Science.gov

Sample records for adaptor protein mavs

  1. Structural Insights into mitochondrial antiviral signaling protein (MAVS)-tumor necrosis factor receptor-associated factor 6 (TRAF6) signaling.

    PubMed

    Shi, Zhubing; Zhang, Zhen; Zhang, Zhenzhen; Wang, Yanyan; Li, Chuanchuan; Wang, Xin; He, Feng; Sun, Lina; Jiao, Shi; Shi, Weiyang; Zhou, Zhaocai

    2015-10-30

    In response to viral infection, cytosolic retinoic acid-inducible gene I-like receptors sense viral RNA and promote oligomerization of mitochondrial antiviral signaling protein (MAVS), which then recruits tumor necrosis factor receptor-associated factor (TRAF) family proteins, including TRAF6, to activate an antiviral response. Currently, the interaction between MAVS and TRAF6 is only partially understood, and atomic details are lacking. Here, we demonstrated that MAVS directly interacts with TRAF6 through its potential TRAF6-binding motif 2 (T6BM2; amino acids 455-460). Further, we solved the crystal structure of MAVS T6BM2 in complex with the TRAF6 TRAF_C domain at 2.95 Å resolution. T6BM2 of MAVS binds to the canonical adaptor-binding groove of the TRAF_C domain. Structure-directed mutational analyses in vitro and in cells revealed that MAVS binding to TRAF6 via T6BM2 instead of T6BM1 is essential but not sufficient for an optimal antiviral response. Particularly, a MAVS mutant Y460E retained its TRAF6-binding ability as predicted but showed significantly impaired signaling activity, highlighting the functional importance of this tyrosine. Moreover, these observations were further confirmed in MAVS(-/-) mouse embryonic fibroblast cells. Collectively, our work provides a structural basis for understanding the MAVS-TRAF6 antiviral response. PMID:26385923

  2. Alteration of Antiviral Signalling by Single Nucleotide Polymorphisms (SNPs) of Mitochondrial Antiviral Signalling Protein (MAVS)

    PubMed Central

    Xing, Fei; Matsumiya, Tomoh; Hayakari, Ryo; Yoshida, Hidemi; Kawaguchi, Shogo; Takahashi, Ippei; Nakaji, Shigeyuki; Imaizumi, Tadaatsu

    2016-01-01

    Genetic variation is associated with diseases. As a type of genetic variation occurring with certain regularity and frequency, the single nucleotide polymorphism (SNP) is attracting more and more attention because of its great value for research and real-life application. Mitochondrial antiviral signalling protein (MAVS) acts as a common adaptor molecule for retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), which can recognize foreign RNA, including viral RNA, leading to the induction of type I interferons (IFNs). Therefore, MAVS is thought to be a crucial molecule in antiviral innate immunity. We speculated that genetic variation of MAVS may result in susceptibility to infectious diseases. To assess the risk of viral infection based on MAVS variation, we tested the effects of twelve non-synonymous MAVS coding-region SNPs from the National Center for Biotechnology Information (NCBI) database that result in amino acid substitutions. We found that five of these SNPs exhibited functional alterations. Additionally, four resulted in an inhibitory immune response, and one had the opposite effect. In total, 1,032 human genomic samples obtained from a mass examination were genotyped at these five SNPs. However, no homozygous or heterozygous variation was detected. We hypothesized that these five SNPs are not present in the Japanese population and that such MAVS variations may result in serious immune diseases. PMID:26954674

  3. Serodiagnostic Potential of Mycobacterium avium MAV2054 and MAV5183 Proteins

    PubMed Central

    Shin, A-Rum; Lee, Kil-Soo; Lee, Kang In; Shim, Tae Sun; Koh, Won-Jung; Jeon, Haet Sal; Son, Yeo-Jin; Shin, Sung-Jae

    2013-01-01

    The Mycobacterium avium-M. intracellulare complex (MAC) causes a pulmonary disease (PD) similar to tuberculosis (TB). Diagnosis of MAC-PD is complicated and time-consuming. In this study, the serodiagnostic potential of the newly identified MAV2054 and MAV5183 proteins was evaluated in subjects with MAC-PD, pulmonary TB, or latent TB and in noninfected healthy controls (HC), together with HspX and the 38-kDa antigen, well-known serodiagnostic M. tuberculosis antigens. All four antigens evoked significantly higher IgG responses in MAC-PD and active TB than in latent TB and HC subjects. Among the antigens, MAV2054 elicited the highest antibody responses in pulmonary TB and MAC-PD patients. IgG titers against MAV2054 and MAV5183 were significantly higher in MAC-PD than in pulmonary TB subjects. In addition, the levels of IgG against all antigens in the M. intracellulare and fibrocavitary forms were higher than those in the M. avium and nodular bronchiectatic forms, respectively. Based on sensitivity and receiver operator characteristic curve analysis, the best candidates for detection of MAC-PD and pulmonary TB were MAV2054 and the 38-kDa antigen, respectively. In total, 76.0% of MAC-PD and 65.0% of active TB patients were reactive to at least two antigens. In contrast, only 2.8% of HC subjects were reactive with two or more antigens. Our findings suggest that an enzyme-linked immunosorbent assay (ELISA) using the four antigens would be valuable for screening for mycobacterial lung disease, including MAC-PD and pulmonary TB, although it does not provide good discrimination of the disease-causing pathogens. PMID:23269416

  4. MAVS Protein Is Attenuated by Rotavirus Nonstructural Protein 1

    PubMed Central

    Nandi, Satabdi; Chanda, Shampa; Bagchi, Parikshit; Nayak, Mukti Kant; Bhowmick, Rahul; Chawla-Sarkar, Mamta

    2014-01-01

    Rotavirus is the single, most important agent of infantile gastroenteritis in many animal species, including humans. In developing countries, rotavirus infection attributes approximately 500,000 deaths annually. Like other viruses it establishes an intimate and complex interaction with the host cell to counteract the antiviral responses elicited by the cell. Among various pattern recognition receptors (PAMPs) of the host, the cytosolic RNA helicases interact with viral RNA to activate the Mitochondrial Antiviral Signaling protein (MAVS), which regulates cellular interferon response. With an aim to identify the role of different PAMPs in rotavirus infected cell, MAVS was found to degrade in a time dependent and strain independent manner. Rotavirus non-structural protein 1 (NSP1) which is a known IFN antagonist, interacted with MAVS and degraded it in a strain independent manner, resulting in a complete loss of RNA sensing machinery in the infected cell. To best of our knowledge, this is the first report on NSP1 functionality where a signaling protein is targeted unanimously in all strains. In addition NSP1 inhibited the formation of detergent resistant MAVS aggregates, thereby averting the antiviral signaling cascade. The present study highlights the multifunctional role of rotavirus NSP1 and reinforces the fact that the virus orchestrates the cellular antiviral response to its own benefit by various back up strategies. PMID:24643253

  5. MAVS maintains mitochondrial homeostasis via autophagy

    PubMed Central

    Sun, Xiaofeng; Sun, Liwei; Zhao, Yuanyuan; Li, Ying; Lin, Wei; Chen, Dahua; Sun, Qinmiao

    2016-01-01

    Mitochondrial antiviral signalling protein (MAVS) acts as a critical adaptor protein to transduce antiviral signalling by physically interacting with activated RIG-I and MDA5 receptors. MAVS executes its functions at the outer membrane of mitochondria to regulate downstream antiviral signalling, indicating that the mitochondria provides a functional platform for innate antiviral signalling transduction. However, little is known about whether and how MAVS-mediated antiviral signalling contributes to mitochondrial homeostasis. Here we show that the activation of MAVS is sufficient to induce autophagic signalling, which may mediate the turnover of the damaged mitochondria. Importantly, we find MAVS directly interacts with LC3 through its LC3-binding motif ‘YxxI’, suggesting that MAVS might act as an autophagy receptor to mediate mitochondrial turnover upon excessive activation of RLR signalling. Furthermore, we provide evidence that both MAVS self-aggregation and its interaction with TRAF2/6 proteins are important for MAVS-mediated mitochondrial turnover. Collectively, our findings suggest that MAVS acts as a potential receptor for mitochondria-associated autophagic signalling to maintain mitochondrial homeostasis. PMID:27551434

  6. MAVS maintains mitochondrial homeostasis via autophagy.

    PubMed

    Sun, Xiaofeng; Sun, Liwei; Zhao, Yuanyuan; Li, Ying; Lin, Wei; Chen, Dahua; Sun, Qinmiao

    2016-01-01

    Mitochondrial antiviral signalling protein (MAVS) acts as a critical adaptor protein to transduce antiviral signalling by physically interacting with activated RIG-I and MDA5 receptors. MAVS executes its functions at the outer membrane of mitochondria to regulate downstream antiviral signalling, indicating that the mitochondria provides a functional platform for innate antiviral signalling transduction. However, little is known about whether and how MAVS-mediated antiviral signalling contributes to mitochondrial homeostasis. Here we show that the activation of MAVS is sufficient to induce autophagic signalling, which may mediate the turnover of the damaged mitochondria. Importantly, we find MAVS directly interacts with LC3 through its LC3-binding motif 'YxxI', suggesting that MAVS might act as an autophagy receptor to mediate mitochondrial turnover upon excessive activation of RLR signalling. Furthermore, we provide evidence that both MAVS self-aggregation and its interaction with TRAF2/6 proteins are important for MAVS-mediated mitochondrial turnover. Collectively, our findings suggest that MAVS acts as a potential receptor for mitochondria-associated autophagic signalling to maintain mitochondrial homeostasis. PMID:27551434

  7. [MAVS protein and its interactions with hepatitis A, B and C viruses].

    PubMed

    Wyżewski, Zbigniew; Gregorczyk, Karolina P; Struzik, Justyna; Niemiałtowski, Marek; Szulc-Dąbrowska, Lidia

    2016-01-01

    Mitochondrial antiviral signaling protein (MAVS) transmits activation signal of type I interferon (IFN) gene transcription in the molecular intracellular pathway, which depends on the protein encoded by retinoic acid inducible gene I (RIG-I) or melanoma differentiation-associated protein-5 (MDA-5). MAVS, as a signal molecule, performs an essential function in the development of an antiviral immune response. The molecule of MAVS consists of two domains: the N-terminal domain and the C-terminal domain. The N-terminal end of MAVS contains the caspase activation and recruitment domain (CARD). CARD is responsible for MAVS interaction with RIG-I and MDA-5, which act as cytosolic sensors detecting foreign viral genetic material in the host cell. After binding to viral RNA, RIG-I or MDA-5 activates MAVS and transmits the signal of IFN type I gene expression. The C-terminal transmembrane domain (TM) of MAVS anchors the protein to the outer mitochondrial membrane. In this paper interactions between MAVS and hepatitis virus type A (HAV), type B (HBV) and type C (HCV) are presented. Mechanisms of indirect activation of MAVS by viral DNA and RNA, as well as the strategies of HAV, HBV and HCV for blocking of the intracellular signaling pathway at the level of MAVS, are described. PMID:26864061

  8. Functional characterization of the evolutionarily preserved mitochondrial antiviral signaling protein (MAVS) from rock bream, Oplegnathus fasciatus.

    PubMed

    Kasthuri, Saranya Revathy; Wan, Qiang; Whang, Ilson; Lim, Bong-Soo; Yeo, Sang-Yeob; Choi, Cheol Young; Lee, Jehee

    2014-10-01

    Antimicrobial immune defense is evolutionarily preserved in all organisms. Mammals have developed robust, protein-based antiviral defenses, which are under constant investigation. Studies have provided evidences for the various fish immune factors sharing similarity with those of mammals. In this study, we have identified an ortholog of mitochondrial antiviral signaling protein from rock bream, Oplegnathus fasciatus. RbMAVS cDNA possesses an open reading frame (ORF) of 1758 bp coding for a protein of 586 amino acids with molecular mass of approximately 62 kDa and isoelectric point of 4.6. In silico analysis of RbMAVS protein revealed a caspase recruitment domain (CARD), a proline rich domain and a transmembrane domain. RbMAVS protein also contains a putative TRAF2 binding motif, (319)PVQDT(323). Primary sequence comparison of RbMAVS with other orthologues revealed heterogeneity towards the C-terminus after the CARD region. RbMAVS transcripts were evident in all the examined tissues. RbMAVS expression was induced in vivo after poly I:C challenge in peripheral blood cells, liver, head kidney and spleen tissues. Over-expression of RbMAVS potently inhibited marine birnavirus (MABV) infection in rock bream heart cells and induced various cytokines and signaling molecules in vitro. Thus, RbMAVS is an antiviral protein and potentially involved in the recognition and signaling of antiviral defense mechanism in rock bream. PMID:25107693

  9. Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins.

    PubMed

    Zhao, Baoyu; Shu, Chang; Gao, Xinsheng; Sankaran, Banumathi; Du, Fenglei; Shelton, Catherine L; Herr, Andrew B; Ji, Jun-Yuan; Li, Pingwei

    2016-06-14

    Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)-like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses. PMID:27302953

  10. Molecular cloning and functional characterization of duck mitochondrial antiviral-signaling protein (MAVS).

    PubMed

    Li, Huilin; Zhai, Yajun; Fan, Yufang; Chen, Huanchun; Zhang, Anding; Jin, Hui; Luo, Rui

    2016-03-01

    Mitochondrial antiviral-signaling protein (MAVS), also called IPS-1/VISA/Cardif, is an important molecule involved in host defense and triggers a signal for producing type I IFN. Currently the function of MAVS in ducks (duMAVS) remains largely unclear while significant progress has been made in mammals. In this study, the full-length duMAVS cDNA was cloned from duck embryo fibroblasts (DEFs) for the first time. Tissue specificity analysis showed duMAVS was universally expressed in all detected tissues. DEFs transfected with duMAVS were able to induce interferon-β (IFN-β) expression through activating interferon regulatory factor 1 (IRF1) and nuclear factor kappa B (NF-κB). Both the CARD-like domain and transmembrane domain were required for duMAVS signaling via deletion mutant analysis. In addition, poly(I:C)- or Sendai virus (SeV)-induced IFN-β expression in DEFs were significantly decreased by knock-down of duMAVS with siRNA. Altogether, these results indicate that MAVS is a critical immunoregulator in duck innate immune system. PMID:26586642

  11. The mitochondrial anti-viral protein MAVS associates with NLRP3 and regulates its inflammasome activity1

    PubMed Central

    Park, Sangjun; Juliana, Christine; Hong, Sujeong; Datta, Pinaki; Hwang, Inhwa; Fernandes-Alnemri, Teresa; Yu, Je-Wook; Alnemri, Emad S.

    2013-01-01

    NLRP3 assembles an inflammasome complex that activates caspase-1 upon sensing various danger signals derived from pathogenic infection, tissue damage and environmental toxins. How NLRP3 senses these various stimuli is still poorly understood, but mitochondria and mitochondrial reactive oxygen species (mtROS) have been proposed to play a critical role in NLRP3 activation. Here, we provide evidence that the mitochondrial anti-viral signaling protein MAVS associates with NLRP3 and facilitates its oligomerization leading to caspase-1 activation. In reconstituted 293T cells, full length MAVS promoted NLRP3-dependent caspase-1 activation, while a C-terminal transmembrane domain-truncated mutant of MAVS (MAVS-ΔTM) did not. MAVS, but not MAVS-ΔTM, interacted with NLRP3 and triggered the oligomerization of NLRP3, suggesting that mitochondrial localization of MAVS and intact MAVS signaling are essential for activating the NLRP3 inflammasome. Supporting this, activation of MAVS signaling by Sendai virus infection promoted NLRP3-dependent caspase-1 activation, whereas, knocking down MAVS expression clearly attenuated the activation of NLRP3 inflammasome by Sendai virus in THP-1 and mouse macrophages. Taken together, our results suggest that MAVS facilitates the recruitment of NLRP3 to the mitochondria and may enhance its oligomerization and activation by bringing it in close proximity to mtROS. PMID:24048902

  12. Anti-adaptors provide multiple modes for regulation of the RssB adaptor protein

    PubMed Central

    Battesti, Aurelia; Hoskins, Joel R.; Tong, Song; Milanesio, Paola; Mann, Jessica M.; Kravats, Andrea; Tsegaye, Yodit M.; Bougdour, Alexandre; Wickner, Sue; Gottesman, Susan

    2013-01-01

    RpoS, an RNA polymerase σ factor, controls the response of Escherichia coli and related bacteria to multiple stress responses. During nonstress conditions, RpoS is rapidly degraded by ClpXP, mediated by the adaptor protein RssB, a member of the response regulator family. In response to stress, RpoS degradation ceases. Small anti-adaptor proteins—IraP, IraM, and IraD, each made under a different stress condition—block RpoS degradation. RssB mutants resistant to either IraP or IraM were isolated and analyzed in vivo and in vitro. Each of the anti-adaptors is unique in its interaction with RssB and sensitivity to RssB mutants. One class of mutants defined an RssB N-terminal region close to the phosphorylation site and critical for interaction with IraP but unnecessary for IraM and IraD function. A second class, in the RssB C-terminal PP2C-like domain, led to activation of RssB function. These mutants allowed the response regulator to act in the absence of phosphorylation but did not abolish interaction with anti-adaptors. This class of mutants is broadly resistant to the anti-adaptors and bears similarity to constitutively activated mutants found in a very different PP2C protein. The mutants provide insight into how the anti-adaptors perturb RssB response regulator function and activation. PMID:24352426

  13. Small-molecule control of protein degradation using split adaptors.

    PubMed

    Davis, Joseph H; Baker, Tania A; Sauer, Robert T

    2011-11-18

    Targeted intracellular degradation provides a method to study the biological function of proteins and has numerous applications in biotechnology. One promising approach uses adaptor proteins to target substrates with genetically encoded degradation tags for proteolysis. Here, we describe an engineered split-adaptor system, in which adaptor assembly and delivery of substrates to the ClpXP protease depends on a small molecule (rapamycin). This degradation system does not require modification of endogenous proteases, functions robustly over a wide range of adaptor concentrations, and does not require new synthesis of adaptors or proteases to initiate degradation. We demonstrate the efficacy of this system in E. coli by degrading tagged variants of LacI repressor and FtsA, an essential cell-division protein. In the latter case, addition of rapamycin causes pronounced filamentation because daughter cells cannot divide. Strikingly, washing rapamycin away reverses this phenotype. Our system is highly modular, with clearly defined interfaces for substrate binding, protease binding, and adaptor assembly, providing a clear path to extend this system to other degradation tags, proteases, or induction systems. Together, these new reagents should be useful in controlling protein degradation in bacteria. PMID:21866931

  14. Small-molecule control of protein degradation using split adaptors

    PubMed Central

    Davis, Joseph H.; Baker, Tania A.; Sauer, Robert T.

    2011-01-01

    Targeted intracellular degradation provides a method to study the biological function of proteins and has numerous applications in biotechnology. One promising approach uses adaptor proteins to target substrates with genetically encoded degradation tags for proteolysis. Here, we describe an engineered split-adaptor system, in which adaptor assembly and delivery of substrates to the ClpXP protease depends on a small molecule (rapamycin). This degradation system does not require modification of endogenous proteases, functions robustly over a wide range of adaptor concentrations, and does not require new synthesis of adaptors or proteases to initiate degradation. We demonstrate the efficacy of this system in E. coli by degrading tagged variants of LacI repressor and FtsA, an essential cell-division protein. In the latter case, addition of rapamycin causes pronounced filamentation because daughter cells cannot divide. Strikingly, washing rapamycin away reverses this phenotype. Our system is highly modular, with clearly-defined interfaces for substrate binding, protease binding, and adaptor assembly, providing a clear path to extend this system to other degradation tags, proteases, or induction systems. Together, these new reagents should be useful in controlling protein degradation in bacteria. PMID:21866931

  15. MavN is a Legionella pneumophila vacuole-associated protein required for efficient iron acquisition during intracellular growth

    PubMed Central

    Isaac, Dervla T.; Laguna, Rita K.; Valtz, Nicole; Isberg, Ralph R.

    2015-01-01

    Iron is essential for the growth and virulence of most intravacuolar pathogens. The mechanisms by which microbes bypass host iron restriction to gain access to this metal across the host vacuolar membrane are poorly characterized. In this work, we identify a unique intracellular iron acquisition strategy used by Legionella pneumophila. The bacterial Icm/Dot (intracellular multiplication/defect in organelle trafficking) type IV secretion system targets the bacterial-derived MavN (more regions allowing vacuolar colocalization N) protein to the surface of the Legionella-containing vacuole where this putative transmembrane protein facilitates intravacuolar iron acquisition. The ΔmavN mutant exhibits a transcriptional iron-starvation signature before its growth is arrested during the very early stages of macrophage infection. This intracellular growth defect is rescued only by the addition of excess exogenous iron to the culture medium and not a variety of other metals. Consistent with MavN being a translocated substrate that plays an exclusive role during intracellular growth, the mutant shows no defect for growth in broth culture, even under severe iron-limiting conditions. Putative iron-binding residues within the MavN protein were identified, and point mutations in these residues resulted in defects specific for intracellular growth that are indistinguishable from the ΔmavN mutant. This model of a bacterial protein inserting into host membranes to mediate iron transport provides a paradigm for how intravacuolar pathogens can use virulence-associated secretion systems to manipulate and acquire host iron. PMID:26330609

  16. MavN is a Legionella pneumophila vacuole-associated protein required for efficient iron acquisition during intracellular growth.

    PubMed

    Isaac, Dervla T; Laguna, Rita K; Valtz, Nicole; Isberg, Ralph R

    2015-09-15

    Iron is essential for the growth and virulence of most intravacuolar pathogens. The mechanisms by which microbes bypass host iron restriction to gain access to this metal across the host vacuolar membrane are poorly characterized. In this work, we identify a unique intracellular iron acquisition strategy used by Legionella pneumophila. The bacterial Icm/Dot (intracellular multiplication/defect in organelle trafficking) type IV secretion system targets the bacterial-derived MavN (more regions allowing vacuolar colocalization N) protein to the surface of the Legionella-containing vacuole where this putative transmembrane protein facilitates intravacuolar iron acquisition. The ΔmavN mutant exhibits a transcriptional iron-starvation signature before its growth is arrested during the very early stages of macrophage infection. This intracellular growth defect is rescued only by the addition of excess exogenous iron to the culture medium and not a variety of other metals. Consistent with MavN being a translocated substrate that plays an exclusive role during intracellular growth, the mutant shows no defect for growth in broth culture, even under severe iron-limiting conditions. Putative iron-binding residues within the MavN protein were identified, and point mutations in these residues resulted in defects specific for intracellular growth that are indistinguishable from the ΔmavN mutant. This model of a bacterial protein inserting into host membranes to mediate iron transport provides a paradigm for how intravacuolar pathogens can use virulence-associated secretion systems to manipulate and acquire host iron. PMID:26330609

  17. Two Clathrin Adaptor Protein Complexes Instruct Axon-Dendrite Polarity.

    PubMed

    Li, Pengpeng; Merrill, Sean A; Jorgensen, Erik M; Shen, Kang

    2016-05-01

    The cardinal feature of neuronal polarization is the establishment and maintenance of axons and dendrites. How axonal and dendritic proteins are sorted and targeted to different compartments is poorly understood. Here, we identified distinct dileucine motifs that are necessary and sufficient to target transmembrane proteins to either the axon or the dendrite through direct interactions with the clathrin-associated adaptor protein complexes (APs) in C. elegans. Axonal targeting requires AP-3, while dendritic targeting is mediated by AP-1. The axonal dileucine motif binds to AP-3 with higher efficiency than to AP-1. Both AP-3 and AP-1 are localized to the Golgi but occupy adjacent domains. We propose that AP-3 and AP-1 directly select transmembrane proteins and target them to axon and dendrite, respectively, by sorting them into distinct vesicle pools. PMID:27151641

  18. Activation of Type I and III Interferon Response by Mitochondrial and Peroxisomal MAVS and Inhibition by Hepatitis C Virus.

    PubMed

    Bender, Silke; Reuter, Antje; Eberle, Florian; Einhorn, Evelyne; Binder, Marco; Bartenschlager, Ralf

    2015-11-01

    Sensing viruses by pattern recognition receptors (PRR) triggers the innate immune system of the host cell and activates immune signaling cascades such as the RIG-I/IRF3 pathway. Mitochondrial antiviral-signaling protein (MAVS, also known as IPS-1, Cardif, and VISA) is the crucial adaptor protein of this pathway localized on mitochondria, peroxisomes and mitochondria-associated membranes of the endoplasmic reticulum. Activation of MAVS leads to the production of type I and type III interferons (IFN) as well as IFN stimulated genes (ISGs). To refine the role of MAVS subcellular localization for the induction of type I and III IFN responses in hepatocytes and its counteraction by the hepatitis C virus (HCV), we generated various functional and genetic knock-out cell systems that were reconstituted to express mitochondrial (mito) or peroxisomal (pex) MAVS, exclusively. Upon infection with diverse RNA viruses we found that cells exclusively expressing pexMAVS mounted sustained expression of type I and III IFNs to levels comparable to cells exclusively expressing mitoMAVS. To determine whether viral counteraction of MAVS is affected by its subcellular localization we employed infection of cells with HCV, a major causative agent of chronic liver disease with a high propensity to establish persistence. This virus efficiently cleaves MAVS via a viral protease residing in its nonstructural protein 3 (NS3) and this strategy is thought to contribute to the high persistence of this virus. We found that both mito- and pexMAVS were efficiently cleaved by NS3 and this cleavage was required to suppress activation of the IFN response. Taken together, our findings indicate comparable activation of the IFN response by pex- and mitoMAVS in hepatocytes and efficient counteraction of both MAVS species by the HCV NS3 protease. PMID:26588843

  19. Activation of Type I and III Interferon Response by Mitochondrial and Peroxisomal MAVS and Inhibition by Hepatitis C Virus

    PubMed Central

    Bender, Silke; Reuter, Antje; Eberle, Florian; Einhorn, Evelyne; Binder, Marco; Bartenschlager, Ralf

    2015-01-01

    Sensing viruses by pattern recognition receptors (PRR) triggers the innate immune system of the host cell and activates immune signaling cascades such as the RIG-I/IRF3 pathway. Mitochondrial antiviral-signaling protein (MAVS, also known as IPS-1, Cardif, and VISA) is the crucial adaptor protein of this pathway localized on mitochondria, peroxisomes and mitochondria-associated membranes of the endoplasmic reticulum. Activation of MAVS leads to the production of type I and type III interferons (IFN) as well as IFN stimulated genes (ISGs). To refine the role of MAVS subcellular localization for the induction of type I and III IFN responses in hepatocytes and its counteraction by the hepatitis C virus (HCV), we generated various functional and genetic knock-out cell systems that were reconstituted to express mitochondrial (mito) or peroxisomal (pex) MAVS, exclusively. Upon infection with diverse RNA viruses we found that cells exclusively expressing pexMAVS mounted sustained expression of type I and III IFNs to levels comparable to cells exclusively expressing mitoMAVS. To determine whether viral counteraction of MAVS is affected by its subcellular localization we employed infection of cells with HCV, a major causative agent of chronic liver disease with a high propensity to establish persistence. This virus efficiently cleaves MAVS via a viral protease residing in its nonstructural protein 3 (NS3) and this strategy is thought to contribute to the high persistence of this virus. We found that both mito- and pexMAVS were efficiently cleaved by NS3 and this cleavage was required to suppress activation of the IFN response. Taken together, our findings indicate comparable activation of the IFN response by pex- and mitoMAVS in hepatocytes and efficient counteraction of both MAVS species by the HCV NS3 protease. PMID:26588843

  20. Mycobacterium avium MAV_2941 mimics Phosphoinositol-3-Kinase to interfere with macrophage phagosome maturation

    PubMed Central

    Danelishvili, Lia; Bermudez, Luiz E.

    2015-01-01

    Mycobacterium avium subsp hominissuis (M. avium) is a pathogen that infects and survives in macrophages. Previously, we have identified the M. avium MAV_2941 gene encoding a 73 amino acid protein exported by the oligopeptide transporter OppA to the macrophage cytoplasm. Mutations in MAV_2941 were associated with significant impairment of M. avium growth in THP-1 macrophages. In this study, we investigated the molecular mechanism of MAV_2941 action and demonstrated that MAV_2941 interacts with the vesicle trafficking proteins syntaxin-8 (STX8), adaptor-related protein complex 3 (AP-3) complex subunit beta-1 (AP3B1) and Archain 1 (ARCN1) in mononuclear phagocytic cells. Sequencing analysis revealed that the binding site of MAV_2941 is structurally homologous to the human phosphatidylinositol 3-kinase (PI3K) chiefly in the region recognized by vesicle trafficking proteins. The β3A subunit of AP-3, encoded by AP3B1, is essential for trafficking cargo proteins, including lysosomal-associated membrane protein 1 (LAMP-1), to the phagosome and lysosome-related organelles. Here, we show that while the heat-killed M. avium when ingested by macrophages co-localizes with LAMP-1 protein, transfection of MAV_2941 in macrophages results in significant decrease of LAMP-1 co-localization with the heat-killed M. avium phagosomes. Mutated MAV_2941, where the amino acids homologous to the binding region of PI3K were changed, failed to interact with trafficking proteins. Inactivation of the AP3B1 gene led to alteration in the trafficking of LAMP-1. These results suggest that M. avium MAV_2941 interferes with the protein trafficking within macrophages altering the maturation of phagosome. PMID:26043821

  1. Mycobacterium avium MAV_2941 mimics phosphoinositol-3-kinase to interfere with macrophage phagosome maturation.

    PubMed

    Danelishvili, Lia; Bermudez, Luiz E

    2015-09-01

    Mycobacterium avium subsp hominissuis (M. avium) is a pathogen that infects and survives in macrophages. Previously, we have identified the M. avium MAV_2941 gene encoding a 73 amino acid protein exported by the oligopeptide transporter OppA to the macrophage cytoplasm. Mutations in MAV_2941 were associated with significant impairment of M. avium growth in THP-1 macrophages. In this study, we investigated the molecular mechanism of MAV_2941 action and demonstrated that MAV_2941 interacts with the vesicle trafficking proteins syntaxin-8 (STX8), adaptor-related protein complex 3 (AP-3) complex subunit beta-1 (AP3B1) and Archain 1 (ARCN1) in mononuclear phagocytic cells. Sequencing analysis revealed that the binding site of MAV_2941 is structurally homologous to the human phosphatidylinositol 3-kinase (PI3K) chiefly in the region recognized by vesicle trafficking proteins. The β3A subunit of AP-3, encoded by AP3B1, is essential for trafficking cargo proteins, including lysosomal-associated membrane protein 1 (LAMP-1), to the phagosome and lysosome-related organelles. Here, we show that while the heat-killed M. avium when ingested by macrophages co-localizes with LAMP-1 protein, transfection of MAV_2941 in macrophages results in significant decrease of LAMP-1 co-localization with the heat-killed M. avium phagosomes. Mutated MAV_2941, where the amino acids homologous to the binding region of PI3K were changed, failed to interact with trafficking proteins. Inactivation of the AP3B1 gene led to alteration in the trafficking of LAMP-1. These results suggest that M. avium MAV_2941 interferes with the protein trafficking within macrophages altering the maturation of phagosome. PMID:26043821

  2. COX5B Regulates MAVS-mediated Antiviral Signaling through Interaction with ATG5 and Repressing ROS Production

    PubMed Central

    Nie, Xuanli; Sun, Liwei; Tang, Tie-shan; Chen, Dahua; Sun, Qinmiao

    2012-01-01

    Innate antiviral immunity is the first line of the host defense system that rapidly detects invading viruses. Mitochondria function as platforms for innate antiviral signal transduction in mammals through the adaptor protein, MAVS. Excessive activation of MAVS-mediated antiviral signaling leads to dysfunction of mitochondria and cell apoptosis that likely causes the pathogenesis of autoimmunity. However, the mechanism of how MAVS is regulated at mitochondria remains unknown. Here we show that the Cytochrome c Oxidase (CcO) complex subunit COX5B physically interacts with MAVS and negatively regulates the MAVS-mediated antiviral pathway. Mechanistically, we find that while activation of MAVS leads to increased ROS production and COX5B expression, COX5B down-regulated MAVS signaling by repressing ROS production. Importantly, our study reveals that COX5B coordinates with the autophagy pathway to control MAVS aggregation, thereby balancing the antiviral signaling activity. Thus, our study provides novel insights into the link between mitochondrial electron transport system and the autophagy pathway in regulating innate antiviral immunity. PMID:23308066

  3. Adaptor Protein 1A Facilitates Dengue Virus Replication

    PubMed Central

    Yasamut, Umpa; Tongmuang, Nopprarat; Yenchitsomanus, Pa-thai; Junking, Mutita; Noisakran, Sansanee; Puttikhunt, Chunya; Chu, Justin Jang Hann; Limjindaporn, Thawornchai

    2015-01-01

    Rearrangement of membrane structure induced by dengue virus (DENV) is essential for replication, and requires host cellular machinery. Adaptor protein complex (AP)-1 is a host component, which can be recruited to components required for membrane rearrangement. Therefore, dysfunction of AP-1 may affect membrane organization, thereby decreasing replication of virus in infected cells. In the present study, AP-1-dependent traffic inhibitor inhibited DENV protein expression and virion production. We further clarified the role of AP-1A in the life cycle of DENV by RNA interference. AP-1A was not involved in DENV entry into cells. However, it facilitated DENV RNA replication. Viral RNA level was reduced significantly in Huh7 cells transfected with AP-1A small interfering RNA (siRNA) compared with control siRNA. Transfection of naked DENV viral RNA into Huh7 cells transfected with AP-1A siRNA resulted in less viral RNA and virion production than transfection into Huh7 cells transfected with control siRNA. Huh7 cells transfected with AP-1A siRNA showed greater modification of membrane structures and fewer vesicular packets compared with cells transfected with control siRNA. Therefore, AP-1A may partly control DENV-induced rearrangement of membrane structures required for viral replication. PMID:26090672

  4. Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump

    PubMed Central

    Hinchliffe, Philip; Greene, Nicholas P.; Paterson, Neil G.; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2014-01-01

    Periplasmic adaptor proteins are key components of bacterial tripartite efflux pumps. The 2.85 Å resolution structure of an MFS (major facilitator superfamily) pump adaptor, Aquifex aeolicus EmrA, shows linearly arranged α-helical coiled-coil, lipoyl, and β-barrel domains, but lacks the fourth membrane-proximal domain shown in other pumps to interact with the inner membrane transporter. The adaptor α-hairpin, which binds outer membrane TolC, is exceptionally long at 127 Å, and the β-barrel contains a conserved disordered loop. The structure extends the view of adaptors as flexible, modular components that mediate diverse pump assembly, and suggests that in MFS tripartite pumps a hexamer of adaptors could provide a periplasmic seal. PMID:24996185

  5. Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump.

    PubMed

    Hinchliffe, Philip; Greene, Nicholas P; Paterson, Neil G; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2014-08-25

    Periplasmic adaptor proteins are key components of bacterial tripartite efflux pumps. The 2.85 Å resolution structure of an MFS (major facilitator superfamily) pump adaptor, Aquifex aeolicus EmrA, shows linearly arranged α-helical coiled-coil, lipoyl, and β-barrel domains, but lacks the fourth membrane-proximal domain shown in other pumps to interact with the inner membrane transporter. The adaptor α-hairpin, which binds outer membrane TolC, is exceptionally long at 127 Å, and the β-barrel contains a conserved disordered loop. The structure extends the view of adaptors as flexible, modular components that mediate diverse pump assembly, and suggests that in MFS tripartite pumps a hexamer of adaptors could provide a periplasmic seal. PMID:24996185

  6. Oncogenic transformation by the signaling adaptor proteins insulin receptor substrate (IRS)-1 and IRS-2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin receptor substrates (IRSs) are adaptor proteins that link signaling from upstream activators to multiple downstream effectors to modulate normal growth, metabolism, survival, and differentiation. Recent cell culture studies have shown that IRSs can interact with, and are functionally require...

  7. Alternative Splicing in CaV2.2 Regulates Neuronal Trafficking via Adaptor Protein Complex-1 Adaptor Protein Motifs

    PubMed Central

    Macabuag, Natsuko

    2015-01-01

    N-type voltage-gated calcium (CaV2.2) channels are expressed in neurons and targeted to the plasma membrane of presynaptic terminals, facilitating neurotransmitter release. Here, we find that the adaptor protein complex-1 (AP-1) mediates trafficking of CaV2.2 from the trans-Golgi network to the cell surface. Examination of splice variants of CaV2.2, containing either exon 37a (selectively expressed in nociceptors) or 37b in the proximal C terminus, reveal that canonical AP-1 binding motifs, YxxΦ and [DE]xxxL[LI], present only in exon 37a, enhance intracellular trafficking of exon 37a-containing CaV2.2 to the axons and plasma membrane of rat DRG neurons. Finally, we identify differential effects of dopamine-2 receptor (D2R) and its agonist-induced activation on trafficking of CaV2.2 isoforms. D2R slowed the endocytosis of CaV2.2 containing exon 37b, but not exon 37a, and activation by the agonist quinpirole reversed the effect of the D2R. Our work thus reveals key mechanisms involved in the trafficking of N-type calcium channels. SIGNIFICANCE STATEMENT CaV2.2 channels are important for neurotransmitter release, but how they are trafficked is still poorly understood. Here, we describe a novel mechanism for trafficking of CaV2.2 from the trans-Golgi network to the cell surface which is mediated by the adaptor protein AP-1. Alternative splicing of exon 37 produces CaV2.2-exon 37a, selectively expressed in nociceptors, or CaV2.2-exon 37b, which is the major splice isoform. Our study reveals that canonical AP-1 binding motifs (YxxΦ and [DE]xxxL[LI]), present in exon 37a, but not 37b, enhance intracellular trafficking of exon 37a-containing CaV2.2 to axons and plasma membrane of DRG neurons. Interaction of APs with CaV2.2 channels may also be key underlying mechanisms for differential effects of the dopamine D2 receptor on trafficking of CaV2.2 splice variants. PMID:26511252

  8. Mycobacterium avium Genes MAV_5138 and MAV_3679 Are Transcriptional Regulators That Play a Role in Invasion of Epithelial Cells, in Part by Their Regulation of CipA, a Putative Surface Protein Interacting with Host Cell Signaling Pathways▿

    PubMed Central

    Harriff, Melanie J.; Danelishvili, Lia; Wu, Martin; Wilder, Cara; McNamara, Michael; Kent, Michael L.; Bermudez, Luiz E.

    2009-01-01

    The Mycobacterium avium complex (MAC) is an important group of opportunistic pathogens for birds, cattle, swine, and immunosuppressed humans. Although invasion of epithelial cells lining the intestine is the chief point of entry for these organisms, little is known about the mechanisms by which members of the MAC are taken up by these cells. Studies with M. avium have shown that cytoskeletal rearrangement via activation of the small G-protein Cdc42 is involved and that this activation is regulated in part by the M. avium fadD2 gene. The fadD2 gene indirectly regulates a number of genes upon exposure to HEp-2 cells, including transcriptional regulators, membrane proteins, and secreted proteins. Overexpression of two fadD2-associated regulators (MAV_5138 and MAV_3679) led to increased invasion of HEp-2 cells, as well as altered expression of other genes. The protein product of one of the regulated genes, named CipA, has domains that resemble the PXXP motif of human Piccolo proteins, which bind SH3 domains in proteins involved in the scaffold complex formed during cytoskeletal rearrangement. Although CipA was not detected in the cytoplasm of HEp-2 cells exposed to M. avium, the recombinant protein was shown to be potentially expressed on the surface of Mycobacterium smegmatis incubated with HEp-2 cells and, possibly, to interact with human Cdc42. The interaction was then confirmed by showing that CipA activates Cdc42. These results suggest that members of the M. avium complex have a novel mechanism for activating cytoskeletal rearrangement, prompting uptake by host epithelial cells, and that this mechanism is regulated in part by fadD2, MAV_5138, and MAV_3679. PMID:19060135

  9. Recruitment of the Adaptor Protein Grb2 to EGFR Tetramers

    PubMed Central

    2015-01-01

    Adaptor protein Grb2 binds phosphotyrosines in the epidermal growth factor (EGF) receptor (EGFR) and thereby links receptor activation to intracellular signaling cascades. Here, we investigated how recruitment of Grb2 to EGFR is affected by the spatial organization and quaternary state of activated EGFR. We used the techniques of image correlation spectroscopy (ICS) and lifetime-detected Förster resonance energy transfer (also known as FLIM-based FRET or FLIM–FRET) to measure ligand-induced receptor clustering and Grb2 binding to activated EGFR in BaF/3 cells. BaF/3 cells were stably transfected with fluorescently labeled forms of Grb2 (Grb2–mRFP) and EGFR (EGFR–eGFP). Following stimulation of the cells with EGF, we detected nanometer-scale association of Grb2–mRFP with EGFR–eGFP clusters, which contained, on average, 4 ± 1 copies of EGFR–eGFP per cluster. In contrast, the pool of EGFR–eGFP without Grb2–mRFP had an average cluster size of 1 ± 0.3 EGFR molecules per punctum. In the absence of EGF, there was no association between EGFR–eGFP and Grb2–mRFP. To interpret these data, we extended our recently developed model for EGFR activation, which considers EGFR oligomerization up to tetramers, to include recruitment of Grb2 to phosphorylated EGFR. The extended model, with adjustment of one new parameter (the ratio of the Grb2 and EGFR copy numbers), is consistent with a cluster size distribution where 2% of EGFR monomers, 5% of EGFR dimers, <1% of EGFR trimers, and 94% of EGFR tetramers are associated with Grb2. Together, our experimental and modeling results further implicate tetrameric EGFR as the key signaling unit and call into question the widely held view that dimeric EGFR is the predominant signaling unit. PMID:24697349

  10. The Emerging and Diverse Roles of Src-Like Adaptor Proteins in Health and Disease

    PubMed Central

    Marton, Nikolett; Baricza, Eszter; Érsek, Barbara; Buzás, Edit I.; Nagy, György

    2015-01-01

    Although Src-like adaptor proteins (SLAP-1 and SLAP-2) were mainly studied in lymphocytes, where they act as negative regulators and provide fine control of receptor signaling, recently, several other functions of these proteins were discovered. In addition to the well-characterized immunoregulatory functions, SLAP proteins appear to have an essential role in the pathogenesis of type I hypersensitivity, osteoporosis, and numerous malignant diseases. Both adaptor proteins are expressed in a wide variety of tissues, where they have mostly inhibitory effects on multiple intracellular signaling pathways. In this review, we summarize the diverse effects of SLAP proteins. PMID:26339145

  11. Adaptor Protein-3-Mediated Trafficking of TLR2 Ligands Controls Specificity of Inflammatory Responses but Not Adaptor Complex Assembly.

    PubMed

    Petnicki-Ocwieja, Tanja; Kern, Aurelie; Killpack, Tess L; Bunnell, Stephen C; Hu, Linden T

    2015-11-01

    Innate immune engagement results in the activation of host defenses that produce microbe-specific inflammatory responses. A long-standing interest in the field of innate immunity is to understand how varied host responses are generated through the signaling of just a limited number of receptors. Recently, intracellular trafficking and compartmental partitioning have been identified as mechanisms that provide signaling specificity for receptors by regulating signaling platform assembly. We show that cytokine activation as a result of TLR2 stimulation occurs at different intracellular locations and is mediated by the phagosomal trafficking molecule adaptor protein-3 (AP-3). AP-3 is required for trafficking TLR2 purified ligands or the Lyme disease causing bacterium, Borrelia burgdorferi, to LAMP-1 lysosomal compartments. The presence of AP-3 is necessary for the activation of cytokines such as IL-6 but not TNF-α or type I IFNs, suggesting induction of these cytokines occurs from a different compartment. Lack of AP-3 does not interfere with the recruitment of TLR signaling adaptors TRAM and MyD88 to the phagosome, indicating that the TLR-MyD88 signaling complex is assembled at a prelysosomal stage and that IL-6 activation depends on proper localization of signaling molecules downstream of MyD88. Finally, infection of AP-3-deficient mice with B. burgdorferi resulted in altered joint inflammation during murine Lyme arthritis. Our studies further elucidate the effects of phagosomal trafficking on tailoring immune responses in vitro and in vivo. PMID:26423153

  12. Distinct adaptor proteins assist exit of Kre2-family proteins from the yeast ER

    PubMed Central

    Noda, Yoichi; Hara, Takehiro; Ishii, Minako; Yoda, Koji

    2014-01-01

    ABSTRACT The Svp26 protein of S. cerevisiae is an ER- and Golgi-localized integral membrane protein with 4 potential membrane-spanning domains. It functions as an adaptor protein that facilitates the ER exit of Ktr3, a mannosyltransferase required for biosynthesis of O-linked oligosaccharides, and the ER exit of Mnn2 and Mnn5, mannosyltransferases, which participate in the biosynthesis of N-linked oligosaccharides. Ktr3 belongs to the Kre2 family, which consists of 9 members of type-II membrane proteins sharing sequence similarities. In this report, we examined all Kre2 family members and found that the Golgi localizations of two others, Kre2 and Ktr1, were dependent on Svp26 by immunofluorescence microscopy and cell fractionations in sucrose density gradients. We show that Svp26 functions in facilitating the ER exit of Kre2 and Ktr1 by an in vitro COPII budding assay. Golgi localization of Ktr4 was not dependent on Svp26. Screening null mutants of the genes encoding abundant COPII membrane proteins for those showing mislocalization of Ktr4 in the ER revealed that Erv41 and Erv46 are required for the correct Golgi localization of Ktr4. We provide biochemical evidence that the Erv41-Erv46 complex functions as an adaptor protein for ER exit of Ktr4. This is the first demonstration of the molecular function of this evolutionally conserved protein complex. The domain switching experiments show that the lumenal domain of Ktr4 is responsible for recognition by the Erv41-Erv46 complex. Thus, ER exit of Kre2-family proteins is dependent on distinct adaptor proteins and our results provide new insights into the traffic of Kre2-family mannosyltransferases. PMID:24585773

  13. Control of Hepatitis C Virus Replication in Mouse Liver-Derived Cells by MAVS-Dependent Production of Type I and Type III Interferons

    PubMed Central

    Anggakusuma; Frentzen, Anne; Gürlevik, Engin; Yuan, Qinggong; Steinmann, Eike; Ott, Michael; Staeheli, Peter; Schmid-Burgk, Jonathan; Schmidt, Tobias; Hornung, Veit; Kuehnel, Florian

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) efficiently infects only humans and chimpanzees. Although the detailed mechanisms responsible for this narrow species tropism remain elusive, recent evidence has shown that murine innate immune responses efficiently suppress HCV replication. Therefore, poor adaptation of HCV to evade and/or counteract innate immune responses may prevent HCV replication in mice. The HCV NS3-4A protease cleaves human MAVS, a key cellular adaptor protein required for RIG-I-like receptor (RLR)-dependent innate immune signaling. However, it is unclear if HCV interferes with mouse MAVS function equally well. Moreover, MAVS-dependent signaling events that restrict HCV replication in mouse cells were incompletely defined. Thus, we quantified the ability of HCV NS3-4A to counteract mouse and human MAVS. HCV NS3-4A similarly diminished both human and mouse MAVS-dependent signaling in human and mouse cells. Moreover, replicon-encoded protease cleaved a similar fraction of both MAVS variants. Finally, FLAG-tagged MAVS proteins repressed HCV replication to similar degrees. Depending on MAVS expression, HCV replication in mouse liver cells triggered not only type I but also type III IFNs, which cooperatively repressed HCV replication. Mouse liver cells lacking both type I and III IFN receptors were refractory to MAVS-dependent antiviral effects, indicating that the HCV-induced MAVS-dependent antiviral state depends on both type I and III IFN receptor signaling. IMPORTANCE In this study, we found that HCV NS3-4A similarly diminished both human and mouse MAVS-dependent signaling in human and mouse cells. Therefore, it is unlikely that ineffective cleavage of mouse MAVS per se precludes HCV propagation in immunocompetent mouse liver cells. Hence, approaches to reinforce HCV replication in mouse liver cells (e.g., by expression of essential human replication cofactors) should not be thwarted by the poor ability of HCV to counteract MAVS-dependent antiviral signaling

  14. Identification of a new transmembrane adaptor protein that constitutively binds Grb2 in B cells

    PubMed Central

    Liu, Yan; Zhang, Weiguo

    2008-01-01

    Transmembrane adaptor proteins couple antigen receptor engagement to downstream signaling cascades in lymphocytes. One example of these proteins is the linker for activation of T cells (LAT), which plays an indispensable role in T cell activation and development. Here, we report identification of a new transmembrane adaptor molecule, namely growth factor receptor-bound protein 2 (Grb2)-binding adaptor protein, transmembrane (GAPT), which is expressed in B cells and myeloid cells. Similar to LAT, GAPT has an extracellular domain, a transmembrane domain, and a cytoplasmic tail with multiple Grb2-binding motifs. In contrast to other transmembrane adaptor proteins, GAPT is not phosphorylated upon BCR ligation but associates with Grb2 constitutively through its proline-rich region. Targeted disruption of the gapt gene in mice affects neither B cell development nor a nitrophenylacetyl-specific antibody response. However, in the absence of GAPT, B cell proliferation after BCR cross-linking is enhanced. In aged GAPT−/− mice, the number of marginal zone (MZ) B cells is increased, and other B cell subsets are normal. The serum concentrations of IgM, IgG2b, and IgG3 are also elevated in these mice. These data indicate that GAPT might play an important role in control of B cell activation and proper maintenance of MZ B cells. PMID:18559951

  15. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export

    PubMed Central

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M.; Brandl, Holger; Schwich, Oliver D.; Steiner, Michaela C.; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M.

    2016-01-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1–7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1–7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3′ untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3′ ends. PMID:26944680

  16. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export.

    PubMed

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M; Brandl, Holger; Schwich, Oliver D; Steiner, Michaela C; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M

    2016-03-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends. PMID:26944680

  17. Identification of human proteins functionally conserved with the yeast putative adaptors ADA2 and GCN5.

    PubMed Central

    Candau, R; Moore, P A; Wang, L; Barlev, N; Ying, C Y; Rosen, C A; Berger, S L

    1996-01-01

    Transcriptional adaptor proteins are required for full function of higher eukaryotic acidic activators in the yeast Saccharomyces cerevisiae, suggesting that this pathway of activation is evolutionarily conserved. Consistent with this view, we have identified possible human homologs of yeast ADA2 (yADA2) and yeast GCN5 (yGCN5), components of a putative adaptor complex. While there is overall sequence similarity between the yeast and human proteins, perhaps more significant is conservation of key sequence features with other known adaptors. We show several functional similarities between the human and yeast adaptors. First, as shown for yADA2 and yGCN5, human ADA2 (hADA2) and human GCN5 (hGCN5) interacted in vivo in a yeast two-hybrid assay. Moreover, hGCN5 interacted with yADA2 in this assay, suggesting that the human proteins form similar complexes. Second, both yADA2 and hADA2 contain cryptic activation domains. Third, hGCN5 and yGCN5 had similar stabilizing effects on yADA2 in vivo. Furthermore, the region of yADA2 that interacted with yGCN5 mapped to the amino terminus of yADA2, which is highly conserved in hADA2. Most striking, is the behavior of the human proteins in human cells. First, GAL4-hADA2 activated transcription in HeLa cells, and second, either hADA2 or hGCN5 augmented GAL4-VP16 activation. These data indicated that the human proteins correspond to functional homologs of the yeast adaptors, suggesting that these cofactors play a key role in transcriptional activation. PMID:8552087

  18. Insulin Receptor Substrate Adaptor Proteins Mediate Prognostic Gene Expression Profiles in Breast Cancer

    PubMed Central

    Becker, Marc A.; Ibrahim, Yasir H.; Oh, Annabell S.; Fagan, Dedra H.; Byron, Sara A.; Sarver, Aaron L.; Lee, Adrian V.; Shaw, Leslie M.; Fan, Cheng; Perou, Charles M.; Yee, Douglas

    2016-01-01

    Therapies targeting the type I insulin-like growth factor receptor (IGF-1R) have not been developed with predictive biomarkers to identify tumors with receptor activation. We have previously shown that the insulin receptor substrate (IRS) adaptor proteins are necessary for linking IGF1R to downstream signaling pathways and the malignant phenotype in breast cancer cells. The purpose of this study was to identify gene expression profiles downstream of IGF1R and its two adaptor proteins. IRS-null breast cancer cells (T47D-YA) were engineered to express IRS-1 or IRS-2 alone and their ability to mediate IGF ligand-induced proliferation, motility, and gene expression determined. Global gene expression signatures reflecting IRS adaptor specific and primary vs. secondary ligand response were derived (Early IRS-1, Late IRS-1, Early IRS-2 and Late IRS-2) and functional pathway analysis examined. IRS isoforms mediated distinct gene expression profiles, functional pathways, and breast cancer subtype association. For example, IRS-1/2-induced TGFb2 expression and blockade of TGFb2 abrogated IGF-induced cell migration. In addition, the prognostic value of IRS proteins was significant in the luminal B breast tumor subtype. Univariate and multivariate analyses confirmed that IRS adaptor signatures correlated with poor outcome as measured by recurrence-free and overall survival. Thus, IRS adaptor protein expression is required for IGF ligand responses in breast cancer cells. IRS-specific gene signatures represent accurate surrogates of IGF activity and could predict response to anti-IGF therapy in breast cancer. PMID:26991655

  19. Exploring structure and interactions of the bacterial adaptor protein YjbH by crosslinking mass spectrometry.

    PubMed

    Al-Eryani, Yusra; Ib Rasmussen, Morten; Kjellström, Sven; Højrup, Peter; Emanuelsson, Cecilia; von Wachenfeldt, Claes

    2016-09-01

    Adaptor proteins assist proteases in degrading specific proteins under appropriate conditions. The adaptor protein YjbH promotes the degradation of an important global transcriptional regulator Spx, which controls the expression of hundreds of genes and operons in response to thiol-specific oxidative stress in Bacillus subtilis. Under normal growth conditions, the transcription factor is bound to the adaptor protein and therefore degraded by the AAA+ protease ClpXP. If this binding is alleviated during stress, the transcription factor accumulates and turns on genes encoding stress-alleviating proteins. The adaptor protein YjbH is thus a key player involved in these interactions but its structure is unknown. To gain insight into its structure and interactions we have used chemical crosslinking mass spectrometry. Distance constraints obtained from the crosslinked monomer were used to select and validate a structure model of YjbH and then to probe its interactions with other proteins. The core structure of YjbH is reminiscent of DsbA family proteins. One lysine residue in YjbH (K177), located in one of the α-helices outside the thioredoxin fold, crosslinked to both Spx K99 and Spx K117, thereby suggesting one side of the YjbH for the interaction with Spx. Another lysine residue that crosslinked to Spx was YjbH K5, located in the long and presumably very flexible N-terminal arm of YjbH. Our crosslinking data lend support to a model proposed based on site-directed mutagenesis where the YjbH interaction with Spx can stabilize and present the C-terminal region of Spx for protease recognition and proteolysis. Proteins 2016; 84:1234-1245. © 2016 Wiley Periodicals, Inc. PMID:27191337

  20. Nuclear Translocation of Crk Adaptor Proteins by the Influenza A Virus NS1 Protein.

    PubMed

    Ylösmäki, Leena; Fagerlund, Riku; Kuisma, Inka; Julkunen, Ilkka; Saksela, Kalle

    2016-01-01

    The non-structural protein-1 (NS1) of many influenza A strains, especially those of avian origin, contains an SH3 ligand motif, which binds tightly to the cellular adaptor proteins Crk (Chicken tumor virus number 10 (CT10) regulator of kinase) and Crk-like adapter protein (CrkL). This interaction has been shown to potentiate NS1-induced activation of the phosphatidylinositol 3-kinase (PI3K), but additional effects on the host cell physiology may exist. Here we show that NS1 can induce an efficient translocation of Crk proteins from the cytoplasm into the nucleus, which results in an altered pattern of nuclear protein tyrosine phosphorylation. This was not observed using NS1 proteins deficient in SH3 binding or engineered to be exclusively cytoplasmic, indicating a physical role for NS1 as a carrier in the nuclear translocation of Crk. These data further emphasize the role of Crk proteins as host cell interaction partners of NS1, and highlight the potential for host cell manipulation gained by a viral protein simply via acquiring a short SH3 binding motif. PMID:27092521

  1. Nuclear Translocation of Crk Adaptor Proteins by the Influenza A Virus NS1 Protein

    PubMed Central

    Ylösmäki, Leena; Fagerlund, Riku; Kuisma, Inka; Julkunen, Ilkka; Saksela, Kalle

    2016-01-01

    The non-structural protein-1 (NS1) of many influenza A strains, especially those of avian origin, contains an SH3 ligand motif, which binds tightly to the cellular adaptor proteins Crk (Chicken tumor virus number 10 (CT10) regulator of kinase) and Crk-like adapter protein (CrkL). This interaction has been shown to potentiate NS1-induced activation of the phosphatidylinositol 3-kinase (PI3K), but additional effects on the host cell physiology may exist. Here we show that NS1 can induce an efficient translocation of Crk proteins from the cytoplasm into the nucleus, which results in an altered pattern of nuclear protein tyrosine phosphorylation. This was not observed using NS1 proteins deficient in SH3 binding or engineered to be exclusively cytoplasmic, indicating a physical role for NS1 as a carrier in the nuclear translocation of Crk. These data further emphasize the role of Crk proteins as host cell interaction partners of NS1, and highlight the potential for host cell manipulation gained by a viral protein simply via acquiring a short SH3 binding motif. PMID:27092521

  2. New Insights to Clathrin and Adaptor Protein 2 for the Design and Development of Therapeutic Strategies.

    PubMed

    Poulsen, Ebbe Toftgaard; Larsen, Agnete; Zollo, Alen; Jørgensen, Arne L; Sanggaard, Kristian W; Enghild, Jan J; Matrone, Carmela

    2015-01-01

    The Amyloid Precursor Protein (APP) has been extensively studied for its role as the precursor of the β-amyloid protein (Aβ) in Alzheimer's disease (AD). However, our understanding of the normal function of APP is still patchy. Emerging evidence indicates that a dysfunction in APP trafficking and degradation can be responsible for neuronal deficits and progressive degeneration in humans. We recently reported that the Y682 mutation in the 682YENPTY687 domain of APP affects its binding to specific adaptor proteins and leads to its anomalous trafficking, to defects in the autophagy machinery and to neuronal degeneration. In order to identify adaptors that influence APP function, we performed pull-down experiments followed by quantitative mass spectrometry (MS) on hippocampal tissue extracts of three month-old mice incubated with either the 682YENPTY687 peptide, its mutated form, 682GENPTY687 or its phosphorylated form, 682pYENPTY687. Our experiments resulted in the identification of two proteins involved in APP internalization and trafficking: Clathrin heavy chain (hc) and its Adaptor Protein 2 (AP-2). Overall our results consolidate and refine the importance of Y682 in APP normal functions from an animal model of premature aging and dementia. Additionally, they open the perspective to consider Clathrin hc and AP-2 as potential targets for the design and development of new therapeutic strategies. PMID:26690411

  3. New Insights to Clathrin and Adaptor Protein 2 for the Design and Development of Therapeutic Strategies

    PubMed Central

    Poulsen, Ebbe Toftgaard; Larsen, Agnete; Zollo, Alen; Jørgensen, Arne L.; Sanggaard, Kristian W.; Enghild, Jan J.; Matrone, Carmela

    2015-01-01

    The Amyloid Precursor Protein (APP) has been extensively studied for its role as the precursor of the β-amyloid protein (Aβ) in Alzheimer’s disease (AD). However, our understanding of the normal function of APP is still patchy. Emerging evidence indicates that a dysfunction in APP trafficking and degradation can be responsible for neuronal deficits and progressive degeneration in humans. We recently reported that the Y682 mutation in the 682YENPTY687 domain of APP affects its binding to specific adaptor proteins and leads to its anomalous trafficking, to defects in the autophagy machinery and to neuronal degeneration. In order to identify adaptors that influence APP function, we performed pull-down experiments followed by quantitative mass spectrometry (MS) on hippocampal tissue extracts of three month-old mice incubated with either the 682YENPTY687 peptide, its mutated form, 682GENPTY687 or its phosphorylated form, 682pYENPTY687. Our experiments resulted in the identification of two proteins involved in APP internalization and trafficking: Clathrin heavy chain (hc) and its Adaptor Protein 2 (AP-2). Overall our results consolidate and refine the importance of Y682 in APP normal functions from an animal model of premature aging and dementia. Additionally, they open the perspective to consider Clathrin hc and AP-2 as potential targets for the design and development of new therapeutic strategies. PMID:26690411

  4. Science Signaling Podcast for 12 July 2016: Adaptor proteins limit signaling.

    PubMed

    Wiley, H Steven; VanHook, Annalisa M

    2016-01-01

    This Podcast features an interview with Steven Wiley, senior author of a Research Article that appears in the 12 July 2016 issue of Science Signaling, about how the abundance of adaptor proteins and feedback regulators affect the flow of information downstream of the epidermal growth factor receptor (EGFR). Information flows through a signaling pathway by sequential interactions between core components of the pathway, many of which have enzymatic activity. Adaptor proteins do not directly participate in relaying the signal and do not have enzymatic activity, but are important for signaling because they facilitate interactions between the core components. Using quantitative methods, Shi et al demonstrated that core components of the EGFR pathway were highly abundant in both normal cells and cancer cells. However, adaptor proteins were present in much lower abundance in both cell types, indicating that it is the abundance of these proteins that limit signaling downstream of EGFR. The authors also found that differences in EGFR signaling between different cell types likely resulted from the variable abundance of feedback regulators.Listen to Podcast. PMID:27405978

  5. Large hepatitis delta antigen is a novel clathrin adaptor-like protein.

    PubMed

    Huang, Cheng; Chang, Shin C; Yu, I-Chen; Tsay, Yeou-Guang; Chang, Ming-Fu

    2007-06-01

    Clathrin-mediated endocytosis is a common pathway for viral entry, but little is known about the direct association of viral protein with clathrin in the cytoplasm. In this study, a putative clathrin box known to be conserved in clathrin adaptors was identified at the C terminus of the large hepatitis delta antigen (HDAg-L). Similar to clathrin adaptors, HDAg-L directly interacted with the N terminus of the clathrin heavy chain through the clathrin box. HDAg-L is a nucleocytoplasmic shuttle protein important for the assembly of hepatitis delta virus (HDV). Here, we demonstrated that brefeldin A and wortmannin, inhibitors of clathrin-mediated exocytosis and endosomal trafficking, respectively, specifically blocked HDV assembly but had no effect on the assembly of the small surface antigen of hepatitis B virus. In addition, cytoplasm-localized HDAg-L inhibited the clathrin-mediated endocytosis of transferrin and the degradation of epidermal growth factor receptor. These results indicate that HDAg-L is a new clathrin adaptor-like protein, and it may be involved in the maturation and pathogenesis of HDV coinfection or superinfection with hepatitis B virus through interaction with clathrin. PMID:17376909

  6. Molecular physiology of the tensin brotherhood of integrin adaptor proteins.

    PubMed

    Haynie, Donald T

    2014-07-01

    Numerous proteins have been identified as constituents of the adhesome, the totality of molecular components in the supramolecular assemblies known as focal adhesions, fibrillar adhesions and other kinds of adhesive contact. The transmembrane receptor proteins called integrins are pivotal adhesome members, providing a physical link between the extracellular matrix (ECM) and the actin cytoskeleton. Tensins are ever more widely investigated intracellular adhesome constituents. Involved in cell attachment and migration, cytoskeleton reorganization, signal transduction and other processes relevant to cancer research, tensins have recently been linked to functional properties of deleted in liver cancer 1 (DLC1) and a mitogen-activated protein kinases (MAPK), to cell migration in breast cancer, and to metastasis suppression in the kidney. Tensins are close relatives of phosphatase homolog/tensin homolog (PTEN), an extensively studied tumor suppressor. Such findings are recasting the earlier vision of tensin (TNS) as an actin-filament (F-actin) capping protein in a different light. This critical review aims to summarize current knowledge on tensins and thus to highlight key points concerning the expression, structure, function, and evolution of the various members of the TNS brotherhood. Insight is sought by comparisons with homologous proteins. Some historical points are added for perspective. PMID:24634006

  7. Differential Regulation of Clathrin and Its Adaptor Proteins during Membrane Recruitment for Endocytosis.

    PubMed

    Wang, Chao; Hu, Tianwei; Yan, Xu; Meng, Tingting; Wang, Yutong; Wang, Qingmei; Zhang, Xiaoyue; Gu, Ying; Sánchez-Rodríguez, Clara; Gadeyne, Astrid; Lin, Jinxing; Persson, Staffan; Van Damme, Daniël; Li, Chuanyou; Bednarek, Sebastian Y; Pan, Jianwei

    2016-05-01

    In plants, clathrin-mediated endocytosis (CME) is dependent on the function of clathrin and its accessory heterooligomeric adaptor protein complexes, ADAPTOR PROTEIN2 (AP-2) and the TPLATE complex (TPC), and is negatively regulated by the hormones auxin and salicylic acid (SA). The details for how clathrin and its adaptor complexes are recruited to the plasma membrane (PM) to regulate CME, however, are poorly understood. We found that SA and the pharmacological CME inhibitor tyrphostin A23 reduce the membrane association of clathrin and AP-2, but not that of the TPC, whereas auxin solely affected clathrin membrane association, in Arabidopsis (Arabidopsis thaliana). Genetic and pharmacological experiments revealed that loss of AP2μ or AP2σ partially affected the membrane association of other AP-2 subunits and that the AP-2 subunit AP2σ, but not AP2μ, was required for SA- and tyrphostin A23-dependent inhibition of CME Furthermore, we show that although AP-2 and the TPC are both required for the PM recruitment of clathrin in wild-type cells, the TPC is necessary for clathrin PM association in AP-2-deficient cells. These results indicate that developmental signals may differentially modulate the membrane recruitment of clathrin and its core accessory complexes to regulate the process of CME in plant cells. PMID:26945051

  8. Differential Regulation of Clathrin and Its Adaptor Proteins during Membrane Recruitment for Endocytosis1[OPEN

    PubMed Central

    Wang, Chao; Hu, Tianwei; Yan, Xu; Meng, Tingting; Wang, Yutong; Wang, Qingmei; Zhang, Xiaoyue; Gu, Ying; Sánchez-Rodríguez, Clara; Gadeyne, Astrid; Lin, Jinxing

    2016-01-01

    In plants, clathrin-mediated endocytosis (CME) is dependent on the function of clathrin and its accessory heterooligomeric adaptor protein complexes, ADAPTOR PROTEIN2 (AP-2) and the TPLATE complex (TPC), and is negatively regulated by the hormones auxin and salicylic acid (SA). The details for how clathrin and its adaptor complexes are recruited to the plasma membrane (PM) to regulate CME, however, are poorly understood. We found that SA and the pharmacological CME inhibitor tyrphostin A23 reduce the membrane association of clathrin and AP-2, but not that of the TPC, whereas auxin solely affected clathrin membrane association, in Arabidopsis (Arabidopsis thaliana). Genetic and pharmacological experiments revealed that loss of AP2μ or AP2σ partially affected the membrane association of other AP-2 subunits and that the AP-2 subunit AP2σ, but not AP2μ, was required for SA- and tyrphostin A23-dependent inhibition of CME. Furthermore, we show that although AP-2 and the TPC are both required for the PM recruitment of clathrin in wild-type cells, the TPC is necessary for clathrin PM association in AP-2-deficient cells. These results indicate that developmental signals may differentially modulate the membrane recruitment of clathrin and its core accessory complexes to regulate the process of CME in plant cells. PMID:26945051

  9. Your personalized protein structure: Andrei N. Lupas fused to GCN4 adaptors.

    PubMed

    Deiss, Silvia; Hernandez Alvarez, Birte; Bär, Kerstin; Ewers, Carolin P; Coles, Murray; Albrecht, Reinhard; Hartmann, Marcus D

    2014-06-01

    This work presents a protein structure that has been designed purely for aesthetic reasons, symbolizing decades of coiled-coil research and praising its most fundamental model system, the GCN4 leucine zipper. The GCN4 leucine zipper is a highly stable coiled coil which can be tuned to adopt different oligomeric states via mutation of its core residues. For these reasons it is used in structural studies as a stabilizing fusion adaptor. On the occasion of the 50th birthday of Andrei N. Lupas, we used it to create the first personalized protein structure: we fused the sequence ANDREI-N-LVPAS in heptad register to trimeric GCN4 adaptors and determined its structure by X-ray crystallography. The structure demonstrates the robustness and versatility of GCN4 as a fusion adaptor. We learn how proline can be accommodated in trimeric coiled coils, and put the structure into the context of the other GCN4-fusion structures known to date. PMID:24486584

  10. A RIG-I 2CARD-MAVS200 Chimeric Protein Reconstitutes IFN-β Induction and Antiviral Response in Models Deficient in Type I IFN Response.

    PubMed

    Nistal-Villán, Estanislao; Rodríguez-García, Estefanía; Di Scala, Marianna; Ferrero-Laborda, Roberto; Olagüe, Cristina; Vales, África; Carte-Abad, Beatriz; Crespo, Irene; García-Sastre, Adolfo; Prieto, Jesús; Larrea, Esther; González-Aseguinolaza, Gloria

    2015-01-01

    RIG-I-like receptors (RLRs) are cellular sensor proteins that detect certain RNA species produced during viral infections. RLRs activate a signaling cascade that results in the production of IFN-β as well as several other cytokines with antiviral and proinflammatory activities. We explored the potential of different constructs based on RLRs to induce the IFN-β pathway and create an antiviral state in type I IFN-unresponsive models. A chimeric construct composed of RIG-I 2CARD and the first 200 amino acids of MAVS (2CARD-MAVS200) showed an enhanced ability to induce IFN-β when compared to other stimulatory constructs. Furthermore, this human chimeric construct showed a superior ability to activate IFN-β expression in cells from various species. This construct was found to overcome the restrictions of blocking IFN-β induction or signaling by a number of viral IFN-antagonist proteins. Additionally, the antiviral activity of this chimera was demonstrated in influenza virus and HBV infection mouse models using adeno-associated virus (AAV) vectors as a delivery vehicle. We propose that AAV vectors expressing 2CARD-MAVS200 chimeric protein can reconstitute IFN-β induction and recover a partial antiviral state in different models that do not respond to recombinant IFN-β treatment. PMID:25966783

  11. A RIG-I 2CARD-MAVS200 CHIMERIC PROTEIN RECONSTITUTES IFN-B INDUCTION AND ANTIVIRAL RESPONSE IN MODELS DEFICIENT IN TYPE I IFN RESPONSE

    PubMed Central

    Nistal-Villán, Estanislao; Rodríguez-García, Estefanía; Di Scala, Marianna; Ferrero-Laborda, Roberto; Olagüe, Cristina; Vales, África; Carte-Abad, Beatriz; Crespo, Irene; García-Sastre, Adolfo; Prieto, Jesús; Larrea, Esther; González-Aseguinolaza, Gloria

    2015-01-01

    RIG-I like receptors (RLRs) are cellular sensor proteins that detect certain RNA species produced during viral infections. RLRs activate a signaling cascade that results in the production of interferon-beta (IFN-β) as well as several other cytokines with antiviral and proinflammatory activities. We explored the potential of different constructs based on RLRs to induce the IFN-β pathway and create an antiviral state in type I IFN-unresponsive models. A chimeric construct composed of RIG-I 2CARD and the first 200 amino acids of MAVS (2CARD-MAVS200) showed an enhanced ability to induce IFN-β as compared to other stimulatory constructs. Furthermore, this human chimeric construct showed a superior ability to activate IFN-β expression in cells from various species. This construct was found to overcome the restrictions of blocking IFN-β induction or signaling by a number of viral antagonist proteins. Additionally, the antiviral activity of this chimera was demonstrated in influenza virus and HBV infection mouse models using adeno-associated viral (AAV) vectors as a delivery vehicle. We propose that AAV vectors expressing 2CARD-MAVS200 chimeric protein can reconstitute IFN-β induction and recover a partial antiviral state in different models that do not respond to recombinant IFN-β treatment. PMID:25966783

  12. The polarity protein Par3 regulates APP trafficking and processing through the endocytic adaptor protein Numb.

    PubMed

    Sun, Miao; Asghar, Suwaiba Z; Zhang, Huaye

    2016-09-01

    The processing of amyloid precursor protein (APP) into β-amyloid peptide (Aβ) is a key step in the pathogenesis of Alzheimer's disease (AD), and trafficking dysregulations of APP and its secretases contribute significantly to altered APP processing. Here we show that the cell polarity protein Par3 plays an important role in APP processing and trafficking. We found that the expression of full length Par3 is significantly decreased in AD patients. Overexpression of Par3 promotes non-amyloidogenic APP processing, while depletion of Par3 induces intracellular accumulation of Aβ. We further show that Par3 functions by regulating APP trafficking. Loss of Par3 decreases surface expression of APP by targeting APP to the late endosome/lysosome pathway. Finally, we show that the effects of Par3 are mediated through the endocytic adaptor protein Numb, and Par3 functions by interfering with the interaction between Numb and APP. Together, our studies show a novel role for Par3 in regulating APP processing and trafficking. PMID:27072891

  13. Surfactant Protein A Enhances Constitutive Immune Functions of Clathrin Heavy Chain and Clathrin Adaptor Protein 2.

    PubMed

    Moulakakis, Christina; Steinhäuser, Christine; Biedziak, Dominika; Freundt, Katja; Reiling, Norbert; Stamme, Cordula

    2016-07-01

    NF-κB transcription factors are key regulators of pulmonary inflammatory disorders and repair. Constitutive lung cell type- and microenvironment-specific NF-κB/inhibitor κBα (IκB-α) regulation, however, is poorly understood. Surfactant protein (SP)-A provides both a critical homeostatic and lung defense control, in part by immune instruction of alveolar macrophages (AMs) via clathrin-mediated endocytosis. The central endocytic proteins, clathrin heavy chain (CHC) and the clathrin adaptor protein (AP) complex AP2, have pivotal alternative roles in cellular homeostasis that are endocytosis independent. Here, we dissect endocytic from alternative functions of CHC, the α-subunit of AP2, and dynamin in basal and SP-A-modified LPS signaling of macrophages. As revealed by pharmacological inhibition and RNA interference in primary AMs and RAW264.7 macrophages, respectively, CHC and α-adaptin, but not dynamin, prevent IκB-α degradation and TNF-α release, independent of their canonical role in membrane trafficking. Kinetics studies employing confocal microscopy, Western analysis, and immunomagnetic sorting revealed that SP-A transiently enhances the basal protein expression of CHC and α-adaptin, depending on early activation of protein kinase CK2 (former casein kinase II) and Akt1 in primary AMs from rats, SP-A(+/+), and SP-A(-/-) mice, as well as in vivo when intratracheally administered to SP-A(+/+) mice. Constitutive immunomodulation by SP-A, but not SP-A-mediated inhibition of LPS-induced NF-κB activity and TNF-α release, requires CHC, α-adaptin, and dynamin. Our data demonstrate that endocytic proteins constitutively restrict NF-κB activity in macrophages and provide evidence that SP-A enhances the immune regulatory capacity of these proteins, revealing a previously unknown pathway of microenvironment-specific NF-κB regulation in the lung. PMID:26771574

  14. A Role for the Adaptor Proteins TRAM and TRIF in Toll-like Receptor 2 Signaling*

    PubMed Central

    Nilsen, Nadra J.; Vladimer, Gregory I.; Stenvik, Jørgen; Orning, M. Pontus A.; Zeid-Kilani, Maria V.; Bugge, Marit; Bergstroem, Bjarte; Conlon, Joseph; Husebye, Harald; Hise, Amy G.; Fitzgerald, Katherine A.; Espevik, Terje; Lien, Egil

    2015-01-01

    Toll-like receptors (TLRs) are involved in sensing invading microbes by host innate immunity. TLR2 recognizes bacterial lipoproteins/lipopeptides, and lipopolysaccharide activates TLR4. TLR2 and TLR4 signal via the Toll/interleukin-1 receptor adaptors MyD88 and MAL, leading to NF-κB activation. TLR4 also utilizes the adaptors TRAM and TRIF, resulting in activation of interferon regulatory factor (IRF) 3. Here, we report a new role for TRAM and TRIF in TLR2 regulation and signaling. Interestingly, we observed that TLR2-mediated induction of the chemokine Ccl5 was impaired in TRAM or TRIF deficient macrophages. Inhibition of endocytosis reduced Ccl5 release, and the data also suggested that TRAM and TLR2 co-localize in early endosomes, supporting the hypothesis that signaling may occur from an intracellular compartment. Ccl5 release following lipoprotein challenge additionally involved the kinase Tbk-1 and Irf3, as well as MyD88 and Irf1. Induction of Interferon-β and Ccl4 by lipoproteins was also partially impaired in cells lacking TRIF cells. Our results show a novel function of TRAM and TRIF in TLR2-mediated signal transduction, and the findings broaden our understanding of how Toll/interleukin-1 receptor adaptor proteins may participate in signaling downstream from TLR2. PMID:25505250

  15. The adaptor protein Dab2 sorts LDL receptors into coated pits independently of AP-2 and ARH.

    PubMed

    Maurer, Meghan E; Cooper, Jonathan A

    2006-10-15

    Clathrin-mediated endocytosis requires cargo-specific adaptor proteins that recognize specific receptors and recruit them into coated pits. ARH [also called low-density lipoprotein receptor (LDLR) adaptor protein] serves as an adaptor for LDLR endocytosis in liver. However, ARH is dispensable for LDL uptake by some other cell types. Here, we show that the adaptor Dab2 plays a major role in LDLR internalization in HeLa cells and fibroblasts. Dab2 mediates internalization of LDLRs but not transferrin receptors independently of ARH and the classic clathrin adaptor AP-2. If Dab2 is absent, ARH can mediate LDLR endocytosis, but its action requires AP-2. Furthermore, the rate of LDLR endocytosis is decreased when Dab2 is absent and Dab2, but not ARH, catalyzes the efficient clustering of LDLR into coated pits. Dab2 activity requires its binding to clathrin, LDLR and phospholipids. Dab2 is also involved in moving LDLRs off filopodia. We suggest that Dab2 is a cargo-specific endocytic adaptor protein, stably associating with phospholipids and clathrin to sort LDLR to nascent-coated pits, whereas ARH might accelerate later steps in LDLR endocytosis in cooperation with AP-2. PMID:16984970

  16. Targeted decay of a regulatory small RNA by an adaptor protein for RNase E and counteraction by an anti-adaptor RNA

    PubMed Central

    Göpel, Yvonne; Papenfort, Kai; Reichenbach, Birte; Vogel, Jörg; Görke, Boris

    2013-01-01

    Bacterial small RNAs (sRNAs) are well established to regulate diverse cellular processes, but how they themselves are regulated is less understood. Recently, we identified a regulatory circuit wherein the GlmY and GlmZ sRNAs of Escherichia coli act hierarchically to activate mRNA glmS, which encodes glucosamine-6-phosphate (GlcN6P) synthase. Although the two sRNAs are highly similar, only GlmZ is a direct activator that base-pairs with the glmS mRNA, aided by protein Hfq. GlmY, however, does not bind Hfq and activates glmS indirectly by protecting GlmZ from RNA cleavage. This complex regulation feedback controls the levels of GlmS protein in response to its product, GlcN6P, a key metabolite in cell wall biosynthesis. Here, we reveal the molecular basis for the regulated turnover of GlmZ, identifying RapZ (RNase adaptor protein for sRNA GlmZ; formerly YhbJ) as a novel type of RNA-binding protein that recruits the major endoribonuclease RNase E to GlmZ. This involves direct interaction of RapZ with the catalytic domain of RNase E. GlmY binds RapZ through a secondary structure shared by both sRNAs and therefore acts by molecular mimicry as a specific decoy for RapZ. Thus, in analogy to regulated proteolysis, RapZ is an adaptor, and GlmY is an anti-adaptor in regulated turnover of a regulatory small RNA. PMID:23475961

  17. The role of small adaptor proteins in the control of oncogenic signaling driven by tyrosine kinases in human cancer

    PubMed Central

    Naudin, Cécile; Chevalier, Clément; Roche, Serge

    2016-01-01

    Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology. PMID:26788993

  18. The adaptor protein CIN85 assembles intracellular signaling clusters for B cell activation.

    PubMed

    Kühn, Julius; Wong, Leo E; Pirkuliyeva, Sona; Schulz, Kathrin; Schwiegk, Claudia; Fünfgeld, Kevser Gencalp; Keppler, Selina; Batista, Facundo D; Urlaub, Henning; Habeck, Michael; Becker, Stefan; Griesinger, Christian; Wienands, Jürgen

    2016-01-01

    The adaptor molecule Cbl-interacting protein of 85 kD (CIN85) regulates signaling from a number of cell surface receptors, such as growth factor receptors and antigen receptors on lymphocytes. Because of its multidomain structure, CIN85 is thought to act as a classical adaptor protein that connects functionally distinct components of a given signaling pathway through diverse protein domains. However, we found that in B lymphocytes, CIN85 functions to oligomerize SLP-65, which is the central effector protein of the B cell receptor (BCR). Therefore, CIN85 trimerizes through a carboxyl-terminal, coiled-coil domain. The multiple Src homology 3 (SH3) domains of trimeric CIN85 molecules associated with multiple SLP-65 molecules, which recruited further CIN85 trimers, thereby perpetuating the oligomerization process. Formation of this oligomeric signaling complex in resting B cells rendered the cells poised for the efficient initiation of intracellular signaling upon BCR stimulation. Our data suggest that the functionality of signaling cascades does not rely solely on the qualitative linkage of their various components but requires a critical number of effectors to become concentrated in signaling complexes. PMID:27353366

  19. Nephrin Suppresses Hippo Signaling through the Adaptor Proteins Nck and WTIP.

    PubMed

    Keyvani Chahi, Ava; Martin, Claire E; Jones, Nina

    2016-06-10

    Podocytes are key components of the kidney blood filtration barrier, and their ability to withstand hemodynamic strain is proposed to be closely tied to their unique and flexible cytoarchitecture. However, the mechanisms that control such mechanotransduction are poorly understood. We have previously established that tyrosine phosphorylation of the transmembrane protein nephrin promotes recruitment of the Nck1/2 cytoskeletal adaptor proteins and downstream actin remodeling. We now reveal that Nck integrates nephrin with the Hippo kinase cascade through association with the adaptor protein WTIP. Using mutational analysis, we show that Nck sequesters WTIP and its binding partner Lats1 to phosphorylated nephrin, resulting in decreased phospho-activation of Lats1. We further demonstrate that, coincident with nephrin dephosphorylation in a transient model of podocyte injury in mice, Lats1 is rapidly activated, and this precedes significant down-regulation of the transcription regulator Yap. Moreover, we show reduced levels of Yap protein in mice with chronic disruption of nephrin phospho-signaling. Together, these findings support the existence of a dynamic molecular link between nephrin signaling and the canonical Hippo pathway in podocytes, which may facilitate the conversion of mechanical cues to biochemical signals promoting podocyte viability. PMID:27033705

  20. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52

    NASA Astrophysics Data System (ADS)

    Jo, Chulman; Gundemir, Soner; Pritchard, Susanne; Jin, Youngnam N.; Rahman, Irfan; Johnson, Gail V. W.

    2014-03-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor in the defence against oxidative stress. Here we provide evidence that activation of the Nrf2 pathway reduces the levels of phosphorylated tau by induction of an autophagy adaptor protein NDP52 (also known as CALCOCO2) in neurons. The expression of NDP52, which we show has three antioxidant response elements (AREs) in its promoter region, is strongly induced by Nrf2, and its overexpression facilitates clearance of phosphorylated tau in the presence of an autophagy stimulator. In Nrf2-knockout mice, phosphorylated and sarkosyl-insoluble tau accumulates in the brains concurrent with decreased levels of NDP52. Moreover, NDP52 associates with phosphorylated tau from brain cortical samples of Alzheimer disease cases, and the amount of phosphorylated tau in sarkosyl-insoluble fractions is inversely proportional to that of NDP52. These results suggest that NDP52 plays a key role in autophagy-mediated degradation of phosphorylated tau in vivo.

  1. Synthetic Protein Scaffolds Based on Peptide Motifs and Cognate Adaptor Domains for Improving Metabolic Productivity.

    PubMed

    Horn, Anselm H C; Sticht, Heinrich

    2015-01-01

    The efficiency of many cellular processes relies on the defined interaction among different proteins within the same metabolic or signaling pathway. Consequently, a spatial colocalization of functionally interacting proteins has frequently emerged during evolution. This concept has been adapted within the synthetic biology community for the purpose of creating artificial scaffolds. A recent advancement of this concept is the use of peptide motifs and their cognate adaptor domains. SH2, SH3, GBD, and PDZ domains have been used most often in research studies to date. The approach has been successfully applied to the synthesis of a variety of target molecules including catechin, D-glucaric acid, H2, hydrochinone, resveratrol, butyrate, gamma-aminobutyric acid, and mevalonate. Increased production levels of up to 77-fold have been observed compared to non-scaffolded systems. A recent extension of this concept is the creation of a covalent linkage between peptide motifs and adaptor domains, which leads to a more stable association of the scaffolded systems and thus bears the potential to further enhance metabolic productivity. PMID:26636078

  2. Synthetic Protein Scaffolds Based on Peptide Motifs and Cognate Adaptor Domains for Improving Metabolic Productivity

    PubMed Central

    Horn, Anselm H. C.; Sticht, Heinrich

    2015-01-01

    The efficiency of many cellular processes relies on the defined interaction among different proteins within the same metabolic or signaling pathway. Consequently, a spatial colocalization of functionally interacting proteins has frequently emerged during evolution. This concept has been adapted within the synthetic biology community for the purpose of creating artificial scaffolds. A recent advancement of this concept is the use of peptide motifs and their cognate adaptor domains. SH2, SH3, GBD, and PDZ domains have been used most often in research studies to date. The approach has been successfully applied to the synthesis of a variety of target molecules including catechin, D-glucaric acid, H2, hydrochinone, resveratrol, butyrate, gamma-aminobutyric acid, and mevalonate. Increased production levels of up to 77-fold have been observed compared to non-scaffolded systems. A recent extension of this concept is the creation of a covalent linkage between peptide motifs and adaptor domains, which leads to a more stable association of the scaffolded systems and thus bears the potential to further enhance metabolic productivity. PMID:26636078

  3. Phosphorylation-Dependent Regulation of the DNA Damage Response of Adaptor Protein KIBRA in Cancer Cells.

    PubMed

    Mavuluri, Jayadev; Beesetti, Swarnalatha; Surabhi, Rohan; Kremerskothen, Joachim; Venkatraman, Ganesh; Rayala, Suresh K

    2016-05-01

    Multifunctional adaptor proteins encompassing various protein-protein interaction domains play a central role in the DNA damage response pathway. In this report, we show that KIBRA is a physiologically interacting reversible substrate of ataxia telangiectasia mutated (ATM) kinase. We identified the site of phosphorylation in KIBRA as threonine 1006, which is embedded within the serine/threonine (S/T) Q consensus motif, by site-directed mutagenesis, and we further confirmed the same with a phospho-(S/T) Q motif-specific antibody. Results from DNA repair functional assays such as the γ-H2AX assay, pulsed-field gel electrophoresis (PFGE), Comet assay, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay, and clonogenic cell survival assay using stable overexpression clones of wild-type (wt.) KIBRA and active (T1006E) and inactive (T1006A) KIBRA phosphorylation mutants showed that T1006 phosphorylation on KIBRA is essential for optimal DNA double-strand break repair in cancer cells. Further, results from stable retroviral short hairpin RNA-mediated knockdown (KD) clones of KIBRA and KIBRA knockout (KO) model cells generated by a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system showed that depleting KIBRA levels compromised the DNA repair functions in cancer cells upon inducing DNA damage. All these phenotypic events were reversed upon reconstitution of KIBRA into cells lacking KIBRA knock-in (KI) model cells. All these results point to the fact that phosphorylated KIBRA might be functioning as a scaffolding protein/adaptor protein facilitating the platform for further recruitment of other DNA damage response factors. In summary, these data demonstrate the imperative functional role of KIBRAper se(KIBRA phosphorylation at T1006 site as a molecular switch that regulates the DNA damage response, possibly via the nonhomologous end joining [NHEJ] pathway), suggesting that KIBRA could be a potential

  4. Valosin-containing protein (VCP)-Adaptor Interactions are Exceptionally Dynamic and Subject to Differential Modulation by a VCP Inhibitor.

    PubMed

    Xue, Liang; Blythe, Emily E; Freiberger, Elyse C; Mamrosh, Jennifer L; Hebert, Alexander S; Reitsma, Justin M; Hess, Sonja; Coon, Joshua J; Deshaies, Raymond J

    2016-09-01

    Protein quality control (PQC) plays an important role in stemming neurodegenerative diseases and is essential for the growth of some cancers. Valosin-containing protein (VCP)/p97 plays a pivotal role in multiple PQC pathways by interacting with numerous adaptors that link VCP to specific PQC pathways and substrates and influence the post-translational modification state of substrates. However, our poor understanding of the specificity and architecture of the adaptors, and the dynamic properties of their interactions with VCP hinders our understanding of fundamental features of PQC and how modulation of VCP activity can best be exploited therapeutically. In this study we use multiple mass spectrometry-based proteomic approaches combined with biophysical studies to characterize the interaction of adaptors with VCP. Our results reveal that most VCP-adaptor interactions are characterized by rapid dynamics that in some cases are modulated by the VCP inhibitor NMS873. These findings have significant implications for both the regulation of VCP function and the impact of VCP inhibition on different VCP-adaptor complexes. PMID:27406709

  5. The Adaptor Protein Rai/ShcC Promotes Astrocyte-Dependent Inflammation during Experimental Autoimmune Encephalomyelitis.

    PubMed

    Ulivieri, Cristina; Savino, Maria Teresa; Luccarini, Ilaria; Fanigliulo, Emanuela; Aldinucci, Alessandra; Bonechi, Elena; Benagiano, Marisa; Ortensi, Barbara; Pelicci, Giuliana; D'Elios, Mario Milco; Ballerini, Clara; Baldari, Cosima Tatiana

    2016-07-15

    Th17 cells have been casually associated to the pathogenesis of autoimmune disease. We have previously demonstrated that Rai/ShcC, a member of the Shc family of adaptor proteins, negatively regulates Th17 cell differentiation and lupus autoimmunity. In this study, we have investigated the pathogenic outcome of the Th17 bias associated with Rai deficiency on multiple sclerosis development, using the experimental autoimmune encephalomyelitis (EAE) mouse model. We found that, unexpectedly, EAE was less severe in Rai(-/-) mice compared with their wild-type counterparts despite an enhanced generation of myelin-specific Th17 cells that infiltrated into the CNS. Nevertheless, when adoptively transferred into immunodeficient Rai(+/+) mice, these cells promoted a more severe disease compared with wild-type encephalitogenic Th17 cells. This paradoxical phenotype was caused by a dampened inflammatory response of astrocytes, which were found to express Rai, to IL-17. The results provide evidence that Rai plays opposite roles in Th17 cell differentiation and astrocyte activation, with the latter dominant over the former in EAE, highlighting this adaptor as a potential novel target for the therapy of multiple sclerosis. PMID:27288534

  6. The role of palmitoylation and transmembrane domain in sorting of transmembrane adaptor proteins.

    PubMed

    Chum, Tomáš; Glatzová, Daniela; Kvíčalová, Zuzana; Malínský, Jan; Brdička, Tomáš; Cebecauer, Marek

    2016-01-01

    Plasma membrane proteins synthesised at the endoplasmic reticulum are delivered to the cell surface via sorting pathways. Hydrophobic mismatch theory based on the length of the transmembrane domain (TMD) dominates discussion about determinants required for protein sorting to the plasma membrane. Transmembrane adaptor proteins (TRAP) are involved in signalling events which take place at the plasma membrane. Members of this protein family have TMDs of varying length. We were interested in whether palmitoylation or other motifs contribute to the effective sorting of TRAP proteins. We found that palmitoylation is essential for some, but not all, TRAP proteins independent of their TMD length. We also provide evidence that palmitoylation and proximal sequences can modulate sorting of artificial proteins with TMDs of suboptimal length. Our observations point to a unique character of each TMD defined by its primary amino acid sequence and its impact on membrane protein localisation. We conclude that, in addition to the TMD length, secondary sorting determinants such as palmitoylation or flanking sequences have evolved for the localisation of membrane proteins. PMID:26585312

  7. Molecular basis of substrate selection by the N-end rule adaptor protein ClpS

    SciTech Connect

    Román-Hernández, Giselle; Grant, Robert A.; Sauer, Robert T.; Baker, Tania A.

    2009-06-19

    The N-end rule is a conserved degradation pathway that relates the stability of a protein to its N-terminal amino acid. Here, we present crystal structures of ClpS, the bacterial N-end rule adaptor, alone and engaged with peptides containing N-terminal phenylalanine, leucine, and tryptophan. These structures, together with a previous structure of ClpS bound to an N-terminal tyrosine, illustrate the molecular basis of recognition of the complete set of primary N-end rule amino acids. In each case, the alpha-amino group and side chain of the N-terminal residue are the major determinants of recognition. The binding pocket for the N-end residue is preformed in the free adaptor, and only small adjustments are needed to accommodate N-end rule residues having substantially different sizes and shapes. M53A ClpS is known to mediate degradation of an expanded repertoire of substrates, including those with N-terminal valine or isoleucine. A structure of Met53A ClpS engaged with an N-end rule tryptophan reveals an essentially wild-type mechanism of recognition, indicating that the Met(53) side chain directly enforces specificity by clashing with and excluding beta-branched side chains. Finally, experimental and structural data suggest mechanisms that make proteins with N-terminal methionine bind very poorly to ClpS, explaining why these high-abundance proteins are not degraded via the N-end rule pathway in the cell.

  8. Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck

    PubMed Central

    Banjade, Sudeep; Wu, Qiong; Mittal, Anuradha; Peeples, William B.; Pappu, Rohit V.; Rosen, Michael K.

    2015-01-01

    The organization of membranes, the cytosol, and the nucleus of eukaryotic cells can be controlled through phase separation of lipids, proteins, and nucleic acids. Collective interactions of multivalent molecules mediated by modular binding domains can induce gelation and phase separation in several cytosolic and membrane-associated systems. The adaptor protein Nck has three SRC-homology 3 (SH3) domains that bind multiple proline-rich segments in the actin regulatory protein neuronal Wiskott-Aldrich syndrome protein (N-WASP) and an SH2 domain that binds to multiple phosphotyrosine sites in the adhesion protein nephrin, leading to phase separation. Here, we show that the 50-residue linker between the first two SH3 domains of Nck enhances phase separation of Nck/N-WASP/nephrin assemblies. Two linear motifs within this element, as well as its overall positively charged character, are important for this effect. The linker increases the driving force for self-assembly of Nck, likely through weak interactions with the second SH3 domain, and this effect appears to promote phase separation. The linker sequence is highly conserved, suggesting that the sequence determinants of the driving forces for phase separation may be generally important to Nck functions. Our studies demonstrate that linker regions between modular domains can contribute to the driving forces for self-assembly and phase separation of multivalent proteins. PMID:26553976

  9. PHF6 Degrees of Separation: The Multifaceted Roles of a Chromatin Adaptor Protein

    PubMed Central

    Todd, Matthew A.M.; Ivanochko, Danton; Picketts, David J.

    2015-01-01

    The importance of chromatin regulation to human disease is highlighted by the growing number of mutations identified in genes encoding chromatin remodeling proteins. While such mutations were first identified in severe developmental disorders, or in specific cancers, several genes have been implicated in both, including the plant homeodomain finger protein 6 (PHF6) gene. Indeed, germline mutations in PHF6 are the cause of the Börjeson–Forssman–Lehmann X-linked intellectual disability syndrome (BFLS), while somatic PHF6 mutations have been identified in T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). Studies from different groups over the last few years have made a significant impact towards a functional understanding of PHF6 protein function. In this review, we summarize the current knowledge of PHF6 with particular emphasis on how it interfaces with a distinct set of interacting partners and its functional roles in the nucleoplasm and nucleolus. Overall, PHF6 is emerging as a key chromatin adaptor protein critical to the regulation of neurogenesis and hematopoiesis. PMID:26103525

  10. IRF-3, IRF-5, and IRF-7 coordinately regulate the type I IFN response in myeloid dendritic cells downstream of MAVS signaling.

    PubMed

    Lazear, Helen M; Lancaster, Alissa; Wilkins, Courtney; Suthar, Mehul S; Huang, Albert; Vick, Sarah C; Clepper, Lisa; Thackray, Larissa; Brassil, Margaret M; Virgin, Herbert W; Nikolich-Zugich, Janko; Moses, Ashlee V; Gale, Michael; Früh, Klaus; Diamond, Michael S

    2013-01-01

    Although the transcription factors IRF-3 and IRF-7 are considered master regulators of type I interferon (IFN) induction and IFN stimulated gene (ISG) expression, Irf3(-/-)×Irf7(-/-) double knockout (DKO) myeloid dendritic cells (mDC) produce relatively normal levels of IFN-β after viral infection. We generated Irf3(-/-)×Irf5(-/-)×Irf7(-/-) triple knockout (TKO) mice to test whether IRF-5 was the source of the residual induction of IFN-β and ISGs in mDCs. In pathogenesis studies with two unrelated positive-sense RNA viruses (West Nile virus (WNV) and murine norovirus), TKO mice succumbed at rates greater than DKO mice and equal to or approaching those of mice lacking the type I IFN receptor (Ifnar(-/-)). In ex vivo studies, after WNV infection or exposure to Toll-like receptor agonists, TKO mDCs failed to produce IFN-β or express ISGs. In contrast, this response was sustained in TKO macrophages following WNV infection. To define IRF-regulated gene signatures, we performed microarray analysis on WNV-infected mDC from wild type (WT), DKO, TKO, or Ifnar(-/-) mice, as well as from mice lacking the RIG-I like receptor adaptor protein MAVS. Whereas the gene induction pattern in DKO mDC was similar to WT cells, remarkably, almost no ISG induction was detected in TKO or Mavs(-/-) mDC. The relative equivalence of TKO and Mavs(-/-) responses suggested that MAVS dominantly regulates ISG induction in mDC. Moreover, we showed that MAVS-dependent induction of ISGs can occur through an IRF-5-dependent yet IRF-3 and IRF-7-independent pathway. Our results establish IRF-3, -5, and -7 as the key transcription factors responsible for mediating the type I IFN and ISG response in mDC during WNV infection and suggest a novel signaling link between MAVS and IRF-5. PMID:23300459

  11. Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence.

    PubMed

    Stack, Julianne; Haga, Ismar R; Schröder, Martina; Bartlett, Nathan W; Maloney, Geraldine; Reading, Patrick C; Fitzgerald, Katherine A; Smith, Geoffrey L; Bowie, Andrew G

    2005-03-21

    Viral immune evasion strategies target key aspects of the host antiviral response. Recently, it has been recognized that Toll-like receptors (TLRs) have a role in innate defense against viruses. Here, we define the function of the vaccinia virus (VV) protein A46R and show it inhibits intracellular signalling by a range of TLRs. TLR signalling is triggered by homotypic interactions between the Toll-like-interleukin-1 resistance (TIR) domains of the receptors and adaptor molecules. A46R contains a TIR domain and is the only viral TIR domain-containing protein identified to date. We demonstrate that A46R targets the host TIR adaptors myeloid differentiation factor 88 (MyD88), MyD88 adaptor-like, TIR domain-containing adaptor inducing IFN-beta (TRIF), and the TRIF-related adaptor molecule and thereby interferes with downstream activation of mitogen-activated protein kinases and nuclear factor kappaB. TRIF mediates activation of interferon (IFN) regulatory factor 3 (IRF3) and induction of IFN-beta by TLR3 and TLR4 and suppresses VV replication in macrophages. Here, A46R disrupted TRIF-induced IRF3 activation and induction of the TRIF-dependent gene regulated on activation, normal T cell expressed and secreted. Furthermore, we show that A46R is functionally distinct from another described VV TLR inhibitor, A52R. Importantly, VV lacking the A46R gene was attenuated in a murine intranasal model, demonstrating the importance of A46R for VV virulence. PMID:15767367

  12. Merkel cell polyomavirus small T antigen targets the NEMO adaptor protein to disrupt inflammatory signaling.

    PubMed

    Griffiths, David A; Abdul-Sada, Hussein; Knight, Laura M; Jackson, Brian R; Richards, Kathryn; Prescott, Emma L; Peach, A Howard S; Blair, G Eric; Macdonald, Andrew; Whitehouse, Adrian

    2013-12-01

    Merkel cell carcinoma (MCC) is a highly aggressive nonmelanoma skin cancer arising from epidermal mechanoreceptor Merkel cells. In 2008, a novel human polyomavirus, Merkel cell polyomavirus (MCPyV), was identified and is strongly implicated in MCC pathogenesis. Currently, little is known regarding the virus-host cell interactions which support virus replication and virus-induced mechanisms in cellular transformation and metastasis. Here we identify a new function of MCPyV small T antigen (ST) as an inhibitor of NF-κB-mediated transcription. This effect is due to an interaction between MCPyV ST and the NF-κB essential modulator (NEMO) adaptor protein. MCPyV ST expression inhibits IκB kinase α (IKKα)/IKKβ-mediated IκB phosphorylation, which limits translocation of the NF-κB heterodimer to the nucleus. Regulation of this process involves a previously undescribed interaction between MCPyV ST and the cellular phosphatase subunits, protein phosphatase 4C (PP4C) and/or protein phosphatase 2A (PP2A) Aβ, but not PP2A Aα. Together, these results highlight a novel function of MCPyV ST to subvert the innate immune response, allowing establishment of early or persistent infection within the host cell. PMID:24109239

  13. Losses, Expansions, and Novel Subunit Discovery of Adaptor Protein Complexes in Haptophyte Algae.

    PubMed

    Lee, Laura J Y; Klute, Mary J; Herman, Emily K; Read, Betsy; Dacks, Joel B

    2015-11-01

    The phylum Haptophyta (Diaphoratickes) contains marine algae that perform biomineralization, extruding large, distinctive calcium carbonate scales (coccoliths) that completely cover the cell. Coccolith production is an important part of global carbon cycling; however, the membrane trafficking pathway by which they are secreted has not yet been elucidated. In most eukaryotes, post-Golgi membrane trafficking involves five heterotetrameric adaptor protein (AP) complexes, which impart cargo selection specificity. To better understand coccolith secretion, we performed comparative genomic, phylogenetic, and transcriptomic analyses of the AP complexes in Emiliania huxleyi strains 92A, Van556, EH2, and CCMP1516, and related haptophytes Gephyrocapsa oceanica and Isochrysis galbana; the latter has lost the ability to biomineralize. We show that haptophytes have a modified membrane trafficking system (MTS), as we found both AP subunit losses and duplications. Additionally, we identified a single conserved subunit of the AP-related TSET complex, whose expression suggests a functional role in membrane trafficking. Finally, we detected novel alpha adaptin ear and gamma adaptin ear proteins, the first of their kind to be described outside of opisthokonts. These novel ear proteins and the sculpting of the MTS may support the capacity for biomineralization in haptophytes, enhancing their ability to perform this highly specialized form of secretion. PMID:26519625

  14. Endostatin-induced tyrosine kinase signaling through the Shb adaptor protein regulates endothelial cell apoptosis.

    PubMed

    Dixelius, J; Larsson, H; Sasaki, T; Holmqvist, K; Lu, L; Engström, A; Timpl, R; Welsh, M; Claesson-Welsh, L

    2000-06-01

    Endostatin, which corresponds to the C-terminal fragment of collagen XVIII, is a potent inhibitor of angiogenesis. Fibroblast growth factor-2 (FGF-2)-induced angiogenesis in the chicken chorioallantoic membrane was inhibited by endostatin, but not by an endostatin mutant R158/270A, lacking heparin-binding ability. Endostatin was internalized by endothelial cells, but not by mouse fibroblasts. Treatment of murine brain endothelial (IBE) cells with endostatin reduced the proportion of cells in S phase, whereas growth-arrested IBE cells in collagen gels treated with endostatin displayed enhanced tubular morphogenesis. IBE cells overexpressing Shb, an adaptor protein implicated in angiostatin-induced apoptosis, displayed elevated apoptosis and decreased tubular morphogenesis in collagen gels in response to endostatin when added together with FGF-2. Induction of apoptosis was dependent on the heparin-binding ability of endostatin and the expression of Shb with a functional Src homology 2 (SH2)-domain. Endostatin treatment for 10 minutes or 24 hours induced tyrosine phosphorylation of Shb and formation of multiprotein complexes. An Shb SH2 domain fusion protein precipitated a 125-kd phosphotyrosyl protein in endostatin-treated cells. The 125-kd component either contained intrinsic tyrosine kinase activity or occurred in complex with a tyrosine kinase. In conclusion, our data show that endostatin induces tyrosine kinase activity and enhanced apoptosis in FGF-treated endothelial cells. PMID:10828022

  15. Merkel Cell Polyomavirus Small T Antigen Targets the NEMO Adaptor Protein To Disrupt Inflammatory Signaling

    PubMed Central

    Griffiths, David A.; Abdul-Sada, Hussein; Knight, Laura M.; Jackson, Brian R.; Richards, Kathryn; Prescott, Emma L.; Peach, A. Howard S.; Blair, G. Eric

    2013-01-01

    Merkel cell carcinoma (MCC) is a highly aggressive nonmelanoma skin cancer arising from epidermal mechanoreceptor Merkel cells. In 2008, a novel human polyomavirus, Merkel cell polyomavirus (MCPyV), was identified and is strongly implicated in MCC pathogenesis. Currently, little is known regarding the virus-host cell interactions which support virus replication and virus-induced mechanisms in cellular transformation and metastasis. Here we identify a new function of MCPyV small T antigen (ST) as an inhibitor of NF-κB-mediated transcription. This effect is due to an interaction between MCPyV ST and the NF-κB essential modulator (NEMO) adaptor protein. MCPyV ST expression inhibits IκB kinase α (IKKα)/IKKβ-mediated IκB phosphorylation, which limits translocation of the NF-κB heterodimer to the nucleus. Regulation of this process involves a previously undescribed interaction between MCPyV ST and the cellular phosphatase subunits, protein phosphatase 4C (PP4C) and/or protein phosphatase 2A (PP2A) Aβ, but not PP2A Aα. Together, these results highlight a novel function of MCPyV ST to subvert the innate immune response, allowing establishment of early or persistent infection within the host cell. PMID:24109239

  16. Adaptor Protein 2 Regulates Receptor-Mediated Endocytosis and Cyst Formation in Giardia lamblia

    PubMed Central

    Rivero, Maria R.; Vranych, Cecilia V.; Bisbal, Mariano; Maletto, Belkys A.; Ropolo, Andrea S.; Touz, Maria C.

    2010-01-01

    Synopsis The parasite Giardia lamblia possesses peripheral vacuoles (PVs) that function as both endosomes and lysosomes and are implicated in the adaptation, differentiation, and survival of the parasite in different environments. The mechanisms by which Giardia traffics essential proteins to these organelles and regulates their secretion have important implications in the control of parasite dissemination. In this study, we describe the participation of the heterotetrameric clathrin-adaptor protein gAP2 complex in lysosomal protein trafficking. A specific monoclonal antibody against the medium subunit (gμ2) of gAP2 showed localization of this complex to the PVs, cytoplasm, and plasma membrane in the growing trophozoites. gAP2 also colocalized with clathrin in the PVs, suggesting its involvement in endocytosis. Uptake experiments using standard molecules for the study of endocytosis revealed that gAP2 specifically participated in the endocytosis of LDL. Targeted downregulation of the gene encoding gμ2 in growing and encysting trophozoites resulted in a large decrease in the amount of cell growth and cyst wall formation, suggesting a distinct mechanism in which gAP2 is directly involved in both endocytosis and vesicular trafficking. PMID:20199400

  17. Activity-Regulated Cytoskeleton-Associated Protein Controls AMPAR Endocytosis through a Direct Interaction with Clathrin-Adaptor Protein 2123

    PubMed Central

    Wall, Mark J.; P. de Almeida, Luciana; Wauters, Sandrine C.; Januário, Yunan C.; Müller, Jürgen

    2016-01-01

    Abstract The activity-regulated cytoskeleton-associated (Arc) protein controls synaptic strength by facilitating AMPA receptor (AMPAR) endocytosis. Here we demonstrate that Arc targets AMPAR to be internalized through a direct interaction with the clathrin-adaptor protein 2 (AP-2). We show that Arc overexpression in dissociated hippocampal neurons obtained from C57BL/6 mouse reduces the density of AMPAR GluA1 subunits at the cell surface and reduces the amplitude and rectification of AMPAR-mediated miniature-EPSCs (mEPSCs). Mutations of Arc, that prevent the AP-2 interaction reduce Arc-mediated endocytosis of GluA1 and abolish the reduction in AMPAR-mediated mEPSC amplitude and rectification. Depletion of the AP-2 subunit µ2 blocks the Arc-mediated reduction in mEPSC amplitude, an effect that is restored by reintroducing µ2. The Arc–AP-2 interaction plays an important role in homeostatic synaptic scaling as the Arc-dependent decrease in mEPSC amplitude, induced by a chronic increase in neuronal activity, is inhibited by AP-2 depletion. These data provide a mechanism to explain how activity-dependent expression of Arc decisively controls the fate of AMPAR at the cell surface and modulates synaptic strength, via the direct interaction with the endocytic clathrin adaptor AP-2. PMID:27257628

  18. Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies.

    PubMed

    Symmons, Martyn F; Marshall, Robert L; Bavro, Vassiliy N

    2015-01-01

    Recent years have seen major advances in the structural understanding of the different components of tripartite efflux assemblies, which encompass the multidrug efflux (MDR) pumps and type I secretion systems. The majority of these investigations have focused on the role played by the inner membrane transporters and the outer membrane factor (OMF), leaving the third component of the system - the Periplasmic Adaptor Proteins (PAPs) - relatively understudied. Here we review the current state of knowledge of these versatile proteins which, far from being passive linkers between the OMF and the transporter, emerge as active architects of tripartite assemblies, and play diverse roles in the transport process. Recognition between the PAPs and OMFs is essential for pump assembly and function, and targeting this interaction may provide a novel avenue for combating multidrug resistance. With the recent advances elucidating the drug efflux and energetics of the tripartite assemblies, the understanding of the interaction between the OMFs and PAPs is the last piece remaining in the complete structure of the tripartite pump assembly puzzle. PMID:26074901

  19. Stargazin regulates AMPA receptor trafficking through adaptor protein complexes during long-term depression

    NASA Astrophysics Data System (ADS)

    Matsuda, Shinji; Kakegawa, Wataru; Budisantoso, Timotheus; Nomura, Toshihiro; Kohda, Kazuhisa; Yuzaki, Michisuke

    2013-11-01

    Long-term depression (LTD) underlies learning and memory in various brain regions. Although postsynaptic AMPA receptor trafficking mediates LTD, its underlying molecular mechanisms remain largely unclear. Here we show that stargazin, a transmembrane AMPA receptor regulatory protein, forms a ternary complex with adaptor proteins AP-2 and AP-3A in hippocampal neurons, depending on its phosphorylation state. Inhibiting the stargazin-AP-2 interaction disrupts NMDA-induced AMPA receptor endocytosis, and inhibiting that of stargazin-AP-3A abrogates the late endosomal/lysosomal trafficking of AMPA receptors, thereby upregulating receptor recycling to the cell surface. Similarly, stargazin’s interaction with AP-2 or AP-3A is necessary for low-frequency stimulus-evoked LTD in CA1 hippocampal neurons. Thus, stargazin has a crucial role in NMDA-dependent LTD by regulating two trafficking pathways of AMPA receptors—transport from the cell surface to early endosomes and from early endosomes to late endosomes/lysosomes—through its sequential binding to AP-2 and AP-3A.

  20. Impairment of dendritic cell functions in patients with adaptor protein-3 complex deficiency.

    PubMed

    Prandini, Alberto; Salvi, Valentina; Colombo, Francesca; Moratto, Daniele; Lorenzi, Luisa; Vermi, William; De Francesco, Maria Antonia; Notarangelo, Lucia Dora; Porta, Fulvio; Plebani, Alessandro; Facchetti, Fabio; Sozzani, Silvano; Badolato, Raffaele

    2016-06-30

    Hermansky-Pudlak syndrome type 2 (HPS2) is a primary immunodeficiency due to adaptor protein-3 (AP-3) complex deficiency. HPS2 patients present neutropenia, partial albinism, and impaired lysosomal vesicles formation in hematopoietic cells. Given the role of dendritic cells (DCs) in the immune response, we studied monocyte-derived DCs (moDCs) and plasmacytoid DCs (pDCs) in two HPS2 siblings. Mature HPS2 moDCs showed impaired expression of CD83 and DC-lysosome-associated membrane protein (LAMP), low levels of MIP1-β/CCL4, MIG/CXCL9, and severe defect of interleukin-12 (IL-12) secretion. DCs in lymph-node biopsies from the same patients showed a diffuse cytoplasm reactivity in a large fraction of DC-LAMP(+) cells, instead of the classical dot-like stain. In addition, analysis of pDC-related functions of blood-circulating mononuclear cells revealed reduced interferon-α secretion in response to herpes simplex virus-1 (HSV-1), whereas granzyme-B induction upon IL-3/IL-10 stimulation was normal. Finally, T-cell costimulatory activity, as measured by mixed lymphocyte reaction assay, was lower in patients, suggesting that function and maturation of DCs is abnormal in patients with HPS2. PMID:27207797

  1. Architecture and roles of periplasmic adaptor proteins in tripartite efflux assemblies

    PubMed Central

    Symmons, Martyn F.; Marshall, Robert L.

    2015-01-01

    Recent years have seen major advances in the structural understanding of the different components of tripartite efflux assemblies, which encompass the multidrug efflux (MDR) pumps and type I secretion systems. The majority of these investigations have focused on the role played by the inner membrane transporters and the outer membrane factor (OMF), leaving the third component of the system – the Periplasmic Adaptor Proteins (PAPs) – relatively understudied. Here we review the current state of knowledge of these versatile proteins which, far from being passive linkers between the OMF and the transporter, emerge as active architects of tripartite assemblies, and play diverse roles in the transport process. Recognition between the PAPs and OMFs is essential for pump assembly and function, and targeting this interaction may provide a novel avenue for combating multidrug resistance. With the recent advances elucidating the drug efflux and energetics of the tripartite assemblies, the understanding of the interaction between the OMFs and PAPs is the last piece remaining in the complete structure of the tripartite pump assembly puzzle. PMID:26074901

  2. The adaptor protein insulin receptor substrate 2 inhibits alternative macrophage activation and allergic lung inflammation.

    PubMed

    Dasgupta, Preeta; Dorsey, Nicolas J; Li, Jiaqi; Qi, Xiulan; Smith, Elizabeth P; Yamaji-Kegan, Kazuyo; Keegan, Achsah D

    2016-01-01

    Insulin receptor substrate 2 (IRS2) is an adaptor protein that becomes tyrosine-phosphorylated in response to the cytokines interleukin-4 (IL-4) and IL-13, which results in activation of the phosphoinositide 3-kinase (PI3K)-Akt pathway. IL-4 and IL-13 contribute to allergic lung inflammation. To examine the role of IRS2 in allergic disease, we evaluated the responses of IRS2-deficient (IRS2(-/-)) mice. Unexpectedly, loss of IRS2 resulted in a substantial increase in the expression of a subset of genes associated with the generation of alternatively activated macrophages (AAMs) in response to IL-4 or IL-13 in vitro. AAMs secrete factors that enhance allergic responses and promote airway remodeling. Moreover, compared to IRS2(+/+) mice, IRS2(+/-) and IRS2(-/-) mice developed enhanced pulmonary inflammation, accumulated eosinophils and AAMs, and exhibited airway and vascular remodeling upon allergen stimulation, responses that partially depended on macrophage-intrinsic IRS2 signaling. Both in unstimulated and IL-4-stimulated macrophages, lack of IRS2 enhanced phosphorylation of Akt and ribosomal S6 protein. Thus, we identified a critical inhibitory loop downstream of IRS2, demonstrating an unanticipated and previously unrecognized role for IRS2 in suppressing allergic lung inflammation and remodeling. PMID:27330190

  3. Molecular protein adaptor with genetically encoded interaction sites guiding the hierarchical assembly of plasmonically active nanoparticle architectures

    NASA Astrophysics Data System (ADS)

    Schreiber, Andreas; Huber, Matthias C.; Cölfen, Helmut; Schiller, Stefan M.

    2015-03-01

    The control over the defined assembly of nano-objects with nm-precision is important to create systems and materials with enhanced properties, for example, metamaterials. In nature, the precise assembly of inorganic nano-objects with unique features, for example, magnetosomes, is accomplished by efficient and reliable recognition schemes involving protein effectors. Here we present a molecular approach using protein-based ‘adaptors/connectors’ with genetically encoded interaction sites to guide the assembly and functionality of different plasmonically active gold nanoparticle architectures (AuNP). The interaction of the defined geometricaly shaped protein adaptors with the AuNP induces the self-assembly of nanoarchitectures ranging from AuNP encapsulation to one-dimensional chain-like structures, complex networks and stars. Synthetic biology and bionanotechnology are applied to co-translationally encode unnatural amino acids as additional site-specific modification sites to generate functionalized biohybrid nanoarchitectures. This protein adaptor-based nano-object assembly approach might be expanded to other inorganic nano-objects creating biohybrid materials with unique electronic, photonic, plasmonic and magnetic properties.

  4. Molecular protein adaptor with genetically encoded interaction sites guiding the hierarchical assembly of plasmonically active nanoparticle architectures.

    PubMed

    Schreiber, Andreas; Huber, Matthias C; Cölfen, Helmut; Schiller, Stefan M

    2015-01-01

    The control over the defined assembly of nano-objects with nm-precision is important to create systems and materials with enhanced properties, for example, metamaterials. In nature, the precise assembly of inorganic nano-objects with unique features, for example, magnetosomes, is accomplished by efficient and reliable recognition schemes involving protein effectors. Here we present a molecular approach using protein-based 'adaptors/connectors' with genetically encoded interaction sites to guide the assembly and functionality of different plasmonically active gold nanoparticle architectures (AuNP). The interaction of the defined geometricaly shaped protein adaptors with the AuNP induces the self-assembly of nanoarchitectures ranging from AuNP encapsulation to one-dimensional chain-like structures, complex networks and stars. Synthetic biology and bionanotechnology are applied to co-translationally encode unnatural amino acids as additional site-specific modification sites to generate functionalized biohybrid nanoarchitectures. This protein adaptor-based nano-object assembly approach might be expanded to other inorganic nano-objects creating biohybrid materials with unique electronic, photonic, plasmonic and magnetic properties. PMID:25813537

  5. Cysteine-based regulation of the CUL3 adaptor protein Keap1

    SciTech Connect

    Sekhar, Konjeti R.; Rachakonda, Girish; Freeman, Michael L.

    2010-04-01

    Nrf2 (NF-E2-related factor 2) is a master transcription factor containing a powerful acidic transcriptional activation domain. Nrf2-dependent gene expression impacts cancer chemoprevention strategies, inflammatory responses, and progression of neurodegenerative diseases. Under basal conditions, association of Nrf2 with the CUL3 adaptor protein Keap1 results in the rapid Nrf2 ubiquitylation and proteasome-dependent degradation. Inhibition of Keap1 function blocks ubiquitylation of Nrf2, allowing newly synthesized Nrf2 to translocate into the nucleus, bind to ARE sites and direct target gene expression. Site-directed mutagenesis experiments coupled with proteomic analysis support a model in which Keap1 contains at least 2 distinct cysteine motifs. The first is located at Cys 151 in the BTB domain. The second is located in the intervening domain and centers around Cys 273 and 288. Adduction or oxidation at Cys151 has been shown to produce a conformational change in Keap1 that results in dissociation of Keap1 from CUL3, thereby inhibiting Nrf2 ubiquitylation. Thus, adduction captures specific chemical information and translates it into biochemical information via changes in structural conformation.

  6. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers—Mast Cell Case

    PubMed Central

    Halova, Ivana; Draber, Petr

    2016-01-01

    The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way. PMID:27243007

  7. Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ inflammation.

    PubMed

    Saleh, Mohamed A; McMaster, William G; Wu, Jing; Norlander, Allison E; Funt, Samuel A; Thabet, Salim R; Kirabo, Annet; Xiao, Liang; Chen, Wei; Itani, Hana A; Michell, Danielle; Huan, Tianxiao; Zhang, Yahua; Takaki, Satoshi; Titze, Jens; Levy, Daniel; Harrison, David G; Madhur, Meena S

    2015-03-01

    The lymphocyte adaptor protein LNK (also known as SH2B3) is primarily expressed in hematopoietic and endothelial cells, where it functions as a negative regulator of cytokine signaling and cell proliferation. Single-nucleotide polymorphisms in the gene encoding LNK are associated with autoimmune and cardiovascular disorders; however, it is not known how LNK contributes to hypertension. Here, we determined that loss of LNK exacerbates angiotensin II-induced (Ang II-induced) hypertension and the associated renal and vascular dysfunction. At baseline, kidneys from Lnk-/- mice exhibited greater levels of inflammation, oxidative stress, and glomerular injury compared with WT animals, and these parameters were further exacerbated by Ang II infusion. Aortas from Lnk-/- mice exhibited enhanced inflammation, reduced nitric oxide levels, and impaired endothelial-dependent relaxation. Bone marrow transplantation studies demonstrated that loss of LNK in hematopoietic cells is primarily responsible for the observed renal and vascular inflammation and predisposition to hypertension. Ang II infusion increased IFN-γ-producing CD8+ T cells in the spleen and kidneys of Lnk-/- mice compared with WT mice. Moreover, IFN-γ deficiency resulted in blunted hypertension in response to Ang II infusion. Together, these results suggest that LNK is a potential therapeutic target for hypertension and its associated renal and vascular sequela. PMID:25664851

  8. PLEKHA7: Cytoskeletal adaptor protein at center stage in junctional organization and signaling.

    PubMed

    Shah, Jimit; Guerrera, Diego; Vasileva, Ekaterina; Sluysmans, Sophie; Bertels, Eva; Citi, Sandra

    2016-06-01

    PLEKHA7 is a recently characterized component of the cytoplasmic region of epithelial adherens junctions (AJ). It comprises two WW domains, a pleckstrin-homology domain, and proline-rich and coiled-coil domains. PLEKHA7 interacts with cytoplasmic components of the AJ (p120-catenin, paracingulin, afadin), stabilizes the E-cadherin complex by linking it to the minus ends of noncentrosomal microtubules, and stabilizes junctional nectins through the newly identified interactor PDZD11. Similarly to afadin, and unlike E-cadherin and p120-catenin, the localization of PLEKHA7 at AJ is strictly zonular (in the zonula adhaerens subdomain of AJ), and does not extend along the basolateral contacts. Genome-wide association studies and experiments on animal and cellular models show that although PLEKHA7 is not required for organism viability, it is implicated in cardiovascular physiology, hypertension, primary angle closure glaucoma, susceptibility to staphylococcal α-toxin, and epithelial morphogenesis and growth. Thus, PLEKHA7 is a cytoskeletal adaptor protein important for AJ organization, and at the center of junction-associated signaling pathways which fine-tune important pathophysiological processes. PMID:27072621

  9. Adaptor protein LNK is a negative regulator of brain neural stem cell proliferation after stroke.

    PubMed

    Ahlenius, Henrik; Devaraju, Karthikeyan; Monni, Emanuela; Oki, Koichi; Wattananit, Somsak; Darsalia, Vladimer; Iosif, Robert E; Torper, Olof; Wood, James C; Braun, Sebastian; Jagemann, Lucas; Nuber, Ulrike A; Englund, Elisabet; Jacobsen, Sten-Eirik W; Lindvall, Olle; Kokaia, Zaal

    2012-04-11

    Ischemic stroke causes transient increase of neural stem and progenitor cell (NSPC) proliferation in the subventricular zone (SVZ), and migration of newly formed neuroblasts toward the damaged area where they mature to striatal neurons. The molecular mechanisms regulating this plastic response, probably involved in structural reorganization and functional recovery, are poorly understood. The adaptor protein LNK suppresses hematopoietic stem cell self-renewal, but its presence and role in the brain are poorly understood. Here we demonstrate that LNK is expressed in NSPCs in the adult mouse and human SVZ. Lnk(-/-) mice exhibited increased NSPC proliferation after stroke, but not in intact brain or following status epilepticus. Deletion of Lnk caused increased NSPC proliferation while overexpression decreased mitotic activity of these cells in vitro. We found that Lnk expression after stroke increased in SVZ through the transcription factors STAT1/3. LNK attenuated insulin-like growth factor 1 signaling by inhibition of AKT phosphorylation, resulting in reduced NSPC proliferation. Our findings identify LNK as a stroke-specific, endogenous negative regulator of NSPC proliferation, and suggest that LNK signaling is a novel mechanism influencing plastic responses in postischemic brain. PMID:22496561

  10. Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end-organ inflammation

    PubMed Central

    Saleh, Mohamed A.; McMaster, William G.; Wu, Jing; Norlander, Allison E.; Funt, Samuel A.; Thabet, Salim R.; Kirabo, Annet; Xiao, Liang; Chen, Wei; Itani, Hana A.; Michell, Danielle; Huan, Tianxiao; Zhang, Yahua; Takaki, Satoshi; Titze, Jens; Levy, Daniel; Harrison, David G.; Madhur, Meena S.

    2015-01-01

    The lymphocyte adaptor protein LNK (also known as SH2B3) is primarily expressed in hematopoietic and endothelial cells, where it functions as a negative regulator of cytokine signaling and cell proliferation. Single-nucleotide polymorphisms in the gene encoding LNK are associated with autoimmune and cardiovascular disorders; however, it is not known how LNK contributes to hypertension. Here, we determined that loss of LNK exacerbates angiotensin II–induced (Ang II–induced) hypertension and the associated renal and vascular dysfunction. At baseline, kidneys from Lnk–/– mice exhibited greater levels of inflammation, oxidative stress, and glomerular injury compared with WT animals, and these parameters were further exacerbated by Ang II infusion. Aortas from Lnk–/– mice exhibited enhanced inflammation, reduced nitric oxide levels, and impaired endothelial-dependent relaxation. Bone marrow transplantation studies demonstrated that loss of LNK in hematopoietic cells is primarily responsible for the observed renal and vascular inflammation and predisposition to hypertension. Ang II infusion increased IFN-γ–producing CD8+ T cells in the spleen and kidneys of Lnk–/– mice compared with WT mice. Moreover, IFN-γ deficiency resulted in blunted hypertension in response to Ang II infusion. Together, these results suggest that LNK is a potential therapeutic target for hypertension and its associated renal and vascular sequela. PMID:25664851

  11. The methyltransferase adaptor protein Trm112 is involved in biogenesis of both ribosomal subunits

    PubMed Central

    Sardana, Richa; Johnson, Arlen W.

    2012-01-01

    We previously identified Bud23 as the methyltransferase that methylates G1575 of rRNA in the P-site of the small (40S) ribosomal subunit. In this paper, we show that Bud23 requires the methyltransferase adaptor protein Trm112 for stability in vivo. Deletion of Trm112 results in a bud23Δ-like mutant phenotype. Thus Trm112 is required for efficient small-subunit biogenesis. Genetic analysis suggests the slow growth of a trm112Δ mutant is due primarily to the loss of Bud23. Surprisingly, suppression of the bud23Δ-dependent 40S defect revealed a large (60S) biogenesis defect in a trm112Δ mutant. Using sucrose gradient sedimentation analysis and coimmunoprecipitation, we show that Trm112 is also involved in 60S subunit biogenesis. The 60S defect may be dependent on Nop2 and Rcm1, two additional Trm112 interactors that we identify. Our work extends the known range of Trm112 function from modification of tRNAs and translation factors to both ribosomal subunits, showing that its effects span all aspects of the translation machinery. Although Trm112 is required for Bud23 stability, our results suggest that Trm112 is not maintained in a stable complex with Bud23. We suggest that Trm112 stabilizes its free methyltransferase partners not engaged with substrate and/or helps to deliver its methyltransferase partners to their substrates. PMID:22956767

  12. Modulation of Hepatitis C Virus Genome Replication by Glycosphingolipids and Four-Phosphate Adaptor Protein 2

    PubMed Central

    Khan, Irfan; Katikaneni, Divya S.; Han, Qingxia; Sanchez-Felipe, Lorena; Hanada, Kentaro; Ambrose, Rebecca L.; Mackenzie, Jason M.

    2014-01-01

    ABSTRACT Hepatitis C virus (HCV) assembles its replication complex on cytosolic membrane vesicles often clustered in a membranous web (MW). During infection, HCV NS5A protein activates PI4KIIIα enzyme, causing massive production and redistribution of phosphatidylinositol 4-phosphate (PI4P) lipid to the replication complex. However, the role of PI4P in the HCV life cycle is not well understood. We postulated that PI4P recruits host effectors to modulate HCV genome replication or virus particle production. To test this hypothesis, we generated cell lines for doxycycline-inducible expression of short hairpin RNAs (shRNAs) targeting the PI4P effector, four-phosphate adaptor protein 2 (FAPP2). FAPP2 depletion attenuated HCV infectivity and impeded HCV RNA synthesis. Indeed, FAPP2 has two functional lipid-binding domains specific for PI4P and glycosphingolipids. While expression of the PI4P-binding mutant protein was expected to inhibit HCV replication, a marked drop in replication efficiency was observed unexpectedly with the glycosphingolipid-binding mutant protein. These data suggest that both domains are crucial for the role of FAPP2 in HCV genome replication. We also found that HCV significantly increases the level of some glycosphingolipids, whereas adding these lipids to FAPP2-depleted cells partially rescued replication, further arguing for the importance of glycosphingolipids in HCV RNA synthesis. Interestingly, FAPP2 is redistributed to the replication complex (RC) characterized by HCV NS5A, NS4B, or double-stranded RNA (dsRNA) foci. Additionally, FAPP2 depletion disrupts the RC and alters the colocalization of HCV replicase proteins. Altogether, our study implies that HCV coopts FAPP2 for virus genome replication via PI4P binding and glycosphingolipid transport to the HCV RC. IMPORTANCE Like most viruses with a positive-sense RNA genome, HCV replicates its RNA on remodeled host membranes composed of lipids hijacked from various internal membrane compartments

  13. The Adaptor Protein p62 Is Involved in RANKL-induced Autophagy and Osteoclastogenesis

    PubMed Central

    Li, Rui-Fang; Chen, Gang; Ren, Jian-Gang; Zhang, Wei; Wu, Zhong-Xing; Liu, Bing; Zhao, Yi-Fang

    2014-01-01

    Previous studies have implicated autophagy in osteoclast differentiation. The aim of this study was to investigate the potential role of p62, a characterized adaptor protein for autophagy, in RANKL-induced osteoclastogenesis. Real-time quantitative PCR and western blot analyses were used to evaluate the expression levels of autophagy-related markers during RANKL-induced osteoclastogenesis in mouse macrophage-like RAW264.7 cells. Meanwhile, the potential relationship between p62/LC3 localization and F-actin ring formation was tested using double-labeling immunofluorescence. Then, the expression of p62 in RAW264.7 cells was knocked down using small-interfering RNA (siRNA), followed by detecting its influence on RANKL-induced autophagy activation, osteoclast differentiation, and F-actin ring formation. The data showed that several key autophagy-related markers including p62 were significantly altered during RANKL-induced osteoclast differentiation. In addition, the expression and localization of p62 showed negative correlation with LC3 accumulation and F-actin ring formation, as demonstrated by western blot and immunofluorescence analyses, respectively. Importantly, the knockdown of p62 obviously attenuated RANKL-induced expression of autophagy- and osteoclastogenesis-related genes, formation of TRAP-positive multinuclear cells, accumulation of LC3, as well as formation of F-actin ring. Our study indicates that p62 may play essential roles in RANKL-induced autophagy and osteoclastogenesis, which may help to develop a novel therapeutic strategy against osteoclastogenesis-related diseases. PMID:25163928

  14. The SH2B1 Adaptor Protein Associates with a Proximal Region of the Erythropoietin Receptor*

    PubMed Central

    Javadi, Mojib; Hofstätter, Edda; Stickle, Natalie; Beattie, Bryan K.; Jaster, Robert; Carter-Su, Christin; Barber, Dwayne L.

    2012-01-01

    Gene targeting experiments have shown that the cytokine erythropoietin (EPO), its cognate erythropoietin receptor (EPO-R), and associated Janus tyrosine kinase, JAK2, are all essential for erythropoiesis. Structural-functional and murine knock-in experiments have suggested that EPO-R Tyr-343 is important in EPO-mediated mitogenesis. Although Stat5 binds to EPO-R phosphotyrosine 343, the initial Stat5-deficient mice did not have profound erythroid abnormalities suggesting that additional Src homology 2 (SH2) domain-containing effectors may bind to EPO-R Tyr-343 and couple to downstream signaling pathways. We have utilized cloning of ligand target (COLT) screening to demonstrate that EPO-R Tyr(P)-343 and Tyr(P)-401 bind to the SH2 domain-containing adaptor protein SH2B1β. Immunoprecipitation and in vitro mixing experiments reveal that EPO-R binds to SH2B1 in an SH2 domain-dependent manner and that the sequence that confers SH2B1 binding to the EPO-R is pYXXL. Previous studies have shown that SH2B1 binds directly to JAK2, but we show that in hematopoietic cells, SH2B1β preferentially associates with the EPO-R. SH2B1 is capable of constitutive association with EPO-R, which is necessary for its optimal SH2-dependent recruitment to EPO-R-Tyr(P)-343/Tyr(P)-401. We also demonstrate that SH2B1 is responsive to EPO stimulation and becomes phosphorylated, most likely on serines/threonines, in an EPO dose- and time-dependent manner. In the absence of SH2B1, we observe enhanced activation of signaling pathways downstream of the EPO-R, indicating that SH2B1 is a negative regulator of EPO signaling. PMID:22669948

  15. The SH2B1 adaptor protein associates with a proximal region of the erythropoietin receptor.

    PubMed

    Javadi, Mojib; Hofstätter, Edda; Stickle, Natalie; Beattie, Bryan K; Jaster, Robert; Carter-Su, Christin; Barber, Dwayne L

    2012-07-27

    Gene targeting experiments have shown that the cytokine erythropoietin (EPO), its cognate erythropoietin receptor (EPO-R), and associated Janus tyrosine kinase, JAK2, are all essential for erythropoiesis. Structural-functional and murine knock-in experiments have suggested that EPO-R Tyr-343 is important in EPO-mediated mitogenesis. Although Stat5 binds to EPO-R phosphotyrosine 343, the initial Stat5-deficient mice did not have profound erythroid abnormalities suggesting that additional Src homology 2 (SH2) domain-containing effectors may bind to EPO-R Tyr-343 and couple to downstream signaling pathways. We have utilized cloning of ligand target (COLT) screening to demonstrate that EPO-R Tyr(P)-343 and Tyr(P)-401 bind to the SH2 domain-containing adaptor protein SH2B1β. Immunoprecipitation and in vitro mixing experiments reveal that EPO-R binds to SH2B1 in an SH2 domain-dependent manner and that the sequence that confers SH2B1 binding to the EPO-R is pYXXL. Previous studies have shown that SH2B1 binds directly to JAK2, but we show that in hematopoietic cells, SH2B1β preferentially associates with the EPO-R. SH2B1 is capable of constitutive association with EPO-R, which is necessary for its optimal SH2-dependent recruitment to EPO-R-Tyr(P)-343/Tyr(P)-401. We also demonstrate that SH2B1 is responsive to EPO stimulation and becomes phosphorylated, most likely on serines/threonines, in an EPO dose- and time-dependent manner. In the absence of SH2B1, we observe enhanced activation of signaling pathways downstream of the EPO-R, indicating that SH2B1 is a negative regulator of EPO signaling. PMID:22669948

  16. Btn3 regulates the endosomal sorting function of the yeast Ent3 epsin, an adaptor for SNARE proteins.

    PubMed

    Morvan, Joëlle; de Craene, Johan-Owen; Rinaldi, Bruno; Addis, Vanessa; Misslin, Cédric; Friant, Sylvie

    2015-02-15

    Ent3 and Ent5 are yeast epsin N-terminal homology (ENTH) domain-containing proteins involved in protein trafficking between the Golgi and late endosomes. They interact with clathrin, clathrin adaptors at the Golgi (AP-1 and GGA) and different SNAREs (Vti1, Snc1, Pep12 and Syn8) required for vesicular transport at the Golgi and endosomes. To better understand the role of these epsins in membrane trafficking, we performed a protein-protein interaction screen. We identified Btn3 (also known as Tda3), a putative oxidoreductase, as a new partner of both Ent3 and Ent5. Btn3 is a negative regulator of the Batten-disease-linked protein Btn2 involved in the retrieval of specific SNAREs (Vti1, Snc1, Tlg1 and Tlg2) from the late endosome to the Golgi. We show that Btn3 endosomal localization depends on the epsins Ent3 and Ent5. We demonstrated that in btn3Δ mutant cells, endosomal sorting of ubiquitylated cargos and endosomal recycling of the Snc1 SNARE are delayed. We thus propose that Btn3 regulates the sorting function of two adaptors for SNARE proteins, the epsin Ent3 and the Batten-disease-linked protein Btn2. PMID:25512335

  17. Shc adaptor proteins are key transducers of mitogenic signaling mediated by the G protein-coupled thrombin receptor.

    PubMed Central

    Chen, Y; Grall, D; Salcini, A E; Pelicci, P G; Pouysségur, J; Van Obberghen-Schilling, E

    1996-01-01

    The serine protease thrombin activates G protein signaling systems that lead to Ras activation and, in certain cells, proliferation. Whereas the steps leading to Ras activation by G protein-coupled receptors are not well defined, the mechanisms of Ras activation by receptor tyrosine kinases have recently been elucidated biochemically and genetically. The present study was undertaken to determine whether common signaling components are used by these two distinct classes of receptors. Here we report that the adaptor protein Shc, is phosphorylated on tyrosine residues following stimulation of the thrombin receptor in growth-responsive CCL39 fibroblasts. Shc phosphorylation by thrombin or the thrombin receptor agonist peptide is maximal by 15 min and persists for > or = 2 h. Following thrombin stimulation, phosphorylated Shc is recruited to Grb2 complexes. One or more pertussis toxin-insensitive proteins appear to mediate this effect, since (i) pertussis toxin pre-treatment of cells does not blunt the action of thrombin and (ii) Shc phosphorylation on tyrosine can be stimulated by the muscarinic m1 receptor. Shc phosphorylation does not appear to involve protein kinase C, since the addition of 4-beta-phorbol-12,13-dibutyrate has no effect. Rather, thrombin-induced Shc phosphorylation is enhanced in cells depleted of phorbol ester-sensitive protein kinase C isoforms. Expression of mutant Shc proteins defective in Grb2 binding displays a dominant-negative effect on thrombin-stimulated p44 MAP kinase activation, gene induction and cell growth. From these data, we conclude that Shc represents a crucial point of convergence between signaling pathways activated by receptor tyrosine kinases and G protein-coupled receptors. Images PMID:8605873

  18. MAVS: a new weapon in the fight against viral infections.

    PubMed

    Boga, Jose A; de Oña, Maria; Melon, Santiago; Alvarez-Arguelles, Marta E; Morilla, Ana; Coto-Montes, Ana

    2013-05-01

    In addition to their participation in metabolic processes and control of programmed cell death, the role of mitochondria as a fundamental hub for innate anti-viral immunity is now emerging. The participation of the mitochondrial antiviral signaling protein (MAVS) as a central regulator of a complex signaling cascade, which results in the induction of antiviral and inflammatory responses has been described. A patent based on this role of MAVS is highlighted in this review. PMID:23432157

  19. The alternate AP-1 adaptor subunit Apm2 interacts with the Mil1 regulatory protein and confers differential cargo sorting

    PubMed Central

    Whitfield, Shawn T.; Burston, Helen E.; Bean, Björn D. M.; Raghuram, Nandini; Maldonado-Báez, Lymarie; Davey, Michael; Wendland, Beverly; Conibear, Elizabeth

    2016-01-01

    Heterotetrameric adaptor protein complexes are important mediators of cargo protein sorting in clathrin-coated vesicles. The cell type–specific expression of alternate μ chains creates distinct forms of AP-1 with altered cargo sorting, but how these subunits confer differential function is unclear. Whereas some studies suggest the μ subunits specify localization to different cellular compartments, others find that the two forms of AP-1 are present in the same vesicle but recognize different cargo. Yeast have two forms of AP-1, which differ only in the μ chain. Here we show that the variant μ chain Apm2 confers distinct cargo-sorting functions. Loss of Apm2, but not of Apm1, increases cell surface levels of the v-SNARE Snc1. However, Apm2 is unable to replace Apm1 in sorting Chs3, which requires a dileucine motif recognized by the γ/σ subunits common to both complexes. Apm2 and Apm1 colocalize at Golgi/early endosomes, suggesting that they do not associate with distinct compartments. We identified a novel, conserved regulatory protein that is required for Apm2-dependent sorting events. Mil1 is a predicted lipase that binds Apm2 but not Apm1 and contributes to its membrane recruitment. Interactions with specific regulatory factors may provide a general mechanism to diversify the functional repertoire of clathrin adaptor complexes. PMID:26658609

  20. SARS-CoV ORF-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome

    PubMed Central

    Shi, Chong-Shan; Qi, Hai-Yan; Boularan, Cedric; Huang, Ning-Na; Abu-Asab, Mones; Shelhamer, James H.; Kehrl, John H.

    2014-01-01

    Coronaviruses (CoV) have recently emerged as potentially serious pathogens that can cause significant human morbidity and death. The severe acute respiratory syndrome (SARS)-CoV was identified as the etiologic agent of the 2002-3 international SARS outbreak. Yet how SARS evades innate immune responses to cause human disease remains poorly understood. Here, we show that a protein encoded by SARS-CoV designated as open reading frame-9b (ORF-9b) localizes to mitochondria and causes mitochondrial elongation by triggering ubiquitination and proteasomal degradation of dynamin-like protein (DRP1), a host protein involved in mitochondrial fission. Also, acting on mitochondria ORF-9b targets the mitochondrial-associated adaptor molecule MAVS signalosome by usurping poly(C)-binding protein 2 (PCBP2) and the HECT domain E3 ligase AIP4 to trigger the degradation of MAVS, TRAF3, and TRAF6. This severely limits host cell interferon responses. Reducing either PCBP2 or AIP4 expression substantially reversed the ORF-9b mediated reduction of MAVS and the suppression of anti-viral transcriptional responses. Finally, transient ORF-9b expression led to a strong induction of autophagy in cells. The induction of autophagy depended upon ATG5, a critical autophagy regulator, but the inhibition of MAVS signaling did not. These results indicate that SARS-CoV ORF-9b manipulates host cell mitochondria and mitochondrial function to help evade host innate immunity. This study has uncovered an important clue to the pathogenesis of SARS-CoV infection and illustrates the havoc that a small open reading frame can cause in cells. PMID:25135833

  1. The 3A Protein from Multiple Picornaviruses Utilizes the Golgi Adaptor Protein ACBD3 To Recruit PI4KIIIβ

    PubMed Central

    Greninger, Alexander L.; Knudsen, Giselle M.; Betegon, Miguel; Burlingame, Alma L.

    2012-01-01

    The activity of phosphatidylinositol 4-kinase class III beta (PI4KIIIβ) has been shown to be required for the replication of multiple picornaviruses; however, it is unclear whether a physical association between PI4KIIIβ and the viral replication machinery exists and, if it does, whether association is necessary. We examined the ability of the 3A protein from 18 different picornaviruses to form a complex with PI4KIIIβ by affinity purification of Strep-Tagged transiently transfected constructs followed by mass spectrometry and Western blotting for putative interacting targets. We found that the 3A proteins of Aichi virus, bovine kobuvirus, poliovirus, coxsackievirus B3, and human rhinovirus 14 all copurify with PI4KIIIβ. Furthermore, we found that multiple picornavirus 3A proteins copurify with the Golgi adaptor protein acyl coenzyme A (acyl-CoA) binding domain protein 3 (ACBD3/GPC60), including those from Aichi virus, bovine kobuvirus, human rhinovirus 14, poliovirus, and coxsackievirus B2, B3, and B5. Affinity purification of ACBD3 confirmed interaction with multiple picornaviral 3A proteins and revealed the ability to bind PI4KIIIβ in the absence of 3A. Mass-spectrometric analysis of transiently expressed Aichi virus, bovine kobuvirus, and human klassevirus 3A proteins demonstrated that the N-terminal glycines of these 3A proteins are myristoylated. Alanine-scanning mutagenesis along the entire length of Aichi virus 3A followed by transient expression and affinity purification revealed that copurification of PI4KIIIβ could be eliminated by mutation of specific residues, with little or no effect on recruitment of ACBD3. One mutation at the N terminus, I5A, significantly reduced copurification of both ACBD3 and PI4KIIIβ. The dependence of Aichi virus replication on the activity of PI4KIIIβ was confirmed by both chemical and genetic inhibition. Knockdown of ACBD3 by small interfering RNA (siRNA) also prevented replication of both Aichi virus and poliovirus

  2. Dissecting nuclear Wingless signalling: recruitment of the transcriptional co-activator Pygopus by a chain of adaptor proteins.

    PubMed

    Städeli, Reto; Basler, Konrad

    2005-11-01

    Members of the Wingless (Wg)/Wnt family of secreted glycoproteins control cell fate during embryonic development and adult homeostasis. Wnt signals regulate the expression of target genes by activating a conserved signal transduction pathway. Upon receptor activation, the signal is transmitted intracellularly by stabilization of Armadillo (Arm)/beta-catenin. Arm/beta-catenin translocates to the nucleus, interacts with DNA-binding factors of the Pangolin (Pan)/TCF/LEF class and activates transcription of target genes in cooperation with the recently identified proteins Legless/BCL9 (Lgs) and Pygopus (Pygo). Here, we analyse the mode of action of Pan, Arm, Lgs, and Pygo in Drosophila cultured cells. We provide evidence that together these four proteins form a 'chain of adaptors' linking the NH2-terminal homology domain (NHD) of Pygo to the DNA-binding domain of Pan. We show that the NHD has potent transcriptional activation capacity, which differs from that of acidic activator domains and depends on a conserved NPF tripeptide. A single point mutation within this NPF motif abolishes the transcriptional activity of the Pygo NHD in vitro and strongly reduces Wg signalling in vivo. Together, our results suggest that the transcriptional output of Wg pathway activity largely relies on a 'chain of adaptors' design to direct the Pygo NHD to Wg target promoters in an Arm-dependent manner. PMID:16169192

  3. Single Amino Acid Substitutions Confer the Antiviral Activity of the TRAF3 Adaptor Protein onto TRAF5

    PubMed Central

    Zhang, Peng; Reichardt, Anna; Liang, Huanhuan; Aliyari, Roghiyh; Cheng, David; Wang, Yaya; Xu, Feng

    2014-01-01

    The TRAF [tumor necrosis factor receptor–associated factor] family of cytoplasmic adaptor proteins link cell-surface receptors to intracellular signaling pathways that regulate innate and adaptive immune responses. In response to activation of RIG-I (retinoic acid–inducible gene I), a component of a pattern recognition receptor that detects viruses, TRAF3 binds to the adaptor protein Cardif [caspase activation and recruitment domain (CARD) adaptor–inducing interferon-b (IFN-b)], leading to induction of type I IFNs. We report the crystal structures of the TRAF domain of TRAF5 and that of TRAF3 bound to a peptide from the TRAF-interacting motif of Cardif. By comparing these structures, we identified two residues located near the Cardif binding pocket in TRAF3 (Tyr440 and Phe473) that potentially contributed to Cardif recognition. In vitro and cellular experiments showed that forms of TRAF5 with mutation of the corresponding residues to those of TRAF3 had TRAF3-like antiviral activity. Our results provide a structural basis for the critical role of TRAF3 in activating RIG-I–mediated IFN production. PMID:23150880

  4. Modulation of Innate Immune Signalling by Lipid-Mediated MAVS Transmembrane Domain Oligomerization

    PubMed Central

    Ron, David; Volmer, Romain

    2015-01-01

    RIG-I-like receptors detect viral RNA in infected cells and promote oligomerization of the outer mitochondrial membrane protein MAVS to induce innate immunity to viral infection through type I interferon production. Mitochondrial reactive oxygen species (mROS) have been shown to enhance anti-viral MAVS signalling, but the mechanisms have remained obscure. Using a biochemical oligomerization-reporter fused to the transmembrane domain of MAVS, we found that mROS inducers promoted lipid-dependent MAVS transmembrane domain oligomerization in the plane of the outer mitochondrial membrane. These events were mirrored by Sendai virus infection, which similarly induced lipid peroxidation and promoted lipid-dependent MAVS transmembrane domain oligomerization. Our observations point to a role for mROS-induced changes in lipid bilayer properties in modulating antiviral innate signalling by favouring the oligomerization of MAVS transmembrane domain in the outer-mitochondrial membrane. PMID:26317833

  5. The adaptor proteins p140CAP and p130CAS as molecular hubs in cell migration and invasion of cancer cells

    PubMed Central

    Di Stefano, Paola; Leal, Maria Pilar Camacho; Tornillo, Giusy; Bisaro, Brigitte; Repetto, Daniele; Pincini, Alessandra; Santopietro, Emanuela; Sharma, Nanaocha; Turco, Emilia; Cabodi, Sara; Defilippi, Paola

    2011-01-01

    The assembly of molecular hubs upon integrin and growth factor stimulation represents a preferential way to transduce signals throughout the cell. Among the intracellular kinases that are responsive to integrin and growth factor activation, Src Family Kinases (SFKs) are crucial regulators of cell migration and invasion. Increasing evidence highlight the importance of adaptor proteins in these processes, based on their ability to create signalling platforms that control downstream signals. Among these adaptors we will discuss the molecular features of p130Cas and p140Cap proteins in terms of regulation of cell migration and invasion in normal and transformed cells. PMID:21994904

  6. Multiple interactions drive adaptor-mediated recruitment of the ubiquitin ligase rsp5 to membrane proteins in vivo and in vitro.

    PubMed

    Sullivan, James A; Lewis, Michael J; Nikko, Elina; Pelham, Hugh R B

    2007-07-01

    Recognition of membrane proteins by the Nedd4/Rsp5 ubiquitin ligase family is a critical step in their targeting to the multivesicular body pathway. Some substrates contain "PY" motifs (PPxY), which bind to WW domains in the ligase. Others lack PY motifs and instead rely on adaptors that recruit the ligase to them. To investigate the mechanism of adaptor-mediated ubiquitination, we have characterized the interactions between the adaptor Bsd2, the ubiquitin ligase Rsp5, and the membrane proteins Cps1, Tre1, and Smf1 from Saccharomyces cerevisiae. We have reconstituted adaptor-mediated modification of Cps1 and Tre1 in vitro, and we show that two PY motifs in Bsd2 and two WW domains (WW2 and WW3) in Rsp5 are crucial for this. The binding of a weak noncanonical DMAPSY motif in Bsd2 to WW3 is an absolute requirement for Bsd2 adaptor function. We show that sorting of the manganese transporter Smf1, which requires both Bsd2 and Tre1, depends upon two PY motifs in Bsd2 and one motif in Tre1 but only two WW domains in Rsp5. We suggest that sequential assembly of first a Bsd2/Rsp5 complex, then a Tre1/Bsd2/Rsp5 complex followed by a rearrangement of PY-WW interactions is required for the ubiquitination of Smf1. PMID:17429078

  7. Nck adaptor proteins control the organization of neuronal circuits important for walking.

    PubMed

    Fawcett, James P; Georgiou, John; Ruston, Julie; Bladt, Friedhelm; Sherman, Andrew; Warner, Neil; Saab, Bechara J; Scott, Rizaldy; Roder, John C; Pawson, Tony

    2007-12-26

    The intracellular signaling targets used by mammalian axon guidance receptors to organize the nervous system in vivo are unclear. The Nck1 and Nck2 SH2/SH3 adaptors (collectively Nck) can couple phosphotyrosine (pTyr) signals to reorganization of the actin cytoskeleton and are therefore candidates for linking guidance cues to the regulatory machinery of the cytoskeleton. We find that selective inactivation of Nck in the murine nervous system causes a hopping gait and a defect in the spinal central pattern generator, which is characterized by synchronous firing of bilateral ventral motor neurons. Nck-deficient mice also show abnormal projections of corticospinal tract axons and defective development of the posterior tract of the anterior commissure. These phenotypes are consistent with a role for Nck in signaling initiated by different classes of guidance receptors, including the EphA4 receptor tyrosine kinase. Our data indicate that Nck adaptors couple pTyr guidance signals to cytoskeletal events required for the ipsilateral projections of spinal cord neurons and thus for normal limb movement. PMID:18093944

  8. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING

    PubMed Central

    Shi, Heping; Wu, Jiaxi; Chen, Zhijian J.; Chen, Chuo

    2015-01-01

    Cyclic GMP-AMP containing a unique combination of mixed phosphodiester linkages (2′3′-cGAMP) is an endogenous second messenger molecule that activates the type-I IFN pathway upon binding to the homodimer of the adaptor protein STING on the surface of endoplasmic reticulum membrane. However, the preferential binding of the asymmetric ligand 2′3′-cGAMP to the symmetric dimer of STING represents a physicochemical enigma. Here we show that 2′3′-cGAMP, but not its linkage isomers, adopts an organized free-ligand conformation that resembles the STING-bound conformation and pays low entropy and enthalpy costs in converting into the active conformation. Our results demonstrate that analyses of free-ligand conformations can be as important as analyses of protein conformations in understanding protein–ligand interactions. PMID:26150511

  9. MAVS Forms Functional Prion-Like Aggregates To Activate and Propagate Antiviral Innate Immune Response

    PubMed Central

    Hou, Fajian; Sun, Lijun; Zheng, Hui; Skaug, Brian; Jiang, Qiu-Xing; Chen, Zhijian J.

    2011-01-01

    SUMMARY In response to viral infection, RIG-I–like RNA helicases bind to viral RNA and activate the mitochondrial protein MAVS, which in turn activates the transcription factors IRF3 and NF-κB to induce type-I interferons. We have previously shown that RIG-I binds to unanchored lysine-63 (K63) polyubiquitin chains and that this binding is important for MAVS activation; however, the mechanism underlying MAVS activation is not understood. Here we show that viral infection induces the formation of very large MAVS aggregates, which potently activate IRF3 in the cytosol. We find that a fraction of recombinant MAVS protein forms fibrils capable of activating IRF3. Remarkably, the MAVS fibrils behave like prions and effectively convert endogenous MAVS into functional aggregates. We also show that, in the presence of K63 ubiquitin chains, RIG-I catalyzes the conversion of MAVS on the mitochondrial membrane to prion-like aggregates. These results suggest that a prion-like conformational switch of MAVS activates and propagates the antiviral signaling cascade. PMID:21782231

  10. An Important Role for Mitochondrial Antiviral Signaling Protein in the Kaposi's Sarcoma-Associated Herpesvirus Life Cycle

    PubMed Central

    West, John A.; Wicks, Megan; Gregory, Sean M.; Chugh, Pauline; Jacobs, Sarah R.; Zhang, Zhigang; Host, Kurtis M.; Dittmer, Dirk P.

    2014-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) has been shown to be recognized by two families of pattern recognition receptors (PRRs), Toll-like receptors (TLRs) and NOD-like receptors (NLRs). Here we show that MAVS and RIG-I (retinoic acid-inducible gene 1), an RLR family member, also have a role in suppressing KSHV replication and production. In the context of primary infection, we show that in cells with depleted levels of MAVS or RIG-I, KSHV transcription is increased, while beta interferon (IFN-β) induction is attenuated. We also observed that MAVS and RIG-I are critical during the process of reactivation. Depletion of MAVS and RIG-I prior to reactivation led to increased viral load and production of infectious virus. Finally, MAVS depletion in latent KSHV-infected B cells leads to increased viral gene transcription. Overall, this study suggests a role for MAVS and RIG-I signaling during different stages of the KSHV life cycle. IMPORTANCE We show that RIG-I and its adaptor protein, MAVS, can sense KSHV infection and that these proteins can suppress KSHV replication following primary infection and/or viral reactivation. PMID:24623417

  11. RNF11 is a GGA protein cargo and acts as a molecular adaptor for GGA3 ubiquitination mediated by Itch.

    PubMed

    Santonico, E; Mattioni, A; Panni, S; Belleudi, F; Mattei, M; Torrisi, M R; Cesareni, G; Castagnoli, L

    2015-06-01

    Ring finger protein 11 (RNF11) is a RING (really interesting new gene)-H2 E3 ligase that is overexpressed in several human tumor tissues. The mature protein, which is anchored to membranes via a double acylation, localizes to early endosome and recycling compartments. Apart from its subcellular localization, additional lines of evidence implicate RNF11 in the mechanisms underlying vesicle traffic. Here we identify two acidic-cluster dileucine (Ac-LL) motifs, which are recognized by the VHS domains of Golgi-localized, gamma adaptin era-containing, ADP-ribosylation factor-binding protein (GGA) adaptors, as the molecular determinants governing RNF11 sorting at the trans-Golgi network and its internalization from the plasma membrane. We also show that RNF11 recruits itch to drive the ubiquitination of GGA3. This function is experimentally detectable only in cells overexpressing an RNF11 variant that is inactivated in the RING domain, indicating that RNF11 recruits GGA3 and controls its ubiquitination by regulating itch activity. Accordingly, our data demonstrate the involvement of itch in regulating GGA3 stability. Indeed, we observe that the endogenous levels of GGA3 are increased in cells knocked down for itch and endogenous GGA3 is hyperubiquitinated in an itch-dependent manner in a cell line expressing catalytically inactive RNF11. Our data are consistent with a model whereby the RING E3 ligase RNF11 is a novel GGA cargo actively participating in regulating the ubiquitination of the GGA protein family. The results that we are presenting put RNF11 at the center of a finally regulated system where it acts both as an adaptor and a modulator of itch-mediated control of ubiquitination events underlying membrane traffic. PMID:25195858

  12. Toll-Interleukin 1 Receptor domain-containing adaptor protein positively regulates BV2 cell M1 polarization.

    PubMed

    Gong, Leilei; Wang, Hanxiang; Sun, Xiaolei; Liu, Chun; Duan, Chengwei; Cai, Rixin; Gu, Xingxing; Zhu, Shunxing

    2016-06-01

    Microglial activation, including classical (M1) and alternative (M2) activation, plays important roles in the development of several central nervous system disorders and promotes tissue reconstruction. Toll-like receptor (TLR)4 is important for microglial polarization. TIR domain-containing adaptor protein (TIRAP) is an intracellular adaptor protein, which is responsible for the early phase of TLR4 activation. The role of TIRAP in BV2 cell M1 polarization is still unknown. In this study, we showed that TIRAP expression is greatly elevated in lipopolysaccharide (LPS)/interferon (IFN)-γ-treated microglia. TIRAP overexpression promoted BV2 microglial M1 polarization by increasing M1-related marker production (inducible nitric oxide synthase, CD86, interleukin-6, interleukin-1β and tumour necrosis factor-α). In contrast, TIRAP knockdown prevented M1-related marker production. Mechanistically, TIRAP could interact with TNF Receptor-Associated Factor 6 (TRAF6) to increase M1-related marker production in TIRAP overexpressed and LPS/IFN-γ-treated BV2 cells. In addition, silencing of TIRAP effectively inhibited the activation of the Transforming Growth Factor-Beta-Activated Kinase 1/I-Kappa-B Kinase /Nuclear Factor of Kappa Light Polypeptide Gene Enhancer in B-Cells (TAK1/IKK/NF-κB) signalling pathway and the phosphorylation of Akt and mitogen-activated protein kinases, which were activated by LPS/IFN-γ stimulation. Thus, our results suggest that TIRAP positively regulated BV2 microglial M1 polarization through TLR4-mediated TAK1/IKK/NF-κB, mitogen-activated protein kinases and Akt signalling pathways. PMID:27061018

  13. Interaction of atypical cadherin Fat1 with SoHo adaptor proteins CAP/ponsin and ArgBP2.

    PubMed

    Braun, Gerald S; Kuszka, Andrzej; Dau, Cécile; Kriz, Wilhelm; Moeller, Marcus J

    2016-03-25

    Mammalian Fat1 is a giant atypical cadherin/tumor suppressor involved in the regulation of cellular orientation, migration, and growth. Fat1 is implicated in the development of the brain, eye, and kidney. Altered expression or mutations of FAT1 are also associated with cancer and facioscapulohumeral muscular dystrophy (FSHD). Yet, the mechanistic functions of this pathway remain incompletely understood. Here, we report the identification of Sorbin-homology (SoHo) proteins as novel interaction partners of Fat1 by virtue of a yeast-two-hybrid screen. SoHo proteins play diverse roles as adaptor proteins in cell signaling, cell adhesion and sarcomere architecture, including altered expression in cancer and FSHD. Specifically, we found SoHo proteins CAP/ponsin-1 and -2 (Sorbs1) and ArgBP2 (Sorbs2) to interact with the cytoplasmic domain of Fat1. We mapped the interaction to a prolin-rich classic type II PXXP motif within Fat1 and to the three Src-homology (SH3) domains within SoHo proteins using mutant expression in yeast, pulldown assays, and cell culture. Functionally, endogenous ponsin-2 expression of NRK-52E cells at cellular leading edges was lost upon knockdown of Fat1. In summary, our data point to an interaction of Fat1 with SoHo proteins that is able to recruit SoHo proteins to sites of Fat1 expression. PMID:26903299

  14. Brucella TIR-like protein TcpB/Btp1 specifically targets the host adaptor protein MAL/TIRAP to promote infection.

    PubMed

    Li, Wenna; Ke, Yuehua; Wang, Yufei; Yang, Mingjuan; Gao, Junguang; Zhan, Shaoxia; Xinying, Du; Huang, Liuyu; Li, Wenfeng; Chen, Zeliang; Li, Juan

    2016-08-26

    Brucella spp. are known to avoid host immune recognition and weaken the immune response to infection. Brucella like accomplish this by employing two clever strategies, called the stealth strategy and hijacking strategy. The TIR domain-containing protein (TcpB/Btp1) of Brucella melitensis is thought to be involved in inhibiting host NF-κB activation by binding to adaptors downstream of Toll-like receptors. However, of the five TIR domain-containing adaptors conserved in mammals, whether MyD88 or MAL, even other three adaptors, are specifically targeted by TcpB has not been identified. Here, we confirmed the effect of TcpB on B.melitensis virulence in mice and found that TcpB selectively targets MAL. By using siRNA against MAL, we found that TcpB from B.melitensis is involved in intracellular survival and that MAL affects intracellular replication of B.melitensis. Our results confirm that TcpB specifically targets MAL/TIRAP to disrupt downstream signaling pathways and promote intra-host survival of Brucella spp. PMID:27311859

  15. Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature.

    PubMed

    Abou Jamra, Rami; Philippe, Orianne; Raas-Rothschild, Annick; Eck, Sebastian H; Graf, Elisabeth; Buchert, Rebecca; Borck, Guntram; Ekici, Arif; Brockschmidt, Felix F; Nöthen, Markus M; Munnich, Arnold; Strom, Tim M; Reis, Andre; Colleaux, Laurence

    2011-06-10

    Intellectual disability inherited in an autosomal-recessive fashion represents an important fraction of severe cognitive-dysfunction disorders. Yet, the extreme heterogeneity of these conditions markedly hampers gene identification. Here, we report on eight affected individuals who were from three consanguineous families and presented with severe intellectual disability, absent speech, shy character, stereotypic laughter, muscular hypotonia that progressed to spastic paraplegia, microcephaly, foot deformity, decreased muscle mass of the lower limbs, inability to walk, and growth retardation. Using a combination of autozygosity mapping and either Sanger sequencing of candidate genes or next-generation exome sequencing, we identified one mutation in each of three genes encoding adaptor protein complex 4 (AP4) subunits: a nonsense mutation in AP4S1 (NM_007077.3: c.124C>T, p.Arg42(∗)), a frameshift mutation in AP4B1 (NM_006594.2: c.487_488insTAT, p.Glu163_Ser739delinsVal), and a splice mutation in AP4E1 (NM_007347.3: c.542+1_542+4delGTAA, r.421_542del, p.Glu181Glyfs(∗)20). Adaptor protein complexes (AP1-4) are ubiquitously expressed, evolutionarily conserved heterotetrameric complexes that mediate different types of vesicle formation and the selection of cargo molecules for inclusion into these vesicles. Interestingly, two mutations affecting AP4M1 and AP4E1 have recently been found to cause cerebral palsy associated with severe intellectual disability. Combined with previous observations, these results support the hypothesis that AP4-complex-mediated trafficking plays a crucial role in brain development and functioning and demonstrate the existence of a clinically recognizable syndrome due to deficiency of the AP4 complex. PMID:21620353

  16. Proteins recruited by SH3 domains of Ruk/CIN85 adaptor identified by LC-MS/MS

    PubMed Central

    Havrylov, Serhiy; Rzhepetskyy, Yuriy; Malinowska, Agata; Drobot, Lyudmyla; Redowicz, Maria Jolanta

    2009-01-01

    Background Ruk/CIN85 is a mammalian adaptor molecule with three SH3 domains. Using its SH3 domains Ruk/CIN85 can cluster multiple proteins and protein complexes, and, consequently, facilitates organisation of elaborate protein interaction networks with diverse regulatory roles. Previous research linked Ruk/CIN85 with the regulation of vesicle-mediated transport and cancer cell invasiveness. Despite the recent findings, precise molecular functions of Ruk/CIN85 in these processes remain largely elusive and further research is hampered by a lack of complete lists of its partner proteins. Results In the present study we employed a LC-MS/MS-based experimental pipeline to identify a considerable number (over 100) of proteins recruited by the SH3 domains of Ruk/CIN85 in vitro. Most of these identifications are novel Ruk/CIN85 interaction candidates. The identified proteins have diverse molecular architectures and can interact with other proteins, as well as with lipids and nucleic acids. Some of the identified proteins possess enzymatic activities. Functional profiling analyses and literature mining demonstrate that many of the proteins recruited by the SH3 domains of Ruk/CIN85 identified in this work were involved in the regulation of membranes and cytoskeletal structures necessary for vesicle-mediated transport and cancer cell invasiveness. Several groups of the proteins were also associated with few other cellular processes not previously related to Ruk/CIN85, most prominently with cell division. Conclusion Obtained data support the notion that Ruk/CIN85 regulates vesicle-mediated transport and cancer cell invasiveness through the assembly of multimeric protein complexes governing coordinated remodelling of membranes and underlying cytoskeletal structures, and imply its important roles in formation of coated vesicles and biogenesis of invadopodia. In addition, this study points to potential involvement of Ruk/CIN85 in other cellular processes, chiefly in cell division

  17. IRTKS negatively regulates antiviral immunity through PCBP2 sumoylation-mediated MAVS degradation

    PubMed Central

    Xia, Pengyan; Wang, Shuo; Xiong, Zhen; Ye, Buqing; Huang, Li-Yu; Han, Ze-Guang; Fan, Zusen

    2015-01-01

    RNA virus infection is recognized by the RIG-I family of receptors that activate the mitochondrial adaptor MAVS, leading to the clearance of viruses. Antiviral signalling activation requires strict modulation to avoid damage to the host from exacerbated inflammation. Insulin receptor tyrosine kinase substrate (IRTKS) participates in actin bundling and insulin signalling and its deficiency causes insulin resistance. However, whether IRTKS is involved in the regulation of innate immunity remains elusive. Here we show that IRTKS deficiency causes enhanced innate immune responses against RNA viruses. IRTKS-mediated suppression of antiviral responses depends on the RIG-I-MAVS signalling pathway. IRTKS recruits the E2 ligase Ubc9 to sumoylate PCBP2 in the nucleus, which causes its cytoplasmic translocation during viral infection. The sumoylated PCBP2 associates with MAVS to initiate its degradation, leading to downregulation of antiviral responses. Thus, IRTKS functions as a negative modulator of excessive inflammation. PMID:26348439

  18. Adaptor protein complexes AP-1 and AP-3 are required by the HHV-7 Immunoevasin U21 for rerouting of class I MHC molecules to the lysosomal compartment.

    PubMed

    Kimpler, Lisa A; Glosson, Nicole L; Downs, Deanna; Gonyo, Patrick; May, Nathan A; Hudson, Amy W

    2014-01-01

    The human herpesvirus-7 (HHV-7) U21 gene product binds to class I major histocompatibility complex (MHC) molecules and reroutes them to a lysosomal compartment. Trafficking of integral membrane proteins to lysosomes is mediated through cytoplasmic sorting signals that recruit heterotetrameric clathrin adaptor protein (AP) complexes, which in turn mediate protein sorting in post-Golgi vesicular transport. Since U21 can mediate rerouting of class I molecules to lysosomes even when lacking its cytoplasmic tail, we hypothesize the existence of a cellular protein that contains the lysosomal sorting information required to escort class I molecules to the lysosomal compartment. If such a protein exists, we expect that it might recruit clathrin adaptor protein complexes as a means of lysosomal sorting. Here we describe experiments demonstrating that the μ adaptins from AP-1 and AP-3 are involved in U21-mediated trafficking of class I molecules to lysosomes. These experiments support the idea that a cellular protein(s) is necessary for U21-mediated lysosomal sorting of class I molecules. We also examine the impact of transient versus chronic knockdown of these adaptor protein complexes, and show that the few remaining μ subunits in the cells are eventually able to reroute class I molecules to lysosomes. PMID:24901711

  19. A Cyclic di-GMP-binding Adaptor Protein Interacts with Histidine Kinase to Regulate Two-component Signaling.

    PubMed

    Xu, Linghui; Venkataramani, Prabhadevi; Ding, Yichen; Liu, Yang; Deng, Yinyue; Yong, Grace Lisi; Xin, Lingyi; Ye, Ruijuan; Zhang, Lianhui; Yang, Liang; Liang, Zhao-Xun

    2016-07-29

    The bacterial messenger cyclic di-GMP (c-di-GMP) binds to a diverse range of effectors to exert its biological effect. Despite the fact that free-standing PilZ proteins are by far the most prevalent c-di-GMP effectors known to date, their physiological function and mechanism of action remain largely unknown. Here we report that the free-standing PilZ protein PA2799 from the opportunistic pathogen Pseudomonas aeruginosa interacts directly with the hybrid histidine kinase SagS. We show that PA2799 (named as HapZ: histidine kinase associated PilZ) binds directly to the phosphoreceiver (REC) domain of SagS, and that the SagS-HapZ interaction is further enhanced at elevated c-di-GMP concentration. We demonstrate that binding of HapZ to SagS inhibits the phosphotransfer between SagS and the downstream protein HptB in a c-di-GMP-dependent manner. In accordance with the role of SagS as a motile-sessile switch and biofilm growth factor, we show that HapZ impacts surface attachment and biofilm formation most likely by regulating the expression of a large number of genes. The observations suggest a previously unknown mechanism whereby c-di-GMP mediates two-component signaling through a PilZ adaptor protein. PMID:27231351

  20. The membrane-associated proteins FCHo and SGIP are allosteric activators of the AP2 clathrin adaptor complex

    PubMed Central

    Hollopeter, Gunther; Lange, Jeffrey J; Zhang, Ying; Vu, Thien N; Gu, Mingyu; Ailion, Michael; Lambie, Eric J; Slaughter, Brian D; Unruh, Jay R; Florens, Laurence; Jorgensen, Erik M

    2014-01-01

    The AP2 clathrin adaptor complex links protein cargo to the endocytic machinery but it is unclear how AP2 is activated on the plasma membrane. Here we demonstrate that the membrane-associated proteins FCHo and SGIP1 convert AP2 into an open, active conformation. We screened for Caenorhabditis elegans mutants that phenocopy the loss of AP2 subunits and found that AP2 remains inactive in fcho-1 mutants. A subsequent screen for bypass suppressors of fcho-1 nulls identified 71 compensatory mutations in all four AP2 subunits. Using a protease-sensitivity assay we show that these mutations restore the open conformation in vivo. The domain of FCHo that induces this rearrangement is not the F-BAR domain or the µ-homology domain, but rather is an uncharacterized 90 amino acid motif, found in both FCHo and SGIP proteins, that directly binds AP2. Thus, these proteins stabilize nascent endocytic pits by exposing membrane and cargo binding sites on AP2. DOI: http://dx.doi.org/10.7554/eLife.03648.001 PMID:25303366

  1. Structural basis of HIV-1 Vpu-mediated BST2 antagonism via hijacking of the clathrin adaptor protein complex 1

    PubMed Central

    Jia, Xiaofei; Weber, Erin; Tokarev, Andrey; Lewinski, Mary; Rizk, Maryan; Suarez, Marissa; Guatelli, John; Xiong, Yong

    2014-01-01

    BST2/tetherin, an antiviral restriction factor, inhibits the release of enveloped viruses from the cell surface. Human immunodeficiency virus-1 (HIV-1) antagonizes BST2 through viral protein u (Vpu), which downregulates BST2 from the cell surface. We report the crystal structure of a protein complex containing Vpu and BST2 cytoplasmic domains and the core of the clathrin adaptor protein complex 1 (AP1). This, together with our biochemical and functional validations, reveals how Vpu hijacks the AP1-dependent membrane trafficking pathways to mistraffick BST2. Vpu mimics a canonical acidic dileucine-sorting motif to bind AP1 in the cytosol, while simultaneously interacting with BST2 in the membrane. These interactions enable Vpu to build on an intrinsic interaction between BST2 and AP1, presumably causing the observed retention of BST2 in juxtanuclear endosomes and stimulating its degradation in lysosomes. The ability of Vpu to hijack AP-dependent trafficking pathways suggests a potential common theme for Vpu-mediated downregulation of host proteins. DOI: http://dx.doi.org/10.7554/eLife.02362.001 PMID:24843023

  2. Matrilin-2, an extracellular adaptor protein, is needed for the regeneration of muscle, nerve and other tissues

    PubMed Central

    Korpos, Éva; Deák, Ferenc; Kiss, Ibolya

    2015-01-01

    The extracellular matrix (ECM) performs essential functions in the differentiation, maintenance and remodeling of tissues during development and regeneration, and it undergoes dynamic changes during remodeling concomitant to alterations in the cell-ECM interactions. Here we discuss recent data addressing the critical role of the widely expressed ECM protein, matrilin-2 (Matn2) in the timely onset of differentiation and regeneration processes in myogenic, neural and other tissues and in tumorigenesis. As a multiadhesion adaptor protein, it interacts with other ECM proteins and integrins. Matn2 promotes neurite outgrowth, Schwann cell migration, neuromuscular junction formation, skeletal muscle and liver regeneration and skin wound healing. Matn2 deposition by myoblasts is crucial for the timely induction of the global switch toward terminal myogenic differentiation during muscle regeneration by affecting transforming growth factor beta/bone morphogenetic protein 7/Smad and other signal transduction pathways. Depending on the type of tissue and the pathomechanism, Matn2 can also promote or suppress tumor growth. PMID:26199591

  3. Asc1p, a WD40-domain containing adaptor protein, is required for the interaction of the RNA-binding protein Scp160p with polysomes.

    PubMed Central

    Baum, Sonja; Bittins, Margarethe; Frey, Steffen; Seedorf, Matthias

    2004-01-01

    Scp160p interacts in an mRNA-dependent manner with translating ribosomes via multiple RNA-binding heterogeneous nuclear ribonucleoprotein K-homology (KH) domains. In the present study, we show by protein-protein cross-linking that Scp160p is in close proximity to translation elongation factor 1A and the WD40 (Trp-Asp 40)-repeat containing protein Asc1p at ribosomes. Analysis of a truncation mutant revealed that the C-terminus of Scp160p is essential for ribosome binding and that Cys(1067) at the C-terminus of Scp160p is required to obtain these cross-links. The interaction of Scp160p with ribosomes depends on Asc1p. In fast-growing yeast cells, nearly all Asc1p is tightly bound to ribosomes, but it can also be present in a ribosome-free form depending on growth conditions. The functional homologue of Asc1p, mammalian RACK1 (receptor of activated C kinase), was previously characterized as an adaptor protein bridging activated signalling molecules with their substrates. Our results suggest that Scp160p connects specific mRNAs, ribosomes and a translation factor with an adaptor for signalling molecules. These interactions might regulate the translation activity of ribosomes programmed with specific mRNAs. PMID:15012629

  4. The cytoskeleton adaptor protein ankyrin-1 is upregulated by p53 following DNA damage and alters cell migration.

    PubMed

    Hall, A E; Lu, W-T; Godfrey, J D; Antonov, A V; Paicu, C; Moxon, S; Dalmay, T; Wilczynska, A; Muller, P A J; Bushell, M

    2016-01-01

    The integrity of the genome is maintained by a host of surveillance and repair mechanisms that are pivotal for cellular function. The tumour suppressor protein p53 is a major component of the DNA damage response pathway and plays a vital role in the maintenance of cell-cycle checkpoints. Here we show that a microRNA, miR-486, and its host gene ankyrin-1 (ANK1) are induced by p53 following DNA damage. Strikingly, the cytoskeleton adaptor protein ankyrin-1 was induced over 80-fold following DNA damage. ANK1 is upregulated in response to a variety of DNA damage agents in a range of cell types. We demonstrate that miR-486-5p is involved in controlling G1/S transition following DNA damage, whereas the induction of the ankyrin-1 protein alters the structure of the actin cytoskeleton and sustains limited cell migration during DNA damage. Importantly, we found that higher ANK1 expression correlates with decreased survival in cancer patients. Thus, these observations highlight ANK1 as an important effector downstream of the p53 pathway. PMID:27054339

  5. The cytoskeleton adaptor protein ankyrin-1 is upregulated by p53 following DNA damage and alters cell migration

    PubMed Central

    Hall, A E; Lu, W-T; Godfrey, J D; Antonov, A V; Paicu, C; Moxon, S; Dalmay, T; Wilczynska, A; Muller, P A J; Bushell, M

    2016-01-01

    The integrity of the genome is maintained by a host of surveillance and repair mechanisms that are pivotal for cellular function. The tumour suppressor protein p53 is a major component of the DNA damage response pathway and plays a vital role in the maintenance of cell-cycle checkpoints. Here we show that a microRNA, miR-486, and its host gene ankyrin-1 (ANK1) are induced by p53 following DNA damage. Strikingly, the cytoskeleton adaptor protein ankyrin-1 was induced over 80-fold following DNA damage. ANK1 is upregulated in response to a variety of DNA damage agents in a range of cell types. We demonstrate that miR-486-5p is involved in controlling G1/S transition following DNA damage, whereas the induction of the ankyrin-1 protein alters the structure of the actin cytoskeleton and sustains limited cell migration during DNA damage. Importantly, we found that higher ANK1 expression correlates with decreased survival in cancer patients. Thus, these observations highlight ANK1 as an important effector downstream of the p53 pathway. PMID:27054339

  6. SorLA/LR11 regulates processing of amyloid precursor protein via interaction with adaptors GGA and PACS-1.

    PubMed

    Schmidt, Vanessa; Sporbert, Anje; Rohe, Michael; Reimer, Tatjana; Rehm, Armin; Andersen, Olav M; Willnow, Thomas E

    2007-11-01

    SorLA has been recognized as a novel sorting receptor that regulates trafficking and processing of the amyloid precursor protein (APP) and that represents a significant risk factor for sporadic Alzheimer disease. Here, we investigated the cellular mechanisms that control intracellular trafficking of sorLA and their relevance for APP processing. We demonstrate that sorLA acts as a retention factor for APP in trans-Golgi compartments/trans-Golgi network, preventing release of the precursor into regular processing pathways. Proper localization and activity of sorLA are dependent on functional interaction with GGA and PACS-1, adaptor proteins involved in protein transport to and from the trans-Golgi network. Aberrant targeting of sorLA to the recycling compartment or the plasma membrane causes faulty APP trafficking and imbalance in non-amyloidogenic and amyloidogenic processing fates. Thus, our findings identified altered routing of sorLA as a major cellular mechanism contributing to abnormal APP processing and enhanced amyloid beta-peptide formation. PMID:17855360

  7. An Inducible System for Rapid Degradation of Specific Cellular Proteins Using Proteasome Adaptors

    PubMed Central

    Wilmington, Shameika R.; Matouschek, Andreas

    2016-01-01

    A common way to study protein function is to deplete the protein of interest from cells and observe the response. Traditional methods involve disrupting gene expression but these techniques are only effective against newly synthesized proteins and leave previously existing and stable proteins untouched. Here, we introduce a technique that induces the rapid degradation of specific proteins in mammalian cells by shuttling the proteins to the proteasome for degradation in a ubiquitin-independent manner. We present two implementations of the system in human culture cells that can be used individually to control protein concentration. Our study presents a simple, robust, and flexible technology platform for manipulating intracellular protein levels. PMID:27043013

  8. Distinct Involvement of the Gab1 and Grb2 Adaptor Proteins in Signal Transduction by the Related Receptor Tyrosine Kinases RON and MET

    PubMed Central

    Chaudhuri, Amitabha; Xie, Ming-Hong; Yang, Becky; Mahapatra, Kaushiki; Liu, Jinfeng; Marsters, Scot; Bodepudi, Sweta; Ashkenazi, Avi

    2011-01-01

    Although the signal transduction mechanisms of the receptor tyrosine kinase MET are well defined, less is known about its close relative RON. MET initiates intracellular signaling by autophosphorylation on specific cytoplasmic tyrosines that form docking sites for the adaptor proteins Grb2 and Gab1. Grb2 binds directly and is essential for all of the biological activities of MET. Gab1 docks either directly or indirectly via Grb2 and controls only a subset of MET functions. Because MET and RON possess similar adaptor binding sites, it was anticipated that their adaptor interactions would be conserved. Here we show that in contrast to MET, RON relies primarily on Gab1 for signal transmission. Surprisingly, disruption of the Grb2 docking site of RON or Grb2 depletion augments activity, whereas enhancement of Grb2 binding attenuates Gab1 recruitment and signaling. Hence, RON and MET differ in their adaptor interactions; furthermore, Grb2 performs a novel antagonistic role in the context of RON signaling. PMID:21784853

  9. The adaptor protein TRAF3 inhibits interleukin-6 receptor signaling in B cells to limit plasma cell development

    PubMed Central

    Lin, Wai W.; Yi, Zuoan; Stunz, Laura L.; Maine, Christian J.; Sherman, Linda A.; Bishop, Gail A.

    2016-01-01

    Tumor necrosis factor receptor–associated factor 3 (TRAF3) is an adaptor protein that inhibits signaling by CD40 and by the receptor for B cell–activating factor (BAFF) and negatively regulates homeostatic B cell survival. Loss-of-function mutations in TRAF3 are associated with human B cell malignancies, in particular multiple myeloma. The cytokine interleukin-6 (IL-6) supports the differentiation and survival of normal and neoplastic plasma cells. We found that mice with a deficiency in TRAF3 specifically in B cells (B-Traf3−/− mice) had about twice as many plasma cells as did their littermate controls. TRAF3-deficient B cells had enhanced responsiveness to IL-6, and genetic loss of IL-6 in B-Traf3−/− mice restored their plasma cell numbers to normal. TRAF3 inhibited IL-6 receptor (IL-6R)–mediated signaling by facilitating the association of PTPN22 (a nonreceptor protein tyrosine phosphatase) with the kinase Janus-activated kinase 1 (Jak1), which in turn blocked phosphorylation of the transcription factor STAT3 (signal transducer and activator of transcription 3). Consistent with these results, the number of plasma cells in the PTPN22-deficient mice was increased compared to that in the wild-type mice. Our findings identify TRAF3 and PTPN22 as inhibitors of IL-6R signaling in B cells and reveal a previously uncharacterized role for TRAF3 in the regulation of plasma cell differentiation. PMID:26329582

  10. Transmembrane Adaptor Protein PAG/CBP Is Involved in both Positive and Negative Regulation of Mast Cell Signaling

    PubMed Central

    Draberova, Lubica; Bugajev, Viktor; Potuckova, Lucie; Halova, Ivana; Bambouskova, Monika; Polakovicova, Iva; Xavier, Ramnik J.; Seed, Brian

    2014-01-01

    The transmembrane adaptor protein PAG/CBP (here, PAG) is expressed in multiple cell types. Tyrosine-phosphorylated PAG serves as an anchor for C-terminal SRC kinase, an inhibitor of SRC-family kinases. The role of PAG as a negative regulator of immunoreceptor signaling has been examined in several model systems, but no functions in vivo have been determined. Here, we examined the activation of bone marrow-derived mast cells (BMMCs) with PAG knockout and PAG knockdown and the corresponding controls. Our data show that PAG-deficient BMMCs exhibit impaired antigen-induced degranulation, extracellular calcium uptake, tyrosine phosphorylation of several key signaling proteins (including the high-affinity IgE receptor subunits, spleen tyrosine kinase, and phospholipase C), production of several cytokines and chemokines, and chemotaxis. The enzymatic activities of the LYN and FYN kinases were increased in nonactivated cells, suggesting the involvement of a LYN- and/or a FYN-dependent negative regulatory loop. When BMMCs from PAG-knockout mice were activated via the KIT receptor, enhanced degranulation and tyrosine phosphorylation of the receptor were observed. In vivo experiments showed that PAG is a positive regulator of passive systemic anaphylaxis. The combined data indicate that PAG can function as both a positive and a negative regulator of mast cell signaling, depending upon the signaling pathway involved. PMID:25246632

  11. Adaptor Protein Complex 2–Mediated Endocytosis Is Crucial for Male Reproductive Organ Development in Arabidopsis[W

    PubMed Central

    Kim, Soo Youn; Xu, Zheng-Yi; Song, Kyungyoung; Kim, Dae Heon; Kang, Hyangju; Reichardt, Ilka; Sohn, Eun Ju; Friml, Jiří; Juergens, Gerd; Hwang, Inhwan

    2013-01-01

    Fertilization in flowering plants requires the temporal and spatial coordination of many developmental processes, including pollen production, anther dehiscence, ovule production, and pollen tube elongation. However, it remains elusive as to how this coordination occurs during reproduction. Here, we present evidence that endocytosis, involving heterotetrameric adaptor protein complex 2 (AP-2), plays a crucial role in fertilization. An Arabidopsis thaliana mutant ap2m displays multiple defects in pollen production and viability, as well as elongation of staminal filaments and pollen tubes, all of which are pivotal processes needed for fertilization. Of these abnormalities, the defects in elongation of staminal filaments and pollen tubes were partially rescued by exogenous auxin. Moreover, DR5rev:GFP (for green fluorescent protein) expression was greatly reduced in filaments and anthers in ap2m mutant plants. At the cellular level, ap2m mutants displayed defects in both endocytosis of N-(3-triethylammonium-propyl)-4-(4-diethylaminophenylhexatrienyl) pyridinium dibromide, a lypophilic dye used as an endocytosis marker, and polar localization of auxin-efflux carrier PIN FORMED2 (PIN2) in the stamen filaments. Moreover, these defects were phenocopied by treatment with Tyrphostin A23, an inhibitor of endocytosis. Based on these results, we propose that AP-2–dependent endocytosis plays a crucial role in coordinating the multiple developmental aspects of male reproductive organs by modulating cellular auxin level through the regulation of the amount and polarity of PINs. PMID:23975898

  12. Bivalent Motif-Ear Interactions Mediate the Association of the Accessory Protein Tepsin with the AP-4 Adaptor Complex.

    PubMed

    Mattera, Rafael; Guardia, Carlos M; Sidhu, Sachdev S; Bonifacino, Juan S

    2015-12-25

    The heterotetrameric (ϵ-β4-μ4-σ4) complex adaptor protein 4 (AP-4) is a component of a non-clathrin coat involved in protein sorting at the trans-Golgi network (TGN). Considerable interest in this complex has arisen from the recent discovery that mutations in each of its four subunits are the cause of a congenital intellectual disability and movement disorder in humans. Despite its physiological importance, the structure and function of this coat remain poorly understood. To investigate the assembly of the AP-4 coat, we dissected the determinants of interaction of AP-4 with its only known accessory protein, the ENTH/VHS-domain-containing protein tepsin. Using a variety of protein interaction assays, we found that tepsin comprises two phylogenetically conserved peptide motifs, [GS]LFXG[ML]X[LV] and S[AV]F[SA]FLN, within its C-terminal unstructured region, which interact with the C-terminal ear (or appendage) domains of the β4 and ϵ subunits of AP-4, respectively. Structure-based mutational analyses mapped the binding site for the [GS]LFXG[ML]X[LV] motif to a conserved, hydrophobic surface on the β4-ear platform fold. Both peptide-ear interactions are required for efficient association of tepsin with AP-4, and for recruitment of tepsin to the TGN. The bivalency of the interactions increases the avidity of tepsin for AP-4 and may enable cross-linking of multiple AP-4 heterotetramers, thus contributing to the assembly of the AP-4 coat. In addition to revealing critical aspects of this coat, our findings extend the paradigm of peptide-ear interactions, previously established for clathrin-AP-1/AP-2 coats, to a non-clathrin coat. PMID:26542808

  13. Role of Adaptor Protein Toll-Like Interleukin Domain Containing Adaptor Inducing Interferon β in Toll-Like Receptor 3- and 4-Mediated Regulation of Hepatic Drug Metabolizing Enzyme and Transporter Genes.

    PubMed

    Shah, Pranav; Omoluabi, Ozozoma; Moorthy, Bhagavatula; Ghose, Romi

    2016-01-01

    The expressions and activities of hepatic drug-metabolizing enzymes and transporters (DMETs) are altered during infection and inflammation. Inflammatory responses in the liver are mediated primarily by Toll-like receptor (TLR)-signaling, which involves recruitment of Toll/interleukin (IL)-1 receptor (TIR) domain containing adaptor protein (TIRAP) and TIR domain containing adaptor inducing interferon (IFN)-β (TRIF) that eventually leads to induction of proinflammatory cytokines and mitogen-activated protein kinases (MAPKs). Lipopolysaccharide (LPS) activates the Gram-negative bacterial receptor TLR4 and polyinosinic:polycytidylic acid (polyI:C) activates the viral receptor TLR3. TLR4 signaling involves TIRAP and TRIF, whereas TRIF is the only adaptor protein involved in the TLR3 pathway. We have shown previously that LPS-mediated downregulation of DMETs is independent of TIRAP. To determine the role of TRIF, we treated TRIF(+/+) and TRIF(-/-) mice with LPS or polyI:C. LPS downregulated (∼40%-60%) Cyp3a11, Cyp2a4, Ugt1a1, Mrp2 mRNA levels, whereas polyI:C downregulated (∼30%-60%) Cyp3a11, Cyp2a4, Cyp1a2, Cyp2b10, Ugt1a1, Mrp2, and Mrp3 mRNA levels in TRIF(+/+) mice. This downregulation was not attenuated in TRIF(-/-) mice. Induction of cytokines by LPS was observed in both TRIF(+/+) and TRIF(-/-) mice. Cytokine induction was delayed in polyI:C-treated TRIF(-/-) mice, indicating that multiple mechanisms mediating polyI:C signaling exist. To assess the role of MAPKs, primary hepatocytes were pretreated with specific inhibitors before treatment with LPS/polyI:C. We found that only the c-jun-N-terminal kinase (JNK) inhibitor attenuated the down-regulation of DMETs. These results show that TRIF-independent pathways can be involved in the downregulation of DMETs through TLR4 and 3. JNK-dependent mechanisms likely mediate this downregulation. PMID:26470915

  14. Early Loss of Telomerase Action in Yeast Creates a Dependence on the DNA Damage Response Adaptor Proteins.

    PubMed

    Jay, Kyle A; Smith, Dana L; Blackburn, Elizabeth H

    2016-07-15

    Telomeres cap the ends of chromosomes, protecting them from degradation and inappropriate DNA repair processes that can lead to genomic instability. A short telomere elicits increased telomerase action on itself that replenishes telomere length, thereby stabilizing the telomere. In the prolonged absence of telomerase activity in dividing cells, telomeres eventually become critically short, inducing a permanent cell cycle arrest (senescence). We recently showed that even early after telomerase inactivation (ETI), yeast cells have accelerated mother cell aging and mildly perturbed cell cycles. Here, we show that the complete disruption of DNA damage response (DDR) adaptor proteins in ETI cells causes severe growth defects. This synthetic-lethality phenotype was as pronounced as that caused by extensive DNA damage in wild-type cells but showed genetic dependencies distinct from such damage and was completely alleviated by SML1 deletion, which increases deoxynucleoside triphosphate (dNTP) pools. Our results indicated that these deleterious effects in ETI cells cannot be accounted for solely by the slow erosion of telomeres due to incomplete replication that leads to senescence. We propose that normally occurring telomeric DNA replication stress is resolved by telomerase activity and the DDR in two parallel pathways and that deletion of Sml1 prevents this stress. PMID:27161319

  15. The Adaptor Protein-1 μ1B Subunit Expands the Repertoire of Basolateral Sorting Signal Recognition in Epithelial Cells

    PubMed Central

    Guo, Xiaoli; Mattera, Rafael; Ren, Xuefeng; Chen, Yu; Retamal, Claudio; González, Alfonso; Bonifacino, Juan S.

    2014-01-01

    SUMMARY An outstanding question in protein sorting is why polarized epithelial cells express two isoforms of the μ1 subunit of the AP-1 clathrin adaptor complex: the ubiquitous μ1A and the epithelial-specific μ1B. Previous studies led to the notion that μ1A and μ1B mediate basolateral sorting predominantly from the trans-Golgi network (TGN) and recycling endosomes, respectively. Using improved analytical tools, however, we find that μ1A and μ1B largely colocalize with each other. They also colocalize to similar extents with TGN and recycling endosome markers, as well as with basolateral cargoes transiting biosynthetic and endocytic-recycling routes. Instead, the two isoforms differ in their signal-recognition specificity. In particular, μ1B preferentially binds a subset of signals from cargoes that are sorted basolaterally in a μ1B-dependent manner. We conclude that expression of distinct μ1 isoforms in epithelial cells expands the repertoire of signals recognized by AP-1 for sorting of a broader range of cargoes to the basolateral surface. PMID:24229647

  16. Early Loss of Telomerase Action in Yeast Creates a Dependence on the DNA Damage Response Adaptor Proteins

    PubMed Central

    Jay, Kyle A.; Smith, Dana L.

    2016-01-01

    Telomeres cap the ends of chromosomes, protecting them from degradation and inappropriate DNA repair processes that can lead to genomic instability. A short telomere elicits increased telomerase action on itself that replenishes telomere length, thereby stabilizing the telomere. In the prolonged absence of telomerase activity in dividing cells, telomeres eventually become critically short, inducing a permanent cell cycle arrest (senescence). We recently showed that even early after telomerase inactivation (ETI), yeast cells have accelerated mother cell aging and mildly perturbed cell cycles. Here, we show that the complete disruption of DNA damage response (DDR) adaptor proteins in ETI cells causes severe growth defects. This synthetic-lethality phenotype was as pronounced as that caused by extensive DNA damage in wild-type cells but showed genetic dependencies distinct from such damage and was completely alleviated by SML1 deletion, which increases deoxynucleoside triphosphate (dNTP) pools. Our results indicated that these deleterious effects in ETI cells cannot be accounted for solely by the slow erosion of telomeres due to incomplete replication that leads to senescence. We propose that normally occurring telomeric DNA replication stress is resolved by telomerase activity and the DDR in two parallel pathways and that deletion of Sml1 prevents this stress. PMID:27161319

  17. The interaction of Kinesin-1 with its adaptor protein JIP1 can be regulated via proteins binding to the JIP1-PTB domain

    PubMed Central

    2013-01-01

    Background The regulatory mechanisms of motor protein-dependent intracellular transport are still not fully understood. The kinesin-1-binding protein, JIP1, can function as an adaptor protein that links kinesin-1 and other JIP1-binding “cargo” proteins. However, it is unknown whether these “cargo” proteins influence the JIP1–kinesin-1 binding. Results We show here that JIP1–kinesin-1 binding in Neuro2a cells was dependent on conserved amino acid residues in the JIP1-phosphotyrosine binding (PTB) domain, including F687. In addition, mutation of F687 severely affected the neurite tip localization of JIP1. Proteomic analysis revealed another kinesin-1 binding protein, JIP3, as a major JIP1 binding protein. The association between JIP1 and JIP3 was dependent on the F687 residue in JIP1, and this association induced the formation of a stable ternary complex with kinesin-1. On the other hand, the binding of JIP1 and JIP3 was independent of kinesin-1 binding. We also show that other PTB binding proteins can interrupt the formation of the ternary complex. Conclusions The formation of the JIP1–kinesin-1 complex depends on the protein binding-status of the JIP1 PTB domain. This may imply a regulatory mechanism of kinesin-1-dependent intracellular transport. PMID:23496950

  18. Structure of a putative ClpS N-end rule adaptor protein from the malaria pathogen Plasmodium falciparum.

    PubMed

    AhYoung, Andrew P; Koehl, Antoine; Vizcarra, Christina L; Cascio, Duilio; Egea, Pascal F

    2016-03-01

    The N-end rule pathway uses an evolutionarily conserved mechanism in bacteria and eukaryotes that marks proteins for degradation by ATP-dependent chaperones and proteases such as the Clp chaperones and proteases. Specific N-terminal amino acids (N-degrons) are sufficient to target substrates for degradation. In bacteria, the ClpS adaptor binds and delivers N-end rule substrates for their degradation upon association with the ClpA/P chaperone/protease. Here, we report the first crystal structure, solved at 2.7 Å resolution, of a eukaryotic homolog of bacterial ClpS from the malaria apicomplexan parasite Plasmodium falciparum (Pfal). Despite limited sequence identity, Plasmodium ClpS is very similar to bacterial ClpS. Akin to its bacterial orthologs, plasmodial ClpS harbors a preformed hydrophobic pocket whose geometry and chemical properties are compatible with the binding of N-degrons. However, while the N-degron binding pocket in bacterial ClpS structures is open and accessible, the corresponding pocket in Plasmodium ClpS is occluded by a conserved surface loop that acts as a latch. Despite the closed conformation observed in the crystal, we show that, in solution, Pfal-ClpS binds and discriminates peptides mimicking bona fide N-end rule substrates. The presence of an apicoplast targeting peptide suggests that Pfal-ClpS localizes to this plastid-like organelle characteristic of all Apicomplexa and hosting most of its Clp machinery. By analogy with the related ClpS1 from plant chloroplasts and cyanobacteria, Plasmodium ClpS likely functions in association with ClpC in the apicoplast. Our findings open new venues for the design of novel anti-malarial drugs aimed at disrupting parasite-specific protein quality control pathways. PMID:26701219

  19. A combinatorial F box protein directed pathway controls TRAF adaptor stability to regulate inflammation.

    PubMed

    Chen, Bill B; Coon, Tiffany A; Glasser, Jennifer R; McVerry, Bryan J; Zhao, Jing; Zhao, Yutong; Zou, Chunbin; Ellis, Bryon; Sciurba, Frank C; Zhang, Yingze; Mallampalli, Rama K

    2013-05-01

    Uncontrolled activation of tumor necrosis factor receptor-associated factor (TRAF) proteins may result in profound tissue injury by linking surface signals to cytokine release. Here we show that a ubiquitin E3 ligase component, Fbxo3, potently stimulates cytokine secretion from human inflammatory cells by destabilizing a sentinel TRAF inhibitor, Fbxl2. Fbxo3 and TRAF protein in circulation positively correlated with cytokine responses in subjects with sepsis, and we identified a polymorphism in human Fbxo3, with one variant being hypofunctional. A small-molecule inhibitor targeting Fbxo3 was sufficient to lessen severity of cytokine-driven inflammation in several mouse disease models. These studies identified a pathway of innate immunity that may be useful to detect subjects with altered immune responses during critical illness or provide a basis for therapeutic intervention targeting TRAF protein abundance. PMID:23542741

  20. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection

    PubMed Central

    Pérez-Núñez, Daniel; García-Urdiales, Eduardo; Martínez-Bonet, Marta; Nogal, María L.; Barroso, Susana; Revilla, Yolanda; Madrid, Ricardo

    2015-01-01

    African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity. PMID:25915900

  1. The adaptor protein alpha-syntrophin regulates adipocyte lipid droplet growth.

    PubMed

    Eisinger, Kristina; Rein-Fischboeck, Lisa; Pohl, Rebekka; Meier, Elisabeth M; Krautbauer, Sabrina; Buechler, Christa

    2016-07-01

    The scaffold protein alpha-syntrophin (SNTA) regulates lipolysis indicating a role in lipid homeostasis. Adipocytes are the main lipid storage cells in the body, and here, the function of SNTA has been analyzed in 3T3-L1 cells. SNTA is expressed in preadipocytes and is induced early during adipogenesis. Knock-down of SNTA in preadipocytes increases their proliferation. Proteins which are induced during adipogenesis like adiponectin and caveolin-1, and the inflammatory cytokine IL-6 are at normal levels in the mature cells differentiated from preadipocytes with low SNTA. This suggests that SNTA does neither affect differentiation nor inflammation. Expression of proteins with a role in cholesterol and triglyceride homeostasis is unchanged. Consequently, basal and epinephrine induced lipolysis as well as insulin stimulated phosphorylation of Akt and ERK1/2 are normal. Importantly, adipocytes with low SNTA form smaller lipid droplets and store less triglycerides. Stearoyl-CoA reductase and MnSOD are reduced upon SNTA knock-down but do not contribute to lower lipid levels. Oleate uptake is even increased in cells with SNTA knock-down. In summary, current data show that SNTA is involved in the expansion of lipid droplets independent of adipogenesis. Enhanced preadipocyte proliferation and capacity to store surplus fatty acids may protect adipocytes with low SNTA from lipotoxicity in obesity. PMID:27242274

  2. A dual role for the adaptor protein DRK in Drosophila olfactory learning and memory

    PubMed Central

    Moressis, Anastasios; Friedrich, Anke R.; Pavlopoulos, Elias; Davis, Ronald L.; Skoulakis, Efthimios M. C.

    2009-01-01

    Participation of RAS, RAF and MAPK in learning and memory has been demonstrated in a number of studies, but the molecular events requisite for cascade activation and regulation have not been explored. We demonstrate that the adapter protein DRK which is essential for signaling to RAS in developmental contexts, is preferentially distributed in the adult mushroom bodies, centers for olfactory learning and memory. We demonstrate that drk mutant heterozygotes exhibit deficits in olfactory learning and memory, apparent under limited training conditions, but are not impaired in sensory responses requisite for the association of the stimuli, or brain neuroanatomy. Furthermore we demonstrate that the protein is required acutely within mushroom body neurons to mediate efficient learning, a process that requires RAF activation. Importantly, 90-minute memory remained impaired, even after differential training yielding equivalent learning in animals with compromised DRK levels and controls, and did not require RAF. Sustained MAPK activation is compromised in drk mutants and surprisingly is negatively regulated by constitutive RAF activity. The data establish a role for DRK in Drosophila behavioral neuroplasticity and suggest a dual role for the protein, first in RAF activation-dependent learning and additionally in RAF-inhibition dependent sustained MAPK activation essential for memory formation or stability. PMID:19244537

  3. The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion

    PubMed Central

    Paul, Viktoria Désirée; Mühlenhoff, Ulrich; Stümpfig, Martin; Seebacher, Jan; Kugler, Karl G; Renicke, Christian; Taxis, Christof; Gavin, Anne-Claude; Pierik, Antonio J; Lill, Roland

    2015-01-01

    Cytosolic and nuclear iron-sulfur (Fe-S) proteins are involved in many essential pathways including translation and DNA maintenance. Their maturation requires the cytosolic Fe-S protein assembly (CIA) machinery. To identify new CIA proteins we employed systematic protein interaction approaches and discovered the essential proteins Yae1 and Lto1 as binding partners of the CIA targeting complex. Depletion of Yae1 or Lto1 results in defective Fe-S maturation of the ribosome-associated ABC protein Rli1, but surprisingly no other tested targets. Yae1 and Lto1 facilitate Fe-S cluster assembly on Rli1 in a chain of binding events. Lto1 uses its conserved C-terminal tryptophan for binding the CIA targeting complex, the deca-GX3 motifs in both Yae1 and Lto1 facilitate their complex formation, and Yae1 recruits Rli1. Human YAE1D1 and the cancer-related ORAOV1 can replace their yeast counterparts demonstrating evolutionary conservation. Collectively, the Yae1-Lto1 complex functions as a target-specific adaptor that recruits apo-Rli1 to the generic CIA machinery. DOI: http://dx.doi.org/10.7554/eLife.08231.001 PMID:26182403

  4. Structural and Functional Characterization of Cargo-Binding Sites on the μ4-Subunit of Adaptor Protein Complex 4

    PubMed Central

    Ross, Breyan H.; Lin, Yimo; Corales, Esteban A.; Burgos, Patricia V.; Mardones, Gonzalo A.

    2014-01-01

    Adaptor protein (AP) complexes facilitate protein trafficking by playing key roles in the selection of cargo molecules to be sorted in post-Golgi compartments. Four AP complexes (AP-1 to AP-4) contain a medium-sized subunit (μ1-μ4) that recognizes YXXØ-sequences (Ø is a bulky hydrophobic residue), which are sorting signals in transmembrane proteins. A conserved, canonical region in μ subunits mediates recognition of YXXØ-signals by means of a critical aspartic acid. Recently we found that a non-canonical YXXØ-signal on the cytosolic tail of the Alzheimer's disease amyloid precursor protein (APP) binds to a distinct region of the μ4 subunit of the AP-4 complex. In this study we aimed to determine the functionality of both binding sites of μ4 on the recognition of the non-canonical YXXØ-signal of APP. We found that substitutions in either binding site abrogated the interaction with the APP-tail in yeast-two hybrid experiments. Further characterization by isothermal titration calorimetry showed instead loss of binding to the APP signal with only the substitution R283D at the non-canonical site, in contrast to a decrease in binding affinity with the substitution D190A at the canonical site. We solved the crystal structure of the C-terminal domain of the D190A mutant bound to this non-canonical YXXØ-signal. This structure showed no significant difference compared to that of wild-type μ4. Both differential scanning fluorimetry and limited proteolysis analyses demonstrated that the D190A substitution rendered μ4 less stable, suggesting an explanation for its lower binding affinity to the APP signal. Finally, in contrast to overexpression of the D190A mutant, and acting in a dominant-negative manner, overexpression of μ4 with either a F255A or a R283D substitution at the non-canonical site halted APP transport at the Golgi apparatus. Together, our analyses support that the functional recognition of the non-canonical YXXØ-signal of APP is limited to the non

  5. Structural and functional characterization of cargo-binding sites on the μ4-subunit of adaptor protein complex 4.

    PubMed

    Ross, Breyan H; Lin, Yimo; Corales, Esteban A; Burgos, Patricia V; Mardones, Gonzalo A

    2014-01-01

    Adaptor protein (AP) complexes facilitate protein trafficking by playing key roles in the selection of cargo molecules to be sorted in post-Golgi compartments. Four AP complexes (AP-1 to AP-4) contain a medium-sized subunit (μ1-μ4) that recognizes YXXØ-sequences (Ø is a bulky hydrophobic residue), which are sorting signals in transmembrane proteins. A conserved, canonical region in μ subunits mediates recognition of YXXØ-signals by means of a critical aspartic acid. Recently we found that a non-canonical YXXØ-signal on the cytosolic tail of the Alzheimer's disease amyloid precursor protein (APP) binds to a distinct region of the μ4 subunit of the AP-4 complex. In this study we aimed to determine the functionality of both binding sites of μ4 on the recognition of the non-canonical YXXØ-signal of APP. We found that substitutions in either binding site abrogated the interaction with the APP-tail in yeast-two hybrid experiments. Further characterization by isothermal titration calorimetry showed instead loss of binding to the APP signal with only the substitution R283D at the non-canonical site, in contrast to a decrease in binding affinity with the substitution D190A at the canonical site. We solved the crystal structure of the C-terminal domain of the D190A mutant bound to this non-canonical YXXØ-signal. This structure showed no significant difference compared to that of wild-type μ4. Both differential scanning fluorimetry and limited proteolysis analyses demonstrated that the D190A substitution rendered μ4 less stable, suggesting an explanation for its lower binding affinity to the APP signal. Finally, in contrast to overexpression of the D190A mutant, and acting in a dominant-negative manner, overexpression of μ4 with either a F255A or a R283D substitution at the non-canonical site halted APP transport at the Golgi apparatus. Together, our analyses support that the functional recognition of the non-canonical YXXØ-signal of APP is limited to the non

  6. Adaptor Protein MecA Is a Negative Regulator of the Expression of Late Competence Genes in Streptococcus thermophilus

    PubMed Central

    Boutry, Céline; Wahl, Astrid; Delplace, Brigitte; Clippe, André; Fontaine, Laetitia

    2012-01-01

    In Streptococcus thermophilus, the ComRS regulatory system governs the transcriptional level of comX expression and, hence, controls the early stage of competence development. The present work focuses on the posttranslational control of the activity of the sigma factor ComX and, therefore, on the late stage of competence regulation. In silico analysis performed on the S. thermophilus genome revealed the presence of a homolog of mecA (mecASt), which codes for the adaptor protein that is involved in ComK degradation by ClpCP in Bacillus subtilis. Using reporter strains and microarray experiments, we showed that MecASt represses late competence genes without affecting the early competence stage under conditions that are not permissive for competence development. In addition, this repression mechanism was found not only to act downstream of comX expression but also to be fully dependent on the presence of a functional comX gene. This negative control was similarly released in strains deleted for clpC, mecA, and clpC-mecA. Under artificial conditions of comX expression, we next showed that the abundance of ComX is higher in the absence of MecA or ClpC. Finally, results of bacterial two-hybrid assays strongly suggested that MecA interacts with both ComX and ClpC. Based on these results, we proposed that ClpC and MecA act together in the same regulatory circuit to control the abundance of ComX in S. thermophilus. PMID:22287513

  7. Detachment-Based Equilibrium of Anoikic Cell Death and Autophagic Cell Survival Through Adaptor Protein p66(Shc).

    PubMed

    Cai, Zeyuan; Zhao, Dan; Sun, Yanan; Gao, Dan; Li, Xia; Yang, Jie; Ma, Zhenyi

    2016-03-01

    Anoikis (detachment-induced cell death) confers a tumor-suppressive function in metastatic cancer cells. Autophagy, a conserved self-degradative process, enhances the anoikis resistance of detached cancer cells by maintaining cellular homeostasis. However, the mechanism of regulating cell fate-decision by balancing anoikis and autophagy has been poorly understood. Our previous studies have shown that the adaptor protein p66(Shc) mediates anoikis through RhoA activation and inhibits tumor metastasis in vivo. We also found that p66(Shc) depletion mitigates nutrient-deprivation-induced autophagy. These findings suggest p66(Shc) may coordinately regulate these two processes. To verify this hypothesis, we investigated the effect of p66(Shc) on the cell death of detached lung cancer cells, and measured autophagy markers and autophagic flux. Results showed that p66(Shc) depletion significantly inhibited anoikis, and reduced the formation of LC3B-II and the degradation of Sequestosome 1 (SQSTM1, p62) in detachment-induced cells. Using monodansylcadaverine (MDC)-LysoTracker double staining and monomeric Cherry (mCherry)-GFP-LC3 assay, we found that the autophagic flux was also mitigated by p66(Shc) depletion. In addition, p66(Shc) knockdown increased the formation of full-length X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1), which enhances anoikis sensitivity. In conclusion, p66(Shc) plays an essential role in detachment-based equilibrium of anoikic cell death and autophagic cell survival. Anat Rec, 299:325-333, 2016. © 2015 Wiley Periodicals, Inc. PMID:26643258

  8. The Wnt Adaptor Protein ATP6AP2 Regulates Multiple Stages of Adult Hippocampal Neurogenesis

    PubMed Central

    Han, Jinju; Pena, Monique; von Bohlen und Halbach, Oliver; Peters, Jörg; Gage, Fred H.

    2015-01-01

    In the mammalian hippocampus, canonical Wnt signals provided by the microenvironment regulate the differentiation of adult neural stem cells (NSCs) toward the neuronal lineage. Wnts are part of a complex and diverse set of signaling pathways and the role of Wnt/Planar cell polarity (PCP) signaling in adult neurogenesis remains unknown. Using in vitro assays on differentiating adult NSCs, we identified a transition of Wnt signaling responsiveness from Wnt/β-catenin to Wnt/PCP signaling. In mice, retroviral knockdown strategies against ATP6AP2, a recently discovered core protein involved in both signaling pathways, revealed that its dual role is critical for granule cell fate and morphogenesis. We were able to confirm its dual role in neurogenic Wnt signaling in vitro for both canonical Wnt signaling in proliferating adult NSCs and non-canonical Wnt signaling in differentiating neuroblasts. Although LRP6 appeared to be critical for granule cell fate determination, in vivo knockdown of PCP core proteins FZD3 and CELSR1-3 revealed severe maturational defects without changing the identity of newborn granule cells. Furthermore, we found that CELSR1-3 control distinctive aspects of PCP-mediated granule cell morphogenesis with CELSR1 regulating the direction of dendrite initiation sites and CELSR2/3 controlling radial migration and dendritic patterning. The data presented here characterize distinctive roles for Wnt/β-catenin signaling in granule cell fate determination and for Wnt/PCP signaling in controlling the morphological maturation of differentiating neuroblasts. PMID:25810528

  9. The Wnt adaptor protein ATP6AP2 regulates multiple stages of adult hippocampal neurogenesis.

    PubMed

    Schafer, Simon T; Han, Jinju; Pena, Monique; von Bohlen Und Halbach, Oliver; Peters, Jörg; Gage, Fred H

    2015-03-25

    In the mammalian hippocampus, canonical Wnt signals provided by the microenvironment regulate the differentiation of adult neural stem cells (NSCs) toward the neuronal lineage. Wnts are part of a complex and diverse set of signaling pathways and the role of Wnt/Planar cell polarity (PCP) signaling in adult neurogenesis remains unknown. Using in vitro assays on differentiating adult NSCs, we identified a transition of Wnt signaling responsiveness from Wnt/β-catenin to Wnt/PCP signaling. In mice, retroviral knockdown strategies against ATP6AP2, a recently discovered core protein involved in both signaling pathways, revealed that its dual role is critical for granule cell fate and morphogenesis. We were able to confirm its dual role in neurogenic Wnt signaling in vitro for both canonical Wnt signaling in proliferating adult NSCs and non-canonical Wnt signaling in differentiating neuroblasts. Although LRP6 appeared to be critical for granule cell fate determination, in vivo knockdown of PCP core proteins FZD3 and CELSR1-3 revealed severe maturational defects without changing the identity of newborn granule cells. Furthermore, we found that CELSR1-3 control distinctive aspects of PCP-mediated granule cell morphogenesis with CELSR1 regulating the direction of dendrite initiation sites and CELSR2/3 controlling radial migration and dendritic patterning. The data presented here characterize distinctive roles for Wnt/β-catenin signaling in granule cell fate determination and for Wnt/PCP signaling in controlling the morphological maturation of differentiating neuroblasts. PMID:25810528

  10. Invertebrate and Vertebrate Class III Myosins Interact with MORN Repeat-Containing Adaptor Proteins

    PubMed Central

    Mecklenburg, Kirk L.; Freed, Stephanie A.; Raval, Manmeet; Quintero, Omar A.; Yengo, Christopher M.; O'Tousa, Joseph. E.

    2015-01-01

    In Drosophila photoreceptors, the NINAC-encoded myosin III is found in a complex with a small, MORN-repeat containing, protein Retinophilin (RTP). Expression of these two proteins in other cell types showed NINAC myosin III behavior is altered by RTP. NINAC deletion constructs were used to map the RTP binding site within the proximal tail domain of NINAC. In vertebrates, the RTP ortholog is MORN4. Co-precipitation experiments demonstrated that human MORN4 binds to human myosin IIIA (MYO3A). In COS7 cells, MORN4 and MYO3A, but not MORN4 and MYO3B, co-localize to actin rich filopodia extensions. Deletion analysis mapped the MORN4 binding to the proximal region of the MYO3A tail domain. MYO3A dependent MORN4 tip localization suggests that MYO3A functions as a motor that transports MORN4 to the filopodia tips and MORN4 may enhance MYO3A tip localization by tethering it to the plasma membrane at the protrusion tips. These results establish conserved features of the RTP/MORN4 family: they bind within the tail domain of myosin IIIs to control their behavior. PMID:25822849

  11. The AP2 clathrin adaptor protein complex regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of Caenorhabditis elegans

    PubMed Central

    Garafalo, Steven D.; Luth, Eric S.; Moss, Benjamin J.; Monteiro, Michael I.; Malkin, Emily; Juo, Peter

    2015-01-01

    Regulation of glutamate receptor (GluR) abundance at synapses by clathrin-mediated endocytosis can control synaptic strength and plasticity. We take advantage of viable, null mutations in subunits of the clathrin adaptor protein 2 (AP2) complex in Caenorhabditis elegans to characterize the in vivo role of AP2 in GluR trafficking. In contrast to our predictions for an endocytic adaptor, we found that levels of the GluR GLR-1 are decreased at synapses in the ventral nerve cord (VNC) of animals with mutations in the AP2 subunits APM-2/μ2, APA-2/α, or APS-2/σ2. Rescue experiments indicate that APM-2/μ2 functions in glr-1–expressing interneurons and the mature nervous system to promote GLR-1 levels in the VNC. Genetic analyses suggest that APM-2/μ2 acts upstream of GLR-1 endocytosis in the VNC. Consistent with this, GLR-1 accumulates in cell bodies of apm-2 mutants. However, GLR-1 does not appear to accumulate at the plasma membrane of the cell body as expected, but instead accumulates in intracellular compartments including Syntaxin-13– and RAB-14–labeled endosomes. This study reveals a novel role for the AP2 clathrin adaptor in promoting the abundance of GluRs at synapses in vivo, and implicates AP2 in the regulation of GluR trafficking at an early step in the secretory pathway. PMID:25788288

  12. The adaptor protein Cindr regulates JNK activity to maintain epithelial sheet integrity.

    PubMed

    Yasin, Hannah W R; van Rensburg, Samuel H; Feiler, Christina E; Johnson, Ruth I

    2016-02-15

    Epithelia are essential barrier tissues that must be appropriately maintained for their correct function. To achieve this a plethora of protein interactions regulate epithelial cell number, structure and adhesion, and differentiation. Here we show that Cindr (the Drosophila Cin85 and Cd2ap ortholog) is required to maintain epithelial integrity. Reducing Cindr triggered cell delamination and movement. Most delaminating cells died. These behaviors were consistent with JNK activation previously associated with loss of epithelial integrity in response to ectopic oncogene activity. We confirmed a novel interaction between Cindr and Drosophila JNK (dJNK), which when perturbed caused inappropriate JNK signaling. Genetically reducing JNK signaling activity suppressed the effects of reducing Cindr. Furthermore, ectopic JNK signaling phenocopied loss of Cindr and was partially rescued by concomitant cindr over-expression. Thus, correct Cindr-dJNK stoichiometry is essential to maintain epithelial integrity and disturbing this balance may contribute to the pathogenesis of disease states, including cancer. PMID:26772997

  13. Impaired Fracture Healing Caused by Deficiency of the Immunoreceptor Adaptor Protein DAP12.

    PubMed

    Kamimura, Masayuki; Mori, Yu; Sugahara-Tobinai, Akiko; Takai, Toshiyuki; Itoi, Eiji

    2015-01-01

    Osteoclasts play an important role in bone metabolism, but their exact role in fracture healing remains unclear. DAP12 is an immunoadaptor protein with associated immunoreceptors on myeloid lineage cells, including osteoclasts. Its deficiency causes osteopetrosis due to suppression of osteoclast development and activation. In this report, we assessed the impact of DAP12 on the fracture healing process using C57BL/6 (B6) and DAP12-/- mice. Healing was evaluated using radiography, micro-CT, histology, immunohistochemistry and real-time RT-PCR. Radiography showed lower callus volume and lower callus radiolucency in DAP12-/- mice during later stages. Micro-CT images and quantitative structural analysis indicated that DAP12-/- mice developed calluses of dense trabecular structures and experienced deteriorated cortical shell formation on the surface. Histologically, DAP12-/- mice showed less cartilaginous resorption and woven bone formation. In addition, prominent cortical shell formation was much less in DAP12-/- mice. Immunohistochemistry revealed lower invasion of F4/80 positive monocytes and macrophages into the fracture hematoma in DAP12-/- mice. The expression levels of Col1a1, Col2a1 and Col10a1 in DAP12-/- mice increased and subsequently became higher than those in B6 mice. There was a decrease in the gene expression of Tnf during the early stages in DAP12-/- mice. Our results indicate that DAP12 deficiency impairs fracture healing, suggesting a significant role of DAP12 in the initial inflammatory response, bone remodeling and regeneration. PMID:26030755

  14. Impaired Fracture Healing Caused by Deficiency of the Immunoreceptor Adaptor Protein DAP12

    PubMed Central

    Kamimura, Masayuki; Mori, Yu; Sugahara-Tobinai, Akiko; Takai, Toshiyuki; Itoi, Eiji

    2015-01-01

    Osteoclasts play an important role in bone metabolism, but their exact role in fracture healing remains unclear. DAP12 is an immunoadaptor protein with associated immunoreceptors on myeloid lineage cells, including osteoclasts. Its deficiency causes osteopetrosis due to suppression of osteoclast development and activation. In this report, we assessed the impact of DAP12 on the fracture healing process using C57BL/6 (B6) and DAP12–/– mice. Healing was evaluated using radiography, micro-CT, histology, immunohistochemistry and real-time RT-PCR. Radiography showed lower callus volume and lower callus radiolucency in DAP12–/– mice during later stages. Micro-CT images and quantitative structural analysis indicated that DAP12–/– mice developed calluses of dense trabecular structures and experienced deteriorated cortical shell formation on the surface. Histologically, DAP12–/– mice showed less cartilaginous resorption and woven bone formation. In addition, prominent cortical shell formation was much less in DAP12–/– mice. Immunohistochemistry revealed lower invasion of F4/80 positive monocytes and macrophages into the fracture hematoma in DAP12–/– mice. The expression levels of Col1a1, Col2a1 and Col10a1 in DAP12–/– mice increased and subsequently became higher than those in B6 mice. There was a decrease in the gene expression of Tnf during the early stages in DAP12–/– mice. Our results indicate that DAP12 deficiency impairs fracture healing, suggesting a significant role of DAP12 in the initial inflammatory response, bone remodeling and regeneration. PMID:26030755

  15. Polo-like Kinase 1 (PLK1) Regulates Interferon (IFN) Induction by MAVS*

    PubMed Central

    Vitour, Damien; Dabo, Stéphanie; Ahmadi Pour, Malek; Vilasco, Myriam; Vidalain, Pierre-Olivier; Jacob, Yves; Mezel-Lemoine, Mariana; Paz, Suzanne; Arguello, Meztli; Lin, Rongtuan; Tangy, Frédéric; Hiscott, John; Meurs, Eliane F.

    2009-01-01

    The mitochondria-bound adapter MAVS participates in IFN induction by recruitment of downstream partners such as members of the TRAF family, leading to activation of NF-κB, and the IRF3 pathways. A yeast two-hybrid search for MAVS-interacting proteins yielded the Polo-box domain (PBD) of the mitotic Polo-like kinase PLK1. We showed that PBD associates with two different domains of MAVS in both dependent and independent phosphorylation events. The phosphodependent association requires the phosphopeptide binding ability of PBD. It takes place downstream of the proline-rich domain of MAVS, within an STP motif, characteristic of the binding of PLK1 to its targets, where the central Thr234 residue is phosphorylated. Its phosphoindependent association takes place at the C terminus of MAVS. PLK1 strongly inhibits the ability of MAVS to activate the IRF3 and NF-κB pathways and to induce IFN. Reciprocally, depletion of PLK1 can increase IFN induction in response to RIG-I/SeV or RIG-I/poly(I)-poly(C) treatments. This inhibition is dependent on the phosphoindependent association of PBD at the C terminus of MAVS where it disrupts the association of MAVS with its downstream partner TRAF3. IFN induction was strongly inhibited in cells arrested in G2/M by nocodazole, which provokes increased expression of endogenous PLK1. Interestingly, depletion of PLK1 from these nocodazole-treated cells could restore, at least partially, IFN induction. Altogether, these data demonstrate a new function for PLK1 as a regulator of IFN induction and provide the basis for the development of inhibitors preventing the PLK1/MAVS association to sustain innate immunity. PMID:19546225

  16. The adaptor protein DCAF7 mediates the interaction of the adenovirus E1A oncoprotein with the protein kinases DYRK1A and HIPK2

    PubMed Central

    Glenewinkel, Florian; Cohen, Michael J.; King, Cason R.; Kaspar, Sophie; Bamberg-Lemper, Simone; Mymryk, Joe S.; Becker, Walter

    2016-01-01

    DYRK1A is a constitutively active protein kinase that has a critical role in growth and development which functions by regulating cell proliferation, differentiation and survival. DCAF7 (also termed WDR68 or HAN11) is a cellular binding partner of DYRK1A and also regulates signalling by the protein kinase HIPK2. DCAF7 is an evolutionarily conserved protein with a single WD40 repeat domain and has no catalytic activity. We have defined a DCAF7 binding motif of 12 amino acids in the N-terminal domain of class 1 DYRKs that is functionally conserved in DYRK1 orthologs from Xenopus, Danio rerio and the slime mold Dictyostelium discoideum. A similar sequence was essential for DCAF7 binding to HIPK2, whereas the closely related HIPK1 family member did not bind DCAF7. Immunoprecipitation and pulldown experiments identified DCAF7 as an adaptor for the association of the adenovirus E1A protein with DYRK1A and HIPK2. Furthermore, DCAF7 was required for the hyperphosphorylation of E1A in DYRK1A or HIPK2 overexpressing cells. Our results characterize DCAF7 as a substrate recruiting subunit of DYRK1A and HIPK2 and suggest that it is required for the negative effect of DYRK1A on E1A-induced oncogenic transformation. PMID:27307198

  17. The adaptor protein DCAF7 mediates the interaction of the adenovirus E1A oncoprotein with the protein kinases DYRK1A and HIPK2.

    PubMed

    Glenewinkel, Florian; Cohen, Michael J; King, Cason R; Kaspar, Sophie; Bamberg-Lemper, Simone; Mymryk, Joe S; Becker, Walter

    2016-01-01

    DYRK1A is a constitutively active protein kinase that has a critical role in growth and development which functions by regulating cell proliferation, differentiation and survival. DCAF7 (also termed WDR68 or HAN11) is a cellular binding partner of DYRK1A and also regulates signalling by the protein kinase HIPK2. DCAF7 is an evolutionarily conserved protein with a single WD40 repeat domain and has no catalytic activity. We have defined a DCAF7 binding motif of 12 amino acids in the N-terminal domain of class 1 DYRKs that is functionally conserved in DYRK1 orthologs from Xenopus, Danio rerio and the slime mold Dictyostelium discoideum. A similar sequence was essential for DCAF7 binding to HIPK2, whereas the closely related HIPK1 family member did not bind DCAF7. Immunoprecipitation and pulldown experiments identified DCAF7 as an adaptor for the association of the adenovirus E1A protein with DYRK1A and HIPK2. Furthermore, DCAF7 was required for the hyperphosphorylation of E1A in DYRK1A or HIPK2 overexpressing cells. Our results characterize DCAF7 as a substrate recruiting subunit of DYRK1A and HIPK2 and suggest that it is required for the negative effect of DYRK1A on E1A-induced oncogenic transformation. PMID:27307198

  18. Adaptor protein 2–mediated endocytosis of the β-secretase BACE1 is dispensable for amyloid precursor protein processing

    PubMed Central

    Prabhu, Yogikala; Burgos, Patricia V.; Schindler, Christina; Farías, Ginny G.; Magadár, Javier G.; Bonifacino, Juan S.

    2012-01-01

    The β-site amyloid precursor protein (APP)–cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease that catalyzes the proteolytic processing of APP and other plasma membrane protein precursors. BACE1 cycles between the trans-Golgi network (TGN), the plasma membrane, and endosomes by virtue of signals contained within its cytosolic C-terminal domain. One of these signals is the DXXLL-motif sequence DISLL, which controls transport between the TGN and endosomes via interaction with GGA proteins. Here we show that the DISLL sequence is embedded within a longer [DE]XXXL[LI]-motif sequence, DDISLL, which mediates internalization from the plasma membrane by interaction with the clathrin-associated, heterotetrameric adaptor protein 2 (AP-2) complex. Mutation of this signal or knockdown of either AP-2 or clathrin decreases endosomal localization and increases plasma membrane localization of BACE1. Remarkably, internalization-defective BACE1 is able to cleave an APP mutant that itself cannot be delivered to endosomes. The drug brefeldin A reversibly prevents BACE1-catalyzed APP cleavage, ruling out that this reaction occurs in the endoplasmic reticulum (ER) or ER–Golgi intermediate compartment. Taken together, these observations support the notion that BACE1 is capable of cleaving APP in late compartments of the secretory pathway. PMID:22553349

  19. Phosphorylation of APP-CTF-AICD domains and interaction with adaptor proteins: signal transduction and/or transcriptional role--relevance for Alzheimer pathology.

    PubMed

    Schettini, Gennaro; Govoni, Stefano; Racchi, Marco; Rodriguez, Guido

    2010-12-01

    In recent decades, the study of the amyloid precursor protein (APP) and of its proteolytic products carboxy terminal fragment (CTF), APP intracellular C-terminal domain (AICD) and amyloid beta has been mostly focussed on the role of APP as a producer of the toxic amyloid beta peptide. Here, we reconsider the role of APP suggesting, in a provocative way, the protein as a central player in a putative signalling pathway. We highlight the presence in the cytosolic tail of APP of the YENPTY motif which is typical of tyrosine kinase receptors, the phosphorylation of the tyrosine, serine and threonine residues, the kinases involved and the interaction with intracellular adaptor proteins. In particular, we examine the interaction with Shc and Grb2 regulators, which through the activation of Ras proteins elicit downstream signalling events such as the MAPK pathway. The review also addresses the interaction of APP, CTFs and AICD with other adaptor proteins and in particular with Fe65 for nuclear transcriptional activity and the importance of phosphorylation for sorting the secretases involved in the amyloidogenic or non-amyloidogenic pathways. We provide a novel perspective on Alzheimer's disease pathogenesis, focussing on the perturbation of the physiological activities of APP-CTFs and AICD as an alternative perspective from that which normally focuses on the accumulation of neurotoxic proteolytic fragments. PMID:21039524

  20. The COPII adaptor protein TMED7 is required to initiate and mediate the anterograde trafficking of Toll-like receptor 4 to the plasma membrane

    PubMed Central

    Liaunardy-Jopeace, Ardiyanto; Bryant, Clare E.; Gay, Nicholas J.

    2015-01-01

    Toll-like receptor 4 (TLR4), the receptor for the bacterial product endotoxin, is subject to multiple points of regulation at the levels of signaling, biogenesis, and trafficking. Dysregulation of TLR4 signaling can cause serious inflammatory diseases, such as sepsis. We found that the p24 family protein TMED7 (transmembrane emp24 protein transport domain containing 7) is required for the trafficking of TLR4 from the endoplasmic reticulum to the cell surface through the Golgi. TMED7 formed a stable complex with the ectodomain of TLR4, an interaction that required the coiled-coil and GOLD domains, but not the cytosolic, COP II sorting motif, of TMED7. Depletion of TMED7 reduced TLR4 signaling mediated by the adaptor protein MyD88, but not that mediated by the adaptor proteins TRAM and TRIF. Truncated forms of TMED7 lacking the COP II sorting motif or the transmembrane domain were mislocalized and resulted in constitutive activation of TLR4 signaling. Together, these results support the hypothesis that p24 proteins perform a quality control step by recognizing correctly folded anterograde cargo, such as TLR4, in early secretory compartments and facilitating the translocation of this cargo to the cell surface. PMID:25074978

  1. Mutations in the gene encoding the Sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation.

    PubMed

    Tarpey, Patrick S; Stevens, Claire; Teague, Jon; Edkins, Sarah; O'Meara, Sarah; Avis, Tim; Barthorpe, Syd; Buck, Gemma; Butler, Adam; Cole, Jennifer; Dicks, Ed; Gray, Kristian; Halliday, Kelly; Harrison, Rachel; Hills, Katy; Hinton, Jonathon; Jones, David; Menzies, Andrew; Mironenko, Tatiana; Perry, Janet; Raine, Keiran; Richardson, David; Shepherd, Rebecca; Small, Alexandra; Tofts, Calli; Varian, Jennifer; West, Sofie; Widaa, Sara; Yates, Andy; Catford, Rachael; Butler, Julia; Mallya, Uma; Moon, Jenny; Luo, Ying; Dorkins, Huw; Thompson, Deborah; Easton, Douglas F; Wooster, Richard; Bobrow, Martin; Carpenter, Nancy; Simensen, Richard J; Schwartz, Charles E; Stevenson, Roger E; Turner, Gillian; Partington, Michael; Gecz, Jozef; Stratton, Michael R; Futreal, P Andrew; Raymond, F Lucy

    2006-12-01

    In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the three XLMR-affected families, and such defects may plausibly cause abnormal synaptic development and function. AP1S2 is the first reported XLMR gene that encodes a protein directly involved in the assembly of endocytic vesicles. PMID:17186471

  2. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2014-04-22

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  3. Adaptors for radiation detectors

    DOEpatents

    Livesay, Ronald Jason

    2015-07-28

    Described herein are adaptors and other devices for radiation detectors that can be used to make accurate spectral measurements of both small and large bulk sources of radioactivity, such as building structures, soils, vessels, large equipment, and liquid bodies. Some exemplary devices comprise an adaptor for a radiation detector, wherein the adaptor can be configured to collimate radiation passing through the adapter from an external radiation source to the radiation detector and the adaptor can be configured to enclose a radiation source within the adapter to allow the radiation detector to measure radiation emitted from the enclosed radiation source.

  4. Impaired Lysosomal Integral Membrane Protein 2-dependent Peroxiredoxin 6 Delivery to Lamellar Bodies Accounts for Altered Alveolar Phospholipid Content in Adaptor Protein-3-deficient pearl Mice.

    PubMed

    Kook, Seunghyi; Wang, Ping; Young, Lisa R; Schwake, Michael; Saftig, Paul; Weng, Xialian; Meng, Ying; Neculai, Dante; Marks, Michael S; Gonzales, Linda; Beers, Michael F; Guttentag, Susan

    2016-04-15

    The Hermansky Pudlak syndromes (HPS) constitute a family of disorders characterized by oculocutaneous albinism and bleeding diathesis, often associated with lethal lung fibrosis. HPS results from mutations in genes of membrane trafficking complexes that facilitate delivery of cargo to lysosome-related organelles. Among the affected lysosome-related organelles are lamellar bodies (LB) within alveolar type 2 cells (AT2) in which surfactant components are assembled, modified, and stored. AT2 from HPS patients and mouse models of HPS exhibit enlarged LB with increased phospholipid content, but the mechanism underlying these defects is unknown. We now show that AT2 in the pearl mouse model of HPS type 2 lacking the adaptor protein 3 complex (AP-3) fails to accumulate the soluble enzyme peroxiredoxin 6 (PRDX6) in LB. This defect reflects impaired AP-3-dependent trafficking of PRDX6 to LB, because pearl mouse AT2 cells harbor a normal total PRDX6 content. AP-3-dependent targeting of PRDX6 to LB requires the transmembrane protein LIMP-2/SCARB2, a known AP-3-dependent cargo protein that functions as a carrier for lysosomal proteins in other cell types. Depletion of LB PRDX6 in AP-3- or LIMP-2/SCARB2-deficient mice correlates with phospholipid accumulation in lamellar bodies and with defective intraluminal degradation of LB disaturated phosphatidylcholine. Furthermore, AP-3-dependent LB targeting is facilitated by protein/protein interaction between LIMP-2/SCARB2 and PRDX6 in vitro and in vivo Our data provide the first evidence for an AP-3-dependent cargo protein required for the maturation of LB in AT2 and suggest that the loss of PRDX6 activity contributes to the pathogenic changes in LB phospholipid homeostasis found HPS2 patients. PMID:26907692

  5. The Adaptor Protein Myd88 Is a Key Signaling Molecule in the Pathogenesis of Irinotecan-Induced Intestinal Mucositis

    PubMed Central

    Wong, Deysi V. T.; Lima-Júnior, Roberto C. P.; Carvalho, Cibele B. M.; Borges, Vanessa F.; Wanderley, Carlos W. S.; Bem, Amanda X. C.; Leite, Caio A. V. G.; Teixeira, Maraiza A.; Batista, Gabriela L. P.; Silva, Rangel L.; Cunha, Thiago M.; Brito, Gerly A. C.; Almeida, Paulo R. C.; Cunha, Fernando Q.; Ribeiro, Ronaldo A.

    2015-01-01

    Intestinal mucositis is a common side effect of irinotecan-based anticancer regimens. Mucositis causes cell damage, bacterial/endotoxin translocation and production of cytokines including IL–1 and IL–18. These molecules and toll-like receptors (TLRs) activate a common signaling pathway that involves the Myeloid Differentiation adaptor protein, MyD88, whose role in intestinal mucositis is unknown. Then, we evaluated the involvement of TLRs and MyD88 in the pathogenesis of irinotecan-induced intestinal mucositis. MyD88-, TLR2- or TLR9-knockout mice and C57BL/6 (WT) mice were given either saline or irinotecan (75 mg/kg, i.p. for 4 days). On day 7, animal survival, diarrhea and bacteremia were assessed, and following euthanasia, samples of the ileum were obtained for morphometric analysis, myeloperoxidase (MPO) assay and measurement of pro-inflammatory markers. Irinotecan reduced the animal survival (50%) and induced a pronounced diarrhea, increased bacteremia, neutrophil accumulation in the intestinal tissue, intestinal damage and more than twofold increased expression of MyD88 (200%), TLR9 (400%), TRAF6 (236%), IL–1β (405%), IL–18 (365%), COX–2 (2,777%) and NF-κB (245%) in the WT animals when compared with saline-injected group (P<0.05). Genetic deletion of MyD88, TLR2 or TLR9 effectively controlled the signs of intestinal injury when compared with irinotecan-administered WT controls (P<0.05). In contrast to the MyD88-/- and TLR2-/- mice, the irinotecan-injected TLR9-/- mice showed a reduced survival, a marked diarrhea and an enhanced expression of IL–18 versus irinotecan-injected WT controls. Additionally, the expression of MyD88 was reduced in the TLR2-/- or TLR9-/- mice. This study shows a critical role of the MyD88-mediated TLR2 and TLR9 signaling in the pathogenesis of irinotecan-induced intestinal mucositis. PMID:26440613

  6. Adaptor Protein Complex 2 (AP-2) Mediated, Clathrin Dependent Endocytosis, And Related Gene Activities, Are A Prominent Feature During Maturation Stage Amelogenesis

    PubMed Central

    LACRUZ, Rodrigo S.; BROOKES, Steven J.; WEN, Xin; JIMENEZ, Jaime M.; VIKMAN, Susanna; HU, Ping; WHITE, Shane N.; LYNGSTADAAS, S. Petter; OKAMOTO, Curtis T.; SMITH, Charles E.; PAINE, Michael L.

    2012-01-01

    Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real time PCR, we show that the expression of clathrin and adaptor protein subunits are up-regulated in maturation stage rodent enamel organ cells. AP-2 is the most up-regulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin dependent endocytosis, thus implying the likelihood of a specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also up-regulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1), cluster of differentiation 63 and 68 (Cd63 and Cd68), ATPase, H+ transporting, lysosomal V0 subunit D2 (Atp6v0d2), ATPase, H+ transporting, lysosomal V1 subunit B2 (Atp6v1b2), chloride channel, voltage-sensitive 7 (Clcn7) and cathepsin K (Ctsk). Immunohistological data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain® showed up-regulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor regulated pathway for the endocytosis of enamel matrix proteins. These data together

  7. A novel GTP-binding protein-adaptor protein complex responsible for export of Vangl2 from the trans Golgi network.

    PubMed

    Guo, Yusong; Zanetti, Giulia; Schekman, Randy

    2013-01-01

    Planar cell polarity (PCP) requires the asymmetric sorting of distinct signaling receptors to distal and proximal surfaces of polarized epithelial cells. We have examined the transport of one PCP signaling protein, Vangl2, from the trans Golgi network (TGN) in mammalian cells. Using siRNA knockdown experiments, we find that the GTP-binding protein, Arfrp1, and the clathrin adaptor complex 1 (AP-1) are required for Vangl2 transport from the TGN. In contrast, TGN export of Frizzled 6, which localizes to the opposing epithelial surface from Vangl2, does not depend on Arfrp1 or AP-1. Mutagenesis studies identified a YYXXF sorting signal in the C-terminal cytosolic domain of Vangl2 that is required for Vangl2 traffic and interaction with the μ subunit of AP-1. We propose that Arfrp1 exposes a binding site on AP-1 that recognizes the Vangl2 sorting motif for capture into a transport vesicle destined for the proximal surface of a polarized epithelial cell.DOI:http://dx.doi.org/10.7554/eLife.00160.001. PMID:23326640

  8. High Fat Diet Enhances β-Site Cleavage of Amyloid Precursor Protein (APP) via Promoting β-Site APP Cleaving Enzyme 1/Adaptor Protein 2/Clathrin Complex Formation.

    PubMed

    Maesako, Masato; Uemura, Maiko; Tashiro, Yoshitaka; Sasaki, Kazuki; Watanabe, Kiwamu; Noda, Yasuha; Ueda, Karin; Asada-Utsugi, Megumi; Kubota, Masakazu; Okawa, Katsuya; Ihara, Masafumi; Shimohama, Shun; Uemura, Kengo; Kinoshita, Ayae

    2015-01-01

    Obesity and type 2 diabetes are risk factors of Alzheimer's disease (AD). We reported that a high fat diet (HFD) promotes amyloid precursor protein (APP) cleavage by β-site APP cleaving enzyme 1 (BACE1) without increasing BACE1 levels in APP transgenic mice. However, the detailed mechanism had remained unclear. Here we demonstrate that HFD promotes BACE1/Adaptor protein-2 (AP-2)/clathrin complex formation by increasing AP-2 levels in APP transgenic mice. In Swedish APP overexpressing Chinese hamster ovary (CHO) cells as well as in SH-SY5Y cells, overexpression of AP-2 promoted the formation of BACE1/AP-2/clathrin complex, increasing the level of the soluble form of APP β (sAPPβ). On the other hand, mutant D495R BACE1, which inhibits formation of this trimeric complex, was shown to decrease the level of sAPPβ. Overexpression of AP-2 promoted the internalization of BACE1 from the cell surface, thus reducing the cell surface BACE1 level. As such, we concluded that HFD may induce the formation of the BACE1/AP-2/clathrin complex, which is followed by its transport of BACE1 from the cell surface to the intracellular compartments. These events might be associated with the enhancement of β-site cleavage of APP in APP transgenic mice. Here we present evidence that HFD, by regulation of subcellular trafficking of BACE1, promotes APP cleavage. PMID:26414661

  9. The μ Subunit of Arabidopsis Adaptor Protein-2 Is Involved in Effector-Triggered Immunity Mediated by Membrane-Localized Resistance Proteins.

    PubMed

    Hatsugai, Noriyuki; Hillmer, Rachel; Yamaoka, Shohei; Hara-Nishimura, Ikuko; Katagiri, Fumiaki

    2016-05-01

    Endocytosis has been suggested to be important in the cellular processes of plant immune responses. However, our understanding of its role during effector-triggered immunity (ETI) is still limited. We have previously shown that plant endocytosis, especially clathrin-coated vesicle formation at the plasma membrane, is mediated by the adaptor protein-2 (AP-2) complex and that loss of the μ subunit of AP-2 (AP2M) affects plant growth and floral organ development. Here, we report that AP2M is required for full-strength ETI mediated by the disease resistance (R) genes RPM1 and RPS2 in Arabidopsis. Reduced ETI was observed in an ap2m mutant plant, measured by growth of Pseudomonas syringae pv. tomato DC3000 strains carrying the corresponding effector genes avrRpm1 or avrRpt2 and by hypersensitive cell death response and defense gene expression triggered by these strains. In contrast, RPS4-mediated ETI and its associated immune responses were not affected by the ap2m mutation. While RPM1 and RPS2 are localized to the plasma membrane, RPS4 is localized to the cytoplasm and nucleus. Our results suggest that AP2M is involved in ETI mediated by plasma membrane-localized R proteins, possibly by mediating endocytosis of the immune receptor complex components from the plasma membrane. PMID:26828402

  10. Structural and Functional Investigation of the Ag(+)/Cu(+) Binding Domains of the Periplasmic Adaptor Protein SilB from Cupriavidus metallidurans CH34.

    PubMed

    Urbina, Patricia; Bersch, Beate; De Angelis, Fabien; Derfoufi, Kheiro-Mouna; Prévost, Martine; Goormaghtigh, Erik; Vandenbussche, Guy

    2016-05-24

    Silver ion resistance in bacteria mainly relies on efflux systems, and notably on tripartite efflux complexes involving a transporter from the resistance-nodulation-cell division (RND) superfamily, such as the SilCBA system from Cupriavidus metallidurans CH34. The periplasmic adaptor protein SilB hosts two specific metal coordination sites, located in the N-terminal and C-terminal domains, respectively, that are believed to play a different role in the efflux mechanism and the trafficking of metal ions from the periplasm to the RND transporter. On the basis of the known domain structure of periplasmic adaptor proteins, we designed different protein constructs derived from SilB domains with either one or two metal binding sites per protein chain. ITC data acquired on proteins with single metal sites suggest a slightly higher affinity of Ag(+) for the N-terminal metal site, compared to that for the C-terminal one. Remarkably, via the study of a protein construct featuring both metal sites, nuclear magnetic resonance (NMR) and fluorescence spectroscopies concordantly show that the C-terminal site is saturated prior to the N-terminal one. The C-terminal binding site is supposed to transfer the metal ions to the RND protein, while the transport driven by this latter is activated upon binding of the metal ion to the N-terminal site. Our results suggest that the filling of the C-terminal metal site is a key prerequisite for preventing futile activation of the transport system. Exhaustive NMR studies reveal for the first time the structure and dynamics of the functionally important N-terminal domain connected to the membrane proximal domain as well as of its Ag(+) binding site. PMID:27145046

  11. Recombinant production of functional full-length and truncated human TRAM/TICAM-2 adaptor protein involved in Toll-like receptor and interferon signaling.

    PubMed

    Ullah, M Obayed; Valkov, Eugene; Ve, Thomas; Williams, Simon; Mas, Caroline; Mansell, Ashley; Kobe, Bostjan

    2015-02-01

    TRAM/TICAM-2 is used by Toll-like receptor 4 (TLR4) as a bridging adaptor during the mammalian innate immune response. It recruits TRIF, another TIR domain-containing adaptor protein, to TLR4 via TIR domain interactions, which leads to the activation of transcription factors responsible for the production of type-1 interferon and cytokines. The molecular mechanisms of these dual interactions mediated by the TRAM TIR domain are not clear. To understand the molecular basis of TIR:TIR domain interactions, structural and biochemical studies of TRAM TIR domain are necessary, and require a functional soluble protein. In this paper, we report a successful purification and characterization of full-length TRAM. Because full-length TRAM likely contains unstructured regions that may be disadvantageous for structural studies, we also carried out a systematic construct design to determine the boundaries of the TRAM TIR domain. The truncated TRAM constructs were designed based on secondary structure predictions and screened by small-scale expression. Selected constructs were subjected to biophysical analyses. We show that the expressed TRAM TIR domain is functional using in vitro GST pull-down assays that demonstrate a physical interaction with the TLR4 TIR domain. We further show, by site-directed mutagenesis, that the "BB loop" regions of both the TRAM TIR domain and the TLR4 TIR domain are crucial for this physical interaction. PMID:25306876

  12. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    SciTech Connect

    Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon; Nguyen, Hong-Hoa; Yang, Jun-Mo; Kang, Jong-Sun; Hahn, Myong-Joon

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer APPL1 regulates the protein level of EGFR in response to EGF stimulation. Black-Right-Pointing-Pointer Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. Black-Right-Pointing-Pointer Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.

  13. Structural basis for the prion-like MAVS filaments in antiviral innate immunity

    PubMed Central

    Xu, Hui; He, Xiaojing; Zheng, Hui; Huang, Lily J; Hou, Fajian; Yu, Zhiheng; de la Cruz, Michael Jason; Borkowski, Brian; Zhang, Xuewu; Chen, Zhijian J; Jiang, Qiu-Xing

    2014-01-01

    Mitochondrial antiviral signaling (MAVS) protein is required for innate immune responses against RNA viruses. In virus-infected cells MAVS forms prion-like aggregates to activate antiviral signaling cascades, but the underlying structural mechanism is unknown. Here we report cryo-electron microscopic structures of the helical filaments formed by both the N-terminal caspase activation and recruitment domain (CARD) of MAVS and a truncated MAVS lacking part of the proline-rich region and the C-terminal transmembrane domain. Both structures are left-handed three-stranded helical filaments, revealing specific interfaces between individual CARD subunits that are dictated by electrostatic interactions between neighboring strands and hydrophobic interactions within each strand. Point mutations at multiple locations of these two interfaces impaired filament formation and antiviral signaling. Super-resolution imaging of virus-infected cells revealed rod-shaped MAVS clusters on mitochondria. These results elucidate the structural mechanism of MAVS polymerization, and explain how an α-helical domain uses distinct chemical interactions to form self-perpetuating filaments. DOI: http://dx.doi.org/10.7554/eLife.01489.001 PMID:24569476

  14. IRF-3, IRF-5, and IRF-7 Coordinately Regulate the Type I IFN Response in Myeloid Dendritic Cells Downstream of MAVS Signaling

    PubMed Central

    Lazear, Helen M.; Lancaster, Alissa; Wilkins, Courtney; Suthar, Mehul S.; Huang, Albert; Vick, Sarah C.; Clepper, Lisa; Thackray, Larissa; Brassil, Margaret M.; Virgin, Herbert W.; Nikolich-Zugich, Janko; Moses, Ashlee V.; Gale, Michael; Früh, Klaus; Diamond, Michael S.

    2013-01-01

    Although the transcription factors IRF-3 and IRF-7 are considered master regulators of type I interferon (IFN) induction and IFN stimulated gene (ISG) expression, Irf3−/−×Irf7−/− double knockout (DKO) myeloid dendritic cells (mDC) produce relatively normal levels of IFN-β after viral infection. We generated Irf3−/−×Irf5−/−×Irf7−/− triple knockout (TKO) mice to test whether IRF-5 was the source of the residual induction of IFN-β and ISGs in mDCs. In pathogenesis studies with two unrelated positive-sense RNA viruses (West Nile virus (WNV) and murine norovirus), TKO mice succumbed at rates greater than DKO mice and equal to or approaching those of mice lacking the type I IFN receptor (Ifnar−/−). In ex vivo studies, after WNV infection or exposure to Toll-like receptor agonists, TKO mDCs failed to produce IFN-β or express ISGs. In contrast, this response was sustained in TKO macrophages following WNV infection. To define IRF-regulated gene signatures, we performed microarray analysis on WNV-infected mDC from wild type (WT), DKO, TKO, or Ifnar−/− mice, as well as from mice lacking the RIG-I like receptor adaptor protein MAVS. Whereas the gene induction pattern in DKO mDC was similar to WT cells, remarkably, almost no ISG induction was detected in TKO or Mavs−/− mDC. The relative equivalence of TKO and Mavs−/− responses suggested that MAVS dominantly regulates ISG induction in mDC. Moreover, we showed that MAVS-dependent induction of ISGs can occur through an IRF-5-dependent yet IRF-3 and IRF-7-independent pathway. Our results establish IRF-3, -5, and -7 as the key transcription factors responsible for mediating the type I IFN and ISG response in mDC during WNV infection and suggest a novel signaling link between MAVS and IRF-5. PMID:23300459

  15. Mitochondrial antiviral-signalling protein plays an essential role in host immunity against human metapneumovirus

    PubMed Central

    Deng, Junfang; Chen, Yu; Liu, Guangliang; Ren, Junping; Go, Caroline; Ivanciuc, Teodora; Deepthi, Kolli; Casola, Antonella; Garofalo, Roberto P.

    2015-01-01

    Human metapneumovirus (hMPV) is a common cause of respiratory tract infection in the paediatrics population. Recently, we and others have shown that retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs) are essential for hMPV-induced cellular antiviral signalling. However, the contribution of those receptors to host immunity against pulmonary hMPV infection is largely unexplored. In this study, mice deficient in mitochondrial antiviral-signalling protein (MAVS), an adaptor of RLRs, were used to investigate the role(s) of these receptors in pulmonary immune responses to hMPV infection. MAVS deletion significantly impaired the induction of antiviral and pro-inflammatory cytokines and the recruitment of immune cells to the bronchoalveolar lavage fluid by hMPV. Compared with WT mice, mice lacking MAVS demonstrated decreased abilities to activate pulmonary dendritic cells (DCs) and abnormal primary T-cell responses to hMPV infection. In addition, mice deficient in MAVS had a higher peak of viral load at day 5 post-infection (p.i.) than WT mice, but were able to clear hMPV by day 7 p.i. similarly to WT mice. Taken together, our data indicate a role of MAVS-mediated pathways in the pulmonary immune responses to hMPV infection and the early control of hMPV replication. PMID:25953917

  16. Protein Modifications Regulate the Role of 14-3-3γ Adaptor Protein in cAMP-induced Steroidogenesis in MA-10 Leydig Cells*

    PubMed Central

    Aghazadeh, Yasaman; Ye, Xiaoying; Blonder, Josip; Papadopoulos, Vassilios

    2014-01-01

    The 14-3-3 protein family comprises adaptors and scaffolds that regulate intracellular signaling pathways. The 14-3-3γ isoform is a negative regulator of steroidogenesis that is hormonally induced and transiently functions at the initiation of steroidogenesis by delaying maximal steroidogenesis in MA-10 mouse tumor Leydig cells. Treatment of MA-10 cells with the cAMP analog 8-bromo-cAMP (8-Br-cAMP), which stimulates steroidogenesis, triggers the interaction of 14-3-3γ with the steroidogenic acute regulatory protein (STAR) in the cytosol, limiting STAR activity to basal levels. Over time, this interaction ceases, allowing for a 2-fold induction in STAR activity and maximal increase in the rate of steroid formation. The 14-3-3γ/STAR pattern of interaction was found to be opposite that of the 14-3-3γ homodimerization pattern. Phosphorylation and acetylation of 14-3-3γ showed similar patterns to homodimerization and STAR binding, respectively. 14-3-3γ Ser58 phosphorylation and 14-3-3γ Lys49 acetylation were blocked using trans-activator of HIV transcription factor 1 peptides coupled to 14-3-3γ sequences containing Ser58 or Lys49. Blocking either one of these modifications further induced 8-Br-cAMP-induced steroidogenesis while reducing lipid storage, suggesting that the stored cholesterol is used for steroid formation. Taken together, these results indicate that Ser58 phosphorylation and Lys49 acetylation of 14-3-3γ occur in a coordinated time-dependent manner to regulate 14-3-3γ homodimerization. 14-3-3γ Ser58 phosphorylation is required for STAR interactions under control conditions, and 14-3-3γ Lys49 acetylation is important for the cAMP-dependent induction of these interactions. PMID:25086053

  17. Interaction of the protein tyrosine phosphatase PTPL1 with the PtdIns(3,4)P2-binding adaptor protein TAPP1.

    PubMed Central

    Kimber, Wendy A; Deak, Maria; Prescott, Alan R; Alessi, Dario R

    2003-01-01

    It has been postulated that PtdIns(3,4) P (2), one of the immediate breakdown products of PtdIns(3,4,5) P (3), functions as a signalling molecule in insulin- and growth-factor-stimulated pathways. To date, the t andem- P H-domain-containing p rotein- 1 (TAPP1) and related TAPP2 are still the only known PH-domain-containing proteins that interact strongly and specifically with PtdIns(3,4) P (2). In this study we demonstrate that endogenously expressed TAPP1, is constitutively associated with the protein-tyrosine-phosphatase-like protein-1 (PTPL1 also known as FAP-1). We show that PTPL1 binds to TAPP1 and TAPP2, principally though its first PDZ domain [where PDZ is postsynaptic density protein ( P SD-95)/ Drosophila disc large tumour suppressor ( d lg)/tight junction protein ( Z O1)] and show that this renders PTPL1 capable of associating with PtdIns(3,4) P (2) in vitro. Our data suggest that the binding of TAPP1 to PTPL1 does not influence PTPL1 phosphatase activity, but instead functions to maintain PTPL1 in the cytoplasm. Following stimulation of cells with hydrogen peroxide to induce PtdIns(3,4) P (2) production, PTPL1, complexed to TAPP1, translocates to the plasma membrane. This study provides the first evidence that TAPP1 and PtdIns(3,4) P (2) could function to regulate the membrane localization of PTPL1. We speculate that if PTPL1 was recruited to the plasma membrane by increasing levels of PtdIns(3,4) P (2), it could trigger a negative feedback loop in which phosphoinositide-3-kinase-dependent or other signalling pathways could be switched off by the phosphatase-catalysed dephosphorylation of receptor tyrosine kinases or tyrosine phosphorylated adaptor proteins such as IRS1 or IRS2. Consistent with this notion we observed RNA-interference-mediated knock-down of TAPP1 in HEK-293 cells, enhanced activation and phosphorylation of PKB following IGF1 stimulation. PMID:14516276

  18. Structure of Staphylococcus aureus EsxA suggests a contribution to virulence by action as a transport chaperone and/or adaptor protein

    PubMed Central

    Sundaramoorthy, Ramasubramanian; Fyfe, Paul K.; Hunter, William N.

    2012-01-01

    Staphylococcus aureus pathogenesis depends on a specialized protein secretion system, ESX-1, that delivers a range of virulence factors to assist infectivity. We report the characterization of two such factors, EsxA and EsxB; small acidic dimeric proteins carrying a distinctive WXG motif. EsxA crystallized in triclinic and monoclinic forms and high-resolution structures were determined. The asymmetric unit of each crystal form is a dimer. The EsxA subunit forms an elongated cylindrical structure created from side-by-side α-helices linked with a hairpin bend formed by the WXG motif. Approximately 25% of the solvent accessible surface area of each subunit is involved in interactions, predominantly hydrophobic, with the partner subunit. Secondary structure predictions suggest that EsxB displays a similar structure. The WXG motif helps to create a shallow cleft at each end of the dimer, forming a short β-sheet-like feature with an N-terminal segment of the partner subunit. Structural and sequence comparisons, exploiting biological data on related proteins found in Mycobacteria tuberculosis suggest that this family of proteins may contribute to pathogenesis by transporting protein cargo through the ESX-1 system exploiting a C-terminal secretion signal and / or are capable of acting as adaptor proteins to facilitate interactions with host receptor proteins. PMID:18773907

  19. The Adaptor Complex AP-4 Regulates Vacuolar Protein Sorting at the trans-Golgi Network by Interacting with VACUOLAR SORTING RECEPTOR1.

    PubMed

    Fuji, Kentaro; Shirakawa, Makoto; Shimono, Yuki; Kunieda, Tadashi; Fukao, Yoichiro; Koumoto, Yasuko; Takahashi, Hideyuki; Hara-Nishimura, Ikuko; Shimada, Tomoo

    2016-01-01

    Adaptor protein (AP) complexes play critical roles in protein sorting among different post-Golgi pathways by recognizing specific cargo protein motifs. Among the five AP complexes (AP-1-AP-5) in plants, AP-4 is one of the most poorly understood; the AP-4 components, AP-4 cargo motifs, and AP-4 functional mechanism are not known. Here, we identify the AP-4 components and show that the AP-4 complex regulates receptor-mediated vacuolar protein sorting by recognizing VACUOLAR SORTING RECEPTOR1 (VSR1), which was originally identified as a sorting receptor for seed storage proteins to target protein storage vacuoles in Arabidopsis (Arabidopsis thaliana). From the vacuolar sorting mutant library GREEN FLUORESCENT SEED (GFS), we isolated three gfs mutants that accumulate abnormally high levels of VSR1 in seeds and designated them as gfs4, gfs5, and gfs6. Their responsible genes encode three (AP4B, AP4M, and AP4S) of the four subunits of the AP-4 complex, respectively, and an Arabidopsis mutant (ap4e) lacking the fourth subunit, AP4E, also had the same phenotype. Mass spectrometry demonstrated that these four proteins form a complex in vivo. The four mutants showed defects in the vacuolar sorting of the major storage protein 12S globulins, indicating a role for the AP-4 complex in vacuolar protein transport. AP4M bound to the tyrosine-based motif of VSR1. AP4M localized at the trans-Golgi network (TGN) subdomain that is distinct from the AP-1-localized TGN subdomain. This study provides a novel function for the AP-4 complex in VSR1-mediated vacuolar protein sorting at the specialized domain of the TGN. PMID:26546666

  20. Skb5, an SH3 adaptor protein, regulates Pmk1 MAPK signaling by controlling the intracellular localization of the MAPKKK Mkh1.

    PubMed

    Kanda, Yuki; Satoh, Ryosuke; Matsumoto, Saki; Ikeda, Chisato; Inutsuka, Natsumi; Hagihara, Kanako; Matzno, Sumio; Tsujimoto, Sho; Kita, Ayako; Sugiura, Reiko

    2016-08-15

    The mitogen-activated protein kinase (MAPK) cascade is a highly conserved signaling module composed of MAPK kinase kinases (MAPKKKs), MAPK kinases (MAPKK) and MAPKs. The MAPKKK Mkh1 is an initiating kinase in Pmk1 MAPK signaling, which regulates cell integrity in fission yeast (Schizosaccharomyces pombe). Our genetic screen for regulators of Pmk1 signaling identified Shk1 kinase binding protein 5 (Skb5), an SH3-domain-containing adaptor protein. Here, we show that Skb5 serves as an inhibitor of Pmk1 MAPK signaling activation by downregulating Mkh1 localization to cell tips through its interaction with the SH3 domain. Consistent with this, the Mkh1(3PA) mutant protein, with impaired Skb5 binding, remained in the cell tips, even when Skb5 was overproduced. Intriguingly, Skb5 needs Mkh1 to localize to the growing ends as Mkh1 deletion and disruption of Mkh1 binding impairs Skb5 localization. Deletion of Pck2, an upstream activator of Mkh1, impaired the cell tip localization of Mkh1 and Skb5 as well as the Mkh1-Skb5 interaction. Interestingly, both Pck2 and Mkh1 localized to the cell tips at the G1/S phase, which coincided with Pmk1 MAPK activation. Taken together, Mkh1 localization to cell tips is important for transmitting upstream signaling to Pmk1, and Skb5 spatially regulates this process. PMID:27451356

  1. AP-1/σ1A and AP-1/σ1B adaptor-proteins differentially regulate neuronal early endosome maturation via the Rab5/Vps34-pathway

    PubMed Central

    Candiello, Ermes; Kratzke, Manuel; Wenzel, Dirk; Cassel, Dan; Schu, Peter

    2016-01-01

    The σ1 subunit of the AP-1 clathrin-coated-vesicle adaptor-protein complex is expressed as three isoforms. Tissues express σ1A and one of the σ1B and σ1C isoforms. Brain is the tissue with the highest σ1A and σ1B expression. σ1B-deficiency leads to severe mental retardation, accumulation of early endosomes in synapses and fewer synaptic vesicles, whose recycling is slowed down. AP-1/σ1A and AP-1/σ1B regulate maturation of these early endosomes into multivesicular body late endosomes, thereby controlling synaptic vesicle protein transport into a degradative pathway. σ1A binds ArfGAP1, and with higher affinity brain-specific ArfGAP1, which bind Rabex-5. AP-1/σ1A-ArfGAP1-Rabex-5 complex formation leads to more endosomal Rabex-5 and enhanced, Rab5GTP-stimulated Vps34 PI3-kinase activity, which is essential for multivesicular body endosome formation. Formation of AP-1/σ1A-ArfGAP1-Rabex-5 complexes is prevented by σ1B binding of Rabex-5 and the amount of endosomal Rabex-5 is reduced. AP-1 complexes differentially regulate endosome maturation and coordinate protein recycling and degradation, revealing a novel molecular mechanism by which they regulate protein transport besides their established function in clathrin-coated-vesicle formation. PMID:27411398

  2. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 {mu}1A (AP-1 mu1A)

    SciTech Connect

    Sawasdee, Nunghathai; Junking, Mutita; Ngaojanlar, Piengpaga; Sukomon, Nattakan; Ungsupravate, Duangporn; Limjindaporn, Thawornchai; Akkarapatumwong, Varaporn; Noisakran, Sansanee; Yenchitsomanus, Pa-thai

    2010-10-08

    Research highlights: {yields} Trafficking defect of kAE1 is a cause of dRTA but trafficking pathway of kAE1 has not been clearly described. {yields} Adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) was firstly reported to interact with kAE1. {yields} The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. {yields} AP-1 mu1A knockdown showed a marked reduction of kAE1 on the cell membrane and its accumulation in endoplasmic reticulum. {yields} AP-1 mu1A has a critical role in kAE1 trafficking to the plasma membrane. -- Abstract: Kidney anion exchanger 1 (kAE1) mediates chloride (Cl{sup -}) and bicarbonate (HCO{sub 3}{sup -}) exchange at the basolateral membrane of kidney {alpha}-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl{sup -}/HCO{sub 3}{sup -} exchange at the basolateral membrane and failure of proton (H{sup +}) secretion at the apical membrane, causing a kidney disease - distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 {mu}1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXO motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1

  3. NOD2 in zebrafish functions in antibacterial and also antiviral responses via NF-κB, and also MDA5, RIG-I and MAVS.

    PubMed

    Zou, Peng Fei; Chang, Ming Xian; Li, Ying; Xue, Na Na; Li, Jun Hua; Chen, Shan Nan; Nie, Pin

    2016-08-01

    NOD2/RIPK2 signalling plays essential role in the modulation of innate and adaptive immunity in mammals. In this study, NOD2 was functionally characterized in zebrafish (Danio rerio), and its interaction with a receptor-interaction protein, RIPK2, and RLRs such as MDA5 and RIG-I, as well as the adaptor, MAVS was revealed in fish innate immunity. The expression of NOD2 and RIPK2 in ZF4 cells has been constitutive and can be induced by the infection of Edwardsiella tarda and SVCV. The NOD2 can sense MDP in PGN from Gram-negative and -positive bacteria. It is further revealed that the NOD2 and RIPK2 can activate NF-κB and IFN promoters, inducing significantly antiviral defense against SVCV infection. As observed in the reduced bacterial burden in RIPK2 overexpressed cells, RIPK2 also has a role in inhibiting the bacterial replication. The overexpression of NOD2 in zebrafish embryos resulted in the increase of immune gene expression, especially those encoding PRRs and cytokines involved in antiviral response such as MDA5, RIG-I, and type I IFNs, etc. Luciferase reporter assays and co-immunoprecipitation assays demonstrated that zebrafish NOD2 is associated with MDA5 and RIG-I in signalling pathway. In addition, it is further demonstrated that RIPK2 and MAVS in combination with NOD2 have an enhanced role in NOD2-mediated NF-κB and type I IFN activation. It is concluded that teleost fish NOD2 can not only sense MDP for activating innate immunity as reported in mammals, but can also interact with other PRRs to form a network in antiviral innate response. PMID:27235368

  4. The Src homology and collagen A (ShcA) adaptor protein is required for the spatial organization of the costamere/Z-disk network during heart development.

    PubMed

    Mlih, Mohamed; Host, Lionel; Martin, Sophie; Niederhoffer, Nathalie; Monassier, Laurent; Terrand, Jérôme; Messaddeq, Nadia; Radke, Michael; Gotthardt, Michael; Bruban, Véronique; Kober, Frank; Bernard, Monique; Canet-Soulas, Emmanuelle; Abt-Jijon, Francisco; Boucher, Philippe; Matz, Rachel L

    2015-01-23

    Src homology and collagen A (ShcA) is an adaptor protein that binds to tyrosine kinase receptors. Its germ line deletion is embryonic lethal with abnormal cardiovascular system formation, and its role in cardiovascular development is unknown. To investigate its functional role in cardiovascular development in mice, ShcA was deleted in cardiomyocytes and vascular smooth muscle cells by crossing ShcA flox mice with SM22a-Cre transgenic mice. Conditional mutant mice developed signs of severe dilated cardiomyopathy, myocardial infarctions, and premature death. No evidence of a vascular contribution to the phenotype was observed. Histological analysis of the heart revealed aberrant sarcomeric Z-disk and M-band structures, and misalignments of T-tubules with Z-disks. We find that not only the ErbB3/Neuregulin signaling pathway but also the baroreceptor reflex response, which have been functionally associated, are altered in the mutant mice. We further demonstrate that ShcA interacts with Caveolin-1 and the costameric protein plasma membrane Ca(2+)/calmodulin-dependent ATPase (PMCA), and that its deletion leads to abnormal dystrophin signaling. Collectively, these results demonstrate that ShcA interacts with crucial proteins and pathways that link Z-disk and costamere. PMID:25488665

  5. The Src Homology and Collagen A (ShcA) Adaptor Protein Is Required for the Spatial Organization of the Costamere/Z-disk Network during Heart Development*

    PubMed Central

    Mlih, Mohamed; Host, Lionel; Martin, Sophie; Niederhoffer, Nathalie; Monassier, Laurent; Terrand, Jérôme; Messaddeq, Nadia; Radke, Michael; Gotthardt, Michael; Bruban, Véronique; Kober, Frank; Bernard, Monique; Canet-Soulas, Emmanuelle; Abt-Jijon, Francisco; Boucher, Philippe; Matz, Rachel L.

    2015-01-01

    Src homology and collagen A (ShcA) is an adaptor protein that binds to tyrosine kinase receptors. Its germ line deletion is embryonic lethal with abnormal cardiovascular system formation, and its role in cardiovascular development is unknown. To investigate its functional role in cardiovascular development in mice, ShcA was deleted in cardiomyocytes and vascular smooth muscle cells by crossing ShcA flox mice with SM22a-Cre transgenic mice. Conditional mutant mice developed signs of severe dilated cardiomyopathy, myocardial infarctions, and premature death. No evidence of a vascular contribution to the phenotype was observed. Histological analysis of the heart revealed aberrant sarcomeric Z-disk and M-band structures, and misalignments of T-tubules with Z-disks. We find that not only the ErbB3/Neuregulin signaling pathway but also the baroreceptor reflex response, which have been functionally associated, are altered in the mutant mice. We further demonstrate that ShcA interacts with Caveolin-1 and the costameric protein plasma membrane Ca2+/calmodulin-dependent ATPase (PMCA), and that its deletion leads to abnormal dystrophin signaling. Collectively, these results demonstrate that ShcA interacts with crucial proteins and pathways that link Z-disk and costamere. PMID:25488665

  6. Molecular cloning of the mouse grb2 gene: differential interaction of the Grb2 adaptor protein with epidermal growth factor and nerve growth factor receptors.

    PubMed Central

    Suen, K L; Bustelo, X R; Pawson, T; Barbacid, M

    1993-01-01

    We report the isolation and molecular characterization of the mouse grb2 gene. The product of this gene, the Grb2 protein, is highly related to the Caenorhabditis elegans sem-5 gene product and the human GRB2 protein and displays the same SH3-SH2-SH3 structural motifs. In situ hybridization studies revealed that the mouse grb2 gene is widely expressed throughout embryonic development (E9.5 to P0). However, grb2 transcripts are not uniformly distributed, and in certain tissues (e.g., thymus) they appear to be regulated during development. Recent genetic and biochemical evidence has implicated the Grb2 protein in the signaling pathways that link cell surface tyrosine kinase receptors with Ras. We have investigated the association of the Grb2 protein with epidermal growth factor (EGF) and nerve growth factor (NGF) receptors in PC12 pheochromocytoma cells. EGF treatment of PC12 cells results in the rapid association of Grb2 with the activated EGF receptors, an interaction mediated by the Grb2 SH2 domain. However, Grb2 does not bind to NGF-activated Trk receptors. Mitogenic signaling of NGF in NIH 3T3 cells ectopically expressing Trk receptors also takes place without detectable association between Grb2 and Trk. These results suggest that whereas EGF and NGF can activate the Ras signaling pathway in PC12 cells, only the EGF receptor is likely to do so through a direct interaction with Grb2. Finally, binding studies with glutathione S-transferase fusion proteins indicate that Grb2 binds two distinct subsets of proteins which are individually recognized by its SH2 and SH3 domains. These observations add further support to the concept that Grb2 is a modular adaptor protein. Images PMID:7689150

  7. PPM1A silences cytosolic RNA sensing and antiviral defense through direct dephosphorylation of MAVS and TBK1.

    PubMed

    Xiang, Weiwen; Zhang, Qian; Lin, Xia; Wu, Shiying; Zhou, Yao; Meng, Fansen; Fan, Yunyun; Shen, Tao; Xiao, Mu; Xia, Zongping; Zou, Jian; Feng, Xin-Hua; Xu, Pinglong

    2016-07-01

    Cytosolic RNA sensing is a prerequisite for initiation of innate immune response against RNA viral pathogens. Signaling through RIG-I (retinoic acid-inducible gene I)-like receptors (RLRs) to TBK1 (Tank-binding kinase 1)/IKKε (IκB kinase ε) kinases is transduced by mitochondria-associated MAVS (mitochondrial antiviral signaling protein). However, the precise mechanism of how MAVS-mediated TBK1/IKKε activation is strictly controlled still remains obscure. We reported that protein phosphatase magnesium-dependent 1A (PPM1A; also known as PP2Cα), depending on its catalytic ability, dampened the RLR-IRF3 (interferon regulatory factor 3) axis to silence cytosolic RNA sensing signaling. We demonstrated that PPM1A was an inherent partner of the TBK1/IKKε complex, targeted both MAVS and TBK1/IKKε for dephosphorylation, and thus disrupted MAVS-driven formation of signaling complex. Conversely, a high level of MAVS can dissociate the TBK1/PPM1A complex to override PPM1A-mediated inhibition. Loss of PPM1A through gene ablation in human embryonic kidney 293 cells and mouse primary macrophages enabled robustly enhanced antiviral responses. Consequently, Ppm1a(-/-) mice resisted to RNA virus attack, and transgenic zebrafish expressing PPM1A displayed profoundly increased RNA virus vulnerability. These findings identify PPM1A as the first known phosphatase of MAVS and elucidate the physiological function of PPM1A in antiviral immunity on whole animals. PMID:27419230

  8. PPM1A silences cytosolic RNA sensing and antiviral defense through direct dephosphorylation of MAVS and TBK1

    PubMed Central

    Xiang, Weiwen; Zhang, Qian; Lin, Xia; Wu, Shiying; Zhou, Yao; Meng, Fansen; Fan, Yunyun; Shen, Tao; Xiao, Mu; Xia, Zongping; Zou, Jian; Feng, Xin-Hua; Xu, Pinglong

    2016-01-01

    Cytosolic RNA sensing is a prerequisite for initiation of innate immune response against RNA viral pathogens. Signaling through RIG-I (retinoic acid–inducible gene I)–like receptors (RLRs) to TBK1 (Tank-binding kinase 1)/IKKε (IκB kinase ε) kinases is transduced by mitochondria-associated MAVS (mitochondrial antiviral signaling protein). However, the precise mechanism of how MAVS-mediated TBK1/IKKε activation is strictly controlled still remains obscure. We reported that protein phosphatase magnesium-dependent 1A (PPM1A; also known as PP2Cα), depending on its catalytic ability, dampened the RLR-IRF3 (interferon regulatory factor 3) axis to silence cytosolic RNA sensing signaling. We demonstrated that PPM1A was an inherent partner of the TBK1/IKKε complex, targeted both MAVS and TBK1/IKKε for dephosphorylation, and thus disrupted MAVS-driven formation of signaling complex. Conversely, a high level of MAVS can dissociate the TBK1/PPM1A complex to override PPM1A-mediated inhibition. Loss of PPM1A through gene ablation in human embryonic kidney 293 cells and mouse primary macrophages enabled robustly enhanced antiviral responses. Consequently, Ppm1a−/− mice resisted to RNA virus attack, and transgenic zebrafish expressing PPM1A displayed profoundly increased RNA virus vulnerability. These findings identify PPM1A as the first known phosphatase of MAVS and elucidate the physiological function of PPM1A in antiviral immunity on whole animals. PMID:27419230

  9. Protein Interaction Profiling of the p97 Adaptor UBXD1 Points to a Role for the Complex in Modulating ERGIC-53 Trafficking*

    PubMed Central

    Haines, Dale S.; Lee, J. Eugene; Beauparlant, Stephen L.; Kyle, Dane B.; den Besten, Willem; Sweredoski, Michael J.; Graham, Robert L. J.; Hess, Sonja; Deshaies, Raymond J.

    2012-01-01

    UBXD1 is a member of the poorly understood subfamily of p97 adaptors that do not harbor a ubiquitin association domain or bind ubiquitin-modified proteins. Of clinical importance, p97 mutants found in familial neurodegenerative conditions Inclusion Body Myopathy Paget's disease of the bone and/or Frontotemporal Dementia and Amyotrophic Lateral Sclerosis are defective at interacting with UBXD1, indicating that functions regulated by a p97-UBXD1 complex are altered in these diseases. We have performed liquid chromatography-mass spectrometric analysis of UBXD1-interacting proteins to identify pathways in which UBXD1 functions. UBXD1 displays prominent association with ERGIC-53, a hexameric type I integral membrane protein that functions in protein trafficking. The UBXD1-ERGIC-53 interaction requires the N-terminal 10 residues of UBXD1 and the C-terminal cytoplasmic 12 amino acid tail of ERGIC-53. Use of p97 and E1 enzyme inhibitors indicate that complex formation between UBXD1 and ERGIC-53 requires the ATPase activity of p97, but not ubiquitin modification. We also performed SILAC-based quantitative proteomic profiling to identify ERGIC-53 interacting proteins. This analysis identified known (e.g. COPI subunits) and novel (Rab3GAP1/2 complex involved in the fusion of vesicles at the cell membrane) interactions that are also mediated through the C terminus of the protein. Immunoprecipitation and Western blotting analysis confirmed the proteomic interaction data and it also revealed that an UBXD1-Rab3GAP association requires the ERGIC-53 binding domain of UBXD1. Localization studies indicate that UBXD1 modules the sub-cellular trafficking of ERGIC-53, including promoting movement to the cell membrane. We propose that p97-UBXD1 modulates the trafficking of ERGIC-53-containing vesicles by controlling the interaction of transport factors with the cytoplasmic tail of ERGIC-53. PMID:22337587

  10. Role of adaptor proteins and clathrin in the trafficking of human kidney anion exchanger 1 (kAE1) to the cell surface.

    PubMed

    Junking, Mutita; Sawasdee, Nunghathai; Duangtum, Natapol; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai

    2014-07-01

    Kidney anion exchanger 1 (kAE1) plays an important role in acid-base homeostasis by mediating chloride/bicarbornate (Cl-/HCO3-) exchange at the basolateral membrane of α-intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease - distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans-Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral-related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non-polarized kidney cells. By using RNA interference, co-immunoprecipitation, yellow fluorescent protein-based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin (but not AP-1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral-related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid-secreting α-intercalated cells. PMID:24698155

  11. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions

    SciTech Connect

    Dougherty, Gerard W.; Chopp, Treasa; Qi Shengmei; Cutler, Mary Lou . E-mail: mcutler@usuhs.mil

    2005-05-15

    Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5 domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion.

  12. Structure, Function and On-Off Switching of a Core Unit Contact between CheA Kinase and CheW Adaptor Protein in the Bacterial Chemosensory Array: A Disulfide Mapping and TAM-IDS Study

    PubMed Central

    Natale, Andrew M.; Duplantis, Jane L.; Piasta, Kene N.; Falke, Joseph J.

    2014-01-01

    The ultrasensitive, ultrastable bacterial chemosensory array of Escherichia coli and Salmonella typhimurium is representative of the large, conserved family of sensory arrays that control the cellular chemotaxis of motile bacteria and Archaea. The core framework of the membrane-bound array is a lattice assembled from three components: a transmembrane receptor, a cytoplasmic His kinase (CheA), and a cytoplasmic adaptor protein (CheW). Structural studies in the field have revealed the global architecture of the array and complexes between specific components, but much remains to be learned about the essential protein-protein interfaces that define array structure and transmit signals between components. This study has focused on the structure, function and on-off switching of a key contact between the kinase and adaptor proteins in the working, membrane-bound array. Specifically, the study addressed interface 1 in the putative kinase-adaptor ring where subdomain 1 of the kinase regulatory domain contacts subdomain 2 of the adaptor protein. Two independent approaches – disulfide mapping and site-directed Trp and Ala mutagenesis – were employed to (i) test the structural model of interface 1 and (ii) investigate its functional roles in both stable kinase incorporation and receptor-regulated kinase on-off switching. Studies were carried out in functional, membrane-bound arrays or in live cells. The findings reveal that crystal structures of binary and ternary complexes accurately depict the native interface in its kinase-activating on state. Furthermore, the findings indicate that at least part of the interface becomes less closely packed in its kinase-inhibiting off state. Together, the evidence shows the interface has a dual structural and signaling function that is crucial for stable kinase incorporation into the array, for kinase activation in the array on state, and likely for attractant-triggered kinase on-off switching. A model is presented that describes the

  13. MEK Kinase 2 and the Adaptor Protein Lad Regulate Extracellular Signal-Regulated Kinase 5 Activation by Epidermal Growth Factor via Src

    PubMed Central

    Sun, Weiyong; Wei, Xudong; Kesavan, Kamala; Garrington, Timothy P.; Fan, Ruihua; Mei, Junjie; Anderson, Steven M.; Gelfand, Erwin W.; Johnson, Gary L.

    2003-01-01

    Lad is an SH2 domain-containing adaptor protein that binds MEK kinase 2 (MEKK2), a mitogen-activated protein kinase (MAPK) kinase kinase for the extracellular signal-regulated kinase 5 (ERK5) and JNK pathways. Lad and MEKK2 are in a complex in resting cells. Antisense knockdown of Lad expression and targeted gene disruption of MEKK2 expression results in loss of epidermal growth factor (EGF) and stress stimuli-induced activation of ERK5. Activation of MEKK2 and the ERK5 pathway by EGF and stress stimuli is dependent on Src kinase activity. The Lad-binding motif is encoded within amino acids 228 to 282 in the N terminus of MEKK2, and expression of this motif blocks Lad-MEKK2 interaction, resulting in inhibition of Src-dependent activation of MEKK2 and ERK5. JNK activation by EGF is similarly inhibited by loss of Lad or MEKK2 expression and by blocking the interaction of MEKK2 and Lad. Our studies demonstrate that Src kinase activity is required for ERK5 activation in response to EGF, MEKK2 expression is required for ERK5 activation by Src, Lad and MEKK2 association is required for Src activation of ERK5, and EGF and Src stimulation of ERK5-regulated MEF2-dependent promoter activity requires a functional Lad-MEKK2 signaling complex. PMID:12640115

  14. Endoproteolytic cleavage of FE65 converts the adaptor protein to a potent suppressor of the sAPPalpha pathway in primates.

    PubMed

    Hu, Qubai; Wang, Lin; Yang, Zheng; Cool, Bethany H; Zitnik, Galynn; Martin, George M

    2005-04-01

    Adaptor protein FE65 (APBB1) specifically binds to the intracellular tail of the type I transmembrane protein, beta-amyloid precursor protein (APP). The formation of this complex may be important for modulation of the processing and function of APP. APP is proteolytically cleaved at multiple sites. The cleavages and their regulation are of central importance in the pathogenesis of dementias of the Alzheimer type. In cell cultures and perhaps in vivo, secretion of the alpha-cleaved APP ectodomain (sAPPalpha) is the major pathway in the most cells. Regulation of the process may require extracellular/intracellular cues. Neither extracellular ligands nor intracellular mediators have been identified, however. Here, we show novel evidence that the major isoform of FE65 (97-kDa FE65, p97FE65) can be converted to a 65-kDa N-terminally truncated C-terminal fragment (p65FE65) via endoproteolysis. The cleavage region locates immediately after an acidic residue cluster but before the three major protein-protein binding domains. The cleavage activity is particularly high in human and non-human primate cells and low in rodent cells; the activity appears to be triggered/enhanced by high cell density, presumably via cell-cell/cell-substrate contact cues. As a result, p65FE65 exhibits extraordinarily high affinity for APP (up to 40-fold higher than p97FE65) and potent suppression (up to 90%) of secretion of sAPPalpha. Strong p65FE65-APP binding is required for the suppression. The results suggest that p65FE65 may be an intracellular mediator in a signaling cascade regulating alpha-secretion of APP, particularly in primates. PMID:15647266

  15. Adaptor Protein Cerebral Cavernous Malformation 3 (CCM3) Mediates Phosphorylation of the Cytoskeletal Proteins Ezrin/Radixin/Moesin by Mammalian Ste20-4 to Protect Cells from Oxidative Stress*

    PubMed Central

    Fidalgo, Miguel; Guerrero, Ana; Fraile, María; Iglesias, Cristina; Pombo, Celia M.; Zalvide, Juan

    2012-01-01

    While studying the functions of CCM3/PDCD10, a gene encoding an adaptor protein whose mutation results in vascular malformations, we have found that it is involved in a novel response to oxidative stress that results in phosphorylation and activation of the ezrin/radixin/moesin (ERM) family of proteins. This phosphorylation protects cells from accidental cell death induced by oxidative stress. We also present evidence that ERM phosphorylation is performed by the GCKIII kinase Mst4, which is activated and relocated to the cell periphery after oxidative stress. The cellular levels of Mst4 and its activation after oxidative stress depend on the presence of CCM3, as absence of the latter impairs the phosphorylation of ERM proteins and enhances death of cells exposed to reactive oxygen species. These findings shed new light on the response of cells to oxidative stress and identify an important pathophysiological situation in which ERM proteins and their phosphorylation play a significant role. PMID:22291017

  16. Overexpression of Isoforms of Nitric Oxide Synthase 1 Adaptor Protein, Encoded by a Risk Gene for Schizophrenia, Alters Actin Dynamics and Synaptic Function

    PubMed Central

    Hernandez, Kristina; Swiatkowski, Przemyslaw; Patel, Mihir V.; Liang, Chen; Dudzinski, Natasha R.; Brzustowicz, Linda M.; Firestein, Bonnie L.

    2016-01-01

    Proper communication between neurons depends upon appropriate patterning of dendrites and correct distribution and structure of spines. Schizophrenia is a neuropsychiatric disorder characterized by alterations in dendrite branching and spine density. Nitric oxide synthase 1 adaptor protein (NOS1AP), a risk gene for schizophrenia, encodes proteins that are upregulated in the dorsolateral prefrontal cortex (DLPFC) of individuals with schizophrenia. To elucidate the effects of NOS1AP overexpression observed in individuals with schizophrenia, we investigated changes in actin dynamics and spine development when a long (NOS1AP-L) or short (NOS1AP-S) isoform of NOS1AP is overexpressed. Increased NOS1AP-L protein promotes the formation of immature spines when overexpressed in rat cortical neurons from day in vitro (DIV) 14 to DIV 17 and reduces the amplitude of miniature excitatory postsynaptic currents (mEPSCs). In contrast, increased NOS1AP-S protein increases the rate of actin polymerization and the number of immature and mature spines, which may be attributed to a decrease in total Rac1 expression and a reduction in the levels of active cofilin. The increase in the number of mature spines by overexpression of NOS1AP-S is accompanied by an increase in the frequency of mEPSCs. Our findings show that overexpression of NOS1AP-L or NOS1AP-S alters the actin cytoskeleton and synaptic function. However, the mechanisms by which these isoforms induce these changes are distinct. These results are important for understanding how increased expression of NOS1AP isoforms can influence spine development and synaptic function. PMID:26869880

  17. Crystal structure of Src-like adaptor protein 2 reveals close association of SH3 and SH2 domains through β-sheet formation.

    PubMed

    Wybenga-Groot, Leanne E; McGlade, C Jane

    2013-12-01

    The Src-like adaptor proteins (SLAP/SLAP2) are key components of Cbl-dependent downregulation of antigen receptor, cytokine receptor, and receptor tyrosine kinase signaling in hematopoietic cells. SLAP and SLAP2 consist of adjacent SH3 and SH2 domains that are most similar in sequence to Src family kinases (SFKs). Notably, the SH3-SH2 connector sequence is significantly shorter in SLAP/SLAP2 than in SFKs. To understand the structural implication of a short SH3-SH2 connector sequence, we solved the crystal structure of a protein encompassing the SH3 domain, SH3-SH2 connector, and SH2 domain of SLAP2 (SLAP2-32). While both domains adopt typical folds, the short SH3-SH2 connector places them in close association. Strand βe of the SH3 domain interacts with strand βA of the SH2 domain, resulting in the formation of a continuous β sheet that spans the length of the protein. Disruption of the SH3/SH2 interface through mutagenesis decreases SLAP-32 stability in vitro, consistent with inter-domain binding being an important component of SLAP2 structure and function. The canonical peptide binding pockets of the SH3 and SH2 domains are fully accessible, in contrast to other protein structures that display direct interaction between SH3 and SH2 domains, in which either peptide binding surface is obstructed by the interaction. Our results reveal potential sites of novel interaction for SH3 and SH2 domains, and illustrate the adaptability of SH2 and SH3 domains in mediating interactions. As well, our results suggest that the SH3 and SH2 domains of SLAP2 function interdependently, with implications on their mode of substrate binding. PMID:24018043

  18. The Shc-related adaptor protein, Sck, forms a complex with the vascular-endothelial-growth-factor receptor KDR in transfected cells.

    PubMed Central

    Warner, A J; Lopez-Dee, J; Knight, E L; Feramisco, J R; Prigent, S A

    2000-01-01

    Despite much progress in recent years, the precise signalling events triggered by the vascular-endothelial-growth-factor (VEGF) receptors, fms-like tyrosine kinase (Flt1) and kinase insert domain-containing receptor (KDR), are incompletely defined. Results obtained when Flt1 and KDR are individually expressed in fibroblasts or porcine aortic endothelial cells have not been entirely consistent with those observed in other endothelial cells expressing both receptors endogenously. It has also been difficult to demonstrate VEGF-induced phosphorylation of Flt1, which has led to speculation that KDR may be the more important receptor for the mitogenic action of VEGF on endothelial cells. In an attempt to identify physiologically important effectors which bind to KDR, we have screened a yeast two-hybrid mouse embryo library with the cytoplasmic domain of KDR. Here we describe the identification of the adaptor protein, Shc-like protein (Sck), as a binding partner for KDR. We demonstrate that this interaction requires phosphorylation of KDR, and identify the binding site for the Src-homology 2 (SH2) domain as tyrosine-1175 of KDR. We have also shown that the SH2 domain of Sck, but not that of Src-homology collagen protein (Shc), can precipitate phosphorylated KDR from VEGF-stimulated porcine aortic endothelial cells expressing KDR, and that an N-terminally truncated Sck protein can associate with KDR, in a phosphorylation-dependent fashion, when co-expressed in human embryonic kidney 293 cells. Furthermore, we demonstrate that in the two-hybrid assay, both Shc and Sck SH2 domains can associate with the related receptor Flt1. PMID:10749680

  19. Overexpression of Isoforms of Nitric Oxide Synthase 1 Adaptor Protein, Encoded by a Risk Gene for Schizophrenia, Alters Actin Dynamics and Synaptic Function.

    PubMed

    Hernandez, Kristina; Swiatkowski, Przemyslaw; Patel, Mihir V; Liang, Chen; Dudzinski, Natasha R; Brzustowicz, Linda M; Firestein, Bonnie L

    2016-01-01

    Proper communication between neurons depends upon appropriate patterning of dendrites and correct distribution and structure of spines. Schizophrenia is a neuropsychiatric disorder characterized by alterations in dendrite branching and spine density. Nitric oxide synthase 1 adaptor protein (NOS1AP), a risk gene for schizophrenia, encodes proteins that are upregulated in the dorsolateral prefrontal cortex (DLPFC) of individuals with schizophrenia. To elucidate the effects of NOS1AP overexpression observed in individuals with schizophrenia, we investigated changes in actin dynamics and spine development when a long (NOS1AP-L) or short (NOS1AP-S) isoform of NOS1AP is overexpressed. Increased NOS1AP-L protein promotes the formation of immature spines when overexpressed in rat cortical neurons from day in vitro (DIV) 14 to DIV 17 and reduces the amplitude of miniature excitatory postsynaptic currents (mEPSCs). In contrast, increased NOS1AP-S protein increases the rate of actin polymerization and the number of immature and mature spines, which may be attributed to a decrease in total Rac1 expression and a reduction in the levels of active cofilin. The increase in the number of mature spines by overexpression of NOS1AP-S is accompanied by an increase in the frequency of mEPSCs. Our findings show that overexpression of NOS1AP-L or NOS1AP-S alters the actin cytoskeleton and synaptic function. However, the mechanisms by which these isoforms induce these changes are distinct. These results are important for understanding how increased expression of NOS1AP isoforms can influence spine development and synaptic function. PMID:26869880

  20. Human kidney anion exchanger 1 interacts with adaptor-related protein complex 1 μ1A (AP-1 mu1A).

    PubMed

    Sawasdee, Nunghathai; Junking, Mutita; Ngaojanlar, Piengpaga; Sukomon, Nattakan; Ungsupravate, Duangporn; Limjindaporn, Thawornchai; Akkarapatumwong, Varaporn; Noisakran, Sansanee; Yenchitsomanus, Pa-Thai

    2010-10-01

    Kidney anion exchanger 1 (kAE1) mediates chloride (Cl⁻) and bicarbonate (HCO₃⁻) exchange at the basolateral membrane of kidney α-intercalated cells. Impaired trafficking of kAE1 leads to defect of the Cl⁻/HCO₃⁻ exchange at the basolateral membrane and failure of proton (H+) secretion at the apical membrane, causing a kidney disease--distal renal tubular acidosis (dRTA). To gain a better insight into kAE1 trafficking, we searched for proteins physically interacting with the C-terminal region of kAE1 (Ct-kAE1), which contains motifs crucial for intracellular trafficking, by a yeast two-hybrid (Y2H) system. An adaptor-related protein complex 1 μ1A (AP-1 mu1A) subunit was found to interact with Ct-kAE1. The interaction between either Ct-kAE1 or full-length kAE1 and AP-1 mu1A were confirmed in human embryonic kidney (HEK) 293T by co-immunoprecipitation, affinity co-purification, co-localization, yellow fluorescent protein (YFP)-based protein fragment complementation assay (PCA) and GST pull-down assay. The interacting site for AP-1 mu1A on Ct-kAE1 was found to be Y904DEV907, a subset of YXXØ motif. Interestingly, suppression of endogenous AP-1 mu1A in HEK 293T by small interfering RNA (siRNA) decreased membrane localization of kAE1 and increased its intracellular accumulation, suggesting for the first time that AP-1 mu1A is involved in the kAE1 trafficking of kidney α-intercalated cells. PMID:20833140

  1. The adaptor protein SAP directly associates with PECAM-1 and regulates PECAM-1-mediated-cell adhesion in T-like cell lines.

    PubMed

    Proust, Richard; Crouin, Catherine; Gandji, Leslie Yewakon; Bertoglio, Jacques; Gesbert, Franck

    2014-04-01

    SAP is a small cytosolic adaptor protein expressed in hematopoietic lineages whose main function is to regulate intracellular signaling pathways induced by the triggering of members of the SLAM receptor family. In this paper, we have identified the adhesion molecule PECAM-1 as a new partner for SAP in a conditional yeast two-hybrid screen. PECAM-1 is an immunoglobulin-like molecule expressed by endothelial cells and leukocytes, which possesses both pro- and anti-inflammatory properties. However, little is known about PECAM-1 functions in T cells. We show that SAP directly and specifically interacts with the cytosolic tyrosine 686 of PECAM-1. We generated different T-like cell lines in which SAP or PECAM-1 are expressed or down modulated and we demonstrate that a diminished SAP expression correlates with a diminished PECAM-1-mediated adhesion. Although SAP has mainly been shown to associate with SLAM receptors, we evidence here that SAP is a new actor downstream of PECAM-1. PMID:24388971

  2. Recruitment of the adaptor protein Nck to PECAM-1 couples oxidative stress to canonical NF-κB signaling and inflammation.

    PubMed

    Chen, Jie; Leskov, Igor L; Yurdagul, Arif; Thiel, Bonnie; Kevil, Christopher G; Stokes, Karen Y; Orr, A Wayne

    2015-02-24

    Oxidative stress stimulates nuclear factor κB (NF-κB) activation and NF-κB-dependent proinflammatory gene expression in endothelial cells during several pathological conditions, including ischemia/reperfusion injury. We found that the Nck family of adaptor proteins linked tyrosine kinase signaling to oxidative stress-induced activation of NF-κB through the classic IκB kinase-dependent pathway. Depletion of Nck prevented oxidative stress induced by exogenous hydrogen peroxide or hypoxia/reoxygenation injury from activating NF-κB in endothelial cells, increasing the abundance of the proinflammatory molecules ICAM-1 (intracellular adhesion molecule-1) and VCAM-1 (vascular cell adhesion molecule-1) and recruiting leukocytes. Nck depletion also attenuated endothelial cell expression of genes encoding proinflammatory factors but not those encoding antioxidants. Nck promoted oxidative stress-induced activation of NF-κB by coupling the tyrosine phosphorylation of PECAM-1 (platelet endothelial cell adhesion molecule-1) to the activation of p21-activated kinase, which mediates oxidative stress-induced NF-κB signaling. Consistent with this mechanism, treatment of mice subjected to ischemia/reperfusion injury in the cremaster muscle with a Nck inhibitory peptide blocked leukocyte adhesion and emigration and the accompanying vascular leak. Together, these data identify Nck as an important mediator of oxidative stress-induced inflammation and a potential therapeutic target for ischemia/reperfusion injury. PMID:25714462

  3. A novel class of antihyperlipidemic agents with low density lipoprotein receptor up-regulation via the adaptor protein autosomal recessive hypercholesterolemia.

    PubMed

    Asano, Shigehiro; Ban, Hitoshi; Tsuboya, Norie; Uno, Shinsaku; Kino, Kouichi; Ioriya, Katsuhisa; Kitano, Masafumi; Ueno, Yoshihide

    2010-04-22

    We have previously reported compound 2 as a inhibitor of acyl-coenzyme A:cholesterol O-acyltransferase (ACAT) and up-regulator of the low density lipoprotein receptor (LDL-R) expression. In this study we focused on compound 2, a unique LDL-R up-regulator, and describe the discovery of a novel class of up-regulators of LDL-R. Replacement the methylene urea linker in compound 2 with an acylsulfonamide linker kept a potent LDL-R up-regulatory activity, and subsequent optimization work gave compound 39 as a highly potent LDL-R up-regulator (39; EC(25) = 0.047 microM). Compound 39 showed no ACAT inhibitory activity even at 1 microM. The sodium salts of compound 39 reduced plasma total and LDL cholesterol levels in a dose-dependent manner in an experimental animal model of hyperlipidemia. Moreover, we revealed in this study using RNA interference that autosomal recessive hypercholesterolemia (ARH), an adaptor protein of LDL-R, is essential for compound 39 up-regulation of LDL-R expression. PMID:20356098

  4. Disruption of adaptor protein 2μ (AP-2μ) in cochlear hair cells impairs vesicle reloading of synaptic release sites and hearing.

    PubMed

    Jung, SangYong; Maritzen, Tanja; Wichmann, Carolin; Jing, Zhizi; Neef, Andreas; Revelo, Natalia H; Al-Moyed, Hanan; Meese, Sandra; Wojcik, Sonja M; Panou, Iliana; Bulut, Haydar; Schu, Peter; Ficner, Ralf; Reisinger, Ellen; Rizzoli, Silvio O; Neef, Jakob; Strenzke, Nicola; Haucke, Volker; Moser, Tobias

    2015-11-01

    Active zones (AZs) of inner hair cells (IHCs) indefatigably release hundreds of vesicles per second, requiring each release site to reload vesicles at tens per second. Here, we report that the endocytic adaptor protein 2μ (AP-2μ) is required for release site replenishment and hearing. We show that hair cell-specific disruption of AP-2μ slows IHC exocytosis immediately after fusion of the readily releasable pool of vesicles, despite normal abundance of membrane-proximal vesicles and intact endocytic membrane retrieval. Sound-driven postsynaptic spiking was reduced in a use-dependent manner, and the altered interspike interval statistics suggested a slowed reloading of release sites. Sustained strong stimulation led to accumulation of endosome-like vacuoles, fewer clathrin-coated endocytic intermediates, and vesicle depletion of the membrane-distal synaptic ribbon in AP-2μ-deficient IHCs, indicating a further role of AP-2μ in clathrin-dependent vesicle reformation on a timescale of many seconds. Finally, we show that AP-2 sorts its IHC-cargo otoferlin. We propose that binding of AP-2 to otoferlin facilitates replenishment of release sites, for example, via speeding AZ clearance of exocytosed material, in addition to a role of AP-2 in synaptic vesicle reformation. PMID:26446278

  5. Recruitment of the adaptor protein Nck to PECAM-1 couples oxidant stress to canonical NF-κB signaling and inflammation

    PubMed Central

    Chen, Jie; Leskov, Igor L.; Yurdagul, Arif; Thiel, Bonnie; Kevil, Christopher G.; Stokes, Karen Y.; Orr, A. Wayne

    2015-01-01

    Oxidant stress drives nuclear factor κB (NF-κB) activation and NF-κB-dependent proinflammatory gene expression in endothelial cells during several pathological conditions, including ischemia/reperfusion injury. We showed that the Nck family of adaptor proteins linked tyrosine kinase signaling to oxidant stress-induced activation of NF-κB through the classic IκB kinase (IKK)-dependent pathway. Depletion of Nck prevented oxidant stress induced by exogenous peroxide or hypoxia/reoxygenation injury from triggering the activation of NF-κB in endothelial cells, increases in the abundance of the pro-inflammatory molecules ICAM-1 (intracellular adhesion molecule 1) and VCAM-1 (vascular cell adhesion molecule 1), and leukocyte recruitment. Nck depletion also attenuated endothelial cell expression of genes encoding proinflammatory factors, but not those encoding antioxidants. We further showed that Nck promoted oxidant stress-induced activation of NF-κB by coupling the tyrosine phosphorylation of platelet-endothelial cell adhesion molecule-1 (PECAM-1) to the activation of p21 activated kinase, which mediates oxidant stress-induced NF-κB signaling. Consistent with this model, treatment of mice subjected to ischemia/reperfusion injury in the cremaster muscle with a Nck inhibitory peptide inhibited leukocyte adhesion and emigration and the accompanying vascular leak. Together, these data identify Nck as an important mediator of oxidant stress-induced inflammation and a potential therapeutic target for ischemia/reperfusion injury. PMID:25714462

  6. Cell biological characterization of a multidomain adaptor protein, ArgBP2, in epithelial NMuMG cells, and identification of a novel short isoform.

    PubMed

    Murase, Kana; Ito, Hidenori; Kanoh, Hiroyuki; Sudo, Kaori; Iwamoto, Ikuko; Morishita, Rika; Soubeyran, Philippe; Seishima, Mariko; Nagata, Koh-Ichi

    2012-12-01

    ArgBP2 is a member of the SoHo (sorbin-homology) family of adaptor proteins believed to play roles in cell adhesion, cytoskeletal organization, and signaling. We show here a novel splicing isoform of ArgBP2, i.e., ArgBP2™, composed of only three SH3 (src-homology 3) domains and structurally similar to vinexinß. We then characterized the biochemical and cell biological properties of ArgBP2 to compare these with vinexin. Similar to vinexin, ArgBP2 was enriched at focal adhesions in REF52 fibroblast cells and induced anchorage-dependent extracellular signal-regulated kinase activation in NIH3T3 fibroblast cells. In epithelial NMuMG cells, immunofluorescence analyses revealed localization of ArgBP2 at tight junctions (TJs), whereas vinexin was distributed in cytoplasm as well as cell-cell boundaries. During TJ formation, recruitment of ZO-1 to TJs was followed by ArgBP2. Based on mutation analyses, a second SH3 domain was found to be important for ArgBP2 localization to the cell-cell contact sites. These data suggest some role of ArgBP2 in NMuMG cells at TJs that may be distinct from the function of vinexin. PMID:22431180

  7. Adjuvanticity of the oil-in-water emulsion MF59 is independent of Nlrp3 inflammasome but requires the adaptor protein MyD88

    PubMed Central

    Seubert, Anja; Calabro, Samuele; Santini, Laura; Galli, Barbara; Genovese, Alessia; Valentini, Sara; Aprea, Susanna; Colaprico, Annalisa; D'Oro, Ugo; Giuliani, Marzia M.; Pallaoro, Michele; Pizza, Mariagrazia; O'Hagan, Derek T.; Wack, Andreas; Rappuoli, Rino; De Gregorio, Ennio

    2011-01-01

    Oil-in-water emulsions have been successfully used to increase the efficacy, immunogenicity, and cross-protection of human vaccines; however, their mechanism of action is still largely unknown. Nlrp3 inflammasome has been previously associated to the activity of alum, another adjuvant broadly used in human vaccines, and MyD88 adaptor protein is required for the adjuvanticity of most Toll-like receptor agonists. We compared the contribution of Nlrp3 and MyD88 to the adjuvanticity of alum, the oil-in-water emulsion MF59, and complete Freund's adjuvant in mice using a three-component vaccine against serogroup B Neisseria meningitidis (rMenB). Although the basal antibody responses to the nonadjuvanted rMenB vaccine were largely dependent on Nlrp3, the high-level antibody responses induced by alum, MF59, or complete Freund's adjuvant did not require Nlrp3. Surprisingly, we found that MF59 requires MyD88 to enhance bactericidal antibody responses to the rMenB vaccine. Because MF59 did not activate any of the Toll-like receptors in vitro, we propose that MF59 requires MyD88 for a Toll-like receptor-independent signaling pathway. PMID:21690334

  8. Uavrc, a Generic Mav Flight Assistance Software

    NASA Astrophysics Data System (ADS)

    Israel, M.; Mende, M.; Keim, S.

    2015-08-01

    In this paper we present our multicopter flight assistance software uavRC, which bears on a distributed system with interchangeable MAV-drivers and a browser-based user interface that can be used on any computer, tablet or smartphone. The software components can be distributed on different computers and are even executable on a Raspberry Pi. The components communicate over a well-defined interface. One module is the browser based user interface, another module is the MAV driver. There are additional modules like a task-scheduler, a path-planer and many more. Currently the software is in beta stage, so there is still a lot of work in progress. With this paper we focus on the software architecture.

  9. Constitutively Active MAVS Inhibits HIV-1 Replication via Type I Interferon Secretion and Induction of HIV-1 Restriction Factors

    PubMed Central

    Gupta, Sachin; Termini, James M.; Issac, Biju; Guirado, Elizabeth; Stone, Geoffrey W.

    2016-01-01

    Type I interferon is known to inhibit HIV-1 replication through the induction of interferon stimulated genes (ISG), including a number of HIV-1 restriction factors. To better understand interferon-mediated HIV-1 restriction, we constructed a constitutively active form of the RIG-I adapter protein MAVS. Constitutive MAVS was generated by fusion of full length MAVS to a truncated form of the Epstein Barr virus protein LMP1 (ΔLMP1). Supernatant from ΔLMP1-MAVS-transfected 293T cells contained high levels of type I interferons and inhibited HIV replication in both TZM-bl and primary human CD4+ T cells. Supernatant from ΔLMP1-MAVS-transfected 293T cells also inhibited replication of VSV-G pseudotyped single cycle SIV in TZM-bl cells, suggesting restriction was post-entry and common to both HIV and SIV. Gene array analysis of ΔLMP1-MAVS-transfected 293T cells and trans-activated CD4+ T cells showed significant upregulation of ISG, including previously characterized HIV restriction factors Viperin, Tetherin, MxB, and ISG56. Interferon blockade studies implicated interferon-beta in this response. In addition to direct viral inhibition, ΔLMP1-MAVS markedly enhanced secretion of IFN-β and IL-12p70 by dendritic cells and the activation and maturation of dendritic cells. Based on this immunostimulatory activity, an adenoviral vector (Ad5) expressing ΔLMP1-MAVS was tested as a molecular adjuvant in an HIV vaccine mouse model. Ad5-Gag antigen combined with Ad5-ΔLMP1-MAVS enhanced control of vaccinia-gag replication in a mouse challenge model, with 4/5 animals showing undetectable virus following challenge. Overall, ΔLMP1-MAVS is a promising reagent to inhibit HIV-1 replication in infected tissues and enhance vaccine-mediated immune responses, while avoiding toxicity associated with systemic type I interferon administration. PMID:26849062

  10. Pseudomonas aeruginosa ExoT Induces Atypical Anoikis Apoptosis in Target Host Cells by Transforming Crk Adaptor Protein into a Cytotoxin.

    PubMed

    Wood, Stephen; Goldufsky, Josef; Shafikhani, Sasha H

    2015-05-01

    Previously, we demonstrated that Pseudomonas aeruginosa ExoT induces potent apoptosis in host epithelial cells in a manner that primarily depends on its ADP-ribosyltransferase domain (ADPRT) activity. However, the mechanism underlying ExoT/ADPRT-induced apoptosis remains undetermined. We now report that ExoT/ADPRT disrupts focal adhesion sites, activates p38β and JNK, and interferes with integrin-mediated survival signaling; causing atypical anoikis. We show that ExoT/ADPRT-induced anoikis is mediated by the Crk adaptor protein. We found that Crk-/- knockout cells are significantly more resistant to ExoT-induced apoptosis, while Crk-/- cells complemented with Crk are rendered sensitive to ExoT-induced apoptosis. Moreover, a dominant negative (DN) mutant form of Crk phenocopies ExoT-induced apoptosis both kinetically and mechanistically. Crk is generally believed to be a component of focal adhesion (FA) and its role in cellular survival remains controversial in that it has been found to be either pro-survival or pro-apoptosis. Our data demonstrate that although Crk is recruited to FA sites, its function is likely not required for FA assembly or for survival per se. However, when modified by ExoT or by mutagenesis, it can be transformed into a cytotoxin that induces anoikis by disrupting FA sites and interfering with integrin survival signaling. To our knowledge, this is the first example whereby a bacterial toxin exerts its cytotoxicity by subverting the function of an innocuous host cellular protein and turning it against the host cell. PMID:26020630

  11. Protease-activated Receptor-4 Signaling and Trafficking Is Regulated by the Clathrin Adaptor Protein Complex-2 Independent of β-Arrestins.

    PubMed

    Smith, Thomas H; Coronel, Luisa J; Li, Julia G; Dores, Michael R; Nieman, Marvin T; Trejo, JoAnn

    2016-08-26

    Protease-activated receptor-4 (PAR4) is a G protein-coupled receptor (GPCR) for thrombin and is proteolytically activated, similar to the prototypical PAR1. Due to the irreversible activation of PAR1, receptor trafficking is intimately linked to signal regulation. However, unlike PAR1, the mechanisms that control PAR4 trafficking are not known. Here, we sought to define the mechanisms that control PAR4 trafficking and signaling. In HeLa cells depleted of clathrin by siRNA, activated PAR4 failed to internalize. Consistent with clathrin-mediated endocytosis, expression of a dynamin dominant-negative K44A mutant also blocked activated PAR4 internalization. However, unlike most GPCRs, PAR4 internalization occurred independently of β-arrestins and the receptor's C-tail domain. Rather, we discovered a highly conserved tyrosine-based motif in the third intracellular loop of PAR4 and found that the clathrin adaptor protein complex-2 (AP-2) is important for internalization. Depletion of AP-2 inhibited PAR4 internalization induced by agonist. In addition, mutation of the critical residues of the tyrosine-based motif disrupted agonist-induced PAR4 internalization. Using Dami megakaryocytic cells, we confirmed that AP-2 is required for agonist-induced internalization of endogenous PAR4. Moreover, inhibition of activated PAR4 internalization enhanced ERK1/2 signaling, whereas Akt signaling was markedly diminished. These findings indicate that activated PAR4 internalization requires AP-2 and a tyrosine-based motif and occurs independent of β-arrestins, unlike most classical GPCRs. Moreover, these findings are the first to show that internalization of activated PAR4 is linked to proper ERK1/2 and Akt activation. PMID:27402844

  12. Baculovirus vectors expressing F proteins in combination with virus-induced signaling adaptor (VISA) molecules confer protection against respiratory syncytial virus infection.

    PubMed

    Zhang, Yuan; Qiao, Lei; Hu, Xiao; Zhao, Kang; Zhang, Yanwen; Chai, Feng; Pan, Zishu

    2016-01-01

    Baculovirus has been exploited for use as a novel vaccine vector. To investigate the feasibility and efficacy of recombinant baculoviruses (rBVs) expressing respiratory syncytial virus (RSV) fusion (F) proteins, four constructs (Bac-tF/64, Bac-CF, Bac-CF/tF64 and Bac-CF/tF64-VISA) were generated. Bac-tF64 displays the F ectodomain (tF) on the envelope of rBVs, whereas Bac-CF expresses full-length F protein in transduced mammalian cells. Bac-CF/tF64 not only displays tF on the envelope but also expresses F in cells. Bac-CF/tF64-VISA comprises Bac-CF/tF64 harboring the virus-induced signaling adaptor (VISA) gene. After administration to BALB/c mice, all four vectors elicited RSV neutralizing antibody (Ab), systemic Ab (IgG, IgG1, and IgG2a), and cytokine responses. Compared with Bac-tF64, mice inoculated with Bac-CF and Bac-CF/tF64 exhibited an increased mixed Th1/Th2 cytokine response, increased ratios of IgG2a/IgG1 antibody responses, and reduced immunopathology upon RSV challenge. Intriguingly, co-expression of VISA reduced Th2 cytokine (IL-4, IL-5, and IL-10) production induced by Bac-CF/tF64, thus relieving lung pathology upon a subsequent RSV challenge. Our results indicated that the Bac-CF/tF64 vector incorporated with the VISA molecule may provide an effective vaccine strategy for protection against RSV. PMID:26643933

  13. Adaptor protein CRK induces epithelial–mesenchymal transition and metastasis of bladder cancer cells through HGF/c-Met feedback loop

    PubMed Central

    Matsumoto, Ryuji; Tsuda, Masumi; Wang, Lei; Maishi, Nako; Abe, Takashige; Kimura, Taichi; Tanino, Mishie; Nishihara, Hiroshi; Hida, Kyoko; Ohba, Yusuke; Shinohara, Nobuo; Nonomura, Katsuya; Tanaka, Shinya

    2015-01-01

    We have previously reported that an adaptor protein CRK, including CRK-I and CRK-II, plays essential roles in the malignant potential of various aggressive human cancers, suggesting the validity of targeting CRK in molecular targeted therapy of a wide range of cancers. Nevertheless, the role of CRK in human bladder cancer with marked invasion, characterized by distant metastasis and poor prognosis, remains obscure. In the present study, immunohistochemistry indicated a striking enhancement of CRK-I/-II, but not CRK-like, in human bladder cancer tissues compared to normal urothelium. We established CRK-knockdown bladder cancer cells using 5637 and UM-UC-3, which showed a significant decline in cell migration, invasion, and proliferation. It is noteworthy that an elimination of CRK conferred suppressed phosphorylation of c-Met and the downstream scaffold protein Gab1 in a hepatocyte growth factor-dependent and -independent manner. In epithelial–mesenchymal transition-related molecules, E-cadherin was upregulated by CRK elimination, whereas N-cadherin, vimentin, and Zeb1 were downregulated. A similar effect was observed following treatment with c-Met inhibitor SU11274. Depletion of CRK significantly decreased cell proliferation of 5637 and UM-UC-3, consistent with reduced activity of ERK. An orthotopic xenograft model with bioluminescent imaging revealed that CRK knockdown significantly attenuated not only tumor volume but also the number of circulating tumor cells, resulted in a complete abrogation of metastasis. Taken together, this evidence uncovered essential roles of CRK in invasive bladder cancer through the hepatocyte growth factor/c-Met/CRK feedback loop for epithelial–mesenchymal transition induction. Thus, CRK might be a potent molecular target in bladder cancer, particularly for preventing metastasis, leading to the resolution of clinically longstanding critical issues. PMID:25816892

  14. ScaC, an Adaptor Protein Carrying a Novel Cohesin That Expands the Dockerin-Binding Repertoire of the Ruminococcus flavefaciens 17 Cellulosome

    PubMed Central

    Rincón, Marco T.; Martin, Jennifer C.; Aurilia, Vincenzo; McCrae, Sheila I.; Rucklidge, Garry J.; Reid, Martin D.; Bayer, Edward A.; Lamed, Raphael; Flint, Harry J.

    2004-01-01

    A new gene, designated scaC and encoding a protein carrying a single cohesin, was identified in the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 as part of a gene cluster that also codes for the cellulosome structural components ScaA and ScaB. Phylogenetic analysis showed that the sequence of the ScaC cohesin is distinct from the sequences of other cohesins, including the sequences of R. flavefaciens ScaA and ScaB. The scaC gene product also includes at its C terminus a dockerin module that closely resembles those found in R. flavefaciens enzymes that bind to the cohesins of the primary ScaA scaffoldin. The putative cohesin domain and the C-terminal dockerin module were cloned and overexpressed in Escherichia coli as His6-tagged products (ScaC-Coh and ScaC-Doc, respectively). Affinity probing of protein extracts of R. flavefaciens 17 separated in one-dimensional and two-dimensional gels with recombinant cohesins from ScaC and ScaA revealed that two distinct subsets of native proteins interact with ScaC-Coh and ScaA-Coh. Furthermore, ScaC-Coh failed to interact with the recombinant dockerin module from the enzyme EndB that is recognized by ScaA cohesins. On the other hand, ScaC-Doc was shown to interact specifically with the recombinant cohesin domain from ScaA, and the ScaA-Coh probe was shown to interact with a native 29-kDa protein spot identified as ScaC by matrix-assisted laser desorption ionization—time of flight mass spectrometry. These results suggest that ScaC plays the role of an adaptor scaffoldin that is bound to ScaA via the ScaC dockerin module, which, via the distinctive ScaC cohesin, expands the range of proteins that can bind to the ScaA-based enzyme complex. PMID:15090497

  15. Adaptor protein Ste50p links the Ste11p MEKK to the HOG pathway through plasma membrane association

    PubMed Central

    Wu, Cunle; Jansen, Gregor; Zhang, Jianchun; Thomas, David Y.; Whiteway, Malcolm

    2006-01-01

    In a variety of yeast cellular pathways, the Ste50p protein regulates the kinase function of the mitogen extracellular signal-regulated kinase kinase (MEKK) Ste11p. Both Ste11p and Ste50p contain sterile α motif (SAM) domains; these are interchangeable, and can be replaced by other protein-interacting modules. Furthermore, the function of the Ras association (RA)-like domain of Ste50p can be mimicked by a plasma membrane recruiting signal, and direct plasma membrane targeting of Ste11p bypasses the requirement of Ste50p for Ste11p function. Thus the regulatory role of Ste50p requires both the N-terminal SAM domain to bind Ste11p and the C-terminal RA-like domain to direct kinase localization. We have identified Opy2p, an integral membrane protein that can interact with Ste50p, as a new component in the Sho1p–Ste11p/Ste50p signaling branch of the high-osmolarity glycerol (HOG) pathway. We propose that Opy2p can serve as a membrane anchor for the Ste50p/Ste11p module in the activation of the HOG pathway. PMID:16543225

  16. MAVS-MKK7-JNK2 Defines a Novel Apoptotic Signaling Pathway during Viral Infection

    PubMed Central

    Li, Senlin; Tang, Yijun; Wei, Bo; Yu, Huansha; Wang, Chen

    2014-01-01

    Viral infection induces innate immunity and apoptosis. Apoptosis is an effective means to sacrifice virus-infected host cells and therefore restrict the spread of pathogens. However, the underlying mechanisms of this process are still poorly understood. Here, we show that the mitochondrial antiviral signaling protein (MAVS/VISA/Cardif/IPS-1) is critical for SeV (Sendai virus)-induced apoptosis. MAVS specifically activates c-Jun N-terminal kinase 2 (JNK2) but not other MAP kinases. Jnk2−/− cells, but not Jnk1−/− cells, are unable to initiate virus-induced apoptosis and SeV further fails to trigger apoptosis in MAPK kinase 7 (MKK7) knockout (Mkk7−/−) cells. Mechanistically, MAVS recruits MKK7 onto mitochondria via its 3D domain, which subsequently phosphorylates JNK2 and thus activates the apoptosis pathway. Consistently, Jnk2−/− mice, but not Jnk1−/− mice, display marked inflammatory injury in lung and liver after viral challenge. Collectively, we have identified a novel signaling pathway, involving MAVS-MKK7-JNK2, which mediates virus-induced apoptosis and highlights the indispensable role of mitochondrial outer membrane in host defenses. PMID:24651600

  17. Structural and functional insights into CARDs of zebrafish (Danio rerio) NOD1 and NOD2, and their interaction with adaptor protein RIP2.

    PubMed

    Maharana, Jitendra; Dehury, Budheswar; Sahoo, Jyoti Ranjan; Jena, Itishree; Bej, Aritra; Panda, Debashis; Sahoo, Bikash Ranjan; Patra, Mahesh Chandra; Pradhan, Sukanta Kumar

    2015-08-01

    Nucleotide-binding and oligomerization domain-containing protein 1 (NOD1) and NOD2 are cytosolic pattern-recognition receptors (PRRs) composed of an N-terminal caspase activation and recruitment domain (CARD), a central NACHT domain and C-terminal leucine-rich repeats (LRRs). They play a vital role in innate immune signaling by activating the NF-κB pathway via recognition of peptidoglycans by LRRs, and ATP-dependent self-oligomerization of NACHT followed by downstream signaling. After oligomerization, CARD/s play a crucial role in activating downstream signaling via the adaptor molecule, RIP2. Due to the inadequacy of experimental 3D structures of CARD/s of NOD2 and RIP2, and results from differential experimental setups, the RIP2-mediated CARD-CARD interaction has remained as a contradictory statement. We employed a combinatorial approach involving protein modeling, docking, molecular dynamics simulation, and binding free energy calculation to illuminate the molecular mechanism that shows the possible involvement of either the acidic or basic patch of zebrafish NOD1/2-CARD/a and RIP2-CARD in CARD-CARD interaction. Herein, we have hypothesized 'type-I' mode of CARD-CARD interaction in NOD1 and NOD2, where NOD1/2-CARD/a involve their acidic surfaces to interact with RIP2. Asp37 and Glu51 (of NOD1) and Arg477, Arg521 and Arg529 (of RIP2) were identified to be crucial for NOD1-RIP2 interaction. However, in NOD2-RIP2, Asp32 (of NOD2) and Arg477 and Arg521 (of RIP2) were anticipated to be significant for downstream signaling. Furthermore, we found that strong electrostatic contacts and salt bridges are crucial for protein-protein interactions. Altogether, our study has provided novel insights into the RIP2-mediated CARD-CARD interaction in zebrafish NOD1 and NOD2, which will be helpful to understand the molecular basis of the NOD1/2 signaling mechanism. PMID:26079944

  18. Identification of Atg2 and ArfGAP1 as Candidate Genetic Modifiers of the Eye Pigmentation Phenotype of Adaptor Protein-3 (AP-3) Mutants in Drosophila melanogaster

    PubMed Central

    Rodriguez-Fernandez, Imilce A.; Dell’Angelica, Esteban C.

    2015-01-01

    The Adaptor Protein (AP)-3 complex is an evolutionary conserved, molecular sorting device that mediates the intracellular trafficking of proteins to lysosomes and related organelles. Genetic defects in AP-3 subunits lead to impaired biogenesis of lysosome-related organelles (LROs) such as mammalian melanosomes and insect eye pigment granules. In this work, we have performed a forward screening for genetic modifiers of AP-3 function in the fruit fly, Drosophila melanogaster. Specifically, we have tested collections of large multi-gene deletions–which together covered most of the autosomal chromosomes–to identify chromosomal regions that, when deleted in single copy, enhanced or ameliorated the eye pigmentation phenotype of two independent AP-3 subunit mutants. Fine-mapping led us to define two non-overlapping, relatively small critical regions within fly chromosome 3. The first critical region included the Atg2 gene, which encodes a conserved protein involved in autophagy. Loss of one functional copy of Atg2 ameliorated the pigmentation defects of mutants in AP-3 subunits as well as in two other genes previously implicated in LRO biogenesis, namely Blos1 and lightoid, and even increased the eye pigment content of wild-type flies. The second critical region included the ArfGAP1 gene, which encodes a conserved GTPase-activating protein with specificity towards GTPases of the Arf family. Loss of a single functional copy of the ArfGAP1 gene ameliorated the pigmentation phenotype of AP-3 mutants but did not to modify the eye pigmentation of wild-type flies or mutants in Blos1 or lightoid. Strikingly, loss of the second functional copy of the gene did not modify the phenotype of AP-3 mutants any further but elicited early lethality in males and abnormal eye morphology when combined with mutations in Blos1 and lightoid, respectively. These results provide genetic evidence for new functional links connecting the machinery for biogenesis of LROs with molecules implicated

  19. Cellular Heterogeneity During Embryonic Stem Cell Differentiation to Epiblast Stem Cells is Revealed by the ShcD/RaLP Adaptor Protein

    PubMed Central

    Turco, Margherita Y; Furia, Laura; Dietze, Anja; Fernandez Diaz, Luis; Ronzoni, Simona; Sciullo, Anna; Simeone, Antonio; Constam, Daniel; Faretta, Mario; Lanfrancone, Luisa

    2012-01-01

    The Shc family of adaptor proteins are crucial mediators of a plethora of receptors such as the tyrosine kinase receptors, cytokine receptors, and integrins that drive signaling pathways governing proliferation, differentiation, and migration. Here, we report the role of the newly identified family member, ShcD/RaLP, whose expression in vitro and in vivo suggests a function in embryonic stem cell (ESC) to epiblast stem cells (EpiSCs) transition. The transition from the naïve (ESC) to the primed (EpiSC) pluripotent state is the initial important step for ESCs to commit to differentiation and the mechanisms underlying this process are still largely unknown. Using a novel approach to simultaneously assess pluripotency, apoptosis, and proliferation by multiparameter flow cytometry, we show that ESC to EpiSC transition is a process involving a tight coordination between the modulation of the Oct4 expression, cell cycle progression, and cell death. We also describe, by high-content immunofluorescence analysis and time-lapse microscopy, the emergence of cells expressing caudal-related homeobox 2 (Cdx2) transcription factor during ESC to EpiSC transition. The use of the ShcD knockout ESCs allowed the unmasking of this process as they presented deregulated Oct4 modulation and an enrichment in Oct4-negative Cdx2-positive cells with increased MAPK/extracellular-regulated kinases 1/2 activation, within the differentiating population. Collectively, our data reveal ShcD as an important modulator in the switch of key pathway(s) involved in determining EpiSC identity. Stem Cells2012;30:2423–2436 PMID:22948967

  20. Rat and mouse CD94 associate directly with the activating transmembrane adaptor proteins DAP12 and DAP10 and activate NK cell cytotoxicity.

    PubMed

    Saether, Per C; Hoelsbrekken, Sigurd E; Fossum, Sigbjørn; Dissen, Erik

    2011-12-15

    Signaling by the CD94/NKG2 heterodimeric NK cell receptor family has been well characterized in the human but has remained unclear in the mouse and rat. In the human, the activating receptor CD94/NKG2C associates with DAP12 by an ionic bond between oppositely charged residues within the transmembrane regions of NKG2C and DAP12. The lysine residue responsible for DAP12 association is absent in rat and mouse NKG2C and -E, raising questions about signaling mechanisms in these species. As a possible substitute, rat and mouse NKG2C and -E contain an arginine residue in the transition between the transmembrane and stalk regions. In this article, we demonstrate that, similar to their human orthologs, NKG2A inhibits, whereas NKG2C activates, rat NK cells. Redirected lysis assays using NK cells transfected with a mutated NKG2C construct indicated that the activating function of CD94/NKG2C did not depend on the transmembrane/stalk region arginine residue. Flow cytometry and biochemical analysis demonstrated that both DAP12 and DAP10 can associate with rat CD94/NKG2C. Surprisingly, DAP12 and DAP10 did not associate with NKG2C but instead with CD94. These associations depended on a transmembrane lysine residue in CD94 that is unique to rodents. Thus, in the mouse and rat, the ability to bind activating adaptor proteins has been transferred from NKG2C/E to the CD94 chain as a result of mutation events in both chains. Remarkable from a phylogenetic perspective, this sheds new light on the evolution and function of the CD94/NKG2 receptor family. PMID:22084441

  1. Direct interactions of adaptor protein complexes 1 and 2 with the copper transporter ATP7A mediate its anterograde and retrograde trafficking

    PubMed Central

    Yi, Ling; Kaler, Stephen G.

    2015-01-01

    ATP7A is a P-type ATPase in which diverse mutations lead to X-linked recessive Menkes disease or occipital horn syndrome. Recently, two previously unknown ATP7A missense mutations, T994I and P1386S, were shown to cause an isolated distal motor neuropathy without clinical or biochemical features of other ATP7A disorders. These mutant alleles cause subtle defects in ATP7A intracellular trafficking, resulting in preferential plasma membrane localization compared with wild-type ATP7A. We reported previously that ATP7AP1386S causes unstable insertion of the eighth and final transmembrane segment, preventing proper position of the carboxyl-terminal tail in a proportion of mutant molecules. Here, we utilize this and other naturally occurring and engineered mutant ATP7A alleles to identify mechanisms of normal ATP7A trafficking. We show that adaptor protein (AP) complexes 1 and 2 physically interact with ATP7A and that binding is mediated in part by a carboxyl-terminal di-leucine motif. In contrast to other ATP7A missense mutations, ATP7AP1386S partially disturbs interactions with both APs, leading to abnormal axonal localization in transfected NSC-34 motor neurons and altered calcium-signaling following glutamate stimulation. Our results imply that AP-1 normally tethers ATP7A at the trans-Golgi network in the somatodendritic segments of motor neurons and that alterations affecting the ATP7A carboxyl-terminal tail induce release of the copper transporter to the axons or axonal membranes. The latter effects are intensified by diminished interaction with AP-2, impeding ATP7A retrograde trafficking. Taken together, these findings further illuminate the normal molecular mechanisms of ATP7A trafficking and suggest a pathophysiological basis for ATP7A-related distal motor neuropathy. PMID:25574028

  2. The Cytoskeletal Adaptor Protein Band 4.1B is Required for the Maintenance of Paranodal Axo-Glial Septate Junctions in Myelinated Axons

    PubMed Central

    Buttermore, Elizabeth D.; Dupree, Jeffrey L.; Cheng, JrGang; An, Xiuli; Tessarollo, Lino; Bhat, Manzoor A.

    2011-01-01

    Precise targeting and maintenance of axonal domains in myelinated axons is essential for saltatory conduction. Caspr and Caspr2, which localize at paranodal and juxtaparanodal domains, contain binding sites for the cytoskeletal adaptor protein 4.1B. The exact role of 4.1B in the organization and maintenance of axonal domains is still not clear. Here we report the generation and characterization of 4.1B null mice. We show that loss of 4.1B in the PNS results in mislocalization of Caspr at paranodes and destabilization of paranodal axo-glial septate junctions (AGSJs) as early as postnatal day 30. In the CNS, Caspr localization is progressively disrupted and ultrastructural analysis showed paranodal regions that were completely devoid of AGSJs, with axolemma separated from the myelin loops, and loops coming off the axolemma. Most importantly, our phenotypic analysis of previously generated 4.1B mutants, used in Horresh et al. (2010), showed that Caspr localization was not affected in the PNS, even after one year; and 4.1R was neither expressed, nor enriched at the paranodes. Furthermore, ultrastructural analysis of these 4.1B mutants showed destabilization of CNS AGSJs at about one year. We also discovered that the 4.1B locus is differentially expressed in the PNS and CNS, and generates multiple splice isoforms in the PNS, suggesting 4.1B may function differently in the PNS versus CNS. Together, our studies provide direct evidence that 4.1B plays a pivotal role in interactions between the paranodal AGSJs and axonal cytoskeleton, and that 4.1B is critically required for long-term maintenance of axonal domains in myelinated axons. PMID:21632923

  3. The Mu subunit of Plasmodium falciparum clathrin-associated adaptor protein 2 modulates in vitro parasite response to artemisinin and quinine.

    PubMed

    Henriques, Gisela; van Schalkwyk, Donelly A; Burrow, Rebekah; Warhurst, David C; Thompson, Eloise; Baker, David A; Fidock, David A; Hallett, Rachel; Flueck, Christian; Sutherland, Colin J

    2015-05-01

    The emergence of drug-resistant parasites is a serious threat faced by malaria control programs. Understanding the genetic basis of resistance is critical to the success of treatment and intervention strategies. A novel locus associated with antimalarial resistance, ap2-mu (encoding the mu chain of the adaptor protein 2 [AP2] complex), was recently identified in studies on the rodent malaria parasite Plasmodium chabaudi (pcap2-mu). Furthermore, analysis in Kenyan malaria patients of polymorphisms in the Plasmodium falciparum ap2-mu homologue, pfap2-mu, found evidence that differences in the amino acid encoded by codon 160 are associated with enhanced parasite survival in vivo following combination treatments which included artemisinin derivatives. Here, we characterize the role of pfap2-mu in mediating the in vitro antimalarial drug response of P. falciparum by generating transgenic parasites constitutively expressing codon 160 encoding either the wild-type Ser (Ser160) or the Asn mutant (160Asn) form of pfap2-mu. Transgenic parasites carrying the pfap2-mu 160Asn allele were significantly less sensitive to dihydroartemisinin using a standard 48-h in vitro test, providing direct evidence of an altered parasite response to artemisinin. Our data also provide evidence that pfap2-mu variants can modulate parasite sensitivity to quinine. No evidence was found that pfap2-mu variants contribute to the slow-clearance phenotype exhibited by P. falciparum in Cambodian patients treated with artesunate monotherapy. These findings provide compelling evidence that pfap2-mu can modulate P. falciparum responses to multiple drugs. We propose that this gene should be evaluated further as a potential molecular marker of antimalarial resistance. PMID:25691625

  4. The cytoskeletal adaptor protein band 4.1B is required for the maintenance of paranodal axoglial septate junctions in myelinated axons.

    PubMed

    Buttermore, Elizabeth D; Dupree, Jeffrey L; Cheng, JrGang; An, Xiuli; Tessarollo, Lino; Bhat, Manzoor A

    2011-06-01

    Precise targeting and maintenance of axonal domains in myelinated axons is essential for saltatory conduction. Caspr and Caspr2, which localize at paranodal and juxtaparanodal domains, contain binding sites for the cytoskeletal adaptor protein 4.1B. The exact role of 4.1B in the organization and maintenance of axonal domains is still not clear. Here, we report the generation and characterization of 4.1B-null mice. We show that loss of 4.1B in the PNS results in mislocalization of Caspr at paranodes and destabilization of paranodal axoglial septate junctions (AGSJs) as early as postnatal day 30. In the CNS, Caspr localization is progressively disrupted and ultrastructural analysis showed paranodal regions that were completely devoid of AGSJs, with axolemma separated from the myelin loops, and loops coming off the axolemma. Most importantly, our phenotypic analysis of previously generated 4.1B mutants, used in the study by Horresh et al. (2010), showed that Caspr localization was not affected in the PNS, even after 1 year; and 4.1R was neither expressed, nor enriched at the paranodes. Furthermore, ultrastructural analysis of these 4.1B mutants showed destabilization of CNS AGSJs at ∼ 1 year. We also discovered that the 4.1B locus is differentially expressed in the PNS and CNS, and generates multiple splice isoforms in the PNS, suggesting 4.1B may function differently in the PNS versus CNS. Together, our studies provide direct evidence that 4.1B plays a pivotal role in interactions between the paranodal AGSJs and axonal cytoskeleton, and that 4.1B is critically required for long-term maintenance of axonal domains in myelinated axons. PMID:21632923

  5. Role of an adaptor protein Lin-7B in brain development: possible involvement in autism spectrum disorders.

    PubMed

    Mizuno, Makoto; Matsumoto, Ayumi; Hamada, Nanako; Ito, Hidenori; Miyauchi, Akihiko; Jimbo, Eriko F; Momoi, Mariko Y; Tabata, Hidenori; Yamagata, Takanori; Nagata, Koh-Ichi

    2015-01-01

    Using comparative genomic hybridization analysis for an autism spectrum disorder (ASD) patient, a 73-Kb duplication at 19q13.33 (nt. 49 562 755-49 635 956) including LIN7B and 5 other genes was detected. We then identified a novel frameshift mutation in LIN7B in another ASD patient. Since LIN7B encodes a scaffold protein essential for neuronal function, we analyzed the role of Lin-7B in the development of cerebral cortex. Acute knockdown of Lin-7B with in utero electroporation caused a delay in neuronal migration during corticogenesis. When Lin-7B was knocked down in cortical neurons in one hemisphere, their axons failed to extend efficiently into the contralateral hemisphere after leaving the corpus callosum. Meanwhile, enhanced expression of Lin-7B had no effects on both cortical neuron migration and axon growth. Notably, silencing of Lin-7B did not affect the proliferation of neuronal progenitors and stem cells. Taken together, Lin-7B was found to play a pivotal role in corticogenesis through the regulation of excitatory neuron migration and interhemispheric axon growth, while further analyses are required to directly link functional defects of Lin-7B to ASD pathophysiology. Lin-7 plays a pivotal role as a scaffold protein in synaptic development and plasticity. Based on genetic analyses we identified mutations in LIN-7B gene in some ASD (autism-spectrum disorder) patients. Functional defects in Lin-7B caused abnormal neuronal migration and interhemispheric axon growth during mouse brain development. Thus, functional deficiency in Lin-7B could be implicated in clinical phenotypes in some ASD patients through bringing about abnormal cortical architecture. PMID:25196215

  6. Enhancement of cell surface expression and receptor functions of membrane progestin receptor α (mPRα) by progesterone receptor membrane component 1 (PGRMC1): evidence for a role of PGRMC1 as an adaptor protein for steroid receptors.

    PubMed

    Thomas, Peter; Pang, Yefei; Dong, Jing

    2014-03-01

    A variety of functions have been proposed for progesterone receptor membrane component 1 (PGRMC1), including acting as a component of a membrane progestin receptor and as an adaptor protein. Here we show that stable overexpression of human PGRMC1 in nuclear progesterone receptor (PR)-negative breast cancer cell lines causes increased expression of PGRMC1 and membrane progesterone receptor α (mPRα) on cell membranes that is associated with increased specific [(3)H]progesterone binding. The membrane progestin binding affinity and specificity were characteristic of mPRα, with a Kd of 4.7 nM and high affinity for the mPR-specific agonist, Org OD 02-0, and low affinity for corticosteroids. Progestin treatment caused activation of G proteins, further evidence for increased expression of functional mPRs on PGRMC1-transfected cell membranes. Immunocytochemical and coimmunoprecipitation studies showed a close association of PGRMC1 with mPRα in cell membranes. Transfection of PGRMC1 into spontaneously immortalized rat granulosa cells was associated with membrane expression of PGRMC1 and mPRα as well as antiapoptotic effects of progestins that were abolished after cotransfection with small interfering RNA for mPRα. These data demonstrate that PGRMC1 can act as an adaptor protein, transporting mPRα to the cell surface, and that the progestin binding and apoptotic functions previously ascribed to PGRMC1 are dependent on cell surface expression of mPRα. Collectively, the results suggest PGRMC1 and mPRα are components of a membrane progesterone receptor protein complex. Increased expression of estrogen receptor β was also observed in the membranes of PGRMC1-transfected cells, suggesting that PGRMC1 can act as an adaptor protein for multiple classes of steroid receptors. PMID:24424068

  7. Adaptors in toll-like receptor signaling and their potential as therapeutic targets.

    PubMed

    Ve, Thomas; Gay, Nicholas J; Mansell, Ashley; Kobe, Bostjan; Kellie, Stuart

    2012-10-01

    To initiate the innate immune response, Toll-like receptors (TLRs) associate with cytoplasmic adaptor proteins through TIR (Toll/interleukin-1 receptor) domain interactions. The four principal signaling adaptor proteins include MyD88, MAL, TRIF and TRAM, and the fifth protein SARM, involved in negative regulation of TLR pathways, is usually considered a part of the TIR domain-containing adaptor protein group. Other TIR domain-containing proteins have also been shown to regulate these signaling pathways, including ST2 and SIGIRR, as well as several bacterial and viral TIR domain-containing proteins that modulate these pathways as virulence factors. TLR pathways and the adaptor proteins are associated with a number of diseases, including infection, sepsis, inflammatory, allergic and autoimmune diseases and cancer. We review our current understanding of the structure and function of adaptor proteins and their regulatory proteins, their association with disease and their potential as therapeutic targets in human disease. PMID:22664090

  8. Phospholipase Cgamma2 dosage is critical for B cell development in the absence of adaptor protein BLNK.

    PubMed

    Xu, Shengli; Huo, Jianxin; Chew, Weng-Keong; Hikida, Masaki; Kurosaki, Tomohiro; Lam, Kong-Peng

    2006-04-15

    B cell linker (BLNK) protein and phospholipase Cgamma2 (PLCgamma2) are components of the BCR signalosome that activate calcium signaling in B cells. Mice lacking either molecule have a severe but incomplete block in B lymphopoiesis. In this study, we generated BLNK-/- PLCgamma2-/- mice to examine the effect of simultaneous disruption of both molecules on B cell development. We showed that BLNK-/- PLCgamma2-/- mice had compounded defects in B cell maturation compared with either single mutant, suggesting that these two molecules cooperatively or synergistically signaled B lymphopoiesis. However, Ig H chain allelic exclusion was maintained in single and double mutants, indicating that signals propagated by BLNK and PLCgamma2 were not involved in this process. Interestingly, in the absence of BLNK, B cell development was dependent on plcgamma2 gene dosage. This was evidenced by the proportionate decrease in splenic B cell population and increase in bone marrow surface pre-BCR+ cells in PLCgamma2-diploid, -haploid, and -null animals. Intracellular calcium signaling and ERK activation in response to BCR engagement were also proportionately decreased and delayed, respectively, with stepwise reduction of plcgamma2 dosage in a BLNK(null) background. Thus, these data indicate the importance of BLNK not only as a conduit to specifically channel BCR-signaling pathways and as a scaffold for the assembling of macromolecular complex, but also as an efficient aggregator or concentrator of PLCgamma2 molecules to effect optimal signaling for B cell generation and activation. PMID:16585562

  9. A combined LDL receptor/LDL receptor adaptor protein 1 mutation as the cause for severe familial hypercholesterolemia.

    PubMed

    Soufi, Muhidien; Rust, Stephan; Walter, Michael; Schaefer, Juergen R

    2013-05-25

    Familial hypercholesterolemia (FH) results from impaired catabolism of plasma low density lipoproteins (LDL), thus leading to high cholesterol, atherosclerosis, and a high risk of premature myocardial infarction. FH is commonly caused by defects of the LDL receptor or its main ligand apoB, together mediating cellular uptake and clearance of plasma LDL. In some cases FH is inherited by mutations in the genes of PCSK9 and LDLRAP1 (ARH) in a dominant or recessive trait. The encoded proteins are required for LDL receptor stability and internalization within the LDLR pathway. To detect the underlying genetic defect in a family of Turkish descent showing unregular inheritance of severe FH, we screened the four candidate genes by denaturing gradient gel electrophoresis (DGGE) mutation analysis. We identified different combinatory mixtures of LDLR- and LDLRAP1-gene defects as the cause for severe familial hypercholesterolemia in this family. We also show for the first time that a heterozygous LDLR mutation combined with a homozygous LDLRAP1 mutation produces a more severe hypercholesterolemia phenotype in the same family than a homozygous LDLR mutation alone. PMID:23510778

  10. REGULATION OF PROCESS RETRACTION AND CELL MIGRATION BY EPHA3 IS MEDIATED BY THE ADAPTOR PROTEIN NCK1†

    PubMed Central

    Hu, Tianjing; Shi, Guanfang; Larose, Louise; Rivera, Gonzalo M.; Mayer, Bruce J.; Zhou, Renping

    2009-01-01

    The Eph family of tyrosine kinase receptors and their ligands, the ephrins, participates in the regulation of a wide variety of biological functions under normal and pathological conditions. During embryonic development, interactions between the ligands and receptors define tissue boundaries, guide migrating axons, and regulate angiogenesis, as well as bone morphogenesis. These molecules have also been shown to modify neural activity in the adult nervous system, and influence tumor progression. However, the molecular mechanisms underlying these diverse functions are not completely understood. In the present study, a yeast two-hybrid screen has been conducted to identify molecules that physically interact with Eph receptors using the cytoplasmic domain of EphA3 as “bait”. This study identified Nck1 as a strong binding partner of EphA3 as assayed using both GST-fusion protein pull down and co-immunoprecipitation techniques. The interaction is mediated through binding of the Nck1 SH2 domain to the phosphotyrosine residue at position 602 (Y602) of EphA3 receptor. The removal of the SH2 domain or the mutation of the Y602 residue abolishes the interaction. It is further demonstrated that EphA3 activation inhibits cell migration and process outgrowth, and these inhibiting effects are partially alleviated by dominant-negative Nck1 mutants that lack functional SH2 or SH3 domains, but not by the wild type Nck1 gene. These results suggest that Nck1 interacts with EphA3 to regulate cell migration and process retraction. PMID:19505147

  11. Reduced photoreceptor death and improved retinal function during retinal degeneration in mice lacking innate immunity adaptor protein MyD88

    PubMed Central

    Syeda, Sarah; Patel, Amit K.; Lee, Tinthu; Hackam, Abigail S.

    2015-01-01

    The injury inflammatory response mediated by the innate immune system is an important contributor to neurodegeneration in the central nervous system (CNS) and retina. A major branch of the innate immune system is regulated by the Toll-like receptors (TLRs), which are receptors for endogenous damage associated molecules released from injured cells as well as pathogen-derived molecules, and interleukin-1 receptors (IL-1R), which are activated by IL-1α, IL-1β and IL-18 cytokines. TLRs and IL-1R are expressed on immune and non-immune cell types and act as first responders to cell damage, which results in tissue repair, or inflammation and apoptosis. Both TLR and IL-1R require the adaptor protein myeloid differentiation primary response gene 88 (MyD88) for signaling. Although inflammation is implicated in neuronal death in the retina, the role of MyD88-dependent TLR and IL-1R signaling in retinal degeneration is unknown. Therefore, the purpose of this study was to investigate the role of MyD88-mediated signaling in neuronal degeneration in the retinal degeneration 1 (rd1) mouse model, which exhibits a phenotype of rapid photoreceptor death and inflammation. To generate rd1 mice lacking the MyD88 gene, rd1 were bred with MyD88 knockout mice (MyD88-/-) for several generations to produce rd1/MyD88+/+ and rd1/MyD88-/- genotypes. Chemokine mRNA expression levels were analyzed by qRT-PCR, and recruitment of activated microglia was quantified by immunodetection of the IBA-1 protein. Retinal outer nuclear layer cell counts were performed to quantify photoreceptor degeneration, and retinal function was assessed using electroretinograms (ERG). Our results revealed that retinal expression of Ccl2, Ccl4, Ccl7 and Cxcl10 was reduced by 2 to 8-fold in rd1/MyD88-/- mice compared with rd1/MyD88+/+ mice (p<0.05), which coincided with attenuated microglial activation, higher numbers of photoreceptors and higher retina responses to photopic and scotopic stimuli. At later ages, rd1/MyD88

  12. The beta-appendages of the four adaptor-protein (AP) complexes: structure and binding properties, and identification of sorting nexin 9 as an accessory protein to AP-2.

    PubMed Central

    Lundmark, Richard; Carlsson, Sven R

    2002-01-01

    Adaptor protein (AP) complexes are essential components for the formation of coated vesicles and the recognition of cargo proteins for intracellular transport. Each AP complex exposes two appendage domains with that function to bind regulatory accessory proteins in the cytosol. Secondary structure predictions, sequence alignments and CD spectroscopy were used to relate the beta-appendages of all human AP complexes to the previously published crystal structure of AP-2. The results suggested that the beta-appendages of AP-1, AP-2 and AP-3 have similar structures, consisting of two subdomains, whereas that of AP-4 lacks the inner subdomain. Pull-down and overlay assays showed partial overlap in the binding specificities of the beta-appendages of AP-1 and AP-2, whereas the corresponding domain of AP-3 displayed a unique binding pattern. That AP-4 may have a truncated, non-functional domain was indicated by its apparent inability to bind any proteins from cytosol. Of several novel beta-appendage-binding proteins detected, one that had affinity exclusively for AP-2 was identified as sorting nexin 9 (SNX9). SNX9, which contains a phox and an Src homology 3 domain, was found in large complexes and was at least partially associated with AP-2 in the cytosol. SNX9 may function to assist AP-2 in its role at the plasma membrane. PMID:11879186

  13. The clathrin adaptor proteins ARH, Dab2, and numb play distinct roles in Niemann-Pick C1-Like 1 versus low density lipoprotein receptor-mediated cholesterol uptake.

    PubMed

    Wei, Jian; Fu, Zhen-Yan; Li, Pei-Shan; Miao, Hong-Hua; Li, Bo-Liang; Ma, Yi-Tong; Song, Bao-Liang

    2014-11-28

    The uptake of circulating low density lipoproteins (LDL) is mediated by LDL receptor (LDLR) through clathrin-dependent endocytosis. At the early stage of this process, adaptor proteins ARH and Dab2 specifically bind the endocytic signal motif in LDLR and recruit clathrin/AP2 to initiate internalization. On the other hand, intestinal cholesterol is absorbed by Niemann-Pick C1-Like 1 (NPC1L1) through clathrin-dependent endocytosis. Another adaptor protein, Numb recognizes the endocytic motif in NPC1L1 C terminus and couples NPC1L1 to endocytic machinery. The ARH, Dab2, and Numb proteins contain a homogeneous phosphotyrosine binding (PTB) domain that directly binds endocytic motifs. Because ARH, Dab2, and Numb are all PTB domain family members, the emerging mystery is whether these adaptors act complementally in LDLR and NPC1L1 endocytosis. Here, we found that ARH and Dab2 did not bind NPC1L1 and were not required for NPC1L1 internalization. Similarly, Numb lacked the ability to interact with the LDLR C terminus and was dispensable for LDL uptake. Only the Numb isoforms with shorter PTB domain could facilitate NPC1L1 endocytosis. Besides the reported function in intestinal cholesterol absorption, Numb also mediated cholesterol reabsorption from bile in liver. We further identified a Numb variant with G595D substitution in humans of low blood LDL-cholesterol. The G595D substitution impaired NPC1L1 internalization and cholesterol reabsorption, due to attenuating affinity of Numb to clathrin/AP2. These results demonstrate that Numb specifically regulates NPC1L1-mediated cholesterol absorption both in human intestine and liver, distinct from ARH and Dab2, which selectively participate in LDLR-mediated LDL uptake. PMID:25331956

  14. Structural Basis for Small G Protein Effector Interaction of Ras-related Protein 1 (Rap1) and Adaptor Protein Krev Interaction Trapped 1 (KRIT1)

    SciTech Connect

    Li, Xiaofeng; Zhang, Rong; Draheim, Kyle M.; Liu, Weizhi; Calderwood, David A.; Boggon, Titus J.

    2012-09-17

    Cerebral cavernous malformations (CCMs) affect 0.1-0.5% of the population resulting in leaky vasculature and severe neurological defects. KRIT1 (Krev interaction trapped-1) mutations associate with {approx}40% of familial CCMs. KRIT1 is an effector of Ras-related protein 1 (Rap1) GTPase. Rap1 relocalizes KRIT1 from microtubules to cell membranes to impact integrin activation, potentially important for CCM pathology. We report the 1.95 {angstrom} co-crystal structure of KRIT1 FERM domain in complex with Rap1. Rap1-KRIT1 interaction encompasses an extended surface, including Rap1 Switch I and II and KRIT1 FERM F1 and F2 lobes. Rap1 binds KRIT1-F1 lobe using a GTPase-ubiquitin-like fold interaction but binds KRIT1-F2 lobe by a novel interaction. Point mutagenesis confirms the interaction. High similarity between KRIT1-F2/F3 and talin is revealed. Additionally, the mechanism for FERM domains acting as GTPase effectors is suggested. Finally, structure-based alignment of each lobe suggests classification of FERM domains as ERM-like and TMFK-like (talin-myosin-FAK-KRIT-like) and that FERM lobes resemble domain 'modules.'

  15. A Novel Interaction of the Catalytic Subunit of Protein Phosphatase 2A with the Adaptor Protein CIN85 Suppresses Phosphatase Activity and Facilitates Platelet Outside-in αIIbβ3 Integrin Signaling.

    PubMed

    Khatlani, Tanvir; Pradhan, Subhashree; Da, Qi; Shaw, Tanner; Buchman, Vladimir L; Cruz, Miguel A; Vijayan, K Vinod

    2016-08-12

    The transduction of signals generated by protein kinases and phosphatases are critical for the ability of integrin αIIbβ3 to support stable platelet adhesion and thrombus formation. Unlike kinases, it remains unclear how serine/threonine phosphatases engage the signaling networks that are initiated following integrin ligation. Because protein-protein interactions form the backbone of signal transduction, we searched for proteins that interact with the catalytic subunit of protein phosphatase 2A (PP2Ac). In a yeast two-hybrid study, we identified a novel interaction between PP2Ac and an adaptor protein CIN85 (Cbl-interacting protein of 85 kDa). Truncation and alanine mutagenesis studies revealed that PP2Ac binds to the P3 block ((396)PAIPPKKPRP(405)) of the proline-rich region in CIN85. The interaction of purified PP2Ac with CIN85 suppressed phosphatase activity. Human embryonal kidney 293 αIIbβ3 cells overexpressing a CIN85 P3 mutant, which cannot support PP2Ac binding, displayed decreased adhesion to immobilized fibrinogen. Platelets contain the ∼85 kDa CIN85 protein along with the PP2Ac-CIN85 complex. A myristylated cell-permeable peptide derived from residues 395-407 of CIN85 protein (P3 peptide) disrupted the platelet PP2Ac-CIN85 complex and decreased αIIbβ3 signaling dependent functions such as platelet spreading on fibrinogen and thrombin-mediated fibrin clot retraction. In a phospho-profiling study P3 peptide treated platelets also displayed decreased phosphorylation of several signaling proteins including Src and GSK3β. Taken together, these data support a role for the novel PP2Ac-CIN85 complex in supporting integrin-dependent platelet function by dampening the phosphatase activity. PMID:27334924

  16. Adaptor protein-2 sigma subunit mutations causing familial hypocalciuric hypercalcaemia type 3 (FHH3) demonstrate genotype-phenotype correlations, codon bias and dominant-negative effects.

    PubMed

    Hannan, Fadil M; Howles, Sarah A; Rogers, Angela; Cranston, Treena; Gorvin, Caroline M; Babinsky, Valerie N; Reed, Anita A; Thakker, Clare E; Bockenhauer, Detlef; Brown, Rosalind S; Connell, John M; Cook, Jacqueline; Darzy, Ken; Ehtisham, Sarah; Graham, Una; Hulse, Tony; Hunter, Steven J; Izatt, Louise; Kumar, Dhavendra; McKenna, Malachi J; McKnight, John A; Morrison, Patrick J; Mughal, M Zulf; O'Halloran, Domhnall; Pearce, Simon H; Porteous, Mary E; Rahman, Mushtaqur; Richardson, Tristan; Robinson, Robert; Scheers, Isabelle; Siddique, Haroon; Van't Hoff, William G; Wang, Timothy; Whyte, Michael P; Nesbit, M Andrew; Thakker, Rajesh V

    2015-09-15

    The adaptor protein-2 sigma subunit (AP2σ2) is pivotal for clathrin-mediated endocytosis of plasma membrane constituents such as the calcium-sensing receptor (CaSR). Mutations of the AP2σ2 Arg15 residue result in familial hypocalciuric hypercalcaemia type 3 (FHH3), a disorder of extracellular calcium (Ca(2+) o) homeostasis. To elucidate the role of AP2σ2 in Ca(2+) o regulation, we investigated 65 FHH probands, without other FHH-associated mutations, for AP2σ2 mutations, characterized their functional consequences and investigated the genetic mechanisms leading to FHH3. AP2σ2 mutations were identified in 17 probands, comprising 5 Arg15Cys, 4 Arg15His and 8 Arg15Leu mutations. A genotype-phenotype correlation was observed with the Arg15Leu mutation leading to marked hypercalcaemia. FHH3 probands harboured additional phenotypes such as cognitive dysfunction. All three FHH3-causing AP2σ2 mutations impaired CaSR signal transduction in a dominant-negative manner. Mutational bias was observed at the AP2σ2 Arg15 residue as other predicted missense substitutions (Arg15Gly, Arg15Pro and Arg15Ser), which also caused CaSR loss-of-function, were not detected in FHH probands, and these mutations were found to reduce the numbers of CaSR-expressing cells. FHH3 probands had significantly greater serum calcium (sCa) and magnesium (sMg) concentrations with reduced urinary calcium to creatinine clearance ratios (CCCR) in comparison with FHH1 probands with CaSR mutations, and a calculated index of sCa × sMg/100 × CCCR, which was ≥ 5.0, had a diagnostic sensitivity and specificity of 83 and 86%, respectively, for FHH3. Thus, our studies demonstrate AP2σ2 mutations to result in a more severe FHH phenotype with genotype-phenotype correlations, and a dominant-negative mechanism of action with mutational bias at the Arg15 residue. PMID:26082470

  17. Proteomic Analysis of Mitochondrial-Associated ER Membranes (MAM) during RNA Virus Infection Reveals Dynamic Changes in Protein and Organelle Trafficking

    PubMed Central

    Horner, Stacy M.; Wilkins, Courtney; Badil, Samantha; Iskarpatyoti, Jason; Gale, Michael

    2015-01-01

    RIG-I pathway signaling of innate immunity against RNA virus infection is organized between the ER and mitochondria on a subdomain of the ER called the mitochondrial-associated ER membrane (MAM). The RIG-I adaptor protein MAVS transmits downstream signaling of antiviral immunity, with signaling complexes assembling on the MAM in association with mitochondria and peroxisomes. To identify components that regulate MAVS signalosome assembly on the MAM, we characterized the proteome of MAM, ER, and cytosol from cells infected with either chronic (hepatitis C) or acute (Sendai) RNA virus infections, as well as mock-infected cells. Comparative analysis of protein trafficking dynamics during both chronic and acute viral infection reveals differential protein profiles in the MAM during RIG-I pathway activation. We identified proteins and biochemical pathways recruited into and out of the MAM in both chronic and acute RNA viral infections, representing proteins that drive immunity and/or regulate viral replication. In addition, by using this comparative proteomics approach, we identified 3 new MAVS-interacting proteins, RAB1B, VTN, and LONP1, and defined LONP1 as a positive regulator of the RIG-I pathway. Our proteomic analysis also reveals a dynamic cross-talk between subcellular compartments during both acute and chronic RNA virus infection, and demonstrates the importance of the MAM as a central platform that coordinates innate immune signaling to initiate immunity against RNA virus infection. PMID:25734423

  18. A loss-of-function variant of the antiviral molecule MAVS is associated with a subset of systemic lupus patients

    PubMed Central

    Pothlichet, Julien; Niewold, Timothy B; Vitour, Damien; Solhonne, Brigitte; Crow, Mary K; Si-Tahar, Mustapha

    2011-01-01

    Dysregulation of the antiviral immune response may contribute to autoimmune diseases. Here, we hypothesized that altered expression or function of MAVS, a key molecule downstream of the viral sensors RIG-I and MDA-5, may impair antiviral cell signalling and thereby influence the risk for systemic lupus erythematosus (SLE), the prototype autoimmune disease. We used molecular techniques to screen non-synonymous single nucleotide polymorphisms (SNPs) in the MAVS gene for functional significance in human cell lines and identified one critical loss-of-function variant (C79F, rs11905552). This SNP substantially reduced expression of type I interferon (IFN) and other proinflammatory mediators and was found almost exclusively in the African-American population. Importantly, in African-American SLE patients, the C79F allele was associated with low type I IFN production and absence of anti-RNA-binding protein autoantibodies. These serologic associations were not related to a distinct, functionally neutral, MAVS SNP Q198K. Hence, this is the first demonstration that an uncommon genetic variant in the MAVS gene has a functional impact upon the anti-viral IFN pathway in vivo in humans and is associated with a novel sub-phenotype in SLE. This study demonstrates the utility of functional data in selecting rare variants for genetic association studies, allowing for fewer comparisons requiring statistical correction and for alternate lines of evidence implicating the particular variant in disease. PMID:21268286

  19. Requirement of NOX2 and Reactive Oxygen Species for Efficient RIG-I-Mediated Antiviral Response through Regulation of MAVS Expression

    PubMed Central

    Fink, Karin; Martel, Alexis; Jouan, Loubna; Nzengue, Yves; Lamarre, Daniel; Vande Velde, Christine; Grandvaux, Nathalie

    2010-01-01

    The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNβ and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS. PMID:20532218

  20. The Pixhawk Open-Source Computer Vision Framework for Mavs

    NASA Astrophysics Data System (ADS)

    Meier, L.; Tanskanen, P.; Fraundorfer, F.; Pollefeys, M.

    2011-09-01

    Unmanned aerial vehicles (UAV) and micro air vehicles (MAV) are already intensively used in geodetic applications. State of the art autonomous systems are however geared towards the application area in safe and obstacle-free altitudes greater than 30 meters. Applications at lower altitudes still require a human pilot. A new application field will be the reconstruction of structures and buildings, including the facades and roofs, with semi-autonomous MAVs. Ongoing research in the MAV robotics field is focusing on enabling this system class to operate at lower altitudes in proximity to nearby obstacles and humans. PIXHAWK is an open source and open hardware toolkit for this purpose. The quadrotor design is optimized for onboard computer vision and can connect up to four cameras to its onboard computer. The validity of the system design is shown with a fully autonomous capture flight along a building.

  1. Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission

    PubMed Central

    Koirala, Sajjan; Guo, Qian; Kalia, Raghav; Bui, Huyen T.; Eckert, Debra M.; Frost, Adam; Shaw, Janet M.

    2013-01-01

    Mitochondrial fission is mediated by the dynamin-related GTPases Dnm1/Drp1 (yeast/mammals), which form spirals around constricted sites on mitochondria. Additional membrane-associated adaptor proteins (Fis1, Mdv1, Mff, and MiDs) are required to recruit these GTPases from the cytoplasm to the mitochondrial surface. Whether these adaptors participate in both GTPase recruitment and membrane scission is not known. Here we use a yeast strain lacking all fission proteins to identify the minimal combinations of GTPases and adaptors sufficient for mitochondrial fission. Although Fis1 is dispensable for fission, membrane-anchored Mdv1, Mff, or MiDs paired individually with their respective GTPases are sufficient to divide mitochondria. In addition to their role in Drp1 membrane recruitment, MiDs coassemble with Drp1 in vitro. The resulting heteropolymer adopts a dramatically different structure with a narrower diameter than Drp1 homopolymers assembled in isolation. This result demonstrates that an adaptor protein alters the architecture of a mitochondrial dynamin GTPase polymer in a manner that could facilitate membrane constriction and severing activity. PMID:23530241

  2. Pyruvate Carboxylase Activates the RIG-I-like Receptor-Mediated Antiviral Immune Response by Targeting the MAVS signalosome.

    PubMed

    Cao, Zhongying; Zhou, Yaqin; Zhu, Shengli; Feng, Jian; Chen, Xueyuan; Liu, Shi; Peng, Nanfang; Yang, Xiaodan; Xu, Gang; Zhu, Ying

    2016-01-01

    When retinoic acid-inducible gene 1 protein (RIG-I)-like receptors sense viral dsRNA in the cytosol, RIG-I and melanoma differentiation-associated gene 5 (MDA5) are recruited to the mitochondria to interact with mitochondrial antiviral signaling protein (MAVS) and initiate antiviral immune responses. In this study, we demonstrate that the biotin-containing enzyme pyruvate carboxylase (PC) plays an essential role in the virus-triggered activation of nuclear factor kappa B (NF-κB) signaling mediated by MAVS. PC contributes to the enhanced production of type I interferons (IFNs) and pro-inflammatory cytokines, and PC knockdown inhibits the virus-triggered innate immune response. In addition, PC shows extensive antiviral activity against RNA viruses, including influenza A virus (IAV), human enterovirus 71 (EV71), and vesicular stomatitis virus (VSV). Furthermore, PC mediates antiviral action by targeting the MAVS signalosome and induces IFNs and pro-inflammatory cytokines by promoting phosphorylation of NF-κB inhibitor-α (IκBα) and the IκB kinase (IKK) complex, as well as NF-κB nuclear translocation, which leads to activation of interferon-stimulated genes (ISGs), including double-stranded RNA-dependent protein kinase (PKR) and myxovirus resistance protein 1 (Mx1). Our findings suggest that PC is an important player in host antiviral signaling. PMID:26906558

  3. Pyruvate Carboxylase Activates the RIG-I-like Receptor-Mediated Antiviral Immune Response by Targeting the MAVS signalosome

    PubMed Central

    Cao, Zhongying; Zhou, Yaqin; Zhu, Shengli; Feng, Jian; Chen, Xueyuan; Liu, Shi; Peng, Nanfang; Yang, Xiaodan; Xu, Gang; Zhu, Ying

    2016-01-01

    When retinoic acid-inducible gene 1 protein (RIG-I)-like receptors sense viral dsRNA in the cytosol, RIG-I and melanoma differentiation-associated gene 5 (MDA5) are recruited to the mitochondria to interact with mitochondrial antiviral signaling protein (MAVS) and initiate antiviral immune responses. In this study, we demonstrate that the biotin-containing enzyme pyruvate carboxylase (PC) plays an essential role in the virus-triggered activation of nuclear factor kappa B (NF-κB) signaling mediated by MAVS. PC contributes to the enhanced production of type I interferons (IFNs) and pro-inflammatory cytokines, and PC knockdown inhibits the virus-triggered innate immune response. In addition, PC shows extensive antiviral activity against RNA viruses, including influenza A virus (IAV), human enterovirus 71 (EV71), and vesicular stomatitis virus (VSV). Furthermore, PC mediates antiviral action by targeting the MAVS signalosome and induces IFNs and pro-inflammatory cytokines by promoting phosphorylation of NF-κB inhibitor-α (IκBα) and the IκB kinase (IKK) complex, as well as NF-κB nuclear translocation, which leads to activation of interferon-stimulated genes (ISGs), including double-stranded RNA-dependent protein kinase (PKR) and myxovirus resistance protein 1 (Mx1). Our findings suggest that PC is an important player in host antiviral signaling. PMID:26906558

  4. Habitable Mars Ascent Vehicle (MAV) Concept. [Mars Ascent Vehicle (MAV) Layout and Configuration: 6-Crew, Habitable, Nested Tank Concept

    NASA Technical Reports Server (NTRS)

    Dang, Victor; Rucker, Michelle

    2013-01-01

    NASA's ultimate goal is the human exploration of Mars. Among the many difficult aspects of a trip to Mars is the return mission that would transport the astronauts from the Martian surface back into Mars orbit. One possible conceptual design to accomplish this task is a two-stage Mars Ascent Vehicle (MAV). In order to assess this design, a general layout and configuration for the spacecraft must be developed. The objective of my internship was to model a conceptual MAV design to support NASA's latest human Mars mission architecture trade studies, technology prioritization decisions, and mass, cost, and schedule estimates.

  5. Participatory Video: Toward a Method, Advocacy and Voice (MAV) Framework

    ERIC Educational Resources Information Center

    Sitter, Kathleen C.

    2012-01-01

    Using the new conceptual framework of participatory visual media as method, advocacy and voice (MAV), the author explores an action research study using an exemplar in which advocates from the disability community created and distributed a series of videos about love and sexuality as a critical human rights issue in the disability community. The…

  6. Bicaudal D Family of Motor Adaptors: Linking Dynein Motility to Cargo Binding.

    PubMed

    Hoogenraad, Casper C; Akhmanova, Anna

    2016-05-01

    Transport of different intracellular cargoes along cytoskeleton filaments is essential for the morphogenesis and function of a broad variety of eukaryotic cells. Intracellular transport is mediated by cytoskeletal motors including myosin, kinesin, and dynein, which are typically linked to various cargoes by adaptor proteins. Recent studies suggest that adaptor proteins can also act as essential transport cofactors, which control motor activity and coordination. Characterization of the evolutionary conserved Bicaudal D (BICD) family of dynein adaptor proteins has provided important insights into the fundamental mechanisms governing cargo trafficking. This review highlights the advances in the current understanding of how BICD adaptors regulate microtubule-based transport and how they contribute to developmental processes and human disease. PMID:26822037

  7. A novel interaction between the SH2 domain of signaling adaptor protein Nck-1 and the upstream regulator of the Rho family GTPase Rac1 engulfment and cell motility 1 (ELMO1) promotes Rac1 activation and cell motility.

    PubMed

    Zhang, Guo; Chen, Xia; Qiu, Fanghua; Zhu, Fengxin; Lei, Wenjing; Nie, Jing

    2014-08-15

    Nck family proteins function as adaptors to couple tyrosine phosphorylation signals to actin cytoskeleton reorganization. Several lines of evidence indicate that Nck family proteins involve in regulating the activity of Rho family GTPases. In the present study, we characterized a novel interaction between Nck-1 with engulfment and cell motility 1 (ELMO1). GST pull-down and co-immunoprecipitation assay demonstrated that the Nck-1-ELMO1 interaction is mediated by the SH2 domain of Nck-1 and the phosphotyrosine residues at position 18, 216, 395, and 511 of ELMO1. A R308K mutant of Nck-1 (in which the SH2 domain was inactive), or a 4YF mutant of ELMO1 lacking these four phosphotyrosine residues, diminished Nck-1-ELMO1 interaction. Conversely, tyrosine phosphatase inhibitor treatment and overexpression of Src family kinase Hck significantly enhanced Nck-1-ELMO1 interaction. Moreover, wild type Nck-1, but not R308K mutant, significantly augmented the interaction between ELMO1 and constitutively active RhoG (RhoG(V12A)), thus promoted Rac1 activation and cell motility. Taken together, the present study characterized a novel Nck-1-ELMO1 interaction and defined a new role for Nck-1 in regulating Rac1 activity. PMID:24928514

  8. Non-redundant and complementary functions of adaptor proteins TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling

    PubMed Central

    Vallabhapurapu, Sivakumar; Matsuzawa, Atsushi; Zhang, WeiZhou; Tseng, Ping-Hui; Keats, Jonathan J.; Wang, Haopeng; Vignali, Dario A. A.; Bergsagel, P. Leif; Karin, Michael

    2009-01-01

    The adaptor and signaling proteins TRAF2, TRAF3 and cIAP1 and cIAP2 were suggested to inhibit alternative nuclear factor kappa B (NF-κB) signaling in resting cells by targeting NF-κB inducing kinase (NIK) to ubiquitin-dependent degradation, thus preventing processing of the NF-κB2 precursor protein p100 to release p52. However, the respective functions of TRAF2 and TRAF3 in NIK degradation and activation of alternative NF-κB signaling has remained elusive. We now show that CD40 or BAFF receptor activation resulted in TRAF3 degradation in a cIAP1-cIAP2- and TRAF2- dependent way due to enhanced cIAP1, cIAP2 TRAF3-directed ubiquitin ligase activity. Receptor-induced activation of cIAP1 and cIAP2 correlated with their K63-linked ubiquitination by TRAF2. Degradation of TRAF3 prevented association of NIK with the cIAP1-cIAP2-TRAF2 ubiquitin ligase complex, which resulted in NIK stabilization and NF-κB2-p100 processing. Constitutive activation of this pathway causes perinatal lethality and lymphoid defects. PMID:18997792

  9. Loss of Apm1, the μ1 Subunit of the Clathrin-Associated Adaptor-Protein-1 Complex, Causes Distinct Phenotypes and Synthetic Lethality with Calcineurin Deletion in Fission Yeast

    PubMed Central

    Kita, Ayako; Sugiura, Reiko; Shoji, Hiromi; He, Yi; Deng, Lu; Lu, Yabin; Sio, Susie O.; Takegawa, Kaoru; Sakaue, Motoyoshi; Shuntoh, Hisato; Kuno, Takayoshi

    2004-01-01

    Calcineurin is a highly conserved regulator of Ca2+ signaling in eukaryotes. In fission yeast, calcineurin is not essential for viability but is required for cytokinesis and Cl- homeostasis. In a genetic screen for mutations that are synthetically lethal with calcineurin deletion, we isolated a mutant, cis1-1/apm1-1, an allele of the apm1+ gene that encodes a homolog of the mammalian μ1A subunit of the clathrin-associated adaptor protein-1 (AP-1) complex. The cis1-1/apm1-1 mutant as well as the apm1-deleted (Δapm1) cells showed distinct phenotypes: temperature sensitivity; tacrolimus (FK506) sensitivity; and pleiotropic defects in cytokinesis, cell integrity, and vacuole fusion. Electron micrographs revealed that Δapm1 cells showed large vesicular structures associated with Golgi stacks and accumulated post-Golgi secretory vesicles. Δapm1 cells also showed the massive accumulation of the exocytic v-SNARE Syb1 in the Golgi/endosomes and a reduced secretion of acid phosphatase. These phenotypes observed in apm1 mutations were accentuated upon temperature up-shift and FK506 treatment. Notably, Apm1-GFP localized to the Golgi/endosomes, the spindle pole bodies, and the medial region. These findings suggest a role for Apm1 associated with the Golgi/endosome function, thereby affecting various cellular processes, including secretion, cytokinesis, vacuole fusion, and cell integrity and also suggest that calcineurin is involved in these events. PMID:15047861

  10. Phosphorylation of Adaptor Protein Containing Pleckstrin Homology Domain, Phosphotyrosine Binding Domain, and Leucine Zipper Motif 1 (APPL1) at Ser430 Mediates Endoplasmic Reticulum (ER) Stress-induced Insulin Resistance in Hepatocytes*

    PubMed Central

    Liu, Meilian; Zhou, Lijun; Wei, Li; Villarreal, Ricardo; Yang, Xin; Hu, Derong; Riojas, Ramon A.; Holmes, Bekke M.; Langlais, Paul R.; Lee, Hakjoo; Dong, Lily Q.

    2012-01-01

    APPL1 is an adaptor protein that plays a critical role in regulating adiponectin and insulin signaling. However, how APPL1 is regulated under normal and pathological conditions remains largely unknown. In this study, we show that APPL1 undergoes phosphorylation at Ser430 and that this phosphorylation is enhanced in the liver of obese mice displaying insulin resistance. In cultured mouse hepatocytes, APPL1 phosphorylation at Ser430 is stimulated by phorbol 12-myristate 13-acetate, an activator of classic PKC isoforms, and by the endoplasmic reticulum (ER) stress inducer, thapsigargin. Overexpression of wild-type but not dominant negative PKCα increases APPL1 phosphorylation at Ser430 in mouse hepatocytes. In addition, suppressing PKCα expression by shRNA in hepatocytes reduces ER stress-induced APPL1 phosphorylation at Ser430 as well as the inhibitory effect of ER stress on insulin-stimulated Akt phosphorylation. Consistent with a negative regulatory role of APPL1 phosphorylation at Ser430 in insulin signaling, overexpression of APPL1S430D but not APPL1S430A impairs the potentiating effect of APPL1 on insulin-stimulated Akt phosphorylation at Thr308. Taken together, our results identify APPL1 as a novel target in ER stress-induced insulin resistance and PKCα as the kinase mediating ER stress-induced phosphorylation of APPL1 at Ser430. PMID:22685300

  11. Absence of the Adaptor Protein PEA-15 Is Associated with Altered Pattern of Th Cytokines Production by Activated CD4+ T Lymphocytes In Vitro, and Defective Red Blood Cell Alloimmune Response In Vivo

    PubMed Central

    Kerbrat, Stéphane; Vingert, Benoit; Junier, Marie-Pierre; Castellano, Flavia; Renault-Mihara, François; Dos Reis Tavares, Silvina; Surenaud, Mathieu; Noizat-Pirenne, France; Boczkowski, Jorge; Guellaën, Georges; Chneiweiss, Hervé; Le Gouvello, Sabine

    2015-01-01

    TCR-dependent and costimulation signaling, cell division, and cytokine environment are major factors driving cytokines expression induced by CD4+ T cell activation. PEA-15 15 (Protein Enriched in Astrocyte / 15kDa) is an adaptor protein that regulates death receptor-induced apoptosis and proliferation signaling by binding to FADD and relocating ERK1/2 to the cytosol, respectively. By using PEA-15-deficient mice, we examined the role of PEA-15 in TCR-dependent cytokine production in CD4+ T cells. TCR-stimulated PEA-15-deficient CD4+ T cells exhibited defective progression through the cell cycle associated with impaired expression of cyclin E and phosphoRb, two ERK1/2-dependent proteins of the cell cycle. Accordingly, expression of the division cycle-dependent cytokines IL-2 and IFNγ, a Th1 cytokine, was reduced in stimulated PEA-15-deficient CD4+ T cells. This was associated with abnormal subcellular compartmentalization of activated ERK1/2 in PEA-15-deficient T cells. Furthermore, in vitro TCR-dependent differentiation of naive CD4+ CD62L+ PEA-15-deficient T cells was associated with a lower production of the Th2 cytokine, IL-4, whereas expression of the Th17-associated molecule IL4I1 was enhanced. Finally, a defective humoral response was shown in PEA-15-deficient mice in a model of red blood cell alloimmunization performed with Poly IC, a classical adjuvant of Th1 response in vivo. Collectively, our data suggest that PEA-15 contributes to the specification of the cytokine pattern of activated Th cells, thus highlighting a potential new target to interfere with T cell functional polarization and subsequent immune response. PMID:26317969

  12. Absence of the Adaptor Protein PEA-15 Is Associated with Altered Pattern of Th Cytokines Production by Activated CD4+ T Lymphocytes In Vitro, and Defective Red Blood Cell Alloimmune Response In Vivo.

    PubMed

    Kerbrat, Stéphane; Vingert, Benoit; Junier, Marie-Pierre; Castellano, Flavia; Renault-Mihara, François; Dos Reis Tavares, Silvina; Surenaud, Mathieu; Noizat-Pirenne, France; Boczkowski, Jorge; Guellaën, Georges; Chneiweiss, Hervé; Le Gouvello, Sabine

    2015-01-01

    TCR-dependent and costimulation signaling, cell division, and cytokine environment are major factors driving cytokines expression induced by CD4(+) T cell activation. PEA-15 15 (Protein Enriched in Astrocyte / 15 kDa) is an adaptor protein that regulates death receptor-induced apoptosis and proliferation signaling by binding to FADD and relocating ERK1/2 to the cytosol, respectively. By using PEA-15-deficient mice, we examined the role of PEA-15 in TCR-dependent cytokine production in CD4(+) T cells. TCR-stimulated PEA-15-deficient CD4(+) T cells exhibited defective progression through the cell cycle associated with impaired expression of cyclin E and phosphoRb, two ERK1/2-dependent proteins of the cell cycle. Accordingly, expression of the division cycle-dependent cytokines IL-2 and IFNγ, a Th1 cytokine, was reduced in stimulated PEA-15-deficient CD4(+) T cells. This was associated with abnormal subcellular compartmentalization of activated ERK1/2 in PEA-15-deficient T cells. Furthermore, in vitro TCR-dependent differentiation of naive CD4(+) CD62L(+) PEA-15-deficient T cells was associated with a lower production of the Th2 cytokine, IL-4, whereas expression of the Th17-associated molecule IL4I1 was enhanced. Finally, a defective humoral response was shown in PEA-15-deficient mice in a model of red blood cell alloimmunization performed with Poly IC, a classical adjuvant of Th1 response in vivo. Collectively, our data suggest that PEA-15 contributes to the specification of the cytokine pattern of activated Th cells, thus highlighting a potential new target to interfere with T cell functional polarization and subsequent immune response. PMID:26317969

  13. Linker for Activation of T-cell Family Member2 (LAT2) a Lipid Raft Adaptor Protein for AKT Signaling, Is an Early Mediator of Alkylphospholipid Anti-leukemic Activity*

    PubMed Central

    Thomé, Carolina H.; dos Santos, Guilherme A.; Ferreira, Germano A.; Scheucher, Priscila S.; Izumi, Clarice; Leopoldino, Andreia M.; Simão, Ana Maria; Ciancaglini, Pietro; de Oliveira, Kleber T.; Chin, Alice; Hanash, Samir M.; Falcão, Roberto P.; Rego, Eduardo M.; Greene, Lewis J.; Faça, Vitor M.

    2012-01-01

    Lipid rafts are highly ordered membrane domains rich in cholesterol and sphingolipids that provide a scaffold for signal transduction proteins; altered raft structure has also been implicated in cancer progression. We have shown that 25 μm 10-(octyloxy) decyl-2-(trimethylammonium) ethyl phosphate (ODPC), an alkylphospholipid, targets high cholesterol domains in model membranes and induces apoptosis in leukemia cells but spares normal hematopoietic and epithelial cells under the same conditions. We performed a quantitative (SILAC) proteomic screening of ODPC targets in a lipid-raft-enriched fraction of leukemic cells to identify early events prior to the initiation of apoptosis. Six proteins, three with demonstrated palmitoylation sites, were reduced in abundance. One, the linker for activation of T-cell family member 2 (LAT2), is an adaptor protein associated with lipid rafts in its palmitoylated form and is specifically expressed in B lymphocytes and myeloid cells. Interestingly, LAT2 is not expressed in K562, a cell line more resistant to ODPC-induced apoptosis. There was an early loss of LAT2 in the lipid-raft-enriched fraction of NB4 cells within 3 h following treatment with 25 μm ODPC. Subsequent degradation of LAT2 by proteasomes was observed. Twenty-five μm ODPC inhibited AKT activation via myeloid growth factors, and LAT2 knockdown in NB4 cells by shRNA reproduced this effect. LAT2 knockdown in NB4 cells also decreased cell proliferation and increased cell sensitivity to ODPC (7.5×), perifosine (3×), and arsenic trioxide (8.5×). Taken together, these data indicate that LAT2 is an early mediator of the anti-leukemic activity of alkylphospholipids and arsenic trioxide. Thus, LAT2 may be used as a target for the design of drugs for cancer therapy. PMID:23001822

  14. Linker for activation of T-cell family member2 (LAT2) a lipid raft adaptor protein for AKT signaling, is an early mediator of alkylphospholipid anti-leukemic activity.

    PubMed

    Thomé, Carolina H; dos Santos, Guilherme A; Ferreira, Germano A; Scheucher, Priscila S; Izumi, Clarice; Leopoldino, Andreia M; Simão, Ana Maria; Ciancaglini, Pietro; de Oliveira, Kleber T; Chin, Alice; Hanash, Samir M; Falcão, Roberto P; Rego, Eduardo M; Greene, Lewis J; Faça, Vitor M

    2012-12-01

    Lipid rafts are highly ordered membrane domains rich in cholesterol and sphingolipids that provide a scaffold for signal transduction proteins; altered raft structure has also been implicated in cancer progression. We have shown that 25 μm 10-(octyloxy) decyl-2-(trimethylammonium) ethyl phosphate (ODPC), an alkylphospholipid, targets high cholesterol domains in model membranes and induces apoptosis in leukemia cells but spares normal hematopoietic and epithelial cells under the same conditions. We performed a quantitative (SILAC) proteomic screening of ODPC targets in a lipid-raft-enriched fraction of leukemic cells to identify early events prior to the initiation of apoptosis. Six proteins, three with demonstrated palmitoylation sites, were reduced in abundance. One, the linker for activation of T-cell family member 2 (LAT2), is an adaptor protein associated with lipid rafts in its palmitoylated form and is specifically expressed in B lymphocytes and myeloid cells. Interestingly, LAT2 is not expressed in K562, a cell line more resistant to ODPC-induced apoptosis. There was an early loss of LAT2 in the lipid-raft-enriched fraction of NB4 cells within 3 h following treatment with 25 μm ODPC. Subsequent degradation of LAT2 by proteasomes was observed. Twenty-five μm ODPC inhibited AKT activation via myeloid growth factors, and LAT2 knockdown in NB4 cells by shRNA reproduced this effect. LAT2 knockdown in NB4 cells also decreased cell proliferation and increased cell sensitivity to ODPC (7.5×), perifosine (3×), and arsenic trioxide (8.5×). Taken together, these data indicate that LAT2 is an early mediator of the anti-leukemic activity of alkylphospholipids and arsenic trioxide. Thus, LAT2 may be used as a target for the design of drugs for cancer therapy. PMID:23001822

  15. Aerial networking communication solutions using Micro Air Vehicle (MAV)

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Shyam; de Graaf, Maurits; Hoekstra, Gerard; Corporaal, Henk; Wijtvliet, Mark; Cuadros Linde, Javier

    2014-10-01

    The application of a Micro Air Vehicle (MAV) for wireless networking is slowly gaining significance in the field of network robotics. Aerial transport of data requires efficient network protocols along with accurate positional adjustment of the MAV to minimize transaction times. In our proof of concept, we develop an Aerial networking protocol for data transfer using the technology of Disruption Tolerant Networks (DTN), a store-and-forward approach for environments that deals with disrupted connectivity. Our results show that close interaction between networking and flight behavior helps in efficient data exchange. Potential applications are in areas where network infrastructure is minimal or unavailable and distances may be large. For example, forwarding video recordings during search and rescue, agriculture, swarm communication, among several others. A practical implementation and validation, as described in this paper, presents the complex dynamics of wireless environments and poses new challenges that are not addressed in earlier work on this topic. Several tests are evaluated in a practical setup to display the networking MAV behavior during such an operation.

  16. Application of Piezoelectrics to Flapping-Wing MAVs

    NASA Astrophysics Data System (ADS)

    Widstrand, Alex; Hubner, J. Paul

    2015-11-01

    Micro air vehicles (MAVs) are a class of unmanned aerial vehicles that are size-restricted and operate at low velocities and low Reynolds numbers. An ongoing challenge with MAVs is that their flight-related operations are highly constrained by their size and weight, which limits battery size and, therefore, available power. One type of MAV called an ornithopter flies using flapping wings to create both lift and thrust, much like birds and insects do. Further bio-inspiration from bats led to the design of membrane wings for these vehicles, which provide aerodynamic benefits through passive vibration. In an attempt to capitalize on this vibration, a piezoelectric film, which generates a voltage when stressed, was investigated as the wing surface. Two wing planforms with constant area were designed and fabricated. The goal was to measure the wings' flight characteristics and output energy in freestream conditions. Complications with the flapper arose which prevented wind tunnel tests from being performed; however, energy data was obtained from table-top shaker tests. Preliminary results indicate that wing shape affects the magnitude of the charge generated, with a quarter-elliptic planform outperforming a rectangular planform. Funding provided by NSF REU Site Award number 1358991.

  17. Loss of PDZ-adaptor protein NHERF2 affects membrane localization and cGMP- and [Ca2+]- but not cAMP-dependent regulation of Na+/H+ exchanger 3 in murine intestine

    PubMed Central

    Chen, Mingmin; Sultan, Ayesha; Cinar, Ayhan; Yeruva, Sunil; Riederer, Brigitte; Singh, Anurag Kumar; Li, Junhua; Bonhagen, Janina; Chen, Gang; Yun, Chris; Donowitz, Mark; Hogema, Boris; deJonge, Hugo; Seidler, Ursula

    2010-01-01

    Trafficking and regulation of the epithelial brush border membrane (BBM) Na+/H+ exchanger 3 (NHE3) in the intestine involves interaction with four different members of the NHERF family in a signal-dependent and possibly segment-specific fashion. The aim of this research was to study the role of NHERF2 (E3KARP) in intestinal NHE3 BBM localization and second messenger-mediated and receptor-mediated inhibition of NHE3. Immunolocalization of NHE3 in WT mice revealed predominant microvillar localization in jejunum and colon, a mixed distribution in the proximal ileum but localization near the terminal web in the distal ileum. The terminal web localization of NHE3 in the distal ileum correlated with reduced acid-activated NHE3 activity (fluorometrically assessed). NHERF2 ablation resulted in a shift of NHE3 to the microvilli and higher basal fluid absorption rates in the ileum, but no change in overall NHE3 protein or mRNA expression. Forskolin-induced NHE3 inhibition was preserved in the absence of NHERF2, whereas Ca2+ ionophore- or carbachol-mediated inhibition was abolished. Likewise, Escherichia coli heat stable enterotoxin peptide (STp) lost its inhibitory effect on intestinal NHE3. It is concluded that in native murine intestine, the NHE3 adaptor protein NHERF2 plays important roles in tethering NHE3 to a position near the terminal web and in second messenger inhibition of NHE3 in a signal- and segment-specific fashion, and is therefore an important regulator of intestinal fluid transport. PMID:20962002

  18. Arabidopsis BPM Proteins Function as Substrate Adaptors to a CULLIN3-Based E3 Ligase to Affect Fatty Acid Metabolism in Plants[W

    PubMed Central

    Chen, Liyuan; Lee, Joo Hyun; Weber, Henriette; Tohge, Takayuki; Witt, Sandra; Roje, Sanja; Fernie, Alisdair R.; Hellmann, Hanjo

    2013-01-01

    Regulation of transcriptional processes is a critical mechanism that enables efficient coordination of the synthesis of required proteins in response to environmental and cellular changes. Transcription factors require accurate activity regulation because they play a critical role as key mediators assuring specific expression of target genes. In this work, we show that CULLIN3-based E3 ligases have the potential to interact with a broad range of ETHYLENE RESPONSE FACTOR (ERF)/APETALA2 (AP2) transcription factors, mediated by MATH-BTB/POZ (for Meprin and TRAF [tumor necrosis factor receptor associated factor] homolog)-Broad complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) proteins. The assembly with an E3 ligase causes degradation of their substrates via the 26S proteasome, as demonstrated for the WRINKLED1 ERF/AP2 protein. Furthermore, loss of MATH-BTB/POZ proteins widely affects plant development and causes altered fatty acid contents in mutant seeds. Overall, this work demonstrates a link between fatty acid metabolism and E3 ligase activities in plants and establishes CUL3-based E3 ligases as key regulators in transcriptional processes that involve ERF/AP2 family members. PMID:23792371

  19. Vitamin E (E) supplementation reverses the age associated decline in phosphorylation of the adaptor protein LAT in CD4+ T cells of old mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    T cell proliferation and interleukin (IL-2) production declines with age. Engagement of the T cell receptor (TCR) by antigen (Ag), known as the immune synapse (IS), in coordination with phosphorylation of key signaling proteins, leads to increased IL-2 synthesis and T cell proliferation. Defects in ...

  20. Clathrin binding by the adaptor Ent5 promotes late stages of clathrin coat maturation

    PubMed Central

    Hung, Chao-Wei; Duncan, Mara C.

    2016-01-01

    Clathrin is a ubiquitous protein that mediates membrane traffic at many locations. To function, clathrin requires clathrin adaptors that link it to transmembrane protein cargo. In addition to this cargo selection function, many adaptors also play mechanistic roles in the formation of the transport carrier. However, the full spectrum of these mechanistic roles is poorly understood. Here we report that Ent5, an endosomal clathrin adaptor in Saccharomyces cerevisiae, regulates the behavior of clathrin coats after the recruitment of clathrin. We show that loss of Ent5 disrupts clathrin-dependent traffic and prolongs the lifespan of endosomal structures that contain clathrin and other adaptors, suggesting a defect in coat maturation at a late stage. We find that the direct binding of Ent5 with clathrin is required for its role in coat behavior and cargo traffic. Surprisingly, the interaction of Ent5 with other adaptors is dispensable for coat behavior but not cargo traffic. These findings support a model in which Ent5 clathrin binding performs a mechanistic role in coat maturation, whereas Ent5 adaptor binding promotes cargo incorporation. PMID:26842894

  1. Differential Association of the Na+/H+ Exchanger Regulatory Factor (NHERF) Family of Adaptor Proteins with the Raft-and the Non-Raft Brush Border Membrane Fractions of NHE3

    PubMed Central

    Sultan, Ayesha; Luo, Min; Yu, Qin; Riederer, Brigitte; Xia, Weiliang; Chen, Mingmin; Lissner, Simone; Gessner, Johannes E.; Donowitz, Mark; Yun, C. Chris; deJonge, Hugo; Lamprecht, Georg; Seidler, Ursula

    2014-01-01

    Background/Aims Trafficking, brush border membrane (BBM) retention, and signal-specific regulation of the Na+/H+ exchanger NHE3 is regulated by the Na+/H+ Exchanger Regulatory Factor (NHERF) family of PDZ-adaptor proteins, which enable the formation of multiprotein complexes. It is unclear, however, what determines signal specificity of these NHERFs. Thus, we studied the association of NHE3, NHERF1 (EBP50), NHERF2 (E3KARP), and NHERF3 (PDZK1) with lipid rafts in murine small intestinal BBM. Methods Detergent resistant membranes (“lipid rafts”) were isolated by floatation of Triton X-incubated small intestinal BBM from a variety of knockout mouse strains in an Optiprep step gradient. Acid-activated NHE3 activity was measured fluorometrically in BCECF-loaded microdissected villi, or by assessment of CO2/HCO3− mediated increase in fluid absorption in perfused jejunal loops of anethetized mice. Results NHE3 was found to partially associate with lipid rafts in the native BBM, and NHE3 raft association had an impact on NHE3 transport activity and regulation in vivo. NHERF1, 2 and 3 were differentially distributed to rafts and non-rafts, with NHERF2 being most raft-associated and NHERF3 entirely non-raft associated. NHERF2 expression enhanced the localization of NHE3 to membrane rafts. The use of acid sphingomyelinase-deficient mice, which have altered membrane lipid as well as lipid raft composition, allowed us to test the validity of the lipid raft concept in vivo. Conclusions The differential association of the NHERFs with the raft-associated and the non-raft fraction of NHE3 in the brush border membrane is one component of the differential and signal-specific NHE3 regulation by the different NHERFs. PMID:24297041

  2. Abelson interactor-1 (ABI-1) interacts with MRL adaptor protein MIG-10 and is required in guided cell migrations and process outgrowth in C.elegans

    PubMed Central

    McShea, Molly A.; Schmidt, Kristopher L.; Dubuke, Michelle L.; Baldiga, Christina E.; Sullender, Meagan E.; Reis, Andrea L.; Zhang, Subaiou; O'Toole, Sean M.; Jeffers, Mary C.; Warden, Rachel M.; Kenney, Allison H.; Gosselin, Jennifer; Kuhlwein, Mark; Hashmi, Sana K.; Stringham, Eve G.; Ryder, Elizabeth F.

    2012-01-01

    Directed cell migration and process outgrowth are vital to proper development of many metazoan tissues. These processes are dependent on reorganization of the actin cytoskeleton in response to external guidance cues. During development of the nervous system, the MIG-10/RIAM/Lamellipodin (MRL) signaling proteins are thought to transmit positional information from surface guidance cues to the actin polymerization machinery, and thus to promote polarized outgrowth of axons. In C. elegans, mutations in the MRL family member gene mig-10 result in animals that have defects in axon guidance, neuronal migration, and the outgrowth of the processes or ‘canals’ of the excretory cell, which is required for osmoregulation in the worm. In addition, mig-10 mutant animals have recently been shown to have defects in clustering of vesicles at the synapse. To determine additional molecular partners of MIG-10, we conducted a yeast two hybrid screen using isoform MIG-10A as bait and isolated Abelson-interactor protein-1 (ABI-1). ABI-1, a downstream target of Abl non-receptor tyrosine kinase, is a member of the WAVE regulatory complex (WRC) involved in the initiation of actin polymerization. Further analysis using a co-mmunoprecipitation system confirmed the interaction of MIG-10 and ABI-1 and showed that it requires the SH3 domain of ABI-1. Single mutants for mig-10 and abi-1 displayed similar phenotypes of incomplete migration of the ALM neurons and truncated outgrowth of the excretory cell canals, suggesting that the ABI-1/MIG-10 interaction is relevant in vivo. Cell autonomous expression of MIG-10 isoforms rescued both the neuronal migration and the canal outgrowth defects, showing that MIG-10 functions autonomously in the ALM neurons and the excretory cell. These results suggest that MIG-10 and ABI-1 interact physically to promote cell migration and process outgrowth in vivo. In the excretory canal, ABI-1 is thought to act downstream of UNC-53/NAV2, linking this large

  3. MyD88 adaptor-like (Mal) functions in the epithelial barrier and contributes to intestinal integrity via protein kinase C.

    PubMed

    Corr, S C; Palsson-McDermott, E M; Grishina, I; Barry, S P; Aviello, G; Bernard, N J; Casey, P G; Ward, J B J; Keely, S J; Dandekar, S; Fallon, P G; O'Neill, L A J

    2014-01-01

    MyD88 adapter-like (Mal)-deficient mice displayed increased susceptibility to oral but not intraperitoneal infection with Salmonella Typhimurium. Bone marrow chimeras demonstrated that mice with Mal-deficient non-hematopoietic cells were more susceptible to infection, indicating a role for Mal in non-myeloid cells. We observed perturbed barrier function in Mal(-/-) mice, as indicated by reduced electrical resistance and increased mucosa blood permeability following infection. Altered expression of occludin, Zonula occludens-1, and claudin-3 in intestinal epithelia from Mal(-/-) mice suggest that Mal regulates tight junction formation, which may in part contribute to intestinal integrity. Mal interacted with several protein kinase C (PKC) isoforms in a Caco-2 model of intestinal epithelia and inhibition of Mal or PKC increased permeability and bacterial invasion via a paracellular route, while a pan-PKC inhibitor increased susceptibility to oral infection in mice. Mal signaling is therefore beneficial to the integrity of the intestinal barrier during infection. PMID:23612054

  4. Palmitic acid increases pro-oxidant adaptor protein p66Shc expression and affects vascularization factors in angiogenic mononuclear cells: Action of resveratrol.

    PubMed

    Favre, Julie; Yildirim, Cansu; Leyen, Thomas A; Chen, Weena J Y; van Genugten, Renate E; van Golen, Larissa W; Garcia-Vallejo, Juan-Jesus; Musters, Rene; Baggen, Josefien; Fontijn, Ruud; van der Pouw Kraan, Tineke; Serné, Erik; Koolwijk, Pieter; Diamant, Michaela; Horrevoets, Anton J G

    2015-12-01

    A defect in neo-vascularization process involving circulating angiogenic mononuclear cells (CACs) dysfunction is associated with diabetes. We showed that oxidative stress was elevated in CACs cultured from blood of individuals with metabolic syndrome (MetS) and diabetes. We then assessed the action of palmitic acid (PA), a deregulated and increased NEFA in metabolic disorders, focusing on its oxidant potential. We observed that the phyto-polyphenol resveratrol normalized oxidative stress both in CACs isolated from MetS patients or treated with PA. Resveratrol further decreased the deleterious action of PA on gene expression of vascularization factors (TNFα, VEGF-A, SDF1α, PECAM-1, VEGFR2, Tie2 and CXCR4) and improved CAC motility. Particularly, resveratrol abolished the PA-induced over-expression of the pro-oxidant protein p66Shc. Neither KLF2 nor SIRT1, previously shown in resveratrol and p66Shc action, was directly involved. Silencing p66Shc normalized PA action on VEGF-A and TNFα specifically, without abolishing the PA-induced oxidative stress, which suggests a deleterious role of p66Shc independently of any major modulation of the cellular oxidative status in a high NEFA levels context. Besides showing that resveratrol reverses PA-induced harmful effects on human CAC function, certainly through profound cellular modifications, we establish p66Shc as a major therapeutic target in metabolic disorders, independent from glycemic control. PMID:26254104

  5. The E3 Ubiquitin Ligase Adaptor Protein Skp1 Is Glycosylated by an Evolutionarily Conserved Pathway That Regulates Protist Growth and Development.

    PubMed

    Rahman, Kazi; Zhao, Peng; Mandalasi, Msano; van der Wel, Hanke; Wells, Lance; Blader, Ira J; West, Christopher M

    2016-02-26

    Toxoplasma gondii is a protist parasite of warm-blooded animals that causes disease by proliferating intracellularly in muscle and the central nervous system. Previous studies showed that a prolyl 4-hydroxylase related to animal HIFα prolyl hydroxylases is required for optimal parasite proliferation, especially at low O2. We also observed that Pro-154 of Skp1, a subunit of the Skp1/Cullin-1/F-box protein (SCF)-class of E3-ubiquitin ligases, is a natural substrate of this enzyme. In an unrelated protist, Dictyostelium discoideum, Skp1 hydroxyproline is modified by five sugars via the action of three glycosyltransferases, Gnt1, PgtA, and AgtA, which are required for optimal O2-dependent development. We show here that TgSkp1 hydroxyproline is modified by a similar pentasaccharide, based on mass spectrometry, and that assembly of the first three sugars is dependent on Toxoplasma homologs of Gnt1 and PgtA. Reconstitution of the glycosyltransferase reactions in extracts with radioactive sugar nucleotide substrates and appropriate Skp1 glycoforms, followed by chromatographic analysis of acid hydrolysates of the reaction products, confirmed the predicted sugar identities as GlcNAc, Gal, and Fuc. Disruptions of gnt1 or pgtA resulted in decreased parasite growth. Off target effects were excluded based on restoration of the normal glycan chain and growth upon genetic complementation. By analogy to Dictyostelium Skp1, the mechanism may involve regulation of assembly of the SCF complex. Understanding the mechanism of Toxoplasma Skp1 glycosylation is expected to help develop it as a drug target for control of the pathogen, as the glycosyltransferases are absent from mammalian hosts. PMID:26719340

  6. Structural Basis for Membrane Binding and Remodeling by the Exomer Secretory Vesicle Cargo Adaptor

    PubMed Central

    Paczkowski, Jon E.; Fromme, J. Christopher

    2014-01-01

    Summary Cargo adaptor subunits of vesicle coat protein complexes sort transmembrane proteins to distinct membrane compartments in eukaryotic cells. The exomer complex is the only cargo adaptor known to sort proteins at the trans-Golgi network into secretory vesicles. Exomer function is regulated by the Arf1 GTPase, a master regulator of trafficking at the Golgi. We report the structure of exomer bound to two copies of Arf1. Exomer interacts with each Arf1 molecule via two surfaces; one is a non-canonical interface that regulates GTP hydrolysis. The structure uncovers an unexpected membrane-proximal hydrophobic element that exomer uses in cooperation with Arf1 to remodel membranes. Given the constrained motion of the exomer hinge region, we envision that exomer dynamically positions multiple membrane insertion elements to drive membrane fission. In contrast to other known cargo adaptors, exomer therefore couples two functions, cargo sorting and membrane fission, into a single complex. PMID:25203211

  7. Adaptor assembly for coupling turbine blades to rotor disks

    SciTech Connect

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell

    2014-09-23

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is described. The adaptor assembly includes a turbine blade having a blade root and an adaptor body having an adaptor root. The adaptor body defines a slot having an open end configured to receive the blade root of the turbine blade such that the adaptor root of the adaptor body and the blade root of the turbine blade are adjacent to one another when the blade root of the turbine blade is positioned within the slot. Both the adaptor root of the adaptor body and the blade root of the turbine blade are configured to be received within the root slot of the rotor disk.

  8. The exomer cargo adaptor structure reveals a novel GTPase-binding domain

    PubMed Central

    Paczkowski, Jon E; Richardson, Brian C; Strassner, Amanda M; Fromme, J Christopher

    2012-01-01

    Cargo adaptors control intracellular trafficking of transmembrane proteins by sorting them into membrane transport carriers. The COPI, COPII, and clathrin cargo adaptors are structurally well characterized, but other cargo adaptors remain poorly understood. Exomer is a specialized cargo adaptor that sorts specific proteins into trans-Golgi network (TGN)-derived vesicles in response to cellular signals. Exomer is recruited to the TGN by the Arf1 GTPase, a universally conserved trafficking regulator. Here, we report the crystal structure of a tetrameric exomer complex composed of two copies each of the Chs5 and Chs6 subunits. The structure reveals the FN3 and BRCT domains of Chs5, which together we refer to as the FBE domain (FN3–BRCT of exomer), project from the exomer core complex. The overall architecture of the FBE domain is reminiscent of the appendage domains of other cargo adaptors, although it exhibits a distinct topology. In contrast to appendage domains, which bind accessory factors, we show that the primary role of the FBE domain is to bind Arf1 for recruitment of exomer to membranes. PMID:23000721

  9. Yeast Golgi-localized, gamma-Ear-containing, ADP-ribosylation factor-binding proteins are but adaptor protein-1 is not required for cell-free transport of membrane proteins from the trans-Golgi network to the prevacuolar compartment.

    PubMed

    Abazeed, Mohamed E; Fuller, Robert S

    2008-11-01

    Golgi-localized, gamma-Ear-containing, ADP-ribosylation factor-binding proteins (GGAs) and adaptor protein-1 (AP-1) mediate clathrin-dependent trafficking of transmembrane proteins between the trans-Golgi network (TGN) and endosomes. In yeast, the vacuolar sorting receptor Vps10p follows a direct pathway from the TGN to the late endosome/prevacuolar compartment (PVC), whereas, the processing protease Kex2p partitions between the direct pathway and an indirect pathway through the early endosome. To examine the roles of the Ggas and AP-1 in TGN-PVC transport, we used a cell-free assay that measures delivery to the PVC of either Kex2p or a chimeric protein (K-V), in which the Vps10p cytosolic tail replaces the Kex2p tail. Either antibody inhibition or dominant-negative Gga2p completely blocked K-V transport but only partially blocked Kex2p transport. Deletion of APL2, encoding the beta subunit of AP-1, did not affect K-V transport but partially blocked Kex2p transport. Residual Kex2p transport seen with apl2Delta membranes was insensitive to dominant-negative Gga2p, suggesting that the apl2Delta mutation causes Kex2p to localize to a compartment that precludes Gga-dependent trafficking. These results suggest that yeast Ggas facilitate the specific and direct delivery of Vps10p and Kex2p from the TGN to the PVC and that AP-1 modulates Kex2p trafficking through a distinct pathway, presumably involving the early endosome. PMID:18784256

  10. Yeast Golgi-localized, γ-Ear–containing, ADP-Ribosylation Factor-binding Proteins Are but Adaptor Protein-1 Is Not Required for Cell-free Transport of Membrane Proteins from the Trans-Golgi Network to the Prevacuolar Compartment

    PubMed Central

    Abazeed, Mohamed E.

    2008-01-01

    Golgi-localized, γ-Ear–containing, ADP-ribosylation factor-binding proteins (GGAs) and adaptor protein-1 (AP-1) mediate clathrin-dependent trafficking of transmembrane proteins between the trans-Golgi network (TGN) and endosomes. In yeast, the vacuolar sorting receptor Vps10p follows a direct pathway from the TGN to the late endosome/prevacuolar compartment (PVC), whereas, the processing protease Kex2p partitions between the direct pathway and an indirect pathway through the early endosome. To examine the roles of the Ggas and AP-1 in TGN–PVC transport, we used a cell-free assay that measures delivery to the PVC of either Kex2p or a chimeric protein (K-V), in which the Vps10p cytosolic tail replaces the Kex2p tail. Either antibody inhibition or dominant-negative Gga2p completely blocked K-V transport but only partially blocked Kex2p transport. Deletion of APL2, encoding the β subunit of AP-1, did not affect K-V transport but partially blocked Kex2p transport. Residual Kex2p transport seen with apl2Δ membranes was insensitive to dominant-negative Gga2p, suggesting that the apl2Δ mutation causes Kex2p to localize to a compartment that precludes Gga-dependent trafficking. These results suggest that yeast Ggas facilitate the specific and direct delivery of Vps10p and Kex2p from the TGN to the PVC and that AP-1 modulates Kex2p trafficking through a distinct pathway, presumably involving the early endosome. PMID:18784256

  11. THREADED ADAPTOR FOR LUGGED PIPE ENDS

    DOEpatents

    Robb, J.E.

    1962-06-01

    An adaptor is designed for enabling a threaded part to be connected to a member at a region having lugs normally receiving bayonet slots of another part for attachment of the latter. It has been found desirable to replace a closure cap connected in a bayonet joint to the end of a coolant tube containing nuclear- reactor fuel elements, with a threaded valve. An adaptor is used which has J- slots receiving lugs on the end of the reactor tube, a thread for connection with the valve, and gear-tooth section enabling a gear-type of tool to rotate the adaptor to seal the valve to the end of the reactor tube. (AEC)

  12. Flexible Wing Base Micro Aerial Vehicles: Micro Air Vehicles (MAVs) for Surveillance and Remote Sensor Delivery

    NASA Technical Reports Server (NTRS)

    Ifju, Peter

    2002-01-01

    Micro Air Vehicles (MAVs) will be developed for tracking individuals, locating terrorist threats, and delivering remote sensors, for surveillance and chemical/biological agent detection. The tasks are: (1) Develop robust MAV platform capable of carrying sensor payload. (2) Develop fully autonomous capabilities for delivery of sensors to remote and distant locations. The current capabilities and accomplishments are: (1) Operational electric (inaudible) 6-inch MAVs with novel flexible wing, providing superior aerodynamic efficiency and control. (2) Vision-based flight stability and control (from on-board cameras).

  13. Image based augmentation of an autonomous VTOL-MAV

    NASA Astrophysics Data System (ADS)

    Frietsch, N.; Maier, A.; Kessler, C.; Meister, O.; Seibold, J.; Trommer, G. F.

    2009-09-01

    In this paper, the development of a vision based system for a small-scale VTOL-MAV is presented. The on-board GPS/INS navigation system is augmented by further sensors in order to allow for an autonomous waypoint mode. Especially in urban environments the GPSsignal quality is disturbed by shading and multipath propagation. The investigated vision system based on algorithms analyzing the optical flow is essential to enable the helicopter to reliably hover even in these scenarios. Due to the integration of the vision based navigation information into the navigation filter, GPSsignal outages can be bridged. The necessary height above ground information is estimated from the relative altitude change given by the barometric altimeter and the optical flow.

  14. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  15. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  16. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  17. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  18. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  19. 21 CFR 870.2350 - Electrocardiograph lead switching adaptor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electrocardiograph lead switching adaptor. 870... Electrocardiograph lead switching adaptor. (a) Identification. An electrocardiograph lead switching adaptor is a passive switching device to which electrocardiograph limb and chest leads may be attached. This device...

  20. Styles of Creativity: Adaptors and Innovators in a Singapore Context

    ERIC Educational Resources Information Center

    Ee, Jessie; Seng, Tan Oon; Kwang, Ng Aik

    2007-01-01

    Kirton (1976) described two creative styles, namely adaptors and innovators. Adaptors prefer to "do things better" whilst, innovators prefer to "do things differently". This study explored the relationship between two creative styles (adaptor and innovator) and the Big Five personality traits (extraversion, agreeableness, conscientiousness,…

  1. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  2. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  3. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  4. 21 CFR 870.3620 - Pacemaker lead adaptor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker lead adaptor. 870.3620 Section 870.3620...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3620 Pacemaker lead adaptor. (a) Identification. A pacemaker lead adaptor is a device used to adapt a pacemaker lead so that...

  5. Energy metabolism regulates clathrin adaptors at the trans-Golgi network and endosomes

    PubMed Central

    Aoh, Quyen L.; Hung, Chao-wei; Duncan, Mara C.

    2013-01-01

    Glucose is a master regulator of cell behavior in the yeast Saccharomyces cerevisiae. It acts as both a metabolic substrate and a potent regulator of intracellular signaling cascades. Glucose starvation induces the transient delocalization and then partial relocalization of clathrin adaptors at the trans-Golgi network and endosomes. Although these localization responses are known to depend on the protein kinase A (PKA) signaling pathway, the molecular mechanism of this regulation is unknown. Here we demonstrate that PKA and the AMP-regulated kinase regulate adaptor localization through changes in energy metabolism. We show that genetic and chemical manipulation of intracellular ATP levels cause corresponding changes in adaptor localization. In permeabilized cells, exogenous ATP is sufficient to induce adaptor localization. Furthermore, we reveal distinct energy-dependent steps in adaptor localization: a step that requires the ADP-ribosylation factor ARF, an ATP-dependent step that requires the phosphatidyl-inositol-4 kinase Pik1, and third ATP-dependent step for which we provide evidence but for which the mechanism is unknown. We propose that these energy-dependent mechanisms precisely synchronize membrane traffic with overall proliferation rates and contribute a crucial aspect of energy conservation during acute glucose starvation. PMID:23345590

  6. The attitude control of fixed-wing MAVS in turbulent environments

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdulghani; Massey, Kevin; Watkins, Simon; Clothier, Reece

    2014-04-01

    The small scale and portability of fixed-wing Micro Aerial Vehicles lend them to many unique applications, however their utility is often limited by ineffective attitude control in turbulent environments. The performance of attitude control systems themselves are affected by a variety of factors. Assessment of this system’s performance needs to be viewed in relation to the MAVs’ unique constraints. Certain aspects and limitations of MAV attitude control related issues are addressed in the literature, but to fully address the degradation of utility, the entire system must be examined. These issues can only be fully addressed when considering them concurrently. There is no framework for defining the attitude control problem explicitly for MAVs. This paper attempts to (1) Define the MAV attitude control problem with respect to the unique constraints imposed by this class of Unmanned Aircraft; (2) Review current design trends of MAVs with respect to vulnerability to atmospheric turbulence.

  7. Shugoshins: Tension-Sensitive Pericentromeric Adaptors Safeguarding Chromosome Segregation

    PubMed Central

    2014-01-01

    The shugoshin/Mei-S332 family are proteins that associate with the chromosomal region surrounding the centromere (the pericentromere) and that play multiple and distinct roles in ensuring the accuracy of chromosome segregation during both mitosis and meiosis. The underlying role of shugoshins appears to be to serve as pericentromeric adaptor proteins that recruit several different effectors to this region of the chromosome to regulate processes critical for chromosome segregation. Crucially, shugoshins undergo changes in their localization in response to the tension that is exerted on sister chromosomes by the forces of the spindle that will pull them apart. This has led to the idea that shugoshins provide a platform for activities required at the pericentromere only when sister chromosomes lack tension. Conversely, disassembly of the shugoshin pericentromeric platform may provide a signal that sister chromosomes are under tension. Here the functions and regulation of these important tension-sensitive pericentromeric proteins are discussed. PMID:25452306

  8. Fixed-wing MAV attitude stability in atmospheric turbulence, part 1: Suitability of conventional sensors

    NASA Astrophysics Data System (ADS)

    Mohamed, A.; Clothier, R.; Watkins, S.; Sabatini, R.; Abdulrahim, M.

    2014-10-01

    Fixed-wing Micro-Aerial Vehicles (MAVs) need effective sensors that can rapidly detect turbulence induced motion perturbations. Current MAV attitude control systems rely on inertial sensors. These systems can be described as reactive; detecting the disturbance only after the aircraft has responded to the disturbing phenomena. In this part of the paper, the current state of the art in reactive attitude sensing for fixed-wing MAVs are reviewed. A scheme for classifying the range of existing and emerging sensing techniques is presented. The features and performance of the sensing approaches are discussed in the context of their application to MAV attitude control systems in turbulent environments. It is found that the use of single sensors is insufficient for MAV control in the presence of turbulence and that potential gains can be realised from multi-sensor systems. A successive paper to be published in this journal will investigate novel attitude sensors which have the potential to improve attitude control of MAVs in Turbulence.

  9. Syp1 is a conserved endocytic adaptor that contains domains involved in cargo selection and membrane tubulation

    SciTech Connect

    Reider, Amanda; Barker, Sarah L.; Mishra, Sanjay K.; Im, Young Jun; Maldonado-Báez, Lymarie; Hurley, James H.; Traub, Linton M.; Wendland, Beverly

    2010-10-28

    Internalization of diverse transmembrane cargos from the plasma membrane requires a similarly diverse array of specialized adaptors, yet only a few adaptors have been characterized. We report the identification of the muniscin family of endocytic adaptors that is conserved from yeast to human beings. Solving the structures of yeast muniscin domains confirmed the unique combination of an N-terminal domain homologous to the crescent-shaped membrane-tubulating EFC/F-BAR domains and a C-terminal domain homologous to cargo-binding {mu} homology domains ({mu}HDs). In vitro and in vivo assays confirmed membrane-tubulation activity for muniscin EFC/F-BAR domains. The {mu}HD domain has conserved interactions with the endocytic adaptor/scaffold Ede1/eps15, which influences muniscin localization. The transmembrane protein Mid2, earlier implicated in polarized Rho1 signalling, was identified as a cargo of the yeast adaptor protein. These and other data suggest a model in which the muniscins provide a combined adaptor/membrane-tubulation activity that is important for regulating endocytosis.

  10. TIR domain-containing adaptor SARM is a late addition to the ongoing microbe–host dialog

    PubMed Central

    Zhang, Qing; Zmasek, Christian M.; Cai, Xiaohui; Godzik, Adam

    2011-01-01

    Toll/interleukin-1 receptor (TIR) domain-containing proteins play important roles in defense against pathogens in both animals and plants, connecting the immunity signaling pathways via a chain of specific protein–protein interactions. Among them is SARM, the only TIR domain-containing adaptor that can negatively regulate TLR signaling. By extensive phylogenetic analysis, we show here that SARM is closely related to bacterial proteins with TIR domains, suggesting that this family has a different evolutionary history from other animal TIR-containing adaptors, possibly emerging via a lateral gene transfer from bacteria to animals. We also show evidence of several similar, independent transfer events, none of which, however, survived in vertebrates. An evolutionary relationship between the animal SARM adaptor and bacterial proteins with TIR domains illustrates the possible role that bacterial TIR-containing proteins play in regulating eukaryotic immune responses and how this mechanism was possibly adapted by the eukaryotes themselves. PMID:21110998

  11. Molecular characterization and expression analyses of three RIG-I-like receptor signaling pathway genes (MDA5, LGP2 and MAVS) in Larimichthys crocea.

    PubMed

    Shen, Bin; Hu, Yiwen; Zhang, Shuyi; Zheng, Jialang; Zeng, Lin; Zhang, Jianshe; Zhu, Aiyi; Wu, Changwen

    2016-08-01

    In this study, we sequenced and characterized melanoma differentiation-associated antigen 5 (LcMDA5), laboratory of genetics and physiology 2 (LcLGP2) and mitochondrial antiviral signaling protein (LcMAVS) from large yellow croaker (Larimichthys crocea). The LcMDA5 encodes 969 amino acids and contains two caspase-associated and recruitment domains (CARDs), a DExDc (DExD/H box-containing domain), a HELICc (helicase superfamily C-terminal domain) and a C-terminal regulatory domain (RD). The LcLGP2 encodes 679 amino acids and contains a DExDc, a HELICc and a RD. The LcMAVS encodes 512 amino acids and contains a CARD, a proline-rich domain, a transmembrane helix domain and a putative TRAF2-binding motif ((269)PVQDT(273)). Phylogenetic analyses showed that all the three genes of large yellow croaker are clustered together with their counterparts from other teleost fishes. The Real-time PCR analyses showed that all the three genes were found to be constitutively expressed in all examined tissues in large yellow croaker, but all with relatively low expression levels. Expression analyses showed that the three genes were all rapidly and significantly upregulated in vivo after poly (I:C) challenge in peripheral blood, liver, spleen and head kidney tissues. The results indicate that the LcMDA5, LcLGP2 and LcMAVS might play important roles in antiviral immune responses. PMID:27346150

  12. Adaptor assembly for coupling turbine blades to rotor disks

    SciTech Connect

    Delvaux, John McConnel; Garcia-Crespo, Andres Jose; Joyce, Kilmer Joseph; Tindell, Allan Randall

    2014-06-03

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is disclosed. The adaptor assembly may generally include an adaptor body having a root configured to be received within the root slot. The adaptor body may also define a slot having an open end configured to receive the blade root. The adaptor body may further define a channel. The adaptor assembly may also include a plate having an outwardly extending foot. The foot may be configured to be received within the channel. Additionally, the plate may be configured to cover at least a portion of the open end of the slot when the foot is received within the channel.

  13. Phosphoinositides, kinases and adaptors coordinating endocytosis in Trypanosoma brucei

    PubMed Central

    Manna, Paul T; Field, Mark C

    2015-01-01

    In the kinetoplastid parasite Trypanosoma brucei clathrin-mediated endocytosis is essential for survival and aids immune evasion in the mammalian host. The formation of endocytic clathrin coated vesicles in T. brucei is via a unique mechanism owing to an evolutionarily recent loss of the adaptor protein (AP)2 complex, a central hub in endocytic vesicle assembly. Despite this loss, recent studies examining endocytic clathrin coat assembly have highlighted a high degree of conservation between trypanosomes and their mammalian hosts. In particular phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and its putative effectors, TbCALM and TbEpsinR, are central to clathrin-mediated endocytosis in the trypanosome, just as they are in animal cells. In addition to providing insights into the cell biology of T. brucei, these studies also suggest an ancient, possibly pan-eukaryotic connection between PtdIns(4,5)P2 and endocytosis. PMID:27064836

  14. An organized co-assembly of clathrin adaptors is essential for endocytosis.

    PubMed

    Skruzny, Michal; Desfosses, Ambroise; Prinz, Simone; Dodonova, Svetlana O; Gieras, Anna; Uetrecht, Charlotte; Jakobi, Arjen J; Abella, Marc; Hagen, Wim J H; Schulz, Joachim; Meijers, Rob; Rybin, Vladimir; Briggs, John A G; Sachse, Carsten; Kaksonen, Marko

    2015-04-20

    Clathrin-mediated endocytosis, the main trafficking route from the plasma membrane to the cytoplasm, is critical to many fundamental cellular processes. Clathrin, coupled to the membrane by adaptor proteins, is thought to play a major structural role in endocytosis by self-assembling into a cage-like lattice around the forming vesicle. Although clathrin adaptors are essential for endocytosis, little is known about their structural role in this process. Here we show that the membrane-binding domains of two conserved clathrin adaptors, Sla2 and Ent1, co-assemble in a PI(4,5)P2-dependent manner to form organized lattices on membranes. We determined the structure of the co-assembled lattice by electron cryo-microscopy and designed mutations that specifically impair the lattice formation in vitro. We show that these mutations block endocytosis in vivo. We suggest that clathrin adaptors not only link the polymerized clathrin to the membrane but also form an oligomeric structure, which is essential for membrane remodeling during endocytosis. PMID:25898165

  15. Glucose regulates clathrin adaptors at the trans-Golgi network and endosomes

    PubMed Central

    Aoh, Quyen L.; Graves, Lee M.; Duncan, Mara C.

    2011-01-01

    Glucose is a rich source of energy and the raw material for biomass increase. Many eukaryotic cells remodel their physiology in the presence and absence of glucose. The yeast Saccharomyces cerevisiae undergoes changes in transcription, translation, metabolism, and cell polarity in response to glucose availability. Upon glucose starvation, translation initiation and cell polarity are immediately inhibited, and then gradually recover. In this paper, we provide evidence that, as in cell polarity and translation, traffic at the trans-Golgi network (TGN) and endosomes is regulated by glucose via an unknown mechanism that depends on protein kinase A (PKA). Upon glucose withdrawal, clathrin adaptors exhibit a biphasic change in localization: they initially delocalize from the membrane within minutes and later partially recover onto membranes. Additionally, the removal of glucose induces changes in posttranslational modifications of adaptors. Ras and Gpr1 signaling pathways, which converge on PKA, are required for changes in adaptor localization and changes in posttranslational modifications. Acute inhibition of PKA demonstrates that inhibition of PKA prior to glucose withdrawal prevents several adaptor responses to starvation. This study demonstrates that PKA activity prior to glucose starvation primes membrane traffic at the TGN and endosomes in response to glucose starvation. PMID:21832155

  16. Association of lysogenic bacteriophage MAV1 with virulence of Mycoplasma arthritidis.

    PubMed Central

    Voelker, L L; Weaver, K E; Ehle, L J; Washburn, L R

    1995-01-01

    Mycoplasma arthritidis causes a severe polyarthritis under natural conditions in rats and under experimental conditions in both rats and mice. Although the disease itself has been extensively studied, M. arthritidis virulence factors remain uncharacterized. Comparison of relative arthritogenicity of 20 strains of M. arthritidis revealed that the strains tended to fall into two groups, a highly arthritogenic group, inducing maximum arthritis scores of > or = 11 in rats, and a low-virulence group, inducing maximum scores of < 6. Chromosomal DNA from the more highly arthritogenic strains possessed sequences that hybridized by Southern analysis with a probe prepared from lysogenic M. arthritidis bacteriophage MAV1, while DNA from low-virulence strains did not. One of the low-virulence strains, 158, was experimentally lysogenized with MAV1. Lysogenized 158 showed a significant increase in arthritogenicity over nonlysogenized 158. These data suggest that MAV1 carries a factor that is important in pathogenesis of M. arthritidis-induced arthritis of rats. PMID:7558313

  17. Myosin VI and its cargo adaptors – linking endocytosis and autophagy

    PubMed Central

    Tumbarello, David A.; Kendrick-Jones, John; Buss, Folma

    2013-01-01

    Summary The coordinated trafficking and tethering of membrane cargo within cells relies on the function of distinct cytoskeletal motors that are targeted to specific subcellular compartments through interactions with protein adaptors and phospholipids. The unique actin motor myosin VI functions at distinct steps during clathrin-mediated endocytosis and the early endocytic pathway – both of which are involved in cargo trafficking and sorting – through interactions with Dab2, GIPC, Tom1 and LMTK2. This multifunctional ability of myosin VI can be attributed to its cargo-binding tail region that contains two protein–protein interaction interfaces, a ubiquitin-binding motif and a phospholipid binding domain. In addition, myosin VI has been shown to be a regulator of the autophagy pathway, because of its ability to link the endocytic and autophagic pathways through interactions with the ESCRT-0 protein Tom1 and the autophagy adaptor proteins T6BP, NDP52 and optineurin. This function has been attributed to facilitating autophagosome maturation and subsequent fusion with the lysosome. Therefore, in this Commentary, we discuss the relationship between myosin VI and the different myosin VI adaptor proteins, particularly with regards to the spatial and temporal regulation that is required for the sorting of cargo at the early endosome, and their impact on autophagy. PMID:23781020

  18. Parallel SCF Adaptor Capture Proteomics Reveals a Role for SCFFBXL17 in NRF2 Activation via BACH1 Repressor Turnover

    PubMed Central

    Tan, Meng-Kwang Marcus; Lim, Hui-Jun; Bennett, Eric J.; Shi, Yang; Harper, J. Wade

    2014-01-01

    Modular Cullin-RING E3 ubiquitin ligases (CRLs) use substrate binding adaptor proteins to specify target ubiquitylation. Many of the ~200 human CRL adaptor proteins remain poorly studied due to a shortage of efficient methods to identify biologically relevant substrates. Here, we report the development of Parallel Adaptor Capture (PAC) proteomics, and its use to systematically identify candidate targets for the leucine-rich repeat family of F-box proteins (FBXLs) that function with SKP1-CUL1-F-box protein (SCF) E3s. In validation experiments, we identify the unstudied F-box protein FBXL17 as a regulator of the NFR2 oxidative stress pathway. We demonstrate that FBXL17 controls the transcription of the NRF2 target HMOX1 via turnover of the transcriptional repressor BACH1 in the absence or presence of extrinsic oxidative stress. This work identifies a role for SCFFBXL17 in controlling the threshold for NRF2-dependent gene activation and provides a framework for elucidating the functions of CRL adaptor proteins. PMID:24035498

  19. Parallel SCF adaptor capture proteomics reveals a role for SCFFBXL17 in NRF2 activation via BACH1 repressor turnover.

    PubMed

    Tan, Meng-Kwang Marcus; Lim, Hui-Jun; Bennett, Eric J; Shi, Yang; Harper, J Wade

    2013-10-10

    Modular cullin-RING E3 ubiquitin ligases (CRLs) use substrate binding adaptor proteins to specify target ubiquitylation. Many of the ~200 human CRL adaptor proteins remain poorly studied due to a shortage of efficient methods to identify biologically relevant substrates. Here, we report the development of parallel adaptor capture (PAC) proteomics and its use to systematically identify candidate targets for the leucine-rich repeat family of F-box proteins (FBXLs) that function with SKP1-CUL1-F-box protein (SCF) E3s. In validation experiments, we identify the unstudied F-box protein FBXL17 as a regulator of the NFR2 oxidative stress pathway. We demonstrate that FBXL17 controls the transcription of the NRF2 target HMOX1 via turnover of the transcriptional repressor BACH1 in the absence or presence of extrinsic oxidative stress. This work identifies a role for SCF(FBXL17) in controlling the threshold for NRF2-dependent gene activation and provides a framework for elucidating the functions of CRL adaptor proteins. PMID:24035498

  20. Novel Toll/IL-1 Receptor Homologous Region Adaptors Act as Negative Regulators in Amphioxus TLR Signaling.

    PubMed

    Peng, Jian; Tao, Xin; Li, Rui; Hu, Jingru; Ruan, Jie; Wang, Ruihua; Yang, Manyi; Yang, Rirong; Dong, Xiangru; Chen, Shangwu; Xu, Anlong; Yuan, Shaochun

    2015-10-01

    Studies have shown that the basal chordate amphioxus possesses an extraordinarily complex TLR system, including 39 TLRs and at least 40 Toll/IL-1R homologous region (TIR) adaptors. Besides homologs to MyD88 and TIR domain-containing adaptor molecule (TICAM), most amphioxus TIR adaptors exhibit domain architectures that are not observed in other species. To reveal how these novel TIR adaptors function in amphioxus Branchiostoma belcheri tsingtauense (bbt), four representatives, bbtTIRA, bbtTIRB, bbtTIRC, and bbtTIRD, were selected for functional analyses. We found bbtTIRA to show a unique inhibitory role in amphioxus TICAM-mediated pathway by interacting with bbtTICAM and bbt receptor interacting protein 1b, whereas bbtTIRC specifically inhibits the amphioxus MyD88-dependent pathway by interacting with bbtMyD88 and depressing the polyubiquitination of bbt TNFR-associated factor 6. Although both bbtTIRB and bbtTIRD are located on endosomes, the TIR domain of bbtTIRB can interact with bbtMyD88 in the cytosol, whereas the TIR domain of bbtTIRD is enclosed in endosome, suggesting that bbtTIRD may be a redundant gene in amphioxus. This study indicated that most expanded TIR adaptors play nonredundant regulatory roles in amphioxus TLR signaling, adding a new layer to understanding the diversity and complexity of innate immunity at basal chordate. PMID:26324776

  1. Complete Genome Sequence of the Bioluminescent Marine Bacterium Vibrio harveyi ATCC 33843 (392 [MAV]).

    PubMed

    Wang, Zheng; Hervey, W Judson; Kim, Seongwon; Lin, Baochuan; Vora, Gary J

    2015-01-01

    Vibrio harveyi is a Gram-negative marine γ-proteobacterium that is known to be a formidable pathogen of aquatic animals and is a model organism for the study of bacterial bioluminescence and quorum sensing. In this report, we describe the complete genome sequence of the most studied strain of this species: V. harveyi ATCC 33843 (392 [MAV]). PMID:25635019

  2. Complete Genome Sequence of the Bioluminescent Marine Bacterium Vibrio harveyi ATCC 33843 (392 [MAV])

    PubMed Central

    Wang, Zheng; Hervey, W. Judson; Kim, Seongwon; Lin, Baochuan

    2015-01-01

    Vibrio harveyi is a Gram-negative marine γ-proteobacterium that is known to be a formidable pathogen of aquatic animals and is a model organism for the study of bacterial bioluminescence and quorum sensing. In this report, we describe the complete genome sequence of the most studied strain of this species: V. harveyi ATCC 33843 (392 [MAV]). PMID:25635019

  3. Nck adaptors are positive regulators of the size and sensitivity of the T-cell repertoire

    PubMed Central

    Roy, Edwige; Togbe, Dieudonnée; Holdorf, Amy D.; Trubetskoy, Dmitry; Nabti, Sabrina; Küblbeck, Günter; Klevenz, Alexandra; Kopp-Schneider, Annette; Leithäuser, Frank; Möller, Peter; Bladt, Friedhelm; Hämmerling, Günter; Arnold, Bernd; Pawson, Tony; Tafuri, Anna

    2010-01-01

    The size and sensitivity of the T-cell repertoire governs the effectiveness of immune responses against invading pathogens. Both are modulated by T-cell receptor (TCR) activity through molecular mechanisms, which remain unclear. Here, we provide genetic evidence that the SH2/SH3 domain containing proteins Nck lower the threshold of T-cell responsiveness. The hallmarks of Nck deletion were T-cell lymphopenia and hyporeactivity to TCR-mediated stimulation. In the absence of the Nck adaptors, peripheral T cells expressing a TCR with low avidity for self-antigens were strongly reduced, whereas an overall impairment of T-cell activation by weak antigenic stimulation was observed. Mechanistically, Nck deletion resulted in a significant decrease in calcium mobilization and ERK phosphorylation upon TCR engagement. Taken together, our findings unveil a crucial role for the Nck adaptors in shaping the T-cell repertoire to ensure maximal antigenic coverage and optimal T cell excitability. PMID:20709959

  4. Nck adaptors are positive regulators of the size and sensitivity of the T-cell repertoire.

    PubMed

    Roy, Edwige; Togbe, Dieudonnée; Holdorf, Amy D; Trubetskoy, Dmitry; Nabti, Sabrina; Küblbeck, Günter; Klevenz, Alexandra; Kopp-Schneider, Annette; Leithäuser, Frank; Möller, Peter; Bladt, Friedhelm; Hämmerling, Günter; Arnold, Bernd; Pawson, Tony; Tafuri, Anna

    2010-08-31

    The size and sensitivity of the T-cell repertoire governs the effectiveness of immune responses against invading pathogens. Both are modulated by T-cell receptor (TCR) activity through molecular mechanisms, which remain unclear. Here, we provide genetic evidence that the SH2/SH3 domain containing proteins Nck lower the threshold of T-cell responsiveness. The hallmarks of Nck deletion were T-cell lymphopenia and hyporeactivity to TCR-mediated stimulation. In the absence of the Nck adaptors, peripheral T cells expressing a TCR with low avidity for self-antigens were strongly reduced, whereas an overall impairment of T-cell activation by weak antigenic stimulation was observed. Mechanistically, Nck deletion resulted in a significant decrease in calcium mobilization and ERK phosphorylation upon TCR engagement. Taken together, our findings unveil a crucial role for the Nck adaptors in shaping the T-cell repertoire to ensure maximal antigenic coverage and optimal T cell excitability. PMID:20709959

  5. Regulation of ubiquitin-dependent cargo sorting by multiple endocytic adaptors at the plasma membrane

    PubMed Central

    Mayers, Jonathan R.; Wang, Lei; Pramanik, Jhuma; Johnson, Adam; Sarkeshik, Ali; Wang, Yueju; Saengsawang, Witchuda; Yates, John R.; Audhya, Anjon

    2013-01-01

    Endocytic protein trafficking is directed by sorting signals on cargo molecules that are recognized by cytosolic adaptor proteins. However, the steps necessary to segregate the variety of cargoes during endocytosis remain poorly defined. Using Caenorhabditis elegans, we demonstrate that multiple plasma membrane endocytic adaptors function redundantly to regulate clathrin-mediated endocytosis and to recruit components of the endosomal sorting complex required for transport (ESCRT) machinery to the cell surface to direct the sorting of ubiquitin-modified substrates. Moreover, our data suggest that preassembly of cargoes with the ESCRT-0 complex at the plasma membrane enhances the efficiency of downstream sorting events in the endolysosomal system. In the absence of a heterooligomeric adaptor complex composed of FCHO, Eps15, and intersectin, ESCRT-0 accumulation at the cell surface is diminished, and the degradation of a ubiquitin-modified cargo slows significantly without affecting the rate of its clathrin-mediated internalization. Consistent with a role for the ESCRT machinery during cargo endocytosis, we further show that the ESCRT-0 complex accumulates at a subset of clathrin-coated pits on the surface of human cells. Our findings suggest a unique mechanism by which ubiquitin-modified cargoes are sequestered into the endolysosomal pathway. PMID:23818590

  6. Hook Adaptors Induce Unidirectional Processive Motility by Enhancing the Dynein-Dynactin Interaction.

    PubMed

    Olenick, Mara A; Tokito, Mariko; Boczkowska, Malgorzata; Dominguez, Roberto; Holzbaur, Erika L F

    2016-08-26

    Cytoplasmic dynein drives the majority of minus end-directed vesicular and organelle motility in the cell. However, it remains unclear how dynein is spatially and temporally regulated given the variety of cargo that must be properly localized to maintain cellular function. Recent work has suggested that adaptor proteins provide a mechanism for cargo-specific regulation of motors. Of particular interest, studies in fungal systems have implicated Hook proteins in the regulation of microtubule motors. Here we investigate the role of mammalian Hook proteins, Hook1 and Hook3, as potential motor adaptors. We used optogenetic approaches to specifically recruit Hook proteins to organelles and observed rapid transport of peroxisomes to the perinuclear region of the cell. This rapid and efficient translocation of peroxisomes to microtubule minus ends indicates that mammalian Hook proteins activate dynein rather than kinesin motors. Biochemical studies indicate that Hook proteins interact with both dynein and dynactin, stabilizing the formation of a supramolecular complex. Complex formation requires the N-terminal domain of Hook proteins, which resembles the calponin-homology domain of end-binding (EB) proteins but cannot bind directly to microtubules. Single-molecule motility assays using total internal reflection fluorescence microscopy indicate that both Hook1 and Hook3 effectively activate cytoplasmic dynein, inducing longer run lengths and higher velocities than the previously characterized dynein activator bicaudal D2 (BICD2). Together, these results suggest that dynein adaptors can differentially regulate dynein to allow for organelle-specific tuning of the motor for precise intracellular trafficking. PMID:27365401

  7. TBK1-like transcript negatively regulates the production of IFN and IFN-stimulated genes through RLRs-MAVS-TBK1 pathway.

    PubMed

    Zhang, Lin; Chen, Wen Qin; Hu, Yi Wei; Wu, Xiao Man; Nie, P; Chang, Ming Xian

    2016-07-01

    TANK-binding kinase 1 (TBK1) is an essential serine/threonine-protein kinase required for Toll-like receptor (TLR)- and retinoic acid-inducible gene I (RIG-I) -mediated induction of type I IFN and host antiviral defense. In the present study, TBK1-like transcript, namely TBK1L, was cloned from zebrafish. Compared with TBK1, TBK1L contains an incomplete S_TKc domain, and lacks UBL_TBK1_like domain. Realtime PCR showed that TBK1L was constitutively produced in embryos, early larvae and ZF4 cells, and unchanged in ZF4 cells following SVCV infection. Overexpression of TBK1 but not TBK1L resulted in significant activation of zebrafish IFN1 and IFN3 promoters. Similarly, TBK1L had little impact on the antiviral state of the cells. However, the overexpression of TBK1L negatively regulated the induction of zebrafish IFN1 and/or IFN3 promoters mediated by the retinoic acid-inducible gene I-like receptors (RLRs), MAVS and TBK1. In addition, the overexpression of TBK1L in zebrafish embryos led to the decreased production of many IFN-stimulated genes induced by TBK1. Collectively, these data support that zebrafish TBK1L negatively regulates RLRs-MAVS-TBK1 pathway. PMID:27060200

  8. Experimental evaluation of a flapping-wing aerodynamic model for MAV applications

    NASA Astrophysics Data System (ADS)

    Lee, Jun-Seong; Kim, Dae-Kwan; Lee, Jin-Young; Han, Jae-Hung

    2008-03-01

    In the preliminary design phase of the bio-inspired flapping-wing MAV (micro air vehicle), it is necessary to predict the aerodynamic forces around the flapping-wing under flapping-wing motion at cruising flight. In this study, the efficient quasi-steady flapping-wing aerodynamic model for MAV application is explained and it is experimentally verified. The flapping-wing motion is decoupled to the plunging and pitching motion, and the plunging-pitching motion generator with load cell assembly is developed. The compensation of inertial forces from the measured lift and thrust is studied to measure the pure aerodynamic loads on the flapping-wing. Advanced ratio is introduced to evaluate the unsteadiness of the flow and to make an application range of flapping-wing aerodynamic model.

  9. Launching the AquaMAV: bioinspired design for aerial-aquatic robotic platforms.

    PubMed

    Siddall, R; Kovač, M

    2014-09-01

    Current Micro Aerial Vehicles (MAVs) are greatly limited by being able to operate in air only. Designing multimodal MAVs that can fly effectively, dive into the water and retake flight would enable applications of distributed water quality monitoring, search and rescue operations and underwater exploration. While some can land on water, no technologies are available that allow them to both dive and fly, due to dramatic design trade-offs that have to be solved for movement in both air and water and due to the absence of high-power propulsion systems that would allow a transition from underwater to air. In nature, several animals have evolved design solutions that enable them to successfully transition between water and air, and move in both media. Examples include flying fish, flying squid, diving birds and diving insects. In this paper, we review the biological literature on these multimodal animals and abstract their underlying design principles in the perspective of building a robotic equivalent, the Aquatic Micro Air Vehicle (AquaMAV). Building on the inspire-abstract-implement bioinspired design paradigm, we identify key adaptations from nature and designs from robotics. Based on this evaluation we propose key design principles for the design of successful aerial-aquatic robots, i.e. using a plunge diving strategy for water entry, folding wings for diving efficiency, water jet propulsion for water takeoff and hydrophobic surfaces for water shedding and dry flight. Further, we demonstrate the feasibility of the water jet propulsion by building a proof-of-concept water jet propulsion mechanism with a mass of 2.6 g that can propel itself up to 4.8 m high, corresponding to 72 times its size. This propulsion mechanism can be used for AquaMAV but also for other robotic applications where high-power density is of use, such as for jumping and swimming robots. PMID:24615533

  10. Extending the Evolutionary Robotics approach to flying machines: an application to MAV teams.

    PubMed

    Ruini, Fabio; Cangelosi, Angelo

    2009-01-01

    The work presented in this article focuses on the use of embodied neural networks--developed through Evolutionary Robotics and Multi-Agent Systems methodologies--as autonomous distributed controllers for Micro-unmanned Aerial Vehicle (MAV) teams. The main aim of the research is to extend the range of domains that could be successfully tackled by the Evolutionary Robotics approach. The flying robots realm is an area that has not been yet thoroughly investigated by this discipline. This is due to the lack of an affordable and reliable robotic platform to use for carrying out experiments, and to the difficulty and the high computational load involved in experiments based upon a realistic software simulator for aircraft. We believe that the most recent improvements to the state of the art now permit the investigation of this domain. For demonstrating this point, two different evolutionary computer simulation models are presented in this article. The first model, which uses a simplified 2D test environment, has resulted in controllers evolved with the following capabilities: (1) navigation through unknown environments, (2) obstacle-avoidance, (3) tracking of a movable target, and (4) execution of cooperative and coordinated behaviors based on implicit communication strategies. In order to improve the robustness of these results and their potential use in real MAV teams, a more sophisticated 3D model is presented herein. The results obtained so far using the two models demonstrate the feasibility of the chosen approach for further research on the design of autonomous controllers for MAVs. PMID:19595566

  11. Experimental investigation of bio inspired flapping wings for MAV and NAV applications

    NASA Astrophysics Data System (ADS)

    Gopa Kumar, Anand

    2009-11-01

    The current investigation focuses on achieving a greater understanding on the aerodynamic phenomena that takes place during flapping flight and its application in the development of Micro Air Vehicles (MAVs) and Nano Air Vehicles (NAVs). Quantitative force measurements were made on the MAV model to understand its aerodynamic performance of flapping wings at different operational flight conditions. A comparative analysis was also made to understand the effects of wing membrane flexibility on the aerodynamic performance of an MAV. The results obtained from this study would help design a membrane based flapping wings which would have an optimum aerodynamic performance. Dragonflies are considered to be some of the most agile and maneuverable insects known to man due to which they taken as an inspiration for the study of flapping wing NAVs. Piezoelectric fans were used to simulate the flapping motion of insect wings due to their ability to generate a high wing beat frequency. Flow measurement studies on the fans placed in a tandem wing configuration were carried out with the help of Digital Particle Image Velocimetry (DPIV) by which quantitative flow field measurements were made. The PIV results provide a greater understanding of the vortex structures which were generated due to high frequency flapping motion of the wings.

  12. The adapter MAVS promotes NLRP3 mitochondrial localization and inflammasome activation

    PubMed Central

    Subramanian, Naeha; Natarajan, Kannan; Clatworthy, Menna R.; Wang, Ze; Germain, Ronald N.

    2013-01-01

    Summary NLRP3 is a key component of the macromolecular signaling complex called the inflammasome that promotes caspase 1-dependent production of IL-1β. The adapter ASC is necessary for NLRP3-dependent inflammasome function, but it is not known if ASC is a sufficient partner, and whether inflammasome formation occurs in the cytosol or in association with mitochondria is controversial. Here we show that the mitochondria-associated adapter molecule, MAVS, is required for optimal NLRP3 inflammasome activity. MAVS mediates recruitment of NLRP3 to mitochondria, promoting production of IL-1β and the pathophysiologic activity of the NLRP3 inflammasome in vivo. Our data support a more complex model of NLRP3 inflammasome activation than previously appreciated, with at least two adapters required for maximal function. Since MAVS is a mitochondria-associated molecule previously considered to be uniquely involved in type 1 interferon production, these findings also reveal unexpected polygamous involvement of PYD/CARD domain-containing adapters in innate immune signaling events. PMID:23582325

  13. Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission.

    PubMed

    Osellame, Laura D; Singh, Abeer P; Stroud, David A; Palmer, Catherine S; Stojanovski, Diana; Ramachandran, Rajesh; Ryan, Michael T

    2016-06-01

    Cytosolic dynamin-related protein 1 (Drp1, also known as DNM1L) is required for both mitochondrial and peroxisomal fission. Drp1-dependent division of these organelles is facilitated by a number of adaptor proteins at mitochondrial and peroxisomal surfaces. To investigate the interplay of these adaptor proteins, we used gene-editing technology to create a suite of cell lines lacking the adaptors MiD49 (also known as MIEF2), MiD51 (also known as MIEF1), Mff and Fis1. Increased mitochondrial connectivity was observed following loss of individual adaptors, and this was further enhanced following the combined loss of MiD51 and Mff. Moreover, loss of adaptors also conferred increased resistance of cells to intrinsic apoptotic stimuli, with MiD49 and MiD51 showing the more prominent role. Using a proximity-based biotin labeling approach, we found close associations between MiD51, Mff and Drp1, but not Fis1. Furthermore, we found that MiD51 can suppress Mff-dependent enhancement of Drp1 GTPase activity. Our data indicates that Mff and MiD51 regulate Drp1 in specific ways to promote mitochondrial fission. PMID:27076521

  14. Systematic VCP-UBXD Adaptor Network Proteomics Identifies a Role for UBXN10 in Regulating Ciliogenesis

    PubMed Central

    Raman, Malavika; Sergeev, Mikhail; Garnaas, Maija; Lydeard, John R.; Huttlin, Edward L.; Goessling, Wolfram; Shah, Jagesh V.; Harper, J. Wade

    2015-01-01

    The AAA-ATPase VCP (also known as p97 or CDC48) uses ATP hydrolysis to “segregate” ubiquitinated proteins from their binding partners. VCP acts via UBX-domain containing adaptors that provide target specificity, but targets and functions of UBXD proteins remain poorly understood. Through systematic proteomic analysis of UBXD proteins in human cells, we reveal a network of over 195 interacting proteins, implicating VCP in diverse cellular pathways. We have explored one such complex between an unstudied adaptor UBXN10 and the intraflagellar transport B (IFT-B) complex, which regulates anterograde transport into cilia. UBXN10 localizes to cilia in a VCP-dependent manner and both VCP and UBXN10 are required for ciliogenesis. Pharmacological inhibition of VCP destabilized the IFT-B complex and increased trafficking rates. Depletion of UBXN10 in zebrafish embryos causes defects in left-right asymmetry, which depends on functional cilia. This study provides a resource for exploring the landscape of UBXD proteins in biology and identifies an unexpected requirement for VCP-UBXN10 in ciliogenesis. PMID:26389662

  15. Ubc2, an Ortholog of the Yeast Ste50p Adaptor, Possesses a Basidiomycete-Specific Carboxy terminal Extension Essential for Pathogenicity Independent of Pheromone Response.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins involved in the MAP kinase pathway controlling mating, morphogenesis and pathogenicity have been identified previously in the fungus Ustilago maydis. One of these, the Ubc2 adaptor protein, possesses a basidiomycete-specific structure. In addition to containing SAM and RA domains typical of...

  16. Spring Viremia of Carp Virus N Protein Suppresses Fish IFNφ1 Production by Targeting the Mitochondrial Antiviral Signaling Protein.

    PubMed

    Lu, Long-Feng; Li, Shun; Lu, Xiao-Bing; LaPatra, Scott E; Zhang, Nu; Zhang, Xu-Jie; Chen, Dan-Dan; Nie, Pin; Zhang, Yong-An

    2016-05-01

    For a virus to replicate efficiently, it must try and inhibit host IFN expression because IFN is an important host defense at early stages after viral infection. For aquatic viruses, the mechanisms used to escape the hosts IFN system are still unclear. In this study, we show that the N protein of spring viremia of carp virus (SVCV) inhibits zebrafish IFNφ1 production by degrading the mitochondrial antiviral signaling protein (MAVS). First, the upregulation of IFNφ1 promoter activity stimulated by polyinosinic:polycytidylic acid, retinoic acid-inducible gene I (RIG-I) or MAVS was suppressed by the SVCV infection. However, the upregulation by the downstream factor of the RIG-I-like receptor signaling pathway, TANK-binding kinase 1, was not affected. Notably, at the protein level, MAVS decreased remarkably when cells were infected with SVCV. Second, consistent with the result of the SVCV infection, overexpression of the N protein of SVCV blocked the IFNφ1 transcription activated by MAVS and downregulated MAVS expression at the protein level but not at the mRNA level. Further analysis demonstrated that the N protein targeted MAVS for K48-linked ubiquitination, which promoted the degradation of MAVS. These data indicated that fish MAVS could be degraded by the N protein of SVCV through the ubiquitin-proteasome pathway. To our knowledge, this is the first article of a fish RIG-I-like receptor pathway interfered by an aquatic virus in an ubiquitin-proteasome manner, suggesting that immune evasion of a virus also exists in lower vertebrates. PMID:26994222

  17. Stochastic Detection of MPSA-Gold Nanoparticles Using a α-Hemolysin Nanopore Equipped with a Noncovalent Molecular Adaptor.

    PubMed

    Campos, Elisa J; McVey, Colin E; Astier, Yann

    2016-06-21

    We present the first study of a novel, more sensitive method for the characterization of nanoparticles (NPs). This approach combines detection via a protein nanopore with modification of its interaction behavior using a molecular adaptor. We identify different populations of 3-mercapto-1-propanesulfonate (MPSA)-modified-gold NPs using the biological nanopores α-hemolysin (αHL) and its M113N mutant equipped with a noncovalently bound γ-cyclodextrin molecule as a stochastic sensor. Identification takes place on the basis of the extent of current blockades and residence times. Here, we demonstrate that noncovalently attached adaptors can be used to change the sensing properties of αHL nanopores, allowing the detection and characterization of different populations of MPSA NPs. This is an advance in sensitivity and diversity of NP sensing, as well as a promising and reliable technology to characterize NPs by using protein nanopores. PMID:27238076

  18. Space-time computational analysis of MAV flapping-wing aerodynamics with wing clapping

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Buscher, Austin

    2015-06-01

    Computational analysis of flapping-wing aerodynamics with wing clapping was one of the classes of computations targeted in introducing the space-time (ST) interface-tracking method with topology change (ST-TC). The ST-TC method is a new version of the deforming-spatial-domain/stabilized ST (DSD/SST) method, enhanced with a master-slave system that maintains the connectivity of the "parent" fluid mechanics mesh when there is contact between the moving interfaces. With that enhancement and because of its ST nature, the ST-TC method can deal with an actual contact between solid surfaces in flow problems with moving interfaces. It accomplishes that while still possessing the desirable features of interface-tracking (moving-mesh) methods, such as better resolution of the boundary layers. Earlier versions of the DSD/SST method, with effective mesh update, were already able to handle moving-interface problems when the solid surfaces are in near contact or create near TC. Flapping-wing aerodynamics of an actual locust, with the forewings and hindwings crossing each other very close and creating near TC, is an example of successfully computed problems. Flapping-wing aerodynamics of a micro aerial vehicle (MAV) with the wings of an actual locust is another example. Here we show how the ST-TC method enables 3D computational analysis of flapping-wing aerodynamics of an MAV with wing clapping. In the analysis, the wings are brought into an actual contact when they clap. We present results for a model dragonfly MAV.

  19. Model Update of a Micro Air Vehicle (MAV) Flexible Wing Frame with Uncertainty Quantification

    NASA Technical Reports Server (NTRS)

    Reaves, Mercedes C.; Horta, Lucas G.; Waszak, Martin R.; Morgan, Benjamin G.

    2004-01-01

    This paper describes a procedure to update parameters in the finite element model of a Micro Air Vehicle (MAV) to improve displacement predictions under aerodynamics loads. Because of fabrication, materials, and geometric uncertainties, a statistical approach combined with Multidisciplinary Design Optimization (MDO) is used to modify key model parameters. Static test data collected using photogrammetry are used to correlate with model predictions. Results show significant improvements in model predictions after parameters are updated; however, computed probabilities values indicate low confidence in updated values and/or model structure errors. Lessons learned in the areas of wing design, test procedures, modeling approaches with geometric nonlinearities, and uncertainties quantification are all documented.

  20. A liquid crystal of ascorbyl palmitate, used as vaccine platform, provides sustained release of antigen and has intrinsic pro-inflammatory and adjuvant activities which are dependent on MyD88 adaptor protein.

    PubMed

    Sánchez Vallecillo, María F; Minguito de la Escalera, María M; Aguirre, María V; Ullio Gamboa, Gabriela V; Palma, Santiago D; González-Cintado, Leticia; Chiodetti, Ana L; Soldano, Germán; Morón, Gabriel; Allemandi, Daniel A; Ardavín, Carlos; Pistoresi-Palencia, María C; Maletto, Belkys A

    2015-09-28

    Modern subunit vaccines require the development of new adjuvant strategies. Recently, we showed that CpG-ODN formulated with a liquid crystal nanostructure formed by self-assembly of 6-O-ascorbyl palmitate (Coa-ASC16) is an attractive system for promoting an antigen-specific immune response to weak antigens. Here, we showed that after subcutaneous injection of mice with near-infrared fluorescent dye-labeled OVA antigen formulated with Coa-ASC16, the dye-OVA was retained at the injection site for a longer period than when soluble dye-OVA was administered. Coa-ASC16 alone elicited a local inflammation, but how this material triggers this response has not been described yet. Although it is known that some materials used as a platform are not immunologically inert, very few studies have directly focused on this topic. In this study, we explored the underlying mechanisms concerning the interaction between Coa-ASC16 and the immune system and we found that the whole inflammatory response elicited by Coa-ASC16 (leukocyte recruitment and IL-1β, IL-6 and IL-12 production) was dependent on the MyD88 protein. TLR2, TLR4, TLR7 and NLRP3-inflammasome signaling were not required for induction of this inflammatory response. Coa-ASC16 induced local release of self-DNA, and in TLR9-deficient mice IL-6 production was absent. In addition, Coa-ASC16 revealed an intrinsic adjuvant activity which was affected by MyD88 and IL-6 absence. Taken together these results indicate that Coa-ASC16 used as a vaccine platform is effective due to the combination of the controlled release of antigen and its intrinsic pro-inflammatory activity. Understanding how Coa-ASC16 works might have significant implications for rational vaccine design. PMID:26188153

  1. Distinct Roles for TGN/Endosome Epsin-like Adaptors Ent3p and Ent5p

    PubMed Central

    Costaguta, Giancarlo; Duncan, Mara C.; Fernández, G. Esteban; Huang, Grace H.

    2006-01-01

    Clathrin adaptors are key factors in clathrin-coated vesicle formation, coupling clathrin to cargo and/or the lipid bilayer. A physically interacting network of three classes of adaptors participate in clathrin-mediated traffic between the trans-Golgi network (TGN) and endosomes: AP-1, Gga proteins, and epsin-like proteins. Here we investigate functional relationships within this network through transport assays and protein localization analysis in living yeast cells. We observed that epsin-like protein Ent3p preferentially localized with Gga2p, whereas Ent5p distributed equally between AP-1 and Gga2p. Ent3p was mislocalized in Gga-deficient but not in AP-1–deficient cells. In contrast, Ent5p retained localization in cells lacking either or both AP-1 and Gga proteins. The Ent proteins were dispensable for AP-1 or Gga localization. Synthetic genetic growth and α-factor maturation defects were observed when ent5Δ but not ent3Δ was introduced together with deletions of the GGA genes. In AP-1–deficient cells, ent3Δ and to a lesser extent ent5Δ caused minor α-factor maturation defects, but together resulted in a near-lethal phenotype. Deletions of ENT3 and ENT5 also displayed synthetic defects similar to, but less severe than, synthetic effects of AP-1 and Gga inactivation. These results differentiate Ent3p and Ent5p function in vivo, suggesting that Ent3p acts primarily with Gga proteins, whereas Ent5p acts with both AP-1 and Gga proteins but is more critical for AP-1–mediated transport. The data also support a model in which the Ent adaptors provide important accessory functions to AP-1 and Gga proteins in TGN/endosome traffic. PMID:16790491

  2. Mapping with MAV: Experimental Study on the Contribution of Absolute and Relative Aerial Position Control

    NASA Astrophysics Data System (ADS)

    Skaloud, J.; Rehak, M.; Lichti, D.

    2014-03-01

    This study highlights the benefit of precise aerial position control in the context of mapping using frame-based imagery taken by small UAVs. We execute several flights with a custom Micro Aerial Vehicle (MAV) octocopter over a small calibration field equipped with 90 signalized targets and 25 ground control points. The octocopter carries a consumer grade RGB camera, modified to insure precise GPS time stamping of each exposure, as well as a multi-frequency/constellation GNSS receiver. The GNSS antenna and camera are rigidly mounted together on a one-axis gimbal that allows control of the obliquity of the captured imagery. The presented experiments focus on including absolute and relative aerial control. We confirm practically that both approaches are very effective: the absolute control allows omission of ground control points while the relative requires only a minimum number of control points. Indeed, the latter method represents an attractive alternative in the context of MAVs for two reasons. First, the procedure is somewhat simplified (e.g. the lever-arm between the camera perspective and antenna phase centers does not need to be determined) and, second, its principle allows employing a single-frequency antenna and carrier-phase GNSS receiver. This reduces the cost of the system as well as the payload, which in turn increases the flying time.

  3. Design and Analysis of a Single-Camera Omnistereo Sensor for Quadrotor Micro Aerial Vehicles (MAVs).

    PubMed

    Jaramillo, Carlos; Valenti, Roberto G; Guo, Ling; Xiao, Jizhong

    2016-01-01

    We describe the design and 3D sensing performance of an omnidirectional stereo (omnistereo) vision system applied to Micro Aerial Vehicles (MAVs). The proposed omnistereo sensor employs a monocular camera that is co-axially aligned with a pair of hyperboloidal mirrors (a vertically-folded catadioptric configuration). We show that this arrangement provides a compact solution for omnidirectional 3D perception while mounted on top of propeller-based MAVs (not capable of large payloads). The theoretical single viewpoint (SVP) constraint helps us derive analytical solutions for the sensor's projective geometry and generate SVP-compliant panoramic images to compute 3D information from stereo correspondences (in a truly synchronous fashion). We perform an extensive analysis on various system characteristics such as its size, catadioptric spatial resolution, field-of-view. In addition, we pose a probabilistic model for the uncertainty estimation of 3D information from triangulation of back-projected rays. We validate the projection error of the design using both synthetic and real-life images against ground-truth data. Qualitatively, we show 3D point clouds (dense and sparse) resulting out of a single image captured from a real-life experiment. We expect the reproducibility of our sensor as its model parameters can be optimized to satisfy other catadioptric-based omnistereo vision under different circumstances. PMID:26861351

  4. Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays

    DOEpatents

    Li, Zheng; Chen, Wei

    2016-07-05

    A drift detector array, preferably a silicon drift detector (SDD) array, that uses a low current biasing adaptor is disclosed. The biasing adaptor is customizable for any desired geometry of the drift detector single cell with minimum drift time of carriers. The biasing adaptor has spiral shaped ion-implants that generate the desired voltage profile. The biasing adaptor can be processed on the same wafer as the drift detector array and only one biasing adaptor chip/side is needed for one drift detector array to generate the voltage profiles on the front side and back side of the detector array.

  5. Innate immune responses to rotavirus infection in macrophages depend on MAVS but involve neither the NLRP3 inflammasome nor JNK and p38 signaling pathways.

    PubMed

    Di Fiore, Izabel J M; Holloway, Gavan; Coulson, Barbara S

    2015-10-01

    Rotavirus infection is a major cause of life-threatening infantile gastroenteritis. The innate immune system provides an immediate mechanism of suppressing viral replication and is necessary for an effective adaptive immune response. Innate immunity involves host recognition of viral infection and establishment of a powerful antiviral state through the expression of pro-inflammatory cytokines such as type-1 interferon (IFN). Macrophages, the front-line cells of innate immunity, produce IFN and other cytokines in response to viral infection. However, the role of macrophages during rotavirus infection is not well defined. We demonstrate here that RRV rotavirus triggers the production of proinflammatory cytokines from mouse bone marrow-derived macrophages. IFN and antiviral cytokine production was abolished in rotavirus-infected MAVS (-/-) macrophages. This indicates that rotavirus triggers innate immunity in macrophages through RIG-I and/or MDA5 viral recognition, and MAVS signaling is essential for cytokine responses in macrophages. Rotavirus induced IFN expression in both wild type and MDA5 (-/-) macrophages, showing that MDA5 is not essential for IFN secretion following infection, and RIG-I and MDA5 may act redundantly in promoting rotavirus recognition. Interestingly, rotavirus neither stimulated mitogen-activated protein kinases p38 and JNK nor activated the NLRP3 inflammasome, demonstrating that these components might not be involved in innate responses to rotavirus infection in macrophages. Our results indicate that rotavirus elicits intracellular signaling in macrophages, resulting in the induction of IFN and antiviral cytokines, and advance our understanding of the involvement of these cells in innate responses against rotavirus. PMID:26079065

  6. Fixed-wing MAV attitude stability in atmospheric turbulence-Part 2: Investigating biologically-inspired sensors

    NASA Astrophysics Data System (ADS)

    Mohamed, A.; Watkins, S.; Clothier, R.; Abdulrahim, M.; Massey, K.; Sabatini, R.

    2014-11-01

    Challenges associated with flight control of agile fixed-wing Micro Air Vehicles (MAVs) operating in complex environments is significantly different to any larger scale vehicle. The micro-scale of MAVs can make them particularly sensitive to atmospheric disturbances thus limiting their operation. As described in Part 1, current conventional reactive attitude sensing systems lack the necessary response times for attitude control in high turbulence environments. This paper reviews in greater detail novel and emerging biologically inspired sensors, which can sense the disturbances before a perturbation is induced. A number of biological mechanoreceptors used by flying animals are explored for their utility in MAVs. Man-made attempts of replicating mechanoreceptors have thus been reviewed. Bio-inspired flow and pressure-based sensors were found to be the most promising for complementing or replacing current inertial-based reactive attitude sensors. Achieving practical implementations that meet the size, weight and power constraints of MAVs remains a significant challenge. Biological systems were found to rely on multiple sensors, potentially implying a number of research opportunities in the exploration of heterogeneous bio-inspired sensing solutions.

  7. Stepping stone: a cytohesin adaptor for membrane cytoskeleton restraint in the syncytial Drosophila embryo

    PubMed Central

    Liu, Jiangshu; Lee, Donghoon M.; Yu, Cao Guo; Angers, Stephane; Harris, Tony J. C.

    2015-01-01

    Cytohesin Arf-GEFs are conserved plasma membrane regulators. The sole Drosophila cytohesin, Steppke, restrains Rho1-dependent membrane cytoskeleton activity at the base of plasma membrane furrows of the syncytial embryo. By mass spectrometry, we identified a single major Steppke-interacting protein from syncytial embryos, which we named Stepping stone (Sstn). By sequence, Sstn seems to be a divergent homologue of the mammalian cytohesin adaptor FRMD4A. Our experiments supported this relationship. Specifically, heterophilic coiled-coil interactions linked Sstn and Steppke in vivo and in vitro, whereas a separate C-terminal region was required for Sstn localization to furrows. Sstn mutant and RNAi embryos displayed abnormal, Rho1-dependent membrane cytoskeleton expansion from the base of pseudocleavage and cellularization furrows, closely mimicking Steppke loss-of-function embryos. Elevating Sstn furrow levels had no effect on the steppke phenotype, but elevating Steppke furrow levels reversed the sstn phenotype, suggesting that Steppke acts downstream of Sstn and that additional mechanisms can recruit Steppke to furrows. Finally, the coiled-coil domain of Steppke was required for Sstn binding and in addition homodimerization, and its removal disrupted Steppke furrow localization and activity in vivo. Overall we propose that Sstn acts as a cytohesin adaptor that promotes Steppke activity for localized membrane cytoskeleton restraint in the syncytial Drosophila embryo. PMID:25540427

  8. The Hypoxic Regulator of Sterol Synthesis Nro1 Is a Nuclear Import Adaptor

    SciTech Connect

    T Yeh; C Lee; L Amzel; P Espenshade; M Bianchet

    2011-12-31

    Fission yeast protein Sre1, the homolog of the mammalian sterol regulatory element-binding protein (SREBP), is a hypoxic transcription factor required for sterol homeostasis and low-oxygen growth. Nro1 regulates the stability of the N-terminal transcription factor domain of Sre1 (Sre1N) by inhibiting the action of the prolyl 4-hydroxylase-like Ofd1 in an oxygen-dependent manner. The crystal structure of Nro1 determined at 2.2 {angstrom} resolution shows an all-{alpha}-helical fold that can be divided into two domains: a small N-terminal domain, and a larger C-terminal HEAT-repeat domain. Follow-up studies showed that Nro1 defines a new class of nuclear import adaptor that functions both in Ofd1 nuclear localization and in the oxygen-dependent inhibition of Ofd1 to control the hypoxic response.

  9. PADF RF localization experiments with multi-agent caged-MAV platforms

    NASA Astrophysics Data System (ADS)

    Barber, Christopher; Gates, Miguel; Selmic, Rastko; Al-Issa, Huthaifa; Ordonez, Raul; Mitra, Atindra

    2011-06-01

    This paper provides a summary of preliminary RF direction finding results generated within an AFOSR funded testbed facility recently developed at Louisiana Tech University. This facility, denoted as the Louisiana Tech University Micro- Aerial Vehicle/Wireless Sensor Network (MAVSeN) Laboratory, has recently acquired a number of state-of-the-art MAV platforms that enable us to analyze, design, and test some of our recent results in the area of multiplatform position-adaptive direction finding (PADF) [1] [2] for localization of RF emitters in challenging embedded multipath environments. Discussions within the segmented sections of this paper include a description of the MAVSeN Laboratory and the preliminary results from the implementation of mobile platforms with the PADF algorithm. This novel approach to multi-platform RF direction finding is based on the investigation of iterative path-loss based (i.e. path loss exponent) metrics estimates that are measured across multiple platforms in order to develop a control law that robotically/intelligently positionally adapt (i.e. self-adjust) the location of each distributed/cooperative platform. The body of this paper provides a summary of our recent results on PADF and includes a discussion on state-of-the-art Sensor Mote Technologies as applied towards the development of sensor-integrated caged-MAV platform for PADF applications. Also, a discussion of recent experimental results that incorporate sample approaches to real-time singleplatform data pruning is included as part of a discussion on potential approaches to refining a basic PADF technique in order to integrate and perform distributed self-sensitivity and self-consistency analysis as part of a PADF technique with distributed robotic/intelligent features. These techniques are extracted in analytical form from a parallel study denoted as "PADF RF Localization Criteria for Multi-Model Scattering Environments". The focus here is on developing and reporting specific

  10. The AP-2 Adaptor β2 Appendage Scaffolds Alternate Cargo Endocytosis

    PubMed Central

    Keyel, Peter A.; Thieman, James R.; Roth, Robyn; Erkan, Elif; Everett, Eric T.; Watkins, Simon C.; Heuser, John E.

    2008-01-01

    The independently folded appendages of the large α and β2 subunits of the endocytic adaptor protein (AP)-2 complex coordinate proper assembly and operation of endocytic components during clathrin-mediated endocytosis. The β2 subunit appendage contains a common binding site for β-arrestin or the autosomal recessive hypercholesterolemia (ARH) protein. To determine the importance of this interaction surface in living cells, we used small interfering RNA-based gene silencing. The effect of extinguishing β2 subunit expression on the internalization of transferrin is considerably weaker than an AP-2 α subunit knockdown. We show the mild sorting defect is due to fortuitous substitution of the β2 chain with the closely related endogenous β1 subunit of the AP-1 adaptor complex. Simultaneous silencing of both β1 and β2 subunit transcripts recapitulates the strong α subunit RNA interference (RNAi) phenotype and results in loss of ARH from endocytic clathrin coats. An RNAi-insensitive β2-yellow fluorescent protein (YFP) expressed in the β1 + β2-silenced background restores cellular AP-2 levels, robust transferrin internalization, and ARH colocalization with cell surface clathrin. The importance of the β appendage platform subdomain over clathrin for precise deposition of ARH at clathrin assembly zones is revealed by a β2-YFP with a disrupted ARH binding interface, which does not restore ARH colocalization with clathrin. We also show a β-arrestin 1 mutant, which engages coated structures in the absence of any G protein-coupled receptor stimulation, colocalizes with β2-YFP and clathrin even in the absence of an operational clathrin binding sequence. These findings argue against ARH and β-arrestin binding to a site upon the β2 appendage platform that is later obstructed by polymerized clathrin. We conclude that ARH and β-arrestin depend on a privileged β2 appendage site for proper cargo recruitment to clathrin bud sites. PMID:18843039

  11. Structural Analysis of the Interaction between Dishevelled2 and Clathrin AP-2 Adaptor, A Critical Step in Noncanonical Wnt Signaling

    SciTech Connect

    Yu, Anan; Xing, Yi; Harrison, Stephen C.; Kirchhausen, Tomas

    2010-10-14

    Wnt association with its receptor, Frizzled (Fz), and recruitment by the latter of an adaptor, Dishevelled (Dvl), initiates signaling through at least two distinct pathways (canonical and noncanonical). Endocytosis and compartmentalization help determine the signaling outcome. Our previous work has shown that Dvl2 links at least one Frizzled family member (Fz4) to clathrin-mediated endocytosis by interacting with the {mu}2 subunit of the AP-2 clathrin adaptor, through both a classical endocytic tyrosine motif and a so-called DEP domain. We report here the crystal structure of a chimeric protein that mimics the Dvl2-{mu}2 complex. The DEP domain binds at one end of the elongated, C-terminal domain of {mu}2. This domain:domain interface shows that parts of the {mu}2 surface distinct from the tyrosine-motif site can help recruit specific receptors or adaptors into a clathrin coated pit. Mutation of residues at the DEP-{mu}2 contact or in the tyrosine motif reduce affinity of Dvl2 for {mu}2 and block efficient internalization of Fz4 in response to ligation by Wnt5a. The crystal structure has thus allowed us to identify the specific interaction that leads to Frizzled uptake and to downstream, noncanonical signaling events.

  12. The AP-3 adaptor complex is required for vacuolar function in Arabidopsis

    PubMed Central

    Zwiewka, Marta; Feraru, Elena; Möller, Barbara; Hwang, Inhwan; Feraru, Mugurel I; Kleine-Vehn, Jürgen; Weijers, Dolf; Friml, Jiří

    2011-01-01

    Subcellular trafficking is required for a multitude of functions in eukaryotic cells. It involves regulation of cargo sorting, vesicle formation, trafficking and fusion processes at multiple levels. Adaptor protein (AP) complexes are key regulators of cargo sorting into vesicles in yeast and mammals but their existence and function in plants have not been demonstrated. Here we report the identification of the protein-affected trafficking 4 (pat4) mutant defective in the putative δ subunit of the AP-3 complex. pat4 and pat2, a mutant isolated from the same GFP imaging-based forward genetic screen that lacks a functional putative AP-3 β, as well as dominant negative AP-3 μ transgenic lines display undistinguishable phenotypes characterized by largely normal morphology and development, but strong intracellular accumulation of membrane proteins in aberrant vacuolar structures. All mutants are defective in morphology and function of lytic and protein storage vacuoles (PSVs) but show normal sorting of reserve proteins to PSVs. Immunoprecipitation experiments and genetic studies revealed tight functional and physical associations of putative AP-3 β and AP-3 δ subunits. Furthermore, both proteins are closely linked with putative AP-3 μ and σ subunits and several components of the clathrin and dynamin machineries. Taken together, these results demonstrate that AP complexes, similar to those in other eukaryotes, exist in plants, and that AP-3 plays a specific role in the regulation of biogenesis and function of vacuoles in plant cells. PMID:21670741

  13. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex

    PubMed Central

    Ortega, Davi R.; Zhulin, Igor B.

    2016-01-01

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a “phosphate sink” possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex. PMID:26844549

  14. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex.

    PubMed

    Ortega, Davi R; Zhulin, Igor B

    2016-02-01

    Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a "phosphate sink" possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex. PMID:26844549

  15. Origin of Translation - the Hypothesis of Permanently Attached Adaptors

    NASA Astrophysics Data System (ADS)

    Tyagi, Sanjay

    1981-12-01

    A mechanism for prebiotic translation is proposed in which primeval transfer-RNA (adaptors) are assumed to be permanently associated with messenger nucleic acid molecules. Residual ‘fossil’ evidences are found to be present within the base sequences of contemporary tRNAs, suggesting the existence of inter-primal-tRNA interactions necessary for the mechanism. The structure of proposed primal-tRNA is such that it can not only choose its own amino acid in the absence of aminoacyl synthetase, but can also associate nonspecifically with adjacent primal-tRNA molecules attached to the neighbouring codons. Such associations can give rise, through cooperative binding between message and adaptors to the ‘static template surfaces’ which can direct translation of nucleotide sequences into those of amino acids. The origins of ribosomes and contemporary genetic code are suggested by this hypothesis. Proposed structures and processes are thermodynamically compatible. The approximate date of occurence of the proposed system is calculated, which is consistent with the period of occurence of the earliest organisms with ribosomes.

  16. A Big-Five Personality Profile of the Adaptor and Innovator.

    ERIC Educational Resources Information Center

    Kwang, Ng Aik; Rodrigues, Daphne

    2002-01-01

    A study explored the relationship between two creative types (adaptor and innovator) and the Big Five personality traits (extraversion, agreeableness, conscientiousness, neuroticism, and openness to experience), in 164 teachers in Singapore. Adaptors were significantly more conscientious than innovators, while innovators were significantly more…

  17. Investigating the Improved Aerodynamic Efficiency of Cambered Frames on Membrane MAV Wings

    NASA Astrophysics Data System (ADS)

    Wrist, Andrew; Zhang, Zheng; Hubner, Paul

    2014-11-01

    Previous research has demonstrated that membrane wings with cambered frames are more aerodynamically efficient than those with flat frames, despite passive dynamic membrane cambering for both. To help understand this aerodynamic benefit, this study compares the time-averaged membrane shape as well as membrane vibration frequency and amplitude for a group of wings with cambered frames. The frames were 3D printed with a hardened polymer material, and a silicon rubber membrane was attached to the top surface. The frame aspect ratio is two, comprised of two cells each with a cell aspect ratio of one. The rigid leading edge extended 20% of the chord, and the trailing edge was scalloped at 25%. Camber ranged from 2--6%, camber location from 40--60%, and airfoil thickness from 4--6%. Tests were performed in the University of Alabama's MAV wind tunnel at 10 m/s (Re = 50,000). High speed imaging results of the deformation and vibration will be discussed in context to airfoil and wing theory. National Science Foundation Grant Number: 1358991.

  18. Role of the Ada adaptor complex in gene activation by the glucocorticoid receptor.

    PubMed Central

    Henriksson, A; Almlöf, T; Ford, J; McEwan, I J; Gustafsson, J A; Wright, A P

    1997-01-01

    We have shown that the Ada adaptor complex is important for the gene activation capacity of the glucocorticoid receptor in yeast. The recently isolated human Ada2 protein also increases the potency of the receptor protein in mammalian cells. The Ada pathway is of key significance for the tau1 core transactivation domain (tau1c) of the receptor, which requires Ada for activity in vivo and in vitro. Ada2 can be precipitated from nuclear extracts by a glutathione S-transferase-tau1 fusion protein coupled to agarose beads, and a direct interaction between Ada2 and tau1c can be shown by using purified proteins. This interaction is strongly reduced by a mutation in tau1c that reduces transactivation activity. Mutations affecting the Ada complex do not reverse transcriptional squelching by the tau1 domain, as they do for the VP16 transactivation domain, and thus these powerful acidic activators differ in at least some important aspects of gene activation. Mutations that reduce the activity of the tau1c domain in wild-type yeast strains cause similar reductions in ada mutants that contain little or no Ada activity. Thus, gene activation mechanisms, in addition to the Ada pathway, are involved in the activity of the tau1c domain. PMID:9154805

  19. Probing heterobivalent binding to the endocytic AP-2 adaptor complex by DNA-based spatial screening.

    PubMed

    Diezmann, F; von Kleist, L; Haucke, V; Seitz, O

    2015-08-01

    The double helical DNA scaffold offers a unique set of properties, which are particularly useful for studies of multivalency in biomolecular interactions: (i) multivalent ligand displays can be formed upon nucleic acid hybridization in a self-assembly process, which facilitates spatial screening (ii) valency and spatial arrangement of the ligand display can be precisely controlled and (iii) the flexibility of the ligand display can be adjusted by integrating nick sites and unpaired template regions. Herein we describe the use of DNA-based spatial screening for the characterization of the adaptor complex 2 (AP-2), a central interaction hub within the endocytic protein network in clathrin-mediated endocytosis. AP-2 is comprised of a core domain and two, so-called appendage domains, the α- and the β2-ear, which associate with cytoplasmatic proteins required for the formation or maturation of clathrin/AP-2 coated pits. Each appendage domain has two binding grooves which recognize distinct peptide motives with micromolar affinity. This provides opportunities for enhanced interactions with protein molecules that contain two (or more) different peptide motives. To determine whether a particular, spatial arrangement of binding motifs is required for high affinity binding we probed the distance-affinity relationships by means of DNA-programmed spatial screening with self-assembled peptide-DNA complexes. By using trimolecular and tetramolecular assemblies two different peptides were positioned in 2-22 nucleotide distance. The binding data obtained with both recombinant protein in well-defined buffer systems and native AP-2 in brain extract suggests that the two binding sites of the AP-2 α-appendage can cooperate to provide up to 40-fold enhancement of affinity compared to the monovalent interaction. The distance between the two recognized peptide motives was less important provided that the DNA duplex segments were connected by flexible, single strand segments. By

  20. ATM-Dependent Phosphorylation of All Three Members of the MRN Complex: From Sensor to Adaptor

    PubMed Central

    Lavin, Martin F.; Kozlov, Sergei; Gatei, Magtouf; Kijas, Amanda W.

    2015-01-01

    The recognition, signalling and repair of DNA double strand breaks (DSB) involves the participation of a multitude of proteins and post-translational events that ensure maintenance of genome integrity. Amongst the proteins involved are several which when mutated give rise to genetic disorders characterised by chromosomal abnormalities, cancer predisposition, neurodegeneration and other pathologies. ATM (mutated in ataxia-telangiectasia (A-T) and members of the Mre11/Rad50/Nbs1 (MRN complex) play key roles in this process. The MRN complex rapidly recognises and locates to DNA DSB where it acts to recruit and assist in ATM activation. ATM, in the company of several other DNA damage response proteins, in turn phosphorylates all three members of the MRN complex to initiate downstream signalling. While ATM has hundreds of substrates, members of the MRN complex play a pivotal role in mediating the downstream signalling events that give rise to cell cycle control, DNA repair and ultimately cell survival or apoptosis. Here we focus on the interplay between ATM and the MRN complex in initiating signaling of breaks and more specifically on the adaptor role of the MRN complex in mediating ATM signalling to downstream substrates to control different cellular processes. PMID:26512707

  1. Identification of Phosphorylation Sites within the Signaling Adaptor APPL1 by Mass Spectrometry

    PubMed Central

    Gant-Branum, Randi L.; Broussard, Joshua A.; Mahsut, Ablatt; Webb, Donna J.; McLean, John A.

    2010-01-01

    APPL1 is a membrane-associated adaptor protein implicated in various cellular processes, including apoptosis, proliferation, and survival. Although there is increasing interest in the biological roles as well as the protein and membrane interactions of APPL1, a comprehensive phosphorylation profile has not been generated. In this study, we use mass spectrometry (MS) to identify 13 phosphorylated residues within APPL1. By using multiple proteases (trypsin, chymotrypsin, and Glu C) and replicate experiments of linear ion trap (LTQ) MS and LTQ-Orbitrap-MS, a combined sequence coverage of 99.6% is achieved. Four of the identified sites are located in important functional domains, suggesting a potential role in regulating APPL1. One of these sites is within the BAR domain, two cluster near the edge of the PH domain, and one is located within the PTB domain. These phosphorylation sites may control APPL1 function by regulating the ability of APPL1 domains to interact with other proteins and membranes. PMID:20095645

  2. Molecular basis of synaptic vesicle cargo recognition by the endocytic sorting adaptor stonin 2.

    PubMed

    Jung, Nadja; Wienisch, Martin; Gu, Mingyu; Rand, James B; Müller, Sebastian L; Krause, Gerd; Jorgensen, Erik M; Klingauf, Jürgen; Haucke, Volker

    2007-12-31

    Synaptic transmission depends on clathrin-mediated recycling of synaptic vesicles (SVs). How select SV proteins are targeted for internalization has remained elusive. Stonins are evolutionarily conserved adaptors dedicated to endocytic sorting of the SV protein synaptotagmin. Our data identify the molecular determinants for recognition of synaptotagmin by stonin 2 or its Caenorhabditis elegans orthologue UNC-41B. The interaction involves the direct association of clusters of basic residues on the surface of the cytoplasmic domain of synaptotagmin 1 and a beta strand within the mu-homology domain of stonin 2. Mutation of K783, Y784, and E785 to alanine within this stonin 2 beta strand results in failure of the mutant stonin protein to associate with synaptotagmin, to accumulate at synapses, and to facilitate synaptotagmin internalization. Synaptotagmin-binding-defective UNC-41B is unable to rescue paralysis in C. elegans stonin mutant animals, suggesting that the mechanism of stonin-mediated SV cargo recognition is conserved from worms to mammals. PMID:18166656

  3. HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus

    PubMed Central

    Malikov, Viacheslav; da Silva, Eveline Santos; Jovasevic, Vladimir; Bennett, Geoffrey; de Souza Aranha Vieira, Daniel A.; Schulte, Bianca; Diaz-Griffero, Felipe; Walsh, Derek; Naghavi, Mojgan H.

    2015-01-01

    Intracellular transport of cargos, including many viruses, involves directed movement on microtubules mediated by motor proteins. While a number of viruses bind motors of opposing directionality, how they associate with and control these motors to accomplish directed movement remains poorly understood. Here we show that human immunodeficiency virus type 1 (HIV-1) associates with the kinesin-1 adaptor protein, Fasiculation and Elongation Factor zeta 1 (FEZ1). RNAi-mediated FEZ1 depletion blocks early infection, with virus particles exhibiting bidirectional motility but no net movement to the nucleus. Furthermore, both dynein and kinesin-1 motors are required for HIV-1 trafficking to the nucleus. Finally, the ability of exogenously expressed FEZ1 to promote early HIV-1 infection requires binding to kinesin-1. Our findings demonstrate that opposing motors both contribute to early HIV-1 movement and identify the kinesin-1 adaptor, FEZ1 as a capsid-associated host regulator of this process usurped by HIV-1 to accomplish net inward movement toward the nucleus. PMID:25818806

  4. Redirecting adenoviruses to tumour cells using therapeutic antibodies: Generation of a versatile human bispecific adaptor.

    PubMed

    Vasiljevic, Snezana; Beale, Emma V; Bonomelli, Camille; Easthope, Iona S; Pritchard, Laura K; Seabright, Gemma E; Caputo, Alessandro T; Scanlan, Christopher N; Dalziel, Martin; Crispin, Max

    2015-12-01

    Effective use of adenovirus-5 (Ad5) in cancer therapy is heavily dependent on the degree to which the virus's natural tropism can be subverted to one that favours tumour cells. This is normally achieved through either engineering of the viral fiber knob or the use of bispecific adaptors that display both adenovirus and tumour antigen receptors. One of the main limitations of these strategies is the need to tailor each engineering event to any given tumour antigen. Here, we explore bispecific adaptors that can utilise established anti-cancer therapeutic antibodies. Conjugates containing bacterially derived antibody binding motifs are efficient at retargeting virus to antibody targets. Here, we develop a humanized strategy whereby we synthesise a re-targeting adaptor based on a chimeric Ad5 ligand/antibody receptor construct. This adaptor acts as a molecular bridge analogous to therapeutic antibody mediated cross-linking of cytotoxic effector and tumour cells during immunotherapy. As a proof or principle, we demonstrate how this adaptor allows efficient viral recognition and entry into carcinoma cells through the therapeutic monoclonal antibodies Herceptin/trastuzumab and bavituximab. We show that targeting can be augmented by use of contemporary antibody enhancement strategies such as the selective elimination of competing serum IgG using "receptor refocusing" enzymes and we envisage that further improvements are achievable by enhancing the affinities between the adaptor and its ligands. Humanized bispecific adaptors offer the promise of a versatile retargeting technology that can exploit both clinically approved adenovirus and therapeutic antibodies. PMID:26391350

  5. Competitive and Cooperative Interactions Mediate RNA Transfer from Herpesvirus Saimiri ORF57 to the Mammalian Export Adaptor ALYREF

    PubMed Central

    Tunnicliffe, Richard B.; Hautbergue, Guillaume M.; Wilson, Stuart A.; Kalra, Priti; Golovanov, Alexander P.

    2014-01-01

    The essential herpesvirus adaptor protein HVS ORF57, which has homologs in all other herpesviruses, promotes viral mRNA export by utilizing the cellular mRNA export machinery. ORF57 protein specifically recognizes viral mRNA transcripts, and binds to proteins of the cellular transcription-export (TREX) complex, in particular ALYREF. This interaction introduces viral mRNA to the NXF1 pathway, subsequently directing it to the nuclear pore for export to the cytoplasm. Here we have used a range of techniques to reveal the sites for direct contact between RNA and ORF57 in the absence and presence of ALYREF. A binding site within ORF57 was characterized which recognizes specific viral mRNA motifs. When ALYREF is present, part of this ORF57 RNA binding site, composed of an α-helix, binds preferentially to ALYREF. This competitively displaces viral RNA from the α-helix, but contact with RNA is still maintained by a flanking region. At the same time, the flexible N-terminal domain of ALYREF comes into contact with the viral RNA, which becomes engaged in an extensive network of synergistic interactions with both ALYREF and ORF57. Transfer of RNA to ALYREF in the ternary complex, and involvement of individual ORF57 residues in RNA recognition, were confirmed by UV cross-linking and mutagenesis. The atomic-resolution structure of the ORF57-ALYREF interface was determined, which noticeably differed from the homologous ICP27-ALYREF structure. Together, the data provides the first site-specific description of how viral mRNA is locked by a herpes viral adaptor protein in complex with cellular ALYREF, giving herpesvirus access to the cellular mRNA export machinery. The NMR strategy used may be more generally applicable to the study of fuzzy protein-protein-RNA complexes which involve flexible polypeptide regions. PMID:24550725

  6. The clathrin adaptor Numb regulates intestinal cholesterol absorption through dynamic interaction with NPC1L1.

    PubMed

    Li, Pei-Shan; Fu, Zhen-Yan; Zhang, Ying-Yu; Zhang, Jin-Hui; Xu, Chen-Qi; Ma, Yi-Tong; Li, Bo-Liang; Song, Bao-Liang

    2014-01-01

    Hypercholesterolemia, typically due to excessive cholesterol uptake, is a major risk factor for cardiovascular disease, which is responsible for ∼50% of all deaths in developed societies. Although it has been shown that intestinal cholesterol absorption is mediated by vesicular endocytosis of the Niemann-Pick C1-like 1 (NPC1L1) protein, the mechanism of sterol-stimulated NPC1L1 internalization is still mysterious. Here, we identified an endocytic peptide signal, YVNXXF (where X stands for any amino acid), in the cytoplasmic C-terminal tail of NPC1L1. Cholesterol binding on the N-terminal domain of NPC1L1 released the YVNXXF-containing region of NPC1L1 from association with the plasma membrane and enabled Numb binding. We also found that Numb, a clathrin adaptor, specifically recognized this motif and recruited clathrin for internalization. Disrupting the NPC1L1-Numb interaction decreased cholesterol uptake. Ablation of Numb in mouse intestine significantly reduced dietary cholesterol absorption and plasma cholesterol level. Together, these data show that Numb is a pivotal protein for intestinal cholesterol absorption and may provide a therapeutic target for hypercholesterolemia. PMID:24336247

  7. Preventing farnesylation of the dynein adaptor Spindly contributes to the mitotic defects caused by farnesyltransferase inhibitors

    PubMed Central

    Holland, Andrew J.; Reis, Rita M.; Niessen, Sherry; Pereira, Cláudia; Andres, Douglas A.; Spielmann, H. Peter; Cleveland, Don W.; Desai, Arshad; Gassmann, Reto

    2015-01-01

    The clinical interest in farnesyltransferase inhibitors (FTIs) makes it important to understand how these compounds affect cellular processes involving farnesylated proteins. Mitotic abnormalities observed after treatment with FTIs have so far been attributed to defects in the farnesylation of the outer kinetochore proteins CENP-E and CENP-F, which are involved in chromosome congression and spindle assembly checkpoint signaling. Here we identify the cytoplasmic dynein adaptor Spindly as an additional component of the outer kinetochore that is modified by farnesyltransferase (FTase). We show that farnesylation of Spindly is essential for its localization, and thus for the proper localization of dynein and its cofactor dynactin, to prometaphase kinetochores and that Spindly kinetochore recruitment is more severely affected by FTase inhibition than kinetochore recruitment of CENP-E and CENP-F. Molecular replacement experiments show that both Spindly and CENP-E farnesylation are required for efficient chromosome congression. The identification of Spindly as a new mitotic substrate of FTase provides insight into the causes of the mitotic phenotypes observed with FTase inhibitors. PMID:25808490

  8. The Role of the Clathrin Adaptor AP-1: Polarized Sorting and Beyond

    PubMed Central

    Nakatsu, Fubito; Hase, Koji; Ohno, Hiroshi

    2014-01-01

    The selective transport of proteins or lipids by vesicular transport is a fundamental process supporting cellular physiology. The budding process involves cargo sorting and vesicle formation at the donor membrane and constitutes an important process in vesicular transport. This process is particularly important for the polarized sorting in epithelial cells, in which the cargo molecules need to be selectively sorted and transported to two distinct destinations, the apical or basolateral plasma membrane. Adaptor protein (AP)-1, a member of the AP complex family, which includes the ubiquitously expressed AP-1A and the epithelium-specific AP-1B, regulates polarized sorting at the trans-Golgi network and/or at the recycling endosomes. A growing body of evidence, especially from studies using model organisms and animals, demonstrates that the AP-1-mediated polarized sorting supports the development and physiology of multi-cellular units as functional organs and tissues (e.g., cell fate determination, inflammation and gut immune homeostasis). Furthermore, a possible involvement of AP-1B in the pathogenesis of human diseases, such as Crohn’s disease and cancer, is now becoming evident. These data highlight the significant contribution of AP-1 complexes to the physiology of multicellular organisms, as master regulators of polarized sorting in epithelial cells. PMID:25387275

  9. The clathrin adaptor AP-1 complex and Arf1 regulate planar cell polarity in vivo

    PubMed Central

    Mendoza, Meg; Dussert, Aurore; Collu, Giovanna; Roman, Angel-Carlos; Weber, Ursula; Ciruna, Brian; Mlodzik, Marek

    2015-01-01

    A key step in generating planar cell polarity (PCP) is the formation of restricted junctional domains containing Frizzled/Dishevelled/Diego (Fz/Dsh/Dgo) or Van Gogh/Prickle (Vang/Pk) complexes within the same cell, stabilized via Flamingo (Fmi) across cell membranes. Although models have been proposed for how these complexes acquire and maintain their polarized localization, the machinery involved in moving core PCP proteins around cells remains unknown. We describe the AP-1 adaptor complex and Arf1 as major regulators of PCP protein trafficking in vivo. AP-1 and Arf1 disruption affects the accumulation of Fz/Fmi and Vang/Fmi complexes in the proximo–distal axis, producing severe PCP phenotypes. Using novel tools, we demonstrate a direct and specific Arf1 involvement in Fz trafficking in vivo. Moreover, we uncover a conserved Arf1 PCP function in vertebrates. Our data support a model whereby the trafficking machinery plays an important part during PCP establishment, promoting formation of polarized PCP-core complexes in vivo. PMID:25849195

  10. The Late Endosomal Adaptor Molecule p14 (LAMTOR2) Regulates TGFβ1-Mediated Homeostasis of Langerhans Cells

    PubMed Central

    Sparber, Florian; Tripp, Christoph H.; Komenda, Kerstin; Scheffler, Julia M.; Clausen, Björn E.; Huber, Lukas A.; Romani, Nikolaus; Stoitzner, Patrizia

    2014-01-01

    Langerhans cells (LCs), a sub-population of dendritic cells (DCs) in the skin, participate in the regulation of immunity and peripheral tolerance. The adaptor molecule p14 is part of the late endosomal/lysosomal adaptor and mitogen-activated protein kinase and mammalian target of rapamycin (mTOR) activator/regulator (LAMTOR) complex, which mediates the activation of lysosome-associated extracellular signaling-regulated kinase (ERK) and the mTOR cascade. In previous work, we demonstrated that CD11c-specific deficiency of p14 disrupts LC homeostasis by affecting the LAMTOR-mediated ERK and mTOR signaling. In this study, we extended our analysis on p14 deficiency specifically in LCs. Langerin-specific ablation of p14 caused a complete loss of LCs, accompanied by an increased maturational phenotype of LCs. The absence of LCs in p14-deficient mice reduced contact hypersensitivity (CHS) responses to the contact sensitizer trinitrochlorobenzene. Analysis using bone marrow-derived DCs (BMDCs) revealed that p14 deficiency in DCs/LCs interfered with the LC-relevant transforming growth factor β1 (TGFβ1) pathway, by lowering TGFβ receptor II expression on BMDCs and LCs, as well as surface binding of TGFβ1 on BMDCs. We conclude that p14 deficiency affects TGFβ1 sensitivity of LCs, which is mandatory for their homeostasis and subsequently for their immunological function during CHS. PMID:25078666

  11. Design and Analysis of a Single-Camera Omnistereo Sensor for Quadrotor Micro Aerial Vehicles (MAVs) †

    PubMed Central

    Jaramillo, Carlos; Valenti, Roberto G.; Guo, Ling; Xiao, Jizhong

    2016-01-01

    We describe the design and 3D sensing performance of an omnidirectional stereo (omnistereo) vision system applied to Micro Aerial Vehicles (MAVs). The proposed omnistereo sensor employs a monocular camera that is co-axially aligned with a pair of hyperboloidal mirrors (a vertically-folded catadioptric configuration). We show that this arrangement provides a compact solution for omnidirectional 3D perception while mounted on top of propeller-based MAVs (not capable of large payloads). The theoretical single viewpoint (SVP) constraint helps us derive analytical solutions for the sensor’s projective geometry and generate SVP-compliant panoramic images to compute 3D information from stereo correspondences (in a truly synchronous fashion). We perform an extensive analysis on various system characteristics such as its size, catadioptric spatial resolution, field-of-view. In addition, we pose a probabilistic model for the uncertainty estimation of 3D information from triangulation of back-projected rays. We validate the projection error of the design using both synthetic and real-life images against ground-truth data. Qualitatively, we show 3D point clouds (dense and sparse) resulting out of a single image captured from a real-life experiment. We expect the reproducibility of our sensor as its model parameters can be optimized to satisfy other catadioptric-based omnistereo vision under different circumstances. PMID:26861351

  12. Sequentially-coupled space-time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Kostov, Nikolay

    2014-08-01

    We present a sequentially-coupled space-time (ST) computational fluid-structure interaction (FSI) analysis of flapping-wing aerodynamics of a micro aerial vehicle (MAV). The wing motion and deformation data, whether prescribed fully or partially, is from an actual locust, extracted from high-speed, multi-camera video recordings of the locust in a wind tunnel. The core computational FSI technology is based on the Deforming-Spatial-Domain/Stabilized ST (DSD/SST) formulation. This is supplemented with using NURBS basis functions in temporal representation of the wing and mesh motion, and in remeshing. Here we use the version of the DSD/SST formulation derived in conjunction with the variational multiscale (VMS) method, and this version is called "DSD/SST-VMST." The structural mechanics computations are based on the Kirchhoff-Love shell model. The sequential-coupling technique is applicable to some classes of FSI problems, especially those with temporally-periodic behavior. We show that it performs well in FSI computations of the flapping-wing aerodynamics we consider here. In addition to the straight-flight case, we analyze cases where the MAV body has rolling, pitching, or rolling and pitching motion. We study how all these influence the lift and thrust.

  13. Biophysical basis of the binding of WWOX tumor suppressor to WBP1 and WBP2 adaptors.

    PubMed

    McDonald, Caleb B; Buffa, Laura; Bar-Mag, Tomer; Salah, Zaidoun; Bhat, Vikas; Mikles, David C; Deegan, Brian J; Seldeen, Kenneth L; Malhotra, Arun; Sudol, Marius; Aqeilan, Rami I; Nawaz, Zafar; Farooq, Amjad

    2012-09-01

    The WW-containing oxidoreductase (WWOX) tumor suppressor participates in a diverse array of cellular activities by virtue of its ability to recognize WW-binding protein 1 (WBP1) and WW-binding protein 2 (WBP2) signaling adaptors among a wide variety of other ligands. Herein, using a multitude of biophysical techniques, we provide evidence that while the WW1 domain of WWOX binds to PPXY motifs within WBP1 and WBP2 in a physiologically relevant manner, the WW2 domain exhibits no affinity toward any of these PPXY motifs. Importantly, our data suggest that while R25/W44 residues located within the binding pocket of a triple-stranded β-fold of WW1 domain are critical for the recognition of PPXY ligands, they are replaced by the chemically distinct E66/Y85 duo at structurally equivalent positions within the WW2 domain, thereby accounting for its failure to bind PPXY ligands. Predictably, not only does the introduction of E66R/Y85W double substitution within the WW2 domain result in gain of function but the resulting engineered domain, hereinafter referred to as WW2_RW, also appears to be a much stronger binding partner of WBP1 and WBP2 than the wild-type WW1 domain. We also show that while the WW1 domain is structurally disordered and folds upon ligand binding, the WW2 domain not only adopts a fully structured conformation but also aids stabilization and ligand binding to WW1 domain. This salient observation implies that the WW2 domain likely serves as a chaperone to augment the physiological function of WW1 domain within WWOX. Collectively, our study lays the groundwork for understanding the molecular basis of a key protein-protein interaction pertinent to human health and disease. PMID:22634283

  14. A dual-band adaptor for infrared imaging

    SciTech Connect

    McLean, Adam G; Ahn, J.W.; Maingi, Rajesh; Gray, T. K.; Roquemore, L.

    2012-01-01

    A novel imaging adaptor providing the capability to extend a standard single-band infrared (IR) camera into a two-color or dual-band device has been developed for application to high-speed IR thermography on the National Spherical Tokamak Experiment (NSTX). Temperature measurement with two-band infrared imaging has the advantage of being mostly independent of surface emissivity, which may vary significantly in the liquid lithium divertor installed on NSTX as compared to that of an all-carbon first wall. In order to take advantage of the high-speed capability of the existing IR camera at NSTX (1.6-6.2 kHz frame rate), a commercial visible-range optical splitter was extensively modified to operate in the medium wavelength and long wavelength IR. This two-band IR adapter utilizes a dichroic beamsplitter, which reflects 4-6 mu m wavelengths and transmits 7-10 mu m wavelength radiation, each with >95% efficiency and projects each IR channel image side-by-side on the camera's detector. Cutoff filters are used in each IR channel, and ZnSe imaging optics and mirrors optimized for broadband IR use are incorporated into the design. In-situ and ex-situ temperature calibration and preliminary data of the NSTX divertor during plasma discharges are presented, with contrasting results for dual-band vs. single-band IR operation.

  15. A dual-band adaptor for infrared imaging.

    PubMed

    McLean, A G; Ahn, J-W; Maingi, R; Gray, T K; Roquemore, A L

    2012-05-01

    A novel imaging adaptor providing the capability to extend a standard single-band infrared (IR) camera into a two-color or dual-band device has been developed for application to high-speed IR thermography on the National Spherical Tokamak Experiment (NSTX). Temperature measurement with two-band infrared imaging has the advantage of being mostly independent of surface emissivity, which may vary significantly in the liquid lithium divertor installed on NSTX as compared to that of an all-carbon first wall. In order to take advantage of the high-speed capability of the existing IR camera at NSTX (1.6-6.2 kHz frame rate), a commercial visible-range optical splitter was extensively modified to operate in the medium wavelength and long wavelength IR. This two-band IR adapter utilizes a dichroic beamsplitter, which reflects 4-6 μm wavelengths and transmits 7-10 μm wavelength radiation, each with >95% efficiency and projects each IR channel image side-by-side on the camera's detector. Cutoff filters are used in each IR channel, and ZnSe imaging optics and mirrors optimized for broadband IR use are incorporated into the design. In-situ and ex-situ temperature calibration and preliminary data of the NSTX divertor during plasma discharges are presented, with contrasting results for dual-band vs. single-band IR operation. PMID:22667624

  16. A dual-band adaptor for infrared imaging

    NASA Astrophysics Data System (ADS)

    McLean, A. G.; Ahn, J.-W.; Maingi, R.; Gray, T. K.; Roquemore, A. L.

    2012-05-01

    A novel imaging adaptor providing the capability to extend a standard single-band infrared (IR) camera into a two-color or dual-band device has been developed for application to high-speed IR thermography on the National Spherical Tokamak Experiment (NSTX). Temperature measurement with two-band infrared imaging has the advantage of being mostly independent of surface emissivity, which may vary significantly in the liquid lithium divertor installed on NSTX as compared to that of an all-carbon first wall. In order to take advantage of the high-speed capability of the existing IR camera at NSTX (1.6-6.2 kHz frame rate), a commercial visible-range optical splitter was extensively modified to operate in the medium wavelength and long wavelength IR. This two-band IR adapter utilizes a dichroic beamsplitter, which reflects 4-6 μm wavelengths and transmits 7-10 μm wavelength radiation, each with >95% efficiency and projects each IR channel image side-by-side on the camera's detector. Cutoff filters are used in each IR channel, and ZnSe imaging optics and mirrors optimized for broadband IR use are incorporated into the design. In-situ and ex-situ temperature calibration and preliminary data of the NSTX divertor during plasma discharges are presented, with contrasting results for dual-band vs. single-band IR operation.

  17. A dual-band adaptor for infrared imaging

    SciTech Connect

    McLean, A. G.; Ahn, J-W.; Maingi, R.; Gray, T. K.; Roquemore, A. L.

    2012-05-15

    A novel imaging adaptor providing the capability to extend a standard single-band infrared (IR) camera into a two-color or dual-band device has been developed for application to high-speed IR thermography on the National Spherical Tokamak Experiment (NSTX). Temperature measurement with two-band infrared imaging has the advantage of being mostly independent of surface emissivity, which may vary significantly in the liquid lithium divertor installed on NSTX as compared to that of an all-carbon first wall. In order to take advantage of the high-speed capability of the existing IR camera at NSTX (1.6-6.2 kHz frame rate), a commercial visible-range optical splitter was extensively modified to operate in the medium wavelength and long wavelength IR. This two-band IR adapter utilizes a dichroic beamsplitter, which reflects 4-6 {mu}m wavelengths and transmits 7-10 {mu}m wavelength radiation, each with >95% efficiency and projects each IR channel image side-by-side on the camera's detector. Cutoff filters are used in each IR channel, and ZnSe imaging optics and mirrors optimized for broadband IR use are incorporated into the design. In-situ and ex-situ temperature calibration and preliminary data of the NSTX divertor during plasma discharges are presented, with contrasting results for dual-band vs. single-band IR operation.

  18. Regulation of natural cytotoxicity by the adaptor SAP and the Src-related kinase Fyn

    PubMed Central

    Bloch-Queyrat, Coralie; Fondanèche, Marie-Claude; Chen, Riyan; Yin, Luo; Relouzat, Francis; Veillette, André; Fischer, Alain; Latour, Sylvain

    2005-01-01

    SAP is an adaptor protein that is expressed in NK and T cells. It is mutated in humans who have X-linked lymphoproliferative (XLP) disease. By interacting with SLAM family receptors, SAP enables tyrosine phosphorylation signaling of these receptors by its ability to recruit the Src-related kinase, Fyn. Here, we analyzed the role of SAP in NK cell functions using the SAP-deficient mouse model. Our results showed that SAP was required for the ability of NK cells to eliminate tumor cells in vitro and in vivo. This effect strongly correlated with expression of CD48 on tumor cells, the ligand of 2B4, a SLAM-related receptor expressed in NK cells. In keeping with earlier reports that studied human NK cells, we showed that SAP was necessary for the ability of 2B4 to trigger cytotoxicity and IFN-γ secretion. In the absence of SAP, 2B4 function was shifted toward inhibition of NK cell–mediated cytotoxicity. By analyzing mice lacking Fyn, we showed that similarly to SAP, Fyn was strictly required for 2B4 function. Taken together, these results provide evidence that the 2B4-SAP-Fyn cascade defines a potent activating pathway of natural cytotoxicity. They also could help to explain the high propensity of patients who have XLP disease to develop lymphoproliferative disorders. PMID:15998796

  19. A Common Variant in the Adaptor Mal Regulates Interferon Gamma Signaling.

    PubMed

    Ní Cheallaigh, Clíona; Sheedy, Frederick J; Harris, James; Muñoz-Wolf, Natalia; Lee, Jinhee; West, Kim; McDermott, Eva Palsson; Smyth, Alicia; Gleeson, Laura E; Coleman, Michelle; Martinez, Nuria; Hearnden, Claire H A; Tynan, Graham A; Carroll, Elizabeth C; Jones, Sarah A; Corr, Sinéad C; Bernard, Nicholas J; Hughes, Mark M; Corcoran, Sarah E; O'Sullivan, Mary; Fallon, Ciara M; Kornfeld, Hardy; Golenbock, Douglas; Gordon, Stephen V; O'Neill, Luke A J; Lavelle, Ed C; Keane, Joseph

    2016-02-16

    Humans that are heterozygous for the common S180L polymorphism in the Toll-like receptor (TLR) adaptor Mal (encoded by TIRAP) are protected from a number of infectious diseases, including tuberculosis (TB), whereas those homozygous for the allele are at increased risk. The reason for this difference in susceptibility is not clear. We report that Mal has a TLR-independent role in interferon-gamma (IFN-γ) receptor signaling. Mal-dependent IFN-γ receptor (IFNGR) signaling led to mitogen-activated protein kinase (MAPK) p38 phosphorylation and autophagy. IFN-γ signaling via Mal was required for phagosome maturation and killing of intracellular Mycobacterium tuberculosis (Mtb). The S180L polymorphism, and its murine equivalent S200L, reduced the affinity of Mal for the IFNGR, thereby compromising IFNGR signaling in macrophages and impairing responses to TB. Our findings highlight a role for Mal outside the TLR system and imply that genetic variation in TIRAP may be linked to other IFN-γ-related diseases including autoimmunity and cancer. PMID:26885859

  20. Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors.

    PubMed Central

    Marcus, G A; Silverman, N; Berger, S L; Horiuchi, J; Guarente, L

    1994-01-01

    A selection for yeast mutants resistant to GAL4-VP16-induced toxicity previously identified two genes, ADA2 and ADA3, which may function as adaptors for some transcriptional activation domains and thereby facilitate activation. Here we identify two new genes by the same selection, one of which is identical to GCN5. We show that gcn5 mutants share properties with ada mutants, including slow growth, temperature sensitivity and reduced activation by the VP16 and GCN4 activation domains. Double mutant studies suggest that ADA2 and GCN5 function together in a complex or pathway. Moreover, we demonstrate that GCN5 binds to ADA2 both by the two-hybrid assay in vivo and by co-immunoprecipitation in vitro. This suggests that ADA2 and GCN5 are part of a heteromeric complex that mediates transcriptional activation. Finally, we demonstrate the functional importance of the bromodomain of GCN5, a sequence found in other global transcription factors such as the SWI/SNF complex and the TATA binding protein-associated factors. This domain is not required for the interaction between GCN5 and ADA2 and thus may mediate a more general activity of transcription factors. Images PMID:7957049

  1. Transmembrane adaptor molecules: a new category of lymphoid-cell markers.

    PubMed

    Tedoldi, Sara; Paterson, Jennifer C; Hansmann, Martin-Leo; Natkunam, Yasodha; Rüdiger, Thomas; Angelisova, Pavla; Du, Ming Q; Roberton, Helen; Roncador, Giovanna; Sanchez, Lydia; Pozzobon, Michela; Masir, Noraidah; Barry, Richard; Pileri, Stefano; Mason, David Y; Marafioti, Teresa; Horejsí, Václav

    2006-01-01

    Transmembrane adaptor proteins (of which 7 have been identified so far) are involved in receptor signaling in immune cells. They have only a short extracellular region, with most of the molecule comprising a substantial intracytoplasmic region carrying multiple tyrosine residues that can be phosphorylated by Src- or Syk-family kinases. In this paper, we report an immunohistologic study of 6 of these molecules in normal and neoplastic human tissue sections and show that they are restricted to subpopulations of lymphoid cells, being present in either T cells (LAT, LIME, and TRIM), B cells (NTAL), or subsets of both cell types (PAG and SIT). Their expression in neoplastic lymphoid cells broadly reflects that of normal lymphoid tissue, including the positivity of plasma cells and myeloma/plasmacytoma for LIME, NTAL, PAG, and SIT. However, this study also revealed some reactions that may be of diagnostic/prognostic value. For example, lymphocytic lymphoma and mantle-cell lymphoma showed similar profiles but differed clearly from follicle-center lymphoma, whereas PAG tended to be selectively expressed in germinal center-derived subsets of diffuse large B-cell lymphoma. These molecules represent a potentially important addition to the panel of immunophenotypic markers detectable in routine biopsies that can be used in hematopathologic studies. PMID:16160011

  2. A Common Variant in the Adaptor Mal Regulates Interferon Gamma Signaling

    PubMed Central

    Ní Cheallaigh, Clíona; Sheedy, Frederick J.; Harris, James; Muñoz-Wolf, Natalia; Lee, Jinhee; West, Kim; McDermott, Eva Palsson; Smyth, Alicia; Gleeson, Laura E.; Coleman, Michelle; Martinez, Nuria; Hearnden, Claire H.A.; Tynan, Graham A.; Carroll, Elizabeth C.; Jones, Sarah A.; Corr, Sinéad C.; Bernard, Nicholas J.; Hughes, Mark M.; Corcoran, Sarah E.; O’Sullivan, Mary; Fallon, Ciara M.; Kornfeld, Hardy; Golenbock, Douglas; Gordon, Stephen V.; O’Neill, Luke A.J.; Lavelle, Ed C.; Keane, Joseph

    2016-01-01

    Summary Humans that are heterozygous for the common S180L polymorphism in the Toll-like receptor (TLR) adaptor Mal (encoded by TIRAP) are protected from a number of infectious diseases, including tuberculosis (TB), whereas those homozygous for the allele are at increased risk. The reason for this difference in susceptibility is not clear. We report that Mal has a TLR-independent role in interferon-gamma (IFN-γ) receptor signaling. Mal-dependent IFN-γ receptor (IFNGR) signaling led to mitogen-activated protein kinase (MAPK) p38 phosphorylation and autophagy. IFN-γ signaling via Mal was required for phagosome maturation and killing of intracellular Mycobacterium tuberculosis (Mtb). The S180L polymorphism, and its murine equivalent S200L, reduced the affinity of Mal for the IFNGR, thereby compromising IFNGR signaling in macrophages and impairing responses to TB. Our findings highlight a role for Mal outside the TLR system and imply that genetic variation in TIRAP may be linked to other IFN-γ-related diseases including autoimmunity and cancer. PMID:26885859

  3. The Clathrin Adaptor Gga2p Is a Phosphatidylinositol 4-phosphate Effector at the Golgi Exit

    PubMed Central

    Demmel, Lars; Gravert, Maike; Ercan, Ebru; Habermann, Bianca; Müller-Reichert, Thomas; Kukhtina, Viktoria; Haucke, Volker; Baust, Thorsten; Sohrmann, Marc; Kalaidzidis, Yannis; Klose, Christian; Beck, Mike; Peter, Matthias

    2008-01-01

    Phosphatidylinositol 4-phosphate (PI(4)P) is a key regulator of membrane transport required for the formation of transport carriers from the trans-Golgi network (TGN). The molecular mechanisms of PI(4)P signaling in this process are still poorly understood. In a search for PI(4)P effector molecules, we performed a screen for synthetic lethals in a background of reduced PI(4)P and found the gene GGA2. Our analysis uncovered a PI(4)P-dependent recruitment of the clathrin adaptor Gga2p to the TGN during Golgi-to-endosome trafficking. Gga2p recruitment to liposomes is stimulated both by PI(4)P and the small GTPase Arf1p in its active conformation, implicating these two molecules in the recruitment of Gga2p to the TGN, which ultimately controls the formation of clathrin-coated vesicles. PI(4)P binding occurs through a phosphoinositide-binding signature within the N-terminal VHS domain of Gga2p resembling a motif found in other clathrin interacting proteins. These data provide an explanation for the TGN-specific membrane recruitment of Gga2p. PMID:18287542

  4. Ascent Heating Thermal Analysis on Spacecraft Adaptor Fairings

    NASA Technical Reports Server (NTRS)

    Wang, Xiao Yen; Yuko, James; Motil, Brian

    2011-01-01

    When the Crew Exploration Vehicle (CEV) is launched, the spacecraft adaptor (SA) fairings that cover the CEV service module (SM) are exposed to aero heating. Thermal analysis is performed to compute the fairing temperatures and to investigate whether the temperatures are within the material limits for nominal ascent aeroheating case. The ascent heating is analyzed by using computational fluid dynamics (CFD) and engineering codes at Marshall Space Flight Center. The aeroheating environment data used for this work is known as Thermal Environment 3 (TE3) heating data. One of the major concerns is with the SA fairings covering the CEV SM and the SM/crew launch vehicle (CLV) flange interface. The TE3 heating rate is a function of time, wall temperature, and the spatial locations. The implementation of the TE3 heating rate as boundary conditions in the thermal analysis becomes challenging. The ascent heating thermal analysis on SA fairings and SM/CLV flange interface are performed using two commercial software packages: Cullimore & Ring (C&R) Thermal Desktop (TD) 5.1 and MSC Patran 2007r1 b. TD is the pre-and post-processor for SINDA, which is a finite-difference-based solver. In TD, the geometry is built and meshed, the boundary conditions are defined, and then SINDA is used to compute temperatures. MSC Pthermal is a finite-element- based thermal solver. MSC Patran is the pre- and post-processor for Pthermal. Regarding the boundary conditions, the convection, contact resistance, and heat load can be imposed in different ways in both programs. These two software packages are used to build the thermal model for the same analysis to validate each other and show the differences in the modeling details.

  5. Biophysical Basis of the Binding of WWOX Tumor Suppressor to WBP1 and WBP2 Adaptors

    PubMed Central

    McDonald, Caleb B.; Buffa, Laura; Bar-Mag, Tomer; Salah, Zaidoun; Bhat, Vikas; Mikles, David C.; Deegan, Brian J.; Seldeen, Kenneth L.; Malhotra, Arun; Sudol, Marius; Aqeilan, Rami I.; Nawaz, Zafar; Farooq, Amjad

    2012-01-01

    The WWOX tumor suppressor participates in a diverse array of cellular activities by virtue of its ability to recognize WBP1 and WBP2 signaling adaptors among a wide variety of other ligands. Herein, using a multitude of biophysical techniques, we provide evidence that while the WW1 domain of WWOX binds to PPXY motifs within WBP1 and WBP2 in a physiologically-relevant manner, the WW2 domain exhibits no affinity toward any of these PPXY motifs. Importantly, our data suggest that while R25/W44 residues located within the binding pocket of triple-stranded β-fold of WW1 domain are critical for the recognition of PPXY ligands, they are replaced by the chemically-distinct E66/Y85 duo at structurally-equivalent positions within the WW2 domain, thereby accounting for its failure to bind PPXY ligands. Predictably, introduction of E66R/Y85W double-substitution within the WW2 domain not only results in gain-of-function but the resulting engineered domain, hereinafter referred to as WW2_RW, also appears to be a much stronger binding partner of WBP1 and WBP2 than the wild type WW1 domain. We also show that while the WW1 domain is structurally disordered and folds upon ligand binding, the WW2 domain not only adopts a fully structured conformation but also aids stabilization and ligand binding to WW1 domain. This salient observation implies that the WW2 domain likely serves as a chaperone to augment the physiological function of WW1 domain within WWOX. Collectively, our study lays the groundwork for understanding the molecular basis of a key protein-protein interaction pertinent to human health and disease. PMID:22634283

  6. The epsin family of endocytic adaptors promotes fibrosarcoma migration and invasion.

    PubMed

    Coon, Brian G; Burgner, John; Camonis, Jacques H; Aguilar, R Claudio

    2010-10-22

    Abnormalities in the process of endocytosis are classically linked to malignant transformation through the deficient down-regulation of signaling receptors. The present study describes a non-classical mechanism that does not require internalization by which endocytic proteins affect cell migration and basement membrane invasion. Specifically, we found that the endocytic adaptor epsin binds and regulates the biological properties of the signaling molecule RalBP1 (Ral-binding protein 1). Epsin interacted with the N terminus of RalBP1 via its characteristic epsin N-terminal homology (ENTH) domain. A combination of siRNA-mediated knock-down and transfection of siRNA-resistant constructs in fibrosarcoma cells demonstrated that impairment of the epsin-RalBP1 interaction led to cell migration and basement membrane invasion defects. We found the ENTH domain was necessary and sufficient to sustain normal cell migration and invasion. Because all the epsin endocytic motifs reside in the C-terminal part of the molecule, these results suggest that this novel regulatory circuit does not require endocytosis. In addition, cells depleted of epsin-RalBP1 complex displayed deficient activation of Rac1 and Arf6 suggesting a signaling function for this novel interaction. Further, overexpression of either epsin or RalBP1 enhanced migration and invasion of fibrosarcoma cells. Collectively, our results indicate that epsin regulates RalBP1 function in Rac1- and Arf6-dependent pathways to ultimately affect cell migration and invasion. We propose that the observed up-regulation of both epsin and RalBP1 in certain cancers contributes to their invasive characteristics. PMID:20709745

  7. The Epsin Family of Endocytic Adaptors Promotes Fibrosarcoma Migration and Invasion*

    PubMed Central

    Coon, Brian G.; Burgner, John; Camonis, Jacques H.; Aguilar, R. Claudio

    2010-01-01

    Abnormalities in the process of endocytosis are classically linked to malignant transformation through the deficient down-regulation of signaling receptors. The present study describes a non-classical mechanism that does not require internalization by which endocytic proteins affect cell migration and basement membrane invasion. Specifically, we found that the endocytic adaptor epsin binds and regulates the biological properties of the signaling molecule RalBP1 (Ral-binding protein 1). Epsin interacted with the N terminus of RalBP1 via its characteristic epsin N-terminal homology (ENTH) domain. A combination of siRNA-mediated knock-down and transfection of siRNA-resistant constructs in fibrosarcoma cells demonstrated that impairment of the epsin-RalBP1 interaction led to cell migration and basement membrane invasion defects. We found the ENTH domain was necessary and sufficient to sustain normal cell migration and invasion. Because all the epsin endocytic motifs reside in the C-terminal part of the molecule, these results suggest that this novel regulatory circuit does not require endocytosis. In addition, cells depleted of epsin-RalBP1 complex displayed deficient activation of Rac1 and Arf6 suggesting a signaling function for this novel interaction. Further, overexpression of either epsin or RalBP1 enhanced migration and invasion of fibrosarcoma cells. Collectively, our results indicate that epsin regulates RalBP1 function in Rac1- and Arf6-dependent pathways to ultimately affect cell migration and invasion. We propose that the observed up-regulation of both epsin and RalBP1 in certain cancers contributes to their invasive characteristics. PMID:20709745

  8. Design and characterization of a silicon piezoresistive three-axial force sensor for micro-flapping wing MAV applications

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Truong, Van T.; Lua, Kim B.; Kumar, A. S.; Lim, Tee Tai; Yeo, Khoon Seng; Zhou, Guangya

    2015-03-01

    This paper describes the design and electro-mechanical characterizations of a three-axial micro piezoresistive force sensor fabricated by microelectromechanical systems (MEMS) technologies. This is the first three-axial MEMS micro force sensor applied to the study of Micro Aerial Vehicle (MAV) aerodynamics. A standard dry etching fabrication process using Silicon On Insulator (SOI) wafer is employed to fabricate the multi-axis sensors. Conventional cross-beam structure is employed. There are eight piezoresistors on the beams, and each of the silicon strain gauge size is 15 μm in width, and between 400 and 500 μm in length. The Finite Element Method (FEM) analysis for confirming the piezoresistors attachment locations is performed. The miniaturized force sensor (11×11 mm2) is attached at the wing base of a micro flapping wing system (MAV, 70×30 mm2 ) by a short pillar. The sensor is designed to detect the dynamic drag force and lift force generated by a single wing under a moderate flapping frequency (5~10Hz) simultaneously. The characterizations are experimentally investigated. The sensor should be stiff enough to withstand the high inertial force (200 millinewton) and also has high resolution to detect the minimal force correctly. Measurements show that the resolution is on the order of a millinewton. High linearity and low hysteresis under normal forces and tangential forces are demonstrated by applying forces from 0 to 0.1 N. The micro flapping wing mechanism and the assembly of wing and sensor are also discussed in this paper.

  9. Genetic Deletion of the Clathrin Adaptor GGA3 Reduces Anxiety and Alters GABAergic Transmission

    PubMed Central

    Albrecht, David; Lomoio, Selene; Haydon, Philip G.; Moss, Stephen J.; Tesco, Giuseppina

    2016-01-01

    Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) is a monomeric clathrin adaptor that has been shown to regulate the trafficking of the Beta-site APP-cleaving enzyme (BACE1), which is required for production of the Alzheimer’s disease (AD)-associated amyloid βpeptide. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that depletion of GGA3 results in increased BACE1 levels and activity owing to impaired lysosomal trafficking and degradation. We further demonstrated the role of GGA3 in the regulation of BACE1 in vivo by showing that BACE1 levels are increased in the brain of GGA3 null mice. We report here that GGA3 deletion results in novelty-induced hyperactivity and decreased anxiety-like behaviors. Given the pivotal role of GABAergic transmission in the regulation of anxiety-like behaviors, we performed electrophysiological recordings in hippocampal slices and found increased phasic and decreased tonic inhibition in the dentate gyrus granule cells (DGGC). Moreover, we found that the number of inhibitory synapses is increased in the dentate gyrus of GGA3 null mice in further support of the electrophysiological data. Thus, the increased GABAergic transmission is a leading candidate mechanism underlying the reduced anxiety-like behaviors observed in GGA3 null mice. All together these findings suggest that GGA3 plays a key role in GABAergic transmission. Since BACE1 levels are elevated in the brain of GGA3 null mice, it is possible that at least some of these phenotypes are a consequence of increased processing of BACE1 substrates. PMID:27192432

  10. The adaptor 3BP2 is required for KIT receptor expression and human mast cell survival

    PubMed Central

    Ainsua-Enrich, Erola; Serrano-Candelas, Eva; Álvarez-Errico, Damiana; Picado, César; Sayós, Joan; Rivera, Juan; Martín, Margarita

    2015-01-01

    3BP2 is a cytoplasmic adaptor protein that acts as a positive regulator in mast cell FcεRI-dependent signaling. The KIT receptor whose ligand is the stem cell factor (SCF) is necessary for mast cell development, proliferation and survival as well as for optimal IgE-dependent signal. Activating mutations in KIT have been associated with several diseases including mastocytosis. In the present work, we found that 3BP2 silencing impairs KIT signaling pathways, thus affecting PI3K and MAP kinase pathways in human mast cells from HMC-1, LAD2 (human mast cell lines) and CD34+-derived mast cells. Unexpectedly, silencing of 3BP2 reduces KIT expression in normal human mast cells as well as in HMC-1 cells where KIT is mutated, thus increasing cellular apoptosis and caspase 3/7 activity. 3BP2 silencing reduces KIT transcription expression levels. Interestingly, 3BP2 silencing decreased MITF expression, a transcription factor involved in KIT expression. Reconstitution of 3BP2 in knockdown cells leads to reversal of KIT expression as well as survival phenotype. Accordingly MITF reconstitution enhances KIT expression levels in 3BP2 silenced cells. Moreover, downregulation of KIT expression by miRNA221 overexpression or the proteasome inhibitor bortezomib also reduced 3BP2 and MITF expression. Furthermore, KIT tyrosine activity inhibition reduced 3BP2 and MITF expression, demonstrating again a tight and reciprocal relationship between these molecules. Taken together, our results show that 3BP2 regulates human mast cell survival and participates in KIT-mediated signal transduction by directly controlling KIT receptor expression, suggesting its potential as a therapeutic target in mast cell-mediated inflammatory diseases and deregulated KIT disorders. PMID:25810396

  11. Role of the clathrin adaptor PICALM in normal hematopoiesis and polycythemia vera pathophysiology

    PubMed Central

    Ishikawa, Yuichi; Maeda, Manami; Pasham, Mithun; Aguet, Francois; Tacheva-Grigorova, Silvia K.; Masuda, Takeshi; Yi, Hai; Lee, Sung-Uk; Xu, Jian; Teruya-Feldstein, Julie; Ericsson, Maria; Mullally, Ann; Heuser, John; Kirchhausen, Tom; Maeda, Takahiro

    2015-01-01

    Clathrin-dependent endocytosis is an essential cellular process shared by all cell types. Despite this, precisely how endocytosis is regulated in a cell-type-specific manner and how this key pathway functions physiologically or pathophysiologically remain largely unknown. PICALM, which encodes the clathrin adaptor protein PICALM, was originally identified as a component of the CALM/AF10 leukemia oncogene. Here we show, by employing a series of conditional Picalm knockout mice, that PICALM critically regulates transferrin uptake in erythroid cells by functioning as a cell-type-specific regulator of transferrin receptor endocytosis. While transferrin receptor is essential for the development of all hematopoietic lineages, Picalm was dispensable for myeloid and B-lymphoid development. Furthermore, global Picalm inactivation in adult mice did not cause gross defects in mouse fitness, except for anemia and a coat color change. Freeze-etch electron microscopy of primary erythroblasts and live-cell imaging of murine embryonic fibroblasts revealed that Picalm function is required for efficient clathrin coat maturation. We showed that the PICALM PIP2 binding domain is necessary for transferrin receptor endocytosis in erythroblasts and absolutely essential for erythroid development from mouse hematopoietic stem/progenitor cells in an erythroid culture system. We further showed that Picalm deletion entirely abrogated the disease phenotype in a Jak2V617F knock-in murine model of polycythemia vera. Our findings provide new insights into the regulation of cell-type-specific transferrin receptor endocytosis in vivo. They also suggest a new strategy to block cellular uptake of transferrin-bound iron, with therapeutic potential for disorders characterized by inappropriate red blood cell production, such as polycythemia vera. PMID:25552701

  12. Immune adaptor ADAP in T cells regulates HIV-1 transcription and cell-cell viral spread via different co-receptors

    PubMed Central

    2013-01-01

    Background Immune cell adaptor protein ADAP (adhesion and degranulation-promoting adaptor protein) mediates aspects of T-cell adhesion and proliferation. Despite this, a connection between ADAP and infection by the HIV-1 (human immunodeficiency virus-1) has not been explored. Results In this paper, we show for the first time that ADAP and its binding to SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) regulate HIV-1 infection via two distinct mechanisms and co-receptors. siRNA down-regulation of ADAP, or expression of a mutant that is defective in associating to its binding partner SLP-76 (termed M12), inhibited the propagation of HIV-1 in T-cell lines and primary human T-cells. In one step, ADAP and its binding to SLP-76 were needed for the activation of NF-κB and its transcription of the HIV-1 long terminal repeat (LTR) in cooperation with ligation of co-receptor CD28, but not LFA-1. In a second step, the ADAP-SLP-76 module cooperated with LFA-1 to regulate conjugate formation between T-cells and dendritic cells or other T-cells as well as the development of the virological synapse (VS) and viral spread between immune cells. Conclusions These findings indicate that ADAP regulates two steps of HIV-1 infection cooperatively with two distinct receptors, and as such, serves as a new potential target in the blockade of HIV-1 infection. PMID:24047317

  13. Randomly broken fragment PCR with 5′ end-directed adaptor for genome walking

    PubMed Central

    Xu, Wentao; Shang, Ying; Zhu, Pengyu; Zhai, Zhifang; He, Jing; Huang, Kunlun; Luo, Yunbo

    2013-01-01

    Many genome walking methods based on polymerase chain reaction (PCR) are available, including those with and without restriction enzyme modification. Nevertheless, these methods suffer from low reproducibility, inefficiency, and non-specificity. Here, we present a traceable and efficient PCR strategy: randomly broken fragment PCR with 5′ end-directed adaptor for genome walking. The genome is first fragmented randomly. After blunting ends, the fragments are ligated to the 5′ end-directed adaptors. Semi-nested PCR is then performed. Thus, we can obtain an unknown sequence by cloning the fragments of interest, followed by sequencing. This method effectively bypasses the above-mentioned obstacles and offers the advances: 1) genome fragmentation without using restriction enzymes; 2) enhancement of primer specificity and the prevention of self-ligation between the adaptors by employing a 5′ end-directed adaptor. All of the steps in this new method are straightforward, and the unknown sequence can be definitively obtained by merely applying the method once. PMID:24322619

  14. Randomly broken fragment PCR with 5' end-directed adaptor for genome walking.

    PubMed

    Xu, Wentao; Shang, Ying; Zhu, Pengyu; Zhai, Zhifang; He, Jing; Huang, Kunlun; Luo, Yunbo

    2013-01-01

    Many genome walking methods based on polymerase chain reaction (PCR) are available, including those with and without restriction enzyme modification. Nevertheless, these methods suffer from low reproducibility, inefficiency, and non-specificity. Here, we present a traceable and efficient PCR strategy: randomly broken fragment PCR with 5' end-directed adaptor for genome walking. The genome is first fragmented randomly. After blunting ends, the fragments are ligated to the 5' end-directed adaptors. Semi-nested PCR is then performed. Thus, we can obtain an unknown sequence by cloning the fragments of interest, followed by sequencing. This method effectively bypasses the above-mentioned obstacles and offers the advances: 1) genome fragmentation without using restriction enzymes; 2) enhancement of primer specificity and the prevention of self-ligation between the adaptors by employing a 5' end-directed adaptor. All of the steps in this new method are straightforward, and the unknown sequence can be definitively obtained by merely applying the method once. PMID:24322619

  15. The Sam68 nuclear body is composed of two RNase-sensitive substructures joined by the adaptor HNRNPL.

    PubMed

    Mannen, Taro; Yamashita, Seisuke; Tomita, Kozo; Goshima, Naoki; Hirose, Tetsuro

    2016-07-01

    The mammalian cell nucleus contains membraneless suborganelles referred to as nuclear bodies (NBs). Some NBs are formed with an architectural RNA (arcRNA) as the structural core. Here, we searched for new NBs that are built on unidentified arcRNAs by screening for ribonuclease (RNase)-sensitive NBs using 32,651 fluorescently tagged human cDNA clones. We identified 32 tagged proteins that required RNA for their localization in distinct nuclear foci. Among them, seven RNA-binding proteins commonly localized in the Sam68 nuclear body (SNB), which was disrupted by RNase treatment. Knockdown of each SNB protein revealed that SNBs are composed of two distinct RNase-sensitive substructures. One substructure is present as a distinct NB, termed the DBC1 body, in certain conditions, and the more dynamic substructure including Sam68 joins to form the intact SNB. HNRNPL acts as the adaptor to combine the two substructures and form the intact SNB through the interaction of two sets of RNA recognition motifs with the putative arcRNAs in the respective substructures. PMID:27377249

  16. Yeast and human Ysl2p/hMon2 interact with Gga adaptors and mediate their subcellular distribution

    PubMed Central

    Singer-Krüger, Birgit; Lasić, Maja; Bürger, Anna-Maria; Haußer, Angelika; Pipkorn, Rüdiger; Wang, Yi

    2008-01-01

    The Gga proteins represent a family of ubiquitously expressed clathrin adaptors engaged in vesicle budding at the tubular endosomal network/trans Golgi network. Their membrane recruitment is commonly thought to involve interactions with Arf and signals in cargo through the so-called VHS domain. For yeast Gga proteins, however, partners binding to its VHS domain have remained elusive and Gga localization does not absolutely depend on Arf. Here, we demonstrate that yeast Gga recruitment relies on a network of interactions between the scaffold Ysl2p/Mon2p, the small GTPase Arl1p, and the flippase Neo1p. Deletion of either YSL2 or ARL1 causes mislocalization of Gga2p, whereas a neo1-69 mutant accumulates Gga2p on aberrant structures. Remarkably, Ysl2p directly interacts with human and yeast Ggas through the VHS domain, and binding to Gga proteins is also found for the human Ysl2p orthologue hMon2. Thus, Ysl2p represents an essential, evolutionarily conserved member of a network controlling direct binding and membrane docking of Ggas. Because activated Arl1p is part of the network that binds Gga2p, Arf and Arf-like GTPases may interact in a regulatory cascade. PMID:18418388

  17. SUMO modification of TBK1 at the adaptor-binding C-terminal coiled-coil domain contributes to its antiviral activity.

    PubMed

    Saul, Vera V; Niedenthal, Rainer; Pich, Andreas; Weber, Friedemann; Schmitz, M Lienhard

    2015-01-01

    The non-canonical IKK kinase TBK1 serves as an important signal transmitter of the antiviral interferon response, but is also involved in the regulation of further processes such as autophagy. The activity of TBK1 is regulated by posttranslational modifications comprising phosphorylation and ubiquitination. This study identifies SUMOylation as a novel posttranslational TBK1 modification. TBK1 kinase activity is required to allow the attachment of SUMO1 or SUMO2/3 proteins. Since TBK1 does not bind to the E2 enzyme Ubc9, this modification most likely proceeds via trans-SUMOylation. Mass spectrometry allowed identifying K694 as the SUMO acceptor site, a residue located in the C-terminal coiled-coil domain which is exclusively responsible for the association with the adaptor proteins NAP1, Sintbad and TANK. SUMO modification at K694 contributes to the antiviral function of TBK1 and accordingly the viral protein Gam1 antagonizes this posttranslational modification. PMID:25409927

  18. Lymphocytic Choriomeningitis Virus Differentially Affects the Virus-Induced Type I Interferon Response and Mitochondrial Apoptosis Mediated by RIG-I/MAVS

    PubMed Central

    Pythoud, Christelle; Rothenberger, Sylvia; Martínez-Sobrido, Luis; de la Torre, Juan Carlos

    2015-01-01

    ABSTRACT Arenaviruses are important emerging human pathogens maintained by noncytolytic persistent infection in their rodent reservoir hosts. Despite high levels of viral replication, persistently infected carrier hosts show only mildly elevated levels of type I interferon (IFN-I). Accordingly, the arenavirus nucleoprotein (NP) has been identified as a potent IFN-I antagonist capable of blocking activation of interferon regulatory factor 3 (IRF3) via the retinoic acid inducible gene (RIG)-I/mitochondrial antiviral signaling (MAVS) pathway. Another important mechanism of host innate antiviral defense is represented by virus-induced mitochondrial apoptosis via RIG-I/MAVS and IRF3. In the present study, we investigated the ability of the prototypic Old World arenavirus lymphocytic choriomeningitis virus (LCMV) to interfere with RIG-I/MAVS-dependent apoptosis. We found that LCMV does not induce apoptosis at any time during infection. While LCMV efficiently blocked induction of IFN-I via RIG-I/MAVS in response to superinfection with cytopathic RNA viruses, virus-induced mitochondrial apoptosis remained fully active in LCMV-infected cells. Notably, in LCMV-infected cells, RIG-I was dispensable for virus-induced apoptosis via MAVS. Our study reveals that LCMV infection efficiently suppresses induction of IFN-I but does not interfere with the cell's ability to undergo virus-induced mitochondrial apoptosis as a strategy of innate antiviral defense. The RIG-I independence of mitochondrial apoptosis in LCMV-infected cells provides the first evidence that arenaviruses can reshape apoptotic signaling according to their needs. IMPORTANCE Arenaviruses are important emerging human pathogens that are maintained in their rodent hosts by persistent infection. Persistent virus is able to subvert the cellular interferon response, a powerful branch of the innate antiviral defense. Here, we investigated the ability of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) to

  19. Malformaciones arteriovenosas revisión y análisis descriptivo de 52 mavs tratadas durante el periodo de 2000-2010

    PubMed Central

    Rinaldi, Mariano; Mezzano, Emilio; Berra, Matias S.; Parés, Herald R.; Olocco, Ricardo V.; Papalini, Francisco R.

    2015-01-01

    Objetivo: Describir nuestra experiencia en el manejo de las Mavs analizando las características clínicas de los pacientes y los resultados postoperatorios. Método de análisis: Realizamos un análisis retrospectivo de 52 pacientes admitidos en el Servicio de neurocirugía para manejo quirúrgico: La información de referencia incluyo síntomas al inicio, diagnostico de admisión, hallazgos neurológicos y hallazgos en estudio por imágenes tales como tomografía cerebral, IRM cerebral y angiografía por sustracción digital. Los hallazgos postoperatorios de interés fueron: Mortalidad, examen neurológico postoperatorio y complicaciones asociadas. Presentamos nuestro análisis estadístico. Resultados: Edad promedio: 37,7 años. Distribución: Hombres: 61,5%. Motivos de consulta más frecuentes: Cefalea 63,5%, evento hemorrágico 59,6%, convulsiones 26,9%. Localización: Supratentorial: 92,9%, Infratentorial: 7,2%. 30,8%, de las Mavs fueron grado 2 y grado 3 Cincuenta por ciento del total presentaron aneurismas, del total de la MAVs, 59,6% debutó con sangrado, 26,9% con Crisis Convulsivas y 13,5% con déficit neurológico. Recibieron tratamiento endovascular previo a cirugía 30,7%. Durante el postoperatorio 23,1% presentaron mejoría clínica, 57,7% no presento modificación, 19,2% empeoraron en el postoperatorio. La mortalidad fue 13,5%. Conclusión: Creemos que el subgrupo de Mavs grados III a V representan una entidad que requiere una compleja toma de decisiones dada la alta incidencia de aneurismas asociados que presentan y su asociación con eventos de sangrado. Nuestra mortalidad postoperatoria coincide con la bibliografía. Palabras clave, Mavs- aneurismas asociados- Acv hemorrágico- convulsiones. PMID:26600984

  20. Oropouche Virus Infection and Pathogenesis Are Restricted by MAVS, IRF-3, IRF-7, and Type I Interferon Signaling Pathways in Nonmyeloid Cells

    PubMed Central

    Proenca-Modena, Jose Luiz; Sesti-Costa, Renata; Pinto, Amelia K.; Richner, Justin M.; Lazear, Helen M.; Lucas, Tiffany; Hyde, Jennifer L.

    2015-01-01

    ABSTRACT Oropouche virus (OROV) is a member of the Orthobunyavirus genus in the Bunyaviridae family and a prominent cause of insect-transmitted viral disease in Central and South America. Despite its clinical relevance, little is known about OROV pathogenesis. To define the host defense pathways that control OROV infection and disease, we evaluated OROV pathogenesis and immune responses in primary cells and mice that were deficient in the RIG-I-like receptor signaling pathway (MDA5, RIG-I, or MAVS), downstream regulatory transcription factors (IRF-3 or IRF-7), beta interferon (IFN-β), or the receptor for type I IFN signaling (IFNAR). OROV replicated to higher levels in primary fibroblasts and dendritic cells lacking MAVS signaling, the transcription factors IRF-3 and IRF-7, or IFNAR than in wild-type (WT) cells. In mice, deletion of IFNAR, MAVS, or IRF-3 and IRF-7 resulted in uncontrolled OROV replication, hypercytokinemia, extensive liver damage, and death, whereas WT congenic animals failed to develop disease. Unexpectedly, mice with a selective deletion of IFNAR on myeloid cells (CD11c Cre+ Ifnarf/f or LysM Cre+ Ifnarf/f) did not sustain enhanced disease with OROV or a selective (flox/flox) deletion La Crosse virus, a closely related encephalitic orthobunyavirus. In bone marrow chimera studies, recipient irradiated Ifnar−/− mice reconstituted with WT hematopoietic cells sustained high levels of OROV replication and liver damage, whereas WT mice reconstituted with Ifnar−/− bone marrow were resistant to disease. Collectively, these results establish a dominant protective role for MAVS, IRF-3 and IRF-7, and IFNAR in restricting OROV infection and tissue injury and suggest that IFN signaling in nonmyeloid cells contributes to the host defense against orthobunyaviruses. IMPORTANCE Oropouche virus (OROV) is an emerging arthropod-transmitted orthobunyavirus that causes episodic outbreaks of a debilitating febrile illness in humans in countries of South and

  1. Structural Basis of Focal Adhesion Localization of LIM-only Adaptor PINCH by Integrin-linked Kinase*S⃞

    PubMed Central

    Yang, Yanwu; Wang, Xiaoxia; Hawkins, Cheryl A.; Chen, Kan; Vaynberg, Julia; Mao, Xian; Tu, Yizeng; Zuo, Xiaobing; Wang, Jinbu; Wang, Yun-xing; Wu, Chuanyue; Tjandra, Nico; Qin, Jun

    2009-01-01

    The LIM-only adaptor PINCH (the particularly interesting cysteine- and histidine-rich protein) plays a pivotal role in the assembly of focal adhesions (FAs), supramolecular complexes that transmit mechanical and biochemical information between extracellular matrix and actin cytoskeleton, regulating diverse cell adhesive processes such as cell migration, cell spreading, and survival. A key step for the PINCH function is its localization to FAs, which depends critically on the tight binding of PINCH to integrin-linked kinase (ILK). Here we report the solution NMR structure of the core ILK·PINCH complex (28 kDa, KD ∼ 68 nm) involving the N-terminal ankyrin repeat domain (ARD) of ILK and the first LIM domain (LIM1) of PINCH. We show that the ILK ARD exhibits five sequentially stacked ankyrin repeat units, which provide a large concave surface to grip the two contiguous zinc fingers of the PINCH LIM1. The highly electrostatic interface is evolutionally conserved but differs drastically from those of known ARD and LIM bound to other types of protein domains. Consistently mutation of a hot spot in LIM1, which is not conserved in other LIM domains, disrupted the PINCH binding to ILK and abolished the PINCH targeting to FAs. These data provide atomic insight into a novel modular recognition and demonstrate how PINCH is specifically recruited by ILK to mediate the FA assembly and cell-extracellular matrix communication. PMID:19117955

  2. The TLR signaling adaptor TRAM interacts with TRAF6 to mediate activation of the inflammatory response by TLR4

    PubMed Central

    Verstak, Brett; Stack, Julianne; Ve, Thomas; Mangan, Matthew; Hjerrild, Kathryn; Jeon, Jannah; Stahl, Rainer; Latz, Eicke; Gay, Nick; Kobe, Bostjan; Bowie, Andrew G.; Mansell, Ashley

    2014-01-01

    TLRs act as sentinels in professional immune cells to detect and initiate the innate immune response to pathogen challenge. TLR4 is a widely expressed TLR, responsible for initiating potent immune responses to LPS. TRAM acts to bridge TLR4 with TRIF, orchestrating the inflammatory response to pathogen challenge. We have identified a putative TRAF6-binding motif in TRAM that could mediate a novel signaling function for TRAM in TLR4 signaling. TRAM and TRAF6 association was confirmed by immunoprecipitation of endogenous, ectopically expressed and recombinant proteins, which was ablated upon mutation of a key Glu residue in TRAM (TRAM E183A). TRAF6 and TRAM were observed colocalizing using confocal microscopy following ectopic expression in cells and the ability of TRAM and TRAM E183A to activate luciferase-linked reporter assays was determined in HEK293 and TRAF6-deficient cells. Importantly, TRAM-deficient macrophages reconstituted with TRAM E183A display significantly reduced inflammatory TNF-α, IL-6, and RANTES protein production compared with WT TRAM. These results demonstrate a novel role for TRAM in TLR4-mediated signaling in regulating inflammatory responses via its interaction with TRAF6, distinct from its role as a bridging adaptor between TLR4 and TRIF. PMID:24812060

  3. Structural Basis of Focal Adhesion Localization of LIM-only Adaptor PINCH by Integrin-linked Kinase

    SciTech Connect

    Yang, Yanwu; Wang, Xiaoxia; Hawkins, Cheryl A.; Chen, Kan; Vaynberg, Julia; Mao, Xian; Tu, Yizeng; Zuo, Xiaobing; Wang, Jinbu; Wang, Yun-xing; Wu, Chuanyue; Tjandra, Nico; Qin, Jun

    2010-11-22

    The LIM-only adaptor PINCH (the particularly interesting cysteine- and histidine-rich protein) plays a pivotal role in the assembly of focal adhesions (FAs), supramolecular complexes that transmit mechanical and biochemical information between extracellular matrix and actin cytoskeleton, regulating diverse cell adhesive processes such as cell migration, cell spreading, and survival. A key step for the PINCH function is its localization to FAs, which depends critically on the tight binding of PINCH to integrin-linked kinase (ILK). Here we report the solution NMR structure of the core ILK {center_dot} PINCH complex (28 kDa, K{sub D} {approx} 68 nm) involving the N-terminal ankyrin repeat domain (ARD) of ILK and the first LIM domain (LIM1) of PINCH. We show that the ILK ARD exhibits five sequentially stacked ankyrin repeat units, which provide a large concave surface to grip the two contiguous zinc fingers of the PINCH LIM1. The highly electrostatic interface is evolutionally conserved but differs drastically from those of known ARD and LIM bound to other types of protein domains. Consistently mutation of a hot spot in LIM1, which is not conserved in other LIM domains, disrupted the PINCH binding to ILK and abolished the PINCH targeting to FAs. These data provide atomic insight into a novel modular recognition and demonstrate how PINCH is specifically recruited by ILK to mediate the FA assembly and cell-extracellular matrix communication.

  4. Using selenomethionyl derivatives to assign sequence in low-resolution structures of the AP2 clathrin adaptor

    PubMed Central

    Kelly, Bernard T.; Graham, Stephen C.; Owen, David J.

    2016-01-01

    Selenomethionine incorporation is a powerful technique for assigning sequence to regions of electron density at low resolution. Genetic introduction of methionine point mutations and the subsequent preparation and crystallization of selenomethionyl derivatives permits unambiguous sequence assignment by enabling the placement of the anomalous scatterers (Se atoms) thus introduced. Here, the use of this approach in the assignment of sequence in a part of the AP2 clathrin adaptor complex that is responsible for clathrin binding is described. AP2 plays a pivotal role in clathrin-mediated endocytosis, a tightly regulated process in which cell-surface transmembrane proteins are internalized from the plasma membrane by incorporation into lipid-enclosed transport vesicles. AP2 binds cargo destined for internalization and recruits clathrin, a large trimeric protein that helps to deform the membrane to produce the transport vesicle. By selenomethionine labelling of point mutants, it was shown that the clathrin-binding site is buried within a deep cleft of the AP2 complex. A membrane-stimulated conformational change in AP2 releases the clathrin-binding site from autoinhibition, thereby linking clathrin recruitment to membrane localization. PMID:26960121

  5. Non-cleavable talin rescues defect in the T-cell conjugation of T-cells deficient in the immune adaptor SKAP1

    PubMed Central

    Lim, Daina; Lu, Yuning; Rudd, Christopher E.

    2016-01-01

    While the cytoskeletal protein talin binds to the β-chain of LFA-1, the immune cell adaptor SKAP1 (SKAP-55) binds to the α-chain of the same integrin via RapL. Whereas calpain protease cleavage of talin is important for LFA-1 activation, it has been unclear whether SKAP1 can alter the function of talin or its associated adaptor RIAM in T-cells. In this paper, we report that Skap1−/− T-cells showed a reduction in the translocation of talin and RIAM to the contact interface of T-cells with antigenic beads or dendritic cells (DCs) presenting OVA peptide to OT-1 T-cells. In addition, Skap1−/− T-cells show an altered pattern of talin cleavage, while the expression of a cleavage resistant form of talin (L432G) restored the impaired adhesion of OT1 transgenic Skap1−/− T-cells with DCs. SKAP1 therefore can affect the function of talin in T-cells needed for optimal T-cell/DC conjugation. PMID:26905930

  6. The innate immunity adaptor SARM translocates to the nucleus to stabilize lamins and prevent DNA fragmentation in response to pro-apoptotic signaling.

    PubMed

    Sethman, Chad R; Hawiger, Jacek

    2013-01-01

    Sterile alpha and armadillo-motif containing protein (SARM), a highly conserved and structurally unique member of the MyD88 family of Toll-like receptor adaptors, plays an important role in innate immunity signaling and apoptosis. Its exact mechanism of intracellular action remains unclear. Apoptosis is an ancient and ubiquitous process of programmed cell death that results in disruption of the nuclear lamina and, ultimately, dismantling of the nucleus. In addition to supporting the nuclear membrane, lamins serve important roles in chromatin organization, epigenetic regulation, transcription, nuclear transport, and mitosis. Mutations and other damage that destabilize nuclear lamins (laminopathies) underlie a number of intractable human diseases. Here, we report that SARM translocates to the nucleus of human embryonic kidney cells by using its amino-terminal Armadillo repeat region. Within the nucleus, SARM forms a previously unreported lattice akin to the nuclear lamina scaffold. Moreover, we show that SARM protects lamins from apoptotic degradation and reduces internucleosomal DNA fragmentation in response to signaling induced by the proinflammatory cytokine Tumor Necrosis Factor alpha. These findings indicate an important link between the innate immunity adaptor SARM and stabilization of nuclear lamins during inflammation-driven apoptosis in human cells. PMID:23923041

  7. eEF1Bγ is a positive regulator of NF-кB signaling pathway.

    PubMed

    Liu, Dong; Sheng, Chunjie; Gao, Shijuan; Jiang, Wei; Li, Jiandong; Yao, Chen; Chen, Huiming; Wu, Jiaoxiang; Chen, Shuai; Huang, Wenlin

    2014-04-01

    Mitochondrial antiviral-signaling protein (MAVS), as a critical adaptor of RIG-I signaling, bridges viral RNA recognition and downstream signal activation. However, the regulating mechanisms of MAVS are not well understood. In this study, we demonstrated that eukaryotic elongation factor 1B gamma (eEF1Bγ) activates NF-кB signaling pathway through targeting MAVS. GST-pull down and mass spectrometric analysis suggested that eEF1Bγ binds to the CARD domain of MAVS. The interaction and mitochondrial colocalization of eEF1Bγ and MAVS were further verified by co-immunoprecipitation (co-IP) and immunofluorescence microscopy assays. The dual-luciferase assays showed that ectopic expression of eEF1Bγ significantly promotes the activities of transcription factor NF-кB and promoters of downstream proinflammatory cytokines Interleukin-8 (IL-8) and Interleukin-6 (IL-6). eEF1Bγ increases the abundance of MAVS by promoting its K63-linked polyubiquitination and attenuating its K48-linked polyubiquitination. Besides, proline-rich (Pro) region and CARD domain of MAVS are indispensable for the process of eEF1Bγ mediated ubiquitination. Collectively, these results demonstrated that eEF1Bγ functions as a positive regulator of NF-кB signal by targeting MAVS for activation, which provides a new regulating mechanism of antiviral responses. PMID:24613846

  8. ER Adaptor SCAP Translocates and Recruits IRF3 to Perinuclear Microsome Induced by Cytosolic Microbial DNAs

    PubMed Central

    Yu, Huansha; Liu, Xing; Huang, Lulu; Wang, Qiang; Liu, Heng; Cui, Ye; Tang, Yijun; Zhang, Peng; Wang, Chen

    2016-01-01

    Stimulator of interferon genes (STING, also known as MITA, ERIS or MPYS) induces the activation of TBK1 kinase and IRF3 transcription factor, upon sensing of microbial DNAs. How IRF3 is recruited onto the STING signalosome remains unknown. We report here that silencing of the ER adaptor SCAP markedly impairs the IRF3-responsive gene expression induced by STING. Scap knockdown mice are more susceptible to HSV-1 infection. Interestingly, SCAP translocates from ER, via Golgi, to perinuclear microsome in a STING-dependent manner. Mechanistically, the N-terminal transmembrane domain of SCAP interacts with STING, and the C-terminal cytosolic domain of SCAP binds to IRF3, thus recruiting IRF3 onto STING signalosome. Mis-localization of SCAP abolishes its antiviral function. Collectively, this study characterizes SCAP as an essential adaptor in the STING signaling pathway, uncovering a critical missing link in DNAs-triggered host antiviral responses. PMID:26900919

  9. Adaptor Scaffoldins: An Original Strategy for Extended Designer Cellulosomes, Inspired from Nature

    PubMed Central

    Stern, Johanna; Moraïs, Sarah; Lamed, Raphael

    2016-01-01

    ABSTRACT Designer cellulosomes consist of chimeric cohesin-bearing scaffoldins for the controlled incorporation of recombinant dockerin-containing enzymes. The largest designer cellulosome reported to date is a chimeric scaffoldin that contains 6 cohesins. This scaffoldin represented a technical limit of sorts, since adding another cohesin proved problematic, owing to resultant low expression levels, instability (cleavage) of the scaffoldin polypeptide, and limited numbers of available cohesin-dockerin specificities—the hallmark of designer cellulosomes. Nevertheless, increasing the number of enzymes integrated into designer cellulosomes is critical, in order to further enhance degradation of plant cell wall material. Adaptor scaffoldins comprise an intermediate type of scaffoldin that can both incorporate various enzymes and attach to an additional scaffoldin. Using this strategy, we constructed an efficient form of adaptor scaffoldin that possesses three type I cohesins for enzyme integration, a single type II dockerin for interaction with an additional scaffoldin, and a carbohydrate-binding module for targeting to the cellulosic substrate. In parallel, we designed a hexavalent scaffoldin capable of connecting to the adaptor scaffoldin by the incorporation of an appropriate type II cohesin. The resultant extended designer cellulosome comprised 8 recombinant enzymes—4 xylanases and 4 cellulases—thereby representing a potent enzymatic cocktail for solubilization of natural lignocellulosic substrates. The contribution of the adaptor scaffoldin clearly demonstrated that proximity between the two scaffoldins and their composite set of enzymes is crucial for optimized degradation. After 72 h of incubation, the performance of the extended designer cellulosome was determined to be approximately 70% compared to that of native cellulosomes. PMID:27048796

  10. Fluorescein gonioangiography of the normal canine eye using a dSLR camera adaptor.

    PubMed

    Alario, Anthony F; Pirie, Christopher G

    2015-06-01

    The purpose of this study was to describe fluorescein gonioangiography (FGA) of the normal canine eye using a digital single lens reflex (dSLR) camera adaptor. Dogs were anesthetized using intravenous propofol. Imaging was performed using a Lovac Barkan goniolens, dSLR camera, dSLR camera adaptor, camera lens, and accessory flash. Twelve dogs with a mean age of 2.0 +/- 0.8 years were imaged. No characteristic angiographic phases were observed. Leakage from the peri-limbal capillary network was a common finding and occurred 7.7 +/- 2.2 s post injection in 9 (75%) dogs. In 3 (25%) dogs, filling of the circumferential ciliary artery was observed 10.3 +/- 2.8 s post injection. Dye leakage within the iris base and into the aqueous humor was demonstrated in 4 (33%) and 6 dogs (50%) respectively. No adverse events were noted. This study demonstrates FGA findings in normal canine eyes using a cost effective dSLR camera adaptor. PMID:25823859

  11. The adaptor molecule Trif contributes to murine host defense during Leptospiral infection.

    PubMed

    Jayaraman, Priya A; Devlin, Amy A; Miller, Jennifer C; Scholle, Frank

    2016-09-01

    Leptospirosis is a zoonotic disease and is caused by pathogenic species of the Leptospira genus, including Leptospira interrogans (L. interrogans). Humans, domestic and wild animals are susceptible to acute or chronic infection. The innate immune response is a critical defense mechanism against Leptospira interrogans, and has been investigated in mouse models. Murine Toll-like receptors (TLRs) have been shown to be key factors in sensing and responding to L. interrogans infection. Specifically, TLR2, TLR4 and the TLR adaptor molecule MyD88 are essential for host defense against L. interrogans; however, the role of the TLR adaptor molecule TIR-domain-containing adaptor-inducing interferon β (TRIF) in the response to L. interrogans has not been previously determined. In the present study, TRIF was found to play an important role during leptospiral infection. Following challenge with L. interrogans, Trif(-/-) mice exhibited delayed weight gain compared to wild-type mice. Moreover, Trif(-/-) mice exhibited an increase in L. interrogans burden in the kidneys, lungs, and blood at early time points (less than 7days post infection). Multiple components of the innate immune responses were dampened in response to leptospiral infection including transcription and production of cytokines, and the humoral response, which suggested that TRIF contributes to expression and production of cytokines important for the host defense against L. interrogans. PMID:27259371

  12. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation

    SciTech Connect

    Zawawi, M.S.F.; Dharmapatni, A.A.S.S.K.; Cantley, M.D.; McHugh, K.P.; Haynes, D.R.; Crotti, T.N.

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Calcineurin/NFAT inhibitors FK506 and VIVIT treated human PBMC derived osteoclasts in vitro. Black-Right-Pointing-Pointer Differential regulation of ITAM receptors and adaptor molecules by calcineurin/NFAT inhibitors. Black-Right-Pointing-Pointer FK506 and VIVIT suppress ITAM factors during late phase osteoclast differentiation. -- Abstract: Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway in osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcR{gamma}) and DNAX-activating protein 12 kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin ({beta}3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10 days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative real

  13. Dephosphorylation of the adaptor LAT and phospholipase C-γ by SHP-1 inhibits natural killer cell cytotoxicity.

    PubMed

    Matalon, Omri; Fried, Sophia; Ben-Shmuel, Aviad; Pauker, Maor H; Joseph, Noah; Keizer, Danielle; Piterburg, Marina; Barda-Saad, Mira

    2016-01-01

    Natural killer (NK) cells discriminate between healthy cells and virally infected or transformed self-cells by tuning activating and inhibitory signals received through cell surface receptors. Inhibitory receptors inhibit NK cell function by recruiting and activating the tyrosine phosphatase Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-1 (SHP-1) to the plasma membrane. However, to date, the guanine nucleotide exchange factor VAV1 is the only direct SHP-1 substrate identified in NK cells. We reveal that the adaptor protein linker for activation of T cells (LAT) as well as phospholipase C-γ1 (PLC-γ1) and PLC-γ2 are SHP-1 substrates. Dephosphorylation of Tyr(132) in LAT by SHP-1 in NK cells abrogated the recruitment of PLC-γ1 and PLC-γ2 to the immunological synapse between the NK cell and a cancer cell target, which reduced NK cell degranulation and target cell killing. Furthermore, the ubiquitylation of LAT by the E3 ubiquitin ligases c-Cbl and Cbl-b, which was induced by LAT phosphorylation, led to the degradation of LAT in response to the engagement of inhibitory receptors on NK cells, which abrogated NK cell cytotoxicity. Knockdown of the Cbl proteins blocked LAT ubiquitylation, which promoted NK cell function. Expression of a ubiquitylation-resistant mutant LAT blocked inhibitory receptor signaling, enabling cells to become activated. Together, these data identify previously uncharacterized SHP-1 substrates and inhibitory mechanisms that determine the response of NK cells. PMID:27221712

  14. The SH3-SAM adaptor HACS1 is up-regulated in B cell activation signaling cascades.

    PubMed

    Zhu, Yuan Xiao; Benn, Sally; Li, Zhi Hua; Wei, Ellen; Masih-Khan, Esther; Trieu, Young; Bali, Meenakshi; McGlade, C Jane; Claudio, Jaime O; Stewart, A Keith

    2004-09-20

    HACS1 is a Src homology 3 and sterile alpha motif domain-containing adaptor that is preferentially expressed in normal hematopoietic tissues and malignancies including myeloid leukemia, lymphoma, and myeloma. Microarray data showed HACS1 expression is up-regulated in activated human B cells treated with interleukin (IL)-4, CD40L, and anti-immunoglobulin (Ig)M and clustered with genes involved in signaling, including TNF receptor-associated protein 1, signaling lymphocytic activation molecule, IL-6, and DEC205. Immunoblot analysis demonstrated that HACS1 is up-regulated by IL-4, IL-13, anti-IgM, and anti-CD40 in human peripheral blood B cells. In murine spleen B cells, Hacs1 can also be up-regulated by lipopolysaccharide but not IL-13. Induction of Hacs1 by IL-4 is dependent on Stat6 signaling and can also be impaired by inhibitors of phosphatidylinositol 3-kinase, protein kinase C, and nuclear factor kappaB. HACS1 associates with tyrosine-phosphorylated proteins after B cell activation and binds in vitro to the inhibitory molecule paired Ig-like receptor B. Overexpression of HACS1 in murine spleen B cells resulted in a down-regulation of the activation marker CD23 and enhancement of CD138 expression, IgM secretion, and Xbp-1 expression. Knock down of HACS1 in a human B lymphoma cell line by small interfering ribonucleic acid did not significantly change IL-4-stimulated B cell proliferation. Our study demonstrates that HACS1 is up-regulated by B cell activation signals and is a participant in B cell activation and differentiation. PMID:15381729

  15. p130Cas Scaffolds the Signalosome To Direct Adaptor-Effector Cross Talk during Kaposi's Sarcoma-Associated Herpesvirus Trafficking in Human Microvascular Dermal Endothelial Cells

    PubMed Central

    Bandyopadhyay, Chirosree; Veettil, Mohanan Valiya; Dutta, Sujoy

    2014-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with cell surface receptors, such as heparan sulfate, integrins (α3β1, αVβ3, and αVβ5), and EphrinA2 (EphA2), and activates focal adhesion kinase (FAK), Src, phosphoinositol 3-kinase (PI3-K), c-Cbl, and RhoA GTPase signal molecules early during lipid raft (LR)-dependent productive macropinocytic entry into human dermal microvascular endothelial cells. Our recent studies have identified CIB1 as a signal amplifier facilitating EphA2 phosphorylation and subsequent cytoskeletal cross talk during KSHV macropinocytosis. Although CIB1 lacks an enzymatic activity and traditional adaptor domain or known interacting sequence, it associated with the KSHV entry signal complex and the CIB1-KSHV association was sustained over 30 min postinfection. To identify factors scaffolding the EphA2-CIB1 signal axis, the role of major cellular scaffold protein p130Cas (Crk-associated substrate of Src) was investigated. Inhibitor and small interfering RNA (siRNA) studies demonstrated that KSHV induced p130Cas in an EphA2-, CIB1-, and Src-dependent manner. p130Cas and Crk were associated with KSHV, LRs, EphA2, and CIB1 early during infection. Live-cell microscopy and biochemical studies demonstrated that p130Cas knockdown did not affect KSHV entry but significantly reduced productive nuclear trafficking of viral DNA and routed KSHV to lysosomal degradation. p130Cas aided in scaffolding adaptor Crk to downstream guanine nucleotide exchange factor phospho-C3G possibly to coordinate GTPase signaling during KSHV trafficking. Collectively, these studies demonstrate that p130Cas acts as a bridging molecule between the KSHV-induced entry signal complex and the downstream trafficking signalosome in endothelial cells and suggest that simultaneous targeting of KSHV entry receptors with p130Cas would be an attractive potential avenue for therapeutic intervention in KSHV infection. IMPORTANCE Eukaryotic cell adaptor molecules

  16. HACE1 Negatively Regulates Virus-Triggered Type I IFN Signaling by Impeding the Formation of the MAVS-TRAF3 Complex.

    PubMed

    Mao, He-Ting; Wang, Yan; Cai, Juan; Meng, Jun-Ling; Zhou, Yu; Pan, Yu; Qian, Xiao-Ping; Zhang, Yu; Zhang, Jun

    2016-01-01

    During virus infection, the cascade signaling pathway that leads to the production of proinflammatory cytokines is controlled at multiple levels to avoid detrimental overreaction. HACE1 has been characterized as an important tumor suppressor. Here, we identified HACE1 as an important negative regulator of virus-triggered type I IFN signaling. Overexpression of HACE1 inhibited Sendai virus- or poly (I:C)-induced signaling and resulted in reduced IFNB1 production and enhanced virus replication. Knockdown of HACE1 expression exhibited the opposite effects. Ubiquitin E3 ligase activity of the dead mutant HACE1/C876A had a comparable inhibitory function as WT HACE1, suggesting that the suppressive function of HACE1 on virus-induced signaling is independent of its E3 ligase activity. Further study indicated that HACE1 acted downstream of MAVS and upstream of TBK1. Mechanistic studies showed that HACE1 exerts its inhibitory role on virus-induced signaling by disrupting the MAVS-TRAF3 complex. Therefore, we uncovered a novel function of HACE1 in innate immunity regulation. PMID:27213432

  17. HACE1 Negatively Regulates Virus-Triggered Type I IFN Signaling by Impeding the Formation of the MAVS-TRAF3 Complex

    PubMed Central

    Mao, He-Ting; Wang, Yan; Cai, Juan; Meng, Jun-Ling; Zhou, Yu; Pan, Yu; Qian, Xiao-Ping; Zhang, Yu; Zhang, Jun

    2016-01-01

    During virus infection, the cascade signaling pathway that leads to the production of proinflammatory cytokines is controlled at multiple levels to avoid detrimental overreaction. HACE1 has been characterized as an important tumor suppressor. Here, we identified HACE1 as an important negative regulator of virus-triggered type I IFN signaling. Overexpression of HACE1 inhibited Sendai virus- or poly (I:C)-induced signaling and resulted in reduced IFNB1 production and enhanced virus replication. Knockdown of HACE1 expression exhibited the opposite effects. Ubiquitin E3 ligase activity of the dead mutant HACE1/C876A had a comparable inhibitory function as WT HACE1, suggesting that the suppressive function of HACE1 on virus-induced signaling is independent of its E3 ligase activity. Further study indicated that HACE1 acted downstream of MAVS and upstream of TBK1. Mechanistic studies showed that HACE1 exerts its inhibitory role on virus-induced signaling by disrupting the MAVS-TRAF3 complex. Therefore, we uncovered a novel function of HACE1 in innate immunity regulation. PMID:27213432

  18. Adaptor bypass mutations of Bacillus subtilis spx suggest a mechanism for YjbH-enhanced proteolysis of the regulator Spx by ClpXP

    PubMed Central

    Chan, Chio Mui; Hahn, Erik; Zuber, Peter

    2014-01-01

    Summary The global regulator, Spx, is under proteolytic control exerted by the adaptor YjbH and ATP-dependent protease ClpXP in Bacillus subtilis. While YjbH is observed to bind the Spx C-terminus, YjbH shows little affinity for ClpXP, indicating adaptor activity that does not operate by tethering. Chimeric proteins derived from B. subtilis AbrB and the Spx C-terminus showed that a 28 residue C-terminal section of Spx (AbrB28), but not the last 12 or 16 residues (AbrB12, AbrB16), was required for YjbH interaction and for ClpXP proteolysis, although the rate of AbrB28 proteolysis was not affected by YjbH addition. The result suggested that the YjbH-targeted 28 residue segment of the Spx C-terminus bears a ClpXP-recognition element(s) that is hidden in the intact Spx protein. Residue substitutions in the conserved helix α6 of the C-terminal region generated Spx substrates that were degraded by ClpXP at accelerated rates compared to wild type Spx, and showed reduced dependency on the YjbH activity. The residue substitutions also weakened the interaction between Spx and YjbH. The results suggest a model in which YjbH, through interaction with residues of α6 helix, exposes the C-terminus of Spx for recognition and proteolysis by ClpXP. PMID:24942655

  19. Regulatory domains of the A-Myb transcription factor and its interaction with the CBP/p300 adaptor molecules.

    PubMed Central

    Facchinetti, V; Loffarelli, L; Schreek, S; Oelgeschläger, M; Lüscher, B; Introna, M; Golay, J

    1997-01-01

    The A-Myb transcription factor belongs to the Myb family of oncoproteins and is likely to be involved in the regulation of proliferation and/or differentiation of normal B cells and Burkitt's lymphoma cells. To characterize in detail the domains of A-Myb that regulate its function, we have generated a series of deletion mutants and have investigated their trans-activation potential as well as their DNA-binding activity. Our results have allowed us to delineate the trans-activation domain as well as two separate regulatory regions. The boundaries of the trans-activation domain (amino acid residues 218-319) are centred on a sequence rich in charged amino acids (residues 259-281). A region (residues 320-482) localized immediately downstream of the trans-activation domain and containing a newly identified conserved stretch of 48 residues markedly inhibits specific DNA binding. Finally the last 110 residues of A-Myb (residues 643-752), which include a sequence conserved in all mammalian myb genes (region III), negatively regulate the maximal trans-activation potential of A-Myb. We have also investigated the functional interaction between A-Myb and the nuclear adaptor molecule CBP [cAMP response element-binding protein (CREB)-binding protein]. We demonstrate that CBP synergizes with A-Myb in a dose-dependent fashion, and that this co-operative effect can be inhibited by E1A and can also be observed with the CBP homologue p300. We show that this functional synergism requires the presence of the A-Myb charged sequence and that it involves physical interaction between A-Myb and the CREB-binding domain of CBP. PMID:9210395

  20. Innate immune adaptor MyD88 mediates neutrophil recruitment and myocardial injury after ischemia-reperfusion in mice.

    PubMed

    Feng, Yan; Zhao, Huailong; Xu, Xinhua; Buys, Emmanuel S; Raher, Michael J; Bopassa, Jean C; Thibault, Helene; Scherrer-Crosbie, Marielle; Schmidt, Ulrich; Chao, Wei

    2008-09-01

    MyD88 is an adaptor protein critical for innate immune response against microbial infection and in certain noninfectious tissue injury. The present study examined the role of MyD88 in myocardial inflammation and injury after ischemia-reperfusion (I/R). I/R was produced by coronary artery ligation for 30 min followed by reperfusion. The ratios of area at risk to left ventricle (LV) were similar between wild-type (WT) and MyD88-deficient (MyD88-/-) mice. However, 24 h after I/R, the ratios of myocardial infarction to area at risk were 58% less in MyD88(-/-) than in WT mice (14 +/- 2% vs. 33 +/- 6%, P = 0.01). Serial echocardiographic studies demonstrated that there was no difference in baseline LV contractile function between the two groups. Twenty-four hours after I/R, LV ejection fraction (EF) and fractional shortening (FS) in WT mice were reduced by 44% and 62% (EF, 51 +/- 2%, and FS, 22 +/- 1%, P < 0.001), respectively, and remained depressed on the seventh day after I/R. In comparison, EF and FS in MyD88(-/-) mice were 67 +/- 3% and 33 +/- 2%, respectively, after I/R (P < 0.001 vs. WT). Similarly, LV function, as demonstrated by invasive hemodynamic measurements, was better preserved in MyD88(-/-) compared with WT mice after I/R. Furthermore, when compared with WT mice, MyD88(-/-) mice subjected to I/R had a marked decrease in myocardial inflammation as demonstrated by attenuated neutrophil recruitment and decreased expression of the proinflammatory mediators keratinocyte chemoattractant, monocyte chemoattractant protein-1, and ICAM-1. Taken together, these data suggest that MyD88 modulates myocardial inflammatory injury and contributes to myocardial infarction and LV dysfunction during I/R. PMID:18660455

  1. DNA as Tunable Adaptor for siRNA Polyplex Stabilization and Functionalization.

    PubMed

    Heissig, Philipp; Klein, Philipp M; Hadwiger, Philipp; Wagner, Ernst

    2016-01-01

    siRNA and microRNA are promising therapeutic agents, which are engaged in a natural mechanism called RNA interference that modulates gene expression posttranscriptionally. For intracellular delivery of such nucleic acid triggers, we use sequence-defined cationic polymers manufactured through solid phase chemistry. They consist of an oligoethanamino amide core for siRNA complexation and optional domains for nanoparticle shielding and cell targeting. Due to the small size of siRNA, electrostatic complexes with polycations are less stable, and consequently intracellular delivery is less efficient. Here we use DNA oligomers as adaptors to increase size and charge of cargo siRNA, resulting in increased polyplex stability, which in turn boosts transfection efficiency. Extending a single siRNA with a 181-nucleotide DNA adaptor is sufficient to provide maximum gene silencing aided by cationic polymers. Interestingly, this simple strategy was far more effective than merging defined numbers (4-10) of siRNA units into one DNA scaffolded construct. For DNA attachment, the 3' end of the siRNA passenger strand was beneficial over the 5' end. The impact of the attachment site however was resolved by introducing bioreducible disulfides at the connection point. We also show that DNA adaptors provide the opportunity to readily link additional functional domains to siRNA. Exemplified by the covalent conjugation of the endosomolytic influenza peptide INF-7 to siRNA via a DNA backbone strand and complexing this construct with a targeting polymer, we could form a highly functional polyethylene glycol-shielded polyplex to downregulate a luciferase gene in folate receptor-positive cells. PMID:26928236

  2. Targeted Inhibition of Phospholipase C γ2 Adaptor Function Blocks Osteoclastogenesis and Protects from Pathological Osteolysis*

    PubMed Central

    Decker, Corinne; Hesker, Pamela; Zhang, Kaihua; Faccio, Roberta

    2013-01-01

    Phospholipase C γ2 (PLCγ2) is a critical regulator of innate immune cells and osteoclasts (OCs) during inflammatory arthritis. Both the catalytic domain and the adaptor motifs of PLCγ2 are required for OC formation and function. Due to the high homology between the catalytic domains of PLCγ2 and the ubiquitously expressed PLCγ1, molecules encompassing the adaptor motifs of PLCγ2 were designed to test the hypothesis that uncoupling the adaptor and catalytic functions of PLCγ2 could specifically inhibit osteoclastogenesis and bone erosion. Wild-type (WT) bone marrow macrophages (BMM) that overexpress the tandem Src homology 2 (SH2) domains of PLCγ2 (SH2(N+C)) failed to form mature OCs and resorb bone in vitro. Activation of the receptor activator of NF-κB (RANK) signaling pathway, which is critical for OC development, was impaired in cells expressing SH2(N+C). Arrest in OC differentiation was evidenced by a reduction of p38 and Iκ-Bα phosphorylation as well as decreased NFATc1 and c-Fos/c-Jun levels. Consistent with our hypothesis, SH2(N+C) abrogated formation of the RANK-Gab2 complex, which mediates NF-κB and AP-1 activation following RANK ligand (RANKL) stimulation. Furthermore, the ability of SH2(N+C) to prevent inflammatory osteolysis was examined in vivo following RANKL or LPS injections over the calvaria. Both models induced osteolysis in the control group, whereas the SH2(N+C)-treated cohort was largely protected from bone erosion. Collectively, these data indicate that inflammatory osteolysis can be abrogated by treatment with a molecule composed of the tandem SH2 domains of PLCγ2. PMID:24081142

  3. Evidence for an evolutionary relationship between the large adaptor nucleoporin Nup192 and karyopherins.

    PubMed

    Stuwe, Tobias; Lin, Daniel H; Collins, Leslie N; Hurt, Ed; Hoelz, André

    2014-02-18

    Nucleocytoplasmic transport is facilitated by nuclear pore complexes (NPCs), which are massive proteinaceous transport channels embedded in the nuclear envelope. Nup192 is a major component of an adaptor nucleoporin subcomplex proposed to link the NPC coat with the central transport channel. Here, we present the structure of the ∼110-kDa N-terminal domain (NTD) of Nup192 at 2.7-Å resolution. The structure reveals an open ring-shaped architecture composed of Huntingtin, EF3, PP2A, and TOR1 (HEAT) and Armadillo (ARM) repeats. A comparison of different conformations indicates that the NTD consists of two rigid halves connected by a flexible hinge. Unexpectedly, the two halves of the ring are structurally related to karyopherin-α (Kap-α) and β-karyopherin family members. Biochemically, we identify a conserved patch that binds an unstructured segment in Nup53 and show that a C-terminal tail region binds to a putative helical fragment in Nic96. The Nup53 segment that binds Nup192 is a classical nuclear localization-like sequence that interacts with Kap-α in a mutually exclusive and mechanistically distinct manner. The disruption of the Nup53 and Nic96 binding sites in vivo yields growth and mRNA export defects, revealing their critical role in proper NPC function. Surprisingly, both interactions are dispensable for NPC localization, suggesting that Nup192 possesses another nucleoporin interaction partner. These data indicate that the structured domains in the adaptor nucleoporin complex are held together by peptide interactions that resemble those found in karyopherin•cargo complexes and support the proposal that the adaptor nucleoporins arose from ancestral karyopherins. PMID:24505056

  4. NRAGE, a p75NTR adaptor protein, is required for developmental apoptosis in vivo.

    PubMed

    Bertrand, M J M; Kenchappa, R S; Andrieu, D; Leclercq-Smekens, M; Nguyen, H N T; Carter, B D; Muscatelli, F; Barker, P A; De Backer, O

    2008-12-01

    NRAGE (also known as Maged1, Dlxin) is a member of the MAGE gene family that may play a role in the neuronal apoptosis that is regulated by the p75 neurotrophin receptor (p75NTR). To test this hypothesis in vivo, we generated NRAGE knockout mice and found that NRAGE deletion caused a defect in developmental apoptosis of sympathetic neurons of the superior cervical ganglia, similar to that observed in p75NTR knockout mice. Primary sympathetic neurons derived from NRAGE knockout mice were resistant to apoptosis induced by brain-derived neurotrophic factor (BDNF), a pro-apoptotic p75NTR ligand, and NRAGE-deficient sympathetic neurons show attenuated BDNF-dependent JNK activation. Hair follicle catagen is an apoptosis-like process that is dependent on p75NTR signaling; we show that NRAGE and p75NTR show regulated co-expression in the hair follicle and that identical defects in hair follicle catagen are present in NRAGE and p75NTR knockout mice. Interestingly, NRAGE knockout mice have severe defects in motoneuron apoptosis that are not observed in p75NTR knockout animals, raising the possibility that NRAGE may facilitate apoptosis induced by receptors other than p75NTR. Together, these studies demonstrate that NRAGE plays an important role in apoptotic-signaling in vivo. PMID:18772898

  5. Discovery of a Unique Clp Component, ClpF, in Chloroplasts: A Proposed Binary ClpF-ClpS1 Adaptor Complex Functions in Substrate Recognition and Delivery[OPEN

    PubMed Central

    Nishimura, Kenji; Apitz, Janina; Friso, Giulia; Kim, Jitae; Ponnala, Lalit; Grimm, Bernhard

    2015-01-01

    Clp proteases are found in prokaryotes, mitochondria, and plastids where they play crucial roles in maintaining protein homeostasis (proteostasis). The plant plastid Clp machinery comprises a hetero-oligomeric ClpPRT proteolytic core, ATP-dependent chaperones ClpC and ClpD, and an adaptor protein, ClpS1. ClpS1 selects substrates to the ClpPR protease-ClpC chaperone complex for degradation, but the underlying substrate recognition and delivery mechanisms are currently unclear. Here, we characterize a ClpS1-interacting protein in Arabidopsis thaliana, ClpF, which can interact with the Clp substrate glutamyl-tRNA reductase. ClpF and ClpS1 mutually stimulate their association with ClpC. ClpF, which is only found in photosynthetic eukaryotes, contains bacterial uvrB/C and YccV protein domains and a unique N-terminal domain. We propose a testable model in which ClpS1 and ClpF form a binary adaptor for selective substrate recognition and delivery to ClpC, reflecting an evolutionary adaptation of the Clp system to the plastid proteome. PMID:26419670

  6. The AP-3 adaptor complex mediates sorting of yeast and mammalian PQ-loop-family basic amino acid transporters to the vacuolar/lysosomal membrane

    PubMed Central

    Llinares, Elisa; Barry, Abdoulaye Oury; André, Bruno

    2015-01-01

    The limiting membrane of lysosomes in animal cells and that of the vacuole in yeast include a wide variety of transporters, but little is known about how these proteins reach their destination membrane. The mammalian PQLC2 protein catalyzes efflux of basic amino acids from the lysosome, and the similar Ypq1, −2, and −3 proteins of yeast perform an equivalent function at the vacuole. We here show that the Ypq proteins are delivered to the vacuolar membrane via the alkaline phosphatase (ALP) trafficking pathway, which requires the AP-3 adaptor complex. When traffic via this pathway is deficient, the Ypq proteins pass through endosomes from where Ypq1 and Ypq2 properly reach the vacuolar membrane whereas Ypq3 is missorted to the vacuolar lumen via the multivesicular body pathway. When produced in yeast, PQLC2 also reaches the vacuolar membrane via the ALP pathway, but tends to sort to the vacuolar lumen if AP-3 is defective. Finally, in HeLa cells, inhibiting the synthesis of an AP-3 subunit also impairs sorting of PQLC2 to lysosomes. Our results suggest the existence of a conserved AP-3-dependent trafficking pathway for proper delivery of basic amino acid exporters to the yeast vacuole and to lysosomes of human cells. PMID:26577948

  7. Rift Valley fever virus infection induces activation of the NLRP3 inflammasome

    PubMed Central

    Ermler, Megan E.; Traylor, Zachary; Patel, Krupen; Schattgen, Stefan A.; Vanaja, Sivapriya K.; Fitzgerald, Katherine A.; Hise, Amy G.

    2014-01-01

    Inflammasome activation is gaining recognition as an important mechanism for protection during viral infection. Here, we investigate whether Rift Valley fever virus, a negative-strand RNA virus, can induce inflammasome responses and IL-1β processing in immune cells. We have determined that RVFV induces NLRP3 inflammasome activation in murine dendritic cells, and that this process is dependent upon ASC and caspase-1. Furthermore, absence of the cellular RNA helicase adaptor protein MAVS/IPS-1 significantly reduces extracellular IL-1β during infection. Finally, direct imaging using confocal microscopy shows that the MAVS protein co-localizes with NLRP3 in the cytoplasm of RVFV infected cells. PMID:24418550

  8. Effectiveness of Needleless Vial Adaptors and Blunt Cannulas for Drug Administration in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Hailey, M.; Bayuse, T.

    2010-01-01

    Fluid Isolation in the medication vial: Air/ fluid isolation maneuvers were used to move the medication to the septum end of vial. This isolation may be achieved in multiple ways based on the experience of the astronaut with fluid management in microgravity. If vial adaptors/blunt cannula or syringe assembly is inserted into the to vial before fluid isolation commences, the stability of this assembly should be considered in an effort to limit the risk of "slinging off" of the vial during isolation. Alternatively, fluid isolation can be performed prior to attaching the syringe/vial adaptor assembly. Terrestrial practices for medication withdrawal from a nonvented vial require injection of an equivalent amount of air as the expected medication volume prior to withdrawing liquid. In microgravity, this action is still valid, however the injection of additional air into the vial creates a multitude of micro bubbles and increases the volume of medication mixed with air that then must be withdrawn to achieve the desired drug volume in syringe. This practice is more likely to be required when using vials >30ml in size and injection volumes >10mL. It is felt that based on the microgravity flight, the practice of air injection is more of a hindrance than help.

  9. Adaptor long-range PCR procedure for clone-specific characterization and chromosomal localization.

    PubMed

    Tsoktouridis, Georgios; Merz, Christian A; DelVecchio, Vito G

    2005-06-01

    An efficient adaptor long-range PCR (ALR-PCR) procedure was developed to detect genomic rearrangements in high-plasticity genomic regions between closely related strains of bacteria. The method was precisely optimized using a combination of high-speed experimental steps for the chromosomal localization and elucidation of deletions, inversions, duplications, or inserted sequences within a clone-specific flanking region. The advantages of this strategy are: (i) ready-to-use polymerase mixtures and Master mix (ready-to-use reaction mixtures with polymerase MasterAmp and buffer 2x Premix 4); (ii) a 5-min ligation procedure; (iii) rapid purification of DNA digests; (iv) optimized DNA template concentration protocol to avoid nonspecific amplification and high backgrounds; (v) long-range PCR protocol to obtain at least 9.6 kb single PCR products; (vi) two-step PCR cycling with the same annealing and extension temperature at 68 degrees C; (vii) simple design of the adaptors according to the preferred restriction endonuclease enzyme; and (viii) simple technology and equipment required. The application of this method for a tester-specific suppressive subtractive hybridization (SSH) clone of Brucella melitensis 16M revealed an 837-bp deletion and a 7255-bp DNA transfer from one chromosomal location to another for Brucella abortus 2308 used as a driver. PMID:16018549

  10. Cerebral cavernous malformation proteins at a glance.

    PubMed

    Draheim, Kyle M; Fisher, Oriana S; Boggon, Titus J; Calderwood, David A

    2014-02-15

    Loss-of-function mutations in genes encoding KRIT1 (also known as CCM1), CCM2 (also known as OSM and malcavernin) or PDCD10 (also known as CCM3) cause cerebral cavernous malformations (CCMs). These abnormalities are characterized by dilated leaky blood vessels, especially in the neurovasculature, that result in increased risk of stroke, focal neurological defects and seizures. The three CCM proteins can exist in a trimeric complex, and each of these essential multi-domain adaptor proteins also interacts with a range of signaling, cytoskeletal and adaptor proteins, presumably accounting for their roles in a range of basic cellular processes including cell adhesion, migration, polarity and apoptosis. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of current models of CCM protein function focusing on how known protein-protein interactions might contribute to cellular phenotypes and highlighting gaps in our current understanding. PMID:24481819

  11. Effectiveness of Needles Vial Adaptors and Blunt Cannulas for Drug Administration in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Hailey, Melinda; Bayuse, Tina

    2009-01-01

    The need for a new system of injectable medications aboard the International Space Station (ISS) was identified. It is desired that this system fly medications in their original manufacturer's packaging, allowing the system to comply with United States Pharmacopeia (USP) guidelines while minimizing the resupply frequency due to medication expiration. Pre-filled syringes are desired, however, the evolving nature of the healthcare marketplace requires flexibility in the redesign. If medications must be supplied in a vial, a system is required that allows for the safe withdrawal of medication from the vial into a syringe for administration in microgravity. During two reduced gravity flights, the effectiveness of two versions of a blunt cannula and needleless vial adaptors was evaluated to facilitate the withdrawal of liquid medication from a vial into a syringe for injection. Other parameters assessed included the ability to withdraw the required amount of medication and whether this is dependent on vial size, liquid, or the total volume of fluid within the vial. Injectable medications proposed for flight on ISS were used for this evaluation. Due to differing sizes of vials and the fluid properties of the medications, the needleless vial adaptors proved to be too cumbersome to recommend for use on the ISS. The blunt cannula, specifically the plastic version, proved to be more effective at removing medication from the various sizes of vials and are the recommended hardware for ISS. Fluid isolation within the vials and syringes is an important step in preparing medication for injection regardless of the hardware used. Although isolation is a challenge in the relatively short parabolas during flight, it is not an obstacle for sustained microgravity. This presentation will provide an overview of the products tested as well as the challenges identified during the microgravity flights.

  12. Innate immune adaptor MyD88 mediates neutrophil recruitment and myocardial injury after ischemia-reperfusion in mice

    PubMed Central

    Feng , Yan; Zhao, Huailong; Xu, Xinhua; Buys, Emmanuel S.; Raher, Michael J.; Bopassa, Jean C.; Thibault, Helene; Scherrer-Crosbie, Marielle; Schmidt, Ulrich; Chao, Wei

    2008-01-01

    MyD88 is an adaptor protein critical for innate immune response against microbial infection and in certain noninfectious tissue injury. The present study examined the role of MyD88 in myocardial inflammation and injury after ischemia-reperfusion (I/R). I/R was produced by coronary artery ligation for 30 min followed by reperfusion. The ratios of area at risk to left ventricle (LV) were similar between wild-type (WT) and MyD88-deficient (MyD88−/−) mice. However, 24 h after I/R, the ratios of myocardial infarction to area at risk were 58% less in MyD88−/− than in WT mice (14 ± 2% vs. 33 ± 6%, P = 0.01). Serial echocardiographic studies demonstrated that there was no difference in baseline LV contractile function between the two groups. Twenty-four hours after I/R, LV ejection fraction (EF) and fractional shortening (FS) in WT mice were reduced by 44% and 62% (EF, 51 ± 2%, and FS, 22 ± 1%, P < 0.001), respectively, and remained depressed on the seventh day after I/R. In comparison, EF and FS in MyD88−/− mice were 67 ± 3% and 33 ± 2%, respectively, after I/R (P < 0.001 vs. WT). Similarly, LV function, as demonstrated by invasive hemodynamic measurements, was better preserved in MyD88−/− compared with WT mice after I/R. Furthermore, when compared with WT mice, MyD88−/− mice subjected to I/R had a marked decrease in myocardial inflammation as demonstrated by attenuated neutrophil recruitment and decreased expression of the proinflammatory mediators keratinocyte chemoattractant, monocyte chemoattractant protein-1, and ICAM-1. Taken together, these data suggest that MyD88 modulates myocardial inflammatory injury and contributes to myocardial infarction and LV dysfunction during I/R. PMID:18660455

  13. Nck adaptors, besides promoting N-WASP mediated actin-nucleation activity at pedestals, influence the cellular levels of enteropathogenic Escherichia coli Tir effector.

    PubMed

    Nieto-Pelegrin, Elvira; Kenny, Brendan; Martinez-Quiles, Narcisa

    2014-01-01

    Enteropathogenic Escherichia coli (EPEC) binding to human intestinal cells triggers the formation of disease-associated actin rich structures called pedestals. The latter process requires the delivery, via a Type 3 secretion system, of the translocated Intimin receptor (Tir) protein into the host plasma membrane where binding of a host kinase-modified form to the bacterial surface protein Intimin triggers pedestal formation. Tir-Intimin interaction recruits the Nck adaptor to a Tir tyrosine phosphorylated residue where it activates neural Wiskott-Aldrich syndrome protein (N-WASP); initiating the major pathway to actin polymerization mediated by the actin-related protein (Arp) 2/3 complex. Previous studies with Nck-deficient mouse embryonic fibroblasts (MEFs) identified a key role for Nck in pedestal formation, presumed to reflect a lack of N-WASP activation. Here, we show the defect relates to reduced amounts of Tir within Nck-deficient cells. Indeed, Tir delivery and, thus, pedestal formation defects were much greater for MEFs than HeLa (human epithelial) cells. Crucially, the levels of two other effectors (EspB/EspF) within Nck-deficient MEFs were not reduced unlike that of Map (Mitochondrial associated protein) which, like Tir, requires CesT chaperone function for efficient delivery. Interestingly, drugs blocking various host protein degradation pathways failed to increase Tir cellular levels unlike an inhibitor of deacetylase activity (Trichostatin A; TSA). Treatments with TSA resulted in significant recovery of Tir levels, potentiation of actin polymerization and improvement in bacterial attachment to cells. Our findings have important implications for the current model of Tir-mediated actin polymerization and opens new lines of research in this area. PMID:25482634

  14. Targeting of pro-apoptotic TLR adaptor SARM to mitochondria: definition of the critical region and residues in the signal sequence.

    PubMed

    Panneerselvam, Porkodi; Singh, Laishram Pradeepkumar; Ho, Bow; Chen, Jianzhu; Ding, Jeak Ling

    2012-03-01

    The fifth and the most well-conserved member of the TLR (Toll-like receptor) adaptor, SARM (sterile α- and HEAT/armadillo-motif-containing protein), has been reported to be an important mediator of apoptosis. However, the exact cellular localization of SARM with respect to its role is unclear. In the present study we show that SARM specifically co-localizes with mitochondria. Endogenous SARM is mainly found in the mitochondria. We demonstrate that the N-terminal 27 amino acids (S27) of SARM, which is hydrophobic and polybasic, acts as a mitochondria-targeting signal sequence, associating SARM to the mitochondria. The S27 peptide has an inherent ability to bind to lipids and mitochondria. This sequence effectively translocates the soluble EGFP (enhanced green fluorescence protein) reporter into the mitochondria. Positioning S27 downstream of the EGFP abrogates its mitochondria-targeting ability. Transmission electron microscopy confirms the ability of S27 to import EGFP into the mitochondria. Importantly, by mutagenesis study, we delineated the specificity of the mitochondria-targeting ability to the arginine residue at the 14th position. The R14A SARM mutant also showed reduced apoptotic potential when compared with the wild-type. Taken together, S27, which is a bona fide signal sequence that targets SARM to the mitochondria, explains the pro-apoptotic activity of SARM. PMID:22145856

  15. iRhom2 is essential for innate immunity to DNA viruses by mediating trafficking and stability of the adaptor STING.

    PubMed

    Luo, Wei-Wei; Li, Shu; Li, Chen; Lian, Huan; Yang, Qing; Zhong, Bo; Shu, Hong-Bing

    2016-09-01

    STING is a central adaptor in the innate immune response to DNA viruses. However, the manner in which STING activity is regulated remains unclear. We identified iRhom2 ('inactive rhomboid protein 2') as a positive regulator of DNA-virus-triggered induction of type I interferons. iRhom2 deficiency markedly impaired DNA-virus- and intracellular-DNA-induced signaling in cells, and iRhom2-deficient mice were more susceptible to lethal herpes simplex virus type 1 (HSV-1) infection. iRhom2 was constitutively associated with STING and acted in two distinct processes to regulate STING activity. iRhom2 recruited the translocon-associated protein TRAPβ to the STING complex to facilitate trafficking of STING from the endoplasmic reticulum to perinuclear microsomes. iRhom2 also recruited the deubiquitination enzyme EIF3S5 to maintain the stability of STING through removal of its K48-linked polyubiquitin chains. These results suggest that iRhom2 is essential for STING activity, as it regulates TRAPβ-mediated translocation and EIF3S5-mediated deubiquitination of STING. PMID:27428826

  16. Role of TAPP1 and TAPP2 adaptor binding to PtdIns(3,4)P2 in regulating insulin sensitivity defined by knock-in analysis

    PubMed Central

    Wullschleger, Stephan; Wasserman, David H.; Gray, Alex; Sakamoto, Kei; Alessi, Dario R.

    2015-01-01

    Insulin sensitivity is critically dependent on the activity of PI3K (phosphoinositide 3-kinase) and generation of the PtdIns(3,4,5)P3 second messenger. PtdIns(3,4,5)P3 can be broken down to PtdIns(3,4)P2 through the action of the SHIPs (Src-homology-2-domain-containing inositol phosphatases). As PtdIns(3,4)P2 levels peak after those of PtdIns(3,4,5)P3, it has been proposed that PtdIns(3,4)P2 controls a negative-feedback loop that down-regulates the insulin and PI3K network. Previously, we identified two related adaptor proteins termed TAPP [tandem PH (pleckstrin homology)-domain-containing protein] 1 and TAPP2 that specifically bind to PtdIns(3,4)P2 through their C-terminal PH domain. To determine whether TAPP1 and TAPP2 play a role in regulating insulin sensitivity, we generated knock-in mice that express normal endogenous levels of mutant TAPP1 and TAPP2 that are incapable of binding PtdIns(3,4)P2. These homozygous TAPP1R211L/R211LTAPP2R218L/R218L double knock-in mice are viable and exhibit significantly enhanced activation of Akt, a key downstream mediator of insulin signalling. Consistent with increased PI3K and Akt activity, the double knock-in mice display enhanced whole body insulin sensitivity and disposal of glucose uptake into muscle tissues. We also generated wild-type and double TAPP1R211L/R211LTAPP2R218L/R218L knock-in embryonic fibroblasts and found that insulin triggered enhanced production of PtdIns(3,4,5)P3 and Akt activity in the double knock-in fibroblasts. These observations provide the first genetic evidence to support the notion that binding of TAPP1 and TAPP2 adaptors to PtdIns(3,4)P2 function as negative regulators of the insulin and PI3K signalling pathways. PMID:21204784

  17. HIV-1 Vpr Induces the Degradation of ZIP and sZIP, Adaptors of the NuRD Chromatin Remodeling Complex, by Hijacking DCAF1/VprBP

    PubMed Central

    Maudet, Claire; Sourisce, Adèle; Dragin, Loïc; Lahouassa, Hichem; Rain, Jean-Christophe; Bouaziz, Serge; Ramirez, Bertha Cécilia; Margottin-Goguet, Florence

    2013-01-01

    The Vpr protein from type 1 and type 2 Human Immunodeficiency Viruses (HIV-1 and HIV-2) is thought to inactivate several host proteins through the hijacking of the DCAF1 adaptor of the Cul4A ubiquitin ligase. Here, we identified two transcriptional regulators, ZIP and sZIP, as Vpr-binding proteins degraded in the presence of Vpr. ZIP and sZIP have been shown to act through the recruitment of the NuRD chromatin remodeling complex. Strikingly, chromatin is the only cellular fraction where Vpr is present together with Cul4A ubiquitin ligase subunits. Components of the NuRD complex and exogenous ZIP and sZIP were also associated with this fraction. Several lines of evidence indicate that Vpr induces ZIP and sZIP degradation by hijacking DCAF1: (i) Vpr induced a drastic decrease of exogenously expressed ZIP and sZIP in a dose-dependent manner, (ii) this decrease relied on the proteasome activity, (iii) ZIP or sZIP degradation was impaired in the presence of a DCAF1-binding deficient Vpr mutant or when DCAF1 expression was silenced. Vpr-mediated ZIP and sZIP degradation did not correlate with the growth-related Vpr activities, namely G2 arrest and G2 arrest-independent cytotoxicity. Nonetheless, infection with HIV-1 viruses expressing Vpr led to the degradation of the two proteins. Altogether our results highlight the existence of two host transcription factors inactivated by Vpr. The role of Vpr-mediated ZIP and sZIP degradation in the HIV-1 replication cycle remains to be deciphered. PMID:24116224

  18. Lentiviral Vpx Accessory Factor Targets VprBP/DCAF1 Substrate Adaptor for Cullin 4 E3 Ubiquitin Ligase to Enable Macrophage Infection

    PubMed Central

    Srivastava, Smita; Swanson, Selene K.; Manel, Nicolas; Florens, Laurence; Washburn, Michael P.; Skowronski, Jacek

    2008-01-01

    Vpx is a small virion-associated adaptor protein encoded by viruses of the HIV-2/SIVsm lineage of primate lentiviruses that enables these viruses to transduce monocyte-derived cells. This probably reflects the ability of Vpx to overcome an as yet uncharacterized block to an early event in the virus life cycle in these cells, but the underlying mechanism has remained elusive. Using biochemical and proteomic approaches, we have found that Vpx protein of the pathogenic SIVmac 239 strain associates with a ternary protein complex comprising DDB1 and VprBP subunits of Cullin 4–based E3 ubiquitin ligase, and DDA1, which has been implicated in the regulation of E3 catalytic activity, and that Vpx participates in the Cullin 4 E3 complex comprising VprBP. We further demonstrate that the ability of SIVmac as well as HIV-2 Vpx to interact with VprBP and its associated Cullin 4 complex is required for efficient reverse transcription of SIVmac RNA genome in primary macrophages. Strikingly, macrophages in which VprBP levels are depleted by RNA interference resist SIVmac infection. Thus, our observations reveal that Vpx interacts with both catalytic and regulatory components of the ubiquitin proteasome system and demonstrate that these interactions are critical for Vpx ability to enable efficient SIVmac replication in primary macrophages. Furthermore, they identify VprBP/DCAF1 substrate receptor for Cullin 4 E3 ubiquitin ligase and its associated protein complex as immediate downstream effector of Vpx for this function. Together, our findings suggest a model in which Vpx usurps VprBP-associated Cullin 4 ubiquitin ligase to enable efficient reverse transcription and thereby overcome a block to lentivirus replication in monocyte-derived cells, and thus provide novel insights into the underlying molecular mechanism. PMID:18464893

  19. Clathrin Functions in the Absence of the Terminal Domain Binding Site for Adaptor-associated Clathrin-Box Motifs

    PubMed Central

    Collette, John R.; Chi, Richard J.; Boettner, Douglas R.; Fernandez-Golbano, Isabel M.; Plemel, Rachael; Merz, Alex J.; Geli, Maria Isabel; Traub, Linton M.

    2009-01-01

    Clathrin is involved in vesicle formation in the trans-Golgi network (TGN)/endosomal system and during endocytosis. Clathrin recruitment to membranes is mediated by the clathrin heavy chain (HC) N-terminal domain (TD), which forms a seven-bladed β-propeller. TD binds membrane-associated adaptors, which have short peptide motifs, either the clathrin-box (CBM) and/or the W-box; however, the importance of the TD binding sites for these motifs has not been tested in vivo. We investigated the importance of the TD in clathrin function by generating 1) mutations in the yeast HC gene (CHC1) to disrupt the binding sites for the CBM and W-box (chc1-box), and 2) four TD-specific temperature-sensitive alleles of CHC1. We found that TD is important for the retention of resident TGN enzymes and endocytosis of α-factor; however, the known adaptor binding sites are not necessary, because chc1-box caused little to no effect on trafficking pathways involving clathrin. The Chc1-box TD was able to interact with the endocytic adaptor Ent2 in a CBM-dependent manner, and HCs encoded by chc1-box formed clathrin-coated vesicles. These data suggest that additional or alternative binding sites exist on the TD propeller to help facilitate the recruitment of clathrin to sites of vesicle formation. PMID:19458198

  20. Endocytosis of the Anthrax Toxin Is Mediated by Clathrin, Actin and Unconventional Adaptors

    PubMed Central

    Abrami, Laurence; Bischofberger, Mirko; Kunz, Béatrice; Groux, Romain; van der Goot, F. Gisou

    2010-01-01

    The anthrax toxin is a tripartite toxin, where the two enzymatic subunits require the third subunit, the protective antigen (PA), to interact with cells and be escorted to their cytoplasmic targets. PA binds to cells via one of two receptors, TEM8 and CMG2. Interestingly, the toxin times and triggers its own endocytosis, in particular through the heptamerization of PA. Here we show that PA triggers the ubiquitination of its receptors in a β-arrestin-dependent manner and that this step is required for clathrin-mediated endocytosis. In addition, we find that endocytosis is dependent on the heterotetrameric adaptor AP-1 but not the more conventional AP-2. Finally, we show that endocytosis of PA is strongly dependent on actin. Unexpectedly, actin was also found to be essential for efficient heptamerization of PA, but only when bound to one of its 2 receptors, TEM8, due to the active organization of TEM8 into actin-dependent domains. Endocytic pathways are highly modular systems. Here we identify some of the key players that allow efficient heptamerization of PA and subsequent ubiquitin-dependent, clathrin-mediated endocytosis of the anthrax toxin. PMID:20221438

  1. Involvement of the AP-1 Adaptor Complex in Early Steps of Phagocytosis and Macropinocytosis

    PubMed Central

    Lefkir, Yaya; Malbouyres, Marilyne; Gotthardt, Daniel; Ozinsky, Adrian; Cornillon, Sophie; Bruckert, Franz; Aderem, Alan A.; Soldati, Thierry; Cosson, Pierre; Letourneur, François

    2004-01-01

    The best described function of the adaptor complex-1 (AP-1) is to participate in the budding of clathrin-coated vesicles from the trans-Golgi network and endosomes. Here, we show that AP-1 is also localized to phagocytic cups in murine macrophages as well as in Dictyostelium amoebae. AP-1 is recruited to phagosomal membranes at this early stage of phagosome formation and rapidly dissociates from maturing phagosomes. To establish the role of AP-1 in phagocytosis, we made used of Dictyostelium mutant cells (apm1- cells) disrupted for AP-1 medium chain. In this mutant, phagocytosis drops by 60%, indicating that AP-1 is necessary for efficient phagocytosis. Furthermore, phagocytosis in apm1- cells is more affected for large rather than small particles, and cells exhibiting incomplete engulfment are then often observed. This suggests that AP-1 could participate in the extension of the phagocytic cup. Interestingly, macropinocytosis, a process dedicated to fluid-phase endocytosis and related to phagocytosis, is also impaired in apm1- cells. In summary, our data suggest a new role of AP-1 at an early stage of phagosome and macropinosome formation. PMID:14617812

  2. Nanobody-targeted E3-ubiquitin ligase complex degrades nuclear proteins

    PubMed Central

    Ju Shin, Yeong; Kyun Park, Seung; Jung Jung, Yoo; Na Kim, Ye; Sung Kim, Ki; Kyu Park, Ok; Kwon, Seung-Hae; Ho Jeon, Sung; Trinh, Le A.; Fraser, Scott E.; Kee, Yun; Joon Hwang, Byung

    2015-01-01

    Targeted protein degradation is a powerful tool in determining the function of specific proteins or protein complexes. We fused nanobodies to SPOP, an adaptor protein of the Cullin-RING E3 ubiquitin ligase complex, resulting in rapid ubiquitination and subsequent proteasome-dependent degradation of specific nuclear proteins in mammalian cells and zebrafish embryos. This approach is easily modifiable, as substrate specificity is conferred by an antibody domain that can be adapted to target virtually any protein. PMID:26373678

  3. A conserved serine residue regulates the stability of Drosophila Salvador and human WW domain-containing adaptor 45 through proteasomal degradation

    SciTech Connect

    Wu, Di Wu, Shian

    2013-04-19

    Highlights: •Ser-17 is key for the stability of Drosophila Sav. •Ala mutation of Ser-17 promotes the proteasomal degradation of Sav. •Ser-17 residue is not the main target of Hpo-induced Sav stabilization. •Hpo-dependent and -independent mechanisms regulate Sav stability. •This mechanism is conserved in the homologue of Sav, human WW45. -- Abstract: The Hippo (Hpo) pathway is a conserved tumor suppressor pathway that controls organ size through the coordinated regulation of apoptosis and proliferation. Drosophila Salvador (Sav), which limits organ size, is a core component of the Hpo pathway. In this study, Ser-17 was shown to be important for the stability of Sav. Alanine mutation of Ser-17 promoted the proteasomal degradation of Sav. Destabilization and stabilization of the Sav protein mediated by alanine mutation of Ser-17 and by Hpo, respectively, were independent of each other. This implies that the stability of Sav is controlled by two mechanisms, one that is Ser-17-dependent and Hpo-independent, and another that is Ser-17-independent and Hpo-dependent. These dual mechanisms also regulated the human counterpart of Drosophila Sav, WW domain-containing adaptor 45 (WW45). The conservation of this regulation adds to its significance in normal physiology and tumorigenesis.

  4. The psoriasis-associated D10N variant of the adaptor Act1 with impaired regulation by the molecular chaperone hsp90.

    PubMed

    Wang, Chenhui; Wu, Ling; Bulek, Katarzyna; Martin, Bradley N; Zepp, Jarod A; Kang, Zizhen; Liu, Caini; Herjan, Tomasz; Misra, Saurav; Carman, Julie A; Gao, Ji; Dongre, Ashok; Han, Shujie; Bunting, Kevin D; Ko, Jennifer S; Xiao, Hui; Kuchroo, Vijay K; Ouyang, Wenjun; Li, Xiaoxia

    2013-01-01

    Act1 is an essential adaptor in interleukin 17 (IL-17)-mediated signaling and is recruited to the receptor for IL-17 after stimulation with IL-17. Here we found that Act1 was a 'client' protein of the molecular chaperone hsp90. The D10N variant of Act1 (Act1(D10N)) that is linked to susceptibility to psoriasis was defective in its interaction with hsp90, which resulted in a global loss of Act1 function. Act1-deficient mice modeled the mechanistic link between loss of Act1 function and susceptibility to psoriasis. Although Act1 was necessary for IL-17-mediated inflammation, Act1-deficient mice had a hyperactive response of the T(H)17 subset of helper T cells and developed spontaneous IL-22-dependent skin inflammation. In the absence of IL-17 signaling, IL-22 was the main contributor to skin inflammation, which provides a molecular mechanism for the association of Act1(D10N) with psoriasis susceptibility. PMID:23202271

  5. Activation of the Stimulator of Interferon Genes (STING) adaptor attenuates experimental autoimmune encephalitis

    PubMed Central

    Lemos, Henrique; Huang, Lei; Chandler, Phillip R.; Mohamed, Eslam; Souza, Guilherme R.; Li, Lingqian; Pacholczyk, Gabriela; Barber, Glen N.; Hayakawa, Yoshihiro; Munn, David H.; Mellor, Andrew L.

    2014-01-01

    Cytosolic DNA sensing activates the Stimulator of Interferon Genes (STING) adaptor to induce interferon type I (IFNαβ) production. Constitutive DNA sensing to induce sustained STING activation incites tolerance breakdown leading to autoimmunity. Here we show that systemic treatments with DNA nanoparticles (DNPs) induced potent immune regulatory responses via STING signaling that suppressed experimental autoimmune encephalitis (EAE) when administered to mice after immunization with myelin oligodendrocyte glycoprotein (MOG), at EAE onset, or at peak disease severity. DNP treatments attenuated infiltration of effector T cells into the central nervous system (CNS) and suppressed innate and adaptive immune responses to MOG immunization in spleen. Therapeutic responses were not observed in mice treated with cargo DNA or cationic polymers alone, indicating that DNP uptake and cargo DNA sensing by cells with regulatory functions was essential for therapeutic responses to manifest. Intact STING and IFNαβ receptor genes, but not IFNγ receptor genes, were essential for therapeutic responses to DNPs to manifest. Treatments with cyclic diguanylate monophosphate (c-diGMP) to activate STING also delayed EAE onset and reduced disease severity. Therapeutic responses to DNPs were critically dependent on indoleamine 2,3 dioxygenase (IDO) enzyme activity in hematopoietic cells. Thus DNPs and c-diGMP attenuate EAE by inducing dominant T cell regulatory responses via the STING-IFNαβ-IDO pathway that suppress CNS-specific autoimmunity. These findings reveal dichotomous roles for the STING-IFNαβ pathway in either stimulating or suppressing autoimmunity and identify STING activating reagents as a novel class of immune modulatory drugs. PMID:24799564

  6. The TIR-Domain Containing Adaptor TRAM Is Required for TLR7 Mediated RANTES Production

    PubMed Central

    Shevlin, Enda; Miggin, Sinéad M.

    2014-01-01

    Toll-like receptor 7 (TLR7) plays a vital role in the immune response to ssRNA viruses such as human rhinovirus (HRV) and Influenza, against which there are currently no treatments or vaccines with long term efficacy available. Clearly, a more comprehensive understanding of the TLR7 signaling axis will contribute to its molecular targeting. TRIF related adaptor molecule (TRAM) plays a vital role in TLR4 signaling by recruiting TRIF to TLR4, followed by endosomal trafficking of the complex and initiation of IRF3 dependent type I interferon production as well as NF-κB dependent pro-inflammatory cytokine production. Towards understanding the molecular mechanisms that regulate TLR7 functionality, we found that TRAM−/− murine macrophages exhibited a transcriptional and translational impairment in TLR7 mediated RANTES, but not TNFα, production. Suppression of TRAM expression in human macrophages also resulted in an impairment in TLR7 mediated CCL5 and IFN-β, but not TNFα, gene induction. Furthermore, suppression of endogenous human TRAM expression in human macrophages significantly impaired RV16 induced CCL5 and IFNβ, but not TNFα gene induction. Additionally, TRAM-G2A dose-dependently inhibited TLR7 mediated activation of CCL5, IFNβ and IFNα reporter genes. TLR7-mediated phosphorylation and nuclear translocation of IRF3 was impaired in TRAM−/− cells. Finally, co-immunoprecipitation studies indicated that TRAM physically interacts with MyD88 upon TLR7 stimulation, but not under basal conditions. Our results clearly demonstrate that TRAM plays a, hitherto unappreciated, role in TLR7 signaling through a novel signaling axis containing, but not limited to, MyD88, TRAM and IRF3 towards the activation of anti-viral immunity. PMID:25211222

  7. Hydrological Modeling Reproducibility Through Data Management and Adaptors for Model Interoperability

    NASA Astrophysics Data System (ADS)

    Turner, M. A.

    2015-12-01

    Because of a lack of centralized planning and no widely-adopted standards among hydrological modeling research groups, research communities, and the data management teams meant to support research, there is chaos when it comes to data formats, spatio-temporal resolutions, ontologies, and data availability. All this makes true scientific reproducibility and collaborative integrated modeling impossible without some glue to piece it all together. Our Virtual Watershed Integrated Modeling System provides the tools and modeling framework hydrologists need to accelerate and fortify new scientific investigations by tracking provenance and providing adaptors for integrated, collaborative hydrologic modeling and data management. Under global warming trends where water resources are under increasing stress, reproducible hydrological modeling will be increasingly important to improve transparency and understanding of the scientific facts revealed through modeling. The Virtual Watershed Data Engine is capable of ingesting a wide variety of heterogeneous model inputs, outputs, model configurations, and metadata. We will demonstrate one example, starting from real-time raw weather station data packaged with station metadata. Our integrated modeling system will then create gridded input data via geostatistical methods along with error and uncertainty estimates. These gridded data are then used as input to hydrological models, all of which are available as web services wherever feasible. Models may be integrated in a data-centric way where the outputs too are tracked and used as inputs to "downstream" models. This work is part of an ongoing collaborative Tri-state (New Mexico, Nevada, Idaho) NSF EPSCoR Project, WC-WAVE, comprised of researchers from multiple universities in each of the three states. The tools produced and presented here have been developed collaboratively alongside watershed scientists to address specific modeling problems with an eye on the bigger picture of

  8. MOV10 Provides Antiviral Activity against RNA Viruses by Enhancing RIG-I-MAVS-Independent IFN Induction.

    PubMed

    Cuevas, Rolando A; Ghosh, Arundhati; Wallerath, Christina; Hornung, Veit; Coyne, Carolyn B; Sarkar, Saumendra N

    2016-05-01

    Moloney leukemia virus 10, homolog (MOV10) is an IFN-inducible RNA helicase, associated with small RNA-induced silencing. In this article, we report that MOV10 exhibits antiviral activity, independent of its helicase function, against a number of positive- and negative-strand RNA viruses by enhancing type I IFN induction. Using a number of genome-edited knockout human cells, we show that IFN regulatory factor 3-mediated IFN induction and downstream IFN signaling through IFN receptor was necessary to inhibit virus replication by MOV10. MOV10 enhanced IFN regulatory factor 3-mediated transcription of IFN. However, this IFN induction by MOV10 was unique and independent of the known retinoic acid-inducible gene I/mitochondrial antiviral-signaling protein-mediated RNA-sensing pathway. Upon virus infection, MOV10 specifically required inhibitor of κB kinase ε, not TANK-binding kinase 1, for its antiviral activity. The important role of MOV10 in mediating antiviral signaling was further supported by the finding that viral proteases from picornavirus family specifically targeted MOV10 as a possible innate immune evasion mechanism. These results establish MOV10, an evolutionary conserved protein involved in RNA silencing, as an antiviral gene against RNA viruses that uses an retinoic acid-inducible gene I-like receptor-independent pathway to enhance IFN response. PMID:27016603

  9. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  10. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  11. U1 adaptors result in reduction of multiple pre-mRNA species principally by sequestering U1snRNP.

    PubMed

    Vickers, Timothy A; Sabripour, Mahyar; Crooke, Stanley T

    2011-05-01

    U1 Adaptors are a recently reported novel approach for targeted reduction of mRNA transcripts. A U1 adaptor oligonucleotide comprising of a target-complimentary hybridization domain and a U1 recruitment domain, directs the U1 snRNP complex to the terminal exon of a targeted gene, subsequently inhibiting poly(A) tail addition and leading to degradation of that RNA species within the nucleus. Here, we present data demonstrating U1 adapter-mediated gene silencing can result in significant 'off-target' silencing effects as demonstrated by the reduction of multiple mRNA species that were not intended to be targeted. Our data suggest that a substantial portion of this U1 adaptor-mediated off-target mRNA reduction is the result of sequestration U1 snRNP at levels sufficient to affect splicing and processing of non-target transcripts. PMID:21415007

  12. Characterization, genomic organization, and expression profiles of MyD88, a key adaptor molecule in the TLR signaling pathways in miiuy croaker (Miichthys miiuy).

    PubMed

    Tang, Da; Gao, Yunhang; Wang, Rixin; Sun, Yuena; Xu, Tianjun

    2012-12-01

    Myeloid differentiation factor 88 (MyD88) is an important adaptor protein in the TLR signaling pathways. In the present study, we firstly cloned and characterized Miichthys miiuy MyD88 (Mimi-MyD88) cDNA and gene. The Mimi-MyD88 gene was 3,470 bp consisting of five exons and four introns. The cDNA was composed of 1,627 bp with an 867-bp open reading frame encoding a polypeptide of 288 amino acid residues. The theoretical molecular mass and isoelectric point of this polypeptide were 33.25 and 4.96 kDa. Comparison of the deduced amino acid sequence showed that the conserved death domain and the typical Toll/IL-1 receptor domain are very similar to those presented in other mammals, amphibians, and fishes. To identify potential role of MyD88 in fish innate immunological surveillance, the constitutive Mimi-MyD88 mRNA is detected by real-time quantitative polymerase chain reaction. Results demonstrated that Mimi-MyD88 is broadly expressed in ten normal tissues, with the lowest expression was observed in kidney and the highest was in liver. The transcriptional expression also revealed that Mimi-MyD88 was significantly up-regulated in liver, kidney, and spleen after challenge by Gram-negative bacteria, Vibrio anguillarum. Via contrasted the expression of MyD88 and TLR2 in kidney, we evaluated TLR2 plays an indispensable role in MyD88 transcription, but not absolutely dominant. The combined expression still indicated that MyD88 plays a universal role in keeping immune surveillance for pathogens. Phylogenetic analysis suggested that Mimi-MyD88 gene is classified into the piscine cluster and most closely related to large yellow croaker Larimichthys crocea. PMID:23053604

  13. p97 Disease Mutations Modulate Nucleotide-Induced Conformation to Alter Protein-Protein Interactions.

    PubMed

    Bulfer, Stacie L; Chou, Tsui-Fen; Arkin, Michelle R

    2016-08-19

    The AAA+ ATPase p97/VCP adopts at least three conformations that depend on the binding of ADP and ATP and alter the orientation of the N-terminal protein-protein interaction (PPI) domain into "up" and "down" conformations. Point mutations that cause multisystem proteinopathy 1 (MSP1) are found at the interface of the N domain and D1-ATPase domain and potentially alter the conformational preferences of p97. Additionally, binding of "adaptor" proteins to the N-domain regulates p97's catalytic activity. We propose that p97/adaptor PPIs are coupled to p97 conformational states. We evaluated the binding of nucleotides and the adaptor proteins p37 and p47 to wild-type p97 and MSP1 mutants. Notably, p47 and p37 bind 8-fold more weakly to the ADP-bound conformation of wild-type p97 compared to the ATP-bound conformation. However, MSP1 mutants lose this nucleotide-induced conformational coupling because they destabilize the ADP-bound, "down" conformation of the N-domain. Loss in conformation coupling to PPIs could contribute to the mechanism of MSP1. PMID:27267671

  14. Sorting of the Alzheimer's Disease Amyloid Precursor Protein Mediated by the AP-4 Complex

    SciTech Connect

    Burgos, Patricia V.; Mardones, Gonzalo A.; Rojas, Adriana L.; daSilva, Luis L.P.; Prabhu, Yogikala; Hurley, James H.; Bonifacino, Juan S.

    2010-08-12

    Adaptor protein 4 (AP-4) is the most recently discovered and least well-characterized member of the family of heterotetrameric adaptor protein (AP) complexes that mediate sorting of transmembrane cargo in post-Golgi compartments. Herein, we report the interaction of an YKFFE sequence from the cytosolic tail of the Alzheimer's disease amyloid precursor protein (APP) with the {micro}4 subunit of AP-4. Biochemical and X-ray crystallographic analyses reveal that the properties of the APP sequence and the location of the binding site on 4 are distinct from those of other signal-adaptor interactions. Disruption of the APP-AP-4 interaction decreases localization of APP to endosomes and enhances {gamma}-secretase-catalyzed cleavage of APP to the pathogenic amyloid-{beta} peptide. These findings demonstrate that APP and AP-4 engage in a distinct type of signal-adaptor interaction that mediates transport of APP from the trans-Golgi network (TGN) to endosomes, thereby reducing amyloidogenic processing of the protein.

  15. Stability of HIB-Cul3 E3 ligase adaptor HIB Is Regulated by Self-degradation and Availability of Its Substrates

    PubMed Central

    Zhou, Zizhang; Xu, Congyu; Chen, Ping; Liu, Chen; Pang, Shu; Yao, Xia; Zhang, Qing

    2015-01-01

    The HIB-Cul3 complex E3 ligase regulates physiological homeostasis through regulating its substrate stability and its activity can be modulated by changing HIB abundance. However, regulation of HIB remains elusive. Here we provide evidence that HIB is degraded through the proteasome by Cul3-mediated polyubiquitination in K48 manner in Drosophila. Strikingly, HIB is targeted for degradation by itself. We further identify that three degrons (52LKSS56T, 76LDEE80S and 117MESQ121R) and K185 and K198 of HIB are essential for its auto-degradation. Finally, we demonstrate that HIB-Cul3 substrates, Ci and Puc, can effectively protect HIB from HIB-Cul3-mediated degradation. Taken together, our study indicates that there is an exquisite equilibrium between the adaptor and targets to achieve the tight control of the HIB, which is essential for maintaining suitable Hh and JNK signaling. And the mechanism of adaptor self-degradation and reciprocal control of the abundance between adaptor and its substrates is also applied to BTB-Cul3 E3 ligase adaptor dKeap1, dDiablo and dKLHL18. PMID:26263855

  16. A Patient-Controlled Analgesia Adaptor to Mitigate Postsurgical Pain for Combat Casualties With Multiple Limb Amputation: A Case Series.

    PubMed

    Pasquina, Paul F; Isaacson, Brad M; Johnson, Elizabeth; Rhoades, Daniel S; Lindholm, Mark P; Grindle, Garrett G; Cooper, Rory A

    2016-08-01

    The use of explosive armaments during Operation Iraqi Freedom, Operation Enduring Freedom, and Operation New Dawn has resulted in a significant number of injured U.S. service members. These weapons often generate substantial extremity trauma requiring multiple surgical procedures to preserve life, limb, and restore function. For those individuals who require multiple surgeries, the use of patient-controlled analgesia (PCA) devices can be an effective way to achieve adequate pain management and promote successful rehabilitation and recovery during inpatient treatment. A subpopulation of patients are unable to independently control a PCA device because of severe multiple limb dysfunction and/or loss. In response to the needs of these patients, our team designed and developed a custom adaptor to assist service members who would otherwise not be able to use a PCA. Patient feedback of the device indicated a positive response, improved independence, and overall satisfaction during inpatient hospitalization. PMID:27483540

  17. T-cell immune adaptor SKAP1 regulates the induction of collagen-induced arthritis in mice.

    PubMed

    Smith, Xin; Taylor, Alison; Rudd, Christopher E

    2016-08-01

    SKAP1 is an immune cell adaptor that couples the T-cell receptor with the 'inside-out' signalling pathway for LFA-1 mediated adhesion in T-cells. A connection of SKAP1 to the regulation of an autoimmune disorder has not previously been reported. In this study, we show that Skap1-deficient (skap1-/-) mice are highly resistant to the induction of collagen-induced arthritis (CIA), both in terms of incidence or severity. Skap1-/- T-cells were characterised by a selective reduction in the presence IL-17+ (Th17) in response to CII peptide and a marked reduction of joint infiltrating T-cells in Skap1-/- mice. SKAP1 therefore represents a novel connection to Th17 producing T-cells and is new potential target in the therapeutic intervention in autoimmune and inflammatory diseases. PMID:27181093

  18. Ascent Heating Thermal Analysis on the Spacecraft Adaptor (SA) Fairings and the Interface with the Crew Launch Vehicle (CLV)

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Yuko, James; Motil, Brian

    2009-01-01

    When the crew exploration vehicle (CEV) is launched, the spacecraft adaptor (SA) fairings that cover the CEV service module (SM) are exposed to aero heating. Thermal analysis is performed to compute the fairing temperatures and to investigate whether the temperatures are within the material limits for nominal ascent aero heating case. Heating rates from Thermal Environment (TE) 3 aero heating analysis computed by engineers at Marshall Space Flight Center (MSFC) are used in the thermal analysis. Both MSC Patran 2007r1b/Pthermal and C&R Thermal Desktop 5.1/Sinda models are built to validate each other. The numerical results are also compared with those reported by Lockheed Martin (LM) and show a reasonably good agreement.

  19. Ent3p and Ent5p Exhibit Cargo-specific Functions in Trafficking Proteins between the Trans-Golgi Network and the Endosomes in Yeast

    PubMed Central

    Čopič, Alenka; Starr, Trevor L.

    2007-01-01

    The phosphoinositide-binding proteins Ent3p and Ent5p are required for protein transport from the trans-Golgi network (TGN) to the vacuole in Saccharomyces cerevisiae. Both proteins interact with the monomeric clathrin adaptor Gga2p, but Ent5p also interacts with the clathrin adaptor protein 1 (AP-1) complex, which facilitates retention of proteins such as Chs3p at the TGN. When both ENT3 and ENT5 are mutated, Chs3p is diverted from an intracellular reservoir to the cell surface. However, Ent3p and Ent5p are not required for the function of AP-1, but rather they seem to act in parallel with AP-1 to retain proteins such as Chs3p at the TGN. They have all the properties of clathrin adaptors, because they can both bind to clathrin and to cargo proteins. Like AP-1, Ent5p binds to Chs3p, whereas Ent3p facilitates the interaction between Gga2p and the endosomal syntaxin Pep12p. Thus, Ent3p has an additional function in Gga-dependent transport to the late endosome. Ent3p also facilitates the association between Gga2p and clathrin; however, Ent5p can partially substitute for this function. We conclude that the clathrin adaptors AP-1, Ent3p, Ent5p, and the Ggas cooperate in different ways to sort proteins between the TGN and the endosomes. PMID:17344475

  20. Monoamine receptor agonists, acting preferentially at presynaptic autoreceptors and heteroreceptors, downregulate the cell fate adaptor FADD in rat brain cortex.

    PubMed

    García-Fuster, M Julia; García-Sevilla, Jesús A

    2015-02-01

    FADD is a crucial adaptor of death receptors that can engage apoptosis or survival actions (e.g. neuroplasticity) through its phosphorylated form (p-FADD). Although FADD was shown to participate in receptor mechanisms related to drugs of abuse, little is known on its role in the signaling of classic neurotransmitters (dopamine, noradrenaline, and serotonin) in brain. This study assessed the modulation of FADD (and p-FADD/FADD ratio, as an index of neuroplasticity) and FLIP-L (a neuroprotective FADD interacting partner), as well as the role of MEK-ERK signaling, after activation of monoamine auto/heteroreceptors by selective agonists in rat cortex. Acute depletion of monoamines with reserpine, but not with AMPT or PCPA, reduced FADD (28%) and increased p-FADD/FADD ratio (1.34-fold). Activation of presynaptic α2A-adrenoceptors (UK-14304 and clonidine), 5-HT1A receptors (8-OH-DPAT), and D2 dopamine receptor (bromocriptine) dose-dependently decreased FADD (up to 54%) and increased p-FADD (up to 29%) and p-FADD/FADD ratios (up to 2.93-fold), through specific receptor mechanisms. Activation of rat 5-HT1B autoreceptor in axon terminals by CP-94253 did not modulate FADD forms. Activation of postsynaptic D1 dopamine receptor by SKF-81297 also reduced FADD (25%) and increased p-FADD (32%). Disruption of MEK-ERK activation with SL327 did not modify clonidine (α2A-adrenoceptor)-induced FADD inhibition, indicating that agonist effect was not dependent on ERK signaling. The various monoamine receptor agonists and antagonists did not alter FLIP-L content, or the activation of executioner caspase-3 and PARP-1 cleavage, indicating that the agonists attenuated apoptotic signals and promoted neuroplasticity through FADD regulation. These novel results indicate that inhibition of pro-apoptotic FADD adaptor could function as a common signaling step in the initial activation of monoamine receptors in the brain. PMID:25286119

  1. Siglec-15 regulates osteoclast differentiation by modulating RANKL-induced phosphatidylinositol 3-kinase/Akt and Erk pathways in association with signaling Adaptor DAP12.

    PubMed

    Kameda, Yusuke; Takahata, Masahiko; Komatsu, Miki; Mikuni, Shintaro; Hatakeyama, Shigetsugu; Shimizu, Tomohiro; Angata, Takashi; Kinjo, Masataka; Minami, Akio; Iwasaki, Norimasa

    2013-12-01

    Siglecs are a family of sialic acid-binding immunoglobulin-like lectins that regulate the functions of cells in the innate and adaptive immune systems through glycan recognition. Here we show that Siglec-15 regulates osteoclast development and bone resorption by modulating receptor activator of nuclear factor κB ligand (RANKL) signaling in association with DNAX-activating protein 12 kDa (DAP12), an adaptor protein bearing an immunoreceptor tyrosine-based activation motif (ITAM). Among the known Siglecs expressed in myeloid lineage cells, only Siglec-15 was upregulated by RANKL in mouse primary bone marrow macrophages. Siglec-15-deficient mice exhibit mild osteopetrosis resulting from impaired osteoclast development. Consistently, cells lacking Siglec-15 exhibit defective osteoclast development and resorptive activity in vitro. RANKL-induced activation of phosphatidylinositol 3-kinase (PI3K)/Akt and Erk pathways were impaired in Siglec-15-deficient cells. Retroviral transduction of Siglec-15-null osteoclast precursors with wild-type Siglec-15 or mutant Siglec-15 revealed that the association of Siglec-15 with DAP12 is involved in the downstream signal transduction of RANK. Furthermore, we found that the ability of osteoclast formation is preserved in the region adjacent to the growth plate in Siglec-15-deficient mice, indicating that there is a compensatory mechanism for Siglec-15-mediated osteoclastogenesis in the primary spongiosa. To clarify the mechanism of this compensation, we examined whether osteoclast-associated receptor (OSCAR)/Fc receptor common γ (FcRγ) signaling, an alternative ITAM-mediated signaling pathway to DAP12, rescues impaired osteoclastogenesis in Siglec-15-deficient cells. The ligands in type II collagen activate OSCAR and rescue impaired osteoclastogenesis in Siglec-15-deficient cells when cultured on bone slices, indicating that Siglec-15-mediated signaling can be compensated for by signaling activated by type II collagen and other bone

  2. Small-Molecule Targeting of E3 Ligase Adaptor SPOP in Kidney Cancer.

    PubMed

    Guo, Zhong-Qiang; Zheng, Tong; Chen, Baoen; Luo, Cheng; Ouyang, Sisheng; Gong, Shouzhe; Li, Jiafei; Mao, Liu-Liang; Lian, Fulin; Yang, Yong; Huang, Yue; Li, Li; Lu, Jing; Zhang, Bidong; Zhou, Luming; Ding, Hong; Gao, Zhiwei; Zhou, Liqun; Li, Guoqiang; Zhou, Ran; Chen, Ke; Liu, Jingqiu; Wen, Yi; Gong, Likun; Ke, Yuwen; Yang, Shang-Dong; Qiu, Xiao-Bo; Zhang, Naixia; Ren, Jin; Zhong, Dafang; Yang, Cai-Guang; Liu, Jiang; Jiang, Hualiang

    2016-09-12

    In the cytoplasm of virtually all clear-cell renal cell carcinoma (ccRCC), speckle-type POZ protein (SPOP) is overexpressed and misallocated, which may induce proliferation and promote kidney tumorigenesis. In normal cells, however, SPOP is located in the nucleus and induces apoptosis. Here we show that a structure-based design and subsequent hit optimization yield small molecules that can inhibit the SPOP-substrate protein interaction and can suppress oncogenic SPOP-signaling pathways. These inhibitors kill human ccRCC cells that are dependent on oncogenic cytoplasmic SPOP. Notably, these inhibitors minimally affect the viability of other cells in which SPOP is not accumulated in the cytoplasm. Our findings validate the SPOP-substrate protein interaction as an attractive target specific to ccRCC that may yield novel drug discovery efforts. PMID:27622336

  3. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    SciTech Connect

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo

    2013-07-19

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways.

  4. FADD adaptor and PEA-15/ERK1/2 partners in major depression and schizophrenia postmortem brains: basal contents and effects of psychotropic treatments.

    PubMed

    García-Fuster, M J; Díez-Alarcia, R; Ferrer-Alcón, M; La Harpe, R; Meana, J J; García-Sevilla, J A

    2014-09-26

    Enhanced brain apoptosis (neurons and glia) may be involved in major depression (MD) and schizophrenia (SZ), mainly through the activation of the intrinsic (mitochondrial) apoptotic pathway. In the extrinsic death pathway, pro-apoptotic Fas-associated death domain (FADD) adaptor and its non-apoptotic p-Ser194 FADD form have critical roles interacting with other death regulators such as phosphoprotein enriched in astrocytes of 15 kDa (PEA-15) and extracellular signal-regulated kinase (ERK). The basal status of FADD (protein and messenger RNA (mRNA)) and the effects of psychotropic drugs (detected in blood/urine samples) were first assessed in postmortem prefrontal cortex of MD and SZ subjects (including a non-MD/SZ suicide group). In MD, p-FADD, but not total FADD (and mRNA), was increased (26%, n=24; all MD subjects) as well as p-FADD/FADD ratio (a pro-survival marker) in antidepressant-free MD subjects (50%, n=10). In contrast, cortical FADD (and mRNA), p-FADD, and p-FADD/FADD were not altered in SZ brains (n=21) regardless of antipsychotic medications (except enhanced mRNA in treated subjects). Similar negative results were quantified in the non-MD/SZ suicide group. In MD, the regulation of multifunctional PEA-15 (i.e., p-Ser116 PEA-15 blocks pro-apoptotic FADD and PEA-15 prevents pro-survival ERK action) and the modulation of p-ERK1/2 were also investigated. Cortical p-PEA-15 was not changed whereas PEA-15 was increased mainly in antidepressant-treated subjects (16-20%). Interestingly, cortical p-ERK1/2/ERK1/2 ratio was reduced (33%) in antidepressant-free when compared to antidepressant-treated MD subjects. The neurochemical adaptations of brain FADD (increased p-FADD and pro-survival p-FADD/FADD ratio), as well as its interaction with PEA-15, could play a major role to counteract the known activation of the mitochondrial apoptotic pathway in MD. PMID:25075716

  5. VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex.

    PubMed

    Bondage, Devanand D; Lin, Jer-Sheng; Ma, Lay-Sun; Kuo, Chih-Horng; Lai, Erh-Min

    2016-07-01

    Type VI secretion system (T6SS) is a macromolecular machine used by many Gram-negative bacteria to inject effectors/toxins into eukaryotic hosts or prokaryotic competitors for survival and fitness. To date, our knowledge of the molecular determinants and mechanisms underlying the transport of these effectors remains limited. Here, we report that two T6SS encoded valine-glycine repeat protein G (VgrG) paralogs in Agrobacterium tumefaciens C58 specifically control the secretion and interbacterial competition activity of the type VI DNase toxins Tde1 and Tde2. Deletion and domain-swapping analysis identified that the C-terminal extension of VgrG1 specifically confers Tde1 secretion and Tde1-dependent interbacterial competition activity in planta, and the C-terminal variable region of VgrG2 governs this specificity for Tde2. Functional studies of VgrG1 and VgrG2 variants with stepwise deletion of the C terminus revealed that the C-terminal 31 aa (C31) of VgrG1 and 8 aa (C8) of VgrG2 are the molecular determinants specifically required for delivery of each cognate Tde toxin. Further in-depth studies on Tde toxin delivery mechanisms revealed that VgrG1 interacts with the adaptor/chaperone-effector complex (Tap-1-Tde1) in the absence of proline-alanine-alanine-arginine (PAAR) and the VgrG1-PAAR complex forms independent of Tap-1 and Tde1. Importantly, we identified the regions involved in these interactions. Although the entire C31 segment is required for binding with the Tap-1-Tde1 complex, only the first 15 aa of this region are necessary for PAAR binding. These results suggest that the VgrG1 C terminus interacts sequentially or simultaneously with the Tap-1-Tde1 complex and PAAR to govern Tde1 translocation across bacterial membranes and delivery into target cells for antibacterial activity. PMID:27313214

  6. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins.

    PubMed

    McEwan, David G; Popovic, Doris; Gubas, Andrea; Terawaki, Seigo; Suzuki, Hironori; Stadel, Daniela; Coxon, Fraser P; Miranda de Stegmann, Diana; Bhogaraju, Sagar; Maddi, Karthik; Kirchof, Anja; Gatti, Evelina; Helfrich, Miep H; Wakatsuki, Soichi; Behrends, Christian; Pierre, Philippe; Dikic, Ivan

    2015-01-01

    The lysosome is the final destination for degradation of endocytic cargo, plasma membrane constituents, and intracellular components sequestered by macroautophagy. Fusion of endosomes and autophagosomes with the lysosome depends on the GTPase Rab7 and the homotypic fusion and protein sorting (HOPS) complex, but adaptor proteins that link endocytic and autophagy pathways with lysosomes are poorly characterized. Herein, we show that Pleckstrin homology domain containing protein family member 1 (PLEKHM1) directly interacts with HOPS complex and contains a LC3-interacting region (LIR) that mediates its binding to autophagosomal membranes. Depletion of PLEKHM1 blocks lysosomal degradation of endocytic (EGFR) cargo and enhances presentation of MHC class I molecules. Moreover, genetic loss of PLEKHM1 impedes autophagy flux upon mTOR inhibition and PLEKHM1 regulates clearance of protein aggregates in an autophagy- and LIR-dependent manner. PLEKHM1 is thus a multivalent endocytic adaptor involved in the lysosome fusion events controlling selective and nonselective autophagy pathways. PMID:25498145

  7. Hippo Stabilises Its Adaptor Salvador by Antagonising the HECT Ubiquitin Ligase Herc4

    PubMed Central

    Aerne, Birgit L.; Gailite, Ieva; Sims, David; Tapon, Nicolas

    2015-01-01

    Signalling through the Hippo (Hpo) pathway involves a kinase cascade, which leads to the phosphorylation and inactivation of the pro-growth transcriptional co-activator Yorkie (Yki). Despite the identification of a large number of pathway members and modulators, our understanding of the molecular events that lead to activation of Hpo and the downstream kinase Warts (Wts) remain incomplete. Recently, targeted degradation of several Hpo pathway components has been demonstrated as a means of regulating pathway activity. In particular, the stability of scaffold protein Salvador (Sav), which is believed to promote Hpo/Wts association, is crucially dependent on its binding partner Hpo. In a cell-based RNAi screen for ubiquitin regulators involved in Sav stability, we identify the HECT domain protein Herc4 (HECT and RLD domain containing E3 ligase) as a Sav E3 ligase. Herc4 expression promotes Sav ubiquitylation and degradation, while Herc4 depletion stabilises Sav. Interestingly, Hpo reduces Sav/Herc4 interaction in a kinase-dependent manner. This suggests the existence of a positive feedback loop, where Hpo stabilises its own positive regulator by antagonising Herc4-mediated degradation of Sav. PMID:26125558

  8. USP9X Controls EGFR Fate by Deubiquitinating the Endocytic Adaptor Eps15.

    PubMed

    Savio, Michol Giovanna; Wollscheid, Nadine; Cavallaro, Elena; Algisi, Veronica; Di Fiore, Pier Paolo; Sigismund, Sara; Maspero, Elena; Polo, Simona

    2016-01-25

    Following activation by its cognate ligand(s), the epidermal growth factor receptor (EGFR) is rapidly routed to the lysosome for degradation in a ubiquitination-dependent fashion. This pathway represents the major mechanism of long-term attenuation of EGFR signaling, and its deregulation is a significant feature in different types of cancers. Here we demonstrate, through a systematic RNAi-based approach, that several deubiquitinating (DUB) enzymes extend or decrease EGFR half-life upon EGF stimulation. We focus on USP9X, whose depletion severely affects EGFR turnover, interfering with its internalization and trafficking. We identify the endocytic protein Eps15 as one of the critical substrates of USP9X, and we map the Eps15 ubiquitination sites. We found that Eps15 monoubiquitination occurs already at minimal dose of EGF stimulation and is essential for EGFR internalization. Overall, our findings identify USP9X as a novel regulator of EGFR endocytosis and suggest a model whereby cycles of ubiquitination and deubiquitination events on endocytic accessory proteins may regulate the internalization and trafficking of the EGFR toward the lysosomes. PMID:26748853

  9. Basolateral sorting of chloride channel 2 is mediated by interactions between a dileucine motif and the clathrin adaptor AP-1

    PubMed Central

    de la Fuente-Ortega, Erwin; Gravotta, Diego; Bay, Andres Perez; Benedicto, Ignacio; Carvajal-Gonzalez, Jose Maria; Lehmann, Guillermo L.; Lagos, Carlos F.; Rodríguez-Boulan, Enrique

    2015-01-01

    In spite of the many key cellular functions of chloride channels, the mechanisms that mediate their subcellular localization are largely unknown. ClC-2 is a ubiquitous chloride channel usually localized to the basolateral domain of epithelia that regulates cell volume, ion transport, and acid–base balance; mice knocked out for ClC-2 are blind and sterile. Previous work suggested that CLC-2 is sorted basolaterally by TIFS812LL, a dileucine motif in CLC-2's C-terminal domain. However, our in silico modeling of ClC-2 suggested that this motif was buried within the channel's dimerization interface and identified two cytoplasmically exposed dileucine motifs, ESMI623LL and QVVA635LL, as candidate sorting signals. Alanine mutagenesis and trafficking assays support a scenario in which ESMI623LL acts as the authentic basolateral signal of ClC-2. Silencing experiments and yeast three-hybrid assays demonstrated that both ubiquitous (AP-1A) and epithelium-specific (AP-1B) forms of the tetrameric clathrin adaptor AP-1 are capable of carrying out basolateral sorting of ClC-2 through interactions of ESMI623LL with a highly conserved pocket in their γ1-σ1A hemicomplex. PMID:25739457

  10. Selection of the Most Potent Specific On/Off Adaptor-Hepatitis Delta Virus Ribozymes for Use in Gene Targeting

    PubMed Central

    Lévesque, Michel V.; Rouleau, Samuel G.; Perreault, Jean-Pierre

    2016-01-01

    The Hepatitis Delta Virus (HDV) ribozyme, which is well adapted to the environment of the human cell, is an excellent candidate for the future development of gene-inactivation systems. On top of this, a new generation of HDV ribozymes now exists that benefits from the addition of a specific on/off adaptor (specifically the SOFA-HDV ribozymes) which greatly increases both the ribozyme’s specificity and its cleavage activity. Unlike RNAi and hammerhead ribozymes, the designing of SOFA-HDV ribozymes to cleave, in trans, given RNA species has never been the object of a systematic optimization study, even with their recent use for the gene knockdown of various targets. This report aims at both improving and clarifying the design process of SOFA-HDV ribozymes. Both the ribozyme and the targeted RNA substrate were analyzed in order to provide new criteria that are useful in the selection of the most potent SOFA-HDV ribozymes. The crucial features present in both the ribozyme’s biosensor and blocker, as well as at the target site, were identified and characterized. Simple rules were derived and tested using hepatitis C virus NS5B RNA as a model target. Overall, this method should promote the use of the SOFA-HDV ribozymes in a plethora of applications in both functional genomics and gene therapy. PMID:21793786

  11. A single domain antibody fragment that recognizes the adaptor ASC defines the role of ASC domains in inflammasome assembly.

    PubMed

    Schmidt, Florian I; Lu, Alvin; Chen, Jeff W; Ruan, Jianbin; Tang, Catherine; Wu, Hao; Ploegh, Hidde L

    2016-05-01

    Myeloid cells assemble inflammasomes in response to infection or cell damage; cytosolic sensors activate pro-caspase-1, indirectly for the most part, via the adaptors ASC and NLRC4. This leads to secretion of proinflammatory cytokines and pyroptosis. To explore complex formation under physiological conditions, we generated an alpaca single domain antibody, VHHASC, which specifically recognizes the CARD of human ASC via its type II interface. VHHASC not only impairs ASC(CARD) interactions in vitro, but also inhibits inflammasome activation in response to NLRP3, AIM2, and NAIP triggers when expressed in living cells, highlighting a role of ASC in all three types of inflammasomes. VHHASC leaves the Pyrin domain of ASC functional and stabilizes a filamentous intermediate of inflammasome activation. Incorporation of VHHASC-EGFP into these structures allowed the visualization of endogenous ASC(PYD) filaments for the first time. These data revealed that cross-linking of ASC(PYD) filaments via ASC(CARD) mediates the assembly of ASC foci. PMID:27069117

  12. Immune Functions in Mice Lacking Clnk, an SLP-76-Related Adaptor Expressed in a Subset of Immune Cells

    PubMed Central

    Utting, Oliver; Sedgmen, Bradley J.; Watts, Tania H.; Shi, Xiaoshu; Rottapel, Robert; Iulianella, Angelo; Lohnes, David; Veillette, André

    2004-01-01

    The SLP-76 family of immune cell-specific adaptors is composed of three distinct members named SLP-76, Blnk, and Clnk. They have been implicated in the signaling pathways coupled to immunoreceptors such as the antigen receptors and Fc receptors. Previous studies using gene-targeted mice and deficient cell lines showed that SLP-76 plays a central role in T-cell development and activation. Moreover, it is essential for normal mast cell and platelet activation. In contrast, Blnk is necessary for B-cell development and activation. While the precise function of Clnk is not known, it was reported that Clnk is selectively expressed in mast cells, natural killer (NK) cells, and previously activated T-cells. Moreover, ectopic expression of Clnk was shown to rescue T-cell receptor-mediated signal transduction in an SLP-76-deficient T-cell line, suggesting that, like its relatives, Clnk is involved in the positive regulation of immunoreceptor signaling. Stimulatory effects of Clnk on immunoreceptor signaling were also reported to occur in transfected B-cell and basophil leukemia cell lines. Herein, we attempted to address the physiological role of Clnk in immune cells by the generation of Clnk-deficient mice. The results of our studies demonstrated that Clnk is dispensable for normal differentiation and function of T cells, mast cells, and NK cells. Hence, unlike its relatives, Clnk is not essential for normal immune functions. PMID:15199160

  13. DGCR8 Acts as an Adaptor for the Exosome Complex to Degrade Double-Stranded Structured RNAs

    PubMed Central

    Macias, Sara; Cordiner, Ross A.; Gautier, Philippe; Plass, Mireya; Cáceres, Javier F.

    2015-01-01

    Summary The Microprocessor complex (DGCR8/Drosha) is required for microRNA (miRNA) biogenesis but also binds and regulates the stability of several types of cellular RNAs. Of particular interest, DGCR8 controls the stability of mature small nucleolar RNA (snoRNA) transcripts independently of Drosha, suggesting the existence of alternative DGCR8 complex(es) with other nucleases to process a variety of cellular RNAs. Here, we found that DGCR8 copurifies with subunits of the nuclear exosome, preferentially associating with its hRRP6-containing nucleolar form. Importantly, we demonstrate that DGCR8 is essential for the recruitment of the exosome to snoRNAs and to human telomerase RNA. In addition, we show that the DGCR8/exosome complex controls the stability of the human telomerase RNA component (hTR/TERC). Altogether, these data suggest that DGCR8 acts as an adaptor to recruit the exosome complex to structured RNAs and induce their degradation. PMID:26687677

  14. Structural and functional insight into the N-terminal domain of the clathrin adaptor Ent5 from Saccharomyces cerevisiae.

    PubMed

    Zhang, Fan; Song, Yang; Ebrahimi, Mohammad; Niu, Liwen; Teng, Maikun; Li, Xu

    2016-09-01

    Clathrin-coated vesicles (CCVs) play critical roles in multiple cellular processes, including nutrient uptake, endosome/lysosome biogenesis, pathogen invasion, regulation of signalling receptors, etc. Saccharomyces cerevisiae Ent5 (ScEnt5) is one of the two major adaptors supporting the CCV-mediated TGN/endosome traffic in yeast cells. However, the classification and phosphoinositide binding characteristic of ScEnt5 remain elusive. Here we report the crystal structures of the ScEnt5 N-terminal domain, and find that ScEnt5 contains an insertion α' helix that does not exist in other ENTH or ANTH domains. Furthermore, we investigate the classification of ScEnt5-N(31-191) by evolutionary history analyses and structure comparisons, and find that the ScEnt5 N-terminal domain shows different phosphoinositide binding property from rEpsin1 and rCALM. Above results facilitate the understanding of the ScEnt5-mediated vesicle coat formation process. PMID:27369074

  15. The endothelial adaptor molecule TSAd is required for VEGF-induced angiogenic sprouting through junctional c-Src activation.

    PubMed

    Gordon, Emma J; Fukuhara, Daisuke; Weström, Simone; Padhan, Narendra; Sjöström, Elisabet O; van Meeteren, Laurens; He, Liqun; Orsenigo, Fabrizio; Dejana, Elisabetta; Bentley, Katie; Spurkland, Anne; Claesson-Welsh, Lena

    2016-01-01

    Activation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) by VEGF binding is critical for vascular morphogenesis. In addition, VEGF disrupts the endothelial barrier by triggering the phosphorylation and turnover of the junctional molecule VE-cadherin, a process mediated by the VEGFR2 downstream effectors T cell-specific adaptor (TSAd) and the tyrosine kinase c-Src. We investigated whether the VEGFR2-TSAd-c-Src pathway was required for angiogenic sprouting. Indeed, Tsad-deficient embryoid bodies failed to sprout in response to VEGF. Tsad-deficient mice displayed impaired angiogenesis specifically during tracheal vessel development, but not during retinal vasculogenesis, and in VEGF-loaded Matrigel plugs, but not in those loaded with FGF. The SH2 and proline-rich domains of TSAd bridged VEGFR2 and c-Src, and this bridging was critical for the localization of activated c-Src to endothelial junctions and elongation of the growing sprout, but not for selection of the tip cell. These results revealed that vascular sprouting and permeability are both controlled through the VEGFR2-TSAd-c-Src signaling pathway in a subset of tissues, which may be useful in developing strategies to control tissue-specific pathological angiogenesis. PMID:27436360

  16. Structure of a myosin•adaptor complex and pairing by cargo

    PubMed Central

    Shi, Hang; Singh, Nimisha; Esselborn, Filipp; Blobel, Günter

    2014-01-01

    Myosin 4 protein (Myo4p), one of five distinct myosins of yeast, is dedicated to cytoplasmic transport of two types of cargos, zipcoded messenger ribonucleoprotein particles (mRNPs) and tubular endoplasmic reticulum (tER). Neither cargo binds directly to Myo4p. Instead, swi5p-dependent HO expression 3 protein (She3p) serves as an “adaptor” that contains three binding modules, one for Myo4p and one each for zipcoded mRNP and tER. The assembly of a transport-competent motor complex is poorly understood. Here, we report that Myo4p•She3p forms a stable 1:2 heterotrimer in solution. In the Myo4p•She3p crystal structure, Myo4p’s C-terminal domain (CTD) assumes a lobster claw-shaped form, the minor prong of which adheres to a pseudocoiled-coil region of She3p. The extensive Myo4p•She3p interactome buries 3,812 Å2 surface area and is primarily hydrophobic. Because the Myo4p•She3p heterotrimer contains only one myosin molecule, it is not transport-competent. By stepwise reconstitution, we found a single molecule of synthetic oligonucleotide (representing the mRNA zipcode element) bound to a single tetramer of zipcode binding protein She2p to be sufficient for Myo4p•She3p dimerization. Therefore, cargo initiates cross-linking of two Myo4p•She3p heterotrimers to an ensemble that contains two myosin molecules obligatory for movement. An additional crystal structure comprising an overlapping upstream portion of She3p showed continuation of the pseudocoiled-coil structure and revealed another highly conserved surface region. We suggest this region as a candidate binding site for a yet unidentified tER ligand. We propose a model whereby zipcoded mRNP and/or tER ligands couple two Myo4p•She3p heterotrimers and thereby generate a transport-competent motor complex either for separate transport or cotransport of these two cargos. PMID:24522109

  17. A Molecular Toolkit to Visualize Native Protein Assemblies in the Context of Human Disease

    PubMed Central

    Gilmore, Brian L.; Winton, Carly E.; Demmert, Andrew C.; Tanner, Justin R.; Bowman, Sam; Karageorge, Vasilea; Patel, Kaya; Sheng, Zhi; Kelly, Deborah F.

    2015-01-01

    We present a new molecular toolkit to investigate protein assemblies natively formed in the context of human disease. The system employs tunable microchips that can be decorated with switchable adaptor molecules to select for target proteins of interest and analyze them using molecular microscopy. Implementing our new streamlined microchip approach, we could directly visualize BRCA1 gene regulatory complexes from patient-derived cancer cells for the first time. PMID:26395823

  18. Adapting for endocytosis: roles for endocytic sorting adaptors in directing neural development

    PubMed Central

    Yap, Chan Choo; Winckler, Bettina

    2015-01-01

    Proper cortical development depends on the orchestrated actions of a multitude of guidance receptors and adhesion molecules and their downstream signaling. The levels of these receptors on the surface and their precise locations can greatly affect guidance outcomes. Trafficking of receptors to a particular surface locale and removal by endocytosis thus feed crucially into the final guidance outcomes. In addition, endocytosis of receptors can affect downstream signaling (both quantitatively and qualitatively) and regulated endocytosis of guidance receptors is thus an important component of ensuring proper neural development. We will discuss the cell biology of regulated endocytosis and the impact on neural development. We focus our discussion on endocytic accessory proteins (EAPs) (such as numb and disabled) and how they regulate endocytosis and subsequent post-endocytic trafficking of their cognate receptors (such as Notch, TrkB, β-APP, VLDLR, and ApoER2). PMID:25904845

  19. Laa1p, a Conserved AP-1 Accessory Protein Important for AP-1 Localization in Yeast

    PubMed Central

    Fernández, G. Esteban

    2006-01-01

    AP-1 and Gga adaptors participate in clathrin-mediated protein transport between the trans-Golgi network and endosomes. Both adaptors contain homologous domains that act to recruit accessory proteins involved in clathrin-coated vesicle formation, but the spectrum of known adaptor-binding partners is limited. This study describes an evolutionarily conserved protein of Saccharomyces cerevisiae, Laa1p (Yjl207cp), that interacts and functions specifically with AP-1. Deletion of LAA1, when combined with a conditional mutation in clathrin heavy chain or deletion of GGA genes, accentuated growth defects and increased disruption of clathrin-dependent α-factor maturation and transport of carboxypeptidase Y to the vacuole. In contrast, such genetic interactions were not observed between deletions of LAA1 and AP-1 subunit genes. Laa1p preferentially interacted with AP-1 compared with Gga proteins by glutathione S-transferase-fusion affinity binding and coimmunoprecipitations. Localization of AP-1 and Laa1p, but not Gga proteins, was highly sensitive to brefeldin A, an inhibitor of ADP-ribosylation factor (Arf) activation. Importantly, deletion of LAA1 caused mislocalization of AP-1, especially in cells at high density (postdiauxic shift), but it did not affect Gga protein distribution. Our results identify Laa1p as a new determinant of AP-1 localization, suggesting a model in which Laa1p and Arf cooperate to direct stable association of AP-1 with appropriate intracellular membranes. PMID:16687571

  20. Regulation of Cell Migration and β1 Integrin Trafficking by the Endosomal Adaptor GGA3.

    PubMed

    Ratcliffe, Colin D H; Sahgal, Pranshu; Parachoniak, Christine A; Ivaska, Johanna; Park, Morag

    2016-06-01

    The integrin family of cell adhesion receptors link extracellular matrices to intracellular signaling pathways and the actin cytoskeleton; and regulate cell migration, proliferation and survival in normal and diseased tissues. The subcellular location of integrin receptors is critical for their function and deregulated trafficking is implicated in various human diseases. Here we identify a role for Golgi-localized gamma-ear containing Arf-binding protein 3 (GGA3), in regulating trafficking of β1 integrin. GGA3 knockdown reduces cell surface and total levels of α2, α5 and β1 integrin subunits, inhibits cell spreading, reduces focal adhesion number, as well as cell migration. In the absence of GGA3, integrins are increasingly retained inside the cell, traffic toward the perinuclear lysosomal compartment and their degradation is enhanced. Integrin traffic and maintenance of integrin levels are dependent on the integrity of the Arf binding site of GGA3. Furthermore, sorting nexin 17 (SNX17), a critical regulator of integrin recycling, becomes mislocalized to enlarged late endosomes upon GGA3 depletion. These data support a model whereby GGA3, through its ability to regulate SNX17 endosomal localization and through interaction with Arf6 diverts integrins from the degradative pathway supporting cell migration. PMID:26935970

  1. SNX9 as an adaptor for linking synaptojanin-1 to the Cdc42 effector ACK1.

    PubMed

    Yeow-Fong, Lee; Lim, Louis; Manser, Ed

    2005-09-12

    Sorting nexin 9 (SNX9, also referred to as SH3PX1) is a binding partner for the non-receptor and Cdc42-associated kinase (ACK) in Drosophila and mammals. ACK1 is known to bind clathrin and influence EGF receptor endocytosis. SNX9 comprises an N-terminal Src homology domain 3 (SH3), a central PHOX homology (PX) domain, and a carboxyl-terminal coiled-coil region. In order to investigate SNX9 further we have made use of a novel in vivo biotinylation system to label various GST-SH3 domains and perform blot overlays, thereby identifying synaptojanin-1 as a partner for SNX9. Biotinylated SH3 domains were also used for specific identification of target proline-rich sequences in synaptojanin and ACK1 on synthetic peptides arrays. Direct assessment of SH3 binding efficiencies at different positions within the extensive proline-rich regions of these proteins were thus determined. While SNX9 targets a number of sequences within the proline-rich regions of synaptojanin, a single site was identified in human ACK1. By testing the association of various truncations of ACK1 with SNX9 we confirmed the dominant SNX9 binding domain in human ACK1 (residues 920-955). In the presence of SNX9 we find that synaptojanin is able to colocalize with distinct ACK1 containing vesicles, indicating that this tyrosine kinase is linked to many components involved in vesicle dynamics including clathrin, AP2 and synaptojanin-1. PMID:16137687

  2. Atypical regulation of G protein-coupled receptor intracellular trafficking by ubiquitination

    PubMed Central

    Dores, Michael R.; Trejo, JoAnn

    2014-01-01

    G protein-coupled receptor (GPCR) signaling is precisely regulated. After activation, GPCRs are desensitized, internalized and either recycled to the cell surface or sorted to lysosomes for degradation. The main route for GPCR lysosomal sorting requires ubiquitination and the endosomal-sorting complex required for transport (ESCRT). Four distinct ESCRT adaptor protein complexes act sequentially to bind and sort ubiquitinated cargo to lysosomes. Several studies now indicate that alternate pathways exist for GPCR lysosomal sorting that require only some components of the ESCRT and autophagy machinery. While direct GPCR ubiquitination is not required for alternate lysosomal sorting, new evidence suggests that ubiquitin may function indirectly to modulate adaptor protein activity. Here, we discuss the atypical regulation of GPCR lysosomal sorting by ubiquitination. PMID:24680429

  3. The adaptor CARD9 is required for adaptive but not innate immunity to oral mucosal Candida albicans infections.

    PubMed

    Bishu, Shrinivas; Hernández-Santos, Nydiaris; Simpson-Abelson, Michelle R; Huppler, Anna R; Conti, Heather R; Ghilardi, Nico; Mamo, Anna J; Gaffen, Sarah L

    2014-03-01

    Oropharyngeal candidiasis (OPC [thrush]) is an opportunistic infection caused by the commensal fungus Candida albicans. OPC is common in individuals with HIV/AIDS, infants, patients on chemotherapy, and individuals with congenital immune defects. Immunity to OPC is strongly dependent on the interleukin-23 (IL-23)/IL-17R axis, as mice and humans with defects in IL-17R signaling (IL17F, ACT1, IL-17RA) or in genes that direct Th17 differentiation (STAT3, STAT1, CARD9) are prone to mucocutaneous candidiasis. Conventional Th17 cells are induced in response to C. albicans infection via signals from C-type lectin receptors, which signal through the adaptor CARD9, leading to production of Th17-inducing cytokines such as IL-6, IL-1β, and IL-23. Recent data indicate that IL-17 can also be made by numerous innate cell subsets. These innate "type 17" cells resemble conventional Th17 cells, but they can be activated without need for prior antigen exposure. Because C. albicans is not a commensal organism in rodents and mice are thus naive to this fungus, we had the opportunity to assess the role of CARD9 in innate versus adaptive responses using an OPC infection model. As expected, CARD9(-/-) mice failed to mount an adaptive Th17 response following oral Candida infection. Surprisingly, however, CARD9(-/-) mice had preserved innate IL-17-dependent responses to Candida and were almost fully resistant to OPC. Thus, CARD9 is important primarily for adaptive immunity to C. albicans, whereas alternate recognition systems appear to be needed for effective innate responses. PMID:24379290

  4. Independent and Cooperative Roles of Adaptor Molecules in Proximal Signaling during FcɛRI-Mediated Mast Cell Activation▿

    PubMed Central

    Kambayashi, Taku; Okumura, Mariko; Baker, Rebecca G.; Hsu, Chih-Jung; Baumgart, Tobias; Zhang, Weiguo; Koretzky, Gary A.

    2010-01-01

    Activation through FcɛRI, a high-affinity IgE-binding receptor, is critical for mast cell function during allergy. The formation of a multimolecular proximal signaling complex nucleated by the adaptor molecules SLP-76 and LAT1 is required for activation through this receptor. Based on previous T-cell studies, current dogma dictates that LAT1 is required for plasma membrane recruitment and function of SLP-76. Unexpectedly, we found that the recruitment and phosphorylation of SLP-76 were preserved in LAT1−/− mast cells and that SLP-76−/− and LAT1−/− mast cells harbored distinct functional and biochemical defects. The LAT1-like molecule LAT2 was responsible for the preserved membrane localization and phosphorylation of SLP-76 in LAT1−/− mast cells. Although LAT2 supported SLP-76 phosphorylation and recruitment to the plasma membrane, LAT2 only partially compensated for LAT1-mediated cell signaling due to its decreased ability to stabilize interactions with phospholipase Cγ (PLCγ). Comparison of SLP-76−/− LAT1−/− and SLP-76−/− mast cells revealed that some functions of LAT1 could occur independently of SLP-76. We propose that while SLP-76 and LAT1 depend on each other for many of their functions, LAT2/SLP-76 interactions and SLP-76-independent LAT1 functions also mediate a positive signaling pathway downstream of FcɛRI in mast cells. PMID:20606011

  5. Golgi protein FAPP2 tubulates membranes

    PubMed Central

    Cao, Xinwang; Coskun, Ünal; Rössle, Manfred; Buschhorn, Sabine B.; Grzybek, Michal; Dafforn, Timothy R.; Lenoir, Marc; Overduin, Michael; Simons, Kai

    2009-01-01

    The Golgi-associated four-phosphate adaptor protein 2 (FAPP2) has been shown to possess transfer activity for glucosylceramide both in vitro and in cells. We have previously shown that FAPP2 is involved in apical transport from the Golgi complex in epithelial MDCK cells. In this paper we assign an unknown activity for the protein as well as providing structural insight into protein assembly and a low-resolution envelope structure. By applying analytical ultracentrifugation and small-angle x-ray scattering, we show that FAPP2 is a dimeric protein in solution, having a curved shape 30 nm in length. The purified FAPP2 protein has the capability to form tubules from membrane sheets in vitro. This activity is dependent on the phosphoinositide-binding activity of the PH domain of FAPP2. These data suggest that FAPP2 functions directly in the formation of apical carriers in the trans-Golgi network. PMID:19940249

  6. Structural Insights into KCTD Protein Assembly and Cullin3 Recognition.

    PubMed

    Ji, Alan X; Chu, Anh; Nielsen, Tine Kragh; Benlekbir, Samir; Rubinstein, John L; Privé, Gilbert G

    2016-01-16

    Cullin3 (Cul3)-based ubiquitin E3 ligase complexes catalyze the transfer of ubiquitin from an E2 enzyme to target substrate proteins. In these assemblies, the C-terminal region of Cul3 binds Rbx1/E2-ubiquitin, while the N-terminal region interacts with various BTB (bric-à-brac, tramtrack, broad complex) domain proteins that serve as substrate adaptors. Previous crystal structures of the homodimeric BTB proteins KLHL3, KLHL11 and SPOP in complex with the N-terminal domain of Cul3 revealed the features required for Cul3 recognition in these proteins. A second class of BTB-domain-containing proteins, the KCTD proteins, is also Cul3 substrate adaptors, but these do not share many of the previously identified determinants for Cul3 binding. We report the pentameric crystal structures of the KCTD1 and KCTD9 BTB domains and identify plasticity in the KCTD1 rings. We find that the KCTD proteins 5, 6, 9 and 17 bind to Cul3 with high affinity, while the KCTD proteins 1 and 16 do not have detectable binding. Finally, we confirm the 5:5 assembly of KCTD9/Cul3 complexes by cryo-electron microscopy and provide a molecular rationale for BTB-mediated Cul3 binding specificity in the KCTD family. PMID:26334369

  7. Prion-like Polymerization Underlies Signal Transduction in Antiviral Immune Defense and Inflammasome Activation

    PubMed Central

    Cai, Xin; Chen, Jueqi; Xu, Hui; Liu, Siqi; Jiang, Qiu-Xing; Halfmann, Randal; Chen, Zhijian J.

    2014-01-01

    SUMMARY Pathogens and cellular danger signals activate sensors such as RIG-I and NLRP3 to produce robust immune and inflammatory responses through respective adaptor proteins MAVS and ASC, which harbor essential N-terminal CARD and PYRIN domains, respectively. Here, we show that CARD and PYRIN function as bona fide prions in yeast and their prion forms are inducible by their respective upstream activators. Likewise, a yeast prion domain can functionally replace CARD and PYRIN in mammalian cell signaling. Mutations in MAVS and ASC that disrupt their prion activities in yeast also abrogate their ability to signal in mammalian cells. Furthermore, fibers of recombinant PYRIN can convert ASC into functional polymers capable of activating caspase-1. Remarkably, a conserved fungal NOD-like receptor and prion pair can functionally reconstitute signaling of NLRP3 and ASC PYRINs in mammalian cells. These r