Shinya

    2009-01-01

    The Crk adaptor proteins (Crk and CrkL) constitute an integral part of a network of essential signal transduction pathways in humans and other organisms that act as major convergence points in tyrosine kinase signaling. Crk proteins integrate signals from a wide variety of sources, including growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. Mounting evidence indicates that dysregulation of Crk proteins is associated with human diseases, including cancer and susceptibility to pathogen infections. Recent structural work has identified new and unusual insights into the regulation of Crk proteins, providing a rationale for how Crk can sense diverse signals and produce a myriad of biological responses. PMID:19426560

  14. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case.

    PubMed

    Halova, Ivana; Draber, Petr

    2016-01-01

    The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.

  15. The small G-protein Arf6GTP recruits the AP-2 adaptor complex to membranes.

    PubMed

    Paleotti, Olivia; Macia, Eric; Luton, Frederic; Klein, Stephanie; Partisani, Mariagrazia; Chardin, Pierre; Kirchhausen, Tom; Franco, Michel

    2005-06-03

    The small GTP-binding protein ADP-ribosylation factor 6 (Arf6) is involved in plasma membrane/endosomes trafficking. However, precisely how the activation of Arf6 regulates vesicular transport is still unclear. Here, we show that, in vitro, recombinant Arf6GTP recruits purified clathrin-adaptor complex AP-2 (but not AP-1) onto phospholipid liposomes in the absence of phosphoinositides. We also show that phosphoinositides and Arf6 tightly cooperate to translocate AP-2 to the membrane. In vivo, Arf6GTP (but not Arf6GDP) was found associated to AP-2. The expression of the GTP-locked mutant of Arf6 leads to the plasma membrane redistribution of AP-2 in Arf6GTP-enriched areas. Finally, we demonstrated that the expression of the GTP-locked mutant of Arf6 inhibits transferrin receptor internalization without affecting its recycling. Altogether, our results demonstrated that Arf6GTP interacts specifically with AP-2 and promotes its membrane recruitment. These findings strongly suggest that Arf6 plays a major role in clathrin-mediated endocytosis by directly controlling the assembly of the AP-2/clathrin coat.

  16. Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein.

    PubMed

    He, X; Li, Y; Schembri-King, J; Jakes, S; Hayashi, J

    2000-08-01

    Human Lnk (hLnk) is an adaptor protein with multiple functional domains that regulates T cell activation signaling. In order to identify cellular Lnk binding partners, a yeast two-hybrid screening of human spleen cDNA library was carried out using human hLnk as bait. A polypeptide sequence identical to the C-terminal segment of the actin binding protein (ABP-280) was identified as a hLnk binding protein. The expressed hLnk and the FLAG tagged C-terminal 673 amino acid residues of ABP-280 or the endogenous ABP-280 in COS-7 cells could be co-immunoprecipitated using antibodies either to hLnk, FLAG or ABP-280, respectively. Furthermore, immunofluorescence confocal microscope showed that hLnk and ABP-280 co-localized at the plasma membrane and at juxtanuclear region of COS-7 cells. In Jurkat cells, the endogenous hLnk also associates with the endogenous ABP-280 indicating that the association of these two proteins is physiological. The interacting domains of both proteins were mapped using yeast two-hybrid assays. Our results indicate that hLnk binds to the residues 2006-2454 (repeats 19-23C) of ABP-280. The domain in hLnk that associates with ABP-280 was mapped to an interdomain region of 56 amino acids between pleckstrin homology and Src homology 2 domains. These results suggest that hLnk may exert its regulatory role through its association with ABP-280.

  17. Tetraspan cargo adaptors usher GPI-anchored proteins into multivesicular bodies

    PubMed Central

    MacDonald, Chris; Stamnes, Mark A; Katzmann, David J; Piper, Robert C

    2015-01-01

    Ubiquitinated membrane proteins are sorted into intralumenal endosomal vesicles on their way for degradation in lysosomes. Here we summarize the discovery of the Cos proteins, which work to organize and segregate ubiquitinated cargo prior to its incorporation into intralumenal vesicles of the multivesicular body (MVB). Importantly, cargoes such as GPI-anchored proteins (GPI-APs) that cannot undergo ubiquitination, rely entirely on Cos proteins for sorting into intralumenal vesicles using the same pathway that depends on ESCRTs and ubiquitin ligases that typical polytopic membrane proteins do. Here we show Cos proteins provide functions as not only adaptor proteins for ubiquitin ligases, but also as cargo carriers that can physically usher a variety of other proteins into the MVB pathway. We then discuss the significance of this new sorting model and the broader implications for this cargo adaptor mechanism, whereby yeast Cos proteins, and their likely animal analogs, provide a ubiquitin sorting signal in trans to enable sorting of a membrane protein network into intralumenal vesicles. PMID:26505929

  18. Differential Regulation of Clathrin and Its Adaptor Proteins during Membrane Recruitment for Endocytosis1[OPEN

    PubMed Central

    Wang, Chao; Hu, Tianwei; Yan, Xu; Meng, Tingting; Wang, Yutong; Wang, Qingmei; Zhang, Xiaoyue; Gu, Ying; Sánchez-Rodríguez, Clara; Gadeyne, Astrid; Lin, Jinxing

    2016-01-01

    In plants, clathrin-mediated endocytosis (CME) is dependent on the function of clathrin and its accessory heterooligomeric adaptor protein complexes, ADAPTOR PROTEIN2 (AP-2) and the TPLATE complex (TPC), and is negatively regulated by the hormones auxin and salicylic acid (SA). The details for how clathrin and its adaptor complexes are recruited to the plasma membrane (PM) to regulate CME, however, are poorly understood. We found that SA and the pharmacological CME inhibitor tyrphostin A23 reduce the membrane association of clathrin and AP-2, but not that of the TPC, whereas auxin solely affected clathrin membrane association, in Arabidopsis (Arabidopsis thaliana). Genetic and pharmacological experiments revealed that loss of AP2μ or AP2σ partially affected the membrane association of other AP-2 subunits and that the AP-2 subunit AP2σ, but not AP2μ, was required for SA- and tyrphostin A23-dependent inhibition of CME. Furthermore, we show that although AP-2 and the TPC are both required for the PM recruitment of clathrin in wild-type cells, the TPC is necessary for clathrin PM association in AP-2-deficient cells. These results indicate that developmental signals may differentially modulate the membrane recruitment of clathrin and its core accessory complexes to regulate the process of CME in plant cells. PMID:26945051

  19. The polarity protein Par3 regulates APP trafficking and processing through the endocytic adaptor protein Numb.

    PubMed

    Sun, Miao; Asghar, Suwaiba Z; Zhang, Huaye

    2016-09-01

    The processing of amyloid precursor protein (APP) into β-amyloid peptide (Aβ) is a key step in the pathogenesis of Alzheimer's disease (AD), and trafficking dysregulations of APP and its secretases contribute significantly to altered APP processing. Here we show that the cell polarity protein Par3 plays an important role in APP processing and trafficking. We found that the expression of full length Par3 is significantly decreased in AD patients. Overexpression of Par3 promotes non-amyloidogenic APP processing, while depletion of Par3 induces intracellular accumulation of Aβ. We further show that Par3 functions by regulating APP trafficking. Loss of Par3 decreases surface expression of APP by targeting APP to the late endosome/lysosome pathway. Finally, we show that the effects of Par3 are mediated through the endocytic adaptor protein Numb, and Par3 functions by interfering with the interaction between Numb and APP. Together, our studies show a novel role for Par3 in regulating APP processing and trafficking.

  20. Adaptor protein Nck1 interacts with p120 Ras GTPase-activating protein and regulates its activity.

    PubMed

    Ger, Marija; Zitkus, Zigmantas; Valius, Mindaugas

    2011-10-01

    Adaptor protein Nck1 binds a number of intracellular proteins and influences various signaling pathways. Here we show that Nck1 directly binds and activates the GTPase-activating protein of Ras (RasGAP), which is responsible for the down-regulation of Ras. The first and the third SH3 domains of Nck1 and the NH(2)-terminal proline-rich sequence of RasGAP contribute most to the complex formation causing direct molecular interaction between the two proteins. Cell adhesion to the substrate is obligatory for the Nck1 and RasGAP association, as cell detachment makes RasGAP incapable of associating with Nck1. This leads to the complex dissipation, decrease of RasGAP activity and the increase of H-Ras-GTP level in the detached cells. Our findings reveal unexpected feature of adaptor protein Nck1 as the regulator of RasGAP activity.

  1. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins

    PubMed Central

    Zhao, Baoyu; Shu, Chang; Gao, Xinsheng; Sankaran, Banumathi; Du, Fenglei; Shelton, Catherine L.; Herr, Andrew B.; Ji, Jun-Yuan; Li, Pingwei

    2016-01-01

    Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)–like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses. PMID:27302953

  2. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52

    NASA Astrophysics Data System (ADS)

    Jo, Chulman; Gundemir, Soner; Pritchard, Susanne; Jin, Youngnam N.; Rahman, Irfan; Johnson, Gail V. W.

    2014-03-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor in the defence against oxidative stress. Here we provide evidence that activation of the Nrf2 pathway reduces the levels of phosphorylated tau by induction of an autophagy adaptor protein NDP52 (also known as CALCOCO2) in neurons. The expression of NDP52, which we show has three antioxidant response elements (AREs) in its promoter region, is strongly induced by Nrf2, and its overexpression facilitates clearance of phosphorylated tau in the presence of an autophagy stimulator. In Nrf2-knockout mice, phosphorylated and sarkosyl-insoluble tau accumulates in the brains concurrent with decreased levels of NDP52. Moreover, NDP52 associates with phosphorylated tau from brain cortical samples of Alzheimer disease cases, and the amount of phosphorylated tau in sarkosyl-insoluble fractions is inversely proportional to that of NDP52. These results suggest that NDP52 plays a key role in autophagy-mediated degradation of phosphorylated tau in vivo.

  3. The role of small adaptor proteins in the control of oncogenic signaling driven by tyrosine kinases in human cancer

    PubMed Central

    Naudin, Cécile; Chevalier, Clément; Roche, Serge

    2016-01-01

    Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology. PMID:26788993

  4. Identification of CMS as a cytosolic adaptor of the human pTalpha chain involved in pre-TCR function.

    PubMed

    Navarro, María N; Nusspaumer, Gretel; Fuentes, Patricia; González-García, Sara; Alcain, Juan; Toribio, María L

    2007-12-15

    The T-cell receptor beta (TCRbeta)/pre-TCRalpha (pTalpha) pre-TCR complex (pre-TCR) signals the expansion and differentiation of de-veloping thymocytes. Functional pro-perties of the pre-TCR rely on its unique pTalpha chain, which suggests the participation of specific intracellular adaptors. However, pTalpha-interacting molecules remain unknown. Here, we identified a polyproline-arginine sequence in the human pTalpha cytoplasmic tail that interacted in vitro with SH3 domains of the CIN85/CMS family of adaptors, and mediated the recruitment of multiprotein complexes involving all (CMS, CIN85, and CD2BP3) members. Supporting the physiologic relevance of this interaction, we found that 1 such adaptor, CMS, interacted in vivo with human pTalpha, and its expression was selectively up-regulated during human thymopoiesis in pre-TCR-activated thymocytes. Upon activation, pre-TCR clustering was induced, and CMS and polymerized actin were simultaneously recruited to the pre-TCR activation site. CMS also associated via its C-terminal region to the actin cytoskeleton in the endocytic compartment, where it colocalized with internalized pTalpha in traffic to lysosomal degradation. Notably, deletion of the pTalpha CIN85/CMS-binding motif impaired pre-TCR-mediated Ca(2+) mobilization and NFAT transcriptional activity, and precluded activation induced by overexpression of a CMS-SH3 N-terminal mutant. These results provide the first molecular evidence for a pTalpha intracellular adaptor involved in pre-TCR function.

  5. Synthetic Protein Scaffolds Based on Peptide Motifs and Cognate Adaptor Domains for Improving Metabolic Productivity

    PubMed Central

    Horn, Anselm H. C.; Sticht, Heinrich

    2015-01-01

    The efficiency of many cellular processes relies on the defined interaction among different proteins within the same metabolic or signaling pathway. Consequently, a spatial colocalization of functionally interacting proteins has frequently emerged during evolution. This concept has been adapted within the synthetic biology community for the purpose of creating artificial scaffolds. A recent advancement of this concept is the use of peptide motifs and their cognate adaptor domains. SH2, SH3, GBD, and PDZ domains have been used most often in research studies to date. The approach has been successfully applied to the synthesis of a variety of target molecules including catechin, D-glucaric acid, H2, hydrochinone, resveratrol, butyrate, gamma-aminobutyric acid, and mevalonate. Increased production levels of up to 77-fold have been observed compared to non-scaffolded systems. A recent extension of this concept is the creation of a covalent linkage between peptide motifs and adaptor domains, which leads to a more stable association of the scaffolded systems and thus bears the potential to further enhance metabolic productivity. PMID:26636078

  6. A highly versatile adaptor protein for the tethering of growth factors to gelatin-based biomaterials.

    PubMed

    Addi, Cyril; Murschel, Frédéric; Liberelle, Benoît; Riahi, Nesrine; De Crescenzo, Gregory

    2017-03-01

    In the field of tissue engineering, the tethering of growth factors to tissue scaffolds in an oriented manner can enhance their activity and increase their half-life. We chose to investigate the capture of the basic Fibroblast Growth Factor (bFGF) and the Epidermal Growth Factor (EGF) on a gelatin layer, as a model for the functionalization of collagen-based biomaterials. Our strategy relies on the use of two high affinity interactions, that is, the one between two distinct coil peptides as well as the one occurring between a collagen-binding domain (CBD) and gelatin. We expressed a chimeric protein to be used as an adaptor that comprises one of the coil peptides and a CBD derived from the human fibronectin. We proved that it has the ability to bind simultaneously to a gelatin substrate and to form a heterodimeric coiled-coil domain with recombinant growth factors being tagged with the complementary coil peptide. The tethering of the growth factors was characterized by ELISA and surface plasmon resonance-based biosensing. The bioactivity of the immobilized bFGF and EGF was evaluated by a human umbilical vein endothelial cell proliferation assay and a vascular smooth muscle cell survival assay. We found that the tethering of EGF preserved its mitogenic and anti-apoptotic activity. In the case of bFGF, when captured via our adaptor protein, changes in its natural mode of interaction with gelatin were observed.

  7. Regulation of in vitro and in vivo immune functions by the cytosolic adaptor protein SKAP-HOM.

    PubMed

    Togni, M; Swanson, K D; Reimann, S; Kliche, S; Pearce, A C; Simeoni, L; Reinhold, D; Wienands, J; Neel, B G; Schraven, B; Gerber, A

    2005-09-01

    SKAP-HOM is a cytosolic adaptor protein representing a specific substrate for the Src family protein tyrosine kinase Fyn. Previously, several groups have provided experimental evidence that SKAP-HOM (most likely in cooperation with the cytosolic adaptor protein ADAP) is involved in regulating leukocyte adhesion. To further assess the physiological role of SKAP-HOM, we investigated the immune system of SKAP-HOM-deficient mice. Our data show that T-cell responses towards a variety of stimuli are unaffected in the absence of SKAP-HOM. Similarly, B-cell receptor (BCR)-mediated total tyrosine phosphorylation and phosphorylation of Erk, p38, and JNK, as well as immunoreceptor-mediated Ca(2+) responses, are normal in SKAP-HOM(-/-) animals. However, despite apparently normal membrane-proximal signaling events, BCR-mediated proliferation is strongly attenuated in the absence of SKAP-HOM(-/-). In addition, adhesion of activated B cells to fibronectin (a ligand for beta1 integrins) as well as to ICAM-1 (a ligand for beta2 integrins) is strongly reduced. In vivo, the loss of SKAP-HOM results in a less severe clinical course of experimental autoimmune encephalomyelitis following immunization of mice with the encephalitogenic peptide of MOG (myelin oligodendrocyte glycoprotein). This is accompanied by strongly reduced serum levels of MOG-specific antibodies and lower MOG-specific T-cell responses. In summary, our data suggest that SKAP-HOM is required for proper activation of the immune system, likely by regulating the cross-talk between immunoreceptors and integrins.

  8. Characterization of the adaptor protein ARH expression in the brain and ARH molecular interactions.

    PubMed

    Mameza, Marie Germaine; Lockard, Jon M; Zamora, Eduardo; Hillefors, Mi; Lavina, Zeno Scotto; Kaplan, Barry B

    2007-11-01

    Previously, pA134 was identified as one of the mRNAs present in the squid giant axon. Comparative sequence analyses revealed that the pA134 gene product manifested significant similarity to the mammalian lipoprotein receptor adaptor protein also known as ARH (autosomal recessive hypercholesterolemia). ARH mRNA and protein displayed very similar pattern of expression throughout the mouse brain. Significant levels of expression were observed in cells with a predominantly neuronal profile in the cerebellum, brainstem, olfactory bulb, hippocampus, and cortex. A yeast two hybrid screen for ARH protein interactions in mouse brain identified the following binders: amyloid precursor-like protein 1, low density lipoprotein receptor-related protein (LRP) 1, LRP8, and GABA receptor-associated protein-like 1. The interactions of ARH with LRP1 and GABA receptor-associated protein-like 1 were subsequently verified by co-immunoprecipitation of the protein complexes from transfected human embryonic kidney cells. The presence of ARH mRNA in axon of primary sympathetic neurons was established by RT-PCR analyses and confirmed by in situ hybridization. Taken together, our data suggest that ARH is a multifunctional protein whose spectrum of function in the brain goes beyond the traditionally known metabolism of lipoproteins, and that ARH may be locally synthesized in the axon.

  9. Dual Activation of TRIF and MyD88 Adaptor Proteins by Angiotensin II Evokes Opposing Effects on Pressure, Cardiac Hypertrophy and Inflammatory Gene Expression

    PubMed Central

    Singh, Madhu V.; Cicha, Michael Z.; Meyerholz, David K.; Chapleau, Mark W.; Abboud, François M.

    2015-01-01

    Hypertension is recognized as an immune disorder whereby immune cells play a defining role in the genesis and progression of the disease. The innate immune system and its component toll-like receptors (TLRs) are key determinants of the immunological outcome through their pro-inflammatory response. TLR activated signaling pathways utilize several adaptor proteins of which adaptor proteins MyD88 and TRIF define two major inflammatory pathways. In this study, we compared the contributions of MyD88 and TRIF adaptor proteins to angiotensin II (Ang II)-induced hypertension and cardiac hypertrophy in mice. Deletion of MyD88 did not prevent cardiac hypertrophy and the pressor response to Ang II tended to increase. Moreover, the increase in inflammatory gene expression (Tnfa, Nox4 and Agtr1a) was significantly greater in the heart and kidney of MyD88-deficient mice compared with wild type mice. Thus, pathways involving MyD88 may actually restrain the inflammatory responses. On the other hand, in mice with non-functional TRIF (Trifmut mice), Ang II induced hypertension and cardiac hypertrophy were abrogated, and pro-inflammatory gene expression in heart and kidneys was unchanged or decreased. Our results indicate that Ang II induces activation of a pro-inflammatory innate immune response, causing hypertension, and cardiac hypertrophy. These effects require functional adaptor protein TRIF-mediated pathways. However, the common MyD88 dependent signaling pathway, which is also activated simultaneously by Ang II, paradoxically exerts a negative regulatory influence on these responses. PMID:26195481

  10. Molecular basis of substrate selection by the N-end rule adaptor protein ClpS

    SciTech Connect

    Román-Hernández, Giselle; Grant, Robert A.; Sauer, Robert T.; Baker, Tania A.

    2009-06-19

    The N-end rule is a conserved degradation pathway that relates the stability of a protein to its N-terminal amino acid. Here, we present crystal structures of ClpS, the bacterial N-end rule adaptor, alone and engaged with peptides containing N-terminal phenylalanine, leucine, and tryptophan. These structures, together with a previous structure of ClpS bound to an N-terminal tyrosine, illustrate the molecular basis of recognition of the complete set of primary N-end rule amino acids. In each case, the alpha-amino group and side chain of the N-terminal residue are the major determinants of recognition. The binding pocket for the N-end residue is preformed in the free adaptor, and only small adjustments are needed to accommodate N-end rule residues having substantially different sizes and shapes. M53A ClpS is known to mediate degradation of an expanded repertoire of substrates, including those with N-terminal valine or isoleucine. A structure of Met53A ClpS engaged with an N-end rule tryptophan reveals an essentially wild-type mechanism of recognition, indicating that the Met(53) side chain directly enforces specificity by clashing with and excluding beta-branched side chains. Finally, experimental and structural data suggest mechanisms that make proteins with N-terminal methionine bind very poorly to ClpS, explaining why these high-abundance proteins are not degraded via the N-end rule pathway in the cell.

  11. Interaction with the adaptor protein Shc prevents aberrant Erk activation in the absence of extracellular stimulus

    PubMed Central

    Suen, Kin Man; Lin, Chi-Chuan; George, Roger; Melo, Fernando A.; Biggs, Eleanor R.; Ahmed, Zamal; Drake, Melanie N.; Arur, Swathi; Arold, Stefan T.; Ladbury, John E.

    2014-01-01

    Control mechanisms that prevent aberrant signaling are necessary to maintain cellular homeostasis. We describe a novel mechanism by which the adaptor protein Shc binds directly to the MAP-kinase Erk, preventing its activation in the absence of extracellular stimulus. The Shc–Erk complex restricts Erk nuclear translocation, restraining Erk-dependent transcription of genes, including those responsible for oncogenic growth. The complex is formed through unique binding sites on both the Shc PTB domain and N-terminal lobe of Erk. Upon receptor tyrosine kinase stimulation, a conformational change within Shc—induced through interaction with the phosphorylated receptor—releases Erk allowing it to fulfill its role in signaling. Thus, in addition to its established role in promoting MAP-kinase signaling in stimulated cells, Shc negatively regulates Erk activation in the absence of growth factors and thus could be considered as a tumor suppressor in human cells. PMID:23584453

  12. The Rai (Shc C) adaptor protein regulates the neuronal stress response and protects against cerebral ischemia

    PubMed Central

    Troglio, Flavia; Echart, Cinara; Gobbi, Alberto; Pawson, Tony; Pelicci, Pier Giuseppe; De Simoni, Maria Grazia; Pelicci, Giuliana

    2004-01-01

    Rai (Shc C or N-Shc) is a neuron-specific member of the family of Shc-like adaptor proteins. Rai functions in the cytoplasmic propagation of Ret-dependent survival signals and regulates, in vivo, the number of sympathetic neurons. We report here a function of Rai, i.e., the regulation of the neuronal adaptive response to environmental stresses. We demonstrate that (i) primary cultures of cortical neurons from Rai-/- mice are more sensitive to apoptosis induced by hypoxia or oxidative stress; (ii) in Rai-/- mice, ischemia/reperfusion injury induces severe neurological deficits, increased apoptosis and size of the infarct area, and significantly higher mortality; and (iii) Rai functions as a stress-response gene that increases phosphatidylinositol 3-kinase activation and Akt phosphorylation after hypoxic or oxidation insults. These data suggest that Rai has a functional neuroprotective role in brain injury, with possible implications in the treatment of stroke. PMID:15494442

  13. Unexpected diversity in Shisa-like proteins suggests the importance of their roles as transmembrane adaptors.

    PubMed

    Pei, Jimin; Grishin, Nick V

    2012-03-01

    The Shisa family of single-transmembrane proteins is characterized by an N-terminal cysteine-rich domain and a proline-rich C-terminal region. Its founding member, Xenopus Shisa, promotes head development by antagonizing Wnt and FGF signaling. Recently, a mouse brain-specific Shisa protein CKAMP44 (Shisa9) was shown to play an important role in AMPA receptor desensitization. We used sequence similarity searches against protein, genome and EST databases to study the evolutionary origin and phylogenetic distribution of Shisa homologs. In addition to nine Shisa subfamilies in vertebrates, we detected distantly related Shisa homologs that possess an N-terminal domain with six conserved cysteines. These Shisa-like proteins include FAM159 and KIAA1644 mainly from vertebrates, and members from various bilaterian invertebrates and Porifera, suggesting their presence in the last common ancestor of Metazoa. Shisa-like genes have undergone large expansions in Branchiostoma floridae and Saccoglossus kowalevskii, and appear to have been lost in certain insects. Pattern-based searches against eukaryotic proteomes also uncovered several other families of predicted single-transmembrane proteins with a similar cysteine-rich domain. We refer to these proteins (Shisa/Shisa-like, WBP1/VOPP1, CX, DUF2650, TMEM92, and CYYR1) as STMC6 proteins (single-transmembrane proteins with conserved 6 cysteines). STMC6 genes are widespread in Metazoa, with the human genome containing 17 members. Frequent occurrences of PY motifs in STMC6 proteins suggest that most of them could interact with WW-domain-containing proteins, such as the NEDD4 family E3 ubiquitin ligases, and could play critical roles in protein degradation and sorting. STMC6 proteins are likely transmembrane adaptors that regulate membrane proteins such as cell surface receptors.

  14. SH2B1 (SH2-B) and JAK2: a multifunctional adaptor protein and kinase made for each other.

    PubMed

    Maures, Travis J; Kurzer, Jason H; Carter-Su, Christin

    2007-01-01

    Src homology 2 (SH2) B adaptor protein 1 (SH2B1; originally named SH2-B) is a member of a family of adaptor proteins that influences a variety of signaling pathways mediated by Janus kinase (JAK) and receptor tyrosine kinases. Although SH2B1 performs classical adaptor functions, such as recruitment of specific proteins to activated receptors, it also demonstrates a unique ability to enhance the kinase activity of the cytokine receptor-associated tyrosine kinase JAK2, as well as that of several receptor tyrosine kinases. SH2B1 is also among a small number of adaptor proteins shown to undergo nucleocytoplasmic shuttling, although its exact role within the nucleus is not yet clear. Deletion of the SH2B1 gene results in severe obesity and both leptin and insulin resistance, as well as infertility, which might be a consequence of resistance to insulin-like growth factor I. Thus, knockout mice support a role for SH2B1 as a positive regulator of JAK2 signaling pathways initiated by leptin, as well as of pathways initiated by insulin and, potentially, by insulin-like growth factor I.

  15. Transcriptional repression of Kruppel like factor-2 by the adaptor protein p66shc

    PubMed Central

    Kumar, Ajay; Hoffman, Timothy A.; DeRicco, Jeremy; Naqvi, Asma; Jain, Mukesh K.; Irani, Kaikobad

    2009-01-01

    The adaptor protein p66shc promotes cellular oxidative stress and apoptosis. Here, we demonstrate a novel mechanistic relationship between p66shc and the kruppel like factor-2 (KLF2) transcription factor and show that this relationship has biological relevance to p66shc-regulated cellular oxidant level, as well as KLF2-induced target gene expression. Genetic knockout of p66shc in mouse embryonic fibroblasts (MEFs) stimulates activity of the core KLF2 promoter and increases KLF2 mRNA and protein expression. Similarly, shRNA-induced knockdown of p66shc increases KLF2-promoter activity in HeLa cells. The increase in KLF2-promoter activity in p66shc-knockout MEFs is dependent on a myocyte enhancing factor-2A (MEF2A)-binding sequence in the core KLF2 promoter. Short-hairpin RNA-induced knockdown of p66shc in endothelial cells also stimulates KLF2 mRNA and protein expression, as well as expression of the endothelial KLF2 target gene thrombomodulin. MEF2A protein and mRNA are more abundant in p66shc-knockout MEFs, resulting in greater occupancy of the KLF2 promoter by MEF2A. In endothelial cells, the increase in KLF2 and thrombomodulin protein by shRNA-induced decrease in p66shc expression is partly abrogated by knockdown of MEF2A. Finally, knockdown of KLF2 abolishes the decrease in the cellular reactive oxygen species hydrogen peroxide observed with knockdown of p66shc, and KLF2 overexpression suppresses cellular hydrogen peroxide levels, independent of p66shc expression. These findings illustrate a novel mechanism by which p66shc promotes cellular oxidative stress, through suppression of MEF2A expression and consequent repression of KLF2 transcription.—Kumar, A., Hoffman, T. A., DeRicco, J., Naqvi, A., Jain, M. K., Irani, K. Transcriptional repression of Kruppel like factor-2 by the adaptor protein p66shc. PMID:19696221

  16. The adaptor protein 3BP2 associates with VAV guanine nucleotide exchange factors to regulate NFAT activation by the B-cell antigen receptor.

    PubMed

    Foucault, Isabelle; Le Bras, Séverine; Charvet, Céline; Moon, Chéol; Altman, Amnon; Deckert, Marcel

    2005-02-01

    Engagement of the B-cell antigen receptor (BCR) activates kinases of the Src and Syk families and signaling complexes assembled by adaptor proteins, which dictate B-cell fate and function. The adaptor 3BP2/SH3BP2, an Abl Src homology domain 3 (SH3)-binding and Syk-kinases interacting protein, exhibits positive regulatory roles in T, natural killer (NK), and basophilic cells. However, its involvement in BCR signaling is completely unknown. Here we show that 3BP2 is tyrosine phosphorylated following BCR aggregation on B lymphoma cells, and that 3BP2 is a substrate for Syk and Fyn, but not Btk. To further explore the function of 3BP2 in B cells, we screened a yeast 2-hybrid B-lymphocyte library and found 3BP2 as a binding partner of Vav proteins. The interaction between 3BP2 and Vav proteins involved both constitutive and inducible mechanisms. 3BP2 also interacted with other components of the BCR signaling pathway, including Syk and phospholipase C gamma (PLC-gamma). Furthermore, overexpression and RNAi blocking experiments showed that 3BP2 regulated BCR-mediated activation of nuclear factor of activated T cells (NFATs). Finally, evidence was provided that 3BP2 functionally cooperates with Vav proteins and Rho GTPases to activate NFATs. Our results show that 3BP2 may regulate BCR-mediated gene activation through Vav proteins.

  17. PHF6 Degrees of Separation: The Multifaceted Roles of a Chromatin Adaptor Protein

    PubMed Central

    Todd, Matthew A.M.; Ivanochko, Danton; Picketts, David J.

    2015-01-01

    The importance of chromatin regulation to human disease is highlighted by the growing number of mutations identified in genes encoding chromatin remodeling proteins. While such mutations were first identified in severe developmental disorders, or in specific cancers, several genes have been implicated in both, including the plant homeodomain finger protein 6 (PHF6) gene. Indeed, germline mutations in PHF6 are the cause of the Börjeson–Forssman–Lehmann X-linked intellectual disability syndrome (BFLS), while somatic PHF6 mutations have been identified in T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). Studies from different groups over the last few years have made a significant impact towards a functional understanding of PHF6 protein function. In this review, we summarize the current knowledge of PHF6 with particular emphasis on how it interfaces with a distinct set of interacting partners and its functional roles in the nucleoplasm and nucleolus. Overall, PHF6 is emerging as a key chromatin adaptor protein critical to the regulation of neurogenesis and hematopoiesis. PMID:26103525

  18. The cytoskeleton adaptor protein ankyrin-1 is upregulated by p53 following DNA damage and alters cell migration

    PubMed Central

    Hall, A E; Lu, W-T; Godfrey, J D; Antonov, A V; Paicu, C; Moxon, S; Dalmay, T; Wilczynska, A; Muller, P A J; Bushell, M

    2016-01-01

    The integrity of the genome is maintained by a host of surveillance and repair mechanisms that are pivotal for cellular function. The tumour suppressor protein p53 is a major component of the DNA damage response pathway and plays a vital role in the maintenance of cell-cycle checkpoints. Here we show that a microRNA, miR-486, and its host gene ankyrin-1 (ANK1) are induced by p53 following DNA damage. Strikingly, the cytoskeleton adaptor protein ankyrin-1 was induced over 80-fold following DNA damage. ANK1 is upregulated in response to a variety of DNA damage agents in a range of cell types. We demonstrate that miR-486-5p is involved in controlling G1/S transition following DNA damage, whereas the induction of the ankyrin-1 protein alters the structure of the actin cytoskeleton and sustains limited cell migration during DNA damage. Importantly, we found that higher ANK1 expression correlates with decreased survival in cancer patients. Thus, these observations highlight ANK1 as an important effector downstream of the p53 pathway. PMID:27054339

  19. Functions of Adaptor Protein (AP)-3 and AP-1 in Tyrosinase Sorting from Endosomes to MelanosomesD⃞

    PubMed Central

    Theos, Alexander C.; Tenza, Danièle; Martina, José A.; Hurbain, Ilse; Peden, Andrew A.; Sviderskaya, Elena V.; Stewart, Abigail; Robinson, Margaret S.; Bennett, Dorothy C.; Cutler, Daniel F.; Bonifacino, Juan S.; Marks, Michael S.; Raposo, Graça

    2005-01-01

    Specialized cells exploit adaptor protein complexes for unique post-Golgi sorting events, providing a unique model system to specify adaptor function. Here, we show that AP-3 and AP-1 function independently in sorting of the melanocyte-specific protein tyrosinase from endosomes to the melanosome, a specialized lysosome-related organelle distinguishable from lysosomes. AP-3 and AP-1 localize in melanocytes primarily to clathrin-coated buds on tubular early endosomes near melanosomes. Both adaptors recognize the tyrosinase dileucine-based melanosome sorting signal, and tyrosinase largely colocalizes with each adaptor on endosomes. In AP-3-deficient melanocytes, tyrosinase accumulates inappropriately in vacuolar and multivesicular endosomes. Nevertheless, a substantial fraction still accumulates on melanosomes, concomitant with increased association with endosomal AP-1. Our data indicate that AP-3 and AP-1 function in partially redundant pathways to transfer tyrosinase from distinct endosomal subdomains to melanosomes and that the AP-3 pathway ensures that tyrosinase averts entrapment on internal membranes of forming multivesicular bodies. PMID:16162817

  20. Phosphorylation of APP-CTF-AICD domains and interaction with adaptor proteins: signal transduction and/or transcriptional role--relevance for Alzheimer pathology.

    PubMed

    Schettini, Gennaro; Govoni, Stefano; Racchi, Marco; Rodriguez, Guido

    2010-12-01

    In recent decades, the study of the amyloid precursor protein (APP) and of its proteolytic products carboxy terminal fragment (CTF), APP intracellular C-terminal domain (AICD) and amyloid beta has been mostly focussed on the role of APP as a producer of the toxic amyloid beta peptide. Here, we reconsider the role of APP suggesting, in a provocative way, the protein as a central player in a putative signalling pathway. We highlight the presence in the cytosolic tail of APP of the YENPTY motif which is typical of tyrosine kinase receptors, the phosphorylation of the tyrosine, serine and threonine residues, the kinases involved and the interaction with intracellular adaptor proteins. In particular, we examine the interaction with Shc and Grb2 regulators, which through the activation of Ras proteins elicit downstream signalling events such as the MAPK pathway. The review also addresses the interaction of APP, CTFs and AICD with other adaptor proteins and in particular with Fe65 for nuclear transcriptional activity and the importance of phosphorylation for sorting the secretases involved in the amyloidogenic or non-amyloidogenic pathways. We provide a novel perspective on Alzheimer's disease pathogenesis, focussing on the perturbation of the physiological activities of APP-CTFs and AICD as an alternative perspective from that which normally focuses on the accumulation of neurotoxic proteolytic fragments.

  1. Activity-Regulated Cytoskeleton-Associated Protein Controls AMPAR Endocytosis through a Direct Interaction with Clathrin-Adaptor Protein 2123

    PubMed Central

    Wall, Mark J.; P. de Almeida, Luciana; Wauters, Sandrine C.; Januário, Yunan C.; Müller, Jürgen

    2016-01-01

    Abstract The activity-regulated cytoskeleton-associated (Arc) protein controls synaptic strength by facilitating AMPA receptor (AMPAR) endocytosis. Here we demonstrate that Arc targets AMPAR to be internalized through a direct interaction with the clathrin-adaptor protein 2 (AP-2). We show that Arc overexpression in dissociated hippocampal neurons obtained from C57BL/6 mouse reduces the density of AMPAR GluA1 subunits at the cell surface and reduces the amplitude and rectification of AMPAR-mediated miniature-EPSCs (mEPSCs). Mutations of Arc, that prevent the AP-2 interaction reduce Arc-mediated endocytosis of GluA1 and abolish the reduction in AMPAR-mediated mEPSC amplitude and rectification. Depletion of the AP-2 subunit µ2 blocks the Arc-mediated reduction in mEPSC amplitude, an effect that is restored by reintroducing µ2. The Arc–AP-2 interaction plays an important role in homeostatic synaptic scaling as the Arc-dependent decrease in mEPSC amplitude, induced by a chronic increase in neuronal activity, is inhibited by AP-2 depletion. These data provide a mechanism to explain how activity-dependent expression of Arc decisively controls the fate of AMPAR at the cell surface and modulates synaptic strength, via the direct interaction with the endocytic clathrin adaptor AP-2. PMID:27257628

  2. Impairment of dendritic cell functions in patients with adaptor protein-3 complex deficiency.

    PubMed

    Prandini, Alberto; Salvi, Valentina; Colombo, Francesca; Moratto, Daniele; Lorenzi, Luisa; Vermi, William; De Francesco, Maria Antonia; Notarangelo, Lucia Dora; Porta, Fulvio; Plebani, Alessandro; Facchetti, Fabio; Sozzani, Silvano; Badolato, Raffaele

    2016-06-30

    Hermansky-Pudlak syndrome type 2 (HPS2) is a primary immunodeficiency due to adaptor protein-3 (AP-3) complex deficiency. HPS2 patients present neutropenia, partial albinism, and impaired lysosomal vesicles formation in hematopoietic cells. Given the role of dendritic cells (DCs) in the immune response, we studied monocyte-derived DCs (moDCs) and plasmacytoid DCs (pDCs) in two HPS2 siblings. Mature HPS2 moDCs showed impaired expression of CD83 and DC-lysosome-associated membrane protein (LAMP), low levels of MIP1-β/CCL4, MIG/CXCL9, and severe defect of interleukin-12 (IL-12) secretion. DCs in lymph-node biopsies from the same patients showed a diffuse cytoplasm reactivity in a large fraction of DC-LAMP(+) cells, instead of the classical dot-like stain. In addition, analysis of pDC-related functions of blood-circulating mononuclear cells revealed reduced interferon-α secretion in response to herpes simplex virus-1 (HSV-1), whereas granzyme-B induction upon IL-3/IL-10 stimulation was normal. Finally, T-cell costimulatory activity, as measured by mixed lymphocyte reaction assay, was lower in patients, suggesting that function and maturation of DCs is abnormal in patients with HPS2.

  3. Bivalent Motif-Ear Interactions Mediate the Association of the Accessory Protein Tepsin with the AP-4 Adaptor Complex.

    PubMed

    Mattera, Rafael; Guardia, Carlos M; Sidhu, Sachdev S; Bonifacino, Juan S

    2015-12-25

    The heterotetrameric (ϵ-β4-μ4-σ4) complex adaptor protein 4 (AP-4) is a component of a non-clathrin coat involved in protein sorting at the trans-Golgi network (TGN). Considerable interest in this complex has arisen from the recent discovery that mutations in each of its four subunits are the cause of a congenital intellectual disability and movement disorder in humans. Despite its physiological importance, the structure and function of this coat remain poorly understood. To investigate the assembly of the AP-4 coat, we dissected the determinants of interaction of AP-4 with its only known accessory protein, the ENTH/VHS-domain-containing protein tepsin. Using a variety of protein interaction assays, we found that tepsin comprises two phylogenetically conserved peptide motifs, [GS]LFXG[ML]X[LV] and S[AV]F[SA]FLN, within its C-terminal unstructured region, which interact with the C-terminal ear (or appendage) domains of the β4 and ϵ subunits of AP-4, respectively. Structure-based mutational analyses mapped the binding site for the [GS]LFXG[ML]X[LV] motif to a conserved, hydrophobic surface on the β4-ear platform fold. Both peptide-ear interactions are required for efficient association of tepsin with AP-4, and for recruitment of tepsin to the TGN. The bivalency of the interactions increases the avidity of tepsin for AP-4 and may enable cross-linking of multiple AP-4 heterotetramers, thus contributing to the assembly of the AP-4 coat. In addition to revealing critical aspects of this coat, our findings extend the paradigm of peptide-ear interactions, previously established for clathrin-AP-1/AP-2 coats, to a non-clathrin coat.

  4. Adaptor Protein 2 (AP-2) complex is essential for functional axogenesis in hippocampal neurons

    PubMed Central

    Kyung, Jae Won; Cho, In Ha; Lee, Sukmook; Song, Woo Keun; Ryan, Timothy A.; Hoppa, Michael B.; Kim, Sung Hyun

    2017-01-01

    The complexity and diversity of a neural network requires regulated elongation and branching of axons, as well as the formation of synapses between neurons. In the present study we explore the role of AP-2, a key endocytic adaptor protein complex, in the development of rat hippocampal neurons. We found that the loss of AP-2 during the early stage of development resulted in impaired axon extension and failed maturation of the axon initial segment (AIS). Normally the AIS performs two tasks in concert, stabilizing neural polarity and generating action potentials. In AP-2 silenced axons polarity is established, however there is a failure to establish action potential firing. Consequently, this impairs activity-driven Ca2+ influx and exocytosis at nerve terminals. In contrast, removal of AP-2 from older neurons does not impair axonal growth or signaling and synaptic function. Our data reveal that AP-2 has important roles in functional axogenesis by proper extension of axon as well as the formation of AIS during the early step of neurodevelopment. PMID:28139716

  5. Tyrosine phosphorylation-independent regulation of lipopolysaccharide-mediated response by the transmembrane adaptor protein LAB.

    PubMed

    Zhu, Minghua; Fuller, Deirdre M; Ou-Yang, Chih-wen; Sullivan, Sarah A; Zhang, Weiguo

    2012-03-15

    Linker for activation of B cells (LAB)/non-T cell activation linker is a transmembrane adaptor protein that functions in immunoreceptor-mediated signaling. Published studies have shown that LAB has both positive and negative roles in regulating TCR and high-affinity Fc receptor-mediated signaling and cellular function. In this study, we showed that LAB was also expressed in dendritic cells and that LAB deficiency affected LPS-mediated signaling and cytokine production. LPS-mediated MAPK activation was enhanced in LAB(-/-) bone marrow-derived dendritic cells. These bone marrow-derived dendritic cells also produced more TNF-α, IL-6, and IL-10 than wild-type cells. Moreover, LAB(-/-) mice were hyperresponsive to LPS-induced septic shock. These data indicated that LAB has a negative role in LPS-mediated responses. By using LAB knockin mice, which harbor mutations at five membrane-distal tyrosines, we further showed that, in contrast to its role in immunoreceptor-mediated signaling, LAB function in LPS-mediated signaling pathway did not depend on its tyrosine phosphorylation. Our study suggested a novel mechanism by which LAB functions in the regulation of innate immunity.

  6. The p66(Shc) adaptor protein controls oxidative stress response in early bovine embryos.

    PubMed

    Betts, Dean H; Bain, Nathan T; Madan, Pavneesh

    2014-01-01

    The in vitro production of mammalian embryos suffers from high frequencies of developmental failure due to excessive levels of permanent embryo arrest and apoptosis caused by oxidative stress. The p66Shc stress adaptor protein controls oxidative stress response of somatic cells by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidant gene expression. We have previously demonstrated a strong relationship with elevated p66Shc levels, reduced antioxidant levels and greater intracellular ROS generation with the high incidence of permanent cell cycle arrest of 2-4 cell embryos cultured under high oxygen tensions or after oxidant treatment. The main objective of this study was to establish a functional role for p66Shc in regulating the oxidative stress response during early embryo development. Using RNA interference in bovine zygotes we show that p66Shc knockdown embryos exhibited increased MnSOD levels, reduced intracellular ROS and DNA damage that resulted in a greater propensity for development to the blastocyst stage. P66Shc knockdown embryos were stress resistant exhibiting significantly reduced intracellular ROS levels, DNA damage, permanent 2-4 cell embryo arrest and diminished apoptosis frequencies after oxidant treatment. The results of this study demonstrate that p66Shc controls the oxidative stress response in early mammalian embryos. Small molecule inhibition of p66Shc may be a viable clinical therapy to increase the developmental potential of in vitro produced mammalian embryos.

  7. The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion.

    PubMed

    Paul, Viktoria Désirée; Mühlenhoff, Ulrich; Stümpfig, Martin; Seebacher, Jan; Kugler, Karl G; Renicke, Christian; Taxis, Christof; Gavin, Anne-Claude; Pierik, Antonio J; Lill, Roland

    2015-07-16

    Cytosolic and nuclear iron-sulfur (Fe-S) proteins are involved in many essential pathways including translation and DNA maintenance. Their maturation requires the cytosolic Fe-S protein assembly (CIA) machinery. To identify new CIA proteins we employed systematic protein interaction approaches and discovered the essential proteins Yae1 and Lto1 as binding partners of the CIA targeting complex. Depletion of Yae1 or Lto1 results in defective Fe-S maturation of the ribosome-associated ABC protein Rli1, but surprisingly no other tested targets. Yae1 and Lto1 facilitate Fe-S cluster assembly on Rli1 in a chain of binding events. Lto1 uses its conserved C-terminal tryptophan for binding the CIA targeting complex, the deca-GX3 motifs in both Yae1 and Lto1 facilitate their complex formation, and Yae1 recruits Rli1. Human YAE1D1 and the cancer-related ORAOV1 can replace their yeast counterparts demonstrating evolutionary conservation. Collectively, the Yae1-Lto1 complex functions as a target-specific adaptor that recruits apo-Rli1 to the generic CIA machinery.

  8. The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion

    PubMed Central

    Paul, Viktoria Désirée; Mühlenhoff, Ulrich; Stümpfig, Martin; Seebacher, Jan; Kugler, Karl G; Renicke, Christian; Taxis, Christof; Gavin, Anne-Claude; Pierik, Antonio J; Lill, Roland

    2015-01-01

    Cytosolic and nuclear iron-sulfur (Fe-S) proteins are involved in many essential pathways including translation and DNA maintenance. Their maturation requires the cytosolic Fe-S protein assembly (CIA) machinery. To identify new CIA proteins we employed systematic protein interaction approaches and discovered the essential proteins Yae1 and Lto1 as binding partners of the CIA targeting complex. Depletion of Yae1 or Lto1 results in defective Fe-S maturation of the ribosome-associated ABC protein Rli1, but surprisingly no other tested targets. Yae1 and Lto1 facilitate Fe-S cluster assembly on Rli1 in a chain of binding events. Lto1 uses its conserved C-terminal tryptophan for binding the CIA targeting complex, the deca-GX3 motifs in both Yae1 and Lto1 facilitate their complex formation, and Yae1 recruits Rli1. Human YAE1D1 and the cancer-related ORAOV1 can replace their yeast counterparts demonstrating evolutionary conservation. Collectively, the Yae1-Lto1 complex functions as a target-specific adaptor that recruits apo-Rli1 to the generic CIA machinery. DOI: http://dx.doi.org/10.7554/eLife.08231.001 PMID:26182403

  9. The SH2B1 adaptor protein associates with a proximal region of the erythropoietin receptor.

    PubMed

    Javadi, Mojib; Hofstätter, Edda; Stickle, Natalie; Beattie, Bryan K; Jaster, Robert; Carter-Su, Christin; Barber, Dwayne L

    2012-07-27

    Gene targeting experiments have shown that the cytokine erythropoietin (EPO), its cognate erythropoietin receptor (EPO-R), and associated Janus tyrosine kinase, JAK2, are all essential for erythropoiesis. Structural-functional and murine knock-in experiments have suggested that EPO-R Tyr-343 is important in EPO-mediated mitogenesis. Although Stat5 binds to EPO-R phosphotyrosine 343, the initial Stat5-deficient mice did not have profound erythroid abnormalities suggesting that additional Src homology 2 (SH2) domain-containing effectors may bind to EPO-R Tyr-343 and couple to downstream signaling pathways. We have utilized cloning of ligand target (COLT) screening to demonstrate that EPO-R Tyr(P)-343 and Tyr(P)-401 bind to the SH2 domain-containing adaptor protein SH2B1β. Immunoprecipitation and in vitro mixing experiments reveal that EPO-R binds to SH2B1 in an SH2 domain-dependent manner and that the sequence that confers SH2B1 binding to the EPO-R is pYXXL. Previous studies have shown that SH2B1 binds directly to JAK2, but we show that in hematopoietic cells, SH2B1β preferentially associates with the EPO-R. SH2B1 is capable of constitutive association with EPO-R, which is necessary for its optimal SH2-dependent recruitment to EPO-R-Tyr(P)-343/Tyr(P)-401. We also demonstrate that SH2B1 is responsive to EPO stimulation and becomes phosphorylated, most likely on serines/threonines, in an EPO dose- and time-dependent manner. In the absence of SH2B1, we observe enhanced activation of signaling pathways downstream of the EPO-R, indicating that SH2B1 is a negative regulator of EPO signaling.

  10. The structure and polymerase-recognition mechanism of the crucial adaptor protein AND-1 in the human replisome.

    PubMed

    Guan, Chengcheng; Li, Jun; Sun, Dapeng; Liu, Yingfang; Liang, Huanhuan

    2017-04-05

    DNA replication in eukaryotic cells is performed by a multi-protein complex called the replisome, which consists of helicases, polymerases and adaptor molecules. Human acidic nucleoplasmic DNA-binding protein 1 (AND-1), also known as WD repeat and HMG-box DNA binding protein 1 (WDHD1), is an adaptor molecule crucial for DNA replication. While structural information for the AND-1 yeast ortholog is available, the mechanistic details for how human AND-1 protein anchors the lagging-strand DNA polymerase α (Pol α) to the DNA helicase complex (Cdc45-MCM2-7-GINS, CMG) await elucidation. Here, we report the structures of the N-terminal WD40 and SepB domains of human AND-1, as well as a biochemical analysis of the C-terminal HMG domain. We show that AND-1 exists as a homo-trimer mediated by the SepB domain. Mutant study results suggested that a positively charged groove within the SepB domain provides binding sites for Pol α. Different from its ortholog protein in budding yeast, human AND-1 is recruited to the CMG complex mediated by unknown participants other than GINS. In addition, we show that AND-1 binds to DNA in vitro, using its C-terminal HMG domain. In conclusion, our findings provide important insights into the mechanistic details of human AND-1 function, advancing our understanding of replisome formation during eukaryotic replication.

  11. New function of the adaptor protein SH2B1 in brain-derived neurotrophic factor-induced neurite outgrowth.

    PubMed

    Shih, Chien-Hung; Chen, Chien-Jen; Chen, Linyi

    2013-01-01

    Neurite outgrowth is an essential process for the establishment of the nervous system. Brain-derived neurotrophic factor (BDNF) binds to its receptor TrkB and regulates axonal and dendritic morphology of neurons through signal transduction and gene expression. SH2B1 is a signaling adaptor protein that regulates cellular signaling in various physiological processes. The purpose of this study is to investigate the role of SH2B1 in the development of the central nervous system. In this study, we show that knocking down SH2B1 reduces neurite formation of cortical neurons whereas overexpression of SH2B1β promotes the development of hippocampal neurons. We further demonstrate that SH2B1β promotes BDNF-induced neurite outgrowth and signaling using the established PC12 cells stably expressing TrkB, SH2B1β or SH2B1β mutants. Our data indicate that overexpressing SH2B1β enhances BDNF-induced MEK-ERK1/2, and PI3K-AKT signaling pathways. Inhibition of MEK-ERK1/2 and PI3K-AKT pathways by specific inhibitors suggest that these two pathways are required for SH2B1β-promoted BDNF-induced neurite outgrowth. Moreover, SH2B1β enhances BDNF-stimulated phosphorylation of signal transducer and activator of transcription 3 at serine 727. Finally, our data indicate that the SH2 domain and tyrosine phosphorylation of SH2B1β contribute to BDNF-induced signaling pathways and neurite outgrowth. Taken together, these findings demonstrate that SH2B1β promotes BDNF-induced neurite outgrowth through enhancing pathways involved MEK-ERK1/2 and PI3K-AKT.

  12. Regulation of insulin and type 1 insulin-like growth factor signaling and action by the Grb10/14 and SH2B1/B2 adaptor proteins.

    PubMed

    Desbuquois, Bernard; Carré, Nadège; Burnol, Anne-Françoise

    2013-02-01

    The effects of insulin and type 1 insulin-like growth factor (IGF-1) on metabolism, growth and survival are mediated by their association with specific receptor tyrosine kinases, which results in both receptor and substrate phosphorylation. Phosphotyrosine residues on receptors and substrates provide docking sites for signaling proteins containing SH2 (Src homology 2) domains, including molecular adaptors. This review focuses on the regulation of insulin/IGF-1 signaling and action by two adaptor families with a similar domain organization: the growth factor receptor-bound proteins Grb7/10/14 and the SH2B proteins. Both Grb10/14 and SH2B1/B2 associate with the activation loop of insulin/IGF-1 receptors through their SH2 domains, but association of Grb10/14 also involves their unique BPS domain. Consistent with Grb14 binding as a pseudosubstrate to the kinase active site, insulin/IGF-induced activation of receptors and downstream signaling pathways in cultured cells is inhibited by Grb10/14 adaptors, but is potentiated by SH2B1/B2 adaptors. Accordingly, Grb10 and Grb14 knockout mice show improved insulin/IGF sensitivity in vivo, and, for Grb10, overgrowth and increased skeketal muscle and pancreatic β-cell mass. Conversely, SH2B1-depleted mice display insulin and IGF-1 resistance, with peripheral depletion leading to reduced adiposity and neuronal depletion leading to obesity through associated leptin resistance. Grb10/14 and SH2B1 adaptors also modulate insulin/IGF-1 action by interacting with signaling components downstream of receptors and exert several tissue-specific effects. The identification of Grb10/14 and SH2B1 as physiological regulators of insulin signaling and action, together with observations that variants at their gene loci are associated with obesity and/or insulin resistance, highlight them as potential therapeutic targets for these conditions.

  13. Interactions of the Cytoplasmic Domains of Human and Simian Retroviral Transmembrane Proteins with Components of the Clathrin Adaptor Complexes Modulate Intracellular and Cell Surface Expression of Envelope Glycoproteins

    PubMed Central

    Berlioz-Torrent, Clarisse; Shacklett, Barbara L.; Erdtmann, Lars; Delamarre, Lelia; Bouchaert, Isabelle; Sonigo, Pierre; Dokhelar, Marie Christine; Benarous, Richard

    1999-01-01

    The cytoplasmic domains of the transmembrane (TM) envelope proteins (TM-CDs) of most retroviruses have a Tyr-based motif, YXXØ, in their membrane-proximal regions. This signal is involved in the trafficking and endocytosis of membrane receptors via clathrin-associated AP-1 and AP-2 adaptor complexes. We have used CD8-TM-CD chimeras to investigate the role of the Tyr-based motif of human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), and human T-leukemia virus type 1 (HTLV-1) TM-CDs in the cell surface expression of the envelope glycoprotein. Flow cytometry and confocal microscopy studies showed that this motif is a major determinant of the cell surface expression of the CD8-HTLV chimera. The YXXØ motif also plays a key role in subcellular distribution of the envelope of lentiviruses HIV-1 and SIV. However, these viruses, which encode TM proteins with a long cytoplasmic domain, have additional determinants distal to the YXXØ motif that participate in regulating cell surface expression. We have also used the yeast two-hybrid system and in vitro binding assays to demonstrate that all three retroviral YXXØ motifs interact with the μ1 and μ2 subunits of AP complexes and that the C-terminal regions of HIV-1 and SIV TM proteins interact with the β2 adaptin subunit. The TM-CDs of HTLV-1, HIV-1, and SIV also interact with the whole AP complexes. These results clearly demonstrate that the cell surface expression of retroviral envelope glycoproteins is governed by interactions with adaptor complexes. The YXXØ-based signal is the major determinant of this interaction for the HTLV-1 TM, which contains a short cytoplasmic domain, whereas the lentiviruses HIV-1 and SIV have additional determinants distal to this signal that are also involved. PMID:9882340

  14. Dissecting nuclear Wingless signalling: recruitment of the transcriptional co-activator Pygopus by a chain of adaptor proteins.

    PubMed

    Städeli, Reto; Basler, Konrad

    2005-11-01

    Members of the Wingless (Wg)/Wnt family of secreted glycoproteins control cell fate during embryonic development and adult homeostasis. Wnt signals regulate the expression of target genes by activating a conserved signal transduction pathway. Upon receptor activation, the signal is transmitted intracellularly by stabilization of Armadillo (Arm)/beta-catenin. Arm/beta-catenin translocates to the nucleus, interacts with DNA-binding factors of the Pangolin (Pan)/TCF/LEF class and activates transcription of target genes in cooperation with the recently identified proteins Legless/BCL9 (Lgs) and Pygopus (Pygo). Here, we analyse the mode of action of Pan, Arm, Lgs, and Pygo in Drosophila cultured cells. We provide evidence that together these four proteins form a 'chain of adaptors' linking the NH2-terminal homology domain (NHD) of Pygo to the DNA-binding domain of Pan. We show that the NHD has potent transcriptional activation capacity, which differs from that of acidic activator domains and depends on a conserved NPF tripeptide. A single point mutation within this NPF motif abolishes the transcriptional activity of the Pygo NHD in vitro and strongly reduces Wg signalling in vivo. Together, our results suggest that the transcriptional output of Wg pathway activity largely relies on a 'chain of adaptors' design to direct the Pygo NHD to Wg target promoters in an Arm-dependent manner.

  15. The modular adaptor protein autosomal recessive hypercholesterolemia (ARH) promotes low density lipoprotein receptor clustering into clathrin-coated pits.

    PubMed

    Garuti, Rita; Jones, Christopher; Li, Wei-Ping; Michaely, Peter; Herz, Joachim; Gerard, Robert D; Cohen, Jonathan C; Hobbs, Helen H

    2005-12-09

    Autosomal recessive hypercholesterolemia is characterized by a cell type-specific defect in low density lipoprotein receptor (LDLR) endocytosis. LDLR-mediated uptake of LDL is impaired in the liver, but not in fibroblasts of subjects with this disorder. The disease is caused by mutations in ARH, which encodes a putative adaptor protein that interacts with the cytoplasmic tail of the LDLR, phospholipids, and two components of the clathrin endocytic machinery, clathrin and adaptor protein-2 (AP-2) in vitro. To determine the physiological relevance of these interactions, we examined the effect of mutations in the ARH on LDLR location and function in polarized hepatocytes (WIF-B). The integrity of the FDNPVY sequence in the LDLR cytoplasmic tail was required for ARH-associated LDLR clustering into clathrin-coated pits. The phosphotyrosine binding domain of ARH plus either the clathrin box or the AP-2 binding region were required for both clustering and internalization of the LDLR. Parallel studies performed in vivo with the same recombinant forms of ARH in livers of Arh(-/-) mice confirmed the relevance of the cell culture findings. These results demonstrate that ARH must bind the LDLR tail and either clathrin or AP-2 to promote receptor clustering and internalization of LDL.

  16. The Cellulosome System of Acetivibrio cellulolyticus Includes a Novel Type of Adaptor Protein and a Cell Surface Anchoring Protein

    PubMed Central

    Xu, Qi; Gao, Wenchen; Ding, Shi-You; Kenig, Rina; Shoham, Yuval; Bayer, Edward A.; Lamed, Raphael

    2003-01-01

    designated ScaA. In addition, ScaB is thought to assume the role of an adaptor protein, which connects the primary scaffoldin (ScaA) to the cohesin-containing anchoring scaffoldin (ScaC). The cellulosome system of A. cellulolyticus thus appears to exhibit a special type of organization that reflects the function of the ScaB adaptor protein. The intercalation of three multiple cohesin-containing scaffoldins results in marked amplification of the number of enzyme subunits per cellulosome unit. At least 96 enzymes can apparently be incorporated into an individual A. cellulolyticus cellulosome. The role of such amplified enzyme incorporation and the resultant proximity of the enzymes within the cellulosome complex presumably contribute to the enhanced synergistic action and overall efficient digestion of recalcitrant forms of cellulose. Comparison of the emerging organization of the A. cellulolyticus cellulosome with the organizations in other cellulolytic bacteria revealed the diversity of the supramolecular architecture. PMID:12867464

  17. The Grb2 adaptor.

    PubMed

    Chardin, P; Cussac, D; Maignan, S; Ducruix, A

    1995-08-01

    Grb2 is an 'adaptor' protein made of one SH2 and two SH3 domains. The SH3 domains bind to prolinerich motifs in the C-terminal part of the ras exchange factor Sos. Binding of the Grb2 SH2 domain to phosphotyrosine motifs on receptors, or other adaptor proteins such as Shc, recruits this Grb2/Sos complex at the plasma membrane where Sos stimulates nucleotide exchange on ras, then ras activates raf and leads to MAP kinase activation. The structure of Grb2, the precise motifs recognised by its SH2 and SH3 domains, the way Grb2 performs its function, a possible regulation of its association with Sos, and its ability to complex with other proteins in vivo, are discussed.

  18. The Adaptor Protein Myd88 Is a Key Signaling Molecule in the Pathogenesis of Irinotecan-Induced Intestinal Mucositis.

    PubMed

    Wong, Deysi V T; Lima-Júnior, Roberto C P; Carvalho, Cibele B M; Borges, Vanessa F; Wanderley, Carlos W S; Bem, Amanda X C; Leite, Caio A V G; Teixeira, Maraiza A; Batista, Gabriela L P; Silva, Rangel L; Cunha, Thiago M; Brito, Gerly A C; Almeida, Paulo R C; Cunha, Fernando Q; Ribeiro, Ronaldo A

    2015-01-01

    Intestinal mucositis is a common side effect of irinotecan-based anticancer regimens. Mucositis causes cell damage, bacterial/endotoxin translocation and production of cytokines including IL-1 and IL-18. These molecules and toll-like receptors (TLRs) activate a common signaling pathway that involves the Myeloid Differentiation adaptor protein, MyD88, whose role in intestinal mucositis is unknown. Then, we evaluated the involvement of TLRs and MyD88 in the pathogenesis of irinotecan-induced intestinal mucositis. MyD88-, TLR2- or TLR9-knockout mice and C57BL/6 (WT) mice were given either saline or irinotecan (75 mg/kg, i.p. for 4 days). On day 7, animal survival, diarrhea and bacteremia were assessed, and following euthanasia, samples of the ileum were obtained for morphometric analysis, myeloperoxidase (MPO) assay and measurement of pro-inflammatory markers. Irinotecan reduced the animal survival (50%) and induced a pronounced diarrhea, increased bacteremia, neutrophil accumulation in the intestinal tissue, intestinal damage and more than twofold increased expression of MyD88 (200%), TLR9 (400%), TRAF6 (236%), IL-1β (405%), IL-18 (365%), COX-2 (2,777%) and NF-κB (245%) in the WT animals when compared with saline-injected group (P<0.05). Genetic deletion of MyD88, TLR2 or TLR9 effectively controlled the signs of intestinal injury when compared with irinotecan-administered WT controls (P<0.05). In contrast to the MyD88-/- and TLR2-/- mice, the irinotecan-injected TLR9-/- mice showed a reduced survival, a marked diarrhea and an enhanced expression of IL-18 versus irinotecan-injected WT controls. Additionally, the expression of MyD88 was reduced in the TLR2-/- or TLR9-/- mice. This study shows a critical role of the MyD88-mediated TLR2 and TLR9 signaling in the pathogenesis of irinotecan-induced intestinal mucositis.

  19. The Adaptor Protein Myd88 Is a Key Signaling Molecule in the Pathogenesis of Irinotecan-Induced Intestinal Mucositis

    PubMed Central

    Wong, Deysi V. T.; Lima-Júnior, Roberto C. P.; Carvalho, Cibele B. M.; Borges, Vanessa F.; Wanderley, Carlos W. S.; Bem, Amanda X. C.; Leite, Caio A. V. G.; Teixeira, Maraiza A.; Batista, Gabriela L. P.; Silva, Rangel L.; Cunha, Thiago M.; Brito, Gerly A. C.; Almeida, Paulo R. C.; Cunha, Fernando Q.; Ribeiro, Ronaldo A.

    2015-01-01

    Intestinal mucositis is a common side effect of irinotecan-based anticancer regimens. Mucositis causes cell damage, bacterial/endotoxin translocation and production of cytokines including IL–1 and IL–18. These molecules and toll-like receptors (TLRs) activate a common signaling pathway that involves the Myeloid Differentiation adaptor protein, MyD88, whose role in intestinal mucositis is unknown. Then, we evaluated the involvement of TLRs and MyD88 in the pathogenesis of irinotecan-induced intestinal mucositis. MyD88-, TLR2- or TLR9-knockout mice and C57BL/6 (WT) mice were given either saline or irinotecan (75 mg/kg, i.p. for 4 days). On day 7, animal survival, diarrhea and bacteremia were assessed, and following euthanasia, samples of the ileum were obtained for morphometric analysis, myeloperoxidase (MPO) assay and measurement of pro-inflammatory markers. Irinotecan reduced the animal survival (50%) and induced a pronounced diarrhea, increased bacteremia, neutrophil accumulation in the intestinal tissue, intestinal damage and more than twofold increased expression of MyD88 (200%), TLR9 (400%), TRAF6 (236%), IL–1β (405%), IL–18 (365%), COX–2 (2,777%) and NF-κB (245%) in the WT animals when compared with saline-injected group (P<0.05). Genetic deletion of MyD88, TLR2 or TLR9 effectively controlled the signs of intestinal injury when compared with irinotecan-administered WT controls (P<0.05). In contrast to the MyD88-/- and TLR2-/- mice, the irinotecan-injected TLR9-/- mice showed a reduced survival, a marked diarrhea and an enhanced expression of IL–18 versus irinotecan-injected WT controls. Additionally, the expression of MyD88 was reduced in the TLR2-/- or TLR9-/- mice. This study shows a critical role of the MyD88-mediated TLR2 and TLR9 signaling in the pathogenesis of irinotecan-induced intestinal mucositis. PMID:26440613

  20. Cross-talk between Tetraspanin CD9 and Transmembrane Adaptor Protein Non-T Cell Activation Linker (NTAL) in Mast Cell Activation and Chemotaxis*

    PubMed Central

    Hálová, Ivana; Dráberová, Lubica; Bambousková, Monika; Machyna, Martin; Stegurová, Lucie; Smrž, Daniel; Dráber, Petr

    2013-01-01

    Chemotaxis, a process leading to movement of cells toward increasing concentrations of chemoattractants, is essential, among others, for recruitment of mast cells within target tissues where they play an important role in innate and adaptive immunity. Chemotaxis is driven by chemoattractants, produced by various cell types, as well as by intrinsic cellular regulators, which are poorly understood. In this study we prepared a new mAb specific for the tetraspanin CD9. Binding of the antibody to bone marrow-derived mast cells triggered activation events that included cell degranulation, Ca2+ response, dephosphorylation of ezrin/radixin/moesin (ERM) family proteins, and potent tyrosine phosphorylation of the non-T cell activation linker (NTAL) but only weak phosphorylation of the linker for activation of T cells (LAT). Phosphorylation of the NTAL was observed with whole antibody but not with its F(ab)2 or Fab fragments. This indicated involvement of the Fcγ receptors. As documented by electron microscopy of isolated plasma membrane sheets, CD9 colocalized with the high-affinity IgE receptor (FcϵRI) and NTAL but not with LAT. Further tests showed that both anti-CD9 antibody and its F(ab)2 fragment inhibited mast cell chemotaxis toward antigen. Experiments with bone marrow-derived mast cells deficient in NTAL and/or LAT revealed different roles of these two adaptors in antigen-driven chemotaxis. The combined data indicate that chemotaxis toward antigen is controlled in mast cells by a cross-talk among FcϵRI, tetraspanin CD9, transmembrane adaptor proteins NTAL and LAT, and cytoskeleton-regulatory proteins of the ERM family. PMID:23443658

  1. The Cell Signaling Adaptor Protein EPS-8 Is Essential for C. elegans Epidermal Elongation and Interacts with the Ankyrin Repeat Protein VAB-19

    PubMed Central

    Ding, Mei; King, Ryan S.; Berry, Emily C.; Wang, Ying; Hardin, Jeff; Chisholm, Andrew D.

    2008-01-01

    Background The epidermal cells of the C. elegans embryo undergo coordinated cell shape changes that result in the morphogenetic process of elongation. The cytoskeletal ankyrin repeat protein VAB-19 is required for cell shape changes and localizes to cell-matrix attachment structures. The molecular functions of VAB-19 in this process are obscure, as no previous interactors for VAB-19 have been described. Methodology/Principal Findings In screens for VAB-19 binding proteins we identified the signaling adaptor EPS-8. Within C. elegans epidermal cells, EPS-8 and VAB-19 colocalize at cell-matrix attachment structures. The central domain of EPS-8 is necessary and sufficient for its interaction with VAB-19. eps-8 null mutants, like vab-19 mutants, are defective in epidermal elongation and in epidermal-muscle attachment. The eps-8 locus encodes two isoforms, EPS-8A and EPS-8B, that appear to act redundantly in epidermal elongation. The function of EPS-8 in epidermal development involves its N-terminal PTB and central domains, and is independent of its C-terminal SH3 and actin-binding domains. VAB-19 appears to act earlier in the biogenesis of attachment structures and may recruit EPS-8 to these structures. Conclusions/Significance EPS-8 and VAB-19 define a novel pathway acting at cell-matrix attachments to regulate epithelial cell shape. This is the first report of a role for EPS-8 proteins in cell-matrix attachments. The existence of EPS-8B-like isoforms in Drosophila suggests this function of EPS-8 proteins could be conserved among other organisms. PMID:18833327

  2. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    SciTech Connect

    Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon; Nguyen, Hong-Hoa; Yang, Jun-Mo; Kang, Jong-Sun; Hahn, Myong-Joon

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer APPL1 regulates the protein level of EGFR in response to EGF stimulation. Black-Right-Pointing-Pointer Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. Black-Right-Pointing-Pointer Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.

  3. Multiple interactions drive adaptor-mediated recruitment of the ubiquitin ligase rsp5 to membrane proteins in vivo and in vitro.

    PubMed

    Sullivan, James A; Lewis, Michael J; Nikko, Elina; Pelham, Hugh R B

    2007-07-01

    Recognition of membrane proteins by the Nedd4/Rsp5 ubiquitin ligase family is a critical step in their targeting to the multivesicular body pathway. Some substrates contain "PY" motifs (PPxY), which bind to WW domains in the ligase. Others lack PY motifs and instead rely on adaptors that recruit the ligase to them. To investigate the mechanism of adaptor-mediated ubiquitination, we have characterized the interactions between the adaptor Bsd2, the ubiquitin ligase Rsp5, and the membrane proteins Cps1, Tre1, and Smf1 from Saccharomyces cerevisiae. We have reconstituted adaptor-mediated modification of Cps1 and Tre1 in vitro, and we show that two PY motifs in Bsd2 and two WW domains (WW2 and WW3) in Rsp5 are crucial for this. The binding of a weak noncanonical DMAPSY motif in Bsd2 to WW3 is an absolute requirement for Bsd2 adaptor function. We show that sorting of the manganese transporter Smf1, which requires both Bsd2 and Tre1, depends upon two PY motifs in Bsd2 and one motif in Tre1 but only two WW domains in Rsp5. We suggest that sequential assembly of first a Bsd2/Rsp5 complex, then a Tre1/Bsd2/Rsp5 complex followed by a rearrangement of PY-WW interactions is required for the ubiquitination of Smf1.

  4. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING

    DOE PAGES

    Shi, Heping; Wu, Jiaxi; Chen, Zhijian J.; ...

    2015-07-06

    Cyclic GMP-AMP containing a unique combination of mixed phosphodiester linkages (2'3'-cGAMP) is an endogenous second messenger molecule that activates the type-I IFN pathway upon binding to the homodimer of the adaptor protein STING on the surface of endoplasmic reticulum membrane. However, the preferential binding of the asymmetric ligand 2'3'-cGAMP to the symmetric dimer of STING represents a physicochemical enigma. In this paper, we show that 2'3'-cGAMP, but not its linkage isomers, adopts an organized free-ligand conformation that resembles the STING-bound conformation and pays low entropy and enthalpy costs in converting into the active conformation. Finally, our results demonstrate that analysesmore » of free-ligand conformations can be as important as analyses of protein conformations in understanding protein–ligand interactions.« less

  5. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING

    PubMed Central

    Shi, Heping; Wu, Jiaxi; Chen, Zhijian J.; Chen, Chuo

    2015-01-01

    Cyclic GMP-AMP containing a unique combination of mixed phosphodiester linkages (2′3′-cGAMP) is an endogenous second messenger molecule that activates the type-I IFN pathway upon binding to the homodimer of the adaptor protein STING on the surface of endoplasmic reticulum membrane. However, the preferential binding of the asymmetric ligand 2′3′-cGAMP to the symmetric dimer of STING represents a physicochemical enigma. Here we show that 2′3′-cGAMP, but not its linkage isomers, adopts an organized free-ligand conformation that resembles the STING-bound conformation and pays low entropy and enthalpy costs in converting into the active conformation. Our results demonstrate that analyses of free-ligand conformations can be as important as analyses of protein conformations in understanding protein–ligand interactions. PMID:26150511

  6. Deficiency of the adaptor protein SLy1 results in a natural killer cell ribosomopathy affecting tumor clearance.

    PubMed

    Arefanian, Saeed; Schäll, Daniel; Chang, Stephanie; Ghasemi, Reza; Higashikubo, Ryuji; Zheleznyak, Alex; Guo, Yizhan; Yu, Jinsheng; Asgharian, Hosseinali; Li, Wenjun; Gelman, Andrew E; Kreisel, Daniel; French, Anthony R; Zaher, Hani; Plougastel-Douglas, Beatrice; Maggi, Leonard; Yokoyama, Wayne; Beer-Hammer, Sandra; Krupnick, Alexander S

    2016-01-01

    Individuals with robust natural killer (NK) cell function incur lower rates of malignancies. To expand our understanding of genetic factors contributing to this phenomenon, we analyzed NK cells from cancer resistant and susceptible strains of mice. We identified a correlation between NK levels of the X-chromosome-located adaptor protein SLy1 and immunologic susceptibility to cancer. Unlike the case for T or B lymphocytes, where SLy1 shuttles between the cytoplasm and nucleus to facilitate signal transduction, in NK cells SLy1 functions as a ribosomal protein and is located solely in the cytoplasm. In its absence, ribosomal instability results in p53-mediated NK cell senescence and decreased clearance of malignancies. NK defects are reversible under inflammatory conditions and viral clearance is not impacted by SLy1 deficiency. Our work defines a previously unappreciated X-linked ribosomopathy that results in a specific and subtle NK cell dysfunction leading to immunologic susceptibility to cancer.

  7. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING

    SciTech Connect

    Shi, Heping; Wu, Jiaxi; Chen, Zhijian J.; Chen, Chuo

    2015-07-06

    Cyclic GMP-AMP containing a unique combination of mixed phosphodiester linkages (2'3'-cGAMP) is an endogenous second messenger molecule that activates the type-I IFN pathway upon binding to the homodimer of the adaptor protein STING on the surface of endoplasmic reticulum membrane. However, the preferential binding of the asymmetric ligand 2'3'-cGAMP to the symmetric dimer of STING represents a physicochemical enigma. In this paper, we show that 2'3'-cGAMP, but not its linkage isomers, adopts an organized free-ligand conformation that resembles the STING-bound conformation and pays low entropy and enthalpy costs in converting into the active conformation. Finally, our results demonstrate that analyses of free-ligand conformations can be as important as analyses of protein conformations in understanding protein–ligand interactions.

  8. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection

    PubMed Central

    Pérez-Núñez, Daniel; García-Urdiales, Eduardo; Martínez-Bonet, Marta; Nogal, María L.; Barroso, Susana; Revilla, Yolanda; Madrid, Ricardo

    2015-01-01

    African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity. PMID:25915900

  9. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection.

    PubMed

    Pérez-Núñez, Daniel; García-Urdiales, Eduardo; Martínez-Bonet, Marta; Nogal, María L; Barroso, Susana; Revilla, Yolanda; Madrid, Ricardo

    2015-01-01

    African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity.

  10. Adaptor protein cerebral cavernous malformation 3 (CCM3) mediates phosphorylation of the cytoskeletal proteins ezrin/radixin/moesin by mammalian Ste20-4 to protect cells from oxidative stress.

    PubMed

    Fidalgo, Miguel; Guerrero, Ana; Fraile, María; Iglesias, Cristina; Pombo, Celia M; Zalvide, Juan

    2012-03-30

    While studying the functions of CCM3/PDCD10, a gene encoding an adaptor protein whose mutation results in vascular malformations, we have found that it is involved in a novel response to oxidative stress that results in phosphorylation and activation of the ezrin/radixin/moesin (ERM) family of proteins. This phosphorylation protects cells from accidental cell death induced by oxidative stress. We also present evidence that ERM phosphorylation is performed by the GCKIII kinase Mst4, which is activated and relocated to the cell periphery after oxidative stress. The cellular levels of Mst4 and its activation after oxidative stress depend on the presence of CCM3, as absence of the latter impairs the phosphorylation of ERM proteins and enhances death of cells exposed to reactive oxygen species. These findings shed new light on the response of cells to oxidative stress and identify an important pathophysiological situation in which ERM proteins and their phosphorylation play a significant role.

  11. Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature.

    PubMed

    Abou Jamra, Rami; Philippe, Orianne; Raas-Rothschild, Annick; Eck, Sebastian H; Graf, Elisabeth; Buchert, Rebecca; Borck, Guntram; Ekici, Arif; Brockschmidt, Felix F; Nöthen, Markus M; Munnich, Arnold; Strom, Tim M; Reis, Andre; Colleaux, Laurence

    2011-06-10

    Intellectual disability inherited in an autosomal-recessive fashion represents an important fraction of severe cognitive-dysfunction disorders. Yet, the extreme heterogeneity of these conditions markedly hampers gene identification. Here, we report on eight affected individuals who were from three consanguineous families and presented with severe intellectual disability, absent speech, shy character, stereotypic laughter, muscular hypotonia that progressed to spastic paraplegia, microcephaly, foot deformity, decreased muscle mass of the lower limbs, inability to walk, and growth retardation. Using a combination of autozygosity mapping and either Sanger sequencing of candidate genes or next-generation exome sequencing, we identified one mutation in each of three genes encoding adaptor protein complex 4 (AP4) subunits: a nonsense mutation in AP4S1 (NM_007077.3: c.124C>T, p.Arg42(∗)), a frameshift mutation in AP4B1 (NM_006594.2: c.487_488insTAT, p.Glu163_Ser739delinsVal), and a splice mutation in AP4E1 (NM_007347.3: c.542+1_542+4delGTAA, r.421_542del, p.Glu181Glyfs(∗)20). Adaptor protein complexes (AP1-4) are ubiquitously expressed, evolutionarily conserved heterotetrameric complexes that mediate different types of vesicle formation and the selection of cargo molecules for inclusion into these vesicles. Interestingly, two mutations affecting AP4M1 and AP4E1 have recently been found to cause cerebral palsy associated with severe intellectual disability. Combined with previous observations, these results support the hypothesis that AP4-complex-mediated trafficking plays a crucial role in brain development and functioning and demonstrate the existence of a clinically recognizable syndrome due to deficiency of the AP4 complex.

  12. Tarp regulates early Chlamydia-induced host cell survival through interactions with the human adaptor protein SHC1.

    PubMed

    Mehlitz, Adrian; Banhart, Sebastian; Mäurer, André P; Kaushansky, Alexis; Gordus, Andrew G; Zielecki, Julia; Macbeath, Gavin; Meyer, Thomas F

    2010-07-12

    Many bacterial pathogens translocate effector proteins into host cells to manipulate host cell functions. Here, we used a protein microarray comprising virtually all human SRC homology 2 (SH2) and phosphotyrosine binding domains to comprehensively and quantitatively assess interactions between host cell proteins and the early phase Chlamydia trachomatis effector protein translocated actin-recruiting phosphoprotein (Tarp), which is rapidly tyrosine phosphorylated upon host cell entry. We discovered numerous novel interactions between human SH2 domains and phosphopeptides derived from Tarp. The adaptor protein SHC1 was among Tarp's strongest interaction partners. Transcriptome analysis of SHC1-dependent gene regulation during infection indicated that SHC1 regulates apoptosis- and growth-related genes. SHC1 knockdown sensitized infected host cells to tumor necrosis factor-induced apoptosis. Collectively, our findings reveal a critical role for SHC1 in early C. trachomatis-induced cell survival and suggest that Tarp functions as a multivalent phosphorylation-dependent signaling hub that is important during the early phase of chlamydial infection.

  13. Endocytosis of megalin by visceral endoderm cells requires the Dab2 adaptor protein.

    PubMed

    Maurer, Meghan E; Cooper, Jonathan A

    2005-11-15

    Rapid endocytosis of lipoprotein receptors involves NPxY signals contained in their cytoplasmic tails. Several proteins, including ARH and Dab2, can bind these sequences, but their importance for endocytosis may vary in different cell types. The lipoprotein receptor megalin is expressed in the visceral endoderm (VE), a polarized epithelium that supplies maternal nutrients to the early mammalian embryo. Dab2 is also expressed in the VE, and is required for embryo growth and gastrulation. Here, we show that ARH is absent from the VE, and Dab2 is required for uptake of megalin, its co-receptor cubilin, and a cubilin ligand, transferrin, from the brush border of the VE into intracellular vesicles. By making isoform-specific knock-in mice, we show that the p96 splice form of Dab2, which binds endocytic proteins, can fully rescue endocytosis. The more abundant p67 isoform, which lacks some endocytic protein binding sites, only partly rescues endocytosis. Endocytosis of cubilin is also impaired in VE and in mid-gestation visceral yolk sac when p96 is absent. These studies suggest that Dab2 p96 mediates endocytosis of megalin in the VE. In addition, rescue of embryonic viability correlates with endocytosis, suggesting that endocytosis mediated by Dab2 is important for normal development.

  14. Identification of an adaptor protein that facilitates Nrf2-Keap1 complex formation and modulates antioxidant response.

    PubMed

    Zhang, Yuxue; Hou, Yongfan; Liu, Chunchun; Li, Yinlong; Guo, Weiwei; Wu, Jiu-Lin; Xu, Daqian; You, Xue; Pan, Yi; Chen, Yan

    2016-08-01

    Nrf2 plays a key role in the protection of the body against environmental stress via inducible expression of detoxification and antioxidant enzymes. Keap1 functions as a sensor for oxidative and electrophilic stresses and promotes Nrf2 degradation via its E3 ligase activity. Modulation of the Nrf2-Keap1 pathway has been extensively explored as a strategy to combat against drug toxicity and stress-induced diseases. Here we report a new player that modulates the Nrf2-Keap1 pathway. PAQR3, a membrane protein specifically localized in the Golgi apparatus, negatively regulates the expression of an array of Nrf2 target genes and alters cellular level of reactive oxygen species. PAQR3 tethers Nrf2 and Keap1, but not small MAF proteins to the Golgi apparatus. PAQR3 interacts with both Nrf2 and Keap1 and facilitates the interaction of Nrf2 with Keap1. PAQR3 promotes ubiquitination and degradation of Nrf2. Disruption of PAQR3 interaction with Nrf2 and Keap1 by a synthetic peptide reduces Nrf2 ubiquitination and elevates expression of Nrf2 target genes. At the animal level, deletion of PAQR3 increases Nrf2 protein level and the expression of Nrf2 target genes. In conclusion, our study pinpoints that PAQR3 functions as an adaptor protein to promote Nrf2-Keap1 complex formation, thereby modulating the Nrf2-Keap2 pathway and playing an important role in controlling antioxidant response of the cell.

  15. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 {mu}1A (AP-1 mu1A)

    SciTech Connect

    Sawasdee, Nunghathai; Junking, Mutita; Ngaojanlar, Piengpaga; Sukomon, Nattakan; Ungsupravate, Duangporn; Limjindaporn, Thawornchai; Akkarapatumwong, Varaporn; Noisakran, Sansanee; Yenchitsomanus, Pa-thai

    2010-10-08

    Research highlights: {yields} Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. {yields} Adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) was firstly reported to interact with kAE1. {yields} The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. {yields} AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. {yields} AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl{sup -}) and bicarbonate (HCO{sub 3}{sup -}) exchange at the basolateral membrane of kidney {alpha}-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange at the basolateral membrane and failure of proton (H{sup +}) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1

  16. Rap1-GTP-interacting Adaptor Molecule (RIAM) Protein Controls Invasion and Growth of Melanoma Cells*

    PubMed Central

    Hernández-Varas, Pablo; Coló, Georgina P.; Bartolomé, Ruben A.; Paterson, Andrew; Medraño-Fernández, Iria; Arellano-Sánchez, Nohemí; Cabañas, Carlos; Sánchez-Mateos, Paloma; Lafuente, Esther M.; Boussiotis, Vassiliki A.; Strömblad, Staffan; Teixidó, Joaquin

    2011-01-01

    The Mig-10/RIAM/lamellipodin (MRL) family member Rap1-GTP-interacting adaptor molecule (RIAM) interacts with active Rap1, a small GTPase that is frequently activated in tumors such as melanoma and prostate cancer. We show here that RIAM is expressed in metastatic human melanoma cells and that both RIAM and Rap1 are required for BLM melanoma cell invasion. RIAM silencing in melanoma cells led to inhibition of tumor growth and to delayed metastasis in a severe combined immunodeficiency xenograft model. Defective invasion of RIAM-silenced melanoma cells arose from impairment in persistent cell migration directionality, which was associated with deficient activation of a Vav2-RhoA-ROCK-myosin light chain pathway. Expression of constitutively active Vav2 and RhoA in cells depleted for RIAM partially rescued their invasion, indicating that Vav2 and RhoA mediate RIAM function. These results suggest that inhibition of cell invasion in RIAM-silenced melanoma cells is likely based on altered cell contractility and cell polarization. Furthermore, we show that RIAM depletion reduces β1 integrin-dependent melanoma cell adhesion, which correlates with decreased activation of both Erk1/2 MAPK and phosphatidylinositol 3-kinase, two central molecules controlling cell growth and cell survival. In addition to causing inhibition of cell proliferation, RIAM silencing led to higher susceptibility to cell apoptosis. Together, these data suggest that defective activation of these kinases in RIAM-silenced cells could account for inhibition of melanoma cell growth and that RIAM might contribute to the dissemination of melanoma cells. PMID:21454517

  17. Nck-2, a Novel Src Homology2/3-containing Adaptor Protein That Interacts with the LIM-only Protein PINCH and Components of Growth Factor Receptor Kinase-signaling Pathways

    PubMed Central

    Tu, Yizeng; Li, Fugang; Wu, Chuanyue

    1998-01-01

    Many of the protein–protein interactions that are essential for eukaryotic intracellular signal transduction are mediated by protein binding modules including SH2, SH3, and LIM domains. Nck is a SH3- and SH2-containing adaptor protein implicated in coordinating various signaling pathways, including those of growth factor receptors and cell adhesion receptors. We report here the identification, cloning, and characterization of a widely expressed, Nck-related adaptor protein termed Nck-2. Nck-2 comprises primarily three N-terminal SH3 domains and one C-terminal SH2 domain. We show that Nck-2 interacts with PINCH, a LIM-only protein implicated in integrin-linked kinase signaling. The PINCH-Nck-2 interaction is mediated by the fourth LIM domain of PINCH and the third SH3 domain of Nck-2. Furthermore, we show that Nck-2 is capable of recognizing several key components of growth factor receptor kinase-signaling pathways including EGF receptors, PDGF receptor-β, and IRS-1. The association of Nck-2 with EGF receptors was regulated by EGF stimulation and involved largely the SH2 domain of Nck-2, although the SH3 domains of Nck-2 also contributed to the complex formation. The association of Nck-2 with PDGF receptor-β was dependent on PDGF activation and was mediated solely by the SH2 domain of Nck-2. Additionally, we have detected a stable association between Nck-2 and IRS-1 that was mediated primarily via the second and third SH3 domain of Nck-2. Thus, Nck-2 associates with PINCH and components of different growth factor receptor-signaling pathways via distinct mechanisms. Finally, we provide evidence indicating that a fraction of the Nck-2 and/or Nck-1 proteins are associated with the cytoskeleton. These results identify a novel Nck-related SH2- and SH3-domain–containing protein and suggest that it may function as an adaptor protein connecting the growth factor receptor-signaling pathways with the integrin-signaling pathways. PMID:9843575

  18. Signaling adaptor protein SH2B1 enhances neurite outgrowth and accelerates the maturation of human induced neurons.

    PubMed

    Hsu, Yi-Chao; Chen, Su-Liang; Wang, Ya-Jean; Chen, Yun-Hsiang; Wang, Dan-Yen; Chen, Linyi; Chen, Chia-Hsiang; Chen, Hwei-Hsien; Chiu, Ing-Ming

    2014-06-01

    Recent advances in somatic cell reprogramming have highlighted the plasticity of the somatic epigenome, particularly through demonstrations of direct lineage reprogramming of adult mouse and human fibroblasts to induced pluripotent stem cells (iPSCs) and induced neurons (iNs) under defined conditions. However, human cells appear to be less plastic and have a higher epigenetic hurdle for reprogramming to both iPSCs and iNs. Here, we show that SH2B adaptor protein 1β (SH2B1) can enhance neurite outgrowth of iNs reprogrammed from human fibroblasts as early as day 14, when combined with miR124 and transcription factors BRN2 and MYT1L (IBM) under defined conditions. These SH2B1-enhanced iNs (S-IBM) showed canonical neuronal morphology, and expressed multiple neuronal markers, such as TuJ1, NeuN, and synapsin, and functional proteins for neurotransmitter release, such as GABA, vGluT2, and tyrosine hydroxylase. Importantly, SH2B1 accelerated mature process of functional neurons and exhibited action potentials as early as day 14; without SH2B1, the IBM iNs do not exhibit action potentials until day 21. Our data demonstrate that SH2B1 can enhance neurite outgrowth and accelerate the maturation of human iNs under defined conditions. This approach will facilitate the application of iNs in regenerative medicine and in vitro disease modeling.

  19. Protein Interaction Profiling of the p97 Adaptor UBXD1 Points to a Role for the Complex in Modulating ERGIC-53 Trafficking*

    PubMed Central

    Haines, Dale S.; Lee, J. Eugene; Beauparlant, Stephen L.; Kyle, Dane B.; den Besten, Willem; Sweredoski, Michael J.; Graham, Robert L. J.; Hess, Sonja; Deshaies, Raymond J.

    2012-01-01

    UBXD1 is a member of the poorly understood subfamily of p97 adaptors that do not harbor a ubiquitin association domain or bind ubiquitin-modified proteins. Of clinical importance, p97 mutants found in familial neurodegenerative conditions Inclusion Body Myopathy Paget's disease of the bone and/or Frontotemporal Dementia and Amyotrophic Lateral Sclerosis are defective at interacting with UBXD1, indicating that functions regulated by a p97-UBXD1 complex are altered in these diseases. We have performed liquid chromatography-mass spectrometric analysis of UBXD1-interacting proteins to identify pathways in which UBXD1 functions. UBXD1 displays prominent association with ERGIC-53, a hexameric type I integral membrane protein that functions in protein trafficking. The UBXD1-ERGIC-53 interaction requires the N-terminal 10 residues of UBXD1 and the C-terminal cytoplasmic 12 amino acid tail of ERGIC-53. Use of p97 and E1 enzyme inhibitors indicate that complex formation between UBXD1 and ERGIC-53 requires the ATPase activity of p97, but not ubiquitin modification. We also performed SILAC-based quantitative proteomic profiling to identify ERGIC-53 interacting proteins. This analysis identified known (e.g. COPI subunits) and novel (Rab3GAP1/2 complex involved in the fusion of vesicles at the cell membrane) interactions that are also mediated through the C terminus of the protein. Immunoprecipitation and Western blotting analysis confirmed the proteomic interaction data and it also revealed that an UBXD1-Rab3GAP association requires the ERGIC-53 binding domain of UBXD1. Localization studies indicate that UBXD1 modules the sub-cellular trafficking of ERGIC-53, including promoting movement to the cell membrane. We propose that p97-UBXD1 modulates the trafficking of ERGIC-53-containing vesicles by controlling the interaction of transport factors with the cytoplasmic tail of ERGIC-53. PMID:22337587

  20. Enigma interacts with adaptor protein with PH and SH2 domains to control insulin-induced actin cytoskeleton remodeling and glucose transporter 4 translocation.

    PubMed

    Barrès, Romain; Grémeaux, Thierry; Gual, Philippe; Gonzalez, Teresa; Gugenheim, Jean; Tran, Albert; Le Marchand-Brustel, Yannick; Tanti, Jean-François

    2006-11-01

    APS (adaptor protein with PH and SH2 domains) initiates a phosphatidylinositol 3-kinase-independent pathway involved in insulin-stimulated glucose transport. We recently identified Enigma, a PDZ and LIM domain-containing protein, as a partner of APS and showed that APS-Enigma complex plays a critical role in actin cytoskeleton organization in fibroblastic cells. Because actin rearrangement is important for insulin-induced glucose transporter 4 (Glut 4) translocation, we studied the potential involvement of Enigma in insulin-induced glucose transport in 3T3-L1 adipocytes. Enigma mRNA was expressed in differentiated adipocytes and APS and Enigma were colocalized with cortical actin. Expression of an APS mutant unable to bind Enigma increased the insulin-induced Glut 4 translocation to the plasma membrane. By contrast, overexpression of Enigma inhibited insulin-stimulated glucose transport and Glut 4 translocation without alterations in proximal insulin signaling. This inhibitory effect was prevented with the deletion of the LIM domains of Enigma. Using time-lapse fluorescent microscopy of green fluorescent protein-actin, we demonstrated that the overexpression of Enigma altered insulin-induced actin rearrangements, whereas the expression of Enigma without its LIM domains was without effect. A physiological link between increased expression of Enigma and an alteration in insulin-induced glucose uptake was suggested by the increase in Enigma mRNA expression in adipose tissue of diabetic obese patients. Taken together, these data strongly suggest that the interaction between APS and Enigma is involved in insulin-induced Glut 4 translocation by regulating cortical actin remodeling and raise the possibility that modification of APS/Enigma ratio could participate in the alteration of insulin-induced glucose uptake in adipose tissue.

  1. Adaptor protein disabled-2 modulates low density lipoprotein receptor synthesis in fibroblasts from patients with autosomal recessive hypercholesterolaemia.

    PubMed

    Eden, Emily R; Sun, Xi-Ming; Patel, Dilipkumar D; Soutar, Anne K

    2007-11-15

    Autosomal recessive hypercholesterolaemia (ARH), characterized clinically by severe inherited hypercholesterolaemia, is caused by recessive null mutations in LDLRAP1 (formerly ARH). Immortalized lymphocytes and monocyte-macrophages, and presumably hepatocytes, from ARH patients fail to take up and degrade plasma low density lipoproteins (LDL) because they lack LDLRAP1, a cargo-specific adaptor required for clathrin-mediated endocytosis of the LDL receptor. Surprisingly, LDL-receptor function is normal in ARH patients' skin fibroblasts in culture. Disabled-2 (Dab2) has been implicated previously in clathrin-mediated internalization of LDL-receptor family members, and we show here that Dab2 is highly expressed in skin fibroblasts, but not in lymphocytes. SiRNA-depletion of Dab2 profoundly reduced LDL-receptor activity in ARH fibroblasts as a result of profound reduction in LDL-receptor protein, but not mRNA; heterologous expression of murine Dab2 reversed this effect. In contrast, LDL-receptor protein content was unchanged in Dab-2-depleted control cells. Incorporation of 35S-labelled amino acids into LDL receptor protein revealed a corresponding apparent reduction in accumulation of newly synthesized LDL-receptor protein on depletion of Dab2 in ARH, but not in control, cells. This reduction in LDL-receptor protein in Dab2-depleted ARH cells could not be reversed by treatment of the cells with proteasomal or lysosomal inhibitors. Thus, we propose a novel role for Dab2 in ARH fibroblasts, where it is apparently required to allow normal translation of LDL receptor mRNA.

  2. New insight into the functions of the interleukin-17 receptor adaptor protein Act1 in psoriatic arthritis

    PubMed Central

    2012-01-01

    Recent genome-wide association studies have implicated the tumor necrosis factor receptor-associated factor 3-interacting protein 2 (TRAF3IP2) gene and its product, nuclear factor-kappa-B activator 1 (Act1), in the development of psoriatic arthritis (PsA). The high level of sequence homology of the TRAF3IP2 (Act1) gene across the animal kingdom and the presence of the Act1 protein in multiple cell types strongly suggest that the protein is of importance in normal cellular function. Act1 is an adaptor protein for the interleukin-17 (IL-17) receptor, and recent observations have highlighted the significance of IL-17 signaling and localized inflammation in autoimmune diseases. This review summarizes data from recent genome-wide association studies as well as immunological and molecular investigations of Act1. Together, these studies provide new insight into the role of IL-17 signaling in PsA. It is well established that IL-17 activation of tumor necrosis factor receptor-associated factor 6 (TRAF6) signaling pathways normally leads to nuclear factor-kappa-B-mediated inflammation. However, the dominant PsA-associated TRAF3IP2 (Act1) gene single-nucleotide polymorphism (rs33980500) results in decreased binding of Act1 to TRAF6. This key mutation in Act1 could lead to a greater association of the IL-17 receptor with TRAF2/TRAF5 and this in turn suggests an alternative function for IL-17 in PsA. The recent observations described and discussed in this review raise the clinically significant possibility of redefining the immunological role of IL-17 in PsA and provide a basis for defining future studies to elucidate the molecular and cellular functions of Act1. PMID:23116200

  3. The Adaptor Protein-1 μ1B Subunit Expands the Repertoire of Basolateral Sorting Signal Recognition in Epithelial Cells

    PubMed Central

    Guo, Xiaoli; Mattera, Rafael; Ren, Xuefeng; Chen, Yu; Retamal, Claudio; González, Alfonso; Bonifacino, Juan S.

    2014-01-01

    SUMMARY An outstanding question in protein sorting is why polarized epithelial cells express two isoforms of the μ1 subunit of the AP-1 clathrin adaptor complex: the ubiquitous μ1A and the epithelial-specific μ1B. Previous studies led to the notion that μ1A and μ1B mediate basolateral sorting predominantly from the trans-Golgi network (TGN) and recycling endosomes, respectively. Using improved analytical tools, however, we find that μ1A and μ1B largely colocalize with each other. They also colocalize to similar extents with TGN and recycling endosome markers, as well as with basolateral cargoes transiting biosynthetic and endocytic-recycling routes. Instead, the two isoforms differ in their signal-recognition specificity. In particular, μ1B preferentially binds a subset of signals from cargoes that are sorted basolaterally in a μ1B-dependent manner. We conclude that expression of distinct μ1 isoforms in epithelial cells expands the repertoire of signals recognized by AP-1 for sorting of a broader range of cargoes to the basolateral surface. PMID:24229647

  4. Nuclear IKKbeta is an adaptor protein for IkappaBalpha ubiquitination and degradation in UV-induced NF-kappaB activation.

    PubMed

    Tsuchiya, Yoshihiro; Asano, Tomoichiro; Nakayama, Keiko; Kato, Tomohisa; Karin, Michael; Kamata, Hideaki

    2010-08-27

    Proinflammatory cytokines activate NF-kappaB using the IkappaB kinase (IKK) complex that phosphorylates inhibitory proteins (IkappaBs) at N-terminal sites resulting in their ubiquitination and degradation in the cytoplasm. Although ultraviolet (UV) irradiation does not lead to IKK activity, it activates NF-kappaB by an unknown mechanism through IkappaBalpha degradation without N-terminal phosphorylation. Here, we describe an adaptor function of nuclear IKKbeta in UV-induced IkappaBalpha degradation. UV irradiation induces the nuclear translocation of IkappaBalpha and association with IKKbeta, which constitutively interacts with beta-TrCP through heterogeneous ribonucleoprotein-U (hnRNP-U) leading to IkappaBalpha ubiquitination and degradation. Furthermore, casein kinase 2 (CK2) and p38 associate with IKKbeta and promote IkappaBalpha degradation by phosphorylation at C-terminal sites. Thus, nuclear IKKbeta acts as an adaptor protein for IkappaBalpha degradation in UV-induced NF-kappaB activation. NF-kappaB activated by the nuclear IKKbeta adaptor protein suppresses anti-apoptotic gene expression and promotes UV-induced cell death.

  5. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster.

    PubMed

    Rodriguez-Fernandez, Imilce A; Dell'Angelica, Esteban C

    2015-01-01

    The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions--which together covered most of the autosomal chromosomes-to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated in

  6. Comparative analysis of adaptor-mediated clathrin assembly reveals general principles for adaptor clustering.

    PubMed

    Pucadyil, Thomas J; Holkar, Sachin S

    2016-10-15

    Clathrin-mediated endocytosis (CME) manages the sorting and uptake of the bulk of membrane proteins (or cargo) from the plasma membrane. CME is initiated by the formation of clathrin-coated pits (CCPs), in which adaptors nucleate clathrin assembly. Clathrin adaptors display diversity in both the type and number of evolutionarily conserved clathrin-binding boxes. How this diversity relates to the process of adaptor clustering as clathrin assembles around a growing pit remains unclear. Using real-time, fluorescence microscopy-based assays, we compare the formation kinetics and distribution of clathrin assemblies on membranes that display five unique clathrin adaptors. Correlations between equilibrium and kinetic parameters of clathrin assembly to the eventual adaptor distribution indicate that adaptor clustering is determined not by the amount of clathrin recruited or the degree of clathrin clustered but instead by the rate of clathrin assembly. Together our results emphasize the need to analyze kinetics of protein interactions to better understand mechanisms that regulate CME.

  7. Adaptor Protein-1 Complex Affects the Endocytic Trafficking and Function of Peptidylglycine α-Amidating Monooxygenase, a Luminal Cuproenzyme.

    PubMed

    Bonnemaison, Mathilde L; Bäck, Nils; Duffy, Megan E; Ralle, Martina; Mains, Richard E; Eipper, Betty A

    2015-08-28

    The adaptor protein-1 complex (AP-1), which transports cargo between the trans-Golgi network and endosomes, plays a role in the trafficking of Atp7a, a copper-transporting P-type ATPase, and peptidylglycine α-amidating monooxygenase (PAM), a copper-dependent membrane enzyme. Lack of any of the four AP-1 subunits impairs function, and patients with MEDNIK syndrome, a rare genetic disorder caused by lack of expression of the σ1A subunit, exhibit clinical and biochemical signs of impaired copper homeostasis. To explore the role of AP-1 in copper homeostasis in neuroendocrine cells, we used corticotrope tumor cells in which AP-1 function was diminished by reducing expression of its μ1A subunit. Copper levels were unchanged when AP-1 function was impaired, but cellular levels of Atp7a declined slightly. The ability of PAM to function was assessed by monitoring 18-kDa fragment-NH2 production from proopiomelanocortin. Reduced AP-1 function made 18-kDa fragment amidation more sensitive to inhibition by bathocuproine disulfonate, a cell-impermeant Cu(I) chelator. The endocytic trafficking of PAM was altered, and PAM-1 accumulated on the cell surface when AP-1 levels were reduced. Reduced AP-1 function increased the Atp7a presence in early/recycling endosomes but did not alter the ability of copper to stimulate its appearance on the plasma membrane. Co-immunoprecipitation of a small fraction of PAM and Atp7a supports the suggestion that copper can be transferred directly from Atp7a to PAM, a process that can occur only when both proteins are present in the same subcellular compartment. Altered luminal cuproenzyme function may contribute to deficits observed when the AP-1 function is compromised.

  8. The Sho1 Adaptor Protein Links Oxidative Stress to Morphogenesis and Cell Wall Biosynthesis in the Fungal Pathogen Candida albicans† ‡

    PubMed Central

    Román, Elvira; Nombela, César; Pla, Jesús

    2005-01-01

    The Sho1 adaptor protein is an important element of one of the two upstream branches of the high-osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase pathway in Saccharomyces cerevisiae, a signal transduction cascade involved in adaptation to stress. In the present work, we describe its role in the pathogenic yeast Candida albicans by the construction of mutants altered in this gene. We report here that sho1 mutants are sensitive to oxidative stress but that Sho1 has a minor role in the transmission of the phosphorylation signal to the Hog1 MAP kinase in response to oxidative stress, which mainly occurs through a putative Sln1-Ssk1 branch of the HOG pathway. Genetic analysis revealed that double ssk1 sho1 mutants were still able to grow on high-osmolarity media and activate Hog1 in response to this stress, indicating the existence of alternative inputs of the pathway. We also demonstrate that the Cek1 MAP kinase is constitutively active in hog1 and ssk1 mutants, a phenotypic trait that correlates with their resistance to the cell wall inhibitor Congo red, and that Sho1 is essential for the activation of the Cek1 MAP kinase under different conditions that require active cell growth and/or cell wall remodeling, such as the resumption of growth upon exit from the stationary phase. sho1 mutants are also sensitive to certain cell wall interfering compounds (Congo red, calcofluor white), presenting an altered cell wall structure (as shown by the ability to aggregate), and are defective in morphogenesis on different media, such as SLAD and Spider, that stimulate hyphal growth. These results reveal a role for the Sho1 protein in linking oxidative stress, cell wall biogenesis, and morphogenesis in this important human fungal pathogen. PMID:16287872

  9. Crystal structures of the Toll/Interleukin-1 receptor (TIR) domains from the Brucella protein TcpB and host adaptor TIRAP reveal mechanisms of molecular mimicry.

    PubMed

    Snyder, Greg A; Deredge, Daniel; Waldhuber, Anna; Fresquez, Theresa; Wilkins, David Z; Smith, Patrick T; Durr, Susi; Cirl, Christine; Jiang, Jiansheng; Jennings, William; Luchetti, Timothy; Snyder, Nathaniel; Sundberg, Eric J; Wintrode, Patrick; Miethke, Thomas; Xiao, T Sam

    2014-01-10

    The Toll/IL-1 receptor (TIR) domains are crucial innate immune signaling modules. Microbial TIR domain-containing proteins inhibit Toll-like receptor (TLR) signaling through molecular mimicry. The TIR domain-containing protein TcpB from Brucella inhibits TLR signaling through interaction with host adaptor proteins TIRAP/Mal and MyD88. To characterize the microbial mimicry of host proteins, we have determined the X-ray crystal structures of the TIR domains from the Brucella protein TcpB and the host adaptor protein TIRAP. We have further characterized homotypic interactions of TcpB using hydrogen/deuterium exchange mass spectrometry and heterotypic TcpB and TIRAP interaction by co-immunoprecipitation and NF-κB reporter assays. The crystal structure of the TcpB TIR domain reveals the microtubule-binding site encompassing the BB loop as well as a symmetrical dimer mediated by the DD and EE loops. This dimerization interface is validated by peptide mapping through hydrogen/deuterium exchange mass spectrometry. The human TIRAP TIR domain crystal structure reveals a unique N-terminal TIR domain fold containing a disulfide bond formed by Cys(89) and Cys(134). A comparison between the TcpB and TIRAP crystal structures reveals substantial conformational differences in the region that encompasses the BB loop. These findings underscore the similarities and differences in the molecular features found in the microbial and host TIR domains, which suggests mechanisms of bacterial mimicry of host signaling adaptor proteins, such as TIRAP.

  10. The adaptor protein SH2B3 (Lnk) negatively regulates neurite outgrowth of PC12 cells and cortical neurons.

    PubMed

    Wang, Tien-Cheng; Chiu, Hsun; Chang, Yu-Jung; Hsu, Tai-Yu; Chiu, Ing-Ming; Chen, Linyi

    2011-01-01

    SH2B adaptor protein family members (SH2B1-3) regulate various physiological responses through affecting signaling, gene expression, and cell adhesion. SH2B1 and SH2B2 were reported to enhance nerve growth factor (NGF)-induced neuronal differentiation in PC12 cells, a well-established neuronal model system. In contrast, SH2B3 was reported to inhibit cell proliferation during the development of immune system. No study so far addresses the role of SH2B3 in the nervous system. In this study, we provide evidence suggesting that SH2B3 is expressed in the cortex of embryonic rat brain. Overexpression of SH2B3 not only inhibits NGF-induced differentiation of PC12 cells but also reduces neurite outgrowth of primary cortical neurons. SH2B3 does so by repressing NGF-induced activation of PLCγ, MEK-ERK1/2 and PI3K-AKT pathways and the expression of Egr-1. SH2B3 is capable of binding to phosphorylated NGF receptor, TrkA, as well as SH2B1β. Our data further demonstrate that overexpression of SH2B3 reduces the interaction between SH2B1β and TrkA. Consistent with this finding, overexpressing the SH2 domain of SH2B3 is sufficient to inhibit NGF-induced neurite outgrowth. Together, our data demonstrate that SH2B3, unlike the other two family members, inhibits neuronal differentiation of PC12 cells and primary cortical neurons. Its inhibitory mechanism is likely through the competition of TrkA binding with the positive-acting SH2B1 and SH2B2.

  11. Structural and Functional Characterization of Cargo-Binding Sites on the μ4-Subunit of Adaptor Protein Complex 4

    PubMed Central

    Ross, Breyan H.; Lin, Yimo; Corales, Esteban A.; Burgos, Patricia V.; Mardones, Gonzalo A.

    2014-01-01

    Adaptor protein (AP) complexes facilitate protein trafficking by playing key roles in the selection of cargo molecules to be sorted in post-Golgi compartments. Four AP complexes (AP-1 to AP-4) contain a medium-sized subunit (μ1-μ4) that recognizes YXXØ-sequences (Ø is a bulky hydrophobic residue), which are sorting signals in transmembrane proteins. A conserved, canonical region in μ subunits mediates recognition of YXXØ-signals by means of a critical aspartic acid. Recently we found that a non-canonical YXXØ-signal on the cytosolic tail of the Alzheimer's disease amyloid precursor protein (APP) binds to a distinct region of the μ4 subunit of the AP-4 complex. In this study we aimed to determine the functionality of both binding sites of μ4 on the recognition of the non-canonical YXXØ-signal of APP. We found that substitutions in either binding site abrogated the interaction with the APP-tail in yeast-two hybrid experiments. Further characterization by isothermal titration calorimetry showed instead loss of binding to the APP signal with only the substitution R283D at the non-canonical site, in contrast to a decrease in binding affinity with the substitution D190A at the canonical site. We solved the crystal structure of the C-terminal domain of the D190A mutant bound to this non-canonical YXXØ-signal. This structure showed no significant difference compared to that of wild-type μ4. Both differential scanning fluorimetry and limited proteolysis analyses demonstrated that the D190A substitution rendered μ4 less stable, suggesting an explanation for its lower binding affinity to the APP signal. Finally, in contrast to overexpression of the D190A mutant, and acting in a dominant-negative manner, overexpression of μ4 with either a F255A or a R283D substitution at the non-canonical site halted APP transport at the Golgi apparatus. Together, our analyses support that the functional recognition of the non-canonical YXXØ-signal of APP is limited to the non

  12. The adaptor protein Cindr regulates JNK activity to maintain epithelial sheet integrity.

    PubMed

    Yasin, Hannah W R; van Rensburg, Samuel H; Feiler, Christina E; Johnson, Ruth I

    2016-02-15

    Epithelia are essential barrier tissues that must be appropriately maintained for their correct function. To achieve this a plethora of protein interactions regulate epithelial cell number, structure and adhesion, and differentiation. Here we show that Cindr (the Drosophila Cin85 and Cd2ap ortholog) is required to maintain epithelial integrity. Reducing Cindr triggered cell delamination and movement. Most delaminating cells died. These behaviors were consistent with JNK activation previously associated with loss of epithelial integrity in response to ectopic oncogene activity. We confirmed a novel interaction between Cindr and Drosophila JNK (dJNK), which when perturbed caused inappropriate JNK signaling. Genetically reducing JNK signaling activity suppressed the effects of reducing Cindr. Furthermore, ectopic JNK signaling phenocopied loss of Cindr and was partially rescued by concomitant cindr over-expression. Thus, correct Cindr-dJNK stoichiometry is essential to maintain epithelial integrity and disturbing this balance may contribute to the pathogenesis of disease states, including cancer.

  13. Dengue Virus Subverts Host Innate Immunity by Targeting Adaptor Protein MAVS

    PubMed Central

    He, Zhenjian; Zhu, Xun; Wen, Weitao; Yuan, Jie; Hu, Yiwen; Chen, Jiahui; An, Shu; Dong, Xinhuai; Lin, Cuiji; Yu, Jianchen; Wu, Jueheng; Yang, Yi; Cai, Junchao; Li, Jun

    2016-01-01

    ABSTRACT Dengue virus (DENV) is the most common mosquito-borne virus infecting humans and is currently a serious global health challenge. To establish infection in its host cells, DENV must subvert the production and/or antiviral effects of interferon (IFN). The aim of this study was to understand the mechanisms by which DENV suppresses IFN production. We determined that DENV NS4A interacts with mitochondrial antiviral signaling protein (MAVS), which was previously found to activate NF-κB and IFN regulatory factor 3 (IRF3), thus inducing type I IFN in the mitochondrion-associated endoplasmic reticulum membranes (MAMs). We further demonstrated that NS4A is associated with the N-terminal CARD-like (CL) domain and the C-terminal transmembrane (TM) domain of MAVS. This association prevented the binding of MAVS to RIG-I, resulting in the repression of RIG-I-induced IRF3 activation and, consequently, the abrogation of IFN production. Collectively, our findings illustrate a new molecular mechanism by which DENV evades the host immune system and suggest new targets for anti-DENV strategies. IMPORTANCE Type I interferon (IFN) constitutes the first line of host defense against invading viruses. To successfully establish infection, dengue virus (DENV) must counteract either the production or the function of IFN. The mechanism by which DENV suppresses IFN production is poorly understood and characterized. In this study, we demonstrate that the DENV NS4A protein plays an important role in suppressing interferon production through binding MAVS and disrupting the RIG-I–MAVS interaction in mitochondrion-associated endoplasmic reticulum membranes (MAMs). Our study reveals that MAVS is a novel host target of NS4A and provides a molecular mechanism for DENV evasion of the host innate immune response. These findings have important implications for understanding the pathogenesis of DENV and may provide new insights into using NS4A as a therapeutic and/or prevention target. PMID

  14. Targeting signals and subunit interactions in coated vesicle adaptor complexes

    PubMed Central

    1995-01-01

    There are two clathrin-coated vesicle adaptor complexes in the cell, one associated with the plasma membrane and one associated with the TGN. The subunit composition of the plasma membrane adaptor complex is alpha-adaptin, beta-adaptin, AP50, and AP17; while that of the TGN adaptor complex is gamma-adaptin, beta'-adaptin, AP47, and AP19. To search for adaptor targeting signals, we have constructed chimeras between alpha-adaptin and gamma-adaptin within their NH2-terminal domains. We have identified stretches of sequence in the two proteins between amino acids approximately 130 and 330-350 that are essential for targeting. Immunoprecipitation reveals that this region determines whether a construct coassemblies with AP50 and AP17, or with AP47 and AP19. These observations suggest that these other subunits may play an important role in targeting. In contrast, beta- and beta'-adaptins are clearly not involved in this event. Chimeras between the alpha- and gamma-adaptin COOH-terminal domains reveal the presence of a second targeting signal. We have further investigated the interactions between the adaptor subunits using the yeast two-hybrid system. Interactions can be detected between the beta/beta'-adaptins and the alpha/gamma- adaptins, between the beta/beta'-adaptins and the AP50/AP47 subunits, between alpha-adaptin and AP17, and between gamma-adaptin and AP19. These results indicate that the adaptor subunits act in concert to target the complex to the appropriate membrane. PMID:7593184

  15. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  16. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  17. Palmitoylation of protease-activated receptor-1 regulates adaptor protein complex-2 and -3 interaction with tyrosine-based motifs and endocytic sorting.

    PubMed

    Canto, Isabel; Trejo, JoAnn

    2013-05-31

    Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor for the coagulant protease thrombin. Thrombin binds to and cleaves the N terminus of PAR1, generating a new N terminus that functions as a tethered ligand that cannot diffuse away. In addition to rapid desensitization, PAR1 trafficking is critical for the regulation of cellular responses. PAR1 displays constitutive and agonist-induced internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), which binds to a distal tyrosine-based motif localized within the C-terminal tail (C-tail) domain. Once internalized, PAR1 is sorted from endosomes to lysosomes via AP-3 interaction with a second C-tail tyrosine motif proximal to the transmembrane domain. However, the regulatory processes that control adaptor protein recognition of PAR1 C-tail tyrosine-based motifs are not known. Here, we report that palmitoylation of PAR1 is critical for regulating proper utilization of tyrosine-based motifs and endocytic sorting. We show that PAR1 is basally palmitoylated at highly conserved C-tail cysteines. A palmitoylation-deficient PAR1 mutant is competent to signal and exhibits a marked increase in constitutive internalization and lysosomal degradation compared with wild type receptor. Intriguingly, enhanced constitutive internalization of PAR1 is mediated by AP-2 and requires the proximal tyrosine-based motif rather than the distal tyrosine motif used by wild type receptor. Moreover, palmitoylation-deficient PAR1 displays increased degradation that is mediated by AP-3. These findings suggest that palmitoylation of PAR1 regulates appropriate utilization of tyrosine-based motifs by adaptor proteins and endocytic trafficking, processes that are critical for maintaining appropriate expression of PAR1 at the cell surface.

  18. Adaptor protein 2–mediated endocytosis of the β-secretase BACE1 is dispensable for amyloid precursor protein processing

    PubMed Central

    Prabhu, Yogikala; Burgos, Patricia V.; Schindler, Christina; Farías, Ginny G.; Magadár, Javier G.; Bonifacino, Juan S.

    2012-01-01

    The β-site amyloid precursor protein (APP)–cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease that catalyzes the proteolytic processing of APP and other plasma membrane protein precursors. BACE1 cycles between the trans-Golgi network (TGN), the plasma membrane, and endosomes by virtue of signals contained within its cytosolic C-terminal domain. One of these signals is the DXXLL-motif sequence DISLL, which controls transport between the TGN and endosomes via interaction with GGA proteins. Here we show that the DISLL sequence is embedded within a longer [DE]XXXL[LI]-motif sequence, DDISLL, which mediates internalization from the plasma membrane by interaction with the clathrin-associated, heterotetrameric adaptor protein 2 (AP-2) complex. Mutation of this signal or knockdown of either AP-2 or clathrin decreases endosomal localization and increases plasma membrane localization of BACE1. Remarkably, internalization-defective BACE1 is able to cleave an APP mutant that itself cannot be delivered to endosomes. The drug brefeldin A reversibly prevents BACE1-catalyzed APP cleavage, ruling out that this reaction occurs in the endoplasmic reticulum (ER) or ER–Golgi intermediate compartment. Taken together, these observations support the notion that BACE1 is capable of cleaving APP in late compartments of the secretory pathway. PMID:22553349

  19. Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in SEDPHAT: application to adaptor protein complexes in cell signaling.

    PubMed

    Houtman, Jon C D; Brown, Patrick H; Bowden, Brent; Yamaguchi, Hiroshi; Appella, Ettore; Samelson, Lawrence E; Schuck, Peter

    2007-01-01

    Multisite interactions and the formation of ternary or higher-order protein complexes are ubiquitous features of protein interactions. Cooperativity between different ligands is a hallmark for information transfer, and is frequently critical for the biological function. We describe a new computational platform for the global analysis of isothermal titration calorimetry (ITC) data for the study of binary and ternary multisite interactions, implemented as part of the public domain multimethod analysis software SEDPHAT. The global analysis of titrations performed in different orientations was explored, and the potential for unraveling cooperativity parameters in multisite interactions was assessed in theory and experiment. To demonstrate the practical potential and limitations of global analyses of ITC titrations for the study of cooperative multiprotein interactions, we have examined the interactions of three proteins that are critical for signal transduction after T-cell activation, LAT, Grb2, and Sos1. We have shown previously that multivalent interactions between these three molecules promote the assembly of large multiprotein complexes important for T-cell receptor activation. By global analysis of the heats of binding observed in sets of ITC injections in different orientations, which allowed us to follow the formation of binary and ternary complexes, we observed negative and positive cooperativity that may be important to control the pathway of assembly and disassembly of adaptor protein particles.

  20. The adaptor protein DCAF7 mediates the interaction of the adenovirus E1A oncoprotein with the protein kinases DYRK1A and HIPK2

    PubMed Central

    Glenewinkel, Florian; Cohen, Michael J.; King, Cason R.; Kaspar, Sophie; Bamberg-Lemper, Simone; Mymryk, Joe S.; Becker, Walter

    2016-01-01

    DYRK1A is a constitutively active protein kinase that has a critical role in growth and development which functions by regulating cell proliferation, differentiation and survival. DCAF7 (also termed WDR68 or HAN11) is a cellular binding partner of DYRK1A and also regulates signalling by the protein kinase HIPK2. DCAF7 is an evolutionarily conserved protein with a single WD40 repeat domain and has no catalytic activity. We have defined a DCAF7 binding motif of 12 amino acids in the N-terminal domain of class 1 DYRKs that is functionally conserved in DYRK1 orthologs from Xenopus, Danio rerio and the slime mold Dictyostelium discoideum. A similar sequence was essential for DCAF7 binding to HIPK2, whereas the closely related HIPK1 family member did not bind DCAF7. Immunoprecipitation and pulldown experiments identified DCAF7 as an adaptor for the association of the adenovirus E1A protein with DYRK1A and HIPK2. Furthermore, DCAF7 was required for the hyperphosphorylation of E1A in DYRK1A or HIPK2 overexpressing cells. Our results characterize DCAF7 as a substrate recruiting subunit of DYRK1A and HIPK2 and suggest that it is required for the negative effect of DYRK1A on E1A-induced oncogenic transformation. PMID:27307198

  1. Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis.

    PubMed

    Paczkowski, Jon E; Richardson, Brian C; Fromme, J Christopher

    2015-07-01

    Cargo adaptors sort transmembrane protein cargos into nascent vesicles by binding directly to their cytosolic domains. Recent studies have revealed previously unappreciated roles for cargo adaptors and regulatory mechanisms governing their function. The adaptor protein (AP)-1 and AP-2 clathrin adaptors switch between open and closed conformations that ensure they function at the right place at the right time. The exomer cargo adaptor has a direct role in remodeling the membrane for vesicle fission. Several different cargo adaptors functioning in distinct trafficking pathways at the Golgi are similarly regulated through bivalent binding to the ADP-ribosylation factor 1 (Arf1) GTPase, potentially enabling regulation by a threshold concentration of Arf1. Taken together, these studies highlight that cargo adaptors do more than just adapt cargos.

  2. Structural determinants for binding of sorting nexin 17 (SNX17) to the cytoplasmic adaptor protein Krev interaction trapped 1 (KRIT1).

    PubMed

    Stiegler, Amy L; Zhang, Rong; Liu, Weizhi; Boggon, Titus J

    2014-09-05

    Sorting nexin 17 (SNX17) is a member of the family of cytoplasmic sorting nexin adaptor proteins that regulate endosomal trafficking of cell surface proteins. SNX17 localizes to early endosomes where it directly binds NPX(Y/F) motifs in the cytoplasmic tails of its target receptors to mediate their rates of endocytic internalization, recycling, and/or degradation. SNX17 has also been implicated in mediating cell signaling and can interact with cytoplasmic proteins. KRIT1 (Krev interaction trapped 1), a cytoplasmic adaptor protein associated with cerebral cavernous malformations, has previously been shown to interact with SNX17. Here, we demonstrate that SNX17 indeed binds directly to KRIT1 and map the binding to the second Asn-Pro-Xaa-Tyr/Phe (NPX(Y/F)) motif in KRIT1. We further characterize the interaction as being mediated by the FERM domain of SNX17. We present the co-crystal structure of SNX17-FERM with the KRIT1-NPXF2 peptide to 3.0 Å resolution and demonstrate that the interaction is highly similar in structure and binding affinity to that between SNX17 and P-selectin. We verify the molecular details of the interaction by site-directed mutagenesis and pulldown assay and thereby confirm that the major binding site for SNX17 is confined to the NPXF2 motif in KRIT1. Taken together, our results verify a direct interaction between SNX17 and KRIT1 and classify KRIT1 as a SNX17 binding partner.

  3. Mitochondrial antiviral signaling adaptor mediated apoptosis in H3N2 swine influenza virus infection is inhibited by viral protein NS1 in vitro.

    PubMed

    Zhang, Jinqiu; Miao, Jinfeng; Hou, Jibo; Lu, Chengping

    2015-05-15

    We investigated the in vitro role of mitochondrial antiviral signaling adaptor (MAVS) in apoptosis induced by H3N2 swine influenza virus infection and the influence of viral NS1 (nonstructural protein 1) protein on this process. H3N2 swine influenza virus (SIV, A/Swine/Shandong/3/2005) was co-cultured with human lung epithelial A549 cells. The relationship of MAVS expression to SIV replication and apoptosis, and the influence of viral proteins on MAVS functions were studied. The data indicate that in response to SIV infection, MAVS was significantly upregulated at both the transcriptional and protein levels in the early stages of infection. Its expression and localization to mitochondria are necessary for apoptosis of epithelial cells induced by H3N2 swine influenza virus. Viral protein NS1 can antagonize MAVS-mediated apoptosis. These findings indicate that MAVS have a role in regulating innate mitochondrial responses to viral infection.

  4. Impaired Lysosomal Integral Membrane Protein 2-dependent Peroxiredoxin 6 Delivery to Lamellar Bodies Accounts for Altered Alveolar Phospholipid Content in Adaptor Protein-3-deficient pearl Mice.

    PubMed

    Kook, Seunghyi; Wang, Ping; Young, Lisa R; Schwake, Michael; Saftig, Paul; Weng, Xialian; Meng, Ying; Neculai, Dante; Marks, Michael S; Gonzales, Linda; Beers, Michael F; Guttentag, Susan

    2016-04-15

    The Hermansky Pudlak syndromes (HPS) constitute a family of disorders characterized by oculocutaneous albinism and bleeding diathesis, often associated with lethal lung fibrosis. HPS results from mutations in genes of membrane trafficking complexes that facilitate delivery of cargo to lysosome-related organelles. Among the affected lysosome-related organelles are lamellar bodies (LB) within alveolar type 2 cells (AT2) in which surfactant components are assembled, modified, and stored. AT2 from HPS patients and mouse models of HPS exhibit enlarged LB with increased phospholipid content, but the mechanism underlying these defects is unknown. We now show that AT2 in the pearl mouse model of HPS type 2 lacking the adaptor protein 3 complex (AP-3) fails to accumulate the soluble enzyme peroxiredoxin 6 (PRDX6) in LB. This defect reflects impaired AP-3-dependent trafficking of PRDX6 to LB, because pearl mouse AT2 cells harbor a normal total PRDX6 content. AP-3-dependent targeting of PRDX6 to LB requires the transmembrane protein LIMP-2/SCARB2, a known AP-3-dependent cargo protein that functions as a carrier for lysosomal proteins in other cell types. Depletion of LB PRDX6 in AP-3- or LIMP-2/SCARB2-deficient mice correlates with phospholipid accumulation in lamellar bodies and with defective intraluminal degradation of LB disaturated phosphatidylcholine. Furthermore, AP-3-dependent LB targeting is facilitated by protein/protein interaction between LIMP-2/SCARB2 and PRDX6 in vitro and in vivo Our data provide the first evidence for an AP-3-dependent cargo protein required for the maturation of LB in AT2 and suggest that the loss of PRDX6 activity contributes to the pathogenic changes in LB phospholipid homeostasis found HPS2 patients.

  5. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster

    PubMed Central

    Rodriguez-Fernandez, Imilce A.; Dell’Angelica, Esteban C.

    2015-01-01

    The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions–which together covered most of the autosomal chromosomes–to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated

  6. Involvement of the neuronal phosphotyrosine signal adaptor N-Shc in kainic acid-induced epileptiform activity.

    PubMed

    Baba, Shiro; Onga, Kazuko; Kakizawa, Sho; Ohyama, Kyoji; Yasuda, Kunihiko; Otsubo, Hiroshi; Scott, Brian W; Burnham, W McIntyre; Matsuo, Takayuki; Nagata, Izumi; Mori, Nozomu

    2016-06-08

    BDNF-TrkB signaling is implicated in experimental seizures and epilepsy. However, the downstream signaling involved in the epileptiform activity caused by TrkB receptor activation is still unknown. The aim of the present study was to determine whether TrkB-mediated N-Shc signal transduction was involved in kainic acid (KA)-induced epileptiform activity. We investigated KA-induced behavioral seizures, epileptiform activities and neuronal cell loss in hippocampus between N-Shc deficient and control mice. There was a significant reduction in seizure severity and the frequency of epileptiform discharges in N-Shc deficient mice, as compared with wild-type and C57BL/6 mice. KA-induced neuronal cell loss in the CA3 of hippocampus was also inhibited in N-Shc deficient mice. This study demonstrates that the activation of N-Shc signaling pathway contributes to an acute KA-induced epileptiform activity and neuronal cell loss in the hippocampus. We propose that the N-Shc-mediated signaling pathway could provide a potential target for the novel therapeutic approaches of epilepsy.

  7. Involvement of the neuronal phosphotyrosine signal adaptor N-Shc in kainic acid-induced epileptiform activity

    PubMed Central

    Baba, Shiro; Onga, Kazuko; Kakizawa, Sho; Ohyama, Kyoji; Yasuda, Kunihiko; Otsubo, Hiroshi; Scott, Brian W.; Burnham, W. McIntyre; Matsuo, Takayuki; Nagata, Izumi; Mori, Nozomu

    2016-01-01

    BDNF-TrkB signaling is implicated in experimental seizures and epilepsy. However, the downstream signaling involved in the epileptiform activity caused by TrkB receptor activation is still unknown. The aim of the present study was to determine whether TrkB-mediated N-Shc signal transduction was involved in kainic acid (KA)-induced epileptiform activity. We investigated KA-induced behavioral seizures, epileptiform activities and neuronal cell loss in hippocampus between N-Shc deficient and control mice. There was a significant reduction in seizure severity and the frequency of epileptiform discharges in N-Shc deficient mice, as compared with wild-type and C57BL/6 mice. KA-induced neuronal cell loss in the CA3 of hippocampus was also inhibited in N-Shc deficient mice. This study demonstrates that the activation of N-Shc signaling pathway contributes to an acute KA-induced epileptiform activity and neuronal cell loss in the hippocampus. We propose that the N-Shc-mediated signaling pathway could provide a potential target for the novel therapeutic approaches of epilepsy. PMID:27273072

  8. Adaptor protein ARH is recruited to the plasma membrane by low density lipoprotein (LDL) binding and modulates endocytosis of the LDL/LDL receptor complex in hepatocytes.

    PubMed

    Sirinian, Maria Isabella; Belleudi, Francesca; Campagna, Filomena; Ceridono, Mara; Garofalo, Tina; Quagliarini, Fabiana; Verna, Roberto; Calandra, Sebastiano; Bertolini, Stefano; Sorice, Maurizio; Torrisi, Maria Rosaria; Arca, Marcello

    2005-11-18

    ARH is a newly discovered adaptor protein required for the efficient activity of low density lipoprotein receptor (LDLR) in selected tissues. Individuals lacking ARH have severe hypercholesterolemia due to an impaired hepatic clearance of LDL. It has been demonstrated that ARH is required for the efficient internalization of the LDL-LDLR complex and to stabilize the association of the receptor with LDL in Epstein-Barr virus-immortalized B lymphocytes. However, little information is available on the role of ARH in liver cells. Here we provide evidence that ARH is codistributed with LDLR on the basolateral area in confluent HepG2-polarized cells. This distribution is not modified by the overexpression of LDLR. Conversely, the activation of the LDLR-mediated endocytosis, but not the binding of LDL to LDLR, promotes a significant colocalization of ARH with LDL-LDLR complex that peaked at 2 min at 37 degrees C. To further assess the role of ARH in LDL-LDLR complex internalization, we depleted ARH protein using the RNA interference technique. Twenty-four hours after transfection with ARH-specific RNA interference, ARH protein was depleted in HepG2 cells by more than 70%. Quantitative immunofluorescence analysis revealed that the depletion of ARH caused about 80% reduction in LDL internalization. Moreover, our findings indicate that ARH is associated with other proteins of the endocytic machinery. We suggest that ARH is an endocytic sorting adaptor that actively participates in the internalization of the LDL-LDLR complex, possibly enhancing the efficiency of its packaging into the endocytic vesicles.

  9. Recruitment of the adaptor protein 2 complex by the human immunodeficiency virus type 2 envelope protein is necessary for high levels of virus release.

    PubMed

    Noble, Beth; Abada, Paolo; Nunez-Iglesias, Juan; Cannon, Paula M

    2006-03-01

    The envelope (Env) protein of human immunodeficiency virus type 2 (HIV-2) and the HIV-1 Vpu protein stimulate the release of retroviral particles from human cells that restrict virus production, an activity that we call the enhancement of virus release (EVR). We have previously shown that two separate domains in the HIV-2 envelope protein are required for this activity: a glycine-tyrosine-x-x-hydrophobic (GYxxtheta) motif in the cytoplasmic tail and an unmapped region in the ectodomain of the protein. We here report that the cellular partner of the GYxxtheta motif is the adaptor protein complex AP-2. The mutation of this motif or the depletion of AP-2 by RNA interference abrogated EVR activity and changed the cellular distribution of the Env from a predominantly punctate pattern to a more diffuse distribution. Since the L domain of equine infectious anemia virus (EIAV) contains a Yxxtheta motif that interacts with AP-2, we used both wild-type and L domain-defective particles of HIV-1 and EIAV to examine whether the HIV-2 Env EVR function was analogous to L domain activity. We observed that the production of all particles was stimulated by HIV-2 Env or Vpu, suggesting that the L domain and EVR activities play independent roles in the release of retroviruses. Interestingly, we found that the cytoplasmic tail of the murine leukemia virus (MLV) Env could functionally substitute for the HIV-2 Env tail, but it did so in a manner that did not require a Yxxtheta motif or AP-2. The cellular distribution of the chimeric HIV-2/MLV Env was significantly less punctate than the wild-type Env, although confocal analysis revealed an overlap in the steady-state locations of the two proteins. Taken together, these data suggest that the essential GYxxtheta motif in the HIV-2 Env tail recruits AP-2 in order to direct Env to a cellular pathway or location that is necessary for its ability to enhance virus release but that an alternate mechanism provided by the MLV Env tail can

  10. Recruitment of the Adaptor Protein 2 Complex by the Human Immunodeficiency Virus Type 2 Envelope Protein Is Necessary for High Levels of Virus Release†

    PubMed Central

    Noble, Beth; Abada, Paolo; Nunez-Iglesias, Juan; Cannon, Paula M.

    2006-01-01

    The envelope (Env) protein of human immunodeficiency virus type 2 (HIV-2) and the HIV-1 Vpu protein stimulate the release of retroviral particles from human cells that restrict virus production, an activity that we call the enhancement of virus release (EVR). We have previously shown that two separate domains in the HIV-2 envelope protein are required for this activity: a glycine-tyrosine-x-x-hydrophobic (GYxxθ) motif in the cytoplasmic tail and an unmapped region in the ectodomain of the protein. We here report that the cellular partner of the GYxxθ motif is the adaptor protein complex AP-2. The mutation of this motif or the depletion of AP-2 by RNA interference abrogated EVR activity and changed the cellular distribution of the Env from a predominantly punctate pattern to a more diffuse distribution. Since the L domain of equine infectious anemia virus (EIAV) contains a Yxxθ motif that interacts with AP-2, we used both wild-type and L domain-defective particles of HIV-1 and EIAV to examine whether the HIV-2 Env EVR function was analogous to L domain activity. We observed that the production of all particles was stimulated by HIV-2 Env or Vpu, suggesting that the L domain and EVR activities play independent roles in the release of retroviruses. Interestingly, we found that the cytoplasmic tail of the murine leukemia virus (MLV) Env could functionally substitute for the HIV-2 Env tail, but it did so in a manner that did not require a Yxxθ motif or AP-2. The cellular distribution of the chimeric HIV-2/MLV Env was significantly less punctate than the wild-type Env, although confocal analysis revealed an overlap in the steady-state locations of the two proteins. Taken together, these data suggest that the essential GYxxθ motif in the HIV-2 Env tail recruits AP-2 in order to direct Env to a cellular pathway or location that is necessary for its ability to enhance virus release but that an alternate mechanism provided by the MLV Env tail can functionally substitute

  11. Inflammasome adaptor protein Apoptosis-associated speck-like protein containing CARD (ASC) is critical for the immune response and survival in west Nile virus encephalitis.

    PubMed

    Kumar, Mukesh; Roe, Kelsey; Orillo, Beverly; Muruve, Daniel A; Nerurkar, Vivek R; Gale, Michael; Verma, Saguna

    2013-04-01

    West Nile virus (WNV) is a neurotropic flavivirus that has emerged globally as a significant cause of viral encephalitis in humans. The WNV-induced innate immune response, including production of antiviral cytokines, is critical for controlling virus infection. The adaptor protein ASC mediates a critical step in innate immune signaling by bridging the interaction between the pathogen recognition receptors and caspase 1 in inflammasome complexes, but its role in WNV immunopathogenesis is not defined. Here, we demonstrate that ASC is essential for interleukin-1β (IL-1β) production and development of effective host immunity against WNV. ASC-deficient mice exhibited increased susceptibility to WNV infection, and reduced survival was associated with enhanced virus replication in the peripheral tissues and central nervous system (CNS). Infection of cultured bone marrow-derived dendritic cells showed that ASC was essential for the activation of caspase 1, a key component of inflammasome assembly. ASC(-/-) mice exhibited attenuated levels of proinflammatory cytokines in the serum. Intriguingly, infected ASC(-/-) mice also displayed reduced levels of alpha interferon (IFN-α) and IgM in the serum, indicating the overall protective role of ASC in restricting WNV infection. However, brains from ASC(-/-) mice displayed unrestrained inflammation, including elevated levels of proinflammatory cytokines and chemokines, such as IFN-γ, CCL2, and CCL5, which correlated with more pronounced activation of the astrocytes, enhanced infiltration of peripheral immune cells in the CNS, and increased neuronal cell death. Collectively, our data provide new insights into the role of ASC as an essential modulator of inflammasome-dependent and -independent immune responses to effectively control WNV infection.

  12. Structural analysis of intermolecular interactions in the kinesin adaptor complex fasciculation and elongation protein zeta 1/ short coiled-coil protein (FEZ1/SCOCO).

    PubMed

    Alborghetti, Marcos Rodrigo; Furlan, Ariane da Silva; da Silva, Júlio César; Sforça, Maurício Luís; Honorato, Rodrigo Vargas; Granato, Daniela Campos; dos Santos Migueleti, Deivid Lucas; Neves, Jorge L; de Oliveira, Paulo Sergio Lopes; Paes-Leme, Adriana Franco; Zeri, Ana Carolina de Mattos; de Torriani, Iris Concepcion Linares; Kobarg, Jörg

    2013-01-01

    Cytoskeleton and protein trafficking processes, including vesicle transport to synapses, are key processes in neuronal differentiation and axon outgrowth. The human protein FEZ1 (fasciculation and elongation protein zeta 1 / UNC-76, in C. elegans), SCOCO (short coiled-coil protein / UNC-69) and kinesins (e.g. kinesin heavy chain / UNC116) are involved in these processes. Exploiting the feature of FEZ1 protein as a bivalent adapter of transport mediated by kinesins and FEZ1 protein interaction with SCOCO (proteins involved in the same path of axonal growth), we investigated the structural aspects of intermolecular interactions involved in this complex formation by NMR (Nuclear Magnetic Resonance), cross-linking coupled with mass spectrometry (MS), SAXS (Small Angle X-ray Scattering) and molecular modelling. The topology of homodimerization was accessed through NMR (Nuclear Magnetic Resonance) studies of the region involved in this process, corresponding to FEZ1 (92-194). Through studies involving the protein in its monomeric configuration (reduced) and dimeric state, we propose that homodimerization occurs with FEZ1 chains oriented in an anti-parallel topology. We demonstrate that the interaction interface of FEZ1 and SCOCO defined by MS and computational modelling is in accordance with that previously demonstrated for UNC-76 and UNC-69. SAXS and literature data support a heterotetrameric complex model. These data provide details about the interaction interfaces probably involved in the transport machinery assembly and open perspectives to understand and interfere in this assembly and its involvement in neuronal differentiation and axon outgrowth.

  13. Structural Analysis of Intermolecular Interactions in the Kinesin Adaptor Complex Fasciculation and Elongation Protein Zeta 1/ Short Coiled-Coil Protein (FEZ1/SCOCO)

    PubMed Central

    da Silva, Júlio César; Sforça, Maurício Luís; Honorato, Rodrigo Vargas; Granato, Daniela Campos; dos Santos Migueleti, Deivid Lucas; Neves, Jorge L.; de Oliveira, Paulo Sergio Lopes; Paes-Leme, Adriana Franco; Zeri, Ana Carolina de Mattos; de Torriani, Iris Concepcion Linares; Kobarg, Jörg

    2013-01-01

    Cytoskeleton and protein trafficking processes, including vesicle transport to synapses, are key processes in neuronal differentiation and axon outgrowth. The human protein FEZ1 (fasciculation and elongation protein zeta 1 / UNC-76, in C. elegans), SCOCO (short coiled-coil protein / UNC-69) and kinesins (e.g. kinesin heavy chain / UNC116) are involved in these processes. Exploiting the feature of FEZ1 protein as a bivalent adapter of transport mediated by kinesins and FEZ1 protein interaction with SCOCO (proteins involved in the same path of axonal growth), we investigated the structural aspects of intermolecular interactions involved in this complex formation by NMR (Nuclear Magnetic Resonance), cross-linking coupled with mass spectrometry (MS), SAXS (Small Angle X-ray Scattering) and molecular modelling. The topology of homodimerization was accessed through NMR (Nuclear Magnetic Resonance) studies of the region involved in this process, corresponding to FEZ1 (92-194). Through studies involving the protein in its monomeric configuration (reduced) and dimeric state, we propose that homodimerization occurs with FEZ1 chains oriented in an anti-parallel topology. We demonstrate that the interaction interface of FEZ1 and SCOCO defined by MS and computational modelling is in accordance with that previously demonstrated for UNC-76 and UNC-69. SAXS and literature data support a heterotetrameric complex model. These data provide details about the interaction interfaces probably involved in the transport machinery assembly and open perspectives to understand and interfere in this assembly and its involvement in neuronal differentiation and axon outgrowth. PMID:24116125

  14. Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis

    PubMed Central

    Paczkowski, Jon E.; Richardson, Brian C.; Fromme, J. Christopher

    2015-01-01

    Cargo adaptors sort transmembrane protein cargos into nascent vesicles by binding directly to their cytosolic domains. Recent studies have revealed previously unappreciated roles for cargo adaptors and regulatory mechanisms governing their function. The AP-1 and AP-2 clathrin adaptors switch between open and closed conformations that ensure they function at the right place at the right time. The exomer cargo adaptor plays a direct role in remodeling the membrane for vesicle fission. Several different cargo adaptors functioning in distinct trafficking pathways at the Golgi are similarly regulated through bivalent binding to the Arf1 GTPase, potentially enabling regulation by a threshold concentration of Arf1. Taken together, these studies highlight that cargo adaptors do more than just adapt cargos. PMID:25795254

  15. Endocytic adaptors – social networking at the plasma membrane

    PubMed Central

    Reider, Amanda; Wendland, Beverly

    2011-01-01

    Receptor-mediated endocytosis is a dynamic process that is crucial for maintaining plasma membrane composition and controlling cell-signaling pathways. A variety of entry routes have evolved to ensure that the vast array of molecules on the cell surface can be differentially internalized by endocytosis. This diversity has extended to include a growing list of endocytic adaptor proteins, which are thought to initiate the internalization process. The key function of adaptors is to select the proteins that should be removed from the cell surface. Thus, they have a central role in defining the physiology of a cell. This has made the study of adaptor proteins a very active area of research that is ripe for exciting future discoveries. Here, we review recent work on how adaptors mediate endocytosis and address the following questions: what characteristics define an endocytic adaptor protein? What roles do these proteins fulfill in addition to selecting cargo and how might adaptors function in clathrin-independent endocytic pathways? Through the findings discussed in this Commentary, we hope to stimulate further characterization of known adaptors and expansion of the known repertoire by identification of new adaptors. PMID:21536832

  16. A putative TIR domain protein from Helicobacter pylori is dimeric in solution and interacts with human TLR adaptor Myeloid Differentiation Primary Response 88.

    PubMed

    Türköz, Burcu Kaplan

    2017-03-06

    Helicobacter pylori is an important human pathogen capable of causing persistent infection with minimal immune response. The first line of defense during H. pylori infection is through gastric epithelial cells that present Toll like receptors (TLR), a family of bacterial proteins which share homology with the Toll/IL1 receptor (TIR) domain. Bacterial TIR proteins (BTP) mimic human TIR domain proteins and act on MyD88 signaling pathways to suppress TLR signaling. H. pylori might also produce a similar protein. A putative H. pylori BTP was found based on sequence homology and the corresponding gene hp1437 was inserted into an expression vector in fusion with an N-terminal cleavable 6his-tag. The recombinant protein, 6his-HP1437 was purified using nickel affinity chromatography with a yield of 8 mg/ L culture. Oligomerization of HP1437 was investigated by size-exclusion chromatography. Our results show that HP1437 forms dimers in solution similar to other BTPs. Furthermore, GST pull down assays identify an interaction between HP1437 and human TIR domain adaptor MyD88. This study suggests that HP1437 has the characteristic features of BTPs and may play a direct role in reduced immune response against H. pylori by binding to MyD88 and pave the way for an in-depth characterization of this putative novel H. pylori virulence factor.

  17. The Adaptor Complex AP-4 Regulates Vacuolar Protein Sorting at the trans-Golgi Network by Interacting with VACUOLAR SORTING RECEPTOR1.

    PubMed

    Fuji, Kentaro; Shirakawa, Makoto; Shimono, Yuki; Kunieda, Tadashi; Fukao, Yoichiro; Koumoto, Yasuko; Takahashi, Hideyuki; Hara-Nishimura, Ikuko; Shimada, Tomoo

    2016-01-01

    Adaptor protein (AP) complexes play critical roles in protein sorting among different post-Golgi pathways by recognizing specific cargo protein motifs. Among the five AP complexes (AP-1-AP-5) in plants, AP-4 is one of the most poorly understood; the AP-4 components, AP-4 cargo motifs, and AP-4 functional mechanism are not known. Here, we identify the AP-4 components and show that the AP-4 complex regulates receptor-mediated vacuolar protein sorting by recognizing VACUOLAR SORTING RECEPTOR1 (VSR1), which was originally identified as a sorting receptor for seed storage proteins to target protein storage vacuoles in Arabidopsis (Arabidopsis thaliana). From the vacuolar sorting mutant library GREEN FLUORESCENT SEED (GFS), we isolated three gfs mutants that accumulate abnormally high levels of VSR1 in seeds and designated them as gfs4, gfs5, and gfs6. Their responsible genes encode three (AP4B, AP4M, and AP4S) of the four subunits of the AP-4 complex, respectively, and an Arabidopsis mutant (ap4e) lacking the fourth subunit, AP4E, also had the same phenotype. Mass spectrometry demonstrated that these four proteins form a complex in vivo. The four mutants showed defects in the vacuolar sorting of the major storage protein 12S globulins, indicating a role for the AP-4 complex in vacuolar protein transport. AP4M bound to the tyrosine-based motif of VSR1. AP4M localized at the trans-Golgi network (TGN) subdomain that is distinct from the AP-1-localized TGN subdomain. This study provides a novel function for the AP-4 complex in VSR1-mediated vacuolar protein sorting at the specialized domain of the TGN.

  18. AP-1/σ1A and AP-1/σ1B adaptor-proteins differentially regulate neuronal early endosome maturation via the Rab5/Vps34-pathway

    PubMed Central

    Candiello, Ermes; Kratzke, Manuel; Wenzel, Dirk; Cassel, Dan; Schu, Peter

    2016-01-01

    The σ1 subunit of the AP-1 clathrin-coated-vesicle adaptor-protein complex is expressed as three isoforms. Tissues express σ1A and one of the σ1B and σ1C isoforms. Brain is the tissue with the highest σ1A and σ1B expression. σ1B-deficiency leads to severe mental retardation, accumulation of early endosomes in synapses and fewer synaptic vesicles, whose recycling is slowed down. AP-1/σ1A and AP-1/σ1B regulate maturation of these early endosomes into multivesicular body late endosomes, thereby controlling synaptic vesicle protein transport into a degradative pathway. σ1A binds ArfGAP1, and with higher affinity brain-specific ArfGAP1, which bind Rabex-5. AP-1/σ1A-ArfGAP1-Rabex-5 complex formation leads to more endosomal Rabex-5 and enhanced, Rab5GTP-stimulated Vps34 PI3-kinase activity, which is essential for multivesicular body endosome formation. Formation of AP-1/σ1A-ArfGAP1-Rabex-5 complexes is prevented by σ1B binding of Rabex-5 and the amount of endosomal Rabex-5 is reduced. AP-1 complexes differentially regulate endosome maturation and coordinate protein recycling and degradation, revealing a novel molecular mechanism by which they regulate protein transport besides their established function in clathrin-coated-vesicle formation. PMID:27411398

  19. AP-1/σ1A and AP-1/σ1B adaptor-proteins differentially regulate neuronal early endosome maturation via the Rab5/Vps34-pathway.

    PubMed

    Candiello, Ermes; Kratzke, Manuel; Wenzel, Dirk; Cassel, Dan; Schu, Peter

    2016-07-14

    The σ1 subunit of the AP-1 clathrin-coated-vesicle adaptor-protein complex is expressed as three isoforms. Tissues express σ1A and one of the σ1B and σ1C isoforms. Brain is the tissue with the highest σ1A and σ1B expression. σ1B-deficiency leads to severe mental retardation, accumulation of early endosomes in synapses and fewer synaptic vesicles, whose recycling is slowed down. AP-1/σ1A and AP-1/σ1B regulate maturation of these early endosomes into multivesicular body late endosomes, thereby controlling synaptic vesicle protein transport into a degradative pathway. σ1A binds ArfGAP1, and with higher affinity brain-specific ArfGAP1, which bind Rabex-5. AP-1/σ1A-ArfGAP1-Rabex-5 complex formation leads to more endosomal Rabex-5 and enhanced, Rab5(GTP)-stimulated Vps34 PI3-kinase activity, which is essential for multivesicular body endosome formation. Formation of AP-1/σ1A-ArfGAP1-Rabex-5 complexes is prevented by σ1B binding of Rabex-5 and the amount of endosomal Rabex-5 is reduced. AP-1 complexes differentially regulate endosome maturation and coordinate protein recycling and degradation, revealing a novel molecular mechanism by which they regulate protein transport besides their established function in clathrin-coated-vesicle formation.

  20. Comparative analysis of adaptor-mediated clathrin assembly reveals general principles for adaptor clustering

    PubMed Central

    Pucadyil, Thomas J.; Holkar, Sachin S.

    2016-01-01

    Clathrin-mediated endocytosis (CME) manages the sorting and uptake of the bulk of membrane proteins (or cargo) from the plasma membrane. CME is initiated by the formation of clathrin-coated pits (CCPs), in which adaptors nucleate clathrin assembly. Clathrin adaptors display diversity in both the type and number of evolutionarily conserved clathrin-binding boxes. How this diversity relates to the process of adaptor clustering as clathrin assembles around a growing pit remains unclear. Using real-time, fluorescence microscopy–based assays, we compare the formation kinetics and distribution of clathrin assemblies on membranes that display five unique clathrin adaptors. Correlations between equilibrium and kinetic parameters of clathrin assembly to the eventual adaptor distribution indicate that adaptor clustering is determined not by the amount of clathrin recruited or the degree of clathrin clustered but instead by the rate of clathrin assembly. Together our results emphasize the need to analyze kinetics of protein interactions to better understand mechanisms that regulate CME. PMID:27559129

  1. Induction of androgen formation in the male by a TAT-VDAC1 fusion peptide blocking 14-3-3ɛ protein adaptor and mitochondrial VDAC1 interactions.

    PubMed

    Aghazadeh, Yasaman; Martinez-Arguelles, Daniel B; Fan, Jinjiang; Culty, Martine; Papadopoulos, Vassilios

    2014-10-01

    Low testosterone (T), a major cause of male hypogonadism and infertility, is linked to mood changes, fatigue, osteoporosis, reduced bone-mass index, and aging. The treatment of choice, T replacement therapy, has been linked with increased risk for prostate cancer and luteinizing hormone (LH) suppression, and shown to lead to infertility, cardiovascular diseases, and obesity. Alternate methods to induce T with lower side effects are desirable. In search of the mechanisms regulating T synthesis in the testes, we identified the 14-3-3ɛ protein adaptor as a negative regulator of steroidogenesis. Steroidogenesis begins in mitochondria. 14-3-3ɛ interacts with the outer mitochondrial membrane voltage-dependent anion channel (VDAC1) protein, forming a scaffold that limits the availability of cholesterol for steroidogenesis. We report the development of a tool able to induce endogenous T formation. Peptides able to penetrate testes conjugated to 14-3-3ɛ site of interaction with VDAC1 blocked 14-3-3ɛ-VDAC1 interactions while at the same time increased VDAC1-translocator protein (18 kDa) interactions that induced steroid formation in rat testes, leading to increased serum T levels. These peptides rescued intratesticular and serum T formation in adult male rats treated with gonadotropin-releasing hormone antagonist, which dampened LH and T production.

  2. Induction of Androgen Formation in the Male by a TAT-VDAC1 Fusion Peptide Blocking 14-3-3ɛ Protein Adaptor and Mitochondrial VDAC1 Interactions

    PubMed Central

    Aghazadeh, Yasaman; Martinez-Arguelles, Daniel B; Fan, Jinjiang; Culty, Martine; Papadopoulos, Vassilios

    2014-01-01

    Low testosterone (T), a major cause of male hypogonadism and infertility, is linked to mood changes, fatigue, osteoporosis, reduced bone-mass index, and aging. The treatment of choice, T replacement therapy, has been linked with increased risk for prostate cancer and luteinizing hormone (LH) suppression, and shown to lead to infertility, cardiovascular diseases, and obesity. Alternate methods to induce T with lower side effects are desirable. In search of the mechanisms regulating T synthesis in the testes, we identified the 14-3-3ɛ protein adaptor as a negative regulator of steroidogenesis. Steroidogenesis begins in mitochondria. 14-3-3ɛ interacts with the outer mitochondrial membrane voltage-dependent anion channel (VDAC1) protein, forming a scaffold that limits the availability of cholesterol for steroidogenesis. We report the development of a tool able to induce endogenous T formation. Peptides able to penetrate testes conjugated to 14-3-3ɛ site of interaction with VDAC1 blocked 14-3-3ɛ-VDAC1 interactions while at the same time increased VDAC1-translocator protein (18 kDa) interactions that induced steroid formation in rat testes, leading to increased serum T levels. These peptides rescued intratesticular and serum T formation in adult male rats treated with gonadotropin-releasing hormone antagonist, which dampened LH and T production. PMID:24947306

  3. Molecular cloning of the mouse grb2 gene: differential interaction of the Grb2 adaptor protein with epidermal growth factor and nerve growth factor receptors.

    PubMed Central

    Suen, K L; Bustelo, X R; Pawson, T; Barbacid, M

    1993-01-01

    We report the isolation and molecular characterization of the mouse grb2 gene. The product of this gene, the Grb2 protein, is highly related to the Caenorhabditis elegans sem-5 gene product and the human GRB2 protein and displays the same SH3-SH2-SH3 structural motifs. In situ hybridization studies revealed that the mouse grb2 gene is widely expressed throughout embryonic development (E9.5 to P0). However, grb2 transcripts are not uniformly distributed, and in certain tissues (e.g., thymus) they appear to be regulated during development. Recent genetic and biochemical evidence has implicated the Grb2 protein in the signaling pathways that link cell surface tyrosine kinase receptors with Ras. We have investigated the association of the Grb2 protein with epidermal growth factor (EGF) and nerve growth factor (NGF) receptors in PC12 pheochromocytoma cells. EGF treatment of PC12 cells results in the rapid association of Grb2 with the activated EGF receptors, an interaction mediated by the Grb2 SH2 domain. However, Grb2 does not bind to NGF-activated Trk receptors. Mitogenic signaling of NGF in NIH 3T3 cells ectopically expressing Trk receptors also takes place without detectable association between Grb2 and Trk. These results suggest that whereas EGF and NGF can activate the Ras signaling pathway in PC12 cells, only the EGF receptor is likely to do so through a direct interaction with Grb2. Finally, binding studies with glutathione S-transferase fusion proteins indicate that Grb2 binds two distinct subsets of proteins which are individually recognized by its SH2 and SH3 domains. These observations add further support to the concept that Grb2 is a modular adaptor protein. Images PMID:7689150

  4. The association between the SH2-containing inositol polyphosphate 5-Phosphatase 2 (SHIP2) and the adaptor protein APS has an impact on biochemical properties of both partners.

    PubMed

    Onnockx, Sheela; De Schutter, Julie; Blockmans, Marianne; Xie, Jingwei; Jacobs, Christine; Vanderwinden, Jean-Marie; Erneux, Christophe; Pirson, Isabelle

    2008-01-01

    SHIP2 (SH2-containing inositol polyphosphate 5-phosphatase 2) is a phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) 5-phosphatase containing various motifs susceptible to mediate protein-protein interaction. In cell models, SHIP2 negatively regulates insulin signalling through its catalytic PtdIns(3,4,5)P(3) 5-phosphatase activity. We have previously reported that SHIP2 interacts with the c-Cbl associated protein (CAP) and c-Cbl, proteins implicated in the insulin cellular response regulating the small G protein TC10. The first steps of the TC10 pathway are the recruitment and tyrosine phosphorylation by the insulin receptor of the adaptor protein with Pleckstrin Homology and Src Homology 2 domains (APS). Herein, we show that SHIP2 can directly interact with APS in 3T3-L1 adipocytes and in transfected CHO-IR cells (Chinese hamster ovary cells stably transfected with the insulin receptor). Upon insulin stimulation, APS and SHIP2 are recruited to cell membranes as seen by immunofluorescence studies, which is consistent with their interaction. We also observed that SHIP2 negatively regulates APS insulin-induced tyrosine phosphorylation and consequently inhibits APS association with c-Cbl. APS, which specifically interacts with SHIP2, but not PTEN, in turn, increases the PtdIns(3,4,5)P(3) 5-phosphatase activity of SHIP2 in an inositol phosphatase assay. Co-transfection of SHIP2 and APS in CHO-IR cells further increases the inhibitory effect of SHIP2 on Akt insulin-induced phosphorylation. Therefore, the interaction between APS and SHIP2 provides to both proteins potential negative regulatory mechanisms to act on the insulin cascade.

  5. Role of adaptor proteins and clathrin in the trafficking of human kidney anion exchanger 1 (kAE1) to the cell surface.

    PubMed

    Junking, Mutita; Sawasdee, Nunghathai; Duangtum, Natapol; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2014-07-01

    Kidney anion exchanger 1 (kAE1) plays an important role in acid-base homeostasis by mediating chloride/bicarbornate (Cl-/HCO3-) exchange at the basolateral membrane of α-intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease - distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans-Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral-related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non-polarized kidney cells. By using RNA interference, co-immunoprecipitation, yellow fluorescent protein-based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin (but not AP-1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral-related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid-secreting α-intercalated cells.

  6. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions

    SciTech Connect

    Dougherty, Gerard W.; Chopp, Treasa; Qi Shengmei; Cutler, Mary Lou . E-mail: mcutler@usuhs.mil

    2005-05-15

    Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5 domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion.

  7. Differential Recognition Preferences of the Three Src Homology 3 (SH3) Domains from the Adaptor CD2-associated Protein (CD2AP) and Direct Association with Ras and Rab Interactor 3 (RIN3)*

    PubMed Central

    Rouka, Evgenia; Simister, Philip C.; Janning, Melanie; Kumbrink, Joerg; Konstantinou, Tassos; Muniz, João R. C.; Joshi, Dhira; O'Reilly, Nicola; Volkmer, Rudolf; Ritter, Brigitte; Knapp, Stefan; von Delft, Frank; Kirsch, Kathrin H.; Feller, Stephan M.

    2015-01-01

    CD2AP is an adaptor protein involved in membrane trafficking, with essential roles in maintaining podocyte function within the kidney glomerulus. CD2AP contains three Src homology 3 (SH3) domains that mediate multiple protein-protein interactions. However, a detailed comparison of the molecular binding preferences of each SH3 remained unexplored, as well as the discovery of novel interactors. Thus, we studied the binding properties of each SH3 domain to the known interactor Casitas B-lineage lymphoma protein (c-CBL), conducted a peptide array screen based on the recognition motif PxPxPR and identified 40 known or novel candidate binding proteins, such as RIN3, a RAB5-activating guanine nucleotide exchange factor. CD2AP SH3 domains 1 and 2 generally bound with similar characteristics and specificities, whereas the SH3-3 domain bound more weakly to most peptide ligands tested yet recognized an unusually extended sequence in ALG-2-interacting protein X (ALIX). RIN3 peptide scanning arrays revealed two CD2AP binding sites, recognized by all three SH3 domains, but SH3-3 appeared non-functional in precipitation experiments. RIN3 recruited CD2AP to RAB5a-positive early endosomes via these interaction sites. Permutation arrays and isothermal titration calorimetry data showed that the preferred binding motif is Px(P/A)xPR. Two high-resolution crystal structures (1.65 and 1.11 Å) of CD2AP SH3-1 and SH3-2 solved in complex with RIN3 epitopes 1 and 2, respectively, indicated that another extended motif is relevant in epitope 2. In conclusion, we have discovered novel interaction candidates for CD2AP and characterized subtle yet significant differences in the recognition preferences of its three SH3 domains for c-CBL, ALIX, and RIN3. PMID:26296892

  8. Differential Recognition Preferences of the Three Src Homology 3 (SH3) Domains from the Adaptor CD2-associated Protein (CD2AP) and Direct Association with Ras and Rab Interactor 3 (RIN3).

    PubMed

    Rouka, Evgenia; Simister, Philip C; Janning, Melanie; Kumbrink, Joerg; Konstantinou, Tassos; Muniz, João R C; Joshi, Dhira; O'Reilly, Nicola; Volkmer, Rudolf; Ritter, Brigitte; Knapp, Stefan; von Delft, Frank; Kirsch, Kathrin H; Feller, Stephan M

    2015-10-16

    CD2AP is an adaptor protein involved in membrane trafficking, with essential roles in maintaining podocyte function within the kidney glomerulus. CD2AP contains three Src homology 3 (SH3) domains that mediate multiple protein-protein interactions. However, a detailed comparison of the molecular binding preferences of each SH3 remained unexplored, as well as the discovery of novel interactors. Thus, we studied the binding properties of each SH3 domain to the known interactor Casitas B-lineage lymphoma protein (c-CBL), conducted a peptide array screen based on the recognition motif PxPxPR and identified 40 known or novel candidate binding proteins, such as RIN3, a RAB5-activating guanine nucleotide exchange factor. CD2AP SH3 domains 1 and 2 generally bound with similar characteristics and specificities, whereas the SH3-3 domain bound more weakly to most peptide ligands tested yet recognized an unusually extended sequence in ALG-2-interacting protein X (ALIX). RIN3 peptide scanning arrays revealed two CD2AP binding sites, recognized by all three SH3 domains, but SH3-3 appeared non-functional in precipitation experiments. RIN3 recruited CD2AP to RAB5a-positive early endosomes via these interaction sites. Permutation arrays and isothermal titration calorimetry data showed that the preferred binding motif is Px(P/A)xPR. Two high-resolution crystal structures (1.65 and 1.11 Å) of CD2AP SH3-1 and SH3-2 solved in complex with RIN3 epitopes 1 and 2, respectively, indicated that another extended motif is relevant in epitope 2. In conclusion, we have discovered novel interaction candidates for CD2AP and characterized subtle yet significant differences in the recognition preferences of its three SH3 domains for c-CBL, ALIX, and RIN3.

  9. The role of Drp1 adaptor proteins MiD49 and MiD51 in mitochondrial fission: implications for human disease.

    PubMed

    Atkins, Kathleen; Dasgupta, Asish; Chen, Kuang-Hueih; Mewburn, Jeff; Archer, Stephen L

    2016-11-01

    Mitochondrial morphology is governed by the balance of mitochondrial fusion, mediated by mitofusins and optic atrophy 1 (OPA1), and fission, mediated by dynamin-related protein 1 (Drp1). Disordered mitochondrial dynamics alters metabolism, proliferation, apoptosis and mitophagy, contributing to human diseases, including neurodegenerative syndromes, pulmonary arterial hypertension (PAH), cancer and ischemia/reperfusion injury. Post-translational regulation of Drp1 (by phosphorylation and SUMOylation) is an established means of modulating Drp1 activation and translocation to the outer mitochondrial membrane (OMM). This review focuses on Drp1 adaptor proteins that also regulate fission. The proteins include fission 1 (Fis1), mitochondrial fission factor (Mff) and mitochondrial dynamics proteins of 49 kDa and 51 kDa (MiD49, MiD51). Heterologous MiD overexpression sequesters inactive Drp1 on the OMM, promoting fusion; conversely, increased endogenous MiD creates focused Drp1 multimers that optimize OMM scission. The triggers that activate MiD-bound Drp1 in disease states are unknown; however, MiD51 has a unique capacity for ADP binding at its nucleotidyltransferase domain. Without ADP, MiD51 inhibits Drp1, whereas ADP promotes MiD51-mediated fission, suggesting a link between metabolism and fission. Confusion over whether MiDs mediate fusion (by sequestering inactive Drp1) or fission (by guiding Drp1 assembly) relates to a failure to consider cell types used and to distinguish endogenous compared with heterologous changes in expression. We speculate that endogenous MiDs serve as Drp1-binding partners that are dysregulated in disease states and may be important targets for inhibiting cell proliferation and ischemia/reperfusion injury. Moreover, it appears that the composition of the fission apparatus varies between disease states and amongst individuals. MiDs may be important targets for inhibiting cell proliferation and attenuating ischemia/reperfusion injury.

  10. Transforming growth factor-beta suppresses nonmetastatic colon cancer through Smad4 and adaptor protein ELF at an early stage of tumorigenesis.

    PubMed

    Tang, Yi; Katuri, Varalakshmi; Srinivasan, Radhika; Fogt, Franz; Redman, Robert; Anand, Girish; Said, Anan; Fishbein, Thomas; Zasloff, Michael; Reddy, E Premkumar; Mishra, Bibhuti; Mishra, Lopa

    2005-05-15

    Although transforming growth factor-beta (TGF-beta) is both a suppressor and promoter of tumorigenesis, its contribution to early tumor suppression and staging remains largely unknown. In search of the mechanism of early tumor suppression, we identified the adaptor protein ELF, a beta-spectrin from stem/progenitor cells committed to foregut lineage. ELF activates and modulates Smad4 activation of TGF-beta to confer cell polarity, to maintain cell architecture, and to inhibit epithelial-to-mesenchymal transition. Analysis of development of colon cancer in (adult) elf+/-/Smad4+/-, elf+/-, Smad4+/-, and gut epithelial cells from elf-/- mutant mouse embryos pinpoints the defect to hyperplasia/adenoma transition. Further analysis of the role of ELF in human colorectal cancer confirms reduced expression of ELF in Dukes' B1 stage tissues (P < 0.05) and of Smad4 in advanced colon cancers (P < 0.05). This study indicates that by modulating Smad 4, ELF has a key role in TGF-beta signaling in the suppression of early colon cancer.

  11. The adaptor protein SAP directly associates with PECAM-1 and regulates PECAM-1-mediated-cell adhesion in T-like cell lines.

    PubMed

    Proust, Richard; Crouin, Catherine; Gandji, Leslie Yewakon; Bertoglio, Jacques; Gesbert, Franck

    2014-04-01

    SAP is a small cytosolic adaptor protein expressed in hematopoietic lineages whose main function is to regulate intracellular signaling pathways induced by the triggering of members of the SLAM receptor family. In this paper, we have identified the adhesion molecule PECAM-1 as a new partner for SAP in a conditional yeast two-hybrid screen. PECAM-1 is an immunoglobulin-like molecule expressed by endothelial cells and leukocytes, which possesses both pro- and anti-inflammatory properties. However, little is known about PECAM-1 functions in T cells. We show that SAP directly and specifically interacts with the cytosolic tyrosine 686 of PECAM-1. We generated different T-like cell lines in which SAP or PECAM-1 are expressed or down modulated and we demonstrate that a diminished SAP expression correlates with a diminished PECAM-1-mediated adhesion. Although SAP has mainly been shown to associate with SLAM receptors, we evidence here that SAP is a new actor downstream of PECAM-1.

  12. The modular adaptor protein ARH is required for low density lipoprotein (LDL) binding and internalization but not for LDL receptor clustering in coated pits.

    PubMed

    Michaely, Peter; Li, Wei-Ping; Anderson, Richard G W; Cohen, Jonathan C; Hobbs, Helen H

    2004-08-06

    ARH is an adaptor protein required for efficient endocytosis of low density lipoprotein (LDL) receptors (LDLRs) in selected tissues. Individuals lacking ARH (ARH-/-) have severe hypercholesterolemia due to impaired hepatic clearance of LDL. Immortalized lymphocytes, but not fibroblasts, from ARH-deficient subjects fail to internalize LDL. To further define the role of ARH in LDLR function, we compared the subcellular distribution of the LDLR in lymphocytes from normal and ARH-/- subjects. In normal lymphocytes LDLRs were predominantly located in intracellular compartments, whereas in ARH-/- cells the receptors were almost exclusively on the plasma membrane. Biochemical assays and quantification of LDLR by electron microscopy indicated that ARH-/- lymphocytes had >20-fold more LDLR on the cell surface and a approximately 27-fold excess of LDLR outside of coated pits. The accumulation of LDLR on the cell surface was not due to failure of receptors to localize in coated pits since the number of LDLRs in coated pits was similar in ARH-/- and normal cells. Despite the dramatic increase in cell surface receptors, LDL binding was only 2-fold higher in the ARH-/- lymphocytes. These findings indicate that ARH is required not only for internalization of the LDL.LDLR complex but also for efficient binding of LDL to the receptor and suggest that ARH stabilizes the associations of the receptor with LDL and with the invaginating portion of the budding pit, thereby increasing the efficiency of LDL internalization.

  13. A novel class of antihyperlipidemic agents with low density lipoprotein receptor up-regulation via the adaptor protein autosomal recessive hypercholesterolemia.

    PubMed

    Asano, Shigehiro; Ban, Hitoshi; Tsuboya, Norie; Uno, Shinsaku; Kino, Kouichi; Ioriya, Katsuhisa; Kitano, Masafumi; Ueno, Yoshihide

    2010-04-22

    We have previously reported compound 2 as a inhibitor of acyl-coenzyme A:cholesterol O-acyltransferase (ACAT) and up-regulator of the low density lipoprotein receptor (LDL-R) expression. In this study we focused on compound 2, a unique LDL-R up-regulator, and describe the discovery of a novel class of up-regulators of LDL-R. Replacement the methylene urea linker in compound 2 with an acylsulfonamide linker kept a potent LDL-R up-regulatory activity, and subsequent optimization work gave compound 39 as a highly potent LDL-R up-regulator (39; EC(25) = 0.047 microM). Compound 39 showed no ACAT inhibitory activity even at 1 microM. The sodium salts of compound 39 reduced plasma total and LDL cholesterol levels in a dose-dependent manner in an experimental animal model of hyperlipidemia. Moreover, we revealed in this study using RNA interference that autosomal recessive hypercholesterolemia (ARH), an adaptor protein of LDL-R, is essential for compound 39 up-regulation of LDL-R expression.

  14. Disruption of adaptor protein 2μ (AP-2μ) in cochlear hair cells impairs vesicle reloading of synaptic release sites and hearing.

    PubMed

    Jung, SangYong; Maritzen, Tanja; Wichmann, Carolin; Jing, Zhizi; Neef, Andreas; Revelo, Natalia H; Al-Moyed, Hanan; Meese, Sandra; Wojcik, Sonja M; Panou, Iliana; Bulut, Haydar; Schu, Peter; Ficner, Ralf; Reisinger, Ellen; Rizzoli, Silvio O; Neef, Jakob; Strenzke, Nicola; Haucke, Volker; Moser, Tobias

    2015-11-03

    Active zones (AZs) of inner hair cells (IHCs) indefatigably release hundreds of vesicles per second, requiring each release site to reload vesicles at tens per second. Here, we report that the endocytic adaptor protein 2μ (AP-2μ) is required for release site replenishment and hearing. We show that hair cell-specific disruption of AP-2μ slows IHC exocytosis immediately after fusion of the readily releasable pool of vesicles, despite normal abundance of membrane-proximal vesicles and intact endocytic membrane retrieval. Sound-driven postsynaptic spiking was reduced in a use-dependent manner, and the altered interspike interval statistics suggested a slowed reloading of release sites. Sustained strong stimulation led to accumulation of endosome-like vacuoles, fewer clathrin-coated endocytic intermediates, and vesicle depletion of the membrane-distal synaptic ribbon in AP-2μ-deficient IHCs, indicating a further role of AP-2μ in clathrin-dependent vesicle reformation on a timescale of many seconds. Finally, we show that AP-2 sorts its IHC-cargo otoferlin. We propose that binding of AP-2 to otoferlin facilitates replenishment of release sites, for example, via speeding AZ clearance of exocytosed material, in addition to a role of AP-2 in synaptic vesicle reformation.

  15. The interaction of the cellular export adaptor protein Aly/REF with ICP27 contributes to the efficiency of herpes simplex virus 1 mRNA export.

    PubMed

    Tian, Xiaochen; Devi-Rao, Gayathri; Golovanov, Alexander P; Sandri-Goldin, Rozanne M

    2013-07-01

    Herpes simplex virus 1 (HSV-1) protein ICP27 enables viral mRNA export by accessing the cellular mRNA export receptor TAP/NXF, which guides mRNA through the nuclear pore complex. ICP27 binds viral mRNAs and interacts with TAP/NXF, providing a link to the cellular mRNA export pathway. ICP27 also interacts with the mRNA export adaptor protein Aly/REF, which binds cellular mRNAs and also interacts with TAP/NXF. Studies using small interfering RNA (siRNA) knockdown indicated that Aly/REF is not required for cellular mRNA export, and similar knockdown studies during HSV-1 infection led us to conclude that Aly/REF may be dispensable for viral RNA export. Recently, the structural basis of the interaction of ICP27 with Aly/REF was elucidated at atomic resolution, and it was shown that three ICP27 residues, W105, R107, and L108, interface with the RNA recognition motif (RRM) domain of Aly/REF. Here, to determine the role the interaction of ICP27 and Aly/REF plays during infection, these residues were mutated to alanine, and a recombinant virus, WRL-A, was constructed. Virus production was reduced about 10-fold during WRL-A infection, and export of ICP27 protein and most viral mRNAs was less efficient. We conclude that interaction of ICP27 with Aly/REF contributes to efficient viral mRNA export.

  16. Adaptor protein CRK induces epithelial–mesenchymal transition and metastasis of bladder cancer cells through HGF/c-Met feedback loop

    PubMed Central

    Matsumoto, Ryuji; Tsuda, Masumi; Wang, Lei; Maishi, Nako; Abe, Takashige; Kimura, Taichi; Tanino, Mishie; Nishihara, Hiroshi; Hida, Kyoko; Ohba, Yusuke; Shinohara, Nobuo; Nonomura, Katsuya; Tanaka, Shinya

    2015-01-01

    We have previously reported that an adaptor protein CRK, including CRK-I and CRK-II, plays essential roles in the malignant potential of various aggressive human cancers, suggesting the validity of targeting CRK in molecular targeted therapy of a wide range of cancers. Nevertheless, the role of CRK in human bladder cancer with marked invasion, characterized by distant metastasis and poor prognosis, remains obscure. In the present study, immunohistochemistry indicated a striking enhancement of CRK-I/-II, but not CRK-like, in human bladder cancer tissues compared to normal urothelium. We established CRK-knockdown bladder cancer cells using 5637 and UM-UC-3, which showed a significant decline in cell migration, invasion, and proliferation. It is noteworthy that an elimination of CRK conferred suppressed phosphorylation of c-Met and the downstream scaffold protein Gab1 in a hepatocyte growth factor-dependent and -independent manner. In epithelial–mesenchymal transition-related molecules, E-cadherin was upregulated by CRK elimination, whereas N-cadherin, vimentin, and Zeb1 were downregulated. A similar effect was observed following treatment with c-Met inhibitor SU11274. Depletion of CRK significantly decreased cell proliferation of 5637 and UM-UC-3, consistent with reduced activity of ERK. An orthotopic xenograft model with bioluminescent imaging revealed that CRK knockdown significantly attenuated not only tumor volume but also the number of circulating tumor cells, resulted in a complete abrogation of metastasis. Taken together, this evidence uncovered essential roles of CRK in invasive bladder cancer through the hepatocyte growth factor/c-Met/CRK feedback loop for epithelial–mesenchymal transition induction. Thus, CRK might be a potent molecular target in bladder cancer, particularly for preventing metastasis, leading to the resolution of clinically longstanding critical issues. PMID:25816892

  17. Calcyon, a mammalian specific NEEP21 family member, interacts with adaptor protein complex 3 (AP-3) and regulates targeting of AP-3 cargoes.

    PubMed

    Muthusamy, Nagendran; Faundez, Victor; Bergson, Clare

    2012-10-01

    Calcyon is a neural enriched, single transmembrane protein that interacts with clathrin light chain and stimulates clathrin assembly and clathrin-mediated endocytosis. A similar property is shared by the heterotetrameric adaptor protein (AP) complexes AP-1, AP-2, and AP-3 which recruit cargoes for insertion into clathrin coated transport vesicles. Here we report that AP medium (μ) subunits interact with a YXXØ-type tyrosine motif located at residues 133-136 in the cytoplasmic domain of calcyon. Site specific mutagenesis of the critical tyrosine and bulky hydrophobic residues tyrosine 133 and methionine 136 preferentially abrogated binding of the ubiquitous and neuronal isoforms of μ3, and also impacted μ1 and μ2 binding to a lesser degree. The relevance of these interactions was explored in vivo using mice harboring null alleles of calcyon. As seen in the mutagenesis studies, calcyon deletion in mice preferentially altered the subcellular distribution of AP-3 suggesting that calcyon could regulate membrane-bound pools of AP-3 and AP-3 function. To test this hypothesis, we focused on the hilar region of hippocampus, where levels of calcyon, AP-3, and AP-3 cargoes are abundant. We analyzed brain cryosections from control and calcyon null mice for zinc transporter 3 (ZnT3), and phosphatidylinositol-4-kinase type II alpha (PI4KIIα), two well-defined AP-3 cargoes. Confocal microscopy indicated that ZnT3 and PI4KIIα are significantly reduced in the hippocampal mossy fibers of calcyon knock-out brain, a phenotype previously described in AP-3 deficiencies. Altogether, our data suggest that calcyon directly interacts with μ3A and μ3B, and regulates the subcellular distribution of AP-3 and the targeting of AP-3 cargoes.

  18. CALCYON, A MAMMALIAN SPECIFIC NEEP21 FAMILY MEMBER, INTERACTS WITH ADAPTOR PROTEIN COMPLEX 3 (AP-3) AND REGULATES TARGETING OF AP-3 CARGOES

    PubMed Central

    Muthusamy, Nagendran; Faundez, Victor; Bergson, Clare

    2013-01-01

    Calcyon is a neural enriched, single transmembrane protein that interacts with clathrin light chain (CLC) and stimulates clathrin assembly and clathrin mediated endocytosis (CME). A similar property is shared by the heterotetrameric adaptor protein (AP) complexes AP-1, AP-2, and AP-3 which recruit cargoes for insertion into clathrin coated transport vesicles. Here we report that AP medium (µ) subunits interact with a YXXØ-type tyrosine motif located at residues 133–136 in the cytoplasmic domain of calcyon. Site specific mutagenesis of the critical tyrosine and bulky hydrophobic residues tyrosine 133 and methionine 136 preferentially abrogated binding of the ubiquitous and neuronal isoforms of µ3, and also impacted µ1 and µ2 binding but to a lesser degree. The relevance of these interactions was explored in vivo using mice harboring null-alleles of calcyon. As seen in the mutagenesis studies, calcyon deletion in mice preferentially altered the subcellular distribution of AP-3 suggesting that calcyon could regulate membrane-bound pools of AP-3 and AP-3 function. To test this hypothesis, we focused on the hilar region of hippocampus, where levels of calcyon, AP-3, and AP-3 cargoes are abundant. We analyzed brain cryosections from control and calcyon null mice for zinc transporter 3 (ZnT3), and phosphatidylinositol-4-kinase type II alpha (PI4KIIα), two well-defined AP-3 cargoes. Confocal microscopy indicated that ZnT3 and PI4KIIα are significantly reduced in the hippocampal mossy fibers of calcyon knock-out brain, a phenotype previously described in AP-3 deficiencies. Altogether, our data suggest that calcyon directly interacts with µ3A and µ3B, and regulates the subcellular distribution of AP-3 and the targeting of AP-3 cargoes. PMID:22650988

  19. Cell-based Fluorescence Complementation Reveals a Role for HIV-1 Nef Protein Dimerization in AP-2 Adaptor Recruitment and CD4 Co-receptor Down-regulation.

    PubMed

    Shu, Sherry T; Emert-Sedlak, Lori A; Smithgall, Thomas E

    2017-02-17

    The HIV-1 Nef accessory factor enhances viral infectivity, immune evasion, and AIDS progression. Nef triggers rapid down-regulation of CD4 via the endocytic adaptor protein 2 (AP-2) complex, a process linked to enhanced viral infectivity and immune escape. Here, we describe a bimolecular fluorescence complementation (BiFC) assay to visualize the interaction of Nef with AP-2 and CD4 in living cells. Interacting protein pairs were fused to complementary non-fluorescent fragments of YFP and co-expressed in 293T cells. Nef interactions with both CD4 and AP-2 resulted in complementation of YFP and a bright fluorescent signal by confocal microcopy that localized to the cell periphery. Co-expression of the AP-2 α subunit enhanced the Nef·AP-2 σ2 subunit BiFC signal and vice versa, suggesting that the AP-2 α-σ2 hemicomplex interacts cooperatively with Nef. Mutagenesis of Nef amino acids Arg-134, Glu-174, and Asp-175, which stabilize Nef for AP-2 α-σ2 binding in a recent co-crystal structure, substantially reduced AP-2 interaction without affecting CD4 binding. A dimerization-defective mutant of Nef failed to interact with either CD4 or AP-2 in the BiFC assay, indicating that Nef quaternary structure is required for CD4 and AP-2 recruitment as well as CD4 down-regulation. A small molecule previously shown to bind the Nef dimerization interface also reduced Nef interactions with AP-2 and CD4 and restored CD4 expression to the surface of HIV-infected cells. Our findings provide a mechanistic explanation for previous observations that dimerization-defective Nef mutants fail to down-regulate CD4 and validate the Nef dimerization interface as a target site for antiretroviral drug development.

  20. An adaptor hierarchy regulates proteolysis during a bacterial cell cycle

    PubMed Central

    Joshi, Kamal Kishore; Bergé, Matthieu; Radhakrishnan, Sunish Kumar; Viollier, Patrick Henri; Chien, Peter

    2015-01-01

    Summary Regulated protein degradation is essential. The timed destruction of crucial proteins by the ClpXP protease drives cell-cycle progression in the bacterium Caulobacter crescentus. Although ClpXP is active alone, additional factors are inexplicably required for cell-cycle dependent proteolysis. Here, we show that these factors constitute an adaptor hierarchy where different substrates are destroyed based on the degree of adaptor assembly. The hierarchy builds upon priming of ClpXP by the adaptor CpdR, which promotes degradation of one class of substrates and also recruits the adaptor RcdA to degrade a second class of substrates. Adding the PopA adaptor promotes destruction of a third class of substrates, while inhibiting degradation of the second class. We dissect RcdA to generate bespoke adaptors, identifying critical substrate elements needed for RcdA recognition and uncovering additional cell-cycle dependent ClpXP substrates. Our work reveals how hierarchical adaptors and primed proteases orchestrate regulated proteolysis during bacterial cell-cycle progression. PMID:26451486

  1. SmShb, the SH2-Containing Adaptor Protein B of Schistosoma mansoni Regulates Venus Kinase Receptor Signaling Pathways.

    PubMed

    Morel, Marion; Vanderstraete, Mathieu; Cailliau, Katia; Hahnel, Steffen; Grevelding, Christoph G; Dissous, Colette

    2016-01-01

    Venus kinase receptors (VKRs) are invertebrate receptor tyrosine kinases (RTKs) formed by an extracellular Venus Fly Trap (VFT) ligand binding domain associated via a transmembrane domain with an intracellular tyrosine kinase (TK) domain. Schistosoma mansoni VKRs, SmVKR1 and SmVKR2, are both implicated in reproductive activities of the parasite. In this work, we show that the SH2 domain-containing protein SmShb is a partner of the phosphorylated form of SmVKR1. Expression of these proteins in Xenopus oocytes allowed us to demonstrate that the SH2 domain of SmShb interacts with the phosphotyrosine residue (pY979) located in the juxtamembrane region of SmVKR1. This interaction leads to phosphorylation of SmShb on tyrosines and promotes SmVKR1 signaling towards the JNK pathway. SmShb transcripts are expressed in all parasite stages and they were found in ovary and testes of adult worms, suggesting a possible colocalization of SmShb and SmVKR1 proteins. Silencing of SmShb in adult S. mansoni resulted in an accumulation of mature sperm in testes, indicating a possible role of SmShb in gametogenesis.

  2. SmShb, the SH2-Containing Adaptor Protein B of Schistosoma mansoni Regulates Venus Kinase Receptor Signaling Pathways

    PubMed Central

    Morel, Marion; Vanderstraete, Mathieu; Cailliau, Katia; Hahnel, Steffen; Grevelding, Christoph G.; Dissous, Colette

    2016-01-01

    Venus kinase receptors (VKRs) are invertebrate receptor tyrosine kinases (RTKs) formed by an extracellular Venus Fly Trap (VFT) ligand binding domain associated via a transmembrane domain with an intracellular tyrosine kinase (TK) domain. Schistosoma mansoni VKRs, SmVKR1 and SmVKR2, are both implicated in reproductive activities of the parasite. In this work, we show that the SH2 domain-containing protein SmShb is a partner of the phosphorylated form of SmVKR1. Expression of these proteins in Xenopus oocytes allowed us to demonstrate that the SH2 domain of SmShb interacts with the phosphotyrosine residue (pY979) located in the juxtamembrane region of SmVKR1. This interaction leads to phosphorylation of SmShb on tyrosines and promotes SmVKR1 signaling towards the JNK pathway. SmShb transcripts are expressed in all parasite stages and they were found in ovary and testes of adult worms, suggesting a possible colocalization of SmShb and SmVKR1 proteins. Silencing of SmShb in adult S. mansoni resulted in an accumulation of mature sperm in testes, indicating a possible role of SmShb in gametogenesis. PMID:27636711

  3. Scaffold functions of 14-3-3 adaptors in B cell immunoglobulin class switch DNA recombination.

    PubMed

    Lam, Tonika; Thomas, Lisa M; White, Clayton A; Li, Guideng; Pone, Egest J; Xu, Zhenming; Casali, Paolo

    2013-01-01

    Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5'-AGCT-3' repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S-S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180-198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.

  4. The adaptor protein SAP regulates type II NKT-cell development, cytokine production, and cytotoxicity against lymphoma.

    PubMed

    Weng, Xiufang; Liao, Chia-Min; Bagchi, Sreya; Cardell, Susanna L; Stein, Paul L; Wang, Chyung-Ru

    2014-12-01

    CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT-cell TCR transgenic mouse model, we demonstrated that CD1d-expressing hematopoietic cells, but not thymic epithelial cells, meditate efficient selection of type II NKT cells. Furthermore, we showed that SAP regulates type II NKT-cell development by controlling early growth response 2 protein and promyelocytic leukemia zinc finger expression. SAP-deficient 24αβ transgenic T cells (24αβ T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αβ T cells was associated with reduced IFN regulatory factor 4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP.

  5. The Mu Subunit of Plasmodium falciparum Clathrin-Associated Adaptor Protein 2 Modulates In Vitro Parasite Response to Artemisinin and Quinine

    PubMed Central

    Henriques, Gisela; van Schalkwyk, Donelly A.; Burrow, Rebekah; Warhurst, David C.; Thompson, Eloise; Baker, David A.; Fidock, David A.; Hallett, Rachel; Flueck, Christian

    2015-01-01

    The emergence of drug-resistant parasites is a serious threat faced by malaria control programs. Understanding the genetic basis of resistance is critical to the success of treatment and intervention strategies. A novel locus associated with antimalarial resistance, ap2-mu (encoding the mu chain of the adaptor protein 2 [AP2] complex), was recently identified in studies on the rodent malaria parasite Plasmodium chabaudi (pcap2-mu). Furthermore, analysis in Kenyan malaria patients of polymorphisms in the Plasmodium falciparum ap2-mu homologue, pfap2-mu, found evidence that differences in the amino acid encoded by codon 160 are associated with enhanced parasite survival in vivo following combination treatments which included artemisinin derivatives. Here, we characterize the role of pfap2-mu in mediating the in vitro antimalarial drug response of P. falciparum by generating transgenic parasites constitutively expressing codon 160 encoding either the wild-type Ser (Ser160) or the Asn mutant (160Asn) form of pfap2-mu. Transgenic parasites carrying the pfap2-mu 160Asn allele were significantly less sensitive to dihydroartemisinin using a standard 48-h in vitro test, providing direct evidence of an altered parasite response to artemisinin. Our data also provide evidence that pfap2-mu variants can modulate parasite sensitivity to quinine. No evidence was found that pfap2-mu variants contribute to the slow-clearance phenotype exhibited by P. falciparum in Cambodian patients treated with artesunate monotherapy. These findings provide compelling evidence that pfap2-mu can modulate P. falciparum responses to multiple drugs. We propose that this gene should be evaluated further as a potential molecular marker of antimalarial resistance. PMID:25691625

  6. The Mu subunit of Plasmodium falciparum clathrin-associated adaptor protein 2 modulates in vitro parasite response to artemisinin and quinine.

    PubMed

    Henriques, Gisela; van Schalkwyk, Donelly A; Burrow, Rebekah; Warhurst, David C; Thompson, Eloise; Baker, David A; Fidock, David A; Hallett, Rachel; Flueck, Christian; Sutherland, Colin J

    2015-05-01

    The emergence of drug-resistant parasites is a serious threat faced by malaria control programs. Understanding the genetic basis of resistance is critical to the success of treatment and intervention strategies. A novel locus associated with antimalarial resistance, ap2-mu (encoding the mu chain of the adaptor protein 2 [AP2] complex), was recently identified in studies on the rodent malaria parasite Plasmodium chabaudi (pcap2-mu). Furthermore, analysis in Kenyan malaria patients of polymorphisms in the Plasmodium falciparum ap2-mu homologue, pfap2-mu, found evidence that differences in the amino acid encoded by codon 160 are associated with enhanced parasite survival in vivo following combination treatments which included artemisinin derivatives. Here, we characterize the role of pfap2-mu in mediating the in vitro antimalarial drug response of P. falciparum by generating transgenic parasites constitutively expressing codon 160 encoding either the wild-type Ser (Ser160) or the Asn mutant (160Asn) form of pfap2-mu. Transgenic parasites carrying the pfap2-mu 160Asn allele were significantly less sensitive to dihydroartemisinin using a standard 48-h in vitro test, providing direct evidence of an altered parasite response to artemisinin. Our data also provide evidence that pfap2-mu variants can modulate parasite sensitivity to quinine. No evidence was found that pfap2-mu variants contribute to the slow-clearance phenotype exhibited by P. falciparum in Cambodian patients treated with artesunate monotherapy. These findings provide compelling evidence that pfap2-mu can modulate P. falciparum responses to multiple drugs. We propose that this gene should be evaluated further as a potential molecular marker of antimalarial resistance.

  7. Direct interactions of adaptor protein complexes 1 and 2 with the copper transporter ATP7A mediate its anterograde and retrograde trafficking

    PubMed Central

    Yi, Ling; Kaler, Stephen G.

    2015-01-01

    ATP7A is a P-type ATPase in which diverse mutations lead to X-linked recessive Menkes disease or occipital horn syndrome. Recently, two previously unknown ATP7A missense mutations, T994I and P1386S, were shown to cause an isolated distal motor neuropathy without clinical or biochemical features of other ATP7A disorders. These mutant alleles cause subtle defects in ATP7A intracellular trafficking, resulting in preferential plasma membrane localization compared with wild-type ATP7A. We reported previously that ATP7AP1386S causes unstable insertion of the eighth and final transmembrane segment, preventing proper position of the carboxyl-terminal tail in a proportion of mutant molecules. Here, we utilize this and other naturally occurring and engineered mutant ATP7A alleles to identify mechanisms of normal ATP7A trafficking. We show that adaptor protein (AP) complexes 1 and 2 physically interact with ATP7A and that binding is mediated in part by a carboxyl-terminal di-leucine motif. In contrast to other ATP7A missense mutations, ATP7AP1386S partially disturbs interactions with both APs, leading to abnormal axonal localization in transfected NSC-34 motor neurons and altered calcium-signaling following glutamate stimulation. Our results imply that AP-1 normally tethers ATP7A at the trans-Golgi network in the somatodendritic segments of motor neurons and that alterations affecting the ATP7A carboxyl-terminal tail induce release of the copper transporter to the axons or axonal membranes. The latter effects are intensified by diminished interaction with AP-2, impeding ATP7A retrograde trafficking. Taken together, these findings further illuminate the normal molecular mechanisms of ATP7A trafficking and suggest a pathophysiological basis for ATP7A-related distal motor neuropathy. PMID:25574028

  8. A combined LDL receptor/LDL receptor adaptor protein 1 mutation as the cause for severe familial hypercholesterolemia.

    PubMed

    Soufi, Muhidien; Rust, Stephan; Walter, Michael; Schaefer, Juergen R

    2013-05-25

    Familial hypercholesterolemia (FH) results from impaired catabolism of plasma low density lipoproteins (LDL), thus leading to high cholesterol, atherosclerosis, and a high risk of premature myocardial infarction. FH is commonly caused by defects of the LDL receptor or its main ligand apoB, together mediating cellular uptake and clearance of plasma LDL. In some cases FH is inherited by mutations in the genes of PCSK9 and LDLRAP1 (ARH) in a dominant or recessive trait. The encoded proteins are required for LDL receptor stability and internalization within the LDLR pathway. To detect the underlying genetic defect in a family of Turkish descent showing unregular inheritance of severe FH, we screened the four candidate genes by denaturing gradient gel electrophoresis (DGGE) mutation analysis. We identified different combinatory mixtures of LDLR- and LDLRAP1-gene defects as the cause for severe familial hypercholesterolemia in this family. We also show for the first time that a heterozygous LDLR mutation combined with a homozygous LDLRAP1 mutation produces a more severe hypercholesterolemia phenotype in the same family than a homozygous LDLR mutation alone.

  9. Stac adaptor proteins regulate trafficking and function of muscle and neuronal L-type Ca2+ channels.

    PubMed

    Polster, Alexander; Perni, Stefano; Bichraoui, Hicham; Beam, Kurt G

    2015-01-13

    Excitation-contraction (EC) coupling in skeletal muscle depends upon trafficking of CaV1.1, the principal subunit of the dihydropyridine receptor (DHPR) (L-type Ca(2+) channel), to plasma membrane regions at which the DHPRs interact with type 1 ryanodine receptors (RyR1) in the sarcoplasmic reticulum. A distinctive feature of this trafficking is that CaV1.1 expresses poorly or not at all in mammalian cells that are not of muscle origin (e.g., tsA201 cells), in which all of the other nine CaV isoforms have been successfully expressed. Here, we tested whether plasma membrane trafficking of CaV1.1 in tsA201 cells is promoted by the adapter protein Stac3, because recent work has shown that genetic deletion of Stac3 in skeletal muscle causes the loss of EC coupling. Using fluorescently tagged constructs, we found that Stac3 and CaV1.1 traffic together to the tsA201 plasma membrane, whereas CaV1.1 is retained intracellularly when Stac3 is absent. Moreover, L-type Ca(2+) channel function in tsA201 cells coexpressing Stac3 and CaV1.1 is quantitatively similar to that in myotubes, despite the absence of RyR1. Although Stac3 is not required for surface expression of CaV1.2, the principle subunit of the cardiac/brain L-type Ca(2+) channel, Stac3 does bind to CaV1.2 and, as a result, greatly slows the rate of current inactivation, with Stac2 acting similarly. Overall, these results indicate that Stac3 is an essential chaperone of CaV1.1 in skeletal muscle and that in the brain, Stac2 and Stac3 may significantly modulate CaV1.2 function.

  10. Structural Basis for Small G Protein Effector Interaction of Ras-related Protein 1 (Rap1) and Adaptor Protein Krev Interaction Trapped 1 (KRIT1)

    SciTech Connect

    Li, Xiaofeng; Zhang, Rong; Draheim, Kyle M.; Liu, Weizhi; Calderwood, David A.; Boggon, Titus J.

    2012-09-17

    Cerebral cavernous malformations (CCMs) affect 0.1-0.5% of the population resulting in leaky vasculature and severe neurological defects. KRIT1 (Krev interaction trapped-1) mutations associate with {approx}40% of familial CCMs. KRIT1 is an effector of Ras-related protein 1 (Rap1) GTPase. Rap1 relocalizes KRIT1 from microtubules to cell membranes to impact integrin activation, potentially important for CCM pathology. We report the 1.95 {angstrom} co-crystal structure of KRIT1 FERM domain in complex with Rap1. Rap1-KRIT1 interaction encompasses an extended surface, including Rap1 Switch I and II and KRIT1 FERM F1 and F2 lobes. Rap1 binds KRIT1-F1 lobe using a GTPase-ubiquitin-like fold interaction but binds KRIT1-F2 lobe by a novel interaction. Point mutagenesis confirms the interaction. High similarity between KRIT1-F2/F3 and talin is revealed. Additionally, the mechanism for FERM domains acting as GTPase effectors is suggested. Finally, structure-based alignment of each lobe suggests classification of FERM domains as ERM-like and TMFK-like (talin-myosin-FAK-KRIT-like) and that FERM lobes resemble domain 'modules.'

  11. The Clathrin Adaptor Proteins ARH, Dab2, and Numb Play Distinct Roles in Niemann-Pick C1-Like 1 Versus Low Density Lipoprotein Receptor-mediated Cholesterol Uptake*

    PubMed Central

    Wei, Jian; Fu, Zhen-Yan; Li, Pei-Shan; Miao, Hong-Hua; Li, Bo-Liang; Ma, Yi-Tong; Song, Bao-Liang

    2014-01-01

    The uptake of circulating low density lipoproteins (LDL) is mediated by LDL receptor (LDLR) through clathrin-dependent endocytosis. At the early stage of this process, adaptor proteins ARH and Dab2 specifically bind the endocytic signal motif in LDLR and recruit clathrin/AP2 to initiate internalization. On the other hand, intestinal cholesterol is absorbed by Niemann-Pick C1-Like 1 (NPC1L1) through clathrin-dependent endocytosis. Another adaptor protein, Numb recognizes the endocytic motif in NPC1L1 C terminus and couples NPC1L1 to endocytic machinery. The ARH, Dab2, and Numb proteins contain a homogeneous phosphotyrosine binding (PTB) domain that directly binds endocytic motifs. Because ARH, Dab2, and Numb are all PTB domain family members, the emerging mystery is whether these adaptors act complementally in LDLR and NPC1L1 endocytosis. Here, we found that ARH and Dab2 did not bind NPC1L1 and were not required for NPC1L1 internalization. Similarly, Numb lacked the ability to interact with the LDLR C terminus and was dispensable for LDL uptake. Only the Numb isoforms with shorter PTB domain could facilitate NPC1L1 endocytosis. Besides the reported function in intestinal cholesterol absorption, Numb also mediated cholesterol reabsorption from bile in liver. We further identified a Numb variant with G595D substitution in humans of low blood LDL-cholesterol. The G595D substitution impaired NPC1L1 internalization and cholesterol reabsorption, due to attenuating affinity of Numb to clathrin/AP2. These results demonstrate that Numb specifically regulates NPC1L1-mediated cholesterol absorption both in human intestine and liver, distinct from ARH and Dab2, which selectively participate in LDLR-mediated LDL uptake. PMID:25331956

  12. The clathrin adaptor proteins ARH, Dab2, and numb play distinct roles in Niemann-Pick C1-Like 1 versus low density lipoprotein receptor-mediated cholesterol uptake.

    PubMed

    Wei, Jian; Fu, Zhen-Yan; Li, Pei-Shan; Miao, Hong-Hua; Li, Bo-Liang; Ma, Yi-Tong; Song, Bao-Liang

    2014-11-28

    The uptake of circulating low density lipoproteins (LDL) is mediated by LDL receptor (LDLR) through clathrin-dependent endocytosis. At the early stage of this process, adaptor proteins ARH and Dab2 specifically bind the endocytic signal motif in LDLR and recruit clathrin/AP2 to initiate internalization. On the other hand, intestinal cholesterol is absorbed by Niemann-Pick C1-Like 1 (NPC1L1) through clathrin-dependent endocytosis. Another adaptor protein, Numb recognizes the endocytic motif in NPC1L1 C terminus and couples NPC1L1 to endocytic machinery. The ARH, Dab2, and Numb proteins contain a homogeneous phosphotyrosine binding (PTB) domain that directly binds endocytic motifs. Because ARH, Dab2, and Numb are all PTB domain family members, the emerging mystery is whether these adaptors act complementally in LDLR and NPC1L1 endocytosis. Here, we found that ARH and Dab2 did not bind NPC1L1 and were not required for NPC1L1 internalization. Similarly, Numb lacked the ability to interact with the LDLR C terminus and was dispensable for LDL uptake. Only the Numb isoforms with shorter PTB domain could facilitate NPC1L1 endocytosis. Besides the reported function in intestinal cholesterol absorption, Numb also mediated cholesterol reabsorption from bile in liver. We further identified a Numb variant with G595D substitution in humans of low blood LDL-cholesterol. The G595D substitution impaired NPC1L1 internalization and cholesterol reabsorption, due to attenuating affinity of Numb to clathrin/AP2. These results demonstrate that Numb specifically regulates NPC1L1-mediated cholesterol absorption both in human intestine and liver, distinct from ARH and Dab2, which selectively participate in LDLR-mediated LDL uptake.

  13. Adaptor protein-2 sigma subunit mutations causing familial hypocalciuric hypercalcaemia type 3 (FHH3) demonstrate genotype–phenotype correlations, codon bias and dominant-negative effects

    PubMed Central

    Hannan, Fadil M.; Howles, Sarah A.; Rogers, Angela; Cranston, Treena; Gorvin, Caroline M.; Babinsky, Valerie N.; Reed, Anita A.; Thakker, Clare E.; Bockenhauer, Detlef; Brown, Rosalind S.; Connell, John M.; Cook, Jacqueline; Darzy, Ken; Ehtisham, Sarah; Graham, Una; Hulse, Tony; Hunter, Steven J.; Izatt, Louise; Kumar, Dhavendra; McKenna, Malachi J.; McKnight, John A.; Morrison, Patrick J.; Mughal, M. Zulf; O'Halloran, Domhnall; Pearce, Simon H.; Porteous, Mary E.; Rahman, Mushtaqur; Richardson, Tristan; Robinson, Robert; Scheers, Isabelle; Siddique, Haroon; van't Hoff, William G.; Wang, Timothy; Whyte, Michael P.; Nesbit, M. Andrew; Thakker, Rajesh V.

    2015-01-01

    The adaptor protein-2 sigma subunit (AP2σ2) is pivotal for clathrin-mediated endocytosis of plasma membrane constituents such as the calcium-sensing receptor (CaSR). Mutations of the AP2σ2 Arg15 residue result in familial hypocalciuric hypercalcaemia type 3 (FHH3), a disorder of extracellular calcium (Ca2+o) homeostasis. To elucidate the role of AP2σ2 in Ca2+o regulation, we investigated 65 FHH probands, without other FHH-associated mutations, for AP2σ2 mutations, characterized their functional consequences and investigated the genetic mechanisms leading to FHH3. AP2σ2 mutations were identified in 17 probands, comprising 5 Arg15Cys, 4 Arg15His and 8 Arg15Leu mutations. A genotype–phenotype correlation was observed with the Arg15Leu mutation leading to marked hypercalcaemia. FHH3 probands harboured additional phenotypes such as cognitive dysfunction. All three FHH3-causing AP2σ2 mutations impaired CaSR signal transduction in a dominant-negative manner. Mutational bias was observed at the AP2σ2 Arg15 residue as other predicted missense substitutions (Arg15Gly, Arg15Pro and Arg15Ser), which also caused CaSR loss-of-function, were not detected in FHH probands, and these mutations were found to reduce the numbers of CaSR-expressing cells. FHH3 probands had significantly greater serum calcium (sCa) and magnesium (sMg) concentrations with reduced urinary calcium to creatinine clearance ratios (CCCR) in comparison with FHH1 probands with CaSR mutations, and a calculated index of sCa × sMg/100 × CCCR, which was ≥ 5.0, had a diagnostic sensitivity and specificity of 83 and 86%, respectively, for FHH3. Thus, our studies demonstrate AP2σ2 mutations to result in a more severe FHH phenotype with genotype–phenotype correlations, and a dominant-negative mechanism of action with mutational bias at the Arg15 residue. PMID:26082470

  14. The tyrosine-sorting motif of the vacuolar sorting receptor VSR4 from Arabidopsis thaliana, which is involved in the interaction between VSR4 and AP1M2, μ1-adaptin type 2 of clathrin adaptor complex 1 subunits, participates in the post-Golgi sorting of VSR4.

    PubMed

    Nishimura, Kohji; Matsunami, Erika; Yoshida, Shohei; Kohata, Shuhei; Yamauchi, Junji; Jisaka, Mitsuo; Nagaya, Tsutomu; Yokota, Kazushige; Nakagawa, Tsuyoshi

    2016-01-01

    μ1-Adaptin of adaptor protein (AP) 1 complex, AP1M, is generally accepted to load cargo proteins into clathrin-coated vesicles (CCVs) at the trans-Golgi network through its binding to cargo-recognition sequences (CRSs). Plant vacuolar-sorting receptors (VSRs) function in sorting vacuolar proteins, which are reportedly mediated by CCV. We herein investigated the involvement of CRSs of Arabidopsis thaliana VSR4 in the sorting of VSR4. The results obtained showed the increased localization of VSR4 at the plasma membrane or vacuoles by mutations in CRSs including the tyrosine-sorting motif YMPL or acidic dileucine-like motif EIRAIM, respectively. Interaction analysis using the bimolecular fluorescence complementation (BiFC) system, V10-BiFC, which we developed, indicated an interaction between VSR4 and AP1M2, AP1M type 2, which was attenuated by a YMPL mutation, but not influenced by an EIRAIM mutation. These results demonstrated the significance of the recognition of YMPL in VSR4 by AP1M2 for the post-Golgi sorting of VSR4.

  15. Noncanonical Role of the PDZ4 Domain of the Adaptor Protein PDZK1 in the Regulation of the Hepatic High Density Lipoprotein Receptor Scavenger Receptor Class B, Type I (SR-BI)*

    PubMed Central

    Tsukamoto, Kosuke; Wales, Thomas E.; Daniels, Kathleen; Pal, Rinku; Sheng, Ren; Cho, Wonhwa; Stafford, Walter; Engen, John R.; Krieger, Monty; Kocher, Olivier

    2013-01-01

    The four PDZ (PDZ1 to PDZ4) domain-containing adaptor protein PDZK1 controls the expression, localization, and function of the HDL receptor scavenger receptor class B, type I (SR-BI), in hepatocytes in vivo. This control depends on both the PDZ4 domain and the binding of SR-BI's cytoplasmic C terminus to the canonical peptide-binding sites of either the PDZ1 or PDZ3 domain (no binding to PDZ2 or PDZ4). Using transgenic mice expressing in the liver domain deletion (ΔPDZ2 or ΔPDZ3), domain replacement (PDZ2→1), or target peptide binding-negative (PDZ4(G389P)) mutants of PDZK1, we found that neither PDZ2 nor PDZ3 nor the canonical target peptide binding activity of PDZ4 were necessary for hepatic SR-BI regulatory activity. Immunohistochemical studies established that the localization of PDZK1 on hepatocyte cell surface membranes in vivo is dependent on its PDZ4 domain and the presence of SR-BI. Analytical ultracentrifugation and hydrogen deuterium exchange mass spectrometry suggested that the requirement of PDZ4 for localization and SR-BI regulation is not due to PDZ4-mediated oligomerization or induction of conformational changes in the PDZ123 portion of PDZK1. However, surface plasmon resonance analysis showed that PDZ4, but not the other PDZ domains, can bind vesicles that mimic the plasma membrane. Thus, PDZ4 may potentiate PDZK1's regulation of SR-BI by promoting its lipid-mediated attachment to the cytoplasmic membrane. Our results show that not all of the PDZ domains of a multi-PDZ domain-containing adaptor protein are required for its biological activities and that both canonical target peptide binding and noncanonical (peptide binding-independent) capacities of PDZ domains may be employed by a single such adaptor for optimal in vivo activity. PMID:23720744

  16. Cell-surface Attachment of Bacterial Multienzyme Complexes Involves Highly Dynamic Protein-Protein Anchors*

    PubMed Central

    Cameron, Kate; Najmudin, Shabir; Alves, Victor D.; Bayer, Edward A.; Smith, Steven P.; Bule, Pedro; Waller, Helen; Ferreira, Luís M. A.; Gilbert, Harry J.; Fontes, Carlos M. G. A.

    2015-01-01

    Protein-protein interactions play a pivotal role in the assembly of the cellulosome, one of nature's most intricate nanomachines dedicated to the depolymerization of complex carbohydrates. The integration of cellulosomal components usually occurs through the binding of type I dockerin modules located at the C terminus of the enzymes to cohesin modules located in the primary scaffoldin subunit. Cellulosomes are typically recruited to the cell surface via type II cohesin-dockerin interactions established between primary and cell-surface anchoring scaffoldin subunits. In contrast with type II interactions, type I dockerins usually display a dual binding mode that may allow increased conformational flexibility during cellulosome assembly. Acetivibrio cellulolyticus produces a highly complex cellulosome comprising an unusual adaptor scaffoldin, ScaB, which mediates the interaction between the primary scaffoldin, ScaA, through type II cohesin-dockerin interactions and the anchoring scaffoldin, ScaC, via type I cohesin-dockerin interactions. Here, we report the crystal structure of the type I ScaB dockerin in complex with a type I ScaC cohesin in two distinct orientations. The data show that the ScaB dockerin displays structural symmetry, reflected by the presence of two essentially identical binding surfaces. The complex interface is more extensive than those observed in other type I complexes, which results in an ultra-high affinity interaction (Ka ∼1012 m). A subset of ScaB dockerin residues was also identified as modulating the specificity of type I cohesin-dockerin interactions in A. cellulolyticus. This report reveals that recruitment of cellulosomes onto the cell surface may involve dockerins presenting a dual binding mode to incorporate additional flexibility into the quaternary structure of highly populated multienzyme complexes. PMID:25855788

  17. Involvement of F-BOX proteins in progression and development of human malignancies.

    PubMed

    Uddin, Shahab; Bhat, Ajaz A; Krishnankutty, Roopesh; Mir, Fayaz; Kulinski, Michal; Mohammad, Ramzi M

    2016-02-01

    The Ubiquitin Proteasome System (UPS) is a core regulator with various protein components (ubiquitin-activating E1 enzymes, ubiquitin-conjugating E2 enzymes, ubiquitin-protein E3 ligases, and the 26S proteasome) which work together in a coordinated fashion to ensure the appropriate and efficient proteolysis of target substrates. E3 ubiquitin ligases are essential components of the UPS machinery, working with E1 and E2 enzymes to bind substrates and assist the transport of ubiquitin molecules onto the target protein. As the UPS controls the degradation of several oncogenes and tumor suppressors, dysregulation of this pathway leads to several human malignancies. A major category of E3 Ub ligases, the SCF (Skp-Cullin-F-box) complex, is composed of four principal components: Skp1, Cul1/Cdc53, Roc1/Rbx1/Hrt1, and an F-box protein (FBP). FBPs are the substrate recognition components of SCF complexes and function as adaptors that bring substrates into physical proximity with the rest of the SCF. Besides acting as a component of SCF complexes, FBPs are involved in DNA replication, transcription, cell differentiation and cell death. This review will highlight the recent literature on three well characterized FBPs SKP2, Fbw7, and beta-TRCP. In particular, we will focus on the involvement of these deregulated FBPs in the progression and development of various human cancers. We will also highlight some novel substrates recently identified for these FBPs.

  18. Arabidopsis BPM proteins function as substrate adaptors to a cullin3-based E3 ligase to affect fatty acid metabolism in plants.

    PubMed

    Chen, Liyuan; Lee, Joo Hyun; Weber, Henriette; Tohge, Takayuki; Witt, Sandra; Roje, Sanja; Fernie, Alisdair R; Hellmann, Hanjo

    2013-06-01

    Regulation of transcriptional processes is a critical mechanism that enables efficient coordination of the synthesis of required proteins in response to environmental and cellular changes. Transcription factors require accurate activity regulation because they play a critical role as key mediators assuring specific expression of target genes. In this work, we show that cullin3-based E3 ligases have the potential to interact with a broad range of ethylene response factor (ERF)/APETALA2 (AP2) transcription factors, mediated by Math-BTB/POZ (for Meprin and TRAF [tumor necrosis factor receptor associated factor] homolog)-Broad complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) proteins. The assembly with an E3 ligase causes degradation of their substrates via the 26S proteasome, as demonstrated for the wrinkled1 ERF/AP2 protein. Furthermore, loss of Math-BTB/POZ proteins widely affects plant development and causes altered fatty acid contents in mutant seeds. Overall, this work demonstrates a link between fatty acid metabolism and E3 ligase activities in plants and establishes CUL3-based E3 ligases as key regulators in transcriptional processes that involve ERF/AP2 family members.

  19. Molecular cloning and characterization of GhAPm, a gene encoding the μ subunit of the clathrin-associated adaptor protein complex that is associated with cotton (Gossypium hirsutum) fiber development.

    PubMed

    Zhou, Tao; Zhang, Rui; Yang, Dawei; Guo, Sandui

    2011-06-01

    The clathrin-associated adaptor protein (AP) complexes are the primary clathrin adaptors that contribute to the formation of clathrin-coated vesicles (CCVs). The GhAPm gene (GenBank accession number: GU359054), which encodes the medium subunit of the AP complexes, was cloned from cotton by rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The full-length cDNA was 1590 bp in size and encoded an open reading frame (ORF) of 416 amino acids with a molecular weight of 46 kDa. The GhAPm protein shared 81-85% identity at the amino acid level with the AP complex μ subunits isolated from Vitis vinifera, Glycine max, Populus trichocarpa, Ricinus communis and Arabidopsis thaliana, respectively. The corresponding genomic DNA, containing eight exons and seven introns, was isolated and analyzed. Also, a 5'-flanking region was analyzed, and a group of putative cis-acting elements were identified. DNA gel blot analysis showed that there is only one GhAPm gene in the cotton genome. Real-time RT-PCR analysis revealed that GhAPm is expressed in the root, stem, leaf, petal, ovule, and fiber. However, the interesting finding is that GhAPm expression level was shown to increase steadily as the cotton fiber develops. In 30 DPA fibers, expression increases sharply and arrives at a peak then the expression levels decrease rapidly. Based on these data, we propose that GhAPm has a critical role in cotton membrane trafficking and fiber development.

  20. Palmitic acid increases pro-oxidant adaptor protein p66Shc expression and affects vascularization factors in angiogenic mononuclear cells: Action of resveratrol.

    PubMed

    Favre, Julie; Yildirim, Cansu; Leyen, Thomas A; Chen, Weena J Y; van Genugten, Renate E; van Golen, Larissa W; Garcia-Vallejo, Juan-Jesus; Musters, Rene; Baggen, Josefien; Fontijn, Ruud; van der Pouw Kraan, Tineke; Serné, Erik; Koolwijk, Pieter; Diamant, Michaela; Horrevoets, Anton J G

    2015-12-01

    A defect in neo-vascularization process involving circulating angiogenic mononuclear cells (CACs) dysfunction is associated with diabetes. We showed that oxidative stress was elevated in CACs cultured from blood of individuals with metabolic syndrome (MetS) and diabetes. We then assessed the action of palmitic acid (PA), a deregulated and increased NEFA in metabolic disorders, focusing on its oxidant potential. We observed that the phyto-polyphenol resveratrol normalized oxidative stress both in CACs isolated from MetS patients or treated with PA. Resveratrol further decreased the deleterious action of PA on gene expression of vascularization factors (TNFα, VEGF-A, SDF1α, PECAM-1, VEGFR2, Tie2 and CXCR4) and improved CAC motility. Particularly, resveratrol abolished the PA-induced over-expression of the pro-oxidant protein p66Shc. Neither KLF2 nor SIRT1, previously shown in resveratrol and p66Shc action, was directly involved. Silencing p66Shc normalized PA action on VEGF-A and TNFα specifically, without abolishing the PA-induced oxidative stress, which suggests a deleterious role of p66Shc independently of any major modulation of the cellular oxidative status in a high NEFA levels context. Besides showing that resveratrol reverses PA-induced harmful effects on human CAC function, certainly through profound cellular modifications, we establish p66Shc as a major therapeutic target in metabolic disorders, independent from glycemic control.

  1. Van der Waals Interactions Involving Proteins

    NASA Technical Reports Server (NTRS)

    Roth, Charles M.; Neal, Brian L.; Lenhoff, Abraham M.

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models. with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth.

  2. Van der Waals interactions involving proteins.

    PubMed Central

    Roth, C M; Neal, B L; Lenhoff, A M

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models, with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth. Images FIGURE 3 PMID:8789115

  3. Non-redundant and complementary functions of adaptor proteins TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling

    PubMed Central

    Vallabhapurapu, Sivakumar; Matsuzawa, Atsushi; Zhang, WeiZhou; Tseng, Ping-Hui; Keats, Jonathan J.; Wang, Haopeng; Vignali, Dario A. A.; Bergsagel, P. Leif; Karin, Michael

    2009-01-01

    The adaptor and signaling proteins TRAF2, TRAF3 and cIAP1 and cIAP2 were suggested to inhibit alternative nuclear factor kappa B (NF-κB) signaling in resting cells by targeting NF-κB inducing kinase (NIK) to ubiquitin-dependent degradation, thus preventing processing of the NF-κB2 precursor protein p100 to release p52. However, the respective functions of TRAF2 and TRAF3 in NIK degradation and activation of alternative NF-κB signaling has remained elusive. We now show that CD40 or BAFF receptor activation resulted in TRAF3 degradation in a cIAP1-cIAP2- and TRAF2- dependent way due to enhanced cIAP1, cIAP2 TRAF3-directed ubiquitin ligase activity. Receptor-induced activation of cIAP1 and cIAP2 correlated with their K63-linked ubiquitination by TRAF2. Degradation of TRAF3 prevented association of NIK with the cIAP1-cIAP2-TRAF2 ubiquitin ligase complex, which resulted in NIK stabilization and NF-κB2-p100 processing. Constitutive activation of this pathway causes perinatal lethality and lymphoid defects. PMID:18997792

  4. The E3 Ubiquitin Ligase Adaptor Protein Skp1 Is Glycosylated by an Evolutionarily Conserved Pathway That Regulates Protist Growth and Development*♦

    PubMed Central

    Rahman, Kazi; Zhao, Peng; Mandalasi, Msano; van der Wel, Hanke; Wells, Lance; Blader, Ira J.; West, Christopher M.

    2016-01-01

    Toxoplasma gondii is a protist parasite of warm-blooded animals that causes disease by proliferating intracellularly in muscle and the central nervous system. Previous studies showed that a prolyl 4-hydroxylase related to animal HIFα prolyl hydroxylases is required for optimal parasite proliferation, especially at low O2. We also observed that Pro-154 of Skp1, a subunit of the Skp1/Cullin-1/F-box protein (SCF)-class of E3-ubiquitin ligases, is a natural substrate of this enzyme. In an unrelated protist, Dictyostelium discoideum, Skp1 hydroxyproline is modified by five sugars via the action of three glycosyltransferases, Gnt1, PgtA, and AgtA, which are required for optimal O2-dependent development. We show here that TgSkp1 hydroxyproline is modified by a similar pentasaccharide, based on mass spectrometry, and that assembly of the first three sugars is dependent on Toxoplasma homologs of Gnt1 and PgtA. Reconstitution of the glycosyltransferase reactions in extracts with radioactive sugar nucleotide substrates and appropriate Skp1 glycoforms, followed by chromatographic analysis of acid hydrolysates of the reaction products, confirmed the predicted sugar identities as GlcNAc, Gal, and Fuc. Disruptions of gnt1 or pgtA resulted in decreased parasite growth. Off target effects were excluded based on restoration of the normal glycan chain and growth upon genetic complementation. By analogy to Dictyostelium Skp1, the mechanism may involve regulation of assembly of the SCF complex. Understanding the mechanism of Toxoplasma Skp1 glycosylation is expected to help develop it as a drug target for control of the pathogen, as the glycosyltransferases are absent from mammalian hosts. PMID:26719340

  5. The E3 Ubiquitin Ligase Adaptor Protein Skp1 Is Glycosylated by an Evolutionarily Conserved Pathway That Regulates Protist Growth and Development.

    PubMed

    Rahman, Kazi; Zhao, Peng; Mandalasi, Msano; van der Wel, Hanke; Wells, Lance; Blader, Ira J; West, Christopher M

    2016-02-26

    Toxoplasma gondii is a protist parasite of warm-blooded animals that causes disease by proliferating intracellularly in muscle and the central nervous system. Previous studies showed that a prolyl 4-hydroxylase related to animal HIFα prolyl hydroxylases is required for optimal parasite proliferation, especially at low O2. We also observed that Pro-154 of Skp1, a subunit of the Skp1/Cullin-1/F-box protein (SCF)-class of E3-ubiquitin ligases, is a natural substrate of this enzyme. In an unrelated protist, Dictyostelium discoideum, Skp1 hydroxyproline is modified by five sugars via the action of three glycosyltransferases, Gnt1, PgtA, and AgtA, which are required for optimal O2-dependent development. We show here that TgSkp1 hydroxyproline is modified by a similar pentasaccharide, based on mass spectrometry, and that assembly of the first three sugars is dependent on Toxoplasma homologs of Gnt1 and PgtA. Reconstitution of the glycosyltransferase reactions in extracts with radioactive sugar nucleotide substrates and appropriate Skp1 glycoforms, followed by chromatographic analysis of acid hydrolysates of the reaction products, confirmed the predicted sugar identities as GlcNAc, Gal, and Fuc. Disruptions of gnt1 or pgtA resulted in decreased parasite growth. Off target effects were excluded based on restoration of the normal glycan chain and growth upon genetic complementation. By analogy to Dictyostelium Skp1, the mechanism may involve regulation of assembly of the SCF complex. Understanding the mechanism of Toxoplasma Skp1 glycosylation is expected to help develop it as a drug target for control of the pathogen, as the glycosyltransferases are absent from mammalian hosts.

  6. Internal Amino Acids Promote Gap1 Permease Ubiquitylation via TORC1/Npr1/14-3-3-Dependent Control of the Bul Arrestin-Like Adaptors

    PubMed Central

    Merhi, Ahmad

    2012-01-01

    Ubiquitylation of many plasma membrane proteins promotes their endocytosis followed by degradation in the lysosome. The yeast general amino acid permease, Gap1, is ubiquitylated and downregulated when a good nitrogen source like ammonium is provided to cells growing on a poor nitrogen source. This ubiquitylation requires the Rsp5 ubiquitin ligase and the redundant arrestin-like Bul1 and Bul2 adaptors. Previous studies have shown that Gap1 ubiquitylation involves the TORC1 kinase complex, which inhibits the Sit4 phosphatase. This causes inactivation of the protein kinase Npr1, which protects Gap1 against ubiquitylation. However, the mechanisms inducing Gap1 ubiquitylation after Npr1 inactivation remain unknown. We here show that on a poor nitrogen source, the Bul adaptors are phosphorylated in an Npr1-dependent manner and bound to 14-3-3 proteins that protect Gap1 against downregulation. After ammonium is added and converted to amino acids, the Bul proteins are dephosphorylated, dissociate from the 14-3-3 proteins, and undergo ubiquitylation. Furthermore, dephosphorylation of Bul requires the Sit4 phosphatase, which is essential to Gap1 downregulation. The data support the emerging concept that permease ubiquitylation results from activation of the arrestin-like adaptors of the Rsp5 ubiquitin ligase, this coinciding with their dephosphorylation, dissociation from the inhibitory 14-3-3 proteins, and ubiquitylation. PMID:22966204

  7. Phosphorylation of the adaptor protein SH2B1β regulates its ability to enhance growth hormone-dependent macrophage motility.

    PubMed

    Su, Hsiao-Wen; Lanning, Nathan J; Morris, David L; Argetsinger, Lawrence S; Lumeng, Carey N; Carter-Su, Christin

    2013-04-15

    Previous studies have shown that growth hormone (GH) recruits the adapter protein SH2B1β to the GH-activated, GH receptor-associated tyrosine kinase JAK2, implicating SH2B1β in GH-dependent actin cytoskeleton remodeling, and suggesting that phosphorylation at serines 161 and 165 in SH2B1β releases SH2B1β from the plasma membrane. Here, we examined the role of SH2B1β in GH regulation of macrophage migration. We show that GH stimulates migration of cultured RAW264.7 macrophages, and primary cultures of peritoneal and bone marrow-derived macrophages. SH2B1β overexpression enhances, whereas SH2B1 knockdown inhibits, GH-dependent motility of RAW macrophages. At least two independent mechanisms regulate the SH2B1β-mediated changes in motility. In response to GH, tyrosines 439 and 494 in SH2B1β are phosphorylated. Mutating these tyrosines in SH2B1β decreases both basal and GH-stimulated macrophage migration. In addition, mutating the polybasic nuclear localization sequence (NLS) in SH2B1β or creating the phosphomimetics SH2B1β(S161E) or SH2B1β(S165E), all of which release SH2B1β from the plasma membrane, enhances macrophage motility. Conversely, SH2B1β(S161/165A) exhibits increased localization at the plasma membrane and decreased macrophage migration. Mutating the NLS or the nearby serine residues does not alter GH-dependent phosphorylation on tyrosines 439 and 494 in SH2B1β. Mutating tyrosines 439 and 494 does not affect localization of SH2B1β at the plasma membrane or movement of SH2B1β into focal adhesions. Taken together, these results suggest that SH2B1β enhances GH-stimulated macrophage motility via mechanisms involving phosphorylation of SH2B1β on tyrosines 439 and 494 and movement of SH2B1β out of the plasma membrane (e.g. as a result of phosphorylation of serines 161 and 165).

  8. PARP12, an interferon-stimulated gene involved in the control of protein translation and inflammation.

    PubMed

    Welsby, Iain; Hutin, David; Gueydan, Cyril; Kruys, Veronique; Rongvaux, Anthony; Leo, Oberdan

    2014-09-19

    Transcriptome analyses have recently identified PARP12, a member of a large family of ADP-ribosyl transferases, as an interferon-induced gene (ISG), whose function remains incompletely characterized. We demonstrate herein that PARP12 is a genuine ISG, whose expressed protein displays at least two distinct subcellular locations and related functions. Upon ectopic expression or exposure to oxidative stress, PARP12 is recruited to stress-granules (SGs), known sites of mRNA translational arrest. Accordingly, PARP12 was found to block mRNA translation, possibly upon association to the translational machinery. Both the N-terminal domain (containing an RNA-binding domain characterized by the presence of five CCCH-type Zn-fingers) and integrity of the catalytic domain are required for this suppressive function. In contrast, stimulation with LPS leads to the localization of PARP12 to p62/SQSTM1 (an adaptor protein involved in innate signaling and autophagy) containing structures, unrelated to SGs. Deletion of the N-terminal domain promotes the association of the protein to p62/SQSTM1, suggesting that the RNA-binding domain is responsible for the subcellular localization of PARP12. Association to p62/SQSTM1 was found to correlate with increased NF-κB signaling, suggesting a role for PARP12 in inflammation. Collectively, these observations suggest that PARP12 can alternate between two distinct subcellular compartments associated to two distinct cellular functions. The present work therefore identifies PARP12 as an ISG with a potential role in cellular defenses against viral infections.

  9. Proteins involved in meiotic recombination: a role in male infertility?

    PubMed

    Sanderson, Matthew L; Hassold, Terry J; Carrell, Douglas T

    2008-01-01

    Meiotic recombination results in the formation of crossovers, by which genetic information is exchanged between homologous chromosomes during prophase I of meiosis. Recombination is a complex process involving many proteins. Alterations in the genes involved in recombination may result in infertility. Molecular studies have improved our understanding of the roles and mechanisms of the proteins and protein complexes involved in recombination, some of which have function in mitotic cells as well as meiotic cells. Human gene sequencing studies have been performed for some of these genes and have provided further information on the phenotypes observed in some infertile individuals. However, further studies are needed to help elucidate the particular role(s) of a given protein and to increase our understanding of these protein systems. This review will focus on our current understanding of proteins involved in meiotic recombination from a genomic perspective, summarizing our current understanding of known mutations and single nucleotide polymorphisms that may affect male fertility by altering meiotic recombination.

  10. The Fe65 adaptor protein interacts through its PID1 domain with the transcription factor CP2/LSF/LBP1.

    PubMed

    Zambrano, N; Minopoli, G; de Candia, P; Russo, T

    1998-08-07

    The neural protein Fe65 possesses three putative protein-protein interaction domains: one WW domain and two phosphotyrosine interaction/phosphotyrosine binding domains (PID1 and PID2); the most C-terminal of these domains (PID2) interacts in vivo with the Alzheimer's beta-amyloid precursor protein, whereas the WW domain binds to Mena, the mammalian homolog of Drosophila-enabled protein. By the interaction trap procedure, we isolated a cDNA clone encoding a possible ligand of the N-terminal PID/PTB domain of Fe65 (PID1). Sequence analysis of this clone revealed that this ligand corresponded to the previously identified transcription factor CP2/LSF/LBP1. Co-immunoprecipitation experiments demonstrated that the interaction between Fe65 and CP2/LSF/LBP1 also takes place in vivo between the native molecules. The localization of both proteins was studied using fractionated cellular extracts. These experiments demonstrated that the various isoforms of CP2/LSF/LBP1 are differently distributed among subcellular fractions. At least one isoform, derived from alternative splicing (LSF-ID), is present outside the nucleus; Fe65 was found in both fractions. Furthermore, transfection experiments with an HA-tagged CP2/LSF/LBP1 cDNA demonstrated that Fe65 interacts also with the nuclear form of CP2/LSF/LBP1. Considering that the analysis of Fe65 distribution in fractionated cell extracts demonstrated that this protein is present both in nuclear and non-nuclear fractions, we examined the expression of Fe65 deletion mutants in the two fractions. This analysis allowed us to observe that a small region N-terminal to the WW domain is phosphorylated and is necessary for the presence of Fe65 in the nuclear fraction.

  11. Interaction of amphiphysins with AP-1 clathrin adaptors at the membrane.

    PubMed

    Huser, Sonja; Suri, Gregor; Crottet, Pascal; Spiess, Martin

    2013-02-15

    The assembly of clathrin/AP (adaptor protein)-1-coated vesicles on the trans-Golgi network and endosomes is much less studied than that of clathrin/AP-2 vesicles at the plasma membrane for endocytosis. In vitro, the association of AP-1 with protein-free liposomes had been shown to require phosphoinositides, Arf1 (ADP-ribosylation factor 1)-GTP and additional cytosolic factor(s). We have purified an active fraction from brain cytosol and found it to contain amphiphysin 1 and 2 and endophilin A1, three proteins known to be involved in the formation of AP-2/clathrin coats at the plasma membrane. Assays with bacterially expressed and purified proteins showed that AP-1 stabilization on liposomes depends on amphiphysin 2 or the amphiphysin 1/2 heterodimer. Activity is independent of the SH3 (Src homology 3) domain, but requires interaction of the WDLW motif with γ-adaptin. Endogenous amphiphysin in neurons and transfected protein in cell lines co-localize perinuclearly with AP-1 at the trans-Golgi network. This localization depends on interaction of clathrin and the adaptor sequence in the amphiphysins and is sensitive to brefeldin A, which inhibits Arf1-dependent AP-1 recruitment. Interaction between AP-1 and amphiphysin 1/2 in vivo was demonstrated by co-immunoprecipitation after cross-linking. These results suggest an involvement of amphiphysins not only with AP-2 at the plasma membrane, but also in AP-1/clathrin coat formation at the trans-Golgi network.

  12. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM.

    PubMed

    Couillault, Carole; Pujol, Nathalie; Reboul, Jérôme; Sabatier, Laurence; Guichou, Jean-François; Kohara, Yuji; Ewbank, Jonathan J

    2004-05-01

    Both plants and animals respond to infection by synthesizing compounds that directly inhibit or kill invading pathogens. We report here the identification of infection-inducible antimicrobial peptides in Caenorhabditis elegans. Expression of two of these peptides, NLP-29 and NLP-31, was differentially regulated by fungal and bacterial infection and was controlled in part by tir-1, which encodes an ortholog of SARM, a Toll-interleukin 1 receptor (TIR) domain protein. Inactivation of tir-1 by RNA interference caused increased susceptibility to infection. We identify protein partners for TIR-1 and show that the small GTPase Rab1 and the f subunit of ATP synthase participate specifically in the control of antimicrobial peptide gene expression. As the activity of tir-1 was independent of the single nematode Toll-like receptor, TIR-1 may represent a component of a previously uncharacterized, but conserved, innate immune signaling pathway.

  13. Absence of the inflammasome adaptor ASC reduces hypoxia-induced pulmonary hypertension in mice.

    PubMed

    Cero, Fadila Telarevic; Hillestad, Vigdis; Sjaastad, Ivar; Yndestad, Arne; Aukrust, Pål; Ranheim, Trine; Lunde, Ida Gjervold; Olsen, Maria Belland; Lien, Egil; Zhang, Lili; Haugstad, Solveig Bjærum; Løberg, Else Marit; Christensen, Geir; Larsen, Karl-Otto; Skjønsberg, Ole Henning

    2015-08-15

    Pulmonary hypertension is a serious condition that can lead to premature death. The mechanisms involved are incompletely understood although a role for the immune system has been suggested. Inflammasomes are part of the innate immune system and consist of the effector caspase-1 and a receptor, where nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) is the best characterized and interacts with the adaptor protein apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC). To investigate whether ASC and NLRP3 inflammasome components are involved in hypoxia-induced pulmonary hypertension, we utilized mice deficient in ASC and NLRP3. Active caspase-1, IL-18, and IL-1β, which are regulated by inflammasomes, were measured in lung homogenates in wild-type (WT), ASC(-/-), and NLRP3(-/-) mice, and phenotypical changes related to pulmonary hypertension and right ventricular remodeling were characterized after hypoxic exposure. Right ventricular systolic pressure (RVSP) of ASC(-/-) mice was significantly lower than in WT exposed to hypoxia (40.8 ± 1.5 mmHg vs. 55.8 ± 2.4 mmHg, P < 0.001), indicating a substantially reduced pulmonary hypertension in mice lacking ASC. Magnetic resonance imaging further supported these findings by demonstrating reduced right ventricular remodeling. RVSP of NLRP3(-/-) mice exposed to hypoxia was not significantly altered compared with WT hypoxia. Whereas hypoxia increased protein levels of caspase-1, IL-18, and IL-1β in WT and NLRP3(-/-) mice, this response was absent in ASC(-/-) mice. Moreover, ASC(-/-) mice displayed reduced muscularization and collagen deposition around arteries. In conclusion, hypoxia-induced elevated right ventricular pressure and remodeling were attenuated in mice lacking the inflammasome adaptor protein ASC, suggesting that inflammasomes play an important role in the pathogenesis of pulmonary hypertension.

  14. Novel protein-protein interaction family proteins involved in chloroplast movement response.

    PubMed

    Kodama, Yutaka; Suetsugu, Noriyuki; Wada, Masamitsu

    2011-04-01

    To optimize photosynthetic activity, chloroplasts change their intracellular location in response to ambient light conditions; chloroplasts move toward low intensity light to maximize light capture, and away from high intensity light to avoid photodamage. Although several proteins have been reported to be involved in the chloroplast photorelocation movement response, any physical interaction among them was not found so far. We recently found a physical interaction between two plant-specific coiled-coil proteins, WEB1 (Weak Chloroplast Movement under Blue Light 1) and PMI2 (Plastid Movement Impaired 2), that were identified to regulate chloroplast movement velocity. Since the both coiled-coil regions of WEB1 and PMI2 were classified into an uncharacterized protein family having DUF827 (DUF: Domain of Unknown Function) domain, it was the first report that DUF827 proteins could mediate protein-protein interaction. In this mini-review article, we discuss regarding molecular function of WEB1 and PMI2, and also define a novel protein family composed of WEB1, PMI2 and WEB1/PMI2-like proteins for protein-protein interaction in land plants.

  15. Involvement of PCH family proteins in cytokinesis and actin distribution.

    PubMed

    Lippincott, J; Li, R

    2000-04-15

    Pombe Cdc15 homology (PCH) proteins constitute an extensive protein family whose members have been found in diverse eukaryotic organisms. These proteins are characterized by the presence of several conserved sequence and structural motifs. Recent studies in yeast and mammalian cultured cells have implicated these proteins in actin-based processes, in particular, cytokinesis. Here we review the recent findings on the in vivo localization, function, and binding partners of PCH family members. We also provide new microscopy data regarding the in vivo dynamics of a budding yeast PCH protein involved in cytokinesis.

  16. Methods for Mapping of Interaction Networks Involving Membrane Proteins

    SciTech Connect

    Hooker, Brian S.; Bigelow, Diana J.; Lin, Chiann Tso

    2007-11-23

    Numerous approaches have been taken to study protein interactions, such as tagged protein complex isolation followed by mass spectrometry, yeast two-hybrid methods, fluorescence resonance energy transfer, surface plasmon resonance, site-directed mutagenesis, and crystallography. Membrane protein interactions pose significant challenges due to the need to solubilize membranes without disrupting protein-protein interactions. Traditionally, analysis of isolated protein complexes by high-resolution 2D gel electrophoresis has been the main method used to obtain an overall picture of proteome constituents and interactions. However, this method is time consuming, labor intensive, detects only abundant proteins and is not suitable for the coverage required to elucidate large interaction networks. In this review, we discuss the application of various methods to elucidate interactions involving membrane proteins. These techniques include methods for the direct isolation of single complexes or interactors as well as methods for characterization of entire subcellular and cellular interactomes.

  17. Molecular Simulation Studies of Proteins Involved in Parkinson's Disease

    NASA Astrophysics Data System (ADS)

    Carloni, Paolo

    2007-12-01

    This contribution describes two recent computational studies related to proteins involved in Parkinson's Disease (PD). The first focuses on the interplay between dopamine and α-synuclein (AS), which plays a central role in PD (unpublished results). The second deals with the protein DJ-1, whose mutations are present in patients suffering from familiar PD [1]. Computational methods are used to investigate the relationship between such mutations and the protein oligomeric state, which may be important for the progression of the disease.

  18. TLR signaling adaptor protein MyD88 in primary sensory neurons contributes to persistent inflammatory and neuropathic pain and neuroinflammation

    PubMed Central

    Liu, Xing-Jun; Liu, Tong; Chen, Gang; Wang, Bing; Yu, Xiao-Lu; Yin, Cui; Ji, Ru-Rong

    2016-01-01

    Increasing evidence suggests that neuro-immune and neuro-glial interactions are critically involved in chronic pain sensitization. It is well studied how immune/glial mediators sensitize pain, but how sensory neurons control neuroinflammation remains unclear. We employed Myd88 conditional knockout (CKO) mice, in which Myd88 was deleted in sodium channel subunit Nav1.8-expressing primary sensory neurons, to examine the unique role of neuronal MyD88 in regulating acute and chronic pain, and possible underlying mechanisms. We found that baseline pain and the formalin induced acute inflammatory pain were intact in CKO mice. However, the late phase inflammatory pain following complete Freund’s adjuvant injection and the late phase neuropathic pain following chronic constriction injury (CCI), were reduced in CKO mice. CCI induced up-regulation of MyD88 and chemokine C-C motif ligand 2 expression in DRG neurons and macrophage infiltration into DRGs, and microglia activation in spinal dorsal horns in wild-type mice, but all these changes were compromised in CKO mice. Finally, the pain hypersensitivity induced by intraplantar IL-1β was reduced in CKO mice. Our findings suggest that MyD88 in primary sensory neurons plays an active role in regulating IL-1β signaling and neuroinflammation in the peripheral and the central nervous systems, and contributes to the maintenance of persistent pain. PMID:27312666

  19. Adaptor assembly for coupling turbine blades to rotor disks

    SciTech Connect

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell

    2014-09-23

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is described. The adaptor assembly includes a turbine blade having a blade root and an adaptor body having an adaptor root. The adaptor body defines a slot having an open end configured to receive the blade root of the turbine blade such that the adaptor root of the adaptor body and the blade root of the turbine blade are adjacent to one another when the blade root of the turbine blade is positioned within the slot. Both the adaptor root of the adaptor body and the blade root of the turbine blade are configured to be received within the root slot of the rotor disk.

  20. Key proteins involved in insulin vesicle exocytosis and secretion

    PubMed Central

    Xiong, Qian-Yin; Yu, Cui; Zhang, Yao; Ling, Liefeng; Wang, Lizhuo; Gao, Jia-Lin

    2017-01-01

    In vivo insulin secretion is predominantly affected by blood glucose concentration, blood concentration of amino acids, gastrointestinal hormones and free nerve functional status, in addition to other factors. Insulin is one of the most important hormones in the body, and its secretion is precisely controlled by nutrients, neurotransmitters and hormones. The insulin exocytosis process is similar to the neurotransmitter release mechanism. There are various types of proteins and lipids that participate in the insulin secretory vesicle fusion process, such as soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein, Ras-related proteins and vacuolar-type H+-ATPase (V-ATPase). Notably, the SNARE protein is the molecular basis of exocytotic activity. In the current review, the role of the vesicle membrane proteins (synaptobrevins, vesicle associated membrane proteins and target membrane proteins) and auxiliary proteins (Rab proteins and Munc-18 proteins) in vesicle fusion activity were summarized. A summary of these key proteins involved in insulin granule secretion will facilitate understanding of the pathogenesis of diabetes. PMID:28357064

  1. THREADED ADAPTOR FOR LUGGED PIPE ENDS

    DOEpatents

    Robb, J.E.

    1962-06-01

    An adaptor is designed for enabling a threaded part to be connected to a member at a region having lugs normally receiving bayonet slots of another part for attachment of the latter. It has been found desirable to replace a closure cap connected in a bayonet joint to the end of a coolant tube containing nuclear- reactor fuel elements, with a threaded valve. An adaptor is used which has J- slots receiving lugs on the end of the reactor tube, a thread for connection with the valve, and gear-tooth section enabling a gear-type of tool to rotate the adaptor to seal the valve to the end of the reactor tube. (AEC)

  2. Proteins involved in vesicular transport and membrane fusion.

    PubMed

    Waters, M G; Griff, I C; Rothman, J E

    1991-08-01

    In the past year, new information about proteins involved in vesicular transport has been plentiful. Particularly noteworthy are the complementary findings that Sec17p is required for vesicle consumption in endoplasmic reticulum-to-Golgi transport in yeast and that an analogous activity in mammalian cells, termed SNAP, is required for transport from the cis to the medial cisternae of the Golgi apparatus.

  3. Proteomic analysis of proteins involved in spermiogenesis in mouse.

    PubMed

    Guo, Xuejiang; Shen, Jian; Xia, Zhengrong; Zhang, Rui; Zhang, Ping; Zhao, Chun; Xing, Jun; Chen, Ling; Chen, Wen; Lin, Min; Huo, Ran; Su, Bing; Zhou, Zuomin; Sha, Jiahao

    2010-03-05

    Spermiogenesis is a unique process in mammals during which haploid round spermatids mature into spermatozoa in the testis. Its successful completion is necessary for fertilization and its malfunction is an important cause of male infertility. Here, we report the high-confidence identification of 2116 proteins in mouse haploid germ cells undergoing spermiogenesis: 299 of these were testis-specific and 155 were novel. Analysis of these proteins showed many proteins possibly functioning in unique processes of spermiogenesis. Of the 84 proteins annotated to be involved in vesicle-related events, VAMP4 was shown to be important for acrosome biogenesis by in vivo knockdown experiments. Knockdown of VAMP4 caused defects of acrosomal vesicle fusion and significantly increased head abnormalities in spermatids from testis and sperm from the cauda epididymis. Analysis of chromosomal distribution of the haploid genes showed underrepresentation on the X chromosome and overrepresentation on chromosome 11, which were due to meiotic sex chromosome inactivation and expansion of testis-expressed gene families, respectively. Comparison with transcriptional data showed translational regulation during spermiogenesis. This characterization of proteins involved in spermiogenesis provides an inventory of proteins useful for understanding the mechanisms of male infertility and may provide candidates for drug targets for male contraception and male infertility.

  4. Styles of Creativity: Adaptors and Innovators in a Singapore Context

    ERIC Educational Resources Information Center

    Ee, Jessie; Seng, Tan Oon; Kwang, Ng Aik

    2007-01-01

    Kirton (1976) described two creative styles, namely adaptors and innovators. Adaptors prefer to "do things better" whilst, innovators prefer to "do things differently". This study explored the relationship between two creative styles (adaptor and innovator) and the Big Five personality traits (extraversion, agreeableness, conscientiousness,…

  5. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  6. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  7. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  8. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  9. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  10. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  11. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  12. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  13. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  14. Competitive and Cooperative Interactions Mediate RNA Transfer from Herpesvirus Saimiri ORF57 to the Mammalian Export Adaptor ALYREF

    PubMed Central

    Tunnicliffe, Richard B.; Hautbergue, Guillaume M.; Wilson, Stuart A.; Kalra, Priti; Golovanov, Alexander P.

    2014-01-01

    The essential herpesvirus adaptor protein HVS ORF57, which has homologs in all other herpesviruses, promotes viral mRNA export by utilizing the cellular mRNA export machinery. ORF57 protein specifically recognizes viral mRNA transcripts, and binds to proteins of the cellular transcription-export (TREX) complex, in particular ALYREF. This interaction introduces viral mRNA to the NXF1 pathway, subsequently directing it to the nuclear pore for export to the cytoplasm. Here we have used a range of techniques to reveal the sites for direct contact between RNA and ORF57 in the absence and presence of ALYREF. A binding site within ORF57 was characterized which recognizes specific viral mRNA motifs. When ALYREF is present, part of this ORF57 RNA binding site, composed of an α-helix, binds preferentially to ALYREF. This competitively displaces viral RNA from the α-helix, but contact with RNA is still maintained by a flanking region. At the same time, the flexible N-terminal domain of ALYREF comes into contact with the viral RNA, which becomes engaged in an extensive network of synergistic interactions with both ALYREF and ORF57. Transfer of RNA to ALYREF in the ternary complex, and involvement of individual ORF57 residues in RNA recognition, were confirmed by UV cross-linking and mutagenesis. The atomic-resolution structure of the ORF57-ALYREF interface was determined, which noticeably differed from the homologous ICP27-ALYREF structure. Together, the data provides the first site-specific description of how viral mRNA is locked by a herpes viral adaptor protein in complex with cellular ALYREF, giving herpesvirus access to the cellular mRNA export machinery. The NMR strategy used may be more generally applicable to the study of fuzzy protein-protein-RNA complexes which involve flexible polypeptide regions. PMID:24550725

  15. The nuclear protein Sam68 is redistributed to the cytoplasm and is involved in PI3K/Akt activation during EV71 infection.

    PubMed

    Zhang, Hua; Cong, Haolong; Song, Lei; Tien, Po

    2014-02-13

    Nuclear proteins can be triggered to be redistributed to the cytoplasm to assist with EV71 virus replication. This process is frequently involved in cellular signal transduction upon virus infection. In this study, we have demonstrated that a new nuclear protein, 68-kDa Src-associated in mitosis protein (Sam68), was translocated to the cytoplasm and was co-localized with EV71 during virus infection. Confocal microscopy and subcellular fractionation assay confirmed that virus 3C protease triggered the redistribution of Sam68 to the cytoplasm. Knockdown of Sam68 expression using ShRNA significantly inhibited virus replication, suggesting that Sam68 may be a host factor involved in EV71 life cycle. In addition, EV71-induced Akt phosphorylation involved a PI3K-dependent mechanism. Sam68 is known to be an upstream regulator of PI3K and our immunoprecipitation studies confirmed that Sam68 interacted directly with the p85 regulatory subunit of PI3K and mediated PI3K/Akt activation during EV71 infection. On the contrary, silencing of Sam68 dramatically abrogated Akt phosphorylation. These data, plus the fact that Sam68 is known to be a signaling adaptor protein, indicated that Sam68 is a signal molecule with a functional role in the PI3K/Akt signal pathway during EV71 infection.

  16. NEDD8 protein is involved in ubiquitinated inclusion bodies.

    PubMed

    Dil Kuazi, Afroz; Kito, Katsumi; Abe, Yasuhito; Shin, Ryong-Woon; Kamitani, Tetsu; Ueda, Norifumi

    2003-02-01

    Proteolysis by the ubiquitin-proteasome system is considered to play a pathological role in several degenerative diseases that involve ubiquitinated inclusion bodies. In recent years, several ubiquitin-like proteins have been isolated, but it is uncertain whether their roles are associated with protein degradation through the ubiquitin-proteasome system. NEDD8 (neural precursor cell-expressed and developmentally down-regulated gene), which consists of 81 amino acid residues, possesses the highest sequence similarity to ubiquitin. Recent studies have indicated that NEDD8 is covalently ligated to cullin family proteins, which are components of certain ubiquitin E3 ligases, by a pathway analogous to that of ubiquitin. Thus, by focusing on the structural and functional association between NEDD8 and ubiquitin, it would be of interest to know whether the NEDD8 system is involved in pathological disorders of the ubiquitin-proteasome system. This study has examined the immunohistochemical distribution of NEDD8 protein by using a highly purified antibody in normal tissues and in tissues known to contain ubiquitinated inclusions. NEDD8 protein expression was widely observed in most types of tissues. Furthermore, accumulation of the NEDD8 protein was commonly observed in ubiquitinated inclusion bodies, including Lewy bodies in Parkinson's disease, Mallory bodies in alcoholic liver disease, and Rosenthal fibres in astrocytoma. Two of ten cases of neurofibrillary tangles and senile plaques from patients with Alzheimer's disease showed intense staining for NEDD8 as well as for ubiquitin. These findings suggest the possibility that the NEDD8 system is involved in the metabolism of these inclusion bodies via the ubiquitin-proteasome system.

  17. Identifying Unstable Regions of Proteins Involved in Misfolding Diseases

    NASA Astrophysics Data System (ADS)

    Guest, Will; Cashman, Neil; Plotkin, Steven

    2009-05-01

    Protein misfolding is a necessary step in the pathogenesis of many diseases, including Creutzfeldt-Jakob disease (CJD) and familial amyotrophic lateral sclerosis (fALS). Identifying unstable structural elements in their causative proteins elucidates the early events of misfolding and presents targets for inhibition of the disease process. An algorithm was developed to calculate the Gibbs free energy of unfolding for all sequence-contiguous regions of a protein using three methods to parameterize energy changes: a modified G=o model, changes in solvent-accessible surface area, and all-atoms molecular dynamics. The entropic effects of disulfide bonds and post-translational modifications are treated analytically. It incorporates a novel method for finding local dielectric constants inside a protein to accurately handle charge effects. We have predicted the unstable parts of prion protein and superoxide dismutase 1, the proteins involved in CJD and fALS respectively, and have used these regions as epitopes to prepare antibodies that are specific to the misfolded conformation and show promise as therapeutic agents.

  18. DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides.

    PubMed

    Dowler, S; Currie, R A; Downes, C P; Alessi, D R

    1999-08-15

    We have identified a novel 280 amino acid protein which contains a putative myristoylation site at its N-terminus followed by an Src homology (SH2) domain and a pleckstrin homology (PH) domain at its C-terminus. It has been termed dual adaptor for phosphotyrosine and 3-phosphoinositides (DAPP1). DAPP1 is widely expressed and exhibits high-affinity interactions with PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2), but not with other phospholipids tested. These observations predict that DAPP1 will interact with both tyrosine phosphorylated proteins and 3-phosphoinositides and may therefore play a role in regulating the location and/or activity of such proteins(s) in response to agonists that elevate PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2).

  19. First identification of proteins involved in motility of Mycoplasma gallisepticum.

    PubMed

    Indikova, Ivana; Vronka, Martin; Szostak, Michael P

    2014-10-17

    Mycoplasma gallisepticum, the most pathogenic mycoplasma in poultry, is able to glide over solid surfaces. Although this gliding motility was first observed in 1968, no specific protein has yet been shown to be involved in gliding. We examined M. gallisepticum strains and clonal variants for motility and found that the cytadherence proteins GapA and CrmA were required for gliding. Loss of GapA or CrmA resulted in the loss of motility and hemadsorption and led to drastic changes in the characteristic flask-shape of the cells. To identify further genes involved in motility, a transposon mutant library of M. gallisepticum was generated and screened for motility-deficient mutants, using a screening assay based on colony morphology. Motility-deficient mutants had transposon insertions in gapA and the neighbouring downstream gene crmA. In addition, insertions were seen in gene mgc2, immediately upstream of gapA, in two motility-deficient mutants. In contrast to the GapA/CrmA mutants, the mgc2 motility mutants still possessed the ability to hemadsorb. Complementation of these mutants with a mgc2-hexahistidine fusion gene restored the motile phenotype. This is the first report assigning specific M. gallisepticum proteins to involvement in gliding motility.

  20. TIR domain-containing adaptor SARM is a late addition to the ongoing microbe-host dialog.

    PubMed

    Zhang, Qing; Zmasek, Christian M; Cai, Xiaohui; Godzik, Adam

    2011-04-01

    Toll/interleukin-1 receptor (TIR) domain-containing proteins play important roles in defense against pathogens in both animals and plants, connecting the immunity signaling pathways via a chain of specific protein-protein interactions. Among them is SARM, the only TIR domain-containing adaptor that can negatively regulate TLR signaling. By extensive phylogenetic analysis, we show here that SARM is closely related to bacterial proteins with TIR domains, suggesting that this family has a different evolutionary history from other animal TIR-containing adaptors, possibly emerging via a lateral gene transfer from bacteria to animals. We also show evidence of several similar, independent transfer events, none of which, however, survived in vertebrates. An evolutionary relationship between the animal SARM adaptor and bacterial proteins with TIR domains illustrates the possible role that bacterial TIR-containing proteins play in regulating eukaryotic immune responses and how this mechanism was possibly adapted by the eukaryotes themselves.

  1. ATM-Dependent Phosphorylation of All Three Members of the MRN Complex: From Sensor to Adaptor

    PubMed Central

    Lavin, Martin F.; Kozlov, Sergei; Gatei, Magtouf; Kijas, Amanda W.

    2015-01-01

    The recognition, signalling and repair of DNA double strand breaks (DSB) involves the participation of a multitude of proteins and post-translational events that ensure maintenance of genome integrity. Amongst the proteins involved are several which when mutated give rise to genetic disorders characterised by chromosomal abnormalities, cancer predisposition, neurodegeneration and other pathologies. ATM (mutated in ataxia-telangiectasia (A-T) and members of the Mre11/Rad50/Nbs1 (MRN complex) play key roles in this process. The MRN complex rapidly recognises and locates to DNA DSB where it acts to recruit and assist in ATM activation. ATM, in the company of several other DNA damage response proteins, in turn phosphorylates all three members of the MRN complex to initiate downstream signalling. While ATM has hundreds of substrates, members of the MRN complex play a pivotal role in mediating the downstream signalling events that give rise to cell cycle control, DNA repair and ultimately cell survival or apoptosis. Here we focus on the interplay between ATM and the MRN complex in initiating signaling of breaks and more specifically on the adaptor role of the MRN complex in mediating ATM signalling to downstream substrates to control different cellular processes. PMID:26512707

  2. ATM-Dependent Phosphorylation of All Three Members of the MRN Complex: From Sensor to Adaptor.

    PubMed

    Lavin, Martin F; Kozlov, Sergei; Gatei, Magtouf; Kijas, Amanda W

    2015-10-23

    The recognition, signalling and repair of DNA double strand breaks (DSB) involves the participation of a multitude of proteins and post-translational events that ensure maintenance of genome integrity. Amongst the proteins involved are several which when mutated give rise to genetic disorders characterised by chromosomal abnormalities, cancer predisposition, neurodegeneration and other pathologies. ATM (mutated in ataxia-telangiectasia (A-T) and members of the Mre11/Rad50/Nbs1 (MRN complex) play key roles in this process. The MRN complex rapidly recognises and locates to DNA DSB where it acts to recruit and assist in ATM activation. ATM, in the company of several other DNA damage response proteins, in turn phosphorylates all three members of the MRN complex to initiate downstream signalling. While ATM has hundreds of substrates, members of the MRN complex play a pivotal role in mediating the downstream signalling events that give rise to cell cycle control, DNA repair and ultimately cell survival or apoptosis. Here we focus on the interplay between ATM and the MRN complex in initiating signaling of breaks and more specifically on the adaptor role of the MRN complex in mediating ATM signalling to downstream substrates to control different cellular processes.

  3. Proteomic detection of proteins involved in perchlorate and chlorate metabolism.

    PubMed

    Bansal, Reema; Deobald, Lee A; Crawford, Ronald L; Paszczynski, Andrzej J

    2009-09-01

    Mass spectrometry and a time-course cell lysis method were used to study proteins involved in perchlorate and chlorate metabolism in pure bacterial cultures and environmental samples. The bacterial cultures used included Dechlorosoma sp. KJ, Dechloromonas hortensis, Pseudomonas chloritidismutans ASK-1, and Pseudomonas stutzeri. The environmental samples included an anaerobic sludge enrichment culture from a sewage treatment plant, a sample of a biomass-covered activated carbon matrix from a bioreactor used for treating perchlorate-contaminated drinking water, and a waste water effluent sample from a paper mill. The approach focused on detection of perchlorate (and chlorate) reductase and chlorite dismutase proteins, which are the two central enzymes in the perchlorate (or chlorate) reduction pathways. In addition, acetate-metabolizing enzymes in pure bacterial samples and housekeeping proteins from perchlorate (or chlorate)-reducing microorganisms in environmental samples were also identified.

  4. Molecular signaling involving intrinsically disordered proteins in prostate cancer

    PubMed Central

    Russo, Anna; Manna, Sara La; Novellino, Ettore; Malfitano, Anna Maria; Marasco, Daniela

    2016-01-01

    Investigations on cellular protein interaction networks (PINs) reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs) compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their function. Conformational dynamics enables IDPs to be versatile and to interact with a broad range of interactors under normal physiological conditions where their expression is tightly modulated. IDPs are involved in many cellular processes such as cellular signaling, transcriptional regulation, and splicing; thus, their high-specificity/low-affinity interactions play crucial roles in many human diseases including cancer. Prostate cancer (PCa) is one of the leading causes of cancer-related mortality in men worldwide. Therefore, identifying molecular mechanisms of the oncogenic signaling pathways that are involved in prostate carcinogenesis is crucial. In this review, we focus on the aspects of cellular pathways leading to PCa in which IDPs exert a primary role. PMID:27212129

  5. Bap, a Staphylococcus aureus Surface Protein Involved in Biofilm Formation

    PubMed Central

    Cucarella, Carme; Solano, Cristina; Valle, Jaione; Amorena, Beatriz; Lasa, Íñigo; Penadés, José R.

    2001-01-01

    Identification of new genes involved in biofilm formation is needed to understand the molecular basis of strain variation and the pathogenic mechanisms implicated in chronic staphylococcal infections. A biofilm-producing Staphylococcus aureus isolate was used to generate biofilm-negative transposon (Tn917) insertion mutants. Two mutants were found with a significant decrease in attachment to inert surfaces (early adherence), intercellular adhesion, and biofilm formation. The transposon was inserted at the same locus in both mutants. This locus (bap [for biofilm associated protein]) encodes a novel cell wall associated protein of 2,276 amino acids (Bap), which shows global organizational similarities to surface proteins of gram-negative (Pseudomonas aeruginosa and Salmonella enterica serovar Typhi) and gram-positive (Enteroccocus faecalis) microorganisms. Bap's core region represents 52% of the protein and consists of 13 successive nearly identical repeats, each containing 86 amino acids. bap was present in a small fraction of bovine mastitis isolates (5% of the 350 S. aureus isolates tested), but it was absent from the 75 clinical human S. aureus isolates analyzed. All staphylococcal isolates harboring bap were highly adherent and strong biofilm producers. In a mouse infection model bap was involved in pathogenesis, causing a persistent infection. PMID:11292810

  6. [Proteins of human milk involved in immunological processes].

    PubMed

    Lis, Jolanta; Orczyk-Pawiłowicz, Magdalena; Kątnik-Prastowska, Iwona

    2013-05-31

    Human milk contains a lot of components (i.e. proteins, carbohydrates, lipids, inorganic elements) which provide basic nutrients for infants during the first period of their lives. Qualitative composition of milk components of healthy mothers is similar, but their levels change during lactation stages. Colostrum is the fluid secreted during the first days postpartum by mammary epithelial cells. Colostrum is replaced by transitional milk during 5-15 days postpartum and from 15 days postpartum mature milk is produced. Human milk, apart from nutritional components, is a source of biologically active molecules, i.e. immunoglobulins, growth factors, cytokines, acute phase proteins, antiviral and antibacterial proteins. Such components of human milk are responsible for specific biological activities of human milk. This secretion plays an important role in growth and development of newborns. Bioactive molecules present in the milk support the immature immune system of the newborn and also protect against the development of infection. In this article we describe the pathways involved in the production and secretion of human milk, the state of knowledge on the proteome of human milk, and the contents of components of milk during lactation. Moreover, some growth factors and proteins involved in innate and specific immunity, intercellular communication, immunomodulation, and inflammatory processes have been characterized.

  7. Analysis of proteins involved in biodegradation of crop biomass

    NASA Technical Reports Server (NTRS)

    Crawford, Kamau; Trotman, Audrey

    1998-01-01

    The biodegradation of crop biomass for re-use in crop production is part of the bioregenerative life support concept proposed by the National Aeronautics and Space Administration (NASA) for long duration, manned space exploration. The current research was conducted in the laboratory to evaluate the use of electrophoretic analysis as a means of rapidly assaying for constitutive and induced proteins associated with the bacterial degradation of crop residue. The proteins involved in crop biomass biodegradation are either constitutive or induced. As a result, effluent and cultures were examined to investigate the potential of using electrophoretic techniques as a means of monitoring the biodegradation process. Protein concentration for optimum banding patterns was determined using the Bio-Rad Protein Assay kit. Four bacterial soil isolates were obtained from the G.W. Carver research Farm at Tuskegee University and used in the decomposition of components of plant biomass. The culture, WDSt3A was inoculated into 500 mL of either Tryptic Soy Broth or Nutrient Broth. Incubation, with shaking of each flask was for 96 hours at 30 C. The cultures consistently gave unique banding patterns under denaturing protein electrophoresis conditions, The associated extracellular enzymes also yielded characteristic banding patterns over a 14-day period, when native electrophoresis techniques were used to examine effluent from batch culture bioreactors. The current study evaluated sample preparation and staining protocols to determine the ease of use, reproducibility and reliability, as well as the potential for automation.

  8. Involvement of heat shock proteins in gluten-sensitive enteropathy.

    PubMed

    Sziksz, Erna; Pap, Domonkos; Veres, Gábor; Fekete, Andrea; Tulassay, Tivadar; Vannay, Ádám

    2014-06-07

    Gluten-sensitive enteropathy, also known as coeliac disease (CD), is an autoimmune disorder occurring in genetically susceptible individuals that damages the small intestine and interferes with the absorption of other nutrients. As it is triggered by dietary gluten and related prolamins present in wheat, rye and barley, the accepted treatment for CD is a strict gluten-free diet. However, a complete exclusion of gluten-containing cereals from the diet is often difficult, and new therapeutic strategies are urgently needed. A class of proteins that have already emerged as drug targets for other autoimmune diseases are the heat shock proteins (HSPs), which are highly conserved stress-induced chaperones that protect cells against harmful extracellular factors. HSPs are expressed in several tissues, including the gastrointestinal tract, and their levels are significantly increased under stress circumstances. HSPs exert immunomodulatory effects, and also play a crucial role in the maintenance of epithelial cell structure and function, as they are responsible for adequate protein folding, influence the degradation of proteins and cell repair processes after damage, and modulate cell signalling, cell proliferation and apoptosis. The present review discusses the involvement of HSPs in the pathophysiology of CD. Furthermore, HSPs may represent a useful therapeutic target for the treatment of CD due to the cytoprotective, immunomodulatory, and anti-apoptotic effects in the intestinal mucosal barrier.

  9. Identification of an additional protein involved in mannan biosynthesis

    PubMed Central

    Wang, Yan; Mortimer, Jennifer C; Davis, Jonathan; Dupree, Paul; Keegstra, Kenneth

    2013-01-01

    Galactomannans comprise a β-1,4-mannan backbone substituted with α-1,6-galactosyl residues. Genes encoding the enzymes that are primarily responsible for backbone synthesis and side-chain addition of galactomannans were previously identified and characterized. To identify additional genes involved in galactomannan biosynthesis, we previously performed deep EST profiling of fenugreek (Trigonella foenum-graecum L.) seed endosperm, which accumulates large quantities of galactomannans as a reserve carbohydrate during seed development. One of the candidate genes encodes a protein that is likely to be a glycosyltransferase. Because this protein is involved in mannan biosynthesis, we named it ‘mannan synthesis-related’ (MSR). Here, we report the characterization of a fenugreek MSR gene (TfMSR) and its two Arabidopsis homologs, AtMSR1 and AtMSR2. TfMSR was highly and specifically expressed in the endosperm. TfMSR, AtMSR1 and AtMSR2 proteins were all determined to be localized to the Golgi by fluorescence confocal microscopy. The level of mannosyl residues in stem glucomannans decreased by approximately 40% for Arabidopsis msr1 single T-DNA insertion mutants and by more than 50% for msr1 msr2 double mutants, but remained unchanged for msr2 single mutants. In addition, in vitro mannan synthase activity from the stems of msr1 single and msr1 msr2 double mutants also decreased. Expression of AtMSR1 or AtMSR2 in the msr1 msr2 double mutant completely or partially restored mannosyl levels. From these results, we conclude that the MSR protein is important for mannan biosynthesis, and offer some ideas about its role. PMID:22966747

  10. Genes and proteins involved in bacterial magnetic particle formation.

    PubMed

    Matsunaga, Tadashi; Okamura, Yoshiko

    2003-11-01

    Magnetic bacteria synthesize intracellular magnetosomes that impart a cellular swimming behaviour referred to as magnetotaxis. The magnetic structures aligned in chains are postulated to function as biological compass needles allowing the bacterium to migrate along redox gradients through the Earth's geomagnetic field lines. Despite the discovery of this unique group of microorganisms 28 years ago, the mechanisms of magnetic crystal biomineralization have yet to be fully elucidated. This review describes the current knowledge of the genes and proteins involved in magnetite formation in magnetic bacteria and the biotechnological applications of biomagnetites in the interdisciplinary fields of nanobiotechnology, medicine and environmental management.

  11. Neuronal Roles of the Bicaudal D Family of Motor Adaptors.

    PubMed

    Budzinska, M; Wicher, K B; Terenzio, M

    2017-01-01

    All cell types rely on active intracellular cargo transport to shuttle essential cellular components such as proteins, lipids, RNA, and even organelles from the center to the periphery and vice versa. Additionally, several signaling pathways take advantage of intracellular transport to propagate their signals by moving activated receptors and protein effectors to specific locations inside the cell. Neurons particularly, being a very polarized cell type, are highly dependent on molecular motors for the anterograde and retrograde delivery of essential cellular components and signaling molecules. For these reasons, motor adaptor proteins have been extensively investigated in regard to their role in physiology and pathology of the nervous system. In this chapter, we will concentrate on a family of motor adaptor proteins, Bicaudal D (BICD), and their function in the context of the nervous system. BicD was originally described as essential for the correct localization of maternal mRNAs in Drosophila's oocyte and a regulator of the Golgi to ER retrograde transport in mammalian cells. Both mammalian BICD1 and BICD2 are highly expressed in the nervous system during development, and their importance in neuronal homeostasis has been recently under scrutiny. Several mutations in BICD2 have been linked to the development of neuromuscular diseases, and BICD2 knockout (KO) mice display migration defects of the radial cerebellar granule cells. More in line with the overall topic of this book, BICD1 was identified as a novel regulator of neurotrophin (NT) signaling as its deletion leads to defective sorting of ligand-activated NT receptors with dramatic consequences on the NT-mediated signaling pathway.

  12. The giardial ENTH protein participates in lysosomal protein trafficking and endocytosis.

    PubMed

    Feliziani, Constanza; Zamponi, Nahuel; Gottig, Natalia; Rópolo, Andrea S; Lanfredi-Rangel, Adriana; Touz, Maria C

    2015-03-01

    In the protozoa parasite Giardia lamblia, endocytosis and lysosomal protein trafficking are vital parasite-specific processes that involve the action of the adaptor complexes AP-1 and AP-2 and clathrin. In this work, we have identified a single gene in Giardia encoding a protein containing an ENTH domain that defines monomeric adaptor proteins of the epsin family. This domain is present in the epsin or epsin-related (epsinR) adaptor proteins, which are implicated in endocytosis and Golgi-to-endosome protein trafficking, respectively, in other eukaryotic cells. We found that GlENTHp (for G. lamblia ENTH protein) localized in the cytosol, strongly interacted with PI3,4,5P3, was associated with the alpha subunit of AP-2, clathrin and ubiquitin and was involved in receptor-mediated endocytosis. It also bonded PI4P, the gamma subunit of AP-1 and was implicated in ER-to-PV trafficking. Alteration of the GlENTHp function severely affected trophozoite growth showing an unusual accumulation of dense material in the lysosome-like peripheral vacuoles (PVs), indicating that GlENTHp might be implicated in the maintenance of PV homeostasis. In this study, we showed evidence suggesting that GlENTHp might function as a monomeric adaptor protein supporting the findings of other group indicating that GlENTHp might be placed at the beginning of the ENTH family.

  13. Life under tension: Computational studies of proteins involved in mechanotransduction

    NASA Astrophysics Data System (ADS)

    Sotomayor, Marcos Manuel

    cadherins. Simulations also revealed how calcium ions control cadherin's shape and the availability of key residues involved in cell-cell adhesion, suggesting a conceptual framework for interpreting mutations in cadherin calcium binding motifs causing hereditary deafness. Overall, simulations provided a unique nanoscopic view of the dynamics and function of some of the proteins involved in mechanotransduction.

  14. Possible involvement of poly(A) in protein synthesis.

    PubMed Central

    Jacobson, A; Favreau, M

    1983-01-01

    The experiments of this paper have re-evaluated the possibility that poly(A) is involved in protein synthesis by testing whether purified poly(A) might competitively inhibit in vitro protein synthesis in rabbit reticulocyte extracts. We have found that poly(A) inhibits the rate of translation of many different poly(A)+ mRNAs and that comparable inhibition is not observed with other ribopolymers. Inhibition by poly(A) preferentially affects the translation of adenylated mRNAs and can be overcome by increased mRNA concentrations or by translating mRNPs instead of mRNA. The extent of inhibition is dependent on the size of the competitor poly(A) as well as on the translation activity which a lysate has for poly(A)+ RNA. In light of our results and numerous experiments in the literature, we propose that poly(A) has a function in protein synthesis and that any role in the determination of mRNA stability is indirect. Images PMID:6137807

  15. Adaptor assembly for coupling turbine blades to rotor disks

    SciTech Connect

    Delvaux, John McConnel; Garcia-Crespo, Andres Jose; Joyce, Kilmer Joseph; Tindell, Allan Randall

    2014-06-03

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is disclosed. The adaptor assembly may generally include an adaptor body having a root configured to be received within the root slot. The adaptor body may also define a slot having an open end configured to receive the blade root. The adaptor body may further define a channel. The adaptor assembly may also include a plate having an outwardly extending foot. The foot may be configured to be received within the channel. Additionally, the plate may be configured to cover at least a portion of the open end of the slot when the foot is received within the channel.

  16. Arabinogalactan proteins are involved in root hair development in barley

    PubMed Central

    Marzec, Marek; Szarejko, Iwona; Melzer, Michael

    2015-01-01

    The arabinogalactan proteins (AGPs) are involved in a range of plant processes, including cell differentiation and expansion. Here, barley root hair mutants and their wild-type parent cultivars were used, as a model system, to reveal the role of AGPs in root hair development. The treatment of roots with different concentrations of βGlcY (a reagent which binds to all classes of AGPs) inhibited or totally suppressed the development of root hairs in all of the cultivars. Three groups of AGP (recognized by the monoclonal antibodies LM2, LM14, and MAC207) were diversely localized in trichoblasts and atrichoblasts of root hair-producing plants. The relevant epitopes were present in wild-type trichoblast cell walls and cytoplasm, whereas in wild-type atrichoblasts and in all epidermal cells of a root hairless mutant, they were only present in the cytoplasm. In all of cultivars the higher expression of LM2, LM14, and MAC207 was observed in trichoblasts at an early stage of development. Additionally, the LM2 epitope was detected on the surface of primordia and root hair tubes in plants able to generate root hairs. The major conclusion was that the AGPs recognized by LM2, LM14, and MAC207 are involved in the differentiation of barley root epidermal cells, thereby implying a requirement for these AGPs for root hair development in barley. PMID:25465033

  17. An organized co-assembly of clathrin adaptors is essential for endocytosis.

    PubMed

    Skruzny, Michal; Desfosses, Ambroise; Prinz, Simone; Dodonova, Svetlana O; Gieras, Anna; Uetrecht, Charlotte; Jakobi, Arjen J; Abella, Marc; Hagen, Wim J H; Schulz, Joachim; Meijers, Rob; Rybin, Vladimir; Briggs, John A G; Sachse, Carsten; Kaksonen, Marko

    2015-04-20

    Clathrin-mediated endocytosis, the main trafficking route from the plasma membrane to the cytoplasm, is critical to many fundamental cellular processes. Clathrin, coupled to the membrane by adaptor proteins, is thought to play a major structural role in endocytosis by self-assembling into a cage-like lattice around the forming vesicle. Although clathrin adaptors are essential for endocytosis, little is known about their structural role in this process. Here we show that the membrane-binding domains of two conserved clathrin adaptors, Sla2 and Ent1, co-assemble in a PI(4,5)P2-dependent manner to form organized lattices on membranes. We determined the structure of the co-assembled lattice by electron cryo-microscopy and designed mutations that specifically impair the lattice formation in vitro. We show that these mutations block endocytosis in vivo. We suggest that clathrin adaptors not only link the polymerized clathrin to the membrane but also form an oligomeric structure, which is essential for membrane remodeling during endocytosis.

  18. SCIMP is a transmembrane non-TIR TLR adaptor that promotes proinflammatory cytokine production from macrophages

    PubMed Central

    Luo, Lin; Bokil, Nilesh J.; Wall, Adam A.; Kapetanovic, Ronan; Lansdaal, Natalie M.; Marceline, Faustine; Burgess, Belinda J.; Tong, Samuel J.; Guo, Zhong; Alexandrov, Kirill; Ross, Ian L.; Hibbs, Margaret L.; Stow, Jennifer L.; Sweet, Matthew J.

    2017-01-01

    Danger signals activate Toll-like receptors (TLRs), thereby initiating inflammatory responses. Canonical TLR signalling, via Toll/Interleukin-1 receptor domain (TIR)-containing adaptors and proinflammatory transcription factors such as NF-κB, occurs in many cell types; however, additional mechanisms are required for specificity of inflammatory responses in innate immune cells. Here we show that SCIMP, an immune-restricted, transmembrane adaptor protein (TRAP), promotes selective proinflammatory cytokine responses by direct modulation of TLR4. SCIMP is a non-TIR-containing adaptor, binding directly to the TLR4-TIR domain in response to lipopolysaccharide. In macrophages, SCIMP is constitutively associated with the Lyn tyrosine kinase, is required for tyrosine phosphorylation of TLR4, and facilitates TLR-inducible production of the proinflammatory cytokines IL-6 and IL-12p40. Point mutations in SCIMP abrogating TLR4 binding also prevent SCIMP-mediated cytokine production. SCIMP is, therefore, an immune-specific TLR adaptor that shapes host defence and inflammation. PMID:28098138

  19. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation.

    PubMed

    Das, Rupali; Bassiri, Hamid; Guan, Peng; Wiener, Susan; Banerjee, Pinaki P; Zhong, Ming-Chao; Veillette, André; Orange, Jordan S; Nichols, Kim E

    2013-04-25

    The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.

  20. What induces pocket openings on protein surface patches involved in protein-protein interactions?

    NASA Astrophysics Data System (ADS)

    Eyrisch, Susanne; Helms, Volkhard

    2009-02-01

    We previously showed for the proteins BCL-XL, IL-2, and MDM2 that transient pockets at their protein-protein binding interfaces can be identified by applying the PASS algorithm to molecular dynamics (MD) snapshots. We now investigated which aspects of the natural conformational dynamics of proteins induce the formation of such pockets. The pocket detection protocol was applied to three different conformational ensembles for the same proteins that were extracted from MD simulations of the inhibitor bound crystal conformation in water and the free crystal/NMR structure in water and in methanol. Additional MD simulations studied the impact of backbone mobility. The more efficient CONCOORD or normal mode analysis (NMA) techniques gave significantly smaller pockets than MD simulations, whereas tCONCOORD generated pockets comparable to those observed in MD simulations for two of the three systems. Our findings emphasize the influence of solvent polarity and backbone rearrangements on the formation of pockets on protein surfaces and should be helpful in future generation of transient pockets as putative ligand binding sites at protein-protein interfaces.

  1. The light gene of Drosophila melanogaster encodes a homologue of VPS41, a yeast gene involved in cellular-protein trafficking.

    PubMed

    Warner, T S; Sinclair, D A; Fitzpatrick, K A; Singh, M; Devlin, R H; Honda, B M

    1998-04-01

    Mutations in a number of genes affect eye colour in Drosophila melanogaster; some of these "eye-colour" genes have been shown to be involved in various aspects of cellular transport processes. In addition, combinations of viable mutant alleles of some of these genes, such as carnation (car) combined with either light (lt) or deep-orange (dor) mutants, show lethal interactions. Recently, dor was shown to be homologous to the yeast gene PEP3 (VPS18), which is known to be involved in intracellular trafficking. We have undertaken to extend our earlier work on the lt gene, in order to examine in more detail its expression pattern and to characterize its gene product via sequencing of a cloned cDNA. The gene appears to be expressed at relatively high levels in all stages and tissues examined, and shows strong homology to VPS41, a gene involved in cellular-protein trafficking in yeast and higher eukaryotes. Further genetic experiments also point to a role for lt in transport processes: we describe lethal interactions between viable alleles of lt and dor, as well as phenotypic interactions (reductions in eye pigment) between allels of lt and another eye-colour gene, garnet (g), whose gene product has close homology to a subunit of the human adaptor complex, AP-3.

  2. Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis

    PubMed Central

    Gao, Wei-Min; Kuick, Rork; Orchekowski, Randal P; Misek, David E; Qiu, Ji; Greenberg, Alissa K; Rom, William N; Brenner, Dean E; Omenn, Gilbert S; Haab, Brian B; Hanash, Samir M

    2005-01-01

    Background Cancer serum protein profiling by mass spectrometry has uncovered mass profiles that are potentially diagnostic for several common types of cancer. However, direct mass spectrometric profiling has a limited dynamic range and difficulties in providing the identification of the distinctive proteins. We hypothesized that distinctive profiles may result from the differential expression of relatively abundant serum proteins associated with the host response. Methods Eighty-four antibodies, targeting a wide range of serum proteins, were spotted onto nitrocellulose-coated microscope slides. The abundances of the corresponding proteins were measured in 80 serum samples, from 24 newly diagnosed subjects with lung cancer, 24 healthy controls, and 32 subjects with chronic obstructive pulmonary disease (COPD). Two-color rolling-circle amplification was used to measure protein abundance. Results Seven of the 84 antibodies gave a significant difference (p < 0.01) for the lung cancer patients as compared to healthy controls, as well as compared to COPD patients. Proteins that exhibited higher abundances in the lung cancer samples relative to the control samples included C-reactive protein (CRP; a 13.3 fold increase), serum amyloid A (SAA; a 2.0 fold increase), mucin 1 and α-1-antitrypsin (1.4 fold increases). The increased expression levels of CRP and SAA were validated by Western blot analysis. Leave-one-out cross-validation was used to construct Diagonal Linear Discriminant Analysis (DLDA) classifiers. At a cutoff where all 56 of the non-tumor samples were correctly classified, 15/24 lung tumor patient sera were correctly classified. Conclusion Our results suggest that a distinctive serum protein profile involving abundant proteins may be observed in lung cancer patients relative to healthy subjects or patients with chronic disease and may have utility as part of strategies for detecting lung cancer. PMID:16117833

  3. miR-181 interacts with signaling adaptor molecule DENN/MADD and enhances TNF-induced cell death

    PubMed Central

    Ghorbani, Samira; Talebi, Farideh; Ghasemi, Sedigheh; Jahanbazi Jahan Abad, Ali; Vojgani, Mohammed; Noorbakhsh, Farshid

    2017-01-01

    MicroRNAs are small noncoding RNAs, which regulate the expression of protein coding transcripts through mRNA degradation or translational inhibition. Numerous reports have highlighted the role of miRNAs in regulating cell death pathways including the expression of genes involved in the induction of apoptosis. Tumor necrosis factor alpha (TNF-α) is a proinflammatory cytokine which can send pro-death signals through its receptor TNFR1. Diverse adaptor molecules including DENN/MADD adaptor protein have been shown to modulate TNF-α pro-death signaling via recruitment of MAP kinases to TNFR1 and activation of pro-survival NFκB signaling. Herein, we investigated the role of microRNA-181 (miR-181) in regulating DENN/MADD expression levels and its subsequent effects on TNF-α-induced cell death. Using bioinformatics analyses followed by luciferase reporter assays we showed that miR-181 interacts with the 3’ UTR of DENN/MADD transcripts. miR-181 overexpression also led to decreased endogenous DENN/MADD mRNA levels in L929 murine fibroblasts. Flow cytometric analysis of miR-181 transfected cells showed this miRNA accentuates mitochondrial membrane potential loss caused by TNF-α. These findings were associated with enhanced apoptosis of L929 cells following TNF-α treatment. Overall, these data point to the potential role of miR-181 in regulating TNF-α pro-death signaling, which could be of importance from pathogenesis and therapeutic perspectives in inflammatory disorders associated with tissue degeneration and cell death. PMID:28323882

  4. Host membrane proteins involved in the replication of tobamovirus RNA.

    PubMed

    Ishibashi, Kazuhiro; Miyashita, Shuhei; Katoh, Etsuko; Ishikawa, Masayuki

    2012-12-01

    Eukaryotic positive-strand RNA viruses replicate their genomes in membrane-bound replication complexes composed of viral replication proteins and negative-strand RNA templates. These replication proteins are programmed to exhibit RNA polymerase and other replication-related activities only in replication complexes to avoid inducing double-stranded RNA-mediated host defenses. Host membrane components (e.g. proteins and lipids) should play important roles in the activation of replication proteins. Two host membrane proteins are components of the replication complex and activate the replication proteins of tobamoviruses. Interaction analyses using deletion mutants constructed based on structural information suggest a conformational change in replication proteins during the formation of a protein complex with RNA 5'-capping activity.

  5. A novel conserved phosphotyrosine motif in the Drosophila fibroblast growth factor signaling adaptor Dof with a redundant role in signal transmission.

    PubMed

    Csiszar, Agnes; Vogelsang, Elisabeth; Beug, Hartmut; Leptin, Maria

    2010-04-01

    The fibroblast growth factor receptor (FGFR) signals through adaptors constitutively associated with the receptor. In Drosophila melanogaster, the FGFR-specific adaptor protein Downstream-of-FGFR (Dof) becomes phosphorylated upon receptor activation at several tyrosine residues, one of which recruits Corkscrew (Csw), the Drosophila homolog of SHP2, which provides a molecular link to mitogen-activated protein kinase (MAPK) activation. However, the Csw pathway is not the only link from Dof to MAPK. In this study, we identify a novel phosphotyrosine motif present in four copies in Dof and also found in other insect and vertebrate signaling molecules. We show that these motifs are phosphorylated and contribute to FGF signal transduction. They constitute one of three sets of phosphotyrosines that act redundantly in signal transmission: (i) a Csw binding site, (ii) four consensus Grb2 recognition sites, and (iii) four novel tyrosine motifs. We show that Src64B binds to Dof and that Src kinases contribute to FGFR-dependent MAPK activation. Phosphorylation of the novel tyrosine motifs is required for the interaction of Dof with Src64B. Thus, Src64B recruitment to Dof through the novel phosphosites can provide a new link to MAPK activation and other cellular responses. This may give a molecular explanation for the involvement of Src kinases in FGF-dependent developmental events.

  6. Novel Toll/IL-1 Receptor Homologous Region Adaptors Act as Negative Regulators in Amphioxus TLR Signaling.

    PubMed

    Peng, Jian; Tao, Xin; Li, Rui; Hu, Jingru; Ruan, Jie; Wang, Ruihua; Yang, Manyi; Yang, Rirong; Dong, Xiangru; Chen, Shangwu; Xu, Anlong; Yuan, Shaochun

    2015-10-01

    Studies have shown that the basal chordate amphioxus possesses an extraordinarily complex TLR system, including 39 TLRs and at least 40 Toll/IL-1R homologous region (TIR) adaptors. Besides homologs to MyD88 and TIR domain-containing adaptor molecule (TICAM), most amphioxus TIR adaptors exhibit domain architectures that are not observed in other species. To reveal how these novel TIR adaptors function in amphioxus Branchiostoma belcheri tsingtauense (bbt), four representatives, bbtTIRA, bbtTIRB, bbtTIRC, and bbtTIRD, were selected for functional analyses. We found bbtTIRA to show a unique inhibitory role in amphioxus TICAM-mediated pathway by interacting with bbtTICAM and bbt receptor interacting protein 1b, whereas bbtTIRC specifically inhibits the amphioxus MyD88-dependent pathway by interacting with bbtMyD88 and depressing the polyubiquitination of bbt TNFR-associated factor 6. Although both bbtTIRB and bbtTIRD are located on endosomes, the TIR domain of bbtTIRB can interact with bbtMyD88 in the cytosol, whereas the TIR domain of bbtTIRD is enclosed in endosome, suggesting that bbtTIRD may be a redundant gene in amphioxus. This study indicated that most expanded TIR adaptors play nonredundant regulatory roles in amphioxus TLR signaling, adding a new layer to understanding the diversity and complexity of innate immunity at basal chordate.

  7. The Inflammasome Adaptor ASC Induces Procaspase-8 Death Effector Domain Filaments*

    PubMed Central

    Vajjhala, Parimala R.; Lu, Alvin; Brown, Darren L.; Pang, Siew Wai; Sagulenko, Vitaliya; Sester, David P.; Cridland, Simon O.; Hill, Justine M.; Schroder, Kate; Stow, Jennifer L.; Wu, Hao; Stacey, Katryn J.

    2015-01-01

    Inflammasomes mediate inflammatory and cell death responses to pathogens and cellular stress signals via activation of procaspases-1 and -8. During inflammasome assembly, activated receptors of the NLR or PYHIN family recruit the adaptor protein ASC and initiate polymerization of its pyrin domain (PYD) into filaments. We show that ASC filaments in turn nucleate procaspase-8 death effector domain (DED) filaments in vitro and in vivo. Interaction between ASC PYD and procaspase-8 tandem DEDs optimally required both DEDs and represents an unusual heterotypic interaction between domains of the death fold superfamily. Analysis of ASC PYD mutants showed that interaction surfaces that mediate procaspase-8 interaction overlap with those required for ASC self-association and interaction with the PYDs of inflammasome initiators. Our data indicate that multiple types of death fold domain filaments form at inflammasomes and that PYD/DED and homotypic PYD interaction modes are similar. Interestingly, we observed condensation of procaspase-8 filaments containing the catalytic domain, suggesting that procaspase-8 interactions within and/or between filaments may be involved in caspase-8 activation. Procaspase-8 filaments may also be relevant to apoptosis induced by death receptors. PMID:26468282

  8. How HIV-1 Nef hijacks the AP-2 clathrin adaptor to downregulate CD4.

    PubMed

    Ren, Xuefeng; Park, Sang Yoon; Bonifacino, Juan S; Hurley, James H

    2014-01-01

    The Nef protein of HIV-1 downregulates the cell surface co-receptor CD4 by hijacking the clathrin adaptor complex AP-2. The structural basis for the hijacking of AP-2 by Nef is revealed by a 2.9 Å crystal structure of Nef bound to the α and σ2 subunits of AP-2. Nef binds to AP-2 via its central loop (residues 149-179) and its core. The determinants for Nef binding include residues that directly contact AP-2 and others that stabilize the binding-competent conformation of the central loop. Residues involved in both direct and indirect interactions are required for the binding of Nef to AP-2 and for downregulation of CD4. These results lead to a model for the docking of the full AP-2 tetramer to membranes as bound to Nef, such that the cytosolic tail of CD4 is situated to interact with its binding site on Nef. DOI: http://dx.doi.org/10.7554/eLife.01754.001.

  9. DUF581 Is Plant Specific FCS-Like Zinc Finger Involved in Protein-Protein Interaction

    PubMed Central

    K, Muhammed Jamsheer; Laxmi, Ashverya

    2014-01-01

    Zinc fingers are a ubiquitous class of protein domain with considerable variation in structure and function. Zf-FCS is a highly diverged group of C2-C2 zinc finger which is present in animals, prokaryotes and viruses, but not in plants. In this study we identified that a plant specific domain of unknown function, DUF581 is a zf-FCS type zinc finger. Based on HMM-HMM comparison and signature motif similarity we named this domain as FCS-Like Zinc finger (FLZ) domain. A genome wide survey identified that FLZ domain containing genes are bryophytic in origin and this gene family is expanded in spermatophytes. Expression analysis of selected FLZ gene family members of A. thaliana identified an overlapping expression pattern suggesting a possible redundancy in their function. Unlike the zf-FCS domain, the FLZ domain found to be highly conserved in sequence and structure. Using a combination of bioinformatic and protein-protein interaction tools, we identified that FLZ domain is involved in protein-protein interaction. PMID:24901469

  10. Identification of Protein Interactions Involved in Cellular Signaling

    PubMed Central

    Westermarck, Jukka; Ivaska, Johanna; Corthals, Garry L.

    2013-01-01

    Protein-protein interactions drive biological processes. They are critical for all intra- and extracellular functions, and the technologies to analyze them are widely applied throughout the various fields of biological sciences. This study takes an in-depth view of some common principles of cellular regulation and provides a detailed account of approaches required to comprehensively map signaling protein-protein interactions in any particular cellular system or condition. We provide a critical review of the benefits and disadvantages of the yeast two-hybrid method and affinity purification coupled with mass spectrometric procedures for identification of signaling protein-protein interactions. In particular, we emphasize the quantitative and qualitative differences between tandem affinity and one-step purification (such as FLAG and Strep tag) methods. Although applicable to all types of interaction studies, a special section is devoted in this review to aspects that should be considered when attempting to identify signaling protein interactions that often are transient and weak by nature. Finally, we discuss shotgun and quantitative information that can be gleaned by MS-coupled methods for analysis of multiprotein complexes. PMID:23481661

  11. The VHL short variant involves in protein quality control.

    PubMed

    Liu, Yanbin; Yang, Haixia; Zuo, Feifei; Chen, Liang

    2016-09-01

    The von Hippel-Lindau (VHL) is the most important and frequently mutated gene in human clear cell renal cell carcinoma (ccRCC). In contrast to its long counterpart, the internal translational variant of VHL protein (VHLs) is evolutionarily conserved. Herein we present evidence that VHLs associates with ribosome complex via interaction with the large subunit 6 (RPL6). Manipulation of VHLs expression significantly alters protein synthesis, cell size and mitochondrial mass. VHLs deficiency leads to remarkable sensitivity to drug treatments eliciting nascent protein mis-folding and translational errors. The ubiquitination of nascent peptides are dramatically increased upon the ectopic over-expression of VHLs, which simultaneously co-localizes with proteasome and thus may facilitate the ubiquitin-proteasome mediated degradation. In summary, VHLs contributes to protein quality control in addition to its canonical function in maintaining homeostasis of hypoxia-induced factors alpha subunit (HIFα) in response to environmental oxygen supply.

  12. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity

    PubMed Central

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Piña-Medina, Ana Gabriela; Camacho-Arroyo, Ignacio

    2015-01-01

    In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytoskeleton and its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites and dendritic spines, as well as to regulate the diverse functions in astrocytes. The expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly when variations in sex hormone levels occur during the estrous or menstrual cycles or pregnancy. Here, we review the changes in structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity are regulated by estradiol and progesterone. PMID:26635640

  13. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor... entitled “Guidance for the Submission of Research and Marketing Applications for Permanent Pacemaker...

  14. Differentiation of HL60 cells: involvement of protein phosphorylation

    SciTech Connect

    Spearman, T.N.; Fontana, J.A.; Butcher, F.R.; Durham, J.P.

    1986-05-01

    The addition of retinoic acid (RA) to the human promyelocytic leukemic cell line HL60 in culture results in the cessation of growth and the acquisition of a more mature phenotype. Previous work in these laboratories has demonstrated a concomitant increase in the activity of calcium-dependent, phospholipid-sensitive protein kinase (PK-C). HL60 cells were incubated with /sup 32/P-P/sub i/ in the absence and presence of RA, homogenized, and aliquots subjected to two-dimensional electrophoresis. A comparison of autoradiograms made from these gels revealed several phosphoproteins whose radiolabeling was affected by RA. The radiolabeling of one particular phosphoprotein (49kd, pI 4.8) was found to be increased prior to phenotypic evidence of differentiation. It was demonstrated via incubating HL60 cytosol with /sup 32/P -ATP and Ca/sup 2 +/ in the absence and presence of phosphatidylserine and resolving the labeled proteins as above that this protein is phosphorylated by PK-C. The labeling of this protein was also increased by RA in other leukemic cell lines which showed phenotypic evidence of differentiation while no effect was seen in HL60 sublines resistant to RA or in mature neutrophils (the end product of myeloid differentiation). These results suggest that this protein may be an important intermediate in myeloid differentiation.

  15. Characterization and Modulation of Proteins Involved in Sulfur Mustard Vesication

    DTIC Science & Technology

    2000-06-01

    SM may induce apoptosis as well. Recent evidence has revealed that Bcl-2 can complex with both the Caenorhabditis elegans death proteins 3 and 4 (Ced-3...the product of a gene required for programmed Tris-HCl (pH 6.8), and 0.02% bromophenol blue. Samples were re- cell death in Caenorhabditis elegans [17...biochemical or mor- which is required for apoptosis in Caenorhabditis elegans (8). phological changes characteristic of apoptosis when In human

  16. Centrophilin: a novel mitotic spindle protein involved in microtubule nucleation

    PubMed Central

    1991-01-01

    A novel protein has been identified which may serve a key function in nucleating spindle microtubule growth in mitosis. This protein, called centrophilin, is sequentially relocated from the centromeres to the centrosomes to the midbody in a manner dependent on the mitotic phase. Centrophilin was initially detected by immunofluorescence with a monoclonal, primate-specific antibody (2D3) raised against kinetochore- enriched chromosome extract from HeLa cells (Valdivia, M. M., and B. R. Brinkley. 1985. J. Cell Biol. 101:1124-1134). Centrophilin forms prominent crescents at the poles of the metaphase spindle, gradually diminishes during anaphase, and bands the equatorial ends of midbody microtubules in telophase. The formation and breakdown of the spindle and midbody correlates in time and space with the aggregation and disaggregation of centrophilin foci. Immunogold EM reveals that centrophilin is a major component of pericentriolar material in metaphase. During recovery from microtubule inhibition, centrophilin foci act as nucleation sites for the assembly of spindle tubules. The 2D3 probe recognizes two high molecular mass polypeptides, 180 and 210 kD, on immunoblots of whole HeLa cell extract. Taken together, these data and the available literature on microtubule dynamics point inevitably to a singular model for control of spindle tubule turnover. PMID:1991791

  17. The myxoma virus m-t5 ankyrin repeat host range protein is a novel adaptor that coordinately links the cellular signaling pathways mediated by Akt and Skp1 in virus-infected cells.

    PubMed

    Werden, Steven J; Lanchbury, Jerry; Shattuck, Donna; Neff, Chris; Dufford, Max; McFadden, Grant

    2009-12-01

    Most poxviruses express multiple proteins containing ankyrin (ANK) repeats accounting for a large superfamily of related but unique determinants of poxviral tropism. Recently, select members of this novel family of poxvirus proteins have drawn considerable attention for their potential roles in modulating intracellular signaling networks during viral infection. The rabbit-specific poxvirus, myxoma virus (MYXV), encodes four unique ANK repeat proteins, termed M-T5, M148, M149, and M150, all of which include a carboxy-terminal PRANC domain which closely resembles a cellular protein motif called the F-box domain. Here, we show that each MYXV-encoded ANK repeat protein, including M-T5, interacts directly with the Skp1 component of the host SCF ubiquitin ligase complex, and that the binding of M-T5 to cullin 1 is indirect via binding to Skp1 in the host SCF complex. To understand the significance of these virus-host protein interactions, the various binding domains of M-T5 were mapped. The N-terminal ANK repeats I and II were identified as being important for interaction with Akt, whereas the C-terminal PRANC/F-box-like domain was essential for binding to Skp1. We also report that M-T5 can bind Akt and the host SCF complex (via Skp1) simultaneously in MYXV-infected cells. Finally, we report that M-T5 specifically mediates the relocalization of Akt from the nucleus to the cytoplasm during infection with the wild-type MYXV, but not the M-T5 knockout version of the virus. These results indicate that ANK/PRANC proteins play a critical role in reprogramming disparate cellular signaling cascades to establish a new cellular environment more favorable for virus replication.

  18. Systematic VCP-UBXD Adaptor Network Proteomics Identifies a Role for UBXN10 in Regulating Ciliogenesis

    PubMed Central

    Raman, Malavika; Sergeev, Mikhail; Garnaas, Maija; Lydeard, John R.; Huttlin, Edward L.; Goessling, Wolfram; Shah, Jagesh V.; Harper, J. Wade

    2015-01-01

    The AAA-ATPase VCP (also known as p97 or CDC48) uses ATP hydrolysis to “segregate” ubiquitinated proteins from their binding partners. VCP acts via UBX-domain containing adaptors that provide target specificity, but targets and functions of UBXD proteins remain poorly understood. Through systematic proteomic analysis of UBXD proteins in human cells, we reveal a network of over 195 interacting proteins, implicating VCP in diverse cellular pathways. We have explored one such complex between an unstudied adaptor UBXN10 and the intraflagellar transport B (IFT-B) complex, which regulates anterograde transport into cilia. UBXN10 localizes to cilia in a VCP-dependent manner and both VCP and UBXN10 are required for ciliogenesis. Pharmacological inhibition of VCP destabilized the IFT-B complex and increased trafficking rates. Depletion of UBXN10 in zebrafish embryos causes defects in left-right asymmetry, which depends on functional cilia. This study provides a resource for exploring the landscape of UBXD proteins in biology and identifies an unexpected requirement for VCP-UBXN10 in ciliogenesis. PMID:26389662

  19. Apolipoprotein A-IV: a protein intimately involved in metabolism

    PubMed Central

    Wang, Fei; Kohan, Alison B.; Lo, Chun-Min; Liu, Min; Howles, Philip; Tso, Patrick

    2015-01-01

    The purpose of this review is to summarize our current understanding of the physiological roles of apoA-IV in metabolism, and to underscore the potential for apoA-IV to be a focus for new therapies aimed at the treatment of diabetes and obesity-related disorders. ApoA-IV is primarily synthesized by the small intestine, attached to chylomicrons by enterocytes, and secreted into intestinal lymph during fat absorption. In circulation, apoA-IV is associated with HDL and chylomicron remnants, but a large portion is lipoprotein free. Due to its anti-oxidative and anti-inflammatory properties, and because it can mediate reverse-cholesterol transport, proposed functions of circulating apoA-IV have been related to protection from cardiovascular disease. This review, however, focuses primarily on several properties of apoA-IV that impact other metabolic functions related to food intake, obesity, and diabetes. In addition to participating in triglyceride absorption, apoA-IV can act as an acute satiation factor through both peripheral and central routes of action. It also modulates glucose homeostasis through incretin-like effects on insulin secretion, and by moderating hepatic glucose production. While apoA-IV receptors remain to be conclusively identified, the latter modes of action suggest that this protein holds therapeutic promise for treating metabolic disease. PMID:25640749

  20. The adaptor 3BP2 is required for KIT receptor expression and human mast cell survival

    PubMed Central

    Ainsua-Enrich, Erola; Serrano-Candelas, Eva; Álvarez-Errico, Damiana; Picado, César; Sayós, Joan; Rivera, Juan; Martín, Margarita

    2015-01-01

    3BP2 is a cytoplasmic adaptor protein that acts as a positive regulator in mast cell FcεRI-dependent signaling. The KIT receptor whose ligand is the stem cell factor (SCF) is necessary for mast cell development, proliferation and survival as well as for optimal IgE-dependent signal. Activating mutations in KIT have been associated with several diseases including mastocytosis. In the present work, we found that 3BP2 silencing impairs KIT signaling pathways, thus affecting PI3K and MAP kinase pathways in human mast cells from HMC-1, LAD2 (human mast cell lines) and CD34+-derived mast cells. Unexpectedly, silencing of 3BP2 reduces KIT expression in normal human mast cells as well as in HMC-1 cells where KIT is mutated, thus increasing cellular apoptosis and caspase 3/7 activity. 3BP2 silencing reduces KIT transcription expression levels. Interestingly, 3BP2 silencing decreased MITF expression, a transcription factor involved in KIT expression. Reconstitution of 3BP2 in knockdown cells leads to reversal of KIT expression as well as survival phenotype. Accordingly MITF reconstitution enhances KIT expression levels in 3BP2 silenced cells. Moreover, downregulation of KIT expression by miRNA221 overexpression or the proteasome inhibitor bortezomib also reduced 3BP2 and MITF expression. Furthermore, KIT tyrosine activity inhibition reduced 3BP2 and MITF expression, demonstrating again a tight and reciprocal relationship between these molecules. Taken together, our results show that 3BP2 regulates human mast cell survival and participates in KIT-mediated signal transduction by directly controlling KIT receptor expression, suggesting its potential as a therapeutic target in mast cell-mediated inflammatory diseases and deregulated KIT disorders. PMID:25810396

  1. P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing.

    PubMed

    Jekat, Stephan B; Ernst, Antonia M; von Bohl, Andreas; Zielonka, Sascia; Twyman, Richard M; Noll, Gundula A; Prüfer, Dirk

    2013-01-01

    Structural phloem proteins (P-proteins) are characteristic components of the sieve elements in all dicotyledonous and many monocotyledonous angiosperms. Tobacco P-proteins were recently confirmed to be encoded by the widespread sieve element occlusion (SEO) gene family, and tobacco SEO proteins were shown to be directly involved in sieve tube sealing thus preventing the loss of photosynthate. Analysis of the two Arabidopsis SEO proteins (AtSEOa and AtSEOb) indicated that the corresponding P-protein subunits do not act in a redundant manner. However, there are still pending questions regarding the interaction properties and specific functions of AtSEOa and AtSEOb as well as the general function of structural P-proteins in Arabidopsis. In this study, we characterized the Arabidopsis P-proteins in more detail. We used in planta bimolecular fluorescence complementation assays to confirm the predicted heteromeric interactions between AtSEOa and AtSEOb. Arabidopsis mutants depleted for one or both AtSEO proteins lacked the typical P-protein structures normally found in sieve elements, underlining the identity of AtSEO proteins as P-proteins and furthermore providing the means to determine the role of Arabidopsis P-proteins in sieve tube sealing. We therefore developed an assay based on phloem exudation. Mutants with reduced AtSEO expression levels lost twice as much photosynthate following injury as comparable wild-type plants, confirming that Arabidopsis P-proteins are indeed involved in sieve tube sealing.

  2. Elucidation of Novel Structural Scaffold in Rohu TLR2 and Its Binding Site Analysis with Peptidoglycan, Lipoteichoic Acid and Zymosan Ligands, and Downstream MyD88 Adaptor Protein

    PubMed Central

    Sahoo, Bikash Ranjan; Basu, Madhubanti; Swain, Banikalyan; Dikhit, Manas Ranjan; Jayasankar, Pallipuram; Samanta, Mrinal

    2013-01-01

    Toll-like receptors (TLRs) play key roles in sensing wide array of microbial signatures and induction of innate immunity. TLR2 in fish resembles higher eukaryotes by sensing peptidoglycan (PGN) and lipoteichoic acid (LTA) of bacterial cell wall and zymosan of yeasts. However, in fish TLR2, no study yet describes the ligand binding motifs in the leucine rich repeat regions (LRRs) of the extracellular domain (ECD) and important amino acids in TLR2-TIR (toll/interleukin-1 receptor) domain that could be engaged in transmitting downstream signaling. We predicted these in a commercially important freshwater fish species rohu (Labeo rohita) by constructing 3D models of TLR2-ECD, TLR2-TIR, and MyD88-TIR by comparative modeling followed by 40 ns (nanosecond) molecular dynamics simulation (MDS) for TLR2-ECD and 20 ns MDS for TLR2-TIR and MyD88-TIR. Protein (TLR2-ECD)–ligands (PGN, LTA, and zymosan) docking in rohu by AutoDock4.0, FlexX2.1, and GOLD4.1 anticipated LRR16–19, LRR12–14, and LRR20-CT as the most important ligand binding motifs. Protein (TLR2-TIR)—protein (MyD88-TIR) interaction by HADDOCK and ZDOCK predicted BB loop, αB-helix, αC-helix, and CD loop in TLR2-TIR and BB loop, αB-helix, and CD loop in MyD88-TIR as the critical binding domains. This study provides ligands recognition and downstream signaling. PMID:23956969

  3. Burn to leg: full thickness lower limb burn associated with laptop power adaptor.

    PubMed

    Patel, Shivali M; Leon-Villapalos, Jorge

    2011-03-10

    There has been much media attention in recent years on laptops and their accessories overheating and even causing fires. Here, the authors report a case of a laptop power adaptor causing a full thickness burn requiring surgical intervention in a young, fit man. The total contact time was less than 1 h. Initial surgical management involved debridement and allografting of the wound due to a concomitant cellulitis. A week later, once the cellulitis had resolved, an autograft was applied. The graft take was satisfactory (100%) and the patient had a good postoperative outcome.

  4. Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission.

    PubMed

    Palmer, Catherine S; Elgass, Kirstin D; Parton, Robert G; Osellame, Laura D; Stojanovski, Diana; Ryan, Michael T

    2013-09-20

    Drp1 (dynamin-related protein 1) is recruited to both mitochondrial and peroxisomal membranes to execute fission. Fis1 and Mff are Drp1 receptor/effector proteins of mitochondria and peroxisomes. Recently, MiD49 and MiD51 were also shown to recruit Drp1 to the mitochondrial surface; however, different reports have ascribed opposing roles in fission and fusion. Here, we show that MiD49 or MiD51 overexpression blocked fission by acting in a dominant-negative manner by sequestering Drp1 specifically at mitochondria, causing unopposed fusion events at mitochondria along with elongation of peroxisomes. Mitochondrial elongation caused by MiD49/51 overexpression required the action of fusion mediators mitofusins 1 and 2. Furthermore, at low level overexpression when MiD49 and MiD51 form discrete foci at mitochondria, mitochondrial fission events still occurred. Unlike Fis1 and Mff, MiD49 and MiD51 were not targeted to the peroxisomal surface, suggesting that they specifically act to facilitate Drp1-directed fission at mitochondria. Moreover, when MiD49 or MiD51 was targeted to the surface of peroxisomes or lysosomes, Drp1 was specifically recruited to these organelles. Moreover, the Drp1 recruitment activity of MiD49/51 appeared stronger than that of Mff or Fis1. We conclude that MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and suggest that they provide specificity to the division of mitochondria.

  5. Solution structure of the focal adhesion adaptor PINCH LIM1 domain and characterization of its interaction with the integrin-linked kinase ankyrin repeat domain.

    PubMed

    Velyvis, A; Yang, Y; Wu, C; Qin, J

    2001-02-16

    PINCH is a recently identified adaptor protein that comprises an array of five LIM domains. PINCH functions through LIM-mediated protein-protein interactions that are involved in cell adhesion, growth, and differentiation. The LIM1 domain of PINCH interacts with integrin-linked kinase (ILK), thereby mediating focal adhesions via a specific integrin/ILK signaling pathway. We have solved the NMR structure of the PINCH LIM1 domain and characterized its binding to ILK. LIM1 contains two contiguous zinc fingers of the CCHC and CCCH types and adopts a global fold similar to that of functionally distinct LIM domains from cysteine-rich protein and cysteine-rich intestinal protein families with CCHC and CCCC zinc finger types. Gel-filtration and NMR experiments demonstrated a 1:1 complex between PINCH LIM1 and the ankyrin repeat domain of ILK. A chemical shift mapping experiment identified regions in PINCH LIM1 that are important for interaction with ILK. Comparison of surface features between PINCH LIM1 and other functionally different LIM domains indicated that the LIM motif might have a highly variable mode in recognizing various target proteins.

  6. Interfacial interactions involved in the biological assembly of Chandipura virus nucleocapsid protein.

    PubMed

    Sreejith, R; Gulati, Sahil; Gupta, Sanjay

    2013-06-01

    The biological assembly of Chandipura virus nucleocapsid (N) protein has been modeled and the amino acid residues involved in specific intermolecular interactions among N monomers during oligomerisation have been predicted.

  7. In vitro and in vivo Analysis of the Binding of the C Terminus of the HDL Receptor Scavenger Receptor Class B type I (SR-BI) to the PDZ1 Domain of its Cytoplasmic Adaptor Protein PDZK1

    SciTech Connect

    O Kocher; G Birrane; K Tsukamoto; S Fenske; A Yesilaltay; R Pal; K Daniels; J Ladias; M Krieger

    2011-12-31

    The PDZ1 domain of the four PDZ domain-containing protein PDZK1 has been reported to bind the C terminus of the HDL receptor scavenger receptor class B, type I (SR-BI), and to control hepatic SR-BI expression and function. We generated wild-type (WT) and mutant murine PDZ1 domains, the mutants bearing single amino acid substitutions in their carboxylate binding loop (Lys(14)-Xaa(4)-Asn(19)-Tyr-Gly-Phe-Phe-Leu(24)), and measured their binding affinity for a 7-residue peptide corresponding to the C terminus of SR-BI ((503)VLQEAKL(509)). The Y20A and G21Y substitutions abrogated all binding activity. Surprisingly, binding affinities (K(d)) of the K14A and F22A mutants were 3.2 and 4.0 ?M, respectively, similar to 2.6 ?M measured for the WT PDZ1. To understand these findings, we determined the high resolution structure of WT PDZ1 bound to a 5-residue sequence from the C-terminal SR-BI ((505)QEAKL(509)) using x-ray crystallography. In addition, we incorporated the K14A and Y20A substitutions into full-length PDZK1 liver-specific transgenes and expressed them in WT and PDZK1 knock-out mice. In WT mice, the transgenes did not alter endogenous hepatic SR-BI protein expression (intracellular distribution or amount) or lipoprotein metabolism (total plasma cholesterol, lipoprotein size distribution). In PDZK1 knock-out mice, as expected, the K14A mutant behaved like wild-type PDZK1 and completely corrected their hepatic SR-BI and plasma lipoprotein abnormalities. Unexpectedly, the 10-20-fold overexpressed Y20A mutant also substantially, but not completely, corrected these abnormalities. The results suggest that there may be an additional site(s) within PDZK1 that bind(s) SR-BI and mediate(s) productive SR-BI-PDZK1 interaction previously attributed exclusively to the canonical binding of the C-terminal SR-BI to PDZ1.

  8. Identification of the major lipoproteins in crayfish hemolymph as proteins involved in immune recognition and clotting.

    PubMed

    Hall, M; van Heusden, M C; Söderhäll, K

    1995-11-22

    Lipid-containing hemolymph proteins from males of the crayfish Pacifastacus leniusculus were isolated by density gradient ultracentrifugation. Two major lipoproteins, one high density lipoprotein (HDL) and one very high density lipoprotein (VHDL), were characterized. The HDL and the VHDL were found to be identical to two proteins previously studied for their roles in immune recognition and hemolymph clotting, namely the beta-1,3-glucan binding protein and the clotting protein. These results imply that crayfish lipoproteins have dual functions, and that they are involved in immunity, hemolymph clotting, and lipid transport in these animals. Also, the oxygen-transporting protein hemocyanin was found to have a small lipid content.

  9. A liquid crystal of ascorbyl palmitate, used as vaccine platform, provides sustained release of antigen and has intrinsic pro-inflammatory and adjuvant activities which are dependent on MyD88 adaptor protein.

    PubMed

    Sánchez Vallecillo, María F; Minguito de la Escalera, María M; Aguirre, María V; Ullio Gamboa, Gabriela V; Palma, Santiago D; González-Cintado, Leticia; Chiodetti, Ana L; Soldano, Germán; Morón, Gabriel; Allemandi, Daniel A; Ardavín, Carlos; Pistoresi-Palencia, María C; Maletto, Belkys A

    2015-09-28

    Modern subunit vaccines require the development of new adjuvant strategies. Recently, we showed that CpG-ODN formulated with a liquid crystal nanostructure formed by self-assembly of 6-O-ascorbyl palmitate (Coa-ASC16) is an attractive system for promoting an antigen-specific immune response to weak antigens. Here, we showed that after subcutaneous injection of mice with near-infrared fluorescent dye-labeled OVA antigen formulated with Coa-ASC16, the dye-OVA was retained at the injection site for a longer period than when soluble dye-OVA was administered. Coa-ASC16 alone elicited a local inflammation, but how this material triggers this response has not been described yet. Although it is known that some materials used as a platform are not immunologically inert, very few studies have directly focused on this topic. In this study, we explored the underlying mechanisms concerning the interaction between Coa-ASC16 and the immune system and we found that the whole inflammatory response elicited by Coa-ASC16 (leukocyte recruitment and IL-1β, IL-6 and IL-12 production) was dependent on the MyD88 protein. TLR2, TLR4, TLR7 and NLRP3-inflammasome signaling were not required for induction of this inflammatory response. Coa-ASC16 induced local release of self-DNA, and in TLR9-deficient mice IL-6 production was absent. In addition, Coa-ASC16 revealed an intrinsic adjuvant activity which was affected by MyD88 and IL-6 absence. Taken together these results indicate that Coa-ASC16 used as a vaccine platform is effective due to the combination of the controlled release of antigen and its intrinsic pro-inflammatory activity. Understanding how Coa-ASC16 works might have significant implications for rational vaccine design.

  10. Involvement of Iron-Containing Proteins in Genome Integrity in Arabidopsis Thaliana

    PubMed Central

    Zhang, Caiguo

    2015-01-01

    The Arabidopsis genome encodes numerous iron-containing proteins such as iron-sulfur (Fe-S) cluster proteins and hemoproteins. These proteins generally utilize iron as a cofactor, and they perform critical roles in photosynthesis, genome stability, electron transfer, and oxidation-reduction reactions. Plants have evolved sophisticated mechanisms to maintain iron homeostasis for the assembly of functional iron-containing proteins, thereby ensuring genome stability, cell development, and plant growth. Over the past few years, our understanding of iron-containing proteins and their functions involved in genome stability has expanded enormously. In this review, I provide the current perspectives on iron homeostasis in Arabidopsis, followed by a summary of iron-containing protein functions involved in genome stability maintenance and a discussion of their possible molecular mechanisms. PMID:27330736

  11. Serine residues in the LAT adaptor are essential for TCR-dependent signal transduction.

    PubMed

    Martínez-Florensa, Mario; García-Blesa, Antonio; Yélamos, José; Muñoz-Suano, Alba; Domínguez-Villar, Margarita; Valdor, Rut; Alonso, Antonio; García-Cózar, Francisco; Aparicio, Pedro; Malissen, Bernard; Aguado, Enrique

    2011-01-01

    The adaptor protein LAT has a prominent role in the transduction of intracellular signals elicited by the TCR/CD3 complex. Upon TCR engagement, LAT becomes tyrosine-phosphorylated and thereby, recruits to the membrane several proteins implicated in the activation of downstream signaling pathways. However, little is known about the role of other conserved motifs present in the LAT sequence. Here, we report that the adaptor LAT contains several conserved serine-based motifs, which are essential for proper signal transduction through the TCR. Mutation of these serine motifs in the human T cell line Jurkat prevents proper calcium influx, MAPK activation, and IL-2 production in response to TCR/CD3 stimulation. Moreover, this mutant form of LAT has a reduced ability to bind to PLC-γ1 and SLP-76, although phosphorylation of tyrosine residues 132, 171, and 191 is not decreased, raising a possible role for the serine-based motifs of LAT for the binding of important partners. The functional role of LAT serine-based motifs in signal transduction could be mediated by an effect on tyrosine phosphorylation, as their mutation significantly diminishes the phosphorylation of tyrosine residue 226. In addition, these serine motifs seem to have a regulatory role, given that upon their mutation, ZAP-70 shows enhanced phosphorylation. Therefore, the LAT serine-based motifs likely regulate signaling pathways that are essential for T cell physiology.

  12. GUN1 Controls Accumulation of the Plastid Ribosomal Protein S1 at the Protein Level and Interacts with Proteins Involved in Plastid Protein Homeostasis1

    PubMed Central

    Pesaresi, Paolo; Rossi, Fabio; Guljamow, Arthur; Sommer, Frederik; Mühlhaus, Timo; Schroda, Michael; Masiero, Simona; Rothbart, Maxi; Hedtke, Boris

    2016-01-01

    Developmental or metabolic changes in chloroplasts can have profound effects on the rest of the plant cell. Such intracellular responses are associated with signals that originate in chloroplasts and convey information on their physiological status to the nucleus, which leads to large-scale changes in gene expression (retrograde signaling). A screen designed to identify components of retrograde signaling resulted in the discovery of the so-called genomes uncoupled (gun) mutants. Genetic evidence suggests that the chloroplast protein GUN1 integrates signals derived from perturbations in plastid redox state, plastid gene expression, and tetrapyrrole biosynthesis (TPB) in Arabidopsis (Arabidopsis thaliana) seedlings, exerting biogenic control of chloroplast functions. However, the molecular mechanism by which GUN1 integrates retrograde signaling in the chloroplast is unclear. Here we show that GUN1 also operates in adult plants, contributing to operational control of chloroplasts. The gun1 mutation genetically interacts with mutations of genes for the chloroplast ribosomal proteins S1 (PRPS1) and L11. Analysis of gun1 prps1 lines indicates that GUN1 controls PRPS1 accumulation at the protein level. The GUN1 protein physically interacts with proteins involved in chloroplast protein homeostasis based on coimmunoprecipitation experiments. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments suggest that GUN1 might transiently interact with several TPB enzymes, including Mg-chelatase subunit D (CHLD) and two other TPB enzymes known to activate retrograde signaling. Moreover, the association of PRPS1 and CHLD with protein complexes is modulated by GUN1. These findings allow us to speculate that retrograde signaling might involve GUN1-dependent formation of protein complexes. PMID:26823545

  13. GUN1 Controls Accumulation of the Plastid Ribosomal Protein S1 at the Protein Level and Interacts with Proteins Involved in Plastid Protein Homeostasis.

    PubMed

    Tadini, Luca; Pesaresi, Paolo; Kleine, Tatjana; Rossi, Fabio; Guljamow, Arthur; Sommer, Frederik; Mühlhaus, Timo; Schroda, Michael; Masiero, Simona; Pribil, Mathias; Rothbart, Maxi; Hedtke, Boris; Grimm, Bernhard; Leister, Dario

    2016-03-01

    Developmental or metabolic changes in chloroplasts can have profound effects on the rest of the plant cell. Such intracellular responses are associated with signals that originate in chloroplasts and convey information on their physiological status to the nucleus, which leads to large-scale changes in gene expression (retrograde signaling). A screen designed to identify components of retrograde signaling resulted in the discovery of the so-called genomes uncoupled (gun) mutants. Genetic evidence suggests that the chloroplast protein GUN1 integrates signals derived from perturbations in plastid redox state, plastid gene expression, and tetrapyrrole biosynthesis (TPB) in Arabidopsis (Arabidopsis thaliana) seedlings, exerting biogenic control of chloroplast functions. However, the molecular mechanism by which GUN1 integrates retrograde signaling in the chloroplast is unclear. Here we show that GUN1 also operates in adult plants, contributing to operational control of chloroplasts. The gun1 mutation genetically interacts with mutations of genes for the chloroplast ribosomal proteins S1 (PRPS1) and L11. Analysis of gun1 prps1 lines indicates that GUN1 controls PRPS1 accumulation at the protein level. The GUN1 protein physically interacts with proteins involved in chloroplast protein homeostasis based on coimmunoprecipitation experiments. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments suggest that GUN1 might transiently interact with several TPB enzymes, including Mg-chelatase subunit D (CHLD) and two other TPB enzymes known to activate retrograde signaling. Moreover, the association of PRPS1 and CHLD with protein complexes is modulated by GUN1. These findings allow us to speculate that retrograde signaling might involve GUN1-dependent formation of protein complexes.

  14. The crystal structure of the thiocyanate-forming protein from Thlaspi arvense, a kelch protein involved in glucosinolate breakdown.

    PubMed

    Gumz, Frauke; Krausze, Joern; Eisenschmidt, Daniela; Backenköhler, Anita; Barleben, Leif; Brandt, Wolfgang; Wittstock, Ute

    2015-09-01

    Kelch repeat-containing proteins are involved in diverse cellular processes, but only a small subset of plant kelch proteins has been functionally characterized. Thiocyanate-forming protein (TFP) from field-penny cress, Thlaspi arvense (Brassicaceae), is a representative of specifier proteins, a group of kelch proteins involved in plant specialized metabolism. As components of the glucosinolate-myrosinase system of the Brassicaceae, specifier proteins determine the profile of bioactive products formed when plant tissue is disrupted and glucosinolates are hydrolyzed by myrosinases. Here, we describe the crystal structure of TaTFP at a resolution of 1.4 Å. TaTFP crystallized as homodimer. Each monomer forms a six-blade β-propeller with a wide "top" and a narrower "bottom" opening with distinct strand-connecting loops protruding far beyond the lower propeller surface. Molecular modeling and mutational analysis identified residues for glucosinolate aglucone and Fe(2+) cofactor binding within these loops. As the first experimentally determined structure of a plant kelch protein, the crystal structure of TaTFP not only enables more detailed mechanistic studies on glucosinolate breakdown product formation, but also provides a new basis for research on the diverse roles and mechanisms of other kelch proteins in plants.

  15. p130Cas Scaffolds the Signalosome To Direct Adaptor-Effector Cross Talk during Kaposi's Sarcoma-Associated Herpesvirus Trafficking in Human Microvascular Dermal Endothelial Cells

    PubMed Central

    Bandyopadhyay, Chirosree; Veettil, Mohanan Valiya; Dutta, Sujoy

    2014-01-01

    , without any intrinsic enzymatic activity, are well known to allow a great diversity of specific and coordinated protein-protein interactions imparting signal amplification to different networks for physiological and pathological signaling. They are involved in integrating signals from growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. The present study identifies human microvascular dermal endothelial (HMVEC-d) cellular scaffold protein p130Cas (Crk-associated substrate) as a platform to promote Kaposi's sarcoma-associated herpesvirus (KSHV) trafficking. Early during KSHV de novo infection, p130Cas associates with lipid rafts and scaffolds EphrinA2 (EphA2)-associated critical adaptor members to downstream effector molecules, promoting successful nuclear delivery of the KSHV genome. Hence, simultaneous targeting of the receptor EphA2 and scaffolding action of p130Cas can potentially uncouple the signal cross talk of the KSHV entry-associated upstream signal complex from the immediate downstream trafficking-associated signalosome, consequently routing KSHV toward lysosomal degradation and eventually blocking KSHV infection and associated malignancies. PMID:25253349

  16. Giardia lamblia low-density lipoprotein receptor-related protein is involved in selective lipoprotein endocytosis and parasite replication.

    PubMed

    Rivero, Maria R; Miras, Silvana L; Quiroga, Rodrigo; Rópolo, Andrea S; Touz, Maria C

    2011-03-01

    As Giardia lamblia is unable to synthesize cholesterol de novo, this steroid might be obtained from the host's intestinal milieu by endocytosis of lipoproteins. In this work, we identified a putative Giardia lamblia low-density lipoprotein receptor-related proteins (GlLRP), a type I membrane protein, which shares the substrate N-terminal binding domain and a FXNPXY-type endocytic motif with human LRPs. Expression of tagged GlLRP showed that it was localized predominantly in the endoplasmic reticulum, lysosomal-like peripheral vacuoles and plasma membrane. However, the FXNPXY-deleted GlLRP was retained at the plasma membrane suggesting that it is abnormally transported and processed. The low-density lipoprotein and chylomicrons interacted with GlLRP, with this interaction being necessary for lipoprotein internalization and cell proliferation. Finally, we show that GlLRP binds directly to the medium subunit of Giardia adaptor protein 2, indicating that receptor-mediated internalization occurs through an adaptin mechanism.

  17. Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays

    DOEpatents

    Li, Zheng; Chen, Wei

    2016-07-05

    A drift detector array, preferably a silicon drift detector (SDD) array, that uses a low current biasing adaptor is disclosed. The biasing adaptor is customizable for any desired geometry of the drift detector single cell with minimum drift time of carriers. The biasing adaptor has spiral shaped ion-implants that generate the desired voltage profile. The biasing adaptor can be processed on the same wafer as the drift detector array and only one biasing adaptor chip/side is needed for one drift detector array to generate the voltage profiles on the front side and back side of the detector array.

  18. Septins: Regulators of Protein Stability

    PubMed Central

    Vagin, Olga; Beenhouwer, David O.

    2016-01-01

    Septins are small GTPases that play a role in several important cellular processes. In this review, we focus on the roles of septins in protein stabilization. Septins may regulate protein stability by: (1) interacting with proteins involved in degradation pathways, (2) regulating the interaction between transmembrane proteins and cytoskeletal proteins, (3) affecting the mobility of transmembrane proteins in lipid bilayers, and (4) modulating the interaction of proteins with their adaptor or signaling proteins. In this context, we discuss the role of septins in protecting four different proteins from degradation. First we consider botulinum neurotoxin serotype A (BoNT/A) and the contribution of septins to its extraordinarily long intracellular persistence. Next, we discuss the role of septins in stabilizing the receptor tyrosine kinases EGFR and ErbB2. Finally, we consider the contribution of septins in protecting hypoxia-inducible factor 1α (HIF-1α) from degradation. PMID:28066764

  19. Neuron membrane trafficking and protein kinases involved in autism and ADHD.

    PubMed

    Kitagishi, Yasuko; Minami, Akari; Nakanishi, Atsuko; Ogura, Yasunori; Matsuda, Satoru

    2015-01-30

    A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1) are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD) is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT). AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  20. The presequence pathway is involved in protein sorting to the mitochondrial outer membrane

    PubMed Central

    Wenz, Lena-Sophie; Opaliński, Łukasz; Schuler, Max-Hinderk; Ellenrieder, Lars; Ieva, Raffaele; Böttinger, Lena; Qiu, Jian; van der Laan, Martin; Wiedemann, Nils; Guiard, Bernard; Pfanner, Nikolaus; Becker, Thomas

    2014-01-01

    The mitochondrial outer membrane contains integral α-helical and β-barrel proteins that are imported from the cytosol. The machineries importing β-barrel proteins have been identified, however, different views exist on the import of α-helical proteins. It has been reported that the biogenesis of Om45, the most abundant signal-anchored protein, does not depend on proteinaceous components, but involves direct insertion into the outer membrane. We show that import of Om45 occurs via the translocase of the outer membrane and the presequence translocase of the inner membrane. Assembly of Om45 in the outer membrane involves the MIM machinery. Om45 thus follows a new mitochondrial biogenesis pathway that uses elements of the presequence import pathway to direct a protein to the outer membrane. PMID:24781695

  1. Self protein-protein interactions are involved in TPPP/p25 mediated microtubule bundling

    PubMed Central

    DeBonis, Salvatore; Neumann, Emmanuelle; Skoufias, Dimitrios A.

    2015-01-01

    TPPP/p25 is a microtubule-associated protein, detected in protein inclusions associated with various neurodegenerative diseases. Deletion analysis data show that TPPP/p25 has two microtubule binding sites, both located in intrinsically disordered domains, one at the N-terminal and the other in the C-terminal domain. In copolymerization assays the full-length protein exhibits microtubule stimulation and bundling activity. In contrast, at the same ratio relative to tubulin, truncated forms of TPPP/p25 exhibit either lower or no microtubule stimulation and no bundling activity, suggesting a cooperative phenomenon which is enhanced by the presence of the two binding sites. The binding characteristics of the N- and C-terminally truncated proteins to taxol-stabilized microtubules are similar to the full-length protein. However, the C-terminally truncated TPPP/p25 shows a lower Bmax for microtubule binding, suggesting that it may bind to a site of tubulin that is masked in microtubules. Bimolecular fluorescent complementation assays in cells expressing combinations of various TPPP/p25 fragments, but not that of the central folded domain, resulted in the generation of a fluorescence signal colocalized with perinuclear microtubule bundles insensitive to microtubule inhibitors. The data suggest that the central folded domain of TPPP/p25 following binding to microtubules can drive s homotypic protein-protein interactions leading to bundled microtubules. PMID:26289831

  2. Defense-related proteins involved in sugarcane responses to biotic stress.

    PubMed

    Souza, Thais P; Dias, Renata O; Silva-Filho, Marcio C

    2017-02-20

    Sugarcane is one of the most important agricultural crops in the world. However, pathogen infection and herbivore attack cause constant losses in yield. Plants respond to pathogen infection by inducing the expression of several protein types, such as glucanases, chitinases, thaumatins, peptidase inhibitors, defensins, catalases and glycoproteins. Proteins induced by pathogenesis are directly or indirectly involved in plant defense, leading to pathogen death or inducing other plant defense responses. Several of these proteins are induced in sugarcane by different pathogens or insects and have antifungal or insecticidal activity. In this review, defense-related proteins in sugarcane are described, with their putative mechanisms of action, pathogen targets and biotechnological perspectives.

  3. Distinct Roles for TGN/Endosome Epsin-like Adaptors Ent3p and Ent5p

    PubMed Central

    Costaguta, Giancarlo; Duncan, Mara C.; Fernández, G. Esteban; Huang, Grace H.

    2006-01-01

    Clathrin adaptors are key factors in clathrin-coated vesicle formation, coupling clathrin to cargo and/or the lipid bilayer. A physically interacting network of three classes of adaptors participate in clathrin-mediated traffic between the trans-Golgi network (TGN) and endosomes: AP-1, Gga proteins, and epsin-like proteins. Here we investigate functional relationships within this network through transport assays and protein localization analysis in living yeast cells. We observed that epsin-like protein Ent3p preferentially localized with Gga2p, whereas Ent5p distributed equally between AP-1 and Gga2p. Ent3p was mislocalized in Gga-deficient but not in AP-1–deficient cells. In contrast, Ent5p retained localization in cells lacking either or both AP-1 and Gga proteins. The Ent proteins were dispensable for AP-1 or Gga localization. Synthetic genetic growth and α-factor maturation defects were observed when ent5Δ but not ent3Δ was introduced together with deletions of the GGA genes. In AP-1–deficient cells, ent3Δ and to a lesser extent ent5Δ caused minor α-factor maturation defects, but together resulted in a near-lethal phenotype. Deletions of ENT3 and ENT5 also displayed synthetic defects similar to, but less severe than, synthetic effects of AP-1 and Gga inactivation. These results differentiate Ent3p and Ent5p function in vivo, suggesting that Ent3p acts primarily with Gga proteins, whereas Ent5p acts with both AP-1 and Gga proteins but is more critical for AP-1–mediated transport. The data also support a model in which the Ent adaptors provide important accessory functions to AP-1 and Gga proteins in TGN/endosome traffic. PMID:16790491

  4. Autophagy-linked FYVE protein (Alfy) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS).

    PubMed

    Han, Huihui; Wei, Wanyi; Duan, Weisong; Guo, Yansu; Li, Yi; Wang, Jie; Bi, Yue; Li, Chunyan

    2015-03-01

    Autophagy-linked FYVE (Alfy) is a protein implicated in the selective degradation of aggregated proteins. In our present study, we found that Alfy was recruited into the aggregated G93A-SOD1 in transgenic mice with amyotrophic lateral sclerosis (ALS). We demonstrated that Alfy overexpression could decrease the expression of mutant proteins via the autophagosome-lysosome pathway, and thereby, the toxicity of mutant proteins was reduced. The clearance of the mutant proteins in NSC34 cells was significantly inhibited in an Alfy knockdown cellular model. We therefore deduced that Alfy translocalization likely is involved in the pathogenesis of ALS. Alfy may be developed into a useful target for ALS therapy.

  5. FRG1P-mediated aggregation of proteins involved in pre-mRNA processing.

    PubMed

    van Koningsbruggen, Silvana; Straasheijm, Kirsten R; Sterrenburg, Ellen; de Graaf, Natascha; Dauwerse, Hans G; Frants, Rune R; van der Maarel, Silvère M

    2007-02-01

    FRG1 is considered a candidate gene for facioscapulohumeral muscular dystrophy (FSHD) based on its location at chromosome 4qter and its upregulation in FSHD muscle. The FRG1 protein (FRG1P) localizes to nucleoli, Cajal bodies (and speckles), and has been suggested to be a component of the human spliceosome but its exact function is unknown. Recently, transgenic mice overexpressing high levels of FRG1P in skeletal muscle were described to present with muscular dystrophy. Moreover, upregulation of FRG1P was demonstrated to correlate with missplicing of specific pre-mRNAs. In this study, we have combined colocalization studies with yeast two-hybrid screens to identify proteins that associate with FRG1P. We demonstrate that artificially induced nucleolar aggregates of VSV-FRG1P specifically sequester proteins involved in pre-mRNA processing. In addition, we have identified SMN, PABPN1, and FAM71B, a novel speckle and Cajal body protein, as binding partners of FRG1P. All these proteins are, or seem to be, involved in RNA biogenesis. Our data confirm the presence of FRG1P in protein complexes containing human spliceosomes and support a potential role of FRG1P in either splicing or another step in nuclear RNA biogenesis. Intriguingly, among FRG1P-associated proteins are SMN and PABPN1, both being involved in neuromuscular disorders, possibly through RNA biogenesis-related processes.

  6. Pressure-temperature folding landscape in proteins involved in neurodegenerative diseases and cancer.

    PubMed

    Cordeiro, Yraima; Foguel, Debora; Silva, Jerson L

    2013-12-15

    High hydrostatic pressure (HHP) is a valuable tool to study processes such as protein folding, protein hydration and protein-protein interactions. HHP is a nondestructive technique because it reversibly affects internal cavities excluded from the solvent present in the hydrophobic core of proteins. HHP allows the solvation of buried amino acid side chains, thus shifting the equilibrium towards states of the studied molecule or molecular ensemble that occupy smaller volumes. HHP has long been used to dissociate multimeric proteins and protein aggregates and allows investigation of intermediate folding states, some of which are formed by proteins involved in human degenerative diseases, such as spongiform encephalopathies and Parkinson's disease, as well as cancer. When coupled with nuclear magnetic resonance and spectroscopic methods such as infrared and fluorescence spectroscopy, HHP treatment facilitates the understanding of protein folding and misfolding processes; the latter is related to protein aggregation into amyloid or amorphous species. In this review, we will address how HHP provides information about intermediate folding states and the aggregation processes of p53, which is related to cancer, and prion proteins, transthyretin and α-synuclein, which are related to human degenerative diseases.

  7. Preparation of next-generation sequencing libraries using Nextera™ technology: simultaneous DNA fragmentation and adaptor tagging by in vitro transposition.

    PubMed

    Caruccio, Nicholas

    2011-01-01

    DNA library preparation is a common entry point and bottleneck for next-generation sequencing. Current methods generally consist of distinct steps that often involve significant sample loss and hands-on time: DNA fragmentation, end-polishing, and adaptor-ligation. In vitro transposition with Nextera™ Transposomes simultaneously fragments and covalently tags the target DNA, thereby combining these three distinct steps into a single reaction. Platform-specific sequencing adaptors can be added, and the sample can be enriched and bar-coded using limited-cycle PCR to prepare di-tagged DNA fragment libraries. Nextera technology offers a streamlined, efficient, and high-throughput method for generating bar-coded libraries compatible with multiple next-generation sequencing platforms.

  8. HIV-1 Nucleocapsid Mimics the Membrane Adaptor Syntenin PDZ to Gain Access to ESCRTs and Promote Virus Budding.

    PubMed

    Sette, Paola; O'Connor, Sarah K; Yerramilli, V Siddartha; Dussupt, Vincent; Nagashima, Kunio; Chutiraka, Kasana; Lingappa, Jaisri; Scarlata, Suzanne; Bouamr, Fadila

    2016-03-09

    HIV-1 recruits cellular endosomal sorting complexes required for transport (ESCRTs) to bud virions from the membrane. Disruption of the viral nucleocapsid (NC) domain integrity affects HIV-1 budding. However, the molecular mechanisms of NC's involvement in HIV budding remain unclear. We find that NC mimics the PDZ domains of syntenin, a membrane-binding adaptor involved in cell-to-cell contact/communication, to capture the Bro1 domain of ALIX, which is an ESCRTs recruiting cellular adaptor. NC binds membranes via basic residues in either the distal or proximal zinc fingers, and NC-membrane binding is essential for Bro1 capture and HIV-1 budding. Removal of RNA enhances NC membrane binding, suggesting a dynamic competition between membrane lipids and RNA for the same binding sites in NC. Remarkably, syntenin PDZ can substitute for NC function in HIV-1 budding. Thus, NC mimics syntenin PDZs to function as a membrane-binding adaptor critical for HIV-1 budding at specific microdomains of the membrane.

  9. HIV-1 Nucleocapsid mimics the membrane adaptor Syntenin to gain access to ESCRTs and promote virus budding

    PubMed Central

    Sette, Paola; O’Connor, Sarah K.; Yerramilli, V. Siddartha; Dussupt, Vincent; Nagashima, Kunio; Chutiraka, Kasana; Lingappa, Jaisri; Scarlata, Suzanne; Bouamr, Fadila

    2016-01-01

    Summary HIV-1 recruits cellular Endosomal Sorting Complexes Required for Transport (ESCRTs) to bud virions from the membrane. Disruption of the viral nucleocapsid (NC) domain integrity affects HIV-1 budding. However, the molecular mechanisms of NC’s involvement in HIV budding remain unclear. We find that NC mimics the PDZ domains of syntenin, a membrane-binding adaptor involved in cell-to-cell contact/communication, to capture the Bro1 domain of ALIX, which is an ESCRTs recruiting cellular adaptor. NC binds membranes via basic residues in either the distal or proximal zinc fingers and NC-membrane binding is essential for Bro1 capture and HIV-1 budding. Removal of RNA enhances NC membrane binding suggesting a dynamic competition between membrane lipids and RNA for same binding sites in NC. Remarkably, syntenin PDZ can substitute for NC function in HIV-1 budding. Thus, NC mimics syntenin PDZs to function as a membrane-binding adaptor critical for HIV-1 budding at microdomains of the membrane. PMID:26962944

  10. Involvement of a small GTP binding protein in HIV-1 release

    PubMed Central

    Audoly, Gilles; Popoff, Michel R; Gluschankof, Pablo

    2005-01-01

    Background There is evidence suggesting that actin binding to HIV-1 encoded proteins, or even actin dynamics themselves, might play a key role in virus budding and/or release from the infected cell. A crucial step in the reorganisation of the actin cytoskeleton is the engagement of various different GTP binding proteins. We have thus studied the involvement of GTP-binding proteins in the final steps of the HIV-1 viral replication cycle. Results Our results demonstrate that virus production is abolished when cellular GTP binding proteins involved in actin polymerisation are inhibited with specific toxins. Conclusion We propose a new HIV budding working model whereby Gag interactions with pre-existing endosomal cellular tracks as well as with a yet non identified element of the actin polymerisation pathway are required in order to allow HIV-1 to be released from the infected cell. PMID:16080789

  11. Proteomic Analysis of Differentially Expressed Proteins Involved in Peel Senescence in Harvested Mandarin Fruit.

    PubMed

    Li, Taotao; Zhang, Jingying; Zhu, Hong; Qu, Hongxia; You, Shulin; Duan, Xuewu; Jiang, Yueming

    2016-01-01

    Mandarin (Citrus reticulata), a non-climacteric fruit, is an economically important fruit worldwide. The mechanism underlying senescence of non-climacteric fruit is poorly understood. In this study, a gel-based proteomic study followed by LC-ESI-MS/MS analysis was carried out to investigate the proteomic changes involved in peel senescence in harvested mandarin "Shatangju" fruit stored for 18 days. Over the course of the storage period, the fruit gradually senesced, accompanied by a decreased respiration rate and increased chlorophyll degradation and disruption of membrane integrity. Sixty-three proteins spots that showed significant differences in abundance were identified. The up-regulated proteins were mainly associated with cell wall degradation, lipid degradation, protein degradation, senescence-related transcription factors, and transcription-related proteins. In contrast, most proteins associated with ATP synthesis and scavenging of reactive oxygen species were significantly down-regulated during peel senescence. Three thioredoxin proteins and three Ca(2+) signaling-related proteins were significantly up-regulated during peel senescence. It is suggested that mandarin peel senescence is associated with energy supply efficiency, decreased antioxidant capability, and increased protein and lipid degradation. In addition, activation of Ca(2+) signaling and transcription factors might be involved in cell wall degradation and primary or secondary metabolism.

  12. Proteomic Analysis of Differentially Expressed Proteins Involved in Peel Senescence in Harvested Mandarin Fruit

    PubMed Central

    Li, Taotao; Zhang, Jingying; Zhu, Hong; Qu, Hongxia; You, Shulin; Duan, Xuewu; Jiang, Yueming

    2016-01-01

    Mandarin (Citrus reticulata), a non-climacteric fruit, is an economically important fruit worldwide. The mechanism underlying senescence of non-climacteric fruit is poorly understood. In this study, a gel-based proteomic study followed by LC-ESI-MS/MS analysis was carried out to investigate the proteomic changes involved in peel senescence in harvested mandarin “Shatangju” fruit stored for 18 days. Over the course of the storage period, the fruit gradually senesced, accompanied by a decreased respiration rate and increased chlorophyll degradation and disruption of membrane integrity. Sixty-three proteins spots that showed significant differences in abundance were identified. The up-regulated proteins were mainly associated with cell wall degradation, lipid degradation, protein degradation, senescence-related transcription factors, and transcription-related proteins. In contrast, most proteins associated with ATP synthesis and scavenging of reactive oxygen species were significantly down-regulated during peel senescence. Three thioredoxin proteins and three Ca2+ signaling-related proteins were significantly up-regulated during peel senescence. It is suggested that mandarin peel senescence is associated with energy supply efficiency, decreased antioxidant capability, and increased protein and lipid degradation. In addition, activation of Ca2+ signaling and transcription factors might be involved in cell wall degradation and primary or secondary metabolism. PMID:27303420

  13. Proteins involved in motility and sperm-egg interaction evolve more rapidly in mouse spermatozoa.

    PubMed

    Vicens, Alberto; Lüke, Lena; Roldan, Eduardo R S

    2014-01-01

    Proteomic studies of spermatozoa have identified a large catalog of integral sperm proteins. Rapid evolution of these proteins may underlie adaptive changes of sperm traits involved in different events leading to fertilization, although the selective forces underlying such rapid evolution are not well understood. A variety of selective forces may differentially affect several steps ending in fertilization, thus resulting in a compartmentalized adaptation of sperm proteins. Here we analyzed the evolution of genes associated to various events in the sperm's life, from sperm formation to sperm-egg interaction. Evolutionary analyses were performed on gene sequences from 17 mouse strains whose genomes have been sequenced. Four of these are derived from wild Mus musculus, M. domesticus, M. castaneus and M. spretus. We found a higher proportion of genes exhibiting a signature of positive selection among those related to sperm motility and sperm-egg interaction. Furthermore, sperm proteins involved in sperm-egg interaction exhibited accelerated evolution in comparison to those involved in other events. Thus, we identified a large set of candidate proteins for future comparative analyses of genotype-phenotype associations in spermatozoa of species subjected to different sexual selection pressures. Adaptive evolution of proteins involved in motility could be driven by sperm competition, since this selective force is known to increase the proportion of motile sperm and their swimming velocity. On the other hand, sperm proteins involved in gamete interaction could be coevolving with their egg partners through episodes of sexual selection or sexual conflict resulting in species-specific sperm-egg interactions and barriers preventing interspecies fertilization.

  14. Adaptor for Measuring Principal Strains with Tuckerman Strain Gage

    NASA Technical Reports Server (NTRS)

    Mcpherson, A E

    1943-01-01

    An adapter is described which uses three Tuckerman optical strain gages to measure the displacement of the three vortices of an equilateral triangle along lines 120 degrees apart. These displacements are substituted in well-known equations in order to compute the magnitude and direction of the principal strains. Tests of the adaptor indicate that principal strains over a gage length of 1.42 inch may be measured with a systematic error not exceeding 4 percent and a mean observational error of the order of + or minus 0.000006. The maximum observed error in strain was of the order of 0.00006. The directions of principal strains for unidirectional stress were measured with the adaptor with an average error of the order of 1 degree.

  15. Elucidating Protein Involvement in the Stabilization of the Biogenic Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ballottin, Daniela; Fulaz, Stephanie; Souza, Michele L.; Corio, Paola; Rodrigues, Alexandre G.; Souza, Ana O.; Gaspari, Priscyla M.; Gomes, Alexandre F.; Gozzo, Fábio; Tasic, Ljubica

    2016-06-01

    Silver nanoparticles (AgNPs) have been broadly used as antibacterial and antiviral agents. Further, interests for green AgNP synthesis have increased in recent years and several results for AgNP biological synthesis have been reported using bacteria, fungi and plant extracts. The understanding of the role and nature of fungal proteins, their interaction with AgNPs and the subsequent stabilization of nanosilver is yet to be deeply investigated. Therefore, in an attempt to better understand biogenic AgNP stabilization with the extracellular fungal proteins and to describe these supramolecular interactions between proteins and silver nanoparticles, AgNPs, produced extracellularly by Aspergillus tubingensis—isolated as an endophytic fungus from Rizophora mangle—were characterized in order to study their physical characteristics, identify the involved proteins, and shed light into the interactions among protein-NPs by several techniques. AgNPs of around 35 nm in diameter as measured by TEM and a positive zeta potential of +8.48 mV were obtained. These AgNPs exhibited a surface plasmon resonance (SPR) band at 440 nm, indicating the nanoparticles formation, and another band at 280 nm, attributed to the electronic excitations in tryptophan, tyrosine, and/or phenylalanine residues in fungal proteins. Fungal proteins were covalently bounded to the AgNPs, mainly through S-Ag bonds due to cysteine residues (HS-) and with few N-Ag bonds from H2N- groups, as verified by Raman spectroscopy. Observed supramolecular interactions also occur by electrostatic and other protein-protein interactions. Furthermore, proteins that remain free on AgNP surface may perform hydrogen bonds with other proteins or water increasing thus the capping layer around the AgNPs and consequently expanding the hydrodynamic diameter of the particles (~264 nm, measured by DLS). FTIR results enabled us to state that proteins adsorbed to the AgNPs did not suffer relevant secondary structure alteration upon

  16. Structural Interface Forms and Their Involvement in Stabilization of Multidomain Proteins or Protein Complexes

    PubMed Central

    Dygut, Jacek; Kalinowska, Barbara; Banach, Mateusz; Piwowar, Monika; Konieczny, Leszek; Roterman, Irena

    2016-01-01

    The presented analysis concerns the inter-domain and inter-protein interface in protein complexes. We propose extending the traditional understanding of the protein domain as a function of local compactness with an additional criterion which refers to the presence of a well-defined hydrophobic core. Interface areas in selected homodimers vary with respect to their contribution to share as well as individual (domain-specific) hydrophobic cores. The basic definition of a protein domain, i.e., a structural unit characterized by tighter packing than its immediate environment, is extended in order to acknowledge the role of a structured hydrophobic core, which includes the interface area. The hydrophobic properties of interfaces vary depending on the status of interacting domains—In this context we can distinguish: (1) Shared hydrophobic cores (spanning the whole dimer); (2) Individual hydrophobic cores present in each monomer irrespective of whether the dimer contains a shared core. Analysis of interfaces in dystrophin and utrophin indicates the presence of an additional quasi-domain with a prominent hydrophobic core, consisting of fragments contributed by both monomers. In addition, we have also attempted to determine the relationship between the type of interface (as categorized above) and the biological function of each complex. This analysis is entirely based on the fuzzy oil drop model. PMID:27763556

  17. Structural Interface Forms and Their Involvement in Stabilization of Multidomain Proteins or Protein Complexes.

    PubMed

    Dygut, Jacek; Kalinowska, Barbara; Banach, Mateusz; Piwowar, Monika; Konieczny, Leszek; Roterman, Irena

    2016-10-18

    The presented analysis concerns the inter-domain and inter-protein interface in protein complexes. We propose extending the traditional understanding of the protein domain as a function of local compactness with an additional criterion which refers to the presence of a well-defined hydrophobic core. Interface areas in selected homodimers vary with respect to their contribution to share as well as individual (domain-specific) hydrophobic cores. The basic definition of a protein domain, i.e., a structural unit characterized by tighter packing than its immediate environment, is extended in order to acknowledge the role of a structured hydrophobic core, which includes the interface area. The hydrophobic properties of interfaces vary depending on the status of interacting domains-In this context we can distinguish: (1) Shared hydrophobic cores (spanning the whole dimer); (2) Individual hydrophobic cores present in each monomer irrespective of whether the dimer contains a shared core. Analysis of interfaces in dystrophin and utrophin indicates the presence of an additional quasi-domain with a prominent hydrophobic core, consisting of fragments contributed by both monomers. In addition, we have also attempted to determine the relationship between the type of interface (as categorized above) and the biological function of each complex. This analysis is entirely based on the fuzzy oil drop model.

  18. Modulation of TCR responsiveness by the Grb2-family adaptor, Gads.

    PubMed

    Lugassy, Jennie; Corso, Jasmin; Beach, Dvora; Petrik, Thomas; Oellerich, Thomas; Urlaub, Henning; Yablonski, Deborah

    2015-01-01

    T cell antigen receptor (TCR) signaling depends on three interacting adaptor proteins: SLP-76, Gads, and LAT. Their mechanisms of signaling have been extensively explored, with the aid of fortuitously isolated LAT- and SLP-76-deficient T cell lines, but no such tools were available for Gads, a Grb2-family adaptor that bridges the TCR-inducible interaction between SLP-76 and LAT. TALEN-directed genome editing was applied to disrupt the first coding exon of human Gads in the Jurkat T cell line. Gads was dispensable for TCR-induced phosphorylation of SLP-76, but was a dose-dependent amplifier of TCR-induced CD69 expression. Gads conferred responsiveness to weak TCR stimuli, leading to PLC-γ1 phosphorylation and calcium flux. TALEN-derived, Gads-deficient T cell lines provide a uniquely tractable genetic platform for exploring its regulatory features, such as Gads phosphorylation at T262, which we observed by mass spectrometry. Upon mutation of this site, TCR responsiveness and sensitivity to weak TCR stimuli were increased. This study demonstrates the feasibility of TALEN-based reverse genetics in Jurkat T cells, while enriching our understanding of Gads as a regulated modulator of TCR sensitivity.

  19. SH2B1beta adaptor is a key enhancer of RET tyrosine kinase signaling.

    PubMed

    Donatello, S; Fiorino, A; Degl'Innocenti, D; Alberti, L; Miranda, C; Gorla, L; Bongarzone, I; Rizzetti, M G; Pierotti, M A; Borrello, M G

    2007-10-04

    The RET gene encodes two main isoforms of a receptor tyrosine kinase (RTK) implicated in various human diseases. Activating germ-line point mutations are responsible for multiple endocrine neoplasia type 2-associated medullary thyroid carcinomas, inactivating germ-line mutations for Hirschsprung's disease, while somatic rearrangements (RET/PTCs) are specific to papillary thyroid carcinomas. SH2B1beta, a member of the SH2B adaptors family, and binding partner for several RTKs, has been recently described to interact with proto-RET. Here, we show that both RET isoforms and its oncogenic derivatives bind to SH2B1beta through the SRC homology 2 (SH2) domain and a kinase activity-dependent mechanism. As a result, RET phosphorylates SH2B1beta, which in turn enhances its autophosphorylation, kinase activity, and downstream signaling. RET tyrosine residues 905 and 981 are important determinants for functional binding of the adaptor, as removal of both autophosphorylation sites displaces its recruitment. Binding of SH2B1beta appears to protect RET from dephosphorylation by protein tyrosine phosphatases, and might represent a likely mechanism contributing to its upregulation. Thus, overexpression of SH2B1beta, by enhancing phosphorylation/activation of RET transducers, potentiates the cellular differentiation and the neoplastic transformation thereby induced, and counteracts the action of RET inhibitors. Overall, our results identify SH2B1beta as a key enhancer of RET physiologic and pathologic activities.

  20. Stepping stone: a cytohesin adaptor for membrane cytoskeleton restraint in the syncytial Drosophila embryo

    PubMed Central

    Liu, Jiangshu; Lee, Donghoon M.; Yu, Cao Guo; Angers, Stephane; Harris, Tony J. C.

    2015-01-01

    Cytohesin Arf-GEFs are conserved plasma membrane regulators. The sole Drosophila cytohesin, Steppke, restrains Rho1-dependent membrane cytoskeleton activity at the base of plasma membrane furrows of the syncytial embryo. By mass spectrometry, we identified a single major Steppke-interacting protein from syncytial embryos, which we named Stepping stone (Sstn). By sequence, Sstn seems to be a divergent homologue of the mammalian cytohesin adaptor FRMD4A. Our experiments supported this relationship. Specifically, heterophilic coiled-coil interactions linked Sstn and Steppke in vivo and in vitro, whereas a separate C-terminal region was required for Sstn localization to furrows. Sstn mutant and RNAi embryos displayed abnormal, Rho1-dependent membrane cytoskeleton expansion from the base of pseudocleavage and cellularization furrows, closely mimicking Steppke loss-of-function embryos. Elevating Sstn furrow levels had no effect on the steppke phenotype, but elevating Steppke furrow levels reversed the sstn phenotype, suggesting that Steppke acts downstream of Sstn and that additional mechanisms can recruit Steppke to furrows. Finally, the coiled-coil domain of Steppke was required for Sstn binding and in addition homodimerization, and its removal disrupted Steppke furrow localization and activity in vivo. Overall we propose that Sstn acts as a cytohesin adaptor that promotes Steppke activity for localized membrane cytoskeleton restraint in the syncytial Drosophila embryo. PMID:25540427

  1. A human skeletal muscle interactome centered on proteins involved in muscular dystrophies: LGMD interactome

    PubMed Central

    2013-01-01

    Background The complexity of the skeletal muscle and the identification of numerous human disease-causing mutations in its constitutive proteins make it an interesting tissue for proteomic studies aimed at understanding functional relationships of interacting proteins in both health and diseases. Method We undertook a large-scale study using two-hybrid screens and a human skeletal-muscle cDNA library to establish a proteome-scale map of protein-protein interactions centered on proteins involved in limb-girdle muscular dystrophies (LGMD). LGMD is a group of more than 20 different neuromuscular disorders that principally affect the proximal pelvic and shoulder girdle muscles. Results and conclusion The interaction network we unraveled incorporates 1018 proteins connected by 1492 direct binary interactions and includes 1420 novel protein-protein interactions. Computational, experimental and literature-based analyses were performed to assess the overall quality of this network. Interestingly, LGMD proteins were shown to be highly interconnected, in particular indirectly through sarcomeric proteins. In-depth mining of the LGMD-centered interactome identified new candidate genes for orphan LGMDs and other neuromuscular disorders. The data also suggest the existence of functional links between LGMD2B/dysferlin and gene regulation, between LGMD2C/γ-sarcoglycan and energy control and between LGMD2G/telethonin and maintenance of genome integrity. This dataset represents a valuable resource for future functional investigations. PMID:23414517

  2. Multiple proteins of White spot syndrome virus involved in recognition of beta-integrin.

    PubMed

    Zhang, Jing-Yan; Liu, Qing-Hui; Huang, Jie

    2014-06-01

    The recognition and attachment of virus to its host cell surface is a critical step for viral infection. Recent research revealed that beta-integrin was involved in White spot syndrome virus (WSSV) infection. In this study, the interaction of beta-integrin with structure proteins of WSSV and motifs involved in WSSV infection was examined. The results showed that envelope proteins VP26, VP31, VP37, VP90 and nucleocapsid protein VP136 interacted with LvInt. RGD-, YGL- and LDV-related peptide functioned as motifs of WSSV proteins binding with beta-integrin. The beta-integrin ligand of RGDT had better blocking effect compared with that of YGL- and LDV-related peptides. In vivo assay indicated that RGD-, LDV- and YGL-related peptides could partially block WSSV infection. These data collectively indicate that multiple proteins were involved in recognition of beta-integrin. Identification of proteins in WSSV that are associated with beta-integrin will assist development of new agents for effective control of the white spot syndrome.

  3. Crk Adaptors Negatively Regulate Actin Polymerization in Pedestals Formed by Enteropathogenic Escherichia coli (EPEC) by Binding to Tir Effector

    PubMed Central

    Martín-Villa, José Manuel; Benito-León, María; Martinez-Quiles, Narcisa

    2014-01-01

    Infections by enteropathogenic Escherichia coli (EPEC) cause diarrhea linked to high infant mortality in developing countries. EPEC adheres to epithelial cells and induces the formation of actin pedestals. Actin polymerization is driven fundamentally through signaling mediated by Tir bacterial effector protein, which inserts in the plasma membrane of the infected cell. Tir binds Nck adaptor proteins, which in turn recruit and activate N-WASP, a ubiquitous member of the Wiskott-Aldrich syndrome family of proteins. N-WASP activates the Arp2/3 complex to promote actin polymerization. Other proteins aside from components of the Tir-Nck-N-WASP pathway are recruited to the pedestals but their functions are unknown. Here we investigate the function of two alternatively spliced isoforms of Crk adaptors (CrkI/II) and the paralog protein CrkL during pedestal formation by EPEC. We found that the Crk isoforms act as redundant inhibitors of pedestal formation. The SH2 domain of CrkII and CrkL binds to phosphorylated tyrosine 474 of Tir and competes with Nck to bind Tir, preventing its recruitment to pedestals and thereby inhibiting actin polymerization. EPEC infection induces phosphorylation of the major regulatory tyrosine in CrkII and CrkL, possibly preventing the SH2 domain of these proteins from interacting with Tir. Phosphorylated CrkII and CrkL proteins localize specifically to the plasma membrane in contact with EPEC. Our study uncovers a novel role for Crk adaptors at pedestals, opening a new perspective in how these oncoproteins regulate actin polymerization. PMID:24675776

  4. The hypoxic regulator of sterol synthesis Nro1 is a nuclear import adaptor

    PubMed Central

    Yeh, Tzu-Lan; Lee, Chih-Yung S.; Amzel, L. Mario; Espenshade, Peter J.; Bianchet, Mario A.

    2011-01-01

    SUMMARY Fission yeast protein Sre1, the homolog of the mammalian sterol regulatory element binding protein (SREBP), is a hypoxic transcription factor required for sterol homeostasis and low oxygen growth. Nro1 regulates the stability of the N-terminal transcription factor domain of Sre1 (Sre1N) by inhibiting the action of the prolyl 4-hydroxylase-like Ofd1 in an oxygen-dependent manner. The crystal structure of Nro1 determined at 2.2 Å resolution shows an all-α-helical fold that can be divided into two domains: a small N-terminal domain and a larger C-terminal HEAT-repeat domain. Follow-up studies showed that Nro1 defines a new class of nuclear import adaptor that functions both in Ofd1 nuclear localization and in the oxygen-dependent inhibition of Ofd1 to control the hypoxic response. PMID:21481773

  5. The Hypoxic Regulator of Sterol Synthesis Nro1 Is a Nuclear Import Adaptor

    SciTech Connect

    T Yeh; C Lee; L Amzel; P Espenshade; M Bianchet

    2011-12-31

    Fission yeast protein Sre1, the homolog of the mammalian sterol regulatory element-binding protein (SREBP), is a hypoxic transcription factor required for sterol homeostasis and low-oxygen growth. Nro1 regulates the stability of the N-terminal transcription factor domain of Sre1 (Sre1N) by inhibiting the action of the prolyl 4-hydroxylase-like Ofd1 in an oxygen-dependent manner. The crystal structure of Nro1 determined at 2.2 {angstrom} resolution shows an all-{alpha}-helical fold that can be divided into two domains: a small N-terminal domain, and a larger C-terminal HEAT-repeat domain. Follow-up studies showed that Nro1 defines a new class of nuclear import adaptor that functions both in Ofd1 nuclear localization and in the oxygen-dependent inhibition of Ofd1 to control the hypoxic response.

  6. Not all mitochondrial carrier proteins support permeability transition pore formation: no involvement of uncoupling protein 1.

    PubMed

    Crichton, Paul G; Parker, Nadeene; Vidal-Puig, Antonio J; Brand, Martin D

    2009-12-15

    The mPTP (mitochondrial permeability transition pore) is a non-specific channel that is formed in the mitochondrial inner membrane in response to several stimuli, including elevated levels of matrix calcium. The pore is proposed to be composed of the ANT (adenine nucleotide translocase), voltage-dependent anion channel and cyclophilin D. Knockout studies, however, have demonstrated that ANT is not essential for permeability transition, which has led to the proposal that other members of the mitochondrial carrier protein family may be able to play a similar function to ANT in pore formation. To investigate this possibility, we have studied the permeability transition properties of BAT (brown adipose tissue) mitochondria in which levels of the mitochondrial carrier protein, UCP1 (uncoupling protein 1), can exceed those of ANT. Using an improved spectroscopic assay, we have quantified mPTP formation in de-energized mitochondria from wild-type and Ucp1KO (Ucp1-knockout) mice and assessed the dependence of pore formation on UCP1. When correctly normalized for differences in mitochondrial morphology, we find that calcium-induced mPTP activity is the same in both types of mitochondria, with similar sensitivity to GDP (approximately 50% inhibited), although the portion sensitive to cyclosporin A is higher in mitochondria lacking UCP1 (approximately 80% inhibited, compared with approximately 60% in mitochondria containing UCP1). We conclude that UCP1 is not a component of the cyclosporin A-sensitive mPTP in BAT and that playing a role in mPTP formation is not a general characteristic of the mitochondrial carrier protein family but is, more likely, restricted to specific members including ANT.

  7. Protein-protein interactions involved in the recognition of p27 by E3 ubiquitin ligase.

    PubMed Central

    Xu, Kui; Belunis, Charles; Chu, Wei; Weber, David; Podlaski, Frank; Huang, Kuo-Sen; Reed, Steven I; Vassilev, Lyubomir T

    2003-01-01

    The p27(Kip1) protein is a potent cyclin-dependent kinase inhibitor, the level of which is decreased in many common human cancers as a result of enhanced ubiquitin-dependent degradation. The multiprotein complex SCF(Skp2) has been identified as the ubiquitin ligase that targets p27, but the functional interactions within this complex are not well understood. One component, the F-box protein Skp2, binds p27 when the latter is phosphorylated on Thr(187), thus providing substrate specificity for the ligase. Recently, we and others have shown that the small cell cycle regulatory protein Cks1 plays a critical role in p27 ubiquitination by increasing the binding affinity of Skp2 for p27. Here we report the development of a homogeneous time-resolved fluorescence assay that allows the quantification of the molecular interactions between human recombinant Skp2, Cks1 and a p27-derived peptide phosphorylated on Thr(187). Using this assay, we have determined the dissociation constant of the Skp2-Cks1 complex (K(d) 140 +/- 14 nM) and have shown that Skp2 binds phosphorylated p27 peptide with high affinity only in the presence of Cks1 (K(d) 37 +/- 2 nM). Cks1 does not bind directly to the p27 phosphopeptide or to Skp1, which confirms its suggested role as an allosteric effector of Skp2. PMID:12529174

  8. HOPS: a novel cAMP-dependent shuttling protein involved in protein synthesis regulation.

    PubMed

    Della Fazia, Maria Agnese; Castelli, Marilena; Bartoli, Daniela; Pieroni, Stefania; Pettirossi, Valentina; Piobbico, Danilo; Viola-Magni, Mariapia; Servillo, Giuseppe

    2005-07-15

    The liver has the ability to autonomously regulate growth and mass. Following partial hepatectomy, hormones, growth factors, cytokines and their coupled signal transduction pathways have been implicated in hepatocyte proliferation. To understand the mechanisms responsible for the proliferative response, we studied liver regeneration by characterization of novel genes that are activated in residual hepatocytes. A regenerating liver cDNA library screening was performed with cDNA-subtracted probes derived from regenerating and normal liver. Here, we describe the biology of Hops (for hepatocyte odd protein shuttling). HOPS is a novel shuttling protein that contains an ubiquitin-like domain, a putative NES and a proline-rich region. HOPS is rapidly exported from the nucleus and is overexpressed during liver regeneration. Evidence shows that cAMP governs HOPS export in hepatocytes of normal and regenerating liver and is mediated via CRM-1. We demonstrate that HOPS binds to elongation factor eEF-1A and interferes in protein synthesis. HOPS overexpression in H-35-hepatoma and 3T3-NIH cells strongly reduces proliferation.

  9. RNA-binding proteins involved in post-transcriptional regulation in bacteria

    PubMed Central

    Van Assche, Elke; Van Puyvelde, Sandra; Vanderleyden, Jos; Steenackers, Hans P.

    2015-01-01

    Post-transcriptional regulation is a very important mechanism to control gene expression in changing environments. In the past decade, a lot of interest has been directed toward the role of small RNAs (sRNAs) in bacterial post-transcriptional regulation. However, sRNAs are not the only molecules controlling gene expression at this level, RNA-binding proteins (RBPs) play an important role as well. CsrA and Hfq are the two best studied bacterial proteins of this type, but recently, additional proteins involved in post-transcriptional control have been identified. This review focuses on the general working mechanisms of post-transcriptionally active RBPs, which include (i) adaptation of the susceptibility of mRNAs and sRNAs to RNases, (ii) modulating the accessibility of the ribosome binding site of mRNAs, (iii) recruiting and assisting in the interaction of mRNAs with other molecules and (iv) regulating transcription terminator/antiterminator formation, and gives an overview of both the well-studied and the newly identified proteins that are involved in post-transcriptional regulatory processes. Additionally, the post-transcriptional mechanisms by which the expression or the activity of these proteins is regulated, are described. For many of the newly identified proteins, however, mechanistic questions remain. Most likely, more post-transcriptionally active proteins will be identified in the future. PMID:25784899

  10. The TSG101 protein binds to connexins and is involved in connexin degradation

    SciTech Connect

    Auth, Tanja Schlueter, Sharazad; Urschel, Stephanie; Kussmann, Petra; Sonntag, Stephan; Hoeher, Thorsten; Kreuzberg, Maria M.; Dobrowolski, Radoslaw; Willecke, Klaus

    2009-04-01

    Gap junctions mediate electrical and metabolic communication between cells in almost all tissues and are proposed to play important roles in cellular growth control, differentiation and embryonic development. Gap junctional communication and channel assembly were suggested to be regulated by interaction of connexins with different proteins including kinases and phosphatases. Here, we identified the tumor susceptibility gene 101 (TSG101) protein to bind to the carboxyterminal tail of connexin45 in a yeast two-hybrid protein interaction screen. Glutathione S-transferase pull down experiments and immunoprecipitation revealed that not only connexin45 but also connexin30.2, -36, and -43 carboxyterminal regions were associated with TSG101 protein in pull down analyses and that connexin31, -43 and -45 co-precipitate with endogenous TSG101 protein in lysates from HM1 embryonic stem cells. TSG101 has been shown to be involved in cell cycle control, transcriptional regulation and turnover of endocytosed proteins. Thus, we decided to study the functional role of this interaction. SiRNA mediated knock down of TSG101 in HM1 embryonic stem cells led to increased levels of connexin43 and -45, prolonged half life of these connexins and increased transfer of microinjected Lucifer yellow. Our results suggest that TSG101 is involved in the degradation of connexins via interaction with connexin proteins.

  11. Characterization of a DNA binding protein of bacteriophage PRD1 involved in DNA replication.

    PubMed Central

    Pakula, T M; Caldentey, J; Serrano, M; Gutierrez, C; Hermoso, J M; Salas, M; Bamford, D H

    1990-01-01

    Escherichia coli phage PRD1 protein P12, involved in PRD1 DNA replication in vivo, has been highly purified from E. coli cells harbouring a gene XII-containing plasmid. Protein P12 binds to single-stranded DNA as shown by gel retardation assays and nuclease protection experiments. Binding of protein P12 to single-stranded DNA increases about 14% the contour length of the DNA as revealed by electron microscopy. Binding to single-stranded DNA seems to be cooperative, and it is not sequence specific. Protein P12 also binds to double-stranded DNA although with an affinity 10 times lower than to single-stranded DNA. Using the in vitro phage phi 29 DNA replication system, it is shown that protein P12 stimulates the overall phi 29 DNA replication. Images PMID:2251117

  12. Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation

    PubMed Central

    Karpowicz, Steven J.; Heinnickel, Mark; Dewez, David; Hamel, Blaise; Dent, Rachel; Niyogi, Krishna K.; Johnson, Xenie; Alric, Jean; Wollman, Francis-André; Li, Huiying; Merchant, Sabeeha S.

    2010-01-01

    Chlamydomonas reinhardtii, a unicellular green alga, has been exploited as a reference organism for identifying proteins and activities associated with the photosynthetic apparatus and the functioning of chloroplasts. Recently, the full genome sequence of Chlamydomonas was generated and a set of gene models, representing all genes on the genome, was developed. Using these gene models, and gene models developed for the genomes of other organisms, a phylogenomic, comparative analysis was performed to identify proteins encoded on the Chlamydomonas genome which were likely involved in chloroplast functions (or specifically associated with the green algal lineage); this set of proteins has been designated the GreenCut. Further analyses of those GreenCut proteins with uncharacterized functions and the generation of mutant strains aberrant for these proteins are beginning to unmask new layers of functionality/regulation that are integrated into the workings of the photosynthetic apparatus. PMID:20490922

  13. The AP-2 adaptor beta2 appendage scaffolds alternate cargo endocytosis.

    PubMed

    Keyel, Peter A; Thieman, James R; Roth, Robyn; Erkan, Elif; Everett, Eric T; Watkins, Simon C; Heuser, John E; Traub, Linton M

    2008-12-01

    The independently folded appendages of the large alpha and beta2 subunits of the endocytic adaptor protein (AP)-2 complex coordinate proper assembly and operation of endocytic components during clathrin-mediated endocytosis. The beta2 subunit appendage contains a common binding site for beta-arrestin or the autosomal recessive hypercholesterolemia (ARH) protein. To determine the importance of this interaction surface in living cells, we used small interfering RNA-based gene silencing. The effect of extinguishing beta2 subunit expression on the internalization of transferrin is considerably weaker than an AP-2 alpha subunit knockdown. We show the mild sorting defect is due to fortuitous substitution of the beta2 chain with the closely related endogenous beta1 subunit of the AP-1 adaptor complex. Simultaneous silencing of both beta1 and beta2 subunit transcripts recapitulates the strong alpha subunit RNA interference (RNAi) phenotype and results in loss of ARH from endocytic clathrin coats. An RNAi-insensitive beta2-yellow fluorescent protein (YFP) expressed in the beta1 + beta2-silenced background restores cellular AP-2 levels, robust transferrin internalization, and ARH colocalization with cell surface clathrin. The importance of the beta appendage platform subdomain over clathrin for precise deposition of ARH at clathrin assembly zones is revealed by a beta2-YFP with a disrupted ARH binding interface, which does not restore ARH colocalization with clathrin. We also show a beta-arrestin 1 mutant, which engages coated structures in the absence of any G protein-coupled receptor stimulation, colocalizes with beta2-YFP and clathrin even in the absence of an operational clathrin binding sequence. These findings argue against ARH and beta-arrestin binding to a site upon the beta2 appendage platform that is later obstructed by polymerized clathrin. We conclude that ARH and beta-arrestin depend on a privileged beta2 appendage site for proper cargo recruitment to clathrin

  14. A Cellulose Synthase-Like Protein Involved in Hyphal Tip Growth and Morphological Differentiation in Streptomyces▿

    PubMed Central

    Xu, Hongbin; Chater, Keith F.; Deng, Zixin; Tao, Meifeng

    2008-01-01

    Cellulose synthase and cellulose synthase-like proteins, responsible for synthesizing β-glucan-containing polysaccharides, play a fundamental role in cellular architectures, such as plant cell and tissue morphogenesis, bacterial biofilm formation, and fruiting-body development. However, the roles of the proteins involved in the developmental process are not well understood. Here, we report that a cellulose synthase-like protein (CslASc) in Streptomyces has a function in hyphal tip growth and morphological differentiation. The cslASc replacement mutant showed pleiotropic defects, including the severe delay of aerial-hyphal formation and altered cell wall morphology. Calcofluor white fluorescence analysis demonstrated that polysaccharide synthesis at hyphal tips was dependent on CslASc. cslASc was constitutively transcribed, and an enhanced green fluorescent protein-CslASc fusion protein was mostly located at the hyphal tips. An extract enriched in morphogenetic chaplin proteins promoted formation of aerial hyphae by the mutant. Furthermore, a two-hybrid experiment indicated that the glycosyltransferase domain of CslASc interacted with the tropomyosin-like polarity-determining DivIVA protein, suggesting that the tip-located DivIVA governed tip recruitment of the CslASc membrane protein. These results imply that the cellulose synthase-like protein couples extracellular and cytoskeletal components functioning in tip growth and cell development. PMID:18487344

  15. Involvement of a tissue-specific RNA recognition motif protein in Drosophila spermatogenesis.

    PubMed Central

    Haynes, S R; Cooper, M T; Pype, S; Stolow, D T

    1997-01-01

    RNA binding proteins mediate posttranscriptional regulation of gene expression via their roles in nuclear and cytoplasmic mRNA metabolism. Many of the proteins involved in these processes have a common RNA binding domain, the RNA recognition motif (RRM). We have characterized the Testis-specific RRM protein gene (Tsr), which plays an important role in spermatogenesis in Drosophila melanogaster. Disruption of Tsr led to a dramatic reduction in male fertility due to the production of spermatids with abnormalities in mitochondrial morphogenesis. Tsr is located on the third chromosome at 87F, adjacent to the nuclear pre-mRNA binding protein gene Hrb87F. A 1.7-kb Tsr transcript was expressed exclusively in the male germ line. It encoded a protein containing two RRMs similar to those found in HRB87F as well as a unique C-terminal domain. TSR protein was located in the cytoplasm of spermatocytes and young spermatids but was absent from mature sperm. The cellular proteins expressed in premeiotic primary spermatocytes from Tsr mutant and wild-type males were assessed by two-dimensional gel electrophoresis. Lack of TSR resulted in the premature expression of a few proteins prior to meiosis; this was abolished by a transgenic copy of Tsr. These data demonstrate that TSR negatively regulated the expression of some testis proteins and, in combination with its expression pattern and subcellular localization, suggest that TSR regulates the stability or translatability of some mRNAs during spermatogenesis. PMID:9111341

  16. 3DSwap: curated knowledgebase of proteins involved in 3D domain swapping.

    PubMed

    Shameer, Khader; Shingate, Prashant N; Manjunath, S C P; Karthika, M; Pugalenthi, Ganesan; Sowdhamini, Ramanathan

    2011-01-01

    Three-dimensional domain swapping is a unique protein structural phenomenon where two or more protein chains in a protein oligomer share a common structural segment between individual chains. This phenomenon is observed in an array of protein structures in oligomeric conformation. Protein structures in swapped conformations perform diverse functional roles and are also associated with deposition diseases in humans. We have performed in-depth literature curation and structural bioinformatics analyses to develop an integrated knowledgebase of proteins involved in 3D domain swapping. The hallmark of 3D domain swapping is the presence of distinct structural segments such as the hinge and swapped regions. We have curated the literature to delineate the boundaries of these regions. In addition, we have defined several new concepts like 'secondary major interface' to represent the interface properties arising as a result of 3D domain swapping, and a new quantitative measure for the 'extent of swapping' in structures. The catalog of proteins reported in 3DSwap knowledgebase has been generated using an integrated structural bioinformatics workflow of database searches, literature curation, by structure visualization and sequence-structure-function analyses. The current version of the 3DSwap knowledgebase reports 293 protein structures, the analysis of such a compendium of protein structures will further the understanding molecular factors driving 3D domain swapping.

  17. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map.

    PubMed

    Collins, Sean R; Miller, Kyle M; Maas, Nancy L; Roguev, Assen; Fillingham, Jeffrey; Chu, Clement S; Schuldiner, Maya; Gebbia, Marinella; Recht, Judith; Shales, Michael; Ding, Huiming; Xu, Hong; Han, Junhong; Ingvarsdottir, Kristin; Cheng, Benjamin; Andrews, Brenda; Boone, Charles; Berger, Shelley L; Hieter, Phil; Zhang, Zhiguo; Brown, Grant W; Ingles, C James; Emili, Andrew; Allis, C David; Toczyski, David P; Weissman, Jonathan S; Greenblatt, Jack F; Krogan, Nevan J

    2007-04-12

    Defining the functional relationships between proteins is critical for understanding virtually all aspects of cell biology. Large-scale identification of protein complexes has provided one important step towards this goal; however, even knowledge of the stoichiometry, affinity and lifetime of every protein-protein interaction would not reveal the functional relationships between and within such complexes. Genetic interactions can provide functional information that is largely invisible to protein-protein interaction data sets. Here we present an epistatic miniarray profile (E-MAP) consisting of quantitative pairwise measurements of the genetic interactions between 743 Saccharomyces cerevisiae genes involved in various aspects of chromosome biology (including DNA replication/repair, chromatid segregation and transcriptional regulation). This E-MAP reveals that physical interactions fall into two well-represented classes distinguished by whether or not the individual proteins act coherently to carry out a common function. Thus, genetic interaction data make it possible to dissect functionally multi-protein complexes, including Mediator, and to organize distinct protein complexes into pathways. In one pathway defined here, we show that Rtt109 is the founding member of a novel class of histone acetyltransferases responsible for Asf1-dependent acetylation of histone H3 on lysine 56. This modification, in turn, enables a ubiquitin ligase complex containing the cullin Rtt101 to ensure genomic integrity during DNA replication.

  18. Fusions involving protein kinase C and membrane-associated proteins in benign fibrous histiocytoma.

    PubMed

    Płaszczyca, Anna; Nilsson, Jenny; Magnusson, Linda; Brosjö, Otte; Larsson, Olle; Vult von Steyern, Fredrik; Domanski, Henryk A; Lilljebjörn, Henrik; Fioretos, Thoas; Tayebwa, Johnbosco; Mandahl, Nils; Nord, Karolin H; Mertens, Fredrik

    2014-08-01

    Benign fibrous histiocytoma (BFH) is a mesenchymal tumor that most often occurs in the skin (so-called dermatofibroma), but may also appear in soft tissues (so-called deep BFH) and in the skeleton (so-called non-ossifying fibroma). The origin of BFH is unknown, and it has been questioned whether it is a true neoplasm. Chromosome banding, fluorescence in situ hybridization, single nucleotide polymorphism arrays, RNA sequencing, RT-PCR and quantitative real-time PCR were used to search for recurrent somatic mutations in a series of BFH. BFHs were found to harbor recurrent fusions of genes encoding membrane-associated proteins (podoplanin, CD63 and LAMTOR1) with genes encoding protein kinase C (PKC) isoforms PRKCB and PRKCD. PKCs are serine-threonine kinases that through their many phosphorylation targets are implicated in a variety of cellular processes, as well as tumor development. When inactive, the amino-terminal, regulatory domain of PKCs suppresses the activity of their catalytic domain. Upon activation, which requires several steps, they typically translocate to cell membranes, where they interact with different signaling pathways. The detected PDPN-PRKCB, CD63-PRKCD and LAMTOR1-PRKCD gene fusions are all predicted to result in chimeric proteins consisting of the membrane-binding part of PDPN, CD63 or LAMTOR1 and the entire catalytic domain of the PKC. This novel pathogenetic mechanism should result in constitutive kinase activity at an ectopic location. The results show that BFH indeed is a true neoplasm, and that distorted PKC activity is essential for tumorigenesis. The findings also provide means to differentiate BFH from other skin and soft tissue tumors. This article is part of a Directed Issue entitled: Rare cancers.

  19. Expression of proteins involved in host plant defense against greenbug infestation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greenbug, Schizaphis graminum (Rondani), has been recognized as a major pest of small grains, including sorghum and wheat. To understand the molecular mechanisms involved in host plant defense against greenbug aphids, a proteomic analysis of greenbug-induced proteins in the seedlings of sorghum...

  20. Spermidine-Induced Improvement of Reconsolidation of Memory Involves Calcium-Dependent Protein Kinase in Rats

    ERIC Educational Resources Information Center

    Girardi, Bruna Amanda; Ribeiro, Daniela Aymone; Signor, Cristiane; Muller, Michele; Gais, Mayara Ana; Mello, Carlos Fernando; Rubin, Maribel Antonello

    2016-01-01

    In this study, we determined whether the calcium-dependent protein kinase (PKC) signaling pathway is involved in the improvement of fear memory reconsolidation induced by the intrahippocampal administration of spermidine in rats. Male Wistar rats were trained in a fear conditioning apparatus using a 0.4-mA footshock as an unconditioned stimulus.…

  1. Structural Analysis of the Interaction between Dishevelled2 and Clathrin AP-2 Adaptor, A Critical Step in Noncanonical Wnt Signaling

    SciTech Connect

    Yu, Anan; Xing, Yi; Harrison, Stephen C.; Kirchhausen, Tomas

    2010-10-14

    Wnt association with its receptor, Frizzled (Fz), and recruitment by the latter of an adaptor, Dishevelled (Dvl), initiates signaling through at least two distinct pathways (canonical and noncanonical). Endocytosis and compartmentalization help determine the signaling outcome. Our previous work has shown that Dvl2 links at least one Frizzled family member (Fz4) to clathrin-mediated endocytosis by interacting with the {mu}2 subunit of the AP-2 clathrin adaptor, through both a classical endocytic tyrosine motif and a so-called DEP domain. We report here the crystal structure of a chimeric protein that mimics the Dvl2-{mu}2 complex. The DEP domain binds at one end of the elongated, C-terminal domain of {mu}2. This domain:domain interface shows that parts of the {mu}2 surface distinct from the tyrosine-motif site can help recruit specific receptors or adaptors into a clathrin coated pit. Mutation of residues at the DEP-{mu}2 contact or in the tyrosine motif reduce affinity of Dvl2 for {mu}2 and block efficient internalization of Fz4 in response to ligation by Wnt5a. The crystal structure has thus allowed us to identify the specific interaction that leads to Frizzled uptake and to downstream, noncanonical signaling events.

  2. Protein-protein interactions involving voltage-gated sodium channels: Post-translational regulation, intracellular trafficking and functional expression.

    PubMed

    Shao, Dongmin; Okuse, Kenji; Djamgoz, Mustafa B A

    2009-07-01

    Voltage-gated sodium channels (VGSCs), classically known to play a central role in excitability and signalling in nerves and muscles, have also been found to be expressed in a range of 'non-excitable' cells, including lymphocytes, fibroblasts and endothelia. VGSC abnormalities are associated with various diseases including epilepsy, long-QT syndrome 3, Brugada syndrome, sudden infant death syndrome and, more recently, various human cancers. Given their pivotal role in a wide range of physiological and pathophysiological processes, regulation of functional VGSC expression has been the subject of intense study. An emerging theme is post-translational regulation and macro-molecular complexing by protein-protein interactions and intracellular trafficking, leading to changes in functional VGSC expression in plasma membrane. This partially involves endoplasmic reticulum associated degradation and ubiquitin-proteasome system. Several proteins have been shown to associate with VGSCs. Here, we review the interactions involving VGSCs and the following proteins: p11, ankyrin, syntrophin, beta-subunit of VGSC, papin, ERM and Nedd4 proteins. Protein kinases A and C, as well as Ca(2+)-calmodulin dependent kinase II that have also been shown to regulate intracellular trafficking of VGSCs by changing the balance of externalization vs. internalization, and an effort is made to separate these effects from the short-term phosphorylation of mature proteins in plasma membrane. Two further modulatory mechanisms are reciprocal interactions with the cytoskeleton and, late-stage, activity-dependent regulation. Thus, the review gives an updated account of the range of post-translational molecular mechanisms regulating functional VGSC expression. However, many details of VGSC subtype-specific regulation and pathophysiological aspects remain unknown and these are highlighted throughout for completeness.

  3. Differential impact of REM sleep deprivation on cytoskeletal proteins of brain regions involved in sleep regulation.

    PubMed

    Rodríguez-Vázquez, Jennifer; Camacho-Arroyo, Ignacio; Velázquez-Moctezuma, Javier

    2012-01-01

    Rapid eye movement (REM) sleep is involved in memory consolidation, which implies synaptic plasticity. This process requires protein synthesis and the reorganization of the neural cytoskeleton. REM sleep deprivation (REMSD) has an impact on some neuronal proteins involved in synaptic plasticity, such as glutamate receptors and postsynaptic density protein 95, but its effects on cytoskeletal proteins is unknown. In this study, the effects of REMSD on the content of the cytoskeletal proteins MAP2 and TAU were analyzed. Adult female rats were submitted to selective REMSD by using the multiple platform technique. After 24, 48 or 72 h of REMSD, rats were decapitated and the following brain areas were dissected: pons, preoptic area, hippocampus and frontal cortex. Protein extraction and Western blot were performed. Results showed an increase in TAU content in the pons, preoptic area and hippocampus after 24 h of REMSD, while in the frontal cortex a significant increase in TAU content was observed after 72 h of REMSD. A TAU content decrease was observed in the hippocampus after 48 h of REMSD. Interestingly, a marked increase in TAU content was observed after 72 h of REMSD. MAP2 content only increased in the preoptic area at 24 h, and in the frontal cortex after 24 and 72 h of REMSD, without significant changes in the pons and hippocampus. These results support the idea that REM sleep plays an important role in the organization of neural cytoskeleton, and that this effect is tissue-specific.

  4. Proteomic Analysis Reveals Proteins Involved in Seed Imbibition under Salt Stress in Rice

    PubMed Central

    Xu, Enshun; Chen, Mingming; He, Hui; Zhan, Chengfang; Cheng, Yanhao; Zhang, Hongsheng; Wang, Zhoufei

    2017-01-01

    Enhancement of salinity tolerance during seed germination is very important for direct seeding in rice. In this study, the salt-tolerant japonica landrace Jiucaiqing was used to determine the regulators that are involved in seed imbibition under salt stress. Briefly, the comparative proteomic analysis was conducted between dry (0 h) and imbibed (24 h) seeds with 150 mM NaCl. Under salt stress, the uptake of water increased rapidly before 24 h imbibition (Phase I), followed by a plateau of seed imbibition from 24 to 96 h imbibition (Phase II). We identified 14 proteins involved in seed imbibition, in which the majority of these proteins were involved in energy supply and storage protein. The early imbibition process was mediated by protein catabolism; the most of proteins were down-regulated after 24 h imbibition. Eleven genes in salt stress treated seeds were expressed early during the seed imbibition in comparison to control seeds. By comparison, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (BPM), glutelin (GLU2.2 and GLU2.3), glucose-1-phosphate adenylyltransferase large subunit (GAS8), and cupin domain containing protein (CDP3.1 and CDP3.2) were near the regions of quantitative trait loci (QTLs) for seed dormancy, seed reserve utilization, and seed germination in Jiucaiqing. In particular, CDP3.1 was co-located in the region of qIR-3 for imbibition rate, and qGP-3 for germination percentage. The role of CDP3.1 was verified in enhancing seed germination under salt stress using T-DNA mutant. The identified proteins might be applicable for the improvement of seed germination under salt stress in rice. PMID:28105039

  5. Paraoxonase 1 and dietary hyperhomocysteinemia modulate the expression of mouse proteins involved in liver homeostasis.

    PubMed

    Suszyńska-Zajczyk, Joanna; Jakubowski, Hieronim

    2014-01-01

    Homocysteine (Hcy), a product of methionine metabolism, is elevated by the consumption of a high-methionine diet that can cause fatty liver disease. Paraoxonase 1 (Pon1), a hydrolase expressed mainly in the liver and carried in the circulation on high-density lipoprotein, participates in Hcy metabolism. Low Pon1 activity is linked to fatty liver disease. We hypothesize that hyperhomocysteinemia and low Pon1 induce changes in gene expression that could impair liver homeostasis. To test this hypothesis, we analyzed the liver proteome of Pon1(-/-) and Pon1(+/+) mice fed a high methionine diet (1% methionine in the drinking water) for 8 weeks using 2D IEF/SDS-PAGE gel electrophoresis and MALDI-TOF mass spectrometry. We identified seven liver proteins whose expression was significantly altered in Pon1(-/-) mice. In animals fed with a control diet, the expression of three liver proteins involved in lipoprotein metabolism (ApoE), iron metabolism (Ftl), and regulation of nitric oxide generation (Ddah1) was up-regulated by the Pon1(-/-) genotype. In mice fed with a high-methionine diet, expression of four liver proteins was up-regulated and of three proteins was down-regulated by the Pon1(-/-) genotype. The up-regulated proteins are involved in lipoprotein metabolism (ApoE), energy metabolism (Atp5h), oxidative stress response (Prdx2), and nitric oxide regulation (Ddah1). The down-regulated proteins are involved in energy metabolism (Gamt), iron metabolism (Ftl), and catechol metabolism (Comt). Expression of one protein (Ftl) was up-regulated both by the Pon1(-/-) genotype and a high-methionine diet. Our findings suggest that Pon1 interacts with diverse cellular processes - from lipoprotein metabolism, nitric oxide regulation, and energy metabolism to iron transport and antioxidant defenses - that are essential for normal liver homeostasis and modulation of these interactions by a high-methionine diet may contribute to fatty liver disease.

  6. Proteomic Analysis Reveals Proteins Involved in Seed Imbibition under Salt Stress in Rice.

    PubMed

    Xu, Enshun; Chen, Mingming; He, Hui; Zhan, Chengfang; Cheng, Yanhao; Zhang, Hongsheng; Wang, Zhoufei

    2016-01-01

    Enhancement of salinity tolerance during seed germination is very important for direct seeding in rice. In this study, the salt-tolerant japonica landrace Jiucaiqing was used to determine the regulators that are involved in seed imbibition under salt stress. Briefly, the comparative proteomic analysis was conducted between dry (0 h) and imbibed (24 h) seeds with 150 mM NaCl. Under salt stress, the uptake of water increased rapidly before 24 h imbibition (Phase I), followed by a plateau of seed imbibition from 24 to 96 h imbibition (Phase II). We identified 14 proteins involved in seed imbibition, in which the majority of these proteins were involved in energy supply and storage protein. The early imbibition process was mediated by protein catabolism; the most of proteins were down-regulated after 24 h imbibition. Eleven genes in salt stress treated seeds were expressed early during the seed imbibition in comparison to control seeds. By comparison, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (BPM), glutelin (GLU2.2 and GLU2.3), glucose-1-phosphate adenylyltransferase large subunit (GAS8), and cupin domain containing protein (CDP3.1 and CDP3.2) were near the regions of quantitative trait loci (QTLs) for seed dormancy, seed reserve utilization, and seed germination in Jiucaiqing. In particular, CDP3.1 was co-located in the region of qIR-3 for imbibition rate, and qGP-3 for germination percentage. The role of CDP3.1 was verified in enhancing seed germination under salt stress using T-DNA mutant. The identified proteins might be applicable for the improvement of seed germination under salt stress in rice.

  7. Silkmapin of Hyriopsis cumingii, a novel silk-like shell matrix protein involved in nacre formation.

    PubMed

    Liu, Xiaojun; Dong, Shaojian; Jin, Can; Bai, Zhiyi; Wang, Guiling; Li, Jiale

    2015-01-25

    Understanding the role of matrix proteins in nacre formation and biomineralization in mollusks is important for the pearl industry. In this study, the gene encoding the novel Hyriopsis cumingii shell matrix protein silkmapin was characterized. The gene encodes a protein of 30.89kDa in which Gly accounts for 34.41% of the amino acid content, and the C-terminal region binds Ca(2+). Secondary structure prediction indicated a predominantly β-fold and a structure typical of filamentous proteins. Real-time quantitative PCR and in situ hybridization showed that silkmapin was expressed in epithelial cells at the edge and pallial of mantle tissue, indicated that silkmapin play roles in the shell nacreous and prismatic layer formation. Further real-time PCR results indicated an involvement in pearl formation via nucleation of calcium carbonate prior to formation of the nacre.

  8. Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation

    PubMed Central

    Blondel, Marc; Soubigou, Flavie; Evrard, Justine; Nguyen, Phu hai; Hasin, Naushaba; Chédin, Stéphane; Gillet, Reynald; Contesse, Marie-Astrid; Friocourt, Gaëlle; Stahl, Guillaume; Jones, Gary W.; Voisset, Cécile

    2016-01-01

    6AP and GA are potent inhibitors of yeast and mammalian prions and also specific inhibitors of PFAR, the protein-folding activity borne by domain V of the large rRNA of the large subunit of the ribosome. We therefore explored the link between PFAR and yeast prion [PSI+] using both PFAR-enriched mutants and site-directed methylation. We demonstrate that PFAR is involved in propagation and de novo formation of [PSI+]. PFAR and the yeast heat-shock protein Hsp104 partially compensate each other for [PSI+] propagation. Our data also provide insight into new functions for the ribosome in basal thermotolerance and heat-shocked protein refolding. PFAR is thus an evolutionarily conserved cell component implicated in the prion life cycle, and we propose that it could be a potential therapeutic target for human protein misfolding diseases. PMID:27633137

  9. Identification and Characterization of Proteins Involved in Rice Urea and Arginine Catabolism1[W

    PubMed Central

    Cao, Feng-Qiu; Werner, Andrea K.; Dahncke, Kathleen; Romeis, Tina; Liu, Lai-Hua; Witte, Claus-Peter

    2010-01-01

    Rice (Oryza sativa) production relies strongly on nitrogen (N) fertilization with urea, but the proteins involved in rice urea metabolism have not yet been characterized. Coding sequences for rice arginase, urease, and the urease accessory proteins D (UreD), F (UreF), and G (UreG) involved in urease activation were identified and cloned. The functionality of urease and the urease accessory proteins was demonstrated by complementing corresponding Arabidopsis (Arabidopsis thaliana) mutants and by multiple transient coexpression of the rice proteins in Nicotiana benthamiana. Secondary structure models of rice (plant) UreD and UreF proteins revealed a possible functional conservation to bacterial orthologs, especially for UreF. Using amino-terminally StrepII-tagged urease accessory proteins, an interaction between rice UreD and urease could be shown. Prokaryotic and eukaryotic urease activation complexes seem conserved despite limited protein sequence conservation for UreF and UreD. In plant metabolism, urea is generated by the arginase reaction. Rice arginase was transiently expressed as a carboxyl-terminally StrepII-tagged fusion protein in N. benthamiana, purified, and biochemically characterized (Km = 67 mm, kcat = 490 s−1). The activity depended on the presence of manganese (Kd = 1.3 μm). In physiological experiments, urease and arginase activities were not influenced by the external N source, but sole urea nutrition imbalanced the plant amino acid profile, leading to the accumulation of asparagine and glutamine in the roots. Our data indicate that reduced plant performance with urea as N source is not a direct result of insufficient urea metabolism but may in part be caused by an imbalance of N distribution. PMID:20631318

  10. Identification and characterization of proteins involved in rice urea and arginine catabolism.

    PubMed

    Cao, Feng-Qiu; Werner, Andrea K; Dahncke, Kathleen; Romeis, Tina; Liu, Lai-Hua; Witte, Claus-Peter

    2010-09-01

    Rice (Oryza sativa) production relies strongly on nitrogen (N) fertilization with urea, but the proteins involved in rice urea metabolism have not yet been characterized. Coding sequences for rice arginase, urease, and the urease accessory proteins D (UreD), F (UreF), and G (UreG) involved in urease activation were identified and cloned. The functionality of urease and the urease accessory proteins was demonstrated by complementing corresponding Arabidopsis (Arabidopsis thaliana) mutants and by multiple transient coexpression of the rice proteins in Nicotiana benthamiana. Secondary structure models of rice (plant) UreD and UreF proteins revealed a possible functional conservation to bacterial orthologs, especially for UreF. Using amino-terminally StrepII-tagged urease accessory proteins, an interaction between rice UreD and urease could be shown. Prokaryotic and eukaryotic urease activation complexes seem conserved despite limited protein sequence conservation for UreF and UreD. In plant metabolism, urea is generated by the arginase reaction. Rice arginase was transiently expressed as a carboxyl-terminally StrepII-tagged fusion protein in N. benthamiana, purified, and biochemically characterized (K(m) = 67 mm, k(cat) = 490 s(-1)). The activity depended on the presence of manganese (K(d) = 1.3 microm). In physiological experiments, urease and arginase activities were not influenced by the external N source, but sole urea nutrition imbalanced the plant amino acid profile, leading to the accumulation of asparagine and glutamine in the roots. Our data indicate that reduced plant performance with urea as N source is not a direct result of insufficient urea metabolism but may in part be caused by an imbalance of N distribution.

  11. Staphylococcus aureus surface proteins involved in adaptation to oxacillin identified using a novel cell shaving approach.

    PubMed

    Solis, Nestor; Parker, Benjamin L; Kwong, Stephen M; Robinson, Gareth; Firth, Neville; Cordwell, Stuart J

    2014-06-06

    Staphylococcus aureus is a Gram-positive pathogen responsible for a variety of infections, and some strains are resistant to virtually all classes of antibiotics. Cell shaving proteomics using a novel probability scoring algorithm to compare the surfaceomes of the methicillin-resistant, laboratory-adapted S. aureus COL strain with a COL strain in vitro adapted to high levels of oxacillin (APT). APT displayed altered cell morphology compared with COL and increased aggregation in biofilm assays. Increased resistance to β-lactam antibiotics was observed, but adaptation to oxacillin did not confer multidrug resistance. Analysis of the S. aureus COL and APT surfaceomes identified 150 proteins at a threshold determined by the scoring algorithm. Proteins unique to APT included the LytR-CpsA-Psr (LCP) domain-containing MsrR and SACOL2302. Quantitative RT-PCR showed increased expression of sacol2302 in APT grown with oxacillin (>6-fold compared with COL). Overexpression of sacol2302 in COL to levels consistent with APT (+ oxacillin) did not influence biofilm formation or β-lactam resistance. Proteomics using iTRAQ and LC-MS/MS identified 1323 proteins (∼50% of the theoretical S. aureus proteome), and cluster analysis demonstrated elevated APT abundances of LCP proteins, capsule and peptidoglycan biosynthesis proteins, and proteins involved in wall remodelling. Adaptation to oxacillin also induced urease proteins, which maintained culture pH compared to COL. These results show that S. aureus modifies surface architecture in response to antibiotic adaptation.

  12. Evidence against the involvement of ionically bound cell wall proteins in pea epicotyl growth

    NASA Technical Reports Server (NTRS)

    Melan, M. A.; Cosgrove, D. J.

    1988-01-01

    Ionically bound cell wall proteins were extracted from 7 day old etiolated pea (Pisum sativum L. cv Alaska) epicotyls with 3 molar LiCl. Polyclonal antiserum was raised in rabbits against the cell wall proteins. Growth assays showed that treatment of growing region segments (5-7 millimeters) of peas with either dialyzed serum, serum globulin fraction, affinity purified immunoglobulin, or papain-cleaved antibody fragments had no effect on growth. Immunofluorescence microscopy confirmed antibody binding to cell walls and penetration of the antibodies into the tissues. Western blot analysis, immunoassay results, and affinity chromatography utilizing Sepharose-bound antibodies confirmed recognition of the protein preparation by the antibodies. Experiments employing in vitro extension as a screening measure indicated no effect upon extension by antibodies, by 50 millimolar LiCl perfusion of the apoplast or by 3 molar LiCl extraction. Addition of cell wall protein to protease pretreated segments did not restore extension nor did addition of cell wall protein to untreated segments increase extension. It is concluded that, although evidence suggests that protein is responsible for the process of extension, the class(es) of proteins which are extracted from pea cell walls with 3 molar LiCl are probably not involved in this process.

  13. Identification of glandular (preputial and clitoral) proteins in house rat (Rattus rattus) involved in pheromonal communication.

    PubMed

    Archunan, G; Kamalakkannan, S; Achiraman, S; Rajkumar, R

    2004-10-01

    Proteins (18-20 kDa) belonging to lipocalin family have been reported to act as carriers for ligands binding to pheromones in mouse urine, pig saliva, hamster vaginal fluid and human sweat, that are involved in pheromonal communication. As the preputial gland is a major pheromonal source, the present study was aimed to detect the specific protein bands (around 18-20 kDa) in the preputial and clitoral glands of the house rat, R. rattus. The amount of protein was higher in preputial gland of the male than that of female (clitoral) gland. A 20 kDa protein was noted in male and female glands; however, the intensity of the band was much higher in male than in female. In addition, 70, 60, 35 kDa bands, identified in male preputial gland, were absent in females. The presence of higher concentration of glandular proteins in the male preputial gland suggests that male rats may depend more on these glandular proteins for the maintenance of reproductive and dominance behaviours. The results further suggest that these glandular proteins (20 kDa) may act as a carrier for ligand binding.

  14. Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair

    PubMed Central

    Alcalay, Myriam; Meani, Natalia; Gelmetti, Vania; Fantozzi, Anna; Fagioli, Marta; Orleth, Annette; Riganelli, Daniela; Sebastiani, Carla; Cappelli, Enrico; Casciari, Cristina; Sciurpi, Maria Teresa; Mariano, Angela Rosa; Minardi, Simone Paolo; Luzi, Lucilla; Muller, Heiko; Di Fiore, Pier Paolo; Frosina, Guido; Pelicci, Pier Giuseppe

    2003-01-01

    Acute myelogenous leukemias (AMLs) are genetically heterogeneous and characterized by chromosomal rearrangements that produce fusion proteins with aberrant transcriptional regulatory activities. Expression of AML fusion proteins in transgenic mice increases the risk of myeloid leukemias, suggesting that they induce a preleukemic state. The underlying molecular and biological mechanisms are, however, unknown. To address this issue, we performed a systematic analysis of fusion protein transcriptional targets. We expressed AML1/ETO, PML/RAR, and PLZF/RAR in U937 hemopoietic precursor cells and measured global gene expression using oligonucleotide chips. We identified 1,555 genes regulated concordantly by at least two fusion proteins that were further validated in patient samples and finally classified according to available functional information. Strikingly, we found that AML fusion proteins induce genes involved in the maintenance of the stem cell phenotype and repress DNA repair genes, mainly of the base excision repair pathway. Functional studies confirmed that ectopic expression of fusion proteins constitutively activates pathways leading to increased stem cell renewal (e.g., the Jagged1/Notch pathway) and provokes accumulation of DNA damage. We propose that expansion of the stem cell compartment and induction of a mutator phenotype are relevant features underlying the leukemic potential of AML-associated fusion proteins. PMID:14660751

  15. LanCL proteins are not Involved in Lanthionine Synthesis in Mammals.

    PubMed

    He, Chang; Zeng, Min; Dutta, Debapriya; Koh, Tong Hee; Chen, Jie; van der Donk, Wilfred A

    2017-01-20

    LanC-like (LanCL) proteins are mammalian homologs of bacterial LanC enzymes, which catalyze the addition of the thiol of Cys to dehydrated Ser residues during the biosynthesis of lanthipeptides, a class of natural products formed by post-translational modification of precursor peptides. The functions of LanCL proteins are currently unclear. A recent proposal suggested that LanCL1 catalyzes the addition of the Cys of glutathione to protein- or peptide-bound dehydroalanine (Dha) to form lanthionine, analogous to the reaction catalyzed by LanC in bacteria. Lanthionine has been detected in human brain as the downstream metabolite lanthionine ketimine (LK), which has been shown to have neuroprotective effects. In this study, we tested the proposal that LanCL1 is involved in lanthionine biosynthesis by constructing LanCL1 knock-out mice and measuring LK concentrations in their brains using a mass spectrometric detection method developed for this purpose. To investigate whether other LanCL proteins (LanCL2/3) may confer a compensatory effect, triple knock-out (TKO) mice were also generated and tested. Very similar concentrations of LK (0.5-2.5 nmol/g tissue) were found in LanCL1 knock-out, TKO and wild type (WT) mouse brains, suggesting that LanCL proteins are not involved in lanthionine biosynthesis.

  16. LanCL proteins are not Involved in Lanthionine Synthesis in Mammals

    PubMed Central

    He, Chang; Zeng, Min; Dutta, Debapriya; Koh, Tong Hee; Chen, Jie; van der Donk, Wilfred A.

    2017-01-01

    LanC-like (LanCL) proteins are mammalian homologs of bacterial LanC enzymes, which catalyze the addition of the thiol of Cys to dehydrated Ser residues during the biosynthesis of lanthipeptides, a class of natural products formed by post-translational modification of precursor peptides. The functions of LanCL proteins are currently unclear. A recent proposal suggested that LanCL1 catalyzes the addition of the Cys of glutathione to protein- or peptide-bound dehydroalanine (Dha) to form lanthionine, analogous to the reaction catalyzed by LanC in bacteria. Lanthionine has been detected in human brain as the downstream metabolite lanthionine ketimine (LK), which has been shown to have neuroprotective effects. In this study, we tested the proposal that LanCL1 is involved in lanthionine biosynthesis by constructing LanCL1 knock-out mice and measuring LK concentrations in their brains using a mass spectrometric detection method developed for this purpose. To investigate whether other LanCL proteins (LanCL2/3) may confer a compensatory effect, triple knock-out (TKO) mice were also generated and tested. Very similar concentrations of LK (0.5–2.5 nmol/g tissue) were found in LanCL1 knock-out, TKO and wild type (WT) mouse brains, suggesting that LanCL proteins are not involved in lanthionine biosynthesis. PMID:28106097

  17. Endogenous basic fibroblast growth factor isoforms involved in different intracellular protein complexes.

    PubMed Central

    Patry, V; Bugler, B; Maret, A; Potier, M; Prats, H

    1997-01-01

    Four forms of basic fibroblast growth factor (bFGF or FGF-2) result from an alternative initiation of translation involving one AUG (155-amino acid form) and three CUGs (210-, 201- and 196-amino acid forms). These different forms of bFGF show different intracellular biological activities. To identify their intracellular targets, the 210- and 155-amino acid forms of bFGF were independently transfected into CHO cells and their correct subcellular localizations were verified, the 155-amino acid bFGF form being essentially cytoplasmic whereas the 210-amino acid protein was nuclear. The radiation fragmentation method was used to determine the target size of the different bFGF isoforms in the transfected CHO cells and to show that the 210- and 155-amino acids bFGF isoforms were included in protein complexes of 320 and 130 kDa respectively. Similar results were obtained using the SK-Hep1 cell line, which naturally expressed all forms of bFGF. Co-immunoprecipitation assays using different chimaeric bFGF-chloramphenicol acetyltransferase proteins showed that different cellular proteins are associated with different parts of the bFGF molecule. We conclude that bFGF isoforms are involved in different molecular complexes in the cytosol and nucleus, which would reflect different functions for these proteins. PMID:9337877

  18. STING Requires the Adaptor TRIF to Trigger Innate Immune Responses to Microbial Infection.

    PubMed

    Wang, Xin; Majumdar, Tanmay; Kessler, Patricia; Ozhegov, Evgeny; Zhang, Ying; Chattopadhyay, Saurabh; Barik, Sailen; Sen, Ganes C

    2016-09-14

    The intracellular microbial nucleic acid sensors, TLR3 and STING, recognize pathogen molecules and signal to activate the interferon pathway. The TIR-domain containing protein TRIF is the sole adaptor of TLR3. Here, we report an essential role for TRIF in STING signaling: various activators of STING could not induce genes in the absence of TRIF. TRIF and STING interacted directly, through their carboxy-terminal domains, to promote STING dimerization, intermembrane translocation, and signaling. Herpes simplex virus (HSV), which triggers the STING signaling pathway and is controlled by it, replicated more efficiently in the absence of TRIF, and HSV-infected TRIF(-/-) mice displayed pronounced pathology. Our results indicate that defective STING signaling may be responsible for the observed genetic association between TRIF mutations and herpes simplex encephalitis in patients.

  19. Protein Kinase C-{delta} mediates down-regulation of heterogeneous nuclear ribonucleoprotein K protein: involvement in apoptosis induction

    SciTech Connect

    Gao, Feng-Hou; Wu, Ying-Li; Zhao, Meng; Chen, Guo-Qiang

    2009-11-15

    We reported previously that NSC606985, a camptothecin analogue, induces apoptosis of acute myeloid leukemia (AML) cells through proteolytic activation of protein kinase C delta ({Delta}PKC-{delta}). By subcellular proteome analysis, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was identified as being significantly down-regulated in NSC606985-treated leukemic NB4 cells. HnRNP K, a docking protein for DNA, RNA, and transcriptional or translational molecules, is implicated in a host of processes involving the regulation of gene expression. However, the molecular mechanisms of hnRNP K reduction and its roles during apoptosis are still not understood. In the present study, we found that, following the appearance of the {Delta}PKC-{delta}, hnRNP K protein was significantly down-regulated in NSC606985, doxorubicin, arsenic trioxide and ultraviolet-induced apoptosis. We further provided evidence that {Delta}PKC-{delta} mediated the down-regulation of hnRNP K protein during apoptosis: PKC-{delta} inhibitor could rescue the reduction of hnRNP K; hnRNP K failed to be decreased in PKC-{delta}-deficient apoptotic KG1a cells; conditional induction of {Delta}PKC-{delta} in U937T cells directly down-regulated hnRNP K protein. Moreover, the proteasome inhibitor also inhibited the down-regulation of hnRNP K protein by apoptosis inducer and the conditional expression of {Delta}PKC-{delta}. More intriguingly, the suppression of hnRNP K with siRNA transfection significantly induced apoptosis. To our knowledge, this is the first demonstration that proteolytically activated PKC-{delta} down-regulates hnRNP K protein in a proteasome-dependent manner, which plays an important role in apoptosis induction.

  20. Absence of aquaporin-4 in skeletal muscle alters proteins involved in bioenergetic pathways and calcium handling.

    PubMed

    Basco, Davide; Nicchia, Grazia Paola; D'Alessandro, Angelo; Zolla, Lello; Svelto, Maria; Frigeri, Antonio

    2011-04-28

    Aquaporin-4 (AQP4) is a water channel expressed at the sarcolemma of fast-twitch skeletal muscle fibers, whose expression is altered in several forms of muscular dystrophies. However, little is known concerning the physiological role of AQP4 in skeletal muscle and its functional and structural interaction with skeletal muscle proteome. Using AQP4-null mice, we analyzed the effect of the absence of AQP4 on the morphology and protein composition of sarcolemma as well as on the whole skeletal muscle proteome. Immunofluorescence analysis showed that the absence of AQP4 did not perturb the expression and cellular localization of the dystrophin-glycoprotein complex proteins, aside from those belonging to the extracellular matrix, and no alteration was found in sarcolemma integrity by dye extravasation assay. With the use of a 2DE-approach (BN/SDS-PAGE), protein maps revealed that in quadriceps, out of 300 Coomassie-blue detected and matched spots, 19 proteins exhibited changed expression in AQP4(-/-) compared to WT mice. In particular, comparison of the protein profiles revealed 12 up- and 7 down-regulated protein spots in AQP4-/- muscle. Protein identification by MS revealed that the perturbed expression pattern belongs to proteins involved in energy metabolism (i.e. GAPDH, creatine kinase), as well as in Ca(2+) handling (i.e. parvalbumin, SERCA1). Western blot analysis, performed on some significantly changed proteins, validated the 2D results. Together these findings suggest AQP4 as a novel determinant in the regulation of skeletal muscle metabolism and better define the role of this water channel in skeletal muscle physiology.

  1. Absence of Aquaporin-4 in Skeletal Muscle Alters Proteins Involved in Bioenergetic Pathways and Calcium Handling

    PubMed Central

    Basco, Davide; Nicchia, Grazia Paola; D'Alessandro, Angelo; Zolla, Lello; Svelto, Maria; Frigeri, Antonio

    2011-01-01

    Aquaporin-4 (AQP4) is a water channel expressed at the sarcolemma of fast-twitch skeletal muscle fibers, whose expression is altered in several forms of muscular dystrophies. However, little is known concerning the physiological role of AQP4 in skeletal muscle and its functional and structural interaction with skeletal muscle proteome. Using AQP4-null mice, we analyzed the effect of the absence of AQP4 on the morphology and protein composition of sarcolemma as well as on the whole skeletal muscle proteome. Immunofluorescence analysis showed that the absence of AQP4 did not perturb the expression and cellular localization of the dystrophin-glycoprotein complex proteins, aside from those belonging to the extracellular matrix, and no alteration was found in sarcolemma integrity by dye extravasation assay. With the use of a 2DE-approach (BN/SDS-PAGE), protein maps revealed that in quadriceps, out of 300 Coomassie-blue detected and matched spots, 19 proteins exhibited changed expression in AQP4−/− compared to WT mice. In particular, comparison of the protein profiles revealed 12 up- and 7 down-regulated protein spots in AQP4−/− muscle. Protein identification by MS revealed that the perturbed expression pattern belongs to proteins involved in energy metabolism (i.e. GAPDH, creatine kinase), as well as in Ca2+ handling (i.e. parvalbumin, SERCA1). Western blot analysis, performed on some significantly changed proteins, validated the 2D results. Together these findings suggest AQP4 as a novel determinant in the regulation of skeletal muscle metabolism and better define the role of this water channel in skeletal muscle physiology. PMID:21552523

  2. SEORious business: structural proteins in sieve tubes and their involvement in sieve element occlusion.

    PubMed

    Knoblauch, Michael; Froelich, Daniel R; Pickard, William F; Peters, Winfried S

    2014-04-01

    The phloem provides a network of sieve tubes for long-distance translocation of photosynthates. For over a century, structural proteins in sieve tubes have presented a conundrum since they presumably increase the hydraulic resistance of the tubes while no potential function other than sieve tube or wound sealing in the case of injury has been suggested. Here we summarize and critically evaluate current speculations regarding the roles of these proteins. Our understanding suffers from the suggestive power of images; what looks like a sieve tube plug on micrographs may not actually impede translocation very much. Recent reports of an involvement of SEOR (sieve element occlusion-related) proteins, a class of P-proteins, in the sealing of injured sieve tubes are inconclusive; various lines of evidence suggest that, in neither intact nor injured plants, are SEORs determinative of translocation stoppage. Similarly, the popular notion that P-proteins serve in the defence against phloem sap-feeding insects is unsupported by empirical facts; it is conceivable that in functional sieve tubes, aphids actually could benefit from inducing a plug. The idea that rising cytosolic Ca(2+) generally triggers sieve tube blockage by P-proteins appears widely accepted, despite lacking experimental support. Even in forisomes, P-protein assemblages restricted to one single plant family and the only Ca(2+)-responsive P-proteins known, the available evidence does not unequivocally suggest that plug formation is the cause rather than a consequence of translocation stoppage. We conclude that the physiological roles of structural P-proteins remain elusive, and that in vivo studies of their dynamics in continuous sieve tube networks combined with flow velocity measurements will be required to (hopefully) resolve this scientific roadblock.

  3. Lacrimal gland PKC isoforms are differentially involved in agonist-induced protein secretion.

    PubMed

    Zoukhri, D; Hodges, R R; Sergheraert, C; Toker, A; Dartt, D A

    1997-01-01

    In the present study, we have synthesized and N-myristoylated peptides derived from the pseudosubstrate sequences of protein kinase C (PKC)-alpha, -delta, and -epsilon [Myr-PKC-alpha-(15-28), Myr-PKC-delta-(142-153), and Myr-PKC-epsilon-(149-164)], three isoforms present in rat lacrimal gland, and a peptide derived from the sequence of the endogenous inhibitor of protein kinase A [Myr-PKI-(17-25)]. Lacrimal gland acini were preincubated for 60 min with the myristoylated peptides (10(-10) to 3 x 10(-7) M), then protein secretion was stimulated with a phorbol ester, phorbol 12,13-dibutyrate (10(-6) M); vasoactive intestinal peptide (10(-8) M); a cholinergic agonist, carbachol (10(-5) M); or an alpha 1-adrenergic agonist, phenylephrine (10(-4) M), for 20 min. In intact lacrimal gland acini, Myr-PKC-alpha-(15-28) inhibited phorbol 12,13-dibutyrate-induced protein secretion. This effect was not reproduced by the acetylated peptide or by the myristoylated PKI, which inhibited vasoactive intestinal peptide-induced protein secretion, a response mediated by protein kinase A. Carbachol-induced protein secretion was inhibited by all three peptides. In contrast, phenylephrine-induced protein secretion was inhibited only by Myr-PKC-epsilon-(149-164), whereas Myr-PKC-alpha-(15-28) and Myr-PKC-delta-(142-153) had a stimulatory effect. None of these myristoylated peptides affected the calcium increase evoked by cholinergic or alpha 1-adrenergic agonists. We concluded that phorbol ester- and receptor-induced protein secretion involve different PKC isoforms in lacrimal gland.

  4. Machines of destruction - AAA+ proteases and the adaptors that control them.

    PubMed

    Gur, Eyal; Ottofueling, Ralf; Dougan, David A

    2013-01-01

    Bacteria are frequently exposed to changes in environmental conditions, such as fluctuations in temperature, pH or the availability of nutrients. These assaults can be detrimental to cell as they often result in a proteotoxic stress, which can cause the accumulation of unfolded proteins. In order to restore a productive folding environment in the cell, bacteria have evolved a network of proteins, known as the protein quality control (PQC) network, which is composed of both chaperones and AAA+ proteases. These AAA+ proteases form a major part of this PQC network, as they are responsible for the removal of unwanted and damaged proteins. They also play an important role in the turnover of specific regulatory or tagged proteins. In this review, we describe the general features of an AAA+ protease, and using two of the best-characterised AAA+ proteases in Escherichia coli (ClpAP and ClpXP) as a model for all AAA+ proteases, we provide a detailed mechanistic description of how these machines work. Specifically, the review examines the physiological role of these machines, as well as the substrates and the adaptor proteins that modulate their substrate specificity.

  5. A retroviral-derived peptide phosphorylates protein kinase D/protein kinase Cmu involving phospholipase C and protein kinase C.

    PubMed

    Luangwedchakarn, Voravich; Day, Noorbibi K; Hitchcock, Remi; Brown, Pam G; Lerner, Danica L; Rucker, Rajivi P; Cianciolo, George J; Good, Robert A; Haraguchi, Soichi

    2003-05-01

    CKS-17, a synthetic peptide representing a unique amino acid motif which is highly conserved in retroviral transmembrane proteins and other immunoregulatory proteins, induces selective immunomodulatory functions, both in vitro and in vivo, and activates intracellular signaling molecules such as cAMP and extracellular signal-regulated kinases. In the present study, using Jurkat T-cells, we report that CKS-17 phosphorylates protein kinase D (PKD)/protein kinase C (PKC) mu. Total cell extracts from CKS-17-stimulated Jurkat cells were immunoblotted with an anti-phospho-PKCmu antibody. The results show that CKS-17 significantly phosphorylates PKD/PKCmu in a dose- and time-dependent manner. Treatment of cells with the PKC inhibitors GF 109203X and Ro 31-8220, which do not act directly on PKD/PKCmu, attenuates CKS-17-induced phosphorylation of PKD/PKCmu. In contrast, the selective protein kinase A inhibitor H-89 does not reverse the action of CKS-17. Furthermore, a phospholipase C (PLC) selective inhibitor, U-73122, completely blocks the phosphorylation of PKD/PKCmu by CKS-17 while a negative control U-73343 does not. In addition, substitution of lysine for arginine residues in the CKS-17 sequence completely abrogates the ability of CKS-17 to phosphorylate PKD/PKCmu. These results clearly indicate that CKS-17 phosphorylates PKD/PKCmu through a PLC- and PKC-dependent mechanism and that arginine residues play an essential role in this activity of CKS-17, presenting a novel modality of the retroviral peptide CKS-17 and molecular interaction of this compound with target cells.

  6. Protein receptor for activated C kinase 1 is involved in morphine reward in mice.

    PubMed

    Wan, L; Su, L; Xie, Y; Liu, Y; Wang, Y; Wang, Z

    2009-07-07

    Opiate addiction is associated with upregulation of cAMP signaling in the brain. cAMP-responsive element binding protein (CREB), a nuclear transcription factor, is a downstream component of the extracellular signal-regulated protein kinase (ERK) pathway, which has been shown to regulate different physiological and psychological responses of drug addiction. RACK1, the protein receptor for activated C kinase 1, is a multifunctional scaffolding protein known to be a key regulator of various signaling cascades in the CNS. RACK1 functions specifically in integrin mediated activation of ERK cascade and targets active ERK. We examined if RACK1 is involved in the mechanism of drug addiction by regulating CREB in mouse hippocampus and prefrontal cortex. Several expressions were observed. Chronic administration of morphine made the expression of RACK1 and CREB mRNA increase in hippocampus and prefrontal cortex. The expression of RACK1 and CREB protein was strongly positive in CA1, CA3 and dentate gyrus (DG) of the hippocampus of morphine-treated mice brain, especially the pyramidal neurons in the DG of the hippocampus. Using the small interfering RNA technology, we determined that the expression of CREB mRNA was decreased in hippocampus and prefrontal cortex of morphine-treated mice. The expression of RACK1 and CREB protein was negative in CA1, CA3 and DG of hippocampus. These findings suggest that morphine reward can influence the expression of RACK1 in mouse hippocampus and prefrontal cortex through regulating CREB transcription.

  7. Proteomic analysis of male 4C germ cell proteins involved in mouse meiosis.

    PubMed

    Guo, Xuejiang; Zhang, Ping; Qi, Yujuan; Chen, Wen; Chen, Xiangxiang; Zhou, Zuomin; Sha, Jiahao

    2011-01-01

    Male meiosis is a specialized type of cell division that gives rise to sperm. Errors in this process can result in the generation of aneuploid gametes, which are associated with birth defects and infertility in humans. Until now, there has been a lack of a large-scale identification of proteins involved in male meiosis in mammals. In this study, we report the high-confidence identification of 3625 proteins in mouse male germ cells with 4C DNA content undergoing meiosis I. Of these, 397 were found to be testis specific. Bioinformatics analysis of the proteome led to the identification of 28 proteins known to be essential for male meiosis in mice. We also found 172 proteins that had yeast orthologs known to be essential for meiosis. Chromosome distribution analysis of the proteome showed underrepresentation of the identified proteins on the X chromosome, which may be due to meiotic sex chromosome inactivation. Characterization of the proteome of 4C germ cells from mouse testis provides an inventory of proteins, which is useful for understanding meiosis and the mechanisms of male infertility.

  8. The abi proteins and their involvement in bacteriocin self-immunity.

    PubMed

    Kjos, Morten; Snipen, Lars; Salehian, Zhian; Nes, Ingolf F; Diep, Dzung B

    2010-04-01

    The Abi protein family consists of putative membrane-bound metalloproteases. While they are involved in membrane anchoring of proteins in eukaryotes, little is known about their function in prokaryotes. In some known bacteriocin loci, Abi genes have been found downstream of bacteriocin structural genes (e.g., pln locus from Lactobacillus plantarum and sag locus from Streptococcus pyogenes), where they probably are involved in self-immunity. By modifying the profile hidden Markov model used to select Abi proteins in the Pfam protein family database, we show that this family is larger than presently recognized. Using bacteriocin-associated Abi genes as a means to search for novel bacteriocins in sequenced genomes, seven new bacteriocin-like loci were identified in Gram-positive bacteria. One such locus, from Lactobacillus sakei 23K, was selected for further experimental study, and it was confirmed that the bacteriocin-like genes (skkAB) exhibited antimicrobial activity when expressed in a heterologous host and that the associated Abi gene (skkI) conferred immunity against the cognate bacteriocin. Similar investigation of the Abi gene plnI and the Abi-like gene plnL from L. plantarum also confirmed their involvement in immunity to their cognate bacteriocins (PlnEF and PlnJK, respectively). Interestingly, the immunity genes from these three systems conferred a high degree of cross-immunity against each other's bacteriocins, suggesting the recognition of a common receptor. Site-directed mutagenesis demonstrated that the conserved motifs constituting the putative proteolytic active site of the Abi proteins are essential for the immunity function of SkkI, and to our knowledge, this represents a new concept in self-immunity.

  9. Hyperhomocysteinemia and bleomycin hydrolase modulate the expression of mouse brain proteins involved in neurodegeneration.

    PubMed

    Suszyńska-Zajczyk, Joanna; Luczak, Magdalena; Marczak, Lukasz; Jakubowski, Hieronim

    2014-01-01

    Homocysteine (Hcy) is a risk factor for Alzheimer's disease (AD). Bleomycin hydrolase (BLMH) participates in Hcy metabolism and is also linked to AD. The inactivation of the Blmh gene in mice causes accumulation of Hcy-thiolactone in the brain and increases susceptibility to Hcy-thiolactone-induced seizures. To gain insight into brain-related Blmh function, we used two-dimensional IEF/SDS-PAGE gel electrophoresis and MALDI-TOF/TOF mass spectrometry to examine brain proteomes of Blmh-/- mice and their Blmh+/+ littermates fed with a hyperhomocysteinemic high-Met or a control diet. We found that: (1) proteins involved in brain-specific function (Ncald, Nrgn, Stmn1, Stmn2), antioxidant defenses (Aop1), cell cycle (RhoGDI1, Ran), and cytoskeleton assembly (Tbcb, CapZa2) were differentially expressed in brains of Blmh-null mice; (2) hyperhomocysteinemia amplified effects of the Blmh-/- genotype on brain protein expression; (3) proteins involved in brain-specific function (Pebp1), antioxidant defenses (Sod1, Prdx2, DJ-1), energy metabolism (Atp5d, Ak1, Pgam-B), and iron metabolism (Fth) showed differential expression in Blmh-null brains only in hyperhomocysteinemic animals; (4) most proteins regulated by the Blmh-/- genotype were also regulated by high-Met diet, albeit in the opposite direction; and (5) the differentially expressed proteins play important roles in neural development, learning, plasticity, and aging and are linked to neurodegenerative diseases, including AD. Taken together, our findings suggest that Blmh interacts with diverse cellular processes from energy metabolism and anti-oxidative defenses to cell cycle, cytoskeleton dynamics, and synaptic plasticity essential for normal brain homeostasis and that modulation of these interactions by hyperhomocysteinemia underlies the involvement of Hcy in AD.

  10. Identification of proteins involved in Hg-Se antagonism in water hyacinth (Eichhornia crassipes).

    PubMed

    Pacheco, Pablo; Hanley, Traci; Figueroa, Julio A Landero

    2014-03-01

    Different studies have established the presence of a proteinaceus complex involved in Hg-Se agonism/antagonism in plants. In order to identify proteins involved in this mechanism, water hyacinth plants were divided into groups and supplemented with Hg, Se and a Hg-Se mixture. Proteins involved were identified through a screening separation by SEC-ICPMS followed by SAX-ICPMS and then peptide mapping of selected fractions by nanoLC-ESI-ITMS(2). Determination of total metal concentration showed that Se inhibits Hg translocation from roots to aerial compartments of the plant and that Se and Hg are antagonists to each other in terms of plant toxicity. In roots, stems and leaves Se was distributed mainly in two molecular mass fractions <670 kDa and ∼40 kDa, however, the proportion between these two fractions was inverted when Hg was co-administered. Hg throughout the plant was distributed in high and medium molecular mass compounds. Hg associated with molecules, ranging from <1.5 kDa to 15 kDa, was found in the root extract of Hg(ii) supplemented plants, but was absent in the root extract of Se(iv) and Hg(ii) supplemented plants. SAX showed that Hg and Se were mostly not associated with the same entity, since the complete overlapping of Hg and Se signals in all the peaks of SEC chromatograms was not observed. Changes in Se and Hg levels in water hyacinth were more evident in leaves in contrast to other compartments. Several proteins, possibly associated with either Se or Hg, were identified in roots, stems and leaves. Most of the identified proteins were associated with Hg and located in leaves, and these are associated specifically with chloroplast and mitochondria proteins, related to essential mechanisms in plants such as photosynthesis, carbon fixation and the electron transport chain.

  11. The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana

    PubMed Central

    Raczynska, Katarzyna Dorota; Stepien, Agata; Kierzkowski, Daniel; Kalak, Malgorzata; Bajczyk, Mateusz; McNicol, Jim; Simpson, Craig G.; Szweykowska-Kulinska, Zofia; Brown, John W. S.; Jarmolowski, Artur

    2014-01-01

    How alternative splicing (AS) is regulated in plants has not yet been elucidated. Previously, we have shown that the nuclear cap-binding protein complex (AtCBC) is involved in AS in Arabidopsis thaliana. Here we show that both subunits of AtCBC (AtCBP20 and AtCBP80) interact with SERRATE (AtSE), a protein involved in the microRNA biogenesis pathway. Moreover, using a high-resolution reverse transcriptase-polymerase chain reaction AS system we have found that AtSE influences AS in a similar way to the cap-binding complex (CBC), preferentially affecting selection of 5′ splice site of first introns. The AtSE protein acts in cooperation with AtCBC: many changes observed in the mutant lacking the correct SERRATE activity were common to those observed in the cbp mutants. Interestingly, significant changes in AS of some genes were also observed in other mutants of plant microRNA biogenesis pathway, hyl1-2 and dcl1-7, but a majority of them did not correspond to the changes observed in the se-1 mutant. Thus, the role of SERRATE in AS regulation is distinct from that of HYL1 and DCL1, and is similar to the regulation of AS in which CBC is involved. PMID:24137006

  12. Two Neuronal G Proteins Are Involved in Chemosensation of the Caenorhabditis Elegans Dauer-Inducing Pheromone

    PubMed Central

    Zwaal, R. R.; Mendel, J. E.; Sternberg, P. W.; Plasterk, RHA.

    1997-01-01

    Caenorhabditis elegans uses chemosensation to determine its course of development. Young larvae can arrest as dauer larvae in response to increasing population density, which they measure by a nematode-excreted pheromone, and decreasing food supply. Dauer larvae can resume development in response to a decrease in pheromone and increase in food concentration. We show here that two novel G protein alpha subunits (GPA-2 and GPA-3) show promoter activity in subsets of chemosensory neurons and are involved in the decision to form dauer larvae primarily through the response to dauer pheromone. Dominant activating mutations in these G proteins result in constitutive, pheromone-independent dauer formation, whereas inactivation results in reduced sensitivity to pheromone, and, under certain conditions, an alteration in the response to food. Interactions between gpa-2, gpa-3 and other genes controlling dauer formation suggest that these G proteins may act in parallel to regulate the neuronal decision making that precedes dauer formation. PMID:9055081

  13. The ESCRT-II proteins are involved in shaping the sarcoplasmic reticulum in C. elegans.

    PubMed

    Lefebvre, Christophe; Largeau, Céline; Michelet, Xavier; Fourrage, Cécile; Maniere, Xavier; Matic, Ivan; Legouis, Renaud; Culetto, Emmanuel

    2016-04-01

    The sarcoplasmic reticulum is a network of tubules and cisternae localized in close association with the contractile apparatus, and regulates Ca(2+)dynamics within striated muscle cell. The sarcoplasmic reticulum maintains its shape and organization despite repeated muscle cell contractions, through mechanisms which are still under investigation. The ESCRT complexes are essential to organize membrane subdomains and modify membrane topology in multiple cellular processes. Here, we report for the first time that ESCRT-II proteins play a role in the maintenance of sarcoplasmic reticulum integrity inC. elegans ESCRT-II proteins colocalize with the sarcoplasmic reticulum marker ryanodine receptor UNC-68. The localization at the sarcoplasmic reticulum of ESCRT-II and UNC-68 are mutually dependent. Furthermore, the characterization of ESCRT-II mutants revealed a fragmentation of the sarcoplasmic reticulum network, associated with an alteration of Ca(2+)dynamics. Our data provide evidence that ESCRT-II proteins are involved in sarcoplasmic reticulum shaping.

  14. Involvement of dietary bioactive proteins and peptides in autism spectrum disorders.

    PubMed

    Siniscalco, Dario; Antonucci, Nicola

    2013-12-01

    Autism and autism spectrum disorders (ASDs) are heterogeneous, severe neurodevelopmental pathologies. These enigmatic conditions have their origins in the interaction of multiple genes and environmental factors. Dysfunctions in social interactions and communication skills, restricted interests, repetitive and stereotypic verbal and non-verbal behaviours are the main core symptoms. Several biochemical processes are associated with ASDs: oxidative stress; endoplasmic reticulum stress; decreased methylation capacity; limited production of glutathione; mitochondrial dysfunction; intestinal impaired permeability and dysbiosis; increased toxic metal burden; immune dysregulation. Current available treatments for ASDs can be divided into behavioural, nutritional and medical approaches, although no defined standard approach exists. Dietary bioactive proteins and peptides show potential for application as health-promoting agents. Nowadays, increasing studies highlight a key role of bioactive proteins and peptides in ASDs. This review will focus on the state-of-the-art regarding the involvement of dietary bioactive proteins and peptides in ASDs. Identification of novel therapeutic targets for ASD management will be also discussed.

  15. Involvement of regucalcin as a suppressor protein in human carcinogenesis: insight into the gene therapy.

    PubMed

    Yamaguchi, Masayoshi

    2015-08-01

    Regucalcin, which its gene is located on the X chromosome, plays a multifunctional role as a suppressor protein in cell signal transduction in various types of cells and tissues. The suppression of regucalcin gene expression has been shown to involve in carcinogenesis. Regucalcin gene expression was uniquely downregulated in carcinogenesis of rat liver in vivo, although the expression of other many genes was upregulated, indicating that endogenous regucalcin plays a suppressive role in the development of hepatocarcinogenesis. Overexpression of endogenous regucalcin was found to suppress proliferation of rat cloned hepatoma cells in vitro. Moreover, the regucalcin gene and its protein levels were demonstrated specifically to downregulate in human hepatocellular carcinoma by analysis with multiple gene expression profiles and proteomics. Regucalcin gene expression was also found to suppress in human tumor tissues including kidney, lung, brain, breast and prostate, suggesting that repressed regucalcin gene expression leads to the development of carcinogenesis in various tissues. Regucalcin may play a role as a suppressor protein in carcinogenesis. Overexpression of endogenous regucalcin is suggested to reveal preventive and therapeutic effects on carcinogenesis. Delivery of the regucalcin gene may be a novel useful tool in the gene therapy of carcinogenesis. This review will discuss regarding to an involvement of regucalcin as a suppressor protein in human carcinogenesis in insight into the gene therapy.

  16. NAP-1, Nucleosome assembly protein 1, a histone chaperone involved in Drosophila telomeres.

    PubMed

    López-Panadès, Elisenda; Casacuberta, Elena

    2016-03-01

    Telomere elongation is a function that all eukaryote cells must accomplish in order to guarantee, first, the stability of the end of the chromosomes and second, to protect the genetic information from the inevitable terminal erosion. The targeted transposition of the telomere transposons HeT-A, TART and TAHRE perform this function in Drosophila, while the telomerase mechanism elongates the telomeres in most eukaryotes. In order to integrate telomere maintenance together with cell cycle and metabolism, different components of the cell interact, regulate, and control the proteins involved in telomere elongation. Different partners of the telomerase mechanism have already been described, but in contrast, very few proteins have been related with assisting the telomere transposons of Drosophila. Here, we describe for the first time, the implication of NAP-1 (Nucleosome assembly protein 1), a histone chaperone that has been involved in nuclear transport, transcription regulation, and chromatin remodeling, in telomere biology. We find that Nap-1 and HeT-A Gag, one of the major components of the Drosophila telomeres, are part of the same protein complex. We also demonstrate that their close interaction is necessary to guarantee telomere stability in dividing cells. We further show that NAP-1 regulates the transcription of the HeT-A retrotransposon, pointing to a positive regulatory role of NAP-1 in telomere expression. All these results facilitate the understanding of the transposon telomere maintenance mechanism, as well as the integration of telomere biology with the rest of the cell metabolism.

  17. CUP-1 Is a Novel Protein Involved in Dietary Cholesterol Uptake in Caenorhabditis elegans

    PubMed Central

    Valdes, Victor J.; Athie, Alejandro; Salinas, Laura S.; Navarro, Rosa E.; Vaca, Luis

    2012-01-01

    Sterols transport and distribution are essential processes in all multicellular organisms. Survival of the nematode Caenorhabditis elegans depends on dietary absorption of sterols present in the environment. However the general mechanisms associated to sterol uptake in nematodes are poorly understood. In the present work we provide evidence showing that a previously uncharacterized transmembrane protein, designated Cholesterol Uptake Protein-1 (CUP-1), is involved in dietary cholesterol uptake in C. elegans. Animals lacking CUP-1 showed hypersensitivity to cholesterol limitation and were unable to uptake cholesterol. A CUP-1-GFP fusion protein colocalized with cholesterol-rich vesicles, endosomes and lysosomes as well as the plasma membrane. Additionally, by FRET imaging, a direct interaction was found between the cholesterol analog DHE and the transmembrane “cholesterol recognition/interaction amino acid consensus” (CRAC) motif present in C. elegans CUP-1. In-silico analysis identified two mammalian homologues of CUP-1. Most interestingly, CRAC motifs are conserved in mammalian CUP-1 homologous. Our results suggest a role of CUP-1 in cholesterol uptake in C. elegans and open up the possibility for the existence of a new class of proteins involved in sterol absorption in mammals. PMID:22479487

  18. Enhanced detection of lipid transfer inhibitor protein activity by an assay involving only low density lipoprotein.

    PubMed

    Morton, R E; Greene, D J

    1994-11-01

    Lipid transfer inhibitor protein (LTIP) activity has been typically quantitated by its ability to suppress lipid transfer protein-mediated lipid movement between low density lipoprotein (LDL) and high density lipoprotein (HDL). In an attempt to establish an LTIP activity assay that is more sensitive, we have exploited the reported preference of the inhibitor protein to interact with LDL. A lipid transfer assay was established that involves LDL as both the donor and the acceptor; LDL in one of these two pools was biotinylated to facilitate its removal with immobilized avidin. Compared to the standard LDL to HDL assay, LTIP inhibited lipid transfer from radiolabeled LDL to biotin-LDL 7-fold more. In the absence of LTIP, lipid transfer activity was the same in both assays. An added benefit of this assay was the near linearity (up to 85%) of the inhibitory response, in contrast to the highly curvilinear response of LTIP in LDL to HDL transfer assays. The high sensitivity of the LDL to biotin-LDL transfer assay in measuring LTIP activity could not be duplicated by other transfer assays including assays containing only HDL (HDL to biotin-HDL), assays between liposomes and LDL, or assays between LDL and HDL where the concentration of lipoproteins was reduced 10-fold. Thus, LTIP activity is most effectively measured in homologous lipid transfer assays involving only LDL (and its biotin derivative). This increased sensitivity to LTIP suggests that the inhibitor binds more avidly to the LDL surface than does lipid transfer protein.

  19. Mild copper deficiency alters gene expression of proteins involved in iron metabolism.

    PubMed

    Auclair, Sylvain; Feillet-Coudray, Christine; Coudray, Charles; Schneider, Susanne; Muckenthaler, Martina U; Mazur, Andrzej

    2006-01-01

    Iron and copper homeostasis share common proteins and are therefore closely linked to each other. For example, copper-containing proteins like ceruloplasmin and hephaestin oxidize Fe(2+) during cellular export processes for transport in the circulation bound to transferrin. Indeed, copper deficiency provokes iron metabolism disorders leading to anemia and liver iron accumulation. The aim of the present work was to understand the cross-talk between copper status and iron metabolism. For this purpose we have established dietary copper deficiency in C57BL6 male mice during twelve weeks. Hematological parameters, copper and iron status were evaluated. cDNA microarray studies were performed to investigate gene expression profiles of proteins involved in iron metabolism in the liver, duodenum and spleen. Our results showed that copper deficiency induces microcytic and hypochromic anemia as well as liver iron overload. Gene expression profiles, however, indicate that hepatic and intestinal mRNA expression neither compensates for hepatic iron overload nor the anemia observed in this mouse model. Instead, major modifications of gene expression occurred in the spleen. We observed increased mRNA levels of the transferrin receptors 1 and 2 and of several proteins involved in the heme biosynthesis pathway (ferrochelatase, UroD, UroS,...). These results suggest that copper-deficient mice respond to the deficiency induced anemia by an adaptation leading to an increase in erythrocyte synthesis.

  20. Binding of the cSH3 domain of Grb2 adaptor to two distinct RXXK motifs within Gab1 docker employs differential mechanisms.

    PubMed

    McDonald, Caleb B; Seldeen, Kenneth L; Deegan, Brian J; Bhat, Vikas; Farooq, Amjad

    2011-01-01

    A ubiquitous component of cellular signaling machinery, Gab1 docker plays a pivotal role in routing extracellular information in the form of growth factors and cytokines to downstream targets such as transcription factors within the nucleus. Here, using isothermal titration calorimetry (ITC) in combination with macromolecular modeling (MM), we show that although Gab1 contains four distinct RXXK motifs, designated G1, G2, G3, and G4, only G1 and G2 motifs bind to the cSH3 domain of Grb2 adaptor and do so with distinct mechanisms. Thus, while the G1 motif strictly requires the PPRPPKP consensus sequence for high-affinity binding to the cSH3 domain, the G2 motif displays preference for the PXVXRXLKPXR consensus. Such sequential differences in the binding of G1 and G2 motifs arise from their ability to adopt distinct polyproline type II (PPII)- and 3(10) -helical conformations upon binding to the cSH3 domain, respectively. Collectively, our study provides detailed biophysical insights into a key protein-protein interaction involved in a diverse array of signaling cascades central to health and disease.

  1. Binding of the cSH3 Domain of Grb2 Adaptor to Two Distinct RXXK Motifs within Gab1 Docker Employs Differential Mechanisms

    PubMed Central

    McDonald, Caleb B.; Seldeen, Kenneth L.; Deegan, Brian J.; Bhat, Vikas; Farooq, Amjad

    2010-01-01

    A ubiquitous component of cellular signaling machinery, Gab1 docker plays a pivotal role in routing extracellular information in the form of growth factors and cytokines to downstream targets such as transcription factors within the nucleus. Here, using isothermal titration calorimetry (ITC) in combination with macromolecular modeling (MM), we show that although Gab1 contains four distinct RXXK motifs, designated G1, G2, G3 and G4, only G1 and G2 motifs bind to the cSH3 domain of Grb2 adaptor and do so with distinct mechanisms. Thus, while the G1 motif strictly requires the PPRPPKP consensus sequence for high-affinity binding to the cSH3 domain, the G2 motif displays preference for the PXVXRXLKPXR consensus. Such sequential differences in the binding of G1 and G2 motifs arise from their ability to adopt distinct polyproline type II (PPII)- and 310-helical conformations upon binding to the cSH3 domain, respectively. Collectively, our study provides detailed biophysical insights into a key protein-protein interaction involved in a diverse array of signaling cascades central to health and disease. PMID:21472810

  2. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex.

    PubMed

    Ortega, Davi R; Zhulin, Igor B

    2016-02-01

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex.

  3. Evolutionary genomics suggests that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex

    DOE PAGES

    Ortega, Davi R.; Zhulin, Igor B.; Punta, Marco

    2016-02-04

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linkingmore » the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Altogether, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex.« less

  4. Evolutionary genomics suggests that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex

    SciTech Connect

    Ortega, Davi R.; Zhulin, Igor B.; Punta, Marco

    2016-02-04

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Altogether, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex.

  5. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex

    PubMed Central

    Ortega, Davi R.; Zhulin, Igor B.

    2016-01-01

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a “phosphate sink” possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex. PMID:26844549

  6. Protein phosphatase and kinase activities possibly involved in exocytosis regulation in Paramecium tetraurelia.

    PubMed

    Kissmehl, R; Treptau, T; Hofer, H W; Plattner, H

    1996-07-01

    In Paramecium tetraurelia cells synchronous exocytosis induced by aminoethyldextran (AED) is accompanied by an equally rapid dephosphorylation of a 63 kDa phosphoprotein (PP63) within 80 ms. In vivo, rephosphorylation occurs within a few seconds after AED triggering. In homogenates (P)P63 can be solubilized in all three phosphorylation states (phosphorylated, dephosphorylated and rephosphorylated) and thus tested in vitro. By using chelators of different divalent cations, de- and rephosphorylation of PP63 and P63 respectively can be achieved by an endogenous protein phosphatase/kinase system. Dephosphorylation occurs in the presence of EDTA, whereas in the presence of EGTA this was concealed by phosphorylation by endogenous kinase(s), thus indicating that phosphorylation of P63 is calcium-independent. Results obtained with protein phosphatase inhibitors (okadaic acid, calyculin A) allowed us to exclude a protein serine/threonine phosphatase of type I (with selective sensitivity in Paramecium). Protein phosphatase 2C is also less likely to be a candidate because of its requirement for high Mg2+ concentrations. According to previous evidence a protein serine/threonine phosphatase of type 2B (calcineurin; CaN) is possibly involved. We have now found that bovine brain CaN dephosphorylates PP63 in vitro. Taking into account the specific requirements of this phosphatase in vitro, with p-nitrophenyl phosphate as a substrate, we have isolated a cytosolic phosphatase of similar characteristics by combined preparative gel electrophoresis and affinity-column chromatography. In Paramecium this phosphatase also dephosphorylates PP63 in vitro (after 32P labelling in vivo). Using various combinations of ion exchange, affinity and hydrophobic interaction chromatography we have also isolated three different protein kinases from the soluble fraction, i.e. a cAMP-dependent protein kinase (PKA), a cGMP-dependent protein kinase (PKG) and a casein kinase. Among the kinases tested, PKA

  7. Clathrin Terminal Domain-Ligand Interactions Regulate Sorting of Mannose 6-Phosphate Receptors Mediated by AP-1 and GGA Adaptors*

    PubMed Central

    Stahlschmidt, Wiebke; Robertson, Mark J.; Robinson, Phillip J.; McCluskey, Adam; Haucke, Volker

    2014-01-01

    Clathrin plays important roles in intracellular membrane traffic including endocytosis of plasma membrane proteins and receptors and protein sorting between the trans-Golgi network (TGN) and endosomes. Whether clathrin serves additional roles in receptor recycling, degradative sorting, or constitutive secretion has remained somewhat controversial. Here we have used acute pharmacological perturbation of clathrin terminal domain (TD) function to dissect the role of clathrin in intracellular membrane traffic. We report that internalization of major histocompatibility complex I (MHCI) is inhibited in cells depleted of clathrin or its major clathrin adaptor complex 2 (AP-2), a phenotype mimicked by application of Pitstop® inhibitors of clathrin TD function. Hence, MHCI endocytosis occurs via a clathrin/AP-2-dependent pathway. Acute perturbation of clathrin also impairs the dynamics of intracellular clathrin/adaptor complex 1 (AP-1)- or GGA (Golgi-localized, γ-ear-containing, Arf-binding protein)-coated structures at the TGN/endosomal interface, resulting in the peripheral dispersion of mannose 6-phosphate receptors. By contrast, secretory traffic of vesicular stomatitis virus G protein, recycling of internalized transferrin from endosomes, or degradation of EGF receptor proceeds unperturbed in cells with impaired clathrin TD function. These data indicate that clathrin is required for the function of AP-1- and GGA-coated carriers at the TGN but may be dispensable for outward traffic en route to the plasma membrane. PMID:24407285

  8. Clathrin terminal domain-ligand interactions regulate sorting of mannose 6-phosphate receptors mediated by AP-1 and GGA adaptors.

    PubMed

    Stahlschmidt, Wiebke; Robertson, Mark J; Robinson, Phillip J; McCluskey, Adam; Haucke, Volker

    2014-02-21

    Clathrin plays important roles in intracellular membrane traffic including endocytosis of plasma membrane proteins and receptors and protein sorting between the trans-Golgi network (TGN) and endosomes. Whether clathrin serves additional roles in receptor recycling, degradative sorting, or constitutive secretion has remained somewhat controversial. Here we have used acute pharmacological perturbation of clathrin terminal domain (TD) function to dissect the role of clathrin in intracellular membrane traffic. We report that internalization of major histocompatibility complex I (MHCI) is inhibited in cells depleted of clathrin or its major clathrin adaptor complex 2 (AP-2), a phenotype mimicked by application of Pitstop® inhibitors of clathrin TD function. Hence, MHCI endocytosis occurs via a clathrin/AP-2-dependent pathway. Acute perturbation of clathrin also impairs the dynamics of intracellular clathrin/adaptor complex 1 (AP-1)- or GGA (Golgi-localized, γ-ear-containing, Arf-binding protein)-coated structures at the TGN/endosomal interface, resulting in the peripheral dispersion of mannose 6-phosphate receptors. By contrast, secretory traffic of vesicular stomatitis virus G protein, recycling of internalized transferrin from endosomes, or degradation of EGF receptor proceeds unperturbed in cells with impaired clathrin TD function. These data indicate that clathrin is required for the function of AP-1- and GGA-coated carriers at the TGN but may be dispensable for outward traffic en route to the plasma membrane.

  9. Cutting edge: the "death" adaptor CRADD/RAIDD targets BCL10 and suppresses agonist-induced cytokine expression in T lymphocytes.

    PubMed

    Lin, Qing; Liu, Yan; Moore, Daniel J; Elizer, Sydney K; Veach, Ruth A; Hawiger, Jacek; Ruley, H Earl

    2012-03-15

    The expression of proinflammatory cytokines and chemokines in response to TCR agonists is regulated by the caspase-recruitment domain membrane-associated guanylate kinase 1 (CARMA1) signalosome through the coordinated assembly of complexes containing the BCL10 adaptor protein. We describe a novel mechanism to negatively regulate the CARMA1 signalosome by the "death" adaptor protein caspase and receptor interacting protein adaptor with death domain (CRADD)/receptor interacting protein-associated ICH-1/CED-3 homologous protein with a death domain. We show that CRADD interacts with BCL10 through its caspase recruitment domain and suppresses interactions between BCL10 and CARMA1. TCR agonist-induced interaction between CRADD and BCL10 coincides with reduction of its complex formation with CARMA1 in wild-type, as compared with Cradd-deficient, primary cells. Finally, Cradd-deficient spleen cells, CD4(+) T cells, and mice respond to T cell agonists with strikingly higher production of proinflammatory mediators, including IFN-γ, IL-2, TNF-α, and IL-17. These results define a novel role for CRADD as a negative regulator of the CARMA1 signalosome and suppressor of Th1- and Th17-mediated inflammatory responses.

  10. The adaptor molecule CARD9 is essential for tuberculosis control.

    PubMed

    Dorhoi, Anca; Desel, Christiane; Yeremeev, Vladimir; Pradl, Lydia; Brinkmann, Volker; Mollenkopf, Hans-Joachim; Hanke, Karin; Gross, Olaf; Ruland, Jürgen; Kaufmann, Stefan H E

    2010-04-12

    The cross talk between host and pathogen starts with recognition of bacterial signatures through pattern recognition receptors (PRRs), which mobilize downstream signaling cascades. We investigated the role of the cytosolic adaptor caspase recruitment domain family, member 9 (CARD9) in tuberculosis. This adaptor was critical for full activation of innate immunity by converging signals downstream of multiple PRRs. Card9(-/-) mice succumbed early after aerosol infection, with higher mycobacterial burden, pyogranulomatous pneumonia, accelerated granulocyte recruitment, and higher abundance of proinflammatory cytokines and granulocyte colony-stimulating factor (G-CSF) in serum and lung. Neutralization of G-CSF and neutrophil depletion significantly prolonged survival, indicating that an exacerbated systemic inflammatory disease triggered lethality of Card9(-/-) mice. CARD9 deficiency had no apparent effect on T cell responses, but a marked impact on the hematopoietic compartment. Card9(-/-) granulocytes failed to produce IL-10 after Mycobacterium tuberculosis infection, suggesting that an absent antiinflammatory feedback loop accounted for granulocyte-dominated pathology, uncontrolled bacterial replication, and, ultimately, death of infected Card9(-/-) mice. Our data provide evidence that deregulated innate responses trigger excessive lung inflammation and demonstrate a pivotal role of CARD9 signaling in autonomous innate host defense against tuberculosis.

  11. Analysis of Arf1 GTPase-dependent membrane binding and remodeling using the exomer secretory vesicle cargo adaptor

    PubMed Central

    Paczkowski, Jon E.; Fromme, J. Christopher

    2016-01-01

    Summary Protein-protein and protein-membrane interactions play a critical role in shaping biological membranes through direct physical contact with the membrane surface. This is particularly evident in many steps of membrane trafficking, in which proteins deform the membrane and induce fission to form transport carriers. The small GTPase Arf1 and related proteins have the ability to remodel membranes by insertion of an amphipathic helix into the membrane. Arf1 and the exomer cargo adaptor coordinate cargo sorting into subset of secretory vesicle carriers in the model organism Saccharomyces cerevisiae. Here, we detail the assays we used to explore the cooperative action of Arf1 and exomer to bind and remodel membranes. We expect these methods are broadly applicable to other small GTPase/effector systems where investigation of membrane binding and remodeling is of interest. PMID:27632000

  12. A Novel RNA-Binding Protein Involves ABA Signaling by Post-transcriptionally Repressing ABI2

    PubMed Central

    Xu, Jianwen; Chen, Yihan; Qian, Luofeng; Mu, Rong; Yuan, Xi; Fang, Huimin; Huang, Xi; Xu, Enshun; Zhang, Hongsheng; Huang, Ji

    2017-01-01

    The Stress Associated RNA-binding protein 1 (SRP1) repressed by ABA, salt and cold encodes a C2C2-type zinc finger protein in Arabidopsis. The knock-out mutation in srp1 reduced the sensitivity of seed to ABA and salt stress during germination and post-germinative growth stages. In contrast, SRP1-overexpressing seedlings were more sensitive to ABA and salt compared to wild type plants. In the presence of ABA, the transcript levels of ABA signaling and germination-related genes including ABI3. ABI5. EM1 and EM6 were less induced in srp1 compared to WT. Interestingly, expression of ABI2 encoding a protein phosphatase 2C protein were significantly up-regulated in srp1 mutants. By in vitro analysis, SRP1 was identified as a novel RNA-binding protein directly binding to 3′UTR of ABI2 mRNA. Moreover, transient expression assay proved the function of SRP1 in reducing the activity of luciferase whose coding sequence was fused with the ABI2 3’UTR. Together, it is suggested that SRP1 is involved in the ABA signaling by post-transcriptionally repressing ABI2 expression in Arabidopsis. PMID:28174577

  13. New proteins involved in sulfur trafficking in the cytoplasm of Allochromatium vinosum.

    PubMed

    Stockdreher, Yvonne; Sturm, Marga; Josten, Michaele; Sahl, Hans-Georg; Dobler, Nadine; Zigann, Renate; Dahl, Christiane

    2014-05-02

    The formation of periplasmic sulfur globules is an intermediate step during the oxidation of reduced sulfur compounds in various sulfur-oxidizing microorganisms. The mechanism of how this sulfur is activated and crosses the cytoplasmic membrane for further oxidation to sulfite by the dissimilatory reductase DsrAB is incompletely understood, but it has been well documented that the pathway involves sulfur trafficking mediated by sulfur-carrying proteins. So far sulfur transfer from DsrEFH to DsrC has been established. Persulfurated DsrC very probably serves as a direct substrate for DsrAB. Here, we introduce further important players in oxidative sulfur metabolism; the proteins Rhd_2599, TusA, and DsrE2 are strictly conserved in the Chromatiaceae, Chlorobiaceae, and Acidithiobacillaceae families of sulfur-oxidizing bacteria and are linked to genes encoding complexes involved in sulfur oxidation (Dsr or Hdr) in the latter two. Here we show via relative quantitative real-time PCR and microarray analysis an increase of mRNA levels under sulfur-oxidizing conditions for rhd_2599, tusA, and dsrE2 in Allochromatium vinosum. Transcriptomic patterns for the three genes match those of major genes for the sulfur-oxidizing machinery rather than those involved in biosynthesis of sulfur-containing biomolecules. TusA appears to be one of the major proteins in A. vinosum. A rhd_2599-tusA-dsrE2-deficient mutant strain, although not viable in liquid culture, was clearly sulfur oxidation negative upon growth on solid media containing sulfide. Rhd_2599, TusA, and DsrE2 bind sulfur atoms via conserved cysteine residues, and experimental evidence is provided for the transfer of sulfur between these proteins as well as to DsrEFH and DsrC.

  14. A Big-Five Personality Profile of the Adaptor and Innovator.

    ERIC Educational Resources Information Center

    Kwang, Ng Aik; Rodrigues, Daphne

    2002-01-01

    A study explored the relationship between two creative types (adaptor and innovator) and the Big Five personality traits (extraversion, agreeableness, conscientiousness, neuroticism, and openness to experience), in 164 teachers in Singapore. Adaptors were significantly more conscientious than innovators, while innovators were significantly more…

  15. 21 CFR 870.4290 - Cardiopulmonary bypass adaptor, stopcock, manifold, or fitting.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., or fitting. 870.4290 Section 870.4290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 870.4290 Cardiopulmonary bypass adaptor, stopcock, manifold, or fitting. (a) Identification. A cardiopulmonary bypass adaptor, stopcock, manifold, or fitting is a device used in cardiovascular...

  16. Homeodomain Protein Scr Regulates the Transcription of Genes Involved in Juvenile Hormone Biosynthesis in the Silkworm.

    PubMed

    Meng, Meng; Liu, Chun; Peng, Jian; Qian, Wenliang; Qian, Heying; Tian, Ling; Li, Jiarui; Dai, Dandan; Xu, Anying; Li, Sheng; Xia, Qingyou; Cheng, Daojun

    2015-11-02

    The silkworm Dominant trimolting (Moltinism, M³) mutant undergoes three larval molts and exhibits precocious metamorphosis. In this study, we found that compared with the wild-type (WT) that undergoes four larval molts, both the juvenile hormone (JH) concentration and the expression of the JH-responsive gene Krüppel homolog 1 (Kr-h1) began to be greater in the second instar of the M³ mutant. A positional cloning analysis revealed that only the homeodomain transcription factor gene Sex combs reduced (Scr) is located in the genomic region that is tightly linked to the M³ locus. The expression level of the Scr gene in the brain-corpora cardiaca-corpora allata (Br-CC-CA) complex, which controls the synthesis of JH, was very low in the final larval instar of both the M³ and WT larvae, and exhibited a positive correlation with JH titer changes. Importantly, luciferase reporter analysis and electrophoretic mobility shift assay (EMSA) demonstrated that the Scr protein could promote the transcription of genes involved in JH biosynthesis by directly binding to the cis-regulatory elements (CREs) of homeodomain protein on their promoters. These results conclude that the homeodomain protein Scr is transcriptionally involved in the regulation of JH biosynthesis in the silkworm.

  17. Interferon-inducible GTPase: a novel viral response protein involved in rabies virus infection.

    PubMed

    Li, Ling; Wang, Hualei; Jin, Hongli; Cao, Zengguo; Feng, Na; Zhao, Yongkun; Zheng, Xuexing; Wang, Jianzhong; Li, Qian; Zhao, Guoxing; Yan, Feihu; Wang, Lina; Wang, Tiecheng; Gao, Yuwei; Tu, Changchun; Yang, Songtao; Xia, Xianzhu

    2016-05-01

    Rabies virus infection is a major public health concern because of its wide host-interference spectrum and nearly 100 % lethality. However, the interactions between host and virus remain unclear. To decipher the authentic response in the central nervous system after rabies virus infection, a dynamic analysis of brain proteome alteration was performed. In this study, 104 significantly differentially expressed proteins were identified, and intermediate filament, interferon-inducible GTPases, and leucine-rich repeat-containing protein 16C were the three outstanding groups among these proteins. Interferon-inducible GTPases were prominent because of their strong upregulation. Moreover, quantitative real-time PCR showed distinct upregulation of interferon-inducible GTPases at the level of transcription. Several studies have shown that interferon-inducible GTPases are involved in many biological processes, such as viral infection, endoplasmic reticulum stress response, and autophagy. These findings indicate that interferon-inducible GTPases are likely to be a potential target involved in rabies pathogenesis or the antiviral process.

  18. Homeodomain Protein Scr Regulates the Transcription of Genes Involved in Juvenile Hormone Biosynthesis in the Silkworm

    PubMed Central

    Meng, Meng; Liu, Chun; Peng, Jian; Qian, Wenliang; Qian, Heying; Tian, Ling; Li, Jiarui; Dai, Dandan; Xu, Anying; Li, Sheng; Xia, Qingyou; Cheng, Daojun

    2015-01-01

    The silkworm Dominant trimolting (Moltinism, M3) mutant undergoes three larval molts and exhibits precocious metamorphosis. In this study, we found that compared with the wild-type (WT) that undergoes four larval molts, both the juvenile hormone (JH) concentration and the expression of the JH-responsive gene Krüppel homolog 1 (Kr-h1) began to be greater in the second instar of the M3 mutant. A positional cloning analysis revealed that only the homeodomain transcription factor gene Sex combs reduced (Scr) is located in the genomic region that is tightly linked to the M3 locus. The expression level of the Scr gene in the brain-corpora cardiaca-corpora allata (Br-CC-CA) complex, which controls the synthesis of JH, was very low in the final larval instar of both the M3 and WT larvae, and exhibited a positive correlation with JH titer changes. Importantly, luciferase reporter analysis and electrophoretic mobility shift assay (EMSA) demonstrated that the Scr protein could promote the transcription of genes involved in JH biosynthesis by directly binding to the cis-regulatory elements (CREs) of homeodomain protein on their promoters. These results conclude that the homeodomain protein Scr is transcriptionally involved in the regulation of JH biosynthesis in the silkworm. PMID:26540044

  19. Identification of ICIS-1, a new protein involved in cilia stability.

    PubMed

    Ponsard, Cecile; Skowron-Zwarg, Marie; Seltzer, Virginie; Perret, Eric; Gallinger, Julia; Fisch, Cathy; Dupuis-Williams, Pascale; Caruso, Nathalie; Middendorp, Sandrine; Tournier, Frederic

    2007-01-01

    Cilia are specialized organelles that exert critical functions in numerous organisms, including that of cell motility, fluid transport and protozoan locomotion. Ciliary architecture and function strictly depend on basal body formation, migration and axoneme elongation. Numerous ultrastructural studies have been undertaken in different species to elucidate the process of ciliogenesis. Recent analyses have led to identification of genes specifically expressed in ciliated organisms, but most proteins involved in ciliogenesis remain uncharacterized. Using human nasal epithelial cells capable of ciliary differentiation in vitro, differential display was carried out to identify new proteins associated with ciliogenesis. We isolated a new gene, ICIS-1 (Involved in CIlia Stability-1), upregulated during mucociliary differentiation. This gene is localized within the TGF-beta1 promoter and is ubiquitously expressed in human tissues. Functional analyses of gene expression inhibition by RNA interference in Paramecium tetraurelia indicated that the ICIS-1 homologue interfered with cilia stability or formation. These findings demonstrate that ICIS-1 is a new protein associated with ciliated cells and potentially related to cilia stability.

  20. Role of toll-like receptors and their adaptors in adjuvant immunotherapy for cancer.

    PubMed

    Seya, Tsukasa; Akazawa, Takashi; Uehori, Junji; Matsumoto, Misako; Azuma, Ichiro; Toyoshima, Kumao

    2003-01-01

    The potentiation of immune responses to tumor-associated antigen (Ag) is a pivotal issue in immunotherapy for cancer and thus requires the use of adjuvants, which are involved in efficient antibody (Ab) production and killer cell induction. The efficacy for tumor regression of a number of adjuvants that have been applied to immunotherapy in humans and tumor-bearing animal models has been tested without understanding of the function of adjuvants. Recent findings on the function of Toll-like receptors (TLRs) and their adaptors facilitated the elucidation of the molecular basis of adjuvant activity. TLR signaling was found to induce interferons (IFNs), chemokines and proinflammatory cytokines and mature dendritic cells (DCs) for enhanced efficiency in antigen presentation. The mediators then play a crucial role in the organization of acquired immunity and, together with matured DCs, activate cytotoxic T cells (CTL) and NK cells. These TLR outputs vary among adjuvants, which may depend on adjuvant-specific selection of appropriate sets of TLRs and their adaptors. Here we review how a variety of host immune responses are induced by an individual adjuvant to confer an adjuvant-specific anti-tumor immunity. We elaborate specifically on two adjuvants, BCG-cell wall skeleton and double-stranded RNA (dsRNA). The former activates TLR2/4 on DCs and induces tumor-specific CTL allowing general application to patients with surgically dissected cancer and improving prognosis, while the latter activates TLR3 on DCs to release type 1 IFN that induces tumor cell apoptosis and NK-mediated tumor cytotoxicity.

  1. Tailed pooled suppression subtractive hybridization (PSSH) adaptors do not alter efficiency.

    PubMed

    Gerrish, Robert S; Gill, Steven R

    2010-11-01

    Suppression Subtractive Hybridization (SSH) and its derivative, Pooled Suppression Subtractive hybridization (PSSH), are powerful tools used to study variances larger than ~100 bp in prokaryotic genome structure. The initial steps involve ligating an oligonucleotide of known sequence (the "adaptor") to a fragmented genome to facilitate amplification, subtraction and downstream sequencing. SSH results in the creation of a library of unique DNA fragments which have been traditionally analyzed via Sanger sequencing. Numerous next generation sequencing technologies have entered the market yet SSH is incompatible with these platforms. This is due to the high level of sequence conservation of the oligonucleotide used for SSH. This rigid adherence is partly because it has yet to be determined if alteration of this oligonucleotide will have a deleterious impact on subtraction efficiency. The subtraction occurs when non-unique fragments are inhibited by a secondary self-pairing structure which requires exact nucleotide sequence. We determine if appending custom sequence to the 5' terminal ends of these oligonucleotides during the nested PCR stages of PSSH will reduce subtraction efficiency. We compare a pool of ten S. aureus clinical isolates with a standard PSSH and custom tailed-PSSH. We detected no statistically significant difference between their subtraction efficiencies. Our observations suggest that the adaptor's terminal ends may be labeled during the nested PCR step. This produces libraries labeled with custom sequence. This does not lead to loss of subtraction efficiency and would be invaluable for groups wishing to combine SSH or PSSH with their own downstream applications, such as a high throughput sequencing platform.

  2. Involvement of lipid peroxidation-derived aldehyde-protein adducts in autoimmunity mediated by trichloroethene.

    PubMed

    Wang, Gangduo; Ansari, G A S; Khan, M Firoze

    2007-12-01

    Lipid peroxidation, a major contributor to cellular damage, is also implicated in the pathogenesis of autoimmune diseases (AD). The focus of this study was to elucidate the role of lipid peroxidation-derived aldehydes in autoimmunity induced and/or exacerbated by chemical exposure. Previous studies showed that trichloroethene (TCE) is capable of inducing/accelerating autoimmunity. To test whether TCE-induced lipid peroxidation might be involved in the induction/exacerbation of autoimmune responses, groups of autoimmune-prone female MRL +/+ mice were treated with TCE (10 mmol/kg, i.p., every 4th day) for 6 or 12 wk. Significant increases of the formation of malondialdehyde (MDA)- and 4-hydroxynonenal (HNE)-protein adducts were found in the livers of TCE-treated mice at both 6 and 12 wk, but the response was greater at 12 wk. Further characterization of these adducts in liver microsomes showed increased formation of MDA-protein adducts with molecular masses of 86, 65, 56, 44, and 32 kD, and of HNE-protein adducts with molecular masses of 87, 79, 46, and 17 kD in TCE-treated mice. In addition, significant induction of anti-MDA- and anti-HNE-protein adduct-specific antibodies was observed in the sera of TCE-treated mice, and showed a pattern similar to MDA- or HNE-protein adducts. The increases in anti-MDA- and anti-HNE-protein adduct antibodies were associated with significant elevation in serum anti-nuclear-, anti-ssDNA- and anti-dsDNA-antibodies at 6 wk and, to a greater extent, at 12 wk. These studies suggest that TCE-induced lipid peroxidation is associated with induction/exacerbation of autoimmune response in MRL+/+ mice, and thus may play an important role in disease pathogenesis. Further interventional studies are needed to establish a causal relationship between lipid peroxidation and TCE-induced autoimmune response.

  3. The Arabidopsis PLAT domain protein1 is critically involved in abiotic stress tolerance.

    PubMed

    Hyun, Tae Kyung; van der Graaff, Eric; Albacete, Alfonso; Eom, Seung Hee; Großkinsky, Dominik K; Böhm, Hannah; Janschek, Ursula; Rim, Yeonggil; Ali, Walid Wahid; Kim, Soo Young; Roitsch, Thomas

    2014-01-01

    Despite the completion of the Arabidopsis genome sequence, for only a relatively low percentage of the encoded proteins experimental evidence concerning their function is available. Plant proteins that harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and belong to the PLAT-plant-stress protein family are ubiquitously present in monocot and dicots. However, the function of PLAT-plant-stress proteins is still poorly understood. Therefore, we have assessed the function of the uncharacterised Arabidopsis PLAT-plant-stress family members through a combination of functional genetic and physiological approaches. PLAT1 overexpression conferred increased abiotic stress tolerance, including cold, drought and salt stress, while loss-of-function resulted in opposite effects on abiotic stress tolerance. Strikingly, PLAT1 promoted growth under non-stressed conditions. Abiotic stress treatments induced PLAT1 expression and caused expansion of its expression domain. The ABF/ABRE transcription factors, which are positive mediators of abscisic acid signalling, activate PLAT1 promoter activity in transactivation assays and directly bind to the ABRE elements located in this promoter in electrophoretic mobility shift assays. This suggests that PLAT1 represents a novel downstream target of the abscisic acid signalling pathway. Thus, we showed that PLAT1 critically functions as positive regulator of abiotic stress tolerance, but also is involved in regulating plant growth, and thereby assigned a function to this previously uncharacterised PLAT domain protein. The functional data obtained for PLAT1 support that PLAT-plant-stress proteins in general could be promising targets for improving abiotic stress tolerance without yield penalty.

  4. Evolution and diversity of periplasmic proteins involved in copper homeostasis in gamma proteobacteria

    PubMed Central

    2012-01-01

    Background Different systems contributing to copper homeostasis in bacteria have been described in recent years involving periplasmic and transport proteins that provide resistance via metal efflux to the extracellular media (CopA/Cue, Cus, Cut, and Pco). The participation of these proteins in the assembly of membrane, periplasmic and secreted cuproproteins has also been postulated. The integration and interrelation of these systems and their apparent redundancies are less clear since they have been studied in alternative systems. Based on the idea that cellular copper is not free but rather it is transferred via protein-protein interactions, we hypothesized that systems would coevolve and be constituted by set numbers of essential components. Results By the use of a phylogenomic approach we identified the distribution of 14 proteins previously characterized as members of homeostasis systems in the genomes of 268 gamma proteobacteria. Only 3% of the genomes presented the complete systems and 5% of them, all intracellular parasites, lacked the 14 genes. Surprisingly, copper homeostatic pathways did not behave as evolutionary units with particular species assembling different combinations of basic functions. The most frequent functions, and probably because of its distribution the most vital, were copper extrusion from the cytoplasm to the periplasm performed by CopA and copper export from the cytoplasm to the extracellular space performed by CusC, which along with the remaining 12 proteins, assemble in nine different functional repertoires. Conclusions These observations suggest complex evolutionary dynamics and still unexplored interactions to achieve copper homeostasis, challenging some of the molecular transport mechanism proposed for these systems. PMID:23122209

  5. Probing heterobivalent binding to the endocytic AP-2 adaptor complex by DNA-based spatial screening.

    PubMed

    Diezmann, F; von Kleist, L; Haucke, V; Seitz, O

    2015-08-07

    The double helical DNA scaffold offers a unique set of properties, which are particularly useful for studies of multivalency in biomolecular interactions: (i) multivalent ligand displays can be formed upon nucleic acid hybridization in a self-assembly process, which facilitates spatial screening (ii) valency and spatial arrangement of the ligand display can be precisely controlled and (iii) the flexibility of the ligand display can be adjusted by integrating nick sites and unpaired template regions. Herein we describe the use of DNA-based spatial screening for the characterization of the adaptor complex 2 (AP-2), a central interaction hub within the endocytic protein network in clathrin-mediated endocytosis. AP-2 is comprised of a core domain and two, so-called appendage domains, the α- and the β2-ear, which associate with cytoplasmatic proteins required for the formation or maturation of clathrin/AP-2 coated pits. Each appendage domain has two binding grooves which recognize distinct peptide motives with micromolar affinity. This provides opportunities for enhanced interactions with protein molecules that contain two (or more) different peptide motives. To determine whether a particular, spatial arrangement of binding motifs is required for high affinity binding we probed the distance-affinity relationships by means of DNA-programmed spatial screening with self-assembled peptide-DNA complexes. By using trimolecular and tetramolecular assemblies two different peptides were positioned in 2-22 nucleotide distance. The binding data obtained with both recombinant protein in well-defined buffer systems and native AP-2 in brain extract suggests that the two binding sites of the AP-2 α-appendage can cooperate to provide up to 40-fold enhancement of affinity compared to the monovalent interaction. The distance between the two recognized peptide motives was less important provided that the DNA duplex segments were connected by flexible, single strand segments. By

  6. A single common portal for clathrin-mediated endocytosis of distinct cargo governed by cargo-selective adaptors.

    PubMed

    Keyel, Peter A; Mishra, Sanjay K; Roth, Robyn; Heuser, John E; Watkins, Simon C; Traub, Linton M

    2006-10-01

    Sorting of transmembrane cargo into clathrin-coated vesicles requires endocytic adaptors, yet RNA interference (RNAi)-mediated gene silencing of the AP-2 adaptor complex only disrupts internalization of a subset of clathrin-dependent cargo. This suggests alternate clathrin-associated sorting proteins participate in cargo capture at the cell surface, and a provocative recent proposal is that discrete endocytic cargo are sorted into compositionally and functionally distinct clathrin coats. We show here that the FXNPXY-type internalization signal within cytosolic domain of the LDL receptor is recognized redundantly by two phosphotyrosine-binding domain proteins, Dab2 and ARH; diminishing both proteins by RNAi leads to conspicuous LDL receptor accumulation at the cell surface. AP-2-dependent uptake of transferrin ensues relatively normally in the absence of Dab2 and ARH, clearly revealing delegation of sorting operations at the bud site. AP-2, Dab2, ARH, transferrin, and LDL receptors are all present within the vast majority of clathrin structures at the surface, challenging the general existence of specialized clathrin coats for segregated internalization of constitutively internalized cargo. However, Dab2 expression is exceptionally low in hepatocytes, likely accounting for the pathological hypercholesterolemia that accompanies ARH loss.

  7. Proteins involved in flor yeast carbon metabolism under biofilm formation conditions.

    PubMed

    Moreno-García, Jaime; García-Martínez, Teresa; Moreno, Juan; Mauricio, Juan Carlos

    2015-04-01

    A lack of sugars during the production of biologically aged wines after fermentation of grape must causes flor yeasts to metabolize other carbon molecules formed during fermentation (ethanol and glycerol, mainly). In this work, a proteome analysis involving OFFGEL fractionation prior to LC/MS detection was used to elucidate the carbon metabolism of a flor yeast strain under biofilm formation conditions (BFC). The results were compared with those obtained under non-biofilm formation conditions (NBFC). Proteins associated to processes such as non-fermentable carbon uptake, the glyoxylate and TCA cycles, cellular respiration and inositol metabolism were detected at higher concentrations under BFC than under the reference conditions (NBFC). This study constitutes the first attempt at identifying the flor yeast proteins responsible for the peculiar sensory profile of biologically aged wines. A better metabolic knowledge of flor yeasts might facilitate the development of effective strategies for improved production of these special wines.

  8. Involvement of Protein Kinase C-δ in Vascular Permeability in Acute Lung Injury.

    PubMed

    Ahn, Jong J; Jung, Jong P; Park, Soon E; Lee, Minhyun; Kwon, Byungsuk; Cho, Hong R

    2015-08-01

    Pulmonary edema is a major cause of mortality due to acute lung injury (ALI). The involvement of protein kinase C-δ (PKC-δ) in ALI has been a controversial topic. Here we investigated PKC-δ function in ALI using PKC-δ knockout (KO) mice and PKC inhibitors. Our results indicated that although the ability to produce proinflammatory mediators in response to LPS injury in PKC-δ KO mice was similar to that of control mice, they showed enhanced recruitment of neutrophils to the lung and more severe pulmonary edema. PKC-δ inhibition promoted barrier dysfunction in an endothelial cell layer in vitro, and administration of a PKC-δ-specific inhibitor significantly increased steady state vascular permeability. A neutrophil transmigration assay indicated that the PKC-δ inhibition increased neutrophil transmigration through an endothelial monolayer. This suggests that PKC-δ inhibition induces structural changes in endothelial cells, allowing extravasation of proteins and neutrophils.

  9. The H-NS protein is involved in the biogenesis of flagella in Escherichia coli.

    PubMed Central

    Bertin, P; Terao, E; Lee, E H; Lejeune, P; Colson, C; Danchin, A; Collatz, E

    1994-01-01

    The function of the flagellum-chemotaxis regulon requires the expression of many genes and is positively regulated by the cyclic AMP-catabolite activator protein (cAMP-CAP) complex. In this paper, we show that motile behavior was affected in Escherichia coli hns mutants. The loss of motility resulted from a complete lack of flagella. A decrease in the level of transcription of the flhD and fliA genes, which are both required for the synthesis of flagella, was observed in the presence of an hns mutation. Furthermore, the Fla- phenotype was not reversed to the wild type in the presence of a cfs mutation which renders the flagellum synthesis independent of the cAMP-CAP complex. These results suggest that the H-NS protein acts as a positive regulator of genes involved in the biogenesis of flagella by a mechanism independent of the cAMP-CAP pathway. Images PMID:8071234

  10. The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division.

    PubMed

    Ambrose, J Christian; Shoji, Tsubasa; Kotzer, Amanda M; Pighin, Jamie A; Wasteneys, Geoffrey O

    2007-09-01

    Controlling microtubule dynamics and spatial organization is a fundamental requirement of eukaryotic cell function. Members of the ORBIT/MAST/CLASP family of microtubule-associated proteins associate with the plus ends of microtubules, where they promote the addition of tubulin subunits into attached kinetochore fibers during mitosis and stabilize microtubules in the vicinity of the plasma membrane during interphase. To date, nothing is known about their function in plants. Here, we show that the Arabidopsis thaliana CLASP protein is a microtubule-associated protein that is involved in both cell division and cell expansion. Green fluorescent protein-CLASP localizes along the full length of microtubules and shows enrichment at growing plus ends. Our analysis suggests that CLASP promotes microtubule stability. clasp-1 T-DNA insertion mutants are hypersensitive to microtubule-destabilizing drugs and exhibit more sparsely populated, yet well ordered, root cortical microtubule arrays. Overexpression of CLASP promotes microtubule bundles that are resistant to depolymerization with oryzalin. Furthermore, clasp-1 mutants have aberrant microtubule preprophase bands, mitotic spindles, and phragmoplasts, indicating a role for At CLASP in stabilizing mitotic arrays. clasp-1 plants are dwarf, have significantly reduced cell numbers in the root division zone, and have defects in directional cell expansion. We discuss possible mechanisms of CLASP function in higher plants.

  11. Tyrosine phosphorylation and protein degradation control the transcriptional activity of WRKY involved in benzylisoquinoline alkaloid biosynthesis

    PubMed Central

    Yamada, Yasuyuki; Sato, Fumihiko

    2016-01-01

    Benzylisoquinoline alkaloids (BIQ) are among the most structurally diverse and pharmaceutically valuable secondary metabolites. A plant-specific WRKY-type transcription factor, CjWRKY1, was isolated from Coptis japonica and identified as a transcriptional activator of BIQ biosynthesis. However, the expression of CjWRKY1 gene alone was not sufficient for the activation of genes encoding biosynthetic enzymes. Here, we report the importance of post-translational regulation of CjWRKY1 in BIQ biosynthesis. First, we detected the differential accumulation of CjWRKY1 protein in two cell lines with similar CjWRKY1 gene expression but different levels of accumulated alkaloids. Further investigation of the WRKY protein identified the phosphorylation of the WRKYGQK core domain at Y115. The CjWRKYY115E phosphorylation-mimic mutant showed loss of nuclear localization, DNA-binding activity, and transactivation activity compared to wild-type CjWRKY1. Rapid degradation of the CjWRKY1 protein was also confirmed following treatment with inhibitors of the 26S proteasome and protease inhibitors. The existence of two independent degradation pathways as well as protein phosphorylation suggests the fine-tuning of CjWRKY1 activities is involved in the regulation of biosynthesis of BIQs. PMID:27552928

  12. Vps41, a protein involved in lysosomal trafficking, interacts with caspase-8.

    PubMed

    Wang, Lu; Pan, Xiao; He, Liangqiang; Zhang, Rong; Chen, Wei; Zhang, Jing; Lu, Min; Hua, Zi-Chun

    2013-01-01

    Caspase-8 is a member of the cysteine-aspartic acid protease (caspase) family which plays a central role in apoptosis and development. We screened caspase-8 interacting proteins from mouse T-cell lymphoma and 7.5-day embryo cDNA libraries by yeast two-hybrid system and obtained eleven positive clones, including Vacuolar protein sorting 41 (Vps41), a protein involved in trafficking of proteins from the late Golgi to the vacuole. The interaction of Vps41 with caspase-8 was confirmed by co-immunoprecipitation (co-IP) and co-localization studies in HEK293T cells. Co-IP experiments also showed that Vps41 binds to the p18 subunit of caspase-8 through its WD40 region and RING-finger motif. Furthermore, we found that overexpression of Vps41 promotes Fas-induced apoptosis in A549 human lung adenocarcinoma cells. The cleavage of caspase-3, a caspase-8 downstream effector, was increased when cells were transfected with Vps41-overexpressing plasmid. Together, these results suggest a novel interaction of caspase-8 with Vps41 and provide a potential role of Vps41 beyond lysosomal trafficking.

  13. Water-soluble chlorophyll protein is involved in herbivore resistance activation during greening of Arabidopsis thaliana

    PubMed Central

    Boex-Fontvieille, Edouard; Rustgi, Sachin; von Wettstein, Diter; Reinbothe, Steffen; Reinbothe, Christiane

    2015-01-01

    Water-soluble chlorophyll proteins (WSCPs) constitute a small family of unusual chlorophyll (Chl)-binding proteins that possess a Kunitz-type protease inhibitor domain. In Arabidopsis thaliana, a WSCP has been identified, named AtWSCP, that forms complexes with Chl and the Chl precursor chlorophyllide (Chlide) in vitro. AtWSCP exhibits a quite unexpected expression pattern for a Chl binding protein and accumulated to high levels in the apical hook of etiolated plants. AtWSCP expression was negatively light-regulated. Transgenic expression of AtWSCP fused to green fluorescent protein (GFP) revealed that AtWSCP is localized to cell walls/apoplastic spaces. Biochemical assays identified AtWSCP as interacting with RD21 (RESPONSIVE TO DESICCATION 21), a granulin domain-containing cysteine protease implicated in stress responses and defense. Reconstitution experiments showed tight interactions between RD21 and WSCP that were relieved upon Chlide binding. Laboratory feeding experiments with two herbivorous isopod crustaceans, Porcellio scaber (woodlouse) and Armadillidium vulgare (pillbug), identified the apical hook as Achilles’ heel of etiolated plants and that this was protected by RD21 during greening. Because Chlide is formed in the apical hook during seedling emergence from the soil, our data suggest an unprecedented mechanism of herbivore resistance activation that is triggered by light and involves AtWSCP. PMID:26016527

  14. Analysis of nitrated proteins in Saccharomyces cerevisiae involved in mating signal transduction.

    PubMed

    Kang, Jeong Won; Lee, Na Young; Cho, Kyung-Cho; Lee, Min Young; Choi, Do-Young; Park, Sang-Hyun; Kim, Kwang Pyo

    2015-01-01

    Protein tyrosine nitration (PTN) is a PTM that regulates signal transduction and inflammatory responses, and is related to neurodegenerative and cardiovascular diseases. The cellular function of PTN remains unclear because the low stoichiometry of PTN limits the identification and quantification of nitrated peptides. Effective enrichment is an important aspect of PTN analysis. In this study, we analyzed the in vivo nitroproteome elicited by mating signal transduction in Saccharomyces cerevisiae using a novel chemical enrichment method followed by LC-MS/MS. Nitroproteome profiling successfully identified changes in the nitration states of 14 proteins during mating signal transduction in S. cerevisiae, making this the first reported in vivo nitroproteome in yeast. We investigated the biological functions of these nitroproteins and their relationships to mating signal transduction in S. cerevisiae using a protein-protein interaction network. Our results suggest that PTN and denitration may be involved in nonreactive nitrogen species-mediated signal transduction and can provide clues for understanding the functional roles of PTN in vivo.

  15. Identification of proteins involved in desiccation tolerance in the red seaweed Pyropia orbicularis (Rhodophyta, Bangiales).

    PubMed

    López-Cristoffanini, Camilo; Zapata, Javier; Gaillard, Fanny; Potin, Philippe; Correa, Juan A; Contreras-Porcia, Loretto

    2015-12-01

    Extreme reduction in cellular water content leads to desiccation, which, if persistent, affects the physiology of organisms, mainly through oxidative stress. Some organisms are highly tolerant to desiccation, including resurrection plants and certain intertidal seaweeds. One such species is Pyropia orbicularis, a rhodophycean that colonizes upper intertidal zones along the Chilean coast. Despite long, daily periods of air exposure due to tides, this alga is highly tolerant to desiccation. The present study examined the proteome of P. orbicularis by 2DE and LC-MS/MS analyses to determine the proteins associated with desiccation tolerance (DT). The results showed that, under natural conditions, there were significant changes in the protein profile during low tide as compared to naturally hydrated plants at high tide. These changes were mainly in newly appeared proteins spots such as chaperones, monodehydroascorbate reductase, and manganese superoxide dismutase, among others. Previously undescribed proteins under desiccation conditions included phycobiliproteins, glyoxalase I, and phosphomannomutase. These changes evidenced that several physiological responses involved in DT are activated during low tide, including decreased photosynthetic activity, increased antioxidant capacity, and the preservation of cell physiology by regulating water content, cell wall structure, and cell volume. Similar responses have been observed in resurrection plants and bryophytes exposed to desiccation. Therefore, the coordinated activation of different desiccation tolerance pathways in P. orbicularis could explain the successful biological performance of this seaweed in the upper intertidal rocky zones.

  16. Neuronal and microglial involvement in beta-amyloid protein deposition in Alzheimer's disease.

    PubMed Central

    Cras, P.; Kawai, M.; Siedlak, S.; Mulvihill, P.; Gambetti, P.; Lowery, D.; Gonzalez-DeWhitt, P.; Greenberg, B.; Perry, G.

    1990-01-01

    This study was undertaken to localize amyloid precursor protein (APP) and to determine how APP might be released and proteolyzed to yield the beta-amyloid protein deposits found in senile plaques in the brains of Alzheimer's disease patients. We found that antibodies to recombinantly expressed APP labeled many normal neurons and neurites. In addition, dystrophic neurites in different types of senile plaques and degenerating neurons in the temporal cortex and hippocampus of Alzheimer's disease patients were immunostained. We also detected small clusters of dystrophic APP immunoreactive neurites that were not associated with beta-amyloid protein deposits. Microglia was involved in different types of senile plaques and often were associated closely with APP immunoreactive neurites and neurons. The greatest concurrence of APP immunoreactivity and reactive microglia was seen in the subiculum and area CA1, regions with a high density of congophilic plaques and subject to intense Alzheimer's pathology. Our findings suggest that neuronally derived APP is the source for senile plaque beta-amyloid protein, while microglia may act as processing cells. Images Figure 1 Figure 2 PMID:2117395

  17. Development of neurodevelopmental disorders: a regulatory mechanism involving bromodomain-containing proteins.

    PubMed

    Li, Junlin; Zhao, Guifang; Gao, Xiaocai

    2013-02-20

    Neurodevelopmental disorders are classified as diseases that cause abnormal functions of the brain or central nervous system. Children with neurodevelopmental disorders show impaired language and speech abilities, learning and memory damage, and poor motor skills. However, we still know very little about the molecular etiology of these disorders. Recent evidence implicates the bromodomain-containing proteins (BCPs) in the initiation and development of neurodevelopmental disorders. BCPs have a particular domain, the bromodomain (Brd), which was originally identified as specifically binding acetyl-lysine residues at the N-terminus of histone proteins in vitro and in vivo. Other domains of BCPs are responsible for binding partner proteins to form regulatory complexes. Once these complexes are assembled, BCPs alter chromosomal states and regulate gene expression. Some BCP complexes bind nucleosomes, are involved in basal transcription regulation, and influence the transcription of many genes. However, most BCPs are involved in targeting. For example, some BCPs function as a recruitment platform or scaffold through their Brds-binding targeting sites. Others are recruited to form a complex to bind the targeting sites of their partners. The regulation mediated by these proteins is especially critical during normal and abnormal development. Mutant BCPs or dysfunctional BCP-containing complexes are implicated in the initiation and development of neurodevelopmental disorders. However, the pathogenic molecular mechanisms are not fully understood. In this review, we focus on the roles of regulatory BCPs associated with neurodevelopmental disorders, including mental retardation, Fragile X syndrome (FRX), Williams syndrome (WS), Rett syndrome and Rubinstein-Taybi syndrome (RTS). A better understanding of the molecular pathogenesis, based upon the roles of BCPs, will lead to screening of targets for the treatment of neurodevelopmental disorders.

  18. The involvement of a protein kinase in phototaxis and gravitaxis of Euglena gracilis.

    PubMed

    Daiker, Viktor; Häder, Donat-P; Richter, Peter R; Lebert, Michael

    2011-05-01

    The unicellular flagellate Euglena gracilis shows positive phototaxis at low-light intensities (<10 W/m(2)) and a negative one at higher irradiances (>10 W/m(2)). Phototaxis is based on blue light-activated adenylyl cyclases, which produce cAMP upon irradiation. In the absence of light the cells swim upward in the water column (negative gravitaxis). The results of sounding rocket campaigns and of a large number of ground experiments led to the following model of signal perception and transduction in gravitaxis of E. gracilis: The body of the cell is heavier than the surrounding medium, sediments and thereby exerts a force onto the lower membrane. Upon deviation from a vertical swimming path mechano-sensitive ion channels are activated. Calcium is gated inwards which leads to an increase in the intracellular calcium concentration and causes a change of the membrane potential. After influx, calcium activates one of several calmodulins found in Euglena, which in turn activates an adenylyl cyclase (different from the one involved in phototaxis) to produce cAMP from ATP. One further element in the sensory transduction chain of both phototaxis and gravitaxis is a specific protein kinase A. We found five different protein kinases A in E. gracilis. The blockage of only one of these (PK.4, accession No. EU935859) by means of RNAi inhibited both phototaxis and gravitaxis, while inhibition of the other four affected neither phototaxis nor gravitaxis. It is assumed that cAMP directly activates this protein kinase A which may in turn phosphorylate a protein involved in the flagellar beating mechanism.

  19. STAT5 proteins are involved in down-regulation of iron regulatory protein 1 gene expression by nitric oxide.

    PubMed

    Starzynski, Rafal Radoslaw; Gonçalves, Ana Sofia; Muzeau, Françoise; Tyrolczyk, Zofia; Smuda, Ewa; Drapier, Jean-Claude; Beaumont, Carole; Lipinski, Pawel

    2006-12-01

    RNA-binding activity of IRP1 (iron regulatory protein 1) is regulated by the insertion/extrusion of a [4Fe-4S] cluster into/from the IRP1 molecule. NO (nitic oxide), whose ability to activate IRP1 by removing its [4Fe-4S] cluster is well known, has also been shown to down-regulate expression of the IRP1 gene. In the present study, we examine whether this regulation occurs at the transcriptional level. Analysis of the mouse IRP1 promoter sequence revealed two conserved putative binding sites for transcription factor(s) regulated by NO and/or changes in intracellular iron level: Sp1 (promoter-selective transcription factor 1) and MTF1 (metal transcription factor 1), plus GAS (interferon-gamma-activated sequence), a binding site for STAT (signal transducer and activator of transcription) proteins. In order to define the functional activity of these sequences, reporter constructs were generated through the insertion of overlapping fragments of the mouse IRP1 promoter upstream of the luciferase gene. Transient expression assays following transfection of HuH7 cells with these plasmids revealed that while both the Sp1 and GAS sequences are involved in basal transcriptional activity of the IRP1 promoter, the role of the latter is predominant. Analysis of protein binding to these sequences in EMSAs (electrophoretic mobility-shift assays) using nuclear extracts from mouse RAW 264.7 macrophages stimulated to synthesize NO showed a significant decrease in the formation of Sp1-DNA and STAT-DNA complexes, compared with controls. We have also demonstrated that the GAS sequence is involved in NO-dependent down-regulation of IRP1 transcription. Further analysis revealed that levels of STAT5a and STAT5b in the nucleus and cytosol of NO-producing macrophages are substantially lower than in control cells. These findings provide evidence that STAT5 proteins play a role in NO-mediated down-regulation of IRP1 gene expression.

  20. Characterization of a Novel Endoplasmic Reticulum Protein Involved in Tubercidin Resistance in Leishmania major

    PubMed Central

    Aoki, Juliana Ide; Coelho, Adriano Cappellazzo; Muxel, Sandra Marcia; Zampieri, Ricardo Andrade; Sanchez, Eduardo Milton Ramos; Nerland, Audun Helge; Floeter-Winter, Lucile Maria; Cotrim, Paulo Cesar

    2016-01-01

    Background Tubercidin (TUB) is a toxic adenosine analog with potential antiparasitic activity against Leishmania, with mechanism of action and resistance that are not completely understood. For understanding the mechanisms of action and identifying the potential metabolic pathways affected by this drug, we employed in this study an overexpression/selection approach using TUB for the identification of potential targets, as well as, drug resistance genes in L. major. Although, TUB is toxic to the mammalian host, these findings can provide evidences for a rational drug design based on purine pathway against leishmaniasis. Methodology/Principal findings After transfection of a cosmid genomic library into L. major Friedlin (LmjF) parasites and application of the overexpression/selection method, we identified two cosmids (cosTUB1 and cosTU2) containing two different loci capable of conferring significant levels of TUB resistance. In the cosTUB1 contained a gene encoding NUPM1-like protein, which has been previously described as associated with TUB resistance in L. amazonensis. In the cosTUB2 we identified and characterized a gene encoding a 63 kDa protein that we denoted as tubercidin-resistance protein (TRP). Functional analysis revealed that the transfectants were less susceptible to TUB than LmjF parasites or those transfected with the control vector. In addition, the trp mRNA and protein levels in cosTUB2 transfectants were higher than LmjF. TRP immunolocalization revealed that it was co-localized to the endoplasmic reticulum (ER), a cellular compartment with many functions. In silico predictions indicated that TRP contains only a hypothetical transmembrane domain. Thus, it is likely that TRP is a lumen protein involved in multidrug efflux transport that may be involved in the purine metabolic pathway. Conclusions/Significance This study demonstrated for the first time that TRP is associated with TUB resistance in Leishmania. The next challenge is to determine how

  1. Spa2p Interacts with Cell Polarity Proteins and Signaling Components Involved in Yeast Cell Morphogenesis

    PubMed Central

    Sheu, Yi-Jun; Santos, Beatriz; Fortin, Nathalie; Costigan, Christine; Snyder, Michael

    1998-01-01

    The yeast protein Spa2p localizes to growth sites and is important for polarized morphogenesis during budding, mating, and pseudohyphal growth. To better understand the role of Spa2p in polarized growth, we analyzed regions of the protein important for its function and proteins that interact with Spa2p. Spa2p interacts with Pea2p and Bud6p (Aip3p) as determined by the two-hybrid system; all of these proteins exhibit similar localization patterns, and spa2Δ, pea2Δ, and bud6Δ mutants display similar phenotypes, suggesting that these three proteins are involved in the same biological processes. Coimmunoprecipitation experiments demonstrate that Spa2p and Pea2p are tightly associated with each other in vivo. Velocity sedimentation experiments suggest that a significant portion of Spa2p, Pea2p, and Bud6p cosediment, raising the possibility that these proteins form a large, 12S multiprotein complex. Bud6p has been shown previously to interact with actin, suggesting that the 12S complex functions to regulate the actin cytoskeleton. Deletion analysis revealed that multiple regions of Spa2p are involved in its localization to growth sites. One of the regions involved in Spa2p stability and localization interacts with Pea2p; this region contains a conserved domain, SHD-II. Although a portion of Spa2p is sufficient for localization of itself and Pea2p to growth sites, only the full-length protein is capable of complementing spa2 mutant defects, suggesting that other regions are required for Spa2p function. By using the two-hybrid system, Spa2p and Bud6p were also found to interact with components of two mitogen-activated protein kinase (MAPK) pathways important for polarized cell growth. Spa2p interacts with Ste11p (MAPK kinase [MEK] kinase) and Ste7p (MEK) of the mating signaling pathway as well as with the MEKs Mkk1p and Mkk2p of the Slt2p (Mpk1p) MAPK pathway; for both Mkk1p and Ste7p, the Spa2p-interacting region was mapped to the N-terminal putative regulatory domain

  2. Shewanella oneidensis MR-1 sensory box protein involved in aerobic and anoxic growth.

    PubMed

    Sundararajan, A; Kurowski, J; Yan, T; Klingeman, D M; Joachimiak, M P; Zhou, J; Naranjo, B; Gralnick, J A; Fields, M W

    2011-07-01

    Although little is known of potential function for conserved signaling proteins, it is hypothesized that such proteins play important roles to coordinate cellular responses to environmental stimuli. In order to elucidate the function of a putative sensory box protein (PAS domains) in Shewanella oneidensis MR-1, the physiological role of SO3389 was characterized. The predicted open reading frame (ORF) encodes a putative sensory box protein that has PAS, GGDEF, and EAL domains, and an in-frame deletion mutant was constructed (ΔSO3389) with approximately 95% of the ORF deleted. Under aerated conditions, wild-type and mutant cultures had similar growth rates, but the mutant culture had a lower growth rate under static, aerobic conditions. Oxygen consumption rates were lower for mutant cultures (1.5-fold), and wild-type cultures also maintained lower dissolved oxygen concentrations under aerated growth conditions. When transferred to anoxic conditions, the mutant did not grow with fumarate, iron(III), or dimethyl sulfoxide (DMSO) as electron acceptors. Biochemical assays demonstrated the expression of different c-type cytochromes as well as decreased fumarate reductase activity in the mutant transferred to anoxic growth conditions. Transcriptomic studies showed the inability of the mutant to up-express and down-express genes, including c-type cytochromes (e.g., SO4047/SO4048, SO3285/SO3286), reductases (e.g., SO0768, SO1427), and potential regulators (e.g., SO1329). The complemented strain was able to grow when transferred from aerobic to anoxic growth conditions with the tested electron acceptors. The modeled structure for the SO3389 PAS domains was highly similar to the crystal structures of FAD-binding PAS domains that are known O2/redox sensors. Based on physiological, genomic, and bioinformatic results, we suggest that the sensory box protein, SO3389, is an O2/redox sensor that is involved in optimization of aerobic growth and transitions to anoxia in S

  3. Mechanosensitive Molecular Networks Involved in Transducing Resistance Exercise-Signals into Muscle Protein Accretion

    PubMed Central

    Rindom, Emil; Vissing, Kristian

    2016-01-01

    Loss of skeletal muscle myofibrillar protein with disease and/or inactivity can severely deteriorate muscle strength and function. Strategies to counteract wasting of muscle myofibrillar protein are therefore desirable and invite for considerations on the potential superiority of specific modes of resistance exercise and/or the adequacy of low load resistance exercise regimens as well as underlying mechanisms. In this regard, delineation of the potentially mechanosensitive molecular mechanisms underlying muscle protein synthesis (MPS), may contribute to an understanding on how differentiated resistance exercise can transduce a mechanical signal into stimulation of muscle accretion. Recent findings suggest specific upstream exercise-induced mechano-sensitive myocellular signaling pathways to converge on mammalian target of rapamycin complex 1 (mTORC1), to influence MPS. This may e.g. implicate mechanical activation of signaling through a diacylglycerol kinase (DGKζ)-phosphatidic acid (PA) axis or implicate integrin deformation to signal through a Focal adhesion kinase (FAK)-Tuberous Sclerosis Complex 2 (TSC2)-Ras homolog enriched in brain (Rheb) axis. Moreover, since initiation of translation is reliant on mRNA, it is also relevant to consider potentially mechanosensitive signaling pathways involved in muscle myofibrillar gene transcription and whether some of these pathways converge with those affecting mTORC1 activation for MPS. In this regard, recent findings suggest how mechanical stress may implicate integrin deformation and/or actin dynamics to signal through a Ras homolog gene family member A protein (RhoA)-striated muscle activator of Rho signaling (STARS) axis or implicate deformation of Notch to affect Bone Morphogenetic Protein (BMP) signaling through a small mother of decapentaplegic (Smad) axis. PMID:27909410

  4. Mechanosensitive Molecular Networks Involved in Transducing Resistance Exercise-Signals into Muscle Protein Accretion.

    PubMed

    Rindom, Emil; Vissing, Kristian

    2016-01-01

    Loss of skeletal muscle myofibrillar protein with disease and/or inactivity can severely deteriorate muscle strength and function. Strategies to counteract wasting of muscle myofibrillar protein are therefore desirable and invite for considerations on the potential superiority of specific modes of resistance exercise and/or the adequacy of low load resistance exercise regimens as well as underlying mechanisms. In this regard, delineation of the potentially mechanosensitive molecular mechanisms underlying muscle protein synthesis (MPS), may contribute to an understanding on how differentiated resistance exercise can transduce a mechanical signal into stimulation of muscle accretion. Recent findings suggest specific upstream exercise-induced mechano-sensitive myocellular signaling pathways to converge on mammalian target of rapamycin complex 1 (mTORC1), to influence MPS. This may e.g. implicate mechanical activation of signaling through a diacylglycerol kinase (DGKζ)-phosphatidic acid (PA) axis or implicate integrin deformation to signal through a Focal adhesion kinase (FAK)-Tuberous Sclerosis Complex 2 (TSC2)-Ras homolog enriched in brain (Rheb) axis. Moreover, since initiation of translation is reliant on mRNA, it is also relevant to consider potentially mechanosensitive signaling pathways involved in muscle myofibrillar gene transcription and whether some of these pathways converge with those affecting mTORC1 activation for MPS. In this regard, recent findings suggest how mechanical stress may implicate integrin deformation and/or actin dynamics to signal through a Ras homolog gene family member A protein (RhoA)-striated muscle activator of Rho signaling (STARS) axis or implicate deformation of Notch to affect Bone Morphogenetic Protein (BMP) signaling through a small mother of decapentaplegic (Smad) axis.

  5. Quantitative LC-MS/MS Analysis of Proteins Involved in Metastasis of Breast Cancer

    PubMed Central

    Goto, Rieko; Nakamura, Yasushi; Takami, Tomonori; Sanke, Tokio; Tozuka, Zenzaburo

    2015-01-01

    The purpose of this study was to develop quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods for the analysis of proteins involved in metastasis of breast cancer for diagnosis and determining disease prognosis, as well as to further our understand of metastatic mechanisms. We have previously demonstrated that the protein type XIV collagen may be specifically expressed in metastatic tissues by two dimensional LC-MS/MS. In this study, we developed quantitative LC-MS/MS methods for type XIV collagen. Type XIV collagen was quantified by analyzing 2 peptides generated by digesting type XIV collagen using stable isotope-labeled peptides. The individual concentrations were equivalent between 2 different peptides of type XIV collagen by evaluation of imprecise transitions and using the best transition for the peptide concentration. The results indicated that type XIV collagen is highly expressed in metastatic tissues of patients with massive lymph node involvement compared to non-metastatic tissues. These findings were validated by quantitative real-time RT-PCR. Further studies on type XIV collagen are desired to verify its role as a prognostic factor and diagnosis marker for metastasis. PMID:26176947

  6. Identification of a novel thylakoid protein gene involved in cold acclimation in cyanobacteria.

    PubMed

    Li, Weizhi; Gao, Hong; Yin, Chuntao; Xu, Xudong

    2012-09-01

    In cyanobacteria, genes involved in cold acclimation can be upregulated in response to cold stress with or without light. By inactivating 17 such genes in Synechocystis sp. PCC 6803, slr0815 (ccr2) was identified to be a novel gene required for survival at 15 °C. It was upregulated by cold stress in the light. Upon exposure to low temperature, a ccr2-null mutant showed greatly reduced photosynthetic and respiratory activities within 12 h relative to the wild-type. At 48 h, the photosystem (PS)II-mediated electron transport in the mutant was reduced to less than one-third of the wild-type level, and the duration of electron transfer from the Q(B) binding site of PSII to PSI was increased to about eight times the wild-type level, whereas the PSI-mediated electron transport remained unchanged. Using an antibody against GFP, a Ccr2-GFP fusion protein was localized to the thylakoid membrane rather than the cytoplasmic and outer membranes. Homologues to Ccr2 can be found in most cyanobacteria, algae and higher plants with sequenced genomes. Ccr2 is probably representative of a group of novel thylakoid proteins involved in acclimation to cold or other stresses.

  7. A novel pax-like protein involved in transcriptional activation of cyst wall protein genes in Giardia lamblia.

    PubMed

    Wang, Yi-Ting; Pan, Yu-Jiao; Cho, Chao-Cheng; Lin, Bo-Chi; Su, Li-Hsin; Huang, Yu-Chang; Sun, Chin-Hung

    2010-10-15

    Giardia lamblia differentiates into infectious cysts to survive outside of the host. It is of interest to identify factors involved in up-regulation of cyst wall proteins (CWPs) during this differentiation. Pax proteins are important regulators of development and cell differentiation in Drosophila and vertebrates. No member of this gene family has been reported to date in yeast, plants, or protozoan parasites. We have identified a pax-like gene (pax1) encoding a putative paired domain in the G. lamblia genome. Epitope-tagged Pax1 localized to nuclei during both vegetative growth and encystation. Recombinant Pax1 specifically bound to the AT-rich initiator elements of the encystation-induced cwp1 to -3 and myb2 genes. Interestingly, overexpression of Pax1 increased cwp1 to -3 and myb2 gene expression and cyst formation. Deletion of the C-terminal paired domain or mutation of the basic amino acids of the paired domain resulted in a decrease of the transactivation function of Pax1. Our results indicate that the Pax family has been conserved during evolution, and Pax1 could up-regulate the key encystation-induced genes to regulate differentiation of the protozoan eukaryote, G. lamblia.

  8. The cyanobacterial Fluorescence Recovery Protein has two distinct activities: Orange Carotenoid Protein amino acids involved in FRP interaction.

    PubMed

    Thurotte, Adrien; Bourcier de Carbon, Céline; Wilson, Adjélé; Talbot, Léa; Cot, Sandrine; López-Igual, Rocio; Kirilovsky, Diana

    2017-04-01

    To deal with fluctuating light condition, cyanobacteria have developed a photoprotective mechanism which, under high light conditions, decreases the energy arriving at the photochemical centers. It relies on a photoswitch, the Orange Carotenoid Protein (OCP). Once photoactivated, OCP binds to the light harvesting antenna, the phycobilisome (PBS), and triggers the thermal dissipation of the excess energy absorbed. Deactivation of the photoprotective mechanism requires the intervention of a third partner, the Fluorescence Recovery Protein (FRP). FRP by interacting with the photoactivated OCP accelerates its conversion to the non-active form and its detachment from the phycobilisome. We have studied the interaction of FRP with free and phycobilisome-bound OCP. Several OCP variants were constructed and characterized. In this article we show that OCP amino acid F299 is essential and D220 important for OCP deactivation mediated by FRP. Mutations of these amino acids did not affect FRP activity as helper to detach OCP from phycobilisomes. In addition, while mutated R60L FRP is inactive on OCP deactivation, its activity on the detachment of the OCP from the phycobilisomes is not affected. Thus, our results demonstrate that FRP has two distinct activities: it accelerates OCP detachment from phycobilisomes and then it helps deactivation of the OCP. They also suggest that different OCP and FRP amino acids could be involved in these two activities.

  9. IL-1β-Induced Downregulation of the Multifunctional PDZ Adaptor PDZK1 Is Attenuated by ERK Inhibition, RXRα, or PPARα Stimulation in Enterocytes

    PubMed Central

    Luo, Min; Yeruva, Sunil; Liu, Yongjian; Chodisetti, Giriprakash; Riederer, Brigitte; Menon, Manoj B.; Tachibana, Keisuke; Doi, Takefumi; Seidler, Ursula E.

    2017-01-01

    Background: The PDZ adaptor protein PDZK1 modulates the membrane expression and function of a variety of intestinal receptors and ion/nutrient transporters. Its expression is strongly decreased in inflamed intestinal mucosa of mice and IBD patients. Aim and Methods: We investigated whether the inflammation-associated PDZK1 downregulation is a direct consequence of proinflammatory cytokine release by treating intestinal Caco-2BBE cells with TNF-α, IFN-γ, and IL-1β, and analysing PDZK1 promotor activity, mRNA and protein expression. Results: IL-1β was found to significantly decrease PDZK1 promoter activity, mRNA and protein expression in Caco-2BBE cells. A distal region of the hPDZK1 promoter was identified to be important for basal expression and IL-1β-responsiveness. This region harbors the retinoid acid response element RARE as well as binding sites for transcription factors involved in IL-β downstream signaling. ERK1/2 inhibition by the specific MEK1/2 inhibitors PD98059/U0126 significantly attenuated the IL-1β mediated downregulation of PDZK1, while NF-κB, p38 MAPK, and JNK inhibition did not. Expression of the nuclear receptors RXRα and PPARα was decreased in inflamed colonic-mucosa of ulcerative colitis patients and in IL-1β-treated Caco2-BBE cells. Moreover, the RAR/RXR ligand 9-cis retinoic acid and the PPARα-agonist GW7647 stimulated PDZK1 mRNA and protein expression and attenuated IL-1β-mediated inhibition. Conclusions: The strong decrease in PDZK1 expression during intestinal inflammation may be in part a consequence of IL-1β-mediated RXRα and PPARα repression and can be attenuated by agonists for either nuclear receptor, or by ERK1/2 inhibition. The negative consequences of inflammation-induced PDZK1 downregulation on epithelial transport-function may thus be amenable to pharmacological therapy. PMID:28223944

  10. Identification and Characterization of Anaplasma phagocytophilum Proteins Involved in Infection of the Tick Vector, Ixodes scapularis.

    PubMed

    Villar, Margarita; Ayllón, Nieves; Kocan, Katherine M; Bonzón-Kulichenko, Elena; Alberdi, Pilar; Blouin, Edmour F; Weisheit, Sabine; Mateos-Hernández, Lourdes; Cabezas-Cruz, Alejandro; Bell-Sakyi, Lesley; Vancová, Marie; Bílý, Tomáš; Meyer, Damien F; Sterba, Jan; Contreras, Marinela; Rudenko, Nataliia; Grubhoffer, Libor; Vázquez, Jesús; de la Fuente, José

    2015-01-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen transmitted by Ixodes scapularis that causes human granulocytic anaplasmosis. Here, a high throughput quantitative proteomics approach was used to characterize A. phagocytophilum proteome during rickettsial multiplication and identify proteins involved in infection of the tick vector, I. scapularis. The first step in this research was focused on tick cells infected with A. phagocytophilum and sampled at two time points containing 10-15% and 65-71% infected cells, respectively to identify key bacterial proteins over-represented in high percentage infected cells. The second step was focused on adult female tick guts and salivary glands infected with A. phagocytophilum to compare in vitro results with those occurring during bacterial infection in vivo. The results showed differences in the proteome of A. phagocytophilum in infected ticks with higher impact on protein synthesis and processing than on bacterial replication in tick salivary glands. These results correlated well with the developmental cycle of A. phagocytophilum, in which cells convert from an intracellular reticulated, replicative form to the nondividing infectious dense-core form. The analysis of A. phagocytophilum differentially represented proteins identified stress response (GroEL, HSP70) and surface (MSP4) proteins that were over-represented in high percentage infected tick cells and salivary glands when compared to low percentage infected cells and guts, respectively. The results demonstrated that MSP4, GroEL and HSP70 interact and bind to tick cells, thus playing a role in rickettsia-tick interactions. The most important finding of these studies is the increase in the level of certain bacterial stress response and surface proteins in A. phagocytophilum-infected tick cells and salivary glands with functional implication in tick-pathogen interactions. These results gave a new dimension to the role of these stress response and surface

  11. Identification and Characterization of Anaplasma phagocytophilum Proteins Involved in Infection of the Tick Vector, Ixodes scapularis

    PubMed Central

    Kocan, Katherine M.; Bonzón-Kulichenko, Elena; Alberdi, Pilar; Blouin, Edmour F.; Weisheit, Sabine; Mateos-Hernández, Lourdes; Cabezas-Cruz, Alejandro; Bell-Sakyi, Lesley; Vancová, Marie; Bílý, Tomáš; Meyer, Damien F.; Sterba, Jan; Contreras, Marinela; Rudenko, Nataliia; Grubhoffer, Libor; Vázquez, Jesús; de la Fuente, José

    2015-01-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen transmitted by Ixodes scapularis that causes human granulocytic anaplasmosis. Here, a high throughput quantitative proteomics approach was used to characterize A. phagocytophilum proteome during rickettsial multiplication and identify proteins involved in infection of the tick vector, I. scapularis. The first step in this research was focused on tick cells infected with A. phagocytophilum and sampled at two time points containing 10–15% and 65–71% infected cells, respectively to identify key bacterial proteins over-represented in high percentage infected cells. The second step was focused on adult female tick guts and salivary glands infected with A. phagocytophilum to compare in vitro results with those occurring during bacterial infection in vivo. The results showed differences in the proteome of A. phagocytophilum in infected ticks with higher impact on protein synthesis and processing than on bacterial replication in tick salivary glands. These results correlated well with the developmental cycle of A. phagocytophilum, in which cells convert from an intracellular reticulated, replicative form to the nondividing infectious dense-core form. The analysis of A. phagocytophilum differentially represented proteins identified stress response (GroEL, HSP70) and surface (MSP4) proteins that were over-represented in high percentage infected tick cells and salivary glands when compared to low percentage infected cells and guts, respectively. The results demonstrated that MSP4, GroEL and HSP70 interact and bind to tick cells, thus playing a role in rickettsia-tick interactions. The most important finding of these studies is the increase in the level of certain bacterial stress response and surface proteins in A. phagocytophilum-infected tick cells and salivary glands with functional implication in tick-pathogen interactions. These results gave a new dimension to the role of these stress response and surface

  12. Unconventional N-H…N Hydrogen Bonds Involving Proline Backbone Nitrogen in Protein Structures.

    PubMed

    Deepak, R N V Krishna; Sankararamakrishnan, Ramasubbu

    2016-05-10

    Contrary to DNA double-helical structures, hydrogen bonds (H-bonds) involving nitrogen as the acceptor are not common in protein structures. We systematically searched N-H…N H-bonds in two different sets of protein structures. Data set I consists of neutron diffraction and ultrahigh-resolution x-ray structures (0.9 Å resolution or better) and the hydrogen atom positions in these structures were determined experimentally. Data set II contains structures determined using x-ray diffraction (resolution ≤ 1.8 Å) and the positions of hydrogen atoms were generated using a computational method. We identified 114 and 14,347 potential N-H…N H-bonds from these two data sets, respectively, and 56-66% of these were of the Ni+1-Hi+1…Ni type, with Ni being the proline backbone nitrogen. To further understand the nature of such unusual contacts, we performed quantum chemical calculations on the model compound N-acetyl-L-proline-N-methylamide (Ace-Pro-NMe) with coordinates taken from the experimentally determined structures. A potential energy profile generated by varying the ψ dihedral angle in Ace-Pro-NMe indicates that the conformation with the N-H…N H-bond is the most stable. An analysis of H-bond-forming proline residues reveals that more than 30% of the proline carbonyl groups are also involved in n → π(∗) interactions with the carbonyl carbon of the preceding residue. Natural bond orbital analyses demonstrate that the strength of N-H…N H-bonds is less than half of that observed for a conventional H-bond. This study clearly establishes the H-bonding capability of proline nitrogen and its prevalence in protein structures. We found many proteins with multiple instances of H-bond-forming prolines. With more than 15% of all proline residues participating in N-H…N H-bonds, we suggest a new, to our knowledge, structural role for proline in providing stability to loops and capping regions of secondary structures in proteins.

  13. Identification of a Drug Targeting an Intrinsically Disordered Protein Involved in Pancreatic Adenocarcinoma

    PubMed Central

    Neira, José L.; Bintz, Jennifer; Arruebo, María; Rizzuti, Bruno; Bonacci, Thomas; Vega, Sonia; Lanas, Angel; Velázquez-Campoy, Adrián; Iovanna, Juan L.; Abián, Olga

    2017-01-01

    Intrinsically disordered proteins (IDPs) are prevalent in eukaryotes, performing signaling and regulatory functions. Often associated with human diseases, they constitute drug-development targets. NUPR1 is a multifunctional IDP, over-expressed and involved in pancreatic ductal adenocarcinoma (PDAC) development. By screening 1120 FDA-approved compounds, fifteen candidates were selected, and their interactions with NUPR1 were characterized by experimental and simulation techniques. The protein remained disordered upon binding to all fifteen candidates. These compounds were tested in PDAC-derived cell-based assays, and all induced cell-growth arrest and senescence, reduced cell migration, and decreased chemoresistance, mimicking NUPR1-deficiency. The most effective compound completely arrested tumor development in vivo on xenografted PDAC-derived cells in mice. Besides reporting the discovery of a compound targeting an intact IDP and specifically active against PDAC, our study proves the possibility to target the ‘fuzzy’ interface of a protein that remains disordered upon binding to its natural biological partners or to selected drugs. PMID:28054562

  14. Interatomic Coulombic Decay Effects in Theoretical DNA Recombination Systems Involving Protein Interaction Sites

    NASA Astrophysics Data System (ADS)

    Vargas, E. L.; Rivas, D. A.; Duot, A. C.; Hovey, R. T.; Andrianarijaona, V. M.

    2015-03-01

    DNA replication is the basis for all biological reproduction. A strand of DNA will ``unzip'' and bind with a complimentary strand, creating two identical strands. In this study, we are considering how this process is affected by Interatomic Coulombic Decay (ICD), specifically how ICD affects the individual coding proteins' ability to hold together. ICD mainly deals with how the electron returns to its original state after excitation and how this affects its immediate atomic environment, sometimes affecting the connectivity between interaction sites on proteins involved in the DNA coding process. Biological heredity is fundamentally controlled by DNA and its replication therefore it affects every living thing. The small nature of the proteins (within the range of nanometers) makes it a good candidate for research of this scale. Understanding how ICD affects DNA molecules can give us invaluable insight into the human genetic code and the processes behind cell mutations that can lead to cancer. Authors wish to give special thanks to Pacific Union College Student Senate in Angwin, California, for their financial support.

  15. A VAMP-associated protein, PVA31 is involved in leaf senescence in Arabidopsis

    PubMed Central

    Ichikawa, Mie; Nakai, Yusuke; Arima, Keita; Nishiyama, Sayo; Hirano, Tomoko; Sato, Masa H

    2015-01-01

    VAMP-associated proteins (VAPs) are highly conserved among eukaryotes. Here, we report a functional analysis of one of the VAPs, PVA31, and demonstrate its novel function on leaf senescence in Arabidopsis. The expression of PVA31 is highly induced in senescence leaves, and localizes to the plasma membrane as well as the ARA7-positive endosomes. Yeast two-hybrid analysis demonstrates that PVA31 is interacted with the plasma membrane localized-VAMP proteins, VAMP721/722/724 but not with the endosome-localized VAMPs, VAMP711 and VAMP727, indicating that PVA31 is associated with VAMP721/722/724 on the plasma membrane. Strong constitutive expression of PVA31 under the control of the Cauliflower mosaic virus 35S promoter induces the typical symptom of leaf senescence earlier than WT in normal growth and an artificially induced senescence conditions. In addition, the marker genes for the SA-mediated signaling pathways, PR-1, is promptly expressed with elicitor application. These data indicate that PVA31-overexpressing plants exhibit the early senescence phenotype in their leaves, and suggest that PVA31 is involved in the SA-mediated programmed cell death process during leaf senescence and PR-protein secretion during pathogen infection in Arabidopsis. PMID:25897470

  16. Plasmodium falciparum proteins involved in cytoadherence of infected erythrocytes to chemokine CX3CL1

    PubMed Central

    Hermand, Patricia; Cicéron, Liliane; Pionneau, Cédric; Vaquero, Catherine; Combadière, Christophe; Deterre, Philippe

    2016-01-01

    Malaria caused by Plasmodium falciparum is associated with cytoadherence of infected red blood cells (iRBC) to endothelial cells. Numerous host molecules have been involved in cytoadherence, including the adhesive chemokine CX3CL1. Most of the identified parasite ligands are from the multigenic and hypervariable Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family which makes them poor targets for the development of a broadly protective vaccine. Using proteomics, we have identified two 25-kDa parasite proteins with adhesive properties for CX3CL1, called CBP for CX3CL1 Binding Proteins. CBPs are coded by single-copy genes with little polymorphic variation and no homology with other P. falciparum gene products. Specific antibodies raised against epitopes from the predicted extracellular domains of each CBP efficiently stain the surface of RBC infected with trophozoites or schizonts, which is a strong indication of CBP expression at the surface of iRBC. These anti-CBP antibodies partially neutralize iRBC adherence to CX3CL1. This adherence is similarly inhibited in the presence of peptides from the CBP extracellular domains, while irrelevant peptides had no such effect. CBP1 and CBP2 are new P. falciparum ligands for the human chemokine CX3CL1. The identification of this non-polymorphic P. falciparum factors provides a new avenue for innovative vaccination approaches. PMID:27653778

  17. A novel protein involved in heart development in Ambystoma mexicanum is localized in endoplasmic reticulum.

    PubMed

    Jia, P; Zhang, C; Huang, X P; Poda, M; Akbas, F; Lemanski, S L; Erginel-Unaltuna, N; Lemanski, L F

    2008-11-01

    The discovery of the naturally occurring cardiac non-function (c) animal strain in Ambystoma mexicanum (axolotl) provides a valuable animal model to study cardiomyocyte differentiation. In homozygous mutant animals (c/c), rhythmic contractions of the embryonic heart are absent due to a lack of organized myofibrils. We have previously cloned a partial sequence of a peptide cDNA (N1) from an anterior-endoderm-conditioned-medium RNA library that had been shown to be able to rescue the mutant phenotype. In the current studies we have fully cloned the N1 full length cDNA sequence from the library. N1 protein has been detected in both adult heart and skeletal muscle but not in any other adult tissues. GFP-tagged expression of the N1 protein has revealed localization of the N1 protein in the endoplasmic reticulum (ER). Results from in situ hybridization experiments have confirmed the dramatic decrease of expression of N1 mRNA in mutant (c/c) embryos indicating that the N1 gene is involved in heart development.

  18. Arabidopsis Membrane Steroid Binding Protein 1 Is Involved in Inhibition of Cell ElongationW⃞

    PubMed Central

    Yang, Xiao-Hua; Xu, Zhi-Hong; Xue, Hong-Wei

    2005-01-01

    A putative Membrane Steroid Binding Protein (designated MSBP1) was identified and functionally characterized as a negative regulator of cell elongation in Arabidopsis thaliana. The MSBP1 gene encodes a 220–amino acid protein that can bind to progesterone, 5-dihydrotestosterone, 24-epi-brassinolide (24-eBL), and stigmasterol with different affinities in vitro. Transgenic plants overexpressing MSBP1 showed short hypocotyl phenotype and increased steroid binding capacity in membrane fractions, whereas antisense MSBP1 transgenic plants showed long hypocotyl phenotypes and reduced steroid binding capacity, indicating that MSBP1 negatively regulates hypocotyl elongation. The reduced cell elongation of MSBP1-overexpressing plants was correlated with altered expression of genes involved in cell elongation, such as expansins and extensins, indicating that enhanced MSBP1 affected a regulatory pathway for cell elongation. Suppression or overexpression of MSBP1 resulted in enhanced or reduced sensitivities, respectively, to exogenous progesterone and 24-eBL, suggesting a negative role of MSBP1 in steroid signaling. Expression of MSBP1 in hypocotyls is suppressed by darkness and activated by light, suggesting that MSBP1, as a negative regulator of cell elongation, plays a role in plant photomorphogenesis. This study demonstrates the functional roles of a steroid binding protein in growth regulation in higher plants. PMID:15608331

  19. Abrogation of TNF-mediated cytotoxicity by space flight involves protein kinase C

    NASA Technical Reports Server (NTRS)

    Woods, K. M.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Experiments conducted on STS-50 indicated that space flight significantly inhibited tumor necrosis factor (TNF)-mediated killing of LM929 cells compared to ground controls. In ground-based studies, activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA) also inhibited TNF-mediated killing of LM929 cells. Therefore, we used PKC inhibitors to determine if the inhibitory effects of spaceflight on TNF-mediated cytotoxicity involved the activation of PKC. In experiments conducted onboard space shuttle mission STS-54, we saw that in the presence of the protein kinase C inhibitors H7 and H8, TNF-mediated cytotoxicity was restored to levels of those observed in the ground controls. Subsequent experiments done during the STS-57 mission tested the dose response of two protein kinase inhibitors, H7 and HA1004. We again saw that killing was restored in a dose-dependent manner, with inhibitor concentrations known to inhibit PKC being most effective. These data suggest that space flight ameliorates the action of TNF by affecting PKC in target cells.

  20. The Saccharomyces cerevisiae actin-related protein Arp2 is involved in the actin cytoskeleton

    PubMed Central

    1996-01-01

    Arp2p is an essential yeast actin-related protein. Disruption of the corresponding ARP2 gene leads to a terminal phenotype characterized by the presence of a single large bud. Thus, Arp2p may be important for a late stage of the cell cycle (Schwob, E., and R.P. Martin, 1992. Nature (Lond.). 355:179-182). We have localized Arp2p by indirect immunofluorescence. Specific peptide antibodies revealed punctate staining under the plasma membrane, which partially colocalizes with actin. Temperature-sensitive arp2 mutations were created by PCR mutagenesis and selected by an ade2/SUP11 sectoring screen. One temperature-sensitive mutant that was characterized, arp2-H330L, was osmosensitive and had an altered actin cytoskeleton at a nonpermissive temperature, suggesting a role of Arp2p in the actin cytoskeleton. Random budding patterns were observed in both haploid and diploid arp2- H330L mutant cells. Endocytosis, as judged by Lucifer yellow uptake, was severely reduced in the mutant, at all temperatures. In addition, genetic interaction was observed between temperature-sensitive alleles arp2-H330L and cdc10-1. CDC10 is a gene encoding a neck filament- associated protein that is necessary for polarized growth and cytokinesis. Overall, the immunolocalization, mutant phenotypes, and genetic interaction suggest that the Arp2 protein is an essential component of the actin cytoskeleton that is involved in membrane growth and polarity, as well as in endocytosis. PMID:8698808

  1. Identification of a Drug Targeting an Intrinsically Disordered Protein Involved in Pancreatic Adenocarcinoma.

    PubMed

    Neira, José L; Bintz, Jennifer; Arruebo, María; Rizzuti, Bruno; Bonacci, Thomas; Vega, Sonia; Lanas, Angel; Velázquez-Campoy, Adrián; Iovanna, Juan L; Abián, Olga

    2017-01-05

    Intrinsically disordered proteins (IDPs) are prevalent in eukaryotes, performing signaling and regulatory functions. Often associated with human diseases, they constitute drug-development targets. NUPR1 is a multifunctional IDP, over-expressed and involved in pancreatic ductal adenocarcinoma (PDAC) development. By screening 1120 FDA-approved compounds, fifteen candidates were selected, and their interactions with NUPR1 were characterized by experimental and simulation techniques. The protein remained disordered upon binding to all fifteen candidates. These compounds were tested in PDAC-derived cell-based assays, and all induced cell-growth arrest and senescence, reduced cell migration, and decreased chemoresistance, mimicking NUPR1-deficiency. The most effective compound completely arrested tumor development in vivo on xenografted PDAC-derived cells in mice. Besides reporting the discovery of a compound targeting an intact IDP and specifically active against PDAC, our study proves the possibility to target the 'fuzzy' interface of a protein that remains disordered upon binding to its natural biological partners or to selected drugs.

  2. HNE-modified proteins in Down syndrome: Involvement in development of Alzheimer disease neuropathology.

    PubMed

    Barone, Eugenio; Head, Elizabeth; Butterfield, D Allan; Perluigi, Marzia

    2016-11-10

    Down syndrome (DS), trisomy of chromosome 21, is the most common genetic form of intellectual disability. The neuropathology of DS involves multiple molecular mechanisms, similar to AD, including the deposition of beta-amyloid (Aβ) into senile plaques and tau hyperphosphorylationg in neurofibrillary tangles. Interestingly, many genes encoded by chromosome 21, in addition to being primarily linked to amyloid-beta peptide (Aβ) pathology, are responsible for increased oxidative stress (OS) conditions that also result as a consequence of reduced antioxidant system efficiency. However, redox homeostasis is disturbed by overproduction of Aβ, which accumulates into plaques across the lifespan in DS as well as in AD, thus generating a vicious cycle that amplifies OS-induced intracellular changes. The present review describes the current literature that demonstrates the accumulation of oxidative damage in DS with a focus on the lipid peroxidation by-product, 4-hydroxy-2-nonenal (HNE). HNE reacts with proteins and can irreversibly impair their functions. We suggest that among different post-translational modifications, HNE-adducts on proteins accumulate in DS brain and play a crucial role in causing the impairment of glucose metabolism, neuronal trafficking, protein quality control and antioxidant response. We hypothesize that dysfunction of these specific pathways contribute to accelerated neurodegeneration associated with AD neuropathology.

  3. Nuclear pore proteins are involved in the biogenesis of functional tRNA.

    PubMed Central

    Simos, G; Tekotte, H; Grosjean, H; Segref, A; Sharma, K; Tollervey, D; Hurt, E C

    1996-01-01

    Los1p and Pus1p, which are involved in tRNA biogenesis, were found in a genetic screen for components interacting with the nuclear pore protein Nsp1p. LOS1, PUS1 and NSP1 interact functionally, since the combination of mutations in the three genes causes synthetic lethality. Pus1p is an intranuclear protein which exhibits a nucleotide-specific and intron-dependent tRNA pseudouridine synthase activity. Los1p was shown previously to be required for efficient pre-tRNA splicing; we report here that Los1p localizes to the nuclear pores and is linked functionally to several components of the tRNA biogenesis machinery including Pus1p and Tfc4p. When the formation of functional tRNA was analyzed by an in vivo assay, the los1(-) pus1(-) double mutant, as well as several thermosensitive nucleoporin mutants including nsp1, nup116, nup133 and nup85, exhibited loss of suppressor tRNA activity even at permissive temperatures. These data suggest that nuclear pore proteins are required for the biogenesis of functional tRNA. Images PMID:8641292

  4. Adaptive expression pattern of different proteins involved in cellular calcium homeostasis in denervated rat vas deferens.

    PubMed

    Quintas, Luis Eduardo M; Cunha, Valéria M N; Scaramello, Christianne B V; da Silva, Cláudia L M; Caricati-Neto, Afonso; Lafayette, Simone S L; Jurkiewicz, Aron; Noël, François

    2005-11-21

    The activity and protein expression of plasma membrane and sarco(endo)plasmic reticulum (Ca2+-Mg2+)ATPases and ryanodine receptors were investigated in surgically denervated rat vas deferens. The function of thapsigargin-sensitive but not thapsigargin-resistant (Ca2+-Mg2+)ATPase (from sarco(endo)plasmic reticulum and plasma membrane, respectively), evidenced by enzyme activity and Ca2+ uptake experiments, was significantly depressed by 30-50% when compared to innervated vas. Western blots showed that such reduction in sarco(endo)plasmic reticulum (Ca2+-Mg2+)ATPase performance was accompanied by a decrement of similar magnitude in sarco(endo)plasmic reticulum (Ca2+-Mg2+)ATPase type 2 protein expression, without any significant change in plasma membrane (Ca2+-Mg2+)ATPase expression. Finally, [3H]ryanodine binding revealed that the density of ryanodine binding sites was reduced by 45% after denervation without modification in affinity. The present findings demonstrate that sarco(endo)plasmic reticulum proteins involved in intracellular calcium homeostasis are clearly down-regulated and brings further evidence of a modified calcium translocation in denervated rat vas deferens.

  5. Looking for prosocial genes: ITRAQ analysis of proteins involved in MDMA-induced sociability in mice.

    PubMed

    Kuteykin-Teplyakov, Konstantin; Maldonado, Rafael

    2014-11-01

    Social behavior plays a fundamental role in life of many animal species, allowing the interaction between individuals and sharing of experiences, needs, and goals across them. In humans, some neuropsychiatric diseases, including anxiety, posttraumatic stress disorder and autism spectrum disorders, are often characterized by impaired sociability. Here we report that N-Methyl-3,4-methylenedioxyamphetamine (MDMA, "Ecstasy") at low dose (3mg/kg) has differential effects on mouse social behavior. In some animals, MDMA promotes sociability without hyperlocomotion, whereas in other mice it elevates locomotor activity without affecting sociability. Both WAY-100635, a selective antagonist of 5-HT1A receptor, and L-368899, a selective oxytocin receptor antagonist, abolish prosocial effects of MDMA. Differential quantitative analysis of brain proteome by isobaric tag for relative and absolute quantification technology (iTRAQ) revealed 21 specific proteins that were highly correlated with sociability, and allowed to distinguish between entactogenic prosocial and hyperlocomotor effects of MDMA on proteome level. Our data suggest particular relevance of neurotransmission mediated by GABA B receptor, as well as proteins involved in energy maintenance for MDMA-induced sociability. Functional association network for differentially expressed proteins in cerebral cortex, hippocampus and amygdala were identified. These results provide new information for understanding the neurobiological substrate of sociability and may help to discover new therapeutic approaches to modulate social behavior in patients suffering from social fear and low sociability.

  6. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    SciTech Connect

    Tee, Thiam-Tsui; Cheah, Yew-Hoong; Meenakshii, Nallappan; Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  7. Identification of a Drug Targeting an Intrinsically Disordered Protein Involved in Pancreatic Adenocarcinoma

    NASA Astrophysics Data System (ADS)

    Neira, José L.; Bintz, Jennifer; Arruebo, María; Rizzuti, Bruno; Bonacci, Thomas; Vega, Sonia; Lanas, Angel; Velázquez-Campoy, Adrián; Iovanna, Juan L.; Abián, Olga

    2017-01-01

    Intrinsically disordered proteins (IDPs) are prevalent in eukaryotes, performing signaling and regulatory functions. Often associated with human diseases, they constitute drug-development targets. NUPR1 is a multifunctional IDP, over-expressed and involved in pancreatic ductal adenocarcinoma (PDAC) development. By screening 1120 FDA-approved compounds, fifteen candidates were selected, and their interactions with NUPR1 were characterized by experimental and simulation techniques. The protein remained disordered upon binding to all fifteen candidates. These compounds were tested in PDAC-derived cell-based assays, and all induced cell-growth arrest and senescence, reduced cell migration, and decreased chemoresistance, mimicking NUPR1-deficiency. The most effective compound completely arrested tumor development in vivo on xenografted PDAC-derived cells in mice. Besides reporting the discovery of a compound targeting an intact IDP and specifically active against PDAC, our study proves the possibility to target the ‘fuzzy’ interface of a protein that remains disordered upon binding to its natural biological partners or to selected drugs.

  8. Tau pathology involves protein phosphatase 2A in Parkinsonism-dementia of Guam

    PubMed Central

    Arif, Mohammad; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Garruto, Ralph M.; Iqbal, Khalid

    2014-01-01

    Parkinsonism-dementia (PD) of Guam is a neurodegenerative disease with parkinsonism and early-onset Alzheimer-like dementia associated with neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein, tau. β-N-methylamino-l-alanine (BMAA) has been suspected of being involved in the etiology of PD, but the mechanism by which BMAA leads to tau hyperphosphorylation is not known. We found a decrease in protein phosphatase 2A (PP2A) activity associated with an increase in inhibitory phosphorylation of its catalytic subunit PP2Ac at Tyr307 and abnormal hyperphosphorylation of tau in brains of patients who had Guam PD. To test the possible involvement of BMAA in the etiopathogenesis of PD, we studied the effect of this environmental neurotoxin on PP2A activity and tau hyperphosphorylation in mouse primary neuronal cultures and metabolically active rat brain slices. BMAA treatment significantly decreased PP2A activity, with a concomitant increase in tau kinase activity resulting in elevated tau hyperphosphorylation at PP2A favorable sites. Moreover, we found an increase in the phosphorylation of PP2Ac at Tyr307 in BMAA-treated rat brains. Pretreatment with metabotropic glutamate receptor 5 (mGluR5) and Src antagonists blocked the BMAA-induced inhibition of PP2A and the abnormal hyperphosphorylation of tau, indicating the involvement of an Src-dependent PP2A pathway. Coimmunoprecipitation experiments showed that BMAA treatment dissociated PP2Ac from mGluR5, making it available for phosphorylation at Tyr307. These findings suggest a scenario in which BMAA can lead to tau pathology by inhibiting PP2A through the activation of mGluR5, the consequent release of PP2Ac from the mGluR5–PP2A complex, and its phosphorylation at Tyr307 by Src. PMID:24395787

  9. Effects of Radiation and Dietary Iron on Expression of Genes and Proteins Involved in Drug Metabolism

    NASA Technical Reports Server (NTRS)

    Faust, K. M.; Wotring, V. E.

    2014-01-01

    Liver function, especially the rate of metabolic enzyme activities, determines the concentration of circulating drugs and the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Dietary factors and exposure to radiation are aspects of spaceflight that are potential oxidative stressors and both can be modeled in ground experiments. In this experiment, we examined the effects of high dietary iron and low dose gamma radiation (individually and combined) on the gene expression of enzymes involved in drug metabolism, redox homeostasis, and DNA repair. METHODS All procedures were approved by the JSC Animal Care and Use Committee. Male Sprague-Dawley rats were divided into 4 groups (n=8); control, high Fe diet (650 mg iron/kg), radiation (fractionated 3 Gy exposure from a Cs- 137 source) and combined high Fe diet + radiation exposure. Animals were euthanized 24h after the last treatment of radiation; livers were removed immediately and flash -frozen in liquid nitrogen. Expression of genes thought to be involved in redox homeostasis, drug metabolism and DNA damage repair was measured by RT-qPCR. Where possible, protein expression of the same genes was measured by western blotting. All data are expressed as % change in expression normalized to reference gene expression; comparisons were then made of each treatment group to the sham exposed/ normal diet control group. Data was considered significant at p< 0

  10. Involvement of cyclic nucleotide-dependent protein kinases in cyclic AMP-mediated vasorelaxation

    PubMed Central

    Eckly-Michel, Anita; Martin, Viviane; Lugnier, Claire

    1997-01-01

    The involvement of cyclic AMP-dependent protein kinase (PKA) and cyclic GMP-dependent protein kinase (PKG) in the effects of cyclic AMP-elevating agents on vascular smooth muscle relaxation, cyclic nucleotide dependent-protein kinase activities and ATP-induced calcium signalling ([Ca2+]i) was studied in rat aorta. Cyclic AMP-elevating agents used were a β-adrenoceptor agonist (isoprenaline), a phosphodiesterase 3 (PDE3) inhibitor (SK&F 94120) and a PDE4 inhibitor (rolipram). In rat intact aorta, the relaxant effect induced by isoprenaline (0.01–0.3 μM) was decreased by a specific inhibitor of PKA, H-89, whereas a specific inhibitor of PKG, Rp-8-Br-cyclic GMPS, was without effect. No significant difference in PKA and PKG activity ratios was detected in aortic rings when isoprenaline 10 μM was used. At the same concentration, isoprenaline did not modify ATP-induced changes in [Ca2+]i in smooth muscle cells. Neither H-89 nor Rp-8-Br-cyclic GMPS modified this response. These findings suggest that PKA is only involved in the relaxant effect induced by low concentrations of isoprenaline (0.01–0.3 μM), whereas for higher concentrations, other mechanisms independent of PKA and PKG are involved. The relaxant effects induced by SK&F 94120 and rolipram were inhibited by Rp-8-Br-cyclic GMPS with no significant effect of H-89. Neither SK&F 94120, nor rolipram at 30 μM significantly modified the activity ratios of PKA and PKG. Rolipram inhibited the ATP-induced transient increase in [Ca2+]i. This decrease was abolished by Rp-8-Br-cyclic GMPS whereas H-89 had no significant effect. These results suggest that PKG is involved in the vascular effects induced by the inhibitors of PDE3 and PDE4. Moreover, since it was previously shown that PDE3 and PDE4 inhibitors only increased cyclic AMP levels with no change in cyclic GMP level, these data also suggest a cross-activation of PKG by cyclic AMP in rat aorta. The combination of 5 μM SK&F 94120 with rolipram markedly

  11. TEC protein tyrosine kinase is involved in the Erk signaling pathway induced by HGF

    SciTech Connect

    Li, Feifei; Jiang, Yinan; Zheng, Qiping; Yang, Xiaoming; Wang, Siying

    2011-01-07

    Research highlights: {yields} TEC is rapidly tyrosine-phosphorylated and activated by HGF-stimulation in vivo or after partial hepatectomy in mice. {yields} TEC enhances the activity of Elk and serum response element (SRE) in HGF signaling pathway in hepatocyte. {yields} TEC promotes hepatocyte proliferation through the Erk-MAPK pathway. -- Abstract: Background/aims: TEC, a member of the TEC family of non-receptor type protein tyrosine kinases, has recently been suggested to play a role in hepatocyte proliferation and liver regeneration. This study aims to investigate the putative mechanisms of TEC kinase regulation of hepatocyte differentiation, i.e. to explore which signaling pathway TEC is involved in, and how TEC is activated in hepatocyte after hepatectomy and hepatocyte growth factor (HGF) stimulation. Methods: We performed immunoprecipitation (IP) and immunoblotting (IB) to examine TEC tyrosine phosphorylation after partial hepatectomy in mice and HGF stimulation in WB F-344 hepatic cells. The TEC kinase activity was determined by in vitro kinase assay. Reporter gene assay, antisense oligonucleotide and TEC dominant negative mutant (TEC{sup KM}) were used to examine the possible signaling pathways in which TEC is involved. The cell proliferation rate was evaluated by {sup 3}H-TdR incorporation. Results: TEC phosphorylation and kinase activity were increased in 1 h after hepatectomy or HGF treatment. TEC enhanced the activity of Elk and serum response element (SRE). Inhibition of MEK1 suppressed TEC phosphorylation. Blocking TEC activity dramatically decreased the activation of Erk. Reduced TEC kinase activity also suppressed the proliferation of WB F-344 cells. These results suggest TEC is involved in the Ras-MAPK pathway and acts between MEK1 and Erk. Conclusions: TEC promotes hepatocyte proliferation and regeneration and is involved in HGF-induced Erk signaling pathway.

  12. Probing the Sites of Interactions of Rotaviral Proteins Involved in Replication

    PubMed Central

    Viskovska, Maria; Anish, Ramakrishnan; Hu, Liya; Chow, Dar-Chone; Hurwitz, Amy M.; Brown, Nicholas G.; Palzkill, Timothy; Estes, Mary K.

    2014-01-01

    ABSTRACT Replication and packaging of the rotavirus genome occur in cytoplasmic compartments called viroplasms, which form during virus infection. These processes are orchestrated by yet-to-be-understood complex networks of interactions involving nonstructural proteins (NSPs) 2, 5, and 6 and structural proteins (VPs) 1, 2, 3, and 6. The multifunctional enzyme NSP2, an octamer with RNA binding activity, is critical for viroplasm formation with its binding partner, NSP5, and for genome replication/packaging through its interactions with replicating RNA, the viral polymerase VP1, and the inner core protein VP2. Using isothermal calorimetry, biolayer interferometry, and peptide array screening, we examined the interactions between NSP2, VP1, VP2, NSP5, and NSP6. These studies provide the first evidence that NSP2 can directly bind to VP1, VP2, and NSP6, in addition to the previously known binding to NSP5. The interacting sites identified from reciprocal peptide arrays were found to be in close proximity to the RNA template entry and double-stranded RNA (dsRNA) exit tunnels of VP1 and near the catalytic cleft and RNA-binding grooves of NSP2; these sites are consistent with the proposed role of NSP2 in facilitating dsRNA synthesis by VP1. Peptide screening of VP2 identified NSP2-binding sites in the regions close to the intersubunit junctions, suggesting that NSP2 binding could be a regulatory mechanism for preventing the premature self-assembly of VP2. The binding sites on NSP2 for NSP6 were found to overlap that of VP1, and the NSP5-binding sites overlap those of VP2 and VP1, suggesting that interaction of these proteins with NSP2 is likely spatially and/or temporally regulated. IMPORTANCE Replication and packaging of the rotavirus genome occur in cytoplasmic compartments called viroplasms that form during virus infection and are orchestrated by complex networks of interactions involving nonstructural proteins (NSPs) and structural proteins (VPs). A multifunctional RNA

  13. The Chlamydomonas reinhardtii Nar1 Gene Encodes a Chloroplast Membrane Protein Involved in Nitrite Transport

    PubMed Central

    Rexach, Jesus; Fernández, Emilio; Galván, Aurora

    2000-01-01

    A key step for nitrate assimilation in photosynthetic eukaryotes occurs within chloroplasts, where nitrite is reduced to ammonium, which is incorporated into carbon skeletons. The Nar1 gene from Chlamydomonas reinhardtii is clustered with five other genes for nitrate assimilation, all of them regulated by nitrate. Sequence analysis of genomic DNA and cDNA of Nar1 and comparative studies of strains having or lacking Nar1 have been performed. The deduced amino acid sequence indicates that Nar1 encodes a chloroplast membrane protein with substantial identity to putative formate and nitrite transporters in bacteria. Use of antibodies against NAR1 has corroborated its location in the plastidic membrane. Characterization of strains having or lacking this gene suggests that NAR1 is involved in nitrite transport in plastids, which is critical for cell survival under limiting nitrate conditions, and controls the amount of nitrate incorporated by the cells under limiting CO2 conditions. PMID:10948261

  14. AN ODORANT-BINDING PROTEIN INVOLVED IN PERCEPTION OF HOST PLANT ODORANTS IN LOCUST Locusta migratoria.

    PubMed

    Li, Jia; Zhang, Long; Wang, Xiaoqi

    2016-04-01

    Locusts, Locusta migratoria (Orthoptera: Acrididae), are extremely destructive agricultural pests, but very little is known of their molecular aspects of perception to host plant odorants including related odorant-binding proteins (OBPs), though several OBPs have been identified in locust. To elucidate the function of LmigOBP1, the first OBP identified from locust, RNA interference was employed in this study to silence LmigOBP1, which was achieved by injection of dsRNA targeting LmigOBP1 into the hemolymph of male nymphs. Compared with LmigOBP1 normal nymphs, LmigOBP1 knockdown nymphs significantly decreased food (maize leaf, Zea mays) consumption and electro-antennography responses to five maize leaf volatiles, ((Z)-3-hexenol, linalool, nonanal, decanal, and (Z)-3-hexenyl acetate). These suggest that LmigOBP1 is involved in perception of host plant odorants.

  15. Involvement of retinoblastoma-associated protein 48 during photodynamic therapy of cervical cancer cells.

    PubMed

    Wu, Shuxia; Wang, Lijun; Ren, Xingye; Pan, Yulu; Peng, Yan; Zou, Xiaoyan; Shi, Cuige; Zhang, Youzhong

    2017-03-01

    5-Aminolevulinic acid-mediated photodynamic therapy (ALA‑PDT) is an effective treatment option for cervical intraepithelial neoplasia, the precancerous lesion of cervical cancer, and early cervical cancer, particularly for young or nulliparous women who want to remain fertile. A previous report described the involvement of histone deacetylases (HDAC) during ALA‑PDT mediated apoptosis in the cerebral cortex of a mouse model. Retinoblastoma‑associated protein 48 (RbAp48), a highly abundant component of HDACs, is a critical mediator that controls the transforming activity of human papillomavirus 16 in cervical cancer cells. The aim of the present study was to investigate the involvement of RbAp48 in ALA‑PDT‑induced cell death in cervical cancer cells. RbAp48 was significantly upregulated in cervical cancer cell lines treated with ALA‑PDT, including SiHa and HeLa cells. To establish the relevance of RbAp48 and the efficacy of ALA‑PDT in cervical cancer cells, the effect of ALA‑PDT was investigated in SiHa or HeLa cells following the depletion of RbAp48 by small interfering RNA (siRNA). Reduction of RbAp48 led to the reduced suppression of proliferation and apoptosis induced by ALA‑PDT in cervical cancer cells, which was associated with a reduction in tumor suppressor protein 53 (p53), retinoblastoma (Rb), apoptosis‑related enzyme caspase‑3, and increased levels of the oncogenic genes, human papillomavirus E6 and E7. These results provide evidence that RbAp48 is an important contributor to the efficacy of ALA‑PDT in cervical cancer cells. RbAp48 may be a therapeutic target that may help to improve the treatment of cervical cancer.

  16. Matrix Gla protein is involved in elastic fiber calcification in the dermis of pseudoxanthoma elasticum patients.

    PubMed

    Gheduzzi, Dealba; Boraldi, Federica; Annovi, Giulia; DeVincenzi, Chiara Paolinelli; Schurgers, Leon J; Vermeer, Cees; Quaglino, Daniela; Ronchetti, Ivonne Pasquali

    2007-10-01

    Mature MGP (Matrix gamma-carboxyglutamic acid protein) is known to inhibit soft connective tissues calcification. We investigated its possible involvement in pseudoxanthoma elasticum (PXE), a genetic disorder whose clinical manifestations are due to mineralization of elastic fibers. PXE patients have lower serum concentration of total MGP compared to controls (P<0.001). Antibodies specific for the noncarboxylated (Glu-MGP) and for the gamma-carboxylated (Gla-MGP) forms of MGP were assayed on ultrathin sections of dermis from controls and PXE patients. Normal elastic fibers in controls and patients were slightly positive for both forms of MGP, whereas Gla-MGP was more abundant within control's than within patient's elastic fibers (P<0.001). In patients' calcified elastic fibers, Glu-MGP intensively colocalized with mineral precipitates, whereas Gla-MGP precisely localized at the mineralization front. Data suggest that MGP is present within elastic fibers and is associated with calcification of dermal elastic fibers in PXE. To investigate whether local cells produce MGP, dermal fibroblasts were cultured in vitro and MGP was assayed at mRNA and protein levels. In spite of very similar MGP mRNA expression, cells from PXE patients produced 30% less of Gla-MGP compared to controls. Data were confirmed by immunocytochemistry on ultrathin sections. Normal fibroblasts in vitro were positive for both forms of MGP. PXE fibroblasts were positive for Glu-MGP and only barely positive for Gla-MGP (P<0.001). In conclusion, MGP is involved in elastic fiber calcification in PXE. The lower ratio of Gla-MGP over Glu-MGP in pathological fibroblasts compared to controls suggests these cells may play an important role in the ectopic calcification in PXE.

  17. Involvement of eicosanoids and surfactant protein D in extrinsic allergic alveolitis.

    PubMed

    Higashi, A; Higashi, N; Tsuburai, T; Takeuchi, Y; Taniguchi, M; Mita, H; Saito, A; Takatori, K; Arimura, K; Akiyama, K

    2005-12-01

    The pathophysiology of extrinsic allergic alveolitis (EAA) involves oxidative lung damage as well as interstitial and alveolar inflammation. Macrophages and mast cells are inflammatory components of EAA that produce both leukotrienes (LTs) and prostaglandin D2 (PGD2). In addition, PGD2 is also produced by the free-radical-catalysed peroxidation of arachidonic acid during oxidative stress. Urinary 8-iso prostaglandin F2alpha (8-isoPGF2alpha) and serum surfactant protein D (SP-D) are considered appropriate biomarkers of oxidative stress and interstitial lung disease activity, respectively. The present study aimed to assess the association of these biomarkers with the pathophysiology of EAA. Two cases of acute EAA caused by the inhalation of fungi spores were reported. Eight asthmatic patients and six healthy control subjects were also enrolled in the current study. The serum SP-D and urinary eicosanoid (LTE4, PGD2 metabolite (9alpha,11betaPGF2), 8-isoPGF2alpha) concentrations markedly increased during the acute exacerbation phase. These concentrations decreased following corticosteroid therapy in the EAA patients. There was a significant correlation between serum SP-D and urinary 9alpha,11betaPGF2 concentrations in the EAA patients. In conclusion, although the present study proposes that serum surfactant protein-D and urinary eicosanoids are new biomarkers involved in the various immunological responses in extrinsic allergic alveolitis, further large-scale studies are needed to investigate the role of these compounds, not just as biomarkers, but also as biological potentiators of extrinsic allergic alveolitis.

  18. Artificial Neural Network for the Prediction of Tyrosine-Based Sorting Signal Recognition by Adaptor Complexes

    PubMed Central

    Mukherjee, Debarati; Hanna, Claudia B.; Aguilar, R. Claudio

    2012-01-01

    Sorting of transmembrane proteins to various intracellular compartments depends on specific signals present within their cytosolic domains. Among these sorting signals, the tyrosine-based motif (YXXØ) is one of the best characterized and is recognized by μ-subunits of the four clathrin-associated adaptor complexes (AP-1 to AP-4). Despite their overlap in specificity, each μ-subunit has a distinct sequence preference dependent on the nature of the X-residues. Moreover, combinations of these residues exert cooperative or inhibitory effects towards interaction with the various APs. This complexity makes it impossible to predict a priori, the specificity of a given tyrosine-signal for a particular μ-subunit. Here, we describe the results obtained with a computational approach based on the Artificial Neural Network (ANN) paradigm that addresses the issue of tyrosine-signal specificity, enabling the prediction of YXXØ-μ interactions with accuracies over 90%. Therefore, this approach constitutes a powerful tool to help predict mechanisms of intracellular protein sorting. PMID:22505811

  19. Involvement of protein kinase C in the response of Neurospora crassa to blue light.

    PubMed

    Arpaia, G; Cerri, F; Baima, S; Macino, G

    1999-09-01

    As a first step towards understanding the process of blue light perception, and the signal transduction mechanisms involved, in Neurospora crassa we have used a pharmacological approach to screen a wide range of second messengers and chemical compounds known to interfere with the activity of well-known signal transducing molecules in vivo. We tested the influence of these compounds on the induction of the al-3 gene, a key step in light-induced carotenoid biosynthesis. This approach has implicated protein kinase C (PKC) as a component of the light transduction machinery. The conclusion is based on the effects of specific inhibitors (calphostin C and chelerythrine chloride) and activators of PKC (1,2-dihexanoyl-sn-glycerol). During vegetative growth PKC may be responsible for desensitization to light because inhibitors of the enzyme cause an increase in the total amount of mRNA transcribed after illumination. PKC is therefore proposed here to be an important regulator of transduction of the blue light signal, and may act through modification of the protein White Collar-1, which we show to be a substrate for PKC in N. crassa.

  20. A Wiskott-Aldrich syndrome protein is involved in endocytosis in Aspergillus nidulans.

    PubMed

    Hoshi, Hiro-Omi; Zheng, Lu; Ohta, Akinori; Horiuchi, Hiroyuki

    2016-09-01

    Endocytosis is vital for hyphal tip growth in filamentous fungi and is involved in the tip localization of various membrane proteins. To investigate the function of a Wiskott-Aldrich syndrome protein (WASP) in endocytosis of filamentous fungi, we identified a WASP ortholog-encoding gene, wspA, in Aspergillus nidulans and characterized it. The wspA product, WspA, localized to the tips of germ tubes during germination and actin rings in the subapical regions of mature hyphae. wspA is essential for the growth and functioned in the polarity establishment and maintenance during germination of conidia. We also investigated its function in endocytosis and revealed that endocytosis of SynA, a synaptobrevin ortholog that is known to be endocytosed at the subapical regions of hyphal tips in A. nidulans, did not occur when wspA expression was repressed. These results suggest that WspA plays roles in endocytosis at hyphal tips and polarity establishment during germination.

  1. HTLV-1 Tax-mediated TAK1 activation involves TAB2 adapter protein

    SciTech Connect

    Yu Qingsheng; Minoda, Yasumasa; Yoshida, Ryoko; Yoshida, Hideyuki; Iha, Hidekatsu; Kobayashi, Takashi; Yoshimura, Akihiko; Takaesu, Giichi

    2008-01-04

    Human T cell leukemia virus type 1 (HTLV-1) Tax is an oncoprotein that plays a crucial role in the proliferation and transformation of HTLV-1-infected T lymphocytes. It has recently been reported that Tax activates a MAPKKK family, TAK1. However, the molecular mechanism of Tax-mediated TAK1 activation is not well understood. In this report, we investigated the role of TAK1-binding protein 2 (TAB2) in Tax-mediated TAK1 activation. We found that TAB2 physically interacts with Tax and augments Tax-induced NF-{kappa}B activity. Tax and TAB2 cooperatively activate TAK1 when they are coexpressed. Furthermore, TAK1 activation by Tax requires TAB2 binding as well as ubiquitination of Tax. We also found that the overexpression of TRAF2, 5, or 6 strongly induces Tax ubiquitination. These results suggest that TAB2 may be critically involved in Tax-mediated activation of TAK1 and that NF-{kappa}B-activating TRAF family proteins are potential cellular E3 ubiquitin ligases toward Tax.

  2. Cellular COPII Proteins Are Involved in Production of the Vesicles That Form the Poliovirus Replication Complex

    PubMed Central

    Rust, René C.; Landmann, Lukas; Gosert, Rainer; Tang, Bor Luen; Hong, Wanjin; Hauri, Hans-Peter; Egger, Denise; Bienz, Kurt

    2001-01-01

    Poliovirus (PV) replicates its genome in association with membranous vesicles in the cytoplasm of infected cells. To elucidate the origin and mode of formation of PV vesicles, immunofluorescence labeling with antibodies against the viral vesicle marker proteins 2B and 2BC, as well as cellular markers of the endoplasmic reticulum (ER), anterograde transport vesicles, and the Golgi complex, was performed in BT7-H cells. Optical sections obtained by confocal laser scanning microscopy were subjected to a deconvolution process to enhance resolution and signal-to-noise ratio and to allow for a three-dimensional representation of labeled membrane structures. The mode of formation of the PV vesicles was, on morphological grounds, similar to the formation of anterograde membrane traffic vesicles in uninfected cells. ER-resident membrane markers were excluded from both types of vesicles, and the COPII components Sec13 and Sec31 were both found to be colocalized on the vesicular surface, indicating the presence of a functional COPII coat. PV vesicle formation during early time points of infection did not involve the Golgi complex. The expression of PV protein 2BC or the entire P2 and P3 genomic region led to the production of vesicles carrying a COPII coat and showing the same mode of formation as vesicles produced after PV infection. These results indicate that PV vesicles are formed at the ER by the cellular COPII budding mechanism and thus are homologous to the vesicles of the anterograde membrane transport pathway. PMID:11559814

  3. Involvement of the cellular prion protein in the migration of brain microvascular endothelial cells.

    PubMed

    Watanabe, Takuya; Yasutaka, Yuki; Nishioku, Tsuyoshi; Kusakabe, Sae; Futagami, Koujiro; Yamauchi, Atsushi; Kataoka, Yasufumi

    2011-06-01

    The conversion of cellular prion protein (PrP(C)) to its protease-resistant isoform is involved in the pathogenesis of prion disease. Although PrP(C) is a ubiquitous glycoprotein that is present in various cell types, the physiological role of PrP(C) remains obscure. The present study aimed to determine whether PrP(C) mediates migration of brain microvascular endothelial cells. Small interfering RNAs (siRNAs) targeting PrP(C) were transfected into a mouse brain microvascular endothelial cell line (bEND.3 cells). siPrP1, selected among three siRNAs, reduced mRNA and protein levels of PrP(C) in bEND.3 cells. Cellular migration was evaluated with a scratch-wound assay. siPrP1 suppressed migration without significantly affecting cellular proliferation. This study provides the first evidence that PrP(C) may be necessary for brain microvascular endothelial cells to migrate into damaged regions in the brain. This function of PrP(C) in the brain endothelium may be a mechanism by which the neurovascular unit recovers from an injury such as an ischemic insult.

  4. Equatorial segment protein (ESP) is a human alloantigen involved in sperm-egg binding and fusion.

    PubMed

    Wolkowicz, M J; Digilio, L; Klotz, K; Shetty, J; Flickinger, C J; Herr, J C

    2008-01-01

    The equatorial segment of the sperm head is known to play a role in fertilization; however, the specific sperm molecules contributing to the integrity of the equatorial segment and in binding and fusion at the oolemma remain incomplete. Moreover, identification of molecular mediators of fertilization that are also immunogenic in humans is predicted to advance both the diagnosis and treatment of immune infertility. We previously reported the cloning of Equatorial Segment Protein (ESP), a protein localized to the equatorial segment of ejaculated human sperm. ESP is a biomarker for a subcompartment of the acrosomal matrix that can be traced through all stages of acrosome biogenesis (Wolkowicz et al, 2003). In the present study, ESP immunoreacted on Western blots with 4 (27%) of 15 antisperm antibody (ASA)-positive serum samples from infertile male patients and 2 (40%) of 5 ASA-positive female sera. Immunofluorescent studies revealed ESP in the equatorial segment of 89% of acrosome-reacted sperm. ESP persisted as a defined equatorial segment band on 100% of sperm tightly bound to the oolemma of hamster eggs. Antisera to recombinant human ESP inhibited both oolemmal binding and fusion of human sperm in the hamster egg penetration assay. The results indicate that ESP is a human alloantigen involved in sperm-egg binding and fusion. Defined recombinant sperm immunogens, such as ESP, may offer opportunities for differential diagnosis of immune infertility.

  5. Gene expression in primary cultured astrocytes affected by aluminum: alteration of chaperons involved in protein folding

    PubMed Central

    Aremu, David A.; Ezomo, Ojeiru F.

    2010-01-01

    Objectives Aluminum is notorious as a neurotoxic metal. The aim of our study was to determine whether endoplasmic reticulum (ER) stress is involved in aluminum-induced apoptosis in astrocytes. Methods Mitochondrial RNA (mRNA) was analyzed by reverse transcription (RT)-PCR following pulse exposure of aluminum glycinate to primary cultured astrocytes. Tunicamycin was used as a positive control. Results Gene expression analysis revealed that Ire1β was up-regulated in astrocytes exposed to aluminum while Ire1α was up-regulated by tunicamycin. Exposure to aluminum glycinate, in contrast to tunicamycin, seemed to down-regulate mRNA expression of many genes, including the ER resident molecular chaperone BiP/Grp78 and Ca2+-binding chaperones (calnexin and calreticulin), as well as stanniocalcin 2 and OASIS. The down-regulation or non-activation of the molecular chaperons, whose expressions are known to be protective by increasing protein folding, may spell doom for the adaptive response. Exposure to aluminum did not have any significant effects on the expression of Bax and Bcl2 in astrocytes. Conclusions The results of this study demonstrate that aluminum may induce apoptosis in astrocytes via ER stress by impairing the protein-folding machinery. PMID:21432213

  6. ZAS: C2H2 zinc finger proteins involved in growth and development.

    PubMed

    Wu, Lai-Chu

    2002-01-01

    A ZAS gene encodes a large protein with two separate C2H2 zinc finger pairs that independently bind to specific DNA sequences, including the kappaB motif. Three paralogous mammalian genes, ZAS1, ZAS2, and ZAS3, and a related Drosophila gene, Schnurri, have been cloned and characterized. The ZAS genes encode transcriptional proteins that activate or repress the transcription of a variety of genes involved in growth, development, and metastasis. In addition, ZAS3 associates with a TNF receptor-associated factor to inhibit NF-kappaB- and JNK/ SAPK-mediated signaling of TNF-alpha. Genetic experi