Science.gov

Sample records for adatom surface diffusion

  1. Molecular dynamics simulation of nanoscale surface diffusion of heterogeneous adatoms clusters

    NASA Astrophysics Data System (ADS)

    Muhammad, Imran; Fayyaz, Hussain; Muhammad, Rashid; Muhammad, Ismail; Hafeez, Ullah; Yongqing, Cai; M Arshad, Javid; Ejaz, Ahmad; S, A. Ahmad

    2016-07-01

    Molecular dynamics simulation employing the embedded atom method potential is utilized to investigate nanoscale surface diffusion mechanisms of binary heterogeneous adatoms clusters at 300 K, 500 K, and 700 K. Surface diffusion of heterogeneous adatoms clusters can be vital for the binary island growth on the surface and can be useful for the formation of alloy-based thin film surface through atomic exchange process. The results of the diffusion process show that at 300 K, the diffusion of small adatoms clusters shows hopping, sliding, and shear motion; whereas for large adatoms clusters (hexamer and above), the diffusion is negligible. At 500 K, small adatoms clusters, i.e., dimer, show almost all possible diffusion mechanisms including the atomic exchange process; however no such exchange is observed for adatoms clusters greater than dimer. At 700 K, the exchange mechanism dominates for all types of clusters, where Zr adatoms show maximum tendency and Ag adatoms show minimum or no tendency toward the exchange process. Separation and recombination of one or more adatoms are also observed at 500 K and 700 K. The Ag adatoms also occupy pop-up positions over the adatoms clusters for short intervals. At 700 K, the vacancies are also generated in the vicinity of the adatoms cluster, vacancy formation, filling, and shifting can be observed from the results.

  2. Diffusion of Cu adatoms and dimers on Cu(111) and Ag(111) surfaces

    NASA Astrophysics Data System (ADS)

    Mińkowski, Marcin; Załuska-Kotur, Magdalena A.

    2015-12-01

    Diffusion of Cu adatoms and dimers on Cu(111) and Ag(111) surfaces is analyzed based on ab initio surface potentials. Single adatom diffusion is compared with dimer diffusion on both surfaces. Surface geometry makes the adatoms jump alternately between two states in the same way in both systems, whereas dimers undergo more complex diffusion process that combines translational and rotational motion. Small difference in the surface lattice constant between Cu and Ag crystals results in a completely different energy landscape for dimer jumps. As an effect the character of diffusion process changes. Homogeneous Cu dimer diffusion is more difficult and dimers rather rotate within single surface cell, whereas diffusion over Ag surface is faster and happens more smoothly. The temperature dependence of diffusion coefficient and its parameters: energy barrier and prefactor is calculated and compared for both surfaces.

  3. Effect of adatom surface diffusivity on microstructure and intrinsic stress evolutions during Ag film growth

    NASA Astrophysics Data System (ADS)

    Flötotto, D.; Wang, Z. M.; Jeurgens, L. P. H.; Bischoff, E.; Mittemeijer, E. J.

    2012-08-01

    The effect of the adatom surface diffusivity on the evolution of the microstructure and the intrinsic stress of thin metal films was investigated for the case of growth of polycrystalline Ag films on amorphous SiO2 (a-SiO2) and amorphous Ge (a-Ge) substrates, with high and low Ag adatom surface diffusivity, respectively. The surface diffusivity of the deposited Ag adatoms on the a-Ge substrate is suppressed also after coalescence of Ag islands due to the continuous (re)segregation of Ge at the surface of the growing film as evidenced by in-situ XPS. An assessment could be made of the role of adatom surface diffusivity on the microstructural development and the intrinsic stress evolution during film growth. As demonstrated by ex-situ TEM and ex-situ XRD, the Ag films grown on the a-SiO2 and a-Ge substrates possess strikingly different microstructures in terms of grain shape, grain size, and crystallographic texture. Nevertheless, the real-time in-situ stress measurements revealed a compressive → tensile → compressive stress evolution for the developing Ag films on both types of substrates, however on different time scales and with stress-component values of largely different magnitudes. It was concluded that (i) the microstructural development of metallic thin films is predominated by the surface diffusivity of the adatoms and (ii) the intrinsic stress evolution is largely controlled by the developing microstructure and the grain-boundary diffusivity.

  4. Diffusion of adatoms on face-centered cubic transition metal surfaces

    SciTech Connect

    Perkins, L.

    1994-05-10

    Mechanisms and associated energetics for adatom diffusion on the (100) and (110) surfaces of Ni, Cu, Rh, Pd, and Ag are investigated. Self-diffusion was studied on (100) and (I 10) surfaces of Ni, Cu, Pd and Ag using corrected effective medium method (CEM) and approximation to CEM used for molecular dynamics and Monte Carlo studies (MD/MC-CEM). Self-diffusion on Pd(100), Ag(100), Ni(110), Cu(110), Pd(110), and Ag(110) is accomplished by classical diffusion: the adatom hops from its equilibrium adsorption site over an intervening bridge site to an adjacent equilibrium site. Self-diffusion on Ni(100) and Cu(100) proceeds by atomic-exchange diffusion: the adatom on the surface displaces an atom in the first surface layer. Aside from explicit inclusion of the kinetic-exchange-correlation energy, it is critical to include enough movable atoms in the calculation to insure correct energetics. Distortions induced by these diffusion mechanisms, especially atomic exchange, are long ranged in surface plane, owing to small distortions of many atoms being energetically favored over large distortions of few atoms. Energetics and rates of heterogeneous adatom diffusion on the (100) surfaces of Ni, Cu, Rh, Pd, and Ag show that the final state energies differ due to variation of metallic bonding with coordination for different types of metal atoms. The surface energies of the 2 metals can be used to correlate the amount of energy gained or released when the adatom displaces a surface atom. This difference in energetic stability of final configurations determines whether bridge hopping diffusion or atomic displacement is the dominant kinetic process in these heterogeneous systems.

  5. A calculation of the diffusion energies for adatoms on surfaces of F.C.C. metals

    NASA Technical Reports Server (NTRS)

    Halicioglu, T.; Pound, G. M.

    1979-01-01

    The activation energies for diffusion were determined for gold, platinum and iridium adatoms on plane and plane PT surfaces and were found to be in good agreement with the measurements reported by Bassett and Webber. The Lennard-Jones pair potentials were used to model the interatomic forces, and relaxation of the substrate atoms in near proximity to the adatom was considered in detail. The present calculations clarify the mechanism of the observed two-dimensional diffusion of platinum and iridium atoms on a plane PT surface. The results are compared with those obtained using Morse potential functions and different relaxation techniques.

  6. Diffusion of Cd and Te adatoms on CdTe(111) surfaces: A computational study using density functional theory

    SciTech Connect

    Naderi, Ebadollah; Nanavati, Sachin; Majumder, Chiranjib; Ghaisas, S. V.

    2015-01-15

    CdTe is one of the most promising semiconductor for thin-film based solar cells. Here we report a computational study of Cd and Te adatom diffusion on the CdTe (111) A-type (Cd terminated) and B-type (Te terminated) surfaces and their migration paths. The atomic and electronic structure calculations are performed under the DFT formalism and climbing Nudge Elastic Band (cNEB) method has been applied to evaluate the potential barrier of the Te and Cd diffusion. In general the minimum energy site on the surface is labeled as A{sub a} site. In case of Te and Cd on B-type surface, the sub-surface site (a site just below the top surface) is very close in energy to the A site. This is responsible for the subsurface accumulation of adatoms and therefore, expected to influence the defect formation during growth. The diffusion process of adatoms is considered from A{sub a} (occupied) to A{sub a} (empty) site at the nearest distance. We have explored three possible migration paths for the adatom diffusion. The adatom surface interaction is highly dependent on the type of the surface. Typically, Te interaction with both type (5.2 eV for A-type and 3.8 eV for B-type) is stronger than Cd interactions(2.4 eV for B-type and 0.39 eV for A-type). Cd interaction with the A-type surface is very weak. The distinct behavior of the A-type and B-type surfaces perceived in our study explain the need of maintaining the A-type surface during growth for smooth and stoichiometric growth.

  7. Modelisation de la diffusion sur les surfaces metalliques: De l'adatome aux processus de croissance

    NASA Astrophysics Data System (ADS)

    Boisvert, Ghyslain

    Cette these est consacree a l'etude des processus de diffusion en surface dans le but ultime de comprendre, et de modeliser, la croissance d'une couche mince. L'importance de bien mai triser la croissance est primordiale compte tenu de son role dans la miniaturisation des circuits electroniques. Nous etudions ici les surface des metaux nobles et de ceux de la fin de la serie de transition. Dans un premier temps, nous nous interessons a la diffusion d'un simple adatome sur une surface metallique. Nous avons, entre autres, mis en evidence l'apparition d'une correlation entre evenements successifs lorsque la temperature est comparable a la barriere de diffusion, i.e., la diffusion ne peut pas etre associee a une marche aleatoire. Nous proposons un modele phenomenologique simple qui reproduit bien les resultats des simulations. Ces calculs nous ont aussi permis de montrer que la diffusion obeit a la loi de Meyer-Neldel. Cette loi stipule que, pour un processus active, le prefacteur augmente exponentiellement avec la barriere. En plus, ce travail permet de clarifier l'origine physique de cette loi. En comparant les resultats dynamiques aux resultats statiques, on se rend compte que la barriere extraite des calculs dynamiques est essentiellement la meme que celle obtenue par une approche statique, beaucoup plus simple. On peut donc obtenir cette barriere a l'aide de methodes plus precises, i.e., ab initio, comme la theorie de la fonctionnelle de la densite, qui sont aussi malheureusement beaucoup plus lourdes. C'est ce que nous avons fait pour plusieurs systemes metalliques. Nos resultats avec cette derniere approche se comparent tres bien aux resultats experimentaux. Nous nous sommes attardes plus longuement a la surface (111) du platine. Cette surface regorge de particularites interessantes, comme la forme d'equilibre non-hexagonale des i lots et deux sites d'adsorption differents pour l'adatome. De plus, des calculs ab initio precedents n'ont pas reussi a confirmer la

  8. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Surface diffusion of Si, Ge and C adatoms on Si (001) substrate studied by the molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Hui; Yu, Zhong-Yuan; Lu, Peng-Fei; Liu, Yu-Min

    2009-10-01

    Depositions of Si, Ge and C atoms onto a preliminary Si (001) substrate at different temperatures are investigated by using the molecular dynamics method. The mechanism of atomic self-assembling occurring locally on the flat terraces between steps is suggested. Diffusion and arrangement patterns of adatoms at different temperatures are observed. At 900 K, the deposited atoms are more likely to form dimers in the perpendicular [110] direction due to the more favourable movement along the perpendicular [110] direction. C adatoms are more likely to break or reconstruct the dimers on the substrate surface and have larger diffusion distances than Ge and Si adatoms. Exchange between C adatoms and substrate atoms are obvious and the epitaxial thickness is small. Total potential energies of adatoms and substrate atoms involved in the simulation cell are computed. When a newly arrived adatom reaches the stable position, the potential energy of the system will decrease and the curves turns into a ladder-like shape. It is found that C adatoms can lead to more reduction of the system energy and the potential energy of the system will increase as temperature increases.

  9. Hot Adatom Diffusion Following Oxygen Dissociation on Pd(100) and Pd(111): A First-Principles Study of the Equilibration Dynamics of Exothermic Surface Reactions

    NASA Astrophysics Data System (ADS)

    Bukas, Vanessa J.; Reuter, Karsten

    2016-09-01

    We augment ab initio molecular dynamics simulations with a quantitative account of phononic dissipation to study the hyperthermal adsorbate dynamics resulting from a noninstantaneous energy dissipation during exothermic surface chemical reactions. Comparing the hot adatom diffusion ensuing O2 dissociation over Pd(100) and Pd(111) we find experimentally accessible product end distances to form a rather misleading measure for the lifetime of this hyperthermal state. The lifetime is particularly long at Pd(111) where a random-walk-type diffusion leads only to small net displacements. A detailed phonon analysis rationalizes the slow equilibration through long-lived Rayleigh mode excitations that spatially confine the released energy within a nanoscopic "hot spot" around the impingement region.

  10. Mechanism of acoustically induced diffusional structuring of surface adatoms

    SciTech Connect

    Wu, Chengping; Zhigilei, Leonid V.; Zaitsev, Vladimir Yu.

    2013-11-25

    Physical mechanisms of time-averaged structuring of adatoms induced by a standing surface acoustic wave (SAW) on a solid substrate are studied. Despite some similarity with conventional mechanisms based on averaging of fast oscillation-type motion or radiation-pressure effects, we demonstrate that, for diffusional (i.e., strongly damped) adatom motion, the origin of time-averaged structuring is essentially different. The proposed analytical model and kinetic Monte–Carlo (kMC) simulations reveal several distinct structuring regimes and directly relate them to the transient modification of diffusion barriers and adiabatic temperature variations induced by SAW strains.

  11. Slow gold adatom diffusion on graphene: effect of silicon dioxide and hexagonal boron nitride substrates.

    PubMed

    Liu, Li; Chen, Zheyuan; Wang, Lei; Polyakova Stolyarova, Elena; Taniguchi, Takashi; Watanabe, Kenji; Hone, James; Flynn, George W; Brus, Louis E

    2013-04-25

    We examine the nucleation kinetics of Au clusters on graphene and explore the relationship with layer number and underlying supporting substrate of graphene. Using the mean field theory of diffusion-limited aggregation, morphology patterns are semiquantitatively analyzed to obtain Au adatom effective diffusion constants and activation energies. Under specified assumptions, the Au adatom diffusion constant for single-layer graphene supported on SiO2 is ∼50 times smaller than that for hexagonal boron nitride (h-BN)-supported graphene and on the order of 800 times smaller than that for multilayer graphite. Bilayer graphene on SiO2 shows a Au adatom diffusion constant similar to single-layer graphene on h-BN. Scanning probe data show that single-layer graphene is far flatter on h-BN than on SiO2. Two factors are proposed as contributing to the observed lower diffusion constants on single-layer graphene: local surface roughness and homogeneous loss of dispersion/van der Waals electronic stability in multilayers. Graphene Raman spectroscopy shows little charge transfer between Au nanoparticles and graphene. PMID:23121443

  12. Binding of an adatom to a simple metal surface

    NASA Technical Reports Server (NTRS)

    Huntington, H. B.; Turk, L. A.; White, W. W., III

    1975-01-01

    The density functional formalism of Hohenberg and Kohn is used to investigate the energies, charge densities and forces which hold an adatom on the surface of a simple metal. The valence wavefunction of the adatom is fitted to the Herman-Skillman solutions at large distance and is simplified somewhat in the core region. The field of the ion is represented by the Ashcroft pseudopotential. For the metal the jellium model is used. Detailed calculations are carried out for a sodium adatom on a sodium surface. Simply juxtaposing adatom and surface gives a binding energy of about 1/3 eV. This value is approximately twice the surface energy per atom in the close-packed plane. Charge redistributions as determined variationally increase the binding energy by about 10%. The equilibrium distance for the adatom turns out to be 1.66 A from the surface, as compared with 1.52 A, the observed value for one-half the distance between the close-packed planes.

  13. Ab initio study of interaction between 3d adatoms on the vicinal Cu(111) surface

    NASA Astrophysics Data System (ADS)

    Syromyatnikov, A. G.; Kabanov, N. S.; Saletsky, A. M.; Klavsyuk, A. L.

    2016-06-01

    Density functional theory is used to resolve the adatom-step and adatom-adatom interactions on vicinal Cu(111) surface. We demonstrated that the interactions between 3d adatoms appreciably depend on the distance from a surface step. Our calculations show that the magnitude of the repulsive barrier related to the surface step is larger for 3d adatoms located at the upper surface terrace than for adatoms located at the lower surface terrace.

  14. Diffusion and growth of aluminum adatoms on magnesium clusters with hexahedral structure

    NASA Astrophysics Data System (ADS)

    Dai, Xiongying; Hu, Wangyu; Yang, Jianyu; Chen, Chuanpin

    2015-02-01

    The surface diffusion and growth of Al atoms on Mg clusters with hexahedral structure was investigated using molecular dynamics simulations. The diffusion pathways and the corresponding energy barriers were determined via the nudged elastic band method. Two diffusion paths from a (0001) facet to a neighboring (1 1 bar 01) facet and between two adjacent (1 1 bar 01) facets were considered. The energy barriers on the (1 1 bar 01) facets and between the two (1 1 bar 01) facets were remarkably increased. As such, the adatom's mobility became limited at low temperatures. The growth of small Al-Mg nanoclusters was modeled via the one-by-one atom deposition technique to form an anomalous core-shell structure. The Mg atoms with lower surface energy and larger atomic radius occupied the core and the Al atoms with higher surface energy and smaller atomic radius occupied the shell.

  15. Native gallium adatoms discovered on atomically-smooth gallium nitride surfaces at low temperature.

    PubMed

    Alam, Khan; Foley, Andrew; Smith, Arthur R

    2015-03-11

    In advanced compound semiconductor devices, such as in quantum dot and quantum well systems, detailed atomic configurations at the growth surfaces are vital in determining the structural and electronic properties. Therefore, it is important to investigate the surface reconstructions in order to make further technological advancements. Usually, conventional semiconductor surfaces (e.g., arsenides, phosphides, and antimonides) are highly reactive due to the existence of a high density of group V (anion) surface dangling bonds. However, in the case of nitrides, group III rich growth conditions in molecular beam epitaxy are usually preferred leading to group III (Ga)-rich surfaces. Here, we use low-temperature scanning tunneling microscopy to reveal a uniform distribution of native gallium adatoms with a density of 0.3%-0.5% of a monolayer on the clean, as-grown surface of nitrogen polar GaN(0001̅) having the centered 6 × 12 reconstruction. Unseen at room temperature, these Ga adatoms are strongly bound to the surface but move with an extremely low surface diffusion barrier and a high density saturation coverage in thermodynamic equilibrium with Ga droplets. Furthermore, the Ga adatoms reveal an intrinsic surface chirality and an asymmetric site occupation. These observations can have important impacts in the understanding of gallium nitride surfaces.

  16. Effects of Thermal Electronic Excitations on the Diffusion of Oxygen Adatoms on Graphene.

    PubMed

    Sun, Tao; Yao, Xinxin; Fabris, Stefano

    2016-05-01

    We conduct first-principles calculations to study oxygen diffusion on the graphene surface as a function of temperature up to 3000 K. The minimum energy migration path and the corresponding activation energy are determined by the nudged elastic band method with explicit inclusion of thermal electronic excitations. Below 1000 K the activation energy for epoxy oxygen to migrate remains close to its room temperature value (0.72 eV). Above 1000 K the activation energy decreases near linearly with temperature, from 0.70 eV at 1000 K to 0.47 eV at 3000 K. We show that this reduction originates from thermal electronic excitations. In particular, the effect is determined by the large contrasts in the electronic structures of the initial and transition states: the transition state exhibits much larger electronic density of states near the Fermi level and is more susceptible to thermal electronic excitations. The reduction in activation energy leads to appreciable enhancement in the diffusivity of oxygen adatoms. A moderate decrease in the vibrational prefactor, also caused by thermal electronic excitations, does not alter this trend. These findings may facilitate future works to accurately describe the dynamics of O adatoms on graphene at high T, which are critical for determining surface thermodynamic properties such as equilibrium coverage. PMID:27074529

  17. Brownian Motion of 2D Vacancy Islands by Adatom Terrace Diffusion

    SciTech Connect

    Morgenstern, Karina; L {ae}gsgaard, Erik; Besenbacher, Flemming

    2001-06-18

    We have studied the Brownian motion of two-dimensional (2D) vacancy islands on Ag(110) at temperatures between 175 and 215K. While the detachment of adatoms from the island and their diffusion on the terrace are permitted in this temperature range, the periphery diffusion of single adatoms is prohibited. The present scanning tunneling microscopy results provide the first direct experimental proof that the Brownian motion of the islands follows a simple scaling law with terrace diffusion being the rate limiting process. The activation energy of the vacancy island motion is determined to 0.41eV.

  18. Electronic Nature of Step-edge Barriers Against Adatom Descent on Transition-metal Surfaces

    SciTech Connect

    Mo, Yina; Zhu, Wenguang; Kaxiras, Efthimios; Zhang, Zhenyu

    2008-01-01

    The activation barriers against adatom migration on terraces and across steps play an essential role in determining the growth morphology of surfaces, interfaces, and thin lms. By studying a series of adatoms on representative transition metal surfaces through extensive rst-principles calculations, we establish a clear correlation between the preferred mechanism and activation energy for adatom descent at a step and the relative degree of electronic shell lling between the adatom and the substrate. We also nd an approximate linear relation between the adatom hopping barriers at step edges and the adatom-surface bonding strength. These results may serve as simple guiding rules for predicting the precise atomic nature of surface morphologies in heteroepitaxial growth such as nanowires.

  19. Ab initio-based study for adatom kinetics on AlN(0001) surfaces during metal-organic vapor-phase epitaxy growth

    NASA Astrophysics Data System (ADS)

    Akiyama, Toru; Nakamura, Kohji; Ito, Tomonori

    2012-06-01

    The kinetics of Al and N adatoms on reconstructed AlN(0001) surfaces under growth conditions is investigated by performing first-principles pseudopotential calculations. Our calculations reveal that the adsorption of Al adatom strongly depends on the surface reconstruction while its diffusion is not affected by the reconstruction: the adsorption of Al adatom on the surface under N-rich conditions is much easier than that under H-rich conditions. These results indicate that the growth of AlN during metal-organic vapor-phase epitaxy is prominent under N-rich conditions rather than H-rich conditions, consistent with experimentally reported growth rate difference.

  20. Thermal tweezers for manipulation of adatoms and nanoparticles on surfaces heated by interfering laser pulses

    SciTech Connect

    Mason, Daniel R.; Gramotnev, Dmitri K.; Gramotnev, Galina

    2008-09-15

    We conduct the detailed numerical investigation of a nanomanipulation and nanofabrication technique--thermal tweezers with dynamic evolution of surface temperature, caused by absorption of interfering laser pulses in a thin metal film or any other absorbing surface. This technique uses random Brownian forces in the presence of strong temperature modulation (surface thermophoresis) for effective manipulation of particles/adatoms with nanoscale resolution. Substantial redistribution of particles on the surface is shown to occur with the typical size of the obtained pattern elements of {approx}100 nm, which is significantly smaller than the wavelength of the incident pulses used (532 nm). It is also demonstrated that thermal tweezers based on surface thermophoresis of particles/adatoms are much more effective in achieving permanent high maximum-to-minimum concentration ratios than bulk thermophoresis, which is explained by the interaction of diffusing particles with the periodic lattice potential on the surface. Typically required pulse regimes including pulse lengths and energies are also determined. The approach is applicable for reproducing any holographically achievable surface patterns, and can thus be used for engineering properties of surfaces including nanopatterning and design of surface metamaterials.

  1. Adsorption and diffusion of Ru adatoms on Ru(0001)-supported graphene: Large-scale first-principles calculations

    SciTech Connect

    Han, Yong; Evans, James W.

    2015-10-28

    Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C{sub 6}-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atom in the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ∼0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. This in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001)

  2. Adsorption and diffusion of Ru adatoms on Ru(0001)-supported graphene: Large-scale first-principles calculations

    DOE PAGES

    Han, Yong; Evans, James W.

    2015-10-27

    Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C6-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atom inmore » the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ~0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. Furthermore, this in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001).« less

  3. Adsorption and diffusion of Ru adatoms on Ru(0001)-supported graphene: Large-scale first-principles calculations

    SciTech Connect

    Han, Yong; Evans, James W.

    2015-10-27

    Large-scale first-principles density functional theory calculations are performed to investigate the adsorption and diffusion of Ru adatoms on monolayer graphene (G) supported on Ru(0001). The G sheet exhibits a periodic moiré-cell superstructure due to lattice mismatch. Within a moiré cell, there are three distinct regions: fcc, hcp, and mound, in which the C6-ring center is above a fcc site, a hcp site, and a surface Ru atom of Ru(0001), respectively. The adsorption energy of a Ru adatom is evaluated at specific sites in these distinct regions. We find the strongest binding at an adsorption site above a C atom in the fcc region, next strongest in the hcp region, then the fcc-hcp boundary (ridge) between these regions, and the weakest binding in the mound region. Behavior is similar to that observed from small-unit-cell calculations of Habenicht et al. [Top. Catal. 57, 69 (2014)], which differ from previous large-scale calculations. We determine the minimum-energy path for local diffusion near the center of the fcc region and obtain a local diffusion barrier of ~0.48 eV. We also estimate a significantly lower local diffusion barrier in the ridge region. These barriers and information on the adsorption energy variation facilitate development of a realistic model for the global potential energy surface for Ru adatoms. Furthermore, this in turn enables simulation studies elucidating diffusion-mediated directed-assembly of Ru nanoclusters during deposition of Ru on G/Ru(0001).

  4. Diffusion and growth of nickel, iron and magnesium adatoms on the aluminum truncated octahedron: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Yang, Jianyu; Hu, Wangyu; Wu, Yurong; Dai, Xiongying

    2012-06-01

    The structure of nickel (Ni), iron (Fe), and magnesium (Mg) adatoms on the aluminum (Al) truncated octahedron is studied using molecular dynamics and the analytic embedded atom method. First, the energy barriers of several typical diffusion processes of Ni, Fe, and Mg adatoms on the Al truncated octahedral cluster were calculated using the nudged elastic band method. The calculated energy barriers were found to be related to the surface energy and atomic radius of the adatom and substrate atom. The result shows that the incorporation of Ni and Fe atoms into Al core easily occurs, and the Mg atom should segregate at the surface of the Al cluster. Thus, the growth of Ni, Fe and Mg on the Al truncated octahedron with 1289 atoms was simulated at several temperatures. In the Ni-Al and Fe-Al cases, the core-shell structure was not obtained. For the Mg-Al system, a good Mg shell on the Al core was found at lower temperatures, and an almost perfect truncated octahedron with more Al shells emerged with an increase in temperature.

  5. Surface Coordination of Adatoms by Scanned Low Energy Photoelectron Diffraction

    NASA Astrophysics Data System (ADS)

    Asensio, M. C.

    In this article, a brief overview of the current activity in the field of low energy photoelectron diffraction is presented. Although alternatively angle and energy-scanned photoelectron diffraction can be used to obtain the surface-structural information, we limit our discussion to the low energy and energy-scanned modes and their use in connection with a new developed direct method. By the use of this most recent approach, adatom-substrate distances and adsorption sites are directly revealed from a discrete mapping of the Fourier transform of scanned energy photoelectron diffraction spectra, measured at a representative set of geometries, which depend on the symmetry of the particular studied system. In addition, a short discussion on the determination of the detailed structure of adsorbed overlayers by the traditional trial-and-error method is included, using model multiple scattering calculations. These latest developments are illustrated with a specific example of an atomic adsorbate, and comments about the capabilities and limitations of photoelectron diffraction as a structural technique in new fields.

  6. N and Ti adatom dynamics on stoichiometric polar TiN(111) surfaces

    NASA Astrophysics Data System (ADS)

    Sangiovanni, D. G.; Tasnádi, F.; Hultman, L.; Petrov, I.; Greene, J. E.; Chirita, V.

    2016-07-01

    We use molecular dynamics (MD) based on the modified embedded atom method (MEAM) to determine diffusion coefficients and migration pathways for Ti and N adatoms (Tiad and Nad) on TiN(111). The reliability of the classical model-potential is verified by comparison with density functional theory (DFT) results at 0 K. MD simulations carried out at temperatures between 600 and 1800 K show that both Tiad and Nad favor fcc surface sites and migrate among them by passing through metastable hcp positions. We find that Nad species are considerably more mobile than Tiad on TiN(111); contrary to our previous results on TiN(001). In addition, we show that lattice vibrations at finite temperatures strongly modify the potential energy landscape and result in smaller adatom migration energies, Ea = 1.03 for Tiad and 0.61 eV for Nad, compared to 0 K values Ea0K = 1.55 (Tiad) and 0.79 eV (Nad). We also demonstrate that the inclusion of dipole corrections, neglected in previous DFT calculations, is necessary in order to obtain the correct formation energies for polar surfaces such as TiN(111).

  7. Influence of the adatom diffusion on selective growth of GaN nanowire regular arrays

    NASA Astrophysics Data System (ADS)

    Gotschke, T.; Schumann, T.; Limbach, F.; Stoica, T.; Calarco, R.

    2011-03-01

    Molecular beam epitaxy (MBE) on patterned Si/AlN/Si(111) substrates was used to obtain regular arrays of uniform-size GaN nanowires (NWs). The silicon top layer has been patterned with e-beam lithography, resulting in uniform arrays of holes with different diameters (dh) and periods (P). While the NW length is almost insensitive to the array parameters, the diameter increases significantly with dh and P till it saturates at P values higher than 800 nm. A diffusion induced model was used to explain the experimental results with an effective diffusion length of the adatoms on the Si, estimated to be about 400 nm.

  8. Giant magnetic anisotropy of Co, Ru, and Os adatoms on MgO (001) surface

    NASA Astrophysics Data System (ADS)

    Wang, Hongbo; Ou, Xuedong; Fan, Fengren; Li, Zhengwei; Wu, Hua

    Large magnetic anisotropy energy (MAE) is desirable and critical for nanoscale magnetic devices. Here, using ligand-field level diagrams and density functional calculations, we well explain the very recent discovery [I.G. Rau et al., Science 344, 988 (2014)] that individual Co adatom on MgO (001) surface has a large MAE of more than 60 meV. More importantly, we predict that a giant MAE up to 110 meV could be realized for Ru adatoms on MgO (001), and even more for the Os adatoms (208 meV). This is a joint effect of the special ligand field, orbital multiplet, and significant spin-orbit interaction, in the intermediate-spin state of the Ru or Os adatoms on top of the surface oxygens. The giant MAE could provide a route to atomic scale memory.

  9. Giant Magnetic Anisotropy of Co, Ru, and Os Adatoms on MgO (001) Surface

    NASA Astrophysics Data System (ADS)

    Ou, Xuedong; Wang, Hongbo; Fan, Fengren; Li, Zhengwei; Wu, Hua

    2015-12-01

    Large magnetic anisotropy energy (MAE) is desirable and critical for nanoscale magnetic devices. Here, using ligand-field level diagrams and density functional calculations, we well explain the very recent discovery [I. G. Rau et al., Science 344, 988 (2014)] that an individual Co adatom on a MgO (001) surface has a large MAE of more than 60 meV. More importantly, we predict that a giant MAE up to 110 meV could be realized for Ru adatoms on MgO (001), and even more for the Os adatoms (208 meV). This is a joint effect of the special ligand field, orbital multiplet, and significant spin-orbit interaction, in the intermediate-spin state of the Ru or Os adatoms on top of the surface oxygens. The giant MAE could provide a route to atomic scale memory.

  10. Adatom Fe(III) on the hematite surface: Observation of a key reactive surface species

    PubMed Central

    Eggleston, Carrick M; Stack, Andrew G; Rosso, Kevin M; Bice, Angela M

    2004-01-01

    The reactivity of a mineral surface is determined by the variety and population of different types of surface sites (e.g., step, kink, adatom, and defect sites). The concept of "adsorbed nutrient" has been built into crystal growth theories, and many other studies of mineral surface reactivity appeal to ill-defined "active sites." Despite their theoretical importance, there has been little direct experimental or analytical investigation of the structure and properties of such species. Here, we use ex-situ and in-situ scanning tunneling microcopy (STM) combined with calculated images based on a resonant tunneling model to show that observed nonperiodic protrusions and depressions on the hematite (001) surface can be explained as Fe in an adsorbed or adatom state occupying sites different from those that result from simple termination of the bulk mineral. The number of such sites varies with sample preparation history, consistent with their removal from the surface in low pH solutions.

  11. Surface Modifications by Field Induced Diffusion

    PubMed Central

    Olsen, Martin; Hummelgård, Magnus; Olin, Håkan

    2012-01-01

    By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have in this paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waals force as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surface induced dipole moment (which is constant) and the dipole moment due to electric field polarisation which depends on the strength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infinite conducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small for voltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force can be significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage for mound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of the formed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that van der Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to be considered for distances smaller than 1.5 nm for commonly used voltages. PMID:22253894

  12. Influence of the adatom diffusion on selective growth of GaN nanowire regular arrays

    SciTech Connect

    Gotschke, T.; Schumann, T.; Limbach, F.; Calarco, R.; Stoica, T.

    2011-03-07

    Molecular beam epitaxy (MBE) on patterned Si/AlN/Si(111) substrates was used to obtain regular arrays of uniform-size GaN nanowires (NWs). The silicon top layer has been patterned with e-beam lithography, resulting in uniform arrays of holes with different diameters (d{sub h}) and periods (P). While the NW length is almost insensitive to the array parameters, the diameter increases significantly with d{sub h} and P till it saturates at P values higher than 800 nm. A diffusion induced model was used to explain the experimental results with an effective diffusion length of the adatoms on the Si, estimated to be about 400 nm.

  13. Homogenization of reconstructed crystal surfaces: Fick's law of diffusion.

    PubMed

    Margetis, Dionisios

    2009-05-01

    Fick's law for the diffusion of adsorbed atoms (adatoms) on crystal surfaces below roughening is generalized to account for surface reconstruction. In this case, material parameters vary spatially at the microscale, and the coarse graining for crystal steps via Taylor expansions is not strictly applicable. By invoking elements of the theory of composites in one independent space dimension, we homogenize the microscale description to derive the macroscopic adatom flux from step kinetics. This approach relies on a multiscale expansion for the adatom density. The effective surface diffusivity is determined through appropriate discrete averages of microscale kinetic parameters.

  14. Two Pathways for Water Interaction with Oxygen Adatoms on TiO2(110) Surfaces

    SciTech Connect

    Lyubinetsky, Igor; Du, Yingge; Deskins, N. Aaron; Zhang, Zhenrong; Dohnalek, Zdenek; Dupuis, Michel

    2010-08-04

    Atomic-level investigation of the interaction of H2O with a partially re-oxidized TiO2(110) has been performed at 300 K by combining scanning tunneling microscopy and density functional theory. In particular, we demonstrate that oxygen adatoms (Oa), produced during O2 exposure of reduced TiO2(110) surfaces, alter water dissociation/ recombination chemistry through two different pathways. When H2O diffuses to Oa on the same Ti row, it becomes trapped near the Oa, exchanges a proton easily to dissociate and form a pair of terminal hydroxyls (OHt) along the row, which can then readily recombine and re-dissociate many times or overcome the barrier to move away. When H2O passes along the Oa on an adjacent row, an across-row proton transfer facilitated by the bridging O atom results in spontaneous dissociation of H2O on a Ti trough leading to the formation of a stable across-row OHt pair, which after awhile can recombine and H2O diffuses away. The across-row process has not been reported previously, and it starts from a ‘‘pseudo-dissociated’’ state of water. We also show how the H2O dissociation and OHt pair statistical reformation induce an apparent along- or across-row shift of Oa as a result of the oxygen scrambling process between H2O and Oa.

  15. RKKY-like contributions to the magnetic anisotropy energy: 3 d adatoms on Pt(111) surface

    NASA Astrophysics Data System (ADS)

    Bouhassoune, Mohammmed; Dias, Manuel dos Santos; Zimmermann, Bernd; Dederichs, Peter H.; Lounis, Samir

    2016-09-01

    The magnetic anisotropy energy defines the energy barrier that stabilizes a magnetic moment. Utilizing density-functional-theory-based simulations and analytical formulations, we establish that this barrier is strongly modified by long-range contributions very similar to Friedel oscillations and Rudermann-Kittel-Kasuya-Yosida interactions. Thus, oscillations are expected and observed, with different decaying factors and highly anisotropic in realistic materials, which can switch nontrivially the sign of the magnetic anisotropy energy. This behavior is general, and for illustration we address the transition-metal adatoms, Cr, Mn, Fe, and Co deposited on a Pt(111) surface. We explain, in particular, the mechanisms leading to the strong site dependence of the magnetic anisotropy energy observed for Fe adatoms on a Pt(111) surface as revealed previously via first-principles-based simulations and inelastic scanning tunneling spectroscopy [A. A. Khajetoorians et al., Phys. Rev. Lett. 111, 157204 (2013), 10.1103/PhysRevLett.111.157204]. The same mechanisms are probably active for the site dependence of the magnetic anisotropy energy obtained for Fe adatoms on Pd or Rh(111) surfaces and for Co adatoms on a Rh(111) surface [P. Blonski et al., Phys. Rev. B 81, 104426 (2010), 10.1103/PhysRevB.81.104426].

  16. An ion-beam technique for measuring surface diffusion coefficients

    NASA Astrophysics Data System (ADS)

    DeLuca, P. M.; Labanda, J. G. C.; Barnett, S. A.

    1999-03-01

    The effective surface diffusion coefficient of Ga along the [110] direction on vicinal GaAs(001)2×4 surfaces during molecular-beam epitaxy was measured using specular ion current measurements. In this technique, 3 keV Ar ions were impinged upon the surface at a glancing angle (typically 3°), and the specularly scattered ion current was measured. Since specular reflections require a locally flat surface, adatoms cause a decrease in the measured current, allowing an average adatom density measurement. The time dependence of the Ga adatom population was measured during and after Ga deposition. Diffusion coefficients, obtained from the adatom lifetimes using a simple model of diffusion to the step edges, were fit well by the expression D=2×10-9 exp(-0.73 eV/kT)cm2/s from 400 to 600 °C.

  17. Theoretical probing of inelastic spin-excitations in adatoms on surfaces

    NASA Astrophysics Data System (ADS)

    Lounis, Samir; Schweflinghaus, Benedikt; Dias, Manuel dos Santos; Bouhassoune, Mohammed; Muniz, Roberto B.; Costa, Antonio T.

    2014-12-01

    We review our recent work on the simulation, description and prediction of spin-excitations in adatoms and dimers deposited on metallic surfaces. This work done together with Douglas L. Mills, is an extension of his seminal contribution (with Pascal Lederer) published 50 years ago on the spin-dynamics of transition metal impurities embedded in transition metal hosts [Lederer et al. (1967)]. The main predictions of his model were verified experimentally with state of the art inelastic scanning tunneling spectroscopy on adatoms. Our formalism, presented in this review, is based on time-dependent density functional theory, combined with the Korringa-Kohn-Rostoker Green function method. Comparison to experiments is shown and discussed in detail. Our scheme enables the description and prediction of the main characteristics of these excitations, i.e. their resonance frequency, their lifetime and their behavior upon application of external perturbations such as a magnetic field.

  18. Formation of Sr adatom chains on SrTiO3 (1 1 0) surface determined by strain.

    PubMed

    Liang, Yan; Li, Fengmiao; Wang, Weihua; Yang, Hao; Guo, Jiandong

    2016-09-14

    The adsorption behavior of Sr adatoms on the SrTiO3 (1 1 0)-(4  ×  1) reconstructed surface with Ti2O3 vacancies distributed in a superstructure is studied by scanning tunneling microscopy and density functional theory calculations. With the adsorption amount increasing, all the Sr adatoms between adjacent Ti2O3 vacancies are closely packed along the quasi-1D stripes on the surface with a uniform separation from each other. The formation of such adatom chains is determined by the surface strain relief-the local lattice relaxations in response to Sr adatoms and Ti2O3 vacancies are incompatible, leading to the strong repulsive interaction between them. Consequently the distribution of Sr chains follows the long-range order of the growth template with their length tunable in a certain range by evaporation amount. PMID:27390937

  19. Formation of Sr adatom chains on SrTiO3 (1 1 0) surface determined by strain

    NASA Astrophysics Data System (ADS)

    Liang, Yan; Li, Fengmiao; Wang, Weihua; Yang, Hao; Guo, Jiandong

    2016-09-01

    The adsorption behavior of Sr adatoms on the SrTiO3 (1 1 0)-(4  ×  1) reconstructed surface with Ti2O3 vacancies distributed in a superstructure is studied by scanning tunneling microscopy and density functional theory calculations. With the adsorption amount increasing, all the Sr adatoms between adjacent Ti2O3 vacancies are closely packed along the quasi-1D stripes on the surface with a uniform separation from each other. The formation of such adatom chains is determined by the surface strain relief—the local lattice relaxations in response to Sr adatoms and Ti2O3 vacancies are incompatible, leading to the strong repulsive interaction between them. Consequently the distribution of Sr chains follows the long-range order of the growth template with their length tunable in a certain range by evaporation amount.

  20. A local view of bonding and diffusion at metal surfaces

    SciTech Connect

    Feibelman, P.J.

    1996-09-01

    First-principles density functional calculations and corresponding experimental results underline the importance of basic chemical concepts, such as coordination, valence saturation and promotion-hybridization energetics, in understanding bonding and diffusion of atoms at and on metal surfaces. Several examples are reviewed, including outer-layer relaxations of clean hcp(0001) surfaces, liquid-metal-embrittlement energetics, separation energies of metal-adatom dimers, concerted substitutional self-diffusion on fcc(001) surfaces, and adsorption and diffusion barrier sites for adatoms near steps.

  1. Effect of adatom deposition on surface magnetism and exchange coupling parameter in (0001) SmCo{sub 5} slabs

    SciTech Connect

    Selva Chandrasekaran, S.; Murugan, P.; Saravanan, P.; Kamat, S. V.

    2015-04-07

    First principles calculations are performed on 3d-transition metal atom deposited (0001) surface of SmCo{sub 5} to understand the magnetic properties and the improvement of Curie temperature (T{sub c}). Various atomic sites are examined to identify the energetically feasible adsorption of adatom and it is found that the void site of Co-rich (0001) SmCo{sub 5} surface is the most favourable one to deposit. The surface magnetic moments of various adatom deposited SmCo{sub 5} surfaces are larger than the clean surface except for Cu and Zn. Eventually, the surface exchange coupling of clean and adatom deposited surface is found to increase for Mn, Fe, Co, Ni, and Cu deposited surfaces and this improvement results in the increase in T{sub c} of SmCo{sub 5} slab.

  2. Migration characterization of Ga and In adatoms on dielectric surface in selective MOVPE

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Jie; Han, Xiao-Biao; Lin, Jia-Li; Hu, Guo-Heng; Liu, Ming-Gang; Yang, Yi-Bin; Chen, Jie; Wu, Zhi-Sheng; Liu, Yang; Zhang, Bai-Jun

    2015-11-01

    Migration characterizations of Ga and In adatoms on the dielectric surface in selective metal organic vapor phase epitaxy (MOVPE) were investigated. In the typical MOVPE environment, the selectivity of growth is preserved for GaN, and the growth rate of GaN micro-pyramids is sensitive to the period of the patterned SiO2 mask. A surface migration induced model was adopted to figure out the effective migration length of Ga adatoms on the dielectric surface. Different from the growth of GaN, the selective area growth of InGaN on the patterned template would induce the deposition of InGaN polycrystalline particles on the patterned SiO2 mask with a long period. It was demonstrated with a scanning electron microscope and energy dispersive spectroscopy that the In adatoms exhibit a shorter migration length on the dielectric surface. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274039 and 51177175), the National Basic Research Program of China (Grant No. 2011CB301903), the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20110171110021), the International Sci. & Tech. Collaboration Program of China (Grant No. 2012DFG52260), the International Sci. & Tech. Collaboration Program of Guangdong Province, China (Grant No. 2013B051000041), the Science and Technology Plan of Guangdong Province, China (Grant No. 2013B010401013), the National High Technology Research and Development Program of China (Grant No. 2014AA032606), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics, China (Grant No. IOSKL2014KF17).

  3. Anisotropic Surface State Mediated RKKY Interaction Between Adatoms on a Hexagonal Lattice

    NASA Astrophysics Data System (ADS)

    Einstein, Theodore; Patrone, Paul

    2012-02-01

    Motivated by recent numerical studies of Ag on Pt(111), we derive a far-field expression for the RKKY interaction mediated by surface states on a (111) FCC surface, considering the effect of anisotropy in the Fermi edge. The main contribution to the interaction comes from electrons whose Fermi velocity vF is parallel to the vector R connecting the interacting adatoms; we show that in general, the corresponding Fermi wave-vector kF is not parallel to R. The interaction is oscillatory; the amplitude and wavelength of oscillations have angular dependence arising from the anisotropy of the surface state band structure. The wavelength, in particular, is determined by the component of the aforementioned kF that is parallel to R. Our analysis is easily generalized to other systems. For Ag on Pt(111), our results indicate that the RKKY interaction between pairs of adatoms should be nearly isotropic and so cannot account for the anisotropy found in the studies motivating our work.

  4. Anisotropic surface-state-mediated RKKY interaction between adatoms on a hexagonal lattice

    NASA Astrophysics Data System (ADS)

    Patrone, Paul N.; Einstein, T. L.

    2012-01-01

    Motivated by recent numerical studies of Ag on Pt(111), we derive an expression for the RKKY interaction mediated by surface states, considering the effect of anisotropy in the Fermi edge. Our analysis is based on a stationary phase approximation. The main contribution to the interaction comes from electrons whose Fermi velocity vF is parallel to the vector R connecting the interacting adatoms; we show that, in general, the corresponding Fermi wave vector kF is not parallel to R. The interaction is oscillatory; the amplitude and wavelength of oscillations have angular dependence arising from the anisotropy of the surface-state band structure. The wavelength, in particular, is determined by the projection of this kF (corresponding to vF) onto the direction of R. Our analysis is easily generalized to other systems. For Ag on Pt(111), our results indicate that the RKKY interaction between pairs of adatoms should be nearly isotropic and so cannot account for the anisotropy found in the studies motivating our work. However, for metals with surface-state dispersions similar to Be(101¯0), we show that the RKKY interaction should have considerable anisotropy.

  5. New adatom model for Si(11) 7X7 and Si(111)Ge 5X5 reconstructed surfaces

    NASA Technical Reports Server (NTRS)

    Chadi, D. J.

    1985-01-01

    A new adatom model differing from the conventional model by a reconstruction of the substrate is proposed. The new adatom structure provides an explanation for the 7x7 and 5x5 size of the unit cells seen on annealed Si(111) and Si(111)-Ge surfaces, respectively. The model is consistent with structural information from vacuum-tunneling microscopy. It also provides simple explanations for stacking-fault-type features expected from Rutherford backscattering experiments and for similarities in the LEED and photoemission spectra of 2x1 and 7x7 surfaces.

  6. Surface-enhanced raman scattering from silver-cyanide and silver-thiocyanate vibrations and the importance of adatoms

    NASA Astrophysics Data System (ADS)

    Wetzel, H.; Gerischer, H.; Pettinger, B.

    1981-05-01

    Surface-enhanced Raman scattering (SERS) has been studied for silver-cyanide and 3-thiocyanate vibrations at 221 and 2111 cm -1 and at 218 and 2132 cm -1, respectively. We report evidence that besides large-scale surface roughness the presence of adatoms is mandatory in order to obtain SERS.

  7. The crossover from collective motion to periphery diffusion for two-dimensional adatom-islands on Cu(111).

    PubMed

    Karim, Altaf; Kara, Abdelkader; Trushin, Oleg; Rahman, Talat S

    2011-11-23

    The diffusion of two-dimensional adatom-islands (up to 100 atoms) on Cu(111) has been studied, using the self-learning kinetic Monte Carlo method (Trushin et al 2005 Phys. Rev. B 72 115401). A variety of multiple- and single-atom processes are revealed in the simulations, and the size dependences of the diffusion coefficients and effective diffusion barriers are calculated for each. From the tabulated frequencies of events found in the simulation, we show a crossover from diffusion due to the collective motion of the island to a regime in which the island diffuses through periphery-dominated mass transport. This crossover occurs for island sizes between 13 and 19 atoms. For islands containing 19-100 atoms the scaling exponent is 1.5, which is in good agreement with previous work. The diffusion of islands containing 2-13 atoms can be explained primarily on the basis of a linear increase of the barrier for the collective motion with the size of the island.

  8. Stabilizing Single Ni Adatoms on a Two-Dimensional Porous Titania Overlayer at the SrTiO3(110) Surface

    PubMed Central

    2014-01-01

    Nickel vapor-deposited on the SrTiO3(110) surface was studied using scanning tunneling microscopy, photoemission spectroscopy (PES), and density functional theory calculations. This surface forms a (4 × 1) reconstruction, composed of a 2-D titania structure with periodic six- and ten-membered nanopores. Anchored at these nanopores, Ni single adatoms are stabilized at room temperature. PES measurements show that the Ni adatoms create an in-gap state located at 1.9 eV below the conduction band minimum and induce an upward band bending. Both experimental and theoretical results suggest that Ni adatoms are positively charged. Our study produces well-dispersed single-adatom arrays on a well-characterized oxide support, providing a model system to investigate single-adatom catalytic and magnetic properties. PMID:25177410

  9. Ab-initio calculations of interactions between Cu adatoms on Cu(1 1 0): Sensitivity of strong multi-site interactions to adatom relaxations

    NASA Astrophysics Data System (ADS)

    Sathiyanarayanan, Rajesh; Einstein, T. L.

    2009-08-01

    We have parameterized the various interactions between Cu adatoms on Cu(1 1 0) using density-functional theory based ab-initio calculations. Our results indicate that in addition to pair interactions, 3-adatom and 4-adatom interactions of significant strengths are present in this system. This further stresses the importance of multi-site interactions in constructing a complete lattice-gas picture. Even though adding these multi-site interactions leads to good convergence in interaction energies, we find that some multi-site interactions are very sensitive to adatom relaxations. This makes the application of a simple lattice-gas picture inadequate for such surfaces. We also parameterize adatom interactions on this surface using the recently developed connector model. The connector model parameterization is as efficient as the parameterization using lattice-gas model. Further, we present diffusion barriers for nearest-neighbor (NN) and next-nearest-neighbor (NNN) hops on this surface.

  10. Surface diffusion activation energy determination using ion beam microtexturing

    NASA Technical Reports Server (NTRS)

    Rossnagel, S. M.; Robinson, R. S.

    1982-01-01

    The activation energy for impurity atom (adatom) surface diffusion can be determined from the temperature dependence of the spacing of sputter cones. These cones are formed on the surface during sputtering while simultaneously adding impurities. The impurities form clusters by means of surface diffusion, and these clusters in turn initiate cone formation. Values are given for the surface diffusion activation energies for various materials on polycrystalline Cu, Al, Pb, Au, and Ni. The values for different impurity species on each of these substrates are approximately independent of impurity species within the experimental uncertainty, suggesting the absence of strong chemical bonding effects on the diffusion.

  11. Macroscopic fluctuation theory and first-passage properties of surface diffusion

    NASA Astrophysics Data System (ADS)

    Meerson, Baruch; Vilenkin, Arkady

    2016-02-01

    We investigate nonequilibrium fluctuations of a solid surface governed by the stochastic Mullins-Herring equation with conserved noise. This equation describes surface diffusion of adatoms accompanied by their exchange between the surface and the bulk of the solid, when desorption of adatoms is negligible. Previous works dealt with dynamic scaling behavior of the fluctuating interface. Here we determine the probability that the interface first reaches a large given height at a specified time. We also find the optimal time history of the interface conditional on this nonequilibrium fluctuation. We obtain these results by developing a macroscopic fluctuation theory of surface diffusion.

  12. Intrinsic life-time and external manipulation of Néel states in antiferromagnetic adatom spins on semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Li, Jun; Liu, Bang-Gui

    2015-06-01

    It has been proposed that antiferromagnetic Fe adatom spins on semiconductor Cu-N surfaces can be used to store information (Loth et al 2012 Science 335 196). Here, we investigate spin dynamics of such antiferromagnetic systems through Monte Carlo simulations. We find out the temperature and size laws of switching rates of Néel states and show that the Néel states can become stable enough for the information storage when the number of spins reaches one or two dozens of the Fe spins. We also explore promising methods for manipulating the Néel states. These could help realize information storage with such antiferromagnetic spin systems.

  13. Oxidation mechanism of formic acid on the bismuth adatom-modified Pt(111) surface.

    PubMed

    Perales-Rondón, Juan Victor; Ferre-Vilaplana, Adolfo; Feliu, Juan M; Herrero, Enrique

    2014-09-24

    In order to improve catalytic processes, elucidation of reaction mechanisms is essential. Here, supported by a combination of experimental and computational results, the oxidation mechanism of formic acid on Pt(111) electrodes modified by the incorporation of bismuth adatoms is revealed. In the proposed model, formic acid is first physisorbed on bismuth and then deprotonated and chemisorbed in formate form, also on bismuth, from which configuration the C-H bond is cleaved, on a neighbor Pt site, yielding CO2. It was found computationally that the activation energy for the C-H bond cleavage step is negligible, which was also verified experimentally. PMID:25188779

  14. A density functional theory study of uranium-doped thoria and uranium adatoms on the major surfaces of thorium dioxide

    NASA Astrophysics Data System (ADS)

    Shields, Ashley E.; Santos-Carballal, David; de Leeuw, Nora H.

    2016-05-01

    Thorium dioxide is of significant research interest for its use as a nuclear fuel, particularly as part of mixed oxide fuels. We present the results of a density functional theory (DFT) study of uranium-substituted thorium dioxide, where we found that increasing levels of uranium substitution increases the covalent nature of the bonding in the bulk ThO2 crystal. Three low Miller index surfaces have been simulated and we propose the Wulff morphology for a ThO2 particle and STM images for the (100), (110), and (111) surfaces studied in this work. We have also calculated the adsorption of a uranium atom and the U adatom is found to absorb strongly on all three surfaces, with particular preference for the less stable (100) and (110) surfaces, thus providing a route to the incorporation of uranium into a growing thoria particle.

  15. Surface enhanced raman scattering from silver-halide and silver-pyridine vibrations and the role of silver ad-atoms

    NASA Astrophysics Data System (ADS)

    Wetzel, H.; Gerischer, H.; Pettinger, B.

    1981-03-01

    Surface enhanced Raman scattering has been observed for silver-halide vibrations at 246 (Ag-Cl), 166 (Ag-Br) and 117 cm -1 (Aa-I). At potentials cathodic to -0.6 V, addition of pyridine leads to the appearance of two enhanced bands around 173 and 252 cm -1. Two requirements are needed simultaneously for large enhancement factors, large-scale surface roughness and ad-atoms.

  16. Atomistic simulations of the adsorption and migration barriers of Cu adatoms on ZnO surfaces using COMB potentials

    NASA Astrophysics Data System (ADS)

    Cheng, Yu-Ting; Shan, Tzu-Ray; Devine, Bryce; Lee, Donghwa; Liang, Tao; Hinojosa, Beverly B.; Phillpot, Simon R.; Asthagiri, Aravind; Sinnott, Susan B.

    2012-08-01

    Cu/ZnO heterogeneous systems are used to catalyze the CO2 hydrogenation to methanol, but questions remain about the nature of the active site and the role of Cu-ZnO interactions in the catalyst performance. The way in which ZnO surfaces support Cu clusters and stabilize their active sites is a key factor for maintaining catalyst activity. Processes such as sintering, alloying and encapsulation may play an important role in the activity of the catalyst but are difficult to model directly with density functional theory (DFT). In this work, we report the development of charge-optimized many-body (COMB) potentials to model the Cu/ZnO system. This potential is then used in conjugation with the dimer method, which uses the first derivative of the potential energy and the initial state of the transition to find saddle points, to examine the migration barriers of Cu adatoms on Cu and ZnO surfaces. These findings are validated against the results of density functional theory (DFT) calculations and published experimental data.

  17. Permeability and kinetic coefficients for mesoscale BCF surface step dynamics: Discrete two-dimensional deposition-diffusion equation analysis

    DOE PAGES

    Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.

    2016-04-08

    Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less

  18. Fivefold i-Al-Pd-Mn surface as template for growing monatomic quasiperiodic layers: First-principles simulations for adatoms from groups one to three

    NASA Astrophysics Data System (ADS)

    Krajčí, Marian; Hafner, J.

    2008-04-01

    By using ab initio density-functional calculations, we have explored the conditions for the formation of quasiperiodic overlayers on top of a fivefold surface of an icosahedral Al-Pd-Mn quasicrystal. We calculate binding energies of single adatoms at special sites of the surface, with the aim to construct the potential-energy landscape of the quasiperiodic surface. We show that the energetically favorable adsorption sites are located at the vertices of a DHBS tiling [consisting of decagons (D), hexagons (H), boats (B), and stars (S)] describing the quasiperiodic ordering of the surface. An idealized structural model for the adlayer is constructed by decorating the interior of these tiles such that atoms are placed again in energetically favorable locations and that the local arrangement does not break the fivefold symmetry of the underlying substrate. The stability of this idealized structure is probed for elements from groups one to three of the Periodic Table by performing a conjugate-gradient relaxation under the action of the ab initio calculated forces. We demonstrate that in addition to a strong binding of the adatoms to the substrate, the size of the adatoms and the achievement of a dense surface coverage are the most important factors influencing the stability of quasiperiodic ordering in the adsorbed monolayer. From the analysis of the geometrical distribution of the adsorption sites, we conclude that a dense quasiperiodic overlayer with a density of 0.066atoms/Å2 (corresponding to a coverage Θ≈0.50 monolayers) can be formed by adatoms with an atomic size of 3.7ű0.4Å . Atoms with this size are Na, Ca, Y, and La. We suggest that these elements and presumably also most rare-earth elements are good candidates for the formation of highly regular quasiperiodic adlayers with a structure described by a decagonal DHBS tiling consisting of decagons, hexagons, boats, and pentagonal stars.

  19. Theoretical and experimental studies of surface physics: Theory of surface electromigration wind force felt by a sodium adatom on stepped sodium(110) surfaces; and magnetic order-disorder phase transition of antiferromagnetic nickel oxide thin films on silver(001)

    NASA Astrophysics Data System (ADS)

    Cheng, Jason Yu-Lin

    This dissertation is composed of theoretical and experimental work in surface physics. I have performed calculations of electromigration wind forces felt by a Na adatom on Na (110) stepped metal surfaces. Electromigration is a process which impurities are induced to drift in a particular direction when an electric field is applied across the sample. I find that the electromigration wind force felt by an adatom is changed due to the presence of step edge on the surface. My experimental work explores the magnetic order-disorder phase transition of antiferromagnetic nickel oxide thin films. I find that the Neel temperature is different for nickel oxide thin films and bulk samples. In my theoretical calculations I have applied multiple scattering theory to explore the variation of the electromigration wind force experienced by a Na adatom on Na (110) stepped metal surfaces. I find that the electromigration wind force felt by a migrating adatom is strongly perturbed as the adatom approaches a step edge. This is a result of multiple scattering of the carriers between the adatom and step which alters the local current density. In addition, the electromigration wind force felt by a Na adatom in the lower and the upper step regions is asymmetric. The implications of this inhomogeneity in the electromigration driving force for current-induced changes in surface morphology are discussed. In my experimental work, antiferromagnetic nickel oxide (NiO) thin films were grown on single crystal Ag (100) by means of electron beam deposition. My low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) results indicate that the magnetic order in NiO may be dependent upon the oxygen stoichiometry in the thin film. I show that in thin films approximately 13 monolayers thick, the Neel temperature, TN, of NiO is 631 K which is higher than the bulk value of TN = 523 K. Furthermore, I find that as the film thickness is increased, the Neel temperature decreases towards the

  20. Classically exact surface diffusion constants at arbitrary temperature

    SciTech Connect

    Voter, A.F.; Cohen, J.M.

    1989-05-01

    An expression is presented for computing the classical diffusion constant of a point defect (e.g., an adatom) in an infinite lattice of binding sites at arbitrary temperature. The transition state theory diffusion constant is simply multiplied by a dynamical correction factor that is computed from short-time classical trajectories initiated at the site boundaries. The time scale limitations of direct molecular dynamics are thus avoided in the low- and middle-temperature regimes. The expression results from taking the time derivative of the particle mean-square displacement in the lattice-discretized coordinate system. Applications are presented for surface diffusion on fcc(100) and fcc(111) Lennard-Jones crystal faces.

  1. Classically exact surface diffusion constants at arbitrary temperature

    SciTech Connect

    Voter, A.F.; Cohen, J.M.

    1988-01-01

    An expression is presented for computing the classical diffusion constant of a point defect (e.g., adatom) in an infinite lattice of binding sites at arbitrary temperature. The transition state theory diffusion constant is simply multiplied by a dynamical correction factor that is computed from short-time classical trajectories initiated at the site boundaries. The time scale limitations of direct molecular dynamics are thus avoided in the low and middle temperature regimes. The expression resulted from taking the time derivative of the particle mean square displacement in the lattice-discretized coordinate system. Applications are presented for surface diffusion on fcc(100) and fcc(111) Lennard-Jones crystal faces. 14 refs., 3 figs.

  2. Atomic diffusion on vicinal surfaces: step roughening impact on step permeability

    NASA Astrophysics Data System (ADS)

    Ranguelov, B.; Michailov, M.

    2014-12-01

    The problem of mass transport in material science for systems with reduced dimensionality holds special academic and technological attention since the fine diffusion control of adatoms could initiate exotic nanoscale patterning at epitaxial interfaces. The present study brings out important details of the atomic diffusion mechanisms on vicinal surfaces, accounting for the subtle competition between an external field imposed on the migrating adatoms and the roughening of the steps bordering the atomic terraces. The computational model reveals a temperature gap for breakdown of step permeability in the vicinity of the step roughening transition and sheds light on recently observed experimental results for atomic step dynamics on Si surfaces. The present study also demonstrates the extended capability of atomistic models in computer simulations to unravel simultaneous effects, to distinguish between them, and finally to assess their specific contribution to experimentally observed complex physical phenomena.

  3. A computational ab initio study of surface diffusion of sulfur on the CdTe (111) surface

    NASA Astrophysics Data System (ADS)

    Naderi, Ebadollah; Ghaisas, S. V.

    2016-08-01

    In order to discern the formation of epitaxial growth of CdS shell over CdTe nanocrystals, kinetics related to the initial stages of the growth of CdS on CdTe is investigated using ab-initio methods. We report diffusion of sulfur adatom on the CdTe (111) A-type (Cd-terminated) and B-type (Te-terminated) surfaces within the density functional theory (DFT). The barriers are computed by applying the climbing Nudge Elastic Band (c-NEB) method. From the results surface hopping emerges as the major mode of diffusion. In addition, there is a distinct contribution from kick-out type diffusion in which a CdTe surface atom is kicked out from its position and is replaced by the diffusing sulfur atom. Also, surface vacancy substitution contributes to the concomitant dynamics. There are sites on the B- type surface that are competitively close in terms of the binding energy to the lowest energy site of epitaxy on the surface. The kick-out process is more likely for B-type surface where a Te atom of the surface is displaced by a sulfur adatom. Further, on the B-type surface, subsurface migration of sulfur is indicated. Furthermore, the binding energies of S on CdTe reveal that on the A-type surface, epitaxial sites provide relatively higher binding energies and barriers than on B-type.

  4. Kinetics of vacancy diffusion on Si(111) surfaces studied by scanning reflection electron microscopy

    NASA Astrophysics Data System (ADS)

    Watanabe, Heiji; Ichikawa, Masakazu

    1996-08-01

    The kinetics of vacancy diffusion on Si(111) surfaces is studied by using scanning reflection electron microscopy (SREM). Two types of layer-by-layer etching are observed during low-energy Ar ion irradiation (500 eV) at elevated substrate temperatures. One is step retreat, which is a reversal of step-flow growth, and the other is two-dimensional vacancy island nucleation. These results show that vacancies created by low-energy ion impact diffuse on the surfaces, and are annihilated at the step edges. The vacancy diffusion kinetics on the surfaces are examined by using a SREM technique. An activation energy of 3.0+/-0.2 eV is obtained from the vacancy diffusion length estimated from the width of the denuded zone, which is created on both sides of the atomic step by thermal heating after vacancy introduction by ion irradiation at room substrate temperature. These results indicate that vacancy diffusion kinetics is dominated by monovacancy formation and diffusion. These processes require thermal excitation to overcome the potential barrier for surface diffusion of adatoms, and to overcome the barrier for lateral binding energy to release adatoms from the step edges.

  5. Interaction of cesium adatoms with free-standing graphene and graphene-veiled SiO2 surfaces

    DOE PAGES

    Weck, Philippe F.; Kim, Eunja; Biedermann, Grant W.

    2015-04-21

    In this study, the interaction of Cs adatoms with mono- or bi-layered graphene (MLG and BLG), either free-standing or on a SiO2 substrate, was investigated using density functional theory. The most stable adsorption sites for Cs are found to be hollow sites on both graphene sheets and graphene-veiled SiO2(0001). In addition, larger dipole moments are created when a MLG-veiled SiO2(0001) substrate is used for adsorption of Cs atoms compared to the adsorption on free-standing MLG, due to charge transfer occurring between the MLG and the SiO2 substrate. For the adsorption of Cs on BLG-veiled SiO2(0001) substrate, these differences are smoothedmore » out and the binding energies corresponding to different sites are nearly degenerate; smaller dipole moments created by the Cs adatoms on BLG compared to MLG are also predicted.« less

  6. Interaction of cesium adatoms with free-standing graphene and graphene-veiled SiO2 surfaces

    SciTech Connect

    Weck, Philippe F.; Kim, Eunja; Biedermann, Grant W.

    2015-04-21

    In this study, the interaction of Cs adatoms with mono- or bi-layered graphene (MLG and BLG), either free-standing or on a SiO2 substrate, was investigated using density functional theory. The most stable adsorption sites for Cs are found to be hollow sites on both graphene sheets and graphene-veiled SiO2(0001). In addition, larger dipole moments are created when a MLG-veiled SiO2(0001) substrate is used for adsorption of Cs atoms compared to the adsorption on free-standing MLG, due to charge transfer occurring between the MLG and the SiO2 substrate. For the adsorption of Cs on BLG-veiled SiO2(0001) substrate, these differences are smoothed out and the binding energies corresponding to different sites are nearly degenerate; smaller dipole moments created by the Cs adatoms on BLG compared to MLG are also predicted.

  7. Intermixed adatom and surface-bound adsorbates in regular self-assembled monolayers of racemic 2-butanethiol on Au(111).

    PubMed

    Ouyang, Runhai; Yan, Jiawei; Jensen, Palle S; Ascic, Erhad; Gan, Shiyu; Tanner, David; Mao, Bingwei; Niu, Li; Zhang, Jingdong; Tang, Chunguang; Hush, Noel S; Reimers, Jeffrey R; Ulstrup, Jens

    2015-04-01

    In situ scanning tunneling microscopy combined with density functional theory molecular dynamics simulations reveal a complex structure for the self-assembled monolayer (SAM) of racemic 2-butanethiol on Au(111) in aqueous solution. Six adsorbate molecules occupy a (10×√3)R30° cell organized as two RSAuSR adatom-bound motifs plus two RS species bound directly to face-centered-cubic and hexagonally close-packed sites. This is the first time that these competing head-group arrangements have been observed in the same ordered SAM. Such unusual packing is favored as it facilitates SAMs with anomalously high coverage (30%), much larger than that for enantiomerically resolved 2-butanethiol or secondary-branched butanethiol (25%) and near that for linear-chain 1-butanethiol (33%).

  8. Investigation on Ge surface diffusion via growing Ge quantum dots on top of Si pillars

    NASA Astrophysics Data System (ADS)

    Jiang, Yuwen; Mo, Delin; Hu, Xiaofeng; Wang, Shuguang; Chen, Yulu; Lin, Dongdong; Fan, Yongliang; Yang, Xinju; Zhong, Zhengyang; Jiang, Zuimin

    2016-08-01

    We report on a simple and intuitionistic experimental method to quantitatively measure surface diffusion lengths of Ge adatoms on Si(001) substrates and its activation energy Ea, which is achieved by growing Ge quantum dots (QDs) on top surfaces of Si pillars with different radii and taking an advantage of preferential nucleation and growth of Ge QDs at the top surface edge of the pillars. Diffusion length of Ge adatom can directly be measured and determined by the radius of the pillar below which no QDs will nucleate and grow at the central region of the top surface of the Si pillar. With a growth rate v fixed at 0.1 Å/s, by changing the growth temperature, the diffusion lengths at different temperatures would be obtained. Arrhenius plot of diffusion length as a function of growth temperature gives the value of Ea of 1.37 eV. Likewise, with a growth rate v fixed at 0.05 Å/s, the Ea value is obtained to be 1.38 eV. Two Ea values agree well with each other, implying that the method is reliable and self-consistent. Moreover, for a fixed growth temperature, the surface diffusion lengths are found to be directly proportional to 1 / √{ ν } . It also agrees well with the theoretical prediction, further demonstrating the reliability of the method.

  9. Ab initio study of subsurface diffusion of Cu on the H-passivated Si(001) surface

    NASA Astrophysics Data System (ADS)

    Rodriguez-Prieto, A.; Bowler, D. R.

    2009-10-01

    In this paper we use density-functional theory calculations to analyze both the stability and diffusion of Cu adatoms near and on the H-passivated Si(001) surface. Two different Cu sources are considered: depositing Cu from vacuum, and contaminating Cu outdiffusing from bulk Si. Deposited Cu from vacuum quickly moves subsurface to an interstitial site in the third Si layer (T2). Once there, Cu adatoms enter a subsurface zigzag migration route between T2 and another subsurface site, T2→HSL→T2 , along the dimer row direction. Contaminating Cu outdiffusing from bulk is found to be a fast diffuser along both parallel and perpendicular directions to the dimer row when far from the surface. It is attracted to the layers close to the surface and becomes trapped at an interstitial site located at the sixth Si layer (T3). As the outdiffusing Cu atoms get closer to the surface, a channeling zigzag diffusion along the dimer row direction, similar to that one followed by deposited Cu from vacuum, is favoured over diffusion along the perpendicular direction. These results are consistent with previous experimental work done on similar systems and will motivate further experiments on the interesting interaction between Cu and Si surfaces.

  10. Surface diffusion during shadow-mask-assisted molecular-beam epitaxy of III-V compounds

    SciTech Connect

    Schallenberg, T.; Brunner, K.; Borzenko, T.; Molenkamp, L.W.; Karczewski, G.

    2005-07-01

    We present a comprehensive discussion of molecular-beam epitaxy of III-V compound semiconductors through shadow masks. Based on model calculations and growth experiments, we examine how the surface diffusion and the incorporation of group-III adatoms depend on the growth configuration, group-III and group-V fluxes, and the crystal orientation. According to a macroscopic diffusion model, gradients of the group-V flux drive the unidirectional migration of group-III adatoms. Although this effect is generally observed in the experiments, the different growth profiles obtained for [110]- and [110]-oriented samples reflect the different roles of A-type and B-type steps in the incorporation of group-III adatoms. We also demonstrate that during the heteroepitaxial growth of InAs, the dissociation of the GaAs substrate is locally enhanced by the incidence of the In beam. This effect can be exploited for shadow-mask-assisted etching on selected areas. In addition, we show how the positions and sizes of III-V nanostructures can be controlled with high precision on a planar substrate by the usage of shadow masks with multiple nanoscale apertures.

  11. Surface self-diffusion of organic glasses.

    PubMed

    Brian, Caleb W; Yu, Lian

    2013-12-19

    Surface self-diffusion coefficients have been determined for the organic glass Nifedipine using the method of surface grating decay. The flattening of 1000 nm surface gratings occurs by viscous flow at 12 K or more above the glass transition temperature and by surface diffusion at lower temperatures. Surface diffusion is at least 10(7) times faster than bulk diffusion, indicating a highly mobile surface. Nifedipine glasses have faster surface diffusion than the previously studied Indomethacin glasses, despite their similar bulk relaxation times. Both glasses exhibit fast surface crystal growth, and its rate scales with surface diffusivity. The observed rate of surface diffusion implies substantial surface rearrangement during the preparation of low-energy glasses by vapor deposition. The Random First Order Transition Theory and the Coupling Model successfully predict the large surface-enhancement of mobility and its increase on cooling, but disagree with the experimental observation of the faster surface diffusion of Nifedipine.

  12. Site-specific bonding of copper adatoms to pyridine end groups mediating the formation of two-dimensional coordination networks on metal surfaces

    NASA Astrophysics Data System (ADS)

    Umbach, T. R.; Bernien, M.; Hermanns, C. F.; Sun, L. L.; Mohrmann, H.; Hermann, K. E.; Krüger, A.; Krane, N.; Yang, Z.; Nickel, F.; Chang, Y.-M.; Franke, K. J.; Pascual, J. I.; Kuch, W.

    2014-06-01

    We study the formation of a coordination network consisting of the organic pyridine-based 2,4,6-tris(4-pyridine)-1,3,5-triazine (T4PT) species and Cu atoms on Cu(111) and Ag(111) metal surfaces. Using scanning tunneling microscopy, we find that the organic molecule T4PT forms stable two-dimensional porous networks on the surface of Cu(111) and, by codeposition of Cu atoms, also on the Ag(111) crystal, in which Cu atoms are twofold coordinated by T4PT molecules. X-ray absorption spectroscopy measurements of the metal-organic network Cu-T4PT on Ag(111) accompanied by density-functional theory calculations show that the nitrogen atoms of the pyridine end groups of the T4PT molecules are the active sites in coordinating the Cu adatoms. X-ray magnetic circular dichroism experiments reveal that the Cu atom in such a metal-organic motif is in a low-valent d10 state and has no magnetic moment.

  13. Calculation of surface diffusivity and residence time by molecular dynamics with application to nanoscale selective-area growth

    NASA Astrophysics Data System (ADS)

    Almeida, S.; Ochoa, E.; Chavez, J. J.; Zhou, X. W.; Zubia, D.

    2015-08-01

    The surface diffusivity and residence time were calculated by molecular dynamics simulations in order to solve the surface diffusion equations for selective-area growth. The calculations for CdTe/CdS material system were performed in substrates with Cd termination and S termination. The surface diffusivity and residence time were obtained at different temperatures (600 K, 800 K, 1000 K, 1200 K, and 1400 K). The thermal activation energies were extracted from Arrhenius equation for each substrate termination. Thereafter, values obtained by molecular dynamics were used in a surface diffusion model to calculate the surface concentration profile of adatoms. Alternating the surface termination has the potential to achieve nanoscale selective-area growth without the need of a dielectric film as a mask.

  14. Molecular dynamics study of the transport and structural properties of the Cu 3Au and Ni 3Al (1 1 0) surface

    NASA Astrophysics Data System (ADS)

    Lekka, Ch. E.; Papageorgiou, D. G.; Evangelakis, G. A.

    2002-10-01

    We present molecular dynamics results concerning the transport and the structural properties of the Cu 3Au and Ni 3Al(1 1 0) surfaces in presence of adatoms and vacancies. In the Cu 3Au case we found that below 500 K the Cu adatom occupies preferably the so-called "dumb-bell" position, while the Au adatom penetrates into the second pure Cu layer via an exchange type mechanism inducing thereby local disorder. At higher temperatures the Cu adatom resides almost exclusively at fourfold positions, while spontaneous creation of adatom-vacancy pairs is also present. Vacancy diffusion processes induce surface disorder that starts by as much as 150 K below the bulk order-disorder temperature. In the case of Ni 3Al(1 1 0) surface, we found a new Al adatom position situated between two Ni surface atoms. It came out that this position plays an important role in the adatom's diffusive behavior. Above 800 K adatom-vacancy pairs are spontaneously created and in conjunction with exchange type diffusion mechanisms they affect seriously the surface order. In addition, we found that the Ni adatoms are more active than the Al adatoms, this difference in the adatom diffusivity being accentuated by exchange events, leading very quickly the surface in a disordered state. In conclusion, it comes out that the Cu 3Au and Ni 3Al(1 1 0) surfaces disorder well below the bulk transition temperature (663 K, Cu 3Au) and the melting point (1663 K, Ni 3Al) via diffusion processes of the adatoms and/or vacancies.

  15. Diffusion and dissociation of two-dimensional islands on FCC metal (100) surfaces

    SciTech Connect

    Zhang, Z.Y.; Shi, Z.P.; Haug, K.

    1996-09-01

    The mobility and the stability of small two-dimensional islands on a substrate are basic issues of surface science and thin-film growth. In this article, the authors present the main results from a series of theoretical studies of island diffusion and dissociation on several fcc metal (100) surfaces, with and without the effects of hydrogen as surface impurities. They found that a collective atomic process, shearing of a dimer belonging to a compact island, in many cases provides the most effective pathway for island diffusion. Consideration of this novel atomic process leads to the possibility of observing a new set of critical island sizes in dynamical island growth or coarsening. When H is introduced into the Ni system, the mobility of adatoms and islands of all sizes are enhanced. This conclusion suggests that H will function as an anti-surfactant in Ni(100) homoepitaxy.

  16. Role of substrate in the surface diffusion and kinetic roughening of nanocrystallised nickel electrodeposits

    NASA Astrophysics Data System (ADS)

    Nzoghe-Mendome, L.; Aloufy, A.; Ebothé, J.; El Messiry, M.; Hui, D.

    2009-02-01

    The surface growth and roughening of nano-crystallised Ni electrodeposits prepared at the same conditions have been studied on Cu, Au and ITO substrates. The Ni films obtained are characterised by the same face-centred cubic structure with a texture affected by the substrate chemical nature. Practically, the same small-sized grains of 83 nm mean height depicting a statistical mono-mode feature grow on Cu. A three-modal feature corresponding to the biggest and compact crystallites of 335, 368 and 400 nm mean height is obtained with Au. Two typical modes, respectively, linked to isolated big crystallites of 343 nm mean height and large zones of small grains of 170 nm height, result from the ITO effect. The surface transport properties of Ni ad-atoms on each substrate have been studied from the theoretical approach including the film global roughness measured by AFM. It is shown that the ad-atom diffusion coefficients ( D s) ranged in the interval 10 -10-10 -9 cm 2 s -1 are greatly affected by the non-equilibrium conditions of the film formation. Cu and ITO, respectively, lead to Λ s=11.92 and 14.30 nm, while the higher D s value and diffusion length Λ s=37.32 nm are obtained with Au substrate.

  17. Metal intercalation-induced selective adatom mass transport on graphene

    DOE PAGES

    Liu, Xiaojie; Wang, Cai -Zhuang; Hupalo, Myron; Lin, Hai -Qing; Ho, Kai -Ming; Thiel, Patricia A.; Tringides, Michael C.

    2016-03-29

    Recent experiments indicate that metal intercalation is a very effective method to manipulate the graphene-adatom interaction and control metal nanostructure formation on graphene. A key question is mass transport, i.e., how atoms deposited uniformly on graphene populate different areas depending on the local intercalation. Using first-principles calculations, we show that partially intercalated graphene, with a mixture of intercalated and pristine areas, can induce an alternating electric field because of the spatial variations in electron doping, and thus, an oscillatory electrostatic potential. As a result, this alternating field can change normal stochastic adatom diffusion to biased diffusion, leading to selective massmore » transport and consequent nucleation, on either the intercalated or pristine areas, depending on the charge state of the adatoms.« less

  18. Indirect exchange interaction between magnetic adatoms in graphene

    NASA Astrophysics Data System (ADS)

    Krainov, I. V.; Rozhansky, I. V.; Averkiev, N. S.; Lähderanta, E.

    2015-10-01

    We present a theoretical study of indirect exchange interaction between magnetic adatoms in graphene. The coupling between the adatoms to a graphene sheet is described in the framework of a tunneling Hamiltonian. We account for the possibility of this coupling being of resonant character if a bound state of the adatom effectively interacts with the continuum of 2D delocalized states in graphene. In this case the indirect exchange between the adatoms mediated by the 2D carriers appears to be substantially enhanced compared to the results known from Ruderman-Kittel-Kasuya-Yosida (RKKY) theory. Moreover, unlike the results of RKKY calculations in the case of resonant exchange, the magnetic coupling between the adatoms sitting over different graphene sublattices does not cancel each other. Thus, for a random distribution of the magnetic adatoms over a graphene surface, a nonzero magnetic interaction is expected. We also suggest the idea of controlling the magnetism by driving the tunnel coupling in and out of resonance by a gate voltage.

  19. A Theoretical Study of Bulk and Surface Diffusion Processes for Semiconductor Materials Using First Principles Calculations

    NASA Astrophysics Data System (ADS)

    Roehl, Jason L.

    Diffusion of point defects on crystalline surfaces and in their bulk is an important and ubiquitous phenomenon affecting film quality, electronic properties and device functionality. A complete understanding of these diffusion processes enables one to predict and then control those processes. Such understanding includes knowledge of the structural, energetic and electronic properties of these native and non-native point defect diffusion processes. Direct experimental observation of the phenomenon is difficult and microscopic theories of diffusion mechanisms and pathways abound. Thus, knowing the nature of diffusion processes, of specific point defects in given materials, has been a challenging task for analytical theory as well as experiment. The recent advances in computing technology have been a catalyst for the rise of a third mode of investigation. The advent of tremendous computing power, breakthroughs in algorithmic development in computational applications of electronic density functional theory now enables direct computation of the diffusion process. This thesis demonstrates such a method applied to several different examples of point defect diffusion on the (001) surface of gallium arsenide (GaAs) and the bulk of cadmium telluride (CdTe) and cadmium sulfide (CdS). All results presented in this work are ab initio, total-energy pseudopotential calculations within the local density approximation to density-functional theory. Single particle wavefunctions were expanded in a plane-wave basis and reciprocal space k-point sampling was achieved by Monkhorst-Pack generated k-point grids. Both surface and bulk computations employed a supercell approach using periodic boundary conditions. Ga adatom adsorption and diffusion processes were studied on two reconstructions of the GaAs(001) surface including the c(4x4) and c(4x4)-heterodimer surface reconstructions. On the GaAs(001)- c(4x4) surface reconstruction, two distinct sets of minima and transition sites were

  20. Influence of the Si(111)-7 Multiplication-Sign 7 surface reconstruction on the diffusion of strontium atoms

    SciTech Connect

    Zhachuk, R. A.; Teys, S. A.; Olshanetsky, B. Z.

    2011-12-15

    The diffusion of strontium atoms on the Si(111) surface at room temperature has been investigated using scanning tunnel microscopy and simulation carried out in terms of the density functional theory and the Monte Carlo method. It has been found that the reconstruction of a clean silicon surface with a 7 Multiplication-Sign 7 structure has a profound effect on the diffusion process. The average velocity of motion of a strontium atom in a unit cell of the 7 Multiplication-Sign 7 structure has been calculated. The main diffusion paths of a strontium atom and the corresponding activation energies have been determined. It has been demonstrated that the formation of scanning tunnel microscope images of the Si(111)-7 Multiplication-Sign 7 surface with adsorbed strontium atoms is significantly affected by the shift of the electron density from the strontium atom to the nearest neighbor silicon adatoms in the 7 Multiplication-Sign 7 structure.

  1. Surface conservation laws at microscopically diffuse interfaces.

    PubMed

    Chu, Kevin T; Bazant, Martin Z

    2007-11-01

    In studies of interfaces with dynamic chemical composition, bulk and interfacial quantities are often coupled via surface conservation laws of excess surface quantities. While this approach is easily justified for microscopically sharp interfaces, its applicability in the context of microscopically diffuse interfaces is less theoretically well-established. Furthermore, surface conservation laws (and interfacial models in general) are often derived phenomenologically rather than systematically. In this article, we first provide a mathematically rigorous justification for surface conservation laws at diffuse interfaces based on an asymptotic analysis of transport processes in the boundary layer and derive general formulae for the surface and normal fluxes that appear in surface conservation laws. Next, we use nonequilibrium thermodynamics to formulate surface conservation laws in terms of chemical potentials and provide a method for systematically deriving the structure of the interfacial layer. Finally, we derive surface conservation laws for a few examples from diffusive and electrochemical transport.

  2. Ab initio study of the adsorption, diffusion, and intercalation of alkali metal atoms on the (0001) surface of the topological insulator Bi{sub 2}Se{sub 3}

    SciTech Connect

    Ryabishchenkova, A. G. Otrokov, M. M.; Kuznetsov, V. M.; Chulkov, E. V.

    2015-09-15

    Ab initio study of the adsorption, diffusion, and intercalation of alkali metal adatoms on the (0001) step surface of the topological insulator Bi{sub 2}Se{sub 3} has been performed for the case of low coverage. The calculations of the activation energies of diffusion of adatoms on the surface and in van der Waals gaps near steps, as well as the estimate of diffusion lengths, have shown that efficient intercalation through steps is possible only for Li and Na. Data obtained for K, Rb, and Cs atoms indicate that their thermal desorption at high temperatures can occur before intercalation. The results have been discussed in the context of existing experimental data.

  3. Surface diffusion studies by optical diffraction techniques

    SciTech Connect

    Xiao, X.D.

    1992-11-01

    The newly developed optical techniques have been combined with either second harmonic (SH) diffraction or linear diffraction off a monolayer adsorbate grating for surface diffusion measurement. Anisotropy of surface diffusion of CO on Ni(l10) was used as a demonstration for the second harmonic dim reaction method. The linear diffraction method, which possesses a much higher sensitivity than the SH diffraction method, was employed to study the effect of adsorbate-adsorbate interaction on CO diffusion on Ni(l10) surface. Results showed that only the short range direct CO-CO orbital overlapping interaction influences CO diffusion but not the long range dipole-dipole and CO-NI-CO interactions. Effects of impurities and defects on surface diffusion were further explored by using linear diffraction method on CO/Ni(110) system. It was found that a few percent S impurity can alter the CO diffusion barrier height to a much higher value through changing the Ni(110) surface. The point defects of Ni(l10) surface seem to speed up CO diffusion significantly. A mechanism with long jumps over multiple lattice distance initiated by CO filled vacancy is proposed to explain the observed defect effect.

  4. Diffusion mediated localization on membrane surfaces

    NASA Technical Reports Server (NTRS)

    Weaver, D. L.

    1982-01-01

    Using the model of a cell membrane of a spherical surface in which membrane components may diffuse, the rate of localization due to trapping under diffusion control has been estimated by computing an analytical expression for the mean trapping time including the possibilities of a trapping probability less than one and/or the establishment of an equilibrium at the trap boundary.

  5. Nanoscale topography influences polymer surface diffusion.

    PubMed

    Wang, Dapeng; He, Chunlin; Stoykovich, Mark P; Schwartz, Daniel K

    2015-02-24

    Using high-throughput single-molecule tracking, we studied the diffusion of poly(ethylene glycol) chains at the interface between water and a hydrophobic surface patterned with an array of hexagonally arranged nanopillars. Polymer molecules displayed anomalous diffusion; in particular, they exhibited intermittent motion (i.e., immobilization and "hopping") suggestive of continuous-time random walk (CTRW) behavior associated with desorption-mediated surface diffusion. The statistics of the molecular trajectories changed systematically on surfaces with pillars of increasing height, exhibiting motion that was increasingly subdiffusive and with longer waiting times between diffusive steps. The trajectories were well-described by kinetic Monte Carlo simulations of CTRW motion in the presence of randomly distributed permeable obstacles, where the permeability (the main undetermined parameter) was conceptually related to the obstacle height. These findings provide new insights into the mechanisms of interfacial transport in the presence of obstacles and on nanotopographically patterned surfaces. PMID:25621372

  6. Metal Adatoms and Clusters on Ultrathin Zirconia Films

    PubMed Central

    2016-01-01

    Nucleation and growth of transition metals on zirconia has been studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. Since STM requires electrical conductivity, ultrathin ZrO2 films grown by oxidation of Pt3Zr(0001) and Pd3Zr(0001) were used as model systems. DFT studies were performed for single metal adatoms on supported ZrO2 films as well as the (1̅11) surface of monoclinic ZrO2. STM shows decreasing cluster size, indicative of increasing metal–oxide interaction, in the sequence Ag < Pd ≈ Au < Ni ≈ Fe. Ag and Pd nucleate mostly at steps and domain boundaries of ZrO2/Pt3Zr(0001) and form three-dimensional clusters. Deposition of low coverages of Ni and Fe at room temperature leads to a high density of few-atom clusters on the oxide terraces. Weak bonding of Ag to the oxide is demonstrated by removing Ag clusters with the STM tip. DFT calculations for single adatoms show that the metal–oxide interaction strength increases in the sequence Ag < Au < Pd < Ni on monoclinic ZrO2, and Ag ≈ Au < Pd < Ni on the supported ultrathin ZrO2 film. With the exception of Au, metal nucleation and growth on ultrathin zirconia films follow the usual rules: More reactive (more electropositive) metals result in a higher cluster density and wet the surface more strongly than more noble metals. These bind mainly to the oxygen anions of the oxide. Au is an exception because it can bind strongly to the Zr cations. Au diffusion may be impeded by changing its charge state between −1 and +1. We discuss differences between the supported ultrathin zirconia films and the surfaces of bulk ZrO2, such as the possibility of charge transfer to the substrate of the films. Due to their large in-plane lattice constant and the variety of adsorption sites, ZrO2{111} surfaces are more reactive than many other oxygen-terminated oxide surfaces. PMID:27213024

  7. Atomistic simulation of the electronic states of adatoms in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Chang, Jiwon; Larentis, Stefano; Tutuc, Emanuel; Register, Leonard F.; Banerjee, Sanjay K.

    2014-04-01

    Using an ab initio density functional theory based electronic structure method, we study the effects of adatoms on the electronic properties of monolayer transition metal dichalcogenide Molybdenum-disulfide (MoS2). We consider the 1st (Li, Na, K) and 7th (F, Cl, Br) column atoms and metals (Sc, Ti, Ta, Mo, Pd, Pt, Ag, Au). Three high symmetry sites for the adatom on the surface of monolayer MoS2 are examined as starting points to search for the most energetically stable configuration for each adatom-monolayer MoS2 system, as well as the type of associated bonding. For the most stable adatom positions, we characterize the emergence of adatom-induced electronic states including any dopant states.

  8. Stochastic models for surface diffusion of molecules

    SciTech Connect

    Shea, Patrick Kreuzer, Hans Jürgen

    2014-07-28

    We derive a stochastic model for the surface diffusion of molecules, starting from the classical equations of motion for an N-atom molecule on a surface. The equation of motion becomes a generalized Langevin equation for the center of mass of the molecule, with a non-Markovian friction kernel. In the Markov approximation, a standard Langevin equation is recovered, and the effect of the molecular vibrations on the diffusion is seen to lead to an increase in the friction for center of mass motion. This effective friction has a simple form that depends on the curvature of the lowest energy diffusion path in the 3N-dimensional coordinate space. We also find that so long as the intramolecular forces are sufficiently strong, memory effects are usually not significant and the Markov approximation can be employed, resulting in a simple one-dimensional model that can account for the effect of the dynamics of the molecular vibrations on the diffusive motion.

  9. First-principles calculations of gated adatoms on graphene

    NASA Astrophysics Data System (ADS)

    Chan, Kevin T.; Lee, Hoonkyung; Cohen, Marvin L.

    2011-03-01

    The two-dimensional surface of graphene is well-suited for adsorption of adatoms or molecules. The application of a gate voltage can be used to precisely control the electron concentration of the adsorbate-graphene system. Such control over electronic properties of adsorbates on graphene might have useful applications in areas such as catalysis and hydrogen storage. In this work, the gating of a variety of adatoms adsorbed on graphene is studied using first-principles calculations. We compute the projected density of states, local electrostatic potential, and charge density of the adatom-graphene system as a function of gate voltage. We demonstrate that adatoms on graphene can be ionized by gating, and that the ionization causes a sharp change in the electrostatic potential. Additional interesting features of our results are also discussed. This work was supported by NSF Grant No. DMR10-1006184 and DOE under Contract No. DE-AC02-05CH11231. Computational resources were provided by the IT Division at LBNL.

  10. Single adatom dynamics at monatomic steps of free-standing few-layer reduced graphene

    PubMed Central

    Chang, Haixin; Saito, Mitsuhiro; Nagai, Takuro; Liang, Yunye; Kawazoe, Yoshiyuki; Wang, Zhongchang; Wu, Hongkai; Kimoto, Koji; Ikuhara, Yuichi

    2014-01-01

    Steps and their associated adatoms extensively exist and play prominent roles in affecting surface properties of materials. Such impacts should be especially pronounced in two-dimensional, atomically-thin membranes like graphene. However, how single adatom behaves at monatomic steps of few-layer graphene is still illusive. Here, we report dynamics of individual adatom at monatomic steps of free-standing few-layer reduced graphene under the electron beam radiations, and demonstrate the prevalent existence of monatomic steps even down to unexpectedly ultrasmall lateral size of a circular diameter of ~5 Å. Single adatom prefers to stay at the edges of the atomic steps of few-layer reduced graphene and evolve with the steps. Moreover, we also find that how the single adatom behaves at atomic step edges can be remarkably influenced by the type of adatoms and step edges. Such single adatoms at monatomic steps and ultrasmall atomic steps open up a new window for surface physics and chemistry for graphene-based as well as other two-dimensional materials. PMID:25113125

  11. Self-diffusion on the Lennard-Jones fcc(111) surface: Effects of temperature on dynamical corrections

    SciTech Connect

    Cohen, J.M.; Voter, A.F. , Los Alamos National Laboratory, Los Alamos, New Mexico 87545 )

    1989-10-15

    Surface self-diffusion constants have been calculated for the single component Lennard-Jones fcc(111) system using the dynamical corrections formalism for transition state theory (TST). At high temperatures, these results are found to be in agreement with previous molecular dynamics calculations. Over the extended temperature range in which this method is valid, deviations from Arrhenius behavior are observed. At lower temperatures, a noticeable contribution to the diffusion constant stems from trajectories in which the adatom recrosses the TST boundary, often due to a direction-reversing collision with the substrate atom on the far side of the binding site. This produces a dip in the dynamical correction factor centered around a reduced temperature of {ital T}=0.038. At higher temperatures, the expected multiple-jump effects are observed.

  12. Diffusion and Surface Reaction in Heterogeneous Catalysis

    ERIC Educational Resources Information Center

    Baiker, A.; Richarz, W.

    1978-01-01

    Ethylene hydrogenation on a platinum catalyst, electrolytically applied to a tube wall, is a good system for the study of the interactions between diffusion and surface reaction in heterogeneous catalysis. Theoretical background, apparatus, procedure, and student performance of this experiment are discussed. (BB)

  13. Self-organization of Ce adatoms on Ag(111) : A kinetic Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Negulyaev, N. N.; Stepanyuk, V. S.; Niebergall, L.; Hergert, W.; Fangohr, H.; Bruno, P.

    2006-07-01

    One of the most fascinating experimental results in fabrication of artificial nanostructures is the creation of the macroscopically ordered superlattice of Ce adatoms on Ag(111) [F. Silly , Phys. Rev. Lett. 92, 016101 (2004)]. Here, performing kinetic Monte Carlo simulations, we study the formation of Ce superlattice at the atomic scale. It is demonstrated that the surface-state mediated long-range interaction between Ce adatoms can lead to their self-assembly into a well ordered structure. The temperature of the substrate and the concentration of Ce adatoms are shown to play a key role in this process.

  14. Sputtering at grazing ion incidence: Influence of adatom islands

    SciTech Connect

    Rosandi, Yudi; Redinger, Alex; Michely, Thomas; Urbassek, Herbert M.

    2010-09-15

    When energetic ions impinge at grazing incidence onto an atomically flat terrace, they will not sputter. However, when adatom islands (containing N atoms) are deposited on the surface, they induce sputtering. We investigate this effect for the specific case of 83 deg. -incident 5 keV Ar ions on a Pt (111) surface by means of molecular-dynamics simulation and experiment. We find that - for constant coverage {Theta} - the sputter yield has a maximum at island sizes of N congruent with 10-20. A detailed picture explaining the decline of the sputter yield toward larger and smaller island sizes is worked out. Our simulation results are compared with dedicated sputtering experiments, in which a coverage of {Theta}=0.09 of Pt adatoms are deposited onto the Pt (111) surface and form islands with a broad distribution around a most probable size of N congruent with 20.

  15. Diffusion of silver over atomically clean silicon surfaces

    SciTech Connect

    Dolbak, A. E. Ol'shanetskii, B. Z.

    2013-06-15

    The diffusion of silver the (111), (100), and (110) silicon surfaces is studied by Auger electron spectroscopy and low-energy electron diffraction. The mechanisms of diffusion over the (111) and (110) surfaces are revealed, and the temperature dependences of diffusion coefficients are measured. An anisotropy of silver diffusion over the (110) surface is detected.

  16. Numerical computation of diffusion on a surface

    PubMed Central

    Schwartz, Peter; Adalsteinsson, David; Colella, Phillip; Arkin, Adam Paul; Onsum, Matthew

    2005-01-01

    We present a numerical method for computing diffusive transport on a surface derived from image data. Our underlying discretization method uses a Cartesian grid embedded boundary method for computing the volume transport in a region consisting of all points a small distance from the surface. We obtain a representation of this region from image data by using a front propagation computation based on level set methods for solving the Hamilton–Jacobi and eikonal equations. We demonstrate that the method is second-order accurate in space and time and is capable of computing solutions on complex surface geometries obtained from image data of cells. PMID:16076952

  17. Numerical Computation of Diffusion on a Surface

    SciTech Connect

    Schwartz, Peter; Adalsteinsson, David; Colella, Phillip; Arkin, Adam Paul; Onsum, Matthew

    2005-02-24

    We present a numerical method for computing diffusive transport on a surface derived from image data. Our underlying discretization method uses a Cartesian grid embedded boundary method for computing the volume transport in region consisting of all points a small distance from the surface. We obtain a representation of this region from image data using a front propagation computation based on level set methods for solving the Hamilton-Jacobi and eikonal equations. We demonstrate that the method is second-order accurate in space and time, and is capable of computing solutions on complex surface geometries obtained from image data of cells.

  18. Diffusing colloidal probes of cell surfaces.

    PubMed

    Duncan, Gregg A; Fairbrother, D Howard; Bevan, Michael A

    2016-05-25

    Measurements and analyses are reported to quantify dynamic and equilibrium interactions between colloidal particles and live cell surfaces using dark field video microscopy. Two-dimensional trajectories of micron-sized polyethylene glycol (PEG)-coated silica colloids relative to adherent epithelial breast cancer cell perimeters are determined allowing measurement of position dependent diffusivities and interaction potentials. PEG was chosen as the material system of interest to assess non-specific interactions with cell surfaces and establishes a basis for investigation of specific interactions in future studies. Analysis of measured potential energies on cell surfaces reveals the spatial dependence in cell topography. With the measured cell topography and models for particle-cell surface hydrodynamic interactions, excellent agreement is obtained between theoretical and measured colloidal transport on cell surfaces. Quantitative analyses of association lifetimes showed that PEG coatings act to stabilize colloids above the cell surface through net repulsive, steric interactions. Our results demonstrate a self-consistent analysis of diffusing colloidal probe interactions due to conservative and non-conservative forces to characterize biophysical cell surface properties. PMID:27117575

  19. Diffusing colloidal probes of cell surfaces.

    PubMed

    Duncan, Gregg A; Fairbrother, D Howard; Bevan, Michael A

    2016-05-25

    Measurements and analyses are reported to quantify dynamic and equilibrium interactions between colloidal particles and live cell surfaces using dark field video microscopy. Two-dimensional trajectories of micron-sized polyethylene glycol (PEG)-coated silica colloids relative to adherent epithelial breast cancer cell perimeters are determined allowing measurement of position dependent diffusivities and interaction potentials. PEG was chosen as the material system of interest to assess non-specific interactions with cell surfaces and establishes a basis for investigation of specific interactions in future studies. Analysis of measured potential energies on cell surfaces reveals the spatial dependence in cell topography. With the measured cell topography and models for particle-cell surface hydrodynamic interactions, excellent agreement is obtained between theoretical and measured colloidal transport on cell surfaces. Quantitative analyses of association lifetimes showed that PEG coatings act to stabilize colloids above the cell surface through net repulsive, steric interactions. Our results demonstrate a self-consistent analysis of diffusing colloidal probe interactions due to conservative and non-conservative forces to characterize biophysical cell surface properties.

  20. Collective Surface Diffusion Measurements with the STM

    NASA Astrophysics Data System (ADS)

    Tringides, Michael C.

    1996-03-01

    Time dependent processes in surface overlayers at finite coverage are described in terms of the collective diffusion coefficient D_c. Dc can be measured from the time dependent correlation function C(t), of an initial concentration fluctuation formed in a probe area A. C(t) follows a characteristic 1/D_ct time dependence at long times. The STM can be easily used^1 to measure C(t) and, therefore, Dc by monitoring the current fluctuations with the tip fixed over a location (i.e, by suspending the scanning process). The probe area A is defined by the tunneling region. Experiments on O/Si(111) at low coverage will be described that show a dramatic increase of the current fluctuations (when compared to the clean surface) with the addition of oxygen. The analysis of the current fluctuations obtained at different temperatures is consistent with the 1/D_ct form of the correlation function. This method of measuring collective surface diffusion has the unique advantage of ultrafast speed (limited only by the electronics) and can be used to test predictions about the statistical mechanics of surface diffusion in an ensemble of particles. * Ames Laboratory is operated for the U. S. Department of Energy under Contract No. W-7405-Eng-82. 1. M. L. Lozano and M. C. Tringides, Europhys. Lett. 30 , 537 (1995).

  1. Si-adatom kinetics in defect mediated growth of multilayer epitaxial graphene films on 6H-SiC

    NASA Astrophysics Data System (ADS)

    Shetu, Shamaita S.; Omar, S. U.; Daniels, K. M.; Daas, B.; Andrews, J.; Ma, S.; Sudarshan, T. S.; Chandrashekhar, M. V. S.

    2013-10-01

    We present a quantitative study on the growth of multilayer epitaxial graphene (EG) by solid-state decomposition of SiC on polar (c-plane Si and C-face) and non-polar (a and m planes) 6H-SiC faces, with distinctly different defect profiles. The growth rates are slower than expected from a mechanism that involves Si loss from an open and free surface, and much faster than expected for the nucleation of a defect-free EG layer, implying that defects in the EG play a critical role in determining the growth kinetics. We show that a Deal-Grove growth model, which assumes vertical diffusion of Si through these defects as the limiting factor for EG growth, is unsuitable for describing multilayer growth. Instead, we introduce a lateral "adatom" diffusion mechanism for Si out-diffusion, based on a modified Burton, Cabrera, and Frank model. In this model, defects in epitaxial graphene serve as sinks for Si desorption loss, taking the place of reactive sites, such as step edges for nucleation and growth of crystals produced with external precursors. This analysis shows that the surface diffusion of Si atoms to the grain boundaries of EG limits the growth on c-plane C-face and non-polar faces, rather than the purely vertical diffusion of Si through the grain boundaries described in the Deal-Grove model. However, for Si-face c-plane growth, diffusion of Si to the defects, as well as desorption of Si at the grain boundaries are both relevant, leading to a different temperature trend compared with the other faces. This distinct qualitative difference is ascribed to point-defects in Si-face growth, as contrasted with line defects/grain boundaries on the other faces. The size of the EG grains correlates with the surface diffusion length extracted from this model. The longer a Si adatom diffuses, the higher the quality of the grown EG film, an insight that provides valuable information on Si adatom kinetics for optimizing EG growth. We discuss the applicability of this model to

  2. Molecular Modeling of Diffusion on a Crystalline PETN Surface

    SciTech Connect

    Lin, P; Khare, R; Gee, R H; Weeks, B L

    2007-07-13

    Surface diffusion on a PETN crystal was investigated by treating the surface diffusion as an activated process in the formalism of transition state theory. In particular, surface diffusion on the (110) and (101) facets, as well as diffusion between these facets, were considered. We successfully obtained the potential energy barriers required for PETN surface diffusion. Our results show that the (110) surface is more thermally active than the (101) surface and PETN molecules mainly diffuses from the (110) to (101) facet. These results are in good agreement with experimental observations and previous simulations.

  3. Silver diffusion over silicon surfaces with adsorbed tin atoms

    SciTech Connect

    Dolbak, A. E. Olshanetskii, B. Z.

    2015-02-15

    Silver diffusion over the (111), (100), and (110) surfaces of silicon with preliminarily adsorbed tin atoms is studied by Auger electron spectroscopy and low-energy electron diffraction. Diffusion is observed only on the surface of Si(111)-2√3 × 2√3-Sn. The diffusion mechanism is established. It is found that the diffusion coefficient depends on the concentration of diffusing atoms. The diffusion coefficient decreases with increasing silver concentration, while the activation energy and the preexponential factor increase.

  4. A framework to analyze cerebral mean diffusivity using surface guided diffusion mapping in diffusion tensor imaging

    PubMed Central

    Kwon, Oh-Hun; Park, Hyunjin; Seo, Sang-Won; Na, Duk L.; Lee, Jong-Min

    2015-01-01

    The mean diffusivity (MD) value has been used to describe microstructural properties in Diffusion Tensor Imaging (DTI) in cortical gray matter (GM). Recently, researchers have applied a cortical surface generated from the T1-weighted volume. When the DTI data are analyzed using the cortical surface, it is important to assign an accurate MD value from the volume space to the vertex of the cortical surface, considering the anatomical correspondence between the DTI and the T1-weighted image. Previous studies usually sampled the MD value using the nearest-neighbor (NN) method or Linear method, even though there are geometric distortions in diffusion-weighted volumes. Here we introduce a Surface Guided Diffusion Mapping (SGDM) method to compensate for such geometric distortions. We compared our SGDM method with results using NN and Linear methods by investigating differences in the sampled MD value. We also projected the tissue classification results of non-diffusion-weighted volumes to the cortical midsurface. The CSF probability values provided by the SGDM method were lower than those produced by the NN and Linear methods. The MD values provided by the NN and Linear methods were significantly greater than those of the SGDM method in regions suffering from geometric distortion. These results indicate that the NN and Linear methods assigned the MD value in the CSF region to the cortical midsurface (GM region). Our results suggest that the SGDM method is an effective way to correct such mapping errors. PMID:26236180

  5. Diffusion-limited aggregation on curved surfaces

    NASA Astrophysics Data System (ADS)

    Choi, J.; Crowdy, D.; Bazant, M. Z.

    2010-08-01

    We develop a general theory of transport-limited aggregation phenomena occurring on curved surfaces, based on stochastic iterated conformal maps and conformal projections to the complex plane. To illustrate the theory, we use stereographic projections to simulate diffusion-limited aggregation (DLA) on surfaces of constant Gaussian curvature, including the sphere (K>0) and the pseudo-sphere (K<0), which approximate "bumps" and "saddles" in smooth surfaces, respectively. Although the curvature affects the global morphology of the aggregates, the fractal dimension (in the curved metric) is remarkably insensitive to curvature, as long as the particle size is much smaller than the radius of curvature. We conjecture that all aggregates grown by conformally invariant transport on curved surfaces have the same fractal dimension as DLA in the plane. Our simulations suggest, however, that the multifractal dimensions increase from hyperbolic (K<0) to elliptic (K>0) geometry, which we attribute to curvature-dependent screening of tip branching.

  6. Electron Doping of Ultrathin Black Phosphorus with Cu Adatoms.

    PubMed

    Koenig, Steven P; Doganov, Rostislav A; Seixas, Leandro; Carvalho, Alexandra; Tan, Jun You; Watanabe, Kenji; Taniguchi, Takashi; Yakovlev, Nikolai; Castro Neto, Antonio H; Özyilmaz, Barbaros

    2016-04-13

    Few-layer black phosphorus is a monatomic two-dimensional crystal with a direct band gap that has high carrier mobility for both holes and electrons. Similarly to other layered atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is sensitive to surface impurities, adsorbates, and adatoms. Here we study the effect of Cu adatoms onto few-layer black phosphorus by characterizing few-layer black phosphorus field effect devices and by performing first-principles calculations. We find that the addition of Cu adatoms can be used to controllably n-dope few layer black phosphorus, thereby lowering the threshold voltage for n-type conduction without degrading the transport properties. We demonstrate a scalable 2D material-based complementary inverter which utilizes a boron nitride gate dielectric, a graphite gate, and a single bP crystal for both the p- and n-channels. The inverter operates at matched input and output voltages, exhibits a gain of 46, and does not require different contact metals or local electrostatic gating. PMID:26938106

  7. Electron Doping of Ultrathin Black Phosphorus with Cu Adatoms.

    PubMed

    Koenig, Steven P; Doganov, Rostislav A; Seixas, Leandro; Carvalho, Alexandra; Tan, Jun You; Watanabe, Kenji; Taniguchi, Takashi; Yakovlev, Nikolai; Castro Neto, Antonio H; Özyilmaz, Barbaros

    2016-04-13

    Few-layer black phosphorus is a monatomic two-dimensional crystal with a direct band gap that has high carrier mobility for both holes and electrons. Similarly to other layered atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is sensitive to surface impurities, adsorbates, and adatoms. Here we study the effect of Cu adatoms onto few-layer black phosphorus by characterizing few-layer black phosphorus field effect devices and by performing first-principles calculations. We find that the addition of Cu adatoms can be used to controllably n-dope few layer black phosphorus, thereby lowering the threshold voltage for n-type conduction without degrading the transport properties. We demonstrate a scalable 2D material-based complementary inverter which utilizes a boron nitride gate dielectric, a graphite gate, and a single bP crystal for both the p- and n-channels. The inverter operates at matched input and output voltages, exhibits a gain of 46, and does not require different contact metals or local electrostatic gating.

  8. Heavy adatoms and Anderson localization in graphene

    NASA Astrophysics Data System (ADS)

    Garcia Aguilar, Jose H.; Uchoa, Bruno; Covaci, Lucian; Rappoport, Tatiana G.

    2014-03-01

    We analyze electronic localization in a graphene layer doped with adatoms sitting in the center of the honeycomb hexagon, as happens with the heaviest adatoms. In this configuration, the hybridization between the adatom orbitals and its neighboring carbon atoms mediate hopping processes that connect all six vertices of the honeycomb hexagon around the impurity. The amplitudes of the hopping depend on the symmetry of the orbital that hybridizes with graphene, leading to an orbital-dependent ``plaquette disorder''. To capture the physics of localization, we propose an effective graphene-only Hamiltonian that preserves the associated orbital symmetries and conduct a scaling analysis of the local density of states (LDOS) for large system sizes. We show that adatoms that form a zero-energy resonant state lead to Anderson localization in the vicinity of the Dirac point. Among those, we show that there is a symmetry class of adatoms for which Anderson localization is suppressed, leading to an exotic quantum critical metallic state with large charge puddles, that localizes only at the Dirac point.

  9. Adsorption, vibration, and diffusion of O atoms on Rh low-index and (711) stepped defective surfaces.

    PubMed

    Diao, Zhao Yu; Hao, Ce; Wang, Ze Xin; Dong, Chen Chu; Pang, Xue Hui

    2005-06-30

    The adsorption, vibration, and diffusion of O atoms on Rh(100), Rh(111), Rh(110), and Rh(711) surfaces were studied using the 5-parameter Morse potential (5-MP) of interaction between an adatom and a metal surface cluster. Our theoretical calculations provide information about adsorption sites, adsorption geometry, binding energy, and eigenvibration. Our results agreed very well with experimental results. Four major results follow. First, the theoretical calculation showed that on the Rh(100) surface the 4-fold hollow site is the only adsorption site. Second, on the O-Rh(111) system, the 3-fold hollow site is the stable adsorption site. Third, on the Rh(110) surface at low coverage, the O atom is adsorbed preferably on the pseudo-3-fold site, while with increasing coverage, the O atom is adsorbed not only on the pseudo-3-fold site but also on the long bridge site. Last, as for the Rh(711) stepped surface, the 3-fold site on the (111) step is metastable, whereas the 4-fold sites on the (100) terrace are stable, which enables the O atoms to diffuse easily from the 3-fold to the 4-fold site at low coverage. Therefore, the O atoms are adsorbed preferrably on the stable 4-fold sites of the (100) terrace and then later as coverage increases on the metastable 3-fold site of the (110) step.

  10. Metals on graphene: correlation between adatom adsorption behavior and growth morphology

    SciTech Connect

    Liu, Xiaojie; Wang, Cai-Zhuang; Hupalo, Myron; Lu, Wencai; Tringides, Michael C.; Yao, Yongxin; Ho, Kai-Ming

    2012-05-19

    We present a systematic study of metal adatom adsorption on graphene by ab initio calculations. The calculations cover alkali metals, sp-simple metals, 3d and group 10 transition metals, noble metals, as well as rare earth metals. The correlation between the adatom adsorption properties and the growth morphology of the metals on graphene is also investigated. We show that the growth morphology is related to the ratio of the metal adsorption energy to its bulk cohesive energy (E(a)/E(c)) and the diffusion barrier (ΔE) of the metal adatom on graphene. Charge transfer, electric dipole and magnetic moments, and graphene lattice distortion induced by metal adsorption would also affect the growth morphologies of the metal islands. We also show that most of the metal nanostructures on graphene would be thermally stable against coarsening.

  11. A Relation for Nanodroplet Diffusion on Smooth Surfaces

    PubMed Central

    Li, Chu; Huang, Jizu; Li, Zhigang

    2016-01-01

    In this work, we study the diffusion of nanodroplets on smooth surfaces through molecular dynamics (MD) simulations and theoretical analyses. Molecular dynamics simulations show that nanodroplet surface diffusion is different from that of single molecules and solid particles. The dependence of nanodroplet diffusion coefficient on temperature undergoes a transition from linear to nonlinear as the surface wettability is weakened due to the coupling of temperature and surface energy. We also develop a simple relation for the diffusion coefficient by using the contact angle and contact radius of the droplet. It works well for a wide range of surface wettabilities and different sized nanodroplets, as confirmed by MD simulations. PMID:27215471

  12. Surface diffusion in reversed-phase liquid chromatography

    SciTech Connect

    Miyabe, Kanji; Guiochon, Georges A

    2010-01-01

    More than 40 years ago, Giddings pointed out in 'Dynamics of Chromatography' that surface diffusion should become an important research topic in the kinetics of chromatographic phenomena. However, few studies on surface diffusion in adsorbents used in chromatography were published since then. Most scientists use ordinary rate equations to study mass transfer kinetics in chromatography. They take no account of surface diffusion and overlook the significant contributions of this mass transfer process to chromatographic behavior and to column efficiency at high mobile phase flow rate. Only recently did the significance of surface diffusion in separation processes begin to be recognized in connection with the development of new techniques of fast flow, high efficiency chromatography. In this review, we revisit the reports on experimental data on surface diffusion and introduce a surface-restricted molecular diffusion model, derived as a first approximation for the mechanism of surface diffusion, on the basis of the absolute rate theory. We also explain how this model accounts for many intrinsic characteristics of surface diffusion that cannot properly be explained by the conventional models of surface diffusion.

  13. Surface diffusion and surface crystal growth of tris-naphthyl benzene glasses

    NASA Astrophysics Data System (ADS)

    Ruan, Shigang; Zhang, Wei; Sun, Ye; Ediger, M. D.; Yu, Lian

    2016-08-01

    Surface self-diffusion coefficients of α,α,β-tris-naphthyl benzene (TNB) glasses have been measured using the method of surface grating decay. For 1000 nm wavelength gratings, the decay occurs by viscous flow at temperatures above Tg + 15 K, where Tg is the glass transition temperature (347 K), and by surface diffusion at lower temperatures. Surface diffusion of TNB is vastly faster than bulk diffusion, by a factor of 107 at Tg. Comparing TNB with other molecular glasses, each evaluated at its own Tg, we find that surface diffusion has a greater system-to-system variation than bulk diffusion, slowing down with increasing molecular size and intermolecular hydrogen bonding. Experimentally determined surface diffusion coefficients are in reasonable agreement with those from simulations and theoretical predictions. TNB and other molecular glasses show fast crystal growth on the free surface and the growth velocity is nearly proportional to the surface diffusion coefficient, indicating that the process is supported by surface mobility.

  14. Edge effects on the characteristics of uranium diffusion on graphene and graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng; Han, Han; Ren, Cui-Lan; Wang, Chang-Ying; Shao, Kuan; Huai, Ping

    2016-08-01

    The first principles density-functional theoretical calculations of U adatom adsorption and diffusion on a planar graphene and quasi-one-dimensional graphene nanoribbons (GNRs) are performed. An energetic preference is found for U adatom diffusing to the hollow sites of both graphene and GNRs surface. A number of U distinctive diffusion paths either perpendicular or parallel to the ribbon growth direction are examined. The edge effects are evidenced by the calculated energy barriers of U adatom diffusion on armchair and zigzag nanoribbons surfaces. The calculation results indicate that the diffusion of U adatom from the inner site toward the edge site is a feasible process, particularly in zigzag GNR. It is viable to control the initial morphology of nuclear carbon material to retard the diffusion and concentration of nuclides. Project supported by the International S & T Cooperation Program of China (Grant No. 2014DFG60230), the National Natural Science Foundation of China (Grant Nos. 91326105, 21306220, and 21501189), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA02040104).

  15. Edge effects on the characteristics of uranium diffusion on graphene and graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng; Han, Han; Ren, Cui-Lan; Wang, Chang-Ying; Shao, Kuan; Huai, Ping

    2016-08-01

    The first principles density-functional theoretical calculations of U adatom adsorption and diffusion on a planar graphene and quasi-one-dimensional graphene nanoribbons (GNRs) are performed. An energetic preference is found for U adatom diffusing to the hollow sites of both graphene and GNRs surface. A number of U distinctive diffusion paths either perpendicular or parallel to the ribbon growth direction are examined. The edge effects are evidenced by the calculated energy barriers of U adatom diffusion on armchair and zigzag nanoribbons surfaces. The calculation results indicate that the diffusion of U adatom from the inner site toward the edge site is a feasible process, particularly in zigzag GNR. It is viable to control the initial morphology of nuclear carbon material to retard the diffusion and concentration of nuclides. Project supported by the International S & T Cooperation Program of China (Grant No. 2014DFG60230), the National Natural Science Foundation of China (Grant Nos. 91326105, 21306220, and 21501189), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA02040104).

  16. Diffusion Kinetics in the Pd/Cu(001) Surface Alloy

    SciTech Connect

    GRANT,M.L.; SWARTZENTRUBER,BRIAN S.; BARTELT,NORMAN C.; HANNON,J.B.

    2000-12-08

    We use atom-tracking scanning tunneling microscopy to study the diffusion of Pd in the Pd/Cu(001) surface alloy. By following the motion of individual Pd atoms incorporated in the surface, we show that Pd diffuses by a vacancy-exchange, mechanism. We measure an effective activation energy for the diffusion of incorporated Pd atoms of 0.88 eV, which is consistent with an ab initio calculated barrier of 0.94 eV.

  17. Anomalous surface diffusion of protons on lipid membranes.

    PubMed

    Wolf, Maarten G; Grubmüller, Helmut; Groenhof, Gerrit

    2014-07-01

    The cellular energy machinery depends on the presence and properties of protons at or in the vicinity of lipid membranes. To asses the energetics and mobility of a proton near a membrane, we simulated an excess proton near a solvated DMPC bilayer at 323 K, using a recently developed method to include the Grotthuss proton shuttling mechanism in classical molecular dynamics simulations. We obtained a proton surface affinity of -13.0 ± 0.5 kJ mol(-1). The proton interacted strongly with both lipid headgroup and linker carbonyl oxygens. Furthermore, the surface diffusion of the proton was anomalous, with a subdiffusive regime over the first few nanoseconds, followed by a superdiffusive regime. The time- and distance dependence of the proton surface diffusion coefficient within these regimes may also resolve discrepancies between previously reported diffusion coefficients. Our simulations show that the proton anomalous surface diffusion originates from restricted diffusion in two different surface-bound states, interrupted by the occasional bulk-mediated long-range surface diffusion. Although only a DMPC membrane was considered in this work, we speculate that the restrictive character of the on-surface diffusion is highly sensitive to the specific membrane conditions, which can alter the relative contributions of the surface and bulk pathways to the overall diffusion process. Finally, we discuss the implications of our findings for the energy machinery.

  18. Mechanisms of Si and Ge diffusion on surfactant terminated (111) silicon and germanium surfaces

    NASA Astrophysics Data System (ADS)

    Zhachuk, R.; Coutinho, J.

    2016-05-01

    Surfactant mediated growth of Ge layers and formation of small Ge clusters on Si(111) are promising assemblage processes with envisioned applications in areas such as nanoelectronics or photovoltaics. They critically depend on migration of Si and Ge adatoms on surfactant terminated Si(111) and Ge(111) surfaces. We address Si and Ge adsorption and migration on surfactant (Bi, Sb) terminated (111) surfaces of Si and strained Ge by comprehensively mapping potential energy surfaces using density functional calculations. The main migration paths are identified and corresponding energy barriers are reported. It is shown that the energy barrier for adatom migration through Bi or Sb surfactant trimers (by actually breaking the trimers) is virtually degenerate to the mechanism involving traveling of the adatom around the same surfactant structures. We also find a low-energy anchoring site that is suggested to act as a nucleation structure and to trigger the clustering process. These results suggest a fundamentally new picture for the whole Si(111)sbnd Bi(Sb) epitaxial process.

  19. Adsorption of metal adatoms on single-layer phosphorene.

    PubMed

    Kulish, Vadym V; Malyi, Oleksandr I; Persson, Clas; Wu, Ping

    2015-01-14

    Single- or few-layer phosphorene is a novel two-dimensional direct-bandgap nanomaterial. Based on first-principles calculations, we present a systematic study on the binding energy, geometry, magnetic moment and electronic structure of 20 different adatoms adsorbed on phosphorene. The adatoms cover a wide range of valences, including s and p valence metals, 3d transition metals, noble metals, semiconductors, hydrogen and oxygen. We find that adsorbed adatoms produce a rich diversity of structural, electronic and magnetic properties. Our work demonstrates that phosphorene forms strong bonds with all studied adatoms while still preserving its structural integrity. The adsorption energies of adatoms on phosphorene are more than twice higher than on graphene, while the largest distortions of phosphorene are only ∼0.1-0.2 Å. The charge carrier type in phosphorene can be widely tuned by adatom adsorption. The unique combination of high reactivity with good structural stability is very promising for potential applications of phosphorene.

  20. Effective diffusion in the region between two surfaces

    NASA Astrophysics Data System (ADS)

    Valero Valdes, Carlos

    2016-08-01

    The purpose of this paper is to provide a formula for the effective diffusion operator obtained by projecting the three-dimensional diffusion equation onto a two-dimensional plane, assuming reflective boundary conditions at two surfaces in three-dimensional space and a finite transversal stabilization rate.

  1. Effective diffusion in the region between two surfaces.

    PubMed

    Valero Valdes, Carlos

    2016-08-01

    The purpose of this paper is to provide a formula for the effective diffusion operator obtained by projecting the three-dimensional diffusion equation onto a two-dimensional plane, assuming reflective boundary conditions at two surfaces in three-dimensional space and a finite transversal stabilization rate.

  2. Effective diffusion in the region between two surfaces.

    PubMed

    Valero Valdes, Carlos

    2016-08-01

    The purpose of this paper is to provide a formula for the effective diffusion operator obtained by projecting the three-dimensional diffusion equation onto a two-dimensional plane, assuming reflective boundary conditions at two surfaces in three-dimensional space and a finite transversal stabilization rate. PMID:27627260

  3. Effects of extrinsic point defects in phosphorene: B, C, N, O, and F adatoms

    SciTech Connect

    Wang, Gaoxue E-mail: pandey@mtu.edu Pandey, Ravindra E-mail: pandey@mtu.edu; Karna, Shashi P. E-mail: pandey@mtu.edu

    2015-04-27

    Phosphorene is emerging as a promising 2D semiconducting material with a direct band gap and high carrier mobility. In this paper, we examine the role of the extrinsic point defects including surface adatoms in modifying the electronic properties of phosphorene using density functional theory. The surface adatoms considered are B, C, N, O, and F with a [He] core electronic configuration. Our calculations show that B and C, with electronegativity close to P, prefer to break the sp{sup 3} bonds of phosphorene and reside at the interstitial sites in the 2D lattice by forming sp{sup 2} like bonds with the native atoms. On the other hand, N, O, and F, which are more electronegative than P, prefer the surface sites by attracting the lone pairs of phosphorene. B, N, and F adsorption will also introduce local magnetic moment to the lattice. Moreover, B, C, N, and F adatoms will modify the band gap of phosphorene, yielding metallic transverse tunneling characters. Oxygen does not modify the band gap of phosphorene, and a diode like tunneling behavior is observed. Our results therefore offer a possible route to tailor the electronic and magnetic properties of phosphorene by the adatom functionalization and provide the physical insights of the environmental sensitivity of phosphorene, which will be helpful to experimentalists in evaluating the performance and aging effects of phosphorene-based electronic devices.

  4. Ion beam microtexturing and enhanced surface diffusion

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1982-01-01

    Ion beam interactions with solid surfaces are discussed with particular emphasis on microtexturing induced by the deliberate deposition of controllable amounts of an impurity material onto a solid surface while simultaneously sputtering the surface with an ion beam. Experimental study of the optical properties of microtextured surfaces is described. Measurements of both absorptance as a function of wavelength and emissivity are presented. A computer code is described that models the sputtering and ion reflection processes involved in microtexture formation.

  5. Effects of Cl adatom on Na-Decorated graphene

    NASA Astrophysics Data System (ADS)

    Song, Xinxiang; Sun, Yu; Dong, Meifeng; Li, Chun; Wang, Jiesheng; Mimura, Hidenori; Yuan, Guang

    2015-06-01

    The effects of the Cl adatom on Na-decorated graphene are studied using first principles density functional theory under the generalized gradient approximation to calculate the adsorption energy, geometric structure, charge density difference, and density of states. When Na and Cl adatoms are simultaneously absorbed on opposite sides of graphene, the adsorption energy of Na increases by about 1 eV and the adsorption system becomes more stable because graphene can effectively transfer the 3s valence of the Na adatom to the Cl adatom.

  6. Anomalous Surface Diffusion in Nanoscale Direct Deposition Processes

    NASA Astrophysics Data System (ADS)

    Manandhar, P.; Jang, J.; Schatz, G. C.; Ratner, M. A.; Hong, S.

    2003-03-01

    We report the first observation of anomalous diffusion in nanometer scale direct deposition processes utilizing dip-pen nanolithography (DPN). DPN permits quite general nanostructure patterns to be drawn on flat surfaces. Here we demonstrate experimentally, and discuss theoretically, the situation in which the molecular ink in DPN binds weakly to the surface. We observe, for the weak-binding case of 1-dodecylamine on mica, that anomalous diffusion occurs, leading to nearly fractal deposition patterns.

  7. Hydrogen Bonding Slows Down Surface Diffusion of Molecular Glasses.

    PubMed

    Chen, Yinshan; Zhang, Wei; Yu, Lian

    2016-08-18

    Surface-grating decay has been measured for three organic glasses with extensive hydrogen bonding: sorbitol, maltitol, and maltose. For 1000 nm wavelength gratings, the decay occurs by viscous flow in the entire range of temperature studied, covering the viscosity range 10(5)-10(11) Pa s, whereas under the same conditions, the decay mechanism transitions from viscous flow to surface diffusion for organic glasses of similar molecular sizes but with no or limited hydrogen bonding. These results indicate that extensive hydrogen bonding slows down surface diffusion in organic glasses. This effect arises because molecules can preserve hydrogen bonding even near the surface so that the loss of nearest neighbors does not translate into a proportional decrease of the kinetic barrier for diffusion. This explanation is consistent with a strong correlation between liquid fragility and the surface enhancement of diffusion, both reporting resistance of a liquid to dynamic excitation. Slow surface diffusion is expected to hinder any processes that rely on surface transport, for example, surface crystal growth and formation of stable glasses by vapor deposition. PMID:27404465

  8. Diffusion on (110) Surface of Molecular Crystal Pentaerythritol Tetranitrate

    SciTech Connect

    Wang, J; Golfinopoulos, T; Gee, R H; Huang, H

    2007-01-25

    Using classical molecular dynamics simulations, we investigate the diffusion mechanisms of admolecules on the (110) surface of molecular crystal pentaerythritol tetranitrate. Our results show that (1) admolecules are stable at off lattice sites, (2) admolecules diffuse along close-packed [1{bar 1}1] and [{bar 1}11] directions, and (3) admolecules detach from the surface at 350K and above. Based on the number of diffusion jumps as a function of temperature, we estimate the jump frequency to be v=1.14 x 10{sup 12} e{sup -0.08eV/kT} per second.

  9. Ion-beam-induced topography and surface diffusion

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Rossnagel, S. M.

    1982-01-01

    It is pointed out that the development of surface topography along with enhanced surface and bulk diffusion processes accompanying ion bombardment have generated growing interest among users of ion beams and plasmas for thin film or material processing. Interest in these processes stems both from attempts to generate topographic changes for specific studies or applications and from the need to suppress or control undesirable changes. The present investigation provides a summary of the current status of impurity-induced texturing, with emphasis on recent developments. Particular attention is given to the texturing accompanying deposition of an impurity material onto a solid surface while simultaneously etching the surface with an ion beam. A description of experimental considerations is provided, and a thermal-diffusion model is discussed along with the development of sputter cones, and aspects of impact-enhanced surface diffusion.

  10. A Multiscale Analysis of Diffusions on Rapidly Varying Surfaces

    NASA Astrophysics Data System (ADS)

    Duncan, A. B.; Elliott, C. M.; Pavliotis, G. A.; Stuart, A. M.

    2015-04-01

    Lateral diffusion of molecules on surfaces plays a very important role in various biological processes, including lipid transport across the cell membrane, synaptic transmission, and other phenomena such as exo- and endocytosis, signal transduction, chemotaxis, and cell growth. In many cases, the surfaces can possess spatial inhomogeneities and/or be rapidly changing shape. Using a generalization of the model for a thermally excited Helfrich elastic membrane, we consider the problem of lateral diffusion on quasi-planar surfaces, possessing both spatial and temporal fluctuations. Using results from homogenization theory, we show that, under the assumption of scale separation between the characteristic length and timescales of the membrane fluctuations and the characteristic scale of the diffusing particle, the lateral diffusion process can be well approximated by a Brownian motion on the plane with constant diffusion tensor that depends on a highly nonlinear way on the detailed properties of the surface. The effective diffusion tensor will depend on the relative scales of the spatial and temporal fluctuations, and for different scaling regimes, we prove the existence of a macroscopic limit in each case.

  11. Germanium nanowire growth controlled by surface diffusion effects

    SciTech Connect

    Schmidtbauer, Jan; Bansen, Roman; Heimburger, Robert; Teubner, Thomas; Boeck, Torsten; Fornari, Roberto

    2012-07-23

    Germanium nanowires (NWs) were grown onto Ge(111) substrates by the vapor-liquid-solid process using gold droplets. The growth was carried out in a molecular beam epitaxy chamber at substrate temperatures between 370 Degree-Sign C and 510 Degree-Sign C. The resulting nanowire growth rate turns out to be highly dependent on the substrate temperature exhibiting the maximum at T = 430 Degree-Sign C. The temperature dependence of growth rate can be attributed to surface diffusion both along the substrate and nanowire sidewalls. Analyzing the diffusive material transport yields a diffusion length of 126 nm at a substrate temperature of 430 Degree-Sign C.

  12. Surface reaction and pore diffusion in flow-tube reactors

    NASA Technical Reports Server (NTRS)

    Keyser, Leon F.; Moore, Steven B.; Leu, Ming-Taun

    1991-01-01

    The interaction of gas diffusion with surface reaction in porous solids is discussed and applied specifically to heterogeneous rate measurements in flow-tube reactors. External diffusion to the outer surface of a reactive solid, internal diffusion within the pores, surface reaction, and laminar flow are considered. A procedure is developed to correct observed surface rate constants for the interaction of these processes. Measured surface areas and bulk densities are used to construct a semiempirical model for porous diffusion in vapor-formed HNO3-H2O ices which are used to simulate polar stratospheric cloud surfaces. The model is tested experimentally by varying the thickness of these ices from about 15 to 120 microns. The results are consistent with the model predictions and show that the HNO3-H2O ices used are highly porous, and the internal surface must be considered in calculating kinetic parameters from observed loss rates. The best fit of the data yields a tortuosity factor of 3.3 +/-1.1 for the ice substrates.

  13. II. Inhibited Diffusion Driven Surface Transmutations

    NASA Astrophysics Data System (ADS)

    Chubb, Talbot A.

    2006-02-01

    This paper is the second of a set of three papers dealing with the role of coherent partitioning as a common element in Low Energy Nuclear Reactions (LENR), by which is meant cold-fusion related processes. This paper discusses the first step in a sequence of four steps that seem to be necessary to explain Iwamura 2-α-addition surface transmutations. Three concepts are examined: salt-metal interface states, sequential tunneling that transitions D+ ions from localized interstitial to Bloch form, and the general applicability of 2-dimensional vs. 3-dimensional symmetry hosting networks.

  14. Optical surface wave in a crystal with diffusion photorefractive nonlinearity

    SciTech Connect

    Chetkin, S A; Akhmedzhanov, I M

    2011-11-30

    We consider a steady-state nonlinear photorefractive surface wave (PR SW) with TE or TM polarisation when the refractive index of the photorefractive crystal (PRC) depends on the strength of the diffusion crystal electric field emerging upon the wave propagation. We have determined the phase trajectory and transverse structure of the PR SW intensity distribution for different values of the diffusion photorefractive nonlinearity. We have investigated a photorefractive diffraction grating, which arises in the surface PRC layer during propagation of the nonlinear PR SW.

  15. Control of gold surface diffusion on si nanowires.

    PubMed

    den Hertog, Martien I; Rouviere, Jean-Luc; Dhalluin, Florian; Desré, Pierre J; Gentile, Pascal; Ferret, Pierre; Oehler, Fabrice; Baron, Thiery

    2008-05-01

    Silicon nanowires (NW) were grown by the vapor-liquid-solid mechanism using gold as the catalyst and silane as the precursor. Gold from the catalyst particle can diffuse over the wire sidewalls, resulting in gold clusters decorating the wire sidewalls. The presence or absence of gold clusters was observed either by high angle annular darkfield scanning transmission electron microscopy images or by scanning electron microscopy. We find that the gold surface diffusion can be controlled by two growth parameters, the silane partial pressure and the growth temperature, and that the wire diameter also affects gold diffusion. Gold clusters are not present on the NW side walls for high silane partial pressure, low temperature, and small NW diameters. The absence or presence of gold on the NW sidewall has an effect on the sidewall morphology. Different models are qualitatively discussed. The main physical effect governing gold diffusion seems to be the adsorption of silane on the NW sidewalls. PMID:18422363

  16. Atomic diffusion in laser surface modified AISI H13 steel

    NASA Astrophysics Data System (ADS)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2013-07-01

    This paper presents a laser surface modification process of AISI H13 steel using 0.09 and 0.4 mm of laser spot sizes with an aim to increase surface hardness and investigate elements diffusion in laser modified surface. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, pulse repetition frequency (PRF), and overlap percentage. The hardness properties were tested at 981 mN force. Metallographic study and energy dispersive X-ray spectroscopy (EDXS) were performed to observe presence of elements and their distribution in the sample surface. Maximum hardness achieved in the modified surface was 1017 HV0.1. Change of elements composition in the modified layer region was detected in the laser modified samples. Diffusion possibly occurred for C, Cr, Cu, Ni, and S elements. The potential found for increase in surface hardness represents an important method to sustain tooling life. The EDXS findings signify understanding of processing parameters effect on the modified surface composition.

  17. Complexity and diffusion of magnetic flux surfaces in anisotropic turbulence

    SciTech Connect

    Servidio, S.; Matthaeus, W. H.; Wan, M.; Rappazzo, A. F.; Ruffolo, D.; Oughton, S.

    2014-04-10

    The complexity of magnetic flux surfaces is investigated analytically and numerically in static homogeneous magnetic turbulence. Magnetic surfaces are computed to large distances in magnetic fields derived from a reduced magnetohydrodynamic model. The question addressed is whether one can define magnetic surfaces over large distances when turbulence is present. Using a flux surface spectral analysis, we show that magnetic surfaces become complex at small scales, experiencing an exponential thinning that is quantified here. The computation of a flux surface is of either exponential or nondeterministic polynomial complexity, which has the conceptual implication that global identification of magnetic flux surfaces and flux exchange, e.g., in magnetic reconnection, can be intractable in three dimensions. The coarse-grained large-scale magnetic flux experiences diffusive behavior. The link between the diffusion of the coarse-grained flux and field-line random walk is established explicitly through multiple scale analysis. The Kubo number controls both large and small scale limits. These results have consequences for interpreting processes such as magnetic reconnection and field-line diffusion in astrophysical plasmas.

  18. First-principles calculation of self-diffusion, arsenic diffusion, and surface segregation in silicon

    NASA Astrophysics Data System (ADS)

    Centoni, Scott A.

    Integrated circuit device densities have increased more than 2000 times since Gordon Moore's observation of exponential growth in 1965. Modern devices are thus sensitive to minute variations in diffusion, such as the transient-enhanced diffusivity resulting from ion implantation, concentration-dependent diffusivity of dopants due to changes in the Fermi level, and the effects of high stresses and stress gradients (resulting from thermal oxidation and other surface treatments). Arsenic diffusion and self-diffusion in Si are caused by both types of intrinsic defects, vacancies and self-interstitials. Surprisingly, the mechanisms of Si self-diffusion remain unclear: equilibrium defect concentrations are too low to measure, and defect diffusivities are obscured by the relatively large concentrations of C and O traps. The aim of the present work is to develop a physically based, quantitative understanding of dopant diffusion during IC processing, as well as the non-equilibrium limits to dopant concentrations. Density functional theory, a first-principles techniques, has been used (with the PW91 functional) to calculate properties of intrinsic defects not directly accessible to experiment. Density functional calculations of the formation enthalpies and volumes of vacancies and interstitials in silicon are presented in each low-energy geometry and charge state. The effect of pressure (up to 30 kbar) and doping (moving the Fermi level from the valence band maximum to the conduction band minimum) on the stability and diffusivity of defects is discussed. In the presence of electronic or optical excitation, both defects are mobile even at cryogenic temperatures. Vacancy diffusion is found to be enhanced by n-type doping, while p-type doping inhibits interstitial migration. Relaxation volume tensors extracted from these calculations express the response of the defects to non-hydrostatic stress states. The interstitial-mediated diffusion of As is shown to have a similar

  19. Hydrogen adsorption capacity of adatoms on double carbon vacancies of graphene: A trend study from first principles

    NASA Astrophysics Data System (ADS)

    Fair, K. M.; Cui, X. Y.; Li, L.; Shieh, C. C.; Zheng, R. K.; Liu, Z. W.; Delley, B.; Ford, M. J.; Ringer, S. P.; Stampfl, C.

    2013-01-01

    Structural stability and hydrogen adsorption capacity are two key quantities in evaluating the potential of metal-adatom decorated graphene for hydrogen storage and related devices. We have carried out extensive density functional theory calculations for the adsorption of hydrogen molecules on 12 different adatom (Ag, Au, Ca, Li, Mg, Pd, Pt, Sc, Sr, Ti, Y, and Zr) decorated graphene surfaces where the adatoms are found to be stabilized on double carbon vacancies, thus overcoming the “clustering problem” that occurs for adatoms on pristine graphene. Ca and Sr are predicted to bind the greatest number, namely six, of H2 molecules. We find an interesting correlation between the hydrogen capacity and the change of charge distribution with increasing H2 adsorption, where Ca, Li, Mg, Sc, Ti, Y, Sr, and Zr adatoms are partial electron donors and Ag, Au, Pd, and Pt are partial electron acceptors. The “18-electron rule” for predicting maximum hydrogen capacity is found not to be a reliable indicator for these systems.

  20. Surface self-diffusion of silicon during high temperature annealing

    NASA Astrophysics Data System (ADS)

    Acosta-Alba, Pablo E.; Kononchuk, Oleg; Gourdel, Christophe; Claverie, Alain

    2014-04-01

    The atomic-scale mechanisms driving thermally activated self-diffusion on silicon surfaces are investigated by atomic force microscopy. The evolution of surface topography is quantified over a large spatial bandwidth by means of the Power Spectral Density functions. We propose a parametric model, based on the Mullins-Herring (M-H) diffusion equation, to describe the evolution of the surface topography of silicon during thermal annealing. Usually, a stochastic term is introduced into the M-H model in order to describe intrinsic random fluctuations of the system. In this work, we add two stochastic terms describing the surface thermal fluctuations and the oxidation-evaporation phenomenon. Using this extended model, surface evolution during thermal annealing in reducing atmosphere can be predicted for temperatures above the roughening transition. A very good agreement between experimental and theoretical data describing roughness evolution and self-diffusion phenomenon is obtained. The physical origin and time-evolution of these stochastic terms are discussed. Finally, using this model, we explore the limitations of the smoothening of the silicon surfaces by rapid thermal annealing.

  1. Surface self-diffusion of silicon during high temperature annealing

    SciTech Connect

    Acosta-Alba, Pablo E.; Kononchuk, Oleg; Gourdel, Christophe; Claverie, Alain

    2014-04-07

    The atomic-scale mechanisms driving thermally activated self-diffusion on silicon surfaces are investigated by atomic force microscopy. The evolution of surface topography is quantified over a large spatial bandwidth by means of the Power Spectral Density functions. We propose a parametric model, based on the Mullins-Herring (M-H) diffusion equation, to describe the evolution of the surface topography of silicon during thermal annealing. Usually, a stochastic term is introduced into the M-H model in order to describe intrinsic random fluctuations of the system. In this work, we add two stochastic terms describing the surface thermal fluctuations and the oxidation-evaporation phenomenon. Using this extended model, surface evolution during thermal annealing in reducing atmosphere can be predicted for temperatures above the roughening transition. A very good agreement between experimental and theoretical data describing roughness evolution and self-diffusion phenomenon is obtained. The physical origin and time-evolution of these stochastic terms are discussed. Finally, using this model, we explore the limitations of the smoothening of the silicon surfaces by rapid thermal annealing.

  2. Echo thresholds for reflections from acoustically diffusive architectural surfaces.

    PubMed

    Robinson, Philip W; Walther, Andreas; Faller, Christof; Braasch, Jonas

    2013-10-01

    When sound reflects from an irregular architectural surface, it spreads spatially and temporally. Extensive research has been devoted to prediction and measurement of diffusion, but less has focused on its perceptual effects. This paper examines the effect of temporal diffusion on echo threshold. There are several notable differences between the waveform of a reflection identical to the direct sound and one from an architectural surface. The onset and offset are damped and the energy is spread in time; hence, the reflection response has a lower peak amplitude, and is decorrelated from the direct sound. The perceptual consequences of these differences are previously undocumented. Echo threshold tests are conducted with speech and music signals, using direct sound and a simulated reflection that is either identical to the direct sound or has various degrees of diffusion. Results indicate that for a speech signal, diffuse reflections are less easily detectable as a separate auditory event than specular reflections of the same total energy. For a music signal, no differences are observed between the echo thresholds for reflections with and without temporal diffusion. Additionally, echo thresholds are found to be shorter for speech than for music, and shorter for spatialized than for diotic presentation of signals.

  3. Compact surface-cluster diffusion by concerted rotation and translation

    SciTech Connect

    Hamilton, J. C.; Soerensen, Mads R.; Voter, Arthur F.

    2000-02-15

    First-principles calculations show that a pseudomorphic Ir monolayer on Ir(111) has an unexpected metastable on-top configuration only slightly above the stable fcc configuration. The energy required for any translation of the monolayer parallel to the surface is small. This opens the possibility that whole clusters can move by rotation and/or translation through configurations with many atoms in on-top sites. One such diffusion mechanism, the ''cartwheel shuffle'' could explain otherwise mysterious long jumps and high prefactors seen in the diffusion of 19-atom Ir clusters on Ir(111). (c) 2000 The American Physical Society.

  4. Atomic oxygen diffusion on and desorption from amorphous silicate surfaces.

    PubMed

    He, Jiao; Jing, Dapeng; Vidali, Gianfranco

    2014-02-28

    Surface reactions involving atomic oxygen have attracted much attention in astrophysics and astrochemistry, but two of the most fundamental surface processes, desorption and diffusion, are not well understood. We studied diffusion and desorption of atomic oxygen on or from amorphous silicate surfaces under simulated interstellar conditions using a radio-frequency dissociated oxygen beam. Temperature programmed desorption (TPD) experiments were performed to study the formation of ozone from reaction of atomic and molecular oxygen deposited on the surface of a silicate. It is found that atomic oxygen begins to diffuse significantly between 40 K and 50 K. A rate equation model was used to study the surface kinetics involved in ozone formation experiments. The value of atomic oxygen desorption energy has been determined to be 152 ± 20 meV (1764 ± 232 K). The newly found atomic oxygen desorption energy, which is much higher than the well-accepted value, might explain the discrepancy in abundance of molecular oxygen in space between observations and chemical models.

  5. Groundwater interactions with surface waters: consequences on diffuse pollution pathways

    NASA Astrophysics Data System (ADS)

    Azzellino, Arianna; Salvetti, Roberta; Gorla, Elena; Parati, Paolo; Malagò, Anna; Ragusa, Francesca; Vismara, Renato

    2010-05-01

    The interactions between groundwater and surface water are complex. Surface-waters and groundwaters are, in fact, linked components of a hydrologic continuum. In general, diffuse pollution in surface waters is difficult to quantify since it follows a multitude of pathways and acts on different time scales. During rainfall events most of the diffuse pollutant load follows the surface runoff pathways and, reaches the surface acquifers however, a fraction of this load will follows the sub-surface runoff pathways and it will possibly reach the surface acquifers after a certain time lag. The time scale of the sub-surface runoff pathways is very different from the surface runoff time scale and rarely a subsurface diffuse pollution event can be directly correlated to a specific rainfall event. This is the reason why even though there are models that enable to simulate the groundwater-surface water system (GW-SW), yet the effect of these interactions in terms of diffuse pollution pathways and their correspondent effect on the quality of surface waters to date are largely unknown. To upgrade the conceptual modeling of the "groundwater-surface water" system, a broader perspective of such interactions across and between surfacewater bodies is needed. Multidimensional analyses may help in understanding the effect of such interactions, as the characterization of the hydraulic interface and its spatial variability. To fully understand these interactions, modeling studies need to be coupled to sound and robust monitoring of surface- and ground- water quality data. Modeling can be combined with multivariate statistical techniques (e.g. factor analysis) to improve our capability to "detect" the effect of the sub-surface runoff on the water quality of specific water courses. Aim of this study was to analyse the groundwater contribution to the total nutrient river load of different watersheds that share a very intensive agriculture and landfarming system. The studied watersheds all

  6. Fano fingerprints of Majoranas in Kitaev dimers of superconducting adatoms

    NASA Astrophysics Data System (ADS)

    Dessotti, F. A.; Ricco, L. S.; Marques, Y.; Machado, R. S.; Guessi, L. H.; Figueira, M. S.; de Souza, M.; Seridonio, A. C.

    2016-09-01

    We investigate theoretically a Fano interferometer composed by STM and AFM tips close to a Kitaev dimer of superconducting adatoms, in which the adatom placed under the AFM tip, encloses a pair of Majorana fermions (MFs). For the binding energy Δ of the Cooper pair delocalized into the adatoms under the tips coincident with the tunneling amplitude t between them, namely Δ=t, we find that only one MF beneath the AFM tip hybridizes with the adatom coupled to the STM tips. As a result, a gate invariance feature emerges: the Fano profile of the transmittance rises as an invariant quantity depending upon the STM tips Fermi energy, due to the symmetric swap in the gate potential of the AFM tip.

  7. Diffusion and Phase Transformations of Transition Metals on Silicon Surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Yi.

    The role of surface diffusion and surface phase reaction kinetics of nickel (Ni) and cobalt (Co) on Si(111) and Si(100) are investigated under Ultra High Vacuum (UHV) conditions using Auger Spectroscopy (AES), Reflection High Electron Energy Diffraction (RHEED) and surface X-ray diffraction. The surface segregation phenomenon and the formation conditions for Si(111)-sqrt{19 } x sqrt{19}- rm R+/-23.4^circ phase (hereafter called sqrt{19}) for Ni/Si(111) are studied by RHEED and AES. Quench cooling induces surface segregation which restores the total accumulated dose of Ni to two surfaces of the wafer. The coverage dependence of phases thus produced follows: 7 x 7 to 1 x 1-RC(0.05Ml) to sqrt{19} (0.16Ml) then to B-type NiSi_2. It is found that there are 3 Ni atoms in the sqrt{19 } unit cell. A "race" of bulk diffusion versus surface diffusion for Ni in/on Si(111) is studied by depositing a laterally confined dot of metal on one side of the double side polished and UHV cleaned Si wafer and then measuring the lateral Auger profile on the reverse side following annealing and quenching. Ni reaches the far side of the wafer at temperatures as low as 500C via bulk diffusion with no measurable contribution from the surface paths, which are short-circuited by numerous, fast bulk paths. Similar results are found for Ni and Co on Si(111) and Si(100). The diffusivity and solid solubility calculated from the experiments are close to the bulk values known from the literature. In addition, the thermal stability, phase transformation and different dissolution mechanisms of sqrt {19} and 1 x 1-RC surface phases of Ni/Si(111) are carefully examined. The activation energies of these processes are compared on an Arrhenius plot. These are discussed in terms of the migration and formation mechanisms involved in these phase transformations. An energy level diagram is used to summarize the atomistic kinetics.

  8. Gallium surface diffusion on GaAs (001) surfaces measured by crystallization dynamics of Ga droplets

    SciTech Connect

    Bietti, Sergio Somaschini, Claudio; Esposito, Luca; Sanguinetti, Stefano; Fedorov, Alexey

    2014-09-21

    We present accurate measurements of Ga cation surface diffusion on GaAs surfaces. The measurement method relies on atomic force microscopy measurement of the morphology of nano–disks that evolve, under group V supply, from nanoscale group III droplets, earlier deposited on the substrate surface. The dependence of the radius of such nano-droplets on crystallization conditions gives direct access to Ga diffusion length. We found an activation energy for Ga on GaAs(001) diffusion E{sub A}=1.31±0.15 eV, a diffusivity prefactor of D₀=0.53(×2.1±1) cm² s⁻¹ that we compare with the values present in literature. The obtained results permit to better understand the fundamental physics governing the motion of group III ad–atoms on III–V crystal surfaces and the fabrication of designable nanostructures.

  9. Scattering theory of spin-orbit active adatoms on graphene

    NASA Astrophysics Data System (ADS)

    Pachoud, Alexandre; Ferreira, Aires; Ã-zyilmaz, B.; Castro Neto, A. H.

    2014-07-01

    The scattering of two-dimensional massless Dirac fermions from local spin-orbit interactions with an origin in dilute concentrations of physisorbed atomic species on graphene is theoretically investigated. The hybridization between graphene and the adatoms' orbitals lifts spin and valley degeneracies of the pristine host material, giving rise to rich spin-orbit coupling mechanisms with features determined by the exact adsorption position on the honeycomb lattice—bridge, hollow, or top position—and the adatoms' outer-shell orbital type. Effective graphene-only Hamiltonians are derived from symmetry considerations, while a microscopic tight-binding approach connects effective low-energy couplings and graphene-adatom hybridization parameters. Within the T-matrix formalism, a theory for (spin-dependent) scattering events involving graphene's charge carriers, and the spin-orbit active adatoms is developed. Spin currents associated with intravalley and intervalley scattering are found to tend to oppose each other. We establish that under certain conditions, hollow-position adatoms give rise to the spin Hall effect, through skew scattering, while top-position adatoms induce transverse charge currents via trigonal potential scattering. We also identify the critical Fermi energy range where the spin Hall effect is dramatically enhanced, and the associated transverse spin currents can be reversed.

  10. Cholesterol enhances surface water diffusion of phospholipid bilayers

    SciTech Connect

    Cheng, Chi-Yuan; Kausik, Ravinath; Han, Songi; Olijve, Luuk L. C.

    2014-12-14

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed {sup 1}H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5–10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in

  11. Cholesterol enhances surface water diffusion of phospholipid bilayers

    NASA Astrophysics Data System (ADS)

    Cheng, Chi-Yuan; Olijve, Luuk L. C.; Kausik, Ravinath; Han, Songi

    2014-12-01

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed 1H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5-10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in faster

  12. Geometrically nonlinear continuum thermomechanics with surface energies coupled to diffusion

    NASA Astrophysics Data System (ADS)

    McBride, A. T.; Javili, A.; Steinmann, P.; Bargmann, S.

    2011-10-01

    Surfaces can have a significant influence on the overall response of a continuum body but are often neglected or accounted for in an ad hoc manner. This work is concerned with a nonlinear continuum thermomechanics formulation which accounts for surface structures and includes the effects of diffusion and viscoelasticity. The formulation is presented within a thermodynamically consistent framework and elucidates the nature of the coupling between the various fields, and the surface and the bulk. Conservation principles are used to determine the form of the constitutive relations and the evolution equations. Restrictions on the jump in the temperature and the chemical potential between the surface and the bulk are not a priori assumptions, rather they arise from the reduced dissipation inequality on the surface and are shown to be satisfiable without imposing the standard assumptions of thermal and chemical slavery. The nature of the constitutive relations is made clear via an example wherein the form of the Helmholtz energy is explicitly given.

  13. Rapid diffusion of magic-size islands by combined glide and vacancy mechanisms

    SciTech Connect

    Perez, D; Voter, A F; Uche, O U; Hamilton, J C

    2009-01-01

    Using molecular dynamics, nudged elastic band, and embedded atom methods, we show that certain 2D Ag islands undergo extremely rapid one-dimensional diffusion on Cu(001) surfaces. Indeed, below 300K, hopping rates for 'magic-size' islands are orders of magnitude faster than hopping rates for single Ag adatoms. This rapid diffusion requires both the c(10 x 2) hexagonally-packed superstructure typical of Ag on Cu(001) and appropriate 'magic-sizes' for the islands. The novel highly-cooperative diffusion mechanism presented here couples vacancy diffusion with simultaneous core glide.

  14. Transition from distributional to ergodic behavior in an inhomogeneous diffusion process: Method revealing an unknown surface diffusivity.

    PubMed

    Akimoto, Takuma; Seki, Kazuhiko

    2015-08-01

    Diffusion of molecules in cells plays an important role in providing a biological reaction on the surface by finding a target on the membrane surface. The water retardation (slow diffusion) near the target assists the searching molecules to recognize the target. Here, we consider effects of the surface diffusivity on the effective diffusivity, where diffusion on the surface is slower than that in bulk. We show that the ensemble-averaged mean-square displacements increase linearly with time when the desorption rate from the surface is finite, which is valid even when the diffusion on the surface is anomalous (subdiffusion). Moreover, this slow diffusion on the surface affects the fluctuations of the time-averaged mean-square displacements (TAMSDs). We find that fluctuations of the TAMSDs remain large when the measurement time is smaller than a characteristic time, and decays according to an increase of the measurement time for a relatively large measurement time. Therefore, we find a transition from nonergodic (distributional) to ergodic diffusivity in a target search process. Moreover, this fluctuation analysis provides a method to estimate an unknown surface diffusivity.

  15. A localized meshless method for diffusion on folded surfaces

    NASA Astrophysics Data System (ADS)

    Cheung, Ka Chun; Ling, Leevan; Ruuth, Steven J.

    2015-09-01

    Partial differential equations (PDEs) on surfaces arise in a variety of application areas including biological systems, medical imaging, fluid dynamics, mathematical physics, image processing and computer graphics. In this paper, we propose a radial basis function (RBF) discretization of the closest point method. The corresponding localized meshless method may be used to approximate diffusion on smooth or folded surfaces. Our method has the benefit of having an a priori error bound in terms of percentage of the norm of the solution. A stable solver is used to avoid the ill-conditioning that arises when the radial basis functions (RBFs) become flat.

  16. Anomalously rapid hydration water diffusion dynamics near DNA surfaces

    PubMed Central

    Franck, John M.; Ding, Yuan; Stone, Katherine

    2015-01-01

    The emerging Overhauser effect Dynamic Nuclear Polarization (ODNP) technique measures the translational mobility of water within the vicinity (5-15 Å) of preselected sites. The work presented here expands the capabilities of the ODNP technique and illuminates an important, previously unseen, property of the translational diffusion dynamics of water at the surface of DNA duplexes. We attach nitroxide radicals (i.e., spin labels) to multiple phosphate backbone positions of DNA duplexes, allowing ODNP to measure the hydration dynamics at select positions along the DNA surface. With a novel approach to ODNP analysis, we isolate the contributions of water molecules at these sites that undergo free translational diffusion from water molecules that either loosely bind to or exchange protons with the DNA. The results reveal that a significant population of water in a localized volume adjacent to the DNA surface exhibits fast, bulk-like characteristics and moves unusually rapidly compared to water found in similar probe volumes near protein and membrane surfaces. Control studies show that the observation of these characteristics are upheld even when the DNA duplex is tethered to streptavidin or the mobility of the nitroxides is altered. This implies that, as compared to protein or lipid surfaces, it is an intrinsic feature of the DNA duplex surface that it interacts only weakly with a significant fraction of a network of surface hydration water. The displacement of this translationally mobile water is energetically less costly than that of more strongly bound water by up to several kBT and thus can lower the activation barrier for interactions involving the DNA surface. PMID:26256693

  17. Anomalously Rapid Hydration Water Diffusion Dynamics Near DNA Surfaces.

    PubMed

    Franck, John M; Ding, Yuan; Stone, Katherine; Qin, Peter Z; Han, Songi

    2015-09-23

    The emerging Overhauser effect dynamic nuclear polarization (ODNP) technique measures the translational mobility of water within the vicinity (5-15 Å) of preselected sites. The work presented here expands the capabilities of the ODNP technique and illuminates an important, previously unseen, property of the translational diffusion dynamics of water at the surface of DNA duplexes. We attach nitroxide radicals (i.e., spin labels) to multiple phosphate backbone positions of DNA duplexes, allowing ODNP to measure the hydration dynamics at select positions along the DNA surface. With a novel approach to ODNP analysis, we isolate the contributions of water molecules at these sites that undergo free translational diffusion from water molecules that either loosely bind to or exchange protons with the DNA. The results reveal that a significant population of water in a localized volume adjacent to the DNA surface exhibits fast, bulk-like characteristics and moves unusually rapidly compared to water found in similar probe volumes near protein and membrane surfaces. Control studies show that the observation of these characteristics are upheld even when the DNA duplex is tethered to streptavidin or the mobility of the nitroxides is altered. This implies that, as compared to protein or lipid surfaces, it is an intrinsic feature of the DNA duplex surface that it interacts only weakly with a significant fraction of the surface hydration water network. The displacement of this translationally mobile water is energetically less costly than that of more strongly bound water by up to several kBT and thus can lower the activation barrier for interactions involving the DNA surface.

  18. Interaction of CO2 with Oxygen Adatoms on Rutile TiO2(110)

    SciTech Connect

    Lin, Xiao; Wang, Zhitao; Lyubinetsky, Igor; Kay, Bruce D.; Dohnalek, Zdenek

    2013-01-10

    The interactions of CO2 with oxygen adatoms (Oa’s) on rutile TiO2(110) surfaces have been studied using scanning tunneling microscopy. At 50 K CO2 is found to adsorb preferentially on five-coordinated Ti sites (Ti5c’s) next to Oa’s rather than on oxygen vacancies (VO’s) (the most stable adsorption sites on reduced TiO2(110)). Temperature dependent studies show that after annealing to 100 - 150 K, VO’s become preferentially populated indicating the presence of a kinetic barrier for CO2 adsorption into the VO’s. The difference between the CO2 binding energy on VO’s and Ti5c sites next to the Oa’s are found to be only 0.009 - 0.025 eV. The barrier for CO2 diffusion away from Oa’s is estimated to be ~0.17 eV. Crescent-like feature of the images of CO2 adsorbed on Ti5c’s next to Oa’s are interpreted as a time average of terminally bound CO2 molecules switching between the configurations that are tilted towards Oa and/or towards one of the two neighboring bridging oxygen (Ob) rows. In the presence of VO defects, CO2 is found to tilt preferentially away from the VO containing Ob row. If another CO2 is present on the neighboring Ti5c row, both CO2 molecules tilt towards the common Ob row that separates them.

  19. Horizontal advection, diffusion and plankton spectra at the sea surface.

    NASA Astrophysics Data System (ADS)

    Bracco, A.; Clayton, S.; Pasquero, C.

    2009-04-01

    Plankton patchiness is ubiquitous in the oceans, and various physical and biological processes have been proposed as its generating mechanisms. However, a coherent statement on the problem is missing, due to both a small number of suitable observations and to an incomplete understanding of the properties of reactive tracers in turbulent media. Abraham (1998) suggested that horizontal advection may be the dominant process behind the observed distributions of phytoplankton and zooplankton, acting to mix tracers with longer reaction times (Rt) down to smaller scales. Conversely, Mahadevan and Campbell (2002) attributed the relative distributions of sea surface temperature and phytoplankton to small scale upwelling, where tracers with longer Rt are able to homogenize more than those with shorter reaction times. Neither of the above mechanisms can explain simultaneously the (relative) spectral slopes of temperature, phytoplankton and zooplankton. Here, with a simple advection model and a large suite of numerical experiments, we concentrate on some of the physical processes influencing the relative distributions of tracers at the ocean surface, and we investigate: 1) the impact of the spatial scale of tracer supply; 2) the role played by coherent eddies on the distribution of tracers with different Rt; 3) the role of diffusion (so far neglected). We show that diffusion determines the distribution of temperature, regardless of the nature of the forcing. We also find that coherent structures together with differential diffusion of tracers with different Rt impact the tracer distributions. This may help in understanding the highly variable nature of observed plankton spectra.

  20. Diffusion on a curved surface coupled to diffusion in the volume: Application to cell biology

    NASA Astrophysics Data System (ADS)

    Novak, Igor L.; Gao, Fei; Choi, Yung-Sze; Resasco, Diana; Schaff, James C.; Slepchenko, Boris M.

    2007-10-01

    An algorithm is presented for solving a diffusion equation on a curved surface coupled to diffusion in the volume, a problem often arising in cell biology. It applies to pixilated surfaces obtained from experimental images and performs at low computational cost. In the method, the Laplace-Beltrami operator is approximated locally by the Laplacian on the tangential plane and then a finite volume discretization scheme based on a Voronoi decomposition is applied. Convergence studies show that mass conservation built in the discretization scheme and cancellation of sampling error ensure convergence of the solution in space with an order between 1 and 2. The method is applied to a cell-biological problem where a signaling molecule, G-protein Rac, cycles between the cytoplasm and cell membrane thus coupling its diffusion in the membrane to that in the cell interior. Simulations on realistic cell geometry are performed to validate, and determine the accuracy of, a recently proposed simplified quantitative analysis of fluorescence loss in photobleaching. The method is implemented within the Virtual Cell computational framework freely accessible at http://www.vcell.org.

  1. Bulk and surface controlled diffusion of fission gas atoms

    SciTech Connect

    Andersson, Anders D.

    2012-08-09

    {sub 2{+-}x}, which compare favorably to available experiments. This is an extension of previous work [13]. In particular, it applies improved chemistry models for the UO{sub 2{+-}x} nonstoichiometry and its impact on the fission gas activation energies. The derivation of these models follows the approach that used in our recent study of uranium vacancy diffusion in UO{sub 2} [14]. Also, based on the calculated DFT data we analyze vacancy enhanced diffusion mechanisms in the intermediate temperature regime. In addition to vacancy enhanced diffusion we investigate species transport on the (111) UO{sub 2} surface. This is motivated by the formation of small voids partially filled with fission gas atoms (bubbles) in UO{sub 2} under irradiation, for which surface diffusion could be the rate-limiting transport step. Diffusion of such bubbles constitutes an alternative mechanism for mass transport in these materials.

  2. Role of surface energy coefficients and nuclear surface diffuseness in the fusion of heavy-ions

    NASA Astrophysics Data System (ADS)

    Dutt, Ishwar; Puri, Rajeev K.

    2010-04-01

    We discuss the effect of surface energy coefficients as well as nuclear surface diffuseness in the proximity potential and ultimately in the fusion of heavy-ions. Here we employ different versions of surface energy coefficients. Our analysis reveals that these technical parameters can influence the fusion barriers by a significant amount. A best set of these parameters is also given that explains the experimental data nicely.

  3. Graphene surface emitting terahertz laser: Diffusion pumping concept

    SciTech Connect

    Davoyan, Arthur R.; Morozov, Mikhail Yu.; Popov, Vyacheslav V.; Satou, Akira; Otsuji, Taiichi

    2013-12-16

    We suggest a concept of a tunable graphene-based terahertz (THz) surface emitting laser with diffusion pumping. We employ significant difference in the electronic energy gap of graphene and a typical wide-gap semiconductor, and demonstrate that carriers generated in the semiconductor can be efficiently captured by graphene resulting in population inversion and corresponding THz lasing from graphene. We develop design principles for such a laser and estimate its performance. We predict up to 50 W/cm{sup 2} terahertz power output for 100 kW/cm{sup 2} pump power at frequency around 10 THz at room temperature.

  4. Linear optical studies of metal surfaces: Diffusion, growth, and surface dynamics

    NASA Astrophysics Data System (ADS)

    Nabighian, Edward Ara

    Through the use of laser-induced thermal desorption, a monolayer density grating is produced on a Ni(111) substrate. Using linear optical diffraction from this grating we monitor surface diffusion. By varying the angular direction of the grating we also monitor the azimuthal dependence of diffusion over 360° rotation. For hydrogen on Ni(111) we measured the diffusion rates from 65 K to 240 K, yielding diffusion rates which vary from 2 × 10 -15 cm2/sec to 2 × 10-7 cm2/sec. The results reveal energies of diffusion in both the classical overbarrier hopping and phonon-assisted quantum regimes. For xenon on Ni(111) we measured the diffusion rates from 30 K to 60 K, yielding diffusion rates which vary from 1.3 × 10-10 cm2/sec to 1 × 10-9 cm2/sec. In the case of xenon diffusion, the results also reveal an unusually low diffusivity. In addition, growth measurements of xenon on Ni(111) were studied from 35 K to 60 K using an optical reflectance difference technique. The growth of xenon was found to change mechanisms as temperature varied. At 35 K xenon grows in 3-dimensional islands (Volmer-Weber growth), at 40 K xenon grows as 2-dimensional islands (Frank van der Merwe growth), and above 60 K xenon grows to a thickness of only one monolayer. We can not only monitor the growth mechanism, but the growth rate as well. Finally we use optical reflectance difference to monitor sputtering and annealing on the Ni(111) substrate. The competing surface roughening of sputtering and surface reordering of annealing was found to follow an Arrhenius form with an activation energy of Ea = 1.1 eV/atom given by direct atom evaporation from step edges. By monitoring the formation of islands and pits on the surface during sputtering at various temperatures we are able to determine that above 823 K the annealing process reorders the surface faster than sputtering can create surface roughness. As temperature decreases we see an increase in island and pit formation due to the lessened

  5. Crystal orientation effects on helium ion depth distributions and adatom formation processes in plasma-facing tungsten

    SciTech Connect

    Hammond, Karl D.; Wirth, Brian D.

    2014-10-14

    We present atomistic simulations that show the effect of surface orientation on helium depth distributions and surface feature formation as a result of low-energy helium plasma exposure. We find a pronounced effect of surface orientation on the initial depth of implanted helium ions, as well as a difference in reflection and helium retention across different surface orientations. Our results indicate that single helium interstitials are sufficient to induce the formation of adatom/substitutional helium pairs under certain highly corrugated tungsten surfaces, such as (1 1 1)-orientations, leading to the formation of a relatively concentrated layer of immobile helium immediately below the surface. The energies involved for helium-induced adatom formation on (1 1 1) and (2 1 1) surfaces are exoergic for even a single adatom very close to the surface, while (0 0 1) and (0 1 1) surfaces require two or even three helium atoms in a cluster before a substitutional helium cluster and adatom will form with reasonable probability. This phenomenon results in much higher initial helium retention during helium plasma exposure to (1 1 1) and (2 1 1) tungsten surfaces than is observed for (0 0 1) or (0 1 1) surfaces and is much higher than can be attributed to differences in the initial depth distributions alone. The layer thus formed may serve as nucleation sites for further bubble formation and growth or as a source of material embrittlement or fatigue, which may have implications for the formation of tungsten “fuzz” in plasma-facing divertors for magnetic-confinement nuclear fusion reactors and/or the lifetime of such divertors.

  6. Fast surface diffusion of amorphous o-terphenyl and its competition with viscous flow in surface evolution.

    PubMed

    Zhang, Wei; Brian, Caleb W; Yu, Lian

    2015-04-16

    Surface self-diffusion coefficients have been measured for the model molecular glass o-terphenyl (OTP) through surface-grating decay driven by capillarity. The decay mechanism transitions from viscous flow at high temperatures to surface diffusion at low temperatures; for 1000 nm wavelength gratings, the transition occurs at Tg + 11 K. The surface diffusion of OTP is 10(8) times faster than bulk diffusion at Tg and even faster at lower temperatures because of its weaker temperature dependence. At Tg, OTP has approximately the same bulk diffusivity as the previously studied molecular liquid indomethacin, but its surface diffusion is 100 times faster. While the molecular glass-formers exhibit transitions from viscous flow to surface diffusion as the mechanism of capillarity-driven surface flattening, polystyrenes and silicates show no such transition under comparable conditions, suggesting slower surface diffusion on these materials and a general dependence of surface diffusion on intermolecular forces. The velocity of surface crystal growth on molecular glasses is proportional to surface diffusivity, indicating a common kinetic barrier for both processes for temperatures below Tg.

  7. Fast surface diffusion of amorphous o-terphenyl and its competition with viscous flow in surface evolution.

    PubMed

    Zhang, Wei; Brian, Caleb W; Yu, Lian

    2015-04-16

    Surface self-diffusion coefficients have been measured for the model molecular glass o-terphenyl (OTP) through surface-grating decay driven by capillarity. The decay mechanism transitions from viscous flow at high temperatures to surface diffusion at low temperatures; for 1000 nm wavelength gratings, the transition occurs at Tg + 11 K. The surface diffusion of OTP is 10(8) times faster than bulk diffusion at Tg and even faster at lower temperatures because of its weaker temperature dependence. At Tg, OTP has approximately the same bulk diffusivity as the previously studied molecular liquid indomethacin, but its surface diffusion is 100 times faster. While the molecular glass-formers exhibit transitions from viscous flow to surface diffusion as the mechanism of capillarity-driven surface flattening, polystyrenes and silicates show no such transition under comparable conditions, suggesting slower surface diffusion on these materials and a general dependence of surface diffusion on intermolecular forces. The velocity of surface crystal growth on molecular glasses is proportional to surface diffusivity, indicating a common kinetic barrier for both processes for temperatures below Tg. PMID:25803422

  8. Surface Viscosity, Diffusion, and Intermonolayer Friction: Simulating Sheared Amphiphilic Bilayers

    PubMed Central

    Shkulipa, S. A.; den Otter, W. K.; Briels, W. J.

    2005-01-01

    The flow properties of an amphiphilic bilayer are studied in molecular dynamics simulations, by exposing a coarse grained model bilayer to two shear flows directed along the bilayer surface. The first field, with a vorticity perpendicular to the bilayer, induces a regular shear deformation, allowing a direct calculation of the surface viscosity. In experiments this property is measured indirectly, by relating it to the diffusion coefficient of a tracer particle through the Saffman-Einstein expression. The current calculations provide an independent test of this relation. The second flow field, with a vorticity parallel to the bilayer, causes the two constituent monolayers to slide past one another, yielding the interlayer friction coefficient. PMID:15894643

  9. Tunneling Microscopy of Dynamical Processes on the LEAD/GERMANIUM(111) Surface

    NASA Astrophysics Data System (ADS)

    Hwang, Ing-Shouh

    Knowledge about atomic scale motions is essential for understanding dynamical phenomena on surfaces, such as diffusion, phase transitions, and epitaxial growth. This report describes the results of a study of dynamical processes on the Pb/Ge(111) surface using a scanning tunneling microscope (STM). Individual Pb atom diffUsion and concerted atomic motions on the Ge(111) surface are observed in real time. We also study a structural surface phase transformation at elevated temperatures. At very low Pb coverage, migration of individual Pb atoms is observed in the Ge(111)-c(2 x 8) surface near room temperature. The activation energy of this migration can be measured by analyzing a large number of individual atomic motions from room temperature to 80^ circC. The Pb diffusion is found to occur mainly along the (011) adatom row direction of the c(2 x 8) reconstruction. About half of the adatom migrations are "long jumps". We also observe the formation and annihilation of metastable structural surface excitations, which occur much less often than Pb diffusion. They involve a number of adatoms in the same row moving in concert along the row direction like beads on an abacus. This "adatom row shift" may be responsible for the anisotropy of the Pb atom diffusion. It also provides a new mechanism for atomic transport on crystal surfaces and can explain several structural phenomena associated with the Ge(111) surface. At high coverage, a one monolayer Pb/Ge(111) undergoes a reversible phase transformation from sqrt{3} x sqrt{3 }R30^circ to 1 x 1 at about 180 ^circC. Atomic structures of both high and low temperature phases are resolved, which reveals an order-order transition. Spatial and temporal fluctuations are exposed just above the transition temperature. In addition, the influence of surface strain, phase boundaries, and finite size domains are found to play an important role in the phase transformation.

  10. Generating a Simulated Fluid Flow Over an Aircraft Surface Using Anisotropic Diffusion

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)

    2013-01-01

    A fluid-flow simulation over a computer-generated aircraft surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A pressure-gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using a pressure gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and angular difference between the diffusion-path vector and the pressure-gradient vector.

  11. Extending the Diffuse Layer Model of Surface Acidity Constant Behavior: IV. Diffuse Layer Charge/Potential Relationships

    EPA Science Inventory

    Most current electrostatic surface complexation models describing ionic binding at the particle/water interface rely on the use of Poisson - Boltzmann (PB) theory for relating diffuse layer charge densities to diffuse layer electrostatic potentials. PB theory is known to contain ...

  12. Spin-spin correlations of magnetic adatoms on graphene

    NASA Astrophysics Data System (ADS)

    Güçlü, A. D.; Bulut, Nejat

    2015-03-01

    We study the interaction between two magnetic adatom impurities in graphene using the Anderson model. The two-impurity Anderson Hamiltonian is solved numerically by using the quantum Monte Carlo technique. We find that the interimpurity spin susceptibility is strongly enhanced at low temperatures, significantly diverging from the well-known Ruderman-Kittel-Kasuya-Yoshida result which decays as R-3.

  13. Modelling interactions between soil evolution and diffusive surface processes

    NASA Astrophysics Data System (ADS)

    Kirkby, Mike; Johnson, Michelle; Gloor, Emanual

    2014-05-01

    Bioturbation, combined with settlement under gravity, generates profiles of bulk density, porosity and hydraulic conductivity (Ksat). Rates of bioturbation are linked to rates of diffusive downslope sediment transport (creep) and rates can be compared via the increase in OSL ages of soil aggregate grains with depth. Some primary porosity is also produced by weathering of rock to saprolite, often with little reduction in bulk density but some dilation of joints. Downward percolation of rain water near the surface is controlled by the diffusion-induced decrease in porosity and Ksat, driving lateral subsurface flow in the zone of fluctuating water table, and leaving progressively less water for downward percolation. As the depth to the weathering front is varied, progressively less water is therefore available for weathering, producing the observed decrease in weathering rate with increasing soil depth. These processes are modelled by repeatedly applying a stochastic realisation of daily rainfalls for an area until the annual hydrological cycle stabilises, providing the average partition of rainfall into its components of evapotranspiration, lateral flow and downward percolation, with depth in the soil. The average hydrology is then applied to drive evolution of the weathering profile over longer time spans.

  14. Generating a Simulated Fluid Flow over a Surface Using Anisotropic Diffusion

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)

    2016-01-01

    A fluid-flow simulation over a computer-generated surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using the gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and the gradient vector.

  15. Measuring Surface Diffusion of Organic Glasses Using Tobacco Mosaic Virus as Probe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Potter, Richard; Fakhraai, Zahra

    Recent studies have shown that diffusion on the surface of organic glasses can be many orders of magnitude faster than bulk diffusion, with lower activation barrier. Developing new probes that can readily measure the diffusion at the surface of an organic glass can help study the effect of chemical structure and molecule's size on the enhanced surface diffusion. In this study, surface diffusion coefficient of molecular glass (TPD) is measured using tobacco mosaic virus (TMV) as probe particles. TMV is placed on the surface of bulk TPD films. The evolution of the meniscus formed around TMV, driven by curvature gradient, is probed at various temperatures. TMV has a well-defined cylindrical shape, with a large aspect ratio (18 nm wide, 300 nm long). As such, the shape of the meniscus around the center of TMV is semi-one dimensional. Based on the self-similarity nature of surface diffusion flow in one dimension, the surface diffusion coefficient and its temperature dependence are measured. It is found that the surface diffusion is greatly enhanced and has weak temperature dependence compared to bulk counterpart, consistent with previous studies, showing that TMV probes serve as an efficient method of measuring surface diffusion. NSF-CAREER DMR-1350044.

  16. Giant topological insulator gap in graphene with 5d adatoms.

    PubMed

    Hu, Jun; Alicea, Jason; Wu, Ruqian; Franz, Marcel

    2012-12-28

    Two-dimensional topological insulators (2D TIs) have been proposed as platforms for many intriguing applications, ranging from spintronics to topological quantum information processing. Realizing this potential will likely be facilitated by the discovery of new, easily manufactured materials in this class. With this goal in mind, we introduce a new framework for engineering a 2D TI by hybridizing graphene with impurity bands arising from heavy adatoms possessing partially filled d shells, in particular, osmium and iridium. First-principles calculations predict that the gaps generated by this means exceed 0.2 eV over a broad range of adatom coverage; moreover, tuning of the Fermi level is not required to enter the TI state. The mechanism at work is expected to be rather general and may open the door to designing new TI phases in many materials.

  17. Inactivation of Escherichia coli on PTFE surfaces by diffuse coplanar surface barrier discharge

    NASA Astrophysics Data System (ADS)

    Tučeková, Zlata; Koval'ová, Zuzana; Zahoranová, Anna; Machala, Zdenko; Černák, Mirko

    2016-08-01

    The non-equilibrium plasma of diffuse coplanar surface barrier discharge (DCSBD) was tested for decontamination of bacteria Escherichia coli on polymer surfaces. We investigated the optical parameters of DCSBD plasma generated in synthetic air with different relative humidity. Our study was provided to estimate the main plasma components active during the DCSBD plasma degradation of E. coli contamination prepared on polytetrafluoroethylene (PTFE, Teflon) surface, in ambient air at atmospheric pressure. The DCSBD plasma was characterized by means of electrical measurements and optical emission spectroscopy. The inactivation of E. coli bacteria was evaluated by standard microbiological cultivation (CFU plate counting). The experimental results of the germicidal efficiency obtained for short plasma exposure times proved the effectiveness of DCSBD plasma for the polymer surface decontamination. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  18. Floquet bound states around defects and adatoms in graphene

    NASA Astrophysics Data System (ADS)

    Lovey, D. A.; Usaj, Gonzalo; Foa Torres, L. E. F.; Balseiro, C. A.

    2016-06-01

    Recent studies have focused on laser-induced gaps in graphene which have been shown to have a topological origin, thereby hosting robust states at the sample edges. While the focus has remained mainly on these topological chiral edge states, the Floquet bound states around defects lack a detailed study. In this paper we present such a study covering large defects of different shape and also vacancy-like defects and adatoms at the dynamical gap at ℏ Ω /2 (ℏ Ω being the photon energy). Our results, based on analytical calculations as well as numerics for full tight-binding models, show that the bound states are chiral and appear in a number which grows with the defect size. Furthermore, while the bound states exist regardless of the type of the defect's edge termination (zigzag, armchair, mixed), the spectrum is strongly dependent on it. In the case of top adatoms, the bound state quasienergies depend on the adatoms energy. The appearance of such bound states might open the door to the presence of topological effects on the bulk transport properties of dirty graphene.

  19. Stability analysis and simulations of coupled bulk-surface reaction–diffusion systems

    PubMed Central

    Madzvamuse, Anotida; Chung, Andy H. W.; Venkataraman, Chandrasekhar

    2015-01-01

    In this article, we formulate new models for coupled systems of bulk-surface reaction–diffusion equations on stationary volumes. The bulk reaction–diffusion equations are coupled to the surface reaction–diffusion equations through linear Robin-type boundary conditions. We then state and prove the necessary conditions for diffusion-driven instability for the coupled system. Owing to the nature of the coupling between bulk and surface dynamics, we are able to decouple the stability analysis of the bulk and surface dynamics. Under a suitable choice of model parameter values, the bulk reaction–diffusion system can induce patterning on the surface independent of whether the surface reaction–diffusion system produces or not, patterning. On the other hand, the surface reaction–diffusion system cannot generate patterns everywhere in the bulk in the absence of patterning from the bulk reaction–diffusion system. For this case, patterns can be induced only in regions close to the surface membrane. Various numerical experiments are presented to support our theoretical findings. Our most revealing numerical result is that, Robin-type boundary conditions seem to introduce a boundary layer coupling the bulk and surface dynamics. PMID:25792948

  20. The Ehrlich-Schwoebel barrier on an oxide surface: a combined Monte-Carlo and in situ scanning tunneling microscopy approach.

    PubMed

    Gianfrancesco, Anthony G; Tselev, Alexander; Baddorf, Arthur P; Kalinin, Sergei V; Vasudevan, Rama K

    2015-11-13

    The controlled growth of epitaxial films of complex oxides requires an atomistic understanding of key parameters determining final film morphology, such as termination dependence on adatom diffusion, and height of the Ehrlich-Schwoebel (ES) barrier. Here, through an in situ scanning tunneling microscopy study of mixed-terminated La5/8Ca3/8MnO3 (LCMO) films, we image adatoms and observe pile-up at island edges. Image analysis allows determination of the population of adatoms at the edge of islands and fractions on A-site and B-site terminations. A simple Monte-Carlo model, simulating the random walk of adatoms on a sinusoidal potential landscape using Boltzmann statistics is used to reproduce the experimental data, and provides an estimate of the ES barrier as ∼0.18 ± 0.04 eV at T = 1023 K, similar to those of metal adatoms on metallic surfaces. These studies highlight the utility of in situ imaging, in combination with basic Monte-Carlo methods, in elucidating the factors which control the final film growth in complex oxides. PMID:26489518

  1. The Ehrlich-Schwoebel barrier on an oxide surface: a combined Monte-Carlo and in situ scanning tunneling microscopy approach.

    PubMed

    Gianfrancesco, Anthony G; Tselev, Alexander; Baddorf, Arthur P; Kalinin, Sergei V; Vasudevan, Rama K

    2015-11-13

    The controlled growth of epitaxial films of complex oxides requires an atomistic understanding of key parameters determining final film morphology, such as termination dependence on adatom diffusion, and height of the Ehrlich-Schwoebel (ES) barrier. Here, through an in situ scanning tunneling microscopy study of mixed-terminated La5/8Ca3/8MnO3 (LCMO) films, we image adatoms and observe pile-up at island edges. Image analysis allows determination of the population of adatoms at the edge of islands and fractions on A-site and B-site terminations. A simple Monte-Carlo model, simulating the random walk of adatoms on a sinusoidal potential landscape using Boltzmann statistics is used to reproduce the experimental data, and provides an estimate of the ES barrier as ∼0.18 ± 0.04 eV at T = 1023 K, similar to those of metal adatoms on metallic surfaces. These studies highlight the utility of in situ imaging, in combination with basic Monte-Carlo methods, in elucidating the factors which control the final film growth in complex oxides.

  2. The Ehrlich–Schwoebel barrier on an oxide surface: a combined Monte-Carlo and in situ scanning tunneling microscopy approach

    SciTech Connect

    Gianfrancesco, Anthony G.; Tselev, Alexander; Baddorf, Arthur P.; Kalinin, Sergei V.; Vasudevan, Rama K.

    2015-10-22

    The controlled growth of epitaxial films of complex oxides requires an atomistic understanding of key parameters determining final film morphology, such as termination dependence on adatom diffusion, and height of the Ehrlich–Schwoebel (ES) barrier. In this study, through an in situ scanning tunneling microscopy study of mixed-terminated La5/8Ca3/8MnO3 (LCMO) films, we image adatoms and observe pile-up at island edges. Image analysis allows determination of the population of adatoms at the edge of islands and fractions on A-site and B-site terminations. A simple Monte-Carlo model, simulating the random walk of adatoms on a sinusoidal potential landscape using Boltzmann statistics is used to reproduce the experimental data, and provides an estimate of the ES barrier as ~0.18 ± 0.04 eV at T = 1023 K, similar to those of metal adatoms on metallic surfaces. In conclusion, these studies highlight the utility of in situ imaging, in combination with basic Monte-Carlo methods, in elucidating the factors which control the final film growth in complex oxides.

  3. The Ehrlich–Schwoebel barrier on an oxide surface: a combined Monte-Carlo and in situ scanning tunneling microscopy approach

    DOE PAGES

    Gianfrancesco, Anthony G.; Tselev, Alexander; Baddorf, Arthur P.; Kalinin, Sergei V.; Vasudevan, Rama K.

    2015-10-22

    The controlled growth of epitaxial films of complex oxides requires an atomistic understanding of key parameters determining final film morphology, such as termination dependence on adatom diffusion, and height of the Ehrlich–Schwoebel (ES) barrier. In this study, through an in situ scanning tunneling microscopy study of mixed-terminated La5/8Ca3/8MnO3 (LCMO) films, we image adatoms and observe pile-up at island edges. Image analysis allows determination of the population of adatoms at the edge of islands and fractions on A-site and B-site terminations. A simple Monte-Carlo model, simulating the random walk of adatoms on a sinusoidal potential landscape using Boltzmann statistics is usedmore » to reproduce the experimental data, and provides an estimate of the ES barrier as ~0.18 ± 0.04 eV at T = 1023 K, similar to those of metal adatoms on metallic surfaces. In conclusion, these studies highlight the utility of in situ imaging, in combination with basic Monte-Carlo methods, in elucidating the factors which control the final film growth in complex oxides.« less

  4. Symmetry of surface nanopatterns induced by ion-beam sputtering: Role of anisotropic surface diffusion

    NASA Astrophysics Data System (ADS)

    Renedo, Javier; Cuerno, Rodolfo; Castro, Mario; Muñoz-García, Javier

    2016-04-01

    Ion-beam sputtering (IBS) is a cost-effective technique able to produce ordered nanopatterns on the surfaces of different materials. To date, most theoretical studies of this process have focused on systems which become amorphous under irradiation, e.g., semiconductors at room temperature. Thus, in spite of the large amount of experimental work on metals, or more recently on semiconductors at high temperatures, such experimental contexts have received relatively little theoretical attention. These systems are characterized by transport mechanisms, e.g., surface diffusion, which are anisotropic as a reflection of the crystalline structure not being overruled by the irradiation. Here, we generalize a previous continuum theory of IBS at normal incidence, in order to account for anisotropic surface diffusion. We explore systematically our generalized model in order to understand the role of anisotropy in the space-ordering properties of the resulting patterns. In particular, we derive a height equation which predicts morphological transitions among hexagonal and rectangular patterns as a function of system parameters and employ an angular correlation function to assess these pattern symmetries. By suitably choosing experimental conditions, it is found that one might be able to experimentally control the type of order displayed by the patterns produced.

  5. Determination of parameters of Cu surface mass transport on sapphire from morphological changes of beaded films caused by evaporation

    NASA Astrophysics Data System (ADS)

    Beszeda, I.; Beke, D. L.

    Basic parameters of surface mass transport - the surface diffusion length of adatoms, λs, the surface diffusion coefficient, Ds', and the surface reaction rate coefficient, βs', of Cu on alumina are determined in the temperature range 1048-1198 K. Measuring simultaneously the time dependence of the effective thickness, Heff(t), the lateral shift of the boundary, y(t) of beaded films (BF) and using vapour pressure data we concluded that the process is controlled by surface reaction at the perimeters of beads. Supposing Arrhenius-type temperature dependence for Ds', βs' and λs the activation energies and preexponential factors have been calculated.

  6. Special report, diffuse reflectivity of the lunar surface

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1972-01-01

    The far ultraviolet diffuse reflectivity of samples of lunar dust material is determined. Equipment for measuring the diffuse reflectivity of materials (e.g. paint samples) is already in existence and requires only minor modification for the proposed experiment which will include the measurement of the polarizing properties of the lunar samples. Measurements can be made as a function of both illumination angle and angle of observation.

  7. Iterative solutions for one-dimensional diffusion with time varying surface composition and composition-dependent diffusion coefficient

    NASA Technical Reports Server (NTRS)

    Chow, M.; Houska, C. R.

    1980-01-01

    Solutions are given for one-dimensional diffusion problems with a time varying surface composition and also a composition dependent diffusion coefficient. The most general solution does not require special mathematical functions to fit the variation in surface composition or D(C). In another solution, a series expansion may be used to fit the time dependent surface concentration. These solutions make use of iterative calculations that converge rapidly and are highly stable. Computer times are much shorter than that required for finite difference calculations and can efficiently make use of interactive graphics terminals. Existing gas carburization data were used to provide an illustration of an iterative approach with a time varying carbon composition at the free surface.

  8. Surface modified single molecules free-diffusion evidenced by fluorescence correlation spectroscopy.

    PubMed

    Boutin, Céline; Jaffiol, Rodolphe; Plain, Jérôme; Royer, Pascal

    2008-11-01

    We report on the free diffusion of single molecule near an interface studied using fluorescence correlation spectroscopy. In particular, we show that the chemical nature of the substrate may modify the free diffusion of a widely used molecule (rhodamine 6G), thus inducing unexpected effects in fluorescence correlation spectroscopy measurements. Our results show a strong influence, up to a few micrometer from the interface, of the surface polarity. This effect is assessed through the relative weight of the two dimensions diffusion process observed close to the surface. Our results are discussed in terms of competition between surface-solvent, solvent-molecule and molecule-surface specific interactions.

  9. Oxygen diffusion of anodic surface oxide film on titanium studied by Auger electron spectroscopy. [Oxygen diffusivity

    SciTech Connect

    Wang, P.S.; Wittberg, T.N.; Keil, R.G.

    1982-01-01

    TiO/sub 2/ films of about 1000 A were grown onto titanium foils anodically under galvanostatic conditions at 20 mA/cm/sup 2/ in saturated aqueous solutions of ammonium tetraborate. The samples were then aged at 450, 500, and 550/sup 0/C, and oxygen diffusion was observed by Auger electron spectroscopy (AES) profilings. The oxygen diffusivities were calculated by Fick's Second Law, using the Boltzmann-Matano solution, to be 9.4 x 10/sup -17/, 2.6 x 10/sup -16/, and 1.2 x 10/sup -15/ cm/sup 2//sec at 450, 500, and 550/sup 0/C, respectively. The diffusivities obtained by this method were also compared with those obtained using an exact solution to Fick's Second Law. The activation energy was calculated to be 30 kcal/mole.

  10. Ag Out-surface Diffusion In Crystalline SiC With An Effective SiO2 Diffusion Barrier

    SciTech Connect

    Xue, H.; Xiao, Haiyan Y.; Zhu, Zihua; Shutthanandan, V.; Snead, Lance L.; Boatner, Lynn A.; Weber, William J.; Zhang, Y.

    2015-09-01

    For applications of tristructural isotropic (TRISO) fuel particles in high temperature reactors, release of radioactive Ag isotope (110mAg) through the SiC coating layer is a safety concern. To understand the diffusion mechanism, Ag ion implantations near the surface and in the bulk were performed by utilizing different ion energies and energy-degrader foils. High temperature annealing was carried out on the as-irradiated samples to study the possible out-surface diffusion. Before and after annealing, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) measurements were employed to obtain the elemental profiles of the implanted samples. The results suggest little migration of buried Ag in the bulk, and an out-diffusion of the implanted Ag in the near-surface region of single crystal SiC. It is also found that a SiO2 layer, which was formed during annealing, may serve as an effective barrier to reduce or prevent Ag out diffusion through the SiC coating layer.

  11. Ag out-surface diffusion in crystalline SiC with an effective SiO2 diffusion barrier

    NASA Astrophysics Data System (ADS)

    Xue, H.; Xiao, H. Y.; Zhu, Z.; Shutthanandan, V.; Snead, L. L.; Boatner, L. A.; Weber, W. J.; Zhang, Y.

    2015-09-01

    For applications of tristructural isotropic (TRISO) fuel particles in high temperature reactors, release of radioactive Ag isotope (110mAg) through the SiC coating layer is a safety concern. To understand the diffusion mechanism, Ag ion implantations near the surface and in the bulk were performed by utilizing different ion energies and energy-degrader foils. High temperature annealing was carried out on the as-irradiated samples to study the possible out-surface diffusion. Before and after annealing, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) measurements were employed to obtain the elemental profiles of the implanted samples. The results suggest little migration of buried Ag in the bulk, and an out-diffusion of the implanted Ag in the near-surface region of single crystal SiC. It is also found that a SiO2 layer, which was formed during annealing, may serve as an effective barrier to reduce or prevent Ag out diffusion through the SiC coating layer.

  12. Combined measurement of surface, grain boundary and lattice diffusion coefficients on olivine bi-crystals

    NASA Astrophysics Data System (ADS)

    Marquardt, Katharina; Dohmen, Ralf; Wagner, Johannes

    2014-05-01

    Diffusion along interface and grain boundaries provides an efficient pathway and may control chemical transport in rocks as well as their mechanical strength. Besides the significant relevance of these diffusion processes for various geologic processes, experimental data are still very limited (e.g., Dohmen & Milke, 2010). Most of these data were measured using polycrystalline materials and the formalism of LeClaire (1951) to fit integrated concentration depth profiles. To correctly apply this formalism, certain boundary conditions of the diffusion problem need to be fulfilled, e.g., surface diffusion is ignored, and furthermore the lattice diffusion coefficient has to be known from other studies or is an additional fitting parameter, which produces some ambiguity in the derived grain boundary diffusion coefficients. We developed an experimental setup where we can measure the lattice and grain boundary diffusion coefficients simultaneously but independent and demonstrate the relevance of surface diffusion for typical grain boundary diffusion experiments. We performed Mg2SiO4 bicrystal diffusion experiments, where a single grain boundary is covered by a thin-film of pure Ni2SiO4 acting as diffusant source, produced by pulsed laser deposition. The investigated grain boundary is a 60° (011)/[100]. This specific grain boundary configuration was modeled using molecular dynamics for comparison with the experimental observations in the transmission electron microscope (TEM). Both, experiment and model are in good agreement regarding the misorientation, whereas there are still some disagreements regarding the strain fields along the grain boundary that are of outmost importance for the strengths of the material. The subsequent diffusion experiments were carried out in the temperature range between 800° and 1450° C. The inter diffusion profiles were measured using the TEMs energy dispersive x-ray spectrometer standardized using the Cliff-Lorimer equation and EMPA

  13. Direct visualization of surface-plasmon bandgaps in the diffuse background of metallic gratings.

    PubMed

    Depine, Ricardo A; Ledesma, Silvia

    2004-10-01

    When a surface plasmon propagates along a microrough grating, it interacts with the periodic plus the random roughness and emits light into the diffuse background, which can present intensity maxima called diffuse light bands. We reexamine previous studies on these bands within the framework of recent studies on photonic surfaces and show that the phenomenon of diffuse light provides an experimental technique for directly imaging the dispersion relation of surface plasmons, including the gap that, under appropriate circumstances, opens in the reciprocal grating space.

  14. Surface diffusion modes for Pt dimers and trimers on Pt(001)

    SciTech Connect

    Kellogg, G.L.; Voter, A.F. Los Alamos National Laboratory, Los Alamos, New Mexico )

    1991-07-29

    Field-ion-microscope observations and molecular statics calculations using embedded-atom-method potentials have identified the surface diffusion modes for Pt dimers and trimers on Pt(001). Dimers migrate by a series of displacements involving exchange between one of the dimer atoms and a substrate atom and have a lower activation barrier for diffusion than monomers. Trimer diffusion involves both exchange and hopping displacements and has an activation barrier comparable to monomers.

  15. Disturbance-driven Hillslope Diffusion Scales and Values Clarified by Extant Surface Roughness

    NASA Astrophysics Data System (ADS)

    Doane, T.; Furbish, D. J.

    2015-12-01

    In low-relief landscapes, the hillslope diffusion equation approximates the rate of topographic evolution due to disturbance driven sediment transport. Whereas this expression is appealing and performs well, the physical meaning of a hillslope diffusivity remains unclear. Here, a study of the disturbances that redistribute sediment on hillslopes clarifies a physical interpretation. We conceptualize the cumulative hillslope diffusivity, which is a rate constant for topographic degradation at large scales, as the aggregate of all surface disturbing processes. A numerical model that generates pit and mound topography from tree throw events illustrates this idea. Using the diffusion equation, we model the degradation of pits and mounds by all smaller scale disturbances. However, when examined at a larger scale, the effective hillslope diffusivity is composed of the small scale diffusivity plus the effect of tree throw. We also present a method to determine the background hillslope diffusivity using the extant hillslope roughness and rates of roughness production. Numerical simulations show that the variance of the surface roughness of a hillslope as introduced by pit and mound topography reaches a steady state when the rate of variance production (tree throw) is constant. The magnitude of the steady state variance is a function of variance production and decay (small scale diffusivity), so there is an opportunity to determine hillslope diffusivity values if the rates of variance production are known. This method yields estimates of the modern hillslope diffusivity which are useful in problems involving the human and climate change time scales.

  16. Intestinal Diffusion Barrier: Unstirred Water Layer or Membrane Surface Mucous Coat?

    NASA Astrophysics Data System (ADS)

    Smithson, Kenneth W.; Millar, David B.; Jacobs, Lucien R.; Gray, Gary M.

    1981-12-01

    The dimensions of the small intestinal diffusion barrier interposed between luminal nutrients and their membrane receptors were determined from kinetic analysis of substrate hydrolysis by integral surface membrane enzymes. The calculated equivalent thickness of the unstirred water layer was too large to be compatible with the known dimensions of rat intestine. The discrepancy could be reconciled by consideration of the mucous coat overlying the intestinal surface membrane. Integral surface membrane proteins could not be labeled by an iodine-125 probe unless the surface coat was first removed. The mucoprotein surface coat appears to constitute an important diffusion barrier for nutrients seeking their digestive and transport sites on the outer intestinal membrane.

  17. Diffusion superficielle sur le cuivre: Influence des marches

    NASA Astrophysics Data System (ADS)

    Cousty, J.; Peix, R.; Perraillon, B.

    1981-06-01

    The surface self-diffusion coefficients of several clean flat copper surfaces have been measured by a radiotracer method. The surface impurity concentration remains lower than 0.01 monolayer and the atomic structure of the surface is not disturbed by the diffusion measurement. At 820 K (0.67 Tm), the following results are obtained on the (100), (111), (110), (310), (511) and (331) faces: (a) The surface diffusion perpendicular to the step array is independent of the step density, (b) The diffusion on the (110), (511) and (331) faces shows a strong anisotropy. This one is attributed to a large mobility of the tracer atoms along the [110] steps. By contrast, [001] step does not affect appreciably the diffusion on the (100) terraces as shown the results obtained on the (310) face. This interpretation is supported by an evaluation of the ratios of the adatom jump frequencies at each step site on these vicinal surfaces, using an atomistic model of surface diffusion.

  18. Two Pathways for Water Interaction with Oxygen Adatoms on TiO2(110)

    SciTech Connect

    Du, Yingge; Deskins, N. Aaron; Zhang, Zhenrong; Dohnalek, Zdenek; Dupuis, Michel; Lyubinetsky, Igor

    2009-03-06

    Scanning tunneling microscopy and density functional theory studies show that oxygen adatoms (Oa), produced during O2 exposure of reduced TiO2(110) surfaces, alter the water dissociation/recombination chemistry through two distinctive pathways. Depending on whether H2O and Oa are on the same or adjacent Ti4+ rows, Oa facilitates H2O dissociation and proton transfer to form a terminal hydroxyl pair, positioned along- or across-Ti row, respectively. The latter process has not been reported previously, and it starts from “pseudo-dissociated” state of water. In both pathways, the subsequent reverse proton transfer results in H2O recombination and statistical oxygen atom scrambling, as manifested by an apparent along- or across-row motion of Oa’s.

  19. Electrochemical and Numerical Studies of Surface, Grain-Boundary and Bulk Copper Diffusion Into Gold

    NASA Astrophysics Data System (ADS)

    Miller, Eric Todd

    Surface, grain-boundary, and bulk chemical diffusivities of copper into gold were measured by chronoamperometry -potentiometry applied to Cu|CuCl |Au solid state galvanic cells at 300-400^circC. The cells were constructed using a novel vapor deposition technique which is described. The automated data acquisition techniques utilizing unique hardware and custom designed software are also presented. Chronoamperometry and a two electrode limited potential cyclic voltammetry technique were comparatively used to determine cell capacitance and resistance. Both gave similar RC values at lower temperatures but diverged from each other at higher temperatures. Electron hole conductivity of CuCl could not be determined from intercept values in the chronoamperometry Cottrell analysis. The partial molar enthalpy and entropy of mixing copper into gold were determined from Emf vs temperature vs composition measurements of Cu|CuCl |Au-Cu alloy cells. The results support the regular solution model of mixing with interaction energy parameter {bf{cal Q}} = 10kJ. Diffusion coefficients were calculated from the chronoamperometry-potentiometry time/flux/concentration data in two ways: via the Cottrell equation, for an average diffusion coefficient; and via a simplex and finite difference program for the simultaneous determination of surface, grain-boundary, and bulk diffusion coefficients. This program was run on a MASPAR MP-2 massively parallel computer. The surface and grain-boundary diffusivities were numerically determinable in single and polycrystalline cathodes at short diffusion times. Bulk diffusivity was determinable at short and long diffusion times and agreed with previous data. Surface diffusivity was two orders of magnitude larger than the bulk with lower activation energy. Grain -boundary diffusivity was one order of magnitude larger than the bulk with similar activation energy. The Cottrell equation was only valid at very long diffusion times due to the transient interface

  20. Specific Ions Modulate Diffusion Dynamics of Hydration Water on Lipid Membrane Surfaces

    PubMed Central

    2015-01-01

    Effects of specific ions on the local translational diffusion of water near large hydrophilic lipid vesicle surfaces were measured by Overhauser dynamic nuclear polarization (ODNP). ODNP relies on an unpaired electron spin-containing probe located at molecular or surface sites to report on the dynamics of water protons within ∼10 Å from the spin probe, which give rise to spectral densities for electron–proton cross-relaxation processes in the 10 GHz regime. This pushes nuclear magnetic resonance relaxometry to more than an order of magnitude higher frequencies than conventionally feasible, permitting the measurement of water moving with picosecond to subnanosecond correlation times. Diffusion of water within ∼10 Å of, i.e., up to ∼3 water layers around the spin probes located on hydrophilic lipid vesicle surfaces is ∼5 times retarded compared to the bulk water translational diffusion. This directly reflects on the activation barrier for surface water diffusion, i.e., how tightly water is bound to the hydrophilic surface and surrounding waters. We find this value to be modulated by the presence of specific ions in solution, with its order following the known Hofmeister series. While a molecular description of how ions affect the hydration structure at the hydrophilic surface remains to be answered, the finding that Hofmeister ions directly modulate the surface water diffusivity implies that the strength of the hydrogen bond network of surface hydration water is directly modulated on hydrophilic surfaces. PMID:24456096

  1. Diffuse PAH contamination of surface soils: environmental occurrence, bioavailability, and microbial degradation.

    PubMed

    Johnsen, Anders R; Karlson, Ulrich

    2007-09-01

    The purpose of this review is to recognize the scientific and environmental importance of diffuse pollution with polycyclic aromatic hydrocarbons (PAHs). Diffuse PAH pollution of surface soil is characterized by large area extents, low PAH concentrations, and the lack of point sources. Urban and pristine topsoils receive a continuous input of pyrogenic PAHs, which induces a microbial potential for PAH degradation. The significance of this potential in relation to black carbon particles, PAH bioaccessibility, microbial PAH degradation, and the fate of diffuse PAHs in soil is discussed. Finally, the state-of-the-art methods for future investigations of the microbial degradation of diffuse PAH pollution are reviewed. PMID:17594088

  2. Crystal surface integrity and diffusion measurements on Earth and planetary materials

    NASA Astrophysics Data System (ADS)

    Watson, E. B.; Cherniak, D. J.; Thomas, J. B.; Hanchar, J. M.; Wirth, R.

    2016-09-01

    Characterization of diffusion behavior in minerals is key to providing quantitative constraints on the ages and thermal histories of Earth and planetary materials. Laboratory experiments are a vital source of the needed diffusion measurements, but these can pose challenges because the length scales of diffusion achievable in a laboratory time are commonly less than 1 μm. An effective strategy for dealing with this challenge is to conduct experiments involving inward diffusion of the element of interest from a surface source, followed by quantification of the resulting diffusive-uptake profile using a high-resolution depth-profiling technique such as Rutherford backscattering spectroscopy (RBS), nuclear reaction analysis (NRA), or ion microprobe (SIMS). The value of data from such experiments is crucially dependent on the assumption that diffusion in the near-surface of the sample is representative of diffusion in the bulk material. Historical arguments suggest that the very process of preparing a polished surface for diffusion studies introduces defects-in the form of dislocations and cracks-in the outermost micrometer of the sample that make this region fundamentally different from the bulk crystal in terms of its diffusion properties. Extensive indirect evidence suggests that, in fact, the near-surface region of carefully prepared samples is no different from the bulk crystal in terms of its diffusion properties. A direct confirmation of this conclusion is nevertheless clearly important. Here we use transmission electron microscopy to confirm that the near-surface regions of olivine, quartz and feldspar crystals prepared using careful polishing protocols contain no features that could plausibly affect diffusion. This finding does not preclude damage to the mineral structure from other techniques used in diffusion studies (e.g., ion implantation), but even in this case the role of possible structural damage can be objectively assessed and controlled. While all

  3. The lateral diffusion of lipid probes in the surface membrane of Schistosoma mansoni

    PubMed Central

    1986-01-01

    The technique of fluorescence recovery after photobleaching was used to measure the lateral diffusion of fluorescent lipid analogues in the surface membrane of Schistosoma mansoni. Our data reveal that although some lipids could diffuse freely others exhibited restricted lateral diffusion. Quenching of lipid fluorescence by a non-permeant quencher, trypan blue, showed that there was an asymmetric distribution of lipids across the double bilayer of mature parasites. Those lipids that diffused freely were found to reside mainly in the external monolayer of the outer membrane whereas lipids with restricted lateral diffusion were located mainly in one or more of the monolayers beneath the external monolayer. Formation of surface membrane blebs allowed us to measure the lateral diffusion of lipids in the membrane without the influence of underlying cytoskeletal structures. The restricted diffusion found on the normal surface membrane of mature parasites was found to be released in membrane blebs. Quenching of fluorescent lipids on blebs indicated that all probes were present almost entirely in the external monolayer. Juvenile worms exhibited lower lateral diffusion coefficients than mature parasites: in addition, the lipids partitioned into the external monolayer. The results are discussed in terms of membrane organization, cytoskeletal contacts, and biological significance. PMID:3745270

  4. Light adatoms influences on electronic structures of the two-dimensional arsenene nanosheets

    NASA Astrophysics Data System (ADS)

    Li, Yang; Xia, Congxin; Wang, Tianxing; Tan, Xiaoming; Zhao, Xu; Wei, Shuyi

    2016-03-01

    Gray arsenic monolayer named as arsenene is a new kind of two-dimensional (2D) semiconductor material. Herein, we focus on the electronic structures of the light atoms (such as B, C, N, O, F) adsorbed arsenene nanosheets by using first-principles calculations. The results show that most adatoms prefer to occupy the bridge site on the arsenene nanosheets except for the C adatom which prefer to valley site. The defect states can be found in the middle gap of the F adsorbed arsenene nanosheets, and N adatom can induce the n-type doping in the system. Moreover, O adatom has negligible effects on its electronic structures. In addition, B, C, N and F adatoms can induce the magnetism in the arsenene nanosheets.

  5. Theoretical study of optical conductivity of graphene with magnetic and nonmagnetic adatoms

    NASA Astrophysics Data System (ADS)

    Majidi, Muhammad Aziz; Siregar, Syahril; Rusydi, Andrivo

    2014-11-01

    We present a theoretical study of the optical conductivity of graphene with magnetic and nonmagnetic adatoms. First, by introducing an alternating potential in a pure graphene, we demonstrate a gap formation in the density of states and the corresponding optical conductivity. We highlight the distinction between such a gap formation and the so-called Pauli blocking effect. Next, we apply this idea to graphene with adatoms by introducing magnetic interactions between the carrier spins and the spins of the adatoms. Exploring various possible ground-state spin configurations of the adatoms, we find that the antiferromagnetic configuration yields the lowest total electronic energy and is the only configuration that forms a gap. Furthermore, we analyze four different circumstances leading to similar gaplike structures and propose a means to interpret the magneticity and the possible orderings of the adatoms on graphene solely from the optical conductivity data. We apply this analysis to the recently reported experimental data of oxygenated graphene.

  6. Anisotropic parallel self-diffusion coefficients near the calcite surface: A molecular dynamics study.

    PubMed

    Franco, Luís F M; Castier, Marcelo; Economou, Ioannis G

    2016-08-28

    Applying classical molecular dynamics simulations, we calculate the parallel self-diffusion coefficients of different fluids (methane, nitrogen, and carbon dioxide) confined between two {101̄4} calcite crystal planes. We have observed that the molecules close to the calcite surface diffuse differently in distinct directions. This anisotropic behavior of the self-diffusion coefficient is investigated for different temperatures and pore sizes. The ion arrangement in the calcite crystal and the strong interactions between the fluid particles and the calcite surface may explain the anisotropy in this transport property. PMID:27586936

  7. Anisotropic parallel self-diffusion coefficients near the calcite surface: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Franco, Luís F. M.; Castier, Marcelo; Economou, Ioannis G.

    2016-08-01

    Applying classical molecular dynamics simulations, we calculate the parallel self-diffusion coefficients of different fluids (methane, nitrogen, and carbon dioxide) confined between two { 10 1 ¯ 4 } calcite crystal planes. We have observed that the molecules close to the calcite surface diffuse differently in distinct directions. This anisotropic behavior of the self-diffusion coefficient is investigated for different temperatures and pore sizes. The ion arrangement in the calcite crystal and the strong interactions between the fluid particles and the calcite surface may explain the anisotropy in this transport property.

  8. In situ ultrahigh vacuum transmission electron microscopy study of quasi-one-dimensional island decay on isotropic Ge(001) surface

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Peng; Tok, Eng Soon; Foo, Yong Lim

    2010-10-01

    In situ ultrahigh vacuum transmission electron microscopy was employed to observe the dynamics of both the coalescence and decay of two-dimensional Fe13Ge8 islands on an atomically smooth Ge(001) surface. Quasi-one-dimensional (1D) island decay behavior was observed on the isotropic Ge(001) surface where annealing caused the islands to shrink significantly faster in one direction. The shrinkage in the perpendicular direction was minimal in comparison. This is contrary to Ostwald ripening for isotropic surfaces, as well as for the quasi-1D island decay model for anisotropic surfaces. During annealing, this island decay behavior occurred by the attachment/detachment limiting mechanism, which is based on an analysis of adatom concentration differences. Therefore, this quasi-1D island decay process is driven by adatom concentration differences between coalescing and decaying islands. Island decay occurs along the large diffusive flux channel between islands and is affected by the local environment.

  9. A surface diffusion model for Dip Pen Nanolithography line writing

    NASA Astrophysics Data System (ADS)

    Saha, Sourabh K.; Culpepper, Martin L.

    2010-06-01

    Dip Pen Nanolithography is a direct write process that creates nanoscale dots and lines. Models typically predict dot and line size via assumption of constant ink flow rate from tip to substrate. This is appropriate for dot writing. It is however well-known, though models rarely reflect, that the ink flow rate depends upon writing speed during line writing. Herein, we explain the physical phenomenon that governs line writing and use this to model tip-substrate diffusion in line writing. We accurately predict (i) the increase in flow rate with writing speed and (ii) line width within 12.5%.

  10. The role of electrostatic interactions in protease surface diffusion and the consequence for interfacial biocatalysis.

    PubMed

    Feller, Bob E; Kellis, James T; Cascão-Pereira, Luis G; Robertson, Channing R; Frank, Curtis W

    2010-12-21

    This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at

  11. Diffuse emission and control of copper in urban surface runoff.

    PubMed

    Boller, M A; Steiner, M

    2002-01-01

    Copper washed off from roofs and roads is considered to be a major contribution to diffuse copper pollution of urban environments. In order to guarantee sustainable protection of soils and water, the long-term strategy is to avoid or replace copper containing materials on roofs and fagades. Until achievement of this goal, a special adsorber system is suggested to control the diffuse copper fluxes by retention of copper by a mixture of granulated iron-hydroxide (GEH) and calcium carbonate. Since future stormwater runoff concepts are based on decentralised runoff infiltration into the underground, solutions are proposed which provide for copper retention in infiltration sites using GEH adsorption layers. The example of a large copper façade of which the runoff is treated in an adsorption trench reveals the first full-scale data on façade runoff and adsorber performance. During the first year of investigation average façade runoff concentrations in the range of 1-10 mg Cu/l are reduced by 96-99% in the adsorption ditch. PMID:12380989

  12. Degenerate mobilities in phase field models are insufficient to capture surface diffusion

    NASA Astrophysics Data System (ADS)

    Lee, Alpha A.; Münch, Andreas; Süli, Endre

    2015-08-01

    Phase field models frequently provide insight into phase transitions and are robust numerical tools to solve free boundary problems corresponding to the motion of interfaces. A body of prior literature suggests that interface motion via surface diffusion is the long-time, sharp interface limit of microscopic phase field models such as the Cahn-Hilliard equation with a degenerate mobility function. Contrary to this conventional wisdom, we show that the long-time behaviour of degenerate Cahn-Hilliard equation with a polynomial free energy undergoes coarsening, reflecting the presence of bulk diffusion, rather than pure surface diffusion. This reveals an important limitation of phase field models that are frequently used to model surface diffusion.

  13. Particle tracking single protein-functionalized quantum dot diffusion and binding at silica surfaces.

    PubMed

    Rife, Jack C; Long, James P; Wilkinson, John; Whitman, Lloyd J

    2009-04-01

    We evaluate commercial QD585 and QD605 streptavidin-functionalized quantum dots (QDs) for single-particle tracking microscopy at surfaces using total internal reflectance fluorescence and measure single QD diffusion and nonspecific binding at silica surfaces in static and flow conditions. The QD diffusion coefficient on smooth, near-ideal, highly hydroxylated silica surfaces is near bulk-solution diffusivity, as expected for repulsive surfaces, but many QD trajectories on rougher, less-than-ideal surfaces or regions display transient adsorptions. We attribute the binding to defect sites or adsorbates, possibly in conjunction with protein conformation changes, and estimate binding energies from the transient adsorption lifetimes. We also assess QD parameters relevant to tracking, including hydrodynamic radius, charge state, signal levels, blinking reduction with reducing solutions, and photoinduced blueing and bleaching.

  14. Effect of Surface Preparation on CLAM/CLAM Hot Isostatic Pressing diffusion bonding joints

    NASA Astrophysics Data System (ADS)

    Li, C.; Huang, Q.; Zhang, P.

    2009-04-01

    Surface preparation is essential for the Hot Isostatic Pressing (HIP) diffusion bonding of RAFM steels. Hot Isostatic Pressing (HIP) diffusion bonding experiments on China Low Activation Martensitic (CLAM) steel was performed to study the effect of surface preparation. A few approaches such as hand lapping, dry-milling and grinding etc., were used to prepare the faying surfaces of the HIP joints. Different sealing techniques were used as well. The HIP parameters were 150 MPa/3 h/1150 °C. After post HIP heat treatment (PHHT), the tensile and Charpy impact tests were carried out. The results showed that hand lapping was not suitable to prepare the faying surfaces of HIP diffusion bonding specimens although the surface roughness by hand lapping was very low.

  15. Using Self-Similarity to Simulate Meniscus Evolution Around TMV Due to Surface Diffusion

    NASA Astrophysics Data System (ADS)

    Potter, Richard; Zhang, Yue; Fakhraai, Zahra

    It has been hypothesized that enhanced surface diffusion allows the formation of stable molecular glasses during physical vapor deposition. The improved properties of these glasses, such as increased density and kinetic stability can help improve material properties in pioneering fields of technology such as organic electronics and pharmaceutical drug delivery. While surface diffusion has been measured previously on the surfaces of organic glasses, direct measurements on the surface of vapor-deposited stable glasses has proven more challenging. This research focuses on a straightforward method for measuring the surface diffusion coefficients of molecular glasses through the use of tobacco mosaic virus (TMV) nanorods as probe particles. In conjunction, mathematical models based on the thin film equation were used to simulate fast meniscus formation around the nanorods on the glassy surface. The evolution of the meniscus is self-similar, which allows quick quantification of the diffusion coefficient, by solving the time evolution for a single experiment. Experimental data were compared and fit to these simulations to derive a quantity for the surface diffusion coefficient, Ds. Nsf-CAREER DMR-1350044.

  16. Efficient diffusive mechanisms of O atoms at very low temperatures on surfaces of astrophysical interest.

    PubMed

    Congiu, Emanuele; Minissale, Marco; Baouche, Saoud; Chaabouni, Henda; Moudens, Audrey; Cazaux, Stephanie; Manicò, Giulio; Pirronello, Valerio; Dulieu, François

    2014-01-01

    At the low temperatures of interstellar dust grains, it is well established that surface chemistry proceeds via diffusive mechanisms of H atoms weakly bound (physisorbed) to the surface. Until recently, however, it was unknown whether atoms heavier than hydrogen could diffuse rapidly enough on interstellar grains to react with other accreted species. In addition, models still require simple reduction as well as oxidation reactions to occur on grains to explain the abundances of various molecules. In this paper we investigate O-atom diffusion and reactivity on a variety of astrophysically relevant surfaces (water ice of three different morphologies, silicate, and graphite) in the 6.5-25 K temperature range. Experimental values were used to derive a diffusion law that emphasizes that O atoms diffuse by quantum mechanical tunnelling at temperatures as low as 6.5 K. The rates of diffusion on each surface, based on modelling results, were calculated and an empirical law is given as a function of the surface temperature. The relative diffusion rates are k(H2Oice) > k(sil) > k(graph) > k(expected). The implications of efficient O-atom diffusion over astrophysically relevant time-scales are discussed. Our findings show that O atoms can scan any available reaction partners (e.g., either another H atom, if available, or a surface radical like O or OH) at a faster rate than that of accretion. Also, as dense clouds mature, H2 becomes far more abundant than H and the O : H ratio grows, and the reactivity of O atoms on grains is such that O becomes one of the dominant reactive partners together with H.

  17. Influence of molecular shape, conformability, net surface charge, and tissue interaction on transscleral macromolecular diffusion.

    PubMed

    Srikantha, Nishanthan; Mourad, Fatma; Suhling, Klaus; Elsaid, Naba; Levitt, James; Chung, Pei Hua; Somavarapu, Satyanarayana; Jackson, Timothy L

    2012-09-01

    The purpose of this study was to investigate the influence of molecular shape, conformability, net surface charge and tissue interaction on transscleral diffusion. Unfixed, porcine sclera was clamped in an Ussing chamber. Fluorophore-labelled neutral albumin, neutral dextran, or neutral ficoll were placed in one hemi-chamber and the rate of transscleral diffusion was measured over 24 h using a spectrophotometer. Experiments were repeated using dextrans and ficoll with positive or negative net surface charges. Fluorescence recovery after photobleaching (FRAP) was undertaken to compare transscleral diffusion with diffusion through a solution. All molecules were 70 kDa. With FRAP, the diffusion coefficient (D) of neutral molecules was highest for albumin, followed by ficoll, then dextran (p < 0.0001). Positive dextrans diffused fastest, followed by negative, then neutral dextrans (p = 0.0004). Neutral ficoll diffused the fastest, followed by positive then negative ficoll (p = 0.5865). For the neutral molecules, transscleral D was highest for albumin, followed by dextran, then ficoll (p < 0.0001). D was highest for negative ficoll, followed by neutral, then positive ficoll (p < 0.0001). By contrast, D was highest for positive dextran, followed by neutral, then negative dextran (p = 0.0021). In conclusion, diffusion in free solution does not predict transscleral diffusion and the molecular-tissue interaction is important. Molecular size, shape, and charge may all markedly influence transscleral diffusion, as may conformability to a lesser degree, but their effects may be diametrically opposed in different molecules, and their influence on diffusion is more complex than previously thought. Each variable cannot be considered in isolation, and the interplay of all these variables needs to be tested, when selecting or designing drugs for transscleral delivery. PMID:22846670

  18. Influence of molecular shape, conformability, net surface charge, and tissue interaction on transscleral macromolecular diffusion.

    PubMed

    Srikantha, Nishanthan; Mourad, Fatma; Suhling, Klaus; Elsaid, Naba; Levitt, James; Chung, Pei Hua; Somavarapu, Satyanarayana; Jackson, Timothy L

    2012-09-01

    The purpose of this study was to investigate the influence of molecular shape, conformability, net surface charge and tissue interaction on transscleral diffusion. Unfixed, porcine sclera was clamped in an Ussing chamber. Fluorophore-labelled neutral albumin, neutral dextran, or neutral ficoll were placed in one hemi-chamber and the rate of transscleral diffusion was measured over 24 h using a spectrophotometer. Experiments were repeated using dextrans and ficoll with positive or negative net surface charges. Fluorescence recovery after photobleaching (FRAP) was undertaken to compare transscleral diffusion with diffusion through a solution. All molecules were 70 kDa. With FRAP, the diffusion coefficient (D) of neutral molecules was highest for albumin, followed by ficoll, then dextran (p < 0.0001). Positive dextrans diffused fastest, followed by negative, then neutral dextrans (p = 0.0004). Neutral ficoll diffused the fastest, followed by positive then negative ficoll (p = 0.5865). For the neutral molecules, transscleral D was highest for albumin, followed by dextran, then ficoll (p < 0.0001). D was highest for negative ficoll, followed by neutral, then positive ficoll (p < 0.0001). By contrast, D was highest for positive dextran, followed by neutral, then negative dextran (p = 0.0021). In conclusion, diffusion in free solution does not predict transscleral diffusion and the molecular-tissue interaction is important. Molecular size, shape, and charge may all markedly influence transscleral diffusion, as may conformability to a lesser degree, but their effects may be diametrically opposed in different molecules, and their influence on diffusion is more complex than previously thought. Each variable cannot be considered in isolation, and the interplay of all these variables needs to be tested, when selecting or designing drugs for transscleral delivery.

  19. Abundant topological states in silicene with transition metal adatoms

    NASA Astrophysics Data System (ADS)

    Zhang, Jiayong; Zhao, Bao; Yang, Zhongqin

    2013-10-01

    Electronic and topological properties of silicene adsorbed with 4d transition metal (TM) atoms are investigated by using ab initio methods together with tight-binding models. All six kinds of TM adatoms (Y to Ru) we studied prefer hollow sites of silicene. The interplay of TM-induced exchange interactions, spin-orbit coupling, and staggered AB-sublattice potential triggers abundant topological states, including quantum anomalous Hall (QAH) states, valley Hall states, and valley-polarized metallic states. Particularly, QAH states with different Chern numbers are obtained, which is -2 in the Nb/Ru doped system and 1 in the Y doped system. Our results indicate that great potential for information processing applications exists in these systems of silicene adsorbed with TM atoms.

  20. Chern mosaic: topology of chiral superconductivity in ferromagnetic adatom lattices

    NASA Astrophysics Data System (ADS)

    Rontynen, Joel; Ojanen, Teemu

    Recent experiments have demonstrated signatures of Majorana bound states in ferromagnetic atomic chains. We show that similar systems, extended to two dimensional geometry, may support chiral topological superconductivity with large Chern numbers. Our observation is based on the fact that magnetic adatoms on an s-wave superconductor bind subgap Shiba states, which can hybridize and form subgap energy bands with nontrivial topology. Such a Shiba lattice supports long-range hopping, leading to a complex, mosaic-like phase diagram with large Chern numbers. We analyze the incidence of different Chern numbers phases and the size of their energy gaps for various lattice geometries. Our findings reveal the studied system as one of the riches platforms of topological matter known to date. The authors acknowledge the Finnish Cultural Foundation and the Academy of Finland for support.

  1. Electronic transport experiments on osmium-adatom-decorated graphene

    NASA Astrophysics Data System (ADS)

    Elias, Jamie; Henriksen, Erik

    Monolayer graphene is theoretically predicted to inherit a spin-orbit coupling from a dilute coating of certain transition metal adatoms. To explore these predictions we have constructed a cryogenic probe capable of in situ thermal annealing of graphene followed immediately by electronic transport measurements and controlled deposition of sub-monolayer coatings of most any metal. Previously a light coating of indium on graphene was investigated, and found to transfer electrons to graphene and reduce the mobility although no evidence of an induced spin-orbit coupling was seen. We are now depositing osmium and tungsten on graphene devices. Our initial results show an unexpected hole-doping and a sizable increase in resistance of the sample. We will report our progress on characterizing these samples by electronic transport measurements.

  2. Low temperature diffusion of Li atoms into Si nanoparticles and surfaces

    NASA Astrophysics Data System (ADS)

    Nienhaus, Hermann; Karacuban, Hatice; Krix, David; Becker, Felix; Hagemann, Ulrich; Steeger, Doris; Bywalez, Robert; Schulz, Christof; Wiggers, Hartmut

    2013-07-01

    The diffusion of Li atoms deposited on hydrogen-passivated Si(001) surfaces, chemically oxidized Si(001) surfaces, Si nanoparticle films, and thick SiO2 layers is investigated with electron-beam induced Auger electron spectroscopy. The nanoparticles exhibit an average diameter of 24 nm. The Li metal film is evaporated at a sample temperature below 120 K. The reappearance of the Si substrate Auger signal as a function of time and temperature can be measured to study the Li diffusion into the bulk material. Values for the diffusion barrier of 0.5 eV for H:Si(001) and 0.3 eV for the ox-Si(001) and Si nanoparticle films are obtained. The diffusion of the Li atoms results in the disruption of the crystalline Si surfaces observed with atomic force microscopy. Contrasting to that, the Si nanoparticle films show less disruption by Li diffusion due to filling of the porous films detected with cross section electron microscopy. Silicon dioxide acts as a diffusion barrier for temperatures up to 300 K. However, the electron beam induces a reaction between Li and SiO2, leading to LiOx and elemental Si floating on the surface.

  3. Enhancement of Diffusion-Controlled Reaction Rates by Surface-Induced Orientational Restriction

    PubMed Central

    Nag, Ambarish; Dinner, Aaron R.

    2006-01-01

    We explore the means by which immobilization of a substrate on a surface can increase the rate of a diffusion-controlled enzymatic reaction. A quasichemical approach is developed and compared with Brownian dynamics simulations. We use these methods to show that restricting only the orientation of the enzyme by long-range interactions with the surface is sufficient for enhancing catalysis. PMID:16299070

  4. Effects of rainfall and surface flow on chemical diffusion from soil to runoff water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although basic processes of diffusion and convection have been used to quantify chemical transport from soil to surface runoff, there are little research results actually showing how these processes were affected by rainfall and surface flow. We developed a laboratory flow cell and a sequence of exp...

  5. Thermodynamic, kinetic and conformational analysis of proteins diffusion-sorption on a solid surface.

    PubMed

    Sanfeld, Albert; Royer, Catherine; Steinchen, Annie

    2015-08-01

    In this paper we examine particularly some of the more fundamental properties of protein conformational changes at a solid surface coupled with diffusion from the bulk of an aqueous solution and with the adsorption-desorption processes. We focus our attention on adsorbed protein monolayers upon a solid surface using a thermodynamic and kinetic analytical development. Account is also taken of the effects on the overall rate of the conformational change on a solid surface of deviation from ideality, of protein flexibility, of surface free energy and of interaction with reactive solid sites. Our theory applied to steady states is illustrated by examples such as folding-misfolding-unfolding of RNase and SNase on a solid surface after diffusion and adsorption from an aqueous solution. For this purpose, we put forward the determining steps which shall lead to the steady state. The existence of three situations is highlighted according to the values of the typical constants relevant for the protein considered: reaction rate determining step, diffusion and sorption determining steps, mixed adsorption diffusion and reaction rate. Finally, we have tried to link the developments of our theories to a large literature based on experimental results encountered during proteins diffusion-sorption-reaction processes, fundamental topics that has been since long investigated by Miller's team in MPKG.

  6. Below melting point photothermal reshaping of single gold nanorods driven by surface diffusion.

    PubMed

    Taylor, Adam B; Siddiquee, Arif M; Chon, James W M

    2014-12-23

    Plasmonic gold nanorod instability and reshaping behavior below melting points are important for many future applications but are yet to be fully understood, with existing nanoparticle melting theories unable to explain the observations. Here, we have systematically studied the photothermal reshaping behavior of gold nanorods irradiated with femtosecond laser pulses to report that the instability is driven by curvature-induced surface diffusion rather than a threshold melting process, and that the stability dramatically decreases with increasing aspect ratio. We successfully utilized the surface diffusion model to explain the observations and found that the activation energy for surface diffusion was dependent on the aspect ratio of the rods, from 0.6 eV for aspect ratio of 5 to 1.5 eV for aspect ratio less than 3. This result indicates that the surface atoms are much easier to diffuse around in larger aspect ratio rods than in shorter rods and can induce reshaping at any given temperature. Current plasmonics and nanorod applications with the sharp geometric features used for greater field enhancement will therefore need to consider surface diffusion driven shape change even at low temperatures.

  7. Super-diffusion versus competitive advection processes on the solar surface

    NASA Astrophysics Data System (ADS)

    Del Moro, Dario; Berrilli, Francesco; Giovannelli, Luca; Scardigli, Stefano; Giannattasio, Fabio; Consolini, Giuseppe; Lepreti, Fabio

    2016-04-01

    From the analysis of the displacement spectrum of magnetic element, it has recently been agreed that a regime of super-diffusivity dominates the solar surface. Quite habitually this result is discussed in the framework of fully developed turbulence. However, the debate whether the super-diffusivity is generated by a turbulent dispersion process, by the advection due to the convective pattern, or even by another process is still open, as is the question of the amount of diffusivity at the scales relevant to the local dynamo process. To understand how such peculiar diffusion in the solar atmosphere takes place, we compared the results from two different data sets (ground-based and space-borne) and confronted those results also to simulation of passive tracers advection. The displacement spectra of the magnetic elements obtained by the data sets are consistent in retrieving a super-diffusive regime for the solar photosphere, but also the simulation shows a super-diffusive displacement spectrum: its competitive advection process can reproduce the signature of super-diffusion. Therefore, it is not necessary to hypothesize a totally developed turbulence regime to explain the motion of the magnetic elements on the solar surface.

  8. Thermally driven diffusion of SO2 within the surface of Io

    NASA Technical Reports Server (NTRS)

    Meade, Paul E.; Jakosky, Bruce M.

    1991-01-01

    The presence of sulfur dioxide (SO2) on Io, together with the fact that the surface layer of Io has extremely high porosity, suggests the possibility of diffusion of this volatile within the surface, as well as exchange between the surface and an atmosphere. The former possibility is investigated through the development of a surface layer thermal model and subsequent calculations of the thermally driven diffusion flux of SO2 within the layer. The major factors affecting the diffusion process are the temperature and temperature gradient in the surface layer throughout the day, and the porosity and grain size in the surface layer. The results indicate that the net transport of SO2 in the near-surface region is downward into the subsurface, causing near-surface depletion of SO2. Near-surface depletion would result in a layer of reduced thermal inertia overlying the bulk of the surface, consistent with thermal eclipse observations of Io. For the present nominal model with 10-micron grains and a porosity of 85 percent, the peak net diurnal downward flux reaches nearly 0.008 g/sq cm per period.

  9. Dynamics of surface thermal expansion and diffusivity using two-color reflection transient gratings

    SciTech Connect

    Pennington, D.M.; Harris, C.B.

    1993-02-01

    We report ultrafast measurements of the dynamic thermal expansion of a surface and the temperature dependent surface thermal diffusivity using a two-color reflection transient grating technique. Studies were performed on p-type, n-type, and undoped GaAs(100) samples at several temperatures. Using a 75 fs ultraviolet probe with visible excitation beams, the electronic effects that dominate single color experiments become negligible; thus surface expansion due to heating and the subsequent contraction caused by cooling provide the dominant influence on the diffracted probe. The diffracted signal was composed of two components, thermal expansion of the surface and heat flow away from the surface, allowing the determination of the rate of expansion as well as the surface thermal diffusivity. At room temperature a signal rise due to thermal expansion was observed, corresponding to a maximum average displacement of {approx} 1 {angstrom} at 32 ps. Large fringe spacings were used, thus the dominant contributions to the signal were expansion and diffusion perpendicular to the surface. Values for the surface thermal diffusivity of GaAs were measured and found to be in reasonable agreement with bulk values above 50{degrees}K. Below 50{degrees}K, the diffusivity at the surface was more than an order of magnitude slower than in the bulk due to increased phonon boundary scattering. Comparison of the results with a straightforward thermal model yields good agreement over a range of temperatures (12--300{degrees}K). The applicability and advantages of the transient grating technique for studying photothermal and photoacoustic phenomena are discussed.

  10. Comparison of diffusion charging and mobility-based methods for measurement of aerosol agglomerate surface area

    PubMed Central

    Ku, Bon Ki; Kulkarni, Pramod

    2015-01-01

    We compare different approaches to measure surface area of aerosol agglomerates. The objective was to compare field methods, such as mobility and diffusion charging based approaches, with laboratory approach, such as Brunauer, Emmett, Teller (BET) method used for bulk powder samples. To allow intercomparison of various surface area measurements, we defined ‘geometric surface area’ of agglomerates (assuming agglomerates are made up of ideal spheres), and compared various surface area measurements to the geometric surface area. Four different approaches for measuring surface area of agglomerate particles in the size range of 60–350 nm were compared using (i) diffusion charging-based sensors from three different manufacturers, (ii) mobility diameter of an agglomerate, (iii) mobility diameter of an agglomerate assuming a linear chain morphology with uniform primary particle size, and (iv) surface area estimation based on tandem mobility–mass measurement and microscopy. Our results indicate that the tandem mobility–mass measurement, which can be applied directly to airborne particles unlike the BET method, agrees well with the BET method. It was also shown that the three diffusion charging-based surface area measurements of silver agglomerates were similar within a factor of 2 and were lower than those obtained from the tandem mobility–mass and microscopy method by a factor of 3–10 in the size range studied. Surface area estimated using the mobility diameter depended on the structure or morphology of the agglomerate with significant underestimation at high fractal dimensions approaching 3. PMID:26692585

  11. Adsorption rate of phenol from aqueous solution onto organobentonite: surface diffusion and kinetic models.

    PubMed

    Ocampo-Perez, Raul; Leyva-Ramos, Roberto; Mendoza-Barron, Jovita; Guerrero-Coronado, Rosa M

    2011-12-01

    The concentration decay curves for the adsorption of phenol on organobentonite were obtained in an agitated tank batch adsorber. The experimental adsorption rate data were interpreted with diffusional models as well as first-order, second-order and Langmuir kinetic models. The surface diffusion model adjusted the data quite well, revealing that the overall rate of adsorption was controlled by surface diffusion. Furthermore, the surface diffusion coefficient increased raising the mass of phenol adsorbed at equilibrium and was independent of the particle diameter in the range 0.042-0.0126 cm. It was demonstrated that the overall rate of adsorption was essentially not affected by the external mass transfer. The second-order and the Langmuir kinetic models fitted the experimental data quite well; however, the kinetic constants of both models varied without any physical meaning while increasing the particle size and the mass of phenol adsorbed at equilibrium.

  12. Jump rates for surface diffusion of large molecules from first principles

    SciTech Connect

    Shea, Patrick Kreuzer, Hans Jürgen

    2015-04-21

    We apply a recently developed stochastic model for the surface diffusion of large molecules to calculate jump rates for 9,10-dithioanthracene on a Cu(111) surface. The necessary input parameters for the stochastic model are calculated from first principles using density functional theory (DFT). We find that the inclusion of van der Waals corrections to the DFT energies is critical to obtain good agreement with experimental results for the adsorption geometry and energy barrier for diffusion. The predictions for jump rates in our model are in excellent agreement with measured values and show a marked improvement over transition state theory (TST). We find that the jump rate prefactor is reduced by an order of magnitude from the TST estimate due to frictional damping resulting from energy exchange with surface phonons, as well as a rotational mode of the diffusing molecule.

  13. Surface site diffusion and reaction on molecular "organizates" and colloidal catalysts: A geometrical perspective.

    PubMed

    Politowicz, P A; Kozak, J J

    1987-12-01

    We study surface-mediated, diffusion-controlled reactive processes on particles whose overall geometry is homeomorphic to a sphere. Rather than assuming that a coreactant can diffuse freely over the surface of the particle to a target site (reaction center), we consider the case where the coreactant can migrate only among N - 1 satellite sites that are networked to the reaction site by means of a number of pathways or reaction channels. Five distinct lattice topologies are considered and we study the reaction efficiency both for the case where the satellite sites are passive and for the case where reaction may occur with finite probability at these sites. The results obtained for this class of surface problems are compared with those obtained by assuming that the reaction-diffusion process takes place on a planar, two-dimensional surface (lattice). The applicability of our results to surface-mediated processes on "organizates" (cells, vesicles, micelles) and on colloidally dispersed catalyst particles is brought out in the Introduction, and the correspondence between the lattice-based, Markovian approach developed here and Fickian models of surface diffusion, particularly with regard to the exponentiality of the decay, is discussed in the concluding section.

  14. Exploratory laboratory study of lateral turbulent diffusion at the surface of an alluvial channel

    USGS Publications Warehouse

    Sayre, William W.; Chamberlain, A.R.

    1964-01-01

    In natural streams turbulent diffusion is one of the principal mechanisms by which liquid and suspended-particulate contaminants are dispersed in the flow. A knowledge of turbulence characteristics is therefore essential in predicting the dispersal rates of contaminants in streams. In this study the theory of diffusion by continuous movements for homogeneous turbulence is applied to lateral diffusion at the surface of an open channel in which there is uniform flow. An exploratory-laboratory investigation was conducted in which the lateral dispersion at the water surface of a sand-Led flume was studied by measuring the lateral spread from a point source of small floating polyethylene articles. The experiment was restricted to a single set of low and channel geometry conditions. The results of the study indicate that with certain restrictions lateral dispersion in alluvial channels may be successfully described by the theory of diffusion by continuous movements. The experiment demonstrates a means for evaluating the lateral diffusion coefficient and also methods for quantitatively estimating fundamental turbulence properties, such as the intensity and the Lagrangian integral scale of turbulence in an alluvial channel. The experimental results show that with increasing distance from the source the coefficient of lateral turbulent diffusion increases initially but tends toward a constant limiting value. This result is in accordance with turbulent diffusion theory. Indications are that the distance downstream from the source required for the diffusion coefficient to reach its limiting value is actually very small when compared to the length scale of most diffusion phenomena in natural streams which are of practical interest.

  15. Scaling and diffusion of oil spills in the Ocean Surface

    NASA Astrophysics Data System (ADS)

    Tarquis, A. M.; Platonov, A.; Grau, J.; Sekula, E.

    2010-05-01

    The region of the Gulf of Lions at the northwestern Mediterranean Sea has been studied within a ten-year period from December 1996 until November 2006. More than 1000 synthetic aperture radar (SAR) images, which have been acquired by the Second European Remote Sensing Satellite (ERS 1/2) as well as from ENVISAT. We present statistical results of the structure of several features revealed by SAR such as oil spills and tensioactive slicks dynamic. We compare oil splils obtained from the projects Clean Seas,ENVA4/CT/0334, RC2003/005700, ESP2005/07551 and ESA/AO/IP2240. Since natural (caused by plankton, fish, etc.) slicks as well as man-made oil slicks dampen the small-scale surface waves, which are responsible for the radar backscattering from the ocean surface, both types of effects may be confused and give look/alike false oil spill detections. The early SAR images were processed at a resolution of 1 pixel=200m and were provided by the RApid Information Dissemination System (RAIDS) SAR processing facility in West Freugh, UK. Recent ENVISAT images directly from ESA allow a higher resolution of 1 pixel = 26 m, improving the detected turbulent scaling range. The occurrence of marine oil pollution as well as several dynamic features near Barcelona (frames 8-10, 19, 20; 200 SAR images)is itself a random multi-scale process. The use of different multifractal techniques, both using limits to the smallest and largest available scales, show that the scaling laws are very complex and depend strongly on intermittency of the assumed turbulent cascade, the shapes of the multifractal spectra functions are seen to deviate from an homogeneous multifractal and depend both on the initial conditions of the spill or slick, and on the transit time that the spill has been subjected to the local turbulence.

  16. Computer modelling of nanoscale diffusion phenomena at epitaxial interfaces

    NASA Astrophysics Data System (ADS)

    Michailov, M.; Ranguelov, B.

    2014-05-01

    The present study outlines an important area in the application of computer modelling to interface phenomena. Being relevant to the fundamental physical problem of competing atomic interactions in systems with reduced dimensionality, these phenomena attract special academic attention. On the other hand, from a technological point of view, detailed knowledge of the fine atomic structure of surfaces and interfaces correlates with a large number of practical problems in materials science. Typical examples are formation of nanoscale surface patterns, two-dimensional superlattices, atomic intermixing at an epitaxial interface, atomic transport phenomena, structure and stability of quantum wires on surfaces. We discuss here a variety of diffusion mechanisms that control surface-confined atomic exchange, formation of alloyed atomic stripes and islands, relaxation of pure and alloyed atomic terraces, diffusion of clusters and their stability in an external field. The computational model refines important details of diffusion of adatoms and clusters accounting for the energy barriers at specific atomic sites: smooth domains, terraces, steps and kinks. The diffusion kinetics, integrity and decomposition of atomic islands in an external field are considered in detail and assigned to specific energy regions depending on the cluster stability in mass transport processes. The presented ensemble of diffusion scenarios opens a way for nanoscale surface design towards regular atomic interface patterns with exotic physical features.

  17. Impact of network topology on cationic diffusion and hardness of borate glass surfaces

    NASA Astrophysics Data System (ADS)

    Smedskjaer, Morten M.; Mauro, John C.; Sen, Sabyasachi; Deubener, Joachim; Yue, Yuanzheng

    2010-10-01

    The connection between bulk glass properties and network topology is now well established. However, there has been little attention paid to the impact of network topology on the surface properties of glass. In this work, we report the impact of the network topology on both the transport properties (such as cationic inward diffusion) and the mechanical properties (such as hardness) of borate glasses with modified surfaces. We choose soda lime borate systems as the object of this study because of their interesting topological features, e.g., boron anomaly. An inward diffusion mechanism is employed to modify the glass surface compositions and hence the surface topology. We show that accurate quantitative predictions of the hardness of the modified surfaces can be made using topological constraint theory with temperature-dependent constraints. Experimental results reveal that Ca2+ diffusion is most intense in glasses with lowest BO4 fraction, whereas Na+ diffusion is only significant when nonbridging oxygens start to form. These phenomena are interpreted in terms of the atomic packing and the local electrostatic environments of the cations.

  18. Hydrogen dissociation and diffusion on Ni- and Ti-doped Mg(0001) surfaces

    NASA Astrophysics Data System (ADS)

    Pozzo, M.; Alfè, D.; Amieiro, A.; French, S.; Pratt, A.

    2008-03-01

    It is well-known, both theoretically and experimentally, that alloying MgH2 with transition elements can significantly improve the thermodynamic and kinetic properties for H2 desorption, as well as the H2 intake by Mg bulk. Here, we present a density functional theory investigation of hydrogen dissociation and surface diffusion over a Ni-doped surface and compare the findings to previously investigated Ti-doped Mg(0001) and pure Mg(0001) surfaces. Our results show that the energy barrier for hydrogen dissociation on the pure Mg(0001) surface is high, while it is small/null when Ni/Ti are added to the surface as dopants. We find that the binding energy of the two H atoms near the dissociation site is high on Ti, effectively impeding diffusion away from the Ti site. By contrast, we find that on Ni, the energy barrier for diffusion is much reduced. Therefore, although both Ti and Ni promote H2 dissociation, only Ni appears to be a good catalyst for Mg hydrogenation, allowing diffusion away from the catalytic sites. Experimental results corroborate these theoretical findings, i.e., faster hydrogenation of the Ni-doped Mg sample as opposed to the reference Mg- or Ti-doped Mg.

  19. Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions

    PubMed Central

    Markov, Dmitry A.; Lillie, Elizabeth M.; Garbett, Shawn P.; McCawley, Lisa J.

    2013-01-01

    Polydimethylsiloxane (PDMS) is a commonly used polymer in the fabrication of microfluidic devices due to such features as transparency, gas permeability, and ease of patterning with soft lithography. The surface characteristics of PDMS can also be easily changed with oxygen or low pressure air converting it from a hydrophobic to a hydrophilic state. As part of such a transformation, surface methyl groups are removed and replaced with hydroxyl groups making the exposed surface to resemble silica, a gas impermeable substance. We have utilized Platinum(II)-tetrakis(pentaflourophenyl)porphyrin immobilized within a thin (~1.5 um thick) polystyrene matrix as an oxygen sensor, Stern-Volmer relationship, and Fick's Law of simple diffusion to measure the effects of PDMS composition, treatment, and storage on oxygen diffusion through PDMS. Results show that freshly oxidized PDMS showed a significantly smaller diffusion coefficient, indicating that the SiO2 layer formed on the PDMS surface created an impeding barrier. This barrier disappeared after a three-day storage in air, but remained significant for up to three weeks if PDMS was maintained in contact with water. Additionally, higher density PDMS formulation (5:1 ratio) showed similar diffusion characteristics as normal (10:1 ratio) formulation, but showed 60% smaller diffusion coefficient after plasma treatment that never recovered to pre-treatment levels even after a three-week storage in air. Understanding how plasma surface treatments contribute to oxygen diffusion will be useful in exploiting the gas permeability of PDMS to establish defined normoxic and hypoxic oxygen conditions within microfluidic bioreactor systems. PMID:24065585

  20. Characterization of oxygen and titanium diffusion at the anatase TiO2(001) surface

    SciTech Connect

    Herman, Gregory S.; Zehr, Robert T.; Henderson, Michael A.

    2013-06-01

    The diffusion of intrinsic defects in a single crystal anatase TiO2(001) film was explored by isotopic labeling and static secondary ion mass spectrometry. Using both 46Ti and 18O as isotopic labels, we show that the anatase surface responds to redox imbalances by diffusion of both Ti and O into the bulk under vacuum reduction and (at least) Ti from the bulk to the surface during oxidation. The diffusion of Ti between the bulk and surface in anatase TiO2(001) closely resembles what was observed in the literature for the rutile TiO2(110) surface, however the latter is not known to have oxygen diffusion between the bulk and surface under typical ultrahigh vacuum conditions. We speculate that the open lattice of the anatase bulk structure may facilitate independent diffusion of both point defects (Ti interstitials and O vacancies) or concerted diffusion of "TiO" subunits. The authors gratefully acknowledge S.A. Chambers of Pacific Northwest National Laboratory (PNNL) for providing the anatase samples. This research was supported by the U.S. Department of Energy (DOE) Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, the Office of Naval Research Contract Number 200CAR262, and the Oregon Nanoscience and Microtechnologies Institute. PNNL is operated for the U.S. DOE by Battelle under Contract Number DE05-AC76RL0 1830. The research was performed in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility funded by the U.S. DOE Office of Biological and Environmental Research.

  1. Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions.

    PubMed

    Markov, Dmitry A; Lillie, Elizabeth M; Garbett, Shawn P; McCawley, Lisa J

    2014-02-01

    Polydimethylsiloxane (PDMS) is a commonly used polymer in the fabrication of microfluidic devices due to such features as transparency, gas permeability, and ease of patterning with soft lithography. The surface characteristics of PDMS can also be easily changed with oxygen or low pressure air plasma converting it from a hydrophobic to a hydrophilic state. As part of such a transformation, surface methyl groups are removed and replaced with hydroxyl groups making the exposed surface to resemble silica, a gas impermeable substance. We have utilized Platinum(II)-tetrakis(pentaflourophenyl)porphyrin immobilized within a thin (~1.5 um thick) polystyrene matrix as an oxygen sensor, Stern-Volmer relationship, and Fick's Law of simple diffusion to measure the effects of PDMS composition, treatment, and storage on oxygen diffusion through PDMS. Results indicate that freshly oxidized PDMS showed a significantly smaller diffusion coefficient, indicating that the SiO2 layer formed on the PDMS surface created an impeding barrier. This barrier disappeared after a 3-day storage in air, but remained significant for up to 3 weeks if PDMS was maintained in contact with water. Additionally, higher density PDMS formulation (5:1 ratio) showed similar diffusion characteristics as normal (10:1 ratio) formulation, but showed 60 % smaller diffusion coefficient after plasma treatment that never recovered to pre-treatment levels even after a 3-week storage in air. Understanding how plasma surface treatments contribute to oxygen diffusion will be useful in exploiting the gas permeability of PDMS to establish defined normoxic and hypoxic oxygen conditions within microfluidic bioreactor systems. PMID:24065585

  2. Diffusion of CO{sub 2} on Rutile TiO{sub 2}(110) Surface

    SciTech Connect

    Lee, Junseok; Sorescu, Dan C.; Deng, Xingyi; Jordan, Kenneth D.

    2011-12-15

    The diffusion of CO{sub 2} molecules on a reduced rutile TiO{sub 2}(110)-(1×1) surface has been investigated using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The STM feature associated with a CO{sub 2} molecule at an oxygen vacancy (V{sub O}) becomes increasingly streaky with increasing temperature, indicating thermally activated CO{sub 2} diffusion from the V{sub O} site. From temperature-dependent tunneling current measurements, the barrier for diffusion of CO{sub 2} from the V{sub O} site is estimated to be 3.31 ± 0.23 kcal/mol. The corresponding value from the DFT calculations is 3.80 kcal/mol. In addition, the DFT calculations give a barrier for diffusion of CO{sub 2} along Ti rows of only 1.33 kcal/mol.

  3. INTRODUCTION: Surface Dynamics, Phonons, Adsorbate Vibrations and Diffusion

    NASA Astrophysics Data System (ADS)

    Bruch, L. W.

    2004-07-01

    understanding of the underlying factors determining the optical quality of GaInNAs, such as composition, growth and annealing conditions. We are still far from establishing an understanding of the band structure and its dependence on composition. Fundamental electronic interactions such as electron-electron and electron-phonon scattering, dependence of effective mass on composition, strain and orientation, quantum confinement effects, effects of localized nitrogen states on high field transport and on galvanometric properties, and mechanisms for light emission in these materials, are yet to be fully understood. Nature and formation mechanisms of grown-in and processing-induced defects that are important for material quality and device performance are still unknown. Such knowledge is required in order to design strategies to efficiently control and eliminate harmful defects. For many potential applications (such as solar cells, HBTs) it is essential to get more information on the transport properties of dilute nitride materials. The mobility of minority carriers is known to be low in GaInNAs and related material. The experimental values are far from reaching the theoretical ones, due to defects and impurities introduced in the material during the growth. The role of the material inhomogeneities on the lateral carrier transport also needs further investigation. From the device's point of view most attention to date has been focused on the GaInNAs/GaAs system, mainly because of its potential for optoelectronic devices covering the 1.3-1.55 µm data and telecommunications wavelength bands. As is now widely appreciated, these GaAs-compatible structures allow monolithic integration of AlGaAs-based distributed Bragg reflector mirrors (DBRs) for vertical cavity surface-emitting lasers with low temperature sensitivity and compatibility with AlOx-based confinement techniques. In terms of conventional edge-emitting lasers (EELs), the next step is to extend the wavelength range for cw room

  4. Size Evolution of Ordered SiGe Islands Grown by Surface Thermal Diffusion on Pit-Patterned Si(100) Surface

    PubMed Central

    2010-01-01

    The ordered growth of self-assembled SiGe islands by surface thermal diffusion in ultra high vacuum from a lithographically etched Ge stripe on pit-patterned Si(100) surface has been experimentally investigated. The total surface coverage of Ge strongly depends on the distance from the source stripe, as quantitatively verified by Scanning Auger Microscopy. The size distribution of the islands as a function of the Ge coverage has been studied by coupling atomic force microscopy scans with Auger spectro-microscopy data. Our observations are consistent with a physical scenario where island positioning is essentially driven by energetic factors, which predominate with respect to the local kinetics of diffusion, and the growth evolution mainly depends on the local density of Ge atoms. PMID:21170398

  5. Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix J

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2003-01-01

    The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and 0) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and 02 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.

  6. Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix B

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and O) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and O2 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.

  7. Na + and HTO diffusion in compacted bentonite: Effect of surface chemistry and related texture

    NASA Astrophysics Data System (ADS)

    Melkior, T.; Gaucher, E. C.; Brouard, C.; Yahiaoui, S.; Thoby, D.; Clinard, Ch.; Ferrage, E.; Guyonnet, D.; Tournassat, C.; Coelho, D.

    2009-05-01

    SummaryIn underground repository concepts for radioactive waste, bentonite is studied as a reference swelling material to be used as an engineered barrier. Under the changing geochemical conditions prevailing within the barrier (saturation with the fluid coming from the host formation, diffusion of various chemical plumes caused by the degradation of some constituents of the barrier-system, etc.), the surface chemistry of the clay particles could evolve. This work aims to characterize the effects of these changes on (i) the microstructure of compacted bentonite samples and (ii) the diffusion properties of HTO and Na in these samples. For this purpose, bentonite sets were equilibrated with different solutions: NaCl, CaCl 2, CsCl solutions as well as an artificial clayey porewater solution. The microstructure of the different samples was characterized by HRTEM and XRD, in a water saturated state. In parallel, effective diffusion coefficients of both HTO and 22Na were measured for the different samples. The density of the bentonite in the diffusion tests and in the HRTEM observations was set at 1.6 Mg m -3. From the microstructural observations and the results of diffusion tests, it is deduced that one key parameter is the occurrence of a gel phase in the material, which is found to depend strongly on the bentonite set: the gel phase dominates in Na-bentonite, while it is lacking in Cs-bentonite. The HTO diffusion coefficients are found to be lower in the samples with high gel phase content. Sodium diffusion does not follow the same trend: when compared with HTO, Na diffuses faster when the gel phase content is high. The latter result could indicate that the "accelerated diffusion mechanism" of cations, already mentioned in the literature, is enhanced in clayey materials that contain a gel phase.

  8. INTRODUCTION: Surface Dynamics, Phonons, Adsorbate Vibrations and Diffusion

    NASA Astrophysics Data System (ADS)

    Bruch, L. W.

    2004-07-01

    understanding of the underlying factors determining the optical quality of GaInNAs, such as composition, growth and annealing conditions. We are still far from establishing an understanding of the band structure and its dependence on composition. Fundamental electronic interactions such as electron-electron and electron-phonon scattering, dependence of effective mass on composition, strain and orientation, quantum confinement effects, effects of localized nitrogen states on high field transport and on galvanometric properties, and mechanisms for light emission in these materials, are yet to be fully understood. Nature and formation mechanisms of grown-in and processing-induced defects that are important for material quality and device performance are still unknown. Such knowledge is required in order to design strategies to efficiently control and eliminate harmful defects. For many potential applications (such as solar cells, HBTs) it is essential to get more information on the transport properties of dilute nitride materials. The mobility of minority carriers is known to be low in GaInNAs and related material. The experimental values are far from reaching the theoretical ones, due to defects and impurities introduced in the material during the growth. The role of the material inhomogeneities on the lateral carrier transport also needs further investigation. From the device's point of view most attention to date has been focused on the GaInNAs/GaAs system, mainly because of its potential for optoelectronic devices covering the 1.3-1.55 µm data and telecommunications wavelength bands. As is now widely appreciated, these GaAs-compatible structures allow monolithic integration of AlGaAs-based distributed Bragg reflector mirrors (DBRs) for vertical cavity surface-emitting lasers with low temperature sensitivity and compatibility with AlOx-based confinement techniques. In terms of conventional edge-emitting lasers (EELs), the next step is to extend the wavelength range for cw room

  9. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  10. Influence of cloud optical thickness on surface diffuse light and carbon uptake in forests and croplands

    NASA Astrophysics Data System (ADS)

    Cheng, S. J.; Steiner, A. L.; Nadelhoffer, K. J.

    2014-12-01

    Accurately modeling atmospheric CO2 removal by terrestrial ecosystems requires an understanding of how atmospheric conditions change the rate of photosynthesis across major vegetation types. Diffuse light, which is created from interactions between incident solar radiation and atmospheric aerosols and clouds, has been postulated to increase carbon uptake in terrestrial ecosystems. To determine how cloud conditions affect carbon uptake through its influence on diffuse light, we quantify the relationship between cloud optical thickness, which indicates surface light attenuation by clouds, and surface diffuse light. We then examine the relationship between cloud optical thickness and gross primary productivity (GPP) to determine whether cloud properties could modulate GPP in temperate ecosystems. Surface diffuse light and GPP data are obtained from publically available Ameriflux data (Mead Crop sites, University of Michigan Biological Station, Morgan Monroe, and Howland Forest) and cloud optical thickness data over the Ameriflux sites are retrieved from NASA's Moderate Resolution Imaging Spetroradiometer. We compare the response of GPP to cloud optical thickness between croplands and forests, as well as within ecosystem types to determine ecosystem-specific responses and the role of plant community composition on ecosystem-level GPP under varying cloud conditions. By linking atmospheric cloud properties to surface light conditions and ecosystem carbon fluxes, we refine understanding of land-atmosphere carbon cycling and how changes in atmospheric cloud conditions may influence the future of the land carbon sink.

  11. Minority carrier diffusion length and edge surface-recombination velocity in InP

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Bailey, Sheila G.

    1993-01-01

    A scanning electron microscope was used to obtain the electron-beam-induced current (EBIC) profiles in InP specimens containing a Schottky barrier perpendicular to the scanned (edge) surface. An independent technique was used to measure the edge surface-recombination velocity. These values were used in a fit of the experimental EBIC data with a theoretical expression for normalized EBIC (Donolato, 1982) to obtain the electron (minority carrier) diffusion length.

  12. Hydrogen Adsorption, Absorption and Diffusion on and in Transition Metal Surfaces: A DFT Study

    SciTech Connect

    Ferrin, Peter A.; Kandoi, Shampa; Nilekar, Anand U.; Mavrikakis, Manos

    2012-01-04

    Periodic, self-consistent DFT-GGA(PW91) calculations are used to study the interaction of hydrogen with different facets of seventeen transition metals—the (100) and (111) facets of face-centered cubic (fcc) metals, the (0001) facet of hexagonal-close packed (hcp) metals, and the (100) and (110) facets of body-centered cubic (bcc) metals. Calculated geometries and binding energies for surface and subsurface hydrogen are reported and are, in general, in good agreement with both previous modeling studies and experimental data. There are significant differences between the binding on the close-packed and more open (100) facets of the same metal. Geometries of subsurface hydrogen on different facets of the same metal are generally similar; however, binding energies of hydrogen in the subsurface of the different facets studied showed significant variation. Formation of surface hydrogen is exothermic with respect to gas-phase H₂ on all metals studied with the exception of Ag and Au. For each metal studied, hydrogen in its preferred subsurface state is always less stable than its preferred surface state. The magnitude of the activation energy for hydrogen diffusion from the surface layer into the first subsurface layer is dominated by the difference in the thermodynamic stability of these two states. Diffusion from the first subsurface layer to one layer further into the bulk does not generally have a large thermodynamic barrier but still has a moderate kinetic barrier. Despite the proximity to the metal surface, the activation energy for hydrogen diffusion from the first to the second subsurface layer is generally similar to experimentally-determined activation energies for bulk diffusion found in the literature. There are also some significant differences in the activation energy for hydrogen diffusion into the bulk through different facets of the same metal.

  13. Detailed analysis of surface asperity deformation mechanism in diffusion bonding of steel hollow structural components

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Li, H.; Li, M. Q.

    2016-05-01

    This study focused on the detailed analysis of surface asperity deformation mechanism in similar diffusion bonding as well as on the fabrication of high quality martensitic stainless steel hollow structural components. A special surface with regular patterns was processed to be joined so as to observe the extent of surface asperity deformation under different bonding pressures. Results showed that an undamaged hollow structural component has been obtained with full interfacial contact and the same shear strength to that of base material. Fracture surface characteristic combined with surface roughness profiles distinctly revealed the enhanced surface asperity deformation as the applied pressure increases. The influence of surface asperity deformation mechanism on joint formation was analyzed: (a) surface asperity deformation not only directly expanded the interfacial contact areas, but also released deformation heat and caused defects, indirectly accelerating atomic diffusion, then benefits to void shrinkage; (b) surface asperity deformation readily introduced stored energy difference between two opposite sides of interface grain boundary, resulting in strain induced interface grain boundary migration. In addition, the influence of void on interface grain boundary migration was analyzed in detail.

  14. Competition between diffusion and electroconvection at an ion-selective surface in intensive current regimes.

    PubMed

    Nikonenko, V V; Vasil'eva, V I; Akberova, E M; Uzdenova, A M; Urtenov, M K; Kovalenko, A V; Pismenskaya, N P; Mareev, S A; Pourcelly, G

    2016-09-01

    Considering diffusion near a solid surface and simplifying the shape of concentration profile in diffusion-dominated layer allowed Nernst and Brunner to propose their famous equation for calculating the solute diffusion flux. Intensive (overlimiting) currents generate electroconvection (EC), which is a recently discovered interfacial phenomenon produced by the action of an external electric field on the electric space charge formed near an ion-selective interface. EC microscale vortices effectively mix the depleted solution layer that allows the reduction of diffusion transport limitations. Enhancement of ion transport by EC is important in membrane separation, nano-microfluidics, analytical chemistry, electrode kinetics and some other fields. This paper presents a review of the actual understanding of the transport mechanisms in intensive current regimes, where the role of diffusion declines in the profit of EC. We analyse recent publications devoted to explore the properties of different zones of the diffusion layer. Visualization of concentration profile and fluid current lines are considered as well as mathematical modelling of the overlimiting transfer. PMID:27457287

  15. Diffusion-controlled reactions on spherical surfaces. Application to bacteriophage tail fiber attachment.

    PubMed

    Bloomfield, V A; Prager, S

    1979-09-01

    We have explored the kinetic implications of a model that may account for the acceleration of tail fiber (F) attachment to baseplates (B) by whiskers (W) on bacteriophage T4. The model assumes that a W-F complex is formed initially, and that the tethered fiber then undergoes rotational diffusion until a B-F encounter takes place. In the absence of whiskers, B-F complexes must form unassisted. Formation of a W-F intermediate will accelerate F attachment to B if (a) the bimolecular rate constant for W-F complex formation is larger than that for direct B-F interaction and (b) subsequent rotational diffusion of the tip of F to B is not much slower than the dissociation of W-F. Condition a was investigated by applying a recent theory of orientational effects on translational diffusion-controlled reactions. This theory suggests that substantial rate enhancement is expected if the reaction half-angle theta 0 is larger for W-F than for B-F complex formation. Condition b was investigated by calculating the mean and the variance of the time required for the diffusion of a molecule (the proximal tip of the fiber) on a spherical surface (whose radius is the distance from the tip to the whisker tethering point) into a circular sink (the baseplate site). The mean time is on the order of the inverse rotational diffusion coefficient, DR, of the fiber, but is sensitive to theta 0. Both conditions are satisfied for plausible choices of parameters. The solution to the diffusion equation we have obtained should have application to other physical situations, such as the rate of quenching of a fluorophore as it diffuses on the surface of a spherical membrane into proximity with a quencher.

  16. Diffusion Barriers Block Defect Occupation on Reduced CeO2(111 )

    NASA Astrophysics Data System (ADS)

    Lustemberg, P. G.; Pan, Y.; Shaw, B.-J.; Grinter, D.; Pang, Chi; Thornton, G.; Pérez, Rubén; Ganduglia-Pirovano, M. V.; Nilius, N.

    2016-06-01

    Surface defects are believed to govern the adsorption behavior of reducible oxides. We challenge this perception on the basis of a combined scanning-tunneling-microscopy and density-functional-theory study, addressing the Au adsorption on reduced CeO2 -x(111 ) . Despite a clear thermodynamic preference for oxygen vacancies, individual Au atoms were found to bind mostly to regular surface sites. Even at an elevated temperature, aggregation at step edges and not decoration of defects turned out to be the main consequence of adatom diffusion. Our findings are explained with the polaronic nature of the Au-ceria system, which imprints a strong diabatic character onto the diffusive motion of adatoms. Diabatic barriers are generally higher than those in the adiabatic regime, especially if the hopping step couples to an electron transfer into the ad-gold. As the population of O vacancies always requires a charge exchange, defect decoration by Au atoms becomes kinetically hindered. Our study demonstrates that polaronic effects determine not only electron transport in reducible oxides but also the adsorption characteristics and therewith the surface chemistry.

  17. Diffusion Barriers Block Defect Occupation on Reduced CeO_{2}(111).

    PubMed

    Lustemberg, P G; Pan, Y; Shaw, B-J; Grinter, D; Pang, Chi; Thornton, G; Pérez, Rubén; Ganduglia-Pirovano, M V; Nilius, N

    2016-06-10

    Surface defects are believed to govern the adsorption behavior of reducible oxides. We challenge this perception on the basis of a combined scanning-tunneling-microscopy and density-functional-theory study, addressing the Au adsorption on reduced CeO_{2-x}(111). Despite a clear thermodynamic preference for oxygen vacancies, individual Au atoms were found to bind mostly to regular surface sites. Even at an elevated temperature, aggregation at step edges and not decoration of defects turned out to be the main consequence of adatom diffusion. Our findings are explained with the polaronic nature of the Au-ceria system, which imprints a strong diabatic character onto the diffusive motion of adatoms. Diabatic barriers are generally higher than those in the adiabatic regime, especially if the hopping step couples to an electron transfer into the ad-gold. As the population of O vacancies always requires a charge exchange, defect decoration by Au atoms becomes kinetically hindered. Our study demonstrates that polaronic effects determine not only electron transport in reducible oxides but also the adsorption characteristics and therewith the surface chemistry.

  18. Substrate recognition by gelatinase A: the C-terminal domain facilitates surface diffusion.

    PubMed Central

    Collier, I E; Saffarian, S; Marmer, B L; Elson, E L; Goldberg, G

    2001-01-01

    An investigation of gelatinase A binding to gelatin produced results that are inconsistent with a traditional bimolecular Michaelis-Menten formalism but are effectively accounted for by a power law characteristic of fractal kinetics. The main reason for this inconsistency is that the bulk of the gelatinase A binding depends on its ability to diffuse laterally on the gelatin surface. Most interestingly, we show that the anomalous lateral diffusion and, consequently, the binding to gelatin is greatly facilitated by the C-terminal hemopexin-like domain of the enzyme whereas the specificity of binding resides with the fibronectin-like gelatin-binding domain. PMID:11566806

  19. Surface self-diffusion constants at low temperature: Monte Carlo transition state theory with importance sampling

    SciTech Connect

    Voter, A.F.; Doll, J.D.

    1984-06-01

    We present an importance-sampling method which, when combined with a Monte Carlo procedure for evaluating transition state theory rates, allows computation of classically exact, transition state theory surface diffusion constants at arbitrarily low temperature. In the importance-sampling method, a weighting factor is applied to the transition state region, and Metropolis steps are chosen from a special distribution which facilitates transfer between the two important regions of configuration space: the binding site minimum and the saddle point between two binding sites. We apply the method to the diffusion of Rh on Rh(111) and Rh on Rh(100), in the temperature range of existing field ion microscope experiments.

  20. Evidence of diffusion characteristics of field emission electrons in nanostructuring process on graphite surface

    SciTech Connect

    Wang, C.; Bai, C.; Li, X.; Shang, G.; Lee, I.; Wang, X.; Qiu, X.; Tian, F.

    1996-07-01

    The characteristics of the nanostructure on the surface of highly oriented pyrolytic graphite (HOPG) involving field emitted electrons is examined with scanning tunneling microscopy (STM). A simple model based on the continuum electron diffusion is proposed and is compared with the experimental results. It suggests that the process could be associated with the diffusion of electrons at the vicinity of the injection position. It also implies that the characteristics of the as-produced nanometer sized craters could be correlated to the anisotropy degree of the transport properties of HOPG. {copyright} {ital 1996 American Institute of Physics.}

  1. Coupling between diffusion and orientation of pentacene molecules on an organic surface.

    PubMed

    Rotter, Paul; Lechner, Barbara A J; Morherr, Antonia; Chisnall, David M; Ward, David J; Jardine, Andrew P; Ellis, John; Allison, William; Eckhardt, Bruno; Witte, Gregor

    2016-04-01

    The realization of efficient organic electronic devices requires the controlled preparation of molecular thin films and heterostructures. As top-down structuring methods such as lithography cannot be applied to van der Waals bound materials, surface diffusion becomes a structure-determining factor that requires microscopic understanding. Scanning probe techniques provide atomic resolution, but are limited to observations of slow movements, and therefore constrained to low temperatures. In contrast, the helium-3 spin-echo (HeSE) technique achieves spatial and time resolution on the nm and ps scale, respectively, thus enabling measurements at elevated temperatures. Here we use HeSE to unveil the intricate motion of pentacene admolecules diffusing on a chemisorbed monolayer of pentacene on Cu(110) that serves as a stable, well-ordered organic model surface. We find that pentacene moves along rails parallel and perpendicular to the surface molecules. The experimental data are explained by admolecule rotation that enables a switching between diffusion directions, which extends our molecular level understanding of diffusion in complex organic systems.

  2. Coupling between diffusion and orientation of pentacene molecules on an organic surface

    NASA Astrophysics Data System (ADS)

    Rotter, Paul; Lechner, Barbara A. J.; Morherr, Antonia; Chisnall, David M.; Ward, David J.; Jardine, Andrew P.; Ellis, John; Allison, William; Eckhardt, Bruno; Witte, Gregor

    2016-04-01

    The realization of efficient organic electronic devices requires the controlled preparation of molecular thin films and heterostructures. As top-down structuring methods such as lithography cannot be applied to van der Waals bound materials, surface diffusion becomes a structure-determining factor that requires microscopic understanding. Scanning probe techniques provide atomic resolution, but are limited to observations of slow movements, and therefore constrained to low temperatures. In contrast, the helium-3 spin-echo (HeSE) technique achieves spatial and time resolution on the nm and ps scale, respectively, thus enabling measurements at elevated temperatures. Here we use HeSE to unveil the intricate motion of pentacene admolecules diffusing on a chemisorbed monolayer of pentacene on Cu(110) that serves as a stable, well-ordered organic model surface. We find that pentacene moves along rails parallel and perpendicular to the surface molecules. The experimental data are explained by admolecule rotation that enables a switching between diffusion directions, which extends our molecular level understanding of diffusion in complex organic systems.

  3. Effect of exposure environment on surface decomposition of SiC-silver ion implantation diffusion couples

    NASA Astrophysics Data System (ADS)

    Gerczak, Tyler J.; Zheng, Guiqiu; Field, Kevin G.; Allen, Todd R.

    2015-01-01

    SiC is a promising material for nuclear applications and is a critical component in the construction of tristructural isotropic (TRISO) fuel. A primary issue with TRISO fuel operation is the observed release of 110mAg from intact fuel particles. The release of Ag has prompted research efforts to directly measure the transport mechanism of Ag in bulk SiC. Recent experimental efforts have focused primarily on Ag ion implantation designs. The effect of the thermal exposure system on the ion implantation surface has been investigated. Results indicate the utilization of a mated sample geometry and the establishment of a static thermal exposure environment is critical to maintaining an intact surface for diffusion analysis. The nature of the implantation surface and its potential role in Ag diffusion analysis are discussed.

  4. Computing diffuse reflection from particulate planetary surface with a new function.

    PubMed

    Wolff, M

    1981-07-15

    An equation is derived to compute the amount of diffuse light reflected by a particulate surface such as on Mars or an asteroid. The method traces the paths of rays within an ensemble of randomly shaped grains and finds the eventual probability of emission. The amount of diffuse, unpolarized emitted light is obtained in terms of the real index of refraction, the imaginary index, and the average diameter of particles making up the surface. The equation is used to compute the empirical rule for obtaining the planetary albedo from the slope of its polarization curve. Accuracy of the equation, estimated at +/-4%, seems justified because of quantitative agreement with experimental measures of the empirical rule. It is also shown that the equation can be applied to bubble-enclosing surfaces such as volcanic foams. Results for the indices of the moon, Mars, Io, and Europa are obtained and compared with other data.

  5. Effect of exposure environment on surface decomposition of SiC-silver ion implantation diffusion couples

    SciTech Connect

    Gerczak, Tyler J.; Zheng, Guiqui; Field, Kevin G.; Allen, Todd R.

    2014-10-05

    SiC is a promising material for nuclear applications and is a critical component in the construction of tristructural isotropic (TRISO) fuel. A primary issue with TRISO fuel operation is the observed release of 110m Ag from intact fuel particles. The release of Ag has prompted research efforts to directly measure the transport mechanism of Ag in bulk SiC. Recent research efforts have focused primarily on Ag ion implantation designs. The effect of the thermal exposure system on the ion implantation surface has been investigated. Results indicate the utilization of a mated sample geometry and the establishment of a static thermal exposure environment is critical to maintaining an intact surface for diffusion analysis. In conclusion, the nature of the implantation surface and its potential role in Ag diffusion analysis are discussed.

  6. Effect of exposure environment on surface decomposition of SiC-silver ion implantation diffusion couples

    DOE PAGES

    Gerczak, Tyler J.; Zheng, Guiqui; Field, Kevin G.; Allen, Todd R.

    2014-10-05

    SiC is a promising material for nuclear applications and is a critical component in the construction of tristructural isotropic (TRISO) fuel. A primary issue with TRISO fuel operation is the observed release of 110m Ag from intact fuel particles. The release of Ag has prompted research efforts to directly measure the transport mechanism of Ag in bulk SiC. Recent research efforts have focused primarily on Ag ion implantation designs. The effect of the thermal exposure system on the ion implantation surface has been investigated. Results indicate the utilization of a mated sample geometry and the establishment of a static thermalmore » exposure environment is critical to maintaining an intact surface for diffusion analysis. In conclusion, the nature of the implantation surface and its potential role in Ag diffusion analysis are discussed.« less

  7. Surfactant-modified diffusion on transition-metal surfaces (reprinted with the addition of the appendices)

    SciTech Connect

    FEIBELMAN,PETER J.; KELLOGG,GARY LEE

    2000-03-01

    Wanting to convert surface impurities from a nuisance to a systematically applicable nano-fabrication tool, the authors have sought to understand how such impurities affect self-diffusion on transition-metal surfaces. Their field-ion microscope experiments reveal that in the presence of surface hydrogen, self-diffusion on Rh(100) is promoted, while on Pt(100), not only is it inhibited, but its mechanism changes. First-principles calculations aimed at learning how oxygen fosters perfect layerwise growth on a growing Pt(111) crystal contradict the idea in the literature that it does so by directly promoting transport over Pt island boundaries. The discovery that its real effect is to burn off adventitious adsorbed carbon monoxide demonstrates the predictive value of state-of-the-art calculation methods.

  8. A new approach to the problem of bulk-mediated surface diffusion

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Dagdug, Leonardo; Bezrukov, Sergey M.

    2015-08-01

    This paper is devoted to bulk-mediated surface diffusion of a particle which can diffuse both on a flat surface and in the bulk layer above the surface. It is assumed that the particle is on the surface initially (at t = 0) and at time t, while in between it may escape from the surface and come back any number of times. We propose a new approach to the problem, which reduces its solution to that of a two-state problem of the particle transitions between the surface and the bulk layer, focusing on the cumulative residence times spent by the particle in the two states. These times are random variables, the sum of which is equal to the total observation time t. The advantage of the proposed approach is that it allows for a simple exact analytical solution for the double Laplace transform of the conditional probability density of the cumulative residence time spent on the surface by the particle observed for time t. This solution is used to find the Laplace transform of the particle mean square displacement and to analyze the peculiarities of its time behavior over the entire range of time. We also establish a relation between the double Laplace transform of the conditional probability density and the Fourier-Laplace transform of the particle propagator over the surface. The proposed approach treats the cases of both finite and infinite bulk layer thicknesses (where bulk-mediated surface diffusion is normal and anomalous at asymptotically long times, respectively) on equal footing.

  9. Surface Adsorbate Fluctuations and Noise in Nanoelectromechanical Systems

    PubMed Central

    Yang, Y. T.; Callegari, C.; Feng, X. L.; Roukes, M. L.

    2013-01-01

    Physisorption on solid surfaces is important in both fundamental studies and technology. Adsorbates can also be critical for the performance of miniature electromechanical resonators and sensors. Advances in resonant nanoelectromechanical systems (NEMS), particularly mass sensitivity attaining the single-molecule level, make it possible to probe surface physics in a new regime, where a small number of adatoms cause a detectable frequency shift in a high quality factor (Q) NEMS resonator, and adsorbate fluctuations result in resonance frequency noise. Here we report measurements and analysis of the kinetics and fluctuations of physisorbed xenon (Xe) atoms on a high-Q NEMS resonator vibrating at 190.5 MHz. The measured adsorption spectrum and frequency noise, combined with analytic modeling of surface diffusion and adsorption–desorption processes, suggest that diffusion dominates the observed excess noise. This study also reveals new power laws of frequency noise induced by diffusion, which could be important in other low-dimensional nanoscale systems. PMID:21388120

  10. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion.

    PubMed

    Sendner, Christian; Horinek, Dominik; Bocquet, Lyderic; Netz, Roland R

    2009-09-15

    The dynamics and structure of water at hydrophobic and hydrophilic diamond surfaces is examined via non-equilibrium Molecular Dynamics simulations. For hydrophobic surfaces under shearing conditions, the general hydrodynamic boundary condition involves a finite surface slip. The value of the slip length depends sensitively on the surface water interaction strength and the surface roughness; heuristic scaling relations between slip length, contact angle, and depletion layer thickness are proposed. Inert gas in the aqueous phase exhibits pronounced surface activity but only mildly increases the slip length. On polar hydrophilic surfaces, in contrast, slip is absent, but the water viscosity is found to be increased within a thin surface layer. The viscosity and the thickness of this surface layer depend on the density of polar surface groups. The dynamics of single water molecules in the surface layer exhibits a similar distinction: on hydrophobic surfaces the dynamics is purely diffusive, while close to a hydrophilic surface transient binding or trapping of water molecules over times of the order of hundreds of picoseconds occurs. We also discuss in detail the effect of the Lennard-Jones cutoff length on the interfacial properties.

  11. Simulation studies for surfaces and materials strength

    NASA Technical Reports Server (NTRS)

    Halicioglu, Timur

    1987-01-01

    Three different investigations based on computer simulations were carried out. Simulation calculations were performed using model potentials with two- and three-body interactions which were represented by the Mie and the Axilrod-Teller potentials, respectively. In the first part, to analyze stability criteria for simple crystals, a parametrical investigation was performed and stability regions for five different crystalline structures were determined with respect to potential energy parameters. To simulate some of the basic surface processes such as diffusion and nucleation, in the second and third parts, silicon surfaces were considered as a specific example. In these studies diffusion of adatoms on stepped surfaces were simulated and energetics associated with the formation of kink sites were calculated.

  12. Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing

    PubMed Central

    Chi, Miaofang; Wang, Chao; Lei, Yinkai; Wang, Guofeng; Li, Dongguo; More, Karren L.; Lupini, Andrew; Allard, Lawrence F.; Markovic, Nenad M.; Stamenkovic, Vojislav R.

    2015-01-01

    The catalytic performance of nanoparticles is primarily determined by the precise nature of the surface and near-surface atomic configurations, which can be tailored by post-synthesis annealing effectively and straightforwardly. Understanding the complete dynamic response of surface structure and chemistry to thermal treatments at the atomic scale is imperative for the rational design of catalyst nanoparticles. Here, by tracking the same individual Pt3Co nanoparticles during in situ annealing in a scanning transmission electron microscope, we directly discern five distinct stages of surface elemental rearrangements in Pt3Co nanoparticles at the atomic scale: initial random (alloy) elemental distribution; surface platinum-skin-layer formation; nucleation of structurally ordered domains; ordered framework development and, finally, initiation of amorphization. Furthermore, a comprehensive interplay among phase evolution, surface faceting and elemental inter-diffusion is revealed, and supported by atomistic simulations. This work may pave the way towards designing catalysts through post-synthesis annealing for optimized catalytic performance. PMID:26576477

  13. Novel front-surface thermal-diffusivity measurement method based on phase analysis

    NASA Astrophysics Data System (ADS)

    Braggiotti, Alberto; Marinetti, Sergio

    2000-05-01

    The technique described in this paper is for one-side thermal diffusivity measurement. A single stripe-shaped pulse provided by a flash lamp is used to heat the front surface of a specimen slab. Classical methods for estimating a parameter out of a distribution involve fitting the temperature distribution with its theoretical model. With the technique described in this paper the evolution of the temperature distribution along a line perpendicular to the heated stripe is analyzed in the frequency domain. An estimate of the thermal diffusivity is then obtained from comparison of the phase component behavior with an abacus similarly built from the theoretical model. This technique is valid for any shape of flash lamp pulse (i.e. laser spot), and can be used also for estimating the thermal diffusivity of anisotropic materials. The choice of the stripe shape is due to the limitations of the simulation environment used.

  14. CO-Induced Embedding of Pt Adatoms in a Partially Reduced FeOx Film on Pt(111)

    SciTech Connect

    Merte, L. R.; Knudsen, Jan; Eichhorn, Falk M.; Porsgaard, Soeren; Zeuthen, Helene; Grabow, Lars C.; Laegsgaard, E.; Bluhm, Hendrik; Salmeron, Miquel B.; Mavrikakis, Manos; Besenbacher, Fleming

    2011-07-20

    The reduction of a single-layer FeOfilmgrown on Pt(111) by CO at elevated pressures and temperatures has been studied through an interplay of scanning tunneling microscopy, ambient-pressure X-ray photoelectron spectroscopy, and density functional theory calculations. Exposure of the FeO thin film to CO at pressures between 1 and 30 Torr and temperatures between 500 and 530 K leads to formation of a honeycomb-structured Fe3O2 film with hollow sites occupied by single Pt atoms extracted from the substrate surface. The formation of these adatoms is driven by an increase in CO adsorption energy. In addition, the structure incorporates undercoordinated Fe centers, which are proposed to have substantial effects on the catalytic properties of the surface.

  15. Speckle noise reduction for computer generated holograms of objects with diffuse surfaces

    NASA Astrophysics Data System (ADS)

    Symeonidou, Athanasia; Blinder, David; Ahar, Ayyoub; Schretter, Colas; Munteanu, Adrian; Schelkens, Peter

    2016-04-01

    Digital holography is mainly used today for metrology and microscopic imaging and is emerging as an important potential technology for future holographic television. To generate the holographic content, computer-generated holography (CGH) techniques convert geometric descriptions of a 3D scene content. To model different surface types, an accurate model of light propagation has to be considered, including for example, specular and diffuse reflection. In previous work, we proposed a fast CGH method for point cloud data using multiple wavefront recording planes, look-up tables (LUTs) and occlusion processing. This work extends our method to account for diffuse reflections, enabling rendering of deep 3D scenes in high resolution with wide viewing angle support. This is achieved by modifying the spectral response of the light propagation kernels contained by the look-up tables. However, holograms encoding diffuse reflective surfaces depict significant amounts of speckle noise, a problem inherent to holography. Hence, techniques to improve the reduce speckle noise are evaluated in this paper. Moreover, we propose as well a technique to suppress the aperture diffraction during numerical, viewdependent rendering by apodizing the hologram. Results are compared visually and in terms of their respective computational efficiency. The experiments show that by modelling diffuse reflection in the LUTs, a more realistic yet computationally efficient framework for generating high-resolution CGH is achieved.

  16. Relating adatom emission to improved durability of Pt-Pd diesel oxidation catalysts

    DOE PAGES

    Johns, Tyne Richele; Goeke, Ronald S.; Ashbacher, Valerie; Thune, Peter C.; Niemantsverdriet, J. W.; Kiefer, Boris; Kim, Chang H.; Balogh, Michael P.; Datye, Abhaya K.

    2015-06-05

    Sintering of nanoparticles is an important contributor to loss of activity in heterogeneous catalysts, such as those used for controlling harmful emissions from automobiles. But mechanistic details, such as the rates of atom emission or the nature of the mobile species, remain poorly understood. Herein we report a novel approach that allows direct measurement of atom emission from nanoparticles. We use model catalyst samples and a novel reactor that allows the same region of the sample to be observed after short-term heat treatments (seconds) under conditions relevant to diesel oxidation catalysts (DOCs). Monometallic Pd is very stable and does notmore » sinter when heated in air (T ≤ 800 °C). Pt sinters readily in air, and at high temperatures (≥800 °C) mobile Pt species emitted to the vapor phase cause the formation of large, faceted particles. In Pt–Pd nanoparticles, Pd slows the rate of emission of atoms to the vapor phase due to the formation of an alloy. However, the role of Pd in Pt DOCs in air is quite complex: at low temperatures, Pt enhances the rate of Pd sintering (which otherwise would be stable as an oxide), while at higher temperature Pd helps to slow the rate of Pt sintering. DFT calculations show that the barrier for atom emission to the vapor phase is much greater than the barrier for emitting atoms to the support. Thus, vapor-phase transport becomes significant only at high temperatures while diffusion of adatoms on the support dominates at lower temperatures.« less

  17. Relating adatom emission to improved durability of Pt-Pd diesel oxidation catalysts

    SciTech Connect

    Johns, Tyne Richele; Goeke, Ronald S.; Ashbacher, Valerie; Thune, Peter C.; Niemantsverdriet, J. W.; Kiefer, Boris; Kim, Chang H.; Balogh, Michael P.; Datye, Abhaya K.

    2015-06-05

    Sintering of nanoparticles is an important contributor to loss of activity in heterogeneous catalysts, such as those used for controlling harmful emissions from automobiles. But mechanistic details, such as the rates of atom emission or the nature of the mobile species, remain poorly understood. Herein we report a novel approach that allows direct measurement of atom emission from nanoparticles. We use model catalyst samples and a novel reactor that allows the same region of the sample to be observed after short-term heat treatments (seconds) under conditions relevant to diesel oxidation catalysts (DOCs). Monometallic Pd is very stable and does not sinter when heated in air (T ≤ 800 °C). Pt sinters readily in air, and at high temperatures (≥800 °C) mobile Pt species emitted to the vapor phase cause the formation of large, faceted particles. In Pt–Pd nanoparticles, Pd slows the rate of emission of atoms to the vapor phase due to the formation of an alloy. However, the role of Pd in Pt DOCs in air is quite complex: at low temperatures, Pt enhances the rate of Pd sintering (which otherwise would be stable as an oxide), while at higher temperature Pd helps to slow the rate of Pt sintering. DFT calculations show that the barrier for atom emission to the vapor phase is much greater than the barrier for emitting atoms to the support. Thus, vapor-phase transport becomes significant only at high temperatures while diffusion of adatoms on the support dominates at lower temperatures.

  18. Adatom bond-induced geometric and electronic properties of passivated armchair graphene nanoribbons.

    PubMed

    Lin, Yu-Tsung; Chung, Hsien-Ching; Yang, Po-Hua; Lin, Shih-Yang; Lin, Ming-Fa

    2015-07-01

    The geometric and electronic properties of passivated armchair graphene nanoribbons, enriched by strong chemical bonding between edge-carbons and various adatoms, are investigated by first-principle calculations. Adatom arrangements, bond lengths, charge distributions, and energy dispersions are dramatically changed by edge passivation. Elements with an atomic number of less than 20 are classified into three types depending on the optimal geometric structures: planar and non-planar structures, the latter of which are associated with specific arrangements and stacked configurations of adatoms. Especially, the nitrogen passivated nanoribbon is the most stable one with a heptagon-pentagon structure at the edges. The low-lying band structures are drastically varied, exhibiting non-monotonous energy dispersions and adatom-dominated bands. A relationship between energy gaps and ribbon widths no longer exists, and some adatoms further induce a semiconductor-metal transition. All the main characteristics are directly reflected in the density of states, revealing dip structures, plateaus, symmetric peaks, and square-root divergent asymmetric peaks. PMID:26051862

  19. Effect of surface modification, microstructure, and trapping on hydrogen diffusion coefficients in high strength alloys

    NASA Astrophysics Data System (ADS)

    Jebaraj Johnley Muthuraj, Josiah

    Cathodic protection is widely used for corrosion prevention. However, this process generates hydrogen at the protected metal surface, and diffusion of hydrogen through the metal may cause hydrogen embrittlement or hydrogen induced stress corrosion cracking. Thus the choice of a metal for use as fasteners depends upon its hydrogen uptake, permeation, diffusivity and trapping. The diffusivity of hydrogen through four high strength alloys (AISI 4340, alloy 718, alloy 686, and alloy 59) was analyzed by an electrochemical method developed by Devanathan and Stachurski. The effect of plasma nitriding and microstructure on hydrogen permeation through AISI 4340 was studied on six different specimens: as-received (AR) AISI 4340, nitrided samples with and without compound layer, samples quenched and tempered (Q&T) at 320° and 520°C, and nitrided samples Q&T 520°C. Studies on various nitrided specimens demonstrate that both the gamma'-Fe 4N rich compound surface layer and the deeper N diffusion layer that forms during plasma nitriding reduce the effective hydrogen diffusion coefficient, although the gamma'-Fe4N rich compound layer has a larger effect. Multiple permeation transients yield evidence for the presence of only reversible trap sites in as-received, Q&T 320 and 520 AISI 4340 specimens, and the presence of both reversible and irreversible trap sites in nitrided specimens. Moreover, the changes in microstructure during the quenching and tempering process result in a significant decrease in the diffusion coefficient of hydrogen compared to as-received specimens. In addition, density functional theory-based molecular dynamics simulations yield hydrogen diffusion coefficients through gamma'- Fe4N one order of magnitude lower than through α-Fe, which supports the experimental measurements of hydrogen permeation. The effect of microstructure and trapping was also studied in cold rolled, solutionized, and precipitation hardened Inconel 718 foils. The effective hydrogen

  20. Dynamics of an optically confined nanoparticle diffusing normal to a surface

    NASA Astrophysics Data System (ADS)

    Schein, Perry; O'Dell, Dakota; Erickson, David

    2016-06-01

    Here we measure the hindered diffusion of an optically confined nanoparticle in the direction normal to a surface, and we use this to determine the particle-surface interaction profile in terms of the absolute height. These studies are performed using the evanescent field of an optically excited single-mode silicon nitride waveguide, where the particle is confined in a height-dependent potential energy well generated from the balance of optical gradient and surface forces. Using a high-speed cmos camera, we demonstrate the ability to capture the short time-scale diffusion dominated motion for 800-nm-diam polystyrene particles, with measurement times of only a few seconds per particle. Using established theory, we show how this information can be used to estimate the equilibrium separation of the particle from the surface. As this measurement can be made simultaneously with equilibrium statistical mechanical measurements of the particle-surface interaction energy landscape, we demonstrate the ability to determine these in terms of the absolute rather than relative separation height. This enables the comparison of potential energy landscapes of particle-surface interactions measured under different experimental conditions, enhancing the utility of this technique.

  1. Bromelain Surface Modification Increases the Diffusion of Silica Nanoparticles in the Tumor Extracellular Matrix

    PubMed Central

    2015-01-01

    Tumor extracellular matrix (ECM) represents a major obstacle to the diffusion of therapeutics and drug delivery systems in cancer parenchyma. This biological barrier limits the efficacy of promising therapeutic approaches including the delivery of siRNA or agents intended for thermoablation. After extravasation due to the enhanced penetration and retention effect of tumor vasculature, typical nanotherapeutics are unable to reach the nonvascularized and anoxic regions deep within cancer parenchyma. Here, we developed a simple method to provide mesoporous silica nanoparticles (MSN) with a proteolytic surface. To this extent, we chose to conjugate MSN to Bromelain (Br–MSN), a crude enzymatic complex, purified from pineapple stems, that belongs to the peptidase papain family. This surface modification increased particle uptake in endothelial, macrophage, and cancer cell lines with minimal impact on cellular viability. Most importantly Br–MSN showed an increased ability to digest and diffuse in tumor ECM in vitro and in vivo. PMID:25119793

  2. Bromelain surface modification increases the diffusion of silica nanoparticles in the tumor extracellular matrix.

    PubMed

    Parodi, Alessandro; Haddix, Seth G; Taghipour, Nima; Scaria, Shilpa; Taraballi, Francesca; Cevenini, Armando; Yazdi, Iman K; Corbo, Claudia; Palomba, Roberto; Khaled, Sm Z; Martinez, Jonathan O; Brown, Brandon S; Isenhart, Lucas; Tasciotti, Ennio

    2014-10-28

    Tumor extracellular matrix (ECM) represents a major obstacle to the diffusion of therapeutics and drug delivery systems in cancer parenchyma. This biological barrier limits the efficacy of promising therapeutic approaches including the delivery of siRNA or agents intended for thermoablation. After extravasation due to the enhanced penetration and retention effect of tumor vasculature, typical nanotherapeutics are unable to reach the nonvascularized and anoxic regions deep within cancer parenchyma. Here, we developed a simple method to provide mesoporous silica nanoparticles (MSN) with a proteolytic surface. To this extent, we chose to conjugate MSN to Bromelain (Br-MSN), a crude enzymatic complex, purified from pineapple stems, that belongs to the peptidase papain family. This surface modification increased particle uptake in endothelial, macrophage, and cancer cell lines with minimal impact on cellular viability. Most importantly Br-MSN showed an increased ability to digest and diffuse in tumor ECM in vitro and in vivo.

  3. Experimental study of surface tension, specific heat and thermal diffusivity of liquid and solid titanium

    NASA Astrophysics Data System (ADS)

    Zhou, K.; Wang, H. P.; Chang, J.; Wei, B.

    2015-10-01

    The thermophysical properties of liquid and solid titanium such as the surface tension, specific heat and thermal diffusivity have been investigated over a wide temperature range. By using electromagnetic levitation and oscillating drop method, the surface tension of liquid titanium was measured in the temperature range of 1802-2188 K. The viscosity and density of undercooled liquid titanium were calculated by some well-known models using the measured data as input. In addition, the specific heat of liquid titanium was determined over the experimental range using electromagnetic levitation and drop calorimetry obtaining the value of 33.64 J mol-1 K-1. In addition, the thermal diffusivity of solid titanium was measured by laser flash method in the temperature range of 171-1080 K.

  4. The role of stress and diffusion in structure formation in semiconductors

    NASA Astrophysics Data System (ADS)

    Bouville, Mathieu

    This dissertation addresses two aspects of the theory and simulation of stress-diffusion coupling in semiconductors. The first part is a study of the role of kinetics in the formation of pits in stressed thin films. The second part describes how atomic-scale calculations can be used to extract the thermodynamic and elastic properties of point-defects. For both aspects, there exists an interaction between phenomena at the atomic and macroscopic scales and the formation of both point-defects and surface features depends on the stress state of the system. Recently, pit nucleation has been observed in a variety of semiconductor thin films. We present a model for pit nucleation in which the adatom concentration plays a central role in controlling the morphological development of the surface. Although pits relieve elastic energy more efficiently than islands, pit nucleation can be prevented by a high adatom concentration. Three-dimensional islands act as adatom sinks and the lower adatom density in their vicinity promotes pit nucleation. Thermodynamic considerations predict several different growth regimes in which pits may nucleate at different stages of growth depending on the growth conditions and materials system. When kinetics are taken into account, the model predicts a wide range of possible morphologies: planar films, islands alone, island nucleation followed by pit nucleation, and pits alone. The model shows good agreement with experimental observations in III-V systems given the uncertainties in quantifying experimental parameters such as the surface energy. The same stresses which lead to the nucleation of surface features can have a significant effect on the stability of dopant profiles by altering diffusivities and by inducing chemical potential gradients. We perform empirical calculations regarding a simple model point-defect, a vacancy in the Stillinger Weber model of silicon. In the context of these calculations we devise a method to extract the strength

  5. Soot Surface Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix I

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2003-01-01

    Soot surface oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round fuel jets burning in coflowing dry air considering acetylene-nitrogen, ethylene, propyiene-nitrogen, propane and acetylene-benzene-nitrogen in the fuel stream. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of major stable gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2, C2H6, C3H6, C3H8, and C6H6) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by deconvoluted Li/LiOH atomic absorption and flow velocities by laser velocimetry. For present test conditions, it was found that soot surface oxidation rates were not affected by fuel type, that direct rates of soot surface oxidation by O2 estimated from Nagle and Strickland-Constable (1962) were small compared to observed soot surface oxidation rates because soot surface oxidation was completed near the flame sheet where O2 concentrations were less than 3% by volume, and that soot surface oxidation rates were described by the OH soot surface oxidation mechanism with a collision efficiency of 0.14 and an uncertainty (95% confidence) of +/- 0.04 when allowing for direct soot surface oxidation by O2, which is in reasonably good agreement with earlier observations of soot surface oxidation rates in both premixed and diffusion flames at atmospheric pressure.

  6. The different diffusive transport behaviours of some metals in layers of Peru Basin surface sediment

    NASA Astrophysics Data System (ADS)

    Fritsche, Ulrich; Koschinsky, Andrea; Winkler, Andreas

    Diffusion experiments with a duration of 90 days were carried out with radio tracers in an oxic and a suboxic sediment layer from two deep-sea sediment cores. Diffusion coefficients, breakthrough and time-lag values were determined and the results checked by modelling. Only small differences of diffusive transport were observed for Na and Cs during the four experiments; Na behaved as a perfect conservative tracer, and the somewhat stronger uptake of Cs in one sample was caused by preferential absorption by illite that was enriched in this sample. The significant differences between the four experiments for the diffusion parameters of Mn, Zn, Co, and Cd correlate with the differing chemical compositions of the sediment layers; higher Mn oxide concentrations in the sample led to slower diffusion through the sediment sample and to significant sorption of the diffusing heavy metals. This result confirms the dominating role of Mn oxide phases in controlling the diffusive exchange of heavy metals between deep-sea sediment and bottom water. Sediment resuspension of the oxic surface layer, such as during potential ferromanganese nodule mining in the deep-sea, would be followed by increased diffusive flux of dissolved heavy metals, especially Mn, from suboxic sediment layers to the new disturbed sediment-bottom-water interface. According to our modelling, the Mn flux from the oxic sediment surface of 0.3 mg m -2 yr -1 in the undisturbed state would increase to up to several mg m -2 yr -1 within the first few weeks after disturbance. Depending on the time necessary until a stable oxic and Mn oxide rich layer is again re-established, a total Mn 2+ release of 54 mg m -2 was calculated if the original state is reached within 100 yr, in contrast to only 3.5 mg m -2 for 5 yr of re-establishment. The fluxes of the other heavy metals would be smaller, corresponding to their lower pore water concentrations in the suboxic layer compared to Mn.

  7. Two-dimensional silicene nucleation on a Ag(111) surface: structural evolution and the role of surface diffusion.

    PubMed

    Shu, Haibo; Cao, Dan; Liang, Pei; Wang, Xiaofang; Chen, Xiaoshuang; Lu, Wei

    2014-01-01

    The structural evolution of planar Si clusters and the nucleation mechanism of silicene in the initial stages of silicene epitaxial growth on a Ag(111) surface are studied by using ab initio calculations and two-dimensional nucleation theory. The ground-state SiN clusters (1 ≤ N ≤ 25) on the Ag(111) surface are found to undergo a significant structural transition from non-hexagonal plane structures to fully-hexagonal ones at N = 22, which is a crucial step for growing a high-quality silicene nanosheet. Furthermore, important parameters for controlling silicene growth, including the diffusion barriers of Si clusters, nucleation barrier, nucleus size, and nucleation rate are explored. Compared to graphene nucleation on transition-metal (TM) surfaces, the low diffusion barrier of Si atoms and the low nucleation barrier are responsible for the rapid nucleation of silicene on a Ag(111) surface. Our calculations demonstrate that silicene should be synthesized at a relatively low growth temperature (~500 K) in order to reduce the defect density. The results can be successfully applied to explain the broad experimental observations where the growth temperature of silicene is below 550 K.

  8. A new method for apportionnement of diffuse nutrient sources of surface water contamination

    NASA Astrophysics Data System (ADS)

    Groenendijk, Piet; Mulder, Martin; Van Boekel, Erwin; Van der Bolt, Frank; Hendriks, Rob; Renaud, Leo

    2014-05-01

    Surface water quality has improved slightly in many regions of the Netherlands during the last decades, due to a reduction of the nutrient loads from point sources, but in most areas the concentrations do not meet the targets to comply with the objectives of the Water Framework Directive. Leaching from agricultural soils is currently the largest source. Quantitative insight into the contribution of the various land management related sources is necessary to discuss the responsibility of different authorities to further improve the quality. Such an understanding is also needed to assess the effects of mitigation measures. The STONE model was developed in 1998- 2000 aiming at the assessment of the effectiveness of Dutch policy measures to reduce nutrient loads to groundwater and surface waters from agricultural land. The process oriented model simulates the carbon, nitrogen and phosphorus cycles in soil and is capable to calculate N and P fluxes to surface waters. Due to the nature of the interdependent soil transformation processes, straight forward model runs don't yield in the relative contribution of the use of fertilizers and other diffuse sources to the total diffuse loads to surface waters. A new method was developed to reveal the relative contribution to surface water contamination of resp. the actual fertilization practise, the historical fertilizer excesses, the atmospheric deposition rates, the inputs by upward seeping water flow, the inputs by infiltrated surface water during summer time in polders and the natural soil release. The method is based on a linear proxy model of the STONE model. The coefficients were derived from the results of a sensitivity analysis. At the national level, the diffuse nitrogen and phosphorus load on surface waters due to the actual fertilization practise amounts to resp. 64% and 48% of the total diffuse loads from agricultural land. Deposition, the input by upward seeping water and the input by infiltrated surface water in

  9. Molecular dynamics simulation of surface segregation, diffusion and reaction phenomena in equiatomic Ni-Al systems

    NASA Astrophysics Data System (ADS)

    Evteev, A. V.; Levchenko, E. V.; Belova, I. V.; Murch, G. E.

    2012-12-01

    The molecular dynamics method is used to provide fundamental insights into surface segregation, bulk diffusion and alloying reaction phenomena in equiatomic Ni-Al systems. This knowledge can serve as a guide for the search and development of economic routes for controlling microstructure and properties of the intermetallic compound NiAl. This paper gives an overview of recent molecular dynamics simulations in the area along with other theoretical calculations and experimental measurements.

  10. Diffuse scattered field of elastic waves from randomly rough surfaces using an analytical Kirchhoff theory

    NASA Astrophysics Data System (ADS)

    Shi, F.; Lowe, M. J. S.; Xi, X.; Craster, R. V.

    2016-07-01

    We develop an elastodynamic theory to predict the diffuse scattered field of elastic waves by randomly rough surfaces, for the first time, with the aid of the Kirchhoff approximation (KA). Analytical expressions are derived incorporating surface statistics, to represent the expectation of the angular distribution of the diffuse intensity for different modes. The analytical solutions are successfully verified with numerical Monte Carlo simulations, and also validated by comparison with experiments. We then apply the theory to quantitatively investigate the effects of the roughness and the shear-to-compressional wave speed ratio on the mode conversion and the scattering intensity, from low to high roughness within the valid region of KA. Both the direct and the mode converted intensities are significantly affected by the roughness, which leads to distinct scattering patterns for different wave modes. The mode conversion effect is very strong around the specular angle and it is found to increase as the surface appears to be more rough. In addition, the 3D roughness induced coupling between the out-of-plane shear horizontal (SH) mode and the in-plane modes is studied. The intensity of the SH mode is shown to be very sensitive to the out-of-plane correlation length, being influenced more by this than by the RMS value of the roughness. However, it is found that the depolarization pattern for the diffuse field is independent of the actual value of the roughness.

  11. Statistical multiple diffuse scattering from rough surfaces in RHEED — beyond the distorted-wave Born approximation

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.

    1996-10-01

    In reflection high-energy electron diffraction (RHEED) of growing surfaces in molecular beam epitaxy (MBE), diffuse scattering is generated by atom vibrations, point vacancies and growth islands (or surface roughness). Most of the existing RHEED theories have been developed under the first-order diffuse scattering approximation, and thus they are restricted for surfaces whose roughness is relatively low. In fact, crystal surfaces grown by MBE are usually rough; the change of surface coverage from 0 to 1 monolayer accounts for the observed RHEED oscillation. In this paper, a formal dynamical theory of RHEED has been developed to calculate the diffuse scattering produced by both atom vibrations and point vacancies at surfaces. The theory is aimed at recovering the multiple diffuse scattering that has been dropped by the distorted-wave Born approximation (DWBA). With the inclusion of a complex potential in the dynamical calculation, a rigorous proof is given to show that the high-order diffuse scattering terms are recovered in the calculation using the equation originally derived under the DWBA. This conclusion establishes the basis for expanding the RHEED theories developed under the first-order diffuse scattering to cases where the degree of surface roughness is high, allowing dynamical calculation of RHEED rocking curves for any growing surface. The statistical time and structure averages over the distorted crystal potential are evaluated analytically before numerical calculation. The dynamic form factor is calculated with consideration of anisotropic surface atom vibration and point vacancies at a growing surface.

  12. Sapphire surface preparation and gallium nitride nucleation by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Dwikusuma, Fransiska

    increases, the island density decreases due to adatom desorption and higher surface diffusion rates. A simple atomistic nucleation theory was used to model the island density data. The activation energy for adatom surface diffusion on the nitridated sapphire was estimated to be ˜2.3 eV. At high temperatures (≥1050°C), different surface processes, including adatom desorption and island mobility are taking place.

  13. Surface evolution of amorphous nanocolumns of Fe-Ni grown by oblique angle deposition

    SciTech Connect

    Thomas, Senoy; Anantharaman, M. R.; Al-Harthi, S. H.; Ramanujan, R. V.; Liu Yan; Zhao Bangchuan; Wang Lan

    2009-02-09

    The growth of Fe-Ni based amorphous nanocolumns has been studied using atomic force microscopy. The root mean square roughness of the film surface increased with the deposition time but showed a little change at higher deposition time. It was found that the separation between the nanostructures increased sharply during the initial stages of growth and the change was less pronounced at higher deposition time. During the initial stages of the column growth, a roughening process due to self shadowing is dominant and, as the deposition time increases, a smoothening mechanism takes place due to the surface diffusion of adatoms.

  14. Periodic surface structure bifurcation induced by ultrafast laser generated point defect diffusion in GaAs

    NASA Astrophysics Data System (ADS)

    Abere, Michael J.; Torralva, Ben; Yalisove, Steven M.

    2016-04-01

    The formation of high spatial frequency laser induced periodic surface structures (HSFL) with period <0.3 λ in GaAs after irradiation with femtosecond laser pulses in air is studied. We have identified a point defect generation mechanism that operates in a specific range of fluences in semiconductors between the band-gap closure and ultrafast-melt thresholds that produces vacancy/interstitial pairs. Stress relaxation, via diffusing defects, forms the 350-400 nm tall and ˜90 nm wide structures through a bifurcation process of lower spatial frequency surface structures. The resulting HSFL are predominately epitaxial single crystals and retain the original GaAs stoichiometry.

  15. Homogenization of composite vicinal surfaces: Evolution laws in 1+1 dimensions

    NASA Astrophysics Data System (ADS)

    Margetis, Dionisios; Nakamura, Kanna

    2012-07-01

    We apply classical homogenization to derive macroscopic relaxation laws for crystal surfaces with distinct inhomogeneities at the microscale. The proposed method relies on a formal multiscale expansion in one spatial coordinate. This approach transcends the coarse graining applied previously via Taylor expansions. Our work offers an extension of the static homogenization formulated in a brief report [D. Margetis, Homogenization of reconstructed crystal surfaces: Fick’s law of diffusion, Phys. Rev. E 79 (2009) 052601] to account for surface evolution. The starting point is the Burton-Cabrera-Frank (BCF) model for the motion of line defects (steps) separating nanoscale terraces. We enrich this model with sequences of distinct material parameters, i.e., disparate diffusivities of adsorbed atoms (adatoms) across terraces, kinetic sticking rates at step edges, and step energy parameters for elastic-dipole interactions. Multiscale expansions for the adatom concentration and flux are used, with a slow diffusive time scale consistent with the quasi-steady regime for terrace diffusion. The ensuing macroscopic, nonlinear evolution laws incorporate averages of the microscale parameters.

  16. Laser-induced damage of absorbing and diffusing glass surfaces under IR and UV irradiation

    NASA Astrophysics Data System (ADS)

    Whitman, Pamela K.; Bletzer, K.; Hendrix, James L.; Genin, Francois Y.; Hester, M.; Yoshiyama, J. M.

    1999-04-01

    In high peak power lasers used for inertial confinement fusion experiments, scattered and reflected light can carry sufficient energy to ablate metal structures or even damage other optics. Absorbing and diffuse scattering materials are required to manage the 'ghosts', stimulated Raman scattering (SRS) and unconverted light in the laser chain and target chamber. Absorbing and diffuse scattering glasses were investigated for use in the NIF target chamber to safely dissipate up 60-80 J/cm2 1053-nm light while also withstanding up to 2 J/cm2 of soft x-ray. In addition these glasses were evaluated for use at 1053-nm and 351-nm to dissipate stray light and to absorb stimulated Raman scattering from the conversion crystals. Glass samples with surfaces ranging from specular to highly scattering were evaluated. The morphologies of laser damage at 1064 nm and 355 nm were characterized by Nomarski optical microscopy. Laser damage was quantified by measuring mass loss. Surface treatment and bulk absorption coefficient were the two material properties most strongly correlated to laser damage. Etched and sandblasted surfaces always had lower damage threshold than their specular counterparts. Reducing rear surface fluence either by bulk absorption or scattering at the input surface delayed the onset of catastrophic failure under extreme conditions.

  17. High-Performance Simulations of the Diffusion Characteristics of a Pentacene Derivative on Gold Surfaces

    NASA Astrophysics Data System (ADS)

    Miller, Ryan; Larson, Amanda; Pohl, Karsten

    Pentacene serves as a backbone for several molecules that provide attractive qualities for organic photovoltaic devices. One of these pentacene derivatives is 5 6,7-trithiapentacene-13-one (TTPO), which is unique in that it achieves its lowest energy configuration on Au(1 1 1) surfaces with the thiol group angled down towards the surface, allowing many molecules to pack closely together and form molecular nanowires. However, TTPO diffuses on flat surfaces, making it difficult for the self-assembly process to be initiated. With the help of the low-energy sites in surface defects and Au(7 8 8) step edges, TTPO molecules can be anchored in place on surfaces, allowing for chain formation to begin. By using high-performance Density Functional Theory based molecular dynamics calculations, the molecules can be shown to stay localized to these bonding sites and serve as a basis for chain formation. In addition, by simulating various temperatures with a Nose-Hoover thermostat, we can analyze how temperature affects anchoring ability and diffusion properties.

  18. Surface topography, corrosion and microhardness of nitrogen-diffusion-hardened titanium alloy.

    PubMed

    Venugopalan, R; George, M A; Weimer, J J; Lucas, L C

    1999-09-01

    Mechanical-electrochemical interactions accelerate corrosion in mixed-metal modular hip prostheses. These interactions can be reduced by improving the modular component machining tolerances or by improving the resistance of the components to scratch or fretting damage. Wrought cobalt-alloy (CoCrMo) is known to have better tribological properties compared to the titanium alloy (Ti64). Thus, improving the tribological properties of this mixed-metal interface should center around improving the tribological properties of the Ti64 alloy. This study used scanning probe microscopy (contact, tapping and phase contrast mode), scanning electron microscopy, corrosion testing, and microhardness testing to determine the effect of a nitrogen-diffusion hardening process on the surface morphology, electrochemistry and surface hardness of the Ti64 alloy. The nitrogen-diffusion-hardened titanium alloy samples (N-Ti64) had a more pronounced grain structure, more nodular surface, and significantly (P<0.01) higher mean roughness values than the control-Ti64 samples. The N-Ti64 samples also exhibited at least equivalent corrosion behavior and a definite increase in surface hardness compared to the control Ti64 samples. The equivalent corrosion behavior and improved surface hardness indicate the potential for N-Ti64 samples to resist similar and mixed-metal scratch and fretting damage. The use of N-Ti64 as opposed to control-Ti64 may therefore reduce the occurrence of mechanical-electrochemical degradation in mixed-metal modular total hip prostheses. PMID:10503972

  19. Surface diffusion coefficient of Au atoms on single layer graphene grown on Cu

    SciTech Connect

    Ruffino, F. Cacciato, G.; Grimaldi, M. G.

    2014-02-28

    A 5 nm thick Au film was deposited on single layer graphene sheets grown on Cu. By thermal processes, the dewetting phenomenon of the Au film on the graphene was induced so to form Au nanoparticles. The mean radius, surface-to-surface distance, and surface density evolution of the nanoparticles on the graphene sheets as a function of the annealing temperature were quantified by scanning electron microscopy analyses. These quantitative data were analyzed within the classical mean-field nucleation theory so to obtain the temperature-dependent Au atoms surface diffusion coefficient on graphene: D{sub S}(T)=[(8.2±0.6)×10{sup −8}]exp[−(0.31±0.02(eV)/(at) )/kT] cm{sup 2}/s.

  20. Light scattering by a rough surface of human skin. 2. Diffuse reflectance

    SciTech Connect

    Barun, V V; Ivanov, A P

    2013-10-31

    Based on the previously calculated luminance factors, we have investigated the integral characteristics of light reflection from a rough surface of the skin with large-scale inhomogeneities under various conditions of the skin illumination. Shadowing of incident and scattered beams by relief elements is taken into account. Diffuse reflectances by the Gaussian and the quasi-periodic surfaces are compared and, in general, both these roughness models are shown to give similar results. We have studied the effect of the angular structure of radiation multiply scattered deep in the tissue and the refraction of rays as they propagate from the dermis to the surface of the stratum corneum on the reflection characteristics of the skin surface. The importance of these factors is demonstrated. The algorithms constructed can be included in the schemes of calculation of the light fields inside and outside the medium in solving various direct and inverse problems of optics of biological tissues. (biophotonics)

  1. Monte Carlo Simulations of Coupled Diffusion and Surface Reactions during the Aqueous Corrosion of Borosilicate Glasses

    SciTech Connect

    Kerisit, Sebastien N.; Pierce, Eric M.; Ryan, Joseph V.

    2015-01-01

    Borosilicate nuclear waste glasses develop complex altered layers as a result of coupled processes such as hydrolysis of network species, condensation of Si species, and diffusion. However, diffusion has often been overlooked in Monte Carlo models of the aqueous corrosion of borosilicate glasses. Therefore, three different models for dissolved Si diffusion in the altered layer were implemented in a Monte Carlo model and evaluated for glasses in the compositional range (75-x) mol% SiO2 (12.5+x/2) mol% B2O3 and (12.5+x/2) mol% Na2O, where 0 ≤ x ≤ 20%, and corroded in static conditions at a surface-to-volume ratio of 1000 m-1. The three models considered instantaneous homogenization (M1), linear concentration gradients (M2), and concentration profiles determined by solving Fick’s 2nd law using a finite difference method (M3). Model M3 revealed that concentration profiles in the altered layer are not linear and show changes in shape and magnitude as corrosion progresses, unlike those assumed in model M2. Furthermore, model M3 showed that, for borosilicate glasses with a high forward dissolution rate compared to the diffusion rate, the gradual polymerization and densification of the altered layer is significantly delayed compared to models M1 and M2. Models M1 and M2 were found to be appropriate models only for glasses with high release rates such as simple borosilicate glasses with low ZrO2 content.

  2. Optical characteristics of the filamentary and diffuse modes in surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Li, Jie; Jiang, Nan; Shang, Ke-Feng; Lu, Na; Wu, Yan

    2016-11-01

    Surface dielectric barrier discharge (DBD) plasmas generally exhibits filamentary and diffuse discharges at atmospheric air. The focus of this investigation is on the different optical characteristics and quantitative research about morphological features of two discharge modes. The temporally and spatially resolved characteristics of discharge phenomenon together with the gas temperature are presented with microsecond time scale. Discharge area is estimated by the sum of pixels that equal to "1" in MATLAB software. The formation of diffuse plasma mainly depends on an increase of the ionization coefficient and a creation of sufficient seed electrons by the Penning effect at low electric fields. Accordingly, experimental measurements show that diffuse discharge during the negative half cycle has good uniformity and stability compared with filamentary discharge during the positive half cycle. The rotational temperatures of plasma are determined by comparing the experimental spectra with the simulated spectra that have been investigated. The plasma gas temperature keeps almost constant in the filamentary discharge phase and subsequently increased by about 115 K during the diffuse discharge. In addition, it is shown to be nearly identical in the axial direction. Non-uniform temperature distribution can be observed in the radial direction with large fluctuations. The plasma length is demonstrated almost the same between two discharge modes.

  3. Électrooxydation du mésoérythritol sur platine, modifié ou non par des adatomes, en milieu acide

    NASA Astrophysics Data System (ADS)

    Cherqaoui, A.; Chbihi, M. El M.; Takky, D.; Kokoh, K. B.; Leger, J.-M.; Lamy, C.

    1999-03-01

    The electrocatalytic oxidation of meso-erythritol has been studied in 0.1 M HClO4 on platinum and on adatoms modified platinum. Preliminary investigations by cyclic voltammetry showed that erythritol was not reactive on a Pt electrode. Underpotential deposition of lead or thallium adatoms at platinum allowed to increase significantly the current densities. Long-time electrolyses were carried out using a three potential plateau program with different values of the oxidation potentials. Chromatographic analyses showed that the oxidation of erythritol led mainly to erythrose, erythrulose and to erythronic acid. Otherwise, electrolysis of erythritol on a Pt-Tl modified electrode orientated selectively the distribution of the reaction products towards the formation of erythrulose. L'oxydation électrocatalytique du mésoérythrytol a été étudiée en milieu acide HClO4 0,1 M sur le platine modifié ou non par des adatomes métalliques. Les études préliminaires réalisées par voltammétrie cyclique montrent que l'érythritol est très peu réactif sur le platine seul. La modification de la surface de l'électrode par dépôt en sous-tension d'adatomes de plomb et de thallium permet d'augmenter les densités de courant. Les électrolyses prolongées sont réalisées à l'aide d'un programme à trois paliers de potentiel et pour différentes valeurs de potentiel d'oxydation. Les analyses chromatographiques montrent que les produits d'oxydation sont l'érythrose, l'érythrulose et l'acide érythronique. D'autre part l'oxydation de l'érythritol sur le platine modifié par des adatomes de thallium conduit à une production sélective d'érythrulose.

  4. A molecular-dynamics simulation study of diffusion of a single model carbonic chain on a graphite (001) surface.

    PubMed

    Yang, Hua; Lu, Zhong-Yuan; Li, Ze-Sheng; Sun, Chia-Chung

    2006-03-01

    Molecular-dynamics simulations have been used to study the diffusion of a short single model carbonic chain on the graphite (001) surface. The calculated diffusion coefficient (D) first increases, then decreases with increasing chain length (N). This abnormal behavior is similar to polymer lateral diffusion at the solid-liquid interface. Furthermore, we have studied the relation between the mean-square gyration radius and N. [Figure: see text].

  5. 'Soft' Au, Pt and Cu contacts for molecular junctions through surface-diffusion-mediated deposition.

    PubMed

    Bonifas, Andrew P; McCreery, Richard L

    2010-08-01

    Virtually all types of molecular electronic devices depend on electronically addressing a molecule or molecular layer through the formation of a metallic contact. The introduction of molecular devices into integrated circuits will probably depend on the formation of contacts using a vapour deposition technique, but this approach frequently results in the metal atoms penetrating or damaging the molecular layer. Here, we report a method of forming 'soft' metallic contacts on molecular layers through surface-diffusion-mediated deposition, in which the metal atoms are deposited remotely and then diffuse onto the molecular layer, thus eliminating the problems of penetration and damage. Molecular junctions fabricated by this method exhibit excellent yield (typically >90%) and reproducibility, and allow examination of the effects of molecular-layer structure, thickness and contact work function.

  6. Plasma density accumulation on a conical surface for diffusion along a diverging magnetic field

    SciTech Connect

    Saha, S. K.; Chowdhury, S.; Janaki, M. S.; Ghosh, A.; Hui, A. K.; Raychaudhuri, S.

    2014-04-15

    Two-dimensional (2-D) density and potential measurements have been carried out for plasma diffusing through an aperture in a diverging magnetic field. The radial density profile near the source is peaked on the axis but gradually evolves into a hollow profile away from the source. We observe a slow increase of the peak density along a hollow conical surface and correlate with the 2-D potential measurement reported earlier. It is also shown that the formation of 2-D structures with similar features are observed whenever plasma is allowed to diffuse through a physical aperture in such diverging magnetic field configuration, with or without the presence of electric double layer, i.e., the phenomenon is generic in nature.

  7. Anomalous Effect of Surface Diffusion on NMR Signal: Tracing the Fiber Geometry

    NASA Astrophysics Data System (ADS)

    Apalkov, Vadym; Edirisinghe, Neranjan; Cymbalyuk, Gennady

    2008-03-01

    We show the strong qualitative effect of the surface diffusion channel on the echo attenuation of the NMR signal from restricted geometry, e.g. fiber system. In some range of parameters of the system the residual echo signal, which is obtained by subtracting the background value, can have anomalous behavior, which means that the echo signal has a maximum value at some finite value of the magnitude of the gradient pulses. This fact can be used to enhance the accuracy of the measurements by studying the echo signal around the maximum value. Effect described here could be also used for tuning the MRI measurements to trace fibers with particular characteristic diameters or for timely detection of changes in the diffusion coefficients and fiber diameters.

  8. Surface recombination velocity and diffusion length of minority carriers in heavily doped silicon layers

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Watanabe, M.; Actor, G.

    1977-01-01

    Quantitative analysis of the electron beam-induced current and the dependence of the effective diffusion length of the minority carriers on the penetration depth of the electron beam were employed for the analysis of the carrier recombination characteristics in heavily doped silicon layers. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two dimensional mapping of the surface recombination velocity of P-diffused Si layers will be presented together with a three dimensional mapping of minority carrier lifetime in ion implanted Si. Layers heavily doped with As exhibit improved recombination characteristics as compared to those of the layers doped with P.

  9. The role of diffusive architectural surfaces on auditory spatial discrimination in performance venues.

    PubMed

    Robinson, Philip W; Pätynen, Jukka; Lokki, Tapio; Jang, Hyung Suk; Jeon, Jin Yong; Xiang, Ning

    2013-06-01

    In musical or theatrical performance, some venues allow listeners to individually localize and segregate individual performers, while others produce a well blended ensemble sound. The room acoustic conditions that make this possible, and the psycho-acoustic effects at work are not fully understood. This research utilizes auralizations from measured and simulated performance venues to investigate spatial discrimination of multiple acoustic sources in rooms. Signals were generated from measurements taken in a small theater, and listeners in the audience area were asked to distinguish pairs of speech sources on stage with various spatial separations. This experiment was repeated with the proscenium splay walls treated to be flat, diffusive, or absorptive. Similar experiments were conducted in a simulated hall, utilizing 11 early reflections with various characteristics, and measured late reverberation. The experiments reveal that discriminating the lateral arrangement of two sources is possible at narrower separation angles when reflections come from flat or absorptive rather than diffusive surfaces.

  10. Precipitant diffusion and surface segregation in Al Alloys near melting point: Al 2024

    NASA Astrophysics Data System (ADS)

    Mohney, Austin; Senevirathne, Indrajith

    2012-02-01

    Industrial Al alloys are precipitant hardened with an impurity phase. Micro precipitants introduce various novel physical properties to the systems system. The diffusion of these constituents under thermal gradient was studied by sequentially increasing temperatures near melting point as it was observed to better facilitate the migration of precipitants. Study is based on Al 2024, age hardened, high strength AL alloy, annealed at incremental temperatures near melting point of 500 C and was observed in Scanning Electron Microscopy (SEM) and Energy Dispersive X ray Spectroscopy (EDX). Solvent cleaned near surface region of the alloy was investigated with observation of differential migration of constituent Cu, Fe Mg and Zn precipitants. The migrations were modeled in terms of diffusion coefficients and established literature of the participating species. Study will attempt to correlate the elemental concentration variation with applied elevated heat stress in industrial settings.

  11. Improving Seasonal Diffusive Flux Estimates through Inverse Calibration of Lake Surface Methane Concentration

    NASA Astrophysics Data System (ADS)

    Andersson, K.; Thornton, B. F.; Wik, M.; Uhlbäck, J.; Rakos, N.; Crill, P. M.

    2015-12-01

    Diffusive flux of methane to the atmosphere from freshwater lakes is thought to be better understood than the more stochastic ebullitive (bubble) flux. Simple models describing the flux are largely driven by wind speed and surface water concentrations. Rooted in 3 seasons of direct open water chamber measurements at Inre Harrsjön, a small and shallow lake located in the subarctic region of Sweden, we present a comparison between measured exchanges and those calculated from several piston velocity models ran at varying temporal resolutions, as well as a method to increase precision in modeled results. On a majority of days the calculated piston velocities, per day, exceeded lake average depth. Under such conditions it is unlikely that the surface concentration can remain fixed. The result is that high piston velocities will effectively alter the gas content of the shallow lake, unless the sediment-to-lake flux matches the lake-to-atmosphere flux. Initial model runs using fixed surface concentrations confirmed this with seasonal averages of up to four times the up-scaled chamber measurements. In an attempt to compensate for the lake's inability to keep up with predicted fluxes, the fixed lake surface concentration was abandoned for variable wind-dependent lake surface concentrations. By inverting the gas exchange equation a required, or ideal, lake surface concentration - the concentration required by the models to match the measured fluxes at a given wind speed - could be obtained for dates where both wind and chamber measurements were available. These ideal concentrations were plotted as function of wind. Linear and exponential functions describing the wind-dependent surface concentrations were used in subsequent runs, completely replacing the static concentration approach. We found that incorporation of variable wind-driven lake surface concentration into the models greatly improved the accuracy of seasonal diffusive flux estimates, reducing the apparent error to

  12. Constrained diffusion or immobile fraction on cell surfaces: a new interpretation.

    PubMed Central

    Feder, T J; Brust-Mascher, I; Slattery, J P; Baird, B; Webb, W W

    1996-01-01

    Protein lateral mobility in cell membranes is generally measured using fluorescence photobleaching recovery (FPR). Since the development of this technique, the data have been interpreted by assuming free Brownian diffusion of cell surface receptors in two dimensions, an interpretation that requires that a subset of the diffusing species remains immobile. The origin of this so-called immobile fraction remains a mystery. In FPR, the motions of thousands of particles are inherently averaged, inevitably masking the details of individual motions. Recently, tracking of individual cell surface receptors has identified several distinct types of motion (Gross and Webb, 1988; Ghosh and Webb, 1988, 1990, 1994; Kusumi et al. 1993; Qian et al. 1991; Slattery, 1995), thereby calling into question the classical interpretation of FPR data as free Brownian motion of a limited mobile fraction. We have measured the motion of fluorescently labeled immunoglobulin E complexed to high affinity receptors (Fc epsilon RI) on rat basophilic leukemia cells using both single particle tracking and FPR. As in previous studies, our tracking results show that individual receptors may diffuse freely, or may exhibit restricted, time-dependent (anomalous) diffusion. Accordingly, we have analyzed FPR data by a new model to take this varied motion into account, and we show that the immobile fraction may be due to particles moving with the anomalous subdiffusion associated with restricted lateral mobility. Anomalous subdiffusion denotes random molecular motion in which the mean square displacements grow as a power law in time with a fractional positive exponent less than one. These findings call for a new model of cell membrane structure. PMID:8744314

  13. Multistep atomic reaction enhanced by an atomic force microscope probe on Si(111) and Ge(111) surfaces

    NASA Astrophysics Data System (ADS)

    Enkhtaivan, Batnyam; Oshiyama, Atsushi

    2016-08-01

    We present first-principles total-energy electronic-structure calculations that provide the microscopic mechanism of the adatom interchange reaction on the Sn- and Pb-covered Ge(111)-(2 ×8 ) and the Sb-covered Si(111)-(7 ×7 ) surfaces with and without the tip of the atomic force microscope (AFM). We find that, without the presence of the AFM tip on the Ge surface, the adatom interchange occurs through the migration of the adatom, the spontaneous formation of the dimer structures of the two adatoms, the dimer-dimer structural transitions that induce the exchange of the positions of the two adatoms, and then the backward migration of the adatom. We also find that the dimer structure is unfeasible at room temperature on the Si surface and the adatom interchange are hereby unlikely. With the presence of the tip, we find that the reaction pathways are essentially the same for the Ge surface but that the energy barriers of the migration and the exchange processes are substantially reduced by the AFM tip. We further find that the AFM tip induces the spontaneous formation of the dimer structure even on the Si surface, hereby opening a channel of the interchange of the adatoms. Our calculations show that the bond formation between the AFM tip atom and the surface adatom is essential for the atom manipulation using the AFM tip.

  14. Three-dimensional surface reconstruction within noncontact diffuse optical tomography using structured light

    NASA Astrophysics Data System (ADS)

    Baum, Kirstin; Hartmann, Raimo; Bischoff, Tobias; Oelerich, Jan O.; Finkensieper, Stephan; Heverhagen, Johannes T.

    2012-12-01

    A main field in biomedical optics research is diffuse optical tomography, where intensity variations of the transmitted light traversing through tissue are detected. Mathematical models and reconstruction algorithms based on finite element methods and Monte Carlo simulations describe the light transport inside the tissue and determine differences in absorption and scattering coefficients. Precise knowledge of the sample's surface shape and orientation is required to provide boundary conditions for these techniques. We propose an integrated method based on structured light three-dimensional (3-D) scanning that provides detailed surface information of the object, which is usable for volume mesh creation and allows the normalization of the intensity dispersion between surface and camera. The experimental setup is complemented by polarization difference imaging to avoid overlaying byproducts caused by inter-reflections and multiple scattering in semitransparent tissue.

  15. Manipulating surface diffusion and elastic interactions to obtain quantum dot multilayer arrangements over different length scales

    SciTech Connect

    Placidi, E. Arciprete, F.; Latini, V.; Latini, S.; Patella, F.; Magri, R.

    2014-09-15

    An innovative multilayer growth of InAs quantum dots on GaAs(100) is demonstrated to lead to self-aggregation of correlated quantum dot chains over mesoscopic distances. The fundamental idea is that at critical growth conditions is possible to drive the dot nucleation only at precise locations corresponding to the local minima of the Indium chemical potential. Differently from the known dot multilayers, where nucleation of new dots on top of the buried ones is driven by the surface strain originating from the dots below, here the spatial correlations and nucleation of additional dots are mostly dictated by a self-engineering of the surface occurring during the growth, close to the critical conditions for dot formation under the fixed oblique direction of the incoming As flux, that drives the In surface diffusion.

  16. First-principles study of oxygen adsorption and diffusion on the UN(001) surface

    NASA Astrophysics Data System (ADS)

    Nie, J. L.; Ao, L.; Zu, X. T.; Huang, H.; Liu, K. Z.

    2015-12-01

    First-principles calculations have been performed to study the interaction of oxygen with UN(001) surface. The molecule oxygen was found to dissociate spontaneously on all considered adsorption sites on the surface. Atomic oxygen (O) preferred to adsorb on a hollow site or the top of uranium ions, which were energetically degenerate. Adsorption on top of nitrogen (N) ion was found to be unstable which may be attributed to the repulsion of negatively charged O with the N anions. In comparison with those on α-U(001)surface at the same coverage, the adsorption of O on UN(001) surface was found to be less stable, being about 0.7 eV higher in adsorption energy. The diffusion barrier for O on the surface was found to be ∼0.5 eV, similar to those of α-U(001)surface. The penetration of O into the substrate was difficult with a high barrier of 2.86 eV. Analysis on the density of states (DOS) has shown that the adsorbed oxygen has strong chemical interaction with surface ions, characterized by the hybridization of O 2p states with N 2p and U 6d, U 5f states.

  17. Molecular-dynamics analysis of mobile helium cluster reactions near surfaces of plasma-exposed tungsten

    SciTech Connect

    Hu, Lin; Maroudas, Dimitrios; Hammond, Karl D.; Wirth, Brian D.

    2015-10-28

    We report the results of a systematic atomic-scale analysis of the reactions of small mobile helium clusters (He{sub n}, 4 ≤ n ≤ 7) near low-Miller-index tungsten (W) surfaces, aiming at a fundamental understanding of the near-surface dynamics of helium-carrying species in plasma-exposed tungsten. These small mobile helium clusters are attracted to the surface and migrate to the surface by Fickian diffusion and drift due to the thermodynamic driving force for surface segregation. As the clusters migrate toward the surface, trap mutation (TM) and cluster dissociation reactions are activated at rates higher than in the bulk. TM produces W adatoms and immobile complexes of helium clusters surrounding W vacancies located within the lattice planes at a short distance from the surface. These reactions are identified and characterized in detail based on the analysis of a large number of molecular-dynamics trajectories for each such mobile cluster near W(100), W(110), and W(111) surfaces. TM is found to be the dominant cluster reaction for all cluster and surface combinations, except for the He{sub 4} and He{sub 5} clusters near W(100) where cluster partial dissociation following TM dominates. We find that there exists a critical cluster size, n = 4 near W(100) and W(111) and n = 5 near W(110), beyond which the formation of multiple W adatoms and vacancies in the TM reactions is observed. The identified cluster reactions are responsible for important structural, morphological, and compositional features in the plasma-exposed tungsten, including surface adatom populations, near-surface immobile helium-vacancy complexes, and retained helium content, which are expected to influence the amount of hydrogen re-cycling and tritium retention in fusion tokamaks.

  18. Surface tensions, viscosities, and diffusion constants in mixed component single aerosol particles

    NASA Astrophysics Data System (ADS)

    Bzdek, Bryan; Marshall, Frances; Song, Young-Chul; Haddrell, Allen; Reid, Jonathan

    2016-04-01

    Surface tension and viscosity are important aerosol properties but are challenging to measure on individual particles owing to their small size and mass. Aerosol viscosity impacts semivolatile partitioning from the aerosol phase, molecular diffusion in the bulk of the particle, and reaction kinetics. Aerosol surface tension impacts how particles activate to serve as cloud condensation nuclei. Knowledge of these properties and how they change under different conditions hinders accurate modelling of aerosol physical state and atmospheric impacts. We present measurements made using holographic optical tweezers to directly determine the viscosity and surface tension of optically trapped droplets containing ~1-4 picolitres of material (corresponding to radii of ~5-10 micrometres). Two droplets are captured in the experimental setup, equilibrated to a relative humidity, and coalesced through manipulation of the relative trap positions. The moment of coalescence is captured using camera imaging as well as from elastically backscattered light connected to an oscilloscope. For lower viscosity droplets, the relaxation in droplet shape to a sphere follows the form of a damped oscillator and gives the surface tension and viscosity. For high viscosity droplets, the relaxation results in a slow merging of the two droplets to form a sphere and the timescale of that process permits determination of viscosity. We show that droplet viscosity and surface tension can be quantitatively determined to within <10% of the expected value for low viscosity droplets and to better than 1 order of magnitude for high viscosity droplets. Examples illustrating how properties such as surface tension can change in response to environmental conditions will be discussed. Finally, a study of the relationship between viscosity, diffusion constants, vapour pressures, and reactive uptake coefficients for a mixed component aerosol undergoing oxidation and volatilisation will be discussed.

  19. Binding Preferences, Surface Attachment, Diffusivity, and Orientation of a Family 1 Carbohydrate-Binding Module on Cellulose

    SciTech Connect

    Nimlos, M. R.; Beckham, G. T.; Matthews, J. F.; Bu, L.; Himmel, M. E.; Crowley, M. F.

    2012-06-08

    Cellulase enzymes often contain carbohydrate-binding modules (CBMs) for binding to cellulose. The mechanisms by which CBMs recognize specific surfaces of cellulose and aid in deconstruction are essential to understand cellulase action. The Family 1 CBM from the Trichoderma reesei Family 7 cellobiohydrolase, Cel7A, is known to selectively bind to hydrophobic surfaces of native cellulose. It is most commonly suggested that three aromatic residues identify the planar binding face of this CBM, but several recent studies have challenged this hypothesis. Here, we use molecular simulation to study the CBM binding orientation and affinity on hydrophilic and hydrophobic cellulose surfaces. Roughly 43 {mu}s of molecular dynamics simulations were conducted, which enables statistically significant observations. We quantify the fractions of the CBMs that detach from crystal surfaces or diffuse to other surfaces, the diffusivity along the hydrophobic surface, and the overall orientation of the CBM on both hydrophobic and hydrophilic faces. The simulations demonstrate that there is a thermodynamic driving force for the Cel7A CBM to bind preferentially to the hydrophobic surface of cellulose relative to hydrophilic surfaces. In addition, the simulations demonstrate that the CBM can diffuse from hydrophilic surfaces to the hydrophobic surface, whereas the reverse transition is not observed. Lastly, our simulations suggest that the flat faces of Family 1 CBMs are the preferred binding surfaces. These results enhance our understanding of how Family 1 CBMs interact with and recognize specific cellulose surfaces and provide insights into the initial events of cellulase adsorption and diffusion on cellulose.

  20. Universal pinch off of rods by capillarity-driven surface diffusion

    SciTech Connect

    Wong, H.; Miksis, M.J.; Voorhees, P.W.; Davis, S.H.

    1998-06-05

    Interfacial energy is a central factor in setting the morphology of phases and in determining the stability of equilibrium morphologies. here the authors examine the morphological evolution of a rod via capillary-driven surface diffusion as it both approaches and departs the topological singularity of pinch off. During the final stages of pinching the neck radius approaches zero, and self-similar solutions are sought. The authors have derived local similarity solutions for the axisymmetric pinch off of rods when the morphological evolution is by capillarity-driven surface diffusion. These local solutions describe the approach to and departure from the topological singularity where a rod pinches into two separate bodies. During pinching, the self-similar surface profile far away from the neck approaches two opposing cones with a unique half-cone angle of 46.04{degree}. It is thus likely that all rods must pinch off with this cone angle. This assertion is supported by several numerical simulations. After pinch off, the smoothening of the cone tip is again self-similar. The results obtained here for rods also apply to the pinch off of cylindrical pore channels.

  1. Generation of planar defects caused by the surface diffusion of Au atoms on SiNWs

    SciTech Connect

    Lee, Woo-Jung; Ma, Jin Won; Bae, Jung Min; Cho, Mann-Ho; Ahn, Jae Pyung

    2012-10-15

    The generation of planar defects in silicon nanowires (SiNWs) synthesized by means of a vapor–liquid–solid (VLS) procedure using Au as a catalyst in an ultra-high vacuum chemical vapor deposition (UHV-CVD) system was investigated. Faceting, the formation of planar defects and the diffusion of Au in SiNWs occurred simultaneously, proportional to the growth temperature and the ratio of the H{sub 2} precursor gas. The planes located on the sidewalls of the wire after Au diffusion were faceted (1 1 1) and (1 0 0) surfaces, which represent equilibrium configurations of Si due to surface energy minimization during rapid wire growth under unstable conditions. Moreover, (1 1 1) twin defects were formed on the sidewalls of the faceted boundaries where the Au clusters were mainly located, due to the surface tension of the Au atoms, resulting in clusters at the liquid/solid interfaces in SiNWs with a 〈1 1 1〉 growth direction.

  2. Kinetic Roughening with Surface Diffusion: Crossover from Ramified Aggregates to Continuous Films on Liquid Surfaces

    NASA Astrophysics Data System (ADS)

    Lv, Neng; Zhang, Chu-Hang; Yang, Bo; Pan, Qi-Fa; Ye, Gao-Xiang

    2012-09-01

    Ramified iron aggregates are fabricated on silicone oil surface by thermal evaporation method at room temperature and the crossover from ramified aggregates to continuous films is studied by atomic force microscopy. It is shown that the aggregates are composed of numerous granules with the average diameter around 34 nm. The dynamic scaling analysis shows that the growth exponent β = 0.23 ± 0.02 and the roughness exponent α evolves from 0.65 to 0.42 with the nominal film thickness, indicating a roughening behavior transfer may exist during the growth process. The physical interpretation for the scaling behavior is presented.

  3. Electronic transport in the quantum spin Hall state due to the presence of adatoms in graphene

    NASA Astrophysics Data System (ADS)

    Lima, Leandro; Lewenkopf, Caio

    Heavy adatoms, even at low concentrations, are predicted to turn a graphene sheet into a topological insulator with substantial gap. The adatoms mediate the spin-orbit coupling that is fundamental to the quantum spin Hall effect. The adatoms act as local spin-orbit scatterer inducing hopping processes between distant carbon atoms giving origin to transverse spin currents. Although there are effective models that describe spectral properties of such systems with great detail, quantitative theoretical work for the transport counterpart is still lacking. We developed a multiprobe recursive Green's function technique with spin resolution to analyze the transport properties for large geometries. We use an effective tight-binding Hamiltonian to describe the problem of adatoms randomly placed at the center of the honeycomb hexagons, which is the case for most transition metals. Our choice of current and voltage probes is favorable to experiments since it filters the contribution of only one spin orientation, leading to a quantized spin Hall conductance of e2 / h . We also discuss the electronic propagation in the system by imaging the local density of states and the electronic current densities. The authors acknowledge the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.

  4. Hydrogen storage properties of light metal adatoms (Li, Na) decorated fluorographene monolayer.

    PubMed

    Hussain, T; Islam, M S; Rao, G S; Panigrahi, P; Gupta, D; Ahuja, Rajeev

    2015-07-10

    Owing to its high energy density, the potential of hydrogen (H2) as an energy carrier has been immense, however its storage remains a big obstacle and calls for an efficient storage medium. By means of density functional theory (DFT) in spin polarized generalized gradient approximation (GGA), we have investigated the structural, electronic and hydrogen storage properties of a light alkali metal (Li, Na) functionalized fluorographene monolayer (FG). Metal adatoms bind to the FG with significantly high binding energy, much higher than their cohesive energies, which helps to achieve a uniform distribution of metal adatoms on the monolayer and consequently ensure reversibility. Due to a difference of electronegativities, each metal adatom transfers a substantial amount of its charge to the FG monolayer and attains a partial positive state, which facilitates the adsorption of multiple H2 molecules around the adatoms by electrostatic as well as van der Waals interactions. To get a better description of H2 adsorption energies with metal-doped systems, we have also performed calculations using van der Waals corrections. For both the functionalized systems, the results indicate a reasonably high H2 storage capacity with H2 adsorption energies falling into the range for the practical applications.

  5. Probing surface characteristics of diffusion-limited-aggregation clusters with particles of variable size

    NASA Astrophysics Data System (ADS)

    Menshutin, A. Yu.; Shchur, L. N.; Vinokur, V. M.

    2007-01-01

    We develop a technique for probing the harmonic measure of a diffusion-limited-aggregation (DLA) cluster surface with variable-size particles and generate 1000 clusters with 50×106 particles using an original off-lattice killing-free algorithm. Taking, in sequence, the limit of the vanishing size of the probing particles and then sending the growing cluster size to infinity, we achieve unprecedented accuracy in determining the fractal dimension D=1.7100(2) crucial to the characterization of the geometric properties of DLA clusters.

  6. [Study on the surface diffuse reflectance ultraviolet-visible spectra of the multicomponent metal catalysts].

    PubMed

    Tang, B; Jiang, Q; He, X; Shen, H

    1999-02-01

    In this paper, the surface diffuse reflectance ultraviolet-visible spectra (DRUVS) of two and three components supported metal catalysts for methanation of CO2 by hydrogenation were studied, and the relationship between the activity of catalytic-hydrogenation and the interaction among the components of the catalysts was revealed. Based on the analysis of the DRUVS of the catalysts with defferent amount of promoters in two component catalysts system, the dependence relationship between the characteristic strength of the DRUVS and the catalytic activity was worked out. PMID:15818931

  7. Nano-pits on GaAs (1 0 0) surface: Preferential sputtering and diffusion

    NASA Astrophysics Data System (ADS)

    Kumar, Tanuj; Panchal, Vandana; Kumar, Ashish; Kanjilal, D.

    2016-07-01

    Self organized nano-structure array on the surfaces of semiconductors have potential applications in photonics, magnetic devices, photovoltaics, and surface-wetting tailoring etc. Therefore, the control over their dimensions is gaining scientific interest in last couple of decades. In this work, fabrication of pits of nano-dimensions is carried out on the GaAs (1 0 0) surface using 50 keV Ar+ at normal incidence. Variation in fluence from 3 × 1017 ions/cm2 to 5 × 1018 ions/cm2 does not make a remarkable variation in the dimension of pits such as size and depth, which is confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). However the simultaneous dots formation is observed along with the pits at higher fluences. Average size of pits is found to be of 22 nm with depth of 1-5 nm for the used fluences. The importance of preferential sputtering of 'As' as compared to 'Ga' is estimated using energy dispersive X-ray analysis (EDX). The observed alteration in near surface composition shows the Ga enrichment of surface, which is not being much affected by variation in fluence. The growth evolution of pits and dots for the used experimental conditions is explained on the basis of ion beam induced preferential sputtering and surface diffusion.

  8. Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing

    DOE PAGES

    Chi, Miaofang; Wang, Chao; Lei, Yinkai; Wang, Guofeng; Li, Dongguo; More, Karren L.; Lupini, Andrew; Allard, Lawrence F.; Markovic, Nenad M.; Stamenkovic, Vojislav R.

    2015-11-18

    The catalytic performance of nanoparticles is primarily determined by the precise nature of the surface and near-surface atomic configurations, which can be tailored by post-synthesis annealing effectively and straightforwardly. Understanding the complete dynamic response of surface structure and chemistry to thermal treatments at the atomic scale is imperative for the rational design of catalyst nanoparticles. Here, by tracking the same individual Pt3Co nanoparticles during in situ annealing in a scanning transmission electron microscope, we directly discern five distinct stages of surface elemental rearrangements in Pt3Co nanoparticles at the atomic scale: initial random (alloy) elemental distribution; surface platinum-skin-layer formation; nucleation ofmore » structurally ordered domains; ordered framework development and, finally, initiation of amorphization. Furthermore, a comprehensive interplay among phase evolution, surface faceting and elemental inter-diffusion is revealed, and supported by atomistic simulations. Furthermore, this work may pave the way towards designing catalysts through post-synthesis annealing for optimized catalytic performance.« less

  9. LETTER TO THE EDITOR: Variation of adatom to substrate charge transfer value along the first-row transition metal series on Mo(110)

    NASA Astrophysics Data System (ADS)

    Magkoev, T. T.; Christmann, K.; Lecante, P.; Moutinho, A. M. C.

    2002-04-01

    Adsorption of the first-row transition 3d metals (Ti-Cu) on the atomically clean Mo(110) surface in ultra-high-vacuum conditions has been studied by Auger electron spectroscopy and work function measurements (Anderson method). In this letter it is shown that adsorption behaviour of the metals under consideration systematically changes along the 3d series. The observed correlation between the systematic change of the dipole moments and the values of the charge transfer from adatom to substrate along the period leads us to the conclusion that the metal 3d orbitals play an important role in the formation of the chemisorption bond.

  10. Periodic changes in shallow lunat crust caused by Sun's heating and thermal diffusivity near the surface

    NASA Astrophysics Data System (ADS)

    Tanimoto, T.; Eitzel, M.; Yano, T.

    2007-12-01

    Analysis of Apollo 17 data (continuous data from 1976 to 1977) by the cross-correlation approach for seismic noise led us to two new discoveries, one related to the source of noise and the other on the periodic changes in seismic parameters due to extreme temperature changes near the surface. It has been shown previously by Larose et al. (2005) that Green's functions, dominated by Rayleigh waves, can be retrieved from cross-correlation of seismic noise in Apollo 17 data. We first confirmed their correlation results and further analyzed the details in GreenA?"qfs functions. The first discovery is that the sources of noise that lead to construction of Green's functions are (most likely) thermal moonquakes. This is suggested in the Rayleigh-wave observations that show diurnal variation (29.5 days) in amplitudes, but one can directly confirm a correlation between the statistics of thermal moonquakes and Rayleigh wave amplitudes. This is in contrast to the terrestrial case where ocean-generated seismic noise plays a critical role in the cross-correlation approach. This has implications for future planetary seismology as many planets lack oceans but may have thermal quakes caused by drastic temperature changes near the surface. Second, diurnal temporal variations in group velocity are detected, showing a strong correlation with the temporal variation of lunar surface temperature. This can be explained by the Sun's thermal effects which cause changes in density and seismic velocities near the surface. These effects are measurable on the moon since surface temperature changes as much as 270 K within the diurnal period. Depending on the thermal diffusivity of the medium, the depth extent of this thermal effect varies considerably. Inversion for thermal diffusivity using the changes in group velocity dispersion resulted in an estimate 10**(-7) (m**2/s) for the upper few meters.

  11. Super-diffusive Motion of the Pb Wetting Layer on the Si(111) Surface

    NASA Astrophysics Data System (ADS)

    Altman, M. S.; Man, K. L.; Loy, M. M. T.; Tringides, M. C.

    2013-03-01

    An unusual mass tansport behavior has been observed in the dense Pb wetting layer on the Si(111) surface. Mass transport is studied by observing non-equilibrium coverage profile evolution with low energy electron microscopy and micro-low energy electron diffraction (m-LEED). The strong sensitivity of diffraction features to Pb coverage in this system allows the Pb coverage profile to be determined precisely with high spatial resolution using m-LEED. Equilibration of an initial coverage step profile produced by laser induced thermal desorption proceeds by the exchange of mass between two steep coverage gradients that travel in opposite directions with invariant shapes. The coverage profile between these two moving edges unexpectedly exhibits a concave shape that apparently contradicts local mass conservation given by the continuity equation. The equilibration time is independent of Pb coverage above a critical coverage, 1.24 ML, but diverges sharply below. The observed spatio-temporal characteristics and lower cutoff for fast dynamics may signal a very unusual coverage dependence of diffusion or might suggest an exceptional collective super-diffusive mechanism by which diffusion is not driven by the local coverage gradient in the usual way.

  12. Modeling of asteroid surfaces and interiors using ray optics with diffuse scattering

    NASA Astrophysics Data System (ADS)

    Virkki, A.; Muinonen, K.; Penttilä, A.

    2014-07-01

    We simulate electromagnetic scattering from a realistic model of an asteroid using an algorithm of ray optics with Fresnel reflection and refraction as well as diffuse scattering [1]. The application of the study is to simulate radar scattering, that is, scattering from centimeter-sized structures, and as a result, study the radar properties of realistic media in terms of structure and material. The results show the circular-polarization ratios and radar albedos of the asteroid models for scatterers from a sub-wavelength scale to a scale of few times the wavelength. We use two kinds of structures: the first is a uniform, internal diffuse medium inside a host body, and the second is an external layer on the surface of a host body. The host body is spherical and it has a diameter of 30 times the wavelength, and the external layer has thickness from a few wavelengths up to about 10 wavelengths. We study both spheres and aggregates of spheres of different sizes as constituents of the diffuse medium, and thus, connect our previous results (e.g., [2]) to a more realistic model for asteroids. As for materials, we mimic rocks and vacuum inclusions in powdered silicate or basaltic materials and a layer of rocks on a rocky host body.

  13. Objective and Subjective Evaluation of Reflecting and Diffusing Surfaces in Auditoria

    NASA Astrophysics Data System (ADS)

    Cox, Trevor John

    Available from UMI in association with The British Library. Requires signed TDF. The performance of reflectors and diffusers used in auditoria have been evaluated both objectively and subjectively. Two accurate systems have been developed to measure the scattering from surfaces via the cross correlation function. These have been used to measure the scattering from plane panels, curved panels and quadratic residue diffusers (QRDs). The scattering measurements have been used to test theoretical prediction methods based on the Helmholtz-Kirchhoff integral equation. Accurate prediction methods were found for all surfaces tested. The limitations of the more approximate methods have been defined. The assumptions behind Schroeder's design of the QRD have been tested and the local reacting admittance assumption found to be valid over a wide frequency range. It was found that the QRD only produces uniform scattering at low frequencies. For an on-axis source the scattering from a curved panel was as good as from a QRD. For an oblique source the QRD produced much more uniform scattering than the curved panel. The subjective measurements evaluated the smallest perceivable change in the early sound field, the part most influenced by reflectors and diffusers. A natural sounding simulation of a concert hall field within an anechoic chamber was used. Standard objective parameters were reasonable values when compared to values found in real halls and subjective preference measurements. A difference limen was measured for early lateral energy fraction (.048 +/-.005); inter aural cross correlation (.075 +/-.008); clarity index (.67 +/-.13 dB); and centre time (8.6 +/- 1.6 ms). It was found that: (i) when changes are made to diffusers and reflectors, changes in spatial impression will usually be larger than those in clarity; and (ii) acousticians can gain most by paying attention to lateral sound in auditoria. It was also found that: (i) diffuse reflections in the early sound field

  14. Adsorption of water monomer and clusters on platinum(111) terrace and related steps and kinks II. Surface diffusion

    NASA Astrophysics Data System (ADS)

    Árnadóttir, Líney; Stuve, Eric M.; Jónsson, Hannes

    2012-02-01

    Surface diffusion of water monomer, dimer, and trimer on the (111) terrace, (221) and (322) stepped, and (763) and (854) kinked surfaces of platinum was studied by density functional theory using the PW91 approximation to the energy functional. Monomer diffusion on the terrace is facile, with an activation barrier of 0.20 eV, while dimer and trimer diffusions are restricted due to their high activation barriers of 0.43 and 0.48 eV, respectively. During monomer diffusion on the terrace the O-Pt distance increases by 0.54 Å, about 23% of the initial distance of 2.34 Å. The calculated rate of monomer diffusion hops is in good agreement with the onset temperature of diffusion measurements of Daschbach et al., J. Chem. Phys., 120 (2004) 1516. Alternative monomer diffusion pathways, in which the molecule rolls or flips, were also found. These pathways have diffusion barriers of 0.22 eV. During dimer diffusion on the terrace, the donor molecule rises 0.4 Å at the saddle point, while the acceptor rises by only 0.03 Å. Monomer diffusion up to steps and kinks, with activation barriers of 0.11-0.13 eV, facilitate chain formation on top of step edges. The energy landscape of monomer diffusion from terrace to step to kink sites is downhill with a maximum activation barrier of 0.26 eV. A model for water adsorption is presented in which monomer diffusion leads to concurrent formation of terrace clusters and population of steps/kinks, the latter consistent with the STM measurements of Morgenstern et al., Phys. Rev. Lett., 77 (1996) 703.

  15. Adsorption of Water Monomer and Clusters on Platinum(111) Terrace and Related Steps and Kinks II. Surface Diffusion

    SciTech Connect

    Arnadottir, Liney; Stuve, Eric M.; Jonsson, Hannes

    2012-02-01

    Surface diffusion of water monomer, dimer, and trimer on the (111) terrace, (221) and (322) stepped, and (763) and (854) kinked surfaces of platinum was studied by density functional theory using the PW91 approximation to the energy functional. Monomer diffusion on the terrace is facile, with an activation barrier of 0.20 eV, while dimer and trimer diffusions are restricted due to their high activation barriers of 0.43 and 0.48 eV, respectively. During monomer diffusion on the terrace the O–Pt distance increases by 0.54 Å, about 23% of the initial distance of 2.34 Å. The calculated rate of monomer diffusion hops is in good agreement with the onset temperature of diffusion measurements of Daschbach et al., J. Chem. Phys., 120 (2004) 1516. Alternative monomer diffusion pathways, in which the molecule rolls or flips, were also found. These pathways have diffusion barriers of 0.22 eV. During dimer diffusion on the terrace, the donor molecule rises 0.4 Å at the saddle point, while the acceptor rises by only 0.03 Å. Monomer diffusion up to steps and kinks, with activation barriers of 0.11–0.13 eV, facilitate chain formation on top of step edges. The energy landscape of monomer diffusion from terrace to step to kink sites is downhill with a maximum activation barrier of 0.26 eV. A model for water adsorption is presented inwhichmonomer diffusion leads to concurrent formation of terrace clusters and population of steps/kinks, the latter consistent with the STMmeasurements ofMorgenstern et al., Phys. Rev. Lett., 77 (1996) 703.

  16. Monte Carlo simulations of coupled diffusion and surface reactions during the aqueous corrosion of borosilicate glasses

    DOE PAGES

    Kerisit, Sebastien; Pierce, Eric M.; Ryan, Joseph V.

    2014-09-19

    Borosilicate nuclear waste glasses develop complex altered layers as a result of coupled processes such as hydrolysis of network species, condensation of Si species, and diffusion. However, diffusion has often been overlooked in Monte Carlo models of the aqueous corrosion of borosilicate glasses. Therefore, in this paper three different models for dissolved Si diffusion in the altered layer were implemented in a Monte Carlo model and evaluated for glasses in the compositional range (75 - x) mol% SiO2 (12.5 + x/2) mol% B2O3 and (12.5 + x/2) mol% Na2O, where 0 ≤ x ≤ 20%, and corroded in static conditionsmore » at a surface-area-to-volume ratio of 1000 m-1. The three models considered instantaneous homogenization (M1), linear concentration gradients (M2), and concentration profiles determined by solving Fick's 2nd law using a finite difference method (M3). Model M3 revealed that concentration profiles in the altered layer are not linear and show changes in shape and magnitude as corrosion progresses, unlike those assumed in model M2. Furthermore, model M3 showed that, for borosilicate glasses with a high forward dissolution rate compared to the diffusion rate, the gradual polymerization and densification of the altered layer is significantly delayed compared to models M1 and M2. Finally, models M1 and M2 were found to be appropriate models only for glasses with high release rates such as simple borosilicate glasses with low ZrO2 content.« less

  17. Monte Carlo simulations of coupled diffusion and surface reactions during the aqueous corrosion of borosilicate glasses

    SciTech Connect

    Kerisit, Sebastien; Pierce, Eric M.; Ryan, Joseph V.

    2014-09-19

    Borosilicate nuclear waste glasses develop complex altered layers as a result of coupled processes such as hydrolysis of network species, condensation of Si species, and diffusion. However, diffusion has often been overlooked in Monte Carlo models of the aqueous corrosion of borosilicate glasses. Therefore, in this paper three different models for dissolved Si diffusion in the altered layer were implemented in a Monte Carlo model and evaluated for glasses in the compositional range (75 - x) mol% SiO2 (12.5 + x/2) mol% B2O3 and (12.5 + x/2) mol% Na2O, where 0 ≤ x ≤ 20%, and corroded in static conditions at a surface-area-to-volume ratio of 1000 m-1. The three models considered instantaneous homogenization (M1), linear concentration gradients (M2), and concentration profiles determined by solving Fick's 2nd law using a finite difference method (M3). Model M3 revealed that concentration profiles in the altered layer are not linear and show changes in shape and magnitude as corrosion progresses, unlike those assumed in model M2. Furthermore, model M3 showed that, for borosilicate glasses with a high forward dissolution rate compared to the diffusion rate, the gradual polymerization and densification of the altered layer is significantly delayed compared to models M1 and M2. Finally, models M1 and M2 were found to be appropriate models only for glasses with high release rates such as simple borosilicate glasses with low ZrO2 content.

  18. Modeling diffuse sources of surface water contamination with plant protection products

    NASA Astrophysics Data System (ADS)

    Wendland, Sandra; Bock, Michael; Böhner, Jürgen; Lembrich, David

    2015-04-01

    Entries of chemical pollutants in surface waters are a serious environmental problem. Among water pollutants plant protection products (ppp) from farming practice are of major concern not only for water suppliers and environmental agencies, but also for farmers and industrial manufacturers. Lost chemicals no longer fulfill their original purpose on the field, but lead to severe damage of the environment and surface waters. Besides point-source inputs of chemical pollutants, the diffuse-source inputs from agricultural procedures play an important and not yet sufficiently studied role concerning water quality. The two most important factors for diffuse inputs are erosion and runoff. The latter usually occurs before erosion begins, and is thus often not visible in hindsight. Only if it has come to erosion, it is obvious to expect runoff in foresight at this area, too. In addition to numerous erosion models, there are also few applications to model runoff processes available. However, these conventional models utilize approximations of catchment parameters based on long-term average values or theoretically calculated concentration peaks which can only provide indications to relative amounts. Our study aims to develop and validate a simplified spatially-explicit dynamic model with high spatiotemporal resolution that enables to measure current and forecast runoff potential not only at catchment scale but field-differentiated. This method allows very precise estimations of runoff risks and supports risk reduction measures to be targeted before fields are treated. By focusing on water pathways occurring on arable land, targeted risk reduction measures like buffer strips at certain points and adapted ppp use can be taken early and pollution of rivers and other surface waters through transported pesticides, fertilizers and their products could be nearly avoided or largely minimized. Using a SAGA-based physical-parametric modeling approach, major factors influencing runoff

  19. Surface diffusion driven morphological instability in free-standing nickel nanorod arrays

    SciTech Connect

    Alrashid, Ebtihaj; Ye, Dexian

    2014-07-28

    Metallic nanostructures are thermodynamically unstable due to the excess of energy of large numbers of surface atoms. Morphological instability, such as Rayleigh breakup, sintering, and coalescence, can be observed at a temperature much lower than the bulk melting point of the metal. We study the morphological and crystalline evolution of well-aligned free-standing nickel nanorod arrays at elevated temperatures up to 600 °C. The as-deposited nickel nanorods are faceted with sharp nanotips, which are deformed at annealing temperatures higher than 400 °C due to strong surface diffusion. A mud-crack like pattern is formed in the samples annealed above 400 °C, leading to the generation of interconnected porous structure. Meanwhile, the X-ray diffraction reveals the recrystallization of nickel nanocrystals when annealed from 300 to 600 °C.

  20. Hydrogen Adsorption, Dissociation and Diffusion on the α-U(001) Surface

    SciTech Connect

    Nie, JL; Xiao, H. Y.; Zu, Xiaotao T.; Gao, Fei

    2008-11-05

    First-principles pseudopotential plane wave calculations based on density functional theory and the generalized gradient approximation have been used to study the adsorption, dissociation, and diffusion of hydrogen on the α-U(001) surface. Weak molecular chemisorption was observed for H2 approaching with its molecular axis parallel to the surface. The optimization of the adsorption geometries on the threefold hollow sites yields final configurations with H2 molecules move towards the top site at both coverages of 0.25 and 0.5 monolayer. A low dissociation barrier of 0.081 eV was determined for H2 dissociated from onefold top site with the H atoms falling into the two adjacent threefold hollow sites. The density of states analysis along the dissociation paths show that the hybridization of U 5f and H 1s states only occurs when H2 molecule is dissociated.

  1. Wideband Scattering Diffusion by using Diffraction of Periodic Surfaces and Optimized Unit Cell Geometries

    PubMed Central

    Costa, Filippo; Monorchio, Agostino; Manara, Giuliano

    2016-01-01

    A methodology to obtain wideband scattering diffusion based on periodic artificial surfaces is presented. The proposed surfaces provide scattering towards multiple propagation directions across an extremely wide frequency band. They comprise unit cells with an optimized geometry and arranged in a periodic lattice characterized by a repetition period larger than one wavelength which induces the excitation of multiple Floquet harmonics. The geometry of the elementary unit cell is optimized in order to minimize the reflection coefficient of the fundamental Floquet harmonic over a wide frequency band. The optimization of FSS geometry is performed through a genetic algorithm in conjunction with periodic Method of Moments. The design method is verified through full-wave simulations and measurements. The proposed solution guarantees very good performance in terms of bandwidth-thickness ratio and removes the need of a high-resolution printing process. PMID:27181841

  2. Photometric model of diffuse surfaces described as a distribution of interfaced Lambertian facets.

    PubMed

    Simonot, Lionel

    2009-10-20

    The Lambertian model for diffuse reflection is widely used for the sake of its simplicity. Nevertheless, this model is known to be inaccurate in describing a lot of real-world objects, including those that present a matte surface. To overcome this difficulty, we propose a photometric model where the surfaces are described as a distribution of facets where each facet consists of a flat interface on a Lambertian background. Compared to the Lambertian model, it includes two additional physical parameters: an interface roughness parameter and the ratio between the refractive indices of the background binder and of the upper medium. The Torrance-Sparrow model--distribution of strictly specular facets--and the Oren-Nayar model--distribution of strictly Lambertian facets--appear as special cases. PMID:19844317

  3. Interaction of mineral surfaces with simple organic molecules by diffuse reflectance IR spectroscopy (DRIFT)

    SciTech Connect

    Thomas, Joan E.; Kelley, Michael J.

    2008-06-01

    Diffuse reflectance Fourier-transform infrared spectroscopy (DRIFTS) was used to characterize multi-layers of lysine, glutamic acid and salicylic acid on -alumina and kaolinite surfaces. The results agreed well with those previously obtained by ATR-IR in aqueous media where available, indicating that DRIFT may be regarded as effectively an in-situ spectroscopy for these materials. In the case of salicylic acid adsorption onto γ-alumina, DRIFTS was used to identify monolayer coverage and to detect molecules down to coverage of 3% of a monolayer. The spectroscopic results as to coverage were confirmed by analysis of the solutions used for treatment. The spectra obtained allowed identification of changes in the bonding environment with increasing surface coverage. DRIFTS, offers several advantages in terms of materials, experimental technique and data treatment, motivating further investigations.

  4. Dynamics and Stability of Self-similar Pinch-off via Surface Diffusion

    NASA Astrophysics Data System (ADS)

    Bernoff, Andrew J.; Bertozzi, Andrea L.; Witelski, Thomas P.

    1998-11-01

    The motion of an interface via surface diffusion is a well-known model in the study of thin solid filaments with application to such fields as integrated circuit technology. The interface moves with a normal velocity proportional to minus the surface Laplacian of its mean curvature. This flow conserves the volume enclosed inside the surface while minimizing its surface area. A cylindrical surface is unstable to long-wave perturbations, analogous to the Rayleigh instability in fluid dynamics. The initial instability leads to a conical pinch-off of the cylinder to form isolated spheres. We examine the structure of the pinch-off, showing it has self-similar structure, using asymptotic, numerical and analytical methods. In addition to a previously known solution(Wong et al. Scripta Mater.) 39(1):55, 1998, we find a countable set of similarity solutions, each with a different cone angle. We develop a stability theory in similarity variables that selects the original similarity solution as the only linearly stable one and consequently the only observable one. We confirm this theory via numerical simulations, using self-similar adaptive mesh refinement, of the pinch-off.

  5. Evolution of Plasma-Exposed Tungsten Surfaces Due to Helium Diffusion and Bubble Growth

    NASA Astrophysics Data System (ADS)

    Hammond, Karl; Hu, Lin; Maroudas, Dimitrios; Wirth, Brian; PSI-SciDAC Team

    2013-10-01

    Helium from linear plasma devices and tokamak plasmas causes the formation of microscopic features, termed ``fuzz'' or ``coral,'' on the surface of plasma-exposed materials after only a few hours of plasma exposure. The details of such surface modifications are only beginning to be understood. This study examines the initial and intermediate stages of fuzz formation by large-length-scale molecular dynamics (MD) simulations of helium-implanted tungsten over time scales of up to microseconds using single-crystalline and polycrystalline supercell models of tungsten. The large-scale MD simulations employ state-of-the-art many-body interatomic potentials and implantation depth distributions for the insertion of helium atoms into the tungsten matrix constructed based on MD simulations of helium-atom impingement onto tungsten surfaces under prescribed thermal and implantation conditions. The large-scale MD simulations reveal surface features formed via the sequence of helium implantation, diffusion of helium atoms and their aggregation to form bubbles, growth of bubbles and consequent production of tungsten self-interstitial atoms, organization of those atoms into prismatic loops, glide of those loops to the surface, and bubble rupture.

  6. Verification of the effect of surface preparation on Hot Isostatic Pressing diffusion bonding joints of CLAM steel

    NASA Astrophysics Data System (ADS)

    Zhao, Yanyun; Li, Chunjing; Huang, Bo; Liu, Shaojun; Huang, Qunying

    2014-12-01

    Hot Isostatic Pressing (HIP) diffusion bonding with CLAM steel is the primary candidate fabrication technique for the first wall (FW) of DFLL-TBM. Surface state is one of the key factors for the joints quality. The effect of surface state prepared with grinder and miller on HIP diffusion bonding joints of CLAM steel was investigated. HIP diffusion bonding was performed at 140 MPa and 1373 K within 3 h. The mechanical properties of the joints were investigated with instrumented Charpy V-notch impact tests and the microstructures of the joints were analyzed with scanning electron microscopy (SEM). The results showed that the milled samples with fine surface roughness were more suitable for CLAM steel HIP diffusion bonding.

  7. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    SciTech Connect

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-12-14

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were {approx} 4 x 10{sup -7} cm{sup 2}/s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10{sup -5} to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form.

  8. Surface-induced order and diffusion in 5CB liquid crystal confined to porous glass.

    PubMed

    Vilfan, M; Apih, T; Gregorovic, A; Zalar, B; Lahajnar, G; Zumer, S; Hinze, G; Böhmer, R; Althoff, G

    2001-01-01

    Liquid crystals confined into small cavities are known to have a weak orientational order even above the nematic-isotropic transition temperature. The surface-induced order and molecular dynamics in this temperature range are studied with the aid of deuteron NMR spectra, spin relaxation times T(1) and T(2,) proton dipolar-correlation effect, and direct measurements of the effective diffusion coefficient for the liquid crystal 5CB confined to controlled-pore glasses. Our results show that an arrangement of molecules parallel to the wall is induced by local molecular interactions between the liquid crystal and solid, resulting in a weak and temperature independent surface order parameter, S(0) approximately 0.02 +/- 0.01. There is no indication of a significant slowing-down of molecular diffusion at the wall, neither rotational nor translational. In cavities of nanometer size, where the nematic order evolves gradually upon cooling, a broadening of the NMR linewidths due to dynamic effects should be taken into account.

  9. Binding kinetics of lock-key colloids: surface diffusion enhancement of the rate of specific binding

    NASA Astrophysics Data System (ADS)

    Colon-Melendez, Laura; Beltran-Villegas, Daniel J.; van Anders, Greg; Liu, Jun; Spellings, Matthew; Sacanna, Stefano; Pine, David J.; Glotzer, Sharon C.; Larson, Ronald G.; Solomon, Michael J.

    2014-03-01

    The kinetics of anisotropic particle assembly are expected to be slow due to specific directional interactions between the assembly building blocks. We investigate the lock-and-key colloidal system (Sacanna et al, Nature 464, 575-578 (2010)), to identify and understand the mechanisms that lead to specific lock-key pair binding. For lock pockets of a particular shape, we experimentally identify the importance of nonspecific lock-key binding as a pathway to specific lock-key pair formation. In this pathway, key particles can diffuse on the surface of the lock and bind specifically to the dimple of the lock. We find that this mechanism can be more important to specific bond formation than the direct binding mechanism. We model the surface diffusion mechanism as a mean first-passage time problem. Using an anisotropic interaction potential between a lock and key particle pair (van Anders et al, arXiv:1309.1187), we compare Stokesian dynamics simulations of lock and key binding to the experiments. We propose that nonspecific interactions can play an important role in accelerating anisotropic particle assembly. This work is supported by the U.S. Army Research Office under Grant Award W911NF-10-1-0518.

  10. The role of carbon surface diffusion on the growth of epitaxial graphene on SiC.

    SciTech Connect

    Thurmer, Konrad; Ohta, Taisuke; Nie, Shu; Bartelt, Norman Charles; Kellogg, Gary Lee

    2010-03-01

    Growth of high quality graphene films on SiC is regarded as one of the more viable pathways toward graphene-based electronics. Graphitic films form on SiC at elevated temperature because of preferential sublimation of Si. Little is known, however, about the atomistic processes of interrelated SiC decomposition and graphene growth. We have observed the formation of graphene on SiC by Si sublimation in an Ar atmosphere using low energy electron microscopy, scanning tunneling microcopy and atomic force microscopy. This work reveals that the growth mechanism depends strongly on the initial surface morphology, and that carbon diffusion governs the spatial relationship between SiC decomposition and graphene growth. Isolated bilayer SiC steps generate narrow ribbons of graphene, whereas triple bilayer steps allow large graphene sheets to grow by step flow. We demonstrate how graphene quality can be improved by controlling the initial surface morphology specifically by avoiding the instabilities inherent in diffusion-limited growth.

  11. Modeling bispecific monoclonal antibody interaction with two cell membrane targets indicates the importance of surface diffusion

    PubMed Central

    Sengers, Bram G.; McGinty, Sean; Nouri, Fatma Z.; Argungu, Maryam; Hawkins, Emma; Hadji, Aymen; Weber, Andrew; Taylor, Adam; Sepp, Armin

    2016-01-01

    ABSTRACT We have developed a mathematical framework for describing a bispecific monoclonal antibody interaction with two independent membrane-bound targets that are expressed on the same cell surface. The bispecific antibody in solution binds either of the two targets first, and then cross-links with the second one while on the cell surface, subject to rate-limiting lateral diffusion step within the lifetime of the monovalently engaged antibody-antigen complex. At experimental densities, only a small fraction of the free targets is expected to lie within the reach of the antibody binding sites at any time. Using ordinary differential equation and Monte Carlo simulation-based models, we validated this approach against an independently published anti-CD4/CD70 DuetMab experimental data set. As a result of dimensional reduction, the cell surface reaction is expected to be so rapid that, in agreement with the experimental data, no monovalently bound bispecific antibody binary complexes accumulate until cross-linking is complete. The dissociation of the bispecific antibody from the ternary cross-linked complex is expected to be significantly slower than that from either of the monovalently bound variants. We estimate that the effective affinity of the bivalently bound bispecific antibody is enhanced for about 4 orders of magnitude over that of the monovalently bound species. This avidity enhancement allows for the highly specific binding of anti-CD4/CD70 DuetMab to the cells that are positive for both target antigens over those that express only one or the other We suggest that the lateral diffusion of target antigens in the cell membrane also plays a key role in the avidity effect of natural antibodies and other bivalent ligands in their interactions with their respective cell surface receptors. PMID:27097222

  12. The electrooxidation mechanism of formic acid on platinum and on lead ad-atoms modified platinum studied with the kinetic isotope effect

    NASA Astrophysics Data System (ADS)

    Bełtowska-Brzezinska, M.; Łuczak, T.; Stelmach, J.; Holze, R.

    2014-04-01

    Kinetics and mechanism of formic acid (FA) oxidation on platinum and upd-lead ad-atoms modified platinum electrodes have been studied using unlabelled and deuterated compounds. Poisoning of the electrode surface by CO-like species was prevented by suppression of dissociative chemisorption of FA due to a fast competitive underpotential deposition of lead ad-atoms on the Pt surface from an acidic solution containing Pb2+ cations. Modification of the Pt electrode with upd lead induced a catalytic effect in the direct electrooxidation of physisorbed FA to CO2. With increasing degree of H/D substitution, the rate of this reaction decreased in the order: HCOOH > DCOOH ≥ HCOOD > DCOOD. HCOOH was oxidized 8.5-times faster on a Pt/Pb electrode than DCOOD. This primary kinetic isotope effect proves that the C-H- and O-H-bonds are simultaneously cleaved in the rate determining step. A secondary kinetic isotope effect was found in the dissociative chemisorption of FA in the hydrogen adsorption-desorption range on a bare Pt electrode after H/D exchange in the C-H bond, wherein the influence of deuterium substitution in the O-H group was negligibly small. Thus the C-H bond cleavage is accompanied by the C-OH and not the O-H bond split in the FA decomposition, producing CO-like species on the Pt surface sites.

  13. Observing single-atom diffusion at a molecule-metal interface

    NASA Astrophysics Data System (ADS)

    Mielke, Johannes; Martínez-Blanco, Jesús; Peters, Maike V.; Hecht, Stefan; Grill, Leonhard

    2016-07-01

    The dynamics at the interface between a close-packed porphyrin monolayer and Au(111) is investigated by time-dependent scanning tunneling microscopy, detecting the motion of single-interface adatoms in real space. Imaging sequences reveal predominant switching of the molecular appearance in adjacent molecules, pointing to a spatial correlation that is consistent with adatom diffusion from one molecule to the next. In some cases, the number of switching molecules is drastically increased, indicating collective switching events. In addition to the thermally induced motion of adatoms at the interface, also voltage pulses from the microscope tip can induce the process—revealing different yields in agreement with the model of adatom hopping.

  14. Characterization of the B/Si surface electronic structures

    SciTech Connect

    Cao, R.; Yang, X.; Pianetta, P.

    1992-11-01

    High resolution angle resolved core level and valence band photoelectron spectroscopy have been used to characterize the electronic structures of the B/Si(111)-({radical}3 x {radical}3) surfaces. The results have been compared with theoretic calculations and other group III metals and Si terminated Si(111) surfaces that share the same type of surface reconstruction. We have observed a structure evolution from B-T{sub 4} to B-S{sub 5} and finally to Si- T{sub 4} as deposited boron atoms diffuse into the substrate with increasing annealing temperature. The chemically shifted component appearing in the Si 2p core level spectrum is attributed to charge transfer from the top layer Si and Si adatoms to the sublayer B-S{sub 5} atoms. For the Si/Si(111)-({radical}3 {times} {radical}3) surface, a newly discovered chemically shifted component is associated with back bond formation between the Si adatoms and the underneath Si atoms. A new emission feature has been observed in the valence band spectra unique to the B/Si(111)-({radical}3 {times} {radical}3) surface with B-S{sub 5} configuration. Thin Ge layer growth on this structure has also been performed, and we found that no epitaxial growth could be achieved and the underneath structure was little disturbed.

  15. Relation between acid back-diffusion and luminal surface hydrophobicity in canine gastric mucosa: Effects of salicylate and prostaglandin

    SciTech Connect

    Goddard, P.J.

    1989-01-01

    The stomach is thought to be protected from luminal acid by a gastric mucosal barrier that restricts the diffusion of acid into tissue. This study tested the hypothesis that the hydrophobic luminal surface of canine gastric mucosa incubated in Ussing chambers, impedes the back-diffusion of luminal acid into the tissue. Isolated sheets of mucosa were treated with cimetidine to inhibit spontaneous acid secretion, and incubated under conditions that prevented significant secretion of luminal bicarbonate. By measuring acid loss from the luminal compartment using the pH-stat technique, acid back-diffusion was continuously monitored; potential difference (PD) was measured as an index of tissue viability. Tissue luminal surface hydrophobicity was estimated by contact angle analysis at the end of each experiment. Addition of 16,16-dimethyl prostaglandin E{sub 2} to the nutrient compartment enhanced luminal surface hydrophobicity, but did not reduce acid back-diffusion in tissues that maintained a constant PD. 10 mM salicylate at pH 4.00 in the luminal compartment reduced surface hydrophobicity, but this decrease did not occur if 1 ug/ml prostaglandin was present in the nutrient solution. Despite possessing relatively hydrophilic and relatively hydrophobic surface properties, respectively, acid back-diffusion in the absence of salicylate was not significantly different between these two groups. Neither group maintained a PD after incubation with salicylate. Lastly, radiolabeled salicylate was used to calculate the free (non-salicylate associated) acid loss in tissues incubated with salicylate and/or prostaglandin. No significant correlation was found between free acid back-diffusion and luminal surface hydrophobicity. These data do not support the hypothesis that acid back-diffusion in impeded by the hydrophobic surface presented by isolated canine gastric mucosa.

  16. Bifurcations and structure of surface interacting methane-air diffusion flames

    SciTech Connect

    Gummalla, M.; Vlachos, D.G.; Delichatsios, M.A.

    2000-02-01

    Methane-air diffusion flames near surfaces are modeled using numerical bifurcation theory. Ignition, extinction, and stability boundaries are studied as functions of fuel flow rate and oxidizer strain rate, using three reaction mechanisms of varying complexity (a one-step reaction, a C{sub 1} reaction mechanism, and the Gas Research Institute [GRI 1.2] mechanism). It is found that as the fuel flow rate increases, the ignition temperature increases, whereas the extinction temperature decreases. For sufficiently high fuel flow rates and low oxidizer strain rates, the flame separates from the surface, and extinction cannot be caused by thermal quenching. In the absence of surface heat low, two distinct extinction branches are found, namely, a blowoff or stretch limit branch at high fuel flow rates and a thermal quenching limit branch at low fuel flow rates. The complexity of the reaction mechanism affects primarily the blowoff branch at high fuel flow rates but not the thermal quenching branch due to the O{sub 2} leaking through the reaction zone at low strain rates. Surface radiation alters the bifurcation behavior, beyond an absolute stability curve. The theoretically predicted flame structure and stability limits compare well with experimental results. Implications for modeling of extinction of complex condensed fuels are also discussed.

  17. Adsorption of protein-coated lipid droplets to mixed biopolymer hydrogel surfaces: role of biopolymer diffusion.

    PubMed

    Vargas, Maria; Weiss, Jochen; McClements, D Julian

    2007-12-18

    The adsorption of charged particles to hydrogel surfaces is important in a number of natural and industrial processes. In this study, the adsorption of cationic lipid droplets to the surfaces of anionic hydrogels was examined. An oil-in-water emulsion containing cationic beta-lactoglobulin-coated lipid droplets was prepared (d32=0.24 microm, zeta=+74 mV, pH 3.0). An anionic hydrogel containing 0.1 wt % beet pectin and 1.5 wt % agar (pH 3.0) was prepared. Emulsions containing different lipid droplet concentrations (0.3-5 wt %) were brought into contact with the hydrogel surfaces for different times (0-24 h). The adsorption of lipid droplets to the hydrogel surfaces could not be explained by a typical adsorption isotherm. We found that the electrical charge on the nonadsorbed lipid droplets became less positive or even became negative in the presence of the hydrogel and that extensive droplet aggregation occurred, which was attributed to the ability of pectin molecules to diffuse through the hydrogels and interact with the lipid droplets. These results may have important consequences for understanding certain industrial and biological processes, as well as for the design of controlled or triggered release systems.

  18. Diffusion Of Hydrophobin Proteins In Solution And Interactions With A Graphite Surface

    SciTech Connect

    Mereghetti, Paolo; Wade, Rebecca C.

    2011-04-21

    Background Hydrophobins are small proteins produced by filamentous fungi that have a variety of biological functions including coating of spores and surface adhesion. To accomplish these functions, they rely on unique interface-binding properties. Using atomic-detail implicit solvent rigid-body Brownian dynamics simulations, we studied the diffusion of HFBI, a class II hydrophobin from Trichoderma reesei, in aqueous solution in the presence and absence of a graphite surface. Results In the simulations, HFBI exists in solution as a mixture of monomers in equilibrium with different types of oligomers. The oligomerization state depends on the conformation of HFBI. When a Highly Ordered Pyrolytic Graphite (HOPG) layer is present in the simulated system, HFBI tends to interact with the HOPG layer through a hydrophobic patch on the protein. Conclusions From the simulations of HFBI solutions, we identify a tetrameric encounter complex stabilized by non-polar interactions between the aliphatic residues in the hydrophobic patch on HFBI. After the formation of the encounter complex, a local structural rearrangement at the protein interfaces is required to obtain the tetrameric arrangement seen in HFBI crystals. Simulations performed with the graphite surface show that, due to a combination of a geometric hindrance and the interaction of the aliphatic sidechains with the graphite layer, HFBI proteins tend to accumulate close to the hydrophobic surface.

  19. Sorption and diffusion of radionuclides in rock matrix and natural fracture surfaces studied by autoradiography

    SciTech Connect

    Muuronen, S.; Kaemaeraeinen, E.L.; Jaakkola, T.; Pinnioja, S.; Lindberg, A.

    1986-01-01

    A method based on autoradiography was developed to determine the sorption and diffusion of cesium, strontium, cobalt, nickel, iodine and americium into rock matrix. Samples chosen for this study were filled and unfilled natural fracture surfaces and drill cores having a central drilled hole (drill core cups). Rock types were mica gneiss, tonalite and rapakivi granite, which were selected to represent the common rocks and minerals in Finnish bedrock. Distribution coefficients (K/sub a/-values) of cesium and strontium determined for fissure surfaces and drill core cups were of the same order of magnitude. After three months contact time the greatest penetration depth for cesium was 2.5 mm, for a natural fissure surface sample of rapakivi granite. For strontium the penetration depths of 11 mm in three months and 35 mm in twelve months were found for filled natural fissure surface samples of rapakivi granite. The range of D/sub a/-values was 1.5 x 10/sup -15/ - 3.2 x 10/sup -14/ m/sup 2//s and 1.4 x 10/sup -14/ - 2.1 x 10/sup -13/ m/sup 2//s for cesium and strontium, resp. For cobalt the D/sub a/-values of 5 x 10/sup -16/ m/sup 2//s in tonalite was obtained. In six months the penetration depths of nickel, iodine and americium were too low (<0.5 mm) to allow calculation of D/sub a/.

  20. Dynamic behaviors of liquid droplets on a gas diffusion layer surface: Hybrid lattice Boltzmann investigation

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Huang, Jun-Jie

    2015-07-01

    Water management is one of the key issues in proton exchange membrane fuel cells. Fundamentally, it is related to dynamic behaviors of droplets on a gas diffusion layer (GDL) surface, and consequently they are investigated in this work. A two-dimensional hybrid method is employed to implement numerical simulations, in which the flow field is solved by using the lattice Boltzmann method and the interface between droplet and gas is captured by solving the Cahn-Hilliard equation directly. One or two liquid droplets are initially placed on the GDL surface of a gas channel, which is driven by the fully developed Poiseuille flow. At a fixed channel size, the effects of viscosity ratio of droplet to gas ( μ ∗ ), Capillary number (Ca, ratio of gas viscosity to surface tension), and droplet interaction on the dynamic behaviors of droplets are systematically studied. By decreasing viscosity ratio or increasing Capillary number, the single droplet can detach from the GDL surface easily. On the other hand, when two identical droplets stay close to each other or a larger droplet is placed in front of a smaller droplet, the removal of two droplets is promoted.

  1. Surface diffusion in reversed-phase liquid chromatography using silica gel stationary phases of different C1 and C18 ligand densities.

    PubMed

    Miyabe, Kanji

    2007-10-12

    Surface diffusion phenomena were studied from kinetic and thermodynamic points of view. The existence of a linear free energy relationship between surface diffusion and the retention equilibrium suggests that the mechanism of surface diffusion is the same irrespective of the density of C(1) and C(18) ligands. Surface diffusion coefficient (D(s)) of weakly retained compounds seems to be of the same order of magnitude with corresponding molecular diffusivity. There would be an intimate correlation between surface diffusion and molecular diffusion. The value of D(s) decreases with increasing retention strength. The magnitude of the restriction for surface diffusion is comparable to about one third the enthalpy change due to the sample retention. This means that it is necessary for sample molecules adsorbed to be partially desorbed from the stationary phase surface when they migrate by surface diffusion. The results of this study provide the fundamental information for developing an appropriate model of surface diffusion, which explains some intrinsic characteristics and mechanism of surface diffusion.

  2. Elucidation of Cu Diffusion Surface and Path in Monoclinic HfO2 Conducting-Bridge Memory

    NASA Astrophysics Data System (ADS)

    Yura, S.; Yamasaki, T.; Nakada, K.; Ishii, A.; Kishida, S.; Kinoshita, K.

    It is important to specify the Cu diffusion path in the oxide layer of a Cu/oxide/Pt-structured conducting-bridge random access memory (CB-RAM), in terms of both elucidation of resistive switching mechanism and optimization of memory performance. The first-principles calculation is effective in specifying the Cu diffusion path with atomic resolution. However, reported results of first-principles calculations are based on too simplified model to depict the actual system of CB-RAM. In this paper, a periodic slab model for first-principles calculation of Cu diffusion process in HfO2-CB-RAM was proposed based on experimental results. Both Cu diffusion surface and Cu diffusion path were suggested by the first-principles calculations based on the model.

  3. Self-learning kinetic Monte Carlo simulations of self-diffusion of small Ag islands on the Ag(111) surface

    NASA Astrophysics Data System (ADS)

    Islamuddin Shah, Syed; Nandipati, Giridhar; Karim, Altaf; Rahman, Talat S.

    2016-01-01

    We studied self-diffusion of small two-dimensional Ag islands, containing up to ten atoms, on the Ag(111) surface using self-learning kinetic Monte Carlo (SLKMC) simulations. Activation barriers are calculated using the semi-empirical embedded atom method (EAM) potential. We find that two- to seven-atom islands primarily diffuse via concerted translation processes with small contributions from multi-atom and single-atom processes, while eight- to ten-atom islands diffuse via single-atom processes, especially edge diffusion, corner rounding and kink detachment, along with a minimal contribution from concerted processes. For each island size, we give a detailed description of the important processes, and their activation barriers, responsible for its diffusion.

  4. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    SciTech Connect

    Way, J.; Wolden, Colin

    2013-09-30

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo{sub 2}C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo{sub 2}C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft{sup 2} at a feed pressure of only 20 psig. The highest H{sub 2}/N{sub 2} selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo{sub 2}C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo{sub 2}C catalyst layers. We have fabricated a Mo{sub 2}C/V composite membrane that in pure gas testing delivered a H{sub 2} flux of 238 SCFH/ft{sup 2} at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ≥99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft{sup 2}.psi. However, during testing of a Mo{sub 2}C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft{sup 2}.psi was obtained which was stable during the entire test, meeting the permeance associated with the 2010 DOE target flux. Lastly, the Mo{sub 2}C/V composite

  5. A soil diffusion-reaction model for surface COS flux: COSSM v1

    NASA Astrophysics Data System (ADS)

    Sun, W.; Maseyk, K.; Lett, C.; Seibt, U.

    2015-07-01

    Soil exchange of carbonyl sulfide (COS) is the second largest COS flux in terrestrial ecosystems. A novel application of COS is the separation of gross primary productivity (GPP) from concomitant respiration. This method requires that soil COS exchange is relatively small and can be well quantified. Existing models for soil COS flux have incorporated empirical temperature and moisture functions derived from laboratory experiments, but not explicitly resolved diffusion in the soil column. We developed a 1-D diffusion-reaction model for soil COS exchange that accounts for COS uptake and production, relates source-sink terms to environmental variables, and has an option to enable surface litter layers. We evaluated the model with field data from a wheat field (Southern Great Plains (SGP), OK, USA) and an oak woodland (Stunt Ranch Reserve, CA, USA). The model was able to reproduce all observed features of soil COS exchange such as diurnal variations and sink-source transitions. We found that soil COS uptake is strongly diffusion controlled, and limited by low COS concentrations in the soil if there is COS uptake in the litter layer. The model provides novel insights into the balance between soil COS uptake and production: a higher COS production capacity was required despite lower COS emissions during the growing season compared to the post-senescence period at SGP, and unchanged COS uptake capacity despite the dominant role of COS emissions after senescence. Once there is a database of soil COS parameters for key biomes, we expect the model will also be useful to simulate soil COS exchange at regional to global scales.

  6. A soil diffusion-reaction model for surface COS flux: COSSM v1

    NASA Astrophysics Data System (ADS)

    Sun, W.; Maseyk, K.; Lett, C.; Seibt, U.

    2015-10-01

    Soil exchange of carbonyl sulfide (COS) is the second largest COS flux in terrestrial ecosystems. A novel application of COS is the separation of gross primary productivity (GPP) from concomitant respiration. This method requires that soil COS exchange is relatively small and can be well quantified. Existing models for soil COS flux have incorporated empirical temperature and moisture functions derived from laboratory experiments but not explicitly resolved diffusion in the soil column. We developed a mechanistic diffusion-reaction model for soil COS exchange that accounts for COS uptake and production, relates source-sink terms to environmental variables, and has an option to enable surface litter layers. We evaluated the model with field data from a wheat field (Southern Great Plains (SGP), OK, USA) and an oak woodland (Stunt Ranch Reserve, CA, USA). The model was able to reproduce all observed features of soil COS exchange such as diurnal variations and sink-source transitions. We found that soil COS uptake is strongly diffusion controlled and limited by low COS concentrations in the soil if there is COS uptake in the litter layer. The model provides novel insights into the balance between soil COS uptake and production: a higher COS production capacity was required despite lower COS emissions during the growing season compared to the post-senescence period at SGP, and unchanged COS uptake capacity despite the dominant role of COS emissions after senescence. Once there is a database of soil COS parameters for key biomes, we expect the model will also be useful to simulate soil COS exchange at regional to global scales.

  7. Numerical investigation of the submonolayer growth and relaxation of stepped Ag (110) and Au (110) surfaces

    NASA Astrophysics Data System (ADS)

    Hontinfinde, Senan I. V.; Akpo, Aristide B.; Hontinfinde, Félix

    2016-09-01

    The terrace width distribution (TWD) as well as the adatom and island densities for some stepped fcc (110) surfaces with parallel and equidistant steps of equal stiffness are studied by means of kinetic Monte Carlo simulations. Reliable energy barriers for surface diffusion are used. They have been calculated by means of many-body potentials derived within the second moment approximation to the tight-binding model. The effects of the temperature, atom deposition flux and surface diffusion on quantities of interest in the early stage of the surface evolution process have been singled out. In most cases, linear, logarithmic and power-law behaviors are recovered for the evolution of the step width and terrace defects. The TWD is well described by the Gaussian distribution (GD) in the domain of temperature investigated but deviates from the Generalized Wigner Distribution (GWD).

  8. Monte Carlo simulations for a Lotka-type model with reactant surface diffusion and interactions.

    PubMed

    Zvejnieks, G; Kuzovkov, V N

    2001-05-01

    The standard Lotka-type model, which was introduced for the first time by Mai et al. [J. Phys. A 30, 4171 (1997)] for a simplified description of autocatalytic surface reactions, is generalized here for a case of mobile and energetically interacting reactants. The mathematical formalism is proposed for determining the dependence of transition rates on the interaction energy (and temperature) for the general mathematical model, and the Lotka-type model, in particular. By means of Monte Carlo computer simulations, we have studied the impact of diffusion (with and without energetic interactions between reactants) on oscillatory properties of the A+B-->2B reaction. The diffusion leads to a desynchronization of oscillations and a subsequent decrease of oscillation amplitude. The energetic interaction between reactants has a dual effect depending on the type of mobile reactants. In the limiting case of mobile reactants B the repulsion results in a decrease of amplitudes. However, these amplitudes increase if reactants A are mobile and repulse each other. A simplified interpretation of the obtained results is given.

  9. Interpretation of surface diffusion data with Langevin simulations: a quantitative assessment.

    PubMed

    Diamant, M; Rahav, S; Ferrando, R; Alexandrowicz, G

    2015-04-01

    Diffusion studies of adsorbates moving on a surface are often analyzed using 2D Langevin simulations. These simulations are computationally cheap and offer valuable insight into the dynamics, however, they simplify the complex interactions between the substrate and adsorbate atoms, neglecting correlations in the motion of the two species. The effect of this simplification on the accuracy of observables extracted using Langevin simulations was previously unquantified. Here we report a numerical study aimed at assessing the validity of this approach. We compared experimentally accessible observables which were calculated using a Langevin simulation with those obtained from explicit molecular dynamics simulations. Our results show that within the range of parameters we explored Langevin simulations provide a good alternative for calculating the diffusion procress, i.e. the effect of correlations is too small to be observed within the numerical accuracy of this study and most likely would not have a significant effect on the interpretation of experimental data. Our comparison of the two numerical approaches also demonstrates the effect temperature dependent friction has on the calculated observables, illustrating the importance of accounting for such a temperature dependence when interpreting experimental data. PMID:25743627

  10. Bidirectional diffusion of ammonium and sodium cations in forward osmosis: role of membrane active layer surface chemistry and charge.

    PubMed

    Lu, Xinglin; Boo, Chanhee; Ma, Jun; Elimelech, Menachem

    2014-12-16

    Systematic fundamental understanding of mass transport in osmosis-driven membrane processes is important for further development of this emerging technology. In this work, we investigate the role of membrane surface chemistry and charge on bidirectional solute diffusion in forward osmosis (FO). In particular, bidirectional diffusion of ammonium (NH4(+)) and sodium (Na(+)) is examined using FO membranes with different materials and surface charge characteristics. Using an ammonium bicarbonate (NH4HCO3) draw solution, we observe dramatically enhanced cation fluxes with sodium chloride feed solution compared to that with deionized water feed solution for thin-film composite (TFC) FO membrane. However, the bidirectional diffusion of cations does not change, regardless of the type of feed solution, for cellulose triacetate (CTA) FO membrane. We relate this phenomenon to the membrane fixed surface charge by employing different feed solution pH to foster different protonation conditions for the carboxyl groups on the TFC membrane surface. Membrane surface modification is also carried out with the TFC membrane using ethylenediamine to alter carboxyl groups into amine groups. The modified TFC membrane, with less negatively charged groups, exhibits a significant decrease in the bidirectional diffusion of cations under the same conditions employed with the pristine TFC membrane. Based on our experimental observations, we propose Donnan dialysis as a mechanism responsible for enhanced bidirectional diffusion of cations in TFC membranes.

  11. Bidirectional diffusion of ammonium and sodium cations in forward osmosis: role of membrane active layer surface chemistry and charge.

    PubMed

    Lu, Xinglin; Boo, Chanhee; Ma, Jun; Elimelech, Menachem

    2014-12-16

    Systematic fundamental understanding of mass transport in osmosis-driven membrane processes is important for further development of this emerging technology. In this work, we investigate the role of membrane surface chemistry and charge on bidirectional solute diffusion in forward osmosis (FO). In particular, bidirectional diffusion of ammonium (NH4(+)) and sodium (Na(+)) is examined using FO membranes with different materials and surface charge characteristics. Using an ammonium bicarbonate (NH4HCO3) draw solution, we observe dramatically enhanced cation fluxes with sodium chloride feed solution compared to that with deionized water feed solution for thin-film composite (TFC) FO membrane. However, the bidirectional diffusion of cations does not change, regardless of the type of feed solution, for cellulose triacetate (CTA) FO membrane. We relate this phenomenon to the membrane fixed surface charge by employing different feed solution pH to foster different protonation conditions for the carboxyl groups on the TFC membrane surface. Membrane surface modification is also carried out with the TFC membrane using ethylenediamine to alter carboxyl groups into amine groups. The modified TFC membrane, with less negatively charged groups, exhibits a significant decrease in the bidirectional diffusion of cations under the same conditions employed with the pristine TFC membrane. Based on our experimental observations, we propose Donnan dialysis as a mechanism responsible for enhanced bidirectional diffusion of cations in TFC membranes. PMID:25418020

  12. Modeling packed bed sorbent systems with the Pore Surface Diffusion Model: Evidence of facilitated surface diffusion of arsenate in nano-metal (hydr)oxide hybrid ion exchange media.

    PubMed

    Dale, Sachie; Markovski, Jasmina; Hristovski, Kiril D

    2016-09-01

    This study explores the possibility of employing the Pore Surface Diffusion Model (PSDM) to predict the arsenic breakthrough curve of a packed bed system operated under continuous flow conditions with realistic groundwater, and consequently minimize the need to conduct pilot scale tests. To provide the nano-metal (hydr)oxide hybrid ion exchange media's performance in realistic water matrices without engaging in taxing pilot scale testing, the multi-point equilibrium batch sorption tests under pseudo-equilibrium conditions were performed; arsenate breakthrough curve of short bed column (SBC) was predicted by the PSDM in the continuous flow experiments; SBC tests were conducted under the same conditions to validate the model. The overlapping Freundlich isotherms suggested that the water matrix and competing ions did not have any denoting effect on sorption capacity of the media when the matrix was changed from arsenic-only model water to real groundwater. As expected, the PSDM provided a relatively good prediction of the breakthrough profile for arsenic-only model water limited by intraparticle mass transports. In contrast, the groundwater breakthrough curve demonstrated significantly faster intraparticle mass transport suggesting to a surface diffusion process, which occurs in parallel to the pore diffusion. A simple selection of DS=1/2 DP appears to be sufficient when describing the facilitated surface diffusion of arsenate inside metal (hydr)oxide nano-enabled hybrid ion-exchange media in presence of sulfate, however, quantification of the factors determining the surface diffusion coefficient's magnitude under different treatment scenarios remained unexplored.

  13. Effect of bubble-induced surface turbulence on gas-liquid mass transfer in diffused aeration systems.

    PubMed

    Monteith, H D; Bell, J P; Parker, W J; Melcer, H; Harvey, R T

    2005-01-01

    Models that predict volatilization of organic compounds from wastewater treatment basins may underestimate emission rates if the surfaces are considered as quiescent. In reality, the water surface may be agitated by subsurface aeration, increasing mass transfer across the tank surface air-water interface. This study investigated the effect of turbulence, induced by diffused bubble aeration, on mass transfer at the water surface of a pilot aeration basin. The mass transfer of ammonia from an enclosed headspace over the basin to acidified water was measured when different diffuser types and airflow rates were applied. Oxygen-transfer tests were conducted immediately following each ammonia-transfer test. Increasing airflow rates through fine- and coarse-bubble diffusers had a significant effect on the ammonia mass-transfer rate. Experimental mass-transfer parameters (K(L)a's) for surface volatilization derived with aeration present were up to 48% higher than the K(L)a values for quiescent conditions over the range of conditions tested. No effect of diffuser type on ammonia transfer could be determined. The study results infer an effect on oxygen transfer into the water at the surface and potential transfer of volatile organic compounds, if present, from the water. The results of the ammonia mass-transfer experiments suggest that adjustments to the existing mass transfer correlations for surface volatilization from aeration basins may be in order. Such adjustments will have the greatest effect on predictions for the less volatile compounds, under conditions of low airflow rates.

  14. Radiation Heat Transfer Between Diffuse-Gray Surfaces Using Higher Order Finite Elements

    NASA Technical Reports Server (NTRS)

    Gould, Dana C.

    2000-01-01

    This paper presents recent work on developing methods for analyzing radiation heat transfer between diffuse-gray surfaces using p-version finite elements. The work was motivated by a thermal analysis of a High Speed Civil Transport (HSCT) wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining the finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Traditional methods for calculating surface-to-surface radiation are based on assumptions that are not appropriate for p-version finite elements. Two methods for determining internal radiation heat transfer are developed for one and two-dimensional p-version finite elements. In the first method, higher-order elements are divided into a number of sub-elements. Traditional methods are used to determine radiation heat flux along each sub-element and then mapped back to the parent element. In the second method, the radiation heat transfer equations are numerically integrated over the higher-order element. Comparisons with analytical solutions show that the integration scheme is generally more accurate than the sub-element method. Comparison to results from traditional finite elements shows that significant reduction in the number of elements in the mesh is possible using higher-order (p-version) finite elements.

  15. Alignment of sources and detectors on breast surface for noncontact diffuse correlation tomography of breast tumors

    PubMed Central

    Huang, Chong; Lin, Yu; He, Lian; Irwin, Daniel; Szabunio, Margaret M.; Yu, Guoqiang

    2016-01-01

    Noncontact diffuse correlation tomography (ncDCT) is an emerging technology for 3D imaging of deep tissue blood flow distribution without distorting hemodynamic properties. To adapt the ncDCT for imaging in vivo breast tumors, we designed a motorized ncDCT probe to scan over the breast surface. A computer-aided design (CAD)-based approach was proposed to create solid volume mesh from arbitrary breast surface obtained by a commercial 3D camera. The sources and detectors of ncDCT were aligned on the breast surface through ray tracing to mimic the ncDCT scanning with CAD software. The generated breast volume mesh along with the boundary data of ncDCT at the aligned source and detector pairs were used for finite-element-method-based flow image reconstruction. We evaluated the accuracy of source alignments on mannequin and human breasts; largest alignment errors were less than 10% in both tangential and radial directions of scanning. The impact of alignment errors (assigned 10%) on the tumor reconstruction was estimated using computer simulations. The deviations of simulated tumor location and blood flow contrast resulted from the alignment errors were 0.77 mm (less than the node distance of 1 mm) and 1%, respectively, which result in minor impact on flow image reconstruction. Finally, a case study on a human breast tumor was conducted and a tumor-to-normal flow contrast was reconstructed, demonstrating the feasibility of ncDCT in clinical application. PMID:26479823

  16. Molecular diffusion and tensorial slip at surfaces with periodic and random nanoscale textures

    NASA Astrophysics Data System (ADS)

    Priezjev, Nikolai

    2012-02-01

    The influence of periodic and random surface textures on the flow structure and effective slip length in Newtonian fluids is investigated by molecular dynamics (MD) simulations. This study is motivated by the possibility to generate transverse flows in microfluidics devices to enhance mixing and separation processes. We consider a situation where the typical pattern size is smaller than the channel height and the local boundary conditions at wetting and nonwetting regions are characterized by finite slip lengths. In case of anisotropic textures, the interfacial diffusion coefficient of fluid molecules near heterogeneous surfaces correlates well with the effective slip length as a function of the shear flow direction with respect to the texture orientation. In addition, it was found that the angular dependence of the effective slip length obtained from MD simulations is in good agreement with hydrodynamic predictions provided that the pattern size is larger than several molecular diameters. These findings lend support for the microscopic justification of recently introduced tensor formulation of the effective slip boundary conditions in the case of noninertial flows of Newtonian fluids over smooth surfaces with nanoscale anisotropic textures.

  17. Molecular diffusion and tensorial slip at surfaces with periodic and random nanoscale textures

    NASA Astrophysics Data System (ADS)

    Priezjev, Nikolai

    2011-11-01

    The influence of periodic and random surface textures on the flow structure and effective slip length in Newtonian fluids is investigated by molecular dynamics (MD) simulations. This study is motivated by the possibility to generate transverse flows in microfluidics devices to enhance mixing and separation processes. We consider a situation where the typical pattern size is smaller than the channel height and the local boundary conditions at wetting and nonwetting regions are characterized by finite slip lengths. In case of anisotropic textures, the interfacial diffusion coefficient of fluid molecules near heterogeneous surfaces correlates well with the effective slip length as a function of the shear flow direction with respect to the texture orientation. In addition, it was found that the angular dependence of the effective slip length obtained from MD simulations is in good agreement with hydrodynamic predictions provided that the pattern size is larger than several molecular diameters. These findings lend support for the microscopic justification of recently introduced tensor formulation of the effective slip boundary conditions in the case of noninertial flows of Newtonian fluids over smooth surfaces with nanoscale anisotropic textures. Funding from NSF (CBET-1033662) is gratefully acknowledged.

  18. Method of coating the interior surface of hollow objects with a diffusion coating

    DOEpatents

    Knowles, Shawn D.; Senor, David J.; Forbes, Steven V.; Johnson, Roger N.; Hollenberg, Glenn W.

    2005-03-15

    A method for forming a diffusion coating on the interior of surface of a hollow object wherein a filament, extending through a hollow object and adjacent to the interior surface of the object, is provided, with a coating material, in a vacuum. An electrical current is then applied to the filament to resistively heat the filament to a temperature sufficient to transfer the coating material from the filament to the interior surface of the object. The filament is electrically isolated from the object while the filament is being resistively heated. Preferably, the filament is provided as a tungsten filament or molybdenum filament. Preferably, the coating materials are selected from the group consisting of Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Ge, Hg, In, K, Li, Mg, Mn, Na, Ni P, Pb, Pd, Pr, S, Sb, Sc, Se, Si, Sn, Sr, Te, Tl, Y, Yb, Zn, and combinations thereof. The invention additionally allows for the formation of nitrides, hydrides, or carbides of all the possible coating materials, where such compounds exist, by providing a partial pressure of nitrogen, hydrogen, hydrocarbons, or combination thereof, within the vacuum.

  19. Polarization radiation in the planetary atmosphere delimited by a heterogeneous diffusely reflecting surface

    NASA Technical Reports Server (NTRS)

    Strelkov, S. A.; Sushkevich, T. A.

    1983-01-01

    Spatial frequency characteristics (SFC) and the scattering functions were studied in the two cases of a uniform horizontal layer with absolutely black bottom, and an isolated layer. The mathematical model for these examples describes the horizontal heterogeneities in a light field with regard to radiation polarization in a three dimensional planar atmosphere, delimited by a heterogeneous surface with diffuse reflection. The perturbation method was used to obtain vector transfer equations which correspond to the linear and nonlinear systems of polarization radiation transfer. The boundary value tasks for the vector transfer equation that is a parametric set and one dimensional are satisfied by the SFC of the nonlinear system, and are expressed through the SFC of linear approximation. As a consequence of the developed theory, formulas were obtained for analytical calculation of albedo in solving the task of dissemination of polarization radiation in the planetary atmosphere with uniform Lambert bottom.

  20. Gas exchange: large surface and thin barrier determine pulmonary diffusing capacity.

    PubMed

    Weibel, E R

    1999-06-01

    The lung is characterized by its diffusing capacity for oxygen, DLO2, which is estimated from morphometric information as a theoretical capacity. It is determined by the large gas exchange surface, the thin tissue barrier, and the amount of capillary blood. The question is asked whether DLO2 could be a limiting factor for O2 uptake in heavy exercise, particularly in athletes with their 50% higher O2 demand. This is answered by studying the relation between DLO2 and maximal O2 consumption in different sedentary and athletic mammals, comparing horse and cow, dog and goat, and, finally, the most athletic mammal, the pronghorn antelope of the Rocky Mountains. It is concluded that in athletic species the lung is just sufficient to satisfy the O2 needs and can therefore be a limiting factor for aerobic work. PMID:10394805

  1. Electronic structure and magnetism of samarium and neodymium adatoms on free-standing graphene

    NASA Astrophysics Data System (ADS)

    Kozub, Agnieszka L.; Shick, Alexander B.; Máca, František; Kolorenč, Jindřich; Lichtenstein, Alexander I.

    2016-09-01

    The electronic structure of selected rare-earth atoms adsorbed on a free-standing graphene was investigated using methods beyond the conventional density functional theory (DFT+U , DFT+HIA, and DFT+ED). The influence of the electron correlations and the spin-orbit coupling on the magnetic properties has been examined. The DFT+U method predicts both atoms to carry local magnetic moments (spin and orbital) contrary to a nonmagnetic f6 (J =0 ) ground-state configuration of Sm in the gas phase. Application of DFT +Hubbard-I (HIA) and DFT +exact diagonalization (ED) methods cures this problem, and yields a nonmagnetic ground state with six f electrons and J =0 for the Sm adatom. Our calculations show that Nd adatom remains magnetic, with four localized f electrons and J =4.0 . These conclusions could be verified by STM and XAS experiments.

  2. Adatom complexes and self-healing mechanisms on graphene and single-wall carbon nanotubes

    SciTech Connect

    Tsetseris, Leonidas; Pantelides, Sokrates T

    2009-01-01

    Point defects play a role in the functionalization, chemical activation, carrier transport, and nano-engineering of graphitic systems. Here, we use first-principles calculations to describe several processes that alter the properties of graphene and single-wall carbon nanotubes (SWCNTs) in the presence of self-interstitials (SI's). We find that, while two or four SI's are stabilized in hillock-like structures that stay idle unless the system is heated to very high temperatures, clustering of three C adatoms leads to the formation of mobile protrusions on graphene and large enough SWCNTs. For different SI concentrations and SWCNT size, the interplay between mobile and immobile species may favor one of the two competing processes, self-healing or formation of adatom superstructures.

  3. Electronic and vibrational properties of graphene monolayers with iron adatoms: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Dimakis, Nicholas; Navarro, Nestor E.; Velazquez, Julian; Salgado, Andres

    2015-04-01

    Periodic density functional calculations on graphene monolayers with and without an iron adatom have been used to elucidate iron-graphene adsorption and its effects on graphene electronic and vibrational properties. Density-of-states calculations and charge density contour plots reveal charge transfer from the iron s orbitals to the d orbitals, in agreement with past reports. Adsorbed iron atoms covalently bind to the graphene substrate, verified by the strong hybridization of iron d-states with the graphene bands in the energy region just below the Fermi level. This adsorption is weak and compared to the well-analyzed CO adsorption on Pt: It is indicated by its small adsorption energy and the minimal change of the substrate geometry due to the presence of the iron adatoms. Graphene vibrational spectra are analyzed though a systematic variation of the graphene supercell size. The shifts of graphene most prominent infrared active vibrational modes due to iron adsorption are explored using normal mode eigenvectors.

  4. Binding Preferences, Surface Attachment, Diffusivity, and Orientation of a Family 1 Carbohydrate-binding Module on Cellulose*

    PubMed Central

    Nimlos, Mark R.; Beckham, Gregg T.; Matthews, James F.; Bu, Lintao; Himmel, Michael E.; Crowley, Michael F.

    2012-01-01

    Cellulase enzymes often contain carbohydrate-binding modules (CBMs) for binding to cellulose. The mechanisms by which CBMs recognize specific surfaces of cellulose and aid in deconstruction are essential to understand cellulase action. The Family 1 CBM from the Trichoderma reesei Family 7 cellobiohydrolase, Cel7A, is known to selectively bind to hydrophobic surfaces of native cellulose. It is most commonly suggested that three aromatic residues identify the planar binding face of this CBM, but several recent studies have challenged this hypothesis. Here, we use molecular simulation to study the CBM binding orientation and affinity on hydrophilic and hydrophobic cellulose surfaces. Roughly 43 μs of molecular dynamics simulations were conducted, which enables statistically significant observations. We quantify the fractions of the CBMs that detach from crystal surfaces or diffuse to other surfaces, the diffusivity along the hydrophobic surface, and the overall orientation of the CBM on both hydrophobic and hydrophilic faces. The simulations demonstrate that there is a thermodynamic driving force for the Cel7A CBM to bind preferentially to the hydrophobic surface of cellulose relative to hydrophilic surfaces. In addition, the simulations demonstrate that the CBM can diffuse from hydrophilic surfaces to the hydrophobic surface, whereas the reverse transition is not observed. Lastly, our simulations suggest that the flat faces of Family 1 CBMs are the preferred binding surfaces. These results enhance our understanding of how Family 1 CBMs interact with and recognize specific cellulose surfaces and provide insights into the initial events of cellulase adsorption and diffusion on cellulose. PMID:22496371

  5. Theoretical investigation of structures and energetics of sodium adatom and its dimer on graphene: DFT study

    NASA Astrophysics Data System (ADS)

    Kaur, Gagandeep; Gupta, Shuchi; Rani, Pooja; Dharamvir, Keya

    2015-11-01

    Extensive ab initio calculations have been performed to study the energetics of a sodium (Na) atom and its dimer adsorbed on graphene using the SIESTA package Soler et al. (2002) [1] which works within a DFT(density functional theory)-GGA (generalized gradient approximation) pseudopotential framework. The adsorption energy, geometry, charge transfer, ionization potential and density of states (DOS), partial density states (PDOS) of adatom/dimer-graphene system have been calculated. After considering various sites for adsorption of Na on graphene, the center of a hexagonal ring of carbon atoms is found to be the preferred site of adsorption while the Na2 dimer prefers to rest parallel to the graphene sheet. We find insignificant energy differences among adsorption configurations involving different possible sites in parallel orientation, which implies high mobility of the dimer on the graphene sheet. We also notice only a slight distortion of the graphene sheet perpendicular to its plane upon adatom adsorption. However, some lateral displacements seen are more perceptible. Summary The adsorption energy, geometry, charge transfer, ionization potential and density of states (DOS) and PDOS of adatom/dimer-graphene system have been calculated using SIESTA package Soler et al. (2002) [1] which works within a DFT(density functional theory)-GGA (generalized gradient approximation) pseudopotential framework. Preferred site for adsorption of a sodium atom on graphene is the hollow site. For the Na dimer adsorption, we found that horizontal orientation is favored over the vertical one. From DOS plots, it is clear that graphene's states are nearly unaffected by the adsorption of Na adatom and Interaction between sodium and graphene is predominantly ionic

  6. Neuronal activity mediated regulation of glutamate transporter GLT‐1 surface diffusion in rat astrocytes in dissociated and slice cultures

    PubMed Central

    Al Awabdh, Sana; Gupta‐Agarwal, Swati; Sheehan, David F.; Muir, James; Norkett, Rosalind; Twelvetrees, Alison E.; Griffin, Lewis D.

    2016-01-01

    The astrocytic GLT‐1 (or EAAT2) is the major glutamate transporter for clearing synaptic glutamate. While the diffusion dynamics of neurotransmitter receptors at the neuronal surface are well understood, far less is known regarding the surface trafficking of transporters in subcellular domains of the astrocyte membrane. Here, we have used live‐cell imaging to study the mechanisms regulating GLT‐1 surface diffusion in astrocytes in dissociated and brain slice cultures. Using GFP‐time lapse imaging, we show that GLT‐1 forms stable clusters that are dispersed rapidly and reversibly upon glutamate treatment in a transporter activity‐dependent manner. Fluorescence recovery after photobleaching and single particle tracking using quantum dots revealed that clustered GLT‐1 is more stable than diffuse GLT‐1 and that glutamate increases GLT‐1 surface diffusion in the astrocyte membrane. Interestingly, the two main GLT‐1 isoforms expressed in the brain, GLT‐1a and GLT‐1b, are both found to be stabilized opposed to synapses under basal conditions, with GLT‐1b more so. GLT‐1 surface mobility is increased in proximity to activated synapses and alterations of neuronal activity can bidirectionally modulate the dynamics of both GLT‐1 isoforms. Altogether, these data reveal that astrocytic GLT‐1 surface mobility, via its transport activity, is modulated during neuronal firing, which may be a key process for shaping glutamate clearance and glutamatergic synaptic transmission. GLIA 2016;64:1252–1264 PMID:27189737

  7. Electron confinement induced by diluted hydrogen-like ad-atoms in graphene ribbons.

    PubMed

    González, J W; Rosales, L; Pacheco, M; Ayuela, A

    2015-10-14

    We report the electronic properties of two-dimensional systems made of graphene nanoribbons, which are patterned with ad-atoms in two separated regions. Due to the extra electronic confinement induced by the presence of impurities, we find resonant levels, quasi-bound and impurity-induced localized states, which determine the transport properties of the system. Regardless of the ad-atom distribution in the system, we apply band-folding procedures to simple models and predict the energies and the spatial distribution of those impurity-induced states. We take into account two different scenarios: gapped graphene and the presence of randomly distributed ad-atoms in a low dilution regime. In both cases the defect-induced resonances are still detected. Our findings would encourage experimentalists to synthesize these systems and characterize their quasi-localized states by employing, for instance, scanning tunneling spectroscopy (STS). Additionally, the resonant transport features could be used in electronic applications and molecular sensing devices.

  8. Manipulating the Lateral Diffusion of Surface-Anchored EGF Demonstrates that Receptor Clustering Modulates Phosphorylation Levels

    PubMed Central

    Stabley, D.; Retterer, S.; Marshall, S.; Salaita, K.

    2013-01-01

    Upon activation, the epidermal growth factor (EGF) receptor becomes phosphorylated and triggers a vast signaling network that has profound effects on cell growth. The EGF receptor is observed to assemble into clusters after ligand binding and tyrosine kinase autophosphorylation, but the role of these assemblies in the receptor signaling pathway remains unclear. To address this question, we measured the phosphorylation of EGFR when the EGF ligand was anchored onto laterally mobile and immobile surfaces. We found that cells generated clusters of ligand-receptor complex on mobile EGF surfaces, and displayed a lower ratio of phosphorylated EGFR to EGF when compared to immobilized EGF that is unable to cluster. This result was verified by tuning the lateral assembly of ligand-receptor complexes on the surface of living cells using patterned supported lipid bilayers. Nanoscale metal lines fabricated into the supported membrane constrained lipid diffusion and EGF receptor assembly into micron and sub-micron scale corrals. Single cell analysis indicated that clustering impacts EGF receptor activation, and larger clusters (> 1 µm2) of ligand-receptor complex generated lower EGF receptor phosphorylation per ligand than smaller assemblies (< 1 µm2) in HCC1143 cells that were engaged to ligand-functionalized surfaces. We investigated the mechanism of EGFR clustering by treating cells with compounds that disrupt the cytoskeleton (Latrunculin-B), clathrin-mediated endocytosis (Pitstop2), and inhibit EGFR activation (Gefitinib). These results help elucidate the nature of large-scale EGFR clustering, thus underscoring the general significance of receptor spatial organization in tuning function. PMID:23416883

  9. Theory of activated glassy relaxation, mobility gradients, surface diffusion, and vitrification in free standing thin films

    SciTech Connect

    Mirigian, Stephen E-mail: smirigian@gmail.com; Schweizer, Kenneth S. E-mail: smirigian@gmail.com

    2015-12-28

    We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.

  10. Surface diffuse discharge mechanism of well-aligned atmospheric pressure microplasma arrays

    NASA Astrophysics Data System (ADS)

    Ren-Wu, Zhou; Ru-Sen, Zhou; Jin-Xing, Zhuang; Jiang-Wei, Li; Mao-Dong, Chen; Xian-Hui, Zhang; Dong-Ping, Liu; Kostya (Ken, Ostrikov; Si-Ze, Yang

    2016-04-01

    A stable and homogeneous well-aligned air microplasma device for application at atmospheric pressure is designed and its electrical and optical characteristics are investigated. Current-voltage measurements and intensified charge coupled device (ICCD) images show that the well-aligned air microplasma device is able to generate a large-area and homogeneous discharge at the applied voltages ranging from 12 kV to 14 kV, with a repetition frequency of 5 kHz, which is attributed to the diffusion effect of plasma on dielectric surface. Moreover, this well-aligned microplasma device may result in the uniform and large-area surface modification of heat-sensitive PET polymers without damage, such as optimization in hydrophobicity and biocompatibility. In the biomedical field, the utility of this well-aligned microplasma device is further testified. It proves to be very efficient for the large-area and uniform inactivation of E. coli cells with a density of 103/cm2 on LB agar plate culture medium, and inactivation efficiency can reach up to 99% for 2-min treatment. Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2014J01025), the National Natural Science Foundation of China (Grant No. 11275261), the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030313005), and the Fund from the Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance, China.

  11. The computational study of amino group impregnation on the zeolite surface toward the behaviors of adsorption and diffusion

    NASA Astrophysics Data System (ADS)

    Kim, Kiwoong; Lee, Sooho; Lee, Kwang Soon; Lee, Won Bo

    2014-03-01

    The molecular dynamic and Grand Canonical Monte Carlo simulation study were conducted to investigate the adsorption and diffusion behaviors of mixture of CO2 and N2. Pure silicalite structures of zeolites TON, AFI, and LTL were selected as the host materials to be evaluated in this study. The effect of surface modification of TON, realized by impregnating the amino functional group on TON surface, on the adsorption and the diffusion were analyzed and compared with the normal TON structure. The results show that, in the adsorption behaviors, the modified TON adsorbs more CO2 than the normal TON structure, however, at high pressure regions, CO2 uptake is lower than the normal TON due to reductions of pore volume. This effect was quantitatively analyzed for the various amino functional group; methyl-, ethylamine, and ammonia. In the diffusion behaviors, the mixture in the modified TON has a lower diffusivity than the mixture in the normal TON due to additional attractive interaction between the amino group and mixture. In addition, the single file mobilities as well as the self-diffusion coefficients were employed to describe the observed diffusion behaviors.

  12. Design of Advanced Photocatalysis System by Adatom Decoration in 2D Nanosheets of Group-IV and III–V Binary Compounds

    PubMed Central

    Jin, Hao; Dai, Ying; Huang, Bai-Biao

    2016-01-01

    Searching for novel photocatalysts is one of the most important topic in photocatalytic fields. In the present work, we propose a feasible approach to improve the photocatalytic activities of 2D bilayers through surface decoration, i.e. hydrogenation, halogenation, and hydroxylation. Our investigations demonstrate that after surface modification, the optical adsorption expands into the visible region, while a built-in electric field is induced due to the interlayer coupling, which can promote the charge separation for photogenerated electron-hole pairs. Our results show that the indirect-direct band gap transition of SiC, SnC, BN and GaN can be realised through adatom decoration. Furthermore, the surface-modified 2D bilayers have suitable VBM and CBM alignments with the oxidation and reduction potentials for water splitting, suggesting powerful potentials in energy and environmental applications. PMID:26983908

  13. Exploring Rotation-Vibration Coupling in Highly Fluxional Molecules Using Surface Hopping Diffusion Monte Carlo

    NASA Astrophysics Data System (ADS)

    Petit, Andrew S.; McCoy, Anne B.

    2012-06-01

    Diffusion Monte Carlo (DMC) has widely been shown to be a powerful technique for studying ro-vibrational states of highly fluxional molecules and clusters. An extension of DMC to multiple potential energy surfaces (PESs) based on the Tully surface hopping approach has previously been developed by our group. Here, we report an application of this approach to the calculation of rotationally excited states of systems with pronounced rotation-vibration coupling and large-amplitude, zero-point vibrational motion. More specifically, for a chosen value of J, each walker in the DMC ensemble is expanded in a symmetric top basis. The expansion coefficients are updated each time-step based on the action of the rigid-rotor asymmetric top Hamiltonian. This Hamiltonian is constructed using the inverse moment of inertia tensor evaluated in the Eckart frame at the walker's position in configuration space. Each walker is then localized onto a single, K-dependent effective PES, and the effective potential energy associated with the walker's position on that surface determines the evolution of its weight in the DMC ensemble. Preliminary results of the application of this methodology to model systems such as H_3^+ and H_2D^+ will be discussed as well as its prospect for accurately evaluating ro-vibrational states of systems like CH_5^+. Finally, a comparison of this technique with our previously developed fixed-node DMC approach for the evaluation of ro-vibrational energies and wave functions will be presented. J. C. Tully, J. Chem. Phys. 93, 1061 (1990). A.B. McCoy, Chem. Phys. Lett. 321, 71 (2000). A. S. Petit, B. A. Wellen, and A. B. McCoy, J. Chem. Phys. 136, 074101 (2012).

  14. Modelling the Effect of Fruit Growth on Surface Conductance to Water Vapour Diffusion

    PubMed Central

    GIBERT, CAROLINE; LESCOURRET, FRANÇOISE; GÉNARD, MICHEL; VERCAMBRE, GILLES; PÉREZ PASTOR, ALEJANDRO

    2005-01-01

    • Background and Aims A model of fruit surface conductance to water vapour diffusion driven by fruit growth is proposed. It computes the total fruit conductance by integrating each of its components: stomata, cuticle and cracks. • Methods The stomatal conductance is computed from the stomatal density per fruit and the specific stomatal conductance. The cuticular component is equal to the proportion of cuticle per fruit multiplied by its specific conductance. Cracks are assumed to be generated when pulp expansion rate exceeds cuticle expansion rate. A constant percentage of cracks is assumed to heal each day. The proportion of cracks to total fruit surface area multiplied by the specific crack conductance accounts for the crack component. The model was applied to peach fruit (Prunus persica) and its parameters were estimated from field experiments with various crop load and irrigation regimes. • Key Results The predictions were in good agreement with the experimental measurements and for the different conditions (irrigation and crop load). Total fruit surface conductance decreased during early growth as stomatal density, and hence the contribution of the stomatal conductance, decreased from 80 to 20 % with fruit expansion. Cracks were generated for fruits exhibiting high growth rates during late growth and the crack component could account for up to 60 % of the total conductance during the rapid fruit growth. The cuticular contribution was slightly variable (around 20 %). Sensitivity analysis revealed that simulated conductance was highly affected by stomatal parameters during the early period of growth and by both crack and stomatal parameters during the late period. Large fruit growth rate leads to earlier and greater increase of conductance due to higher crack occurrence. Conversely, low fruit growth rate accounts for a delayed and lower increase of conductance. • Conclusions By predicting crack occurrence during fruit growth, this model could be helpful

  15. Surface analysis of InP and InGaAs after low temperature diffusion of Zinc

    NASA Astrophysics Data System (ADS)

    Le Goff, Florian; Mathiot, Daniel; Decobert, Jean; Le Goec, Jean-Pierre; Parillaud, Olivier; Reverchon, Jean-Luc

    2016-09-01

    In order to develop III–V based devices integrated directly above post-processed silicon wafers, low temperature diffusion of zinc in n-type InP and InGaAs is studied at compatible temperatures, below 425 oC. We particularly focus on the resulting surface degradation. Efficient Zn diffusion is obtained for InGaAs samples, where the surface remains mirror-like after thermal treatment. Conversely, no significant diffusion occurs in InP where the surface is deeply deteriorated. The stability study for InP under thermal annealing in various ambients allows us to rule out thermal dephosphorization as the main cause of the surface degradation. On the basis of experimental observations and thermodynamic considerations, it is suggested that InP degradation is linked to the direct interaction of Zn and P, inducing the formation of parasitic Zn x P2 alloys, which also hinders the efficient diffusion of Zn into the InP substrate.

  16. H atom adsorption and diffusion on Si(110)-(1×1) and (2×1) surfaces.

    PubMed

    Brázdová, Veronika; Bowler, David R

    2011-06-21

    We present a periodic density-functional study of hydrogen adsorption and diffusion on the Si(110)-(1×1) and (2×1) surfaces, and identify a local reconstruction that stabilizes the clean Si(110)-(1×1) by 0.51 eV. Hydrogen saturates the dangling bonds of surface Si atoms on both reconstructions and the different structures can be identified from their simulated scanning tunneling microscopy/current image tunneling spectroscopy (STM/CITS) images. Hydrogen diffusion on both reconstructions will proceed preferentially along zigzag rows, in between two adjacent rows. The mobility of the hydrogen atom is higher on the (2×1) reconstruction. Diffusion of a hydrogen vacancy on a monohydride Si(110) surface will proceed along one zigzag row and is slightly more difficult (0.2 eV and 0.6 eV on (1×1) and (2×1), respectively) than hydrogen atom diffusion on the clean surface.

  17. Surface analysis of InP and InGaAs after low temperature diffusion of Zinc

    NASA Astrophysics Data System (ADS)

    Le Goff, Florian; Mathiot, Daniel; Decobert, Jean; Le Goec, Jean-Pierre; Parillaud, Olivier; Reverchon, Jean-Luc

    2016-09-01

    In order to develop III-V based devices integrated directly above post-processed silicon wafers, low temperature diffusion of zinc in n-type InP and InGaAs is studied at compatible temperatures, below 425 oC. We particularly focus on the resulting surface degradation. Efficient Zn diffusion is obtained for InGaAs samples, where the surface remains mirror-like after thermal treatment. Conversely, no significant diffusion occurs in InP where the surface is deeply deteriorated. The stability study for InP under thermal annealing in various ambients allows us to rule out thermal dephosphorization as the main cause of the surface degradation. On the basis of experimental observations and thermodynamic considerations, it is suggested that InP degradation is linked to the direct interaction of Zn and P, inducing the formation of parasitic Zn x P2 alloys, which also hinders the efficient diffusion of Zn into the InP substrate.

  18. User-oriented batch reactor solutions to the homogeneous surface diffusion model for different activated carbon dosages.

    PubMed

    Zhang, Qiong; Crittenden, John; Hristovski, Kiril; Hand, David; Westerhoff, Paul

    2009-04-01

    This paper presents a simplified approach and user-oriented solutions to the homogeneous surface diffusion model (HSDM) equations for determining the surface diffusivity using a batch reactor system. Once the surface diffusivity is known, this model could also be used to estimate the performance of activated carbon (AC) applications as a function of contact time. In addition, fixed-bed performance can be predicted using the user-oriented solutions to the HSDM for fixed beds. The step-by-step procedure for determining surface diffusion coefficients of an activated carbon adsorber, which was initially developed by Hand, Crittenden and Thacker in 1983 for a carbon dose where C(equilibrium)/C(0)=0.5, is modified to allow calculations for different carbon dosages. This modification provides solutions to the HSDM equations for different activated carbon dosages. The solutions to the HSDM framework are provided as simplified algebraic equations suitable for quick and easy estimations of D(S). The excel spread sheet is provided in the supplemental information and a detailed example is discussed. PMID:19249812

  19. Gold Cluster Diffusion Kinetics on Stoichiometric and Reduced Surfaces of Rutile TiO 2 (110)

    SciTech Connect

    Goldman, Nir; Browning, Nigel D.

    2011-06-16

    Gold clusters on rutile TiO2 are known to serve as efficient oxidation catalysts for pollutants and environmental contaminants. However, the mechanism by which highly mobile small clusters migrate and aggregate into larger species relevant to gold’s catalytic activity remains unresolved. We report herein on ab initio simulations of the diffusion of atomic gold clusters up to the trimer on rutile TiO2(110) surfaces. We show that, on the stoichiometric surface, both the dimer and the trimer can exhibit relatively low surface mobility due to high energetic barriers for diffusion out of their energetic minima coupled with low barriers for the reverse motion. On the reduced surface, these clusters can diffuse relatively quickly between energetic minima within the oxygen vacancy site due to the large degree of vibrational entropy in their transition states. Our computed diffusion times provide a point of comparison for future experiments and will aid in development of models of gold cluster island sintering.

  20. Diffuse Reflectance Mid-Infrared Spectroscopy as a Tool for the Identification of Surface Contamination on Sandblasted Metals

    NASA Technical Reports Server (NTRS)

    Powell, Louis G.; Barber, Tye E.; Neu, John T.; Nerren, Billy H.

    1997-01-01

    The SOC 400 Surface Inspection Machine/Infrared (SIMIR) is a small, ruggedized Fourier transform infrared spectrometer having dedicated diffuse reflectance optics. The SOC 400 was designed for the purpose of detecting (qualitatively and quantitatively) oil stains on the inside surface of solid rocket motor casings in the as-sandblasted and cleaned condition at levels approaching 1 mg. sq ft. The performance of this instrument is described using spectral mapping techniques.

  1. Diffuse reflectance mid-infrared spectroscopy as a tool for the identification of surface contamination on sandblasted metals

    SciTech Connect

    Powell, G.L.; Barber, T.E.; Neu, J.T.; Nerren, B.H.

    1996-07-30

    The SOC 400 Surface Inspection Machine/Infrared (SIMIR) is a small, ruggedized Fourier transform infrared spectrometer having dedicated diffuse reflectance optics. The SOC 400 was designed for the purpose of detecting (qualitatively and quantitatively) oil stains on the inside surface of solid rocket motor casings in the as-sandblasted and cleaned condition at levels approaching 1 mg ft{sup {minus}2}. The performance of this instrument is described using spectral mapping techniques.

  2. Characteristics of Li diffusion on silicene and zigzag nanoribbon

    NASA Astrophysics Data System (ADS)

    Yan-Hua, Guo; Jue-Xian, Cao; Bo, Xu

    2016-01-01

    We perform a density functional study on the adsorption and diffusion of Li atoms on silicene sheet and zigzag nanoribbons. Our results show that the diffusion energy barrier of Li adatoms on silicene sheet is 0.25 eV, which is much lower than on graphene and Si bulk. The diffusion barriers along the axis of zigzag silicene nanoribbon range from 0.1 to 0.25 eV due to an edge effect, while the diffusion energy barrier is about 0.5 eV for a Li adatom to enter into a silicene nanoribbon. Our calculations indicate that using silicene nanoribbons as anodes is favorable for a Li-ion battery. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074212 and 11204123) and the Natural Science Foundation of Jiangsu province, China (Grant No. BK20130945).

  3. Specular and diffuse object extraction from a LiDAR derived Digital Surface Model (DSM)

    NASA Astrophysics Data System (ADS)

    Saraf, N. M.; Hamid, J. R. A.; Kamaruddin, M. H.

    2014-02-01

    This paper intents to investigate the indifferent behaviour quantitatively of target objects of interest due to specular and diffuse reflectivity based on generated LiDAR DSM of the study site in Ampang, Kuala Lumpur. The LiDAR data to be used was initially checked for its reliability and accuracy. The point cloud LiDAR data was converted to raster to allow grid analysis of the next process of generating the DSM and DTM. Filtering and masking were made removing the features of interest (i.e. building and tree) and other unwanted above surface features. A normalised DSM and object segmentation approach were conducted on the trees and buildings separately. Error assessment and findings attained were highlighted and documented. The result of LiDAR verification certified that the data is reliable and useable. The RMSE obtained is within the tolerance value of horizontal and vertical accuracy (x, y, z) i.e. 0.159 m, 0.211 m 0.091 m respectively. Building extraction inclusive of roof top based on slope and contour analysis undertaken indicate the capability of the approach while single tree extraction through aspect analysis appears to preserve the accuracy of the extraction accordingly. The paper has evaluated the suitable methods of extracting non-ground features and the effective segmentation of the LiDAR data.

  4. Oxidation resistant peroxide cross-linked UHMWPE produced by blending and surface diffusion

    NASA Astrophysics Data System (ADS)

    Gul, Rizwan M.; Oral, Ebru; Muratoglu, Orhun K.

    2014-06-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been widely used as acetabular cup in total hip replacement (THR) and tibial component in total knee replacement (TKR). Crosslinking of UHMWPE has been successful used to improve its wear performance leading to longer life of orthopedic implants. Crosslinking can be performed by radiation or organic peroxides. Peroxide crosslinking is a convenient process as it does not require specialized equipment and the level of crosslinking can be manipulated by changing the amount of peroxide added. However, there is concern about the long-term stability of these materials due to possible presence of by-products. Vitamin E has been successfully used to promote long-term oxidative stability of UHMWPE. In this study, UHMWPE has been crosslinked using organic peroxide in the presence of Vitamin E to produce an oxidation resistant peroxide crosslinked material. Crosslinking was performed both in bulk by mixing peroxide and resin, and only on the surface using diffusion of peroxides.The results show that UHMWPE can be crosslinked using organic peroxides in the presence of vitamin E by both methods. However, the level of crosslinking decreases with the increase in vitamin E content. The wear resistance increases with the increase in crosslink density, and oxidation resistance significantly increases due to the presence of vitamin E.

  5. Roughness distribution of multiple hit and long surface diffusion length noise reduced discrete growth models

    NASA Astrophysics Data System (ADS)

    Disrattakit, P.; Chanphana, R.; Chatraphorn, P.

    2016-11-01

    Conventionally, the universality class of a discrete growth model is identified via the scaling of interface width. This method requires large-scale simulations to minimize finite-size effects on the results. The multiple hit noise reduction techniques (m > 1 NRT) and the long surface diffusion length noise reduction techniques (ℓ > 1 NRT) have been used to promote the asymptotic behaviors of the growth models. Lately, an alternative method involving comparison of roughness distribution in the steady state has been proposed. In this work, the roughness distribution of the (2 +1)-dimensional Das Sarma-Tamborenea (DT), Wolf-Villain (WV), and Larger Curvature (LC) models, with and without NRTs, are calculated in order to investigate effects of the NRTs on the roughness distribution. Additionally, effective growth exponents of the noise reduced (2 +1)-dimensional DT, WV and LC models are also calculated. Our results indicate that the NRTs affect the interface width both in the growth and the saturation regimes. In the steady state, the NRTs do not seem to have any impact on the roughness distribution of the DT model, but it significantly changes the roughness distribution of the WV and LC models to the normal distribution curves.

  6. Double Diffusive Layering In The Early Earth's Mantle- Consequences For Thermal History And Surface Dynamics

    NASA Astrophysics Data System (ADS)

    Hansen, U.; Dude, S.

    2011-12-01

    The thermal history of the Earth, it's chemical differentiation and also the reaction of the interior with the atmosphere is largely determined by convective processes within the Earth's mantle. A simple physical model, resembling the situation, shortly after core formation, consists of a compositionally stably stratified mantle, due to magma ocean differentiation , which is heated from below and/or cooled from above. Additionally internal heat sources will serve to power the mantle dynamics. Under such circumstances double diffusive convection will eventually lead to self organized layer formation, even without the existence of jumps is material properties. We have conducted 2D and 3D numerical experiments in Cartesian and spherical geometry, taking into account mantle realistic values, especially a strong temperature dependent viscosity. The experiments show that in a wide parameter rage distinct convective layers evolve in this scenario. The layering strongly controls the heat loss from the core. In the most intensely explored scenario, convection starts at the core-mantle boundary and a stack of layers grow from the lower mantle to the top. Mobilization of the surface occurs after a time span of about 2.5 Gyears. We observe several events of intermittent breakdown of individual layers. This can potentially explain periods of strongly increasing heat flow at the Earth's surface. Alternative models of magma ocean differentiation suggest a freezing of the magma ocean from below. Under such conditions an initially unstable situation may emerge. We observe an initial Rayleigh Taylor instability, again followed by a phase of layered convection, as described above.

  7. From pores to eddies - linking diffusion-based evaporative fluxes from porous surfaces with a turbulent air boundary layer

    NASA Astrophysics Data System (ADS)

    Haghighi, E.; Or, D.

    2012-04-01

    Evaporation affects hydration and energy balance of terrestrial surfaces. Evaporation rates exhibit complex dynamics reflecting interactions between external conditions and internal transport properties of a the drying porous surface Motivated by recent progress in estimating evaporative fluxes from isolated pores across laminar air sublayer, we seek to expand the description and quantify evaporation across a turbulent boundary layer. We adopt concepts from surface renewal (SR) theory focusing on turbulent exchange with individual eddies and linking eddies surface footprint and their local boundary layer over patches of a drying surface. The model resolves diffusive exchange during limited residence time and integrates fluxes over the entire surface to quantify mean evaporative fluxes from drying surfaces into turbulent airflows accounting for subsurface internal transport processes and diffusive exchanges. Input parameters and model evaluation would be based on data from spatially and temporally resolved Infrared (IR) thermography of drying surfaces under prescribe turbulent regimes conducted in a wind-tunnel experiment. The study provides basic ingredients and building blocks essential for upscaling the results to estimation of evaporative fluxes at the field and landscape scales. Keywords: Evaporation; Turbulent Coupling; Surface Renewal; Infrared Imaging.

  8. Cromolyn as surface active drug (surfadrug): Effect of the self-association on diffusion and percutaneous permeation.

    PubMed

    Tavano, Lorena; Nicoletta, Fiore Pasquale; Picci, Nevio; Muzzalupo, Rita

    2016-03-01

    Cromolyn sodium, or disodium cromoglycate (CS), is a surface active drug: a pharmacologically active compound with an amphiphilic nature. At certain conditions it is able to self-associate in several kind of supramolecular aggregates. Since CS could play the role of both carrier and drug, bypassing the use of additional excipients and increasing the system biocompatibility, the effects of cromolyn self-aggregates on diffusion and percutaneous permeation across rabbit ear skin were investigated. Niosomes (vesicular systems, 0.5wt% of CS), monomeric and isotropic solutions (0.5 and 5wt% of CS), nematic (15wt% of CS) and hexagonal phases (30wt% of CS) were selected as supramolecular systems and tested as transdermal delivery systems. Results demonstrated that CS was able to form vesicular structures of about 500nm of diameter and this formulation gave the higher percutaneous permeation profile (systemic action), while isotropic solution and liquid crystals mesophases acted as slower release reservoir of drug on the skin surface (local action), as confirmed by diffusion coefficients. Diffusion rates through a synthetic membrane were dependent both on CS concentration present into the formulations and on its structural organization: maximum diffusion was noticed with isotropic solution, a lower amount of diffused cromolyn sodium was achieved by hexagonal phase. Consequently, CS appears as a versatile surfadrug as, depending on the disease degree, it is possible to modulate its permeation profile by choosing the most appropriate formulation.

  9. Low-coverage surface diffusion in complex periodic energy landscapes. II. Analytical solution for systems with asymmetric hops

    NASA Astrophysics Data System (ADS)

    Gosálvez, Miguel A.; Otrokov, Mikhail M.; Ferrando, Nestor; Ryabishchenkova, Anastasia G.; Ayuela, Andres; Echenique, Pedro M.; Chulkov, Evgueni V.

    2016-05-01

    This is part II in a series of two papers that introduce a general expression for the tracer diffusivity in complex, periodic energy landscapes with M distinct hop rates in one-, two-, and three-dimensional diluted systems (low coverage, single-tracer limit). While Part I [Gosálvez et al., Phys. Rev. B 93, 075429 (2016), 10.1103/PhysRevB.93.075429] focuses on the analysis of diffusion in systems where the end sites of the hops are located symmetrically with respect to the hop origins (symmetric hops), as encountered in many ideal surfaces and bulk materials, this report (Part II) presents a more general approach to determining the tracer diffusivity in systems where the end sites can be located asymmetrically with respect to the hop origins (asymmetric hops), as observed in reconstructed and/or chemically modified surfaces and/or bulk materials. The obtained diffusivity formulas for numerous systems are validated against kinetic Monte Carlo simulations and previously reported analytical expressions based on the continuous-time random walk (CTRW) method. The proposed method corrects some of the CTRW formulas and provides new expressions for difficult cases that have not been solved earlier. This demonstrates the ability of the proposed formalism to describe tracer diffusion.

  10. Introduction of a sink-diffusion model to describe the interaction between volatile organic compounds (VOCs) and material surfaces.

    PubMed

    Jørgensen, R B; Dokka, T H; Bjørseth, O

    2000-03-01

    A sink-diffusion model to describe the interaction between material surfaces and volatile organic compounds (VOCs) in indoor air has been introduced. The model is based on adsorption/desorption on the material surfaces and diffusion into the materials. Test chamber experiments with exposure of nylon carpet and polyvinyl chloride (PVC) covering against alpha-pinene and toluene were used to validate the model and to make comparisons with a sink model based on the Langmuir adsorption isotherm. The results showed that the sink-diffusion model gave a better description of the desorption curve than the Langmuir model. The model predictions improved with increasing sorption effect. The Langmuir model gave good predictions of relative weak sorption effects, whereas the sink-diffusion model improved the predictions for stronger sorption effects. In this case, nylon carpet showed substantial stronger sorption than PVC covering and alpha-pinene showed stronger sorption than toluene. Controlled field experiments with combinations of building materials and a mixture of VOCs, encountered in real indoor environments, are needed to further validate the sink-diffusion model. PMID:10842458

  11. Modeling packed bed sorbent systems with the Pore Surface Diffusion Model: Evidence of facilitated surface diffusion of arsenate in nano-metal (hydr)oxide hybrid ion exchange media.

    PubMed

    Dale, Sachie; Markovski, Jasmina; Hristovski, Kiril D

    2016-09-01

    This study explores the possibility of employing the Pore Surface Diffusion Model (PSDM) to predict the arsenic breakthrough curve of a packed bed system operated under continuous flow conditions with realistic groundwater, and consequently minimize the need to conduct pilot scale tests. To provide the nano-metal (hydr)oxide hybrid ion exchange media's performance in realistic water matrices without engaging in taxing pilot scale testing, the multi-point equilibrium batch sorption tests under pseudo-equilibrium conditions were performed; arsenate breakthrough curve of short bed column (SBC) was predicted by the PSDM in the continuous flow experiments; SBC tests were conducted under the same conditions to validate the model. The overlapping Freundlich isotherms suggested that the water matrix and competing ions did not have any denoting effect on sorption capacity of the media when the matrix was changed from arsenic-only model water to real groundwater. As expected, the PSDM provided a relatively good prediction of the breakthrough profile for arsenic-only model water limited by intraparticle mass transports. In contrast, the groundwater breakthrough curve demonstrated significantly faster intraparticle mass transport suggesting to a surface diffusion process, which occurs in parallel to the pore diffusion. A simple selection of DS=1/2 DP appears to be sufficient when describing the facilitated surface diffusion of arsenate inside metal (hydr)oxide nano-enabled hybrid ion-exchange media in presence of sulfate, however, quantification of the factors determining the surface diffusion coefficient's magnitude under different treatment scenarios remained unexplored. PMID:26672387

  12. Vacancy diffusion in the Cu( 0 0 1 ) surface II: Random walk theory

    NASA Astrophysics Data System (ADS)

    Somfai, E.; van Gastel, R.; van Albada, S. B.; van Saarloos, W.; Frenken, J. W. M.

    2002-12-01

    We develop a version of the vacancy mediated tracer diffusion model, which follows the properties of the physical system of In atoms diffusing within the top layer of Cu(0 0 1) terraces. This model differs from the classical tracer diffusion problem in that (i) the lattice is finite, (ii) the boundary is a trap for the vacancy, and (iii) the diffusion rate of the vacancy is different, in our case strongly enhanced, in the neighborhood of the tracer atom. A simple continuum solution is formulated for this problem, which together with the numerical solution of the discrete model compares well with our experimental results.

  13. Microstructure and surface morphology of YSZ thin films deposited by e-beam technique

    NASA Astrophysics Data System (ADS)

    Laukaitis, G.; Dudonis, J.; Milčius, D.

    2008-03-01

    In present study yttrium-stabilized zirconia (YSZ) thin films were deposited on optical quartz (amorphous SiO 2), porous Ni-YSZ and crystalline Alloy 600 (Fe-Ni-Cr) substrates using e-beam deposition technique and controlling technological parameters: substrate temperature and electron gun power which influence thin-film deposition mechanism. X-ray diffraction, scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to investigate how thin-film structure and surface morphology depend on these parameters. It was found that the crystallite size, roughness and growth mechanism of YSZ thin films are influenced by electron gun power. To clarify the experimental results, YSZ thin-film formation as well evolution of surface roughness at its initial growing stages were analyzed. The evolution of surface roughness could be explained by the processes of surface mobility of adatoms and coalescence of islands. The analysis of these experimental results explain that surface roughness dependence on substrate temperature and electron gun power non-monotonous which could result from diffusivity of adatoms and the amount of atomic clusters in the gas stream of evaporated material.

  14. Refined BCF-type boundary conditions for mesoscale surface step dynamics

    SciTech Connect

    Zhao, Renjie; Ackerman, David M.; Evans, James W.

    2015-06-24

    Deposition on a vicinal surface with alternating rough and smooth steps is described by a solid-on-solid model with anisotropic interactions. Kinetic Monte Carlo (KMC) simulations of the model reveal step pairing in the absence of any additional step attachment barriers. We explore the description of this behavior within an analytic Burton-Cabrera-Frank (BCF)-type step dynamics treatment. Without attachment barriers, conventional kinetic coefficients for the rough and smooth steps are identical, as are the predicted step velocities for a vicinal surface with equal terrace widths. However, we determine refined kinetic coefficients from a two-dimensional discrete deposition-diffusion equation formalism which accounts for step structure. These coefficients are generally higher for rough steps than for smooth steps, reflecting a higher propensity for capture of diffusing terrace adatoms due to a higher kink density. Such refined coefficients also depend on the local environment of the step and can even become negative (corresponding to net detachment despite an excess adatom density) for a smooth step in close proximity to a rough step. Incorporation of these refined kinetic coefficients into a BCF-type step dynamics treatment recovers quantitatively the mesoscale step-pairing behavior observed in the KMC simulations.

  15. Refined BCF-type boundary conditions for mesoscale surface step dynamics

    DOE PAGES

    Zhao, Renjie; Ackerman, David M.; Evans, James W.

    2015-06-24

    Deposition on a vicinal surface with alternating rough and smooth steps is described by a solid-on-solid model with anisotropic interactions. Kinetic Monte Carlo (KMC) simulations of the model reveal step pairing in the absence of any additional step attachment barriers. We explore the description of this behavior within an analytic Burton-Cabrera-Frank (BCF)-type step dynamics treatment. Without attachment barriers, conventional kinetic coefficients for the rough and smooth steps are identical, as are the predicted step velocities for a vicinal surface with equal terrace widths. However, we determine refined kinetic coefficients from a two-dimensional discrete deposition-diffusion equation formalism which accounts for stepmore » structure. These coefficients are generally higher for rough steps than for smooth steps, reflecting a higher propensity for capture of diffusing terrace adatoms due to a higher kink density. Such refined coefficients also depend on the local environment of the step and can even become negative (corresponding to net detachment despite an excess adatom density) for a smooth step in close proximity to a rough step. Incorporation of these refined kinetic coefficients into a BCF-type step dynamics treatment recovers quantitatively the mesoscale step-pairing behavior observed in the KMC simulations.« less

  16. Refined BCF-type boundary conditions for mesoscale surface step dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, Renjie; Ackerman, David M.; Evans, James W.

    2015-06-01

    Deposition on a vicinal surface with alternating rough and smooth steps is described by a solid-on-solid model with anisotropic interactions. Kinetic Monte Carlo (KMC) simulations of the model reveal step pairing in the absence of any additional step attachment barriers. We explore the description of this behavior within an analytic Burton-Cabrera-Frank (BCF)-type step dynamics treatment. Without attachment barriers, conventional kinetic coefficients for the rough and smooth steps are identical, as are the predicted step velocities for a vicinal surface with equal terrace widths. However, we determine refined kinetic coefficients from a two-dimensional discrete deposition-diffusion equation formalism which accounts for step structure. These coefficients are generally higher for rough steps than for smooth steps, reflecting a higher propensity for capture of diffusing terrace adatoms due to a higher kink density. Such refined coefficients also depend on the local environment of the step and can even become negative (corresponding to net detachment despite an excess adatom density) for a smooth step in close proximity to a rough step. Our key observation is that incorporation of these refined kinetic coefficients into a BCF-type step dynamics treatment recovers quantitatively the mesoscale step-pairing behavior observed in the KMC simulations.

  17. Vorticity models of ocean surface diffusion in coastal jets and eddies

    NASA Astrophysics Data System (ADS)

    Cano, D.; Matulka, A.; Sekula, E.

    2010-05-01

    We present and discuss the use of multi-fractal techniques used to investigete vorticity and jet dynamical state of these features detected in the sea surface as well as to identify possible local parametrizations of turbulent diffusion in complex non-homogeneous flows. We use a combined vorticity/energy equation to parametrize mixing at the Rossby Deformation Radius, which may be used even in non Kolmogorov types of flows. The vorticity cascade is seen to be different to the energy cascade and may have important cnsecuences in pollutant dispersion prediction, both in emergency accidental releases and on a day to day operational basis. We also identify different SAR signatures of river plumes near the coast, which are usefull to provide calibrations for the different local configurations that allow to predict the behaviour of different tracers and tensioactives in the coastal sea surface area by means of as a geometrical characterization of the vorticity and velocity maps which induce local mixing and dilution jet processes. The satellite-borne SAR seems to be a good system for the identification of dynamic. lt is also a convenient tool to investigate the eddy structures of a certain area where the effect of bathymetry and local currents are important in describing the ocean surface behavior. Maximum eddy size agrees remarkably well with the limit imposed by the local Rossby deformation radius using the usual thermocline induced stratification, Redondo and Platonov (2000). The Rossby deformation radius, defined as Rd = (N/f)h, where N is the Brunt-Vaisalla frequency, f is the local Coriolis parameter (f=2Osin(lat), where O is the rotation of the earth as function of the latitude), The role of buoyancy may be also detected by seasonal changes in h, the thermocline depth, with these considerations Rd is ranged between 6 and 30 Km. Bezerra M.O., Diez M., Medeiros C. Rodriguez A., Bahia E., Sanchez Arcilla A and Redondo J.M. (1998) "Study on the influence of waves on

  18. Silver photo-diffusion and photo-induced macroscopic surface deformation of Ge33S67/Ag/Si substrate

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Y.; Asaoka, H.; Uozumi, Y.; Kondo, K.; Yamazaki, D.; Soyama, K.; Ailavajhala, M.; Mitkova, M.

    2016-08-01

    Ge-chalcogenide films show various photo-induced changes, and silver photo-diffusion is one of them which attracts lots of interest. In this paper, we report how silver and Ge-chalcogenide layers in Ge33S67/Ag/Si substrate stacks change under light exposure in the depth by measuring time-resolved neutron reflectivity. It was found from the measurement that Ag ions diffuse all over the matrix Ge33S67 layer once Ag dissolves into the layer. We also found that the surface was macroscopically deformed by the extended light exposure. Its structural origin was investigated by a scanning electron microscopy.

  19. Structure and diffusion of small Ag and Au clusters on the regular MgO (100) surface

    NASA Astrophysics Data System (ADS)

    Barcaro, G.; Fortunelli, A.

    2007-02-01

    The lowest energy structures and the diffusion energy barriers of small MN (N = 1 4) Ag and Au clusters absorbed on the regular MgO (100) surface are investigated via density-functional (DF) calculations, using two different xc-functionals (PBE and LDA). In agreement with previous work, it is found that the lowest-energy structures of Ag and Au clusters in this size-range exhibit a strong 'metal-on-top' effect, by which the clusters are absorbed atop oxygen ions in a linear (dimer) or planar (trimer and tetramer) configuration perpendicular to the surface. The corresponding diffusion mechanisms range from monomer hopping, to dimer leapfrog (Ag2) or hopping (Au2), trimer walking, tetramer walking (Ag4) or rocking and rolling (Au4), exhibiting interesting differences between Ag and Au. An analysis of the corresponding energy barriers shows that trimers can diffuse at least as fast as monomers, while tetramers and (especially in the case of gold) dimers present somewhat higher barriers, but are anyway expected to be mobile on the surface at the temperatures of molecular beam epitaxy (MBE) experiments. The calculated PBE diffusion energy barriers compare reasonably well with the values extracted from the analysis of recent MBE experimental data, with the LDA predicting slightly higher barriers in the case of gold.

  20. Oxygen surface exchange and diffusion in the new perovskite oxide ion conductor LaGaO{sub 3}

    SciTech Connect

    Ishihara, Tatsumi; Honda, Miho; Takita, Yusaku; Kilner, J.A.

    1997-03-19

    One of the aims of these experiments was to verify that the oxygen ion is the majority carrier in LaGaO{sub 3}-based materials, as they are thought to exhibit p-type conductivity in the high oxygen partial pressure range. Specifically, we have investigated oxygen surface exchange and diffusion in La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-x} by {sup 18}O isotopic exchange and SIMS at high partial pressures of oxygen (0.1 MPa). In conclusion, these results show that bulk oxygen diffusion in LSGM is very rapid. By a comparison of the oxygen self-diffusivity obtained from tracer and ionic conductivity, the electrical conductivity observed is ionic in the temperature range we have measured. The surface exchange coefficients are anomalous when compared to other perovskite oxides. The activation enthalpy for surface exchange is higher than that for self diffusion coefficient, a finding observed for two other solid oxide electrolytes with the fluorite structure. This behavior is thought to originate in the low electron concentrations found in these electrolyte materials, particularly at the lowest temperatures. 13 refs., 2 figs.

  1. Selective silver atom interaction at β-SiC(100) surfaces: From anisotropic diffusion to metal atomic wires and stripes

    NASA Astrophysics Data System (ADS)

    D'Angelo, M.; Aristov, V. Yu.; Soukiassian, P.

    2007-07-01

    Silver (Ag) atom interaction on β-SiC(100) surface reconstructions is investigated by atom-resolved scanning tunneling microscopy. On the 3×2 (Si-rich) reconstruction, the adsorbate-adsorbate interaction is dominant with no surface wetting, leading to Ag cluster formation. In contrast, on the c(4×2) Si-terminated reconstruction, almost equivalent Ag-Ag and Ag-surface interactions allow selective one dimensional nano-object formation including Ag atomic wires and stripes following the substrate registry. Their orientation is mediated by anisotropic Ag atom diffusion occurring along Si-dimer rows at 25°C and perpendicularly to them at elevated temperatures, suggesting dimer flipping as diffusion barrier. These metal nanowires potentially open up cross-wiring capability in massively parallel Si atomic lines network.

  2. Study on formation of step bunching on 6H-SiC (0001) surface by kinetic Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Chen, Xuejiang; Su, Juan

    2016-05-01

    The formation and evolution of step bunching during step-flow growth of 6H-SiC (0001) surfaces were studied by three-dimensional kinetic Monte Carlo (KMC) method and compared with the analytic model based on the theory of Burton-Cabera-Frank (BCF). In the KMC model the crystal lattice was represented by a structured mesh which fixed the position of atoms and interatomic bonding. The events considered in the model were adatoms adsorption and diffusion on the terrace, and adatoms attachment, detachment and interlayer transport at the step edges. In addition, effects of Ehrlich-Schwoebel (ES) barriers at downward step edges and incorporation barriers at upwards step edges were also considered. In order to obtain more elaborate information for the behavior of atoms in the crystal surface, silicon and carbon atoms were treated as the minimal diffusing species. KMC simulation results showed that multiple-height steps were formed on the vicinal surface oriented toward [ 1 1 bar 00 ] or [ 11 2 bar 0 ] directions. And then the formation mechanism of the step bunching was analyzed. Finally, to further analyze the formation processes of step bunching, a one-dimensional BCF analytic model with ES and incorporation barriers was used, and then it was solved numerically. In the BCF model, the periodic boundary conditions (PBC) were applied, and the parameters were corresponded to those used in the KMC model. The evolution character of step bunching was consistent with the results obtained by KMC simulation.

  3. Quantification of the effects of generation volume, surface recombination velocity, and diffusion length on the electron-beam-induced current and its derivative Determination of diffusion lengths in the low micron and submicron ranges

    NASA Technical Reports Server (NTRS)

    Luke, K. L.; Von Roos, O.; Cheng, L.-J.

    1985-01-01

    A systematic and quantitative analysis is carried out to investigate the effects of the shape (point, cube, Gaussian) and size of the generation volume, the surface recombination velocity, and the diffusion length on the electron-beam-induced current (EBIC) and its derivative (DEIC). Thick homogeneously doped samples exhibiting diffusion lengths in the low micron and submicron range are considered. The results are presented in computed EBIC curves as a function of scanning distance and of the ratio true diffusion length/effective diffusion length. Shown using these curves are: (1) a simple and yet rigorous method for the determination of the true diffusion length, taking into consideration all of the factors cited above, (2) a method for the rapid determination of the surface recombination velocity, (3) the condition under which the source shape becomes insignificant, and (4) a new value for the lower limit of the diffusion length which can be determined by the EBOC technique.

  4. Symmetry breaking in a bulk-surface reaction-diffusion model for signalling networks

    NASA Astrophysics Data System (ADS)

    Rätz, Andreas; Röger, Matthias

    2014-08-01

    Signalling molecules play an important role for many cellular functions. We investigate here a general system of two membrane reaction-diffusion equations coupled to a diffusion equation inside the cell by a Robin-type boundary condition and a flux term in the membrane equations. A specific model of this form was recently proposed by the authors for the GTPase cycle in cells. We investigate here a putative role of diffusive instabilities in cell polarization. By a linearized stability analysis, we identify two different mechanisms. The first resembles a classical Turing instability for the membrane subsystem and requires (unrealistically) large differences in the lateral diffusion of activator and substrate. On the other hand, the second possibility is induced by the difference in cytosolic and lateral diffusion and appears much more realistic. We complement our theoretical analysis by numerical simulations that confirm the new stability mechanism and allow us to investigate the evolution beyond the regime where the linearization applies.

  5. Diffusion of hydrogen interstitials in the near-surface region of Pd(111) under the influence of surface coverage and external static electric fields

    SciTech Connect

    Blanco-Rey, M.; Tremblay, J. C.

    2015-04-21

    Past scanning tunneling microscopy (STM) experiments of H manipulation on Pd(111), at low temperature, have shown that it is possible to induce diffusion of surface species as well as of those deeply buried under the surface. Several questions remain open regarding the role of subsurface site occupancies. In the present work, the interaction potential of H atoms with Pd(111) under various H coverage conditions is determined by means of density functional theory calculations in order to provide an answer to two of these questions: (i) whether subsurface sites are the final locations for the H impurities that attempt to emerge from bulk regions, and (ii) whether penetration of the surface is a competing route of on-surface diffusion during depletion of surface H on densely covered Pd(111). We find that a high H coverage has the effect of blocking resurfacing of H atoms travelling from below, which would otherwise reach the surface fcc sites, but it hardly alters deeper diffusion energy barriers. Penetration is unlikely and restricted to high occupancies of hcp hollows. In agreement with experiments, the Pd lattice expands vertically as a consequence of H atoms being blocked at subsurface sites, and surface H enhances this expansion. STM tip effects are included in the calculations self-consistently as an external static electric field. The main contribution to the induced surface electric dipoles originates from the Pd substrate polarisability. We find that the electric field has a non-negligible effect on the H-Pd potential in the vicinity of the topmost Pd atomic layer, yet typical STM intensities of 1-2 VÅ{sup −1} are insufficient to invert the stabilities of the surface and subsurface equilibrium sites.

  6. Kinetics of mesa overlayer growth: Climbing of adatoms onto the mesa top

    SciTech Connect

    Han, Yong; Liu, Feng; Li, Shao-Chun; Jia, Jin-Feng; Xue, Qi-Kun; Lee, Byeong-Joo

    2008-01-17

    We have calculated the energy barriers for an adatom climbing up onto a Pb mesa top either over a facet-facet edge or through a facet-step joint, using a modified embedded atom method. We found that the second process is not only thermodynamically more favorable than the first one but also much faster with a diminishing barrier. Our results provide a plausible explanation for the experimentally observed intriguing growth behavior of a Pb mesa. The underlying mechanisms can be generally applicable to other systems.

  7. Density functional theory study of Fe, Co, and Ni adatoms and dimers adsorbed on graphene

    NASA Astrophysics Data System (ADS)

    Johll, Harman; Kang, Hway Chuan; Tok, Eng Soon

    2009-06-01

    Metal clusters have been investigated rather intensely for both fundamental and technological reasons. In this work we report the results of plane-wave density functional theory calculations of Fe, Co, and Ni adatoms and dimers adsorbed on graphene. We study both homonuclear and heteronuclear dimers, and the latter includes mixed dimers of Fe, Co, and Ni along with dimers of these elements with Pt. Our work is motivated by the fundamental interest in their configurational and magnetic properties. We calculated the adsorption site, the structure and relative stabilities of various adsorption configurations, the band structures, the atomic projected electronic density of states, and the magnetic moments of the adatoms and dimers. Contrary to previous work, our results show that adatoms bind weakly to graphene with binding energies ranging from 0.2 to 1.4 eV depending on the adsorption site and species. For both homonuclear and heteronuclear dimers the binding energies per atom are lower than the respective adatom cases, ranging from 0.1 to 0.5 eV per metal atom. The most strongly bound configurations for all the dimers studied are those with the dimer axis (nearly) perpendicular to the graphene plane and bound at the hole site. These configurations, which, to our knowledge, have not been considered in previous work, also turn out to have the largest enhancement of the magnetic moment at least for the atom farther from the graphene. The binding energies of these most strongly bound dimers are dependent on three factors, namely, the interconfigurational energy change in the dimer atom farther from graphene upon desorption, the charge transfer from the dimer to the graphene, and the adsorption site favored by the atom closer to the graphene sheet. The first factor is dominant for all the dimers studied here except for CoPt and NiPt. The relatively high electronegativity of Pt affects the character of the charge transfer from the dimer to graphene. In most of the dimers

  8. Compositionally modulated Fermi surfaces, structured diffuse scattering and ternary derivatives of 1T-TaS{sub 2}

    SciTech Connect

    Withers, Ray Leslie . E-mail: withers@rsc.anu.edu.au; Otero-Diaz, Carlos; Gomez-Herrero, Adrian; Landa-Canovas, A.R.; Prodan, Albert; Midden, Herman J.P. van; Noren, Lasse

    2005-10-15

    Ternary derivatives of 1T-TaS{sub 2} have been synthesized and the variation in the highly structured diffuse intensity distributions characteristic of such materials carefully monitored to investigate the effect that such substitution has upon the band structures and Fermi surfaces (FSs) of the materials. Removal of d electrons via the replacement of Ta ions with lower valent transition metal ions leads to a systematic increase in the radii of the characteristic structured diffuse intensity distribution. Extended Hueckel tight binding calculations of the FSs of the doped samples are carried out and used to predict possible nesting wave-vectors. The results are in reasonably good agreement with the radii of the experimentally observed diffuse intensity distributions. - Graphical abstract: Close to [001] zone axis EDP of 1T-Ta{sub 0.50}V{sub 0.375}Cr{sub 0.125}S{sub 2}.

  9. One-dimensional diffusion of Sr atoms on Sr/Si(111)-3 × 2 reconstruction surface

    NASA Astrophysics Data System (ADS)

    Du, Wenhan; Yang, Jingjing

    2016-11-01

    The electronic and geometric structures of the Sr/Si(111)-3 × 2 surface were investigated by scanning tunnelling microscopy and scanning tunnelling spectroscopy. The honeycomb-chain (HCC) model may be used to describe the reconstruction structure of the Sr/Si(111)-3 × 2 surface. Furthermore, one-dimensional (1D) concerted motion of Sr atom chains on the Sr/Si(111)-3 × 2 surface was observed at room temperature. Three reasons contribute to this 1D self-diffusion: low metal coverage of the Sr/Si(111)-3 × 2 reconstruction surface, weak interaction between the Sr and Si substrate, and surface vacancies and thermal fluctuation energy at room temperature. From this study, the origin of the long-existing blurred low energy electron diffraction pattern of alkali-earth metal induced-Si(111)3 × 2 surface was clarified, and the self-diffusion of metal atoms at room temperature also explains the common phase transition phenomenon on these reconstructed surfaces.

  10. Selectivity and self-diffusion of CO2 and H2 in a mixture on a graphite surface.

    PubMed

    Trinh, Thuat T; Vlugt, Thijs J H; Hägg, May-Britt; Bedeaux, Dick; Kjelstrup, Signe

    2013-01-01

    We performed classical molecular dynamics (MD) simulations to understand the mechanism of adsorption from a gas mixture of CO2 and H2 (mole fraction of CO2 = 0.30) and diffusion along a graphite surface, with the aim to help enrich industrial off-gases in CO2, separating out H2. The temperature of the system in the simulation covered typical industrial conditions for off-gas treatment (250-550 K). The interaction energy of single molecules CO2 or H2 on graphite surface was calculated with classical force fields (FFs) and with Density Functional Theory (DFT). The results were in good agreement. The binding energy of CO2 on graphite surface is three times larger than that of H2. At lower temperatures, the selectivity of CO2 over H2 is five times larger than at higher temperatures. The position of the dividing surface was used to explain how the adsorption varies with pore size. In the temperature range studied, the self-diffusion coefficient of CO2 is always smaller than of H2. The temperature variation of the selectivities and the self-diffusion coefficient imply that the carbon molecular sieve membrane can be used for gas enrichment of CO2.

  11. Selectivity and self-diffusion of CO2 and H2 in a mixture on a graphite surface

    PubMed Central

    Trinh, Thuat T.; Vlugt, Thijs J. H.; Hägg, May-Britt; Bedeaux, Dick; Kjelstrup, Signe

    2013-01-01

    We performed classical molecular dynamics (MD) simulations to understand the mechanism of adsorption from a gas mixture of CO2 and H2 (mole fraction of CO2 = 0.30) and diffusion along a graphite surface, with the aim to help enrich industrial off-gases in CO2, separating out H2. The temperature of the system in the simulation covered typical industrial conditions for off-gas treatment (250–550 K). The interaction energy of single molecules CO2 or H2 on graphite surface was calculated with classical force fields (FFs) and with Density Functional Theory (DFT). The results were in good agreement. The binding energy of CO2 on graphite surface is three times larger than that of H2. At lower temperatures, the selectivity of CO2 over H2 is five times larger than at higher temperatures. The position of the dividing surface was used to explain how the adsorption varies with pore size. In the temperature range studied, the self-diffusion coefficient of CO2 is always smaller than of H2. The temperature variation of the selectivities and the self-diffusion coefficient imply that the carbon molecular sieve membrane can be used for gas enrichment of CO2. PMID:24790965

  12. Molecular surface area based predictive models for the adsorption and diffusion of disperse dyes in polylactic acid matrix.

    PubMed

    Xu, Suxin; Chen, Jiangang; Wang, Bijia; Yang, Yiqi

    2015-11-15

    Two predictive models were presented for the adsorption affinities and diffusion coefficients of disperse dyes in polylactic acid matrix. Quantitative structure-sorption behavior relationship would not only provide insights into sorption process, but also enable rational engineering for desired properties. The thermodynamic and kinetic parameters for three disperse dyes were measured. The predictive model for adsorption affinity was based on two linear relationships derived by interpreting the experimental measurements with molecular structural parameters and compensation effect: ΔH° vs. dye size and ΔS° vs. ΔH°. Similarly, the predictive model for diffusion coefficient was based on two derived linear relationships: activation energy of diffusion vs. dye size and logarithm of pre-exponential factor vs. activation energy of diffusion. The only required parameters for both models are temperature and solvent accessible surface area of the dye molecule. These two predictive models were validated by testing the adsorption and diffusion properties of new disperse dyes. The models offer fairly good predictive ability. The linkage between structural parameter of disperse dyes and sorption behaviors might be generalized and extended to other similar polymer-penetrant systems.

  13. Electronic and spin transport properties of graphene nanoribbon mediated by metal adatoms: a study by the QUAMBO-NEGF approach

    SciTech Connect

    Zhang, G. P.; Liu, Xiaojie; Wang, C. Z.; Yao, Y. X.; Zhang, Jian; Ho, K. M.

    2013-02-12

    Structural and electronic properties, including deformation, magnetic moment, Mulliken population, bond order, as well as electronic transport properties, of zigzag graphene nanoribbon (ZGNR) with Co adatoms on hollow sites are investigated by quasi-atomic minimal basis orbits (QUAMBOs), a first-principles tight binding (TB) scheme based on density functional theory (DFT), combined with a non-equilibrium Green's function. For electronic transport, below the Fermi level the transmission is strongly suppressed and spin dependent as a result of magnetism by Co adatom adsorption, while above the Fermi level the transmission is slightly distorted and spin independent. Due to the local environment dependence of QUAMBOs–TB parameters, we construct QUAMBOs–TB parameters of ZGNR leads and ZGNR with Co adatoms on hollow center sites by a divide-and-conquer approach, and accurately reproduce the electronic transmission behavior. Our QUAMBO–NEGF method is a new and promising way of examining electronic transport in large-scale systems.

  14. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid

    DOE PAGES

    Woehl, Taylor J.; Prozorov, Tanya

    2015-08-20

    The mechanisms for nanoparticle self-assembly are often inferred from the morphology of the final nanostructures in terms of attractive and repulsive interparticle interactions. Understanding how nanoparticle building blocks are pieced together during self-assembly is a key missing component needed to unlock new strategies and mechanistic understanding of this process. Here we use real-time nanoscale kinetics derived from liquid cell transmission electron microscopy investigation of nanoparticle self-assembly to show that nanoparticle mobility dictates the pathway for self-assembly and final nanostructure morphology. We describe a new method for modulating nanoparticle diffusion in a liquid cell, which we employ to systematically investigate themore » effect of mobility on self-assembly of nanoparticles. We interpret the observed diffusion in terms of electrostatically induced surface diffusion resulting from nanoparticle hopping on the liquid cell window surface. Slow-moving nanoparticles self-assemble predominantly into linear 1D chains by sequential attachment of nanoparticles to existing chains, while highly mobile nanoparticles self-assemble into chains and branched structures by chain–chain attachments. Self-assembly kinetics are consistent with a diffusion-driven mechanism; we attribute the change in self-assembly pathway to the increased self-assembly rate of highly mobile nanoparticles. Furthermore, these results indicate that nanoparticle mobility can dictate the self-assembly mechanism and final nanostructure morphology in a manner similar to interparticle interactions.« less

  15. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid

    SciTech Connect

    Woehl, Taylor J.; Prozorov, Tanya

    2015-08-20

    The mechanisms for nanoparticle self-assembly are often inferred from the morphology of the final nanostructures in terms of attractive and repulsive interparticle interactions. Understanding how nanoparticle building blocks are pieced together during self-assembly is a key missing component needed to unlock new strategies and mechanistic understanding of this process. Here we use real-time nanoscale kinetics derived from liquid cell transmission electron microscopy investigation of nanoparticle self-assembly to show that nanoparticle mobility dictates the pathway for self-assembly and final nanostructure morphology. We describe a new method for modulating nanoparticle diffusion in a liquid cell, which we employ to systematically investigate the effect of mobility on self-assembly of nanoparticles. We interpret the observed diffusion in terms of electrostatically induced surface diffusion resulting from nanoparticle hopping on the liquid cell window surface. Slow-moving nanoparticles self-assemble predominantly into linear 1D chains by sequential attachment of nanoparticles to existing chains, while highly mobile nanoparticles self-assemble into chains and branched structures by chain–chain attachments. Self-assembly kinetics are consistent with a diffusion-driven mechanism; we attribute the change in self-assembly pathway to the increased self-assembly rate of highly mobile nanoparticles. Furthermore, these results indicate that nanoparticle mobility can dictate the self-assembly mechanism and final nanostructure morphology in a manner similar to interparticle interactions.

  16. Symmetry-protected coherent transport for diluted vacancies and adatoms in graphene

    NASA Astrophysics Data System (ADS)

    Ruiz-Tijerina, David A.; da Silva, Luis G. G. V. Dias

    2016-08-01

    We study the effects of a low concentration of adatoms or single vacancies in the linear-response transport properties of otherwise clean graphene. These impurities were treated as localized orbitals, and for each type two cases with distinct coupling symmetries were studied. For adatoms, we considered top- and hollow-site adsorbates (TOP and HS). For vacancies, we studied impurity formation by soft bond reconstruction (REC), as well as the more symmetric case of charge accumulation in unreconstructed vacancies (VAC). Our results indicate that the transport is determined by usual impurity scattering when the graphene-impurity coupling does not possess C3 v symmetry (TOP and REC). In contrast, VAC impurities decouple from the electronic states at the Dirac points, and yield no contribution to the resistivity for a sample in charge neutrality. Furthermore, the inversion-symmetry-conserving HS impurities also decouple from entire sets of momenta throughout the Brillouin zone, and do not contribute to the resistivity within a broad range of parameters. These behaviors are protected by C3 v and inversion symmetry, respectively, and persist for more general impurity models.

  17. Antiferromagnetic Spin Coupling between Rare Earth Adatoms and Iron Islands Probed by Spin-Polarized Tunneling.

    PubMed

    Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; de la Fuente, César; Arnaudas, José Ignacio

    2015-01-01

    High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths. PMID:26333417

  18. Antiferromagnetic Spin Coupling between Rare Earth Adatoms and Iron Islands Probed by Spin-Polarized Tunneling.

    PubMed

    Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; de la Fuente, César; Arnaudas, José Ignacio

    2015-09-03

    High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths.

  19. Defects in Silicene: Vacancy Clusters, Extended Line Defects, and Di-adatoms

    PubMed Central

    Li, Shuang; Wu, Yifeng; Tu, Yi; Wang, Yonghui; Jiang, Tong; Liu, Wei; Zhao, Yonghao

    2015-01-01

    Defects are almost inevitable during the fabrication process, and their existence strongly affects thermodynamic and (opto)electronic properties of two-dimensional materials. Very recent experiments have provided clear evidence for the presence of larger multi-vacancies in silicene, but their structure, stability, and formation mechanism remain largely unexplored. Here, we present a detailed theoretical study of silicene monolayer containing three types of defects: vacancy clusters, extended line defects (ELDs), and di-adatoms. First-principles calculations, along with ab initio molecular dynamics simulations, revealed the coalescence tendency of small defects and formation of highly stable vacancy clusters. The 5|8|5 ELD – the most favorable extended defect in both graphene and silicene sheets – is found to be easier to form in the latter case due to the mixed sp2/sp3 hybridization of silicon. In addition, hybrid functional calculations that contain part of the Hatree-Fock exchange energy demonstrated that the introduction of single and double silicon adatoms significantly enhances the stability of the system, and provides an effective approach on tuning the magnetic moment and band gap of silicene. PMID:25619941

  20. Antiferromagnetic Spin Coupling between Rare Earth Adatoms and Iron Islands Probed by Spin-Polarized Tunneling

    PubMed Central

    Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; Fuente, César de la; Arnaudas, José Ignacio

    2015-01-01

    High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths. PMID:26333417

  1. Defects in silicene: vacancy clusters, extended line defects, and Di-adatoms.

    PubMed

    Li, Shuang; Wu, Yifeng; Tu, Yi; Wang, Yonghui; Jiang, Tong; Liu, Wei; Zhao, Yonghao

    2015-01-26

    Defects are almost inevitable during the fabrication process, and their existence strongly affects thermodynamic and (opto)electronic properties of two-dimensional materials. Very recent experiments have provided clear evidence for the presence of larger multi-vacancies in silicene, but their structure, stability, and formation mechanism remain largely unexplored. Here, we present a detailed theoretical study of silicene monolayer containing three types of defects: vacancy clusters, extended line defects (ELDs), and di-adatoms. First-principles calculations, along with ab initio molecular dynamics simulations, revealed the coalescence tendency of small defects and formation of highly stable vacancy clusters. The 5|8|5 ELD - the most favorable extended defect in both graphene and silicene sheets - is found to be easier to form in the latter case due to the mixed sp(2)/sp(3) hybridization of silicon. In addition, hybrid functional calculations that contain part of the Hatree-Fock exchange energy demonstrated that the introduction of single and double silicon adatoms significantly enhances the stability of the system, and provides an effective approach on tuning the magnetic moment and band gap of silicene.

  2. A Parameterization-Based Numerical Method for Isotropic and Anisotropic Diffusion Smoothing on Non-Flat Surfaces

    PubMed Central

    Joshi, Anand A.; Shattuck, David W.; Thompson, Paul M.; Leahy, Richard M.

    2009-01-01

    Neuroimaging data, such as 3-D maps of cortical thickness or neural activation, can often be analyzed more informatively with respect to the cortical surface rather than the entire volume of the brain. Any cortical surface-based analysis should be carried out using computations in the intrinsic geometry of the surface rather than using the metric of the ambient 3-D space. We present parameterization-based numerical methods for performing isotropic and anisotropic filtering on triangulated surface geometries. In contrast to existing FEM-based methods for triangulated geometries, our approach accounts for the metric of the surface. In order to discretize and numerically compute the isotropic and anisotropic geometric operators, we first parameterize the surface using a p-harmonic mapping. We then use this parameterization as our computational domain and account for the surface metric while carrying out isotropic and anisotropic filtering. To validate our method, we compare our numerical results to the analytical expression for isotropic diffusion on a spherical surface. We apply these methods to smoothing of mean curvature maps on the cortical surface, a step commonly required for analysis of gyrification or for registering surface-based maps across subjects. PMID:19423447

  3. Investigation of Cu(In,Ga)Se{sub 2} polycrystalline growth: Ga diffusion and surface morphology evolution

    SciTech Connect

    Han, Jun-feng; Liao, Cheng; Jiang, Tao; Xie, Hua-mu; Zhao, Kui

    2014-01-01

    Graphical abstract: - Highlights: • Ga diffusion in CIGS absorption layer after annealing treatment. • Phenomenon of surface reconstruction after annealing treatment. • Understand selenium effect on CIGS annealing process. • Explain the kinetic of Ga diffusion and MoSe{sub 2} formation. - Abstract: We report a study of selenization and annealing treatment of copper indium gallium selenide (CIGS) film. Morphologies and composition of surface and cross section were observed by scanning electron microscopy (SEM) equipped with Energy Dispersive Spectroscopy (EDS). X-ray diffraction (XRD) and Raman spectra were used to investigate film structure. Depth profiles of element distributions were detected by Auger electron spectroscopy (AES). A double-layer structure was formed in the film by selenizing metallic precursor at 450 °C. Further annealing at 600 °C in pure argon enhanced gallium diffusion from the bottom to the top of the film, while additional selenium in the annealing had a negative effect. A MoSe{sub 2} layer was detected between CIGS and Mo layers with annealing in additional Se. The annealing treatment also significantly modified the film surface morphology. A large amount of triangular and polygon shaped islands were observed by SEM. That might be due to different nucleation kinetics for different crystal facets.

  4. Linear and nonlinear light scattering and absorption in free-electron nanoclusters with diffuse surface: General considerations and linear response

    SciTech Connect

    Fomichev, S. V.; Becker, W.

    2010-06-15

    Both linear and nonlinear scattering and absorption of a laser pulse by spherical nanoclusters with free electrons and with a diffuse surface are considered in the collisionless hydrodynamics approximation. The developed model of forced collective motion of electrons confined to a cluster permits one consistently to introduce into the theory all the sources of nonlinearity, as well as the inhomogeneity of the cluster near its boundary. Two different perturbation theories corresponding to different laser intensity ranges are developed in this context, and both cold metal clusters and hot laser-heated or -ionized clusters are considered within the same approach. In the present article, after developing the full nonlinear model, the linear response to the laser field of the free-electron cluster with diffuse surface is investigated in detail, especially the properties of the linear Mie resonance (width and position). Under certain conditions, depending on the various cluster parameters secondary resonances are found. The properties of resonance-enhanced third-order harmonic generation and nonlinear laser absorption and their dependence on the shape of the diffuse surface will be presented separately.

  5. Investigation of ultrafast photothermal surface expansion and diffusivity in GaAs via laser-induced dynamic gratings

    SciTech Connect

    Pennington, D.M.

    1992-04-01

    This thesis details the first direct ultrafast measurements of the dynamic thermal expansion of a surface and the temperature dependent surface thermal diffusivity using a two-color reflection transient grating technique. Studies were performed on p-type, n-type, and undoped GaAs(100) samples over a wide range of temperatures. By utilizing a 90 fs ultraviolet probe with visible excitation beams, the effects of interband saturation and carrier dynamics become negligible; thus lattice expansion due to heating and subsequent contraction caused by cooling provided the dominant influence on the probe. At room temperature a rise due to thermal expansion was observed, corresponding to a maximum net displacement of {approximately} 1 {Angstrom} at 32 ps. The diffracted signal was composed of two components, thermal expansion of the surface and heat flow away from the surface, thus allowing a determination of the rate of expansion as well as the surface thermal diffusivity, D{sub S}. By varying the fringe spacing of the grating, this technique has the potential to separate the signal contributions to the expansion of the lattice in the perpendicular and parallel directions. In the data presented here a large fringe spacing was used, thus the dominant contribution to the rising edge of the signal was expansion perpendicular to the surface. Comparison of he results with a straightforward thermal model yields good agreement over a range of temperatures (20--300{degrees}K). Values for D{sub S} in GaAs were measured and found to be in reasonable agreement with bulk values above 50{degrees}K. Below 50{degrees}K, D{sub S} were determined to be up to an order of magnitude slower than the bulk diffusivity due to increased phonon boundary scattering. The applicability and advantages of the TG technique for studying photothermal and photoacoustic phenomena are discussed.

  6. Application of diffuse discharges of atmospheric pressure formed by runaway electrons for modification of copper and stainless steel surface

    SciTech Connect

    Tarasenko, V. F. Shulepov, M. A.; Erofeev, M. V.

    2015-12-15

    The results of studies devoted to the influence of a runaway electron pre-ionized diffuse discharge (REP DD) formed in air and nitrogen at atmospheric pressure on the surface of copper and stainless steel are presented. Nanosecond high-voltage pulses were used to obtain REP DD in different gases at high pressures in a chamber with a flat anode and a cathode possessing a small radius of curvature. This mode of discharge was implemented owing to the generation of runaway electrons and X-rays. The conditions under which the surface of copper and stainless steel was cleaned from carbon and oxidized are described.

  7. Application of diffuse discharges of atmospheric pressure formed by runaway electrons for modification of copper and stainless steel surface

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Shulepov, M. A.; Erofeev, M. V.

    2015-12-01

    The results of studies devoted to the influence of a runaway electron pre-ionized diffuse discharge (REP DD) formed in air and nitrogen at atmospheric pressure on the surface of copper and stainless steel are presented. Nanosecond high-voltage pulses were used to obtain REP DD in different gases at high pressures in a chamber with a flat anode and a cathode possessing a small radius of curvature. This mode of discharge was implemented owing to the generation of runaway electrons and X-rays. The conditions under which the surface of copper and stainless steel was cleaned from carbon and oxidized are described.

  8. Measurement of the minority carrier diffusion length and edge surface-recombination velocity in InP

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Hakimzadeh, Roshanak

    1993-01-01

    A scanning electron microscope (SEM) was used to measure the electron (minority carrier) diffusion length (L(sub n)) and the edge surface-recombination velocity (V(sub s)) in zinc-doped Czochralski-grown InP wafers. Electron-beam-induced current (EBIC) profiles were obtained in specimens containing a Schottky barrier perpendicular to the scanned (edge) surface. An independent technique was used to measure V(sub s), and these values were used in a theoretical expression for normalized EBIC. A fit of the experimental data with this expression enabled us to determine L(sub n).

  9. MAGNETIC FIELD LINE RANDOM WALK FOR DISTURBED FLUX SURFACES: TRAPPING EFFECTS AND MULTIPLE ROUTES TO BOHM DIFFUSION

    SciTech Connect

    Ghilea, M. C.; Ruffolo, D.; Sonsrettee, W.; Seripienlert, A.; Chuychai, P.; Matthaeus, W. H. E-mail: scdjr@mahidol.ac.th E-mail: achara.seri@gmail.com E-mail: yswhm@bartol.udel.edu

    2011-11-01

    The magnetic field line random walk (FLRW) is important for the transport of energetic particles in many astrophysical situations. While all authors agree on the quasilinear diffusion of field lines for fluctuations that mainly vary parallel to a large-scale field, for the opposite case of fluctuations that mainly vary in the perpendicular directions, there has been an apparent conflict between concepts of Bohm diffusion and percolation/trapping effects. Here computer simulation and non-perturbative analytic techniques are used to re-examine the FLRW in magnetic turbulence with slab and two-dimensional (2D) components, in which 2D flux surfaces are disturbed by the slab fluctuations. Previous non-perturbative theories for D{sub perpendicular}, based on Corrsin's hypothesis, have identified a slab contribution with quasilinear behavior and a 2D contribution due to Bohm diffusion with diffusive decorrelation (DD), combined in a quadratic formula. Here we present analytic theories for other routes to Bohm diffusion, with random ballistic decorrelation (RBD) either due to the 2D component itself (for a weak slab contribution) or the total fluctuation field (for a strong slab contribution), combined in a direct sum with the slab contribution. Computer simulations confirm the applicability of RBD routes for weak or strong slab contributions, while the DD route applies for a moderate slab contribution. For a very low slab contribution, interesting trapping effects are found, including a depressed diffusion coefficient and subdiffusive behavior. Thus quasilinear, Bohm, and trapping behaviors are all found in the same system, together with an overall viewpoint to explain these behaviors.

  10. Real-time observation on surface diffusion and molecular orientations for phthalocyanine thin films at nanometer spacial resolution

    NASA Astrophysics Data System (ADS)

    Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Honda, Mitsunori; Hirao, Norie; Narita, Ayumi; Deng, Juzhi

    2009-08-01

    The morphology, electronic structure and ordering of the phthalocyanine thin films have been investigated at nanometer scale by photoelectron emission microscopy (PEEM) excited by polarized soft X-rays from synchrotron light source. The sample investigated was micropattern of silicon phthalocyanine deposited on gold surface. The incident angle dependences of the X-ray absorption near edge structure (XANES) spectra at the silicon K-edge revealed that the molecules of 5-layered films are lying nearly flat on the surface. Clear image of the micropattern was observed by PEEM, showing that the molecules are deposited via Volmer-Weber (VW) mode at room temperature. While, the surface diffusion was observed upon heating, and the micropattern image almost disappeared at 240 °C, representing the deposition mode changes from VW-mode to Frank-van der Merwe (FM)-one. On the basis of the photon-energy dependences of the brightnesses in the PEEM images, it was found that the molecules diffusing to the fresh gold surface rather stand-up at 240 °C. The observed changes in the molecular orientations at nanometer domains are discussed on the basis of the strengths of the molecule-molecule and molecule-surface interactions.

  11. Fourier transform profilometry for water waves: how to achieve clean water attenuation with diffusive reflection at the water surface?

    NASA Astrophysics Data System (ADS)

    Przadka, A.; Cabane, B.; Pagneux, V.; Maurel, A.; Petitjeans, P.

    2012-02-01

    We present a study of the damping of capillary-gravity waves in water containing pigments. The practical interest comes from a recent profilometry technique (FTP for Fourier Transform Profilometry) using fringe projection onto the liquid-free surface. This experimental technique requires diffusive reflection of light on the liquid surface, which is usually achieved by adding white pigments. It is shown that the use of most paint pigments causes a large enhancement of the damping of the waves. Indeed, these paints contain surfactants which are easily adsorbed at the air-water interface. The resulting surface film changes the attenuation properties because of the resonance-type damping between capillary-gravity waves and Marangoni waves. We study the physicochemical properties of coloring pigments, showing that particles of the anatase (TiO2) pigment make the water surface light diffusive while avoiding any surface film effects. The use of the chosen particles allows to perform space-time resolved FTP measurements on capillary-gravity waves, in a liquid with the damping properties of pure water.

  12. The Diffusion Eigenstates in a Periodic Porous Medium with a Strong Surface Absorption

    NASA Astrophysics Data System (ADS)

    Bergman, D. J.; Dunn, K. J.; Latorraca, G. A.

    1997-03-01

    The Bloch diffusion eigenstates of a periodic porous medium, but with an otherwise arbitrary microstructure, and with strong absorption at the pore/matrix interface, have been calculated by expanding them in a series of eigenfunctions of an unphysical porous medium which has the same microstructure but no interface absorption, and where the diffusion also takes place inside the matrix with a diffusion coefficient that approaches infinity. The results are especially simple in the case where the interface absorption coefficient is infinite and for the q=0 eigenstates, but are very accurate also for large but finite rho and arbitrary q-vectors. The results of such calculations are compared with previous calculations that were limited to the regime of low interface absorption.

  13. A Method for Studying Atomic Diffusion by STM Tip-Crash Induced Vacancy Island Coalescence

    NASA Astrophysics Data System (ADS)

    Lake, R. E.; Lange, A. P.; Ray, M. P.; Sosolik, C. E.

    2007-11-01

    The study of vacancy and adatom island motion on single crystal metals with the scanning tunneling microscope (STM) has explained many of the underlying atomic diffusion mechanisms responsible for movement of atoms on a surface. We present a new method for vacancy island creation at room temperature using a controlled mechanical tip-surface interaction. The method allows us to control the relative positions and initial sizes of vacancy islands with respect to one another and to surface defects. Complicated and closely spaced vacancy island configurations can also be engineered. This enhances our ability to collect statistics on the movement of the macro-scale vacancy islands and distinguish between mass transport channels. To demonstrate the technique, time series analysis of coalescence events on the surface of Ag(111) is presented. Diffusion coefficients of the Ag surface atoms obtained with this method are in general agreement with previous stochastic methods for creating vacancy islands such as low-dose sputtering [1]. [1] M. Eßer, K. Morgenstern, G. Rosenfeld, G. Comsa, Surf. Sci. 402-404, 341 (1998).

  14. Wood Surface Modification in Diffuse Coplanar Surface Barrier Discharge for Creating Water Repellent Films from N{sub 2}/HMDSO and N{sub 2}/HMDS Mixtures

    SciTech Connect

    Odraskova, M.; Szalay, Z.; Zahoranova, A.; Rahel, J.; Cernak, M.

    2008-03-19

    Diffuse Coplanar Surface Barrier Discharge was successfully tested for creating a water-repellent surface from HMDSO and HMDS compounds on samples of spruce wood (Picea abies, Karst). The best results were achieved when the treated sample was in continuous motion during the course of film deposition. Best hydrophobic coating was achieved for 29% of total gas flow through the HMDSO and HMDS liquid. The surface free energy of modified surface was 30 mJ/m{sup 2} for HMDSO and 24 mJ/m{sup 2} for HMDS mixtures. The 50 {mu}l water droplet required (180{+-}30) min to penetrate into the modified spruce in HMDSO mixture and (213{+-}30) min in HMDS mixture. This is more than 20 fold increase compared to the unmodified spruce. The chemical composition of deposited layer was analyzed by ATR-FTIR. The presence of Si-O-Si and Si(CH{sub 3}) functional groups was confirmed.

  15. Ordering of Self-Diffusion Barrier Energies on Pt(110)-1x2

    SciTech Connect

    Feibelman, Peter J.

    1999-06-01

    Bond-counting arguments, supported by ab-initio calculations, predict a lower barrier for "leapfrog" diffusion of Pt addimers on Pt(llO)-lx2 than for adatom dif- fusion or addimer dissociation. This conflicts with experiment, possibly signaling contaminant influence.

  16. Electronic and magnetic coupling between rare-earth adatoms and the Fe(001) surface

    SciTech Connect

    Carbone, C. ); Rochow, R. ); Braicovich, L. ); Jungblut, R. ); Kachel, T. ); Tillmann, D.; Kisker, E. )

    1990-02-15

    The spin-dependent electronic structure of monolayer coverages of rare-earth metals on Fe(001) has been studied by spin-resolved photoelectron spectroscopy with synchrotron radiation. The highly spin-polarized photoemission from the localized 4{ital f} levels of Gd, Tb, and Dy on Fe(001) reveals the antiparallel coupling between these heavy rare earths and the Fe spin moment. Exchange-split final-state multiplet terms of the 4{ital f} spectra of the heavy rare earths are explicitly distinguished by direct observation of opposite polarization. For 1 monolayer of the light rare-earth Nd on Fe(001) the rare-earth magnetic moment couples parallel to the Fe magnetic moment.

  17. Cluster adsorption on amorphous and crystalline surfaces - A molecular dynamics study of model Pt on Cu and model Pd on Pt

    NASA Technical Reports Server (NTRS)

    Garofalini, S. H.; Halicioglu, T.; Pound, G. M.

    1981-01-01

    Molecular dynamics was used to study the structure, dispersion and short-time behavior of ten-atom clusters adsorbed onto amorphous and crystalline substrates, in which the cluster atoms differed from the substrate atoms. Two adatom-substrate model systems were chosen; one, in which the interaction energy between adatom pairs was greater than that between substrate pairs, and the other, in which the reverse was true. At relatively low temperature ranges, increased dispersion of cluster atoms occurred: (a) on the amorphous substrate as compared to the FCC(100) surface, (b) with increasing reduced temperature, and (c) with adatom-substrate interaction energy stronger than adatom-adatom interaction. Two-dimensional clusters (rafts) on the FCC(100) surface displayed migration of edge atoms only, indicating a mechanism for the cluster rotation and shape changes found in experimental studies.

  18. Neurexin-neuroligin adhesions capture surface-diffusing AMPA receptors through PSD-95 scaffolds.

    PubMed

    Mondin, Magali; Labrousse, Virginie; Hosy, Eric; Heine, Martin; Tessier, Béatrice; Levet, Florian; Poujol, Christel; Blanchet, Christophe; Choquet, Daniel; Thoumine, Olivier

    2011-09-21

    The mechanisms governing the recruitment of functional glutamate receptors at nascent excitatory postsynapses following initial axon-dendrite contact remain unclear. We examined here the ability of neurexin/neuroligin adhesions to mobilize AMPA-type glutamate receptors (AMPARs) at postsynapses through a diffusion/trap process involving the scaffold molecule PSD-95. Using single nanoparticle tracking in primary rat and mouse hippocampal neurons overexpressing or lacking neuroligin-1 (Nlg1), a striking inverse correlation was found between AMPAR diffusion and Nlg1 expression level. The use of Nlg1 mutants and inhibitory RNAs against PSD-95 demonstrated that this effect depended on intact Nlg1/PSD-95 interactions. Furthermore, functional AMPARs were recruited within 1 h at nascent Nlg1/PSD-95 clusters assembled by neurexin-1β multimers, a process requiring AMPAR membrane diffusion. Triggering novel neurexin/neuroligin adhesions also caused a depletion of PSD-95 from native synapses and a drop in AMPAR miniature EPSCs, indicating a competitive mechanism. Finally, both AMPAR level at synapses and AMPAR-dependent synaptic transmission were diminished in hippocampal slices from newborn Nlg1 knock-out mice, confirming an important role of Nlg1 in driving AMPARs to nascent synapses. Together, these data reveal a mechanism by which membrane-diffusing AMPARs can be rapidly trapped at PSD-95 scaffolds assembled at nascent neurexin/neuroligin adhesions, in competition with existing synapses.

  19. Atomic-scale mechanisms for diffusion of impurities in transition-metal nitrides

    SciTech Connect

    Tsetseris, Leonidas; Logothetidis, S.; Pantelides, Sokrates T

    2010-03-01

    We use results from first-principles calculations based on density-functional theory to evaluate the performance of ZrN, HfN, and TiN as diffusion barrier materials. We examine primarily migration of Cu impurities through the bulk or through inter-grain voids of nitride films and we elucidate the conditions that favor moderate diffusion in the former case and very rapid migration in the latter. Migration activation energies for Cu interstitials in the bulk of the materials lie in the range of 0.9-1.4 eV, while the corresponding values for surface diffusion of Cu adatoms vary between 0.1 and 0.55 eV. Based on the agreement between the calculated activation energies and available measured values we resolve previous conflicting suggestions that were used to interpret various experimental data. Overall, our findings highlight the role of native point defects, impurities, and film texture on the performance of nitride diffusion barrier materials. (C) 2009 Elsevier B.V. All rights reserved.

  20. Diffusion-Induced Hydrophilic Conversion of Polydimethylsiloxane/Block-Type Phospholipid Polymer Hybrid Substrate for Temporal Cell-Adhesive Surface.

    PubMed

    Seo, Ji-Hun; Ishihara, Kazuhiko

    2016-08-24

    In this study, diffusion-induced hydrophobic-hydrophilic conversion of the surface of the cross-linked polydimethylsiloxane (PDMS) substrate was realized by employing a simple swelling-deswelling process of PDMS substrate in a block-type polymer solution with the aim of development of a temporal cell-adhesive substrate. The ABA block-type polymer composed of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) segment and PDMS segment with over 70% of dimethylsiloxane unit composition could be successfully incorporated in the PDMS substrate during the swelling-deswelling process to prepare the PDMS/phospholipid block copolymer hybrid substrates. During the aging process of the PDMS substrate for 4 days in aqueous medium, its surface property changed gradually from hydrophobic to hydrophilic. X-ray photoelectron spectroscopy and atomic force microscopy data provided strong evidence that the time-dependent hydrophilic conversion of the PDMS/block-type phospholipid polymer hybrid substrate was induced by the diffusion of the hydrophilic PMPC segment in the block-type polymer to be tethered on the substrate. During the hydrophilic conversion process, surface-adsorbed fibronectin was gradually desorbed from the substrate surface, and this resulted in successful detachment of two-dimensional connected cell crowds. PMID:27488537

  1. Ferromagnetism, adatom effect, and edge reconstruction induced by Klein boundary in graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Bao, Zhi-qiang; Shi, Jun-jie; Zhang, Min

    2013-05-01

    The electronic structure and magnetic characteristics of Klein graphene nanoribbons (KGNRs), as observed by Suenaga and Koshino [K. Suenaga and M. Koshino, Nature 468, 1088 (2010)], are investigated using first-principles calculations. We find three new characteristics induced by the Klein boundary. First, the localized edge states in the KGNRs have a ferromagnetic coupling rather than the antiferromagnetic coupling of the zigzag graphene nanoribbons (ZGNRs). Lieb's theorem is no longer applicable in the KGNRs. Second, the marginal single carbon adatom of the ZGNRs can destroy the edge states nearby. The edge states can recover if the length of the zigzag chains is equal to or greater than five times that of the lattice constant. Finally, we show that the pentagon-heptagon edge can be induced from the Klein boundary.

  2. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden–Popper phases?

    DOE PAGES

    Tomkiewicz, Alex C.; Tamimi, Mazin A.; Huq, Ashfia; McIntosh, Steven

    2015-03-02

    There is a possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides; it is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of threemore » Ruddlesden-Popper phases, general form An-1A2'BnO3n+1, An-1A2'BnX3n+1; LaSrCo0.5Fe0.5O4-δ (n = 1), La0.3Sr2.7CoFeO7-δ (n = 2) and LaSr3Co1.5Fe1.5O10-δ (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. Furthermore this is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. This paper conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.« less

  3. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden-Popper phases?

    PubMed

    Tomkiewicz, Alex C; Tamimi, Mazin A; Huq, Ashfia; McIntosh, Steven

    2015-01-01

    The possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of three Ruddlesden-Popper phases, general form A(n-1)A(2)'B(n)O(3n+1), A(n-1)A(2)'B(n)X(3n+1); LaSrCo(0.5)Fe(0.5)O(4-δ) (n = 1), La(0.3)Sr(2.7)CoFeO(7-δ) (n = 2) and LaSr3Co(1.5)Fe(1.5)O(10-δ) (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. This is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. We conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.

  4. The development of conductive surfaces by a diffusion-limited in situ polymerization of pyrrole in solfonated polystyrene ionomers

    SciTech Connect

    De Jesus, M.C.; Weiss, R.A.

    1996-10-01

    Surface conductive polymer was developed by in situ oxidative polymerization of pyrrole in lightly sulfonated polystyrene ionomers (SPS) using a chemical oxidative process. The polymerization only occurred where the monomer and FeCl{sub 3} oxidizing agent could mutually diffuse which resulted in a reaction confined to a surface layer of the host polymer. The amount of PPy incorporated during the polymerization as well as the surface conductivity attained were function of the sulfonation level. The mechanical properties of the composite were significantly improved above Tg, which is believed to be a combination of two effects: formation of a physical network due to intermolecular interactions between the two polymers and mechanical reinforcement due to the rigidity of the PPy.

  5. Tailored formation of N-doped nanoarchitectures by diffusion-controlled on-surface (cyclo)dehydrogenation of heteroaromatics.

    PubMed

    Pinardi, Anna Lisa; Otero-Irurueta, Gonzalo; Palacio, Irene; Martinez, Jose Ignacio; Sanchez-Sanchez, Carlos; Tello, Marta; Rogero, Celia; Cossaro, Albano; Preobrajenski, Alexei; Gómez-Lor, Berta; Jancarik, Andrej; Stará, Irena G; Starý, Ivo; Lopez, M Francisca; Méndez, Javier; Martin-Gago, Jose Angel

    2013-04-23

    Surface-assisted cyclodehydrogenation and dehydrogenative polymerization of polycyclic (hetero)aromatic hydrocarbons (PAH) are among the most important strategies for bottom-up assembly of new nanostructures from their molecular building blocks. Although diverse compounds have been formed in recent years using this methodology, a limited knowledge on the molecular machinery operating at the nanoscale has prevented a rational control of the reaction outcome. We show that the strength of the PAH-substrate interaction rules the competitive reaction pathways (cyclodehydrogenation versus dehydrogenative polymerization). By controlling the diffusion of N-heteroaromatic precursors, the on-surface dehydrogenation can lead to monomolecular triazafullerenes and diazahexabenzocoronenes (N-doped nanographene), to N-doped oligomeric or polymeric networks, or to carbonaceous monolayers. Governing the on-surface dehydrogenation process is a step forward toward the tailored fabrication of molecular 2D nanoarchitectures distinct from graphene and exhibiting new properties of fundamental and technological interest. PMID:23506342

  6. Increased accuracy of ligand sensing by receptor diffusion on cell surface

    NASA Astrophysics Data System (ADS)

    Aquino, Gerardo; Endres, Robert G.

    2010-10-01

    The physical limit with which a cell senses external ligand concentration corresponds to the perfect absorber, where all ligand particles are absorbed and overcounting of same ligand particles does not occur. Here, we analyze how the lateral diffusion of receptors on the cell membrane affects the accuracy of sensing ligand concentration. Specifically, we connect our modeling to neurotransmission in neural synapses where the diffusion of glutamate receptors is already known to refresh synaptic connections. We find that receptor diffusion indeed increases the accuracy of sensing for both the glutamate α -Amino-3-hydroxy-5-Methyl-4-isoxazolePropionic Acid (AMPA) and N -Methyl-D-aspartic Acid (NMDA) receptor, although the NMDA receptor is overall much noisier. We propose that the difference in accuracy of sensing of the two receptors can be linked to their different roles in neurotransmission. Specifically, the high accuracy in sensing glutamate is essential for the AMPA receptor to start membrane depolarization, while the NMDA receptor is believed to work in a second stage as a coincidence detector, involved in long-term potentiation and memory.

  7. Convection, diffusion and reaction in a surface-based biosensor: modeling of cooperativity and binding site competition on the surface and in the hydrogel.

    PubMed

    Lebedev, Konstantin; Mafé, Salvador; Stroeve, Pieter

    2006-04-15

    We study theoretically the transport and kinetic processes underlying the operation of a biosensor (particularly the surface plasmon sensor "Biacore") used to study the surface binding kinetics of biomolecules in solution to immobilized receptors. Unlike previous studies, we concentrate mainly on the modeling of system-specific phenomena rather than on the influence of mass transport limitations on the intrinsic kinetic rate constants determined from binding data. In the first problem, the case of two-site binding where each receptor unit on the surface can accommodate two analyte molecules on two different sites is considered. One analyte molecule always binds first to a specific site. Subsequently, the second analyte molecule can bind to the adjacent unoccupied site. In the second problem, two different analytes compete for one binding site on the same surface receptor. Finally, the third problem considers the case of positive cooperativity among bound molecules in the hydrogel using a simple mean-field approach. The transport in both the flow channel and the hydrogel phases of the biosensor is taken into account in this case (with few exceptions, most previous studies assume a simpler model in which the hydrogel is treated as a planar surface with the receptors). We consider simultaneously diffusion and convection through the flow channel together with diffusion and cooperativity binding on the surface and in the hydrogel. In each case, typical results for the concentration contours of the free and bound molecules in the flow channel and hydrogel regions are presented together with the time-dependent association/dissociation curves and reaction rates. For binding site competition, the analysis predicts overshoot phenomena. PMID:16359694

  8. Convection, diffusion and reaction in a surface-based biosensor: modeling of cooperativity and binding site competition on the surface and in the hydrogel.

    PubMed

    Lebedev, Konstantin; Mafé, Salvador; Stroeve, Pieter

    2006-04-15

    We study theoretically the transport and kinetic processes underlying the operation of a biosensor (particularly the surface plasmon sensor "Biacore") used to study the surface binding kinetics of biomolecules in solution to immobilized receptors. Unlike previous studies, we concentrate mainly on the modeling of system-specific phenomena rather than on the influence of mass transport limitations on the intrinsic kinetic rate constants determined from binding data. In the first problem, the case of two-site binding where each receptor unit on the surface can accommodate two analyte molecules on two different sites is considered. One analyte molecule always binds first to a specific site. Subsequently, the second analyte molecule can bind to the adjacent unoccupied site. In the second problem, two different analytes compete for one binding site on the same surface receptor. Finally, the third problem considers the case of positive cooperativity among bound molecules in the hydrogel using a simple mean-field approach. The transport in both the flow channel and the hydrogel phases of the biosensor is taken into account in this case (with few exceptions, most previous studies assume a simpler model in which the hydrogel is treated as a planar surface with the receptors). We consider simultaneously diffusion and convection through the flow channel together with diffusion and cooperativity binding on the surface and in the hydrogel. In each case, typical results for the concentration contours of the free and bound molecules in the flow channel and hydrogel regions are presented together with the time-dependent association/dissociation curves and reaction rates. For binding site competition, the analysis predicts overshoot phenomena.

  9. Surface characterization and biological response of carbon-coated oxygen-diffused titanium having different topographical surfaces.

    PubMed

    Yamamoto, Osamu; Alvarez, Kelly; Kashiwaya, Yuki; Fukuda, Masayuki

    2011-04-01

    The materials (C-ODTi) with different topographical surfaces that possess interstitial oxygen atoms into the host titanium lattice and an upper nanometric surface layer of anatase-TiO(2) covered by a carbon thin layer were fabricated in this study. The carbon thin layer on the surface of C-ODTi was composed of amorphous carbon and nano-graphite crystals. In vitro tests, using human bone marrow-derived mesenchymal cells (hBMCs), were performed to check cytotoxicity, examining in particular cell morphology, cell proliferation, cell differentiation, and mineralization capability. After 10 days of culture a higher degree of cell viability was observed on the surface of C-ODTi with an abraded surface. We also observed that hBMCs cultured in direct contact with C-ODTi maintained their capability to express alkaline phosphatase activity (ALP) and formed mineralized nodules similar to the control cultures. Our results demonstrate that the carbon layer coating on the surface of C-ODTi possess better biological response than commercially pure titanium (cp Ti), which was evidenced by the higher proliferation rates of osteoblasts, higher osteo-differentiation and a higher mineralization capability.

  10. Application of Monte Carlo techniques to transient thermal modeling of cavity radiometers having diffuse-specular surfaces

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Eskin, L. D.

    1981-01-01

    A viable alternative to the net exchange method of radiative analysis which is equally applicable to diffuse and diffuse-specular enclosures is presented. It is particularly more advantageous to use than the net exchange method in the case of a transient thermal analysis involving conduction and storage of energy as well as radiative exchange. A new quantity, called the distribution factor is defined which replaces the angle factor and the configuration factor. Once obtained, the array of distribution factors for an ensemble of surface elements which define an enclosure permits the instantaneous net radiative heat fluxes to all of the surfaces to be computed directly in terms of the known surface temperatures at that instant. The formulation of the thermal model is described, as is the determination of distribution factors by application of a Monte Carlo analysis. The results show that when fewer than 10,000 packets are emitted, an unsatisfactory approximation for the distribution factors is obtained, but that 10,000 packets is sufficient.

  11. Graphene chemical vapor deposition at very low pressure: The impact of substrate surface self-diffusion in domain shape

    SciTech Connect

    Cunha, T. H. R.; Ek-Weis, J.; Lacerda, R. G.; Ferlauto, A. S.

    2014-08-18

    The initial stages of graphene chemical vapor deposition at very low pressures (<10{sup −5 }Torr) were investigated. The growth of large graphene domains (∼up to 100 μm) at very high rates (up to 3 μm{sup 2} s{sup −1}) has been achieved in a cold-wall reactor using a liquid carbon precursor. For high temperature growth (>900 °C), graphene grain shape and symmetry were found to depend on the underlying symmetry of the Cu crystal, whereas for lower temperatures (<900 °C), mostly rounded grains are observed. The temperature dependence of graphene nucleation density was determined, displaying two thermally activated regimes, with activation energy values of 6 ± 1 eV for temperatures ranging from 900 °C to 960 °C and 9 ± 1 eV for temperatures above 960 °C. The comparison of such dependence with the temperature dependence of Cu surface self-diffusion suggests that graphene growth at high temperatures and low pressures is strongly influenced by copper surface rearrangement. We propose a model that incorporates Cu surface self-diffusion as an essential process to explain the orientation correlation between graphene and Cu crystals, and which can clarify the difference generally observed between graphene domain shapes in atmospheric-pressure and low-pressure chemical vapor deposition.

  12. Lateral diffusion and retrograde movements of individual cell surface components on single motile cells observed with Nanovid microscopy

    PubMed Central

    1991-01-01

    A recently introduced extension of video-enhanced light microscopy, called Nanovid microscopy, documents the dynamic reorganization of individual cell surface components on living cells. 40-microns colloidal gold probes coupled to different types of poly-L-lysine label negative cell surface components of PTK2 cells. Evidence is provided that they bind to negative sialic acid residues of glycoproteins, probably through nonspecific electrostatic interactions. The gold probes, coupled to short poly-L-lysine molecules (4 kD) displayed Brownian motion, with a diffusion coefficient in the range 0.1-0.2 micron2/s. A diffusion coefficient in the 0.1 micron2/s range was also observed with 40-nm gold probes coupled to an antibody against the lipid-linked Thy-1 antigen on 3T3 fibroblasts. Diffusion of these probes is largely confined to apparent microdomains of 1-2 microns in size. On the other hand, the gold probes, coupled to long poly-L-lysine molecules (240 kD) molecules and bound to the leading lamella, were driven rearward, toward the boundary between lamelloplasm and perinuclear cytoplasm at a velocity of 0.5-1 micron/min by a directed ATP-dependent mechanism. This uniform motion was inhibited by cytochalasin, suggesting actin microfilament involvement. A similar behavior on MO cells was observed when the antibody-labeled gold served as a marker for the PGP-1 (GP-80) antigen. These results show that Nanovid microscopy, offering the possibility to observe the motion of individual specific cell surface components, provides a new and powerful tool to study the dynamic reorganization of the cell membrane during locomotion and in other biological contexts as well. PMID:1670778

  13. Morphological evolution of tilted grain-boundary thermal grooving by surface diffusion in bicrystal thin solid films having strong anisotropic surface Gibbs free energies

    NASA Astrophysics Data System (ADS)

    Ogurtani, Tarik Omer; Akyildiz, Oncu; Oren, Ersin Emre

    2008-07-01

    The variational extremum method is further extended to give the full coverage for the inclined (tilted) grain-boundary (GB) configuration with respect to the sidewalls of a bicrystal thin solid film having strong anisotropic specific surface Gibbs free energy associated with the singular directions (faceting). A set of critical computer simulation experiments is performed on the asymmetrically disposed (inclination) bicrystal thin metallic films having four- and sixfold anisotropic specific surface Gibbs free energies to demonstrate the various GB-groove root topologies. Special computer runs are also designed using the realistic structural and physicochemical properties to simulate the thermal grooving profile of polycrystalline alumina (Lucalox™), and tungsten, which undergone heat treatments for 90 and 120 min at 1650 and 1350 °C in air and vacuum (10-4 Pa), respectively. The simulation profiles almost perfectly agree with the published experimental atomic force microscopy photographs after linewidth matching procedures, and the simulations produced very accurate mean surface (mass) diffusivities of alumina and tungsten given by DAl2O3≅6.45×10-12 m2/s and DW≅5.2×10-13 m2/s, respectively. These findings are in good agreement with the diffusivities reported in the literature.

  14. Surface-based reconstruction and diffusion MRI in the assessment of gray and white matter damage in multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Caffini, Matteo; Bergsland, Niels; LaganÃ, Marcella; Tavazzi, Eleonora; Tortorella, Paola; Rovaris, Marco; Baselli, Giuseppe

    2014-03-01

    Despite advances in the application of nonconventional MRI techniques in furthering the understanding of multiple sclerosis pathogenic mechanisms, there are still many unanswered questions, such as the relationship between gray and white matter damage. We applied a combination of advanced surface-based reconstruction and diffusion tensor imaging techniques to address this issue. We found significant relationships between white matter tract integrity indices and corresponding cortical structures. Our results suggest a direct link between damage in white and gray matter and contribute to the notion of gray matter loss relating to clinical disability.

  15. Primary diffuse leptomeningeal gliomatosis: unusual MRI with non-enhancing nodular lesions on the cerebellar surface and spinal leptomeningeal enhancement

    PubMed Central

    Kastenbauer, S; Danek, A; Klein, W; Yousry, T; Bise, K; Reifenberger, G; Pfister, H

    2000-01-01

    A 28 year old man presented with a 1 month history of symptoms of intracranial hypertension. Examination showed bilateral papilloedema and meningeal signs. Magnetic resonance imaging showed nodular lesions on the cerebellar and pontine surface and thickening of the thoracic spinal leptomeninges. Throughout the course of the disease, contrast enhancement was detected in the spinal leptomeninges but not intracranially. Primary diffuse leptomeningeal gliomatosis (PDLG) was diagnosed by biopsy and later confirmed on necropsy. The present case is remarkable for the nodular superficial cerebellar lesions and the absence of intracranial contrast enhancement of the leptomeninges.

 PMID:10945815

  16. Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing

    SciTech Connect

    Chi, Miaofang; Wang, Chao; Lei, Yinkai; Wang, Guofeng; Li, Dongguo; More, Karren L.; Lupini, Andrew; Allard, Lawrence F.; Markovic, Nenad M.; Stamenkovic, Vojislav R.

    2015-11-18

    The catalytic performance of nanoparticles is primarily determined by the precise nature of the surface and near-surface atomic configurations, which can be tailored by post-synthesis annealing effectively and straightforwardly. Understanding the complete dynamic response of surface structure and chemistry to thermal treatments at the atomic scale is imperative for the rational design of catalyst nanoparticles. Here, by tracking the same individual Pt3Co nanoparticles during in situ annealing in a scanning transmission electron microscope, we directly discern five distinct stages of surface elemental rearrangements in Pt3Co nanoparticles at the atomic scale: initial random (alloy) elemental distribution; surface platinum-skin-layer formation; nucleation of structurally ordered domains; ordered framework development and, finally, initiation of amorphization. Furthermore, a comprehensive interplay among phase evolution, surface faceting and elemental inter-diffusion is revealed, and supported by atomistic simulations. Furthermore, this work may pave the way towards designing catalysts through post-synthesis annealing for optimized catalytic performance.

  17. Passivation of phosphorus diffused silicon surfaces with Al{sub 2}O{sub 3}: Influence of surface doping concentration and thermal activation treatments

    SciTech Connect

    Richter, Armin Benick, Jan; Kimmerle, Achim; Hermle, Martin; Glunz, Stefan W.

    2014-12-28

    Thin layers of Al{sub 2}O{sub 3} are well known for the excellent passivation of p-type c-Si surfaces including highly doped p{sup +} emitters, due to a high density of fixed negative charges. Recent results indicate that Al{sub 2}O{sub 3} can also provide a good passivation of certain phosphorus-diffused n{sup +} c-Si surfaces. In this work, we studied the recombination at Al{sub 2}O{sub 3} passivated n{sup +} surfaces theoretically with device simulations and experimentally for Al{sub 2}O{sub 3} deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal due to depletion or weak inversion of the charge carriers at the c-Si/Al{sub 2}O{sub 3} interface. This pronounced maximum was also observed experimentally for n{sup +} surfaces passivated either with Al{sub 2}O{sub 3} single layers or stacks of Al{sub 2}O{sub 3} capped by SiN{sub x}, when activated with a low temperature anneal (425 °C). In contrast, for Al{sub 2}O{sub 3}/SiN{sub x} stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n{sup +} diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al{sub 2}O{sub 3}/SiN{sub x} stacks can provide not only excellent passivation on p{sup +} surfaces but also on n{sup +} surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.

  18. STM-mediated atom motion: a Co atom and mixed CoCun chains on a Cu(111) surface

    NASA Astrophysics Data System (ADS)

    Huang, Renzhong; Sun, Yusuning; Du, Cuicui; Gao, Tianfu; Wu, Yuxi; Stepanyuk, Valeris

    2013-10-01

    Performing atomic scale simulations, we study the effect of the scanning tunneling microscopy tip on atom motion on a metal surface at zero bias voltage. We concentrate on a Co atom and mixed CoCu n ( n ⩽ 68) chains on a Cu(111) surface. It is revealed that the atom motion can be tuned by adjusting the tip-substrate distance. The change in the potential landscape induced by the tip is found to depend on the tip height. In the presence of the tip, the Co atom can freely jump from the fcc site to the hcp site or vice versa when putting the tip above the adatom at a certain height. For the mixed CoCu n chains on the Cu(111) surface, the diffusion barrier of the end Co atom from the fcc site to the nearby hcp site increases with the increasing chain length and reaches the limit when the chain length is beyond CoCu7 without the tip. Especially, the short chains can perform a collective motion with the help of the tip. The importance of the relaxation induced by the tip-adatom interaction is demonstrated.

  19. Development of Surfaces Optically Suitable for Flat Solar Panels. [using a reflectometer which separately evaluates spectral and diffuse reflectivities of surfaces

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.

  20. Optical luminescence studies of diffusion times at the potassium ethyl xanthate adsorption layer on the surface of sphalerite minerals

    NASA Astrophysics Data System (ADS)

    Todoran, R.; Todoran, D.; Anitas, E. M.; Szakács, Zs

    2016-08-01

    We propose reflectance measurements as a method for the evaluation of the kinetics of adsorption processes, to compute the diffusion times of the adsorption products at the thin layers formed at the sphalerite natural mineral-potassium ethyl xanthate solution interface. The method is based on the intensity measurement of the reflected monochromatic radiation obtained from the mineral-xanthate thin layer as a function of time. These determinations were made at the thin layer formed between the sphalerite or activated sphalerite natural minerals with potassium ethyl xanthate, for different solutions concentrations and pH values at constant temperature. Diffusion times of desorbed molecular species into the liquid bring important information about the global kinetics of the ions in this phase during adsorption processes at interfaces. Analysing the time dependence of this parameter one concluded on the diffusion properties of the xanthate molecule in the solution depending on its concentration and pH, knowing that at the initial time these molecules had a uniform spread. This method enabled us to determine that, in time interval of approximately 35 minutes to achieve dynamic equilibrium in the formation of the interface layer, one had three different kinetic behaviours of our systems. In the first 5-8 min one had highly adsorbent character, the state of equilibrium is followed by low adsorbent properties. Gaining information on the adsorption kinetics in the case of xanthate on mineral surface leads to the optimization of the industrial froth flotation process.

  1. Photoluminescence studies of organic phosphor coated diffusing surface using blue inorganic light-emitting diode as excitation source

    NASA Astrophysics Data System (ADS)

    Singh, Gyanendra; Singh Mehta, Dalip

    2013-02-01

    We report the studies on photoluminescence (PL) of organic phosphor coated on a diffusing surface using a blue inorganic light-emitting diode (LED) array as an excitation source. The organic phosphor composite coated diffuser was used to scatter the directional blue light from the LED array. Some of the blue light is absorbed by the organic phosphor composite and the phosphor molecules are excited and re-emit light at longer wavelengths due to the PL process. The output light consists of scattered blue light plus phosphor generated broadband yellow light, thus making white light. The diffuser was made up of a plastic substrate coated with an organic composite of small molecule fluorescent material zinc(II)bis(8-hydroxyquinoline) (Znq2) doped with different percentages of electro-phosphorescent metal complex iridium(III)bis(2-methyldibenzo-[f, h] quinoxaline) (acetylacetonate) ([Ir(MDQ)2(acac)]). By means of changing the concentration and the thickness of the phosphor composite material the colour coordinates of white light were achieved. The CIE coordinates and correlated colour temperature were calculated for various thicknesses and phosphor composite concentrations and the results are reported.

  2. Measurement of surface effects on the rotational diffusion of a colloidal particle.

    PubMed

    Lobo, Sebastian; Escauriaza, Cristian; Celedon, Alfredo

    2011-03-15

    A growing number of nanotechnologies involve rotating particles. Because the particles are normally close to a solid surface, hydrodynamic interaction may affect particle rotation. Here, we track probes composed of two particles tethered to a solid surface by a DNA molecule to measure for the first time the effect of a surface on the rotational viscous drag. We use a model that superimposes solutions of the Stokes equation in the presence of a wall to confirm and interpret our measurements. We show that the hydrodynamic interaction between the surface and the probe increases the rotational viscous drag and that the effect strongly depends on the geometry of the probe.

  3. Investigation of the electrochemically active surface area and lithium diffusion in graphite anodes by a novel OsO4 staining method

    NASA Astrophysics Data System (ADS)

    Pfaffmann, Lukas; Birkenmaier, Claudia; Müller, Marcus; Bauer, Werner; Mitsch, Tim; Feinauer, Julian; Krämer, Yvonne; Scheiba, Frieder; Hintennach, Andreas; Schleid, Thomas; Schmidt, Volker; Ehrenberg, Helmut

    2016-03-01

    Negative electrodes of lithium-ion batteries generally consist of graphite-based active materials. In order to realize batteries with a high current density and therefore accelerated charging processes, the intercalation of lithium and the diffusion processes of these carbonaceous materials must be understood. In this paper, we visualized the electrochemical active surface area for three different anode materials using a novel OsO4 staining method in combination with scanning electron microscopy techniques. The diffusion behavior of these three anode materials is investigated by potentiostatic intermittent titration technique measurements. From those we determine the diffusion coefficient with and without consideration of the electrochemical active surface area.

  4. Confining barriers for surface state electrons tailored by monatomic Fe rows on vicinal Au111 surfaces.

    PubMed

    Shiraki, Susumu; Fujisawa, Hideki; Nantoh, Masashi; Kawai, Maki

    2004-03-01

    We fabricated monatomic Fe wires on vicinal Au(111) surfaces and found that decoration of step edges with Fe adatoms has a significant influence on the behavior of surface state electrons confined between regularly arranged steps. On a surface with Fe monatomic rows, angle-resolved photoemission spectra measured in the direction perpendicular to the steps shows parabolic dispersion, in contrast to one-dimensional quantum-well levels observed on a clean surface. Simple analysis using a one-dimensional Kronig-Penney model reveals potential barrier reduction from 20 to 4.6 eV A, suggesting an attractive nature of the Fe adatoms as scatterers.

  5. Tau Interconverts Between Diffusive and Stable Populations on the Microtubule Surface in an Isoform and Lattice Specific Manner

    PubMed Central

    McVicker, Derrick P.; Hoeprich, Gregory J.; Thompson, Andrew R.; Berger, Christopher L.

    2014-01-01

    It has been demonstrated that Tau exists on the microtubule lattice in both diffusing and static populations, but how this may relate to Tau function is currently unclear. Tau isoforms are developmentally regulated and have been shown to have disparate effects on microtubule polymerization, the ability to bind microtubules, and the ability to inhibit kinesin. It has also been shown that Tau is sensitive to microtubule stabilizing agents and the ability to affect the persistence length of microtubules and to inhibit kinesin can be altered by stabilizing microtubules with various nucleotide analogs. Given these observations, it is likely the behavior of Tau is dictated by both the isoform of Tau and by structural changes in the microtubule lattice. In the present study, we use single molecule imaging to examine the behavior of the three-repeat short (3RS) isoform and the four-repeat long (4RL) isoform on different microtubule tracks stabilized with either paclitaxel or guanylyl-(α, β)-methylene-diphosphate (GMPCPP). On paclitaxel-stabilized microtubules, we find 3RS-Tau favors the static conformation and forms complexes consisting of 2–3 molecules, while 4RL-Tau predominantly exists as a single molecule equally distributed between the static and diffusing populations. However, on GMPCPP-stabilized microtubules both isoforms favor the diffusing conformation and do not form static complexes composed of more than one Tau molecule. We find both isoforms of Tau interconvert between static and diffusing populations on the microtubule surface, and the equilibrium between these two states depends on both the isoform of Tau and the structure of the underlying microtubule lattice. PMID:24520046

  6. Fluorine interaction with defects on graphite surface by a first-principles study

    NASA Astrophysics Data System (ADS)

    Wang, Song; Xuezhi, Ke; Zhang, Wei; Gong, Wenbin; Huai, Ping; Zhang, Wenqing; Zhu, Zhiyuan

    2014-02-01

    The interaction between fluorine atom and graphite surface has been investigated in the framework of density functional theory. Due to the consideration of molten salt reactor system, only carbon adatoms and vacancies are chemical reactive for fluorine atoms. Fluorine adsorption on carbon adatom will enhance the mobility of carbon adatom. Carbon adatom can also be removed easily from graphite surface in form of CF2 molecule, explaining the formation mechanism of CF2 molecule in previous experiment. For the interaction between fluorine and vacancy, we find that fluorine atoms which adsorb at vacancy can hardly escape. Both pristine surface and vacancy are impossible for fluorine to penetrate due to the high penetration barrier. We believe our result is helpful to understand the compatibility between graphite and fluorine molten salt in molten salt reactor system.

  7. Mechanisms of barrier formation in schottky contacts: Metal-induced surface and interface states

    NASA Astrophysics Data System (ADS)

    Mönch, Winfried

    1990-01-01

    Metal as well as nonmetal adatoms are generally inducing surface states and dipoles on semiconductor surfaces. Both effects may be understood in a bond picture, which describes adatom-substrate bonds in a surface-molecule model, and in the band picture, which considers the tailing of adatom electron wave functions into the semiconductor. These two approaches have in common a charge transfer between the adatoms and the substrate which may be modeled by the difference of their electronegativities. The same concept may be applied to metal-semiconductor contacts. In that energy range, where the metal conduction band overlaps the semiconductor band gap, metal electron wave functions are tailing into the semiconductor and a charge transfer occurs between the respective continuum of metal-induced gap states (MIGS) and the metal. Deviations of barrier heights in Schottky contacts from what is predicted by that MIGS-and-electronegativity concept are attributed to fabrication-induced defects of donor type or interface strain.

  8. Mechanisms of barrier formation in schottky contacts: Metal-induced surface and interface states

    NASA Astrophysics Data System (ADS)

    Mönch, Winfried

    1989-11-01

    Metal as well as nonmetal adatoms are generally inducing surface states and dipoles on semiconductor surfaces. Both effects may be understood in a bond picture, which describes adatom-substrate bonds in a surface-molecule model, and in the band picture, which considers the tailing of adatom electron wave functions into the semiconductor. These two approaches have in common a charge transfer between the adatoms and the substrate which may be modeled by the difference of their electronegativities. The same concept may be applied to metal-semiconductor contacts. In that energy range, where the metal conduction band overlaps the semiconductor band gap, metal electron wave functions are tailing into the semiconductor and a charge transfer occurs between the respective continuum of metal-induced gap states (MIGS) and the metal. Deviations of barrier heights in Schottky contacts from what is predicted by that MIGS-and-electronegativity concept are attributed to fabrication-induced defects of donor type or interface strain.

  9. The Application of RBS To Investigate The Diffusion of HCl Into The Near Surface Region Of Ice

    SciTech Connect

    Huthwelker, T.; Krieger, U. K.; Peter, Th.; Lanford, W.A.

    2003-08-26

    The interaction of trace gases in the near surface region of aerosols (ice, liquid acids, hydrates) is important for understanding environmental problems, such as the formation of the Ozone-hole or global warming. Direct measurements of trace gas concentration profiles on materials such as ice can provide key data to understand the underlying physical chemistry. However, measurement of concentration profiles in the near surface region of volatile materials presents a significant analytical challenge due to the materials high vapor pressure. We use Rutherford Backscattering (RBS) to measure in situ elemental concentration profiles on high vapor pressure materials held in controlled atmospheres of water vapor and trace gases. HCl uptake experiments are presented and the HCl diffusion and solubility at temperatures around 200 K are determined.

  10. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2009-12-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer, CAR, and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 μm) and angular range (180°) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  11. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  12. Void shrinking process and mechanisms of the diffusion bonded Ti-6Al-4V alloy with different surface roughness

    NASA Astrophysics Data System (ADS)

    Li, H.; Li, M. Q.; Kang, P. J.

    2016-01-01

    The diffusion bonding of Ti-6Al-4V alloy with different surface roughness was performed at 5 and 10 MPa. The influence of surface roughness on the void shrinking process and mechanisms was investigated. The average void size increases as the R a increases from 0.33 to 0.44 μm, while it decreases as the R a increases to 0.46 μm because of the decreasing of R λq. The void shrinking mechanisms were analyzed by using the dynamic model of void shrinking. Power-law creep is a dominant mechanism on void shrinking, of which the contribution decreases as the R a increases from 0.33 to 0.44 μm, while it increases as the R a increases to 0.46 μm. The influence of surface roughness on the contribution of plastic deformation and surface source mechanism on void shrinking is not significant while that on the contribution of interface source mechanism is dependent on the imposing pressure. The optimizing surface roughness is with a R a of 0.33 μm and R λq of 5.38 μm in this study.

  13. Influence of substrate motion on the self-diffusion of hydrogen and its isotopes on the copper (100) surface

    SciTech Connect

    Valone, S.M.; Voter, A.F.; Doll, J.D.

    1986-12-15

    Work is presented that examines the effect of substrate motion on the surface self-diffusion of hydrogen and its isotopes on the Cu(100) surface. Lattice motion, represented as a sum of Lennard-Jones interactions, is found to increase the diffusion constant of hydrogen and its isotopes at all temperatures examined. The increase varies from 1.3 to 4.0 over the temperature range from 1000 to 110 K. The results agree with the recent calculations of Lauderdale and Truhlar above 150 K. The quantum contribution to the isotope effect is enhanced relative to the values for the frozen substrate. These conclusions are based on approximate path integral calculations in which quantum-mechanical effects are treated in a semiclassical manner using temperature-dependent effective potentials. The differences between the present results and those of Lauderdale and Truhlar are attributed to a breakdown of these semiclassical approximations at low temperatures. In the temperature range considered, commonly accepted harmonic corrections to the classical results afford slightly poorer agreement with Lauderdale and Truhlar than the present results.

  14. Measurement of Diffusion Coefficient and Surface Recombination Velocity for p-InGaAsP Grown on InP

    NASA Astrophysics Data System (ADS)

    Sakai, Shiro; Umeno, Masayoshi; Amemiya, Yoshifumi

    1980-01-01

    Surface recombination velocity S2 and diffusion coefficient D2 of the minority carrier in p-InxGa1-xAsyP1-y (0.65surface of the sample and a response speed experiment of the photodiode. The two independent experiments were analyzed simultaneously to obtain D2 and S2. The obtained S2 is 3-5× 104 cm/s which is about one order of magnitude greater than that on n-InP and about two orders of magnitude smaller than that on GaAs. The diffusion coefficient of the minority carrier in the p-InGaAsP layer D2 is about the same as that of the majority carrier. The obtained D2 is 2-3 cm2/s.

  15. Diffusion Processes in Water on Oxide Surfaces: Quasielastic Neutron Scattering Study of Hydration Water in Rutile Nano-Powder

    SciTech Connect

    Chu, Xiang-Qiang; Ehlers, Georg; Mamontov, Eugene; Podlesnyak, Andrey A; Wang, Wei; Wesolowski, David J

    2011-01-01

    Quasielastic neutron scattering (QENS) was used to investigate the diffusion dynamics of hydration water on the surface of rutile (TiO{sub 2}) nanopowder. The dynamics measurements utilizing two inelastic instruments, a backscattering spectrometer and a disk chopper spectrometer, probed the fast, intermediate, and slow motions of the water molecules on the time scale of picoseconds to more than a nanosecond. We employed a model-independent analysis of the data collected at each value of the scattering momentum transfer to investigate the temperature dependence of several diffusion components. All of the probed components were present in the studied temperature range of 230-320 K, providing, at a first sight, no evidence of discontinuity in the hydration water dynamics. However, a qualitative change in the elastic scattering between 240 and 250 K suggested a surface freezing-melting transition, when the motions that were localized at lower temperatures became delocalized at higher temperatures. On the basis of our previous molecular dynamics simulations of this system, we argue that interpretation of QENS data from such a complex interfacial system requires at least qualitative input from simulations, particularly when comparing results from spectrometers with very different energy resolutions and dynamic ranges.

  16. Investigation of hidden diffuse surfaces using phase-shifting endoscopic digital speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Gao, Yan; Wu, Sijin; Zhu, Lianqing; Yang, Lianxiang

    2015-02-01

    Digital speckle pattern interferometry (DSPI) is an important optical tool which is widely used in many sophisticated applications. However, a traditional DSPI system can only be used to investigate the outer surfaces which can be easily observed. Therefore, an endoscopic DSPI was proposed to detect the internal and hidden surfaces. It has a rigid or flexible endoscopic tube to allow a hidden surface being clearly imaged. A fiber-optics-based setup makes the proposed DSPI system compact and robust. The temporal phase-shifting technique is used to help precise extraction of phase distributions from speckle patterns.

  17. Application of the MOS-C-V technique to determine impurity concentrations and surface parameters on the diffused face of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.

    1975-01-01

    The feasibility of using the MOS C-V technique to obtain information regarding impurity and surface state concentrations on the diffused face of silicon solar cells with Ta2O5 coatings is studied. Results indicate that the MOS C-V technique yields useful information concerning surface parameters which contribute to the high, efficiency limiting, surface recombination velocities on the n+ surface of silicon solar cells.

  18. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species.

    PubMed

    Christensen-Dalsgaard, Karen K; Tyree, Melvin T; Mussone, Paolo G

    2011-04-01

    In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus aucuparia over 3 months. We measured the instantaneous surface tension and followed changes over a period of 0.5-5 h using the pendant drop technique. In all three species the instantaneous surface tension was equal to or within a few percent of that of pure water. Further, in B. papyrifera and S. aucuparia the change over time following drop establishment, although significant, was very small. In P. tremuloides, however, there was a steep decline in surface tension over time that leveled off towards values 21-27% lower than that of pure water. This indicated the presence of surfactants. The values were lower for thinner distal branch segments than for proximal ones closer to the trunk. In some species it appears valid to assume that the surface tension of xylem sap is equal to that of water. However, in branch segments of P. tremuloides close to the terminal bud and hence potentially in other species as well, it may be necessary to take into account the presence of surfactants that reduce the surface tension over time.

  19. Fullerene film on metal surface: Diffusion of metal atoms and interface model

    SciTech Connect

    Li, Wen-jie; Li, Hai-Yang; Li, Hong-Nian; Wang, Peng; Wang, Xiao-Xiong; Wang, Jia-Ou; Wu, Rui; Qian, Hai-Jie; Ibrahim, Kurash

    2014-05-12

    We try to understand the fact that fullerene film behaves as n-type semiconductor in electronic devices and establish a model describing the energy level alignment at fullerene/metal interfaces. The C{sub 60}/Ag(100) system was taken as a prototype and studied with photoemission measurements. The photoemission spectra revealed that the Ag atoms of the substrate diffused far into C{sub 60} film and donated electrons to the molecules. So the C{sub 60} film became n-type semiconductor with the Ag atoms acting as dopants. The C{sub 60}/Ag(100) interface should be understood as two sub-interfaces on both sides of the molecular layer directly contacting with the substrate. One sub-interface is Fermi level alignment, and the other is vacuum level alignment.

  20. Beryllium in the Galactic halo - Surface abundances from standard, diffusive, and rotational stellar evolution, and implications

    NASA Technical Reports Server (NTRS)

    Deliyannis, Constantine P.; Pinsonneault, Marc H.

    1990-01-01

    The recently observed upper limits to the beryllium abundances in population II stars are much lower than population I detections. This difference reflects an intrinsic difference in the initial abundances and is not caused by different degrees of depletion driven by stellar evolution processes from similar initial abundances. Evolutionary sequences of models from the early premain sequence to beyond the turnoff that correspond to halo dwarfs with Fe/H abundances of -1.3, -2.3, and -3.3 are constructed, and standard, diffusive, and rotational mechanisms are used to estimate a maximal possible beryllium depletion. Halo star models in the T(eff) range 6000 to 5000 K might be rotationally depleted by a factor of 1.5-2, and the total depletion should be no more than (conservatively) a factor of 3. Implications for cosmology, cosmic-ray theory, and Galactic chemical evolution are discussed.