Science.gov

Sample records for adc map image

  1. Brain extraction in pediatric ADC maps, toward characterizing neuro-development in multi-platform and multi-institution clinical images.

    PubMed

    Ou, Yangming; Gollub, Randy L; Retzepi, Kallirroi; Reynolds, Nathaniel; Pienaar, Rudolph; Pieper, Steve; Murphy, Shawn N; Grant, P Ellen; Zöllei, Lilla

    2015-11-15

    Apparent Diffusion Coefficient (ADC) maps can be used to characterize myelination and to detect abnormalities in the developing brain. However, given the normal variation in regional ADC with myelination, detection of abnormalities is difficult when based on visual assessment. Quantitative and automated analysis of pediatric ADC maps is thus desired but requires accurate brain extraction as the first step. Currently, most existing brain extraction methods are optimized for structural T1-weighted MR images of fully myelinated brains. Due to differences in age and image contrast, these approaches do not translate well to pediatric ADC maps. To address this problem, we present a multi-atlas brain extraction framework that has 1) specificity: designed and optimized specifically for pediatric ADC maps; 2) generality: applicable to multi-platform and multi-institution data, and to subjects at various neuro-developmental stages across the first 6 years of life; 3) accuracy: highly accurate compared to expert annotations; and 4) consistency: consistently accurate regardless of sources of data and ages of subjects. We show how we achieve these goals, via optimizing major components in a multi-atlas brain extraction framework, and via developing and evaluating new criteria for its atlas ranking component. Moreover, we demonstrate that these goals can be achieved with a fixed set of atlases and a fixed set of parameters, which opens doors for our optimized framework to be used in large-scale and multi-institution neuro-developmental and clinical studies. In a pilot study, we use this framework in a dataset containing scanner-generated ADC maps from 308 pediatric patients collected during the course of routine clinical care. Our framework leads to successful quantifications of the changes in whole-brain volumes and mean ADC values across the first 6 years of life. PMID:26260429

  2. Utility of histogram analysis of ADC maps for differentiating orbital tumors

    PubMed Central

    Xu, Xiao-Quan; Hu, Hao; Su, Guo-Yi; Liu, Hu; Hong, Xun-Ning; Shi, Hai-Bin; Wu, Fei-Yun

    2016-01-01

    PURPOSE We aimed to evaluate the role of histogram analysis of apparent diffusion coefficient (ADC) maps for differentiating benign and malignant orbital tumors. METHODS Fifty-two patients with orbital tumors were enrolled from March 2013 to November 2014. Pretreatment diffusion-weighted imaging was performed on a 3T magnetic resonance scanner with b factors of 0 and 800 s/mm2, and the corresponding ADC maps were generated. Whole-tumor regions of interest were drawn on all slices of the ADC maps to obtain histogram parameters, including ADCmean, ADCmedian, standard deviation (SD), skewness, kurtosis, quartile, ADC10, ADC25, ADC75, and ADC90. Histogram parameter differences between benign and malignant orbital tumors were compared. The diagnostic value of each significant parameter in predicting malignant tumors was established. RESULTS Age, ADCmean, ADCmedian, quartile, kurtosis, ADC10, ADC25, ADC75, and ADC90 parameters were significantly different between benign and malignant orbital tumor groups, while gender, location, SD, and skewness were not significantly different. The best diagnostic performance in predicting malignant orbital tumors was achieved at the threshold of ADC10=0.990 (AUC, 0.997; sensitivity, 96.2%; specificity, 100%). CONCLUSION Histogram analysis of ADC maps holds promise for differentiating benign and malignant orbital tumors. ADC10 has the potential to be the most significant parameter for predicting malignant orbital tumors. PMID:26829400

  3. Parametric Response Mapping of Apparent Diffusion Coefficient (ADC) as an Imaging Biomarker to Distinguish Pseudoprogression from True Tumor Progression In Peptide-Based Vaccine Therapy for Pediatric Diffuse Instrinsic Pontine Glioma

    PubMed Central

    Ceschin, Rafael; Kurland, Brenda F.; Abberbock, Shira R.; Ellingson, Benjamin M.; Okada, Hideho; Jakacki, Regina I.; Pollack, Ian F.; Panigrahy, Ashok

    2015-01-01

    Background and Purpose Immune response to cancer therapy may result in pseudoprogression, which can only be identified retrospectively and which may disrupt an effective therapy. This study assesses whether serial parametric response mapping (PRM, a voxel-by-voxel method of image analysis also known as functional diffusion mapping) analysis of ADC measurements following peptide-based vaccination may help prospectively distinguish progression from pseudoprogression in pediatric patients with diffuse intrinsic pontine gliomas. Materials and Methods From 2009–2012, 21 children age 4–18 with diffuse intrinsic pontine gliomas were enrolled in a serial peptide-based vaccination protocol following radiotherapy. DWI was acquired before immunotherapy and at six week intervals during vaccine treatment. Pseudoprogression was identified retrospectively based on clinical and radiographic findings, excluding DWI. Parametric response mapping was used to analyze 96 scans, comparing ADC measures at multiple time points (from first vaccine to up to 12 weeks after the vaccine was halted) to pre-vaccine baseline values. Log-transformed fractional increased ADC (fiADC), fractional decreased ADC (fdADC), and parametric response mapping ratio (fiADC/fdADC) were compared between patients with and without pseudoprogression, using generalized estimating equations with inverse weighting by cluster size. Results Median survival was 13.1 months from diagnosis (range 6.4–24.9 months). Four of 21 children (19%) were assessed as experiencing pseudoprogression. Patients with pseudoprogression had higher fitted average log-transformed parametric response mapping ratios (p=0.01) and fiADCs (p=0.0004), compared to patients without pseudoprogression. Conclusion Serial parametric response mapping of ADC, performed at multiple time points of therapy, may distinguish pseudoprogression from true progression in patients with diffuse intrinsic pontine gliomas treated with peptide-based vaccination

  4. Histogram-based classification with Gaussian mixture modeling for GBM tumor treatment response using ADC map

    NASA Astrophysics Data System (ADS)

    Huo, Jing; Kim, Hyun J.; Pope, Whitney B.; Okada, Kazunori; Alger, Jeffery R.; Wang, Yang; Goldin, Jonathan G.; Brown, Matthew S.

    2009-02-01

    This study applied a Gaussian Mixture Model (GMM) to apparent diffusion coefficient (ADC) histograms to evaluate glioblastoma multiforme (GBM) tumor treatment response using diffusion weighted (DW) MR images. ADC mapping, calculated from DW images, has been shown to reveal changes in the tumor's microenvironment preceding morphologic tumor changes. In this study, we investigated the effectiveness of features that represent changes from pre- and post-treatment tumor ADC histograms to detect treatment response. The main contribution of this work is to model the ADC histogram as the composition of two components, fitted by GMM with expectation maximization (EM) algorithm. For both pre- and post-treatment scans taken 5-7 weeks apart, we obtained the tumor ADC histogram, calculated the two-component features, as well as the other standard histogram-based features, and applied supervised learning for classification. We evaluated our approach with data from 85 patients with GBM under chemotherapy, in which 33 responded and 52 did not respond based on tumor size reduction. We compared AdaBoost and random forests classification algorithms, using ten-fold cross validation, resulting in a best accuracy of 69.41%.

  5. ADC texture—An imaging biomarker for high-grade glioma?

    SciTech Connect

    Brynolfsson, Patrik; Hauksson, Jón; Karlsson, Mikael; Garpebring, Anders; Nyholm, Tufve; Nilsson, David; Trygg, Johan; Henriksson, Roger; Birgander, Richard; Asklund, Thomas

    2014-10-15

    Purpose: Survival for high-grade gliomas is poor, at least partly explained by intratumoral heterogeneity contributing to treatment resistance. Radiological evaluation of treatment response is in most cases limited to assessment of tumor size months after the initiation of therapy. Diffusion-weighted magnetic resonance imaging (MRI) and its estimate of the apparent diffusion coefficient (ADC) has been widely investigated, as it reflects tumor cellularity and proliferation. The aim of this study was to investigate texture analysis of ADC images in conjunction with multivariate image analysis as a means for identification of pretreatment imaging biomarkers. Methods: Twenty-three consecutive high-grade glioma patients were treated with radiotherapy (2 Gy/60 Gy) with concomitant and adjuvant temozolomide. ADC maps and T1-weighted anatomical images with and without contrast enhancement were collected prior to treatment, and (residual) tumor contrast enhancement was delineated. A gray-level co-occurrence matrix analysis was performed on the ADC maps in a cuboid encapsulating the tumor in coronal, sagittal, and transversal planes, giving a total of 60 textural descriptors for each tumor. In addition, similar examinations and analyses were performed at day 1, week 2, and week 6 into treatment. Principal component analysis (PCA) was applied to reduce dimensionality of the data, and the five largest components (scores) were used in subsequent analyses. MRI assessment three months after completion of radiochemotherapy was used for classifying tumor progression or regression. Results: The score scatter plots revealed that the first, third, and fifth components of the pretreatment examinations exhibited a pattern that strongly correlated to survival. Two groups could be identified: one with a median survival after diagnosis of 1099 days and one with 345 days, p = 0.0001. Conclusions: By combining PCA and texture analysis, ADC texture characteristics were identified, which seems

  6. Influence of image registration on ADC images computed from free-breathing diffusion MRIs of the abdomen

    NASA Astrophysics Data System (ADS)

    Guyader, Jean-Marie; Bernardin, Livia; Douglas, Naomi H. M.; Poot, Dirk H. J.; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    The apparent diffusion coefficient (ADC) is an imaging biomarker providing quantitative information on the diffusion of water in biological tissues. This measurement could be of relevance in oncology drug development, but it suffers from a lack of reliability. ADC images are computed by applying a voxelwise exponential fitting to multiple diffusion-weighted MR images (DW-MRIs) acquired with different diffusion gradients. In the abdomen, respiratory motion induces misalignments in the datasets, creating visible artefacts and inducing errors in the ADC maps. We propose a multistep post-acquisition motion compensation pipeline based on 3D non-rigid registrations. It corrects for motion within each image and brings all DW-MRIs to a common image space. The method is evaluated on 10 datasets of free-breathing abdominal DW-MRIs acquired from healthy volunteers. Regions of interest (ROIs) are segmented in the right part of the abdomen and measurements are compared in the three following cases: no image processing, Gaussian blurring of the raw DW-MRIs and registration. Results show that both blurring and registration improve the visual quality of ADC images, but compared to blurring, registration yields visually sharper images. Measurement uncertainty is reduced both by registration and blurring. For homogeneous ROIs, blurring and registration result in similar median ADCs, which are lower than without processing. In a ROI at the interface between liver and kidney, registration and blurring yield different median ADCs, suggesting that uncorrected motion introduces a bias. Our work indicates that averaging procedures on the scanner should be avoided, as they remove the opportunity to perform motion correction.

  7. A 10-bit ratio-independent cyclic ADC with offset canceling for a CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Kaiming, Nie; Suying, Yao; Jiangtao, Xu; Zhaorui, Jiang

    2014-03-01

    A 10-bit ratio-independent switch-capacitor (SC) cyclic analog-to-digital converter (ADC) with offset canceling for a CMOS image sensor is presented. The proposed ADC completes an N-bit conversion in 1.5N clock cycles with one operational amplifier. Combining ratio-independent and polarity swapping techniques, the conversion characteristic of the proposed cyclic ADC is inherently insensitive both to capacitor ratio and to amplifier offset voltage. Therefore, the circuit can be realized in a small die area and it is suitable to serve as the column-parallel ADC in CMOS image sensors. A prototype ADC is fabricated in 0.18-μm one-poly four-metal CMOS technology. The measured results indicate that the ADC has a signal-to-noise and distortion ratio (SNDR) of 53.6 dB and a DNL of +0:12/-0:14 LSB at a conversion rate of 600 kS/s. The standard deviation of the offset variation of the ADC is reduced from 2.5 LSB to 0.5 LSB. Its power dissipation is 250 μW with a 1.8 V supply, and its area is 0.03 × 0.8 mm2.

  8. A 10-bit column-parallel cyclic ADC for high-speed CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Ye, Han; Quanliang, Li; Cong, Shi; Nanjian, Wu

    2013-08-01

    This paper presents a high-speed column-parallel cyclic analog-to-digital converter (ADC) for a CMOS image sensor. A correlated double sampling (CDS) circuit is integrated in the ADC, which avoids a stand-alone CDS circuit block. An offset cancellation technique is also introduced, which reduces the column fixed-pattern noise (FPN) effectively. One single channel ADC with an area less than 0.02 mm2 was implemented in a 0.13 μm CMOS image sensor process. The resolution of the proposed ADC is 10-bit, and the conversion rate is 1.6 MS/s. The measured differential nonlinearity and integral nonlinearity are 0.89 LSB and 6.2 LSB together with CDS, respectively. The power consumption from 3.3 V supply is only 0.66 mW. An array of 48 10-bit column-parallel cyclic ADCs was integrated into an array of CMOS image sensor pixels. The measured results indicated that the ADC circuit is suitable for high-speed CMOS image sensors.

  9. Simulation of continuously logical ADC (CL ADC) of photocurrents as a basic cell of image processor and multichannel optical sensor systems

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolskyy, Aleksandr I.; Lazarev, Alexander A.; Krasilenko, Oksana V.; Krasilenko, Irina A.

    2013-05-01

    The paper considers results of design and modeling of continuously logical analog-to-digital converters (ADC) based on current mirrors for image processor and multichannel optical sensor systems with parallel inputs-outputs. For such multichannel serial-parallel analog-to-digital converters (SP ADC) it is needed base photoelectron cells, which are considered in paper. Its have a number of advantages: high speed and reliability, simplicity, small power consumption, high integration level for linear and matrix structures. We show design of the continuously logical ADC of photocurrents and its base digit cells (ABC) and its simulations. We consider CL ADC for Gray and binary codes. Each channel of the structure consists of several base digit cells (ABC) on 20-30 CMOS FETs and one photodiode. The supply voltage of the ABC is 1-3.3V, the range of an input photocurrent is 0.1 - 10μA, the transformation time is 30ns at 5-8 bit binary or Gray codes, power consumption is about 1mW. One channel of ADC with iteration is based on one ABC-3(G) and SHD, and it has only 40 CMOS transistors. The general power consumption of the ADC, in this case, is only 50-100μW, if the maximum input current is 1μA. The CL ADC opens new prospects for realization of linear and matrix image processor and photo-electronic structures with picture operands, which are necessary for neural networks, digital optoelectronic processors, neural-fuzzy controllers, and so forth.

  10. A 15-bit incremental sigma-delta ADC for CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Chen, Nan; Li, Zhengfen; Zhong, Shengyou; Zou, Mei; Yao, Libin

    2015-04-01

    An incremental sigma-delta ADC is designed for column-parallel ADC array in CMOS image sensor. Sigma-delta modulator with single-loop single-bit structure is chosen for power consumption and performance reasons. Second-order modulator is used to reduce conversion time, without stability problem and large area accompanied by higher order sigma-delta modulator. The asymmetric current mirror amplifier used in integrator reduces more than 30% power dissipation. The digital filter and decimator are implemented by counters and adders with significantly reduced chip area and power consumption. A Clock generator is shared by 8 ADCs for trade-off among power, area and clock loading. The ADC array is implemented in a 0.18-μm CMOS technology and clocked at 10 MHz, and the simulated resolution achieves 15-bit with 255 clock cycles. The average power consumption per ADC is 118 μW including clock generator, and the area is only 0.0053 μm2.

  11. High dynamic range CMOS image sensor with pixel level ADC and in-situ image enhancement

    NASA Astrophysics Data System (ADS)

    Harton, Austin V.; Ahmed, Mohamed I.; Beuhler, Allyson; Castro, Francisco; Dawson, Linda M.; Herold, Barry W.; Kujawa, Gregory; Lee, King F.; Mareachen, Russell D.; Scaminaci, Tony J.

    2005-03-01

    We describe a CMOS image sensor with pixel level analog to digital conversion (ADC) having high dynamic range (>100db) and the capability of performing many image processing functions at the pixel level during image capture. The sensor has a 102x98 pixel array and is implemented in a 0.18um CMOS process technology. Each pixel is 15.5um x15.5um with 15% fill factor and is comprised of a comparator, two 10 bit memory registers and control logic. A digital to analog converter and system processor are located off-chip. The photodetector produces a photocurrent yielding a photo-voltage proportional to the impinging light intensity. Once the photo-voltage is less than a predetermined global reference voltage; a global code value is latched into the pixel data buffer. This process prevents voltage saturation resulting in high dynamic range imaging. Upon completion of image capture, a digital representation of the image exists at the pixel array, thereby, allowing image data to be accessed in a parallel fashion from the focal plane array. It is demonstrated that by appropriate variation of the global reference voltage with time, it is possible to perform, during image capture, thresholding and image enhancement operations, such as, contrast stretching in a parallel manner.

  12. A low-power column-parallel ADC for high-speed CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Han, Ye; Li, Quanliang; Shi, Cong; Liu, Liyuan; Wu, Nanjian

    2013-08-01

    This paper presents a 10-bit low-power column-parallel cyclic analog-to-digital converter (ADC) used for high-speed CMOS image sensor (CIS). An opamp sharing technique is used to save power and area. Correlated double sampling (CDS) circuit and programmable gain amplifier (PGA) are integrated in the ADC, which avoids stand-alone circuit blocks. An offset cancellation technique is also introduced, which reduces the column fixed-pattern noise (FPN) effectively. One single channel ADC with an area less than 0.03mm2 was implemented in a 0.18μm 1P4M CMOS image sensor process. The resolution of the proposed ADC is 10-bit, and the conversion rate is 2MS/s. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are 0.62 LSB and 2.1 LSB together with CDS, respectively. The power consumption from 1.8V supply is only 0.36mW.

  13. A complementary dual-slope ADC with high frame rate and wide input range for fast X-ray imaging

    NASA Astrophysics Data System (ADS)

    Lee, Daehee; Cho, Minsik; Kang, Dong-Uk; Kim, Myung Soo; Kim, Hyunduk; Cho, Gyuseong

    2014-02-01

    The single-slope analog-to-digital converter (SS-ADC) is the most commonly used column-level ADC for high-speed industrial, complementary metal-oxide semiconductor (CMOS)-based X-ray image sensors because of its small chip area (the width of a pixel), its simple circuit structure, and its low power consumption. However, it generally has a long conversion time, so we propose an innovative design: a complimentary dual-slope ADC (CDS-ADC) that uses two opposite ramp signals instead of a single ramp to double the conversion speed. This CDS-ADC occupies only 15% more area than the original SS-ADC. A prototype 12-bit CDS-ADC and a 12-bit SS-ADC were fabricated using a 0.35-µm 1P 4M CMOS process. During comparison of the two, the measured maximum differential non-linearity (DNL) of the CDS-ADC was a 0.49 least significant bit (LSB), the maximum integral non-linearity (INL) was a 0.43 LSB, the effective number of bits (ENOB) was 9.18 bits, and the figure of merit (FOM) was 0.03 pJ/conversion. The total power consumption was 0.031 uW. The conversion time of the new CDS-ADC was half that of the SS-ADC. The proposed dual-slope concept can be extended to further multiply the conversion speed by using multiple pairs of dual-slope ramps.

  14. Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer

    PubMed Central

    Yankeelov, Thomas E.; Lepage, Martin; Chakravarthy, Anuradha; Broome, Elizabeth E.; Niermann, Kenneth J.; Kelley, Mark C.; Meszoely, Ingrid; Mayer, Ingrid A.; Herman, Cheryl R.; McManus, Kevin; Price, Ronald R.; Gore, John C.

    2009-01-01

    Purpose The objective of this study was to assess changes in the water apparent diffusion coefficient (ADC) and in pharmacokinetic parameters obtained from the fast-exchange regime (FXR) modeling of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) during neoadjuvant chemotherapy in breast cancer. Materials and Methods Eleven patients with locally advanced breast cancer underwent MRI examination prior to and after chemotherapy but prior to surgery. A 1.5-T scanner was used to obtain T1, ADC and DCE-MRI data. DCE-MRI data were analyzed by the FXR model returning estimates of Ktrans (volume transfer constant), νe (extravascular extracellular volume fraction) and τsi (average intracellular water lifetime). Histogram and correlation analyses assessed parameter changes post-treatment. Results Significant ( P <.05) changes or trends towards significance ( P <.10) were seen in all parameters except τi, although there was qualitative reduction in τi values post-treatment. In particular, there was reduction ( P <.035) in voxels with Ktrans values in the range 0.2–0.5 min-1 and a decrease ( P <.05) in voxels with ADC values in the range 0.99×10-3 to 1.35×10-3 mm2/s. ADC and νe were negatively correlated (r = -.60, P <.02). Parameters sensitive to water distribution and geometry (T1, νe,τsi and ADC) correlated with a multivariable linear regression model. Conclusion The analysis presented here is sensitive to longitudinal changes in breast tumor status; Ktrans and ADC are most sensitive to these changes. Relationships between parameters provide information on water distribution and geometry in the tumor environment. PMID:17222711

  15. Continuous-time ΣΔ ADC with implicit variable gain amplifier for CMOS image sensor.

    PubMed

    Tang, Fang; Bermak, Amine; Abbes, Amira; Benammar, Mohieddine Amor

    2014-01-01

    This paper presents a column-parallel continuous-time sigma delta (CTSD) ADC for mega-pixel resolution CMOS image sensor (CIS). The sigma delta modulator is implemented with a 2nd order resistor/capacitor-based loop filter. The first integrator uses a conventional operational transconductance amplifier (OTA), for the concern of a high power noise rejection. The second integrator is realized with a single-ended inverter-based amplifier, instead of a standard OTA. As a result, the power consumption is reduced, without sacrificing the noise performance. Moreover, the variable gain amplifier in the traditional column-parallel read-out circuit is merged into the front-end of the CTSD modulator. By programming the input resistance, the amplitude range of the input current can be tuned with 8 scales, which is equivalent to a traditional 2-bit preamplification function without consuming extra power and chip area. The test chip prototype is fabricated using 0.18 μm CMOS process and the measurement result shows an ADC power consumption lower than 63.5 μW under 1.4 V power supply and 50 MHz clock frequency. PMID:24772012

  16. A SAR-ADC using unit bridge capacitor and with calibration for the front-end electronics of PET imaging

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wei, Tingcun; Li, Bo; Yang, Lifeng; Xue, Feifei; Hu, Yongcai

    2016-05-01

    This paper presents a 12-bit 1 MS/s successive approximation register-analog to digital converter (SAR-ADC) for the 32-channel front-end electronics of CZT-based PET imaging system. To reduce the capacitance mismatch, instead of the fractional capacitor, the unit capacitor is used as the bridge capacitor in the split-capacitor digital to analog converter (DAC) circuit. In addition, in order to eliminate the periodical DNL errors of -1 LSB which often exists in the SAR-ADC using the charge-redistributed DAC, a calibration algorithm is proposed and verified by the experiments. The proposed 12-bit 1 MS/s SAR-ADC is designed and implemented using a 0.35 μm CMOS technology, it occupies only an active area of 986×956 μm2. The measurement results show that, at the power supply of 3.3/5.0 V and the sampling rate of 1 MS/s, the ADC with calibration has a signal-to-noise-and-distortion ratio (SINAD) of 67.98 dB, the power dissipation of 5 mW, and a figure of merit (FOM) of 2.44 pJ/conv.-step. This ADC is with the features of high accuracy, low power and small layout area, it is especially suitable to the one-chip integration of the front-end readout electronics.

  17. Low-Power CMOS Laser Doppler Imaging Using Non-CDS Pixel Readout and 13.6-bit SAR ADC.

    PubMed

    Chen, Denis Guangyin; Law, Man-Kay; Lian, Yong; Bermak, Amine

    2016-02-01

    Laser Doppler imaging (LDI) measures particle flows such as blood perfusion by sensing their Doppler shift. This paper is the first of its kind in analyzing the effect of circuit noise on LDI precision which is distinctively different from conventional imaging. Based on this result, it presents a non-correlated-double-sampling (non-CDS) pixel readout scheme along with a high-resolution successive-approximation-register (SAR) analog-to-digital-converter (ADC) with 13.6b effective resolution (ER). Measurement results from the prototype chip in 0.18 μm technology confirm the theoretical analysis and show that the two techniques improve LDI sensing precision by 6.9 dB and 4.4 dB (compared to a 10b ADC) respectively without analog pre-amplification. The sensor's ADC occupies 518 μm×84 μm and is suitable for fast column parallel readout. Its differential non-linearity (DNL), integral non-linearity (INL), and input referred noise are +3.0/-2.8 LSB, +24/-17 LSB, and 110 μVrms respectively, leading to a Figure-of-Merit (FoM) of 23 fJ/state which makes it one of the most energy efficient image sensor ADCs and an order of magnitude better than the best reported LDI system using commercial high-speed image sensors. PMID:25532189

  18. DENALI IMAGE MAP.

    USGS Publications Warehouse

    Binnie, Douglas R.; Colvocoresses, Alden P.

    1987-01-01

    The Denali National Park and Preserve 1:250,000-scale image map has been prepared and published as part of the US Geological Survey's (USGS) continuing research to improve image mapping techniques. Nine multispectral scanner (MSS) images were geometrically corrected, digitally mosaicked, and enhanced at the National Mapping Division's (NMD) EROS Data Center (EDC). This process involves ground control and digital resampling to the Universal Tranverse Mercator (UTM) projection. This paper specifically discusses the preparation of the digital mosaic and the production peculiarities associated with the Denali National Park and Preserve image map.

  19. Fast Imaging Detector Readout Circuits with In-Pixel ADCs for Fourier Transform Imaging Spectrometers

    NASA Technical Reports Server (NTRS)

    Rider, D.; Blavier, J-F.; Cunningham, T.; Hancock, B.; Key, R.; Pannell, Z.; Sander, S.; Seshadri, S.; Sun, C.; Wrigley, C.

    2011-01-01

    Focal plane arrays (FPAs) with high frame rates and many pixels benefit several upcoming Earth science missions including GEO-CAPE, GACM, and ACE by enabling broader spatial coverage and higher spectral resolution. FPAs for the PanFTS, a high spatial resolution Fourier transform spectrometer and a candidate instrument for the GEO-CAPE mission are the focus of the developments reported here, but this FPA technology has the potential to enable a variety of future measurements and instruments. The ESTO ACT Program funded the developed of a fast readout integrated circuit (ROIC) based on an innovative in-pixel analog-to-digital converter (ADC). The 128 X 128 pixel ROIC features 60 ?m pixels, a 14-bit ADC in each pixel and operates at a continuous frame rate of 14 kHz consuming only 1.1 W of power. The ROIC outputs digitized data completely eliminating the bulky, power consuming signal chains needed by conventional FPAs. The 128 X 128 pixel ROIC has been fabricated in CMOS and tested at the Jet Propulsion Laboratory. The current version is designed to be hybridized with PIN photodiode arrays via indium bump bonding for light detection in the visible and ultraviolet spectral regions. However, the ROIC design incorporates a small photodiode in each cell to permit detailed characterization of the ROICperformance without the need for hybridization. We will describe the essential features of the ROIC design and present results of ROIC performance measurements.

  20. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs

    PubMed Central

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-01-01

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB. PMID:26712765

  1. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs.

    PubMed

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-01-01

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB. PMID:26712765

  2. A high-speed CMOS image sensor with column-parallel single capacitor CDSs and single-slope ADCs

    NASA Astrophysics Data System (ADS)

    Li, Quanliang; Shi, Cong; Wu, Nanjian

    2011-08-01

    This paper presents a high speed CMOS image sensor (CIS) with column-parallel single capacitor correlated double samplings (CDSs), programmable gain amplifiers (PGAs) and single-slope analog-to-digital converters (ADCs). The single capacitor CDS circuit has only one capacitor so that the area CDS circuit is small. In order to attain appropriate image contrast under different light conditions, the signal range can be adjusted by PGA. Single-slope ADC has smaller chip area than others ADCs and is suitable for column-parallel CIS architectures. A prototype sensor of 256x256 pixels was realized in a 0.13μm 1P3M CIS process. Its pixel circuit is 4T active pixel sensor (APS) and pixel size is 10x10μm2. Total chip area is 4x4mm2. The prototype achieves the full frame rate in excess of 250 frames per second, the sensitivity of 10.7V/lx•s, the conversion gain of 55.6μV/e and the column-to- column fixed-pattern noise (FPN) 0.41%.

  3. A 128-ch Δ-Σ ADC based mixed signal IC for full digital beamforming Wireless handheld Ultrasound imaging system.

    PubMed

    Chirala, Mohan K; Phuong Huynh; Jaeyoung Ryu; Young-Hwan Kim

    2015-08-01

    This paper reports a massively integrated Δ-Σ ADC based mixed signal chipset for a handheld Wireless Ultrasound imaging system. The IC has been fabricated in a standard 0.13 μm 1.5V 7M2F CMOS process with 128 parallel channels containing Delta-Sigma (Δ-Σ) ADCs, Anti-aliasing filter, Decimation filters, Serializers and LVDS drivers. The entire chip is SPI controlled and allows group-level power control through an FPGA. The IC measures 15 × 15 mm and dissipates around ~ 4.6 W of power, with 12-bit resolution at 20 Msps sample rate. The chip was packaged in a thermally stable BGA package and demonstrated in a handheld ultrasound battery operated system with complete digital beamforming. PMID:26736516

  4. A 12-bit high-speed column-parallel two-step single-slope analog-to-digital converter (ADC) for CMOS image sensors.

    PubMed

    Lyu, Tao; Yao, Suying; Nie, Kaiming; Xu, Jiangtao

    2014-01-01

    A 12-bit high-speed column-parallel two-step single-slope (SS) analog-to-digital converter (ADC) for CMOS image sensors is proposed. The proposed ADC employs a single ramp voltage and multiple reference voltages, and the conversion is divided into coarse phase and fine phase to improve the conversion rate. An error calibration scheme is proposed to correct errors caused by offsets among the reference voltages. The digital-to-analog converter (DAC) used for the ramp generator is based on the split-capacitor array with an attenuation capacitor. Analysis of the DAC's linearity performance versus capacitor mismatch and parasitic capacitance is presented. A prototype 1024 × 32 Time Delay Integration (TDI) CMOS image sensor with the proposed ADC architecture has been fabricated in a standard 0.18 μm CMOS process. The proposed ADC has average power consumption of 128 μW and a conventional rate 6 times higher than the conventional SS ADC. A high-quality image, captured at the line rate of 15.5 k lines/s, shows that the proposed ADC is suitable for high-speed CMOS image sensors. PMID:25407903

  5. A 960-fps sub-sampling object extraction CMOS image sensor with 12-bit column parallel ADCs and ALUs

    NASA Astrophysics Data System (ADS)

    Motohashi, Yuichi; Kubo, Takashi; Kanto, Hiroaki; Tate, Tomoyasu; Sugawa, Shigetoshi

    2007-02-01

    A CMOS image sensor with highly accurate object extraction pre-processing functions by 960-fps sub-sampling operation, 12-bit column parallel successive approximation ADCs and column parallel ALUs has been developed. The pixel is composed of four transistors type pixel which shares the source follower transistor and the pixel select transistor. The each ADC is composed of the noise and signal holding capacitance, the noise reduction circuit, the comparator and the small DAC that combined both the reference voltage ratios and capacitance ratios. In the ALU, the object categorization pre-processing is performed by the each macro block of 3 × 3 pixels which has a reference pixel and its neighboring eight pixels. The three image features which are the edge of object, the direction of edge-vector and the average of light-intensity of 3 × 3 pixels corresponded to each pixel are extracted by the ALUs. The image and the results of the object extraction pre-processing are outputted by every 60-fps. The image sensor was fabricated by 0.35-μm 2P3M technology. The pixel pitch is 5.3-μm, the number of pixels is 640H × 360V and the chip size is 4.9-mm square.

  6. A 12-bit, 1 MS/s SAR-ADC for a CZT-based multi-channel gamma-ray imager using a new digital calibration method

    NASA Astrophysics Data System (ADS)

    Liu, W.; Wei, T.; Yang, L.; Hu, Y.

    2016-03-01

    The successive approximation register-analog to digital converter (SAR-ADC) is widely used in the CdZnTe-based gamma-ray imager because of its outstanding characteristics of low power consumption, relatively high resolution, and small die size. This study proposes a digital bit-by-bit calibration method using an input ramp signal to further improve the conversion precision and power consumption of an SAR-ADC. The proposed method is based on the sub-radix-2 redundant architecture and the perturbation technique. The proposed calibration algorithm is simpler, more stable, and faster than traditional approaches. The prototype chip of the 12-bit, 1 MS/s radiation-hardened SAR-ADC has been designed and fabricated using the TSMC 0.35 μm 2P4M CMOS process. This SAR-ADC consumes 3 mW power and occupies a core area of 856× 802μm2. The digital bit-by-bit calibration algorithm is implemented via MATLAB for testing flexibility. The effective number of bits for this digitally calibrated SAR-ADC reaches 11.77 bits. The converter exhibits high conversion precision, low power consumption, and radiation-hardened design. Therefore, this SAR-ADC is suitable for multi-channel gamma-ray imager applications.

  7. Diffusion-weighted images (DWI) without ADC values in assessment of small focal nodules in cirrhotic liver

    PubMed Central

    Chen, Mai-Lin; Zhang, Xiao-Yan; Qi, Li-Ping; Shi, Qing-Lei; Chen, Bin

    2014-01-01

    Objective To assess if diffusion-weighted magnetic resonance (MR) imaging without apparent diffusion coefficient (ADC) values provides added diagnostic value in combination with conventional MR imaging in the detection and characterization of small nodules in cirrhotic liver. Methods Two observers retrospectively and independently analyzed 86 nodules (≤3 cm) certified pathologically in 33 patients with liver cirrhosis, including 48 hepatocellular carcinoma (HCC) nodules, 13 high-grade dysplastic nodules (HDN), 10 low-grade dysplastic nodules (LDNs) and 15 other benign nodules. All these focal nodules were evaluated with conventional MR images (T1-weighted, T2-weighted and dynamic gadolinium-enhanced images) and breath-hold diffusion-weighted images (DWI) (b=500 s/mm2). The nodules were classified by using a scale of 1-3 (1, not seen; 3, well seen) on DWI for qualitative assessment. These small nodules were characterized by two radiologists. ADC values weren’t measured. The diagnostic performance of the combined DWI-conventional images and the conventional images alone was evaluated using receiver operating characteristic (ROC) curves. The area under the curves (Az), sensitivity and specificity values for characterizing different small nodules were also calculated. Results Among 48 HCC nodules, 33 (68.8%) were graded as 3 (well seen), 6 (12.5%) were graded as 2 (partially obscured), and 9 weren’t seen on DWI. Among 13 HDNs, there were 3 (23.1%) and 4 (30.8%) graded as 3 and 2 respectively. Five (50%) of 10 benign nodules were partially obscured and slightly hyperintense. For 86 nodules, the average diagnostic accuracy of combined DWI-conventional images was 82.56%, which was increased significantly compared with conventional MR images with 76.17%. For HCC and HDN, the diagnostic accuracy of combined DWI-conventional images increased from 78.69% to 86.07%. Conclusions Diffusion-weighted MR imaging does provide added diagnostic value in the detection and

  8. Gd-EOB-DTPA-Enhanced MR Imaging of the Liver: The Effect on T2 Relaxation Times and Apparent Diffusion Coefficient (ADC)

    PubMed Central

    Cieszanowski, Andrzej; Podgórska, Joanna; Rosiak, Grzegorz; Maj, Edyta; Grudziński, Ireneusz P.; Kaczyński, Bartosz; Szeszkowski, Wojciech; Milczarek, Krzysztof; Rowiński, Olgierd

    2016-01-01

    Summary Background To investigate the effect of gadoxetic acid disodium (Gd-EOB-DTPA) on T2 relaxation times and apparent diffusion coefficient (ADC) values of the liver and focal liver lesions on a 1.5-T system. Material/Methods Magnetic resonance (MR) studies of 50 patients with 35 liver lesions were retrospectively analyzed. All examinations were performed at 1.5T and included T2-weighted turbo spin-echo (TSE) and diffusion-weighted (DW) images acquired before and after intravenous administration of Gd-EOB-DTPA. To assess the effect of this hepatobiliary contrast agent on T2-weighted TSE images and DW images T2 relaxation times and ADC values of the liver and FLLs were calculated and compared pre- and post-injection. Results The mean T2 relaxation times of the liver and focal hepatic lesions were lower on enhanced than on unenhanced T2-weighted TSE images (decrease of 2.7% and 3.6% respectively), although these differences were not statistically significant. The mean ADC values of the liver showed statistically significant decrease (of 4.6%) on contrast-enhanced DW images, compared to unenhanced images (P>0.05). The mean ADC value of liver lesions was lower on enhanced than on unenhanced DW images, but this difference (of 2.9%) did not reach statistical significance. Conclusions The mean T2 relaxation times of the liver and focal liver lesions as well as the mean ADC values of liver lesions were not significantly different before and after administration of Gd-EOB-DTPA. Therefore, acquisition of T2-weighted and DW images between the dynamic contrast-enhanced examination and hepatobiliary phase is feasible and time-saving. PMID:27026795

  9. A 12-bit compact column-parallel SAR ADC with dynamic power control technique for high-speed CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Quanliang, Li; Liyuan, Liu; Ye, Han; Zhongxiang, Cao; Nanjian, Wu

    2014-10-01

    This paper presents a 12-bit column-parallel successive approximation register analog-to-digital converter (SAR ADC) for high-speed CMOS image sensors. A segmented binary-weighted switched capacitor digital-to-analog converter (CDAC) and a staggered structure MOM unit capacitor is used to reduce the ADC area and to make its layout fit double pixel pitches. An electrical field shielding layout method is proposed to eliminate the parasitic capacitance on the top plate of the unit capacitor. A dynamic power control technique is proposed to reduce the power consumption of a single channel during readout. An off-chip foreground digital calibration is adopted to compensate for the nonlinearity due to the mismatch of unit capacitors among the CDAC. The prototype SAR ADC is fabricated in a 0.18 μm 1P5M CIS process. A single SAR ADC occupies 20 × 2020 μm2. Sampling at 833 kS/s, the measured differential nonlinearity, integral nonlinearity and effective number of bits of SAR ADC with calibration are 0.9/-1 LSB, 1/-1.1 LSB and 11.24 bits, respectively; the power consumption is only 0.26 mW under a 1.8-V supply and decreases linearly as the frame rate decreases.

  10. Fully digital image sensor employing delta-sigma indirect feedback ADC with high-sensitivity to low-light illuminations for astronomical imaging applications

    NASA Astrophysics Data System (ADS)

    Maricic, Danijel; Ignjatovic, Zeljko; Figer, Donald F.; Ashe, Brian; Hanold, Brandon J.; Montagliano, Thomas; Stauffer, Don; Nikzad, Shouleh

    2010-07-01

    We describe a CMOS image sensor with column-parallel delta-sigma (ΔΣ) analog-to-digital converter (ADC). The design employs three transistor pixels (3T1) where the unique configuration of the ΔΣ ADC reduces the noise contribution of the readout transistor. A 128 x 128 pixel image sensor prototype is fabricated in 0.35μm TSMC technology. The reset noise and the offset fixed pattern noise (FPN) are removed in the digital domain. The measured readout noise is 37.8μV for an exposure time of 33ms. The low readout noise allows an improved low light response in comparison to other state-of-art designs. The design is suitable for applications demanding excellent low-light response such as astronomical imaging. The sensor has a measured intra-scene dynamic range (DR) of 91 dB, and a peak signal-to-noise ratio (SNR) of 54 dB.

  11. Sex, Lies, & Stereotypes: The Image of Arabs in American Popular Fiction. ADC Issue Paper No. 23.

    ERIC Educational Resources Information Center

    Sabbagh, Suha J.

    This document discusses the treatment of Arabs in the western media. The main portion concentrates on the image of Arabs presented in American novels. Because television and films present visual images that communicate a powerful message in a matter of seconds, stereotyping appears as a shorthand form of communication and is, to a certain extent,…

  12. Increasing the Accuracy of Volume and ADC Delineation for Heterogeneous Tumor on Diffusion-Weighted MRI: Correlation with PET/CT

    SciTech Connect

    Gong, Nan-Jie; Wong, Chun-Sing; Chu, Yiu-Ching; Guo, Hua; Huang, Bingsheng; Chan, Queenie

    2013-10-01

    Purpose: To improve the accuracy of volume and apparent diffusion coefficient (ADC) measurements in diffusion-weighted magnetic resonance imaging (MRI), we proposed a method based on thresholding both the b0 images and the ADC maps. Methods and Materials: In 21 heterogeneous lesions from patients with metastatic gastrointestinal stromal tumors (GIST), gross lesion were manually contoured, and corresponding volumes and ADCs were denoted as gross tumor volume (GTV) and gross ADC (ADC{sub g}), respectively. Using a k-means clustering algorithm, the probable high-cellularity tumor tissues were selected based on b0 images and ADC maps. ADC and volume of the tissues selected using the proposed method were denoted as thresholded ADC (ADC{sub thr}) and high-cellularity tumor volume (HCTV), respectively. The metabolic tumor volume (MTV) in positron emission tomography (PET)/computed tomography (CT) was measured using 40% maximum standard uptake value (SUV{sub max}) as the lower threshold, and corresponding mean SUV (SUV{sub mean}) was also measured. Results: HCTV had excellent concordance with MTV according to Pearson's correlation (r=0.984, P<.001) and linear regression (slope = 1.085, intercept = −4.731). In contrast, GTV overestimated the volume and differed significantly from MTV (P=.005). ADC{sub thr} correlated significantly and strongly with SUV{sub mean} (r=−0.807, P<.001) and SUV{sub max} (r=−0.843, P<.001); both were stronger than those of ADC{sub g}. Conclusions: The proposed lesion-adaptive semiautomatic method can help segment high-cellularity tissues that match hypermetabolic tissues in PET/CT and enables more accurate volume and ADC delineation on diffusion-weighted MR images of GIST.

  13. New Magnetic Resonance Imaging Index for Renal Fibrosis Assessment: A Comparison between Diffusion-Weighted Imaging and T1 Mapping with Histological Validation

    PubMed Central

    Friedli, I.; Crowe, L. A.; Berchtold, L.; Moll, S.; Hadaya, K.; de Perrot, T.; Vesin, C.; Martin, P.-Y.; de Seigneux, S.; Vallée, J.-P.

    2016-01-01

    A need exists to noninvasively assess renal interstitial fibrosis, a common process to all kidney diseases and predictive of renal prognosis. In this translational study, Magnetic Resonance Imaging (MRI) T1 mapping and a new segmented Diffusion-Weighted Imaging (DWI) technique, for Apparent Diffusion Coefficient (ADC), were first compared to renal fibrosis in two well-controlled animal models to assess detection limits. Validation against biopsy was then performed in 33 kidney allograft recipients (KARs). Predictive MRI indices, ΔT1 and ΔADC (defined as the cortico-medullary differences), were compared to histology. In rats, both T1 and ADC correlated well with fibrosis and inflammation showing a difference between normal and diseased kidneys. In KARs, MRI indices were not sensitive to interstitial inflammation. By contrast, ΔADC outperformed ΔT1 with a stronger negative correlation to fibrosis (R2 = 0.64 against R2 = 0.29 p < 0.001). ΔADC tends to negative values in KARs harboring cortical fibrosis of more than 40%. Using a discriminant analysis method, the ΔADC, as a marker to detect such level of fibrosis or higher, led to a specificity and sensitivity of 100% and 71%, respectively. This new index has potential for noninvasive assessment of fibrosis in the clinical setting. PMID:27439482

  14. New Magnetic Resonance Imaging Index for Renal Fibrosis Assessment: A Comparison between Diffusion-Weighted Imaging and T1 Mapping with Histological Validation.

    PubMed

    Friedli, I; Crowe, L A; Berchtold, L; Moll, S; Hadaya, K; de Perrot, T; Vesin, C; Martin, P-Y; de Seigneux, S; Vallée, J-P

    2016-01-01

    A need exists to noninvasively assess renal interstitial fibrosis, a common process to all kidney diseases and predictive of renal prognosis. In this translational study, Magnetic Resonance Imaging (MRI) T1 mapping and a new segmented Diffusion-Weighted Imaging (DWI) technique, for Apparent Diffusion Coefficient (ADC), were first compared to renal fibrosis in two well-controlled animal models to assess detection limits. Validation against biopsy was then performed in 33 kidney allograft recipients (KARs). Predictive MRI indices, ΔT1 and ΔADC (defined as the cortico-medullary differences), were compared to histology. In rats, both T1 and ADC correlated well with fibrosis and inflammation showing a difference between normal and diseased kidneys. In KARs, MRI indices were not sensitive to interstitial inflammation. By contrast, ΔADC outperformed ΔT1 with a stronger negative correlation to fibrosis (R(2) = 0.64 against R(2) = 0.29 p < 0.001). ΔADC tends to negative values in KARs harboring cortical fibrosis of more than 40%. Using a discriminant analysis method, the ΔADC, as a marker to detect such level of fibrosis or higher, led to a specificity and sensitivity of 100% and 71%, respectively. This new index has potential for noninvasive assessment of fibrosis in the clinical setting. PMID:27439482

  15. Automated Defect Classification (ADC)

    1998-01-01

    The ADC Software System is designed to provide semiconductor defect feature analysis and defect classification capabilities. Defect classification is an important software method used by semiconductor wafer manufacturers to automate the analysis of defect data collected by a wide range of microscopy techniques in semiconductor wafer manufacturing today. These microscopies (e.g., optical bright and dark field, scanning electron microscopy, atomic force microscopy, etc.) generate images of anomalies that are induced or otherwise appear on wafermore » surfaces as a result of errant manufacturing processes or simple atmospheric contamination (e.g., airborne particles). This software provides methods for analyzing these images, extracting statistical features from the anomalous regions, and applying supervised classifiers to label the anomalies into user-defined categories.« less

  16. Image enhancement based on gamma map processing

    NASA Astrophysics Data System (ADS)

    Tseng, Chen-Yu; Wang, Sheng-Jyh; Chen, Yi-An

    2010-05-01

    This paper proposes a novel image enhancement technique based on Gamma Map Processing (GMP). In this approach, a base gamma map is directly generated according to the intensity image. After that, a sequence of gamma map processing is performed to generate a channel-wise gamma map. Mapping through the estimated gamma, image details, colorfulness, and sharpness of the original image are automatically improved. Besides, the dynamic range of the images can be virtually expanded.

  17. The Cartographic Concept of the Image Map

    NASA Astrophysics Data System (ADS)

    Vozenilek, V.; Belka, L.

    2016-06-01

    Image maps have become very popular and frequently produced cartographical outputs during recent years. However, the unambiguous terminology, definitions, content and appearance specification have not been widely researched. The paper deals with the new definition of image map, its components delineation, and basic classification. The authors understand the image map as a special map portraying geographic space in a particular cartographical projection and map scale, where its content consists of two basic components - image and symbol components. Image component is represented by remote sensing image(s), while symbol component is represented by cartographical symbols. An image map has to have three essential attributes: cartographical projection, map scale and symbol component by means of map language. The authors also present aspects of topographic and thematic image maps.

  18. Diffusion-weighted imaging with apparent diffusion coefficient mapping and spectroscopy in prostate cancer.

    PubMed

    Jacobs, Michael A; Ouwerkerk, Ronald; Petrowski, Kyle; Macura, Katarzyna J

    2008-12-01

    Prostate cancer is a major health problem, and the exploration of noninvasive imaging methods that have the potential to improve specificity while maintaining high sensitivity is still critically needed. Tissue changes induced by tumor growth can be visualized by magnetic resonance imaging (MRI) methods. Current MRI methods include conventional T2-weighted imaging, diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping and magnetic resonance spectroscopy (MRS). Techniques such as DWI/ADC provide functional information about the behavior of water molecules in tissue; MRS can provide biochemical information about the presence or absence of certain metabolites, such as choline, creatine, and citrate. Finally, vascular parameters can be investigated using dynamic contrast-enhanced MRI. Moreover, with whole-body MRI and DWI, metastatic disease can be evaluated in 1 session and may provide a way to monitor treatment. Therefore, when combining these various methods, a multiparametric data set can be built to assist in the detection, localization, assessment of prostate cancer aggressiveness, and tumor staging. Such a comprehensive approach offers more power to evaluate prostate disease than any single measure alone. In this article, we focus on the role of DWI/ADC and MRS in the detection and characterization using both in vivo and ex vivo imaging of prostate pathology. PMID:19512848

  19. Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon

    2013-07-01

    This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.

  20. User Preferences in Image Map Using

    NASA Astrophysics Data System (ADS)

    Vondráková, A.; Vozenilek, V.

    2016-06-01

    In the process of map making, the attention is given to the resulting image map (to be accurate, readable, and suit the primary purpose) and its user aspects. Current cartography understands the user issues as all matters relating to user perception, map use and also user preferences. Most commercial cartographic production is strongly connected to economic circumstances. Companies are discovering user's interests and market demands. However, is it sufficient to focus just on the user's preferences? Recent research on user aspects at Palacký University Olomouc addresses a much wider scope of user aspects. The user's preferences are very often distorting - the users think that the particular image map is kind, beautiful, and useful and they wants to buy it (or use it - it depends on the form of the map production). But when the same user gets the task to use practically this particular map (such as finding the shortest way), so the user concludes that initially preferred map is useless, and uses a map, that was worse evaluated according to his preferences. It is, therefore, necessary to evaluate not only the correctness of image maps and their aesthetics but also to assess the user perception and other user issues. For the accomplishment of such testing, eye-tracking technology is a useful tool. The research analysed how users read image maps, or if they prefer image maps over traditional maps. The eye tracking experiment on the comparison of the conventional and image map reading was conducted. The map readers were asked to solve few simple tasks with either conventional or image map. The readers' choice of the map to solve the task was one of investigated aspect of user preferences. Results demonstrate that the user preferences and user needs are often quite different issues. The research outcomes show that it is crucial to implement map user testing into the cartographic production process.

  1. New Interactive Data Browsing Features of the ADC Viewer

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Shaya, E.; Blackwell, J.; Gass, J.; Oliversen, N.; Schneider, G.; Cheung, C.; White, R. A.

    1999-05-01

    The Astronomical Data Center (ADC, http://adc.gsfc.nasa.gov) has more than 700 catalogs and ~ 2000 journal tables of astronomical data that are easily accessed using the ADC Table Viewer (http://adc.gsfc.nasa.gov/viewer). This tool encompasses many data view and visualization capabilities such as the sorting, subsetting, and search of data. Additionally, its modular design allows it to leverage the abilities of the other ADC tools such as mission search and sky map plotting (IMPReSS) and the plotting/over-plotting of selected data (CatsEye). We report on the latest features of the ADC Viewer. This next generation software now empowers the user to upload their own tables, to perform non-trivial column arithmetic, to search regions of the sky using circular (in addition to square) regions and to download their tables in a variety of formats including FITS and tab or comma delimited ASCII text.

  2. ADC histograms predict response to anti-angiogenic therapy in patients with recurrent high-grade glioma

    PubMed Central

    2011-01-01

    Introduction The purpose of this study is to evaluate apparent diffusion coefficient (ADC) maps to distinguish anti-vascular and anti-tumor effects in the course of anti-angiogenic treatment of recurrent high-grade gliomas (rHGG) as compared to standard magnetic resonance imaging (MRI). Methods This retrospective study analyzed ADC maps from diffusion-weighted MRI in 14 rHGG patients during bevacizumab/irinotecan (B/I) therapy. Applying image segmentation, volumes of contrast-enhanced lesions in T1 sequences and of hyperintense T2 lesions (hT2) were calculated. hT2 were defined as regions of interest (ROI) and registered to corresponding ADC maps (hT2-ADC). Histograms were calculated from hT2-ADC ROIs. Thereafter, histogram asymmetry termed “skewness” was calculated and compared to progression-free survival (PFS) as defined by the Response Assessment Neuro-Oncology (RANO) Working Group criteria. Results At 8–12 weeks follow-up, seven (50%) patients showed a partial response, three (21.4%) patients were stable, and four (28.6%) patients progressed according to RANO criteria. hT2-ADC histograms demonstrated statistically significant changes in skewness in relation to PFS at 6 months. Patients with increasing skewness (n=11) following B/I therapy had significantly shorter PFS than did patients with decreasing or stable skewness values (n=3, median percentage change in skewness 54% versus −3%, p=0.04). Conclusion In rHGG patients, the change in ADC histogram skewness may be predictive for treatment response early in the course of anti-angiogenic therapy and more sensitive than treatment assessment based solely on RANO criteria. PMID:21125399

  3. Image mapping with the Thematic Mapper.

    USGS Publications Warehouse

    Colvocoresses, A.P.

    1986-01-01

    This paper deals principally with Landsat Thematic Mapper (TM) image maps as published by the US Geological Survey (USGS). Landsat data have certain characteristics that make them suitable for conversion into image maps. These characteristics involve 1) spatial resolution, 2) geometric fidelity, and 3) spectral response. This paper analyzes the three mentioned characteristics and discusses the processes involved in producing TM image maps.-from Author

  4. Image registration using binary boundary maps

    NASA Technical Reports Server (NTRS)

    Andrus, J. F.; Campbell, C. W.; Jayroe, R. R.

    1978-01-01

    Registration technique that matches binary boundary maps extracted from raw data, rather than matching actual data, is considerably faster than other techniques. Boundary maps, which are digital representations of regions where image amplitudes change significantly, typically represent data compression of 60 to 70 percent. Maps allow average products to be computed with addition rather than multiplication, further reducing computation time.

  5. MAPPING DIRECTLY IMAGED GIANT EXOPLANETS

    SciTech Connect

    Kostov, Veselin; Apai, Daniel

    2013-01-01

    With the increasing number of directly imaged giant exoplanets, the current atmosphere models are often not capable of fully explaining the spectra and luminosity of the sources. A particularly challenging component of the atmosphere models is the formation and properties of condensate cloud layers, which fundamentally impact the energetics, opacity, and evolution of the planets. Here we present a suite of techniques that can be used to estimate the level of rotational modulations these planets may show. We propose that the time-resolved observations of such periodic photometric and spectroscopic variations of extrasolar planets due to their rotation can be used as a powerful tool to probe the heterogeneity of their optical surfaces. In this paper, we develop simulations to explore the capabilities of current and next-generation ground- and space-based instruments for this technique. We address and discuss the following questions: (1) what planet properties can be deduced from the light curve and/or spectra, and in particular can we determine rotation periods, spot coverage, spot colors, and spot spectra?; (2) what is the optimal configuration of instrument/wavelength/temporal sampling required for these measurements?; and (3) can principal component analysis be used to invert the light curve and deduce the surface map of the planet? Our simulations describe the expected spectral differences between homogeneous (clear or cloudy) and patchy atmospheres, outline the significance of the dominant absorption features of H{sub 2}O, CH{sub 4}, and CO, and provide a method to distinguish these two types of atmospheres. Assuming surfaces with and without clouds for most currently imaged planets the current models predict the largest variations in the J band. Simulated photometry from current and future instruments is used to estimate the level of detectable photometric variations. We conclude that future instruments will be able to recover not only the rotation periods

  6. Effect of imaging parameters on the accuracy of apparent diffusion coefficient and optimization strategies

    PubMed Central

    Celik, Azim

    2016-01-01

    PURPOSE We aimed to investigate the effect of key imaging parameters on the accuracy of apparent diffusion coefficient (ADC) maps using a phantom model combined with ADC calculation simulation and propose strategies to improve the accuracy of ADC quantification. METHODS Diffusion-weighted imaging (DWI) sequences were acquired on a phantom model using single-shot echo-planar imaging DWI at 1.5 T scanner by varying key imaging parameters including number of averages (NEX), repetition time (TR), echo time (TE), and diffusion preparation pulses. DWI signal simulations were performed for varying TR and TE. RESULTS Magnetic resonance diffusion signal and ADC maps were dependent on TR and TE imaging parameters as well as number of diffusion preparation pulses, but not on the NEX. However, the choice of a long TR and short TE could be used to minimize their effects on the resulting DWI sequences and ADC maps. CONCLUSION This study shows that TR and TE imaging parameters affect the diffusion images and ADC maps, but their effect can be minimized by utilizing diffusion preparation pulses. Another key imaging parameter, NEX, is less relevant to DWI and ADC quantification as long as DWI signal-to-noise ratio is above a certain level. Based on the phantom results and data simulations, DWI acquisition protocol can be optimized to obtain accurate ADC maps in routine clinical application for whole body imaging. PMID:26573977

  7. Cruel and Unusual: Negative Images of Arabs in American Popular Culture. Third Edition. ADC Issue Paper No. 15.

    ERIC Educational Resources Information Center

    Michalak, Laurence

    This document addresses the negative image of Arabs among the U.S. public. While formal education has created many of the misconceptions about Arabs that abound in the west, many of the misconceptions come from the informal education of popular culture. The western image of the Arab is possibly more interesting than the reality of Arab culture.…

  8. Software Operates On Bit-Map Images

    NASA Technical Reports Server (NTRS)

    Choi, Diana

    1992-01-01

    PIXTOOLS is software for Silicon Graphics IRIS consisting of thirteen programs plus library for operating on bit-map images. Enables user to create, edit, and save high-resolution images in forms in which displayed on video screens, resize them, and capture them. Eleven programs print information and read and write files. Two offer graphical interfaces. Menus enable manipulation of images and background color and saving of an image screen to file. Written in C.

  9. Brain mapping: new wave optical imaging.

    PubMed

    Mrsic-Flogel, Thomas; Hübener, Mark; Bonhoeffer, Tobias

    2003-09-30

    Optical imaging of intrinsic signals is widely used for high-resolution brain mapping in various animal species. A new approach using continuous data acquisition and Fourier decomposition of the signal allows for much faster mapping, opening up the possibility of applying this method to new experimental questions. PMID:14521859

  10. ART AND SCIENCE OF IMAGE MAPS.

    USGS Publications Warehouse

    Kidwell, Richard D.; McSweeney, Joseph A.

    1985-01-01

    The visual image of reflected light is influenced by the complex interplay of human color discrimination, spatial relationships, surface texture, and the spectral purity of light, dyes, and pigments. Scientific theories of image processing may not always achieve acceptable results as the variety of factors, some psychological, are in part, unpredictable. Tonal relationships that affect digital image processing and the transfer functions used to transform from the continuous-tone source image to a lithographic image, may be interpreted for an insight of where art and science fuse in the production process. The application of art and science in image map production at the U. S. Geological Survey is illustrated and discussed.

  11. Design of ADC in 25 μm pixels pitch dedicated for IRFPA image processing at LETI

    NASA Astrophysics Data System (ADS)

    Tchagaspanian, M.; Villard, P.; Dupont, B.; Chammings, G.; Martin, J. L.; Pistre, C.; Lattard, D.; Chantre, C.; Arnaud, A.; Yon, J. J.; Simoens, F.; Tissot, J. L.

    2007-04-01

    LETI has been involved in IRFPA development since 1978, the design department (LETI/DCIS) has focused its work on new ROIC architecture since many years. The trend is to integrate advanced functions into the CMOS design in the aim of making cost efficient sensors. The purpose of this paper is to present the latest developments of an Analog to Digital Converter embedded in a 25μm pixel. The design is driven by several goals. It targets both long integration time and snapshot exposure, 100% of image frame time being available for integration. All pixels are integrating the IR signal at the same time. The IR signal is converted into digital by using a charge packet counter. High density 130nm CMOS allows to use many digital functions such as counting, memory and addressing. This new structure has been applied to 25μm pitch bolometer sensors with a dedicated 320 x 240 IRCMOS circuit. Due to smart image processing in the CMOS, the bolometer architecture requirements may become very simple and low cost. The room temperature sensitivity and the DC offset are solved directly in the pixel. This FPA targets low NETD (<50mK), a variation of 80 Kelvin for the FPA temperature, 14 bits output at 50/60Hz video rate.

  12. Distinctiveness Maps for Image Matching

    NASA Technical Reports Server (NTRS)

    Manduchi, Roberto; Tomasi, Carlo

    2000-01-01

    Stereo correspondence is hard because different image features can look alike. We propose a measure for the ambiguity of image points that allows matching distinctive points first and breaks down the matching task into smaller and separate subproblems. Experiments with an algorithm based on this measure demonstrate the ensuing efficiency and low likelihood of incorrect matches.

  13. Digital image registration method using boundary maps

    NASA Technical Reports Server (NTRS)

    Andrus, J. F.; Campbell, C. W.; Jayroe, R. R.

    1975-01-01

    A new method of automatic image registration (matching) is presented. It requires that the original single or multichannel images first be converted to binary boundary maps having elements equal to zero or unity. The method corrects for both translational and rotational errors. One feature of the technique is the rapid calculation of a pseudo correlation matrix NCOR using only integer additions. It is argued that the use of boundary maps is advisable when the data from the two images are acquired under different conditions; i.e., weather conditions, lighting conditions, etc.

  14. Ventricular enlargement and its clinical correlates in the imaging cohort from the ADCS MCI donepezil/vitamin E study.

    PubMed

    Apostolova, Liana G; Babakchanian, Sona; Hwang, Kristy S; Green, Amity E; Zlatev, Dimitar; Chou, Yi-Yu; DeCarli, Charlie; Jack, Clifford R; Petersen, Ronald C; Aisen, Paul S; Cummings, Jeffrey L; Toga, Arthur W; Thompson, Paul M

    2013-01-01

    We analyzed the baseline and 3-year T1-weighted magnetic resonance imaging data of 110 amnestic mild cognitive impairment (MCI) participants with minimal hippocampal atrophy at baseline from the Alzheimer's Disease Cooperative Study group MCI Donepezil/Vitamin E trial. Forty-six subjects converted to Alzheimer disease (AD) (MCIc), whereas 64 remained stable (MCInc). We used the radial distance technique to examine the differences in lateral ventricle shape and size between MCIc and MCInc and the associations between ventricular enlargement and cognitive decline. MCIc group had significantly larger frontal and right body/occipital horns relative to MCInc at baseline and significantly larger bilateral frontal, body/occipital, and left temporal horns at follow-up. Global cognitive decline measured with AD Assessment scale cognitive subscale and Mini-Mental State Examination and decline in activities of daily living (ADL) were associated with posterior lateral ventricle enlargement. Decline in AD Assessment scale cognitive subscale and ADL were associated with left temporal and decline in Mini-Mental State Examination with right temporal horn enlargement. After correction for baseline hippocampal volume, decline in ADL showed a significant association with right frontal horn enlargement. Executive decline was associated with right frontal and left temporal horn enlargement. PMID:23694947

  15. The use of MRI apparent diffusion coefficient (ADC) in monitoring the development of brain infarction

    PubMed Central

    2011-01-01

    Background To study the rules that apparent diffusion coefficient (ADC) changes with time and space in cerebral infarction, and to provide the evidence in defining the infarction stages. Methods 117 work-ups in 98 patients with cerebral infarction (12 hyperacute, 43 acute, 29 subacute, 10 steady, and 23 chronic infarctions) were imaged with both conventional MRI and diffusion weighted imaging. The average ADC values, the relative ADC (rADC) values, and the ADC values or rADC values from the center to the periphery of the lesion were calculated. Results The average ADC values and the rADC values of hyperacute and acute infarction lesion depressed obviously. rADC values in hyperacute and acute stage was minimized, and increased progressively as time passed and appeared as "pseudonormal" values in approximately 8 to 14 days. Thereafter, rADC values became greater than normal in chronic stage. There was positive correlation between rADC values and time (P < 0.01). The ADC values and the rADC values in hyperacute and acute lesions had gradient signs that these lesions increased from the center to the periphery. The ADC values and the rADC values in subacute lesions had adverse gradient signs that these lesions decreased from the center to the periphery. Conclusion The ADC values of infarction lesions have evolution rules with time and space. The evolution rules with time and those in space can be helpful to decide the clinical stage, and to provide the evidence in guiding the treatment or judging the prognosis in infarction. PMID:21211049

  16. Image inpainting strategy for Kinect depth maps

    NASA Astrophysics Data System (ADS)

    Yao, Huimin; Chen, Yan; Ge, Chenyang

    2013-07-01

    The great advantage of Microsoft Kinect makes the depth acquisition real-time and inexpensive. But the depth maps directly obtained with the Microsoft Kinect device have absent regions and holes caused by optical factors. The noisy depth maps affect lots of complex tasks in computer vision. In order to improve the quality of the depth maps, this paper presents an efficient image inpainting strategy which is based on watershed segmentation and region merging framework of the corresponding color images. The primitive regions produced by watershed transform are merged into lager regions according to color similarity and edge among regions. Finally, mean filter operator to the adjacent pixels is used to fill up missing depth values and deblocking filter is applied for smoothing depth maps.

  17. Diffusion Weighted MR Imaging to Evaluate Treatment Results after Volumetric MR-guided High Intensity Focused Ultrasound of Uterine Fibroids: Influence of Different B-values

    NASA Astrophysics Data System (ADS)

    Voogt, M. J.; Keserci, B.; Kim, Y. S.; Rhim, H.; Lim, H. K.; Mougenot, C.; Kohler, M. O.; van den Bosch, M. A.; Vincken, K. L.; Bartels, L. W.

    2011-09-01

    We have assessed the feasibility of using diffusion weighted MR imaging (DWI) and apparent diffusion coefficient (ADC) mapping using different b-value combinations to evaluate treatment results after volumetric magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) for uterine fibroids. Pre-treatment, directly post-treatment and 1 month follow-up DW images were obtained using b-values 0, 200, 400, 600 and 800 s/mm2. ADC maps were constructed for quantitative analysis of ablation results. Four different combinations of b-values were used to calculate the ADC. Directly after treatment ADC values decreased. Low b-values (0 and 200 s/mm2) resulted in the best contrast between non-perfused and perfused tissue. One month after treatment the average ADC was increased, now showing the best contrast on the high b-value ADC maps.

  18. Compression of color-mapped images

    NASA Technical Reports Server (NTRS)

    Hadenfeldt, A. C.; Sayood, Khalid

    1992-01-01

    In a standard image coding scenario, pixel-to-pixel correlation nearly always exists in the data, especially if the image is a natural scene. This correlation is what allows predictive coding schemes (e.g., DPCM) to perform efficient compression. In a color-mapped image, the values stored in the pixel array are no longer directly related to the pixel intensity. Two color indices which are numerically adjacent (close) may point to two very different colors. The correlation still exists, but only via the colormap. This fact can be exploited by sorting the color map to reintroduce the structure. The sorting of colormaps is studied and it is shown how the resulting structure can be used in both lossless and lossy compression of images.

  19. Analysis and correction of gradient nonlinearity bias in ADC measurements

    PubMed Central

    Malyarenko, Dariya I.; Ross, Brian D.; Chenevert, Thomas L.

    2013-01-01

    Purpose Gradient nonlinearity of MRI systems leads to spatially-dependent b-values and consequently high non-uniformity errors (10–20%) in ADC measurements over clinically relevant field-of-views. This work seeks practical correction procedure that effectively reduces observed ADC bias for media of arbitrary anisotropy in the fewest measurements. Methods All-inclusive bias analysis considers spatial and time-domain cross-terms for diffusion and imaging gradients. The proposed correction is based on rotation of the gradient nonlinearity tensor into the diffusion gradient frame where spatial bias of b-matrix can be approximated by its Euclidean norm. Correction efficiency of the proposed procedure is numerically evaluated for a range of model diffusion tensor anisotropies and orientations. Results Spatial dependence of nonlinearity correction terms accounts for the bulk (75–95%) of ADC bias for FA = 0.3–0.9. Residual ADC non-uniformity errors are amplified for anisotropic diffusion. This approximation obviates need for full diffusion tensor measurement and diagonalization to derive a corrected ADC. Practical scenarios are outlined for implementation of the correction on clinical MRI systems. Conclusions The proposed simplified correction algorithm appears sufficient to control ADC non-uniformity errors in clinical studies using three orthogonal diffusion measurements. The most efficient reduction of ADC bias for anisotropic medium is achieved with non-lab-based diffusion gradients. PMID:23794533

  20. Photonic ADC: overcoming the bottleneck of electronic jitter.

    PubMed

    Khilo, Anatol; Spector, Steven J; Grein, Matthew E; Nejadmalayeri, Amir H; Holzwarth, Charles W; Sander, Michelle Y; Dahlem, Marcus S; Peng, Michael Y; Geis, Michael W; DiLello, Nicole A; Yoon, Jung U; Motamedi, Ali; Orcutt, Jason S; Wang, Jade P; Sorace-Agaskar, Cheryl M; Popović, Miloš A; Sun, Jie; Zhou, Gui-Rong; Byun, Hyunil; Chen, Jian; Hoyt, Judy L; Smith, Henry I; Ram, Rajeev J; Perrott, Michael; Lyszczarz, Theodore M; Ippen, Erich P; Kärtner, Franz X

    2012-02-13

    Accurate conversion of wideband multi-GHz analog signals into the digital domain has long been a target of analog-to-digital converter (ADC) developers, driven by applications in radar systems, software radio, medical imaging, and communication systems. Aperture jitter has been a major bottleneck on the way towards higher speeds and better accuracy. Photonic ADCs, which perform sampling using ultra-stable optical pulse trains generated by mode-locked lasers, have been investigated for many years as a promising approach to overcome the jitter problem and bring ADC performance to new levels. This work demonstrates that the photonic approach can deliver on its promise by digitizing a 41 GHz signal with 7.0 effective bits using a photonic ADC built from discrete components. This accuracy corresponds to a timing jitter of 15 fs - a 4-5 times improvement over the performance of the best electronic ADCs which exist today. On the way towards an integrated photonic ADC, a silicon photonic chip with core photonic components was fabricated and used to digitize a 10 GHz signal with 3.5 effective bits. In these experiments, two wavelength channels were implemented, providing the overall sampling rate of 2.1 GSa/s. To show that photonic ADCs with larger channel counts are possible, a dual 20-channel silicon filter bank has been demonstrated. PMID:22418205

  1. Technique of diffusion weighted imaging and its application in stroke

    NASA Astrophysics Data System (ADS)

    Li, Enzhong; Tian, Jie; Han, Ying; Wang, Huifang; Li, Wu; He, Huiguang

    2003-05-01

    To study the application of diffusion weighted imaging and image post processing in the diagnosis of stroke, especially in acute stroke, 205 patients were examined by 1.5 T or 1.0 T MRI scanner and the images such as T1, T2 and diffusion weighted images were obtained. Image post processing was done with "3D Med System" developed by our lab to analyze data and acquire the apparent diffusion coefficient (ADC) map. In acute and subacute stage of stroke, the signal in cerebral infarction areas changed to hyperintensity in T2- and diffusion-weighted images, normal or hypointensity in T1-weighted images. In hyperacute stage, however, the signal was hyperintense just in the diffusion weighted imaes; others were normal. In the chronic stage, the signal in T1- and diffusion-weighted imaging showed hypointensity and hyperintensity in T2 weighted imaging. Because ADC declined obviously in acute and subacute stage of stroke, the lesion area was hypointensity in ADC map. With the development of the disease, ADC gradually recovered and then changed to hyperintensity in ADC map in chronic stage. Using diffusion weighted imaging and ADC mapping can make a diagnosis of stroke, especially in the hyperacute stage of stroke, and can differentiate acute and chronic stroke.

  2. Weekly multimodal MRI follow-up of two multiple sclerosis active lesions presenting a transient decrease in ADC

    PubMed Central

    Hannoun, Salem; Roch, Jean-Amédée; Durand-Dubief, Francoise; Vukusic, Sandra; Sappey-Marinier, Dominique; Guttmann, Charles RG; Cotton, Francois

    2015-01-01

    Background and purpose Blood-brain barrier disruption during the earliest phases of lesion formation in multiple sclerosis (MS) patients is commonly ascribed to perivenular inflammatory activity and is usually accompanied by increased diffusivity. Reduced diffusivity has also been shown in active lesions, albeit less frequently. This study aimed to characterize the development and natural history of contrast-enhanced lesions by weekly following five relapsing remitting (RR) MS patients. Materials and methods Diffusion tensor imaging (DTI), perfusion imaging, FLAIR and contrast-enhanced 3D T1-weighted MR, were weekly performed on five untreated patients recently diagnosed with RR MS. Results All five patients showed significant increases of the apparent diffusion coefficient (ADC) in the lesions compared to the first time point. One of the five patients presented 98 active lesions on ADC maps among which 36 had a volume larger than 10 mm3. In two of these lesions, a 1 week transient decrease in ADC was detected at the time of the first gadolinium enhancement. Also, the perfusion analysis showed a concomitant increase in the relative cerebral blood volume. Conclusions The infrequency detection of such ADC decrease in a new lesion is probably due to its very short duration. This observation may be consistent with a hyper-acute inflammatory stage concomitant with an increased reactional perfusion. PMID:25642392

  3. Monitoring T2 and ADC at 9.4 T following fractionated external beam radiation therapy in a mouse model

    NASA Astrophysics Data System (ADS)

    Larocque, Matthew P.; Syme, Alasdair; Yahya, Atiyah; Wachowicz, Keith; Allalunis-Turner, Joan; Fallone, B. Gino

    2010-03-01

    The purpose of this study is to investigate the response of transverse relaxation time (T2) and apparent diffusion coefficient (ADC) in human glioma tumor xenografts during and after fractionated radiotherapy. Tumor-bearing mice were divided into four treatment groups (n = 6 per group) that received a total dose of 800 cGy of 200 kVp x-rays, given over two or three fractions, with a fraction spacing of either 24 or 72 h. A fifth treatment group received 800 cGy in a single fraction, and a sixth group of mice served as an untreated control. All mice were scanned pretreatment, before each fraction and at multiple points after treatment using a 9.4 T magnetic resonance imaging (MRI) system. Quantitative T2 and ADC maps were produced. All treated groups showed an increase in mean tumor ADC, though the time for this response to reach a maximum and return toward baseline was delayed in the fractionated groups. The highest ADC was measured 7 days after the final fraction of treatment for all groups. There were no significant differences in the maximum measured change in ADC between any of the treated groups, with the average measured maximum value being 20.5% above baseline. After treatment, all groups showed an increase in mean tumor T2, with the average measured maximum T2 being 4.7% above baseline. This increase was followed by a transition to mean T2 values below baseline values, with the average measured tumor T2 being 92.4% of the pretreatment value. The transition between elevated and depressed T2 values was delayed in the cases of fractionated therapies and occurred between 3.6 and 7.3 days after the last fraction of treatment. These results further the understanding of the temporal evolution of T2 and ADC during fractionated radiotherapy and support their potential use as time-sensitive biomarkers for tumor response.

  4. Image mapping spectrometry: calibration and characterization

    PubMed Central

    Bedard, Noah; Hagen, Nathan; Gao, Liang; Tkaczyk, Tomasz S.

    2012-01-01

    Image mapping spectrometry (IMS) is a hyperspectral imaging technique that simultaneously captures spatial and spectral information about an object in real-time. We present a new calibration procedure for the IMS as well as the first detailed evaluation of system performance. We correlate optical components and device calibration to performance metrics such as light throughput, scattered light, distortion, spectral image coregistration, and spatial/spectral resolution. Spectral sensitivity and motion artifacts are also evaluated with a dynamic biological experiment. The presented methodology of evaluation is useful in assessment of a variety of hyperspectral and multi-spectral modalities. Results are important to any potential users/developers of an IMS instrument and to anyone who may wish to compare the IMS to other imaging spectrometers. PMID:22962504

  5. Image encryption with chaotically coupled chaotic maps

    NASA Astrophysics Data System (ADS)

    Pisarchik, A. N.; Zanin, M.

    2008-10-01

    We present a novel secure cryptosystem for direct encryption of color images, based on chaotically coupled chaotic maps. The proposed cipher provides good confusion and diffusion properties that ensures extremely high security because of the chaotic mixing of pixels’ colors. Information is mixed and distributed over a complete image using a complex strategy that makes known plaintext attack unfeasible. The encryption algorithm guarantees the three main goals of cryptography: strong cryptographic security, short encryption/decryption time, and robustness against noise and other external disturbances. Due to the high speed, the proposed cryptosystem is suitable for application in real-time communication systems.

  6. Multivariate statistical mapping of spectroscopic imaging data.

    PubMed

    Young, Karl; Govind, Varan; Sharma, Khema; Studholme, Colin; Maudsley, Andrew A; Schuff, Norbert

    2010-01-01

    For magnetic resonance spectroscopic imaging studies of the brain, it is important to measure the distribution of metabolites in a regionally unbiased way; that is, without restrictions to a priori defined regions of interest. Since magnetic resonance spectroscopic imaging provides measures of multiple metabolites simultaneously at each voxel, there is furthermore great interest in utilizing the multidimensional nature of magnetic resonance spectroscopic imaging for gains in statistical power. Voxelwise multivariate statistical mapping is expected to address both of these issues, but it has not been previously employed for spectroscopic imaging (SI) studies of brain. The aims of this study were to (1) develop and validate multivariate voxel-based statistical mapping for magnetic resonance spectroscopic imaging and (2) demonstrate that multivariate tests can be more powerful than univariate tests in identifying patterns of altered brain metabolism. Specifically, we compared multivariate to univariate tests in identifying known regional patterns in simulated data and regional patterns of metabolite alterations due to amyotrophic lateral sclerosis, a devastating brain disease of the motor neurons. PMID:19953514

  7. A comparative quantitative analysis of magnetic susceptibility artifacts in echo planar and PROPELLER diffusion-weighted images

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Hwan; Lee, Hae-Kag; Yang, Han-Joon; Lee, Gui-Won; Park, Yong-Soon; Chung, Woon-Kwan

    2013-01-01

    In this study, the authors investigated whether periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) diffusion-weighted imaging (DWI) can remove magnetic susceptibility artifacts and compared apparent diffusion coefficient (ADC) values for PROPELLER DWI and the common echo planar (EP) DWI. Twenty patients that underwent brain MRI with a metal dental implant were selected. A 3.0T MR scanner was then used to obtain EP DWI, PROPELLER DWI, and corresponding apparent diffusion coefficient (ADC) maps for a b-value of 0 and 1,000 s/mm2. The frequencies of magnetic susceptibility artifacts in four parts of the brain (bilateral temporal lobes, pons, and orbit) were selected. In the ADC maps, we measured the ADC values of both sides of the temporal lobe and the pons. According to the study results, the frequency of magnetic susceptibility artifacts in PROPELLER DW images was lower than it was in EP DW images. In ADC maps, the ADC values of the bilateral temporal lobes and the pons were all higher in PROPELLER ADC maps than in EP ADC maps. Our findings show that when a high-field MRI machine is used, magnetic susceptibility artifacts can distort anatomical structures and produce high-intensity signals. Furthermore, our findings suggest that in many cases, PROPELLER DWI would be helpful in terms of achieving a correct diagnosis.

  8. Mapping Soil Organic Matter with Hyperspectral Imaging

    NASA Astrophysics Data System (ADS)

    Moni, Christophe; Burud, Ingunn; Flø, Andreas; Rasse, Daniel

    2014-05-01

    Soil organic matter (SOM) plays a central role for both food security and the global environment. Soil organic matter is the 'glue' that binds soil particles together, leading to positive effects on soil water and nutrient availability for plant growth and helping to counteract the effects of erosion, runoff, compaction and crusting. Hyperspectral measurements of samples of soil profiles have been conducted with the aim of mapping soil organic matter on a macroscopic scale (millimeters and centimeters). Two soil profiles have been selected from the same experimental site, one from a plot amended with biochar and another one from a control plot, with the specific objective to quantify and map the distribution of biochar in the amended profile. The soil profiles were of size (30 x 10 x 10) cm3 and were scanned with two pushbroomtype hyperspectral cameras, one which is sensitive in the visible wavelength region (400 - 1000 nm) and one in the near infrared region (1000 - 2500 nm). The images from the two detectors were merged together into one full dataset covering the whole wavelength region. Layers of 15 mm were removed from the 10 cm high sample such that a total of 7 hyperspectral images were obtained from the samples. Each layer was analyzed with multivariate statistical techniques in order to map the different components in the soil profile. Moreover, a 3-dimensional visalization of the components through the depth of the sample was also obtained by combining the hyperspectral images from all the layers. Mid-infrared spectroscopy of selected samples of the measured soil profiles was conducted in order to correlate the chemical constituents with the hyperspectral results. The results show that hyperspectral imaging is a fast, non-destructive technique, well suited to characterize soil profiles on a macroscopic scale and hence to map elements and different organic matter quality present in a complete pedon. As such, we were able to map and quantify biochar in our

  9. Mineral mapping and applications of imaging spectroscopy

    USGS Publications Warehouse

    Clark, R.N.; Boardman, J.; Mustard, J.; Kruse, F.; Ong, C.; Pieters, C.; Swayze, G.A.

    2006-01-01

    Spectroscopy is a tool that has been used for decades to identify, understand, and quantify solid, liquid, or gaseous materials, especially in the laboratory. In disciplines ranging from astronomy to chemistry, spectroscopic measurements are used to detect absorption and emission features due to specific chemical bonds, and detailed analyses are used to determine the abundance and physical state of the detected absorbing/emitting species. Spectroscopic measurements have a long history in the study of the Earth and planets. Up to the 1990s remote spectroscopic measurements of Earth and planets were dominated by multispectral imaging experiments that collect high-quality images in a few, usually broad, spectral bands or with point spectrometers that obtained good spectral resolution but at only a few spatial positions. However, a new generation of sensors is now available that combines imaging with spectroscopy to create the new discipline of imaging spectroscopy. Imaging spectrometers acquire data with enough spectral range, resolution, and sampling at every pixel in a raster image so that individual absorption features can be identified and spatially mapped (Goetz et al., 1985).

  10. Persistence Mapping Using EUV Solar Imager Data

    NASA Astrophysics Data System (ADS)

    Thompson, B. J.; Young, C. A.

    2016-07-01

    We describe a simple image processing technique that is useful for the visualization and depiction of gradually evolving or intermittent structures in solar physics extreme-ultraviolet imagery. The technique is an application of image segmentation, which we call “Persistence Mapping,” to isolate extreme values in a data set, and is particularly useful for the problem of capturing phenomena that are evolving in both space and time. While integration or “time-lapse” imaging uses the full sample (of size N ), Persistence Mapping rejects (N ‑ 1)/N of the data set and identifies the most relevant 1/N values using the following rule: if a pixel reaches an extreme value, it retains that value until that value is exceeded. The simplest examples isolate minima and maxima, but any quantile or statistic can be used. This paper demonstrates how the technique has been used to extract the dynamics in long-term evolution of comet tails, erupting material, and EUV dimming regions.

  11. Space Radar Image of Raco Vegetation Map

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a vegetation map of the Raco, Michigan area produced from data acquired by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard space shuttle Endeavour. The radar image, taken on April 9, 1994, has been used by science team members at the University of Michigan to produce detailed map of land cover. This image is centered at 46.4 degrees north latitude and 84.9 degrees west longitude. The imaged area is approximately 24 by 32 kilometers (15 by 20 miles). The Raco airport, which is a decommissioned military base, is easily identified by its triangular runway structure. An edge of Lake Superior, approximately 44 kilometers (27 miles) west of Sault Sainte Marie, appears in the top right of the image. In this land cover map each 30- by 30-meter (98- by 98-foot) spot is identified as either a water surface, bare ground, short vegetation, deciduous forest, lowland conifers or upland conifers. Different types of ground cover have different effects on Earth's chemical, water and energy cycles. By cataloguing ground cover in an area, scientists expect to better understand the processes of these cycles in a specific area. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio

  12. Analysing multitemporal SAR images for forest mapping

    NASA Astrophysics Data System (ADS)

    Maghsoudi, Yasser; Collins, Michael J.; Leckie, Donald G.

    2010-10-01

    The objective of this paper is twofold: first, to presents a generic approach for the analysis of Radarsat-1 multitemporal data and, second, to presents a multi classifier schema for the classification of multitemporal images. The general approach consists of preprocessing step and classification. In the preprocessing stage, the images are calibrated and registered and then temporally filtered. The resulted multitemporally filtered images are subsequently used as the input images in the classification step. The first step in a classifier design is to pick up the most informative features from a series of multitemporal SAR images. Most of the feature selection algorithms seek only one set of features that distinguish among all the classes simultaneously and hence a limited amount of classification accuracy. In this paper, a class-based feature selection (CBFS) was proposed. In this schema, instead of using feature selection for the whole classes, the features are selected for each class separately. The selection is based on the calculation of JM distance of each class from the rest of classes. Afterwards, a maximum likelihood classifier is trained on each of the selected feature subsets. Finally, the outputs of the classifiers are combined through a combination mechanism. Experiments are performed on a set of 34 Radarsat-1 images acquired from August 1996 to February 2007. A set of 9 classes in a forest area are used in this study. Classification results confirm the effectiveness of the proposed approach compared with the case of single feature selection. Moreover, the proposed process is generic and hence is applicable in different mapping purposes for which a multitemporal set of SAR images are available.

  13. Mapping Imaging Spectrometer for Europa (MISE)

    NASA Astrophysics Data System (ADS)

    Blaney, D. L.; Clark, R. N.; Dalton, J. B.; Davies, A. G.; Green, R. O.; Hedman, M. M.; Hibbits, C. A.; Langevin, Y. J.; Lunine, J. I.; McCord, T. B.; Soderblom, J. M.; Cable, M. L.; Mouroulis, P.; Kim, W.; Dorsky, L. I.; Strohbehn, K.

    2015-10-01

    The Mapping Imaging Spectrometer for Europa(MISE) instrument is designed to be able to unravel the composition of Europa, and to provide new insight into the processes that have in the past and continue to shape Europa, and on the habitability of Europa's ocean. The MISE design is the result of collaboration between NASA's Jet Propulsion Laboratory (California Institute of Technology) and the Applied Physics Laboratory (John Hopkins' University). JPL's Discovery Moon Mineralogy Mapper (M3) on Chandrayan-1 and APL's Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) comprise the technical basis for MISE. Internal JPL and APL investments in conjunction with NASA support under the ICEE program has allowed for instrument technology development and testing to achieve a design which would perform in Europa's radiation environment and meet potential sterilization requirements due to planetary protection.

  14. Robustly building keypoint mappings with global information on multispectral images

    NASA Astrophysics Data System (ADS)

    Li, Yong; Jin, Hongbin; Qiao, Wei; Jing, Jing; Yu, Hang

    2015-12-01

    This paper proposes an approach to robustly build keypoint mappings on multispectral images. The distinctiveness and repeatability of descriptors often decrease significantly on multispectral images and thus give unreliable keypoint mappings. To complement this decrease, global information over entire images is induced in this work to evaluate keypoint mappings. Initial keypoint mappings are established by utilizing descriptors. A pair of keypoint mappings determines a similarity transformation T, and then it is evaluated with the induced global information that is defined to be the similarity metric between the reference image and the transformed image by T. A process is utilized that iteratively considers the pairs of keypoint mappings and searches the best reference matched keypoint for every test keypoint. Experimental results show that the proposed approach can provide more reliable keypoint mappings than SIFT, ORB, FREAK, and ISS on multispectral images.

  15. Integrating Radar Image Data with Google Maps

    NASA Technical Reports Server (NTRS)

    Chapman, Bruce D.; Gibas, Sarah

    2010-01-01

    A public Web site has been developed as a method for displaying the multitude of radar imagery collected by NASA s Airborne Synthetic Aperture Radar (AIRSAR) instrument during its 16-year mission. Utilizing NASA s internal AIRSAR site, the new Web site features more sophisticated visualization tools that enable the general public to have access to these images. The site was originally maintained at NASA on six computers: one that held the Oracle database, two that took care of the software for the interactive map, and three that were for the Web site itself. Several tasks were involved in moving this complicated setup to just one computer. First, the AIRSAR database was migrated from Oracle to MySQL. Then the back-end of the AIRSAR Web site was updated in order to access the MySQL database. To do this, a few of the scripts needed to be modified; specifically three Perl scripts that query that database. The database connections were then updated from Oracle to MySQL, numerous syntax errors were corrected, and a query was implemented that replaced one of the stored Oracle procedures. Lastly, the interactive map was designed, implemented, and tested so that users could easily browse and access the radar imagery through the Google Maps interface.

  16. Intelligence, mapping, and geospatial exploitation system (IMAGES)

    NASA Astrophysics Data System (ADS)

    Moellman, Dennis E.; Cain, Joel M.

    1998-08-01

    This paper provides further detail to one facet of the battlespace visualization concept described in last year's paper Battlespace Situation Awareness for Force XXI. It focuses on the National Imagery and Mapping Agency (NIMA) goal to 'provide customers seamless access to tailorable imagery, imagery intelligence, and geospatial information.' This paper describes Intelligence, Mapping, and Geospatial Exploitation System (IMAGES), an exploitation element capable of CONUS baseplant operations or field deployment to provide NIMA geospatial information collaboratively into a reconnaissance, surveillance, and target acquisition (RSTA) environment through the United States Imagery and Geospatial Information System (USIGS). In a baseplant CONUS setting IMAGES could be used to produce foundation data to support mission planning. In the field it could be directly associated with a tactical sensor receiver or ground station (e.g. UAV or UGV) to provide near real-time and mission specific RSTA to support mission execution. This paper provides IMAGES functional level design; describes the technologies, their interactions and interdependencies; and presents a notional operational scenario to illustrate the system flexibility. Using as a system backbone an intelligent software agent technology, called Open Agent ArchitectureTM (OAATM), IMAGES combines multimodal data entry, natural language understanding, and perceptual and evidential reasoning for system management. Configured to be DII COE compliant, it would utilize, to the extent possible, COTS applications software for data management, processing, fusion, exploitation, and reporting. It would also be modular, scaleable, and reconfigurable. This paper describes how the OAATM achieves data synchronization and enables the necessary level of information to be rapidly available to various command echelons for making informed decisions. The reasoning component will provide for the best information to be developed in the timeline

  17. Pulmonary Imaging Biomarkers of Gas Trapping and Emphysema in COPD: (3)He MR Imaging and CT Parametric Response Maps.

    PubMed

    Capaldi, Dante P I; Zha, Nanxi; Guo, Fumin; Pike, Damien; McCormack, David G; Kirby, Miranda; Parraga, Grace

    2016-05-01

    Purpose To directly compare magnetic resonance (MR) imaging and computed tomography (CT) parametric response map (PRM) measurements of gas trapping and emphysema in ex-smokers both with and without chronic obstructive pulmonary disease (COPD). Materials and Methods Participants provided written informed consent to a protocol that was approved by a local research ethics board and Health Canada and was compliant with the HIPAA (Institutional Review Board Reg. #00000940). The prospectively planned study was performed from March 2014 to December 2014 and included 58 ex-smokers (mean age, 73 years ± 9) with (n = 32; mean age, 74 years ± 7) and without (n = 26; mean age, 70 years ± 11) COPD. MR imaging (at functional residual capacity plus 1 L), CT (at full inspiration and expiration), and spirometry or plethysmography were performed during a 2-hour visit to generate ventilation defect percent (VDP), apparent diffusion coefficient (ADC), and PRM gas trapping and emphysema measurements. The relationships between pulmonary function and imaging measurements were determined with analysis of variance (ANOVA), Holm-Bonferroni corrected Pearson correlations, multivariate regression modeling, and the spatial overlap coefficient (SOC). Results VDP, ADC, and PRM gas trapping and emphysema (ANOVA, P < .001) measurements were significantly different in healthy ex-smokers than they were in ex-smokers with COPD. In all ex-smokers, VDP was correlated with PRM gas trapping (r = 0.58, P < .001) and with PRM emphysema (r = 0.68, P < .001). VDP was also significantly correlated with PRM in ex-smokers with COPD (gas trapping: r = 0.47 and P = .03; emphysema: r = 0.62 and P < .001) but not in healthy ex-smokers. In a multivariate model that predicted PRM gas trapping, the forced expiratory volume in 1 second normalized to the forced vital capacity (standardized coefficients [βS] = -0.69, P = .001) and airway wall area percent (βS = -0.22, P = .02) were significant predictors. PRM

  18. Quantitative diffusion-weighted magnetic resonance imaging in the assessment of myocardial fibrosis in hypertrophic cardiomyopathy compared with T1 mapping.

    PubMed

    Wu, Lian-Ming; Chen, Bing-Hua; Yao, Qiu-Ying; Ou, Yang-Rongzheng; Wu, Rui; Jiang, Meng; Hu, Jiani; An, Dong-Aolei; Xu, Jian-Rong

    2016-08-01

    To identify myocardial fibrosis in hypertrophic cardiomyopathy (HCM) subjects using quantitative cardiac diffusion-weighted imaging (DWI) and to compare its performance with native T1 mapping and extracellular volume (ECV). Thirty-eight HCM subjects (mean age, 53 ± 9 years) and 14 normal controls (mean age, 51 ± 8 years) underwent cardiac magnetic resonance imaging (CMRI) on a 3.0T magnetic resonance (MR) machine with DWI, T1 mapping and late gadolinium enhancement (LGE) imaging as the reference standard. The mean apparent diffusion coefficient (ADC), native T1 value and ECV were determined for each subject. Overall, the HCM subjects exhibited an increased native T1 value (1241.04 ± 78.50 ms), ECV (0.31 ± 0.03) and ADC (2.36 ± 0.34 s/mm(2)) compared with the normal controls (1114.60 ± 37.99 ms, 0.24 ± 0.04, and 1.62 ± 0.38 s/mm(2), respectively) (p < 0.05). DWI differentiated healthy and fibrotic myocardia with an area under the curve (AUC) of 0.93, while the AUCs of the native T1 values (0.93), (p > 0.05) and ECV (0.94), (p > 0.05) exhibited an equal differentiation ability. Both HCM LGE+ and HCM LGE- subjects had an increased native T1 value, ECV and ADC compared to the normal controls (p < 0.05). HCM LGE+ subjects exhibited an increased ECV (0.31 ± 0.04) and ADC (2.43 ± 0.36 s/mm(2)) compared to HCM LGE- subjects (p < 0.05). HCM LGE+ and HCM LGE- subjects had similar native T1 values (1250 ± 76.36 ms vs. 1213.98 ± 92.30 ms, respectively) (p > 0.05). ADC values were linearly associated with increased ECV (R(2) = 0.36) and native T1 values (R(2) = 0.40) among all subjects. DWI is a feasible alternative to native T1 mapping and ECV for the identification of myocardial fibrosis in patients with HCM. DWI and ECV can quantitatively characterize the extent of fibrosis in HCM LGE+ and HCM LGE- patients. PMID:27198892

  19. Map accuracy requirements: The cartographic potential of satellite image data

    NASA Technical Reports Server (NTRS)

    Welch, R.

    1982-01-01

    Cartographic products fall into a variety of classes: topographic maps that are concerned with planimetric information and elevations or heights; thematic maps, which might be used for geology, vegetation, water, or to display these subjects; digital elevation maps that would be produced from digital terrain data; and finally image maps. In terms of satellite applications, thematic maps and image maps are emphasized. The objectives are to consider, first, if resolution will be adequate for the identification of control and for the compilation of map products. Then, second, to define map accuracy standards and to determine the potential for meeting these standards with image data from the film camera, scanner and linear array systems of the 1980s.

  20. Histogram analysis of ADC in brain tumor patients

    NASA Astrophysics Data System (ADS)

    Banerjee, Debrup; Wang, Jihong; Li, Jiang

    2011-03-01

    At various stage of progression, most brain tumors are not homogenous. In this presentation, we retrospectively studied the distribution of ADC values inside tumor volume during the course of tumor treatment and progression for a selective group of patients who underwent an anti-VEGF trial. Complete MRI studies were obtained for this selected group of patients including pre- and multiple follow-up, post-treatment imaging studies. In each MRI imaging study, multiple scan series were obtained as a standard protocol which includes T1, T2, T1-post contrast, FLAIR and DTI derived images (ADC, FA etc.) for each visit. All scan series (T1, T2, FLAIR, post-contrast T1) were registered to the corresponding DTI scan at patient's first visit. Conventionally, hyper-intensity regions on T1-post contrast images are believed to represent the core tumor region while regions highlighted by FLAIR may overestimate tumor size. Thus we annotated tumor regions on the T1-post contrast scans and ADC intensity values for pixels were extracted inside tumor regions as defined on T1-post scans. We fit a mixture Gaussian (MG) model for the extracted pixels using the Expectation-Maximization (EM) algorithm, which produced a set of parameters (mean, various and mixture coefficients) for the MG model. This procedure was performed for each visits resulting in a series of GM parameters. We studied the parameters fitted for ADC and see if they can be used as indicators for tumor progression. Additionally, we studied the ADC characteristics in the peri-tumoral region as identified by hyper-intensity on FLAIR scans. The results show that ADC histogram analysis of the tumor region supports the two compartment model that suggests the low ADC value subregion corresponding to densely packed cancer cell while the higher ADC value region corresponding to a mixture of viable and necrotic cells with superimposed edema. Careful studies of the composition and relative volume of the two compartments in tumor

  1. System and method for image mapping and visual attention

    NASA Technical Reports Server (NTRS)

    Peters, II, Richard A. (Inventor)

    2010-01-01

    A method is described for mapping dense sensory data to a Sensory Ego Sphere (SES). Methods are also described for finding and ranking areas of interest in the images that form a complete visual scene on an SES. Further, attentional processing of image data is best done by performing attentional processing on individual full-size images from the image sequence, mapping each attentional location to the nearest node, and then summing attentional locations at each node.

  2. System and method for image mapping and visual attention

    NASA Technical Reports Server (NTRS)

    Peters, II, Richard A. (Inventor)

    2011-01-01

    A method is described for mapping dense sensory data to a Sensory Ego Sphere (SES). Methods are also described for finding and ranking areas of interest in the images that form a complete visual scene on an SES. Further, attentional processing of image data is best done by performing attentional processing on individual full-size images from the image sequence, mapping each attentional location to the nearest node, and then summing all attentional locations at each node.

  3. Diffusion-weighted MR imaging for characterizing musculoskeletal lesions.

    PubMed

    Subhawong, Ty K; Jacobs, Michael A; Fayad, Laura M

    2014-01-01

    Diffusion-weighted (DW) imaging is a functional magnetic resonance (MR) imaging technique that can readily be incorporated into a routine non-contrast material-enhanced MR imaging protocol with little additional scanning time. DW imaging is based on changes in the Brownian motion of water molecules caused by tissue microstructure. The apparent diffusion coefficient (ADC) is a quantitative measure of Brownian movement: Low ADC values typically reflect highly cellular microenvironments in which diffusion is restricted by the presence of cell membranes, whereas acellular regions allow free diffusion and result in elevated ADC values. Thus, with ADC mapping, one may derive useful quantitative information regarding the cellularity of a musculoskeletal lesion using a nonenhanced technique. The role of localized DW imaging in differentiating malignant from benign osseous and soft-tissue lesions is still evolving; when carefully applied, however, this modality has proved helpful in a subset of tumor types, such as nonmyxoid soft-tissue tumors. Studies of the use of DW imaging in assessing the treatment response of both osseous and soft-tissue tumors have shown that higher ADC values correlate with better response to cytotoxic therapy. Successful application of DW imaging in the evaluation of musculoskeletal lesions requires familiarity with potential diagnostic pitfalls that stem from technical artifacts and confounding factors unrelated to lesion cellularity. Further investigation is needed to evaluate the impact of DW imaging-ADC mapping on management and outcome in patients with musculoskeletal lesions. PMID:25208274

  4. Improve mask inspection capacity with Automatic Defect Classification (ADC)

    NASA Astrophysics Data System (ADS)

    Wang, Crystal; Ho, Steven; Guo, Eric; Wang, Kechang; Lakkapragada, Suresh; Yu, Jiao; Hu, Peter; Tolani, Vikram; Pang, Linyong

    2013-09-01

    As optical lithography continues to extend into low-k1 regime, resolution of mask patterns continues to diminish. The adoption of RET techniques like aggressive OPC, sub-resolution assist features combined with the requirements to detect even smaller defects on masks due to increasing MEEF, poses considerable challenges for mask inspection operators and engineers. Therefore a comprehensive approach is required in handling defects post-inspections by correctly identifying and classifying the real killer defects impacting the printability on wafer, and ignoring nuisance defect and false defects caused by inspection systems. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at the SMIC mask shop for the 40nm technology node. Traditionally, each defect is manually examined and classified by the inspection operator based on a set of predefined rules and human judgment. At SMIC mask shop due to the significant total number of detected defects, manual classification is not cost-effective due to increased inspection cycle time, resulting in constrained mask inspection capacity, since the review has to be performed while the mask stays on the inspection system. Luminescent Technologies Automated Defect Classification (ADC) product offers a complete and systematic approach for defect disposition and classification offline, resulting in improved utilization of the current mask inspection capability. Based on results from implementation of ADC in SMIC mask production flow, there was around 20% improvement in the inspection capacity compared to the traditional flow. This approach of computationally reviewing defects post mask-inspection ensures no yield loss by qualifying reticles without the errors associated with operator mis-classification or human error. The ADC engine retrieves the high resolution inspection images and uses a decision-tree flow to classify a given defect. Some identification mechanisms adopted by ADC to

  5. Space Radar Image of Raco Biomass Map

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This biomass map of the Raco, Michigan, area was produced from data acquired by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard space shuttle Endeavour. Biomass is the amount of plant material on an area of Earth's surface. Radar can directly sense the quantity and organizational structure of the woody biomass in the forest. Science team members at the University of Michigan used the radar data to estimate the standing biomass for this Raco site in the Upper Peninsula of Michigan. Detailed surveys of 70 forest stands will be used to assess the accuracy of these techniques. The seasonal growth of terrestrial plants, and forests in particular, leads to the temporary storage of large amounts of carbon, which could directly affect changes in global climate. In order to accurately predict future global change, scientists need detailed information about current distribution of vegetation types and the amount of biomass present around the globe. Optical techniques to determine net biomass are frustrated by chronic cloud-cover. Imaging radar can penetrate through cloud-cover with negligible signal losses. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German

  6. A lossless encryption method for medical images using edge maps.

    PubMed

    Zhou, Yicong; Panetta, Karen; Agaian, Sos

    2009-01-01

    Image encryption is an effective approach for providing security and privacy protection for medical images. This paper introduces a new lossless approach, called EdgeCrypt, to encrypt medical images using the information contained within an edge map. The algorithm can fully protect the selected objects/regions within medical images or the entire medical images. It can also encrypt other types of images such as grayscale images or color images. The algorithm can be used for privacy protection in the real-time medical applications such as wireless medical networking and mobile medical services. PMID:19965008

  7. Enhancing scattering images for orientation recovery with diffusion map

    DOE PAGESBeta

    Winter, Martin; Saalmann, Ulf; Rost, Jan M.

    2016-02-12

    We explore the possibility for orientation recovery in single-molecule coherent diffractive imaging with diffusion map. This algorithm approximates the Laplace-Beltrami operator, which we diagonalize with a metric that corresponds to the mapping of Euler angles onto scattering images. While suitable for images of objects with specific properties we show why this approach fails for realistic molecules. Here, we introduce a modification of the form factor in the scattering images which facilitates the orientation recovery and should be suitable for all recovery algorithms based on the distance of individual images. (C) 2016 Optical Society of America

  8. Registration of Heat Capacity Mapping Mission day and night images

    NASA Technical Reports Server (NTRS)

    Watson, K.; Hummer-Miller, S.; Sawatzky, D. L. (Principal Investigator)

    1982-01-01

    Neither iterative registration, using drainage intersection maps for control, nor cross correlation techniques were satisfactory in registering day and night HCMM imagery. A procedure was developed which registers the image pairs by selecting control points and mapping the night thermal image to the daytime thermal and reflectance images using an affine transformation on a 1300 by 1100 pixel image. The resulting image registration is accurate to better than two pixels (RMS) and does not exhibit the significant misregistration that was noted in the temperature-difference and thermal-inertia products supplied by NASA. The affine transformation was determined using simple matrix arithmetic, a step that can be performed rapidly on a minicomputer.

  9. a Method of Generating Panoramic Street Strip Image Map with Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Tianen, Chen; Yamamoto, Kohei; Tachibana, Kikuo

    2016-06-01

    This paper explores a method of generating panoramic street strip image map which is called as "Pano-Street" here and contains both sides, ground surface and overhead part of a street with a sequence of 360° panoramic images captured with Point Grey's Ladybug3 mounted on the top of Mitsubishi MMS-X 220 at 2m intervals along the streets in urban environment. On-board GPS/IMU, speedometer and post sequence image analysis technology such as bundle adjustment provided much more accuracy level position and attitude data for these panoramic images, and laser data. The principle for generating panoramic street strip image map is similar to that of the traditional aero ortho-images. A special 3D DEM(3D-Mesh called here) was firstly generated with laser data, the depth map generated from dense image matching with the sequence of 360° panoramic images, or the existing GIS spatial data along the MMS trajectory, then all 360° panoramic images were projected and stitched on the 3D-Mesh with the position and attitude data. This makes it possible to make large scale panoramic street strip image maps for most types of cities, and provides another kind of street view way to view the 360° scene along the street by avoiding the switch of image bubbles like Google Street View and Bing Maps Streetside.

  10. A low-power small-area ADC array for IRFPA readout

    NASA Astrophysics Data System (ADS)

    Zhong, Shengyou; Yao, Libin

    2013-09-01

    The readout integrated circuit (ROIC) is a bridge between the infrared focal plane array (IRFPA) and image processing circuit in an infrared imaging system. The ROIC is the first part of signal processing circuit and connected to detectors directly, so its performance will greatly affect the detector or even the whole imaging system performance. With the development of CMOS technologies, it's possible to digitalize the signal inside the ROIC and develop the digital ROIC. Digital ROIC can reduce complexity of the whole system and improve the system reliability. More importantly, it can accommodate variety of digital signal processing techniques which the traditional analog ROIC cannot achieve. The analog to digital converter (ADC) is the most important building block in the digital ROIC. The requirements for ADCs inside the ROIC are low power, high dynamic range and small area. In this paper we propose an RC hybrid Successive Approximation Register (SAR) ADC as the column ADC for digital ROIC. In our proposed ADC structure, a resistor ladder is used to generate several voltages. The proposed RC hybrid structure not only reduces the area of capacitor array but also releases requirement for capacitor array matching. Theory analysis and simulation show RC hybrid SAR ADC is suitable for ADC array applications

  11. Multiview image and depth map coding for holographic TV system

    NASA Astrophysics Data System (ADS)

    Senoh, Takanori; Wakunami, Koki; Ichihashi, Yasuyuki; Sasaki, Hisayuki; Oi, Ryutaro; Yamamoto, Kenji

    2014-11-01

    A holographic TV system based on multiview image and depth map coding and the analysis of coding noise effects in reconstructed images is proposed. A major problem for holographic TV systems is the huge amount of data that must be transmitted. It has been shown that this problem can be solved by capturing a three-dimensional scene with multiview cameras, deriving depth maps from multiview images or directly capturing them, encoding and transmitting the multiview images and depth maps, and generating holograms at the receiver side. This method shows the same subjective image quality as hologram data transmission with about 1/97000 of the data rate. Speckle noise, which masks coding noise when the coded bit rate is not extremely low, is shown to be the main determinant of reconstructed holographic image quality.

  12. Using image mapping towards biomedical and biological data sharing

    PubMed Central

    2013-01-01

    Image-based data integration in eHealth and life sciences is typically concerned with the method used for anatomical space mapping, needed to retrieve, compare and analyse large volumes of biomedical data. In mapping one image onto another image, a mechanism is used to match and find the corresponding spatial regions which have the same meaning between the source and the matching image. Image-based data integration is useful for integrating data of various information structures. Here we discuss a broad range of issues related to data integration of various information structures, review exemplary work on image representation and mapping, and discuss the challenges that these techniques may bring. PMID:24059352

  13. Surface mineral maps of Afghanistan derived from HyMap imaging spectrometer data, version 2

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.

    2013-01-01

    This report presents a new version of surface mineral maps derived from HyMap imaging spectrometer data collected over Afghanistan in the fall of 2007. This report also describes the processing steps applied to the imaging spectrometer data. The 218 individual flight lines composing the Afghanistan dataset, covering more than 438,000 square kilometers, were georeferenced to a mosaic of orthorectified Landsat images. The HyMap data were converted from radiance to reflectance using a radiative transfer program in combination with ground-calibration sites and a network of cross-cutting calibration flight lines. The U.S. Geological Survey Material Identification and Characterization Algorithm (MICA) was used to generate two thematic maps of surface minerals: a map of iron-bearing minerals and other materials, which have their primary absorption features at the shorter wavelengths of the reflected solar wavelength range, and a map of carbonates, phyllosilicates, sulfates, altered minerals, and other materials, which have their primary absorption features at the longer wavelengths of the reflected solar wavelength range. In contrast to the original version, version 2 of these maps is provided at full resolution of 23-meter pixel size. The thematic maps, MICA summary images, and the material fit and depth images are distributed in digital files linked to this report, in a format readable by remote sensing software and Geographic Information Systems (GIS). The digital files can be downloaded from http://pubs.usgs.gov/ds/787/downloads/.

  14. Image and geometry processing with Oriented and Scalable Map.

    PubMed

    Hua, Hao

    2016-05-01

    We turn the Self-organizing Map (SOM) into an Oriented and Scalable Map (OS-Map) by generalizing the neighborhood function and the winner selection. The homogeneous Gaussian neighborhood function is replaced with the matrix exponential. Thus we can specify the orientation either in the map space or in the data space. Moreover, we associate the map's global scale with the locality of winner selection. Our model is suited for a number of graphical applications such as texture/image synthesis, surface parameterization, and solid texture synthesis. OS-Map is more generic and versatile than the task-specific algorithms for these applications. Our work reveals the overlooked strength of SOMs in processing images and geometries. PMID:26897100

  15. Capacitor-Chain Successive-Approximation ADC

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas

    2003-01-01

    A proposed successive-approximation analog-to-digital converter (ADC) would contain a capacitively terminated chain of identical capacitor cells. Like a conventional successive-approximation ADC containing a bank of binary-scaled capacitors, the proposed ADC would store an input voltage on a sample-and-hold capacitor and would digitize the stored input voltage by finding the closest match between this voltage and a capacitively generated sum of binary fractions of a reference voltage (Vref). However, the proposed capacitor-chain ADC would offer two major advantages over a conventional binary-scaled-capacitor ADC: (1) In a conventional ADC that digitizes to n bits, the largest capacitor (representing the most significant bit) must have 2(exp n-1) times as much capacitance, and hence, approximately 2(exp n-1) times as much area as does the smallest capacitor (representing the least significant bit), so that the total capacitor area must be 2(exp n) times that of the smallest capacitor. In the proposed capacitor-chain ADC, there would be three capacitors per cell, each approximately equal to the smallest capacitor in the conventional ADC, and there would be one cell per bit. Therefore, the total capacitor area would be only about 3(exp n) times that of the smallest capacitor. The net result would be that the proposed ADC could be considerably smaller than the conventional ADC. (2) Because of edge effects, parasitic capacitances, and manufacturing tolerances, it is difficult to make capacitor banks in which the values of capacitance are scaled by powers of 2 to the required precision. In contrast, because all the capacitors in the proposed ADC would be identical, the problem of precise binary scaling would not arise.

  16. Automated thermal mapping techniques using chromatic image analysis

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.

    1989-01-01

    Thermal imaging techniques are introduced using a chromatic image analysis system and temperature sensitive coatings. These techniques are used for thermal mapping and surface heat transfer measurements on aerothermodynamic test models in hypersonic wind tunnels. Measurements are made on complex vehicle configurations in a timely manner and at minimal expense. The image analysis system uses separate wavelength filtered images to analyze surface spectral intensity data. The system was initially developed for quantitative surface temperature mapping using two-color thermographic phosphors but was found useful in interpreting phase change paint and liquid crystal data as well.

  17. Multi-resolution mapping using surface, descent and orbit images

    NASA Technical Reports Server (NTRS)

    Olson, C.; Matthies, L.; Xiong, Y.; Li, R.; Ma, F.

    2001-01-01

    Our objective is to produce high-accuracy maps of the terrain elevation at landing sites on planetary bodies through the use of all available image data. These technologies are important for performing rover navigation in future space missions and the maps provide a tool for coordinating rovers in a robotic colony.

  18. Analysis of the Effects of Image Quality on Digital Map Generation from Satellite Images

    NASA Astrophysics Data System (ADS)

    Kim, H.; Kim, D.; Kim, S.; Kim, T.

    2012-07-01

    High resolution satellite images are widely used to produce and update a digital map since they became widely available. It is well known that the accuracy of digital map produced from satellite images is decided largely by the accuracy of geometric modelling. However digital maps are made by a series of photogrammetric workflow. Therefore the accuracy of digital maps are also affected by the quality of satellite images, such as image interpretability. For satellite images, parameters such as Modulation Transfer Function(MTF), Signal to Noise Ratio(SNR) and Ground Sampling Distance(GSD) are used to present images quality. Our previous research stressed that such quality parameters may not represent the quality of image products such as digital maps and that parameters for image interpretability such as Ground Resolved Distance(GRD) and National Imagery Interpretability Rating Scale(NIIRS) need to be considered. In this study, we analyzed the effects of the image quality on accuracy of digital maps produced by satellite images. QuickBird, IKONOS and KOMPSAT-2 imagery were used to analyze as they have similar GSDs. We measured various image quality parameters mentioned above from these images. Then we produced digital maps from the images using a digital photogrammetric workstation. We analyzed the accuracy of the digital maps in terms of their location accuracy and their level of details. Then we compared the correlation between various image quality parameters and the accuracy of digital maps. The results of this study showed that GRD and NIIRS were more critical for map production then GSD, MTF or SNR.

  19. Deciphering an Image Cipher Based on Mixed Transformed Logistic Maps

    NASA Astrophysics Data System (ADS)

    Liu, Yuansheng; Fan, Hua; Xie, Eric Yong; Cheng, Ge; Li, Chengqing

    2015-12-01

    Since John von Neumann suggested utilizing Logistic map as a random number generator in 1947, a great number of encryption schemes based on Logistic map and/or its variants have been proposed. This paper re-evaluates the security of an image cipher based on transformed logistic maps and proves that the image cipher can be deciphered efficiently under two different conditions: (1) two pairs of known plain-images and the corresponding cipher-images with computational complexity of O(218 + L); (2) two pairs of chosen plain-images and the corresponding cipher-images with computational complexity of O(L), where L is the number of pixels in the plain-image. In contrast, the required condition in the previous deciphering method is 87 pairs of chosen plain-images and the corresponding cipher-images with computational complexity of O(27 + L). In addition, three other security flaws existing in most Logistic-map-based ciphers are also reported.

  20. Prototype of Partial Cutting Tool of Geological Map Images Distributed by Geological Web Map Service

    NASA Astrophysics Data System (ADS)

    Nonogaki, S.; Nemoto, T.

    2014-12-01

    Geological maps and topographical maps play an important role in disaster assessment, resource management, and environmental preservation. These map information have been distributed in accordance with Web services standards such as Web Map Service (WMS) and Web Map Tile Service (WMTS) recently. In this study, a partial cutting tool of geological map images distributed by geological WMTS was implemented with Free and Open Source Software. The tool mainly consists of two functions: display function and cutting function. The former function was implemented using OpenLayers. The latter function was implemented using Geospatial Data Abstraction Library (GDAL). All other small functions were implemented by PHP and Python. As a result, this tool allows not only displaying WMTS layer on web browser but also generating a geological map image of intended area and zoom level. At this moment, available WTMS layers are limited to the ones distributed by WMTS for the Seamless Digital Geological Map of Japan. The geological map image can be saved as GeoTIFF format and WebGL format. GeoTIFF is one of the georeferenced raster formats that is available in many kinds of Geographical Information System. WebGL is useful for confirming a relationship between geology and geography in 3D. In conclusion, the partial cutting tool developed in this study would contribute to create better conditions for promoting utilization of geological information. Future work is to increase the number of available WMTS layers and the types of output file format.

  1. Realizing Low-Energy Classification Systems by Implementing Matrix Multiplication Directly Within an ADC.

    PubMed

    Wang, Zhuo; Zhang, Jintao; Verma, Naveen

    2015-12-01

    In wearable and implantable medical-sensor applications, low-energy classification systems are of importance for deriving high-quality inferences locally within the device. Given that sensor instrumentation is typically followed by A-D conversion, this paper presents a system implementation wherein the majority of the computations required for classification are implemented within the ADC. To achieve this, first an algorithmic formulation is presented that combines linear feature extraction and classification into a single matrix transformation. Second, a matrix-multiplying ADC (MMADC) is presented that enables multiplication between an analog input sample and a digital multiplier, with negligible additional energy beyond that required for A-D conversion. Two systems mapped to the MMADC are demonstrated: (1) an ECG-based cardiac arrhythmia detector; and (2) an image-pixel-based facial gender detector. The RMS error over all multiplication performed, normalized to the RMS of ideal multiplication results is 0.018. Further, compared to idealized versions of conventional systems, the energy savings obtained are estimated to be 13× and 29×, respectively, while achieving similar level of performance. PMID:26849205

  2. A fast image encryption algorithm based on chaotic map

    NASA Astrophysics Data System (ADS)

    Liu, Wenhao; Sun, Kehui; Zhu, Congxu

    2016-09-01

    Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.

  3. Accounting for image uncertainty in SAR-based flood mapping

    NASA Astrophysics Data System (ADS)

    Giustarini, L.; Vernieuwe, H.; Verwaeren, J.; Chini, M.; Hostache, R.; Matgen, P.; Verhoest, N. E. C.; De Baets, B.

    2015-02-01

    Operational flood mitigation and flood modeling activities benefit from a rapid and automated flood mapping procedure. A valuable information source for such a flood mapping procedure can be remote sensing synthetic aperture radar (SAR) data. In order to be reliable, an objective characterization of the uncertainty associated with the flood maps is required. This work focuses on speckle uncertainty associated with the SAR data and introduces the use of a non-parametric bootstrap method to take into account this uncertainty on the resulting flood maps. From several synthetic images, constructed through bootstrapping the original image, flood maps are delineated. The accuracy of these flood maps is also evaluated w.r.t. an independent validation data set, obtaining, in the two test cases analyzed in this paper, F-values (i.e. values of the Jaccard coefficient) comprised between 0.50 and 0.65. This method is further compared to an image segmentation method for speckle analysis, with which similar results are obtained. The uncertainty analysis of the ensemble of bootstrapped synthetic images was found to be representative of image speckle, with the advantage that no segmentation and speckle estimations are required. Furthermore, this work assesses to what extent the bootstrap ensemble size can be reduced while remaining representative of the original ensemble, as operational applications would clearly benefit from such reduced ensemble sizes.

  4. Utility of imaging spectrometry for lithologic mapping in Greenland

    NASA Technical Reports Server (NTRS)

    Rivard, Benoit; Arvidson, Raymond E.

    1992-01-01

    Landsat Thematic Mapper (TM) multispectral image data and field-based spectral reflectance measurements for a portion of the island of Storo, southwestern Greenland, were used to evaluate the potential of imaging spectrometry for lithologic mapping in arctic terrains. TM data allow mapping of tundra vegetation that typically covers moraines at lower elevations, and lichen-covered bedrock exposed at higher elevations. However, the ubiquitous lichen cover, combined with the limited spectral and radiometric capabilities of TM, severely hamper mapping of the amphibolite, anorthosite, gneiss, and granite outcrops on the island. Diagnostic mineral signatures can be discerned from high spectral and radiometric resolution observations, because lichen cover is patchy at mineral and outcrop scales. Results imply that high resolution imaging spectrometer data (e.g., from the HIRIS sensor to fly on the Earth Observing System), detailed field work, and application of subpixel mixing models will dramatically improve the ability to identify and map bedrock in similar terrains.

  5. Evaluation of Matching Strategies for Image-Based Mobile Mapping

    NASA Astrophysics Data System (ADS)

    Cavegn, S.; Haala, N.; Nebiker, S.; Rothermel, M.; Zwölfer, T.

    2015-08-01

    The paper presents the implementation of a dense multi-view stereo matching pipeline for the evaluation of image sequences from a camera-based mobile mapping system. For this purpose the software system SURE is taken as a basis. Originally this system was developed to provide 3D point clouds or DEM from standard airborne and terrestrial image blocks. Since mobile mapping scenarios typically include stereo configurations with camera motion predominantly in viewing direction, processing steps like image rectification and structure computation of the existing processing pipeline had to be adapted. The presented investigations are based on imagery captured by the mobile mapping system of the Institute of Geomatics Engineering in the city center of Basel, Switzerland. For evaluation, reference point clouds from terrestrial laser scanning are used. Our first results already demonstrate a considerable increase in reliability and completeness of both depth maps and point clouds as result of the matching process.

  6. Accuracy assessment of topographic mapping using UAV image integrated with satellite images

    NASA Astrophysics Data System (ADS)

    Azmi, S. M.; Ahmad, Baharin; Ahmad, Anuar

    2014-02-01

    Unmanned Aerial Vehicle or UAV is extensively applied in various fields such as military applications, archaeology, agriculture and scientific research. This study focuses on topographic mapping and map updating. UAV is one of the alternative ways to ease the process of acquiring data with lower operating costs, low manufacturing and operational costs, plus it is easy to operate. Furthermore, UAV images will be integrated with QuickBird images that are used as base maps. The objective of this study is to make accuracy assessment and comparison between topographic mapping using UAV images integrated with aerial photograph and satellite image. The main purpose of using UAV image is as a replacement for cloud covered area which normally exists in aerial photograph and satellite image, and for updating topographic map. Meanwhile, spatial resolution, pixel size, scale, geometric accuracy and correction, image quality and information contents are important requirements needed for the generation of topographic map using these kinds of data. In this study, ground control points (GCPs) and check points (CPs) were established using real time kinematic Global Positioning System (RTK-GPS) technique. There are two types of analysis that are carried out in this study which are quantitative and qualitative assessments. Quantitative assessment is carried out by calculating root mean square error (RMSE). The outputs of this study include topographic map and orthophoto. From this study, the accuracy of UAV image is ± 0.460 m. As conclusion, UAV image has the potential to be used for updating of topographic maps.

  7. Minimal Power Latch for Single-Slope ADCs

    NASA Technical Reports Server (NTRS)

    Hancock, Bruce R.

    2013-01-01

    Column-parallel analog-to-digital converters (ADCs) for imagers involve simultaneous operation of many ADCs. Single-slope ADCs are well adapted to this use because of their simplicity. Each ADC contains a comparator, comparing its input signal level to an increasing reference signal (ramp). When the ramp is equal to the input, the comparator triggers a latch that captures an encoded counter value (code). Knowing the captured code, the ramp value and hence the input signal are determined. In a column-parallel ADC, each column contains only the comparator and the latches; the ramp and code generation are shared. In conventional latch or flip-flop circuits, there is an input stage that tracks the input signal, and this stage consumes switching current every time the input changes. With many columns, many bits, and high code rates, this switching current can be substantial. It will also generate noise that may corrupt the analog signals. A latch was designed that does not track the input, and consumes power only at the instant of latching the data value. The circuit consists of two S-R (set-reset) latches, gated by the comparator. One is set by high data values and the other by low data values. The latches are cross-coupled so that the first one to set blocks the other. In order that the input data not need an inversion, which would consume power, the two latches are made in complementary polarity. This requires complementary gates from the comparator, instead of complementary data values, but the comparator only triggers once per conversion, and usually has complementary outputs to begin with. An efficient CMOS (complementary metal oxide semiconductor) implementation of this circuit is shown in the figure, where C is the comparator output, D is the data (code), and Q0 and Q1 are the outputs indicating the capture of a zero or one value. The latch for Q0 has a negative-true set signal and output, and is implemented using OR-AND-INVERT logic, while the latch for Q1 uses

  8. Enhanced Mental Image Mapping in Autism

    ERIC Educational Resources Information Center

    Soulieres, I.; Zeffiro, T. A.; Girard, M. L.; Mottron, L.

    2011-01-01

    The formation and manipulation of mental images represents a key ability for successfully solving visuospatial tasks like Wechsler's Block Design or visual reasoning problems, tasks where autistics perform at higher levels than predicted by their Wechsler IQ. Visual imagery can be used to compare two mental images, allowing judgment of their…

  9. Algorithm For Automatic Road Recognition On Digitized Map Images

    NASA Astrophysics Data System (ADS)

    Zhu, Zhipu; Kim, Yongmin

    1989-09-01

    This paper presents an algorithm to detect road lines on digitized map images. This algorithm detects road lines based on object shape (line thickness) and gray level values. The road detection process is accomplished in two steps: road line extraction and road tracking. The road line extraction consists of level slicing, morphological filtering, and connected component analysis. The road tracking routine is capable of connecting broken road lines caused by the overlapping of text labels. The algorithm has been implemented on an IBM PC/AT-based image processing system and applied to various map images.

  10. Shuttle radar images for geologic mapping in tropical rainforest

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Da Cunha, R.

    1986-01-01

    Images of forested low-relief terrain in the Amazon basin of Brazil, obtained with airborne imaging radar in the Radambrasil project, are compared with SIR-A and Landsat MSS band-7 images to evaluate their usefulness in constructing geologic maps. Sample images are shown, and it is found that Radam images are more useful in distinguishing drainage patterns and mapping the region distribution of stream channels due to their relatively low depression angles (less than 25 deg as opposed to 43-37 deg for SIR-A), but that SIR-A images give superior discrimination of alluvial forest, where trees stand in water, due to the higher reflectivity of branches and water at the SIR-A wavelength (23.5 cm as opposed to 3 cm for Radam). Alluvial forest is also identified by Landsat band 7.

  11. Integrated terrain mapping with digital Landsat images in Queensland, Australia

    USGS Publications Warehouse

    Robinove, Charles Joseph

    1979-01-01

    Mapping with Landsat images usually is done by selecting single types of features, such as soils, vegetation, or rocks, and creating visually interpreted or digitally classified maps of each feature. Individual maps can then be overlaid on or combined with other maps to characterize the terrain. Integrated terrain mapping combines several terrain features into each map unit which, in many cases, is more directly related to uses of the land and to methods of land management than the single features alone. Terrain brightness, as measured by the multispectral scanners in Landsat 1 and 2, represents an integration of reflectance from the terrain features within the scanner's instantaneous field of view and is therefore more correlatable with integrated terrain units than with differentiated ones, such as rocks, soils, and vegetation. A test of the feasibilty of the technique of mapping integrated terrain units was conducted in a part of southwestern Queensland, Australia, in cooperation with scientists of the Queensland Department of Primary Industries. The primary purpose was to test the use of digital classification techniques to create a 'land systems map' usable for grazing land management. A recently published map of 'land systems' in the area (made by aerial photograph interpretation and ground surveys), which are integrated terrain units composed of vegetation, soil, topography, and geomorphic features, was used as a basis for comparison with digitally classified Landsat multispectral images. The land systems, in turn, each have a specific grazing capacity for cattle (expressed in beasts per km 2 ) which is estimated following analysis of both research results and property carrying capacities. Landsat images, in computer-compatible tape form, were first contrast-stretched to increase their visual interpretability, and digitally classified by the parallelepiped method into distinct spectral classes to determine their correspondence to the land systems classes and

  12. Automated thematic mapping and change detection of ERTS-1 images

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N. (Principal Investigator); Alpaugh, H.

    1972-01-01

    The author has identified the following significant results. An ERTS-1 image was compared to aircraft photography and maps of an area near Brownsville, Texas. In the coastal region of Cameron County, natural and cultural detail were identified in the ERTS-1 image. In Hidalgo County, ground truth was located on the ERTS-1 image. Haze and 50% cloud cover over Hidalgo County reduced the usefulness of multispectral techniques for recognizing crops.

  13. Spectral edge: gradient-preserving spectral mapping for image fusion.

    PubMed

    Connah, David; Drew, Mark S; Finlayson, Graham D

    2015-12-01

    This paper describes a novel approach to image fusion for color display. Our goal is to generate an output image whose gradient matches that of the input as closely as possible. We achieve this using a constrained contrast mapping paradigm in the gradient domain, where the structure tensor of a high-dimensional gradient representation is mapped exactly to that of a low-dimensional gradient field which is then reintegrated to form an output. Constraints on output colors are provided by an initial RGB rendering. Initially, we motivate our solution with a simple "ansatz" (educated guess) for projecting higher-D contrast onto color gradients, which we expand to a more rigorous theorem to incorporate color constraints. The solution to these constrained optimizations is closed-form, allowing for simple and hence fast and efficient algorithms. The approach can map any N-D image data to any M-D output and can be used in a variety of applications using the same basic algorithm. In this paper, we focus on the problem of mapping N-D inputs to 3D color outputs. We present results in five applications: hyperspectral remote sensing, fusion of color and near-infrared or clear-filter images, multilighting imaging, dark flash, and color visualization of magnetic resonance imaging diffusion-tensor imaging. PMID:26831392

  14. Facilitating Image Search With a Scalable and Compact Semantic Mapping.

    PubMed

    Wang, Meng; Li, Weisheng; Liu, Dong; Ni, Bingbing; Shen, Jialie; Yan, Shuicheng

    2015-08-01

    This paper introduces a novel approach to facilitating image search based on a compact semantic embedding. A novel method is developed to explicitly map concepts and image contents into a unified latent semantic space for the representation of semantic concept prototypes. Then, a linear embedding matrix is learned that maps images into the semantic space, such that each image is closer to its relevant concept prototype than other prototypes. In our approach, the semantic concepts equated with query keywords and the images mapped into the vicinity of the prototype are retrieved by our scheme. In addition, a computationally efficient method is introduced to incorporate new semantic concept prototypes into the semantic space by updating the embedding matrix. This novelty improves the scalability of the method and allows it to be applied to dynamic image repositories. Therefore, the proposed approach not only narrows semantic gap but also supports an efficient image search process. We have carried out extensive experiments on various cross-modality image search tasks over three widely-used benchmark image datasets. Results demonstrate the superior effectiveness, efficiency, and scalability of our proposed approach. PMID:25248210

  15. Featured Image: Mapping Jupiter with Hubble

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Zonal wind profile for Jupiter, describing the speed and direction of its winds at each latitude. [Simon et al. 2015]This global map of Jupiters surface (click for the full view!) was generated by the Hubble Outer Planet Atmospheres Legacy (OPAL) program, which aims to createnew yearly global maps for each of the outer planets. Presented in a study led by Amy Simon (NASA Goddard Space Flight Center), the map above is the first generated for Jupiter in the first year of the OPAL campaign. It provides a detailed look at Jupiters atmospheric structure including the Great Red Spot and allowed the authors to measure the speed and direction of the wind across Jupiters latitudes, constructing an updated zonal wind profile for Jupiter.In contrast to this study, the Juno mission (which will be captured into Jupiters orbit today after a 5-year journey to Jupiter!) will be focusing more on the features below Jupiters surface, studying its deep atmosphere and winds. Some of Junos primary goals are to learn about Jupiters composition, gravitational field, magnetic field, and polar magnetosphere. You can follow along with the NASATV livestream as Juno arrives at Jupiter tonight; orbit insertion coverage starts at 10:30 EDT.CitationAmy A. Simon et al 2015 ApJ 812 55. doi:10.1088/0004-637X/812/1/55

  16. Mapping diverse vegetation with multichannel radar images

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Wickland, D. E.; Ocampo, A.; Sharitz, R. R.

    1986-01-01

    Airborne-SAR, SIR-A, Seasat SAR, and Landsat TM images of the Savannah River Plant, a gently sloping area of South Carolina covered with diverse vegetation, are presented and briefly characterized. Preliminary results indicate that multiple-polarization images constructed from the airborne-SAR data give some indication of forest density and understory growth but do not permit discrimination between evergreen and deciduous forests. Heat-tolerant vegetation growing on sand bars in streams bearing thermal effluents from nuclear reactors on the site is found to have a distinguishing polarization signature.

  17. Image completion by diffusion maps and spectral relaxation.

    PubMed

    Gepshtein, Shai; Keller, Yosi

    2013-08-01

    We present a framework for image inpainting that utilizes the diffusion framework approach to spectral dimensionality reduction. We show that on formulating the inpainting problem in the embedding domain, the domain to be inpainted is smoother in general, particularly for the textured images. Thus, the textured images can be inpainted through simple exemplar-based and variational methods. We discuss the properties of the induced smoothness and relate it to the underlying assumptions used in contemporary inpainting schemes. As the diffusion embedding is nonlinear and noninvertible, we propose a novel computational approach to approximate the inverse mapping from the inpainted embedding space to the image domain. We formulate the mapping as a discrete optimization problem, solved through spectral relaxation. The effectiveness of the presented method is exemplified by inpainting real images, where it is shown to compare favorably with contemporary state-of-the-art schemes. PMID:23322762

  18. Digital images in the map revision process

    NASA Astrophysics Data System (ADS)

    Newby, P. R. T.

    Progress towards the adoption of digital (or softcopy) photogrammetric techniques for database and map revision is reviewed. Particular attention is given to the Ordnance Survey of Great Britain, the author's former employer, where digital processes are under investigation but have not yet been introduced for routine production. Developments which may lead to increasing automation of database update processes appear promising, but because of the cost and practical problems associated with managing as well as updating large digital databases, caution is advised when considering the transition to softcopy photogrammetry for revision tasks.

  19. Mapping of endoscopic images to object surfaces via ray-traced texture mapping for image guidance in neurosurgery

    NASA Astrophysics Data System (ADS)

    Dey, Damini; Gobbi, David G.; Surry, Kathleen J. M.; Slomka, Piotr J.; Peters, Terence M.

    2000-04-01

    A major limitation of the use of endoscopes in minimally invasive surgery is the lack of relative context between the endoscope and its surroundings. The purpose of this work is to map endoscopic images to surfaces obtained from 3D preoperative MR or CT data, for assistance in surgical planning and guidance. To test our methods, we acquired pre- operative CT images of a standard brain phantom from which object surfaces were extracted. Endoscopic images were acquired using a neuro-endoscope tracked with an optical tracking system, and the optical properties of the endoscope were characterized using a simple calibration procedure. Registration of the phantom and CT images was accomplished using markers that could be identified both on the physical object and in the pre-operative images. The endoscopic images were rectified for radial lens distortion, and then mapped onto the extracted surfaces via a ray-traced texture- mapping algorithm, which explicitly accounts for surface obliquity. The optical tracker has an accuracy of about 0.3 mm, which allows the endoscope tip to be localized to within mm. The mapping operation allows the endoscopic images to be effectively 'painted' onto the surfaces as they are acquired. Panoramic and stereoscopic visualization and navigation of the painted surfaces may then be reformed from arbitrary orientations, that were not necessarily those from which the original endoscopic views were acquired.

  20. Image registration with auto-mapped control volumes

    SciTech Connect

    Schreibmann, Eduard; Xing Lei

    2006-04-15

    Many image registration algorithms rely on the use of homologous control points on the two input image sets to be registered. In reality, the interactive identification of the control points on both images is tedious, difficult, and often a source of error. We propose a two-step algorithm to automatically identify homologous regions that are used as a priori information during the image registration procedure. First, a number of small control volumes having distinct anatomical features are identified on the model image in a somewhat arbitrary fashion. Instead of attempting to find their correspondences in the reference image through user interaction, in the proposed method, each of the control regions is mapped to the corresponding part of the reference image by using an automated image registration algorithm. A normalized cross-correlation (NCC) function or mutual information was used as the auto-mapping metric and a limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) was employed to optimize the function to find the optimal mapping. For rigid registration, the transformation parameters of the system are obtained by averaging that derived from the individual control volumes. In our deformable calculation, the mapped control volumes are treated as the nodes or control points with known positions on the two images. If the number of control volumes is not enough to cover the whole image to be registered, additional nodes are placed on the model image and then located on the reference image in a manner similar to the conventional BSpline deformable calculation. For deformable registration, the established correspondence by the auto-mapped control volumes provides valuable guidance for the registration calculation and greatly reduces the dimensionality of the problem. The performance of the two-step registrations was applied to three rigid registration cases (two PET-CT registrations and a brain MRI-CT registration) and one deformable registration of

  1. Retaining local image information in gamut mapping algorithms.

    PubMed

    Zolliker, Peter; Simon, Klaus

    2007-03-01

    Our topic is the potential of combining global gamut mapping with spatial methods to retain the percepted local image information in gamut mapping algorithms. The main goal is to recover the original local contrast between neighboring pixels in addition to the usual optimization of preserving lightness, saturation, and global contrast. Special emphasis is placed on avoiding artifacts introduced by the gamut mapping algorithm itself. We present an unsharp masking technique based on an edge-preserving smoothing algorithm allowing to avoid halo artifacts. The good performance of the presented approach is verified by a psycho-visual experiment using newspaper printing as a representative of a small destination gamut application. Furthermore, the improved mapping properties are documented with local mapping histograms. PMID:17357727

  2. Multispectral Image Road Extraction Based Upon Automated Map Conflation

    NASA Astrophysics Data System (ADS)

    Chen, Bin

    Road network extraction from remotely sensed imagery enables many important and diverse applications such as vehicle tracking, drone navigation, and intelligent transportation studies. There are, however, a number of challenges to road detection from an image. Road pavement material, width, direction, and topology vary across a scene. Complete or partial occlusions caused by nearby buildings, trees, and the shadows cast by them, make maintaining road connectivity difficult. The problems posed by occlusions are exacerbated with the increasing use of oblique imagery from aerial and satellite platforms. Further, common objects such as rooftops and parking lots are made of materials similar or identical to road pavements. This problem of common materials is a classic case of a single land cover material existing for different land use scenarios. This work addresses these problems in road extraction from geo-referenced imagery by leveraging the OpenStreetMap digital road map to guide image-based road extraction. The crowd-sourced cartography has the advantages of worldwide coverage that is constantly updated. The derived road vectors follow only roads and so can serve to guide image-based road extraction with minimal confusion from occlusions and changes in road material. On the other hand, the vector road map has no information on road widths and misalignments between the vector map and the geo-referenced image are small but nonsystematic. Properly correcting misalignment between two geospatial datasets, also known as map conflation, is an essential step. A generic framework requiring minimal human intervention is described for multispectral image road extraction and automatic road map conflation. The approach relies on the road feature generation of a binary mask and a corresponding curvilinear image. A method for generating the binary road mask from the image by applying a spectral measure is presented. The spectral measure, called anisotropy-tunable distance (ATD

  3. Control unit implementation for a reconfigurable ADC

    NASA Astrophysics Data System (ADS)

    Stojcevski, Aleksandar; Vibhute, Vidya; Singh, Jugdutt; Zayegh, Aladin

    2004-03-01

    A control unit has been proposed, which is used to reconfigure a pipeline ADC for a mobile terminal receiver that can drastically reduce the power dissipation dependent on adjacent channel interference. The proposed design automatically scales the word length by monitoring the quantization noise along the in-band and out-of-bands powers in the UTRA-TDD spectrum. The new ADC performance was evaluated in a simulation UTRA-TDD environment because of the large near far problem caused by adjacent channel interference from adjacent mobiles and base stations. Results show that by using the control unit to reconfigure the ADC, up to 88% power dissipation could be saved, when compared to a fixed 16 bits ADC without the use of the control unit. This will prolong talk and standby time in a moble terminal.

  4. Panoramic Epipolar Image Generation for Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Chen, T.; Yamamoto, K.; Chhatkuli, S.; Shimamura, H.

    2012-07-01

    The notable improvements on performance and low cost of digital cameras and GPS/IMU devices have caused MMSs (Mobile Mapping Systems) to be gradually becoming one of the most important devices for mapping highway and railway networks, generating and updating road navigation data and constructing urban 3D models over the last 20 years. Moreover, the demands for large scale visual street-level image database construction by the internet giants such as Google and Microsoft have made the further rapid development of this technology. As one of the most important sensors, the omni-directional cameras are being commonly utilized on many MMSs to collect panoramic images for 3D close range photogrammetry and fusion with 3D laser point clouds since these cameras could record much visual information of the real environment in one image at field view angle of 360° in longitude direction and 180° in latitude direction. This paper addresses the problem of panoramic epipolar image generation for 3D modelling and mapping by stereoscopic viewing. These panoramic images are captured with Point Grey's Ladybug3 mounted on the top of Mitsubishi MMS-X 220 at 2m intervals along the streets in urban environment. Onboard GPS/IMU, speedometer and post sequence image analysis technology such as bundle adjustment provided high accuracy position and attitude data for these panoramic images and laser data, this makes it possible to construct the epipolar geometric relationship between any two adjacent panoramic images and then the panoramic epipolar images could be generated. Three kinds of projection planes: sphere, cylinder and flat plane are selected as the epipolar images' planes. In final we select the flat plane and use its effective parts (middle parts of base line's two sides) for epipolar image generation. The corresponding geometric relations and results will be presented in this paper.

  5. ADC values in diffusion-weighted MRI and their relationship with age, gender and BMI in healthy people's pancreases

    PubMed Central

    Faeghi, F; Abdkarimi, M H; Asghari JafarAbadi, M

    2015-01-01

    Objective: The aim of this study is to use diffusion-weighted MRI to assess the apparent diffusion coefficient (ADC) values in head, body and tail sections of the pancreas in healthy subjects and the relationships between these values and age, gender and body mass index (BMI) of these cases. Methods: This study was conducted on 82 participants who were referred to the Tabesh Medical Imaging Center, Tabriz, Islamic Republic of Iran, during 2013. Echo-planar diffusion-weighted imaging of the pancreas was carried out with b-values of 50, 400 and 800 s mm−2, and ADC values were assessed for the head, body and tail sections of the pancreas. Results: The ADC values for the head, body and tail sections of the pancreas in female participants were significantly greater than those in male subjects (p < 0.05). ADC values for these parts among subjects with different BMI differed significantly (p < 0.05). Regarding age, there were no statistically meaningful differences among the ADC values for the three parts (p > 0.05). Conclusion: Gender and BMI effect the ADC values of the three sections of the pancreas. Thus, knowledge of the basic values based on gender and BMI can improve diagnostics. Having looked at age factor, it seems that the ADC values were not significantly different. Advances in knowledge: According to the results pancreatic ADC values appear to be influenced by gender and BMI but not by age. PMID:25471056

  6. Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS)

    PubMed Central

    Gao, Liang; Smith, R. Theodore; Tkaczyk, Tomasz S.

    2011-01-01

    We present a snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS) for eye imaging applications. The resulting system is capable of simultaneously acquiring 48 spectral channel images in the range 470 nm–650 nm with frame rate at 5.2 fps. The spatial sampling of each measured spectral scene is 350 × 350 pixels. The advantages of this snapshot device are elimination of the eye motion artifacts and pixel misregistration problems in traditional scanning-based hyperspectral retinal cameras, and real-time imaging of oxygen saturation dynamics with sub-second temporal resolution. The spectral imaging performance is demonstrated in a human retinal imaging experiment in vivo. The absorption spectral signatures of oxy-hemoglobin and macular pigments were successfully acquired by using this device. PMID:22254167

  7. Multispectral Joint Image Restoration via Optimizing a Scale Map.

    PubMed

    Shen, Xiaoyong; Yan, Qiong; Xu, Li; Ma, Lizhuang; Jia, Jiaya

    2015-12-01

    Color, infrared and flash images captured in different fields can be employed to effectively eliminate noise and other visual artifacts. We propose a two-image restoration framework considering input images from different fields, for example, one noisy color image and one dark-flashed near-infrared image. The major issue in such a framework is to handle all structure divergence and find commonly usable edges and smooth transitions for visually plausible image reconstruction. We introduce a novel scale map as a competent representation to explicitly model derivative-level confidence and propose new functions and a numerical solver to effectively infer it following our important structural observations. Multispectral shadow detection is also used to make our system more robust. Our method is general and shows a principled way to solve multispectral restoration problems. PMID:26539855

  8. Brain surface maps from 3-D medical images

    NASA Astrophysics Data System (ADS)

    Lu, Jiuhuai; Hansen, Eric W.; Gazzaniga, Michael S.

    1991-06-01

    The anatomic and functional localization of brain lesions for neurologic diagnosis and brain surgery is facilitated by labeling the cortical surface in 3D images. This paper presents a method which extracts cortical contours from magnetic resonance (MR) image series and then produces a planar surface map which preserves important anatomic features. The resultant map may be used for manual anatomic localization as well as for further automatic labeling. Outer contours are determined on MR cross-sectional images by following the clear boundaries between gray matter and cerebral-spinal fluid, skipping over sulci. Carrying this contour below the surface by shrinking it along its normal produces an inner contour that alternately intercepts gray matter (sulci) and white matter along its length. This procedure is applied to every section in the set, and the image (grayscale) values along the inner contours are radially projected and interpolated onto a semi-cylindrical surface with axis normal to the slices and large enough to cover the whole brain. A planar map of the cortical surface results by flattening this cylindrical surface. The projection from inner contour to cylindrical surface is unique in the sense that different points on the inner contour correspond to different points on the cylindrical surface. As the outer contours are readily obtained by automatic segmentation, cortical maps can be made directly from an MR series.

  9. Radarsat Antarctic Mapping Project: Antarctic Imaging Campaign 2

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Radarsat Antarctic Mapping Project is a collaboration between NASA and the Canadian Space Agency to map Antarctica using synthetic aperture radar (SAR). The first Antarctic Mapping Mission (AMM-1) was successfully completed in October 1997. Data from the acquisition phase of the 1997 campaign have been used to achieve the primary goal of producing the first, high-resolution SAR image map of Antarctica. The limited amount of data suitable for interferometric analysis have also been used to produce remarkably detailed maps of surface velocity for a few selected regions. Most importantly, the results from AMM-1 are now available to the general science community in the form of various resolution, radiometrically calibrated and geometrically accurate image mosaics. The second Antarctic imaging campaign occurred during the fall of 2000. Modified from AMM-1, the satellite remained in north looking mode during AMM-2 restricting coverage to regions north of about -80 degrees latitude. But AMM-2 utilized for the first time RADARSAT-1 fine beams providing an unprecedented opportunity to image many of Antarctica's fast glaciers whose extent was revealed through AMM-1 data. AMM-2 also captured extensive data suitable for interferometric analysis of the surface velocity field. This report summarizes the science goals, mission objectives, and project status through the acquisition phase and the start of the processing phase. The reports describes the efforts of team members including Alaska SAR Facility, Jet Propulsion Laboratory, Vexcel Corporation, Goddard Space Flight Center, Wallops Flight Facility, Ohio State University, Environmental Research Institute of Michigan, White Sands Facility, Canadian Space Agency Mission Planning and Operations Groups, and the Antarctic Mapping Planning Group.

  10. Multimodal registration of retinal images using self organizing maps.

    PubMed

    Matsopoulos, George K; Asvestas, Pantelis A; Mouravliansky, Nikolaos A; Delibasis, Konstantinos K

    2004-12-01

    In this paper, an automatic method for registering multimodal retinal images is presented. The method consists of three steps: the vessel centerline detection and extraction of bifurcation points only in the reference image, the automatic correspondence of bifurcation points in the two images using a novel implementation of the self organizing maps and the extraction of the parameters of the affine transform using the previously obtained correspondences. The proposed registration algorithm was tested on 24 multimodal retinal pairs and the obtained results show an advantageous performance in terms of accuracy with respect to the manual registration. PMID:15575412

  11. The efficacy of diffusion weighted imaging and apparent diffusion coefficients mapping for liver metastasis of colonic adenocarcinomas

    PubMed Central

    Metin, Melike R.; Aydın, Hasan; Çetin, Hüseyin; Özmen, Evrim; Kayaçetin, Serra

    2016-01-01

    Objectives: To establish retrospectively the relation between the histopathologic grade of colorectal liver metastasis and apparent diffusion coefficient (ADC) values of hepatic metastases of colorectal adenocarcinomas. Methods: The diagnoses of liver metastases were confirmed with biopsy, surgery, and follow-up imaging findings. Twenty-six patients with 94 liver metastasis were included in the study. Of 94 masses, 59 were poorly-differentiated adenocarcinoma, 18 were moderately-differentiated adenocarcinoma, and 17 were well-differentiated regarding the diameters, ADC values, and ratio index (RI) values. Kolmogorov-smirnov normality test, Kruskal-wallis analysis of variance, Mann-Whitney U test with Bonferroni correction, Spearman correlation analysis, and receiver operating characteristics curve methods were applied to evaluate the statistical relations. Results: There was a statistically significant difference in terms of ADC values and RI between poorly-differentiated adenocarcinoma and moderately-differentiated adenocarcinoma plus well-differentiated adenocarcinomas. Poorly-differentiated adenocarcinomas have the lowest ADC values and highest RI values among other groups. Conclusion: Use of ADC values alone can be executed for the diagnosis of focal hepatic masses and also can aid in the differentiation of benign and malignant hepatic lesions. PMID:27052280

  12. Design trade-offs in ADC architectures dedicated to uncooled focal plane arrays

    NASA Astrophysics Data System (ADS)

    Robert, P.; Dupont, B.; Pochic, D.

    2008-04-01

    This paper presents two different architectures for the design of Analog to Digital Converters specifically adapted to infrared bolometric image sensors. Indeed, the increasing demand for integrated functions in uncooled readout circuits leads to on-chip ADC design as an interface between the internal analog core and the digital processing electronics. However specifying an on-chip ADC dedicated to focal plane array raises many questions about its architecture and its performance requirements. We will show that two architecture approaches are needed to cover the different sensor features in terms of array size and frame speed. A monolithic 14 bits ADC with a pipeline architecture, and a column 13 bits ADC with an original dual-ramp architecture, will be described. Finally, we will show measurement results to confirm the monolithic ADC is suitable for small array, as 160 x 120 with low frame speed, while a column ADC is more compliant for higher array, as 640 x 480 with a 60 Hz frame speed or 1024 x 768 arrays.

  13. Ground Surface Visualization Using Red Relief Image Map for a Variety of Map Scales

    NASA Astrophysics Data System (ADS)

    Chiba, T.; Hasi, B.

    2016-06-01

    There are many methods to express topographical features of ground surface. In which, contour map has been the traditional method and along with development of digital data, surface model such as shaded relief map has been using for ground surface expression. Recently, data acquisition has been developed very much quick, demanding more advanced visualization method to express ground surface so as to effectively use the high quality data. In this study, the authors using the Red Relief Image Map (RRIM, Chiba et al., 2008) to express ground surface visualization for a variety of map scales. The authors used 30 m mesh data of SRTM to show the topographical features of western Mongolian and micro-topographical features of ground surface in tectonically active regions of Japan. The results show that, compared to traditional and other similar methods, the RRIM can express ground surface more precisely and 3-dimensionally, suggested its advanced usage for many fields of topographical visualization.

  14. Multiparameter image visualization with self-organizing maps

    NASA Astrophysics Data System (ADS)

    Manduca, Armando

    1994-05-01

    The effective display of multiparameter medical image data sets is assuming increasing importance as more distinct imaging modalities are becoming available. For medical purposes, one desirable goal is to fuse such data sets into a single most informative gray-scale image without making rigid classification decisions. A visualization technique based on a non-linear projection onto a 1D self-organizing map is described and examples are shown. The SOM visualization technique is fast, theoretically attractive, a useful complement to projection- pursuit or other linear techniques, and may be of particular value in calling attention to specific regions in a multiparameter image where the component images should be examined in detail.

  15. Multiparameter image visualization with self-organizing maps

    NASA Astrophysics Data System (ADS)

    Manduca, Armando

    1994-09-01

    The effective display of multi-parameter medical image data sets is assuming increasing importance as more distinct imaging modalities are becoming available. For medical pruposes, one desirable goal is to fuse such data sets into a single most informative gray-scale image without making rigid classification decisions. A visualization technique based on a non-linear projection onto a 1D self-organizing map is described and examples are shown. The SOM visualization technique is fast, theoretically attractive, and has properties which compliment those of projection-pursuit or other linear techniques. It may be of particular value in calling attention to specific regions in a multi-parameter image where the component images should be examined in detail.

  16. Depth-resolved image mapping spectrometer (IMS) with structured illumination

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Bedard, Noah; Hagen, Nathan; Kester, Robert T.; Tkaczyk, Tomasz S.

    2011-08-01

    We present a depth-resolved Image Mapping Spectrometer (IMS) which is capable of acquiring 4D (x, y, z, λ) datacubes. Optical sectioning is implemented by structured illumination. The device's spectral imaging performance is demonstrated in a multispectral microsphere and mouse kidney tissue fluorescence imaging experiment. We also compare quantitatively the depth-resolved IMS with a hyperspectral confocal microscope (HCM) in a standard fluorescent bead imaging experiment. The comparison results show that despite the use of a light source with four orders of magnitude lower intensity in the IMS than that in the HCM, the image signal-to-noise ratio acquired by the IMS is 2.6 times higher than that achieved by the equivalent confocal approach.

  17. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    NASA Astrophysics Data System (ADS)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  18. Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps.

    PubMed

    Eickhoff, Simon B; Heim, Stefan; Zilles, Karl; Amunts, Katrin

    2006-08-15

    The statistical inference on functional imaging data is severely complicated by the embedded multiple testing problem. Defining a region of interest (ROI) where the activation is hypothesized a priori helps to circumvent this problem, since in this case the inference is restricted to fewer simultaneous tests, rendering it more sensitive. Cytoarchitectonic maps obtained from postmortem brains provide objective, a priori ROIs that can be used to test anatomically specified hypotheses about the localization of functional activations. We here analyzed three methods for the definition of ROIs based on probabilistic cytoarchitectonic maps. (1) ROIs defined by the volume assigned to a cytoarchitectonic area in the summary map of all areas (maximum probability map, MPM), (2) ROIs based on thresholding the individual probabilistic maps and (3) spherical ROIs build around the cytoarchitectonic center of gravity. The quality with which the thus defined ROIs represented the respective cytoarchitectonic areas as well as their sensitivity for detecting functional activations was subsequently statistically evaluated. Our data showed that the MPM method yields ROIs, which reflect most adequately the underlying anatomical hypotheses. These maps also show a high degree of sensitivity in the statistical analysis. We thus propose the use of MPMs for the definition of ROIs. In combination with thresholding based on the Gaussian random field theory, these ROIs can then be applied to test anatomically specified hypotheses in functional neuroimaging studies. PMID:16781166

  19. The role of image registration in brain mapping.

    PubMed

    Toga, A W; Thompson, P M

    2001-01-01

    Image registration is a key step in a great variety of biomedical imaging applications. It provides the ability to geometrically align one dataset with another, and is a prerequisite for all imaging applications that compare datasets across subjects, imaging modalities, or across time. Registration algorithms also enable the pooling and comparison of experimental findings across laboratories, the construction of population-based brain atlases, and the creation of systems to detect group patterns in structural and functional imaging data. We review the major types of registration approaches used in brain imaging today. We focus on their conceptual basis, the underlying mathematics, and their strengths and weaknesses in different contexts. We describe the major goals of registration, including data fusion, quantification of change, automated image segmentation and labeling, shape measurement, and pathology detection. We indicate that registration algorithms have great potential when used in conjunction with a digital brain atlas, which acts as a reference system in which brain images can be compared for statistical analysis. The resulting armory of registration approaches is fundamental to medical image analysis, and in a brain mapping context provides a means to elucidate clinical, demographic, or functional trends in the anatomy or physiology of the brain. PMID:19890483

  20. Minimal Power Latch for Single-Slope ADCs

    NASA Technical Reports Server (NTRS)

    Hancock, Bruce R. (Inventor)

    2015-01-01

    A latch circuit that uses two interoperating latches. The latch circuit has the beneficial feature that it switches only a single time during a measurement that uses a stair step or ramp function as an input signal in an analog to digital converter. This feature minimizes the amount of power that is consumed in the latch and also minimizes the amount of high frequency noise that is generated by the latch. An application using a plurality of such latch circuits in a parallel decoding ADC for use in an image sensor is given as an example.

  1. Quality Assessment of Mapping Building Textures from Infrared Image Sequences

    NASA Astrophysics Data System (ADS)

    Hoegner, L.; Iwaszczuk, D.; Stilla, U.

    2012-07-01

    Generation and texturing of building models is a fast developing field of research. Several techniques have been developed to extract building geometry and textures from multiple images and image sequences. In this paper, these techniques are discussed and extended to automatically add new textures from infrared (IR) image sequences to existing building models. In contrast to existing work, geometry and textures are not generated together from the same dataset but the textures are extracted from the image sequence and matched to an existing geo-referenced 3D building model. The texture generation is divided in two main parts. The first part deals with the estimation and refinement of the exterior camera orientation. Feature points are extracted in the images and used as tie points in the sequence. A recorded exterior orientation of the camera s added to these homologous points and a bundle adjustment is performed starting on image pairs and combining the hole sequence. A given 3d model of the observed building is additionally added to introduce further constraint as ground control points in the bundle adjustment. The second part includes the extraction of textures from the images and the combination of textures from different images of the sequence. Using the reconstructed exterior camera orientation for every image of the sequence, the visible facades are projected into the image and texture is extracted. These textures normally contain only parts of the facade. The partial textures extracted from all images are combined to one facade texture. This texture is stored with a 3D reference to the corresponding facade. This allows searching for features in textures and localising those features in 3D space. It will be shown, that the proposed strategy allows texture extraction and mapping even for big building complexes with restricted viewing possibilities and for images with low optical resolution.

  2. Surface plasmon resonance imaging by holographic enhanced mapping.

    PubMed

    Mandracchia, B; Pagliarulo, V; Paturzo, M; Ferraro, P

    2015-04-21

    We designed, constructed and tested a holographic surface plasmon resonance (HoloSPR) objective-based microscope for simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging (SPRi). SPRi is a widely spread tool for label-free detection of changes in refractive index and concentration, as well as mapping of thin films. Currently, most of the SPR sensors rely on the detection of amplitude or phase changes of light. Despite the high sensitivities achieved so far, each technique alone has a limited detection range with optimal sensitivity. Here we use a high numerical aperture objective that avoids all the limitations due to the use of a prism-based configuration, yielding highly magnified and distortion-free images. Holographic reconstructions of SPR images and real-time kinetic measurements are presented to show the capability of HoloSPR to provide a versatile imaging method for high-throughput SPR detection complementary to conventional SPR techniques. PMID:25816225

  3. Communication: Time- and space-sliced velocity map electron imaging

    SciTech Connect

    Lee, Suk Kyoung; Lin, Yun Fei; Lingenfelter, Steven; Fan, Lin; Winney, Alexander H.; Li, Wen

    2014-12-14

    We develop a new method to achieve slice electron imaging using a conventional velocity map imaging apparatus with two additional components: a fast frame complementary metal-oxide semiconductor camera and a high-speed digitizer. The setup was previously shown to be capable of 3D detection and coincidence measurements of ions. Here, we show that when this method is applied to electron imaging, a time slice of 32 ps and a spatial slice of less than 1 mm thick can be achieved. Each slice directly extracts 3D velocity distributions of electrons and provides electron velocity distributions that are impossible or difficult to obtain with a standard 2D imaging electron detector.

  4. Compact intraoperative imaging device for sentinel lymph node mapping

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Bauer, Adam Q.; Akers, Walter; Sudlow, Gail; Liang, Kexian; Shen, Duanwen; Berezin, Mikhail; Culver, Joseph P.; Achilefu, Samuel

    2011-03-01

    We have developed a novel real-time intraoperative fluorescence imaging device that can detect near-infrared (NIR) fluorescence and map sentinel lymph nodes (SLNs). In contrast to conventional imaging systems, this device is compact, portable, and battery-operated. It is also wearable and thus allows hands-free operation of clinicians. The system directly displays the fluorescence in its goggle eyepiece, eliminating the need for a remote monitor. Using this device in murine lymphatic mapping, the SLNs stained with indocyanine green (ICG) can be readily detected. Fluorescence-guided SLN resection under the new device was performed with ease. Ex vivo examination of resected tissues also revealed high fluorescence level in the SLNs. Histology further confirmed the lymphatic nature of the resected SLNs.

  5. Multipolarization radar images for geologic mapping and vegetation discrimination

    NASA Technical Reports Server (NTRS)

    Evans, D. L.; Farr, T. G.; Ford, J. P.; Thompson, T. W.; Werner, C. L.

    1986-01-01

    NASA has developed an airborne SAR that simultaneously yields image data in four linear polarizations in L-band with 10-m resolution over a swath of about 10 km. Signal data are recorded both optically and digitally and annotated in each of the channels to facilitate completely automated digital correlation. Comparison of the relative intensities of the different polarizations furnishes discriminatory mapping information. Local intensity variations in like-polarization images result from topographic effects, while strong cross polarization responses denote the effects of vegetation cover and, in some cases, possible scattering from the subsurface. In each of the areas studied, multiple polarization data led to the discrimination and mapping of unique surface unit features.

  6. Mapping microbubble viscosity using fluorescence lifetime imaging of molecular rotors

    PubMed Central

    Hosny, Neveen A.; Mohamedi, Graciela; Rademeyer, Paul; Owen, Joshua; Wu, Yilei; Tang, Meng-Xing; Eckersley, Robert J.; Stride, Eleanor; Kuimova, Marina K.

    2013-01-01

    Encapsulated microbubbles are well established as highly effective contrast agents for ultrasound imaging. There remain, however, some significant challenges to fully realize the potential of microbubbles in advanced applications such as perfusion mapping, targeted drug delivery, and gene therapy. A key requirement is accurate characterization of the viscoelastic surface properties of the microbubbles, but methods for independent, nondestructive quantification and mapping of these properties are currently lacking. We present here a strategy for performing these measurements that uses a small fluorophore termed a “molecular rotor” embedded in the microbubble surface, whose fluorescence lifetime is directly related to the viscosity of its surroundings. We apply fluorescence lifetime imaging to show that shell viscosities vary widely across the population of the microbubbles and are influenced by the shell composition and the manufacturing process. We also demonstrate that heterogeneous viscosity distributions exist within individual microbubble shells even with a single surfactant component. PMID:23690599

  7. Mapping tissue oxygen in vivo by photoacoustic lifetime imaging

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Morgounova, Ekaterina; Choi, Jeung-Hwan; Jiang, Chunlan; Bischof, John; Ashkenazi, Shai

    2013-03-01

    Oxygen plays a key role in the energy metabolism of living organisms. Any imbalance in the oxygen levels will affect the metabolic homeostasis and lead to pathophysiological diseases. Hypoxia, a status of low tissue oxygen, is a key factor in tumor biology as it is highly prominent in tumor tissues. However, clinical tools for assessing tissue oxygenation are limited. The gold standard is polarographic needle electrode which is invasive and not capable of mapping (imaging) the oxygen content in tissue. We applied the method of photoacoustic lifetime imaging (PALI) of oxygen-sensitive dye to small animal tissue hypoxia research. PALI is new technology for direct, non-invasive imaging of oxygen. The technique is based on mapping the oxygen-dependent transient optical absorption of Methylene Blue (MB) by pump-probe photoacoustic imaging. Our studies show the feasibility of imaging of dissolved oxygen distribution in phantoms. In vivo experiments demonstrate that the hypoxia region is consistent with the site of subcutaneously xenografted prostate tumor in mice with adequate spatial resolution and penetration depth.

  8. Algorithm for mapping cutaneous tissue oxygen concentration using hyperspectral imaging

    PubMed Central

    Miclos, Sorin; Parasca, Sorin Viorel; Calin, Mihaela Antonina; Savastru, Dan; Manea, Dragos

    2015-01-01

    The measurement of tissue oxygenation plays an important role in the diagnosis and therapeutic assessment of a large variety of diseases. Many different methods have been developed and are currently applied in clinical practice for the measurement of tissue oxygenation. Unfortunately, each of these methods has its own limitations. In this paper we proposed the use of hyperspectral imaging as new method for the assessment of the tissue oxygenation level. To extract this information from hyperspectral images a new algorithm for mapping cutaneous tissue oxygen concentration was developed. This algorithm takes into account and solves some problems related to setting and calculation of some parameters derived from hyperspectral images. The algorithm was tested with good results on synthetic images and then validated on the fingers of a hand with different blood irrigation states. The results obtained have proved the ability of hyperspectral imaging together with the developed algorithm to map the oxy- and deoxyhemoglobin distribution on the analyzed fingers. These are only preliminary results and other studies should be done before this approach to be used in the clinical setting for the diagnosis and monitoring of various diseases. PMID:26417511

  9. Mapping of glacial landforms from Seasat radar images

    NASA Technical Reports Server (NTRS)

    Ford, J. P.

    1984-01-01

    Glacial landforms in the drumlin drift belt of Ireland and the Alaska Range can be identified and mapped from Seasat synthetic-aperture radar (SAR) images. Drumlins cover 60 percent of the Ireland scene. The width/length ratio of individual drumlins can be measured on the SAR images, allowing regional differences in drumlin shape to be mapped. This cannot be done with corresponding Landsat multispectral scanner (MSS) images because of lower spatial resolution and because of shadowing effects that vary seasonally. The Alaska scene shows the extent and nature of morphological features such as medial and lateral moraines, stagnant ice, and fluted ground moraine in glaciated valleys. Perception of these features on corresponding Landsat MSS images is limited by seasonal diffrences in solar illumination. Because SAR is not affected by such differences or by cloud cover, it is particularly well suited for monitoring glacial movement. The disadvantage of distorted high-relief features on Seasat SAR images can be reduced in future SAR systems by modifying the radar illumination geometry.

  10. A filtering approach to edge preserving MAP estimation of images.

    PubMed

    Humphrey, David; Taubman, David

    2011-05-01

    The authors present a computationally efficient technique for maximum a posteriori (MAP) estimation of images in the presence of both blur and noise. The image is divided into statistically independent regions. Each region is modelled with a WSS Gaussian prior. Classical Wiener filter theory is used to generate a set of convex sets in the solution space, with the solution to the MAP estimation problem lying at the intersection of these sets. The proposed algorithm uses an underlying segmentation of the image, and a means of determining the segmentation and refining it are described. The algorithm is suitable for a range of image restoration problems, as it provides a computationally efficient means to deal with the shortcomings of Wiener filtering without sacrificing the computational simplicity of the filtering approach. The algorithm is also of interest from a theoretical viewpoint as it provides a continuum of solutions between Wiener filtering and Inverse filtering depending upon the segmentation used. We do not attempt to show here that the proposed method is the best general approach to the image reconstruction problem. However, related work referenced herein shows excellent performance in the specific problem of demosaicing. PMID:21078580

  11. The role of the diffusion sequence in magnetic resonance imaging for the differential diagnosis between hepatocellular carcinoma and benign liver lesions

    PubMed Central

    CARAIANI, COSMIN-NICOLAE; MARIAN, DAN; MILITARU, CLAUDIA; CALIN, ADRIANA; BADEA, RADU

    2016-01-01

    Background and aim To assess the role of diffusion weighted imaging sequence (DWI), routinely used in hepatic magnetic resonance imaging (MRI) for the differentiation of hepatocellular carcinoma (HCC) from benign liver lesions. Methods A number of 56 liver MRI examinations were retrospectively analyzed independently by two experienced radiologists, blinded to each other results. A total number of 70 Focal Liver Lesions (FLLs) assessed by liver MRI in 56 patients were included in the present study. All lesions were retrospectively analyzed by two experienced radiologists, independently from each other and who were not aware of the previous results given by using different imaging techniques. All included FLLs had a final histological diagnosis, or the final diagnosis was based on consensus reading by two experienced radiologists. The signal of the included FLLs was qualitatively appreciated on the b-800 sequences and on the apparent diffusion coefficient (ADC) map. The ADC value of each FLL was measured and the ADC ratio between the ADC value of the assessed FLL and that of the surrounding liver parenchyma was calculated. Results The mean ADC value for benign FLLs as assessed by the two independent readers was 1.75 × 10−3 and 1.72 × 10−3. The mean ADC value for HCC nodules was 0.92 × 10−3 for the first reader and 0.91 × 10−3 for the second reader respectively. The mean ADC ratio for benign FLLs was 1.81 and 1.84 for the two readers, respectively. The ADC ratio for HCC nodules was 0.91 and 0.91, respectively. The ADC value is an indicator which is less prone to interobserver variability (correlation of 0.919→1). The ADC ratio has, as the analysis of the ROC curve shows, the best predictive value for differentiation between benign FLLs and HCC nodules. Analysis of the signal intensity on the DWI b-800 image alone is of no significance in differentiating benign FLLs from HCC nodules (p>0.005). Conclusions The ADC value and the ADC ratio assessed on liver

  12. Image mosaic and topographic map of the moon

    USGS Publications Warehouse

    Hare, Trent M.; Hayward, Rosalyn K.; Blue, Jennifer S.; Archinal, Brent A.

    2015-01-01

    Sheet 2: This map is based on data from the Lunar Orbiter Laser Altimeter (LOLA; Smith and others, 2010), an instrument on the National Aeronautics and Space Administration (NASA) Lunar Reconnaissance Orbiter (LRO) spacecraft (Tooley and others, 2010). The image used for the base of this map represents more than 6.5 billion measurements gathered between July 2009 and July 2013, adjusted for consistency in the coordinate system described below, and then converted to lunar radii (Mazarico and others, 2012). For the Mercator portion, these measurements were converted into a digital elevation model (DEM) with a resolution of 0.015625 degrees per pixel, or 64 pixels per degree. In projection, the pixels are 473.8 m in size at the equator. For the polar portion, the LOLA elevation points were used to create a DEM at 240 meters per pixel. A shaded relief map was generated from each DEM with a sun angle of 45° from horizontal, and a sun azimuth of 270°, as measured clockwise from north with no vertical exaggeration. The DEM values were then mapped to a global color look-up table, with each color representing a range of 1 km of elevation. For this map sheet, only larger feature names are shown. For references listed above, please open the full PDF.

  13. Mapping potentialy asbestos-bearing rocks using imaging spectroscopy

    USGS Publications Warehouse

    Swayze, G.A.; Kokaly, R.F.; Higgins, C.T.; Clinkenbeard, J.P.; Clark, R.N.; Lowers, H.A.; Sutley, S.J.

    2009-01-01

    Rock and soil that may contain naturally occurring asbestos (NOA), a known human carcinogen, were mapped in the Sierra Nevada, California, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) to determine if these materials could be uniquely identified with spectroscopy. Such information can be used to prepare or refine maps of areas that may contain minerals that can be asbestiform, such as serpentine and tremolite-actinolite, which were the focus of this study. Although thick vegetation can conceal underlying rock and soil, use of linear-mixture spectra calculated from spectra of dry grass and serpentine allowed detection of serpentine in some parts of the study area with up to ???80% dry-grass cover. Chaparral vegetation, which was dominantly, but not exclusively, found in areas underlain by serpentinized ultramafic rocks, was also mapped. Overall, field checking at 201 sites indicated highly accurate identification by AVIRIS of mineral (94%) and vegetation (89%) categories. Practical applications of AVIRIS to mapping areas that may contain NOA include locating roads that are surfaced with serpentine aggregate, identifying sites that may require enhanced dust control or other safety measures, and filling gaps in geologic mapping where field access is limited. ?? 2009 Geological Society of America.

  14. 10-bit 20-Msample/s ADC for low-voltage low-power applications

    NASA Astrophysics Data System (ADS)

    Sou, Gerard; Lu, Guo N.; Klisnick, Geoffroy; Redon, Michel

    1998-09-01

    For the development of new low-voltage, low-power imaging microsystems, we have designed a 10-bit 20-Msample/s ADC. It is a 3-stage sub-ranging architecture and has a rail-to-rail dynamic input. To achieve low-voltage operation and low- power consumption, specific analog blocks such as op-amps and flash ADCs were required. Complementary CMOS comparators with no static consumption were used to build a new low- power 4-bit flash ADC structure with rail-to-rail input range. A new 1.7 volts, 120 dB op-amp structure was designed. To achieve 20 MHz sampling rate, the ADC makes use of time-interleaving, switched capacitor amplifiers, which perform dynamic frequency compensation to optimize speed and offset cancellation to meet resolution requirement. A 20- Msample/s rate has been obtained with supply voltages down to 2.4 volts to 2.4 volts and 60mW power consumption. This ADC has been fabricated and tested and will be integrated on the same chip with color image sensors in a BICMOS process.

  15. In-pixel conversion with a 10 bit SAR ADC for next generation X-ray FELs

    NASA Astrophysics Data System (ADS)

    Lodola, L.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G. F.; Fabris, L.; Forti, F.; Grassi, M.; Latreche, S.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Rizzo, G.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    This work presents the design of an interleaved Successive Approximation Register (SAR) ADC, part of the readout channel for the PixFEL detector. The PixFEL project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging for applications at the next generation Free Electron Laser (FEL) facilities. For this purpose, the collaboration is developing the fundamental microelectronic building blocks for the readout channel. This work focuses on the design of the ADC carried out in a 65 nm CMOS technology. To obtain a good tradeoff between power consumption, conversion speed and area occupation, an interleaved SAR ADC architecture was adopted.

  16. MR diffusion-weighted imaging of kidney: differentiation between hydronephrosis and pyonephrosis.

    PubMed

    Chan, J H; Tsui, E Y; Luk, S H; Fung, S L; Cheung, Y K; Chan, M S; Yuen, M K; Mak, S F; Wong, K P

    2001-01-01

    The objective of the study was to evaluate the capability and reliability of the magnetic resonance (MR) diffusion-weighted imaging (DWI) in differentiation between hydronephrosis and pyonephrosis. Single-shot echoplanar MR diffusion-weighted imaging was performed in 12 patients who had dilatation of the renal pelvis and calyces detected by ultrasonography (US). Microbiological tests confirmed that there were four cases of pyonephrosis and eight cases of hydronephrosis. Signal intensities of the collecting (pelvicalyceal) systems on the diffusion-weighted images and apparent diffusion coefficient (ADC) maps were noted. ADC values of the pelvicalyceal system in all patients were computed and compared using Student's t test. On diffusion-weighted images, the pelvicalyceal system of the hydronephrotic kidney was hypointense while the pelvicalyceal system of the pyonephrotic kidney was markedly hyperintense. The mean ADCs of the hydronephrotic and pyonephrotic renal pelvis were 2.98 +/- 0.65 x 10(-3) and 0.64 +/- 0.35 x 10(-3) mm(2)/s, respectively. The extremely low ADC of the renal pelvis of the pyonephrotic kidney accounted for its signal hyperintensity on diffusion-weighted images as well as signal hypointensity on ADC maps. In conclusion, the MR diffusion-weighted imaging may be a reliable tool to differentiate pyonephrosis from hydronephrosis. PMID:11483420

  17. Statistical mapping of sheet aiquile SE-20-9 (national map) making use of ERTS images

    NASA Technical Reports Server (NTRS)

    Torrez, J. G.; Brockman, C. E.; Castro, A. F.

    1977-01-01

    New possibilities of remote sensing by means of satellites to do research on natural resources are reported. These images make it possible to carry out integrated studies of natural resources in the shortest time possible and with small investments. Various maps and a complete description of each are included. With the use of these satellites, scientists can hopefully plan development projects at the national level.

  18. Refinement of Colored Mobile Mapping Data Using Intensity Images

    NASA Astrophysics Data System (ADS)

    Yamakawa, T.; Fukano, K.; Onodera, R.; Masuda, H.

    2016-06-01

    Mobile mapping systems (MMS) can capture dense point-clouds of urban scenes. For visualizing realistic scenes using point-clouds, RGB colors have to be added to point-clouds. To generate colored point-clouds in a post-process, each point is projected onto camera images and a RGB color is copied to the point at the projected position. However, incorrect colors are often added to point-clouds because of the misalignment of laser scanners, the calibration errors of cameras and laser scanners, or the failure of GPS acquisition. In this paper, we propose a new method to correct RGB colors of point-clouds captured by a MMS. In our method, RGB colors of a point-cloud are corrected by comparing intensity images and RGB images. However, since a MMS outputs sparse and anisotropic point-clouds, regular images cannot be obtained from intensities of points. Therefore, we convert a point-cloud into a mesh model and project triangle faces onto image space, on which regular lattices are defined. Then we extract edge features from intensity images and RGB images, and detect their correspondences. In our experiments, our method worked very well for correcting RGB colors of point-clouds captured by a MMS.

  19. Multi-layer 3D imaging using a few viewpoint images and depth map

    NASA Astrophysics Data System (ADS)

    Suginohara, Hidetsugu; Sakamoto, Hirotaka; Yamanaka, Satoshi; Suyama, Shiro; Yamamoto, Hirotsugu

    2015-03-01

    In this paper, we propose a new method that makes multi-layer images from a few viewpoint images to display a 3D image by the autostereoscopic display that has multiple display screens in the depth direction. We iterate simple "Shift and Subtraction" processes to make each layer image alternately. The image made in accordance with depth map like a volume slicing by gradations is used as the initial solution of iteration process. Through the experiments using the prototype stacked two LCDs, we confirmed that it was enough to make multi-layer images from three viewpoint images to display a 3D image. Limiting the number of viewpoint images, the viewing area that allows stereoscopic view becomes narrow. To broaden the viewing area, we track the head motion of the viewer and update screen images in real time so that the viewer can maintain correct stereoscopic view within +/- 20 degrees area. In addition, we render pseudo multiple viewpoint images using depth map, then we can generate motion parallax at the same time.

  20. Tomographic image reconstruction and rendering with texture-mapping hardware

    SciTech Connect

    Azevedo, S.G.; Cabral, B.K.; Foran, J.

    1994-07-01

    The image reconstruction problem, also known as the inverse Radon transform, for x-ray computed tomography (CT) is found in numerous applications in medicine and industry. The most common algorithm used in these cases is filtered backprojection (FBP), which, while a simple procedure, is time-consuming for large images on any type of computational engine. Specially-designed, dedicated parallel processors are commonly used in medical CT scanners, whose results are then passed to graphics workstation for rendering and analysis. However, a fast direct FBP algorithm can be implemented on modern texture-mapping hardware in current high-end workstation platforms. This is done by casting the FBP algorithm as an image warping operation with summing. Texture-mapping hardware, such as that on the Silicon Graphics Reality Engine (TM), shows around 600 times speedup of backprojection over a CPU-based implementation (a 100 Mhz R4400 in this case). This technique has the further advantages of flexibility and rapid programming. In addition, the same hardware can be used for both image reconstruction and for volumetric rendering. The techniques can also be used to accelerate iterative reconstruction algorithms. The hardware architecture also allows more complex operations than straight-ray backprojection if they are required, including fan-beam, cone-beam, and curved ray paths, with little or no speed penalties.

  1. Image encryption using the two-dimensional logistic chaotic map

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Yang, Gelan; Jin, Huixia; Noonan, Joseph P.

    2012-01-01

    Chaos maps and chaotic systems have been proved to be useful and effective for cryptography. In our study, the two-dimensional logistic map with complicated basin structures and attractors are first used for image encryption. The proposed method adopts the classic framework of the permutation-substitution network in cryptography and thus ensures both confusion and diffusion properties for a secure cipher. The proposed method is able to encrypt an intelligible image into a random-like one from the statistical point of view and the human visual system point of view. Extensive simulation results using test images from the USC-SIPI image database demonstrate the effectiveness and robustness of the proposed method. Security analysis results of using both the conventional and the most recent tests show that the encryption quality of the proposed method reaches or excels the current state-of-the-art methods. Similar encryption ideas can be applied to digital data in other formats (e.g., digital audio and video). We also publish the cipher MATLAB open-source-code under the web page https://sites.google.com/site/tuftsyuewu/source-code.

  2. Application of shuttle imaging radar to geologic mapping

    NASA Technical Reports Server (NTRS)

    Labotka, T. C.

    1986-01-01

    Images from the Shuttle Imaging Radar - B (SIR-B) experiment covering the area of the Panamint Mountains, Death Valley, California, were examined in the field and in the laboratory to determine their usefulness as aids for geologic mapping. The covered area includes the region around Wildrose Canyon where rocks ranging in age from Precambrian to Cenozoic form a moderately rugged portion of the Panamint Mountains, including sharp ridges, broad alluviated upland valleys, and fault-bounded grabens. The results of the study indicate that the available SIR-B images of this area primarily illustrate variations in topography, except in the broadly alluviated areas of Panamint Valley and Death Valley where deposits of differing reflectivity can be recognized. Within the mountainous portion of the region, three textures can be discerned, each representing a different mode of topographic expression related to the erosion characteristics of the underlying bedrock. Regions of Precambrian bedrock have smooth slopes and sharp ridges with a low density of gullies. Tertiary monolithologic breccias have smooth, steep slopes with an intermediate density of gullies with rounded ridges. Tertiary fanglomerates have steep rugged slopes with numerous steep-sided gullies and knife-sharp ridges. The three topographic types reflect the consistancy and relative susceptibility to erosion of the bedrock; the three types can readily be recognized on topographic maps. At present, it has not been possible to distinguish on the SIR-B image of the mountainous terrain the type of bedrock, independent of the topographic expression.

  3. Convex-relaxed kernel mapping for image segmentation.

    PubMed

    Ben Salah, Mohamed; Ben Ayed, Ismail; Jing Yuan; Hong Zhang

    2014-03-01

    This paper investigates a convex-relaxed kernel mapping formulation of image segmentation. We optimize, under some partition constraints, a functional containing two characteristic terms: 1) a data term, which maps the observation space to a higher (possibly infinite) dimensional feature space via a kernel function, thereby evaluating nonlinear distances between the observations and segments parameters and 2) a total-variation term, which favors smooth segment surfaces (or boundaries). The algorithm iterates two steps: 1) a convex-relaxation optimization with respect to the segments by solving an equivalent constrained problem via the augmented Lagrange multiplier method and 2) a convergent fixed-point optimization with respect to the segments parameters. The proposed algorithm can bear with a variety of image types without the need for complex and application-specific statistical modeling, while having the computational benefits of convex relaxation. Our solution is amenable to parallelized implementations on graphics processing units (GPUs) and extends easily to high dimensions. We evaluated the proposed algorithm with several sets of comprehensive experiments and comparisons, including: 1) computational evaluations over 3D medical-imaging examples and high-resolution large-size color photographs, which demonstrate that a parallelized implementation of the proposed method run on a GPU can bring a significant speed-up and 2) accuracy evaluations against five state-of-the-art methods over the Berkeley color-image database and a multimodel synthetic data set, which demonstrates competitive performances of the algorithm. PMID:24723519

  4. Tomographic image reconstruction and rendering with texture-mapping hardware

    NASA Astrophysics Data System (ADS)

    Azevedo, Stephen G.; Cabral, Brian K.; Foran, Jim

    1994-07-01

    The image reconstruction problem, also known as the inverse Radon transform, for x-ray computed tomography (CT) is found in numerous applications in medicine and industry. The most common algorithm used in these cases is filtered backprojection (FBP), which, while a simple procedure, is time-consuming for large images on any type of computational engine. Specially designed, dedicated parallel processors are commonly used in medical CT scanners, whose results are then passed to a graphics workstation for rendering and analysis. However, a fast direct FBP algorithm can be implemented on modern texture-mapping hardware in current high-end workstation platforms. This is done by casting the FBP algorithm as an image warping operation with summing. Texture- mapping hardware, such as that on the silicon Graphics Reality Engine, shows around 600 times speedup of backprojection over a CPU-based implementation (a 100 Mhz R4400 in our case). This technique has the further advantages of flexibility and rapid programming. In addition, the same hardware can be used for both image reconstruction and for volumetric rendering. Our technique can also be used to accelerate iterative reconstruction algorithms. The hardware architecture also allows more complex operations than straight-ray backprojection if they are required, including fan-beam, cone-beam, and curved ray paths, with little or no speed penalties.

  5. The Mapping Imaging Spectrometer for Europa (MISE) Investigation

    NASA Astrophysics Data System (ADS)

    Blaney, D. L.; Hibbitts, C.; Clark, R. N.; Dalton, J. B., III; Davies, A. G.; Green, R. O.; Hedman, M. M.; Langevin, Y.; Lunine, J. I.; McCord, T. B.; Murchie, S. L.; Paranicas, C.; Seelos, F. P., IV; Soderblom, J. M.; Cable, M. L.

    2015-12-01

    The Mapping Imaging Spectrometer for Europa (MISE) investigation was selected by NASA to be part of the next Europa Mission in May 2015. The MISE instrument is designed to enable the identification and mapping of organics, salts, acid hydrates, water ice phases, altered silicates, and radiolytic compounds at global (≤ 10 km), regional (≤ 300 m), and local scales (~ 25 m). Mapping the composition of specific landforms is critical to understanding surface and subsurface geologic processes, including recent or current activity. High spatial resolution compositional mapping is also essential for detecting small outcrops of organics and salts. Distribution maps of astrobiologically relevant compounds and their geologic context can be used to assess whether Europa's ocean is capable of supporting life. MISE could provide fundamental information on where future Europa landers would have the highest probability of detecting evidence of life. The MISE instrument design is for a high-optical throughput pushbroom imaging spectrometer that could observe effectively throughout a flyby or in orbit around Europa. MISE would cover a spectral range from 0.8-5 μm at 10 nm/channel, with an instantaneous field of view (IFOV) of 250 μrad/pixel and a swath width of 300 active pixels. The 0.8-2.5 μm region is essential for quantifying hydrates and bulk surface composition, while the 3-5 μm region is required for detecting low abundances of organics, most radiolytic products, and discriminating salts from acid hydrates. These longer wavelengths can also be used to measure thermal emissions from currently active regions. MISE is designed to operate within Europa's challenging radiation environment and deal with both radiation noise and total integrated dose. The MISE design is the result of collaboration between NASA's Jet Propulsion Laboratory (California Institute of Technology) and the Applied Physics Laboratory (John Hopkins' University).

  6. A comprehensive neuropsychological mapping battery for functional magnetic resonance imaging.

    PubMed

    Karakas, Sirel; Baran, Zeynel; Ceylan, Arzu Ozkan; Tileylioglu, Emre; Tali, Turgut; Karakas, Hakki Muammer

    2013-11-01

    Existing batteries for FMRI do not precisely meet the criteria for comprehensive mapping of cognitive functions within minimum data acquisition times using standard scanners and head coils. The goal was to develop a battery of neuropsychological paradigms for FMRI that can also be used in other brain imaging techniques and behavioural research. Participants were 61 healthy, young adult volunteers (48 females and 13 males, mean age: 22.25 ± 3.39 years) from the university community. The battery included 8 paradigms for basic (visual, auditory, sensory-motor, emotional arousal) and complex (language, working memory, inhibition/interference control, learning) cognitive functions. Imaging was performed using standard functional imaging capabilities (1.5-T MR scanner, standard head coil). Structural and functional data series were analysed using Brain Voyager QX2.9 and Statistical Parametric Mapping-8. For basic processes, activation centres for individuals were within a distance of 3-11 mm of the group centres of the target regions and for complex cognitive processes, between 7 mm and 15 mm. Based on fixed-effect and random-effects analyses, the distance between the activation centres was 0-4 mm. There was spatial variability between individual cases; however, as shown by the distances between the centres found with fixed-effect and random-effects analyses, the coordinates for individual cases can be used to represent those of the group. The findings show that the neuropsychological brain mapping battery described here can be used in basic science studies that investigate the relationship of the brain to the mind and also as functional localiser in clinical studies for diagnosis, follow-up and pre-surgical mapping. PMID:23892066

  7. Dosimetric Effects of Magnetic Resonance Imaging-assisted Radiotherapy Planning: Dose Optimization for Target Volumes at High Risk and Analytic Radiobiological Dose Evaluation.

    PubMed

    Park, Ji-Yeon; Suh, Tae Suk; Lee, Jeong-Woo; Ahn, Kook-Jin; Park, Hae-Jin; Choe, Bo-Young; Hong, Semie

    2015-10-01

    Based on the assumption that apparent diffusion coefficients (ADCs) define high-risk clinical target volume (aCTVHR) in high-grade glioma in a cellularity-dependent manner, the dosimetric effects of aCTVHR-targeted dose optimization were evaluated in two intensity-modulated radiation therapy (IMRT) plans. Diffusion-weighted magnetic resonance (MR) images and ADC maps were analyzed qualitatively and quantitatively to determine aCTVHR in a high-grade glioma with high cellularity. After confirming tumor malignancy using the average and minimum ADCs and ADC ratios, the aCTVHR with double- or triple-restricted water diffusion was defined on computed tomography images through image registration. Doses to the aCTVHR and CTV defined on T1-weighted MR images were optimized using a simultaneous integrated boost technique. The dosimetric benefits for CTVs and organs at risk (OARs) were compared using dose volume histograms and various biophysical indices in an ADC map-based IMRT (IMRTADC) plan and a conventional IMRT (IMRTconv) plan. The IMRTADC plan improved dose conformity up to 15 times, compared to the IMRTconv plan. It reduced the equivalent uniform doses in the visual system and brain stem by more than 10% and 16%, respectively. The ADC-based target differentiation and dose optimization may facilitate conformal dose distribution to the aCTVHR and OAR sparing in an IMRT plan. PMID:26425053

  8. Motion robust PPG-imaging through color channel mapping.

    PubMed

    Moço, Andreia V; Stuijk, Sander; de Haan, Gerard

    2016-05-01

    Photoplethysmography (PPG)-imaging is an emerging noninvasive technique that maps spatial blood-volume variations in living tissue with a video camera. In this paper, we clarify how cardiac-related (i.e., ballistocardiographic; BCG) artifacts occur in this imaging modality and address these using algorithms from the remote-PPG literature. Performance is assessed under stationary conditions at the immobilized hand. Our proposal outperforms the state-of-the-art, blood pulsation imaging [Biomed. Opt. Express5, 3123 (2014). ], even in our best attempt to create diffused illumination. BCG-artifacts are suppressed to an order of magnitude below PPG-signal strength, which is sufficient to prevent interpretation errors. PMID:27231618

  9. Velocity-map imaging study of the photodissociation of acetaldehyde

    SciTech Connect

    Cruse, H.A.; Softley, T.P.

    2005-03-22

    Velocity-map imaging studies are reported for the photodissociation of acetaldehyde over a range of photolysis wavelengths (317.5-282.5 nm). Images are obtained for both the HCO and CH{sub 3} fragments. The mean rotational energy of both fragments increases with photodissociation energy, with a lesser degree of excitation in the CH{sub 3} fragment. The CH{sub 3} images demonstrate that the CH{sub 3} fragments are rotationally aligned with respect to the recoil direction and this is interpreted, and well modeled, on the basis of a propensity for forming CH{sub 3} fragments with M{approx}K, where M is the projection of the rotational angular momentum along the recoil direction. The origin of the CH{sub 3} rotation is conserved motion from the torsional and methyl-rocking modes of the parent molecule. Nonstatistical vibrational distributions for the CH{sub 3} fragment are obtained at higher energies.

  10. Mapping pigment distribution in mud samples through hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Mehrübeoglu, Mehrube; Nicula, Cosmina; Trombley, Christopher; Smith, Shane W.; Smith, Dustin K.; Shanks, Elizabeth S.; Zimba, Paul V.

    2015-09-01

    Mud samples collected from bodies of water reveal information about the distribution of microorganisms in the local sediments. Hyperspectral imaging has been investigated as a technology to identify phototropic organisms living on sediments collected from the Texas Coastal Bend area based on their spectral pigment profiles and spatial arrangement. The top pigment profiles identified through high-performance liquid chromatography (HPLC) have been correlated with spectral signatures extracted from the hyperspectral data of mud using fast Fourier transform (FFT). Spatial distributions have also been investigated using 2D hyperspectral image processing. 2D pigment distribution maps have been created based on the correlation with pigment profiles in the FFT domain. Among the tested pigments, the results show match among four out of five pigment distribution trends between HPLC and hyperspectral data analysis. Differences are attributed mainly to the difference between area and volume of scale between the HPLC analysis and area covered by hyperspectral imaging.

  11. Motion robust PPG-imaging through color channel mapping

    PubMed Central

    Moço, Andreia V.; Stuijk, Sander; de Haan, Gerard

    2016-01-01

    Photoplethysmography (PPG)-imaging is an emerging noninvasive technique that maps spatial blood-volume variations in living tissue with a video camera. In this paper, we clarify how cardiac-related (i.e., ballistocardiographic; BCG) artifacts occur in this imaging modality and address these using algorithms from the remote-PPG literature. Performance is assessed under stationary conditions at the immobilized hand. Our proposal outperforms the state-of-the-art, blood pulsation imaging [Biomed. Opt. Express 5, 3123 (2014)25401026. ], even in our best attempt to create diffused illumination. BCG-artifacts are suppressed to an order of magnitude below PPG-signal strength, which is sufficient to prevent interpretation errors. PMID:27231618

  12. AdcAII of Streptococcus pneumoniae Affects Pneumococcal Invasiveness

    PubMed Central

    Brown, Lindsey R.; Gunnell, Steven M.; Cassella, Adam N.; Keller, Lance E.; Scherkenbach, Lisa A.; Mann, Beth; Brown, Matthew W.; Hill, Rebecca; Fitzkee, Nicholas C.; Rosch, Jason W.; Tuomanen, Elaine I.; Thornton, Justin A.

    2016-01-01

    Across bacterial species, metal binding proteins can serve functions in pathogenesis in addition to regulating metal homeostasis. We have compared and contrasted the activities of zinc (Zn2+)-binding lipoproteins AdcA and AdcAII in the Streptococcus pneumoniae TIGR4 background. Exposure to Zn2+-limiting conditions resulted in delayed growth in a strain lacking AdcAII (ΔAdcAII) when compared to wild type bacteria or a mutant lacking AdcA (ΔAdcA). AdcAII failed to interact with the extracellular matrix protein laminin despite homology to laminin-binding proteins of related streptococci. Deletion of AdcA or AdcAII led to significantly increased invasion of A549 human lung epithelial cells and a trend toward increased invasion in vivo. Loss of AdcAII, but not AdcA, was shown to negatively impact early colonization of the nasopharynx. Our findings suggest that expression of AdcAII affects invasiveness of S. pneumoniae in response to available Zn2+ concentrations. PMID:26752283

  13. Mapping neuroinflammation in frontotemporal dementia with molecular PET imaging.

    PubMed

    Zhang, Jing

    2015-01-01

    Recent findings have led to a renewed interest and support for an active role of inflammation in neurodegenerative dementias and related neurologic disorders. Detection of neuroinflammation in vivo throughout the course of neurodegenerative diseases is of great clinical interest. Studies have shown that microglia activation (an indicator of neuroinflammation) may present at early stages of frontotemporal dementia (FTD), but the role of neuroinflammation in the pathogenesis of FTD is largely unknown. The first-generation translocator protein (TSPO) ligand ([(11)C]-PK11195) has been used to detect microglia activation in FTD, and the second-generation TSPO ligands have imaged neuroinflammation in vivo with improved pharmacokinetic properties. This paper reviews related literature and technical issues on mapping neuroinflammation in FTD with positron-emission tomography (PET) imaging. Early detection of neuroinflammation in FTD may identify new tools for diagnosis, novel treatment targets, and means to monitor therapeutic efficacy. More studies are needed to image and track neuroinflammation in FTD. It is anticipated that the advances of TSPO PET imaging will overcome technical difficulties, and molecular imaging of neuroinflammation will aid in the characterization of neuroinflammation in FTD. Such knowledge has the potential to shed light on the poorly understood pathogenesis of FTD and related dementias, and provide imaging markers to guide the development and assessment of new therapies. PMID:26022249

  14. Digital image registration method based upon binary boundary maps

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R., Jr.; Andrus, J. F.; Campbell, C. W.

    1974-01-01

    A relatively fast method is presented for matching or registering the digital data of imagery from the same ground scene acquired at different times, or from different multispectral images, sensors, or both. It is assumed that the digital images can be registed by using translations and rotations only, that the images are of the same scale, and that little or no distortion exists between images. It is further assumed that by working with several local areas of the image, the rotational effects in the local areas can be neglected. Thus, by treating the misalignments of local areas as translations, it is possible to determine rotational and translational misalignments for a larger portion of the image containing the local areas. This procedure of determining the misalignment and then registering the data according to the misalignment can be repeated until the desired degree of registration is achieved. The method to be presented is based upon the use of binary boundary maps produced from the raw digital imagery rather than the raw digital data.

  15. Terahertz digital holography image processing based on MAP algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Hao; Li, Qi

    2015-04-01

    Terahertz digital holography combines the terahertz technology and digital holography technology at present, fully exploits the advantages in both of them. Unfortunately, the quality of terahertz digital holography reconstruction images is gravely harmed by speckle noise which hinders the popularization of this technology. In this paper, the maximum a posterior estimation (MAP) filter is harnessed for the restoration of the digital reconstruction images. The filtering results are compared with images filtered by Wiener Filter and conventional frequency-domain filters from both subjective and objective perspectives. As for objective assessment, we adopted speckle index (SPKI) and edge preserving index (EPI) to quantitate the quality of images. In this paper, Canny edge detector is also used to outline the target in original and reconstruction images, which then act as an important role in the evaluation of filter performance. All the analysis indicate that maximum a posterior estimation filtering algorithm performs superiorly compared with the other two competitors in this paper and has enhanced the terahertz digital holography reconstruction images to a certain degree, allowing for a more accurate boundary identification.

  16. Array imaging of austenitic welds by measuring weld material map

    NASA Astrophysics Data System (ADS)

    Fan, Z.; Lowe, M.

    2014-02-01

    It is difficult to inspect for defects in austenitic welds ultrasonically due to complicated material properties inside the weld. Weld microstructures typically lead to weld stiffnesses that are both anisotropic and inhomogeneous, so that ultrasonic waves tend to deviate and scatter. A weld performance map is commonly used to describe how the material properties vary throughout the weld, and this idea has been applied to wave propagation models. In this work, we developed a non-destructive method to measure this map using ultrasonic arrays. A material model (previously published by others) with a small number of parameters has been applied to describe the weld performance map. It uses the information of the welding procedure and rules for crystalline growth to predict the orientations, therefore it has a good physical foundation. An inverse model has then been developed to measure the weld performance map based on the matching of predictions by the ray tracing method to selected experimental array measurements. The process is validated by both finite element models and experiments. The results have been applied to correct array images to compensate for deviations of the ultrasonic rays.

  17. Improved land cover mapping using aerial photographs and satellite images

    NASA Astrophysics Data System (ADS)

    Varga, Katalin; Szabó, Szilárd; Szabó, Gergely; Dévai, György; Tóthmérész, Béla

    2014-10-01

    Manual Land Cover Mapping using aerial photographs provides sufficient level of resolution for detailed vegetation or land cover maps. However, in some cases it is not possible to achieve the desired information over large areas, for example from historical data where the quality and amount of available images is definitely lower than from modern data. The use of automated and semiautomated methods offers the means to identify the vegetation cover using remotely sensed data. In this paper automated methods were tested on aerial photographs and satellite images to extract better and more reliable information about vegetation cover. These testswere performed by using automated analysis of LANDSAT7 images (with and without the surface model of the Shuttle Radar Topography Mission (SRTM)) and two temporally similar aerial photographs. The spectral bands were analyzed with supervised (maximum likelihood) methods. In conclusion, the SRTM and the combination of two temporally similar aerial photographs from earlier years were useful in separating the vegetation cover on a floodplain area. In addition the different date of the vegetation season also gave reliable information about the land cover. High quality information about old and present vegetation on a large area is an essential prerequisites ensuring the conservation of ecosystems

  18. Mapping iterative medical imaging algorithm on cell accelerator.

    PubMed

    Xu, Meilian; Thulasiraman, Parimala

    2011-01-01

    Algebraic reconstruction techniques require about half the number of projections as that of Fourier backprojection methods, which makes these methods safer in terms of required radiation dose. Algebraic reconstruction technique (ART) and its variant OS-SART (ordered subset simultaneous ART) are techniques that provide faster convergence with comparatively good image quality. However, the prohibitively long processing time of these techniques prevents their adoption in commercial CT machines. Parallel computing is one solution to this problem. With the advent of heterogeneous multicore architectures that exploit data parallel applications, medical imaging algorithms such as OS-SART can be studied to produce increased performance. In this paper, we map OS-SART on cell broadband engine (Cell BE). We effectively use the architectural features of Cell BE to provide an efficient mapping. The Cell BE consists of one powerPC processor element (PPE) and eight SIMD coprocessors known as synergetic processor elements (SPEs). The limited memory storage on each of the SPEs makes the mapping challenging. Therefore, we present optimization techniques to efficiently map the algorithm on the Cell BE for improved performance over CPU version. We compare the performance of our proposed algorithm on Cell BE to that of Sun Fire ×4600, a shared memory machine. The Cell BE is five times faster than AMD Opteron dual-core processor. The speedup of the algorithm on Cell BE increases with the increase in the number of SPEs. We also experiment with various parameters, such as number of subsets, number of processing elements, and number of DMA transfers between main memory and local memory, that impact the performance of the algorithm. PMID:21922018

  19. Mapping Iterative Medical Imaging Algorithm on Cell Accelerator

    PubMed Central

    Xu, Meilian; Thulasiraman, Parimala

    2011-01-01

    Algebraic reconstruction techniques require about half the number of projections as that of Fourier backprojection methods, which makes these methods safer in terms of required radiation dose. Algebraic reconstruction technique (ART) and its variant OS-SART (ordered subset simultaneous ART) are techniques that provide faster convergence with comparatively good image quality. However, the prohibitively long processing time of these techniques prevents their adoption in commercial CT machines. Parallel computing is one solution to this problem. With the advent of heterogeneous multicore architectures that exploit data parallel applications, medical imaging algorithms such as OS-SART can be studied to produce increased performance. In this paper, we map OS-SART on cell broadband engine (Cell BE). We effectively use the architectural features of Cell BE to provide an efficient mapping. The Cell BE consists of one powerPC processor element (PPE) and eight SIMD coprocessors known as synergetic processor elements (SPEs). The limited memory storage on each of the SPEs makes the mapping challenging. Therefore, we present optimization techniques to efficiently map the algorithm on the Cell BE for improved performance over CPU version. We compare the performance of our proposed algorithm on Cell BE to that of Sun Fire ×4600, a shared memory machine. The Cell BE is five times faster than AMD Opteron dual-core processor. The speedup of the algorithm on Cell BE increases with the increase in the number of SPEs. We also experiment with various parameters, such as number of subsets, number of processing elements, and number of DMA transfers between main memory and local memory, that impact the performance of the algorithm. PMID:21922018

  20. Lithologic mapping in a sedimentary environment using multipolarization SAR images

    NASA Technical Reports Server (NTRS)

    Evans, D. L.; Schenck, L. R.

    1985-01-01

    Multipolarization Synthetic Aperture Radar (SAR) data from the NASA/JPL aircraft SAR were used in conjunction with LANDSAT Thematic Mapper (TM), Thermal Infrared Multispectral Scanner (TIMS), and Airborne Imaging Spectrometer (AIS) data as part of a three-year research program to evaluate the utility of remote sensing measurements for analysis of sedimentary basins. The purpose of this research effort is to construct stratigraphic columns, map variations in the lithology, geometry, and structure of sedimentary rocks in the Wind River/Bighorn Basin area, Wyoming, and to integrate remote sensing data with conventional rain models of basin formation and evolution.

  1. Correlation of Diffusion Tensor Imaging Parameters in the Canine Brain

    PubMed Central

    Leong, Dalun; Calabrese, Evan; White, Leonard E; Wei, Peter; Chen, Steven; Platt, Simon R

    2015-01-01

    The goal of this study was to determine the degree to which ex vivo diffusion tensor imaging (DTI) parameters correlate to one another in white matter regions on very high resolution MR scans. Specifically, we hypothesized that radial diffusivity (RD) and apparent diffusion coefficient (ADC) would correlate more closely than either would correlate with fractional anisotropy (FA). We performed post mortem DTI imaging on three canine brains on a 7 T MR scanner (TR = 100 ms, NEX = 1, gradient amplitude = 600 mT/m, b = 1492–1,565 s/mm2) and generated maps of FA, RD, and ADC. We measured RD, FA and ADC within 14 regions of interest representative of various portions of white matter. We compared the three combinations of values, i.e., FA vs ADC, FA vs RD and ADC vs RD, using linear regression models. Linear regression demonstrated that RD was significantly correlated with FA (p << 0.01; R2 = 0.3053) and also with ADC (p << 0.01; R2 = 0.6755), but to a much greater degree. However, ADC was not significantly correlated with FA (p = 0.526; R2 = 0.101). Our findings suggest that both RD and ADC reflect similar cytoarchitectural features, most likely that of myelination, whereas FA values likely reflect both myelination and additional microstructural features that constrain the diffusion of water in white matter. PMID:25924167

  2. Feature maps driven no-reference image quality prediction of authentically distorted images

    NASA Astrophysics Data System (ADS)

    Ghadiyaram, Deepti; Bovik, Alan C.

    2015-03-01

    Current blind image quality prediction models rely on benchmark databases comprised of singly and synthetically distorted images, thereby learning image features that are only adequate to predict human perceived visual quality on such inauthentic distortions. However, real world images often contain complex mixtures of multiple distortions. Rather than a) discounting the effect of these mixtures of distortions on an image's perceptual quality and considering only the dominant distortion or b) using features that are only proven to be efficient for singly distorted images, we deeply study the natural scene statistics of authentically distorted images, in different color spaces and transform domains. We propose a feature-maps-driven statistical approach which avoids any latent assumptions about the type of distortion(s) contained in an image, and focuses instead on modeling the remarkable consistencies in the scene statistics of real world images in the absence of distortions. We design a deep belief network that takes model-based statistical image features derived from a very large database of authentically distorted images as input and discovers good feature representations by generalizing over different distortion types, mixtures, and severities, which are later used to learn a regressor for quality prediction. We demonstrate the remarkable competence of our features for improving automatic perceptual quality prediction on a benchmark database and on the newly designed LIVE Authentic Image Quality Challenge Database and show that our approach of combining robust statistical features and the deep belief network dramatically outperforms the state-of-the-art.

  3. Optical imaging to map blood-brain barrier leakage

    NASA Astrophysics Data System (ADS)

    Jaffer, Hayder; Adjei, Isaac M.; Labhasetwar, Vinod

    2013-11-01

    Vascular leakage in the brain is a major complication associated with brain injuries and certain pathological conditions due to disruption of the blood-brain barrier (BBB). We have developed an optical imaging method, based on excitation and emission spectra of Evans Blue dye, that is >1000-fold more sensitive than conventional ultraviolet spectrophotometry. We used a rat thromboembolic stroke model to validate the usefulness of our method for vascular leakage. Optical imaging data show that vascular leakage varies in different areas of the post-stroke brain and that administering tissue plasminogen activator causes further leakage. The new method is quantitative, simple to use, requires no tissue processing, and can map the degree of vascular leakage in different brain locations. The high sensitivity of our method could potentially provide new opportunities to study BBB leakage in different pathological conditions and to test the efficacy of various therapeutic strategies to protect the BBB.

  4. Hierarchical image-based rendering using texture mapping hardware

    SciTech Connect

    Max, N

    1999-01-15

    Multi-layered depth images containing color and normal information for subobjects in a hierarchical scene model are precomputed with standard z-buffer hardware for six orthogonal views. These are adaptively selected according to the proximity of the viewpoint, and combined using hardware texture mapping to create ''reprojected'' output images for new viewpoints. (If a subobject is too close to the viewpoint, the polygons in the original model are rendered.) Specific z-ranges are selected from the textures with the hardware alpha test to give accurate 3D reprojection. The OpenGL color matrix is used to transform the precomputed normals into their orientations in the final view, for hardware shading.

  5. An improved piecewise linear chaotic map based image encryption algorithm.

    PubMed

    Hu, Yuping; Zhu, Congxu; Wang, Zhijian

    2014-01-01

    An image encryption algorithm based on improved piecewise linear chaotic map (MPWLCM) model was proposed. The algorithm uses the MPWLCM to permute and diffuse plain image simultaneously. Due to the sensitivity to initial key values, system parameters, and ergodicity in chaotic system, two pseudorandom sequences are designed and used in the processes of permutation and diffusion. The order of processing pixels is not in accordance with the index of pixels, but it is from beginning or end alternately. The cipher feedback was introduced in diffusion process. Test results and security analysis show that not only the scheme can achieve good encryption results but also its key space is large enough to resist against brute attack. PMID:24592159

  6. An Improved Piecewise Linear Chaotic Map Based Image Encryption Algorithm

    PubMed Central

    Hu, Yuping; Wang, Zhijian

    2014-01-01

    An image encryption algorithm based on improved piecewise linear chaotic map (MPWLCM) model was proposed. The algorithm uses the MPWLCM to permute and diffuse plain image simultaneously. Due to the sensitivity to initial key values, system parameters, and ergodicity in chaotic system, two pseudorandom sequences are designed and used in the processes of permutation and diffusion. The order of processing pixels is not in accordance with the index of pixels, but it is from beginning or end alternately. The cipher feedback was introduced in diffusion process. Test results and security analysis show that not only the scheme can achieve good encryption results but also its key space is large enough to resist against brute attack. PMID:24592159

  7. Dynamic speckle image segmentation using self-organizing maps

    NASA Astrophysics Data System (ADS)

    Pra, Ana L. Dai; Meschino, Gustavo J.; Guzmán, Marcelo N.; Scandurra, Adriana G.; González, Mariela A.; Weber, Christian; Trivi, Marcelo; Rabal, Héctor; Passoni, Lucía I.

    2016-08-01

    The aim of this work is to build a computational model able to automatically identify, after training, dynamic speckle pattern regions with similar properties. The process is carried out using a set of descriptors applied to the intensity variations with time in every pixel of a speckle image sequence. An image obtained by projecting a self-organized map is converted into regions of similar activity that can be easily distinguished. We propose a general procedure that could be applied to numerous situations. As examples we show different situations: (a) an activity test in a simplified situation; (b) a non-biological example and (c) biological active specimens. The results obtained are encouraging; they significantly improve upon those obtained using a single descriptor and will eventually permit automatic quantitative assessment.

  8. ADC and TDC implemented using FPGA

    SciTech Connect

    Wu, Jinyuan; Hansen, Sten; Shi, Zonghan; /Fermilab

    2007-11-01

    Several tests of FPGA devices programmed as analog waveform digitizers are discussed. The ADC uses the ramping-comparing scheme. A multi-channel ADC can be implemented with only a few resistors and capacitors as external components. A periodic logic levels are shaped by passive RC network to generate exponential ramps. The FPGA differential input buffers are used as comparators to compare the ramps with the input signals. The times at which these ramps cross the input signals are digitized by time-to-digital-converters (TDCs) implemented within the FPGA. The TDC portion of the logic alone has potentially a broad range of HEP/nuclear science applications. A 96-channel TDC card using FPGAs as TDCs being designed for the Fermilab MIPP electronics upgrade project is discussed. A deserializer circuit based on multisampling circuit used in the TDC, the 'Digital Phase Follower' (DPF) is also documented.

  9. Double surface imaging designs with unconstrained object to image mapping under rotational symmetry

    NASA Astrophysics Data System (ADS)

    Liu, Jiayao; Miñano, Juan C.; Benítez, Pablo

    2014-09-01

    In this work, we present a novel imaging design formed by two optical surfaces with rotational symmetry. In these designs, both object and image shapes are given but mapping from object to image is obtained through the design process. In the examples considered, the image from a planar object surface is virtual and located at infinity and is seen from a known pupil, which can emulate a human eye. The differential equation method is used to provide single optical surface imaging designs by considering the local properties of the imaging surface and the wavefronts. In the first introductory part, both the rotational symmetrical and the freeform single surface imaging designs are presented using the differential equation method. In these designs, not only the mapping is obtained in the design process, but also the shape of the object is found. In the second part, the method is extended to two surface designs with rotational symmetry and the astigmatism of the image has been studied. By adding one more optical surface to the system, the shape of the rotational symmetrical object can be designed while controlling the tangential rays and sagittal rays simultaneously. As a result, designs without astigmatism (at the small pupil limit) on a planar object surface have been obtained.

  10. Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; a multichannel statistical classifier.

    PubMed

    Chan, Ian; Wells, William; Mulkern, Robert V; Haker, Steven; Zhang, Jianqing; Zou, Kelly H; Maier, Stephan E; Tempany, Clare M C

    2003-09-01

    A multichannel statistical classifier for detecting prostate cancer was developed and validated by combining information from three different magnetic resonance (MR) methodologies: T2-weighted, T2-mapping, and line scan diffusion imaging (LSDI). From these MR sequences, four different sets of image intensities were obtained: T2-weighted (T2W) from T2-weighted imaging, Apparent Diffusion Coefficient (ADC) from LSDI, and proton density (PD) and T2 (T2 Map) from T2-mapping imaging. Manually segmented tumor labels from a radiologist, which were validated by biopsy results, served as tumor "ground truth." Textural features were extracted from the images using co-occurrence matrix (CM) and discrete cosine transform (DCT). Anatomical location of voxels was described by a cylindrical coordinate system. A statistical jack-knife approach was used to evaluate our classifiers. Single-channel maximum likelihood (ML) classifiers were based on 1 of the 4 basic image intensities. Our multichannel classifiers: support vector machine (SVM) and Fisher linear discriminant (FLD), utilized five different sets of derived features. Each classifier generated a summary statistical map that indicated tumor likelihood in the peripheral zone (PZ) of the prostate gland. To assess classifier accuracy, the average areas under the receiver operator characteristic (ROC) curves over all subjects were compared. Our best FLD classifier achieved an average ROC area of 0.839(+/-0.064), and our best SVM classifier achieved an average ROC area of 0.761(+/-0.043). The T2W ML classifier, our best single-channel classifier, only achieved an average ROC area of 0.599(+/-0.146). Compared to the best single-channel ML classifier, our best multichannel FLD and SVM classifiers have statistically superior ROC performance (P=0.0003 and 0.0017, respectively) from pairwise two-sided t-test. By integrating the information from multiple images and capturing the textural and anatomical features in tumor areas, summary

  11. Mapping soil heterogeneity using RapidEye satellite images

    NASA Astrophysics Data System (ADS)

    Piccard, Isabelle; Eerens, Herman; Dong, Qinghan; Gobin, Anne; Goffart, Jean-Pierre; Curnel, Yannick; Planchon, Viviane

    2016-04-01

    In the frame of BELCAM, a project funded by the Belgian Science Policy Office (BELSPO), researchers from UCL, ULg, CRA-W and VITO aim to set up a collaborative system to develop and deliver relevant information for agricultural monitoring in Belgium. The main objective is to develop remote sensing methods and processing chains able to ingest crowd sourcing data, provided by farmers or associated partners, and to deliver in return relevant and up-to-date information for crop monitoring at the field and district level based on Sentinel-1 and -2 satellite imagery. One of the developments within BELCAM concerns an automatic procedure to detect soil heterogeneity within a parcel using optical high resolution images. Such heterogeneity maps can be used to adjust farming practices according to the detected heterogeneity. This heterogeneity may for instance be caused by differences in mineral composition of the soil, organic matter content, soil moisture or soil texture. Local differences in plant growth may be indicative for differences in soil characteristics. As such remote sensing derived vegetation indices may be used to reveal soil heterogeneity. VITO started to delineate homogeneous zones within parcels by analyzing a series of RapidEye images acquired in 2015 (as a precursor for Sentinel-2). Both unsupervised classification (ISODATA, K-means) and segmentation techniques were tested. Heterogeneity maps were generated from images acquired at different moments during the season (13 May, 30 June, 17 July, 31 August, 11 September and 1 November 2015). Tests were performed using blue, green, red, red edge and NIR reflectances separately and using derived indices such as NDVI, fAPAR, CIrededge, NDRE2. The results for selected winter wheat, maize and potato fields were evaluated together with experts from the collaborating agricultural research centers. For a few fields UAV images and/or yield measurements were available for comparison.

  12. Improved sliced velocity map imaging apparatus optimized for H photofragments.

    PubMed

    Ryazanov, Mikhail; Reisler, Hanna

    2013-04-14

    Time-sliced velocity map imaging (SVMI), a high-resolution method for measuring kinetic energy distributions of products in scattering and photodissociation reactions, is challenging to implement for atomic hydrogen products. We describe an ion optics design aimed at achieving SVMI of H fragments in a broad range of kinetic energies (KE), from a fraction of an electronvolt to a few electronvolts. In order to enable consistently thin slicing for any imaged KE range, an additional electrostatic lens is introduced in the drift region for radial magnification control without affecting temporal stretching of the ion cloud. Time slices of ∼5 ns out of a cloud stretched to ⩾50 ns are used. An accelerator region with variable dimensions (using multiple electrodes) is employed for better optimization of radial and temporal space focusing characteristics at each magnification level. The implemented system was successfully tested by recording images of H fragments from the photodissociation of HBr, H2S, and the CH2OH radical, with kinetic energies ranging from <0.4 eV to >3 eV. It demonstrated KE resolution ≲1%-2%, similar to that obtained in traditional velocity map imaging followed by reconstruction, and to KE resolution achieved previously in SVMI of heavier products. We expect it to perform just as well up to at least 6 eV of kinetic energy. The tests showed that numerical simulations of the electric fields and ion trajectories in the system, used for optimization of the design and operating parameters, provide an accurate and reliable description of all aspects of system performance. This offers the advantage of selecting the best operating conditions in each measurement without the need for additional calibration experiments. PMID:24981528

  13. Improved sliced velocity map imaging apparatus optimized for H photofragments

    SciTech Connect

    Ryazanov, Mikhail; Reisler, Hanna

    2013-04-14

    Time-sliced velocity map imaging (SVMI), a high-resolution method for measuring kinetic energy distributions of products in scattering and photodissociation reactions, is challenging to implement for atomic hydrogen products. We describe an ion optics design aimed at achieving SVMI of H fragments in a broad range of kinetic energies (KE), from a fraction of an electronvolt to a few electronvolts. In order to enable consistently thin slicing for any imaged KE range, an additional electrostatic lens is introduced in the drift region for radial magnification control without affecting temporal stretching of the ion cloud. Time slices of {approx}5 ns out of a cloud stretched to Greater-Than-Or-Slanted-Equal-To 50 ns are used. An accelerator region with variable dimensions (using multiple electrodes) is employed for better optimization of radial and temporal space focusing characteristics at each magnification level. The implemented system was successfully tested by recording images of H fragments from the photodissociation of HBr, H{sub 2}S, and the CH{sub 2}OH radical, with kinetic energies ranging from <0.4 eV to >3 eV. It demonstrated KE resolution Less-Than-Or-Equivalent-To 1%-2%, similar to that obtained in traditional velocity map imaging followed by reconstruction, and to KE resolution achieved previously in SVMI of heavier products. We expect it to perform just as well up to at least 6 eV of kinetic energy. The tests showed that numerical simulations of the electric fields and ion trajectories in the system, used for optimization of the design and operating parameters, provide an accurate and reliable description of all aspects of system performance. This offers the advantage of selecting the best operating conditions in each measurement without the need for additional calibration experiments.

  14. Image Maps in the World-Wide Web: The Uses and Limitations.

    ERIC Educational Resources Information Center

    Cochenour, John J.; And Others

    A study of nine different image maps from World Wide Web home pages was conducted to evaluate their effectiveness in information display and access, relative to visual, navigational, and practical characteristics. Nine independent viewers completed 20-question surveys on the image maps, in which they evaluated the characteristics of the maps on a…

  15. Tissue oxygen saturation mapping with magnetic resonance imaging

    PubMed Central

    Christen, Thomas; Bouzat, Pierre; Pannetier, Nicolas; Coquery, Nicolas; Moisan, Anaïck; Lemasson, Benjamin; Thomas, Sébastien; Grillon, Emmanuelle; Detante, Olivier; Rémy, Chantal; Payen, Jean-François; Barbier, Emmanuel Luc

    2014-01-01

    A quantitative estimate of cerebral blood oxygen saturation is of critical importance in the investigation of cerebrovascular disease. While positron emission tomography can map in vivo the oxygen level in blood, it has limited availability and requires ionizing radiation. Magnetic resonance imaging (MRI) offers an alternative through the blood oxygen level-dependent contrast. Here, we describe an in vivo and non-invasive approach to map brain tissue oxygen saturation (StO2) with high spatial resolution. StO2 obtained with MRI correlated well with results from blood gas analyses for various oxygen and hematocrit challenges. In a stroke model, the hypoxic areas delineated in vivo by MRI spatially matched those observed ex vivo by pimonidazole staining. In a model of diffuse traumatic brain injury, MRI was able to detect even a reduction in StO2 that was too small to be detected by histology. In a F98 glioma model, MRI was able to map oxygenation heterogeneity. Thus, the MRI technique may improve our understanding of the pathophysiology of several brain diseases involving impaired oxygenation. PMID:25005878

  16. Laser Doppler imaging for intraoperative human brain mapping.

    PubMed

    Raabe, A; Van De Ville, D; Leutenegger, M; Szelényi, A; Hattingen, E; Gerlach, R; Seifert, V; Hauger, C; Lopez, A; Leitgeb, R; Unser, M; Martin-Williams, E J; Lasser, T

    2009-02-15

    The identification and accurate location of centers of brain activity are vital both in neuro-surgery and brain research. This study aimed to provide a non-invasive, non-contact, accurate, rapid and user-friendly means of producing functional images intraoperatively. To this end a full field Laser Doppler imager was developed and integrated within the surgical microscope and perfusion images of the cortical surface were acquired during awake surgery whilst the patient performed a predetermined task. The regions of brain activity showed a clear signal (10-20% with respect to the baseline) related to the stimulation protocol which lead to intraoperative functional brain maps of strong statistical significance and which correlate well with the preoperative fMRI and intraoperative cortical electro-stimulation. These initial results achieved with a prototype device and wavelet based regressor analysis (the hemodynamic response function being derived from MRI applications) demonstrate the feasibility of LDI as an appropriate technique for intraoperative functional brain imaging. PMID:19049824

  17. Noninvasive functional cardiac electrical source imaging: combining MRI and ECG mapping for imaging electrical function

    NASA Astrophysics Data System (ADS)

    Tilg, Bernhard; Modre, Robert; Fischer, Gerald; Hanser, Friedrich; Messnarz, Bernd; Schocke, Michael F. H.; Kremser, Christian; Roithinger, Franz

    2002-04-01

    Inverse electrocardiography has been developing for several years. By coupling electrocardiographic mapping and 3D+time anatomical data, the electrical excitation sequence can be imaged completely noninvasively in the human heart. In this study, a bidomain theory based surface heart model activation time imaging approach was applied to single beat data of atrial and ventricular depolarization. For sinus and paced rhythms, the sites of early activation and the areas with late activation were estimated with sufficient accuracy. In particular for focal arrhythmias, this model-based imaging approach might allow the guidance and evaluation of antiarrhythmic interventions, for instance, in case of catheter ablation or drug therapy.

  18. Satellite image maps are an inexpensive source of geologic and remote sensing teaching aids

    SciTech Connect

    Gunther, F.J.

    1985-01-01

    Inexpensive, even free, printed copies of images and image maps provide Earth Science, Geology, and Remote Sensing teachers with an alternative to expensive photoproducts for classroom and student use. Printed images and image maps are available free, or at costs ranging from $3 to $20. In addition to urban and agricultural features, images and image maps in the author's collection display features suitable for teaching a variety of topics. Examples are: 1) linear features (lineaments) for structural mapping (i.e. San Francisco, Grand Canyon, Medicine Bow River, Southern New England Mosaic, The Adirondacks Mosaic); 2) coastal erosion and deposition; 3) formation and outcrop mapping (Dry Rock Cheyene River, Medicine Bow River, Grand Canyon); 4) glaciers and sea ice; and 5) volcanic features. Almost all image maps show fluvial and lacustrine features. Printed images and image maps may be ordered from many sources: USGS Map Distribution Centers; the American Society of Photogrammetry and Remote Sensing, Grand Canyon National Park, and The World Bank map outlet. Free maps and printed images are often distributed by exhibitors at remote sensing conferences.

  19. Development of a mobile magnetic resonance imaging system for outdoor tree measurements

    NASA Astrophysics Data System (ADS)

    Kimura, Takeshi; Geya, Yuto; Terada, Yasuhiko; Kose, Katsumi; Haishi, Tomoyuki; Gemma, Hiroshi; Sekozawa, Yoshihiko

    2011-05-01

    By combining a 0.3 T permanent magnet with flexible rotation and translation mechanism, a probe with a local electromagnetic shielding, several electrical units, a mobile lift, and an electric wagon, a mobile magnetic resonance imaging (MRI) system was developed for outdoor tree measurements. 2D cross-sectional images of normal and diseased branches of a pear tree were acquired for measurements of T1, T2, proton density, and apparent diffusion constant (ADC). The ADC map clearly differentiated diseased from normal branches. A whole-day measurement of the ADC map demonstrated that microscopic water flow in the normal branch changed proportionally with solar radiation. Therefore, we have concluded that our mobile MRI system is a powerful tool for studies of plants in outdoor environments.

  20. Derivation and Refinement of Topographic Maps of Io Using Voyager and Galileo Stereo Images

    NASA Astrophysics Data System (ADS)

    White, O. L.; Schenk, P. M.

    2011-03-01

    Customized ISIS software developed at LPI has been used to create topographic maps of different sites on Io using Galileo stereo images. Input parameters of the software have been refined in an attempt to achieve maps of the best quality.

  1. A colour-map plugin for the open source, Java based, image processing package, ImageJ

    NASA Astrophysics Data System (ADS)

    Moodley, Keagan; Murrell, Hugh

    2004-07-01

    We present an interactive approach to the pseudo-colouring of greyscale images. We implement the technique by computing mappings from a three- dimensional (3D) colour space to a one- dimensional greyscale space (i.e. R3to R). To compute our maps, we employ both linear and nonlinear interpolation in 3D colour space. We validate our work by applying our maps to greyscale images resulting in significant image enhancement. Applications include space imagery, geological topographies, medical scans and many more. Our tool is coded as a Java plug-in for the open source image processing package, ImageJ.

  2. A study on quantitative analyses before and after injection of contrast medium in spine examinations performed by using diffusion weighted image

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Hwan; Lee, Hae-Kag; Kim, Yong-Kyun; Dong, Kyung-Rae; Chung, Woon-Kwan; Joo, Kyu-Ji

    2013-02-01

    This study examined the changes in the signal-to-noise ratio (SNR), the contrast-to-noise ratio (CNR) and the apparent diffusion coefficient (ADC) of metastatic cancer in the lumbar region by using diffusion weighted image taken with a 1.5 T (Tesla) magnetic resonance (MR) scanner before and after injecting a contrast medium. The study enrolled 30 healthy people and 30 patients with metastatic spine cancer from patients who underwent a lumbar MRI scan from January 2011 to October 2012. A 1.5 T MR scanner was used to obtain the diffusion weighted images (DWIs) before and after injecting the contrast medium. In the group with metastatic spine cancer, the SNR and the CNR were measured in three parts among the L1-L5 lumbar vertebrae, which included the part with metastatic spine cancer, the area of the spine with spine cancer, and the area of spine under the region with cancer. In the acquired ADC map image, the SNRs and the ADCs of the three parts were measured in ADC map images. Among the healthy subjects, the measurements were conducted for the lumbar regions of L3-L5. According to the results, in the group with metastatic spine cancer, the SNR in the DWI before the contrast medium had been injected was lowest in the part with spine cancer. In the DWI after the contrast medium had been injected, the SNR and the CNR were increased in all three parts. In the ADC map image after the contrast medium had been injected, the SNR decreased in all three parts compared to the SNR before the contrast had been injected. The ADC after had been injected the contrast medium was decreased in all three parts compared to that before the contrast medium had been injected. In the healthy group, the SNR was increased in the L3-L5 lumbar regions in the DWI. In the ADC map image, the SNR in all the three parts was decreased in the DWI after injecting the contrast medium had been injected. The ADC in the ADC map image was also decreased in all three parts.

  3. Quantitation and mapping of tissue optical properties using modulated imaging.

    PubMed

    Cuccia, David J; Bevilacqua, Frederic; Durkin, Anthony J; Ayers, Frederick R; Tromberg, Bruce J

    2009-01-01

    We describe the development of a rapid, noncontact imaging method, modulated imaging (MI), for quantitative, wide-field characterization of optical absorption and scattering properties of turbid media. MI utilizes principles of frequency-domain sampling and model-based analysis of the spatial modulation transfer function (s-MTF). We present and compare analytic diffusion and probabilistic Monte Carlo models of diffuse reflectance in the spatial frequency domain. Next, we perform MI measurements on tissue-simulating phantoms exhibiting a wide range of l values (0.5 mm to 3 mm) and (micro(s) (')micro(a)) ratios (8 to 500), reporting an overall accuracy of approximately 6% and 3% in absorption and reduced scattering parameters, respectively. Sampling of only two spatial frequencies, achieved with only three camera images, is found to be sufficient for accurate determination of the optical properties. We then perform MI measurements in an in vivo tissue system, demonstrating spatial mapping of the absorption and scattering optical contrast in a human forearm and dynamic measurements of a forearm during venous occlusion. Last, metrics of spatial resolution are assessed through both simulations and measurements of spatially heterogeneous phantoms. PMID:19405742

  4. Mapping Vineyard Areas Using WORLDVIEW-2 Satellite Images

    NASA Astrophysics Data System (ADS)

    Sertel, E.; Ozelkan, E.; Yay, I.; Seker, D. Z.; Ormeci, C.

    2011-12-01

    The observation of Earth surface from the space has lead to new research possibilities in many fields like agriculture, hydrology, geology, geodesy etc. Different satellite image data have been used for agricultural monitoring for different scales namely local, regional and global. It is important to monitor agricultural field in local scale to determine the crop yield, diseases, and to provide Farmer Registries. Worldview-2 is a new satellite system that could be used for agricultural applications especially in local scale. It is the first high resolution 8-band multispectral commercial satellite launched in October 2009. The satellite has an altitude of 770 kilometers and its spatial resolution for panchromatic mode and multispectral mode are 46 cm and 1.85 meter, respectively. In addition to red (630 - 690 nm), blue (450 - 510 nm), Green (510 - 580 nm) and Near Infrared (770 - 895 nm) bands, Worldview-2 has four new spectral bands lying on beginning of blue (400 - 450 nm), yellow (585 - 625 nm), red edge (705 - 745 nm) and Near Infrared (860 - 1040 nm) regions of the electromagnetic spectrum. Since Worldview-2 data are comparatively new, there have not been many studies in the literature about the usage of these new data for different applications. In this research, Worldview-2 data were used to delineate the vineyard areas and identify different grape types in Sarkoy, Turkey. Phenological observations of grape fields have been conducted for the last three years over a huge test area owned by the Government Viniculture Institute. Based on the phenological observations, it was found that July and August period is the best data acquisition time for satellite data since leaf area index is really higher. In August 2011, Worldview-2 data of the region were acquired and spectral measurements were collected in the field for different grape types using a spectroradiometer. Satellite image data and spectral measurements were correlated and satellite image data were

  5. Image encryption using chaotic coupled map lattices with time-varying delays

    NASA Astrophysics Data System (ADS)

    Tang, Yang; Wang, Zidong; Fang, Jian-an

    2010-09-01

    In this paper, a novel image encryption scheme using coupled map lattices (CML) with time delay is proposed. By employing discretized tent map to shuffle the positions of image pixels and then using delayed coupled map lattices (DCML) to confuse the relationship between the plain-image and the cipher-image, image encryption algorithms with permutation-diffusion structure are introduced in detail. In the process of generating keystream, the time-varying delay is also embedded in our proposed scheme to enhance the security. Theoretical analysis and computer experiments confirm that the new algorithm possesses high security for practical image encryption.

  6. Attitude Determination and Control Subsystem (ADCS) Preparations for the EPOXI Flyby of Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    Luna, Michael E.; Collins, Steven M.

    2011-01-01

    On November 4, 2010 the former "Deep Impact" spacecraft, renamed "EPOXI" for its extended mission, flew within 700km of comet 103P/Hartley 2. In July 2005, the spacecraft had previously imaged a probe impact of comet Tempel 1. The EPOXI flyby was the fifth close encounter of a spacecraft with a comet nucleus and marked the first time in history that two comet nuclei were imaged at close range with the same suite of onboard science instruments. This challenging objective made the function of the attitude determination and control subsystem (ADCS) critical to the successful execution of the EPOXI flyby.As part of the spacecraft flyby preparations, the ADCS operations team had to perform meticulous sequence reviews, implement complex spacecraft engineering and science activities and perform numerous onboard calibrations. ADCS contributions included design and execution of 10 trajectory correction maneuvers, the science calibration of the two telescopic instruments, an in-flight demonstration of high-rate turns between Earth and comet point, and an ongoing assessment of reaction wheel health. The ADCS team was also responsible for command sequences that included updates to the onboard ephemeris and sun sensor coefficients and implementation of reaction wheel assembly (RWA) de-saturations.

  7. Model based on-chip 13bits ADC design dedicated to uncooled infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Dupont, Benoit; Robert, Patrick; Dupret, Antoine; Villard, Patrick; Pochic, David

    2007-10-01

    This paper presents an on-chip 13 bits 10 M/S Analog to Digital Converter (ADC) specifically designed for infrared bolometric image sensor. Bolometric infrared sensors are MEMs based thermal sensors, which covers a large spectrum of infrared applications, ranging from night vision to predictive industrial maintenance and medical imaging. With the current move towards submicron technologies, the demand for more integrated, smarter sensors and microsystems has dramatically increased. This trend has strengthened the need of on-chip ADC as the interface between the analog core and the digital processing electronic. However designing an on-chip ADC dedicated to focal plane array raises many questions about its architecture and its performance requirements. To take into account those specific needs, a high level model has been developed prior to the actual design. In this paper, we present the trade-offs of ADC design linked to infrared key performance parameters and bolometric technology detection method. The original development scheme, based on system level modeling, is also discussed. Finally we present the actual design and the measured performances.

  8. Urban PM source apportionment mapping using microscopic chemical imaging.

    PubMed

    Gertler, Alan W; Moshe, Danny; Rudich, Yinon

    2014-08-01

    To evaluate the health impacts of particulate matter and develop effective pollutant abatement strategies, one needs to know the source contributions to the observed concentrations. The most common approach involves the collection of ambient air samples on filters, laboratory analyses to quantify the chemical composition, and application of receptor modeling methods. This approach is expensive and time consuming and limits the ability to monitor the temporal and spatial impacts from different pollutant sources. An alternative method for apportioning the sources of ambient PM is the application of microscopic chemical imaging (MCI). The MCI method involves measuring individual particle's fluorescence and source attribution is based on the individual particle analysis coupled with identification from a source library. Using this approach, the apportionment of ambient PM can be performed in near real time, which allows for the generation of temporal and spatial maps of pollutant source impacts in an urban area. PMID:24225422

  9. Refining of image using self-organizing map with clustering

    NASA Astrophysics Data System (ADS)

    Dahiya, Neeraj; Dalal, Surjeet; Tanwar, Gundeep

    2016-03-01

    Self Organization Map(SOM) is an automatic tool in data analysis in data mining,it is used to explore the multi-dimentional data which simplifies complexity and produce meaningful relation with each other or high dimentional into low dimentional .the powerful method of SOM i.e learning method results excellent performance .the SOM algorithum have various steps from starting stage to the final neuron and their weight updation and modification, these procedure resultant a lot of compplexity accoording to the parameters on the basis of experiments .this paper will compare and discuss various papameters and their result or factors that can improve and refine the image through varius process of SOM.

  10. Velocity Map Imaging Studies of Non-Conventional Methanethiol Photochemistry

    NASA Astrophysics Data System (ADS)

    Toulson, Benjamin W.; Alaniz, Jonathan; Murray, Craig

    2014-06-01

    Velocity map imaging (VMI) in combination with state-selective resonance enhanced multiphoton ionization (REMPI) has been used to study the photodissociation dynamics of methanethiol following excitation to the first and second singlet electronically excited states. Formation of sulfur atoms, in both the singlet and triplet manifolds, is observed and can be attributed to primary dissociation of the parent molecule. We will report the nascent photofragment velocity distributions, and hence the internal energy of the methane co-fragment. Sulfur atom quantum yields are benchmarked against a known standard to evaluate the significance of this pathway. The role of non-conventional photochemical mechanisms such as roaming-mediated intersystem crossing, previously observed in methylamine photochemistry, will be discussed. James O. Thomas, Katherine E. Lower, and Craig Murray, The Journal of Physical Chemistry Letters, 2012, 3 (10), 1341-1345.

  11. Validation of velocity map imaging conditions over larger areas

    SciTech Connect

    Reid, Mike; Koehler, Sven P. K.

    2013-04-15

    We have established through simulations and experiments the area over which Velocity Map Imaging (VMI) conditions prevail. We designed a VMI setup in which we can vary the ionization position perpendicular to the center axis of the time-of-flight spectrometer. We show that weak extraction conditions are far superior over standard three-plate setups if the aim is to increase the ionization volume without distorting VMI conditions. This is important for a number of crossed molecular beam experiments that already utilize weak extraction conditions, but to a greater extent for surface studies where fragments are desorbed or scattered off a surface in all directions. Our results on the dissociation of NO{sub 2} at 226 nm show that ionization of the fragments can occur up to {+-}5.5 mm away from the center axis of the time-of-flight spectrometer without affecting resolution or arrival position.

  12. Compositional maps of Saturn's moon Phoebe from imaging spectroscopy

    USGS Publications Warehouse

    Clark, R.N.; Brown, R.H.; Jaumann, R.; Cruikshank, D.P.; Nelson, R.M.; Buratti, B.J.; McCord, T.B.; Lunine, J.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Formisano, V.; Langevin, Y.; Matson, D.L.; Mennella, V.; Nicholson, P.D.; Sicardy, B.; Sotin, C.; Hoefen, T.M.; Curchin, J.M.; Hansen, G.; Hibbits, K.; Matz, K.-D.

    2005-01-01

    The origin of Phoebe, which is the outermost large satellite of Saturn, is of particular interest because its inclined, retrograde orbit suggests that it was gravitationally captured by Saturn, having accreted outside the region of the solar nebula in which Saturn formed. By contrast, Saturn's regular satellites (with prograde, low-inclination, circular orbits) probably accreted within the sub-nebula in which Saturn itself formed. Here we report imaging spectroscopy of Phoebe resulting from the Cassini-Huygens spacecraft encounter on 11 June 2004. We mapped ferrous-iron-bearing minerals, bound water, trapped CO2, probable phyllosilicates, organics, nitriles and cyanide compounds. Detection of these compounds on Phoebe makes it one of the most compositionally diverse objects yet observed in our Solar System. It is likely that Phoebe's surface contains primitive materials from the outer Solar System, indicating a surface of cometary origin.

  13. Mapping Image Potential States on Graphene Quantum Dots

    NASA Astrophysics Data System (ADS)

    Craes, Fabian; Runte, Sven; Klinkhammer, Jürgen; Kralj, Marko; Michely, Thomas; Busse, Carsten

    2013-08-01

    Free-electron-like image potential states are observed in scanning tunneling spectroscopy on graphene quantum dots on Ir(111) acting as potential wells. The spectrum strongly depends on the size of the nanostructure as well as on the spatial position on top, indicating lateral confinement. Analysis of the substructure of the first state by the spatial mapping of the constant energy local density of states reveals characteristic patterns of confined states. The most pronounced state is not the ground state, but an excited state with a favorable combination of the local density of states and parallel momentum transfer in the tunneling process. Chemical gating tunes the confining potential by changing the local work function. Our experimental determination of this work function allows us to deduce the associated shift of the Dirac point.

  14. Velocity map imaging using an in-vacuum pixel detector

    NASA Astrophysics Data System (ADS)

    Gademann, Georg; Huismans, Ymkje; Gijsbertsen, Arjan; Jungmann, Julia; Visschers, Jan; Vrakking, Marc J. J.

    2009-10-01

    The use of a new type in-vacuum pixel detector in velocity map imaging (VMI) is introduced. The Medipix2 and Timepix semiconductor pixel detectors (256×256 square pixels, 55×55 μm2) are well suited for charged particle detection. They offer high resolution, low noise, and high quantum efficiency. The Medipix2 chip allows double energy discrimination by offering a low and a high energy threshold. The Timepix detector allows to record the incidence time of a particle with a temporal resolution of 10 ns and a dynamic range of 160 μs. Results of the first time application of the Medipix2 detector to VMI are presented, investigating the quantum efficiency as well as the possibility to operate at increased background pressure in the vacuum chamber.

  15. Compositional maps of Saturn's moon Phoebe from imaging spectroscopy.

    PubMed

    Clark, Roger N; Brown, Robert H; Jaumann, Ralf; Cruikshank, Dale P; Nelson, Robert M; Buratti, Bonnie J; McCord, Thomas B; Lunine, J; Baines, K H; Bellucci, G; Bibring, J-P; Capaccioni, F; Cerroni, P; Coradini, A; Formisano, V; Langevin, Y; Matson, D L; Mennella, V; Nicholson, P D; Sicardy, B; Sotin, C; Hoefen, Todd M; Curchin, John M; Hansen, Gary; Hibbits, Karl; Matz, K-D

    2005-05-01

    The origin of Phoebe, which is the outermost large satellite of Saturn, is of particular interest because its inclined, retrograde orbit suggests that it was gravitationally captured by Saturn, having accreted outside the region of the solar nebula in which Saturn formed. By contrast, Saturn's regular satellites (with prograde, low-inclination, circular orbits) probably accreted within the sub-nebula in which Saturn itself formed. Here we report imaging spectroscopy of Phoebe resulting from the Cassini-Huygens spacecraft encounter on 11 June 2004. We mapped ferrous-iron-bearing minerals, bound water, trapped CO2, probable phyllosilicates, organics, nitriles and cyanide compounds. Detection of these compounds on Phoebe makes it one of the most compositionally diverse objects yet observed in our Solar System. It is likely that Phoebe's surface contains primitive materials from the outer Solar System, indicating a surface of cometary origin. PMID:15875014

  16. Mapping image potential states on graphene quantum dots.

    PubMed

    Craes, Fabian; Runte, Sven; Klinkhammer, Jürgen; Kralj, Marko; Michely, Thomas; Busse, Carsten

    2013-08-01

    Free-electron-like image potential states are observed in scanning tunneling spectroscopy on graphene quantum dots on Ir(111) acting as potential wells. The spectrum strongly depends on the size of the nanostructure as well as on the spatial position on top, indicating lateral confinement. Analysis of the substructure of the first state by the spatial mapping of the constant energy local density of states reveals characteristic patterns of confined states. The most pronounced state is not the ground state, but an excited state with a favorable combination of the local density of states and parallel momentum transfer in the tunneling process. Chemical gating tunes the confining potential by changing the local work function. Our experimental determination of this work function allows us to deduce the associated shift of the Dirac point. PMID:23952430

  17. A new image encryption algorithm based on logistic chaotic map with varying parameter.

    PubMed

    Liu, Lingfeng; Miao, Suoxia

    2016-01-01

    In this paper, we proposed a new image encryption algorithm based on parameter-varied logistic chaotic map and dynamical algorithm. The parameter-varied logistic map can cure the weaknesses of logistic map and resist the phase space reconstruction attack. We use the parameter-varied logistic map to shuffle the plain image, and then use a dynamical algorithm to encrypt the image. We carry out several experiments, including Histogram analysis, information entropy analysis, sensitivity analysis, key space analysis, correlation analysis and computational complexity to evaluate its performances. The experiment results show that this algorithm is with high security and can be competitive for image encryption. PMID:27066326

  18. Mineral Mapping with Imaging Spectroscopy: The Ray Mine, AZ

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; Vance, J. Sam; Livo, K. Eric; Green, Robert O.

    1998-01-01

    Mineral maps generated for the Ray Mine, Arizona were analyzed to determine if imaging spectroscopy can provide accurate information for environmental management of active and abandoned mine regions. The Ray Mine, owned by the ASARCO Corporation, covers an area of 5700 acres and is situated in Pinal County, Arizona about 70 miles north of Tucson near Hayden, Arizona. This open-pit mine has been a major source of copper since 1911, producing an estimated 4.5 million tons of copper since its inception. Until 1955 mining was accomplished by underground block caving and shrinkage stope methods. (excavation by working in stepped series usually employed in a vertical or steeply inclined orebody) In 1955, the mine was completely converted to open pit method mining with the bulk of the production from sulfide ore using recovery by concentrating and smelting. Beginning in 1969 a significant production contribution has been from the leaching and solvent extraction-electrowinnowing method of silicate and oxide ores. Published reserves in the deposit as of 1992 are 1.1 billion tons at 0.6 percent copper. The Environmental Protection Agency, in conjunction with ASARCO, and NASA/JPL obtained AVIRIS data over the mine in 1997 as part of the EPA Advanced Measurement Initiative (AMI) (Tom Mace, Principal Investigator). This AVIRIS data set is being used to compare and contrast the accuracy and environmental monitoring capabilities of remote sensing technologies: visible-near-IR imaging spectroscopy, multispectral visible and, near-IR sensors, thermal instruments, and radar platforms. The goal of this effort is to determine if these various technologies provide useful information for envirorunental management of active and abandoned mine sites in the arid western United States. This paper focuses on the analysis of AVIRIS data for assessing the impact of the Ray Mine on Mineral Creek. Mineral Creek flows to the Gila River. This paper discusses our preliminary AVIRIS mineral mapping

  19. Improving the image discontinuous problem by using color temperature mapping method

    NASA Astrophysics Data System (ADS)

    Jeng, Wei-De; Mang, Ou-Yang; Lai, Chien-Cheng; Wu, Hsien-Ming

    2011-09-01

    This article mainly focuses on image processing of radial imaging capsule endoscope (RICE). First, it used the radial imaging capsule endoscope (RICE) to take the images, the experimental used a piggy to get the intestines and captured the images, but the images captured by RICE were blurred due to the RICE has aberration problems in the image center and lower light uniformity affect the image quality. To solve the problems, image processing can use to improve it. Therefore, the images captured by different time can use Person correlation coefficient algorithm to connect all the images, and using the color temperature mapping way to improve the discontinuous problem in the connection region.

  20. Mapping cardiac surface mechanics with structured light imaging

    PubMed Central

    Laughner, Jacob I.; Zhang, Song; Li, Hao; Shao, Connie C.

    2012-01-01

    Cardiovascular disease often manifests as a combination of pathological electrical and structural heart remodeling. The relationship between mechanics and electrophysiology is crucial to our understanding of mechanisms of cardiac arrhythmias and the treatment of cardiac disease. While several technologies exist for describing whole heart electrophysiology, studies of cardiac mechanics are often limited to rhythmic patterns or small sections of tissue. Here, we present a comprehensive system based on ultrafast three-dimensional (3-D) structured light imaging to map surface dynamics of whole heart cardiac motion. Additionally, we introduce a novel nonrigid motion-tracking algorithm based on an isometry-maximizing optimization framework that forms correspondences between consecutive 3-D frames without the use of any fiducial markers. By combining our 3-D imaging system with nonrigid surface registration, we are able to measure cardiac surface mechanics at unprecedented spatial and temporal resolution. In conclusion, we demonstrate accurate cardiac deformation at over 200,000 surface points of a rabbit heart recorded at 200 frames/s and validate our results on highly contrasting heart motions during normal sinus rhythm, ventricular pacing, and ventricular fibrillation. PMID:22796539

  1. Using imaging spectroscopy to map acidic mine waste

    USGS Publications Warehouse

    Swayze, G.A.; Smith, K.S.; Clark, R.N.; Sutley, S.J.; Pearson, R.M.; Vance, J.S.; Hageman, P.L.; Briggs, P.H.; Meier, A.L.; Singleton, M.J.; Roth, S.

    2000-01-01

    The process of pyrite oxidation at the surface of mine waste may produce acidic water that is gradually neutralized as it drains away from the waste, depositing different Fe-bearing secondary minerals in roughly concentric zones that emanate from mine-waste piles. These Fe-bearing minerals are indicators of the geochemical conditions under which they form. Airborne and orbital imaging spectrometers can be used to map these mineral zones because each of these Fe-bearing secondary minerals is spectrally unique. In this way, imaging spectroscopy can be used to rapidly screen entire mining districts for potential sources of surface acid drainage and to detect acid producing minerals in mine waste or unmined rock outcrops. Spectral data from the AVIRIS instrument were used to evaluate mine waste at the California Gulch Superfund Site near Leadville, CO. Laboratory leach tests of surface samples show that leachate pH is most acidic and metals most mobile in samples from the inner jarosite zone and that leachate pH is near-neutral and metals least mobile in samples from the outer goethite zone.

  2. Remote mineralogical and vegetation mapping using imaging spectrometry

    NASA Astrophysics Data System (ADS)

    King, James

    The Jet Propulsion Laboratory (JPL) has developed an Imaging Spectrometer Program which consists of aircraft and space-borne instruments for remote mineralogical and vegetation mapping of the Earth's surface. The JPL program grew out of the Landsat Project and was developed in response to NASA's interest in follow-on sensors to the Thematic Mapper on Landsat. NASA encouraged development of advanced multispectral line array detectors directed at Landsat applications. The JPL program takes advantage of several recent breakthroughs in infrared detectors which make it possible to significantly improve the quality of information that can be derived from terrestrial remote sensing. Since the mid-1970s, geologists have recognized that important mineralogical information could be obtained through the use of high-resolution spectral reflectance data in the 0.4 to 2.5 micrometer region. Vibrational and electronic transitions in the crystal lattices play a role in the reflectance behavior of layered silicates, carbonates, and oxide minerals. These are the materials that are most often exposed and make up the weathering products of many rocks; hence they are the most important in geologic remote sensing. Imaging spectrometry can also be used to discriminate, identify, and map vegetation units, as well as determine their state of health and vigor. With the recent development of new techniques for measuring and quantifying the amount of plant cover on soil surfaces, imaging spectroscopy can contribute to soil erosion forecasts and geologic studies in arid lands. In the past, the application of spectral imaging to the identification of materials has been greatly hampered by insufficient spectral resolution. The imaging spectrometer program at JPL was designed to improve the spectral resolution by an order of magnitude from that of the Thematic Mapper on Landsat. The JPL program focuses on technology development and includes optical design studies, the development of area array

  3. Rapid Generation of Image Mosaics and Maps for the OSIRIS-REx Mission

    NASA Astrophysics Data System (ADS)

    Kinney-Spano, Ellyne K.; DellaGiustina, Daniella; Tanquary, Hannah E.; Rizk, Bashar; Golish, Dathon R.; Ko, Wenjeng

    2014-11-01

    The OSIRIS-REx mission will rely on image mosaics and maps of asteroid Bennu to support critical mission operations such as sample site selection and long-term science investigations. These mosaics and maps provide a convenient method for visualizing the surface of Bennu and serve as the foundation for the geology maps required to carry out the science investigation for the mission. During proximity operations at Bennu, rapid turnaround of calibrated images into image mosaics and maps will be required to support mission planning and sample site selection. Updated operational and publication quality science maps will be needed as improved spacecraft information, photometric models, and shape models of Bennu become available. Quick turnaround image mosaics and map products will also support the public engagement activities of the mission.Semi-automated image mosaic and map generation software is being developed based on the ISIS software package from the USGS. This software suite will consist of scripts, workflows and data quality checks that support automated control network development and image mosaic generation. Reprocessing capabilities will be incorporated in the software suite to support quick turnaround generation of updated image mosaics and maps resulting from new instrument calibration files, spacecraft trajectory and pointing kernels, photometric correction models and shape model information. Images from the NEAR-Shoemaker rendezvous mission to asteroid Eros provide a test dataset for verification and validation of the software. We present the results of our initial implementation of the system using MSI images of asteroid Eros.

  4. Characteristics of liver on magnetic resonance diffusion-weighted imaging: Dynamic and image pathological investigation in rabbit liver VX-2 tumor model

    PubMed Central

    Yuan, You-Hong; Xiao, En-Hua; Liu, Jian-Bin; He, Zhong; Jin, Ke; Ma, Cong; Xiang, Jun; Xiao, Jian-Hua; Chen, Wei-Jian

    2008-01-01

    AIM: To investigate dynamical and image pathological characteristics of the liver on magnetic resonance (MR) diffusion-weighted imaging (DWI) in the rabbit VX-2 tumor model. METHODS: Forty New Zealand rabbits were included in the study and VX-2 tumor piece was implanted intrahepatically. Fifteen animals received two intrahepatic implantations while 25 had one intrahepatical implantation. DWI, T1- and T2-weighted of magnetic resonance imaging (MRI) were carried out on the 7th and the 14th d after implantation and DWI was conducted, respectively on the 21th d. Ten VX-2 tumor samples were studied pathologically. RESULTS: The rate of lump detected by DWI, T1WI and T2WI was 78.7%, 10.7% and 53.5% (χ2 = 32.61, P < 0.001) on the 7th d after implantation and 95.8%, 54.3% and 82.9% (χ2 = 21.50, P < 0.001) on the 14th d. The signal of most VX-2 tumors on DWI was uniform and it was equal on the map of apparent diffusion coefficient (ADC). The signal of VX tumors did not decrease on the 7th d after implantation, most of them slowly growing during the week following implantation without significant cell dying within the tumor. VX-2 tumors grew increasingly within 14 d after implantation but the signal of most VX-2 tumors on DWI or on the map of ADC was uniform or uneven and ADC of VX tumors decreased obscurely or slightly because tumor necrosis was still not obvious. On the 21th d after implantation, the signal of most VX-2 tumors on DWI or on the map of ADC was uneven because tumor necrosis was evident and ADC of VX-2 tumor necrotic areas decreased. The areas of viable cells in VX-2 tumors manifested a high signal on DWI and a low signal on the map of ADC. The areas of dead cells or necrosis in VX-2 tumors manifested low signals on DWI and low, equal or high signals on the map of ADC but they manifested high signals on DWI and on the map of ADC at the same time when the areas of necrotic tumor became liquefied or cystic. The border of tumors on DWI appeared gradually

  5. Mapping algorithm for 360-deg profilometry with time delayed integration imaging

    NASA Astrophysics Data System (ADS)

    Asundi, Anand K.; Zhou, Wensen

    1999-02-01

    A direct phase-to-radial distance mapping algorithm for 360 deg profilometry with time delay and integration imaging is presented. This method, based on an inherent mapping relationship, is capable of speedy and accurate measurement without the determination of any geometric parameter. The capability of the mapping algorithm is demonstrated by measuring a plane and a shoe.

  6. Adaptive Optics Images of the Galactic Center: Using Empirical Noise-maps to Optimize Image Analysis

    NASA Astrophysics Data System (ADS)

    Albers, Saundra; Witzel, Gunther; Meyer, Leo; Sitarski, Breann; Boehle, Anna; Ghez, Andrea M.

    2015-01-01

    Adaptive Optics images are one of the most important tools in studying our Galactic Center. In-depth knowledge of the noise characteristics is crucial to optimally analyze this data. Empirical noise estimates - often represented by a constant value for the entire image - can be greatly improved by computing the local detector properties and photon noise contributions pixel by pixel. To comprehensively determine the noise, we create a noise model for each image using the three main contributors—photon noise of stellar sources, sky noise, and dark noise. We propagate the uncertainties through all reduction steps and analyze the resulting map using Starfinder. The estimation of local noise properties helps to eliminate fake detections while improving the detection limit of fainter sources. We predict that a rigorous understanding of noise allows a more robust investigation of the stellar dynamics in the center of our Galaxy.

  7. Comparing Image-Based Methods for Assessing Visual Clutter in Generalized Maps

    NASA Astrophysics Data System (ADS)

    Touya, G.; Decherf, B.; Lalanne, M.; Dumont, M.

    2015-08-01

    Map generalization abstracts and simplifies geographic information to derive maps at smaller scales. The automation of map generalization requires techniques to evaluate the global quality of a generalized map. The quality and legibility of a generalized map is related to the complexity of the map, or the amount of clutter in the map, i.e. the excessive amount of information and its disorganization. Computer vision research is highly interested in measuring clutter in images, and this paper proposes to compare some of the existing techniques from computer vision, applied to generalized maps evaluation. Four techniques from the literature are described and tested on a large set of maps, generalized at different scales: edge density, subband entropy, quad tree complexity, and segmentation clutter. The results are analyzed against several criteria related to generalized maps, the identification of cluttered areas, the preservation of the global amount of information, the handling of occlusions and overlaps, foreground vs background, and blank space reduction.

  8. Automatic Analysis of Cellularity in Glioblastoma and Correlation with ADC Using Trajectory Analysis and Automatic Nuclei Counting

    PubMed Central

    Burth, Sina; Kieslich, Pascal J.; Jungk, Christine; Sahm, Felix; Kickingereder, Philipp; Kiening, Karl; Unterberg, Andreas; Wick, Wolfgang; Schlemmer, Heinz-Peter; Bendszus, Martin; Radbruch, Alexander

    2016-01-01

    Objective Several studies have analyzed a correlation between the apparent diffusion coefficient (ADC) derived from diffusion-weighted MRI and the tumor cellularity of corresponding histopathological specimens in brain tumors with inconclusive findings. Here, we compared a large dataset of ADC and cellularity values of stereotactic biopsies of glioblastoma patients using a new postprocessing approach including trajectory analysis and automatic nuclei counting. Materials and Methods Thirty-seven patients with newly diagnosed glioblastomas were enrolled in this study. ADC maps were acquired preoperatively at 3T and coregistered to the intraoperative MRI that contained the coordinates of the biopsy trajectory. 561 biopsy specimens were obtained; corresponding cellularity was calculated by semi-automatic nuclei counting and correlated to the respective preoperative ADC values along the stereotactic biopsy trajectory which included areas of T1-contrast-enhancement and necrosis. Results There was a weak to moderate inverse correlation between ADC and cellularity in glioblastomas that varied depending on the approach towards statistical analysis: for mean values per patient, Spearman’s ρ = -0.48 (p = 0.002), for all trajectory values in one joint analysis Spearman’s ρ = -0.32 (p < 0.001). The inverse correlation was additionally verified by a linear mixed model. Conclusions Our data confirms a previously reported inverse correlation between ADC and tumor cellularity. However, the correlation in the current article is weaker than the pooled correlation of comparable previous studies. Hence, besides cell density, other factors, such as necrosis and edema might influence ADC values in glioblastomas. PMID:27467557

  9. Computational Tension Mapping of Adherent Cells Based on Actin Imaging

    PubMed Central

    Manifacier, Ian; Milan, Jean-Louis; Jeanneau, Charlotte; Chmilewsky, Fanny; Chabrand, Patrick; About, Imad

    2016-01-01

    Forces transiting through the cytoskeleton are known to play a role in adherent cell activity. Up to now few approaches haves been able to determine theses intracellular forces. We thus developed a computational mechanical model based on a reconstruction of the cytoskeleton of an adherent cell from fluorescence staining of the actin network and focal adhesions (FA). Our custom made algorithm converted the 2D image of an actin network into a map of contractile interactions inside a 2D node grid, each node representing a group of pixels. We assumed that actin filaments observed under fluorescence microscopy, appear brighter when thicker, we thus presumed that nodes corresponding to pixels with higher actin density were linked by stiffer interactions. This enabled us to create a system of heterogeneous interactions which represent the spatial organization of the contractile actin network. The contractility of this interaction system was then adapted to match the level of force the cell truly exerted on focal adhesions; forces on focal adhesions were estimated from their vinculin expressed size. This enabled the model to compute consistent mechanical forces transiting throughout the cell. After computation, we applied a graphical approach on the original actin image, which enabled us to calculate tension forces throughout the cell, or in a particular region or even in single stress fibers. It also enabled us to study different scenarios which may indicate the mechanical role of other cytoskeletal components such as microtubules. For instance, our results stated that the ratio between intra and extra cellular compression is inversely proportional to intracellular tension. PMID:26812601

  10. Computational Tension Mapping of Adherent Cells Based on Actin Imaging.

    PubMed

    Manifacier, Ian; Milan, Jean-Louis; Jeanneau, Charlotte; Chmilewsky, Fanny; Chabrand, Patrick; About, Imad

    2016-01-01

    Forces transiting through the cytoskeleton are known to play a role in adherent cell activity. Up to now few approaches haves been able to determine theses intracellular forces. We thus developed a computational mechanical model based on a reconstruction of the cytoskeleton of an adherent cell from fluorescence staining of the actin network and focal adhesions (FA). Our custom made algorithm converted the 2D image of an actin network into a map of contractile interactions inside a 2D node grid, each node representing a group of pixels. We assumed that actin filaments observed under fluorescence microscopy, appear brighter when thicker, we thus presumed that nodes corresponding to pixels with higher actin density were linked by stiffer interactions. This enabled us to create a system of heterogeneous interactions which represent the spatial organization of the contractile actin network. The contractility of this interaction system was then adapted to match the level of force the cell truly exerted on focal adhesions; forces on focal adhesions were estimated from their vinculin expressed size. This enabled the model to compute consistent mechanical forces transiting throughout the cell. After computation, we applied a graphical approach on the original actin image, which enabled us to calculate tension forces throughout the cell, or in a particular region or even in single stress fibers. It also enabled us to study different scenarios which may indicate the mechanical role of other cytoskeletal components such as microtubules. For instance, our results stated that the ratio between intra and extra cellular compression is inversely proportional to intracellular tension. PMID:26812601

  11. A novel color image encryption scheme using alternate chaotic mapping structure

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Zhao, Yuanyuan; Zhang, Huili; Guo, Kang

    2016-07-01

    This paper proposes an color image encryption algorithm using alternate chaotic mapping structure. Initially, we use the R, G and B components to form a matrix. Then one-dimension logistic and two-dimension logistic mapping is used to generate a chaotic matrix, then iterate two chaotic mappings alternately to permute the matrix. For every iteration, XOR operation is adopted to encrypt plain-image matrix, then make further transformation to diffuse the matrix. At last, the encrypted color image is obtained from the confused matrix. Theoretical analysis and experimental results has proved the cryptosystem is secure and practical, and it is suitable for encrypting color images.

  12. Complete terrain deformation mapping with multiple-image differential interferometry

    NASA Astrophysics Data System (ADS)

    Blanco, Pablo; Mora, Oscar; Mallorqui, Jordi J.; Broquetas, Antoni

    2004-02-01

    In this paper, an advanced technique for the generation of deformation maps using SAR (Synthetic Aperture Radar) data is presented. The algorithm estimates the linear and non-linear components of the displacement, the error of the Digital Elevation Model (DEM) used to cancel the topographic terms, and the atmospheric artifacts from a reduced set of low spatial resolution interferograms. The pixel candidates are selected from those presenting a good coherence level in the whole set of interferograms and the resulting non-uniform mesh tessellated with the Delaunay triangulation to establish connections among them. The linear component of movement and DEM error are estimated adjusting a linear model to the data only on the connections. Later on, this information, once unwrapped to retrieve the absolute values, is used to calculate the non-linear component of movement and atmospheric artifacts with alternate filtering techniques in both temporal and spatial domains. The method presents high flexibility with respect the required number of images and the baselines length. However, better results are obtained with large datasets of short baseline interferograms. The technique has been tested with ERS SAR data from an area of Catalonia (Spain; validated with on-field precise leveling measurements.

  13. Hyperspectral image classification for mapping agricultural tillage practices

    NASA Astrophysics Data System (ADS)

    Ran, Qiong; Li, Wei; Du, Qian; Yang, Chenghai

    2015-01-01

    An efficient classification framework for mapping agricultural tillage practice using hyperspectral remote sensing imagery is proposed, which has the potential to be implemented practically to provide rapid, accurate, and objective surveying data for precision agricultural management and appraisal from large-scale remote sensing images. It includes a local region filter [i.e., Gaussian low-pass filter (GLF)] to extract spatial-spectral features, a dimensionality reduction process [i.e., local fisher's discriminate analysis (LFDA)], and the traditional k-nearest neighbor (KNN) classifier, and is denoted as GLF-LFDA-KNN. Compared to our previously used local average filter and adaptive weighted filter, the GLF also considers spatial features in a small neighborhood, but it emphasizes the central pixel itself and is data-independent; therefore, it can achieve the balance between classification accuracy and computational complexity. The KNN classifier has a lower computational complexity compared to the traditional support vector machine (SVM). After classification separability is enhanced by the GLF and LFDA, the less powerful KNN can outperform SVM and the overall computational cost remains lower. The proposed framework can also outperform the SVM with composite kernel (SVM-CK) that uses spatial-spectral features.

  14. Imaging Systems Provide Maps for U.S. Soldiers

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Spanning nearly four decades, the remarkable Landsat program has continuously provided data about the Earth s surface, including detailed maps of vegetation, land use, forest extent and health, surface water, population distribution, as well as how these features have changed over time. Managed by NASA and the U.S. Geological Survey, Landsat s series of satellites obtain data through passive remote sensing, or the use of sensors to read the energy reflected or emitted from the Earth s surface. After the data from the sensors is processed and analyzed, it can be applied to create information-rich images of the planet. While the Landsat program has launched seven satellites since 1972, only Landsat 5 and 7 are currently operating. The next spacecraft in line to ensure continuity of data for years to come is the Landsat Data Continuity Mission (LDCM). Planned for launch in 2012, LDCM will take measurements of the Earth in visible, nearinfrared, shortwave infrared, and thermal infrared bands. In addition to widespread use for land use planning and monitoring on local to regional scales, support for disaster response and evaluations, as well as water use monitoring, LDCM measurements will directly serve NASA s research in the areas of climate, the carbon cycle, ecosystems, the water cycle, biogeochemistry, and Earth s surface and interior.

  15. Higher resolution satellite remote sensing and the impact on image mapping

    USGS Publications Warehouse

    Watkins, Allen H.; Thormodsgard, June M.

    1987-01-01

    Recent advances in spatial, spectral, and temporal resolution of civil land remote sensing satellite data are presenting new opportunities for image mapping applications. The U.S. Geological Survey's experimental satellite image mapping program is evolving toward larger scale image map products with increased information content as a result of improved image processing techniques and increased resolution. Thematic mapper data are being used to produce experimental image maps at 1:100,000 scale that meet established U.S. and European map accuracy standards. Availability of high quality, cloud-free, 30-meter ground resolution multispectral data from the Landsat thematic mapper sensor, along with 10-meter ground resolution panchromatic and 20-meter ground resolution multispectral data from the recently launched French SPOT satellite, present new cartographic and image processing challenges. The need to fully exploit these higher resolution data increases the complexity of processing the images into large-scale image maps. The removal of radiometric artifacts and noise prior to geometric correction can be accomplished by using a variety of image processing filters and transforms. Sensor modeling and image restoration techniques allow maximum retention of spatial and radiometric information. An optimum combination of spectral information and spatial resolution can be obtained by merging different sensor types. These processing techniques are discussed and examples are presented. 

  16. Pixelwise readout integrated circuits with pixel-level ADC for microbolometers

    NASA Astrophysics Data System (ADS)

    Hwang, C. H.; Kim, C. B.; Lee, Y. S.; Yu, B. G.; Lee, H. C.

    2007-04-01

    Pixelwise integrated circuits involving a pixel-level analog-to-digital converter (ADC) are studied for 320 × 240 microbolometer focal plane arrays (FPAs). It is necessary to use the pixelwise readout architecture for decreasing the thermal noise. However, it is hard to locate a sufficiently large integration capacitor in a unit pixel of FPAs because of the area limitation. To effectively overcome this problem, a two step integration method is proposed. First, after integrating the current of the microbolometer for 32μs, upper 5bits of the 13bit digital signal are output through a pixel-level ADC. Then, the current of the microbolometer is integrated during 1ms after the skimming current correction using upper 5bits in a field-programmable gate array (FPGA), and then lower 8bits are obtained through a pixel-level ADC. Finally, upper 5bits and lower 8bits are combined into the digital image signal after the gain and offset correction in digital signal processor (DSP) Each 2×2 pixel shares an readout circuit, including a current-mode background skimming circuit, an operational amplifier(op-Amp), an integration capacitor and a single slope ADC. When the current of a microbolometer is integrated, the integration capacitor is connected between a negative input and an output of the op-Amp. Therefore a capacitive transimpedance amplifier (CTIA) has been employed as the input circuit of the microbolometer. When the output of a microbolometer is converted to digital signal, the Op-Amp is used as a comparator of the single slope ADC. This readout circuit is designed to achieve 35×35μm2 pixel size in 0.35μm 2-poly 3-metal CMOS technology.

  17. Automated tissue characterization in MR imaging

    NASA Astrophysics Data System (ADS)

    Braun, Juergen; Bernarding, Johannes; Koennecke, Hans-Christian; Wolf, Karl J.; Tolxdorff, Thomas

    2000-04-01

    A histogram-based segmentation technique was extended to exploit information acquired by manifold MRI techniques. An automated method was used to combine T2-weighted imaging, diffusion-weighted imaging (DWI), and derived maps of the quantitative apparent diffusion coefficient (ADC). DWI allows the early detection of cerebral ischemia, and the calculated ADC value may provide information on pathophysiologic changes. Different optionally shaped clusters were characterized as separate local density maxima in the resultant 3D histogram. Cluster borders were determined by detecting density minima. Distinct but related clusters could be merged in the histogram using the Euclidian distance and a score describing the spatial neighborhood of pixels in the image. In healthy volunteers, gray matter, white matter, muscle, skin, adipose tissue, and cerebrospinal fluid were clearly identified by the automated analysis. In stroke patients, ischemic regions were reliably segmented irrespective of shape, size, and location. The time course of relative ADC changes in ischemic lesions was determined. Results were confirmed by a radiologist. The proposed automatic segmentation algorithm can be used without restrictions for the fast analysis of any multidimensional dataset. The method has proved to be reliable for determining quantities containing information on the physiologic state of tissue, such as the ADC.

  18. Mapping luminescence of uranium-bearing sandstones using an imaging Fraunhofer line discriminator

    USGS Publications Warehouse

    Watson, Robert D.; Theisen, Arnold F.

    1977-01-01

    Measurements with a Fraunhofer Line Discriminator (FLD) imaging system over uranium-bearing sandstones in the Galisteo Formation, Sandia Mountains, New Mexico, show that luminescence of these sandstones is detectable and in general agreement with their distribution as mapped on the ground. The FLD imaging system coupled with a color television monitor and recorder, provides an inexpensive and reasonably accurate method of mapping the extent of luminescent materials, without the need of sophisticated aircraft image-motion compensation.

  19. Mapping Fire Severity Using Imaging Spectroscopy and Kernel Based Image Analysis

    NASA Astrophysics Data System (ADS)

    Prasad, S.; Cui, M.; Zhang, Y.; Veraverbeke, S.

    2014-12-01

    Improved spatial representation of within-burn heterogeneity after wildfires is paramount to effective land management decisions and more accurate fire emissions estimates. In this work, we demonstrate feasibility and efficacy of airborne imaging spectroscopy (hyperspectral imagery) for quantifying wildfire burn severity, using kernel based image analysis techniques. Two different airborne hyperspectral datasets, acquired over the 2011 Canyon and 2013 Rim fire in California using the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) sensor, were used in this study. The Rim Fire, covering parts of the Yosemite National Park started on August 17, 2013, and was the third largest fire in California's history. Canyon Fire occurred in the Tehachapi mountains, and started on September 4, 2011. In addition to post-fire data for both fires, half of the Rim fire was also covered with pre-fire images. Fire severity was measured in the field using Geo Composite Burn Index (GeoCBI). The field data was utilized to train and validate our models, wherein the trained models, in conjunction with imaging spectroscopy data were used for GeoCBI estimation wide geographical regions. This work presents an approach for using remotely sensed imagery combined with GeoCBI field data to map fire scars based on a non-linear (kernel based) epsilon-Support Vector Regression (e-SVR), which was used to learn the relationship between spectra and GeoCBI in a kernel-induced feature space. Classification of healthy vegetation versus fire-affected areas based on morphological multi-attribute profiles was also studied. The availability of pre- and post-fire imaging spectroscopy data over the Rim Fire provided a unique opportunity to evaluate the performance of bi-temporal imaging spectroscopy for assessing post-fire effects. This type of data is currently constrained because of limited airborne acquisitions before a fire, but will become widespread with future spaceborne sensors such as those on

  20. Removing the cardboard effect in stereoscopic images using smoothed depth maps

    NASA Astrophysics Data System (ADS)

    Shimono, Koichi; Tam, Wa James; Vázquez, Carlos; Speranza, Filippo; Renaud, Ron

    2010-02-01

    Depth maps are important for generating images with new camera viewpoints from a single source image for stereoscopic applications. In this study we examined the usefulness of smoothing depth maps for reducing the cardboard effect that is sometimes observed in stereoscopic images with objects appearing flat like cardboard pieces. Six stereoscopic image pairs, manifesting different degrees of the cardboard effect, were tested. Depth maps for each scene were synthesized from the original left-eye images and then smoothed (low-pass filtered). The smoothed depth maps and the original left-eye images were then used to render new views to create new "processed" stereoscopic image pairs. Subjects were asked to assess the cardboard effect of the original stereoscopic images and the processed stereoscopic images on a continuous quality scale, using the doublestimulus method. In separate sessions, depth quality and visual comfort were also assessed. The results from 16 viewers indicated that the processed stereoscopic image pairs tended to exhibit a reduced cardboard effect, compared to the original stereoscopic image pairs. Although visual comfort was not compromised with the smoothing of the depth maps, depth quality was significantly reduced when compared to the original.

  1. An efficient algorithm for mapping imaging data to 3D unstructured grids in computational biomechanics.

    PubMed

    Einstein, Daniel R; Kuprat, Andrew P; Jiao, Xiangmin; Carson, James P; Einstein, David M; Jacob, Richard E; Corley, Richard A

    2013-01-01

    Geometries for organ scale and multiscale simulations of organ function are now routinely derived from imaging data. However, medical images may also contain spatially heterogeneous information other than geometry that are relevant to such simulations either as initial conditions or in the form of model parameters. In this manuscript, we present an algorithm for the efficient and robust mapping of such data to imaging-based unstructured polyhedral grids in parallel. We then illustrate the application of our mapping algorithm to three different mapping problems: (i) the mapping of MRI diffusion tensor data to an unstructured ventricular grid; (ii) the mapping of serial cyrosection histology data to an unstructured mouse brain grid; and (iii) the mapping of computed tomography-derived volumetric strain data to an unstructured multiscale lung grid. Execution times and parallel performance are reported for each case. PMID:23293066

  2. An Efficient Algorithm for Mapping Imaging Data to 3D Unstructured Grids in Computational Biomechanics

    SciTech Connect

    Einstein, Daniel R.; Kuprat, Andrew P.; Jiao, Xiangmin; Carson, James P.; Einstein, David M.; Corley, Richard A.; Jacob, Rick E.

    2013-01-01

    Geometries for organ scale and multiscale simulations of organ function are now routinely derived from imaging data. However, medical images may also contain spatially heterogeneous information other than geometry that are relevant to such simulations either as initial conditions or in the form of model parameters. In this manuscript, we present an algorithm for the efficient and robust mapping of such data to imaging based unstructured polyhedral grids in parallel. We then illustrate the application of our mapping algorithm to three different mapping problems: 1) the mapping of MRI diffusion tensor data to an unstuctured ventricular grid; 2) the mapping of serial cyro-section histology data to an unstructured mouse brain grid; and 3) the mapping of CT-derived volumetric strain data to an unstructured multiscale lung grid. Execution times and parallel performance are reported for each case.

  3. A fast microchannel plate-scintillator detector for velocity map imaging and imaging mass spectrometry

    SciTech Connect

    Winter, B.; King, S. J.; Vallance, C.; Brouard, M.

    2014-02-15

    The time resolution achievable using standard position-sensitive ion detectors, consisting of a chevron pair of microchannel plates coupled to a phosphor screen, is primarily limited by the emission lifetime of the phosphor, around 70 ns for the most commonly used P47 phosphor. We demonstrate that poly-para-phenylene laser dyes may be employed extremely effectively as scintillators, exhibiting higher brightness and much shorter decay lifetimes than P47. We provide an extensive characterisation of the properties of such scintillators, with a particular emphasis on applications in velocity-map imaging and microscope-mode imaging mass spectrometry. The most promising of the new scintillators exhibits an electron-to-photon conversion efficiency double that of P47, with an emission lifetime an order of magnitude shorter. The new scintillator screens are vacuum stable and show no signs of signal degradation even over longer periods of operation.

  4. A Novel Chaotic Map and an Improved Chaos-Based Image Encryption Scheme

    PubMed Central

    2014-01-01

    In this paper, we present a novel approach to create the new chaotic map and propose an improved image encryption scheme based on it. Compared with traditional classic one-dimensional chaotic maps like Logistic Map and Tent Map, this newly created chaotic map demonstrates many better chaotic properties for encryption, implied by a much larger maximal Lyapunov exponent. Furthermore, the new chaotic map and Arnold's Cat Map based image encryption method is designed and proved to be of solid robustness. The simulation results and security analysis indicate that such method not only can meet the requirement of imagine encryption, but also can result in a preferable effectiveness and security, which is usable for general applications. PMID:25143990

  5. Multiple-image encryption with bit-plane decomposition and chaotic maps

    NASA Astrophysics Data System (ADS)

    Tang, Zhenjun; Song, Juan; Zhang, Xianquan; Sun, Ronghai

    2016-05-01

    Image encryption is an efficient technique of image content protection. In this work, we propose a useful image encryption algorithm for multiple grayscale images. The proposed algorithm decomposes input images into bit-planes, randomly swaps bit-blocks among different bit-planes, and conducts XOR operation between the scrambled images and secret matrix controlled by chaotic map. Finally, an encrypted PNG image is obtained by viewing four scrambled grayscale images as its red, green, blue and alpha components. Many simulations are done to illustrate efficiency of our algorithm.

  6. Disparity Map Generation from Illumination Variant Stereo Images Using Efficient Hierarchical Dynamic Programming

    PubMed Central

    Borisagar, Viral H.; Zaveri, Mukesh A.

    2014-01-01

    A novel hierarchical stereo matching algorithm is presented which gives disparity map as output from illumination variant stereo pair. Illumination difference between two stereo images can lead to undesirable output. Stereo image pair often experience illumination variations due to many factors like real and practical situation, spatially and temporally separated camera positions, environmental illumination fluctuation, and the change in the strength or position of the light sources. Window matching and dynamic programming techniques are employed for disparity map estimation. Good quality disparity map is obtained with the optimized path. Homomorphic filtering is used as a preprocessing step to lessen illumination variation between the stereo images. Anisotropic diffusion is used to refine disparity map to give high quality disparity map as a final output. The robust performance of the proposed approach is suitable for real life circumstances where there will be always illumination variation between the images. The matching is carried out in a sequence of images representing the same scene, however in different resolutions. The hierarchical approach adopted decreases the computation time of the stereo matching problem. This algorithm can be helpful in applications like robot navigation, extraction of information from aerial surveys, 3D scene reconstruction, and military and security applications. Similarity measure SAD is often sensitive to illumination variation. It produces unacceptable disparity map results for illumination variant left and right images. Experimental results show that our proposed algorithm produces quality disparity maps for both wide range of illumination variant and invariant stereo image pair. PMID:25386604

  7. Global Magellan-image map of Venus at full resolution

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Edwards, K. B.; Morgan, H. F.; Soderblom, L. A.; Stoewe, T. L.

    1993-01-01

    During its first 243-day mapping cycle, the Magellan spacecraft succeeded in imaging 84 percent of the surface of Venus at resolutions on the order of 100 meters; subsequent cycles have increased the total coverage to over 97 percent and provided redundant coverage of much of the planet with differing viewing geometries. Unfortunately, this full-resolution global dataset is in the form of thousands of individual orbit tracks (F-BIDR's) whose length-to-width ratio of nearly 1000:1 makes them minimally useful unless mosaicked. The Magellan project produced full-resolution mosaics (F-MIDR's) only for selected regions on the planet, whereas a global set of mosaics was made only at threefold degraded resolution (C1-MIDR's). Furthermore, although the F-MIDR's, which are approximately equidimensional, are much better suited for scientific interpretation than the F-BIDR's, they are still an unwieldy dataset: over 1500 quadrangles, each showing a region only about 600 km on a side, would be required to cover the entire planet. The USGS has therefore undertaken to produce and distribute a global, full resolution set of mosaics of the Magellan image data in a format that will be efficient for both hardcopy and digital use. The initial motivation was that it would provide an efficient means of verifying the integrity of the F-BIDR's to be archived on computer-compatible tape at the USGS Flagstaff facility. However, the resulting product, known as the FMAP, should also serve as an important resource for future scientific interpretation. It will offer several advantages beyond global coverage at full resolution. The first, alluded to above, is its division of the planet's surface to minimize the number of quadrangles and maximize their area, subject to the limits on the number of pixels imposed by state-of-the-art digital recording media and hardcopy output devices. The second, the use of improved 'cosmetic' processing techniques, will greatly reduce tonal discontinuities

  8. A 1.33 μW 8.02-ENOB 100 kS/s successive approximation ADC with supply reduction technique for implantable retinal prosthesis.

    PubMed

    Tang, Howard; Sun, Zhuo Chao; Chew, Kin Wai Roy; Siek, Liter

    2014-12-01

    This paper presents a chip level 9 bits Charge Folding Successive-Approximation-Register (SAR) Analog-to-Digital Converter (ADC) to be used in a CMOS image sensor for retinal prosthesis. It has a maximum single-ended input range of 1.8 V but only uses a supply voltage of 0.9 V for the entire ADC through the Charge Folding method. Therefore, the input range is no longer limited by the supply rail as in conventional SAR ADC. Moreover, the ADC is controlled by an internal delay line based Asynchronous Clock Generator which can be programmed to adjust the resolution of the ADC from 5 to 9 bits. Therefore, resolution adaptation function can be applied to improve the energy efficiency up to 15%. The test chip is implemented in 0.18 μm CMOS process and occupies an area of 0.15 mm(2). At 0.9 V and 100 kS/s, the 9 bit s ADC consumes 1.33 μW and achieves an energy efficiency of 51.3 fJ/conversion-step . In addition, the power consumption can be further reduced by scaling the supply voltage and sampling frequency. At 100 kS/s, this ADC is capable of converting the input signal at a rate equivalent to 30 frames/s for a pixel array up to 3200 pixels. PMID:25608284

  9. A method to estimate the effect of deformable image registration uncertainties on daily dose mapping

    SciTech Connect

    Murphy, Martin J.; Salguero, Francisco J.; Siebers, Jeffrey V.; Staub, David; Vaman, Constantin

    2012-02-15

    Purpose: To develop a statistical sampling procedure for spatially-correlated uncertainties in deformable image registration and then use it to demonstrate their effect on daily dose mapping. Methods: Sequential daily CT studies are acquired to map anatomical variations prior to fractionated external beam radiotherapy. The CTs are deformably registered to the planning CT to obtain displacement vector fields (DVFs). The DVFs are used to accumulate the dose delivered each day onto the planning CT. Each DVF has spatially-correlated uncertainties associated with it. Principal components analysis (PCA) is applied to measured DVF error maps to produce decorrelated principal component modes of the errors. The modes are sampled independently and reconstructed to produce synthetic registration error maps. The synthetic error maps are convolved with dose mapped via deformable registration to model the resulting uncertainty in the dose mapping. The results are compared to the dose mapping uncertainty that would result from uncorrelated DVF errors that vary randomly from voxel to voxel. Results: The error sampling method is shown to produce synthetic DVF error maps that are statistically indistinguishable from the observed error maps. Spatially-correlated DVF uncertainties modeled by our procedure produce patterns of dose mapping error that are different from that due to randomly distributed uncertainties. Conclusions: Deformable image registration uncertainties have complex spatial distributions. The authors have developed and tested a method to decorrelate the spatial uncertainties and make statistical samples of highly correlated error maps. The sample error maps can be used to investigate the effect of DVF uncertainties on daily dose mapping via deformable image registration. An initial demonstration of this methodology shows that dose mapping uncertainties can be sensitive to spatial patterns in the DVF uncertainties.

  10. Modeling of channel mismatch in time-interleaved SAR ADC

    NASA Astrophysics Data System (ADS)

    Dengquan, Li; Liang, Zhang; Zhangming, Zhu; Yintang, Yang

    2015-09-01

    In a time-interleaved analog-to-digital converter (TI ADC), several individual ADCs operate in parallel to achieve a higher sampling rate. Low power consumption as well as good linearity can be obtained by applying successive approximation register (SAR) converters as sub-channel ADCs. In spite of the advantages, this structure suffers from three mismatches, which are offset mismatch, gain mismatch, and time skew. This paper focuses on a TI SAR ADC with a number of channels. The mismatch effects in the frequency domain are analyzed and the derived close form formulas are verified based on Matlab. In addition, we clarify that the standard deviation of DNL and INL of an M-channel TI ADC is reduced by a factor of \\sqrt M compared to a single channel ADC. The formulas can be used to derive the corresponding requirements when designing a TI ADC. Our analysis process is able to inform the study of calibration algorithms. Project supported by the National Natural Science Foundation of China (Nos. 61234002, 61322405, 61306044, 61376033) and the National High-Tech Program of China (No. 2013AA014103).

  11. High performance 14-bit pipelined redundant signed digit ADC

    NASA Astrophysics Data System (ADS)

    Narula, Swina; Pandey, Sujata

    2016-03-01

    A novel architecture of a pipelined redundant-signed-digit analog to digital converter (RSD-ADC) is presented featuring a high signal to noise ratio (SNR), spurious free dynamic range (SFDR) and signal to noise plus distortion (SNDR) with efficient background correction logic. The proposed ADC architecture shows high accuracy with a high speed circuit and efficient utilization of the hardware. This paper demonstrates the functionality of the digital correction logic of 14-bit pipelined ADC at each 1.5 bit/stage. This prototype of ADC architecture accounts for capacitor mismatch, comparator offset and finite Op-Amp gain error in the MDAC (residue amplification circuit) stages. With the proposed architecture of ADC, SNDR obtained is 85.89 dB, SNR is 85.9 dB and SFDR obtained is 102.8 dB at the sample rate of 100 MHz. This novel architecture of digital correction logic is transparent to the overall system, which is demonstrated by using 14-bit pipelined ADC. After a latency of 14 clocks, digital output will be available at every clock pulse. To describe the circuit behavior of the ADC, VHDL and MATLAB programs are used. The proposed architecture is also capable of reducing the digital hardware. Silicon area is also the complexity of the design.

  12. Spatial data software integration - Merging CAD/CAM/mapping with GIS and image processing

    NASA Technical Reports Server (NTRS)

    Logan, Thomas L.; Bryant, Nevin A.

    1987-01-01

    The integration of CAD/CAM/mapping with image processing using geographic information systems (GISs) as the interface is examined. Particular emphasis is given to the development of software interfaces between JPL's Video Image Communication and Retrieval (VICAR)/Imaged Based Information System (IBIS) raster-based GIS and the CAD/CAM/mapping system. The design and functions of the VICAR and IBIS are described. Vector data capture and editing are studied. Various software programs for interfacing between the VICAR/IBIS and CAD/CAM/mapping are presented and analyzed.

  13. Application of the MAP estimation model to hyperspectral resolution image enhancement

    NASA Astrophysics Data System (ADS)

    Dong, Guangjun; Zhou, Haifang; Ji, Song; Shu, Rong

    2009-10-01

    This paper makes a study of maximum a posteriori (MAP) estimation method for enhancing the spatial resolution of a hyperspectral image using a higher resolution coincident panchromatic image. Here, the mathematical formulation of the proposed MAP method is described and the detail process step is introduced. Then, enhancement results using PHI hyperspectral image datasets are provided. In general, it is found that the MAP method is able to obtain high-resolution hyperspectral data. Experiment shows that the method is effective while the enhancement for conventional methods, like average estimation, is limited primarily to fuse spectral information.

  14. A low-power SAR ADC for IRFPA ROIC

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Ding, Ruijun; Zhou, Jie; Wang, Pan; Chen, Guoqiang

    2012-12-01

    This paper presents a low power ADC for the 512*512 infrared focal plane arrays (IRFPA) readout integrated circuit(ROIC). The major structure, the working mode and the simulation result of the readout integrated circuit are shown in this paper. The power supply voltage of 0.35μm standard CMOS process is 3.3V in this design, and then the output range of the Direct Injection (DI) input circuit is reached 2V. Successive-approximation-register (SAR) ADC architecture is used in this readout integrated circuit. And each ADC is shared by one column of the IRFPA. This SAR ADC is made up of a 13-bit digital-analog converter (DAC), a high resolution comparator, and a digital control circuit. The most important part is the voltage-scaling and charge-scaling charge redistribution DAC. In this DAC, charge scaling with a capacitor ladder to determine the least significant bits is combined with voltage scaling with a resister ladder to determine the most significant bits. The comparator uses three-stage operational amplifier structure to get a 77dB differential gain. The Common-Mode input rang of the comparator is 1V to 3V, and minimum resolvable voltage difference is 0.3mV. This SAR ADC has some advantages, especially in low power and high speed. The simulation result shows that the resolution of the ADC is 12 bit and the conversion time of the ADC is 6.5μs, while the power of each ADC is as low as 300μW. Finally, this SAR ADC can satisfy the request of 512*512 IRFPAs ROIC with a 100Hz frame rate.

  15. Mapping procedures can produce non-centered auditory images in bilateral cochlear implantees.

    PubMed

    Goupell, Matthew J; Kan, Alan; Litovsky, Ruth Y

    2013-02-01

    Good localization accuracy depends on an auditory spatial map that provides consistent binaural information across frequency and level. This study investigated whether mapping bilateral cochlear implants (CIs) independently contributes to distorted perceptual spatial maps. In a meta-analysis, interaural level differences necessary to perceptually center sound images were calculated for 127 pitch-matched pairs of electrodes; many needed large current adjustments to be perceptually centered. In a separate experiment, lateralization was also found to be inconsistent across levels. These findings suggest that auditory spatial maps are distorted in the mapping process, which likely reduces localization accuracy and target-noise separation in bilateral CIs. PMID:23363188

  16. Merging satellite images and maps to improve operations, Niger delta, Nigeria

    SciTech Connect

    Ellis, J.M.; Caldwell, P.D.; Goodwin, P.B. )

    1991-03-01

    Satellite images that are merged with digital maps provide an accurate and cost-effective base for analyzing petroleum activity, environmental conditions, and culture across the Niger delta. Landsat Thematic Mapper (TM) images reveal numerous uncharted shoals and spits along the margin of the delta. It also documents extensive changes and errors in existing maps of the delta's coastline. TM band 4 clearly delineates the land/water contact of widespread mangrove swamps. Acceptable Landsat and SPOT images are usually acquired between November and February when clouds and airborne dust ('Harmattan') are at a minimum. Landsat TM imagery was selected as the optimum onshore sensor primarily because the three reflected IR bands retain their resolution during mild Harmattan conditions (visible-light images are severely degraded). Black and white SPOT imagery (10 m resolution, one band) is used to resolve offshore petroleum structures, when atmospheric conditions permit. Clear SPOT images can be merged with color TM to maximize onshore information. Existing airborne radar images (acquired 1976-1977) are excellent for regional geology, but cannot support current, large-scale (>1:100,000) mapping requirements. In order to upgrade satellite images into map-oriented, large-scale plots useful for field operations and to correct the geographical content of basemaps, images and maps were digitally merged together. Images are registered to Nigeria's 'Colony Grid Bell' map projection, and map files (Lat/Long, wells, seismic, facilities, names, etc.) are digitally embedded into the images. Wells, surveyed monuments, and Global Positioning System (GPS) fixes that are visible on the images are used for this registration.

  17. Voxel significance mapping using local image variances in subtraction ictal SPET.

    PubMed

    Brinkmann, B H; O'Brien, T J; Webster, D B; Mullan, B P; Robins, P D; Robb, R A

    2000-06-01

    Subtraction ictal SPET co-registered to MRI (SISCOM) has been shown to aid epileptogenic localization and improve surgical outcome in partial epilepsy patients. This paper reports a method of identifying significant areas of epileptogenic activation in the SISCOM subtraction image, taking into account normal variation between sequential 99Tcm-ethyl cysteinate diethylester SPET scans of single individuals, and attempts to assess the clinical value of statistical mapping in subtraction SPET. Non-linear inter-subject registration is used to combine a group of subtraction images into a common anatomical framework. A map of the pixel intensity standard deviation values in the subtraction images is created, and this map is non-linearly registered to a patient's SISCOM subtraction image. Pixels in the patient subtraction image were then evaluated based upon the statistical characteristics of corresponding pixels in the atlas. SISCOM images created with the voxel variance method were rated higher in quality than the conventional image variance method in 15 patients. No difference in localization rate was observed between the voxel variance mapping and image variance methods. The voxel significance mapping method was shown to improve the quality of clinical SISCOM images. PMID:10894564

  18. Mapping site-specific endonuclease binding to DNA by direct imaging with AFM

    SciTech Connect

    Allison, D.P.; Thundat, T.; Doktycz, M.J.; Kerper, P.S.; Warmack, R.J.; Modrich, P.; Isfort, R.J.

    1995-12-31

    Physical mapping of DNA can be accomplished by direct AFM imaging of site specific proteins bound to DNA molecules. Using Gln-111, a mutant of EcoRI endonuclease with a specific affinity for EcoRI sites 1,000 times greater than wild type enzyme but with cleavage rate constants reduced by a factor of 10{sup 4}, the authors demonstrate site-specific mapping by direct AFM imaging. Images are presented showing specific-site binding of Gln-111 to plasmids having either one (pBS{sup +}) or two (pMP{sup 32}) EcoRI sites. Identification of the Gln-111/DNA complex is greatly enhanced by biotinylation of the complex followed by reaction with streptavidin gold prior to imaging. Image enhancement coupled with improvements in the preparation techniques for imaging large DNA molecules, such as lambda DNA (47 kb), has the potential to contribute to direct AFM restriction mapping of cosmid-sized genomic DNAs.

  19. Introduction of heat map to fidelity assessment of compressed CT images

    SciTech Connect

    Lee, Hyunna; Kim, Bohyoung; Seo, Jinwook; Park, Seongjin; Shin, Yeong-Gil; Kim, Kil Joong; Lee, Kyoung Ho

    2011-08-15

    Purpose: This study aimed to introduce heat map, a graphical data presentation method widely used in gene expression experiments, to the presentation and interpretation of image fidelity assessment data of compressed computed tomography (CT) images. Methods: The authors used actual assessment data that consisted of five radiologists' responses to 720 computed tomography images compressed using both Joint Photographic Experts Group 2000 (JPEG2000) 2D and JPEG2000 3D compressions. They additionally created data of two artificial radiologists, which were generated by partly modifying the data from two human radiologists. Results: For each compression, the entire data set, including the variations among radiologists and among images, could be compacted into a small color-coded grid matrix of the heat map. A difference heat map depicted the advantage of 3D compression over 2D compression. Dendrograms showing hierarchical agglomerative clustering results were added to the heat maps to illustrate the similarities in the data patterns among radiologists and among images. The dendrograms were used to identify two artificial radiologists as outliers, whose data were created by partly modifying the responses of two human radiologists. Conclusions: The heat map can illustrate a quick visual extract of the overall data as well as the entirety of large complex data in a compact space while visualizing the variations among observers and among images. The heat map with the dendrograms can be used to identify outliers or to classify observers and images based on the degree of similarity in the response patterns.

  20. Iterative current mode per pixel ADC for 3D SoftChip implementation in CMOS

    NASA Astrophysics Data System (ADS)

    Lachowicz, Stefan W.; Rassau, Alexander; Lee, Seung-Minh; Eshraghian, Kamran; Lee, Mike M.

    2003-04-01

    Mobile multimedia communication has rapidly become a significant area of research and development constantly challenging boundaries on a variety of technological fronts. The processing requirements for the capture, conversion, compression, decompression, enhancement, display, etc. of increasingly higher quality multimedia content places heavy demands even on current ULSI (ultra large scale integration) systems, particularly for mobile applications where area and power are primary considerations. The ADC presented in this paper is designed for a vertically integrated (3D) system comprising two distinct layers bonded together using Indium bump technology. The top layer is a CMOS imaging array containing analogue-to-digital converters, and a buffer memory. The bottom layer takes the form of a configurable array processor (CAP), a highly parallel array of soft programmable processors capable of carrying out complex processing tasks directly on data stored in the top plane. This paper presents a ADC scheme for the image capture plane. The analogue photocurrent or sampled voltage is transferred to the ADC via a column or a column/row bus. In the proposed system, an array of analogue-to-digital converters is distributed, so that a one-bit cell is associated with one sensor. The analogue-to-digital converters are algorithmic current-mode converters. Eight such cells are cascaded to form an 8-bit converter. Additionally, each photo-sensor is equipped with a current memory cell, and multiple conversions are performed with scaled values of the photocurrent for colour processing.

  1. Ethernet-based flash ADC for a plant PET detector system

    SciTech Connect

    Lee, Seung Joon; Dong, Hai T.; McKisson, John E.; Weisenberger, Andrew G.; Xi, Wenze; Howell, C. R.; Reid, C. D.; Smith, Mark F.

    2012-11-01

    We have developed a flash analog to digital (ADC) based read out system to be used for a Positron Emission Tomography (PET) system. The custom designed 16 channel 12-bit Ethernet-based flash ADC (EFADC-16) unit operates at 250 MHzls/channel utilizing a gigabit Ethernet interface to parse time-stamped event signals. Each unit allows the user to define a custom coincidence table for triggering. Each EFADC-16 unit can digitize four H8500 position sensitive photomultiplier tubes (PSPMT) equipped with a Jefferson Lab designed 4 channel resistive readout (a total of 16 channels). We present initial performance results of the EFADC-16 with four PET detector modules in a plant biology application to acquire tomographic images of the translocation of {sup 11}C within an oak seedling.

  2. A new image enhancement algorithm with applications to forestry stand mapping

    NASA Technical Reports Server (NTRS)

    Kan, E. P.; Lo, J. K.; Smelser, R. L.

    1975-01-01

    The theory and applications are presented of a new image enhancement algorithm which refines computer classification maps of multispectral data. The refinement eliminates connected sets smaller than a prespecified size and merges them to the surrounding area. Conventional practices in forestry timber stand mapping requires small geographic areas to be absorbed by surrounding large areas to form homogeneous stands. This homogeneity is often incompatible with the statistical formulation of homogeneity. Elements within a timber stand which should be labeled as one feature often correspond to more than one class mapped by existing computer classification techniques. The new algorithm is designed to postprocess classification maps to result in more usable timber stand maps. The new image enhancement technique is compared with an accepted neighbor-checking postprocessing technique, demonstrating the superiority of the new technique for forestry stand mapping.

  3. Ground truth and mapping capability of urban areas in large scale using GE images

    NASA Astrophysics Data System (ADS)

    Ramzi, Ahmed I.

    2015-10-01

    Monitoring and mapping complex urban features (e.g. roads and buildings) from remotely sensed data multispectral and hyperspectral has gained enormous research interest. Accurate ground truth allows for high quality assessment of classified images and to verify the produced map. Ground truth can be acquired from: field using the handheld Global Positioning System (GPS) device and from Images with high resolution extracted from Google Earth in additional to field. Ground truth or training samples could be achieved from VHR satellite images such as QuickBird, Ikonos, Geoeye-1 and Wordview images. Archived images are costly for researchers in developing countries. Images from GE with high spatial resolution are free for public and can be used directly producing large scale maps, in producing LULC mapping and training samples. Google Earth (GE) provides free access to high resolution satellite imagery, but is the quality good enough to map urban areas. Costal of the Red sea, Marsa Alam could be mapped using GE images. The main objective of this research is exploring the accuracy assessment of producing large scale maps from free Google Earth imagery and to collect ground truth or training samples in limited geographical extend. This research will be performed on Marsa Alam city or located on the western shore of the Red Sea, Red sea Governorate, Egypt. Marsa Alam is located 274 km south of Hurghada. The proposed methodology involves image collection taken into consideration the resolution of collected photographs which depend on the height of view. After that, image rectification using suitable rectification methods with different number and distributions of GCPs and CPs. Database and Geographic information systems (GIS) layers were created by on-screen vectorization based on the requirement of large scale maps. Attribute data have been collected from the field. The obtained results show that the planmetric accuracy of the produced map from Google Earth Images met map

  4. Hyperspectral image classification for mapping agricultural tillage practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An efficient classification framework for mapping agricultural tillage practice using hyperspectral remote sensing imagery is proposed, which has the potential to be implemented practically to provide rapid, accurate, and objective surveying data for precision agricultural management and appraisal f...

  5. Preliminary Image Map of the 2007 Buckweed Fire Perimeter, Green Valley Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  6. Preliminary Image Map of the 2007 Harris Fire Perimeter, Tecate Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  7. Preliminary Image Map of the 2007 Buckweed Fire Perimeter, Agua Dulce Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  8. Preliminary Image Map of the 2007 Buckweed Fire Perimeter, Mint Canyon Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  9. Preliminary Image Map of the 2007 Ranch Fire Perimeter, Piru Quadrangle, Ventura County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  10. Preliminary Image Map of the 2007 Santiago Fire Perimeter, Tustin Quadrangle, Orange County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  11. Preliminary Image Map of the 2007 Canyon Fire Perimeter, Malibu Beach Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  12. Preliminary Image Map of the 2007 Witch Fire Perimeter, Santa Ysabel Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  13. Preliminary Image Map of the 2007 Poomacha Fire Perimeter, Palomar Observatory Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  14. Preliminary Image Map of the 2007 Slide Fire Perimeter, Butler Peak Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  15. Preliminary Image Map of the 2007 Ammo Fire Perimeter, Margarita Peak Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  16. Preliminary Image Map of the 2007 Harris Fire Perimeter, Barrett Lake Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  17. Preliminary Image Map of the 2007 Witch Fire Perimeter, Escondido Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  18. Preliminary Image Map of the 2007 Ranch Fire Perimeter, Fillmore Quadrangle, Ventura County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  19. Preliminary Image Map of the 2007 Poomacha Fire Perimeter, Boucher Hill Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  20. Preliminary Image Map of the 2007 Harris Fire Perimeter, Dulzura Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  1. Preliminary Image Map of the 2007 Cajon Fire Perimeter, Devore Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  2. Preliminary Image Map of the 2007 Harris Fire Perimeter, Morena Reservoir Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  3. Preliminary Image Map of the 2007 Poomacha Fire Perimeter, Pala Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  4. Preliminary Image Map of the 2007 Witch Fire Perimeter, San Pasqual Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  5. Preliminary Image Map of the 2007 Santiago Fire Perimeter, Lake Forest Quadrangle, Orange County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  6. Preliminary Image Map of the 2007 Harris Fire Perimeter, Potrero Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  7. Preliminary Image Map of the 2007 Slide Fire Perimeter, Harrison Mountain Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  8. Preliminary Image Map of the 2007 Harris Fire Perimeter, Otay Mountain Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  9. Preliminary Image Map of the 2007 Santiago Fire Perimeter, Orange Quadrangle, Orange County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  10. Preliminary Image Map of the 2007 Witch Fire Perimeter, Warners Ranch Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  11. Preliminary Image Map of the 2007 Harris Fire Perimeter, Otay Mesa Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  12. Preliminary Image Map of the 2007 Harris Fire Perimeter, Jamul Mountains Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  13. A Topographic Image Map of the Sabrina Valles Region Including Information on Large Martian Impact Craters

    NASA Astrophysics Data System (ADS)

    Gehrke, S.; Köhring, R.; Barlow, N. G.; Gwinner, K.; Scholten, F.; Lehmann, H.; Albertz, J.

    2007-03-01

    The Catalog of Large Martian Impact Craters provides detailed information on 42,283 craters >5 km; it is planned to be integrated in the Topographic Image Map Mars 1:200,000 series. Such an update is shown in a special target map, based on HRSC data.

  14. Preliminary Image Map of the 2007 Witch Fire Perimeter, Tule Springs Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  15. Preliminary Image Map of the 2007 Rice Fire Perimeter, Bonsall Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  16. Preliminary Image Map of the 2007 Witch Fire Perimeter, Valley Center Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  17. Preliminary Image Map of the 2007 Slide Fire Perimeter, Keller Peak Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  18. Preliminary Image Map of the 2007 Buckweed Fire Perimeter, Sleepy Valley Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  19. Preliminary Image Map of the 2007 Witch Fire Perimeter, Ramona Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  20. Preliminary Image Map of the 2007 Witch Fire Perimeter, Poway Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  1. Mapping land cover from satellite images: A basic, low cost approach

    NASA Technical Reports Server (NTRS)

    Elifrits, C. D.; Barney, T. W.; Barr, D. J.; Johannsen, C. J.

    1978-01-01

    Simple, inexpensive methodologies developed for mapping general land cover and land use categories from LANDSAT images are reported. One methodology, a stepwise, interpretive, direct tracing technique was developed through working with university students from different disciplines with no previous experience in satellite image interpretation. The technique results in maps that are very accurate in relation to actual land cover and relative to the small investment in skill, time, and money needed to produce the products.

  2. A low power 12-bit ADC for nuclear instrumentation

    SciTech Connect

    Adachi, R.; Landis, D.; Madden, N. ); Silver, E.; LeGros, M. )

    1992-10-01

    A low power, successive approximation, analog-to-digital converter (ADC) for low rate, low cost, battery powered applications is described. The ADC is based on a commercial 50 mW successive approximation CMOS device (CS5102). An on-chip self-calibration circuit reduces the inherent differential nonlinearity to 7%. A further reduction of the differential nonlinearity to 0.5% is attained with a four bit Gatti function. The Gatti function is distributed to minimize battery power consumption. All analog functions reside with the ADC while the noisy digital functions reside in the personal computer based histogramming memory. Fiber optic cables carry afl digital information between the ADC and the personal computer based histogramming memory.

  3. Attenuation mapping for monitoring thermal therapy using ultrasound transmission imaging.

    PubMed

    Parmar, N; Kolios, M C

    2004-01-01

    The use of an ultrasound (US) transmission imaging system to monitor attenuation changes during tissue heating was investigated. This work presents preliminary results of images obtained from an acoustic camera before, during and after heating tissue phantoms using a heated needle. Two types of tissue-mimicking phantoms were used, agar and polyacrylamide-based. Regions of interests were chosen in images obtained from the real-time imaging system, and the pixel intensity values before, during and after heating were compared. In both phantoms, a decrease in image intensities was observed during heating, indicating an increase in tissue attenuation. Additionally, an irreversible change in image intensity was observed in regions close to the heat source. The reversibility of the intensity change was shown to be a function of the distance from the heating needle to the selected region. Initial results indicate that US transmission imaging can be used to monitor thermal therapy. PMID:17271937

  4. Landsat Image Map Production Methods at the U. S. Geological Survey

    USGS Publications Warehouse

    Kidwell, R.D.; Binnie, D.R.; Martin, S.

    1987-01-01

    To maintain consistently high quality in satellite image map production, the U. S. Geological Survey (USGS) has developed standard procedures for the photographic and digital production of Landsat image mosaics, and for lithographic printing of multispectral imagery. This paper gives a brief review of the photographic, digital, and lithographic procedures currently in use for producing image maps from Landsat data. It is shown that consistency in the printing of image maps is achieved by standardizing the materials and procedures that affect the image detail and color balance of the final product. Densitometric standards are established by printing control targets using the pressplates, inks, pre-press proofs, and paper to be used for printing.

  5. Texture Analysis of Chaotic Coupled Map Lattices Based Image Encryption Algorithm

    NASA Astrophysics Data System (ADS)

    Khan, Majid; Shah, Tariq; Batool, Syeda Iram

    2014-09-01

    As of late, data security is key in different enclosures like web correspondence, media frameworks, therapeutic imaging, telemedicine and military correspondence. In any case, a large portion of them confronted with a few issues, for example, the absence of heartiness and security. In this letter, in the wake of exploring the fundamental purposes of the chaotic trigonometric maps and the coupled map lattices, we have presented the algorithm of chaos-based image encryption based on coupled map lattices. The proposed mechanism diminishes intermittent impact of the ergodic dynamical systems in the chaos-based image encryption. To assess the security of the encoded image of this scheme, the association of two nearby pixels and composition peculiarities were performed. This algorithm tries to minimize the problems arises in image encryption.

  6. An authenticated image encryption scheme based on chaotic maps and memory cellular automata

    NASA Astrophysics Data System (ADS)

    Bakhshandeh, Atieh; Eslami, Ziba

    2013-06-01

    This paper introduces a new image encryption scheme based on chaotic maps, cellular automata and permutation-diffusion architecture. In the permutation phase, a piecewise linear chaotic map is utilized to confuse the plain-image and in the diffusion phase, we employ the Logistic map as well as a reversible memory cellular automata to obtain an efficient and secure cryptosystem. The proposed method admits advantages such as highly secure diffusion mechanism, computational efficiency and ease of implementation. A novel property of the proposed scheme is its authentication ability which can detect whether the image is tampered during the transmission or not. This is particularly important in applications where image data or part of it contains highly sensitive information. Results of various analyses manifest high security of this new method and its capability for practical image encryption.

  7. On-focal-plane ADC: recent progress at JPL

    NASA Astrophysics Data System (ADS)

    Zhou, Zhimin; Pain, Bedabrata; Panicacci, Roger; Mansoorian, Barmak; Nakamura, Junichi; Fossum, Eric R.

    1996-06-01

    Two 8 bit successive approximation analog-to-digital converters (ADC), an 8 bit single slope ADC and a 12 bit current mode incremental sigma delta ((Sigma) -(Delta) ) ADC have been designed, fabricated, and tested. The 20.4 micrometers and 40 micrometers pitch successive approximation test chip designs are compatible with active pixel sensors (APS) column parallel architectures. A 64 X 64 photogate APS with this ADC integrated on-chip was fabricated in a 1.2 micrometers N-well CMOS process and achieves 8 bit accuracy. A 1 K X 1 K APS with 11 micrometers pixels and a single slope ADC in each column was fabricated in a 0.55 micrometers N-well CMOS process and also achieves 8 bit accuracy. The successive approximation designs consume as little as 49 (mu) W at a 500 KHz conversion rate meeting the low power requirements inherent in column parallel architectures. The current mode (Sigma) -(Delta) ADC test chip is designed to be multiplexed among 8 columns in a semi-column parallel current mode APS architecture. It consumes 800 (mu) W at a 5 KHz conversion rate.

  8. On-chip ADC for infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Chen, Guo-qiang; Wang, Pan; Ding, Rui-jun

    2013-09-01

    This paper presents a low power and small area analog-digital converter (ADC) for infrared focal plane arrays (IRFPA) readout integrated circuit (ROIC). Successive approximation register (SAR) ADC architecture is used in this IRFPA readout integrated circuit. Each column of the IRFPA shares one SAR ADC. The most important part is the three-level DAC. Compared to the previous design, this three-level DAC needs smaller area, has lower power, and more suitable for IRFPA ROIC. In this DAC, its most significant bit (MSB) sub-DAC uses charge scaling, while the least significant bit (LSB) sub-DAC uses voltage scaling. Where the MSB sub-DAC consists of a four-bit charge scaling DAC and a five-bit sub-charge scaling DAC. We need to put a scaling capacitor Cs between these two sub-DACs. Because of the small area, we have more design methods to make the ADC has a symmetrical structure and has higher accuracy. The ADC also needs a high resolution comparator. In this design the comparator uses three-stage operational amplifier structure to have a 77dB differential gain. As the IR focal plane readout circuit signal is stepped DC signal, the circuit design time without adding the sample and hold circuit, so we can use a DC signal instead of infrared focal plane readout circuit output analog signals to be simulated. The simulation result shows that the resolution of the ADC is 12 bit.

  9. Design of vector quantizer for image compression using self-organizing feature map and surface fitting.

    PubMed

    Laha, Arijit; Pal, Nikhil R; Chanda, Bhabatosh

    2004-10-01

    We propose a new scheme of designing a vector quantizer for image compression. First, a set of codevectors is generated using the self-organizing feature map algorithm. Then, the set of blocks associated with each code vector is modeled by a cubic surface for better perceptual fidelity of the reconstructed images. Mean-removed vectors from a set of training images is used for the construction of a generic codebook. Further, Huffman coding of the indices generated by the encoder and the difference-coded mean values of the blocks are used to achieve better compression ratio. We proposed two indices for quantitative assessment of the psychovisual quality (blocking effect) of the reconstructed image. Our experiments on several training and test images demonstrate that the proposed scheme can produce reconstructed images of good quality while achieving compression at low bit rates. Index Terms-Cubic surface fitting, generic codebook, image compression, self-organizing feature map, vector quantization. PMID:15462140

  10. The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zhou, Liqing

    2015-12-01

    With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.

  11. A novel false color mapping model-based fusion method of visual and infrared images

    NASA Astrophysics Data System (ADS)

    Qi, Bin; Kun, Gao; Tian, Yue-xin; Zhu, Zhen-yu

    2013-12-01

    A fast and efficient image fusion method is presented to generate near-natural colors from panchromatic visual and thermal imaging sensors. Firstly, a set of daytime color reference images are analyzed and the false color mapping principle is proposed according to human's visual and emotional habits. That is, object colors should remain invariant after color mapping operations, differences between infrared and visual images should be enhanced and the background color should be consistent with the main scene content. Then a novel nonlinear color mapping model is given by introducing the geometric average value of the input visual and infrared image gray and the weighted average algorithm. To determine the control parameters in the mapping model, the boundary conditions are listed according to the mapping principle above. Fusion experiments show that the new fusion method can achieve the near-natural appearance of the fused image, and has the features of enhancing color contrasts and highlighting the infrared brilliant objects when comparing with the traditional TNO algorithm. Moreover, it owns the low complexity and is easy to realize real-time processing. So it is quite suitable for the nighttime imaging apparatus.

  12. Single optical surface imaging designs with unconstrained object to image mapping with non-rotational symmetry

    NASA Astrophysics Data System (ADS)

    Liu, Jiayao; Miñano, Juan C.; Benítez, Pablo

    2014-05-01

    In this work, novel imaging designs with a single freeform optical surface (either refractive or reflective) are presented. In these designs, not only the mapping is obtained in the design process, but also the shape of the object is found. In the examples considered, the image is virtual and located at infinity and is seen from known pupil, which can emulate a human eye. In the first introductory part, 2D designs and 3D designs by rotation using the differential equation method for the limit case of small pupil have been reviewed. Furthermore, the differential equation method is used to provide the freedom to control the tangential rays and sagittal rays simultaneously. In the second part, according to the study of astigmatism of different types of design with rotational symmetry, the differential equation method for 3D rotational design without astigmatism (at the small pupil limit) on a curved object surface has been extended to 3D freeform design. The result of this extended method has been proved to coincide with the former 3D design by rotation which is a special case of 3D freeform design. Finally, the initial condition has been used as an additional freedom to control the shape of the object surface. As a result, a reflective design with a much flatter object surface has been obtained.

  13. Spatial quantification of maps or images - Cell size or pixel size implications

    NASA Technical Reports Server (NTRS)

    Wehde, M. E.

    1979-01-01

    The paper discusses spatial quantification of maps or images. Spatial accuracies evaluated by mapping and inventory measures were observed with a range of cell sizes for a 10.36 sq km soil survey segment. The distribution of interboundary distances in a map was evaluated as unique, characterizing information; experimentally observed relationships between accuracy and cell size and interboundary distance distribution parameters and cell size led to a model of the process of spatial quantization. Grid positioning effects were evaluated and were significant only at the level of individual mapping units; two generations of 'universal' process models were derived, implemented, and evaluated.

  14. Methodology for fiber-optic Raman mapping and FTIR imaging of metastases in mouse brains.

    PubMed

    Krafft, Christoph; Kirsch, Matthias; Beleites, Claudia; Schackert, Gabriele; Salzer, Reiner

    2007-10-01

    The objectives of this study were to optimize the preparation of pristine brain tissue to obtain reference information, to optimize the conditions for introducing a fiber-optic probe to acquire Raman maps, and to transfer previous results obtained from human brain tumors to an animal model. Brain metastases of malignant melanomas were induced by injecting tumor cells into the carotid artery of mice. The procedure mimicked hematogenous tumor spread in one brain hemisphere while the other hemisphere remained tumor free. Three series of sections were prepared consecutively from whole mouse brains: dried, thin sections for FTIR imaging, hematoxylin and eosin-stained thin sections for histopathological assessment, and pristine, 2-mm thick sections for Raman mapping. FTIR images were recorded using a spectrometer with a multi-channel detector. Raman maps were collected serially using a spectrometer coupled to a fiber-optic probe. The FTIR images and the Raman maps were segmented by cluster analysis. The color-coded cluster memberships coincided well with the morphology of mouse brains in stained tissue sections. More details in less time were resolved in FTIR images with a nominal resolution of 25 microm than in Raman maps collected with a laser focus 60 microm in diameter. The spectral contributions of melanin in tumor cells were resonance enhanced in Raman spectra on excitation at 785 nm which enabled their sensitive detection in Raman maps. Possible reasons why metastatic cells of malignant melanomas were not identified in FTIR images are discussed. PMID:17639353

  15. Speciation Mapping of Environmental Samples Using XANES Imaging

    EPA Science Inventory

    Fast X-ray detectors with large solid angles and high dynamic ranges open the door to XANES imaging, in which millions of spectra are collected to image the speciation of metals at micrometre resolution, over areas up to several square centimetres. This paper explores how such mu...

  16. Images Are Not the (Only) Truth: Brain Mapping, Visual Knowledge, and Iconoclasm.

    ERIC Educational Resources Information Center

    Beaulieu, Anne

    2002-01-01

    Debates the paradoxical nature of claims about the emerging contributions of functional brain mapping. Examines the various ways that images are deployed and rejected and highlights an approach that provides insight into the current demarcation of imaging. (Contains 68 references.) (DDR)

  17. Natural-Color-Image Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  18. Natural-Color-Image Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  19. Artificial intelligence for geologic mapping with imaging spectrometers

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.

    1993-01-01

    This project was a three year study at the Center for the Study of Earth from Space (CSES) within the Cooperative Institute for Research in Environmental Science (CIRES) at the University of Colorado, Boulder. The goal of this research was to develop an expert system to allow automated identification of geologic materials based on their spectral characteristics in imaging spectrometer data such as the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). This requirement was dictated by the volume of data produced by imaging spectrometers, which prohibits manual analysis. The research described is based on the development of automated techniques for analysis of imaging spectrometer data that emulate the analytical processes used by a human observer. The research tested the feasibility of such an approach, implemented an operational system, and tested the validity of the results for selected imaging spectrometer data sets.

  20. New Colors for Histology: Optimized Bivariate Color Maps Increase Perceptual Contrast in Histological Images

    PubMed Central

    Kather, Jakob Nikolas; Weis, Cleo-Aron; Marx, Alexander; Schuster, Alexander K.; Schad, Lothar R.; Zöllner, Frank Gerrit

    2015-01-01

    Background Accurate evaluation of immunostained histological images is required for reproducible research in many different areas and forms the basis of many clinical decisions. The quality and efficiency of histopathological evaluation is limited by the information content of a histological image, which is primarily encoded as perceivable contrast differences between objects in the image. However, the colors of chromogen and counterstain used for histological samples are not always optimally distinguishable, even under optimal conditions. Methods and Results In this study, we present a method to extract the bivariate color map inherent in a given histological image and to retrospectively optimize this color map. We use a novel, unsupervised approach based on color deconvolution and principal component analysis to show that the commonly used blue and brown color hues in Hematoxylin—3,3’-Diaminobenzidine (DAB) images are poorly suited for human observers. We then demonstrate that it is possible to construct improved color maps according to objective criteria and that these color maps can be used to digitally re-stain histological images. Validation To validate whether this procedure improves distinguishability of objects and background in histological images, we re-stain phantom images and N = 596 large histological images of immunostained samples of human solid tumors. We show that perceptual contrast is improved by a factor of 2.56 in phantom images and up to a factor of 2.17 in sets of histological tumor images. Context Thus, we provide an objective and reliable approach to measure object distinguishability in a given histological image and to maximize visual information available to a human observer. This method could easily be incorporated in digital pathology image viewing systems to improve accuracy and efficiency in research and diagnostics. PMID:26717571

  1. Position Estimation and Local Mapping Using Omnidirectional Images and Global Appearance Descriptors

    PubMed Central

    Berenguer, Yerai; Payá, Luis; Ballesta, Mónica; Reinoso, Oscar

    2015-01-01

    This work presents some methods to create local maps and to estimate the position of a mobile robot, using the global appearance of omnidirectional images. We use a robot that carries an omnidirectional vision system on it. Every omnidirectional image acquired by the robot is described only with one global appearance descriptor, based on the Radon transform. In the work presented in this paper, two different possibilities have been considered. In the first one, we assume the existence of a map previously built composed of omnidirectional images that have been captured from previously-known positions. The purpose in this case consists of estimating the nearest position of the map to the current position of the robot, making use of the visual information acquired by the robot from its current (unknown) position. In the second one, we assume that we have a model of the environment composed of omnidirectional images, but with no information about the location of where the images were acquired. The purpose in this case consists of building a local map and estimating the position of the robot within this map. Both methods are tested with different databases (including virtual and real images) taking into consideration the changes of the position of different objects in the environment, different lighting conditions and occlusions. The results show the effectiveness and the robustness of both methods. PMID:26501289

  2. Position estimation and local mapping using omnidirectional images and global appearance descriptors.

    PubMed

    Berenguer, Yerai; Payá, Luis; Ballesta, Mónica; Reinoso, Oscar

    2015-01-01

    This work presents some methods to create local maps and to estimate the position of a mobile robot, using the global appearance of omnidirectional images. We use a robot that carries an omnidirectional vision system on it. Every omnidirectional image acquired by the robot is described only with one global appearance descriptor, based on the Radon transform. In the work presented in this paper, two different possibilities have been considered. In the first one, we assume the existence of a map previously built composed of omnidirectional images that have been captured from previously-known positions. The purpose in this case consists of estimating the nearest position of the map to the current position of the robot, making use of the visual information acquired by the robot from its current (unknown) position. In the second one, we assume that we have a model of the environment composed of omnidirectional images, but with no information about the location of where the images were acquired. The purpose in this case consists of building a local map and estimating the position of the robot within this map. Both methods are tested with different databases (including virtual and real images) taking into consideration the changes of the position of different objects in the environment, different lighting conditions and occlusions. The results show the effectiveness and the robustness of both methods. PMID:26501289

  3. Depth map generation using a single image sensor with phase masks.

    PubMed

    Jang, Jinbeum; Park, Sangwoo; Jo, Jieun; Paik, Joonki

    2016-06-13

    Conventional stereo matching systems generate a depth map using two or more digital imaging sensors. It is difficult to use the small camera system because of their high costs and bulky sizes. In order to solve this problem, this paper presents a stereo matching system using a single image sensor with phase masks for the phase difference auto-focusing. A novel pattern of phase mask array is proposed to simultaneously acquire two pairs of stereo images. Furthermore, a noise-invariant depth map is generated from the raw format sensor output. The proposed method consists of four steps to compute the depth map: (i) acquisition of stereo images using the proposed mask array, (ii) variational segmentation using merging criteria to simplify the input image, (iii) disparity map generation using the hierarchical block matching for disparity measurement, and (iv) image matting to fill holes to generate the dense depth map. The proposed system can be used in small digital cameras without additional lenses or sensors. PMID:27410306

  4. A object-oriented glacier mapping method based on multi-temporal Landsat images

    NASA Astrophysics Data System (ADS)

    Li, Jun Li; Bao, An Ming; Huang, Qi Ting

    2013-10-01

    Automatic remotely sensed glacier mapping in high mountainous areas is restricted due to confusion of glacier and snow. Most of current methods map glacier boundaries with a single remote sensing image, but it is hard to find one snow-free one cloud-free image. The paper presents an object-oriented image segmentation to delineate the full glacier extents with multi-temporal Landsat images and digital elevation models (DEM). Landsat images with different acquisition dates are limited within one or two year, so as to map the glacier extents with minimum snow coverage. Topographic features derived from DEMs and different solar angles are also used to separate mountain shadows from glaciers, so the glaciers shaded by mountain shadows can also be identified. The method is tested with 6 Landsat images (2009-2010) and SRTM DEM data in Bogeda Mountain of Tienshan Mountain, Xinjiang ,China. It showed that the minimum glacier extents derived with the proposed method can accurately match the SPOT-5 glacier map, and the geometric accuracy is less than 30 meters. Results are satisfying for annual glacier mapping for glacier change detection studies.

  5. A modified Richardson-Lucy algorithm for single image with adaptive reference maps

    NASA Astrophysics Data System (ADS)

    Cui, Guangmang; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting

    2014-06-01

    In this paper, we propose a modified non-blind Richardson-Lucy algorithm using adaptive reference maps as local constraint to reduce noise and ringing artifacts effectively. The deconvolution process can be divided into two stages. In the first deblurring stage, the reference map is estimated from the blurred image and an intermediate deblurred result is obtained. And then the adaptive reference map is updated according to both the blurred image and the deblurred result of the first stage to produce a more accurate edge description, which is very helpful to suppress the ringing around edges. Gaussian image prior is adopted as the regularization to improve the standard Richardson-Lucy algorithm. Experimental results show that the presented approach could suppress the negative ringing artifacts effectively as well as preserve the edge information, even if the blurred image contains rich textures.

  6. Quantum image encryption based on generalized affine transform and logistic map

    NASA Astrophysics Data System (ADS)

    Liang, Hao-Ran; Tao, Xiang-Yang; Zhou, Nan-Run

    2016-03-01

    Quantum circuits of the generalized affine transform are devised based on the novel enhanced quantum representation of digital images. A novel quantum image encryption algorithm combining the generalized affine transform with logistic map is suggested. The gray-level information of the quantum image is encrypted by the XOR operation with a key generator controlled by the logistic map, while the position information of the quantum image is encoded by the generalized affine transform. The encryption keys include the independent control parameters used in the generalized affine transform and the logistic map. Thus, the key space is large enough to frustrate the possible brute-force attack. Numerical simulations and analyses indicate that the proposed algorithm is realizable, robust and has a better performance than its classical counterpart in terms of computational complexity.

  7. Quantum image encryption based on generalized affine transform and logistic map

    NASA Astrophysics Data System (ADS)

    Liang, Hao-Ran; Tao, Xiang-Yang; Zhou, Nan-Run

    2016-07-01

    Quantum circuits of the generalized affine transform are devised based on the novel enhanced quantum representation of digital images. A novel quantum image encryption algorithm combining the generalized affine transform with logistic map is suggested. The gray-level information of the quantum image is encrypted by the XOR operation with a key generator controlled by the logistic map, while the position information of the quantum image is encoded by the generalized affine transform. The encryption keys include the independent control parameters used in the generalized affine transform and the logistic map. Thus, the key space is large enough to frustrate the possible brute-force attack. Numerical simulations and analyses indicate that the proposed algorithm is realizable, robust and has a better performance than its classical counterpart in terms of computational complexity.

  8. Bas-relief map using texture analysis with application to live enhancement of ultrasound images.

    PubMed

    Du, Huarui; Ma, Rui; Wang, Xiaoying; Zhang, Jue; Fang, Jing

    2015-05-01

    For ultrasound imaging, speckle is one of the most important factors in the degradation of contrast resolution because it masks meaningful texture and has the potential to interfere with diagnosis. It is expected that researchers would explore appropriate ways to reduce the speckle noise, to find the edges of structures and enhance weak borders between different organs in ultrasound imaging. Inspired by the principle of differential interference contrast microscopy, a "bas-relief map" is proposed that depicts the texture structure of ultrasound images. Based on a bas-relief map, an adaptive bas-relief filter was developed for ultrafast despeckling. Subsequently, an edge map was introduced to enhance the edges of images in real time. The holistic bas-relief map approach has been used experimentally with synthetic phantoms and digital ultrasound B-scan images of liver, kidney and gallbladder. Based on the visual inspection and the performance metrics of the despeckled images, it was found that the bas-relief map approach is capable of effectively reducing the speckle while significantly enhancing contrast and tissue boundaries for ultrasonic images, and its speckle reduction ability is comparable to that of Kuan, Lee and Frost filters. Meanwhile, the proposed technique could preserve more intra-region details compared with the popular speckle reducing anisotropic diffusion technique and more effectively enhance edges. In addition, the adaptive bas-relief filter was much less time consuming than the Kuan, Lee and Frost filter and speckle reducing anisotropic diffusion techniques. The bas-relief map strategy is effective for speckle reduction and live enhancement of ultrasound images, and can provide a valuable tool for clinical diagnosis. PMID:25641600

  9. Noise characteristics of CT perfusion imaging: how does noise propagate from source images to final perfusion maps?

    NASA Astrophysics Data System (ADS)

    Li, Ke; Chen, Guang-Hong

    2016-03-01

    Cerebral CT perfusion (CTP) imaging is playing an important role in the diagnosis and treatment of acute ischemic strokes. Meanwhile, the reliability of CTP-based ischemic lesion detection has been challenged due to the noisy appearance and low signal-to-noise ratio of CTP maps. To reduce noise and improve image quality, a rigorous study on the noise transfer properties of CTP systems is highly desirable to provide the needed scientific guidance. This paper concerns how noise in the CTP source images propagates to the final CTP maps. Both theoretical deviations and subsequent validation experiments demonstrated that, the noise level of background frames plays a dominant role in the noise of the cerebral blood volume (CBV) maps. This is in direct contradiction with the general belief that noise of non-background image frames is of greater importance in CTP imaging. The study found that when radiation doses delivered to the background frames and to all non-background frames are equal, lowest noise variance is achieved in the final CBV maps. This novel equality condition provides a practical means to optimize radiation dose delivery in CTP data acquisition: radiation exposures should be modulated between background frames and non-background frames so that the above equality condition is satisïnAed. For several typical CTP acquisition protocols, numerical simulations and in vivo canine experiment demonstrated that noise of CBV can be effectively reduced using the proposed exposure modulation method.

  10. Assessment of tumor response on MR imaging after locoregional therapy.

    PubMed

    Vossen, Josephina A; Buijs, Manon; Kamel, Ihab R

    2006-09-01

    Assessment of tumor response after locoregional therapies is important in determining treatment success and in guiding future therapy. Magnetic resonance imaging plays an important role in evaluating treatment response to new therapies directed toward hepatic lesion treatment. The traditional and accepted criteria to determine tumor response in oncology, namely the Response Evaluation Criteria in Solid Tumors (RECIST) and the European Association for the Study of the Liver (EASL) criteria, use decrease in tumor size and lesion enhancement as an indicator of successful therapy. A more recent evaluation method is the Apparent Diffusion Coefficient (ADC) measured by diffusion-weighted MR imaging. Diffusion-weighted MR imaging and ADC values map the thermally induced motion of water molecules in tissues and thereby are able to provide insight into tumor microstructure. In this article we discuss the role of MR imaging in assessing treatment response after various locoregional therapies. We describe the role of tumor size and lesion enhancement as well as ADC mapping. We also discuss the magnetic resonance imaging findings after radiofrequency ablation (RFA), transarterial chemoembolization (TACE) and radioembolization. PMID:17561215

  11. The linac coherent light source single particle imaging road map

    SciTech Connect

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; Elmlund, H.; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.; Hau-Riege, S. P.; Huang, Z.; Lattman, E. E.; Maia, F. R.N.C.; Marchesini, S.; Ourmazd, A.; Pellegrini, C.; Schlichting, I.; Schroer, C.; Spence, J. C. H.; Vartanyants, I. A.; Wakatsuki, S.; Weis, W. I.; Williams, G. J.

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources.

  12. The linac coherent light source single particle imaging road map

    DOE PAGESBeta

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; et al

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electronmore » laser sources.« less

  13. The linac coherent light source single particle imaging road map.

    PubMed

    Aquila, A; Barty, A; Bostedt, C; Boutet, S; Carini, G; dePonte, D; Drell, P; Doniach, S; Downing, K H; Earnest, T; Elmlund, H; Elser, V; Gühr, M; Hajdu, J; Hastings, J; Hau-Riege, S P; Huang, Z; Lattman, E E; Maia, F R N C; Marchesini, S; Ourmazd, A; Pellegrini, C; Santra, R; Schlichting, I; Schroer, C; Spence, J C H; Vartanyants, I A; Wakatsuki, S; Weis, W I; Williams, G J

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources. PMID:26798801

  14. The linac coherent light source single particle imaging road map

    PubMed Central

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; Elmlund, H.; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.; Hau-Riege, S. P.; Huang, Z.; Lattman, E. E.; Maia, F. R. N. C.; Marchesini, S.; Ourmazd, A.; Pellegrini, C.; Santra, R.; Schlichting, I.; Schroer, C.; Spence, J. C. H.; Vartanyants, I. A.; Wakatsuki, S.; Weis, W. I.; Williams, G. J.

    2015-01-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources. PMID:26798801

  15. New generation of electro-anatomic mapping: full intracardiac ultrasound image integration.

    PubMed

    Packer, Douglas L; Johnson, Susan B; Kolasa, Mark W; Bunch, Thomas J; Henz, Benhur D; Okumura, Yasuo

    2008-11-01

    Surrogate electro-anatomic-derived geometries are used as the three-dimensional (3D) basis for mapping of cardiac arrhythmias. While merged computed tomography (CT) imaging may provide stellar pulmonary vein (PV) and left atrial (LA) anatomy, the applied scans must be obtained prior to ablation, and may not reflect physiologic conditions at the time of intervention. Patient-specific, ultrasound-derived 3D imaging has been developed as an alternative basis for new generation electro-anatomic mapping. An electro-anatomic sensor positioned at the tip of the phased-array intracardiac ultrasound catheter, provides the means to specify both location and orientation of each image as the 'context' for creating the 3D volumes for co-registration with electro-anatomic mapping. Specific anatomic details such as the pulmonary veins, membranous fossa, papillary muscles, or valve structures derived from real-time imaging can also be integrated into each segmented volume. This presentation reviews the basis and methods for this novel multi-modality image fusion for the creation of robust, nearly real-time anatomic images for guiding electro-anatomic mapping and ablation without requiring pre-acquired CT image sets, with accompanying limitations. PMID:18955397

  16. Comparison of manually produced and automated cross country movement maps using digital image processing techniques

    NASA Technical Reports Server (NTRS)

    Wynn, L. K.

    1985-01-01

    The Image-Based Information System (IBIS) was used to automate the cross country movement (CCM) mapping model developed by the Defense Mapping Agency (DMA). Existing terrain factor overlays and a CCM map, produced by DMA for the Fort Lewis, Washington area, were digitized and reformatted into geometrically registered images. Terrain factor data from Slope, Soils, and Vegetation overlays were entered into IBIS, and were then combined utilizing IBIS-programmed equations to implement the DMA CCM model. The resulting IBIS-generated CCM map was then compared with the digitized manually produced map to test similarity. The numbers of pixels comprising each CCM region were compared between the two map images, and percent agreement between each two regional counts was computed. The mean percent agreement equalled 86.21%, with an areally weighted standard deviation of 11.11%. Calculation of Pearson's correlation coefficient yielded +9.997. In some cases, the IBIS-calculated map code differed from the DMA codes: analysis revealed that IBIS had calculated the codes correctly. These highly positive results demonstrate the power and accuracy of IBIS in automating models which synthesize a variety of thematic geographic data.

  17. Study of a holographic TV system based on multi-view images and depth maps

    NASA Astrophysics Data System (ADS)

    Senoh, Takanori; Ichihashi, Yasuyuki; Oi, Ryutaro; Sasaki, Hisayuki; Yamamoto, Kenji

    2013-03-01

    Electronic holography technology is expected to be used for realizing an ideal 3DTV system in the future, providing perfect 3D images. Since the amount of fringe data is huge, however, it is difficult to broadcast or transmit it directly. To resolve this problem, we investigated a method of generating holograms from depth images. Since computer generated holography (CGH) generates huge fringe patterns from a small amount of data for the coordinates and colors of 3D objects, it solves half of this problem, mainly for computer generated objects (artificial objects). For the other half of the problem (how to obtain 3D models for a natural scene), we propose a method of generating holograms from multi-view images and associated depth maps. Multi-view images are taken by multiple cameras. The depth maps are estimated from the multi-view images by introducing an adaptive matching error selection algorithm in the stereo-matching process. The multi-view images and depth maps are compressed by a 2D image coding method that converts them into Global View and Depth (GVD) format. The fringe patterns are generated from the decoded data and displayed on 8K×4K liquid crystal on silicon (LCOS) display panels. The reconstructed holographic image quality is compared using uncompressed and compressed images.

  18. Tissue electrical property mapping from zero echo-time magnetic resonance imaging.

    PubMed

    Lee, Seung-Kyun; Bulumulla, Selaka; Wiesinger, Florian; Sacolick, Laura; Sun, Wei; Hancu, Ileana

    2015-02-01

    The capability of magnetic resonance imaging (MRI) to produce spatially resolved estimation of tissue electrical properties (EPs) in vivo has been a subject of much recent interest. In this work we introduce a method to map tissue EPs from low-flip-angle, zero-echo-time (ZTE) imaging. It is based on a new theoretical formalism that allows calculation of EPs from the product of transmit and receive radio-frequency (RF) field maps. Compared to conventional methods requiring separation of the transmit RF field (B(1)(+)) from acquired MR images, the proposed method has such advantages as: 1) reduced theoretical error, 2) higher acquisition speed, and 3) flexibility in choice of different transmit and receive RF coils. The method is demonstrated in electrical conductivity and relative permittivity mapping in a salt water phantom, as well as in vivo measurement of brain conductivity in healthy volunteers. The phantom results show the validity and scan-time efficiency of the proposed method applied to a piece-wise homogeneous object. Quality of in vivo EP results was limited by reconstruction errors near tissue boundaries, which highlights need for image segmentation in EP mapping in a heterogeneous medium. Our results show the feasibility of rapid EP mapping from MRI without B(1)(+) mapping. PMID:25312919

  19. Postfire soil burn severity mapping with hyperspectral image unmixing

    USGS Publications Warehouse

    Robichaud, P.R.; Lewis, S.A.; Laes, D.Y.M.; Hudak, A.T.; Kokaly, R.F.; Zamudio, J.A.

    2007-01-01

    Burn severity is mapped after wildfires to evaluate immediate and long-term fire effects on the landscape. Remotely sensed hyperspectral imagery has the potential to provide important information about fine-scale ground cover components that are indicative of burn severity after large wildland fires. Airborne hyperspectral imagery and ground data were collected after the 2002 Hayman Fire in Colorado to assess the application of high resolution imagery for burn severity mapping and to compare it to standard burn severity mapping methods. Mixture Tuned Matched Filtering (MTMF), a partial spectral unmixing algorithm, was used to identify the spectral abundance of ash, soil, and scorched and green vegetation in the burned area. The overall performance of the MTMF for predicting the ground cover components was satisfactory (r2 = 0.21 to 0.48) based on a comparison to fractional ash, soil, and vegetation cover measured on ground validation plots. The relationship between Landsat-derived differenced Normalized Burn Ratio (dNBR) values and the ground data was also evaluated (r2 = 0.20 to 0.58) and found to be comparable to the MTMF. However, the quantitative information provided by the fine-scale hyperspectral imagery makes it possible to more accurately assess the effects of the fire on the soil surface by identifying discrete ground cover characteristics. These surface effects, especially soil and ash cover and the lack of any remaining vegetative cover, directly relate to potential postfire watershed response processes. ?? 2006 Elsevier Inc. All rights reserved.

  20. Fast CEUS image segmentation based on self organizing maps

    NASA Astrophysics Data System (ADS)

    Paire, Julie; Sauvage, Vincent; Albouy-Kissi, Adelaïde; Ladam Marcus, Viviane; Marcus, Claude; Hoeffel, Christine

    2014-03-01

    Contrast-enhanced ultrasound (CEUS) has recently become an important technology for lesion detection and characterization. CEUS is used to investigate the perfusion kinetics in tissue over time, which relates to tissue vascularization. In this paper, we present an interactive segmentation method based on the neural networks, which enables to segment malignant tissue over CEUS sequences. We use Self-Organizing-Maps (SOM), an unsupervised neural network, to project high dimensional data to low dimensional space, named a map of neurons. The algorithm gathers the observations in clusters, respecting the topology of the observations space. This means that a notion of neighborhood between classes is defined. Adjacent observations in variables space belong to the same class or related classes after classification. Thanks to this neighborhood conservation property and associated with suitable feature extraction, this map provides user friendly segmentation tool. It will assist the expert in tumor segmentation with fast and easy intervention. We implement SOM on a Graphics Processing Unit (GPU) to accelerate treatment. This allows a greater number of iterations and the learning process to converge more precisely. We get a better quality of learning so a better classification. Our approach allows us to identify and delineate lesions accurately. Our results show that this method improves markedly the recognition of liver lesions and opens the way for future precise quantification of contrast enhancement.

  1. Diffusion-Weighted Magnetic Resonance Imaging Findings of Kidneys with Obstructive Uropathy: Differentiation between Benign and Malignant Etiology

    PubMed Central

    Apaydin, Melda; Sönmezgöz, Fitnet; Çalık, Sinan; Bedel Koruyucu, Melike

    2014-01-01

    Purpose. In this study, we aimed to evaluate the capability of diffusion-weighted magnetic resonance imaging (DWI) in differentiation between benign and malignant etiology of obstructive uropathy. Materials and Methods. DWI was performed in 41 patients with hydronephrotic kidneys and 26 healthy volunteers. MR imaging was performed using a 1.5 T whole-body superconducting MR scanner. The signal intensities of the renal parenchyma on DWI and apparent diffusion coefficient (ADC) maps were noted. DWI was performed with the following diffusion gradient b values: 100, 600, and 1000 s/mm2. A large circular region of interest was placed in the corticomedullary junction of the kidneys. For statistical analysis, the independent-samples t test was used. Results. The mean renal ADC values for b100, b600, and b1000 in hydronephrosis patients with benign and malignant etiology and the healthy volunteers of the control group were analysed. ADC measurements of renal parenchyma in all hydronephrotic kidneys with benign and malignant etiology were found to be statistically low compared to those of normal kidneys (P < 0.05). Conclusions. There were significant differences in the ADC values of obstructed kidneys compared to those of normal kidneys. Obstructed kidneys with malignant etiology had lower ADC values for b1000 compared to obstructed kidneys with benign etiology, but these alterations were statistically insignificant. PMID:24764775

  2. Hyperspectral Image Classification using a Self-Organizing Map

    NASA Technical Reports Server (NTRS)

    Martinez, P.; Gualtieri, J. A.; Aguilar, P. L.; Perez, R. M.; Linaje, M.; Preciado, J. C.; Plaza, A.

    2001-01-01

    The use of hyperspectral data to determine the abundance of constituents in a certain portion of the Earth's surface relies on the capability of imaging spectrometers to provide a large amount of information at each pixel of a certain scene. Today, hyperspectral imaging sensors are capable of generating unprecedented volumes of radiometric data. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), for example, routinely produces image cubes with 224 spectral bands. This undoubtedly opens a wide range of new possibilities, but the analysis of such a massive amount of information is not an easy task. In fact, most of the existing algorithms devoted to analyzing multispectral images are not applicable in the hyperspectral domain, because of the size and high dimensionality of the images. The application of neural networks to perform unsupervised classification of hyperspectral data has been tested by several authors and also by us in some previous work. We have also focused on analyzing the intrinsic capability of neural networks to parallelize the whole hyperspectral unmixing process. The results shown in this work indicate that neural network models are able to find clusters of closely related hyperspectral signatures, and thus can be used as a powerful tool to achieve the desired classification. The present work discusses the possibility of using a Self Organizing neural network to perform unsupervised classification of hyperspectral images. In sections 3 and 4, the topology of the proposed neural network and the training algorithm are respectively described. Section 5 provides the results we have obtained after applying the proposed methodology to real hyperspectral data, described in section 2. Different parameters in the learning stage have been modified in order to obtain a detailed description of their influence on the final results. Finally, in section 6 we provide the conclusions at which we have arrived.

  3. Simulation of seagrass bed mapping by satellite images based on the radiative transfer model

    NASA Astrophysics Data System (ADS)

    Sagawa, Tatsuyuki; Komatsu, Teruhisa

    2015-06-01

    Seagrass and seaweed beds play important roles in coastal marine ecosystems. They are food sources and habitats for many marine organisms, and influence the physical, chemical, and biological environment. They are sensitive to human impacts such as reclamation and pollution. Therefore, their management and preservation are necessary for a healthy coastal environment. Satellite remote sensing is a useful tool for mapping and monitoring seagrass beds. The efficiency of seagrass mapping, seagrass bed classification in particular, has been evaluated by mapping accuracy using an error matrix. However, mapping accuracies are influenced by coastal environments such as seawater transparency, bathymetry, and substrate type. Coastal management requires sufficient accuracy and an understanding of mapping limitations for monitoring coastal habitats including seagrass beds. Previous studies are mainly based on case studies in specific regions and seasons. Extensive data are required to generalise assessments of classification accuracy from case studies, which has proven difficult. This study aims to build a simulator based on a radiative transfer model to produce modelled satellite images and assess the visual detectability of seagrass beds under different transparencies and seagrass coverages, as well as to examine mapping limitations and classification accuracy. Our simulations led to the development of a model of water transparency and the mapping of depth limits and indicated the possibility for seagrass density mapping under certain ideal conditions. The results show that modelling satellite images is useful in evaluating the accuracy of classification and that establishing seagrass bed monitoring by remote sensing is a reliable tool.

  4. Raman mapping for kinetic analysis of crystallization of amorphous drug based on distributional images.

    PubMed

    Ueda, Hiroshi; Ida, Yasuo; Kadota, Kazunori; Tozuka, Yuichi

    2014-02-28

    The feasibility of Raman mapping for understanding the crystallization mechanism of an amorphous drug was investigated using described images. The crystallization tendency of amorphous indomethacin under dry condition at 30 °C was kinetically evaluated by means of Raman mapping and X-ray powder diffraction (XRPD) with change in the calculated crystallinities. Raman images directly revealed the occurrence of particle size-dependent non-uniform crystallization; slow crystallization of large particles, but fast crystallization of small particles. Kinetic analysis by fitting to the Kolmogorov-Johnson-Mehl-Avrami equation was performed for the crystallization profiles of both Raman mapping and XRPD data. For the Raman mapping data, the distribution of large particles was characterized and examined. The kinetic parameters calculated from the whole Raman image area agreed well with those of XRPD, suggesting accurate prediction of both techniques for the entire crystallization. Raman images revealed the change in the crystallization mechanism for the focused area; the large particles showed a reduced crystallization rate constant and an increase in the dimensional crystal growth exponent. Raman mapping is an attractive tool for quantitative and kinetic investigation of the crystallization mechanism with distributional images. PMID:24368105

  5. Deformable image registration and 3D strain mapping for the quantitative assessment of cortical bone microdamage.

    PubMed

    Christen, David; Levchuk, Alina; Schori, Stefan; Schneider, Philipp; Boyd, Steven K; Müller, Ralph

    2012-04-01

    The resistance to forming microcracks is a key factor for bone to withstand critical loads without fracturing. In this study, we investigated the initiation and propagation of microcracks in murine cortical bone by combining three-dimensional images from synchrotron radiation-based computed tomography and time-lapsed biomechanical testing to observe microdamage accumulation over time. Furthermore, a novel deformable image registration procedure utilizing digital volume correlation and demons image registration was introduced to compute 3D strain maps allowing characterization of the mechanical environment of the microcracks. The displacement and strain maps were validated in a priori tests. At an image resolution of 740 nm the spatial resolution of the strain maps was 10 μm (MTF), while the errors of the displacements and strains were 130 nm and 0.013, respectively. The strain maps revealed a complex interaction of the propagating microcracks with the bone microstructure. In particular, we could show that osteocyte lacunae play a dual role as stress concentrating features reducing bone strength, while at the same time contributing to the bone toughness by blunting the crack tip. We conclude that time-lapsed biomechanical imaging in combination with three-dimensional strain mapping is suitable for the investigation of crack initiation and propagation in many porous materials under various loading scenarios. PMID:22402165

  6. Improvement of pipeline ADC resolution in sequential stages of conversion

    NASA Astrophysics Data System (ADS)

    Małkiewicz, Ł.

    2014-11-01

    Due to high discrepancy between possible combinations of rate and resolution of today's analog to digital converters (ADCs) and capabilities of the digital systems in favour of the latter, improvement of ADCs performance still is and will likely long be an actual issue. A perspective class of converters that allows further improvements of conversion quality, are adaptive pipeline ADCs (APADCs). APADCs on top of having all of the virtues of pipeline ADCs, such as an excellent compromise of relatively high speed due to pipelining of conversion iterations and high accuracy, as well as relatively low complexity, sizes and power consumption, thanks to computing of codes of input samples using digital signal processing (DSP) algorithms, allow full optimization of their functioning and achievement of better performance than of conventional pipeline ADCs. Optimization of APADC requires identification of factors critically influencing performance of APADC. This work focuses on one of them - the difference between resolution of estimates computed by a given stage of APADC and resolution of feedback DACs in following stages producing their analog equivalents, which creates a need for estimates resolution reduction in the course of conversion. The influence of the latter on work and performance of APADC is analyzed in the paper and a method to compensate this influence and improve resolution of APADC in sequential stages of conversion, is developed. Results of simulation experiments that prove effectiveness of the proposed solution and allow to estimate the benefits resulting from it, are presented.

  7. Effect of spatial smoothing on t-maps: arguments for going back from t-maps to masked contrast images.

    PubMed

    Reimold, Matthias; Slifstein, Mark; Heinz, Andreas; Mueller-Schauenburg, Wolfgang; Bares, Roland

    2006-06-01

    Voxelwise statistical analysis has become popular in explorative functional brain mapping with fMRI or PET. Usually, results are presented as voxelwise levels of significance (t-maps), and for clusters that survive correction for multiple testing the coordinates of the maximum t-value are reported. Before calculating a voxelwise statistical test, spatial smoothing is required to achieve a reasonable statistical power. Little attention is being given to the fact that smoothing has a nonlinear effect on the voxel variances and thus the local characteristics of a t-map, which becomes most evident after smoothing over different types of tissue. We investigated the related artifacts, for example, white matter peaks whose position depend on the relative variance (variance over contrast) of the surrounding regions, and suggest improving spatial precision with 'masked contrast images': color-codes are attributed to the voxelwise contrast, and significant clusters (e.g., detected with statistical parametric mapping, SPM) are enlarged by including contiguous pixels with a contrast above the mean contrast in the original cluster, provided they satisfy P < 0.05. The potential benefit is demonstrated with simulations and data from a [11C]Carfentanil PET study. We conclude that spatial smoothing may lead to critical, sometimes-counterintuitive artifacts in t-maps, especially in subcortical brain regions. If significant clusters are detected, for example, with SPM, the suggested method is one way to improve spatial precision and may give the investigator a more direct sense of the underlying data. Its simplicity and the fact that no further assumptions are needed make it a useful complement for standard methods of statistical mapping. PMID:16208316

  8. Bilateral filtering and adaptive tone-mapping for qualified edge and image enhancement

    NASA Astrophysics Data System (ADS)

    Hu, Kuo-Jui; Chang, Ting-Ting; Lu, Min-Yao; Li, Wu-Jeng; Huang, Jih-Fon

    2009-01-01

    Most of high-contrast images are common with dark and bright area. It is difficult to present the detail on both dark and high light areas on display devices. In order to resolve this problem, we proposed a method of image enhancement to improve this image quality and used bilateral filter to keep the detail. In paper, we applied an appropriate algorithm to process images. At first, we use bilateral filter to separate image. One is large scale image and the other is detail image. Second, we made large scale image which was translated into histogram. In order to make the images divided into three stairs, such as lightness, middle-tone and darkness region. We decided two optimal threshold parameters. Finally, according to three images we use different tone-mapping method to process each stair. The tone-mapping method includes adaptive s-curve and gamma curve algorithms. The experiment results of this study revealed image detail and enhancement. To avoid contour phenomenon is in lightness region.

  9. Color reproduction and processing algorithm based on real-time mapping for endoscopic images.

    PubMed

    Khan, Tareq H; Mohammed, Shahed K; Imtiaz, Mohammad S; Wahid, Khan A

    2016-01-01

    In this paper, we present a real-time preprocessing algorithm for image enhancement for endoscopic images. A novel dictionary based color mapping algorithm is used for reproducing the color information from a theme image. The theme image is selected from a nearby anatomical location. A database of color endoscopy image for different location is prepared for this purpose. The color map is dynamic as its contents change with the change of the theme image. This method is used on low contrast grayscale white light images and raw narrow band images to highlight the vascular and mucosa structures and to colorize the images. It can also be applied to enhance the tone of color images. The statistic visual representation and universal image quality measures show that the proposed method can highlight the mucosa structure compared to other methods. The color similarity has been verified using Delta E color difference, structure similarity index, mean structure similarity index and structure and hue similarity. The color enhancement was measured using color enhancement factor that shows considerable improvements. The proposed algorithm has low and linear time complexity, which results in higher execution speed than other related works. PMID:26759756

  10. Mapping.

    ERIC Educational Resources Information Center

    Kinney, Douglas M.; McIntosh, Willard L.

    1979-01-01

    The area of geological mapping in the United States in 1978 increased greatly over that reported in 1977; state geological maps were added for California, Idaho, Nevada, and Alaska last year. (Author/BB)

  11. Evaluation of LANDSAT multispectral scanner images for mapping altered rocks in the east Tintic Mountains, Utah

    NASA Technical Reports Server (NTRS)

    Rowan, L. C.; Abrams, M. J. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Positive findings of earlier evaluations of the color-ratio compositing technique for mapping limonitic altered rocks in south-central Nevada are confirmed, but important limitations in the approach used are pointed out. These limitations arise from environmental, geologic, and image processing factors. The greater vegetation density in the East Tintic Mountains required several modifications in procedures to improve the overall mapping accuracy of the CRC approach. Large format ratio images provide better internal registration of the diazo films and avoids the problems associated with magnifications required in the original procedure. Use of the Linoscan 204 color recognition scanner permits accurate consistent extraction of the green pixels representing limonitic bedrock maps that can be used for mapping at large scales as well as for small scale reconnaissance.

  12. A Chaotic Cryptosystem for Images Based on Henon and Arnold Cat Map

    PubMed Central

    Sundararajan, Elankovan

    2014-01-01

    The rapid evolution of imaging and communication technologies has transformed images into a widespread data type. Different types of data, such as personal medical information, official correspondence, or governmental and military documents, are saved and transmitted in the form of images over public networks. Hence, a fast and secure cryptosystem is needed for high-resolution images. In this paper, a novel encryption scheme is presented for securing images based on Arnold cat and Henon chaotic maps. The scheme uses Arnold cat map for bit- and pixel-level permutations on plain and secret images, while Henon map creates secret images and specific parameters for the permutations. Both the encryption and decryption processes are explained, formulated, and graphically presented. The results of security analysis of five different images demonstrate the strength of the proposed cryptosystem against statistical, brute force and differential attacks. The evaluated running time for both encryption and decryption processes guarantee that the cryptosystem can work effectively in real-time applications. PMID:25258724

  13. A chaotic cryptosystem for images based on Henon and Arnold cat map.

    PubMed

    Soleymani, Ali; Nordin, Md Jan; Sundararajan, Elankovan

    2014-01-01

    The rapid evolution of imaging and communication technologies has transformed images into a widespread data type. Different types of data, such as personal medical information, official correspondence, or governmental and military documents, are saved and transmitted in the form of images over public networks. Hence, a fast and secure cryptosystem is needed for high-resolution images. In this paper, a novel encryption scheme is presented for securing images based on Arnold cat and Henon chaotic maps. The scheme uses Arnold cat map for bit- and pixel-level permutations on plain and secret images, while Henon map creates secret images and specific parameters for the permutations. Both the encryption and decryption processes are explained, formulated, and graphically presented. The results of security analysis of five different images demonstrate the strength of the proposed cryptosystem against statistical, brute force and differential attacks. The evaluated running time for both encryption and decryption processes guarantee that the cryptosystem can work effectively in real-time applications. PMID:25258724

  14. Advanced InSAR imaging for dune mapping

    NASA Astrophysics Data System (ADS)

    Havivi, Shiran; August, Yitzhak; Blumberg, Dan G.; Rotman, Stanley R.

    2015-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970's, remote sensing imagery both optical and radar, are used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of Aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two images or more. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This research aims to demonstrate how interferometric decorrelation, or, coherence change detection, can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the Nitzanim coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of varying levels of stability and vegetation cover and have been monitored meteorologically, geomorphologically and

  15. Using ERS-2 and ALOS PALSAR images for soil moisture and inundation mapping in Cyprus

    NASA Astrophysics Data System (ADS)

    Alexakis, Dimitrios D.; Agapiou, Athos; Themistocleous, Kyriacos; Retalis, Adrianos; Hadjimitsis, Diofantos G.

    2013-08-01

    Floods are among the most frequent and costly natural disasters in terms of human and economic loss and are considered to be a weather-related natural disaster. This study strives to highlight the potential of active remote sensing imagery in flood inundation monitoring and mapping in a catchment area in Cyprus (Yialias river). GeoEye-1 and ASTER images were employed to create updated Land use /Land cover maps of the study area. Following, the application of fully polarimetric (ALOS PALSAR) and dual polarimetric (ERS - 2) Synthetic Aperture Radar (SAR) data for soil moisture and inundation mapping is presented. For this purpose 2 ALOS PALSAR images and 3 ERS-2 images were acquired. This study offers an integrated methodology by the use of multi-angle radar images to estimate roughness and soil moisture without the use of ancillary field data such as field measurements. The relationship between soil moisture and backscattering coefficient was thoroughly studied and linear regression models were developed to predict future flood inundation events. Multi-temporal FCC images, classification, image fusion, moisture indices, texture and PCA analysis were employed to assist soil moisture mapping. Certain land cover classes were characterized as flood prone areas according to statistics of their signal response. The results will be incorporated in an integrated flood risk assessment model of Yialias catchment area.

  16. Identifying Student Use of Ball-and-Stick Images versus Electrostatic Potential Map Images via Eye Tracking

    ERIC Educational Resources Information Center

    Williamson, Vickie M.; Hegarty, Mary; Deslongchamps, Ghislain; Williamson, Kenneth C., III

    2013-01-01

    This pilot study examined students' use of ball-and-stick images versus electrostatic potential maps when asked questions about electron density, positive charge, proton attack, and hydroxide attack with six different molecules (two alcohols, two carboxylic acids, and two hydroxycarboxylic acids). Students' viewing of these dual images…

  17. Automatic segmentation of MR images using self-organizing feature mapping and neural networks

    NASA Astrophysics Data System (ADS)

    Alirezaie, Javad; Jernigan, M. Ed; Nahmias, Claude

    1997-04-01

    In this paper we present an unsupervised clustering technique for multispectral segmentation of magnetic resonance (MR) images of the human brain. Our scheme utilizes the self-organizing feature map (SOFM) artificial neural network (ANN) for feature mapping and generates a set of codebook vectors for each tissue class. Features are selected from three image spectra: T1, T2 and proton density (PD) weighted images. An algorithm has been developed for isolating the cerebrum from the head scan prior to the segmentation. To classify the map, we extend the network by adding an associative layer. Three tissue types of the brain: white matter, gray matter and cerebral spinal fluid (CSF) are segmented accurately. Any unclassified tissues were remained as unknown tissue class.

  18. Design of an image encryption scheme based on a multiple chaotic map

    NASA Astrophysics Data System (ADS)

    Tong, Xiao-Jun

    2013-07-01

    In order to solve the problem that chaos is degenerated in limited computer precision and Cat map is the small key space, this paper presents a chaotic map based on topological conjugacy and the chaotic characteristics are proved by Devaney definition. In order to produce a large key space, a Cat map named block Cat map is also designed for permutation process based on multiple-dimensional chaotic maps. The image encryption algorithm is based on permutation-substitution, and each key is controlled by different chaotic maps. The entropy analysis, differential analysis, weak-keys analysis, statistical analysis, cipher random analysis, and cipher sensibility analysis depending on key and plaintext are introduced to test the security of the new image encryption scheme. Through the comparison to the proposed scheme with AES, DES and Logistic encryption methods, we come to the conclusion that the image encryption method solves the problem of low precision of one dimensional chaotic function and has higher speed and higher security.

  19. Nonlinear mapping methods with adjustable computational complexity for hyperspectral image analysis

    NASA Astrophysics Data System (ADS)

    Myasnikov, E. V.

    2015-12-01

    Nonlinear mapping (Sammon mapping) is a well-known dimensionality reduction technique. Recently several nonlinear mapping methods with reduced computational complexity have been proposed but they do not provide a flexible control over a computational complexity. In this paper a nonlinear mapping method with adjustable computational complexity is proposed. The proposed method is based on the hierarchical decomposition of the multidimensional space, priority queues, and simple optimization procedure to provide fast and flexible dimensionality reduction process. The proposed method is compared to an alternative one based on stochastic optimization. The experiments are carried out on well-known hyperspectral images. Studied methods are evaluated in terms of the data mapping error and runtime. Experimental results for both two- and three-dimensional output spaces are presented.

  20. The Cyborg Astrobiologist: matching of prior textures by image compression for geological mapping and novelty detection

    NASA Astrophysics Data System (ADS)

    McGuire, P. C.; Bonnici, A.; Bruner, K. R.; Gross, C.; Ormö, J.; Smosna, R. A.; Walter, S.; Wendt, L.

    2014-07-01

    We describe an image-comparison technique of Heidemann and Ritter (2008a, b), which uses image compression, and is capable of: (i) detecting novel textures in a series of images, as well as of: (ii) alerting the user to the similarity of a new image to a previously observed texture. This image-comparison technique has been implemented and tested using our Astrobiology Phone-cam system, which employs Bluetooth communication to send images to a local laptop server in the field for the image-compression analysis. We tested the system in a field site displaying a heterogeneous suite of sandstones, limestones, mudstones and coal beds. Some of the rocks are partly covered with lichen. The image-matching procedure of this system performed very well with data obtained through our field test, grouping all images of yellow lichens together and grouping all images of a coal bed together, and giving 91% accuracy for similarity detection. Such similarity detection could be employed to make maps of different geological units. The novelty-detection performance of our system was also rather good (64% accuracy). Such novelty detection may become valuable in searching for new geological units, which could be of astrobiological interest. The current system is not directly intended for mapping and novelty detection of a second field site based on image-compression analysis of an image database from a first field site, although our current system could be further developed towards this end. Furthermore, the image-comparison technique is an unsupervised technique that is not capable of directly classifying an image as containing a particular geological feature; labelling of such geological features is done post facto by human geologists associated with this study, for the purpose of analysing the system's performance. By providing more advanced capabilities for similarity detection and novelty detection, this image-compression technique could be useful in giving more scientific autonomy

  1. A hierarchical Bayesian-MAP approach to inverse problems in imaging

    NASA Astrophysics Data System (ADS)

    Raj, Raghu G.

    2016-07-01

    We present a novel approach to inverse problems in imaging based on a hierarchical Bayesian-MAP (HB-MAP) formulation. In this paper we specifically focus on the difficult and basic inverse problem of multi-sensor (tomographic) imaging wherein the source object of interest is viewed from multiple directions by independent sensors. Given the measurements recorded by these sensors, the problem is to reconstruct the image (of the object) with a high degree of fidelity. We employ a probabilistic graphical modeling extension of the compound Gaussian distribution as a global image prior into a hierarchical Bayesian inference procedure. Since the prior employed by our HB-MAP algorithm is general enough to subsume a wide class of priors including those typically employed in compressive sensing (CS) algorithms, HB-MAP algorithm offers a vehicle to extend the capabilities of current CS algorithms to include truly global priors. After rigorously deriving the regression algorithm for solving our inverse problem from first principles, we demonstrate the performance of the HB-MAP algorithm on Monte Carlo trials and on real empirical data (natural scenes). In all cases we find that our algorithm outperforms previous approaches in the literature including filtered back-projection and a variety of state-of-the-art CS algorithms. We conclude with directions of future research emanating from this work.

  2. Spectral Ratio Imaging with Hyperion Satellite Data for Geological Mapping

    NASA Technical Reports Server (NTRS)

    Vincent, Robert K.; Beck, Richard A.

    2005-01-01

    Since the advent of LANDSAT I in 1972, many different multispectral satellites have been orbited by the U.S. and other countries. These satellites have varied from 4 spectral bands in LANDSAT I to 14 spectral bands in the ASTER sensor aboard the TERRA space platform. Hyperion is a relatively new hyperspectral sensor with over 220 spectral bands. The huge increase in the number of spectral bands offers a substantial challenge to computers and analysts alike when it comes to the task of mapping features on the basis of chemical composition, especially if little or no ground truth is available beforehand from the area being mapped. One approach is the theoretical approach of the modeler, where all extraneous information (atmospheric attenuation, sensor electronic gain and offset, etc.) is subtracted off and divided out, and laboratory (or field) spectra of materials are used as training sets to map features in the scene of similar composition. This approach is very difficult to keep accurate because of variations in the atmosphere, solar illumination, and sensor electronic gain and offset that are not always perfectly recorded or accounted for. For instance, to apply laboratory or field spectra of materials as data sets from the theoretical approach, the header information of the files must reflect the correct, up-to-date sensor electronic gain and offset and the analyst must pick the exact atmospheric model that is appropriate for the day of data collection in order for classification procedures to accurately match pixels in the scene with the laboratory or field spectrum of a desired target on the basis of the hyperspectral data. The modeling process is so complex that it is difficult to tell when it is operating well or determine how to fix it when it is incorrect. Recently RSI has announced that the latest version of their ENVI software package is not performing atmospheric corrections correctly with the FLAASH atmospheric model. It took a long time to determine

  3. False-Color-Image Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  4. False-Color-Image Map of Quadrangle 3164, Lashkargah (605) and Kandahar (606) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  5. False-Color-Image Map of Quadrangle 3564, Chahriaq (Joand) (405) and Gurziwan (406) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  6. False-Color-Image Map of Quadrangle 3162, Chakhansur (603) and Kotalak (604) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  7. False-Color-Image Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  8. False-Color-Image Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  9. False-Color-Image Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  10. Registration of heat capacity mapping mission day and night images

    NASA Technical Reports Server (NTRS)

    Watson, K.; Hummer-Miller, S.; Sawatzky, D. L.

    1982-01-01

    Registration of thermal images is complicated by distinctive differences in the appearance of day and night features needed as control in the registration process. These changes are unlike those that occur between Landsat scenes and pose unique constraints. Experimentation with several potentially promising techniques has led to selection of a fairly simple scheme for registration of data from the experimental thermal satellite HCMM using an affine transformation. Two registration examples are provided.

  11. Mapping Chlorophyll In The Amazon Floodplain Lakes With MERIS Images

    NASA Astrophysics Data System (ADS)

    Barbosa, Claudio Clemente Faria; Sander, Lino Augusto; Novo, Evlyn M. L. M.

    2013-12-01

    The aim of this research was to develop models based on MERIS images for estimating the spatial distribution of chl-a concentration in lakes of complex and turbid waters of Amazon basin floodplain. In situ measurements taken before, simultaneously and after MERIS images acquisition, were used to fit two and three spectral band models. Three approaches were conducted to assess the estimate chlorophyll-a concentration: a) An iterative computational search method to find the best wavelengths set based in situ data (spectra and chl-a concentration) resulted R2 of 0.91 for two bands model and R2 of 0.95 for three bands. b) The same iterative search applied to MERIS bands simulated from in situ spectra resulted R2 of 0.87 for two bands and R2 of 0.94 of for three bands; c) Models from the second approach applied to chl-a concentration of stations sampled on the day of the image acquisition resulted R2 of 0.77 for the two bands model and R2 0.75 of for the three bands.

  12. Image signatures for place recognition and map construction

    NASA Astrophysics Data System (ADS)

    Engelson, Sean P.; McDermott, Drew V.

    1992-04-01

    For reliable navigation, a mobile robot needs to be able to recognize where it is in the world. We describe an efficient and effective image-based representation of perceptual information for place recognition. Each place is associated with a set of stored image signatures, each a matrix of numbers derived by evaluating some measurement function over large blocks of pixels. Measurements are chosen to be characteristic of a location yet reasonably invariant over different viewing conditions. Signature matching can be done quickly by element wise comparison. Additional stability can be gotten by matching signatures at offsets or across scales. Signatures can be stored in a k-d tree so that retrieval of similar signatures is fast. We can also use several types of measurements in tandem to enhance recognition accuracy. We present preliminary experimental results which show up to 90% recognition accuracy. When used together with prior position information, we suggest that this performance is good enough to support reliable place recognition from a series of images.

  13. Application of ERTS images and image processing to regional geologic problems and geologic mapping in northern Arizona

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H. (Principal Investigator); Billingsley, F. C.; Gillespie, A. R.; Abrams, M. J.; Squires, R. L.; Shoemaker, E. M.; Lucchitta, I.; Elston, D. P.

    1975-01-01

    The author has identified the following significant results. Computer image processing was shown to be both valuable and necessary in the extraction of the proper subset of the 200 million bits of information in an ERTS image to be applied to a specific problem. Spectral reflectivity information obtained from the four MSS bands can be correlated with in situ spectral reflectance measurements after path radiance effects have been removed and a proper normalization has been made. A detailed map of the major fault systems in a 90,000 sq km area in northern Arizona was compiled from high altitude photographs and pre-existing published and unpublished map data. With the use of ERTS images, three major fault systems, the Sinyala, Bright Angel, and Mesa Butte, were identified and their full extent measured. A byproduct of the regional studies was the identification of possible sources of shallow ground water, a scarce commodity in these regions.

  14. Parallel data analysis in a multichannel flash-ADC-system

    SciTech Connect

    Eckerlin, G.; Elsen, E.; Schmitt, H.V.D.; Wagner, A.; Walter, P.V.; Zimmer, M.

    1987-02-01

    Parallel analysis of drift chamber signals with M68000 processors has proven to be an efficient way to deal with the tremendous data flow generated by high speed (100 MHz) Flash-ADCs in real time. The authors report on the experience gained with a network of 34 processors, placed in 3 VME crates, to read out the 3072 Flash-ADC channels of the JADE Jet-Chamber at PETRA (1). The properties of such a system are compared to more conventional readout schemes for drift chambers.

  15. Methods to Design and Synthesize Antibody-Drug Conjugates (ADCs)

    PubMed Central

    Yao, Houzong; Jiang, Feng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Antibody-drug conjugates (ADCs) have become a promising targeted therapy strategy that combines the specificity, favorable pharmacokinetics and biodistributions of antibodies with the destructive potential of highly potent drugs. One of the biggest challenges in the development of ADCs is the application of suitable linkers for conjugating drugs to antibodies. Recently, the design and synthesis of linkers are making great progress. In this review, we present the methods that are currently used to synthesize antibody-drug conjugates by using thiols, amines, alcohols, aldehydes and azides. PMID:26848651

  16. Video imaging system and thermal mapping of the molten hearth in an electron beam melting furnace

    SciTech Connect

    Miszkiel, M.E.; Davis, R.A.; Van Den Avyle, J.A.

    1995-12-31

    This project was initiated to develop an enhanced video imaging system for the Liquid Metal Processing Laboratory Electron Beam Melting (EB) Furnace at Sandia and to use color video images to map the temperature distribution of the surface of the molten hearth. In a series of test melts, the color output of the video image was calibrated against temperatures measured by an optical pyrometer and CCD camera viewing port above the molten pool. To prevent potential metal vapor deposition onto line-of-sight optical surfaces above the pool, argon backfill was used along with a pinhole aperture to obtain the vide image. The geometry of the optical port to the hearth set the limits for the focus lens and CCD camera`s field of view. Initial melts were completed with the pyrometer and pinhole aperture port in a fixed position. Using commercially available vacuum components, a second flange assembly was constructed to provide flexibility in choosing pyrometer target sights on the hearth and to adjust the field of view for the focus lens/CCD combination. RGB video images processed from the melts verified that red wavelength light captured with the video camera could be calibrated with the optical pyrometer target temperatures and used to generate temperature maps of the hearth surface. Two color ratio thermal mapping using red and green video images, which has theoretical advantages, was less successful due to probable camera non-linearities in the red and green image intensities.

  17. Quantitative accuracy of MAP reconstruction for dynamic PET imaging in small animals

    PubMed Central

    Cheng, Ju-Chieh (Kevin); Shoghi, Kooresh; Laforest, Richard

    2012-01-01

    Purpose: Iterative reconstruction algorithms are becoming more commonly employed in positron emission tomography (PET) imaging; however, the quantitative accuracy of the reconstructed images still requires validation for various levels of contrast and counting statistics. Methods: The authors present an evaluation of the quantitative accuracy of the 3D maximum a posteriori (3D-MAP) image reconstruction algorithm for dynamic PET imaging with comparisons to two of the most widely used reconstruction algorithms: the 2D filtered-backprojection (2D-FBP) and 2D-ordered subsets expectation maximization (2D-OSEM) on the Siemens microPET scanners. The study was performed for various levels of count density encountered in typical dynamic scanning as well as the imaging of cardiac activity concentration in small animal studies on the Focus 120. Specially designed phantoms were used for evaluation of the spatial resolution, image quality, and quantitative accuracy. A normal mouse was employed to evaluate the accuracy of the blood time activity concentration extracted from left ventricle regions of interest (ROIs) within the images as compared to the actual blood activity concentration measured from arterial blood sampling. Results: For MAP reconstructions, the spatial resolution and contrast have been found to reach a stable value after 20 iterations independent of the β values (i.e., hyper parameter which controls the weight of the penalty term) and count density within the frame. The spatial resolution obtained with 3D-MAP reaches values of ∼1.0 mm with a β of 0.01 while the 2D-FBP has value of 1.8 mm and 2D-OSEM has a value of 1.6 mm. It has been observed that the lower the hyper parameter β used in MAP, more iterations are needed to reach the stable noise level (i.e., image roughness). The spatial resolution is improved by using a lower β value at the expense of higher image noise. However, with similar noise level the spatial resolution achieved by 3D-MAP was

  18. Fusion of hyperspectral images and lidar-based dems for coastal mapping

    NASA Astrophysics Data System (ADS)

    Elaksher, Ahmed F.

    2008-07-01

    Coastal mapping is essential for a variety of applications such as coastal resource management, coastal environmental protection, and coastal development and planning. Various mapping techniques, like ground and aerial surveying, have been utilized in mapping coastal areas. Recently, multispectral and hyperspectral satellite images and elevation data from active sensors have also been used in coastal mapping. Integrating these datasets can provide more reliable coastal information. This paper presents a novel technique for coastal mapping from an airborne visible/infrared imaging spectrometer (AVIRIS) hyperspectral image and a light detection and ranging (LIDAR)-based digital elevation model (DEM). The DEM was used to detect and create a vector layer for building polygons. Subsequently, building pixels were removed from the AVIRIS image and the image was classified with a supervised classifier to discriminate road and water pixels. Two vector layers for the road network and the shoreline segments were vectorized from road pixels and water-body border pixels using several image-processing algorithms. The geometric accuracy and completeness of the results were evaluated. The average positional accuracies for the building, road network, and shoreline layers were 2.3, 5.7, and 7.2 m, respectively. The detection rates of the three layers were 93.2%, 91.3%, and 95.2%, respectively. Results confirmed that utilizing laser ranging data to detect and remove buildings from optical images before the classification process enhances the outcomes of this process. Consequently, integrating laser and optical data provides high-quality and more reliable coastal geospatial information.

  19. Graph-matching model using Gibbsian modeling: application to map/SPOT image road networks for map updating

    NASA Astrophysics Data System (ADS)

    Descombes, Xavier; Hivernat, Christine; Randriamasy, Sabine; Zerubia, Josiane B.

    1999-06-01

    We consider herein the matching between two graphs representing road networks. This problem is embedded into a labeling framework. One graph is taken as a reference. A Gibbsian model is proposed to label the other graph. The labels are defined by the noes of the second graph. The potentials are defined by the angle between the nodes and the length of the associated features. Therefore, the model is invariant by translation and rotation. We apply this model to match a road network extracted from a SPOT image on the road network of a cartographic database. This matching provides some information for map updating.

  20. Antibody-Drug Conjugates (ADCs) Derived from Interchain Cysteine Cross-Linking Demonstrate Improved Homogeneity and Other Pharmacological Properties over Conventional Heterogeneous ADCs.

    PubMed

    Behrens, Christopher R; Ha, Edward H; Chinn, Lawrence L; Bowers, Simeon; Probst, Gary; Fitch-Bruhns, Maureen; Monteon, Jorge; Valdiosera, Amanda; Bermudez, Abel; Liao-Chan, Sindy; Wong, Tiffany; Melnick, Jonathan; Theunissen, Jan-Willem; Flory, Mark R; Houser, Derrick; Venstrom, Kristy; Levashova, Zoia; Sauer, Paul; Migone, Thi-Sau; van der Horst, Edward H; Halcomb, Randall L; Jackson, David Y

    2015-11-01

    Conventional antibody-drug conjugates (ADCs) are heterogeneous mixtures of chemically distinct molecules that vary in both drugs/antibody (DAR) and conjugation sites. Suboptimal properties of heterogeneous ADCs have led to new site-specific conjugation methods for improving ADC homogeneity. Most site-specific methods require extensive antibody engineering to identify optimal conjugation sites and introduce unique functional groups for conjugation with appropriately modified linkers. Alternative nonrecombinant methods have emerged in which bifunctional linkers are utilized to cross-link antibody interchain cysteines and afford ADCs containing four drugs/antibody. Although these methods have been shown to improve ADC homogeneity and stability in vitro, their effect on the pharmacological properties of ADCs in vivo is unknown. In order to determine the relative impact of interchain cysteine cross-linking on the therapeutic window and other properties of ADCs in vivo, we synthesized a derivative of the known ADC payload, MC-MMAF, that contains a bifunctional dibromomaleimide (DBM) linker instead of a conventional maleimide (MC) linker. The DBM-MMAF derivative was conjugated to trastuzumab and a novel anti-CD98 antibody to afford ADCs containing predominantly four drugs/antibody. The pharmacological properties of the resulting cross-linked ADCs were compared with analogous heterogeneous ADCs derived from conventional linkers. The results demonstrate that DBM linkers can be applied directly to native antibodies, without antibody engineering, to yield highly homogeneous ADCs via cysteine cross-linking. The resulting ADCs demonstrate improved pharmacokinetics, superior efficacy, and reduced toxicity in vivo compared to analogous conventional heterogeneous ADCs. PMID:26393951

  1. The use of DWI to assess spleen and liver quantitative ADC changes in the detection of liver fibrosis stages in chronic viral hepatitis.

    PubMed

    Cece, Hasan; Ercan, Abdulbasit; Yıldız, Sema; Karakas, Ekrem; Karakas, Omer; Boyacı, Fatıma Nurefsan; Aydogan, Timucin; Karakas, Emel Yigit; Cullu, Nesat; Ulas, Turgay

    2013-08-01

    This study aimed to evaluate the changes in spleen and liver diffusion-weighted magnetic resonance imaging (DWI) in chronic viral hepatitis patients. The study comprised 47 patients and 30 healthy volunteers. DWIs were obtained. Apparent Diffusion Coefficient (ADC) measurements were made by transferring the images to the workstation. The measurements of value b 1000 were made from a total of five points of the liver and three points of the spleen. Liver biopsy was performed on the 47 patients. The fibrosis stages of the patients were defined according to the METAVIR scoring system. Student's t-test was used in the comparison of mean ages, liver and spleen ADC values between the patient and the control group. Kruskal-Wallis followed by Mann-Whitney U Test with Bonferroni adjustment was performed in the comparison of mean ADC values of the patients at different stages and the control group. A statistically significant difference was determined between the patient and control group in respect of liver and spleen mean ADC values (P<0.05). F3 group showed a significant difference compared to control and F1 and F4 group showed a significant difference compared to control, F1, F2 and F3 group in terms of the mean liver ADC value (P<0.01). F3 and F4 group showed a significant difference compared to control and F1 group in terms of the mean spleen ADC value (P<0.01). As a result we believe that the measurement of liver and spleen ADC values may be an indicator in the determination of the level of fibrosis. PMID:23518145

  2. Group multiple-image encoding and watermarking using coupled logistic maps and gyrator wavelet transform.

    PubMed

    Abuturab, Muhammad Rafiq

    2015-10-01

    A novel method of group multiple-image encoding and watermarking using coupled logistic maps and gyrator wavelet transform is presented. The proposed method employs three different groups of multiple images. The color images of each group are individually segregated into R, G, and B channels. Each channel is first permutated by using a sequence of chaotic pairs generated with a system of two symmetrically coupled identical logistic maps and then gyrator transformed. The gyrator spectrum of each channel is multiplied together and then modulated by a random phase function to obtain a corresponding multiplex channel. The encoded multiplex image is restituted through a concatenation of R, G, and B multiplex channels. The phase and amplitude functions of the first, second, and third groups of encoded multiplex images are generated. The host image is a single-level 2D discrete wavelet transformed to decompose into LL, HL, LH, and HH subbands. HL, LH, and HH subbands are then replaced with phase functions of the first, second, and third groups, respectively. Finally, the resultant image is an inverse single-level 2D discrete wavelet transformed to construct a watermarked image. The three groups of multiple images are protected not only by the encryption algorithm but also visually by the host image. Thus, a high level of security can be achieved. Each group includes group decryption keys, and each image of the group comprises individual decryption keys beside parameters of coupled logistic maps and gyrator transform. As a result, the key space is very large. The decryption system can be realized by using an optoelectronic device. The numerical simulation results confirm the validity and security of the proposed scheme. PMID:26479935

  3. LensPerfect: Gravitational Lens Mass Map Reconstructions Yielding Exact Reproduction of All Multiple Images

    NASA Astrophysics Data System (ADS)

    Coe, D.; Fuselier, E.; Benítez, N.; Broadhurst, T.; Frye, B.; Ford, H.

    2008-07-01

    We present a new approach to gravitational lens mass map reconstruction. Our mass map solutions perfectly reproduce the positions, fluxes, and shears of all multiple images, and each mass map accurately recovers the underlying mass distribution to a resolution limited by the number of multiple images detected. We demonstrate our technique given a mock galaxy cluster similar to Abell 1689, which gravitationally lenses 19 mock background galaxies to produce 93 multiple images. We also explore cases in which as few as four multiple images are observed. Mass map solutions are never unique, and our method makes it possible to explore an extremely flexible range of physical (and unphysical) solutions, all of which perfectly reproduce the data given. Each reconfiguration of the source galaxies produces a new mass map solution. An optimization routine is provided to find those source positions (and redshifts, within uncertainties) that produce the "most physical" mass map solution, according to a new figure of merit developed here. Our method imposes no assumptions about the slope of the radial profile or mass following light. However, unlike "nonparametric" grid-based methods, the number of free parameters that we solve for is only as many as the number of observable constraints (or slightly greater if fluxes are constrained). For each set of source positions and redshifts, mass map solutions are obtained "instantly" via direct matrix inversion by smoothly interpolating the deflection field using a recently developed mathematical technique. Our LensPerfect software is straightforward and easy to use, and is publicly available on our Web site.

  4. A Multivariate Model for Coastal Water Quality Mapping Using Satellite Remote Sensing Images

    PubMed Central

    Su, Yuan-Fong; Liou, Jun-Jih; Hou, Ju-Chen; Hung, Wei-Chun; Hsu, Shu-Mei; Lien, Yi-Ting; Su, Ming-Daw; Cheng, Ke-Sheng; Wang, Yeng-Fung

    2008-01-01

    This study demonstrates the feasibility of coastal water quality mapping using satellite remote sensing images. Water quality sampling campaigns were conducted over a coastal area in northern Taiwan for measurements of three water quality variables including Secchi disk depth, turbidity, and total suspended solids. SPOT satellite images nearly concurrent with the water quality sampling campaigns were also acquired. A spectral reflectance estimation scheme proposed in this study was applied to SPOT multispectral images for estimation of the sea surface reflectance. Two models, univariate and multivariate, for water quality estimation using the sea surface reflectance derived from SPOT images were established. The multivariate model takes into consideration the wavelength-dependent combined effect of individual seawater constituents on the sea surface reflectance and is superior over the univariate model. Finally, quantitative coastal water quality mapping was accomplished by substituting the pixel-specific spectral reflectance into the multivariate water quality estimation model.

  5. Dual-band infrared imaging applications: Locating buried minefields, mapping sea ice, and inspecting aging aircraft

    SciTech Connect

    Del Grande, N.K.; Durbin, P.F.; Perkins, D.E.

    1992-09-01

    We discuss the use of dual-band infrared (DBIR) imaging for three quantitative NDE applications: location buried surrogate mines, mapping sea ice thicknesses and inspecting subsurface flaws in aging aircraft parts. Our system of DBIR imaging offers a unique combination of thermal resolution, detectability, and interpretability. Pioneered at Lawrence Livermore Laboratory, it resolves 0.2 {degrees}C differences in surface temperatures needed to identify buried mine sites and distinguish them from surface features. It produces both surface temperature and emissivity-ratio images of sea ice, needed to accurately map ice thicknesses (e.g., by first removing clutter due to snow and surface roughness effects). The DBIR imaging technique depicts subsurface flaws in composite patches and lap joints of aircraft, thus providing a needed tool for aging aircraft inspections.

  6. A novel bit-level image encryption algorithm based on chaotic maps

    NASA Astrophysics Data System (ADS)

    Xu, Lu; Li, Zhi; Li, Jian; Hua, Wei

    2016-03-01

    Recently, a number of chaos-based image encryption algorithms have been proposed at the pixel level, but little research at the bit level has been conducted. This paper presents a novel bit-level image encryption algorithm that is based on piecewise linear chaotic maps (PWLCM). First, the plain image is transformed into two binary sequences of the same size. Second, a new diffusion strategy is introduced to diffuse the two sequences mutually. Then, we swap the binary elements in the two sequences by the control of a chaotic map, which can permute the bits in one bitplane into any other bitplane. The proposed algorithm has excellent encryption performance with only one round. The simulation results and performance analysis show that the proposed algorithm is both secure and reliable for image encryption.

  7. Geologic mapping of the Bauru Group in Sao Paulo state by LANDSAT images. [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Godoy, A. M.

    1983-01-01

    The occurrence of the Bauru Group in Sao Paulo State was studied, with emphasis on the western plateau. Regional geological mapping was carried out on a 1:250.000 scale with the help of MSS/LANDSAT images. The visual interpretation of images consisted basically of identifying different spectral characteristics of the geological units using channels 5 and 7. Complementary studies were made for treatment of data with an Interative Image (I-100) analyser in order to facilitate the extraction of information, particularly for areas where visual interpretation proved to be difficult. Regional characteristics provided by MSS/LANDSAT images, coupled with lithostratigraphic studies carried out in the areas of occurrence of Bauru Group sediments, enabled the homogenization of criteria for the subdivision of this group. A spatial distribution of the mapped units was obtained for the entire State of Sao Paulo and results were correlated with proposed stratigraphic divisions.

  8. Note: A simple method to suppress the artificial noise for velocity map imaging spectroscopy

    SciTech Connect

    Qin, Zhengbo E-mail: zctang@dicp.ac.cn; Li, Chunsheng; Qu, Zehua; Tang, Zichao E-mail: zctang@dicp.ac.cn

    2015-04-15

    A simple method has been proposed to suppress artificial noise from the counts with respect to the central line (or point) for the reconstructed 3D images with cylindrical symmetry in the velocity-map imaging spectroscopy. A raw 2D projection around the z-axis (usually referred to as central line) for photodetachment, photoionization, or photodissociation experiments is pre-processed via angular tailored method to avoid the signal counts distributed near the central line (or point). Two types of photoelectron velocity-map imaging (O{sup −} and Au{sup −} ⋅ NH{sub 3}) are demonstrated to give rise to the 3D images with significantly reduced central line noise after pre-processing operation. The major advantages of the pre-operation are the ability of suppression of central-line noise to resolve weak structures or vibrational excitation in atoms or molecules near photon threshold.

  9. Tracking algorithms using log-polar mapped image coordinates

    NASA Technical Reports Server (NTRS)

    Weiman, Carl F. R.; Juday, Richard D.

    1990-01-01

    The use of log-polar image sampling coordinates rather than conventional Cartesian coordinates offers a number of advantages for visual tracking and docking of space vehicles. Pixel count is reduced without decreasing the field of view, with commensurate reduction in peripheral resolution. Smaller memory requirements and reduced processing loads are the benefits in working environments where bulk and energy are at a premium. Rotational and zoom symmetries of log-polar coordinates accommodate range and orientation extremes without computational penalties. Separation of radial and rotational coordinates reduces the complexity of several target centering algorithms, described below.

  10. Texture features on T2-weighted magnetic resonance imaging: new potential biomarkers for prostate cancer aggressiveness

    NASA Astrophysics Data System (ADS)

    Vignati, A.; Mazzetti, S.; Giannini, V.; Russo, F.; Bollito, E.; Porpiglia, F.; Stasi, M.; Regge, D.

    2015-04-01

    To explore contrast (C) and homogeneity (H) gray-level co-occurrence matrix texture features on T2-weighted (T2w) Magnetic Resonance (MR) images and apparent diffusion coefficient (ADC) maps for predicting prostate cancer (PCa) aggressiveness, and to compare them with traditional ADC metrics for differentiating low- from intermediate/high-grade PCas. The local Ethics Committee approved this prospective study of 93 patients (median age, 65 years), who underwent 1.5 T multiparametric endorectal MR imaging before prostatectomy. Clinically significant (volume ≥0.5 ml) peripheral tumours were outlined on histological sections, contoured on T2w and ADC images, and their pathological Gleason Score (pGS) was recorded. C, H, and traditional ADC metrics (mean, median, 10th and 25th percentile) were calculated on the largest lesion slice, and correlated with the pGS through the Spearman correlation coefficient. The area under the receiver operating characteristic curve (AUC) assessed how parameters differentiate pGS = 6 from pGS ≥ 7. The dataset included 49 clinically significant PCas with a balanced distribution of pGS. The Spearman ρ and AUC values on ADC were: -0.489, 0.823 (mean) -0.522, 0.821 (median) -0.569, 0.854 (10th percentile) -0.556, 0.854 (25th percentile) -0.386, 0.871 (C); 0.533, 0.923 (H); while on T2w they were: -0.654, 0.945 (C); 0.645, 0.962 (H). AUC of H on ADC and T2w, and C on T2w were significantly higher than that of the mean ADC (p = 0.05). H and C calculated on T2w images outperform ADC parameters in correlating with pGS and differentiating low- from intermediate/high-risk PCas, supporting the role of T2w MR imaging in assessing PCa biological aggressiveness.

  11. Imaging diffuse clouds: bright and dark gas mapped in CO

    NASA Astrophysics Data System (ADS)

    Liszt, H. S.; Pety, J.

    2012-05-01

    Aims: We wish to relate the degree scale structure of galactic diffuse clouds to sub-arcsecond atomic and molecular absorption spectra obtained against extragalactic continuum background sources. Methods: We used the ARO 12 m telescope to map J = 1-0 CO emission at 1' resolution over 30' fields around the positions of 11 background sources occulted by 20 molecular absorption line components, of which 11 had CO emission counterparts. We compared maps of CO emission to sub-arcsec atomic and molecular absorption spectra and to the large-scale distribution of interstellar reddening. Results: 1) The same clouds, identified by their velocity, were seen in absorption and emission and atomic and molecular phases, not necessarily in the same direction. Sub-arcsecond absorption spectra are a preview of what is seen in CO emission away from the continuum. 2) The CO emission structure was amorphous in 9 cases, quasi-periodic or wave-like around B0528+134 and tangled and filamentary around BL Lac. 3) Strong emission, typically 4-5 K at EB - V ≤ 0.15 mag and up to 10-12 K at EB - V ≲ 0.3 mag was found, much brighter than toward the background targets. Typical covering factors of individual features at the 1 K km s-1 level were 20%. 4) CO-H2 conversion factors as much as 4-5 times below the mean value N(H2)/WCO = 2 × 1020 H2 cm-2 (K km s-1)-1 are required to explain the luminosity of CO emission at/above the level of 1 K km s-1. Small conversion factors and sharp variability of the conversion factor on arcminute scales are due primarily to CO chemistry and need not represent unresolved variations in reddening or total column density. Conclusions: Like Fermi and Planck we see some gas that is dark in CO and other gas in which CO is overluminous per H2. A standard CO-H2 conversion factor applies overall owing to balance between the luminosities per H2 and surface covering factors of bright and dark CO, but with wide variations between sightlines and across the faces of

  12. Comparison of event-based landslide inventory maps obtained interpreting satellite images and aerial photographs

    NASA Astrophysics Data System (ADS)

    Fiorucci, Federica; Cardinali, Mauro; Carlà Roberto; Mondini, Alessandro; Santurri, Leonardo; Guzzetti, Fausto

    2010-05-01

    Landslide inventory maps are a common type of map used for geomorphological investigations, land planning, and hazard and risk assessment. Landslide inventory maps covering medium to large areas are obtained primarily exploiting traditional geomorphological techniques. These techniques combine the visual and heuristic interpretation of stereoscopic aerial photographs with more or less extensive field investigations. Aerial photographs most commonly used to prepare landslide inventory maps range in scale from about 1:10,000 to about 1:40,000. Interpretation of satellite images is a relatively recent, powerful tool to obtain information of the Earth surface potentially useful for the production of landslide inventory maps. The usefulness of satellite information - and the associated technology - for the identification of landslides and the production of landslide inventory maps, remains largely unexplored. In this context, it is of interest to investigate the type, quantity, and quality of the information that can be retrieved analyzing images taken by the last generation of high and very-high resolution satellite sensors, and to compare this information with the information obtained from the analysis of traditional stereoscopic aerial photographs, or in the field. In the framework of the MORFEO project for the exploitation of Earth Observation data and technology for landslide identification and risk assessment, of the Italian Space Agency, we have compared two event-based landslide inventory maps prepared exploiting two different techniques. The two maps portray the geographical distribution and types of landslides triggered by rainfall in the period from November 2004 to May 2005 in the Collazzone area, Umbria, central Italy. The first map was prepared through reconnaissance field surveys carried out mostly along roads. The second map was obtained through the combined visual interpretation of 1:10,000 scale, colour ortho-photo maps, and images taken by the IKONOS

  13. An image encryption algorithm based on 3D cellular automata and chaotic maps

    NASA Astrophysics Data System (ADS)

    Del Rey, A. Martín; Sánchez, G. Rodríguez

    2015-05-01

    A novel encryption algorithm to cipher digital images is presented in this work. The digital image is rendering into a three-dimensional (3D) lattice and the protocol consists of two phases: the confusion phase where 24 chaotic Cat maps are applied and the diffusion phase where a 3D cellular automata is evolved. The encryption method is shown to be secure against the most important cryptanalytic attacks.

  14. TU-A-19A-01: Image Registration I: Deformable Image Registration, Contour Propagation and Dose Mapping: 101 and 201

    SciTech Connect

    Kessler, M

    2014-06-15

    Deformable image registration, contour propagation and dose mapping have become common, possibly essential tools for modern image-guided radiation therapy. Historically, these tools have been largely developed at academic medical centers and used in a rather limited and well controlled fashion. Today these tools are now available to the radiotherapy community at large, both as stand-alone applications and as integrated components of both treatment planning and treatment delivery systems. Unfortunately, the details of how these tools work and their limitations are not generally documented or described by the vendors that provide them. Although “it looks right”, determining that unphysical deformations may have occurred is crucial. Because of this, understanding how and when to use, and not use these tools to support everyday clinical decisions is far from straight forward. The goal of this session will be to present both the theory (basic and advanced) and practical clinical use of deformable image registration, contour propagation and dose mapping. To the extent possible, the “secret sauce” that different vendor use to produce reasonable/acceptable results will be described. A detailed explanation of the possible sources of errors and actual examples of these will be presented. Knowing the underlying principles of the process and understanding the confounding factors will help the practicing medical physicist be better able to make decisions (about making decisions) using these tools available. Learning Objectives: Understand the basic (101) and advanced (201) principles of deformable image registration, contour propagation and dose mapping data mapping. Understand the sources and impact of errors in registration and data mapping and the methods for evaluating the performance of these tools. Understand the clinical use and value of these tools, especially when used as a “black box”.

  15. Imaging sensor constellation for tomographic chemical cloud mapping.

    PubMed

    Cosofret, Bogdan R; Konno, Daisei; Faghfouri, Aram; Kindle, Harry S; Gittins, Christopher M; Finson, Michael L; Janov, Tracy E; Levreault, Mark J; Miyashiro, Rex K; Marinelli, William J

    2009-04-01

    A sensor constellation capable of determining the location and detailed concentration distribution of chemical warfare agent simulant clouds has been developed and demonstrated on government test ranges. The constellation is based on the use of standoff passive multispectral infrared imaging sensors to make column density measurements through the chemical cloud from two or more locations around its periphery. A computed tomography inversion method is employed to produce a 3D concentration profile of the cloud from the 2D line density measurements. We discuss the theoretical basis of the approach and present results of recent field experiments where controlled releases of chemical warfare agent simulants were simultaneously viewed by three chemical imaging sensors. Systematic investigations of the algorithm using synthetic data indicate that for complex functions, 3D reconstruction errors are less than 20% even in the case of a limited three-sensor measurement network. Field data results demonstrate the capability of the constellation to determine 3D concentration profiles that account for ~?86%? of the total known mass of material released. PMID:19340137

  16. Brief Communication: Contrast-stretching- and histogram-smoothness-based synthetic aperture radar image enhancement for flood map generation

    NASA Astrophysics Data System (ADS)

    Nazir, F.; Riaz, M. M.; Ghafoor, A.; Arif, F.

    2015-02-01

    Synthetic-aperture-radar-image-based flood map generation is usually a challenging task (due to degraded contrast). A three-step approach (based on adaptive histogram clipping, histogram remapping and smoothing) is proposed for generation of a more visualized flood map image. The pre- and post-flood images are adaptively histogram equalized. The hidden details in difference image are enhanced using contrast-based enhancement and histogram smoothing. A fast-ready flood map is then generated using equalized pre-, post- and difference images. Results (evaluated using different data sets) show significance of the proposed technique.

  17. Local search for optimal global map generation using mid-decadal landsat images

    USGS Publications Warehouse

    Khatib, L.; Gasch, J.; Morris, R.; Covington, S.

    2007-01-01

    NASA and the US Geological Survey (USGS) are seeking to generate a map of the entire globe using Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor data from the "mid-decadal" period of 2004 through 2006. The global map is comprised of thousands of scene locations and, for each location, tens of different images of varying quality to chose from. Furthermore, it is desirable for images of adjacent scenes be close together in time of acquisition, to avoid obvious discontinuities due to seasonal changes. These characteristics make it desirable to formulate an automated solution to the problem of generating the complete map. This paper formulates a Global Map Generator problem as a Constraint Optimization Problem (GMG-COP) and describes an approach to solving it using local search. Preliminary results of running the algorithm on image data sets are summarized. The results suggest a significant improvement in map quality using constraint-based solutions. Copyright ?? 2007, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

  18. Segmentation and automated measurement of chronic wound images: probability map approach

    NASA Astrophysics Data System (ADS)

    Ahmad Fauzi, Mohammad Faizal; Khansa, Ibrahim; Catignani, Karen; Gordillo, Gayle; Sen, Chandan K.; Gurcan, Metin N.

    2014-03-01

    estimated 6.5 million patients in the United States are affected by chronic wounds, with more than 25 billion US dollars and countless hours spent annually for all aspects of chronic wound care. There is need to develop software tools to analyze wound images that characterize wound tissue composition, measure their size, and monitor changes over time. This process, when done manually, is time-consuming and subject to intra- and inter-reader variability. In this paper, we propose a method that can characterize chronic wounds containing granulation, slough and eschar tissues. First, we generate a Red-Yellow-Black-White (RYKW) probability map, which then guides the region growing segmentation process. The red, yellow and black probability maps are designed to handle the granulation, slough and eschar tissues, respectively found in wound tissues, while the white probability map is designed to detect the white label card for measurement calibration purpose. The innovative aspects of this work include: 1) Definition of a wound characteristics specific probability map for segmentation, 2) Computationally efficient regions growing on 4D map; 3) Auto-calibration of measurements with the content of the image. The method was applied on 30 wound images provided by the Ohio State University Wexner Medical Center, with the ground truth independently generated by the consensus of two clinicians. While the inter-reader agreement between the readers is 85.5%, the computer achieves an accuracy of 80%.

  19. A Spherical Brain Mapping of MR Images for the Detection of Alzheimer's Disease.

    PubMed

    Martinez-Murcia, F J; Górriz, J M; Ramírez, J; Ortiz, A; For The Alzheimer's Disease Neuroimaging Initiative

    2016-01-01

    Magnetic Resonance Imaging (MRI) is of fundamental importance in neuroscience, providing good contrast and resolution, as well as not being considered invasive. Despite the development of newer techniques involving radiopharmaceuticals, it is still a recommended tool in Alzheimer's Disease (AD) neurological practice to assess neurodegeneration, and recent research suggests that it could reveal changes in the brain even before the symptomatology appears. In this paper we propose a method that performs a Spherical Brain Mapping, using different measures to project the three-dimensional MR brain images onto two-dimensional maps revealing statistical characteristics of the tissue. The resulting maps could be assessed visually, but also perform a significant feature reduction that will allow further supervised or unsupervised processing, reducing the computational load while maintaining a large amount of the original information. We have tested our methodology against a MRI database comprising 180 AD affected patients and 180 normal controls, where some of the mappings have revealed as an optimum strategy for the automatic processing and characterization of AD patterns, achieving up to a 90.9% of accuracy, as well as significantly reducing the computational load. Additionally, our maps allow the visual analysis and interpretation of the images, which can be of great help in the diagnosis of this and other types of dementia. PMID:26971941

  20. Probability mapping of scarred myocardium using texture and intensity features in CMR images

    PubMed Central

    2013-01-01

    Background The myocardium exhibits heterogeneous nature due to scarring after Myocardial Infarction (MI). In Cardiac Magnetic Resonance (CMR) imaging, Late Gadolinium (LG) contrast agent enhances the intensity of scarred area in the myocardium. Methods In this paper, we propose a probability mapping technique using Texture and Intensity features to describe heterogeneous nature of the scarred myocardium in Cardiac Magnetic Resonance (CMR) images after Myocardial Infarction (MI). Scarred tissue and non-scarred tissue are represented with high and low probabilities, respectively. Intermediate values possibly indicate areas where the scarred and healthy tissues are interwoven. The probability map of scarred myocardium is calculated by using a probability function based on Bayes rule. Any set of features can be used in the probability function. Results In the present study, we demonstrate the use of two different types of features. One is based on the mean intensity of pixel and the other on underlying texture information of the scarred and non-scarred myocardium. Examples of probability maps computed using the mean intensity of pixel and the underlying texture information are presented. We hypothesize that the probability mapping of myocardium offers alternate visualization, possibly showing the details with physiological significance difficult to detect visually in the original CMR image. Conclusion The probability mapping obtained from the two features provides a way to define different cardiac segments which offer a way to identify areas in the myocardium of diagnostic importance (like core and border areas in scarred myocardium). PMID:24053280

  1. Investigation of SIR-B images for lithologic mapping

    NASA Technical Reports Server (NTRS)

    Parr, J. T.; Sailor, R. V.

    1984-01-01

    It is immediately apparent from the examination of almost any synthetic aperture radar (SAR) data that the radar return is primarily a function of the topographic relief. Yet radar reflectance is dependent on both surface roughness and the dielectric constant of the surface material. These two parameters can in many cases be related to lithologic units. Thus, if the first-order terrain effects due to topographic relief could (in essence) be removed from the radar image, the SAR data might well be used for lithologic discrimination. Such an approach is evaluated. Landsat Thematic Mapper data along with ground truth are used to define training cells that characterize the various lithologic units in the area. By aggregating the radar data for these cells, curves of radar reflectance versus local incidence are estimated. The curves are then used to classify the test area. The results are compared with lithologic classification based upon multi-spectral (visible and infrared) data.

  2. An expert system for geologic mapping with imaging spectrometers

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Seznec, O.; Krotkov, P. M.

    1990-01-01

    Techniques have been developed for the extraction and characterization of absorption features from visible and infrared reflectance spectra and an expert system has been designed, implemented, and successfully tested that allows automated identification of minerals based on their spectral characteristics. A suite of laboratory spectra of common minerals was analyzed and the absorption band characteristics tabulated and used to develop a generalized knowledge base for analysis of the reflectance spectra. A tree hierarchy was designed to emulate the decision process followed by an experienced analyst for analysis of laboratory and field reflectance spectra and aircraft imaging spectrometer spectra. Good results were obtained with the expert system for all three types of spectra, with the critical factor in the analysis being the signal-to-noise ratio of the spectral data.

  3. Mapping of the Seagrass Cover Along the Mediterranean Coast of Turkey Using Landsat 8 Oli Images

    NASA Astrophysics Data System (ADS)

    Bakirman, T.; Gumusay, M. U.; Tuney, I.

    2016-06-01

    Benthic habitat is defined as ecological environment where marine animals, plants and other organisms live in. Benthic habitat mapping is defined as plotting the distribution and extent of habitats to create a map with complete coverage of the seabed showing distinct boundaries separating adjacent habitats or the use of spatially continuous environmental data sets to represent and predict biological patterns on the seafloor. Seagrass is an essential endemic marine species that prevents coast erosion and regulates carbon dioxide absorption in both undersea and atmosphere. Fishing, mining, pollution and other human activities cause serious damage to seabed ecosystems and reduce benthic biodiversity. According to the latest studies, only 5-10% of the seafloor is mapped, therefore it is not possible to manage resources effectively, protect ecologically important areas. In this study, it is aimed to map seagrass cover using Landsat 8 OLI images in the northern part of Mediterranean coast of Turkey. After pre-processing (e.g. radiometric, atmospheric, water depth correction) of Landsat images, coverage maps are produced with supervised classification using in-situ data which are underwater photos and videos. Result maps and accuracy assessment are presented and discussed.

  4. Building Keypoint Mappings on Multispectral Images by a Cascade of Classifiers with a Resurrection Mechanism

    PubMed Central

    Li, Yong; Jing, Jing; Jin, Hongbin

    2015-01-01

    Inspired by the boosting technique for detecting objects, this paper proposes a cascade structure with a resurrection mechanism to establish keypoint mappings on multispectral images. The cascade structure is composed of four steps by utilizing best bin first (BBF), color and intensity distribution of segment (CIDS), global information and the RANSAC process to remove outlier keypoint matchings. Initial keypoint mappings are built with the descriptors associated with keypoints; then, at each step, only a small number of keypoint mappings of a high confidence are classified to be incorrect. The unclassified keypoint mappings will be passed on to subsequent steps for determining whether they are correct. Due to the drawback of a classification rule, some correct keypoint mappings may be misclassified as incorrect at a step. Observing this, we design a resurrection mechanism, so that they will be reconsidered and evaluated by the rules utilized in subsequent steps. Experimental results show that the proposed cascade structure combined with the resurrection mechanism can effectively build more reliable keypoint mappings on multispectral images than existing methods. PMID:26007729

  5. Modeling and image processing for visualization of volcanic mapping

    SciTech Connect

    Pareschi, M.T.; Bernstein, R.

    1989-07-01

    In countries such as Italy, Japan, and Mexico, where active volcanoes are located in highly populated areas, the problem of risk reduction is very important. Actual knowledge about volcanic behavior does not allow deterministic event prediction or the forecasting of eruptions. However, areas exposed to eruptions can be analyzed if eruption characteristics can be inferred or assumed. Models to simulate volcanic eruptions and identify hazardous areas have been developed by collaboration between the IBM Italy Pisa Scientific Center and the Earth Science Department of Pisa University (supported by the Italian National Group of Volcanology of the Italian National Research Council). The input to the models is the set of assumed eruption characteristics: the topology of the phenomenon (ash fall, pyroclastic flow, etc.), vent position, total eruptible mass, wind profile, etc. The output of the models shows volcanic product distribution at ground level. These models are reviewed and their use in hazard estimation (compared with the more traditional techniques currently in use) is outlined. Effective use of these models, by public administrators and planners in preparing plans for the evacuation of hazardous zones, requires the clear and effective display of model results. Techniques to display and visualize such data have been developed by the authors. In particular, a computer program has been implemented on the IBM 7350 Image Processing System to display model outputs, representing both volume (in two dimensions) and distribution of ejected material, and to superimpose the displays upon satellite images that show 3D oblique views of terrain. This form of presentation, realized for various sets of initial conditions and eruption times, represents a very effective visual tool for volcanic hazard zoning and evacuation planning.

  6. Multi-parameter optical image interpretations based on self-organizing mapping

    NASA Astrophysics Data System (ADS)

    Klose, Christian D.; Klose, A. K.; Netz, U.; Scheel, A.; Beuthan, J.; Hielscher, Andreas H.

    2008-02-01

    We found that using more than one parameter derived from optical tomographic images can lead to better image classification results compared to cases when only one parameter is used.. In particular we present a multi-parameter classification approach, called self-organizing mapping (SOM), for detecting synovitis in arthritic finger joints based on sagittal laser optical tomography (SLOT). This imaging modality can be used to determine various physical parameters such as minimal absorption and scattering coefficients in an image of the proximal interphalengeal joint. Results were compared to different gold standards: magnet resonance imaging, ultra-sonography and clinical evaluation. When compared to classifications based on single-parameters, e.g., absorption minimum only, the study reveals that multi-parameter classifications lead to higher classification sensitivities and specificities and statistical significances with p-values <5 per cent. Finally, the data suggest that image analyses are more reliable and avoid ambiguous interpretations when using more than one parameter.

  7. Optimization of a motion tracking and mapping method based on images of the solar corona

    NASA Astrophysics Data System (ADS)

    Pavlova, Petya; Garnevski, Dimitar; Koleva, Kostadinka

    2016-01-01

    The study presents the current stage of development and application of a motion tracking and mapping method, based on solar corona images. The object of discussion is the problem of image processing during the extraction of features of interest in the sequence of solar prominences images. At first the method requires calculating techniques that ensure processing time-period commensurable with the time-period of the fastest developing part of the prominence body. That defines the necessity of optimization of the basic algorithms. The paper describes results of test procedures on accepted approaches for reducing the operation time by parallel processing of the images. The method also requires presentation of the lightness information independently of the sensor of particular coronagraph and image file format. This investigation proposes two techniques for achievement the identity of images from different instruments/sensors.

  8. Histogram-Based Calibration Method for Pipeline ADCs.

    PubMed

    Son, Hyeonuk; Jang, Jaewon; Kim, Heetae; Kang, Sungho

    2015-01-01

    Measurement and calibration of an analog-to-digital converter (ADC) using a histogram-based method requires a large volume of data and a long test duration, especially for a high resolution ADC. A fast and accurate calibration method for pipelined ADCs is proposed in this research. The proposed calibration method composes histograms through the outputs of each stage and calculates error sources. The digitized outputs of a stage are influenced directly by the operation of the prior stage, so the results of the histogram provide the information of errors in the prior stage. The composed histograms reduce the required samples and thus calibration time being implemented by simple modules. For 14-bit resolution pipelined ADC, the measured maximum integral non-linearity (INL) is improved from 6.78 to 0.52 LSB, and the spurious-free dynamic range (SFDR) and signal-to-noise-and-distortion ratio (SNDR) are improved from 67.0 to 106.2dB and from 65.6 to 84.8dB, respectively. PMID:26070196

  9. Mapping an Annual Weed with Color-infrared Photography and Image Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silverleaf sunflower (Helianthus argophyllus Torr. and Gray) is an annual weed found on rangelands in south and southeast Texas. Color-infrared aerial photography and computer image analysis techniques were evaluated for detecting and mapping silverleaf sunflower infestations on a south Texas range...

  10. Mapping Broom Snakeweed Through Image Analysis of Color-infrared Photography and Digital Imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted on a south Texas rangeland area to evaluate aerial color-infrared (CIR) photography and CIR digital imagery combined with unsupervised image analysis techniques to map broom snakeweed [Gutierrezia sarothrae (Pursh.) Britt. and Rusby]. Accuracy assessments performed on compute...

  11. Mapping a Riparian Weed with SPOT 5 Imagery and Image Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SPOT 5 (10 m resolution) multi-spectral satellite imagery was evaluated for mapping infestations of the invasive grass giant reed (Arundo donax L.) along the Rio Grande in southwest Texas. The imagery had three bands (green, red, and near-infrared). Three subsets from the SPOT 5 image were extract...

  12. Visual Links in the World-Wide Web: The Uses and Limitations of Image Maps.

    ERIC Educational Resources Information Center

    Cochenour, John J.; And Others

    As information delivery systems on the Internet increasingly evolve into World Wide Web browsers, understanding key graphical elements of the browser interface is critical to the design of effective information display and access tools. Image maps are one such element, and this document describes a pilot study that collected, reviewed, and…

  13. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map

    PubMed Central

    Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen

    2015-01-01

    This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate. PMID:26378543

  14. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map.

    PubMed

    Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen

    2015-01-01

    This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate. PMID:26378543

  15. Delineation of sub-pixel level sedimentary litho-contacts by super resolution mapping of Landsat image

    NASA Astrophysics Data System (ADS)

    Shanmuga Priyaa, S.; Sanjeevi, S.

    2014-12-01

    To delineate the geological formation at the surface, satellite image classification approaches are often preferred. This study aims to produce a super resolved map with better delineation of the litho-contacts from the medium resolution Landsat image. Conventionally used per-pixel classification provides an output map at the same resolution of the satellite image, while the super resolved map provides the high resolution output map using the medium resolution image. In this study, four test sites are considered for delineating different litho-contacts using super resolution mapping approach in Cuddalore district, southern India. The test sites consists of charnockite, fissile hornblende-biotite gneiss, marine sandstone and sandstone with clay, limestone with calcareous shale and clay, clay with limestone bands/lenses, mio-pliocene and quaternary argillaceous and calcareous sandstone, fluvial and fluviomarine formations. This work compares the per-pixel, super resolved output derived from linear spectral unmixing (LSU) based HNN and spectral angle mapper (SAM) based HNN approaches. The super resolution mapping approach was performed on the medium resolution (30 m) Landsat image to obtain the litho-contact maps and the results are compared with the existing maps and observations from field visits. The results showed improved accuracy (90.92%) of the map prepared by the SAM based super resolution approach compared to the LSU based super resolution approach (90.14%) and the maximum likelihood classification approach (83.74%). Such an improved accuracy of the super resolved map (6 m resolution) is due to the fact that the lithological mapping is done not merely at the resolution of the image, but at the sub-pixel level. Hence, it is inferred that super resolution mapping applied to multispectral images may be preferred for mapping lithounits and litho-contacts than the conventional per-pixel and sub-pixel image classification methods.

  16. A wide field-of-view imaging DOAS instrument for continuous trace gas mapping from aircraft

    NASA Astrophysics Data System (ADS)

    Schönhardt, A.; Altube, P.; Gerilowski, K.; Krautwurst, S.; Hartmann, J.; Meier, A. C.; Richter, A.; Burrows, J. P.

    2014-04-01

    For the purpose of trace gas measurements and pollution mapping, the Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP) has been developed, characterised and successfully operated from aircraft. From the observations with the AirMAP instrument nitrogen dioxide (NO2) columns were retrieved. A major benefit of the pushbroom imaging instrument is the spatially continuous, gap-free measurement sequence independent of flight altitude, a valuable characteristic for mapping purposes. This is made possible by the use of a frame-transfer detector. With a wide-angle entrance objective, a broad field-of-view across track of around 48° is achieved, leading to a swath width of about the same size as the flight altitude. The use of fibre coupled light intake optics with sorted light fibres allows flexible positioning within the aircraft and retains the very good imaging capabilities. The measurements yield ground spatial resolutions below 100 m. From a maximum of 35 individual viewing directions (lines of sight, LOS) represented by 35 single fibres, the number of viewing directions is adapted to each situation by averaging according to signal-to-noise or spatial resolution requirements. Exploitation of all the viewing directions yields observations at 30 m spatial resolution, making the instrument a suitable tool for mapping trace gas point sources and small scale variability. For accurate spatial mapping the position and aircraft attitude are taken into account using the Attitude and Heading Reference System of the aircraft. A first demonstration mission using AirMAP was undertaken. In June 2011, AirMAP has been operated on the AWI Polar-5 aircraft in the framework of the AIRMETH2011 campaign. During a flight above a medium sized coal-fired power plant in North-West Germany, AirMAP clearly detects the emission plume downwind from the exhaust stack, with NO2 vertical columns around 2 × 1016 molecules cm-2 in the plume center. The emission

  17. Mapping agroecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images

    NASA Technical Reports Server (NTRS)

    Menenti, M.; Azzali, S.; Verhoef, W.; Van Swol, R.

    1993-01-01

    Examples are presented of applications of a fast Fourier transform algorithm to analyze time series of images of Normalized Difference Vegetation Index values. The results obtained for a case study on Zambia indicated that differences in vegetation development among map units of an existing agroclimatic map were not significant, while reliable differences were observed among the map units obtained using the Fourier analysis.

  18. Integrated Mapping and Imaging at a Legacy Test Site (Invited)

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Schultz-Fellenz, E. S.; Kelley, R. E.; Sweeney, J. J.; Vigil, S.; DiBenedetto, J.; Chipman, V.

    2013-12-01

    A team of multi-disciplinary geoscientists was tasked to characterize and evaluate a legacy nuclear detonation site in order to develop research locations with the long-term goal of improving treaty monitoring, verification, and other national security applications. There was a test at the site of interest that was detonated on June 12, 1985 in a vertical emplacement borehole at a depth of 608m below the surface in rhyolites. With announced yield of 20-150 kt, the event did not collapse to the surface and form a crater, but rather experienced a subsurface collapse with more subtle surface expressions of deformation. This result provides the team with an opportunity to evaluate a number of surface and subsurface inspection technologies in a broad context. The team collected ground-based visual observation, ground penetrating radar, electromagnetic, ground-based and airborne LiDAR, ground-based and airborne hyperspectral, gravity and magnetics, dc and induction electrical methods, and active seismic data during field campaigns in the summers of 2012 and 2013. Detection of features was performed using various approaches that were assessed for accuracy, efficiency and diversity of target features. For example, whereas the primary target of the ground-based visual observation survey was to map the surface features, the target of the gravity survey was to attempt the detection of a possible subsurface collapse zone which might be located as little as 200 meters below the surface. The datasets from surveys described above are integrated into a geographical information system (GIS) database for analysis and visualization. Other presentations during this session provide further details as to some of the work conducted. Work by Los Alamos National Laboratory and Lawrence Livermore National Laboratory was sponsored by the National Nuclear Security Administration Award No. DE-AC52-06NA25946/NST10-NCNS-PD00. Work by National Security Technologies, LLC, was performed under

  19. The Cyborg Astrobiologist: Image Compression for Geological Mapping and Novelty Detection

    NASA Astrophysics Data System (ADS)

    McGuire, P. C.; Bonnici, A.; Bruner, K. R.; Gross, C.; Ormö, J.; Smosna, R. A.; Walter, S.; Wendt, L.

    2013-09-01

    We describe an image-comparison technique of Heidemann and Ritter [4,5] that uses image compression, and is capable of: (i) detecting novel textures in a series of images, as well as of: (ii) alerting the user to the similarity of a new image to a previously-observed texture. This image-comparison technique has been implemented and tested using our Astrobiology Phone-cam system, which employs Bluetooth communication to send images to a local laptop server in the field for the image-compression analysis. We tested the system in a field site displaying a heterogeneous suite of sandstones, limestones, mudstones and coalbeds. Some of the rocks are partly covered with lichen. The image-matching procedure of this system performed very well with data obtained through our field test, grouping all images of yellow lichens together and grouping all images of a coal bed together, and giving a 91% accuracy for similarity detection. Such similarity detection could be employed to make maps of different geological units. The novelty-detection performance of our system was also rather good (a 64% accuracy). Such novelty detection may become valuable in searching for new geological units, which could be of astrobiological interest. By providing more advanced capabilities for similarity detection and novelty detection, this image-compression technique could be useful in giving more scientific autonomy to robotic planetary rovers, and in assisting human astronauts in their geological exploration.

  20. Fractal mapping of digitized images - Application to the topography of Arizona and comparisons with synthetic images

    NASA Technical Reports Server (NTRS)

    Huang, J.; Turcotte, D. L.

    1989-01-01

    The concept of fractal mapping is introduced and applied to digitized topography of Arizona. It is shown that the fractal statistics satisfy the topography of the state to a good approximation. The fractal dimensions and roughness amplitudes from subregions are used to construct maps of these quantities. It is found that the fractal dimension of actual two-dimensional topography is not affected by the adding unity to the fractal dimension of one-dimensional topographic tracks. In addition, consideration is given to the production of fractal maps from synthetically derived topography.

  1. Personal identificaton through facial image based on isodensity maps

    NASA Astrophysics Data System (ADS)

    Fujimoto, Kenji; Nakamura, Osamu; Minami, Toshi

    1994-11-01

    The feasibility of a human face identification system using isodensity lines is demonstrated through experimental investigation. Isodensity lines are the boundaries of constant gray level areas obtained by quantizing a facial image. Utilization of these lines has the following advantages: (1) The technique is algorithmically and computationally simple to implement, both in hardware and in software. (2) Significant 3D structures can be reflected in the description of the face. (3) High discrimination accuracy is achieved, even for faces with spectacles or with thin bears (stubble). This system consists of a delineation of isodensity lines and a matching process. Extraction of the facial area is very easily put into practice by using a isodensity lines to represent the contour lines of the face. The matching process consists of template matching (global matching) and local compactness matching (fine matching) of registered and input isodensity lines. Experimental results show a 97.7% accuracy in matching 44 pairs of the same persons and a 100% accuracy in discriminating between 1892 pairs of different persons, including men with glasses or thin beards and women with or without make-up.

  2. Mapping Depression in Schizophrenia: A Functional Magnetic Resonance Imaging Study

    PubMed Central

    Kumari, Veena; Peters, Emmanuelle; Guinn, Ashley; Fannon, Dominic; Russell, Tamara; Sumich, Alexander; Kuipers, Elizabeth; Williams, Steven C. R.; ffytche, Dominic H.

    2016-01-01

    Depressive symptoms are common in schizophrenia, often left untreated, and associated with a high relapse rate, suicidal ideation, increased mortality, reduced social adjustment and poor quality of life. The neural mechanisms underlying depression in psychosis are poorly understood. Given reports of altered brain response to negative facial affect in depressive disorders, we examined brain response to emotive facial expressions in relation to levels of depression in people with psychosis. Seventy outpatients (final N = 63) and 20 healthy participants underwent functional magnetic resonance imaging during an implicit affect processing task involving presentation of facial expressions of fear, anger, happiness as well as neutral expressions and a (no face) control condition. All patients completed Beck Depression Inventory (BDI-II) and had their symptoms assessed on the Positive and Negative Syndrome Scale (PANSS). In patients, depression (BDI-II) scores associated positively with activation of the left thalamus, extending to the putamen-globus pallidus, insula, inferior-middle frontal and para-post-pre-central gyri during fearful expressions. Furthermore, patients with moderate-to-severe depression had significantly higher activity in these brain regions during fearful expressions relative to patients with no, minimal, or mild depression and healthy participants. The study provides first evidence of enhanced brain response to fearful facial expressions, which signal an uncertain source of threat in the environment, in patients with psychosis and a high level of self-reported depression. PMID:26712855

  3. Mapping Amazonian Canopy Foliar Traits with Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Asner, G. P.; Martin, R.; Anderson, C. B.; Knapp, D. E.

    2014-12-01

    Spatial and temporal information on plant functional traits is lacking in ecology, which limits our understanding of how plant communities and ecosystems are changing. This problem is acute in remote tropical regions such as in Andean and Amazonian forests, where information on plant functional traits is difficult to ascertain. We used Carnegie Airborne Observatory visible-to-shortwave infrared (VSWIR) imaging spectroscopy with light detection and ranging (LiDAR) to assess the chemical composition of tropical forests along a 3000 m elevation gradient from lowland Amazonia to the Andean treeline. We calibrated and validated the retrieval of 15 canopy foliar chemicals and leaf mass per area (LMA) in 81 one-hectare field plots using a new VSWIR-LiDAR fusion approach. Remotely sensed estimates of elevational changes in forest foliar pigments, nitrogen, phosphorus, water, soluble and total carbon, cellulose and LMA were similar to those derived via laborious field survey and laboratory analysis. This new airborne approach addresses the inherent limitations and sampling biases associated with field-based studies of forest functional traits, particularly in structurally and floristically complex tropical canopies.

  4. Mapping Depression in Schizophrenia: A Functional Magnetic Resonance Imaging Study.

    PubMed

    Kumari, Veena; Peters, Emmanuelle; Guinn, Ashley; Fannon, Dominic; Russell, Tamara; Sumich, Alexander; Kuipers, Elizabeth; Williams, Steven C R; Ffytche, Dominic H

    2016-05-01

    Depressive symptoms are common in schizophrenia, often left untreated, and associated with a high relapse rate, suicidal ideation, increased mortality, reduced social adjustment and poor quality of life. The neural mechanisms underlying depression in psychosis are poorly understood. Given reports of altered brain response to negative facial affect in depressive disorders, we examined brain response to emotive facial expressions in relation to levels of depression in people with psychosis. Seventy outpatients (final N= 63) and 20 healthy participants underwent functional magnetic resonance imaging during an implicit affect processing task involving presentation of facial expressions of fear, anger, happiness as well as neutral expressions and a (no face) control condition. All patients completed Beck Depression Inventory (BDI-II) and had their symptoms assessed on the Positive and Negative Syndrome Scale (PANSS). In patients, depression (BDI-II) scores associated positively with activation of the left thalamus, extending to the putamen-globus pallidus, insula, inferior-middle frontal and para-post-pre-central gyri during fearful expressions. Furthermore, patients with moderate-to-severe depression had significantly higher activity in these brain regions during fearful expressions relative to patients with no, minimal, or mild depression and healthy participants. The study provides first evidence of enhanced brain response to fearful facial expressions, which signal an uncertain source of threat in the environment, in patients with psychosis and a high level of self-reported depression. PMID:26712855

  5. Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy

    PubMed Central

    Gao, Liang; Kester, Robert T.; Hagen, Nathan; Tkaczyk, Tomasz S.

    2010-01-01

    A snapshot Image Mapping Spectrometer (IMS) with high sampling density is developed for hyperspectral microscopy, measuring a datacube of dimensions 285 × 285 × 60 (x, y, λ). The spatial resolution is ~0.45 µm with a FOV of 100 × 100 µm2. The measured spectrum is from 450 nm to 650 nm and is sampled by 60 spectral channels with average sampling interval ~3.3 nm. The channel’s spectral resolution is ~8nm. The spectral imaging results demonstrate the potential of the IMS for real-time cellular fluorescence imaging. PMID:20639917

  6. Whole-Body Diffusion-weighted Imaging in Hodgkin Lymphoma and Diffuse Large B-Cell Lymphoma.

    PubMed

    Toledano-Massiah, Sarah; Luciani, Alain; Itti, Emmanuel; Zerbib, Pierre; Vignaud, Alexandre; Belhadj, Karim; Baranes, Laurence; Haioun, Corinne; Lin, Chieh; Rahmouni, Alain

    2015-01-01

    Whole-body imaging, in particular molecular imaging with fluorine 18 ((18)F)-fluorodeoxyglucose (FDG) positron emission tomography (PET), is essential to management of lymphoma. The assessment of disease extent provided by use of whole-body imaging is mandatory for planning appropriate treatment and determining patient prognosis. Assessment of treatment response allows clinicians to tailor the treatment strategy during therapy if necessary and to document complete remission at the end of treatment. Because of rapid technical developments, such as echo-planar sequences, parallel imaging, multichannel phased-array surface coils, respiratory gating, and moving examination tables, whole-body diffusion-weighted (DW) magnetic resonance (MR) imaging that reflects cell density is now feasible in routine clinical practice. Whole-body DW MR imaging allows anatomic assessment as well as functional and quantitative evaluation of tumor sites by calculation of the apparent diffusion coefficient (ADC). Because of their high cellularity and high nucleus-to-cytoplasm ratio, lymphomatous lesions have low ADC values and appear hypointense on ADC maps. As a result, whole-body DW MR imaging with ADC mapping has become a promising tool for lymphoma staging and treatment response assessment. The authors review their 4 years of experience with 1.5-T and 3-T whole-body DW MR imaging used with (18)F-FDG PET/computed tomography at baseline, interim, and end of treatment in patients with Hodgkin lymphoma and diffuse large B-cell lymphoma and discuss the spectrum of imaging findings and potential pitfalls, limitations, and challenges associated with whole-body DW MR imaging in these patients. PMID:25815803

  7. Breast density mapping based upon system calibration, x-ray techniques, and FFDM images

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Smith, Andrew P.; Jing, Zhenxue; Wu, Tao

    2007-03-01

    Clinical studies have correlated a high breast density to a women's risk of breast cancer. A breast density measurement that can quantitatively depict the volume distribution and percentage of dense tissues in breasts would be very useful for risk factor assessment of breast cancer, and might be more predictive of risks than the common but subjective and coarse 4-point BIRADS scale. This paper proposes to use a neural-network mapping to compute the breast density information based upon system calibration data, x-ray techniques, and Full Field Digital Mammography (FFDM) images. The mapping consists of four modules, namely, system calibration, generator of beam quality, generator of normalized absorption, and a multi-layer feed-forward neural network. As the core of breast density mapping, the network accepts x-ray target/filter combination, normalized x-ray absorption, pixel-wise breast thickness map, and x-ray beam quality during image acquisition as input elements, and exports a pixel-wise breast density distribution and a single breast density percentage for the imaged breast. Training and testing data sets for the design and verification of the network were formulated from calibrated x-ray beam quality, imaging data with a step wedge phantom under a variety x-ray imaging techniques, and nominal breast densities of tissue equivalent materials. The network was trained using a Levenberg-Marquardt algorithm based back-propagation learning method. Various thickness and glandular density phantom studies were performed with clinical x-ray techniques. Preliminary results showed that the neural network mapping is promising in accurately computing glandular density distribution and breast density percentage.

  8. Diffusion maps clustering for magnetic resonance q-ball imaging segmentation.

    PubMed

    Wassermann, Demian; Descoteaux, Maxime; Deriche, Rachid

    2008-01-01

    White matter fiber clustering aims to get insight about anatomical structures in order to generate atlases, perform clear visualizations, and compute statistics across subjects, all important and current neuroimaging problems. In this work, we present a diffusion maps clustering method applied to diffusion MRI in order to segment complex white matter fiber bundles. It is well known that diffusion tensor imaging (DTI) is restricted in complex fiber regions with crossings and this is why recent high-angular resolution diffusion imaging (HARDI) such as Q-Ball imaging (QBI) has been introduced to overcome these limitations. QBI reconstructs the diffusion orientation distribution function (ODF), a spherical function that has its maxima agreeing with the underlying fiber populations. In this paper, we use a spherical harmonic ODF representation as input to the diffusion maps clustering method. We first show the advantage of using diffusion maps clustering over classical methods such as N-Cuts and Laplacian eigenmaps. In particular, our ODF diffusion maps requires a smaller number of hypothesis from the input data, reduces the number of artifacts in the segmentation, and automatically exhibits the number of clusters segmenting the Q-Ball image by using an adaptive scale-space parameter. We also show that our ODF diffusion maps clustering can reproduce published results using the diffusion tensor (DT) clustering with N-Cuts on simple synthetic images without crossings. On more complex data with crossings, we show that our ODF-based method succeeds to separate fiber bundles and crossing regions whereas the DT-based methods generate artifacts and exhibit wrong number of clusters. Finally, we show results on a real-brain dataset where we segment well-known fiber bundles. PMID:18317506

  9. Natural-Color Image Mosaics of Afghanistan: Digital Databases and Maps

    USGS Publications Warehouse

    Davis, Philip A.; Hare, Trent M.

    2007-01-01

    Explanation: The 50 tiled images in this dataset are natural-color renditions of the calibrated six-band Landsat mosaics created from Landsat Enhanced Thematic Mapper Plus (ETM+) data. Natural-color images depict the surface as seen by the human eye. The calibration of the Landsat ETM+ maps produced by Davis (2006) are relative reflectance and need to be grounded with ground-reflectance data, but the difficulties in performing fieldwork in Afghanistan precluded ground-reflectance surveys. For natural color calibration, which involves only the blue, green, and red color bands of Landsat, we could use ground photographs, Munsell color readings of ground surfaces, or another image base that accurately depicts the surface color. Each map quadrangle is 1? of latitude by? of longitude. The numbers assigned to each map quadrangle refer to the latitude and longitude coordinates of the lower left corner of the quadrangle. For example, quadrangle Q2960 has its lower left corner at lat 29? N., long 60? E. Each quadrangle overlaps adjacent quadrangles by 100 pixels (2.85 km). Only the 14.25-m-spacial-resolution UTM and 28.5-m-spacial-resolution WGS84 geographic geotiff datasets are available in this report to decrease the amount of space needed. The images are (three-band, eight-bit) geotiffs with embedded georeferencing. As such, most software will not require the associated world files. An index of all available images in geographic is displayed here: Index_Geo_DD.pdf. The country of Afghanistan spans three UTM zones: (41-43). Maps are stored as geoTIFFs in their respective UTM zone projection. Indexes of all available topographic map sheets in their respective UTM zone are displayed here: Index_UTM_Z41.pdf, Index_UTM_Z42.pdf, Index_UTM_Z43.pdf. You will need Adobe Reader to view the PDF files. Download a copy of the latest version of Adobe Reader for free.

  10. Images as embedding maps and minimal surfaces: Movies, color, and volumetric medical images

    SciTech Connect

    Kimmel, R.; Malladi, R.; Sochen, N.

    1997-02-01

    A general geometrical framework for image processing is presented. The authors consider intensity images as surfaces in the (x,I) space. The image is thereby a two dimensional surface in three dimensional space for gray level images. The new formulation unifies many classical schemes, algorithms, and measures via choices of parameters in a {open_quote}master{close_quotes} geometrical measure. More important, it is a simple and efficient tool for the design of natural schemes for image enhancement, segmentation, and scale space. Here the authors give the basic motivation and apply the scheme to enhance images. They present the concept of an image as a surface in dimensions higher than the three dimensional intuitive space. This will help them handle movies, color, and volumetric medical images.

  11. MR assessment of lumbar disk herniation treated with oxygen-ozone diskolysis: the role of DWI and related ADC versus intervertebral disk volumetric analysis for detecting treatment response.

    PubMed

    Splendiani, A; Perri, M; Conchiglia, A; Fasano, F; Di Egidio, G; Masciocchi, C; Gallucci, M

    2013-06-01

    We prospectively assessed the diagnostic criteria of morphologic MRI study (MMS) and the accuracy of DWI and related ADC values (DWI-ADC) versus intervertebral disk volumetric analysis (IDVA) for predicting shrinkage of lumbar disk herniation treated with oxygen-ozone (O2-O3) diskolysis. Sixty-eight patients (36 men and 32 women; mean age 39) with lumbosciatica underwent O2-O3 diskolysis. The six-month MRI follow-up was performed with FSE-T2 and T2-fat, SE-T1 and DWI-weighted images. IDVA was determined using OsiriX(®). Diagnostic criteria and accuracy were evaluated with regards to DWI and related ADC in detecting response to ozone therapy. Fifty-eight of 68 patients had successful outcomes (responders), whereas ten patients showed unsatisfactory outcomes (non-responders). MMS showed that a centrally located herniated disk and grade 1 nerve root compression were more common in the responder group (p < 0.05). DWI-ADC and IDVA showed statistically significant shrinkage in the sixth month of follow-up (p < 0.05) with a mean ADC value reduction of 2.10 × 10(-3) mm(2)/s +/- 0.19 SD in the second month of follow-up (p < 0.05). DWI-ADC had an accuracy of 0.81 in detecting response to therapy around the second month of follow-up. DWI-ADC appear to be useful adjuncts to MMS in the follow-up of patients undergoing O2-O3 diskolysis. PMID:23859294

  12. A New Image Encryption Scheme Based on Dynamic S-Boxes and Chaotic Maps

    NASA Astrophysics Data System (ADS)

    Rehman, Atique Ur; Khan, Jan Sher; Ahmad, Jawad; Hwang, Soeng Oun

    2016-03-01

    Substitution box is a unique and nonlinear core component of block ciphers. A better designing technique of substitution box can boost up the quality of ciphertexts. In this paper, a new encryption method based on dynamic substitution boxes is proposed via using two chaotic maps. To break the correlation in an original image, pixels values of the original plaintext image are permuted row- and column-wise through random sequences. The aforementioned random sequences are generated by 2-D Burgers chaotic map. For the generation of dynamic substitution boxes, Logistic chaotic map is employed. In the process of diffusion, the permuted image is divided into blocks and each block is substituted via different dynamic substitution boxes. In contrast to conventional encryption schemes, the proposed scheme does not undergo the fixed block cipher and hence the security level can be enhanced. Extensive security analysis including histogram test is applied on the proposed image encryption technique. All experimental results reveal that the proposed scheme has a high level of security and robustness for transmission of digital images on insecure communication channels.

  13. Inversion of velocity map ion images using iterative regularization and cross validation

    NASA Astrophysics Data System (ADS)

    Renth, F.; Riedel, J.; Temps, F.

    2006-03-01

    Two methods for improved inversion of velocity map images are presented. Both schemes use two-dimensional basis functions to perform the iteratively regularized inversion of the imaging equation in matrix form. The quality of the reconstructions is improved by taking into account the constraints that are derived from prior knowledge about the experimental data, such as non-negativity and noise statistics, using (i) the projected Landweber [Am. J. Math. 73, 615 (1951)] and (ii) the Richardson-Lucy [J. Opt. Soc. Am. 62, 55 (1972); Astron. J. 79, 745 (1974)] algorithms. It is shown that the optimum iteration count, which plays the role of a regularization parameter, can be determined by partitioning the image into quarters or halves and a subsequent cross validation of the inversion results. The methods are tested with various synthetic velocity map images and with velocity map images of the H-atom fragments produced in the photodissociation of HBr at λ =243.1nm using a (2+1) resonantly enhanced multiphoton ionization (REMPI) detection scheme. The versatility of the method, which is only determined by the choice of basis functions, is exploited to take into account the photoelectron recoil that leads to a splitting and broadening of the velocity distribution in the two product channels, and to successfully reconstruct the deconvolved velocity distribution. The methods can also be applied to the cases where higher order terms in the Legendre expansion of the angular distribution are present.

  14. Robust biological parametric mapping: an improved technique for multimodal brain image analysis

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Beason-Held, Lori; Resnick, Susan M.; Landman, Bennett A.

    2011-03-01

    Mapping the quantitative relationship between structure and function in the human brain is an important and challenging problem. Numerous volumetric, surface, region of interest and voxelwise image processing techniques have been developed to statistically assess potential correlations between imaging and non-imaging metrics. Recently, biological parametric mapping has extended the widely popular statistical parametric approach to enable application of the general linear model to multiple image modalities (both for regressors and regressands) along with scalar valued observations. This approach offers great promise for direct, voxelwise assessment of structural and functional relationships with multiple imaging modalities. However, as presented, the biological parametric mapping approach is not robust to outliers and may lead to invalid inferences (e.g., artifactual low p-values) due to slight mis-registration or variation in anatomy between subjects. To enable widespread application of this approach, we introduce robust regression and robust inference in the neuroimaging context of application of the general linear model. Through simulation and empirical studies, we demonstrate that our robust approach reduces sensitivity to outliers without substantial degradation in power. The robust approach and associated software package provides a reliable way to quantitatively assess voxelwise correlations between structural and functional neuroimaging modalities.

  15. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation

    SciTech Connect

    Lu, L.; Fan, D.; Luo, S. N.; Bie, B. X.; Ran, X. X.; Qi, M. L.; Parab, N.; Sun, J. Z.; Liao, H. J.; Hudspeth, M. C.; Claus, B.; Fezzaa, K.; Sun, T.; Chen, W.; Gong, X. L.

    2014-07-15

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  16. Automatic generation of a retinal sensitivity map using infra-red fundus television images.

    PubMed

    Kawai, H; Tamura, S

    1989-01-01

    We have already developed an eye movement analyzing system using an infra-red television fundus camera. Although the quality of the fundus TV images is not good, the system can measure eye movement with an accuracy order of 0.1 degree. We try to apply this system to compensating for eye movements in producing a retinal sensitivity map. A target with variable brightness is presented to various positions on the retina of a subject through a CRT assembled in the infra-red TV fundus camera. The subject is supposed to respond if he can perceive the target. The TV image of the eye fundus, together with the overlaid target and response sign, is recorded on a U-matic (3/4 in) VTR. The image of the video tape is then analyzed by a computer. We have obtained retinal sensitivity maps which show good agreement with the results obtained using the Goldmann perimeter. PMID:2486764

  17. Mapping of hydrothermal alternation zones and regional rock types using computer enhanced ERTS MSS images. [Nevada

    NASA Technical Reports Server (NTRS)

    Rowan, L. C.; Wetlaufer, P. H.; Billingsley, F. C.; Goetz, A. F. H.

    1974-01-01

    A combination of digital computer processing and color compositing of ERTS MSS images has been used to map hydrothermal alternation zones and regional rock types in south-central Nevada. The technique is based on enhancement of subtle visible and near infrared reflectivity differences between mineralogically dissimilar rocks, especially unaltered and altered rocks. MSS spectral bands are ratioed, pixel by pixel, in the computer and subsequently stretched. These ratio values are used to produce a new black and white image which shows the subtle spectral reflectivity differences. Additional enhancement is achieved by preparing color composites of two or more stretched ratio images. The choice of MSS bands for rationing depends on the spectral reflectance properties of the rocks to be discriminated. Although this technique is in the initial stage of development and is untested in other areas, it already appears to have considerable potential for targeting mineral prospects and for regional geologic mapping.

  18. Single-image super-resolution via linear mapping of interpolated self-examples.

    PubMed

    Bevilacqua, Marco; Roumy, Aline; Guillemot, Christine; Morel, Marie-Line Alberi

    2014-12-01

    This paper presents a novel example-based single-image superresolution procedure that upscales to high-resolution (HR) a given low-resolution (LR) input image without relying on an external dictionary of image examples. The dictionary instead is built from the LR input image itself, by generating a double pyramid of recursively scaled, and subsequently interpolated, images, from which self-examples are extracted. The upscaling procedure is multipass, i.e., the output image is constructed by means of gradual increases, and consists in learning special linear mapping functions on this double pyramid, as many as the number of patches in the current image to upscale. More precisely, for each LR patch, similar self-examples are found, and, because of them, a linear function is learned to directly map it into its HR version. Iterative back projection is also employed to ensure consistency at each pass of the procedure. Extensive experiments and comparisons with other state-of-the-art methods, based both on external and internal dictionaries, show that our algorithm can produce visually pleasant upscalings, with sharp edges and well reconstructed details. Moreover, when considering objective metrics, such as Peak signal-to-noise ratio and Structural similarity, our method turns out to give the best performance. PMID:25347880

  19. Whole brain myelin mapping using T1- and T2-weighted MR imaging data

    PubMed Central

    Ganzetti, Marco; Wenderoth, Nicole; Mantini, Dante

    2014-01-01

    Despite recent advancements in MR imaging, non-invasive mapping of myelin in the brain still remains an open issue. Here we attempted to provide a potential solution. Specifically, we developed a processing workflow based on T1-w and T2-w MR data to generate an optimized myelin enhanced contrast image. The workflow allows whole brain mapping using the T1-w/T2-w technique, which was originally introduced as a non-invasive method for assessing cortical myelin content. The hallmark of our approach is a retrospective calibration algorithm, applied to bias-corrected T1-w and T2-w images, that relies on image intensities outside the brain. This permits standardizing the intensity histogram of the ratio image, thereby allowing for across-subject statistical analyses. Quantitative comparisons of image histograms within and across different datasets confirmed the effectiveness of our normalization procedure. Not only did the calibrated T1-w/T2-w images exhibit a comparable intensity range, but also the shape of the intensity histograms was largely corresponding. We also assessed the reliability and specificity of the ratio image compared to other MR-based techniques, such as magnetization transfer ratio (MTR), fractional anisotropy (FA), and fluid-attenuated inversion recovery (FLAIR). With respect to these other techniques, T1-w/T2-w had consistently high values, as well as low inter-subject variability, in brain structures where myelin is most abundant. Overall, our results suggested that the T1-w/T2-w technique may be a valid tool supporting the non-invasive mapping of myelin in the brain. Therefore, it might find important applications in the study of brain development, aging and disease. PMID:25228871

  20. Mapping of the mouse olfactory system with manganese-enhanced magnetic resonance imaging and diffusion tensor imaging.

    PubMed

    Gutman, David A; Magnuson, Matthew; Majeed, Waqas; Keifer, Orion P; Davis, Michael; Ressler, Kerry J; Keilholz, Shella

    2013-03-01

    As the power of studying mouse genetics and behavior advances, research tools to examine systems level connectivity in the mouse are critically needed. In this study, we compared statistical mapping of the olfactory system in adult mice using manganese-enhanced MRI (MEMRI) and diffusion tensor imaging (DTI) with probabilistic tractography. The primary goal was to determine whether these complementary techniques can determine mouse olfactory bulb (OB) connectivity consistent with known anatomical connections. For MEMRI, 3D T1-weighted images were acquired before and after bilateral nasal administration of MnCl(2) solution. Concomitantly, high-resolution diffusion-tensor images were obtained ex vivo from a second group of mice and processed with a probabilistic tractography algorithm originating in the OB. Incidence maps were created by co-registering and overlaying data from the two scan modalities. The resulting maps clearly show pathways between the OB and amygdala, piriform cortex, caudate putamen, and olfactory cortex in both the DTI and MEMRI techniques that are consistent with the known anatomical connections. These data demonstrate that MEMRI and DTI are complementary, high-resolution neuroimaging tools that can be applied to mouse genetic models of olfactory and limbic system connectivity. PMID:22527121

  1. An upgraded camera-based imaging system for mapping venous blood oxygenation in human skin tissue

    NASA Astrophysics Data System (ADS)

    Li, Jun; Zhang, Xiao; Qiu, Lina; Leotta, Daniel F.

    2016-07-01

    A camera-based imaging system was previously developed for mapping venous blood oxygenation in human skin. However, several limitations were realized in later applications, which could lead to either significant bias in the estimated oxygen saturation value or poor spatial resolution in the map of the oxygen saturation. To overcome these issues, an upgraded system was developed using improved modeling and image processing algorithms. In the modeling, Monte Carlo (MC) simulation was used to verify the effectiveness of the ratio-to-ratio method for semi-infinite and two-layer skin models, and then the relationship between the venous oxygen saturation and the ratio-to-ratio was determined. The improved image processing algorithms included surface curvature correction and motion compensation. The curvature correction is necessary when the imaged skin surface is uneven. The motion compensation is critical for the imaging system because surface motion is inevitable when the venous volume alteration is induced by cuff inflation. In addition to the modeling and image processing algorithms in the upgraded system, a ring light guide was used to achieve perpendicular and uniform incidence of light. Cross-polarization detection was also adopted to suppress surface specular reflection. The upgraded system was applied to mapping of venous oxygen saturation in the palm, opisthenar and forearm of human subjects. The spatial resolution of the oxygenation map achieved is much better than that of the original system. In addition, the mean values of the venous oxygen saturation for the three locations were verified with a commercial near-infrared spectroscopy system and were consistent with previously published data.

  2. MODIS phenology image service ArcMap toolbox

    USGS Publications Warehouse

    Talbert, Colin; Kern, Tim J.; Morisette, Jeff; Brown, Don; James, Kevin

    2013-01-01

    implementing long-term conservation plans). In either case, it is important to first grasp the magnitude of natural variation so that it is not confused with actual trends. This work used existing and freely available remote sensing data, specifically the NASA-funded 250-meter (m) spatial resolution land-surface phenology product for North America. This product is calculated from an annual record of vegetation health observed by NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The land-surface phenology product is, in essence, a method to summarize all the observations throughout a year into a few key, ecologically relevant “metrics”.

  3. In Vivo Flow Mapping in Complex Vessel Networks by Single Image Correlation

    PubMed Central

    Sironi, Laura; Bouzin, Margaux; Inverso, Donato; D'Alfonso, Laura; Pozzi, Paolo; Cotelli, Franco; Guidotti, Luca G.; Iannacone, Matteo; Collini, Maddalena; Chirico, Giuseppe

    2014-01-01

    We describe a novel method (FLICS, FLow Image Correlation Spectroscopy) to extract flow speeds in complex vessel networks from a single raster-scanned optical xy-image, acquired in vivo by confocal or two-photon excitation microscopy. Fluorescent flowing objects produce diagonal lines in the raster-scanned image superimposed to static morphological details. The flow velocity is obtained by computing the Cross Correlation Function (CCF) of the intensity fluctuations detected in pairs of columns of the image. The analytical expression of the CCF has been derived by applying scanning fluorescence correlation concepts to drifting optically resolved objects and the theoretical framework has been validated in systems of increasing complexity. The power of the technique is revealed by its application to the intricate murine hepatic microcirculatory system where blood flow speed has been mapped simultaneously in several capillaries from a single xy-image and followed in time at high spatial and temporal resolution. PMID:25475129

  4. In Vivo Flow Mapping in Complex Vessel Networks by Single Image Correlation

    NASA Astrophysics Data System (ADS)

    Sironi, Laura; Bouzin, Margaux; Inverso, Donato; D'Alfonso, Laura; Pozzi, Paolo; Cotelli, Franco; Guidotti, Luca G.; Iannacone, Matteo; Collini, Maddalena; Chirico, Giuseppe

    2014-12-01

    We describe a novel method (FLICS, FLow Image Correlation Spectroscopy) to extract flow speeds in complex vessel networks from a single raster-scanned optical xy-image, acquired in vivo by confocal or two-photon excitation microscopy. Fluorescent flowing objects produce diagonal lines in the raster-scanned image superimposed to static morphological details. The flow velocity is obtained by computing the Cross Correlation Function (CCF) of the intensity fluctuations detected in pairs of columns of the image. The analytical expression of the CCF has been derived by applying scanning fluorescence correlation concepts to drifting optically resolved objects and the theoretical framework has been validated in systems of increasing complexity. The power of the technique is revealed by its application to the intricate murine hepatic microcirculatory system where blood flow speed has been mapped simultaneously in several capillaries from a single xy-image and followed in time at high spatial and temporal resolution.

  5. NI-20ADC HISTOGRAM ANALYSIS FOLLOWING RADIOTHERAPY PREDICTS RESPONSE TO ADJUVANT TEMOZOLOMIDE IN NEWLY DIAGNOSED GBM

    PubMed Central

    Ellingson, Benjamin; Chang, Warren; Harris, Robert; Mody, Reema; Lai, Albert; Nghiemphu, Phioanh; Cloughesy, Timothy; Pope, Whitney

    2014-01-01

    INTRODUCTION: The current standard of care for newly diagnosed GBM consists of concurrent radiotherapy and temozolomide (TMZ) plus adjuvant TMZ. We hypothesize there is a subset of patients that will have a significant benefit from this adjuvant therapy. Therefore, the purpose of the current study was to identify a diffusion imaging phenotype for patients with newly diagnosed GBM that will benefit from adjuvant TMZ following concurrent radiotherapy and TMZ. METHODS: A total of 120 patients with: 1) histologically confirmed glioblastoma, 2) treated with concurrent radiotherapy and TMZ followed by adjuvant TMZ; and 3) high quality diffusion MR data were included in the current study. Diffusion and standard structural MRI were performed approximately 10 weeks after the start of radiotherapy and concurrent TMZ. ADC histogram analysis was performed by fitting a double Gaussian mixed model to ADC data extracted from contrast enhancement tumor. ADCL was defined as the mean ADC of the lower Gaussian distribution. We hypothesize that patients with a high ADCL have a lower tumor burden and thus favorable response to adjuvant TMZ in terms of TTP and OS. RESULTS: Results demonstrate that patients with an ADCL lower than 1 um2/ms has a significantly shorter PFS compared with patients having a higher ADCL (Log-rank, P < 0.0001), showing almost twice the median PFS (297 days vs. 156 days). Additionally, patients with a high ADCL had a significantly longer OS (Log-rank, P = 0.0049). Patients with a high ADCL had a median OS of 648 days while patients with a low ADCL had a median OS of only 407 days from the start of adjuvant TMZ. CONCLUSION: Newly diagnosed GBM patients with elevated tumor diffusivity after completion of radiotherapy and concurrent TMZ have a favorable prognosis.

  6. Whole-Body Diffusion-Weighted Imaging in Chronic Recurrent Multifocal Osteomyelitis in Children

    PubMed Central

    Leclair, Nadine; Thörmer, Gregor; Sorge, Ina; Ritter, Lutz; Schuster, Volker; Hirsch, Franz Wolfgang

    2016-01-01

    Objective Chronic recurrent multifocal osteomyelitis/ chronic non-bacterial osteomyelitis (CRMO/ CNO) is a rare auto-inflammatory disease and typically manifests in terms of musculoskeletal pain. Because of a high frequency of musculoskeletal disorders in children/ adolescents, it can be quite challenging to distinguish CRMO/ CNO from nonspecific musculosketetal pain or from malignancies. The purpose of this study was to evaluate the visibility of CRMO lesions in a whole-body diffusion-weighted imaging (WB-DWI) technique and its potential clinical value to better characterize MR-visible lesions. Material and Methods Whole-body imaging at 3T was performed in 16 patients (average: 13 years) with confirmed CRMO. The protocol included 2D Short Tau Inversion Recovery (STIR) imaging in coronal and axial orientation as well as diffusion-weighted imaging in axial orientation. Visibility of lesions in DWI and STIR was evaluated by two readers in consensus. The apparent diffusion coefficient (ADC) was measured for every lesion and corresponding reference locations. Results A total of 33 lesions (on average 2 per patient) visible in STIR and DWI images (b = 800 s/mm2 and ADC maps) were included, predominantly located in the long bones. With a mean value of 1283 mm2/s in lesions, the ADC was significantly higher than in corresponding reference regions (782 mm2/s). By calculating the ratio (lesion to reference), 82% of all lesions showed a relative signal increase of 10% or higher and 76% (25 lesions) showed a signal increase of more than 15%. The median relative signal increase was 69%. Conclusion This study shows that WB-DWI can be reliably performed in children at 3T and predominantly, the ADC values were substantially elevated in CRMO lesions. WB-DWI in conjunction with clinical data is seen as a promising technique to distinguish benign inflammatory processes (in terms of increased ADC values) from particular malignancies. PMID:26799970

  7. Mapping alteration minerals at prospect, outcrop and drill core scales using imaging spectrometry

    PubMed Central

    Kruse, Fred A.; L. Bedell, Richard; Taranik, James V.; Peppin, William A.; Weatherbee, Oliver; Calvin, Wendy M.

    2011-01-01

    Imaging spectrometer data (also known as ‘hyperspectral imagery’ or HSI) are well established for detailed mineral mapping from airborne and satellite systems. Overhead data, however, have substantial additional potential when used together with ground-based measurements. An imaging spectrometer system was used to acquire airborne measurements and to image in-place outcrops (mine walls) and boxed drill core and rock chips using modified sensor-mounting configurations. Data were acquired at 5 nm nominal spectral resolution in 360 channels from 0.4 to 2.45 μm. Analysis results using standardized hyperspectral methodologies demonstrate rapid extraction of representative mineral spectra and mapping of mineral distributions and abundances in map-plan, with core depth, and on the mine walls. The examples shown highlight the capabilities of these data for mineral mapping. Integration of these approaches promotes improved understanding of relations between geology, alteration and spectral signatures in three dimensions and should lead to improved efficiency of mine development, operations and ultimately effective mine closure. PMID:25937681

  8. Real-time volume rendering of 4D image using 3D texture mapping

    NASA Astrophysics Data System (ADS)

    Hwang, Jinwoo; Kim, June-Sic; Kim, Jae Seok; Kim, In Young; Kim, Sun Il

    2001-05-01

    Four dimensional image is 3D volume data that varies with time. It is used to express deforming or moving object in virtual surgery of 4D ultrasound. It is difficult to render 4D image by conventional ray-casting or shear-warp factorization methods because of their time-consuming rendering time or pre-processing stage whenever the volume data are changed. Even 3D texture mapping is used, repeated volume loading is also time-consuming in 4D image rendering. In this study, we propose a method to reduce data loading time using coherence between currently loaded volume and previously loaded volume in order to achieve real time rendering based on 3D texture mapping. Volume data are divided into small bricks and each brick being loaded is tested for similarity to one which was already loaded in memory. If the brick passed the test, it is defined as 3D texture by OpenGL functions. Later, the texture slices of the brick are mapped into polygons and blended by OpenGL blending functions. All bricks undergo this test. Continuously deforming fifty volumes are rendered in interactive time with SGI ONYX. Real-time volume rendering based on 3D texture mapping is currently available on PC.

  9. Evaluation of data fusion and image segmentation in earth observation based rapid mapping workflows

    NASA Astrophysics Data System (ADS)

    Witharana, Chandi; Civco, Daniel L.; Meyer, Thomas H.

    2014-01-01

    This paper is an exploratory study, which aimed to discover the synergies of data fusion and image segmentation in the context of EO-based rapid mapping workflows. Our approach pillared on the geographic object-based image analysis (GEOBIA) focusing on multiscale, internally-displaced persons' (IDP) camp information extraction from very high spatial resolution (VHSR) images. We applied twelve pansharpening algorithms to two subsets of a GeoEye-1 image scene that was taken over a former war-induced ephemeral settlement in Sri Lanka. A multidimensional assessment was employed to benchmark pansharpening algorithms with respect to their spectral and spatial fidelity. The multiresolution segmentation (MRS) algorithm of the eCognition Developer software served as the key algorithm in the segmentation process. The first study site was used for comparing segmentation results produced from the twelve fused products at a series of scale, shape, and compactness settings of the MRS algorithm. The segmentation quality and optimum parameter settings of the MRS algorithm were estimated by using empirical discrepancy measures. Non-parametric statistical tests were used to compare the quality of image object candidates, which were derived from the twelve pansharpened products. A wall-to-wall classification was performed based on a support vector machine (SVM) classifier to classify image objects candidates of the fused images. The second site simulated a more realistic crisis information extraction scenario where the domain expertise is crucial in segmentation and classification. We compared segmentation and classification results of the original images (non-fused) and twelve fused images to understand the efficacy of data fusion. We have shown that the GEOBIA has the ability to create meaningful image objects during the segmentation process by compensating the fused image's spectral distortions with the high-frequency information content that has been injected during fusion. Our

  10. An investigation of multispectral imaging for the mapping of pigments in paintings

    NASA Astrophysics Data System (ADS)

    Zhao, Yonghui; Berns, Roy S.; Taplin, Lawrence A.; Coddington, James

    2008-02-01

    Compared with colorimetric imaging, multispectral imaging has the advantage of retrieving spectral reflectance factor of each pixel of a painting. Using this spectral information, pigment mapping is concerned with decomposing the spectrum into its constituent pigments and their relative contributions. The output of pigment mapping is a series of spatial concentration maps of the pigments comprising the painting. This approach was used to study Vincent van Gogh's The Starry Night. The artist's palette was approximated using ten oil pigments, selected from a large database of pigments used in oil paintings and a priori analytical research on one of his self portraits, executed during the same time period. The pigment mapping was based on single-constant Kubelka-Munk theory. It was found that the region of blue sky where the stars were located contained, predominantly, ultramarine blue while the swirling sky and region surrounding the moon contained, predominantly, cobalt blue. Emerald green, used in light bluish-green brushstrokes surrounding the moon, was not used to create the dark green in the cypresses. A measurement of lead white from Georges Seurat's La Grande Jatte was used as the white when mapping The Starry Night. The absorption and scattering properties of this white were replaced with a modern dispersion of lead white in linseed oil and used to simulate the painting's appearance before the natural darkening and yellowing of lead white oil paint. Pigment mapping based on spectral imaging was found to be a viable and practical approach for analyzing pigment composition, providing new insight into an artist's working method, the possibility for aiding in restorative inpainting, and lighting design.

  11. Automatic segmentation method of striatum regions in quantitative susceptibility mapping images

    NASA Astrophysics Data System (ADS)

    Murakawa, Saki; Uchiyama, Yoshikazu; Hirai, Toshinori

    2015-03-01

    Abnormal accumulation of brain iron has been detected in various neurodegenerative diseases. Quantitative susceptibility mapping (QSM) is a novel contrast mechanism in magnetic resonance (MR) imaging and enables the quantitative analysis of local tissue susceptibility property. Therefore, automatic segmentation tools of brain regions on QSM images would be helpful for radiologists' quantitative analysis in various neurodegenerative diseases. The purpose of this study was to develop an automatic segmentation and classification method of striatum regions on QSM images. Our image database consisted of 22 QSM images obtained from healthy volunteers. These images were acquired on a 3.0 T MR scanner. The voxel size was 0.9×0.9×2 mm. The matrix size of each slice image was 256×256 pixels. In our computerized method, a template mating technique was first used for the detection of a slice image containing striatum regions. An image registration technique was subsequently employed for the classification of striatum regions in consideration of the anatomical knowledge. After the image registration, the voxels in the target image which correspond with striatum regions in the reference image were classified into three striatum regions, i.e., head of the caudate nucleus, putamen, and globus pallidus. The experimental results indicated that 100% (21/21) of the slice images containing striatum regions were detected accurately. The subjective evaluation of the classification results indicated that 20 (95.2%) of 21 showed good or adequate quality. Our computerized method would be useful for the quantitative analysis of Parkinson diseases in QSM images.

  12. Mapping permeability in low-resolution micro-CT images: A multiscale statistical approach

    NASA Astrophysics Data System (ADS)

    Botha, Pieter W. S. K.; Sheppard, Adrian P.

    2016-06-01

    We investigate the possibility of predicting permeability in low-resolution X-ray microcomputed tomography (µCT). Lower-resolution whole core images give greater sample coverage and are therefore more representative of heterogeneous systems; however, the lower resolution causes connecting pore throats to be represented by intermediate gray scale values and limits information on pore system geometry, rendering such images inadequate for direct permeability simulation. We present an imaging and computation workflow aimed at predicting absolute permeability for sample volumes that are too large to allow direct computation. The workflow involves computing permeability from high-resolution µCT images, along with a series of rock characteristics (notably open pore fraction, pore size, and formation factor) from spatially registered low-resolution images. Multiple linear regression models correlating permeability to rock characteristics provide a means of predicting and mapping permeability variations in larger scale low-resolution images. Results show excellent agreement between permeability predictions made from 16 and 64 µm/voxel images of 25 mm diameter 80 mm tall core samples of heterogeneous sandstone for which 5 µm/voxel resolution is required to compute permeability directly. The statistical model used at the lowest resolution of 64 µm/voxel (similar to typical whole core image resolutions) includes open pore fraction and formation factor as predictor characteristics. Although binarized images at this resolution do not completely capture the pore system, we infer that these characteristics implicitly contain information about the critical fluid flow pathways. Three-dimensional permeability mapping in larger-scale lower resolution images by means of statistical predictions provides input data for subsequent permeability upscaling and the computation of effective permeability at the core scale.

  13. Mapping of land cover in Northern California with simulated HyspIRI images

    NASA Astrophysics Data System (ADS)

    Clark, M. L.; Kilham, N. E.

    2014-12-01

    Land-cover maps are important science products needed for natural resource and ecosystem service management, biodiversity conservation planning, and assessing human-induced and natural drivers of land change. Most land-cover maps at regional to global scales are produced with remote sensing techniques applied to multispectral satellite imagery with 30-500 m pixel sizes (e.g., Landsat, MODIS). Hyperspectral, or imaging spectrometer, imagery measuring the visible to shortwave infrared regions (i.e., full range) of the spectrum have shown improved capacity to map plant species and coarser land-cover associations, yet techniques have not been widely tested at regional and greater spatial scales. The Hyperspectral Infrared Imager (HyspIRI) mission is a full-range hyperspectral and thermal satellite being considered for development by NASA (hyspiri.jpl.nasa.gov). A hyperspectral satellite, such as HyspIRI, will provide detailed spectral and temporal information at global scales that could greatly improve our ability to map land cover with greater class detail and spatial and temporal accuracy than possible with conventional multispectral satellites. The broad goal of our research is to assess multi-temporal, HyspIRI-like satellite imagery for improved land cover mapping across a range of environmental and anthropogenic gradients in California. In this study, we mapped FAO Land Cover Classification System (LCCS) classes over 30,000 km2 in Northern California using multi-temporal HyspIRI imagery simulated from the AVIRIS airborne sensor. The Random Forests classification was applied to predictor variables derived from the multi-temporal hyperspectral data and accuracies were compared to that from Landsat 8 OLI. Results indicate increased mapping accuracy using HyspIRI multi-temporal imagery, particularly in discriminating different forest life-form types, such as mixed conifer and broadleaf forests and open- and closed-canopy forests.

  14. Solar monochromatic images in magneto-sensitive spectral lines and maps of vector magnetic fields

    NASA Technical Reports Server (NTRS)

    Shihui, Y.; Jiehai, J.; Minhan, J.

    1985-01-01

    A new method which allows by use of the monochromatic images in some magneto-sensitive spectra line to derive both the magnetic field strength as well as the angle between magnetic field lines and line of sight for various places in solar active regions is described. In this way two dimensional maps of vector magnetic fields may be constructed. This method was applied to some observational material and reasonable results were obtained. In addition, a project for constructing the three dimensional maps of vector magnetic fields was worked out.

  15. A web-based melanoma image diagnosis support system using topic map and AJAX technologies.

    PubMed

    Papastergiou, A; Tzekis, P; Hatzigaidas, A; Tryfon, G; Ioannidis, D; Zaharis, Z; Kampitaki, D; Lazaridis, P

    2008-06-01

    The design and implementation of a web-based diagnostic support tool for melanoma dermatological images and related diagnostic data is presented. The proposed system is semantic web-based and is driven by exploiting the combination of AJAX framework and topic map technology. A novel client/server architecture was developed that enables several clients to interact online with the topic map-based system. Users have the ability to access the system anywhere and anytime via a simple Internet browser. Additionally, an ABCD application has been developed for automated calculation of ABCD parameters and consequently embedded in the proposed TM-based system. PMID:18604754

  16. HIPMap: A High-Throughput Imaging Method for Mapping Spatial Gene Positions.

    PubMed

    Shachar, Sigal; Pegoraro, Gianluca; Misteli, Tom

    2015-01-01

    The three-dimensional organization of genes inside the cell nucleus affects their functions including DNA transcription, replication, and repair. A major goal in the field of nuclear architecture is to determine what cellular factors establish and maintain the position of individual genes. Here, we describe HIPMap, a high-throughput imaging and analysis pipeline for the mapping of endogenous gene loci within the 3D space of the nucleus. HIPMap can be used for a variety of applications including screening, mapping translocations, validating chromosome conformation capture data, probing DNA-protein interactions, and interrogation of the relationship of gene expression with localization. PMID:26472748

  17. Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images

    NASA Astrophysics Data System (ADS)

    Fiorucci, F.; Cardinali, M.; Carlà, R.; Rossi, M.; Mondini, A. C.; Santurri, L.; Ardizzone, F.; Guzzetti, F.

    2011-06-01

    We tested the possibility of using digital, color aerial ortho-photographs and monoscopic, panchromatic satellite images of comparable spatial and radiometric resolution, to map recent landslides in Italy and to update existing measures of landslide mobilization. In a 90-km 2 area in Umbria, central Apennines, rainfall resulted in abundant landslides in the period from September 2004 to June 2005. Analysis of the rainfall record determined the approximate dates of landslide occurrence and revealed that the slope failures occurred in response to moderately wet rainfall periods. The slope failures occurred primarily in cultivated terrain and left subtle morphological and land cover signatures, making the recognition and mapping of the individual landslides problematic. Despite the difficulty with the identification of the landslides without the use of stereoscopic visualization, visual analysis of the aerial and satellite images allowed mapping 457 new landslides, ranging in area 3.0 × 10 1 < AL < 2.5 × 10 4 m 2, for a total landslide area ALT = 6.92 × 10 5 m 2. To identify the landslides, the investigators adopted the interpretation criteria commonly used to identify and map landslides on aerial photography. The result confirms that monoscopic, very high resolution images taken by airborne and satellite sensors can be used to prepare landslide maps even where slope failures are difficult to detect, provided the imagery has sufficient geometric and radiometric resolutions. The different dates of the aerial (March 2005) and the satellite (June-July 2005) images allowed the temporal segmentation of the landslide information, and studying the statistics of landslide area and volume for different periods. Compared to pre-existing information on the abundance and size of the landslides in the area, the inventory obtained by studying the aerial and satellite images proved more complete. The new mapping showed 145% more landslides and 85% more landslide area than a pre

  18. Astronomy in the Cloud: Using MapReduce for Image Co-Addition

    NASA Astrophysics Data System (ADS)

    Wiley, K.; Connolly, A.; Gardner, J.; Krughoff, S.; Balazinska, M.; Howe, B.; Kwon, Y.; Bu, Y.

    2011-03-01

    In the coming decade, astronomical surveys of the sky will generate tens of terabytes of images and detect hundreds of millions of sources every night. The study of these sources will involve computation challenges such as anomaly detection and classification and moving-object tracking. Since such studies benefit from the highest-quality data, methods such as image co-addition, i.e., astrometric registration followed by per-pixel summation, will be a critical preprocessing step prior to scientific investigation. With a requirement that these images be analyzed on a nightly basis to identify moving sources such as potentially hazardous asteroids or transient objects such as supernovae, these data streams present many computational challenges. Given the quantity of data involved, the computational load of these problems can only be addressed by distributing the workload over a large number of nodes. However, the high data throughput demanded by these applications may present scalability challenges for certain storage architectures. One scalable data-processing method that has emerged in recent years is MapReduce, and in this article we focus on its popular open-source implementation called Hadoop. In the Hadoop framework, the data are partitioned among storage attached directly to worker nodes, and the processing workload is scheduled in parallel on the nodes that contain the required input data. A further motivation for using Hadoop is that it allows us to exploit cloud computing resources: i.e., platforms where Hadoop is offered as a service. We report on our experience of implementing a scalable image-processing pipeline for the SDSS imaging database using Hadoop. This multiterabyte imaging data set provides a good testbed for algorithm development, since its scope and structure approximate future surveys. First, we describe MapReduce and how we adapted image co-addition to the MapReduce framework. Then we describe a number of optimizations to our basic approach

  19. Use of field reflectance data for crop mapping using airborne hyperspectral image

    NASA Astrophysics Data System (ADS)

    Nidamanuri, Rama Rao; Zbell, Bernd

    2011-09-01

    Recent developments in hyperspectral remote sensing technologies enable acquisition of image with high spectral resolution, which is typical to the laboratory or in situ reflectance measurements. There has been an increasing interest in the utilization of in situ reference reflectance spectra for rapid and repeated mapping of various surface features. Here we examined the prospect of classifying airborne hyperspectral image using field reflectance spectra as the training data for crop mapping. Canopy level field reflectance measurements of some important agricultural crops, i.e. alfalfa, winter barley, winter rape, winter rye, and winter wheat collected during four consecutive growing seasons are used for the classification of a HyMAP image acquired for a separate location by (1) mixture tuned matched filtering (MTMF), (2) spectral feature fitting (SFF), and (3) spectral angle mapper (SAM) methods. In order to answer a general research question "what is the prospect of using independent reference reflectance spectra for image classification", while focussing on the crop classification, the results indicate distinct aspects. On the one hand, field reflectance spectra of winter rape and alfalfa demonstrate excellent crop discrimination and spectral matching with the image across the growing seasons. On the other hand, significant spectral confusion detected among the winter barley, winter rye, and winter wheat rule out the possibility of existence of a meaningful spectral matching between field reflectance spectra and image. While supporting the current notion of "non-existence of characteristic reflectance spectral signatures for vegetation", results indicate that there exist some crops whose spectral signatures are similar to characteristic spectral signatures with possibility of using them in image classification.

  20. Mapping gray-scale image to 3D surface scanning data by ray tracing

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jones, Peter R. M.

    1997-03-01

    The extraction and location of feature points from range imaging is an important but difficult task in machine vision based measurement systems. There exist some feature points which are not able to be detected from pure geometric characteristics, particularly in those measurement tasks related to the human body. The Loughborough Anthropometric Shadow Scanner (LASS) is a whole body surface scanner based on structured light technique. Certain applications of LASS require accurate location of anthropometric landmarks from the scanned data. This is sometimes impossible from existing raw data because some landmarks do not appear in the scanned data. Identification of these landmarks has to resort to surface texture of the scanned object. Modifications to LASS were made to allow gray-scale images to be captured before or after the object was scanned. Two-dimensional gray-scale image must be mapped to the scanned data to acquire the 3D coordinates of a landmark. The method to map 2D images to the scanned data is based on the colinearity conditions and ray-tracing method. If the camera center and image coordinates are known, the corresponding object point must lie on a ray starting from the camera center and connecting to the image coordinate. By intersecting the ray with the scanned surface of the object, the 3D coordinates of a point can be solved. Experimentation has demonstrated the feasibility of the method.

  1. In vivo inflammation mapping of periodontal disease based on diffuse reflectance spectral imaging: a clinical study

    NASA Astrophysics Data System (ADS)

    Prasanth, Chandra Sekhar; Betsy, Joseph; Jayanthi, Jayaraj L.; Nisha, Unni G.; Prasantila, Janam; Subhash, Narayanan

    2013-02-01

    Since conventional techniques using periodontal probes have inherent drawbacks in the diagnosis of different grades of gingival inflammation, development of noninvasive screening devices becomes significant. Diffuse reflectance (DR) spectra recorded with white light illumination is utilized to detect periodontal inflammation from the oxygenated hemoglobin absorption ratio R620/R575. A multispectral imaging system is utilized to record narrow-band DR images at 575 and 620 nm from the anterior sextant of the gingivia of 15 healthy volunteers and 25 patients (N=40). An experienced periodontist assesses the level of gingival inflammation at each site through periodontal probing and assigns diagnosis as healthy, mild, moderate, or severe inflammation. The DR image ratio R620/R575 computed for each pixel (8-μm resolution) from the monochrome images is pseudo-color-mapped to identify gingival inflammation sites. The DR image ratio values at each site are compared with clinical diagnosis to estimate the specificity and sensitivity of the DR imaging technique in inflammation mapping. The high diagnostic accuracy is utilized to detect underlying inflammation in six patients with a previous history of periodontitis.

  2. A rapid topographic mapping and eye alignment method using optical imaging in Macaque visual cortex

    PubMed Central

    HD, Lu; G, Chen; DY, Ts’o; AW, Roe

    2009-01-01

    In optical imaging experiments, it is often advantageous to map the field of view and to converge the eyes without electrophysiological recording. This occurs when limited space precludes placement of an electrode or in chronic optical chambers in which one may not want to introduce an electrode each session or for determining eye position in studies of ocular disparity response in visual cortex of anesthetized animals. For these purposes, we have developed a spot imaging method that can be conducted rapidly and repeatedly throughout an experiment. Using small 0.2° – 0.5° spots, the extent of the imaged field of view is mapped by imaging cortical response to single spots, placed at different positions (0.2° steps) in either the horizontal or vertical axes. By shifting the relative positions of two spots, one presented to each eye, eye convergence can be assessed to within 0.1° resolution. Once appropriate eye alignment is determined, stimuli for further optical imaging procedures (e.g. imaging random dot stimuli for study of disparity responses) can then be confidently placed. This procedure can be quickly repeated throughout the experiment to ensure maintained eye alignment. PMID:19013530

  3. Identification and mapping of natural vegetation on a coastal site using a Worldview-2 satellite image.

    PubMed

    Rapinel, Sébastien; Clément, Bernard; Magnanon, Sylvie; Sellin, Vanessa; Hubert-Moy, Laurence

    2014-11-01

    Identification and mapping of natural vegetation are major issues for biodiversity management and conservation. Remotely sensed data with very high spatial resolution are currently used to study vegetation, but most satellite sensors are limited to four spectral bands, which is insufficient to identify some natural vegetation formations. The study objectives are to discriminate natural vegetation and identify natural vegetation formations using a Worldview-2 satellite image. The classification of the Worldview-2 image and ancillary thematic data was performed using a hybrid pixel-based and object-oriented approach. A hierarchical scheme using three levels was implemented, from land cover at a field scale to vegetation formation. This method was applied on a 48 km² site located on the French Atlantic coast which includes a classified NATURA 2000 dune and marsh system. The classification accuracy was very high, the Kappa index varying between 0.90 and 0.74 at land cover and vegetation formation levels respectively. These results show that Wordlview-2 images are suitable to identify natural vegetation. Vegetation maps derived from Worldview-2 images are more detailed than existing ones. They provide a useful medium for environmental management of vulnerable areas. The approach used to map natural vegetation is reproducible for a wider application by environmental managers. PMID:24973612

  4. Incorporating real time velocity map image reconstruction into closed-loop coherent control

    NASA Astrophysics Data System (ADS)

    Rallis, C. E.; Burwitz, T. G.; Andrews, P. R.; Zohrabi, M.; Averin, R.; De, S.; Bergues, B.; Jochim, Bethany; Voznyuk, A. V.; Gregerson, Neal; Gaire, B.; Znakovskaya, I.; McKenna, J.; Carnes, K. D.; Kling, M. F.; Ben-Itzhak, I.; Wells, E.

    2014-11-01

    We report techniques developed to utilize three-dimensional momentum information as feedback in adaptive femtosecond control of molecular dynamics. Velocity map imaging is used to obtain the three-dimensional momentum map of the dissociating ions following interaction with a shaped intense ultrafast laser pulse. In order to recover robust feedback information, however, the two-dimensional momentum projection from the detector must be inverted to reconstruct the full three-dimensional momentum of the photofragments. These methods are typically slow or require manual inputs and are therefore accomplished offline after the images have been obtained. Using an algorithm based upon an "onion-peeling" (also known as "back projection") method, we are able to invert 1040 × 1054 pixel images in under 1 s. This rapid inversion allows the full photofragment momentum to be used as feedback in a closed-loop adaptive control scheme, in which a genetic algorithm tailors an ultrafast laser pulse to optimize a specific outcome. Examples of three-dimensional velocity map image based control applied to strong-field dissociation of CO and O2 are presented.

  5. Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) Global Snow-Cover Maps

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.; Scharfen, Greg R.

    2000-01-01

    Following the 1999 launch of the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), the capability exists to produce global snow-cover maps on a daily basis at 500-m resolution. Eight-day composite snow-cover maps will also be available. MODIS snow-cover products are produced at Goddard Space Flight Center and archived and distributed by the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado. The products are available in both orbital and gridded formats. An online search and order tool and user-services staff will be available at NSIDC to assist users with the snow products. The snow maps are available at a spatial resolution of 500 m, and 1/4 degree x 1/4 degree spatial resolution, and provide information on sub-pixel (fractional) snow cover. Pre-launch validation work has shown that the MODIS snow-mapping algorithms perform best under conditions of continuous snow cover in low vegetation areas, but can also map snow cover in dense forests. Post-launch validation activities will be performed using field and aircraft measurements from a February 2000 validation mission, as well as from existing satellite-derived snow-cover maps from NOAA and Landsat-7 Enhanced Thematic Mapper Plus (ETM+).

  6. Object-based landslide mapping on satellite images from different sensors

    NASA Astrophysics Data System (ADS)

    Hölbling, Daniel; Friedl, Barbara; Eisank, Clemens; Blaschke, Thomas

    2015-04-01

    Several studies have proven that object-based image analysis (OBIA) is a suitable approach for landslide mapping using remote sensing data. Mostly, optical satellite images are utilized in combination with digital elevation models (DEMs) for semi-automated mapping. The ability of considering spectral, spatial, morphometric and contextual features in OBIA constitutes a significant advantage over pixel-based methods, especially when analysing non-uniform natural phenomena such as landslides. However, many of the existing knowledge-based OBIA approaches for landslide mapping are rather complex and are tailored to specific data sets. These restraints lead to a lack of transferability of OBIA mapping routines. The objective of this study is to develop an object-based approach for landslide mapping that is robust against changing input data with different resolutions, i.e. optical satellite imagery from various sensors. Two study sites in Taiwan were selected for developing and testing the landslide mapping approach. One site is located around the Baolai village in the Huaguoshan catchment in the southern-central part of the island, the other one is a sub-area of the Taimali watershed in Taitung County near the south-eastern Pacific coast. Both areas are regularly affected by severe landslides and debris flows. A range of very high resolution (VHR) optical satellite images was used for the object-based mapping of landslides and for testing the transferability across different sensors and resolutions: (I) SPOT-5, (II) Formosat-2, (III) QuickBird, and (IV) WorldView-2. Additionally, a digital elevation model (DEM) with 5 m spatial resolution and its derived products (e.g. slope, plan curvature) were used for supporting the semi-automated mapping, particularly for differentiating source areas and accumulation areas according to their morphometric characteristics. A focus was put on the identification of comparatively stable parameters (e.g. relative indices), which could be

  7. A Modified Hopfield Neural Network Algorithm (MHNNA) Using ALOS Image for Water Quality Mapping

    PubMed Central

    Kzar, Ahmed Asal; Mat Jafri, Mohd Zubir; Mutter, Kussay N.; Syahreza, Saumi

    2015-01-01

    Decreasing water pollution is a big problem in coastal waters. Coastal health of ecosystems can be affected by high concentrations of suspended sediment. In this work, a Modified Hopfield Neural Network Algorithm (MHNNA) was used with remote sensing imagery to classify the total suspended solids (TSS) concentrations in the waters of coastal Langkawi Island, Malaysia. The adopted remote sensing image is the Advanced Land Observation Satellite (ALOS) image acquired on 18 January 2010. Our modification allows the Hopfield neural network to convert and classify color satellite images. The samples were collected from the study area simultaneously with the acquiring of satellite imagery. The sample locations were determined using a handheld global positioning system (GPS). The TSS concentration measurements were conducted in a lab and used for validation (real data), classification, and accuracy assessments. Mapping was achieved by using the MHNNA to classify the concentrations according to their reflectance values in band 1, band 2, and band 3. The TSS map was color-coded for visual interpretation. The efficiency of the proposed algorithm was investigated by dividing the validation data into two groups. The first group was used as source samples for supervisor classification via the MHNNA. The second group was used to test the MHNNA efficiency. After mapping, the locations of the second group in the produced classes were detected. Next, the correlation coefficient (R) and root mean square error (RMSE) were calculated between the two groups, according to their corresponding locations in the classes. The MHNNA exhibited a higher R (0.977) and lower RMSE (2.887). In addition, we test the MHNNA with noise, where it proves its accuracy with noisy images over a range of noise levels. All results have been compared with a minimum distance classifier (Min-Dis). Therefore, TSS mapping of polluted water in the coastal Langkawi Island, Malaysia can be performed using the adopted

  8. A Modified Hopfield Neural Network Algorithm (MHNNA) Using ALOS Image for Water Quality Mapping.

    PubMed

    Kzar, Ahmed Asal; Mat Jafri, Mohd Zubir; Mutter, Kussay N; Syahreza, Saumi

    2016-01-01

    Decreasing water pollution is a big problem in coastal waters. Coastal health of ecosystems can be affected by high concentrations of suspended sediment. In this work, a Modified Hopfield Neural Network Algorithm (MHNNA) was used with remote sensing imagery to classify the total suspended solids (TSS) concentrations in the waters of coastal Langkawi Island, Malaysia. The adopted remote sensing image is the Advanced Land Observation Satellite (ALOS) image acquired on 18 January 2010. Our modification allows the Hopfield neural network to convert and classify color satellite images. The samples were collected from the study area simultaneously with the acquiring of satellite imagery. The sample locations were determined using a handheld global positioning system (GPS). The TSS concentration measurements were conducted in a lab and used for validation (real data), classification, and accuracy assessments. Mapping was achieved by using the MHNNA to classify the concentrations according to their reflectance values in band 1, band 2, and band 3. The TSS map was color-coded for visual interpretation. The efficiency of the proposed algorithm was investigated by dividing the validation data into two groups. The first group was used as source samples for supervisor classification via the MHNNA. The second group was used to test the MHNNA efficiency. After mapping, the locations of the second group in the produced classes were detected. Next, the correlation coefficient (R) and root mean square error (RMSE) were calculated between the two groups, according to their corresponding locations in the classes. The MHNNA exhibited a higher R (0.977) and lower RMSE (2.887). In addition, we test the MHNNA with noise, where it proves its accuracy with noisy images over a range of noise levels. All results have been compared with a minimum distance classifier (Min-Dis). Therefore, TSS mapping of polluted water in the coastal Langkawi Island, Malaysia can be performed using the adopted

  9. The Accuracy of ADC Measurements in Liver Is Improved by a Tailored and Computationally Efficient Local-Rigid Registration Algorithm.

    PubMed

    Ragheb, Hossein; Thacker, Neil A; Guyader, Jean-Marie; Klein, Stefan; deSouza, Nandita M; Jackson, Alan

    2015-01-01

    This study describes post-processing methodologies to reduce the effects of physiological motion in measurements of apparent diffusion coefficient (ADC) in the liver. The aims of the study are to improve the accuracy of ADC measurements in liver disease to support quantitative clinical characterisation and reduce the number of patients required for sequential studies of disease progression and therapeutic effects. Two motion correction methods are compared, one based on non-rigid registration (NRA) using freely available open source algorithms and the other a local-rigid registration (LRA) specifically designed for use with diffusion weighted magnetic resonance (DW-MR) data. Performance of these methods is evaluated using metrics computed from regional ADC histograms on abdominal image slices from healthy volunteers. While the non-rigid registration method has the advantages of being applicable on the whole volume and in a fully automatic fashion, the local-rigid registration method is faster while maintaining the integrity of the biological structures essential for analysis of tissue heterogeneity. Our findings also indicate that the averaging commonly applied to DW-MR images as part of the acquisition protocol should be avoided if possible. PMID:26204105

  10. The Accuracy of ADC Measurements in Liver Is Improved by a Tailored and Computationally Efficient Local-Rigid Registration Algorithm

    PubMed Central

    Ragheb, Hossein; Thacker, Neil A.; Guyader, Jean-Marie; Klein, Stefan; deSouza, Nandita M.; Jackson, Alan

    2015-01-01

    This study describes post-processing methodologies to reduce the effects of physiological motion in measurements of apparent diffusion coefficient (ADC) in the liver. The aims of the study are to improve the accuracy of ADC measurements in liver disease to support quantitative clinical characterisation and reduce the number of patients required for sequential studies of disease progression and therapeutic effects. Two motion correction methods are compared, one based on non-rigid registration (NRA) using freely available open source algorithms and the other a local-rigid registration (LRA) specifically designed for use with diffusion weighted magnetic resonance (DW-MR) data. Performance of these methods is evaluated using metrics computed from regional ADC histograms on abdominal image slices from healthy volunteers. While the non-rigid registration method has the advantages of being applicable on the whole volume and in a fully automatic fashion, the local-rigid registration method is faster while maintaining the integrity of the biological structures essential for analysis of tissue heterogeneity. Our findings also indicate that the averaging commonly applied to DW-MR images as part of the acquisition protocol should be avoided if possible. PMID:26204105

  11. Mapping Io's Surface Topography Using Voyager and Galileo Stereo Images and Photoclinometry

    NASA Astrophysics Data System (ADS)

    White, O. L.; Schenk, P.

    2011-12-01

    O.L. White and P.M. Schenk Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas, 77058 No instrumentation specifically designed to measure the topography of a planetary surface has ever been deployed to any of the Galilean satellites. Available methods that exist to perform such a task in the absence of the relevant instrumentation include photoclinometry, shadow length measurement, and stereo imaging. Stereo imaging is generally the most accurate of these methods, but is subject to limitations. Io is a challenging subject for stereo imaging given that much of its surface is comprised of volcanic plains, smooth at the resolution of many of the available global images. Radiation noise in Galileo images can also complicate mapping. Paterae, mountains and a few tall shield volcanoes, the only features of any considerable relief, exist as isolated features within these plains; previous research concerning topography measurement on Io using stereo imaging has focused on these features, and has been localized in its scope [Schenk et al., 2001; Schenk et al., 2004]. With customized ISIS software developed at LPI, it is the ultimate intention of our research to use stereo and photoclinometry processing of Voyager and Galileo images to create a global topographic map of Io that will constrain the shapes of local- and regional-scale features on this volcanic moon, and which will be tied to the global shape model of Thomas et al. [1998]. Applications of these data include investigation of how global heat flow varies across the moon and its relation to mantle convection and tidal heating [Tackley et al., 2001], as well as its correlation with local geology. Initial stereo mapping has focused on the Ra Patera/Euboea Montes/Acala Fluctus area, while initial photoclinometry mapping has focused on several paterae and calderas across Io. The results of both stereo and photoclinometry mapping have indicated that distinct topographic areas may correlate with surface

  12. Mapping temporal changes in connectivity using high-resolution aerial data and object based image analysis

    NASA Astrophysics Data System (ADS)

    Masselink, Rens; Anders, Niels; Keesstra, Saskia; Seeger, Manuel

    2014-05-01

    Within the field of geomorphology mapping has always been an important tool to interpret spatial and temporal distributions of phenomena and processes at the surface. In the field of connectivity however, although throughout the past decade many articles have been published, there are only very few that go into the mapping of connectivity. This study aimed at developing a new, automated method for mapping connectivity within agricultural catchments. The method, which is a combination of Object-Based Image Analysis (OBIA) and traditional geomorphological field mapping, was applied to two agricultural catchments in Navarre, Spain, both with an area of approximately 2 sq.km. An unmanned aerial vehicle (UAV) was used to take aerial photographs with a resolution of 6 cm, of which a DEM with a 12 cm resolution was created using structure-from-motion photogrammetry. Connectivity was mapped within the study areas using OBIA using a top down method, meaning that connectivity was mapped at different scale levels, starting at the largest scale. Firstly sub-catchments were automatically delineated, after which several characteristics and features that affect connectivity within the sub-catchments were classified, e.g. landuse, landslides, rills, gullies, riparian vegetation, changes in slope, ploughing direction etc. In two consecutive years (2013-2014) photographs were taken and connectivity of both catchments of both years will be compared. Future work will include a quantification of the mapped connectivity (highly connected years vs. low connected years), causes and consequences of these differences in connectivity, comparison to existing connectivity indices and comparison of mapped connectivity in sub-catchments and measured discharge.

  13. A cryogenic SAR ADC for infrared readout circuits

    NASA Astrophysics Data System (ADS)

    Hongliang, Zhao; Yiqiang, Zhao; Zhisheng, Zhang

    2011-11-01

    A cryogenic successive approximation register (SAR) analog to digital converter (ADC) is presented. It has been designed to operate in cryogenic infrared readout systems as they are cooled from room temperature to their final cryogenic operation temperature. In order to preserve the circuit's performance over this wide temperature range, a temperature-compensated time-based comparator architecture is used in the ADC, which provides a steady performance with ultra low power for extreme temperature (from room temperature down to 77 K) operation. The converter implemented in a standard 0.35 μm CMOS process exhibits 0.64 LSB maximum differential nonlinearity (DNL) and 0.59 LSB maximum integral nonlinearity (INL). It achieves 9.3 bit effective number of bits (ENOB) with 200 kS/s sampling rate at 77 K, dissipating 0.23 mW under 3.3 V supply voltage and occupies 0.8 × 0.3 mm2.

  14. A trimming technique for capacitive SAR ADC as sensor interface

    NASA Astrophysics Data System (ADS)

    Ke, Liu; Zhankun, Du; Li, Shao; Xiao, Ma

    2015-12-01

    This work presented a trimming technique and algorithm applied in a capacitive successive approximation register (SAR) analog to digital converter (ADC) for a sensor interface, which can be integrated with the preceding sensor and the following controlling circuit. Without spending a special calibration phase or adding complicated functions, this circuit keeps a 12-bit resolution by trimming the capacitor array. Its merits of low power and small area make it suitable to be embedded in a power and cost sensitive system such as a battery-supplied sensor network node. The prototype 12-bit ADC is implemented by 0.5 μm 2P3M CMOS technology, with the wide supply range of 2-5 V, its power consumption is only 300 μA at a sampling speed of 200 kHz. Project supported by the National Natural Science Foundation of China (No. 61204034).

  15. Diagnostic utility of diffusion-weighted magnetic resonance imaging in two common renal tumors

    PubMed Central

    WEN, ZHAOXIA; SUN, ZHENCHAO; WANG, YUXING

    2015-01-01

    The aim of the present study was to evaluate the utility of diffusion-weighted magnetic resonance imaging (DWI) in the diagnosis of common renal tumors. Conventional magnetic resonance imaging and DWI were performed on 85 patients with renal lesions (54 renal carcinoma and 31 renal angiomyolipoma cases). The apparent diffusion coefficient (ADC) values in each case at b=800 sec/mm2 were measured in the ADC maps using a statistical software package. The 54 cases of renal cell carcinoma showed a high signal intensity in the parenchyma, and the 31 renal angiomyolipoma cases showed a well-defined mixed signal intensity on DWI. The soft-tissue component showed a high signal intensity and the fat tissue showed a low signal intensity on DWI. When the b-value was set to 800 sec/mm2, the mean ADC was significantly lower in the renal carcinoma cases than in the renal angiomyolipoma cases. In conclusion, the measurement of ADC on DWI can reveal the structure of renal tumors, which is beneficial in diagnosing and determining the prognosis of benign and malignant renal tumors. PMID:26622890

  16. Efficacy of diffusion-weighted magnetic resonance imaging in follow-up patients treated with open partial cystectomy of liver hydatid cysts

    PubMed Central

    Karakas, Ekrem; Uzunköy, Ali; Karakas, Emel Yigit; Gundogan, Mehmet; Karakas, Omer; Boyaci, Fatıma Nurefsan; Seker, Ahmet; Ulas, Turgay; Cece, Hasan; Ozgonul, Abdullah; Cevik, Muazzez; Yucel, Yusuf

    2014-01-01

    Background and Objective: The aim of this study was to evaluate the efficacy of DWI in differentiation of patients with residual cavity and type 1 hydatid cyst (HC) in the liver. Methods: 32 patients were included. 12 of these patients had type 1 HC and the remainders (n = 20) had postoperative residual cavities. In all patients, axial T2-weighted and DWI images were obtained. An apparent diffusion coefficient (ADC) map of the images was automatically generated and the ADC values were measured on this map for all patients. Mann-Whitney U test was used for comparison of continuous variables between two groups. Results: The mean diameters of type 1 hydatid cyst and residual cavity groups were 83.42 mm, 49.30 mm, respectively (P = 0.001). There were no significant differences in gender and age between the groups (both P > 0.05). The mean ADC values of type 1 hydatid cyst and residual cavity groups were 2.58 ± 0.13 × 10-3 s/mm2, 2.58 ± 0.16 × 10-3 s/mm2, respectively (P = 0.953). Conclusion: DWI might not be suitable to differentiate the postoperative residual cavity from the type 1 hydatid cyst in the liver due to similarity of ADC values between postoperative residual cavity and type 1 hydatid cyst. PMID:25664009

  17. Mapping Arctic Ocean Coastline Change With Landsat Archive Data And Object-Based Image Analysis

    NASA Astrophysics Data System (ADS)

    Hulslander, D.

    2010-12-01

    The melting of arctic permafrost is a significant effect of climate change. The combination of rising sea level, longer periods of ice-free conditions in the Arctic Ocean and melting permafrost can greatly accelerate coastline changes in general and arctic coastal erosion in particular. Anderson et al. (2009; Geology News) have measured erosion rates of 15 m per year at sites along the Alaskan Arctic Ocean coastline dominated by ice-cemented peats and silt-rich permafrost. With over 45,000 km of Arctic Ocean coastline, it is important that coastline movement and transgressive oceanic regimes be mapped and tracked with accurate data. Determining historic coastal erosion rates for this region is as important as mapping the current extent of the phenomenon to create as complete a picture as possible and locate where rapid erosion is an emergent process. The extent of the area involved combined with its inaccessibility and inhospitable conditions makes geologic remote sensing an appropriate tool for characterizing Arctic Ocean coastal erosion. Traditional weaknesses associated with using remote sensing in the geosciences have included a lack of historical data or baseline information as well as difficulties in systematization of feature mapping. Using object-based image analysis on Landsat archive data can overcome these issues and may allow for a potential multi-decadal map of Arctic Ocean coastline changes. The Landsat family of sensors (MSS 1-3 and TM/ETM 4, 5, and 7) have been providing imagery as frequently as every 16 days since July 1972. The frequent revisits maximize the chance of getting cloud-free imagery at least once per year in most study areas. Also, Landsat data are well characterized, extensively studied, and freely available from the USGS EROS Data Center Archive, making it an ideal and stable source of data for mapping the Arctic Ocean coastline. Delineating large sections of coastline from imagery by hand digitization would be impractical due to the

  18. Velocity map photoelectron-photoion coincidence imaging on a single detector

    SciTech Connect

    Lehmann, C. Stefan; Ram, N. Bhargava; Janssen, Maurice H. M.

    2012-09-15

    Here we report on a new simplified setup for velocity map photoelectron-photoion coincidence imaging using only a single particle detector. We show that both photoelectrons and photoions can be extracted toward the same micro-channel-plate delay line detector by fast switching of the high voltages on the ion optics. This single detector setup retains essentially all the features of a standard two-detector coincidence imaging setup, viz., the high spatial resolution for electron and ion imaging, while only slightly decreasing the ion time-of-flight mass resolution. The new setup paves the way to a significant cost reduction in building a coincidence imaging setup for experiments aiming to obtain the complete correlated three-dimensional momentum distribution of electrons and ions.

  19. Effect Of Clock Mode On Radiation Hardness Of An ADC

    NASA Technical Reports Server (NTRS)

    Lee, Choon I.; Rax, Bernie G.; Johnston, Allan H.

    1995-01-01

    Report discusses techniques for testing and evaluating effects of total dosages of ionizing radiation on performances of high-resolution successive-approximation analog-to-digital converters (ADCs), without having to test each individual bit or transition. Reduces cost of testing by reducing tests to few critical parametric measurements, from which one determines approximate radiation failure levels providing good approximations of responses of converters for purpose of total-dose-radiation evaluations.

  20. Ab initio multiple cloning simulations of pyrrole photodissociation: TKER spectra and velocity map imaging

    DOE PAGESBeta

    Makhov, Dmitry V.; Saita, Kenichiro; Martinez, Todd J.; Shalashilin, Dmitrii V.

    2014-12-11

    In this study, we report a detailed computational simulation of the photodissociation of pyrrole using the ab initio Multiple Cloning (AIMC) method implemented within MOLPRO. The efficiency of the AIMC implementation, employing train basis sets, linear approximation for matrix elements, and Ehrenfest configuration cloning, allows us to accumulate significant statistics. We calculate and analyze the total kinetic energy release (TKER) spectrum and Velocity Map Imaging (VMI) of pyrrole and compare the results directly with experimental measurements. Both the TKER spectrum and the structure of the velocity map image (VMI) are well reproduced. Previously, it has been assumed that the isotropicmore » component of the VMI arises from long time statistical dissociation. Instead, our simulations suggest that ultrafast dynamics contributes significantly to both low and high energy portions of the TKER spectrum.« less

  1. Velocity map imaging of a slow beam of ammonia molecules inside a quadrupole guide.

    PubMed

    Quintero-Pérez, Marina; Jansen, Paul; Bethlem, Hendrick L

    2012-07-21

    Velocity map imaging inside an electrostatic quadrupole guide is demonstrated. By switching the voltages that are applied to the rods, the quadrupole can be used for guiding Stark decelerated molecules and for extracting the ions. The extraction field is homogeneous along the axis of the quadrupole, while it defocuses the ions in the direction perpendicular to both the axis of the quadrupole and the axis of the ion optics. To compensate for this astigmatism, a series of planar electrodes with horizontal and vertical slits is used. A velocity resolution of 35 m s(-1) is obtained. It is shown that signal due to thermal background can be eliminated, resulting in the detection of slow molecules with an increased signal-to-noise ratio. As an illustration of the resolving power we have used the velocity map imaging system to characterize the phase-space distribution of a Stark decelerated ammonia beam. PMID:22652864

  2. High-resolution Ceres High Altitude Mapping Orbit atlas derived from Dawn Framing Camera images

    NASA Astrophysics Data System (ADS)

    Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2016-09-01

    The Dawn spacecraft Framing Camera (FC) acquired over 2400 clear filter images of Ceres with a resolution of about 140 m/pixel during the six cycles in the High Altitude Mapping Orbit (HAMO) phase between August 18 and October 21, 2015. We ortho-rectified the images from the first cycle and produced a global, high-resolution, controlled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 15 tiles mapped at a scale of 1:750,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page

  3. Mapping thermal maturity in the Chainman shale, near Eureka, Nevada, with Landsat Thematic Mapper images

    USGS Publications Warehouse

    Rowan, L.C.; Pawlewicz, M.J.; Jones, O.D.

    1992-01-01

    The purpose of this study was to determine if there is a correlation between measurements of organic matter (OM) maturity and laboratory measurements of visible and near-infrared spectral reflectance, and if Landsat Thematic Mapper (TM) images could be used to map maturity. The maturity of Mississippian Chainman Shale samples collected in east-central Nevada and west-central Utah was determined by using vitrinite reflectance and Rock-Eval pyrolysis. TM 4/TM 5 values correspond well to vitrinite reflectance and hydrogen index variations, and therefore this ratio was used to evaluate a TM image of the Eureka, Nevada, area for mapping thermal maturity differences in the Chainman Shale. -from Authors

  4. Electron ionization dynamics of N2 and O2 molecules: Velocity-map imaging

    NASA Astrophysics Data System (ADS)

    Bull, James N.; Lee, Jason W. L.; Vallance, Claire

    2015-02-01

    This paper reports a crossed-beam velocity-map imaging study into the electron ionization dynamics of jet-cooled N2 and O2 molecules at electron collision energies from 35 to 100 eV. The use of velocity-map imaging detection provides insight into the detailed ionization dynamics through the dimension of the product ion kinetic energy associated with impulsive dissociation. In particular, "mesoscopic" cross sections corresponding to ionization from manifolds of energetically close states converging to the same dissociation asymptote are reported for a number of single-ionization channels. In addition, a range of double-ionization cross sections have been characterized, including those yielding X2 2 + dications. These are found to be in excellent agreement with other cross sections determined in coincidence measurements. This agreement supports a meaningful and accurate determination of the single-ionization channels.

  5. Combining wavelets transform and Hu moments with self-organizing maps for medical image categorization

    NASA Astrophysics Data System (ADS)

    Silva, Leandro A.; Del-Moral-Hernandez, Emilio; Moreno, Ramon A.; Furuie, Sérgio S.

    2011-10-01

    Images are fundamental sources of information in modern medicine. The images stored in a database and divided in categories are an important step for image retrieval. For an automatic categorization process, detailed analysis is done regarding image representation and generalization method. The baseline method for this process, in the medical image context, is using thumbnails and K-nearest neighbor (KNN), which is easily implemented and has had satisfactory results in literature. This work addresses an alternative method for automatic categorization, which jointly uses discrete wavelet transform with Hu's moments for image representation and self-organizing maps (SOM) neural networks combined with the KNN classifier (SOM-KNN), for medical image categorization. Furthermore, extensive experiments are conducted, to define the best wavelet family and to select the best coefficients set, to consider the remaining wavelet coefficients set (not selected as the best ones) through their Hu's moments, and to carry out a contrastive study with other successful approaches for categorization. The categorization result from a database with 10,000 images in 116 categories yielded 81.8% of correct rate, which is much better than the 67.9% obtained by the baseline method; and the time consumed in classification processing with SOM-KNN is 100 times shorter than KNN.

  6. Effects of different soil types on strip-map GPR SAR images

    NASA Astrophysics Data System (ADS)

    Nazlı, Hakkı; Sezgin, Mehmet

    2011-06-01

    In this study, we present generation of Strip-map Synthetic Aperture Radar (SAR) images using impulse GPR system, and investigate effects of different soil types on SAR images. The SAR images of buried objects have been interpreted via 2D inverse Fourier transformation. GPR buried target data have been collected from three soil pools having different dielectric constants and B-scan images have been reconstructed from the received data using mean A-scan signal subtraction method. In order to reconstruct SAR images, the time domain data collected from multiple observation points have been transformed to 2D spectral domain. Non-uniform data have been interpolated over spatial Cartesian grid by using uniform interval. Thus, the SAR images have been reconstructed via 2D inverse FFT of interpolated data on ky-kz plane. When examined mathematical background of SAR algorithm, the values of different dielectric constants change the wave number of k. This can lead to deterioration of the SAR imagery. In this study, we investigate the Effect of the dielectric constant of different soils has been examined on SAR images. Finally, resolution difference between background removed B-Scan data and SAR images is considered.

  7. Development of a handheld fluorescence imaging camera for intraoperative sentinel lymph node mapping