Science.gov

Sample records for adc map image

  1. Brain Extraction in Pediatric ADC Maps, toward Characterizing Neuro-Development in Multi-Platform and Multi-Institution Clinical Images

    PubMed Central

    Ou, Yangming; Gollub, Randy L.; Retzepi, Kallirroi; Reynolds, Nathaniel; Pienaar, Rudolph; Pieper, Steve; Murphy, Shawn N.; Grant, P. Ellen; Zöllei, Lilla

    2015-01-01

    Apparent Diffusion Coefficient (ADC) maps can be used to characterize myelination and to detect abnormalities in the developing brain. However, given the normal variation in regional ADC with myelination, detection of abnormalities is difficult when based singularly on visual assessment. Quantitative and automated analysis of pediatric ADC maps is thus desired but requires accurate brain extraction as the first step. Currently, most existing brain extraction methods are optimized for structural T1-weighted MR images of fully myelinated brains. Due to differences in age and image contrast, these approaches do not translate well to pediatric ADC maps. To address this problem, we present a multi-atlas brain extraction framework that has 1) specificity: designed and optimized specifically for pediatric ADC maps; 2) generality: applicable to multi-platform and multi-institution data, and to subjects at various neuro-developmental stages across the first 6 years of life; 3) accuracy: highly accurate compared to expert annotations; and 4) consistency: consistently accurate regardless of sources of data and ages of subjects. We show how we achieve these goals, via optimizing major components in a multi-atlas brain extraction framework, and via developing and evaluating new criteria for its atlas ranking component. Moreover, we demonstrate that these goals can be achieved with a fixed set of atlases and a fixed set of parameters, which opens doors for our optimized framework to be used in large-scale and multi-institution neuro-developmental and clinical studies. In a pilot study, we use this framework in a dataset containing scanner-generated ADC maps from 308 pediatric patients collected during the course of routine clinical care. Our framework leads to successful quantifications of the changes in whole-brain volumes and mean ADC values across the first 6 years of life. PMID:26260429

  2. Parametric Response Mapping of Apparent Diffusion Coefficient (ADC) as an Imaging Biomarker to Distinguish Pseudoprogression from True Tumor Progression In Peptide-Based Vaccine Therapy for Pediatric Diffuse Instrinsic Pontine Glioma

    PubMed Central

    Ceschin, Rafael; Kurland, Brenda F.; Abberbock, Shira R.; Ellingson, Benjamin M.; Okada, Hideho; Jakacki, Regina I.; Pollack, Ian F.; Panigrahy, Ashok

    2015-01-01

    Background and Purpose Immune response to cancer therapy may result in pseudoprogression, which can only be identified retrospectively and which may disrupt an effective therapy. This study assesses whether serial parametric response mapping (PRM, a voxel-by-voxel method of image analysis also known as functional diffusion mapping) analysis of ADC measurements following peptide-based vaccination may help prospectively distinguish progression from pseudoprogression in pediatric patients with diffuse intrinsic pontine gliomas. Materials and Methods From 2009–2012, 21 children age 4–18 with diffuse intrinsic pontine gliomas were enrolled in a serial peptide-based vaccination protocol following radiotherapy. DWI was acquired before immunotherapy and at six week intervals during vaccine treatment. Pseudoprogression was identified retrospectively based on clinical and radiographic findings, excluding DWI. Parametric response mapping was used to analyze 96 scans, comparing ADC measures at multiple time points (from first vaccine to up to 12 weeks after the vaccine was halted) to pre-vaccine baseline values. Log-transformed fractional increased ADC (fiADC), fractional decreased ADC (fdADC), and parametric response mapping ratio (fiADC/fdADC) were compared between patients with and without pseudoprogression, using generalized estimating equations with inverse weighting by cluster size. Results Median survival was 13.1 months from diagnosis (range 6.4–24.9 months). Four of 21 children (19%) were assessed as experiencing pseudoprogression. Patients with pseudoprogression had higher fitted average log-transformed parametric response mapping ratios (p=0.01) and fiADCs (p=0.0004), compared to patients without pseudoprogression. Conclusion Serial parametric response mapping of ADC, performed at multiple time points of therapy, may distinguish pseudoprogression from true progression in patients with diffuse intrinsic pontine gliomas treated with peptide-based vaccination

  3. Detection of Traumatic Bone Marrow Lesions after Knee Trauma: Comparison of ADC Maps Derived from Diffusion-weighted Imaging with Standard Fat-saturated Proton Density-weighted Turbo Spin-Echo Sequences.

    PubMed

    Klengel, Alexis; Stumpp, Patrick; Klengel, Steffen; Böttger, Ina; Rönisch, Nadja; Kahn, Thomas

    2016-10-24

    Purpose To compare single-shot echo-planar diffusion-weighted imaging-derived apparent diffusion coefficient (ADC) maps with fat-saturated (FS) proton density (PD)-weighted turbo spin-echo (TSE) imaging in the detection of bone marrow lesions (BMLs) after knee trauma. Materials and Methods Institutional review board approval was obtained from Leipzig University. Written informed consent was waived. Three radiologists retrospectively re-examined 97 consecutive patients with reported knee trauma who underwent 1.5-T magnetic resonance (MR) imaging within 90 days of knee trauma. The following sequences were used: (a) sagittal T1-weighted TSE and FS PD-weighted TSE and (b) sagittal T1-weighted TSE and single-shot echo-planar diffusion-weighted imaging-derived ADC mapping. BMLs on the lateral and medial femoral condyle, lateral and medial aspect of the tibial plateau, and patella were documented. Volumetry was performed on BMLs with a thickness of at least 15 mm (major BMLs). ADC values were measured in intact bone marrow and major BMLs. A McNemar test and t tests were used as appropriate to test for significant differences between BML number and volume at an α level of .05. Results Significantly more patients showed at least one BML on ADC maps (98%, 95 of 97 patients) than on FS PD-weighted TSE images (86%, 84 of 97 patients) (P < .001). Of the affected regions detected on FS PD-weighted TSE images, 97% (170 of 175 regions) were identified consistently on ADC maps. Only 58% of the affected regions detected on ADC maps (170 of 293 regions) were identified on FS PD-weighted TSE images (P < .001). Median volume of concordant major BML was approximately two times larger on ADC maps (81 cm(3)) than on FS PD-weighted TSE images (39 cm(3)) (P < .001). The ADC values of intact bone marrow and BMLs did not overlap. Conclusion ADC maps are more sensitive than corresponding FS PD-weighted TSE images for detection of BML after knee trauma and allow detection of significantly more

  4. Histogram-based classification with Gaussian mixture modeling for GBM tumor treatment response using ADC map

    NASA Astrophysics Data System (ADS)

    Huo, Jing; Kim, Hyun J.; Pope, Whitney B.; Okada, Kazunori; Alger, Jeffery R.; Wang, Yang; Goldin, Jonathan G.; Brown, Matthew S.

    2009-02-01

    This study applied a Gaussian Mixture Model (GMM) to apparent diffusion coefficient (ADC) histograms to evaluate glioblastoma multiforme (GBM) tumor treatment response using diffusion weighted (DW) MR images. ADC mapping, calculated from DW images, has been shown to reveal changes in the tumor's microenvironment preceding morphologic tumor changes. In this study, we investigated the effectiveness of features that represent changes from pre- and post-treatment tumor ADC histograms to detect treatment response. The main contribution of this work is to model the ADC histogram as the composition of two components, fitted by GMM with expectation maximization (EM) algorithm. For both pre- and post-treatment scans taken 5-7 weeks apart, we obtained the tumor ADC histogram, calculated the two-component features, as well as the other standard histogram-based features, and applied supervised learning for classification. We evaluated our approach with data from 85 patients with GBM under chemotherapy, in which 33 responded and 52 did not respond based on tumor size reduction. We compared AdaBoost and random forests classification algorithms, using ten-fold cross validation, resulting in a best accuracy of 69.41%.

  5. ADC texture—An imaging biomarker for high-grade glioma?

    SciTech Connect

    Brynolfsson, Patrik; Hauksson, Jón; Karlsson, Mikael; Garpebring, Anders; Nyholm, Tufve; Nilsson, David; Trygg, Johan; Henriksson, Roger; Birgander, Richard; Asklund, Thomas

    2014-10-15

    Purpose: Survival for high-grade gliomas is poor, at least partly explained by intratumoral heterogeneity contributing to treatment resistance. Radiological evaluation of treatment response is in most cases limited to assessment of tumor size months after the initiation of therapy. Diffusion-weighted magnetic resonance imaging (MRI) and its estimate of the apparent diffusion coefficient (ADC) has been widely investigated, as it reflects tumor cellularity and proliferation. The aim of this study was to investigate texture analysis of ADC images in conjunction with multivariate image analysis as a means for identification of pretreatment imaging biomarkers. Methods: Twenty-three consecutive high-grade glioma patients were treated with radiotherapy (2 Gy/60 Gy) with concomitant and adjuvant temozolomide. ADC maps and T1-weighted anatomical images with and without contrast enhancement were collected prior to treatment, and (residual) tumor contrast enhancement was delineated. A gray-level co-occurrence matrix analysis was performed on the ADC maps in a cuboid encapsulating the tumor in coronal, sagittal, and transversal planes, giving a total of 60 textural descriptors for each tumor. In addition, similar examinations and analyses were performed at day 1, week 2, and week 6 into treatment. Principal component analysis (PCA) was applied to reduce dimensionality of the data, and the five largest components (scores) were used in subsequent analyses. MRI assessment three months after completion of radiochemotherapy was used for classifying tumor progression or regression. Results: The score scatter plots revealed that the first, third, and fifth components of the pretreatment examinations exhibited a pattern that strongly correlated to survival. Two groups could be identified: one with a median survival after diagnosis of 1099 days and one with 345 days, p = 0.0001. Conclusions: By combining PCA and texture analysis, ADC texture characteristics were identified, which seems

  6. Influence of image registration on ADC images computed from free-breathing diffusion MRIs of the abdomen

    NASA Astrophysics Data System (ADS)

    Guyader, Jean-Marie; Bernardin, Livia; Douglas, Naomi H. M.; Poot, Dirk H. J.; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    The apparent diffusion coefficient (ADC) is an imaging biomarker providing quantitative information on the diffusion of water in biological tissues. This measurement could be of relevance in oncology drug development, but it suffers from a lack of reliability. ADC images are computed by applying a voxelwise exponential fitting to multiple diffusion-weighted MR images (DW-MRIs) acquired with different diffusion gradients. In the abdomen, respiratory motion induces misalignments in the datasets, creating visible artefacts and inducing errors in the ADC maps. We propose a multistep post-acquisition motion compensation pipeline based on 3D non-rigid registrations. It corrects for motion within each image and brings all DW-MRIs to a common image space. The method is evaluated on 10 datasets of free-breathing abdominal DW-MRIs acquired from healthy volunteers. Regions of interest (ROIs) are segmented in the right part of the abdomen and measurements are compared in the three following cases: no image processing, Gaussian blurring of the raw DW-MRIs and registration. Results show that both blurring and registration improve the visual quality of ADC images, but compared to blurring, registration yields visually sharper images. Measurement uncertainty is reduced both by registration and blurring. For homogeneous ROIs, blurring and registration result in similar median ADCs, which are lower than without processing. In a ROI at the interface between liver and kidney, registration and blurring yield different median ADCs, suggesting that uncorrected motion introduces a bias. Our work indicates that averaging procedures on the scanner should be avoided, as they remove the opportunity to perform motion correction.

  7. Prognostic Value of Diffusion-Weighted Imaging (DWI) Apparent Diffusion Coefficient (ADC) in Patients with Hyperacute Cerebral Infarction Receiving rt-PA Intravenous Thrombolytic Therapy

    PubMed Central

    Sui, Hai-Jing; Yan, Cheng-Gong; Zhao, Zhen-Guo; Bai, Qing-Ke

    2016-01-01

    Background The aim of this study was to investigate the potential value of apparent diffusion coefficient (ADC) of diffusion-weighted imaging (DWI) in the prognosis of patients with hyperacute cerebral infarction (HCI) receiving intravenous thrombolytic therapy with recombinant tissue plasminogen activator (rt-PA). Material/Methods From June 2012 to June 2015, 58 cases of HCI (<6 h) undergoing rt-PA intravenous thrombolytic therapy (thrombolysis group) and 70 cases of HCI (<6 h) undergoing conventional antiplatelet and anticoagulant therapy (control group) in the same period were collected. DWI was conducted on all the subjects, and ADC maps were generated with Functool software to quantify ADC value. The clinical outcomes of HCI patients were observed for 3 months, and prognostic factors were analyzed. Results Before thrombolysis treatment, the lesion area presented high signal intensity on DWI map and low signal intensity on ADC map, and gradually weakened signal intensity on DWI map and gradually enhanced signal intensity on ADC map were observed after thrombolysis. The ADC values of the thrombolysis group were significantly higher than those of the control group after treatment (24 h, 7 d, 30 d, and 90 d) (all P<0.05), and the ADC and rADC values in the thrombolysis group gradually increased over time (all P<0.05). Multiple logistic regression analysis showed that baseline National Institutes of Health Stroke Scale (NIHSS) score, baseline rADC value, and stroke history were the independent factors for the prognosis of HIC patients with thrombolysis (all P<0.05). Conclusions The values of ADC and rADC may provide guidance in the prognosis of HCI patients receiving rt-PA, and the baseline rADC value is the protective factor for the prognosis of HCI patients receiving rt-PA. PMID:27864581

  8. Thrombotic Thrombocytopenic Purpura with Reversible Neurological Features: Brain Diffusion MRI with ADC Map, Spect and EEG Findings. A Case Report.

    PubMed

    Yerdelen, D; Göksel, B K; Yıldırım, T; Karataş, M; Karaca, S; Reyhan, M; Ozdoğu, H

    2006-11-30

    Although nervous system involvement is common in thrombotic thrombocytopenic purpura (TTP), abnormalities on computerized tomography, magnetic resonance imaging and electroencephalography are not encountered so frequently and if present, these abnormalities are often reversible. We describe a 39-year-old woman with recurring transient focal neurological findings found to have laboratory findings consistent with TTP. In cerebral diffusion weighted images (DWI), diffuse cortical hyperintensity was noted in right frontal lobe, but the ADC (apparent diffusion coefficient) map was normal. Electroencephalography demonstrated lateralized slowing and repeated DWI showed diffuse cortical hyperintensity in the right hemisphere. SPECT showed luxury perfusion in the right hemisphere areas. The patient's condition resolved with plasmapheresis. Our patient illustrates that diffuse hemispheric involvement can be seen in DWI and EEG, and SPECT may show luxury perfusion after resolution of neurological findings in TTP cases. To our knowledge, this is the first TTP case in which the ADC map was normal.

  9. Two-step single slope/SAR ADC with error correction for CMOS image sensor.

    PubMed

    Tang, Fang; Bermak, Amine; Amira, Abbes; Amor Benammar, Mohieddine; He, Debiao; Zhao, Xiaojin

    2014-01-01

    Conventional two-step ADC for CMOS image sensor requires full resolution noise performance in the first stage single slope ADC, leading to high power consumption and large chip area. This paper presents an 11-bit two-step single slope/successive approximation register (SAR) ADC scheme for CMOS image sensor applications. The first stage single slope ADC generates a 3-bit data and 1 redundant bit. The redundant bit is combined with the following 8-bit SAR ADC output code using a proposed error correction algorithm. Instead of requiring full resolution noise performance, the first stage single slope circuit of the proposed ADC can tolerate up to 3.125% quantization noise. With the proposed error correction mechanism, the power consumption and chip area of the single slope ADC are significantly reduced. The prototype ADC is fabricated using 0.18 μ m CMOS technology. The chip area of the proposed ADC is 7 μ m × 500 μ m. The measurement results show that the energy efficiency figure-of-merit (FOM) of the proposed ADC core is only 125 pJ/sample under 1.4 V power supply and the chip area efficiency is 84 k  μ m(2) · cycles/sample.

  10. Detection and Localization of Prostate Cancer With the Targeted Biopsy Strategy Based on ADC Map: A Prospective Large-Scale Cohort Study

    PubMed Central

    Watanabe, Yuji; Terai, Akito; Araki, Tohru; Nagayama, Masako; Okumura, Akira; Amoh, Yoshiki; Ishimori, Takayoshi; Ishibashi, Mana; Nakashita, Satoru; Dodo, Yoshihiro

    2012-01-01

    Purpose To investigate the usefulness of targeted biopsy strategy based on apparent diffusion coefficient (ADC) maps in the detection and localization of prostate cancer. Materials and Methods Institutional review board approval and informed consent from all participants were obtained. This study included 1448 consecutive patients suspected of having prostate cancer based on PSA level, who were divided into two groups: Group A included 890 patients with low-ADC lesions who underwent targeted and systematic biopsies; Group B included 558 patients with no low-ADC lesions who underwent only systematic biopsies. The cancer detection rates (CDR) of each group, positive predictive value (PPV), and negative predictive value (NPV) of ADC maps were calculated. Results The CDR was 70.1% for Group A, higher than those for overall patients (48.1%) and for Group B (13.1%) with significant difference (P < 0.001). In the serum, PSA range from 4 to 20 ng/mL, the CDR was higher for the Group A than for the Group B and overall patients with significant differences. PPV and NPV of MR findings were 70.1% and 86.9%, respectively. Especially, the PPV of the MR findings for the anterior portion was as high as 90.1%. Among the false negatives of MR findings, Gleason score proved 6 or smaller in 79.5%, and positive core number was merely one or two in 80.8%. Conclusion The targeted biopsy strategy based on ADC maps can be useful in the detection and localization of prostate cancer with high PPV. J. Magn. Reson. Imaging 2012;35:1414–1421. © 2012 Wiley Periodicals, Inc. PMID:22246980

  11. A low-power column-parallel ADC for high-speed CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Han, Ye; Li, Quanliang; Shi, Cong; Liu, Liyuan; Wu, Nanjian

    2013-08-01

    This paper presents a 10-bit low-power column-parallel cyclic analog-to-digital converter (ADC) used for high-speed CMOS image sensor (CIS). An opamp sharing technique is used to save power and area. Correlated double sampling (CDS) circuit and programmable gain amplifier (PGA) are integrated in the ADC, which avoids stand-alone circuit blocks. An offset cancellation technique is also introduced, which reduces the column fixed-pattern noise (FPN) effectively. One single channel ADC with an area less than 0.03mm2 was implemented in a 0.18μm 1P4M CMOS image sensor process. The resolution of the proposed ADC is 10-bit, and the conversion rate is 2MS/s. The measured differential nonlinearity (DNL) and integral nonlinearity (INL) are 0.62 LSB and 2.1 LSB together with CDS, respectively. The power consumption from 1.8V supply is only 0.36mW.

  12. The Infrared Imaging Spectrograph (IRIS) for TMT: the ADC optical design

    NASA Astrophysics Data System (ADS)

    Phillips, Andrew C.; Suzuki, Ryuji; Larkin, James E.; Moore, Anna M.; Hayano, Yutaka; Tsuzuki, Toshihiro; Wright, Shelley A.

    2016-08-01

    We present the current optical design for the IRIS Atmospheric Dispersion Corrector (ADC). The ADC is designed for residual dispersions less than 1 mas across a given passband at elevations of 25 degrees. Since the last report, the area of the IRIS Imager has increased by a factor of four, and the pupil size has increased from 75 to 90mm, both of which contribute to challenges with the design. Several considerations have led to the current design: residual dispersion, amount of introduced distortion, glass transmission, glass availability, and pupil displacement. In particular, it was found that there are significant distortions that appear (two different components) that can lead to image blur over long exposures. Also, pupil displacement increases the wave front error at the imager focus. We discuss these considerations, discuss the compromises, and present the final design choice and expected performance.

  13. 14-bit pipeline-SAR ADC for image sensor readout circuits

    NASA Astrophysics Data System (ADS)

    Wang, Gengyun; Peng, Can; Liu, Tianzhao; Ma, Cheng; Ding, Ning; Chang, Yuchun

    2015-03-01

    A two stage 14bit pipeline-SAR analog-to-digital converter includes a 5.5bit zero-crossing MDAC and a 9bit asynchronous SAR ADC for image sensor readout circuits built in 0.18um CMOS process is described with low power dissipation as well as small chip area. In this design, we employ comparators instead of high gain and high bandwidth amplifier, which consumes as low as 20mW of power to achieve the sampling rate of 40MSps and 14bit resolution.

  14. Investigation of techniques to quantify in vivo lesion volume based on comparison of water apparent diffusion coefficient (ADC) maps with histology in focal cerebral ischemia of rats.

    PubMed

    Kazemi, Mark; Silva, Matthew D; Li, Fuhai; Fisher, Marc; Sotak, Christopher H

    2004-06-01

    Stroke lesion-volume estimates derived from calculated water apparent diffusion coefficient (ADC) maps provide a quantitative surrogate end-point for investigating the efficacy of drug treatment or studying the temporal evolution of cerebral ischemia. Methodology is described for estimating ischemic lesion volumes in a rat model of permanent middle cerebral artery occlusion (MCAO) based on absolute and percent-reduction threshold values of the water ADC at 3 h post-MCAO. Volume estimates derived from average ADC (ADC(av)) maps were compared with those derived from post-mortem histological sections. Optimum ADC thresholds were established as those that provided the best correlation and one-to-one correspondence between ADC- and histologically derived lesion-volume estimates. At 3 h post-MCAO, an absolute-ADC(av) threshold of 47 x 10(-5) mm(2)/s (corresponding to a 33% reduction in ADC(av) based on a contralateral hemisphere comparison) provided the most accurate estimate of percent hemispheric lesion volume (%HLV). Experimental and data analysis issues for improving and validating the usefulness of DWI as a surrogate endpoint for the quantification of ischemic lesion volume are discussed.

  15. Continuous-Time ΣΔ ADC with Implicit Variable Gain Amplifier for CMOS Image Sensor

    PubMed Central

    Bermak, Amine; Abbes, Amira; Amor Benammar, Mohieddine

    2014-01-01

    This paper presents a column-parallel continuous-time sigma delta (CTSD) ADC for mega-pixel resolution CMOS image sensor (CIS). The sigma delta modulator is implemented with a 2nd order resistor/capacitor-based loop filter. The first integrator uses a conventional operational transconductance amplifier (OTA), for the concern of a high power noise rejection. The second integrator is realized with a single-ended inverter-based amplifier, instead of a standard OTA. As a result, the power consumption is reduced, without sacrificing the noise performance. Moreover, the variable gain amplifier in the traditional column-parallel read-out circuit is merged into the front-end of the CTSD modulator. By programming the input resistance, the amplitude range of the input current can be tuned with 8 scales, which is equivalent to a traditional 2-bit preamplification function without consuming extra power and chip area. The test chip prototype is fabricated using 0.18 μm CMOS process and the measurement result shows an ADC power consumption lower than 63.5 μW under 1.4 V power supply and 50 MHz clock frequency. PMID:24772012

  16. A SAR-ADC using unit bridge capacitor and with calibration for the front-end electronics of PET imaging

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wei, Tingcun; Li, Bo; Yang, Lifeng; Xue, Feifei; Hu, Yongcai

    2016-05-01

    This paper presents a 12-bit 1 MS/s successive approximation register-analog to digital converter (SAR-ADC) for the 32-channel front-end electronics of CZT-based PET imaging system. To reduce the capacitance mismatch, instead of the fractional capacitor, the unit capacitor is used as the bridge capacitor in the split-capacitor digital to analog converter (DAC) circuit. In addition, in order to eliminate the periodical DNL errors of -1 LSB which often exists in the SAR-ADC using the charge-redistributed DAC, a calibration algorithm is proposed and verified by the experiments. The proposed 12-bit 1 MS/s SAR-ADC is designed and implemented using a 0.35 μm CMOS technology, it occupies only an active area of 986×956 μm2. The measurement results show that, at the power supply of 3.3/5.0 V and the sampling rate of 1 MS/s, the ADC with calibration has a signal-to-noise-and-distortion ratio (SINAD) of 67.98 dB, the power dissipation of 5 mW, and a figure of merit (FOM) of 2.44 pJ/conv.-step. This ADC is with the features of high accuracy, low power and small layout area, it is especially suitable to the one-chip integration of the front-end readout electronics.

  17. Denali image map

    USGS Publications Warehouse

    Binnie, Douglas R.; Colvocoresses, Alden P.

    1987-01-01

    The Denali National Park and Preserve 1:250,000-scale image map has been prepared and published as part of the US Geological Survey's (USGS) continuing research to improve image mapping techniques. Nine multispectral scanner (MSS) images were geometrically corrected, digitally mosaicked, and enhanced at the National Mapping Division's (NMD) EROS Data Center (EDC). This process involves ground control and digital resampling to the Universal Tranverse Mercator (UTM) projection. This paper specifically discusses the preparation of the digital mosaic and the production peculiarities associated with the Denali National Park and Preserve image map.

  18. Fast Imaging Detector Readout Circuits with In-Pixel ADCs for Fourier Transform Imaging Spectrometers

    NASA Technical Reports Server (NTRS)

    Rider, D.; Blavier, J-F.; Cunningham, T.; Hancock, B.; Key, R.; Pannell, Z.; Sander, S.; Seshadri, S.; Sun, C.; Wrigley, C.

    2011-01-01

    Focal plane arrays (FPAs) with high frame rates and many pixels benefit several upcoming Earth science missions including GEO-CAPE, GACM, and ACE by enabling broader spatial coverage and higher spectral resolution. FPAs for the PanFTS, a high spatial resolution Fourier transform spectrometer and a candidate instrument for the GEO-CAPE mission are the focus of the developments reported here, but this FPA technology has the potential to enable a variety of future measurements and instruments. The ESTO ACT Program funded the developed of a fast readout integrated circuit (ROIC) based on an innovative in-pixel analog-to-digital converter (ADC). The 128 X 128 pixel ROIC features 60 ?m pixels, a 14-bit ADC in each pixel and operates at a continuous frame rate of 14 kHz consuming only 1.1 W of power. The ROIC outputs digitized data completely eliminating the bulky, power consuming signal chains needed by conventional FPAs. The 128 X 128 pixel ROIC has been fabricated in CMOS and tested at the Jet Propulsion Laboratory. The current version is designed to be hybridized with PIN photodiode arrays via indium bump bonding for light detection in the visible and ultraviolet spectral regions. However, the ROIC design incorporates a small photodiode in each cell to permit detailed characterization of the ROICperformance without the need for hybridization. We will describe the essential features of the ROIC design and present results of ROIC performance measurements.

  19. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs.

    PubMed

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-12-26

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB.

  20. Clinical applications and characteristics of apparent diffusion coefficient maps for the brain of two dogs

    PubMed Central

    Kim, Boeun; Yi, Kangjae; Jung, Sunyoung; Ji, Seoyeon; Choi, Mincheol

    2014-01-01

    Diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) mapping are functional magnetic resonance imaging techniques for detecting water diffusion. DWI and the ADC map were performed for intracranial lesions in two dogs. In necrotizing leukoencephalitis, cavitated lesions contained a hypointense center with a hyperintense periphery on DWI, and hyperintense signals on the ADC maps. In metastatic sarcoma, masses including a necrotic region were hypointense with DWI, and hyperintense on the ADC map with hyperintense perilesional edema on DWI and ADC map. Since DWI and ADC data reflect the altered water diffusion, they can provide additional information at the molecular level. PMID:24675836

  1. Clinical applications and characteristics of apparent diffusion coefficient maps for the brain of two dogs.

    PubMed

    Kim, Boeun; Yi, Kangjae; Jung, Sunyoung; Ji, Seoyeon; Choi, Mincheol; Yoon, Junghee

    2014-01-01

    Diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) mapping are functional magnetic resonance imaging techniques for detecting water diffusion. DWI and the ADC map were performed for intracranial lesions in two dogs. In necrotizing leukoencephalitis, cavitated lesions contained a hypointense center with a hyperintense periphery on DWI, and hyperintense signals on the ADC maps. In metastatic sarcoma, masses including a necrotic region were hypointense with DWI, and hyperintense on the ADC map with hyperintense perilesional edema on DWI and ADC map. Since DWI and ADC data reflect the altered water diffusion, they can provide additional information at the molecular level.

  2. A 128-ch Δ-Σ ADC based mixed signal IC for full digital beamforming Wireless handheld Ultrasound imaging system.

    PubMed

    Chirala, Mohan K; Phuong Huynh; Jaeyoung Ryu; Young-Hwan Kim

    2015-08-01

    This paper reports a massively integrated Δ-Σ ADC based mixed signal chipset for a handheld Wireless Ultrasound imaging system. The IC has been fabricated in a standard 0.13 μm 1.5V 7M2F CMOS process with 128 parallel channels containing Delta-Sigma (Δ-Σ) ADCs, Anti-aliasing filter, Decimation filters, Serializers and LVDS drivers. The entire chip is SPI controlled and allows group-level power control through an FPGA. The IC measures 15 × 15 mm and dissipates around ~ 4.6 W of power, with 12-bit resolution at 20 Msps sample rate. The chip was packaged in a thermally stable BGA package and demonstrated in a handheld ultrasound battery operated system with complete digital beamforming.

  3. A 12-bit high-speed column-parallel two-step single-slope analog-to-digital converter (ADC) for CMOS image sensors.

    PubMed

    Lyu, Tao; Yao, Suying; Nie, Kaiming; Xu, Jiangtao

    2014-11-17

    A 12-bit high-speed column-parallel two-step single-slope (SS) analog-to-digital converter (ADC) for CMOS image sensors is proposed. The proposed ADC employs a single ramp voltage and multiple reference voltages, and the conversion is divided into coarse phase and fine phase to improve the conversion rate. An error calibration scheme is proposed to correct errors caused by offsets among the reference voltages. The digital-to-analog converter (DAC) used for the ramp generator is based on the split-capacitor array with an attenuation capacitor. Analysis of the DAC's linearity performance versus capacitor mismatch and parasitic capacitance is presented. A prototype 1024 × 32 Time Delay Integration (TDI) CMOS image sensor with the proposed ADC architecture has been fabricated in a standard 0.18 μm CMOS process. The proposed ADC has average power consumption of 128 μW and a conventional rate 6 times higher than the conventional SS ADC. A high-quality image, captured at the line rate of 15.5 k lines/s, shows that the proposed ADC is suitable for high-speed CMOS image sensors.

  4. A 12-bit, 1 MS/s SAR-ADC for a CZT-based multi-channel gamma-ray imager using a new digital calibration method

    NASA Astrophysics Data System (ADS)

    Liu, W.; Wei, T.; Yang, L.; Hu, Y.

    2016-03-01

    The successive approximation register-analog to digital converter (SAR-ADC) is widely used in the CdZnTe-based gamma-ray imager because of its outstanding characteristics of low power consumption, relatively high resolution, and small die size. This study proposes a digital bit-by-bit calibration method using an input ramp signal to further improve the conversion precision and power consumption of an SAR-ADC. The proposed method is based on the sub-radix-2 redundant architecture and the perturbation technique. The proposed calibration algorithm is simpler, more stable, and faster than traditional approaches. The prototype chip of the 12-bit, 1 MS/s radiation-hardened SAR-ADC has been designed and fabricated using the TSMC 0.35 μm 2P4M CMOS process. This SAR-ADC consumes 3 mW power and occupies a core area of 856× 802μm2. The digital bit-by-bit calibration algorithm is implemented via MATLAB for testing flexibility. The effective number of bits for this digitally calibrated SAR-ADC reaches 11.77 bits. The converter exhibits high conversion precision, low power consumption, and radiation-hardened design. Therefore, this SAR-ADC is suitable for multi-channel gamma-ray imager applications.

  5. Using clinically acquired MRI to construct age-specific ADC atlases: Quantifying spatiotemporal ADC changes from birth to 6-year old.

    PubMed

    Ou, Yangming; Zöllei, Lilla; Retzepi, Kallirroi; Castro, Victor; Bates, Sara V; Pieper, Steve; Andriole, Katherine P; Murphy, Shawn N; Gollub, Randy L; Grant, Patricia Ellen

    2017-03-31

    Diffusion imaging is critical for detecting acute brain injury. However, normal apparent diffusion coefficient (ADC) maps change rapidly in early childhood, making abnormality detection difficult. In this article, we explored clinical PACS and electronic healthcare records (EHR) to create age-specific ADC atlases for clinical radiology reference. Using the EHR and three rounds of multiexpert reviews, we found ADC maps from 201 children 0-6 years of age scanned between 2006 and 2013 who had brain MRIs with no reported abnormalities and normal clinical evaluations 2+ years later. These images were grouped in 10 age bins, densely sampling the first 1 year of life (5 bins, including neonates and 4 quarters) and representing the 1-6 year age range (an age bin per year). Unbiased group-wise registration was used to construct ADC atlases for 10 age bins. We used the atlases to quantify (a) cross-sectional normative ADC variations; (b) spatiotemporal heterogeneous ADC changes; and (c) spatiotemporal heterogeneous volumetric changes. The quantified age-specific whole-brain and region-wise ADC values were compared to those from age-matched individual subjects in our study and in multiple existing independent studies. The significance of this study is that we have shown that clinically acquired images can be used to construct normative age-specific atlases. These first of their kind age-specific normative ADC atlases quantitatively characterize changes of myelination-related water diffusion in the first 6 years of life. The quantified voxel-wise spatiotemporal ADC variations provide standard references to assist radiologists toward more objective interpretation of abnormalities in clinical images. Our atlases are available at https://www.nitrc.org/projects/mgh_adcatlases. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc.

  6. Gd-EOB-DTPA-Enhanced MR Imaging of the Liver: The Effect on T2 Relaxation Times and Apparent Diffusion Coefficient (ADC)

    PubMed Central

    Cieszanowski, Andrzej; Podgórska, Joanna; Rosiak, Grzegorz; Maj, Edyta; Grudziński, Ireneusz P.; Kaczyński, Bartosz; Szeszkowski, Wojciech; Milczarek, Krzysztof; Rowiński, Olgierd

    2016-01-01

    Summary Background To investigate the effect of gadoxetic acid disodium (Gd-EOB-DTPA) on T2 relaxation times and apparent diffusion coefficient (ADC) values of the liver and focal liver lesions on a 1.5-T system. Material/Methods Magnetic resonance (MR) studies of 50 patients with 35 liver lesions were retrospectively analyzed. All examinations were performed at 1.5T and included T2-weighted turbo spin-echo (TSE) and diffusion-weighted (DW) images acquired before and after intravenous administration of Gd-EOB-DTPA. To assess the effect of this hepatobiliary contrast agent on T2-weighted TSE images and DW images T2 relaxation times and ADC values of the liver and FLLs were calculated and compared pre- and post-injection. Results The mean T2 relaxation times of the liver and focal hepatic lesions were lower on enhanced than on unenhanced T2-weighted TSE images (decrease of 2.7% and 3.6% respectively), although these differences were not statistically significant. The mean ADC values of the liver showed statistically significant decrease (of 4.6%) on contrast-enhanced DW images, compared to unenhanced images (P>0.05). The mean ADC value of liver lesions was lower on enhanced than on unenhanced DW images, but this difference (of 2.9%) did not reach statistical significance. Conclusions The mean T2 relaxation times of the liver and focal liver lesions as well as the mean ADC values of liver lesions were not significantly different before and after administration of Gd-EOB-DTPA. Therefore, acquisition of T2-weighted and DW images between the dynamic contrast-enhanced examination and hepatobiliary phase is feasible and time-saving. PMID:27026795

  7. A 12-bit compact column-parallel SAR ADC with dynamic power control technique for high-speed CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Quanliang, Li; Liyuan, Liu; Ye, Han; Zhongxiang, Cao; Nanjian, Wu

    2014-10-01

    This paper presents a 12-bit column-parallel successive approximation register analog-to-digital converter (SAR ADC) for high-speed CMOS image sensors. A segmented binary-weighted switched capacitor digital-to-analog converter (CDAC) and a staggered structure MOM unit capacitor is used to reduce the ADC area and to make its layout fit double pixel pitches. An electrical field shielding layout method is proposed to eliminate the parasitic capacitance on the top plate of the unit capacitor. A dynamic power control technique is proposed to reduce the power consumption of a single channel during readout. An off-chip foreground digital calibration is adopted to compensate for the nonlinearity due to the mismatch of unit capacitors among the CDAC. The prototype SAR ADC is fabricated in a 0.18 μm 1P5M CIS process. A single SAR ADC occupies 20 × 2020 μm2. Sampling at 833 kS/s, the measured differential nonlinearity, integral nonlinearity and effective number of bits of SAR ADC with calibration are 0.9/-1 LSB, 1/-1.1 LSB and 11.24 bits, respectively; the power consumption is only 0.26 mW under a 1.8-V supply and decreases linearly as the frame rate decreases.

  8. Image processing for optical mapping.

    PubMed

    Ravindran, Prabu; Gupta, Aditya

    2015-01-01

    Optical Mapping is an established single-molecule, whole-genome analysis system, which has been used to gain a comprehensive understanding of genomic structure and to study structural variation of complex genomes. A critical component of Optical Mapping system is the image processing module, which extracts single molecule restriction maps from image datasets of immobilized, restriction digested and fluorescently stained large DNA molecules. In this review, we describe robust and efficient image processing techniques to process these massive datasets and extract accurate restriction maps in the presence of noise, ambiguity and confounding artifacts. We also highlight a few applications of the Optical Mapping system.

  9. Fully digital image sensor employing delta-sigma indirect feedback ADC with high-sensitivity to low-light illuminations for astronomical imaging applications

    NASA Astrophysics Data System (ADS)

    Maricic, Danijel; Ignjatovic, Zeljko; Figer, Donald F.; Ashe, Brian; Hanold, Brandon J.; Montagliano, Thomas; Stauffer, Don; Nikzad, Shouleh

    2010-07-01

    We describe a CMOS image sensor with column-parallel delta-sigma (ΔΣ) analog-to-digital converter (ADC). The design employs three transistor pixels (3T1) where the unique configuration of the ΔΣ ADC reduces the noise contribution of the readout transistor. A 128 x 128 pixel image sensor prototype is fabricated in 0.35μm TSMC technology. The reset noise and the offset fixed pattern noise (FPN) are removed in the digital domain. The measured readout noise is 37.8μV for an exposure time of 33ms. The low readout noise allows an improved low light response in comparison to other state-of-art designs. The design is suitable for applications demanding excellent low-light response such as astronomical imaging. The sensor has a measured intra-scene dynamic range (DR) of 91 dB, and a peak signal-to-noise ratio (SNR) of 54 dB.

  10. Sex, Lies, & Stereotypes: The Image of Arabs in American Popular Fiction. ADC Issue Paper No. 23.

    ERIC Educational Resources Information Center

    Sabbagh, Suha J.

    This document discusses the treatment of Arabs in the western media. The main portion concentrates on the image of Arabs presented in American novels. Because television and films present visual images that communicate a powerful message in a matter of seconds, stereotyping appears as a shorthand form of communication and is, to a certain extent,…

  11. Evaluation of Free Breathing Versus Breath Hold Diffusion Weighted Imaging in Terms Apparent Diffusion Coefficient (ADC) and Signal-to-Noise Ratio (SNR) Values for Solid Abdominal Organs

    PubMed Central

    Herek, Duygu; Karabulut, Nevzat; Kocyıgıt, Ali; Yagcı, Ahmet Baki

    2016-01-01

    Summary Background Our aim was to compare the apparent diffusion coefficient (ADC) values of normal abdominal parenchymal organs and signal-to-noise ratio (SNR) measurements in the same patients with breath hold (BH) and free breathing (FB) diffusion weighted imaging (DWI). Material/Methods Forty-eight patients underwent both BH and FB DWI. Spherical region of interest (ROI) was placed on the right hepatic lobe, spleen, pancreas, and renal cortices. ADC values were calculated for each organ on each sequence using an automated software. Image noise, defined as the standard deviation (SD) of the signal intensities in the most artifact-free area of the image background was measured by placing the largest possible ROI on either the left or the right side of the body outside the object in the recorded field of view. SNR was calculated using the formula: SNR=signal intensity (SI)(organ)/standard deviation (SD)(noise). Results There were no statistically significant differences in ADC values of the abdominal organs between BH and FB DWI sequences (p>0.05). There were statistically significant differences between SNR values of organs on BH and FB DWIs. SNRs were found to be better on FB DWI than BH DWI (p<0.001). Conclusions Free breathing DWI technique reduces image noise and increases SNR for abdominal examinations. Free breathing technique is therefore preferable to BH DWI in the evaluation of abdominal organs by DWI. PMID:27822326

  12. Map Classification In Image Data

    DTIC Science & Technology

    2015-09-25

    sub-classes. . . . . . . . . . . . . . . . 15 Figure 3.2 Architecture of a deep CNN. . . . . . . . . . . . . . . . . . . . 24 Figure 4.1 Examples of...22 Table 3.4 Experimental setup for four runs to examine the deep CNN BVLC Reference CaffeNet...images called positives, di- vided into sub-classes including basic maps, pilotage charts, web maps, and sketches. Ad- ditionally, 1,200 images without

  13. Design of a 12-bit 2 MS/s 12 mW pipelined SAR ADC in CMOS 0.18 μm technology for CZT-based imaging system

    NASA Astrophysics Data System (ADS)

    Xue, F.; Gao, W.; Wei, X.; Liu, W.; Hu, Y.

    2016-12-01

    This paper presents a 12-bit 2 MS/s pipelined successive approximation register (SAR) ADC for CZT-based imaging system. The proposed ADC is divided into a first-stage 6-bit SAR-based Multiplying Digital Analog Converter (MDAC) and a second-stage 8-bit SAR ADC. The first-stage MDAC has a gain of 16 instead of the usual gain of 64, which considerably minimizes the power dissipation of residue amplifier. The second-stage 8-bit SAR ADC employs unit bridge capacitor split-capacitor architecture aiming to reduce the load capacitance of residue amplifier so as to minimize the power dissipation of the proposed ADC. Moreover, a code-randomized calibration algorithm is proposed to improve the linearity of the second-stage 8-bit split-capacitor SAR ADC. In addition, several radiation-hardened-by-design techniques are adopted in the layout design against space radiation effects. The prototype chip was fabricated in 0.18 μ m mixed-signal 1.8 V/3.3 V process and occupied a core area of 0.71 mm2. The proposed pipelined SAR ADC achieves a peak signal-to-noise-and-distortion ratio (SNDR) of 63.2 dB at 2 MS/s sampling rate and consumes 12 mW power in total. The figure of merit (FoM) of the proposed ADC is 5.06 pJ/conversion-step.

  14. Satellite image maps of Pakistan

    USGS Publications Warehouse

    ,

    1997-01-01

    Georeferenced Landsat satellite image maps of Pakistan are now being made available for purchase from the U.S. Geological Survey (USGS). The first maps to be released are a series of Multi-Spectral Scanner (MSS) color image maps compiled from Landsat scenes taken before 1979. The Pakistan image maps were originally developed by USGS as an aid for geologic and general terrain mapping in support of the Coal Resource Exploration and Development Program in Pakistan (COALREAP). COALREAP, a cooperative program between the USGS, the United States Agency for International Development, and the Geological Survey of Pakistan, was in effect from 1985 through 1994. The Pakistan MSS image maps (bands 1, 2, and 4) are available as a full-country mosaic of 72 Landsat scenes at a scale of 1:2,000,000, and in 7 regional sheets covering various portions of the entire country at a scale of 1:500,000. The scenes used to compile the maps were selected from imagery available at the Eros Data Center (EDC), Sioux Falls, S. Dak. Where possible, preference was given to cloud-free and snow-free scenes that displayed similar stages of seasonal vegetation development. The data for the MSS scenes were resampled from the original 80-meter resolution to 50-meter picture elements (pixels) and digitally transformed to a geometrically corrected Lambert conformal conic projection. The cubic convolution algorithm was used during rotation and resampling. The 50-meter pixel size allows for such data to be imaged at a scale of 1:250,000 without degradation; for cost and convenience considerations, however, the maps were printed at 1:500,000 scale. The seven regional sheets have been named according to the main province or area covered. The 50-meter data were averaged to 150-meter pixels to generate the country image on a single sheet at 1:2,000,000 scale

  15. MO-F-CAMPUS-I-05: Quantitative ADC Measurement of Esophageal Cancer Before and After Chemoradiation

    SciTech Connect

    Yang, L; Son, JB; Ma, J; Hazle, J; Carter, BW; Lin, S; Cheng, S

    2015-06-15

    Purpose: We investigated whether quantitative diffusion imaging can be used as an imaging biomarker for early prediction of treatment response of esophageal cancer. Methods: Eight patients with esophageal cancer underwent a baseline and an interim MRI studies during chemoradiation on a 3T whole body MRI scanner with an 8-channel torso phased array coil. Each MRI study contained two axial diffusion-weighted imaging (DWI) series with a conventional DWI sequence and a reduced field-of-view DWI sequence (FOCUS) of varying b-values. ADC maps with two b-values were computed from conventional DWI images using a mono-exponential model. For each of DWI sequences, separate ADCall was computed by fitting the signal intensity of images with all the b-values to a single exponential model. For the FOCUS sequence, a bi-exponential model was used to extract perfusion and diffusion coefficients (ADCperf and ADCdiff) and their contributions to the signal decay. A board-certified radiologist contoured the tumor region and mean ADC values and standard deviations of tumor and muscle ROIs were recorded from different ADC maps. Results: Our results showed that (1) the magnitude of ADCs from the same ROIs by the different analysis methods can be substantially different. (2) For a given method, the change between the baseline and interim muscle ADCs was relatively small (≤10%). In contrast, the change between the baseline and interim tumor ADCs was substantially larger, with the change in ADCdiff by FOCUS DWI showing the largest percentage change of 73.2%. (3) The range of the relative change of a specific parameter for different patients was also different. Conclusion: Presently, we do not have the final pathological confirmation of the treatment response for all the patients. However, for a few patients whose surgical specimen is available, the quantitative ADC changes have been found to be useful as a potential predictor for treatment response.

  16. Prognostic value of the primary lesion apparent diffusion coefficient (ADC) in nasopharyngeal carcinoma: a retrospective study of 541 cases

    PubMed Central

    Zhang, Yuan; Liu, Xu; Zhang, Yun; Li, Wen-Fei; Chen, Lei; Mao, Yan-Ping; Shen, Jing-Xian; Zhang, Fan; Peng, Hao; Liu, Qing; Sun, Ying; Ma, Jun

    2015-01-01

    The prognostic value of the primary lesion pretreatment apparent diffusion coefficient (ADC), which is obtained by diffusion-weighted magnetic resonance imaging (MR-DWI), remains unknown in nasopharyngeal carcinoma (NPC). Thus, to investigate whether the pretreatment ADC value as measured from the primary site on MR-DWI is an independent prognostic factor in NPC, we retrospectively reviewed a cohort of 541 patients with histologically-proven stage I-IVB NPC. All patients underwent MRI using a 3-Tesla system (Trio Tim; Siemens, Erlangen Germany). To calculate ADC, the primary lesion was designated on the ADC map at the level of the largest tumor diameter to cover most of the lesion, avoiding cystic or necrotic components. Median and mean (±SD) pretreatment ADC were 0.713 and 0.716 ± 0.079 × 10−3 mm2/s, respectively. Univariate and multivariate analysis confirmed high pretreatment ADC was a good prognostic factor for poor local relapse-free survival and disease-free survival. Furthermore, the area under the ROC curve for prediction of local failure significantly increased when pretreatment ADC was combined with T classification (P = 0.004). Thus, pretreatment ADC might provide useful information for predicting outcome and selecting high-risk patients appropriate for more aggressive therapy. Further studies are warranted to investigate the biological basis of this observation. PMID:26184509

  17. Design of a 12-bit 1 MS/s SAR-ADC for front-end readout of 32-channel CZT detector imaging system

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wei, Tingcun; Li, Bo; Guo, Panjie; Hu, Yongcai

    2015-06-01

    A 12-bit 1MS/s SAR-ADC for the front-end readout of a 32-channel CZT detector imaging system is presented. In order to improve the performances of the ADC, several techniques are proposed. First, a novel offset cancellation method for comparator is proposed, in which no any capacitor is introduced in the signal pathway, thus it has faster operation speed than traditional one. Second, the architecture of unit capacitor array is adopted in the charge-redistribution DAC to reduce the capacitor mismatch. Third, the radiation-hardened ability is enhanced through circuit and layout design. The prototype chip was fabricated using a TSMC 0.35 um 2P4M CMOS process. At a 3.3/5 V power supply, the proposed SAR-ADC achieves 67.64 dB SINAD at 1MS/s, consumes 10 mW power and occupies a core area of 1180×1080 um2.

  18. The Cartographic Concept of the Image Map

    NASA Astrophysics Data System (ADS)

    Vozenilek, V.; Belka, L.

    2016-06-01

    Image maps have become very popular and frequently produced cartographical outputs during recent years. However, the unambiguous terminology, definitions, content and appearance specification have not been widely researched. The paper deals with the new definition of image map, its components delineation, and basic classification. The authors understand the image map as a special map portraying geographic space in a particular cartographical projection and map scale, where its content consists of two basic components - image and symbol components. Image component is represented by remote sensing image(s), while symbol component is represented by cartographical symbols. An image map has to have three essential attributes: cartographical projection, map scale and symbol component by means of map language. The authors also present aspects of topographic and thematic image maps.

  19. Active spectral imaging and mapping

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove

    2014-04-01

    Active imaging and mapping using lasers as illumination sources have been of increasing interest during the last decades. Applications range from defense and security, remote sensing, medicine, robotics, and others. So far, these laser systems have mostly been based on a fix wavelength laser. Recent advances in lasers enable emission of tunable, multiline, or broadband emission, which together with the development of array detectors will extend the capabilities of active imaging and mapping. This paper will review some of the recent work on active imaging mainly for defense and security and remote sensing applications. A short survey of basic lidar relations and present fix wavelength laser systems is followed by a review of the benefits of adding the spectral dimension to active and/or passive electro-optical systems.

  20. Histogram-based characterization of healthy and ischemic brain tissues using multiparametric MR imaging including apparent diffusion coefficient maps and relaxometry.

    PubMed

    Bernarding, J; Braun, J; Hohmann, J; Mansmann, U; Hoehn-Berlage, M; Stapf, C; Wolf, K J; Tolxdorff, T

    2000-01-01

    Decreased, renormalized, or increased values of the calculated apparent diffusion coefficient (ADC) are observed in stroke models. A quantitative description of corresponding tissue states using ADC values may be extended to include true relaxation times. A histogram-based segmentation is well suited for characterizing tissues according to specific parameter combinations irrespective of the heterogeneity found for human healthy and ischemic brain tissues. In a new approach, navigated diffusion-weighted images and ADC maps were incorporated into voxel-based parameter sets of relaxation times (T1, T2), and T1- or T2-weighted images, followed by a supervised histogram-based analysis. Healthy tissues were segmented by incorporating T1 relaxation into the data set, ischemic regions by combining T2- or diffusion-weighted images with ADC maps. Mean values of healthy and pathologic tissues were determined, spatial distributions of the parameter vectors were visualized using color-encoded overlays. One to six days after stroke, ischemic regions exhibited reduced relative mean ADC values.

  1. Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon

    2013-07-01

    This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.

  2. User Preferences in Image Map Using

    NASA Astrophysics Data System (ADS)

    Vondráková, A.; Vozenilek, V.

    2016-06-01

    In the process of map making, the attention is given to the resulting image map (to be accurate, readable, and suit the primary purpose) and its user aspects. Current cartography understands the user issues as all matters relating to user perception, map use and also user preferences. Most commercial cartographic production is strongly connected to economic circumstances. Companies are discovering user's interests and market demands. However, is it sufficient to focus just on the user's preferences? Recent research on user aspects at Palacký University Olomouc addresses a much wider scope of user aspects. The user's preferences are very often distorting - the users think that the particular image map is kind, beautiful, and useful and they wants to buy it (or use it - it depends on the form of the map production). But when the same user gets the task to use practically this particular map (such as finding the shortest way), so the user concludes that initially preferred map is useless, and uses a map, that was worse evaluated according to his preferences. It is, therefore, necessary to evaluate not only the correctness of image maps and their aesthetics but also to assess the user perception and other user issues. For the accomplishment of such testing, eye-tracking technology is a useful tool. The research analysed how users read image maps, or if they prefer image maps over traditional maps. The eye tracking experiment on the comparison of the conventional and image map reading was conducted. The map readers were asked to solve few simple tasks with either conventional or image map. The readers' choice of the map to solve the task was one of investigated aspect of user preferences. Results demonstrate that the user preferences and user needs are often quite different issues. The research outcomes show that it is crucial to implement map user testing into the cartographic production process.

  3. Geologic mapping using thermal images

    NASA Technical Reports Server (NTRS)

    Abrams, M. J.; Kahle, A. B.; Palluconi, F. D.; Schieldge, J. P.

    1984-01-01

    Thermal radiance data from the Heat Capacity Mapping Mission (HCMM) satellite has been used to measure surface reflectance data and to provide additional material composition information through remote sensing. The primary goal was to investigate the utility of HCMM data for geologic applications. Three techniques were used for displaying and combining thermal and visible near infrared (VNIR) data for two desert areas in southern California (Trona and Pisgah): color additive composites (CAC) for day and night IR and day VNIR, principal components, and calculation of thermal inertia images. The HCMM thermal data were more effective than Landsat data in producing separation of compositionally different areas including volcanic and intrusive rocks. The satellite CAC data produced an image for a 1 x 2 degree area, and the color picture was enlarged to a scale of 1:250,000. Playa composition, moisture content, presence of standing water, and vegetation cover were displayed in a variety of colors according to physical characteristics. Areas such as sand dunes were not distinguishable because of the coarse 500-mm HCMM resolution. HCMM thermal data have shown a new dimension to geologic remote sensing, and future satellite missions should allow the continued development of the thermal infrared data for geology.

  4. ADC Histograms from Routine DWI for Longitudinal Studies in Cerebral Small Vessel Disease: A Field Study in CADASIL

    PubMed Central

    Gunda, Bence; Porcher, Raphael; Duering, Marco; Guichard, Jean-Pierre; Mawet, Jerome; Jouvent, Eric; Dichgans, Martin; Chabriat, Hugues

    2014-01-01

    Diffusion tensor imaging (DTI) histogram metrics are correlated with clinical parameters in cerebral small vessel diseases (cSVD). Whether ADC histogram parameters derived from simple diffusion weighted imaging (DWI) can provide relevant markers for long term studies of cSVD remains unknown. CADASIL patients were evaluated by DWI and DTI in a large cohort study overa6-year period. ADC histogram parameters were compared to those derived from mean diffusivity (MD) histograms in 280 patients using intra-class correlation and Bland-Altman plots. Impact of image corrections applied to ADC maps was assessed and a mixed effect model was used for analyzing the effects of scanner upgrades. The results showed that ADC histogram parameters are strongly correlated to MD histogram parameters and that image corrections have only limited influence on these results. Unexpectedly, scanner upgrades were found to have major effects on diffusion measures with DWI or DTI that can be even larger than those related to patients’ characteristics. These data support that ADC histograms from daily used DWI can provide relevant parameters for assessing cSVD, but the variability related to scanner upgrades as regularly performed in clinical centers should be determined precisely for longitudinal and multicentric studies using diffusion MRI in cSVD. PMID:24819368

  5. Image registration using binary boundary maps

    NASA Technical Reports Server (NTRS)

    Andrus, J. F.; Campbell, C. W.; Jayroe, R. R.

    1978-01-01

    Registration technique that matches binary boundary maps extracted from raw data, rather than matching actual data, is considerably faster than other techniques. Boundary maps, which are digital representations of regions where image amplitudes change significantly, typically represent data compression of 60 to 70 percent. Maps allow average products to be computed with addition rather than multiplication, further reducing computation time.

  6. MAPPING DIRECTLY IMAGED GIANT EXOPLANETS

    SciTech Connect

    Kostov, Veselin; Apai, Daniel

    2013-01-01

    With the increasing number of directly imaged giant exoplanets, the current atmosphere models are often not capable of fully explaining the spectra and luminosity of the sources. A particularly challenging component of the atmosphere models is the formation and properties of condensate cloud layers, which fundamentally impact the energetics, opacity, and evolution of the planets. Here we present a suite of techniques that can be used to estimate the level of rotational modulations these planets may show. We propose that the time-resolved observations of such periodic photometric and spectroscopic variations of extrasolar planets due to their rotation can be used as a powerful tool to probe the heterogeneity of their optical surfaces. In this paper, we develop simulations to explore the capabilities of current and next-generation ground- and space-based instruments for this technique. We address and discuss the following questions: (1) what planet properties can be deduced from the light curve and/or spectra, and in particular can we determine rotation periods, spot coverage, spot colors, and spot spectra?; (2) what is the optimal configuration of instrument/wavelength/temporal sampling required for these measurements?; and (3) can principal component analysis be used to invert the light curve and deduce the surface map of the planet? Our simulations describe the expected spectral differences between homogeneous (clear or cloudy) and patchy atmospheres, outline the significance of the dominant absorption features of H{sub 2}O, CH{sub 4}, and CO, and provide a method to distinguish these two types of atmospheres. Assuming surfaces with and without clouds for most currently imaged planets the current models predict the largest variations in the J band. Simulated photometry from current and future instruments is used to estimate the level of detectable photometric variations. We conclude that future instruments will be able to recover not only the rotation periods

  7. System Turns SAR Images Into Maps

    NASA Technical Reports Server (NTRS)

    Curlander, J. C.; Kwok, Ronald; Pang, Shirley S. N.

    1988-01-01

    Postprocessing system for synthetic-aperture radar (SAR) transforms raw images from natural rotated and distorted SAR reference frame into geocoded images. Images automatically corrected to remove slant-range nonlinearities and Doppler skew. Produces multiple-frame mosaics for large-scale mapping. Does not require tedious manual registration of representative "tie" points in raw SAR imagery with known locations on Earth.

  8. Cruel and Unusual: Negative Images of Arabs in American Popular Culture. Third Edition. ADC Issue Paper No. 15.

    ERIC Educational Resources Information Center

    Michalak, Laurence

    This document addresses the negative image of Arabs among the U.S. public. While formal education has created many of the misconceptions about Arabs that abound in the west, many of the misconceptions come from the informal education of popular culture. The western image of the Arab is possibly more interesting than the reality of Arab culture.…

  9. Northern Everglades, Florida, satellite image map

    USGS Publications Warehouse

    Thomas, Jean-Claude; Jones, John W.

    2002-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program with support from the Everglades National Park. The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  10. South Florida Everglades: satellite image map

    USGS Publications Warehouse

    Jones, John W.; Thomas, Jean-Claude; Desmond, G.B.

    2001-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program (http://access.usgs.gov/) with support from the Everglades National Park (http://www.nps.gov/ever/). The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  11. ART AND SCIENCE OF IMAGE MAPS.

    USGS Publications Warehouse

    Kidwell, Richard D.; McSweeney, Joseph A.

    1985-01-01

    The visual image of reflected light is influenced by the complex interplay of human color discrimination, spatial relationships, surface texture, and the spectral purity of light, dyes, and pigments. Scientific theories of image processing may not always achieve acceptable results as the variety of factors, some psychological, are in part, unpredictable. Tonal relationships that affect digital image processing and the transfer functions used to transform from the continuous-tone source image to a lithographic image, may be interpreted for an insight of where art and science fuse in the production process. The application of art and science in image map production at the U. S. Geological Survey is illustrated and discussed.

  12. Distinctiveness Maps for Image Matching

    NASA Technical Reports Server (NTRS)

    Manduchi, Roberto; Tomasi, Carlo

    2000-01-01

    Stereo correspondence is hard because different image features can look alike. We propose a measure for the ambiguity of image points that allows matching distinctive points first and breaks down the matching task into smaller and separate subproblems. Experiments with an algorithm based on this measure demonstrate the ensuing efficiency and low likelihood of incorrect matches.

  13. Design of ADC in 25 μm pixels pitch dedicated for IRFPA image processing at LETI

    NASA Astrophysics Data System (ADS)

    Tchagaspanian, M.; Villard, P.; Dupont, B.; Chammings, G.; Martin, J. L.; Pistre, C.; Lattard, D.; Chantre, C.; Arnaud, A.; Yon, J. J.; Simoens, F.; Tissot, J. L.

    2007-04-01

    LETI has been involved in IRFPA development since 1978, the design department (LETI/DCIS) has focused its work on new ROIC architecture since many years. The trend is to integrate advanced functions into the CMOS design in the aim of making cost efficient sensors. The purpose of this paper is to present the latest developments of an Analog to Digital Converter embedded in a 25μm pixel. The design is driven by several goals. It targets both long integration time and snapshot exposure, 100% of image frame time being available for integration. All pixels are integrating the IR signal at the same time. The IR signal is converted into digital by using a charge packet counter. High density 130nm CMOS allows to use many digital functions such as counting, memory and addressing. This new structure has been applied to 25μm pitch bolometer sensors with a dedicated 320 x 240 IRCMOS circuit. Due to smart image processing in the CMOS, the bolometer architecture requirements may become very simple and low cost. The room temperature sensitivity and the DC offset are solved directly in the pixel. This FPA targets low NETD (<50mK), a variation of 80 Kelvin for the FPA temperature, 14 bits output at 50/60Hz video rate.

  14. ADC evaluation of the corticospinal tract in multiple sclerosis.

    PubMed

    Inal, Mikail; Unal, Birsen; Kala, Ibrahim; Turkel, Yakup; Bilgili, Yasemin Karadeniz

    2015-06-01

    Apparent diffusion coefficient (ADC) values derived from diffusion-weighted MR imaging (DWI) provide important information about tissues. The goal of this study was to evaluate the ADC values in the corticospinal tract regions in multiple sclerosis (MS). The ADC values of 42 patients with multiple sclerosis and 46 healthy people were measured. The ADC values in the corticospinal tract at the capsula interna posterior crus from six points and mesencephalon from three points bilaterally in MS patients were compared with those of controls. An ANOVA post hoc test was used to analyse the differences in mean ADC values between the MS and control groups. The mean ADC values of the right (p = 0.008) and left internal capsules (p = 0.000) and right (p = 0.002) and left mesencephalons (p = 0.044) in MS patients were significantly lower than in the control group. There was no significant difference between the right and left side ADC values in MS (p = 0.313 vs. p = 0.223) and control groups (p = 0.756 vs. p = 0.105), respectively. The mean ADC values of the corticospinal tract in MS patients were significantly lower than in the control group. This decreased diffusion may be the result of cellular infiltration due to inflammation, cytotoxic oedema, demyelination or remyelination processes.

  15. Mapping surface mineralogy using imaging spectrometry

    NASA Astrophysics Data System (ADS)

    Kruse, Fred A.

    2012-01-01

    Imaging spectrometry, simultaneous measurement of spectra and images in up to hundreds of spectral channels or bands, is a proven technology for identifying and mapping minerals based on their reflectance or emissivity signatures. Also known as hyperspectral imaging or "HSI", extraction of key spectral signatures from these data allows direct identification of iron minerals such as hematite, goethite, and jarosite in the visible/near infrared (VNIR); clays, carbonates, micas, sulfates, and other minerals in the short wave infrared (SWIR); and silicates and carbonates in the long wave infrared (LWIR). The unique capability of imaging spectrometry to produce detailed maps of the spatial distribution of specific minerals, mineral assemblages, and mineral variability on the surface of Earth makes it an ideal tool for enhanced geomorphic mapping. Case histories illustrate the use of HSI for characterizing and mapping active and relict geothermal/hydrothermal systems and determining relations between mineralogy and derived landforms. Imaging spectrometry, used in conjunction with complimentary datasets such as InSAR (Interferometric Synthetic Aperture Radar), Light Detection and Ranging (LiDAR), or stereo (photogrammetric-derived) digital elevation models (DEMs), provides a unique means of visualizing the spatial distribution and association of mineralogy with topography, thus contributing to the understanding of the relations between geology and landscape and to improved interpretation of surface geologic processes.

  16. Compression of color-mapped images

    NASA Technical Reports Server (NTRS)

    Hadenfeldt, A. C.; Sayood, Khalid

    1992-01-01

    In a standard image coding scenario, pixel-to-pixel correlation nearly always exists in the data, especially if the image is a natural scene. This correlation is what allows predictive coding schemes (e.g., DPCM) to perform efficient compression. In a color-mapped image, the values stored in the pixel array are no longer directly related to the pixel intensity. Two color indices which are numerically adjacent (close) may point to two very different colors. The correlation still exists, but only via the colormap. This fact can be exploited by sorting the color map to reintroduce the structure. The sorting of colormaps is studied and it is shown how the resulting structure can be used in both lossless and lossy compression of images.

  17. Imaging retinotopic maps in the human brain

    PubMed Central

    Wandell, Brian A.; Winawer, Jonathan

    2010-01-01

    A quarter-century ago visual neuroscientists had little information about the number and organization of retinotopic maps in human visual cortex. The advent of functional magnetic resonance imaging (MRI), a non-invasive, spatially-resolved technique for measuring brain activity, provided a wealth of data about human retinotopic maps. Just as there are differences amongst nonhuman primate maps, the human maps have their own unique properties. Many human maps can be measured reliably in individual subjects during experimental sessions lasting less than an hour. The efficiency of the measurements and the relatively large amplitude of functional MRI signals in visual cortex make it possible to develop quantitative models of functional responses within specific maps in individual subjects. During this last quarter century, there has also been significant progress in measuring properties of the human brain at a range of length and time scales, including white matter pathways, macroscopic properties of gray and white matter, and cellular and molecular tissue properties. We hope the next twenty-five years will see a great deal of work that aims to integrate these data by modeling the network of visual signals. We don’t know what such theories will look like, but the characterization of human retinotopic maps from the last twenty-five years is likely to be an important part of future ideas about visual computations. PMID:20692278

  18. Monitoring T2 and ADC at 9.4 T following fractionated external beam radiation therapy in a mouse model

    NASA Astrophysics Data System (ADS)

    Larocque, Matthew P.; Syme, Alasdair; Yahya, Atiyah; Wachowicz, Keith; Allalunis-Turner, Joan; Fallone, B. Gino

    2010-03-01

    The purpose of this study is to investigate the response of transverse relaxation time (T2) and apparent diffusion coefficient (ADC) in human glioma tumor xenografts during and after fractionated radiotherapy. Tumor-bearing mice were divided into four treatment groups (n = 6 per group) that received a total dose of 800 cGy of 200 kVp x-rays, given over two or three fractions, with a fraction spacing of either 24 or 72 h. A fifth treatment group received 800 cGy in a single fraction, and a sixth group of mice served as an untreated control. All mice were scanned pretreatment, before each fraction and at multiple points after treatment using a 9.4 T magnetic resonance imaging (MRI) system. Quantitative T2 and ADC maps were produced. All treated groups showed an increase in mean tumor ADC, though the time for this response to reach a maximum and return toward baseline was delayed in the fractionated groups. The highest ADC was measured 7 days after the final fraction of treatment for all groups. There were no significant differences in the maximum measured change in ADC between any of the treated groups, with the average measured maximum value being 20.5% above baseline. After treatment, all groups showed an increase in mean tumor T2, with the average measured maximum T2 being 4.7% above baseline. This increase was followed by a transition to mean T2 values below baseline values, with the average measured tumor T2 being 92.4% of the pretreatment value. The transition between elevated and depressed T2 values was delayed in the cases of fractionated therapies and occurred between 3.6 and 7.3 days after the last fraction of treatment. These results further the understanding of the temporal evolution of T2 and ADC during fractionated radiotherapy and support their potential use as time-sensitive biomarkers for tumor response.

  19. Image mapping spectrometry: calibration and characterization

    PubMed Central

    Bedard, Noah; Hagen, Nathan; Gao, Liang; Tkaczyk, Tomasz S.

    2012-01-01

    Image mapping spectrometry (IMS) is a hyperspectral imaging technique that simultaneously captures spatial and spectral information about an object in real-time. We present a new calibration procedure for the IMS as well as the first detailed evaluation of system performance. We correlate optical components and device calibration to performance metrics such as light throughput, scattered light, distortion, spectral image coregistration, and spatial/spectral resolution. Spectral sensitivity and motion artifacts are also evaluated with a dynamic biological experiment. The presented methodology of evaluation is useful in assessment of a variety of hyperspectral and multi-spectral modalities. Results are important to any potential users/developers of an IMS instrument and to anyone who may wish to compare the IMS to other imaging spectrometers. PMID:22962504

  20. A comparative quantitative analysis of magnetic susceptibility artifacts in echo planar and PROPELLER diffusion-weighted images

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Hwan; Lee, Hae-Kag; Yang, Han-Joon; Lee, Gui-Won; Park, Yong-Soon; Chung, Woon-Kwan

    2013-01-01

    In this study, the authors investigated whether periodically-rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) diffusion-weighted imaging (DWI) can remove magnetic susceptibility artifacts and compared apparent diffusion coefficient (ADC) values for PROPELLER DWI and the common echo planar (EP) DWI. Twenty patients that underwent brain MRI with a metal dental implant were selected. A 3.0T MR scanner was then used to obtain EP DWI, PROPELLER DWI, and corresponding apparent diffusion coefficient (ADC) maps for a b-value of 0 and 1,000 s/mm2. The frequencies of magnetic susceptibility artifacts in four parts of the brain (bilateral temporal lobes, pons, and orbit) were selected. In the ADC maps, we measured the ADC values of both sides of the temporal lobe and the pons. According to the study results, the frequency of magnetic susceptibility artifacts in PROPELLER DW images was lower than it was in EP DW images. In ADC maps, the ADC values of the bilateral temporal lobes and the pons were all higher in PROPELLER ADC maps than in EP ADC maps. Our findings show that when a high-field MRI machine is used, magnetic susceptibility artifacts can distort anatomical structures and produce high-intensity signals. Furthermore, our findings suggest that in many cases, PROPELLER DWI would be helpful in terms of achieving a correct diagnosis.

  1. Dynamic Testing of ADC: A Review

    NASA Astrophysics Data System (ADS)

    Garg, Bhawana; Mishra, D. K.

    2012-09-01

    Analog to digital converters are Mixed signal devices. With the increasing popularity of these devices , it is important to get more faster and accurate device. Along with design, testing of ADC plays major role . Static and Dynamic methods are available for ADC testing. Ideal ADC itself has quantization error. A NonIdeal ADC consists many other errors like offset error, Gain error, DNL, INL,ENOB,SNR,THD,SINAD etc. In this paper various methods of dynamic testing of ADC are discussed.

  2. Mineral mapping and applications of imaging spectroscopy

    USGS Publications Warehouse

    Clark, R.N.; Boardman, J.; Mustard, J.; Kruse, F.; Ong, C.; Pieters, C.; Swayze, G.A.

    2006-01-01

    Spectroscopy is a tool that has been used for decades to identify, understand, and quantify solid, liquid, or gaseous materials, especially in the laboratory. In disciplines ranging from astronomy to chemistry, spectroscopic measurements are used to detect absorption and emission features due to specific chemical bonds, and detailed analyses are used to determine the abundance and physical state of the detected absorbing/emitting species. Spectroscopic measurements have a long history in the study of the Earth and planets. Up to the 1990s remote spectroscopic measurements of Earth and planets were dominated by multispectral imaging experiments that collect high-quality images in a few, usually broad, spectral bands or with point spectrometers that obtained good spectral resolution but at only a few spatial positions. However, a new generation of sensors is now available that combines imaging with spectroscopy to create the new discipline of imaging spectroscopy. Imaging spectrometers acquire data with enough spectral range, resolution, and sampling at every pixel in a raster image so that individual absorption features can be identified and spatially mapped (Goetz et al., 1985).

  3. Multivariate Statistical Mapping of Spectroscopic Imaging Data

    PubMed Central

    Young, K.; Govind, V.; Sharma, K.; Studholme, C.; Maudsley, A.A; Schuff, N.

    2010-01-01

    For magnetic resonance spectroscopic imaging (MRSI) studies of the brain it is important to measure the distribution of metabolites in a regionally unbiased way - that is without restrictions to apriori defined regions of interest (ROI). Since MRSI provides measures of multiple metabolites simultaneously at each voxel, there is furthermore great interest in utilizing the multidimensional nature of MRSI for gains in statistical power. Voxelwise multivariate statistical mapping is expected to address both of these issues but it has not been previously employed for SI studies of brain. The aims of this study were to: 1) develop and validate multivariate voxel based statistical mapping for MRSI and 2) demonstrate that multivariate tests can be more powerful than univariate tests in identifying patterns of altered brain metabolism. Specifically, we compared multivariate to univariate tests in identifying known regional patterns in simulated data and regional patterns of metabolite alterations due to amyotrophic lateral sclerosis, a devastating brain disease of the motor neurons. PMID:19953514

  4. Space Radar Image of Raco Vegetation Map

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a vegetation map of the Raco, Michigan area produced from data acquired by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard space shuttle Endeavour. The radar image, taken on April 9, 1994, has been used by science team members at the University of Michigan to produce detailed map of land cover. This image is centered at 46.4 degrees north latitude and 84.9 degrees west longitude. The imaged area is approximately 24 by 32 kilometers (15 by 20 miles). The Raco airport, which is a decommissioned military base, is easily identified by its triangular runway structure. An edge of Lake Superior, approximately 44 kilometers (27 miles) west of Sault Sainte Marie, appears in the top right of the image. In this land cover map each 30- by 30-meter (98- by 98-foot) spot is identified as either a water surface, bare ground, short vegetation, deciduous forest, lowland conifers or upland conifers. Different types of ground cover have different effects on Earth's chemical, water and energy cycles. By cataloguing ground cover in an area, scientists expect to better understand the processes of these cycles in a specific area. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio

  5. Quantitative biomolecular imaging by dynamic nanomechanical mapping.

    PubMed

    Zhang, Shuai; Aslan, Hüsnü; Besenbacher, Flemming; Dong, Mingdong

    2014-11-07

    The ability to 'see' down to nanoscale has always been one of the most challenging obstacles for researchers to address fundamental questions. For many years, researchers have been developing scanning probe microscopy techniques to improve imaging capability at nanoscale. Among them, atomic force microscopy (AFM) has received considerable attention, which allows probing topography of biological species at real space under physiological environment. Importantly, force measurements in AFM enable researchers to reveal not only the topography but also the relevant physical-chemical properties. AFM-based dynamic nanomechanical mapping (DNM) provides insights into the functions of biological systems by the interpretation of 'force', which are inaccessible by most of the other analytic techniques. This review is aiming to shed light on these recently developed AFM-based DNM techniques for biomolecular imaging, and discuss the relative applications in biological research from the nanomechanical point of view.

  6. Integrating Radar Image Data with Google Maps

    NASA Technical Reports Server (NTRS)

    Chapman, Bruce D.; Gibas, Sarah

    2010-01-01

    A public Web site has been developed as a method for displaying the multitude of radar imagery collected by NASA s Airborne Synthetic Aperture Radar (AIRSAR) instrument during its 16-year mission. Utilizing NASA s internal AIRSAR site, the new Web site features more sophisticated visualization tools that enable the general public to have access to these images. The site was originally maintained at NASA on six computers: one that held the Oracle database, two that took care of the software for the interactive map, and three that were for the Web site itself. Several tasks were involved in moving this complicated setup to just one computer. First, the AIRSAR database was migrated from Oracle to MySQL. Then the back-end of the AIRSAR Web site was updated in order to access the MySQL database. To do this, a few of the scripts needed to be modified; specifically three Perl scripts that query that database. The database connections were then updated from Oracle to MySQL, numerous syntax errors were corrected, and a query was implemented that replaced one of the stored Oracle procedures. Lastly, the interactive map was designed, implemented, and tested so that users could easily browse and access the radar imagery through the Google Maps interface.

  7. Intelligence, mapping, and geospatial exploitation system (IMAGES)

    NASA Astrophysics Data System (ADS)

    Moellman, Dennis E.; Cain, Joel M.

    1998-08-01

    This paper provides further detail to one facet of the battlespace visualization concept described in last year's paper Battlespace Situation Awareness for Force XXI. It focuses on the National Imagery and Mapping Agency (NIMA) goal to 'provide customers seamless access to tailorable imagery, imagery intelligence, and geospatial information.' This paper describes Intelligence, Mapping, and Geospatial Exploitation System (IMAGES), an exploitation element capable of CONUS baseplant operations or field deployment to provide NIMA geospatial information collaboratively into a reconnaissance, surveillance, and target acquisition (RSTA) environment through the United States Imagery and Geospatial Information System (USIGS). In a baseplant CONUS setting IMAGES could be used to produce foundation data to support mission planning. In the field it could be directly associated with a tactical sensor receiver or ground station (e.g. UAV or UGV) to provide near real-time and mission specific RSTA to support mission execution. This paper provides IMAGES functional level design; describes the technologies, their interactions and interdependencies; and presents a notional operational scenario to illustrate the system flexibility. Using as a system backbone an intelligent software agent technology, called Open Agent ArchitectureTM (OAATM), IMAGES combines multimodal data entry, natural language understanding, and perceptual and evidential reasoning for system management. Configured to be DII COE compliant, it would utilize, to the extent possible, COTS applications software for data management, processing, fusion, exploitation, and reporting. It would also be modular, scaleable, and reconfigurable. This paper describes how the OAATM achieves data synchronization and enables the necessary level of information to be rapidly available to various command echelons for making informed decisions. The reasoning component will provide for the best information to be developed in the timeline

  8. Diffusion-weighted imaging in the prostate: an apparent diffusion coefficient comparison of half-Fourier acquisition single-shot turbo spin-echo and echo planar imaging.

    PubMed

    Babourina-Brooks, Ben; Cowin, Gary J; Wang, Deming

    2012-02-01

    Prostate cancer detection using diffusion-weighted imaging is highly affected by the accuracy of the apparent diffusion coefficient (ADC) values in an image. Echo planar imaging (EPI) is a fast sequence commonly used for diffusion imaging but has inherent magnetic susceptibility and chemical shift artefacts associated. A diffusion sequence that is less affected by these artefacts is therefore advantageous. The half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequence was chosen. The diffusion sequences were compared in image quality, repeatability of the ADC value and the effect on the ADC value with varied b values. Eight volunteers underwent three scans of each sequence, on a 1.5-T Siemens system, using b values of 0, 150, 300, 450, 600, 750, 900 and 1000 s/mm(2). ADC maps were created to address the reproducibility of the ADC value when using two b values compared to eight b values. The ADC value using all b values with the HASTE sequence gave the best performance in all tested categories. Both sequences gave significantly different ADC mean values for two b values compared to when using eight b values (P<.05) suggesting larger error is present when using two b values. HASTE was shown to be an improvement over EPI in terms of repeatability, signal variation within a region of interest and standard deviation over the volunteer set. The improved accuracy of the ADC value in the HASTE sequence makes it potentially a more sensitive tumor detection technique.

  9. System and method for image mapping and visual attention

    NASA Technical Reports Server (NTRS)

    Peters, II, Richard A. (Inventor)

    2010-01-01

    A method is described for mapping dense sensory data to a Sensory Ego Sphere (SES). Methods are also described for finding and ranking areas of interest in the images that form a complete visual scene on an SES. Further, attentional processing of image data is best done by performing attentional processing on individual full-size images from the image sequence, mapping each attentional location to the nearest node, and then summing attentional locations at each node.

  10. System and method for image mapping and visual attention

    NASA Technical Reports Server (NTRS)

    Peters, II, Richard A. (Inventor)

    2011-01-01

    A method is described for mapping dense sensory data to a Sensory Ego Sphere (SES). Methods are also described for finding and ranking areas of interest in the images that form a complete visual scene on an SES. Further, attentional processing of image data is best done by performing attentional processing on individual full-size images from the image sequence, mapping each attentional location to the nearest node, and then summing all attentional locations at each node.

  11. Space Radar Image of Raco Biomass Map

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This biomass map of the Raco, Michigan, area was produced from data acquired by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard space shuttle Endeavour. Biomass is the amount of plant material on an area of Earth's surface. Radar can directly sense the quantity and organizational structure of the woody biomass in the forest. Science team members at the University of Michigan used the radar data to estimate the standing biomass for this Raco site in the Upper Peninsula of Michigan. Detailed surveys of 70 forest stands will be used to assess the accuracy of these techniques. The seasonal growth of terrestrial plants, and forests in particular, leads to the temporary storage of large amounts of carbon, which could directly affect changes in global climate. In order to accurately predict future global change, scientists need detailed information about current distribution of vegetation types and the amount of biomass present around the globe. Optical techniques to determine net biomass are frustrated by chronic cloud-cover. Imaging radar can penetrate through cloud-cover with negligible signal losses. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German

  12. Imaging Sensor Constellation for Tomographic Chemical Cloud Mapping

    DTIC Science & Technology

    2009-01-30

    a chemical cloud parallels the approach used in X-ray based medical imaging and can be an important tool in understanding chemical cloud dynamics...SR-1345 PSI-1505 Imaging Sensor Constellation for Tomographic Chemical Cloud Mapping Bogdan R. Cosofret,1,* Daisei Konno,1 Aram Faghfouri...00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Imaging Sensor Constellation for Tomographic Chemical Cloud Mapping 5a. CONTRACT NUMBER 5b

  13. Registration of Heat Capacity Mapping Mission day and night images

    NASA Technical Reports Server (NTRS)

    Watson, K.; Hummer-Miller, S.; Sawatzky, D. L. (Principal Investigator)

    1982-01-01

    Neither iterative registration, using drainage intersection maps for control, nor cross correlation techniques were satisfactory in registering day and night HCMM imagery. A procedure was developed which registers the image pairs by selecting control points and mapping the night thermal image to the daytime thermal and reflectance images using an affine transformation on a 1300 by 1100 pixel image. The resulting image registration is accurate to better than two pixels (RMS) and does not exhibit the significant misregistration that was noted in the temperature-difference and thermal-inertia products supplied by NASA. The affine transformation was determined using simple matrix arithmetic, a step that can be performed rapidly on a minicomputer.

  14. Enhancing scattering images for orientation recovery with diffusion map

    SciTech Connect

    Winter, Martin; Saalmann, Ulf; Rost, Jan M.

    2016-02-12

    We explore the possibility for orientation recovery in single-molecule coherent diffractive imaging with diffusion map. This algorithm approximates the Laplace-Beltrami operator, which we diagonalize with a metric that corresponds to the mapping of Euler angles onto scattering images. While suitable for images of objects with specific properties we show why this approach fails for realistic molecules. Here, we introduce a modification of the form factor in the scattering images which facilitates the orientation recovery and should be suitable for all recovery algorithms based on the distance of individual images. (C) 2016 Optical Society of America

  15. a Method of Generating Panoramic Street Strip Image Map with Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Tianen, Chen; Yamamoto, Kohei; Tachibana, Kikuo

    2016-06-01

    This paper explores a method of generating panoramic street strip image map which is called as "Pano-Street" here and contains both sides, ground surface and overhead part of a street with a sequence of 360° panoramic images captured with Point Grey's Ladybug3 mounted on the top of Mitsubishi MMS-X 220 at 2m intervals along the streets in urban environment. On-board GPS/IMU, speedometer and post sequence image analysis technology such as bundle adjustment provided much more accuracy level position and attitude data for these panoramic images, and laser data. The principle for generating panoramic street strip image map is similar to that of the traditional aero ortho-images. A special 3D DEM(3D-Mesh called here) was firstly generated with laser data, the depth map generated from dense image matching with the sequence of 360° panoramic images, or the existing GIS spatial data along the MMS trajectory, then all 360° panoramic images were projected and stitched on the 3D-Mesh with the position and attitude data. This makes it possible to make large scale panoramic street strip image maps for most types of cities, and provides another kind of street view way to view the 360° scene along the street by avoiding the switch of image bubbles like Google Street View and Bing Maps Streetside.

  16. An ADC for the SAM on the SOAR Telescope

    NASA Astrophysics Data System (ADS)

    Tighe, Roberto; Tokovinin, Andrei; Schurter, Patricio; Martínez, Manuel; Cantarutti, Rolando

    2016-08-01

    SAM (Soar Adaptive-optics Module), the SOAR (Southern Observatory for Astrophysical Research) GLAO facility is in service since 2011, with a UV, 355nm Laser Guide Star (LGS). The atmospheric wavefront error is therefore measured at 355nm and the star images are corrected in the visible range (BVRI bands). An ADC is required for High Resolution imaging at low telescope elevation, especially at shorter wavelengths of the visible spectrum. The ADC is based on 80mm diameter rotating prisms. This compact unit, fully automated, can be inserted or removed from the tightly constrained SAM collimated beam space-envelope, it adjusts to the parallactic angle and corrects the atmospheric dispersion. Here we present the optical and opto-mechanical design, the control design, the operational strategy and performance results obtained from extensive use in on-sky HR Speckle Imaging.

  17. Image and geometry processing with Oriented and Scalable Map.

    PubMed

    Hua, Hao

    2016-05-01

    We turn the Self-organizing Map (SOM) into an Oriented and Scalable Map (OS-Map) by generalizing the neighborhood function and the winner selection. The homogeneous Gaussian neighborhood function is replaced with the matrix exponential. Thus we can specify the orientation either in the map space or in the data space. Moreover, we associate the map's global scale with the locality of winner selection. Our model is suited for a number of graphical applications such as texture/image synthesis, surface parameterization, and solid texture synthesis. OS-Map is more generic and versatile than the task-specific algorithms for these applications. Our work reveals the overlooked strength of SOMs in processing images and geometries.

  18. Surface mineral maps of Afghanistan derived from HyMap imaging spectrometer data, version 2

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.

    2013-01-01

    This report presents a new version of surface mineral maps derived from HyMap imaging spectrometer data collected over Afghanistan in the fall of 2007. This report also describes the processing steps applied to the imaging spectrometer data. The 218 individual flight lines composing the Afghanistan dataset, covering more than 438,000 square kilometers, were georeferenced to a mosaic of orthorectified Landsat images. The HyMap data were converted from radiance to reflectance using a radiative transfer program in combination with ground-calibration sites and a network of cross-cutting calibration flight lines. The U.S. Geological Survey Material Identification and Characterization Algorithm (MICA) was used to generate two thematic maps of surface minerals: a map of iron-bearing minerals and other materials, which have their primary absorption features at the shorter wavelengths of the reflected solar wavelength range, and a map of carbonates, phyllosilicates, sulfates, altered minerals, and other materials, which have their primary absorption features at the longer wavelengths of the reflected solar wavelength range. In contrast to the original version, version 2 of these maps is provided at full resolution of 23-meter pixel size. The thematic maps, MICA summary images, and the material fit and depth images are distributed in digital files linked to this report, in a format readable by remote sensing software and Geographic Information Systems (GIS). The digital files can be downloaded from http://pubs.usgs.gov/ds/787/downloads/.

  19. Multi-resolution mapping using surface, descent and orbit images

    NASA Technical Reports Server (NTRS)

    Olson, C.; Matthies, L.; Xiong, Y.; Li, R.; Ma, F.

    2001-01-01

    Our objective is to produce high-accuracy maps of the terrain elevation at landing sites on planetary bodies through the use of all available image data. These technologies are important for performing rover navigation in future space missions and the maps provide a tool for coordinating rovers in a robotic colony.

  20. Capacitor-Chain Successive-Approximation ADC

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas

    2003-01-01

    A proposed successive-approximation analog-to-digital converter (ADC) would contain a capacitively terminated chain of identical capacitor cells. Like a conventional successive-approximation ADC containing a bank of binary-scaled capacitors, the proposed ADC would store an input voltage on a sample-and-hold capacitor and would digitize the stored input voltage by finding the closest match between this voltage and a capacitively generated sum of binary fractions of a reference voltage (Vref). However, the proposed capacitor-chain ADC would offer two major advantages over a conventional binary-scaled-capacitor ADC: (1) In a conventional ADC that digitizes to n bits, the largest capacitor (representing the most significant bit) must have 2(exp n-1) times as much capacitance, and hence, approximately 2(exp n-1) times as much area as does the smallest capacitor (representing the least significant bit), so that the total capacitor area must be 2(exp n) times that of the smallest capacitor. In the proposed capacitor-chain ADC, there would be three capacitors per cell, each approximately equal to the smallest capacitor in the conventional ADC, and there would be one cell per bit. Therefore, the total capacitor area would be only about 3(exp n) times that of the smallest capacitor. The net result would be that the proposed ADC could be considerably smaller than the conventional ADC. (2) Because of edge effects, parasitic capacitances, and manufacturing tolerances, it is difficult to make capacitor banks in which the values of capacitance are scaled by powers of 2 to the required precision. In contrast, because all the capacitors in the proposed ADC would be identical, the problem of precise binary scaling would not arise.

  1. Prototype of Partial Cutting Tool of Geological Map Images Distributed by Geological Web Map Service

    NASA Astrophysics Data System (ADS)

    Nonogaki, S.; Nemoto, T.

    2014-12-01

    Geological maps and topographical maps play an important role in disaster assessment, resource management, and environmental preservation. These map information have been distributed in accordance with Web services standards such as Web Map Service (WMS) and Web Map Tile Service (WMTS) recently. In this study, a partial cutting tool of geological map images distributed by geological WMTS was implemented with Free and Open Source Software. The tool mainly consists of two functions: display function and cutting function. The former function was implemented using OpenLayers. The latter function was implemented using Geospatial Data Abstraction Library (GDAL). All other small functions were implemented by PHP and Python. As a result, this tool allows not only displaying WMTS layer on web browser but also generating a geological map image of intended area and zoom level. At this moment, available WTMS layers are limited to the ones distributed by WMTS for the Seamless Digital Geological Map of Japan. The geological map image can be saved as GeoTIFF format and WebGL format. GeoTIFF is one of the georeferenced raster formats that is available in many kinds of Geographical Information System. WebGL is useful for confirming a relationship between geology and geography in 3D. In conclusion, the partial cutting tool developed in this study would contribute to create better conditions for promoting utilization of geological information. Future work is to increase the number of available WMTS layers and the types of output file format.

  2. Accuracy assessment of topographic mapping using UAV image integrated with satellite images

    NASA Astrophysics Data System (ADS)

    Azmi, S. M.; Ahmad, Baharin; Ahmad, Anuar

    2014-02-01

    Unmanned Aerial Vehicle or UAV is extensively applied in various fields such as military applications, archaeology, agriculture and scientific research. This study focuses on topographic mapping and map updating. UAV is one of the alternative ways to ease the process of acquiring data with lower operating costs, low manufacturing and operational costs, plus it is easy to operate. Furthermore, UAV images will be integrated with QuickBird images that are used as base maps. The objective of this study is to make accuracy assessment and comparison between topographic mapping using UAV images integrated with aerial photograph and satellite image. The main purpose of using UAV image is as a replacement for cloud covered area which normally exists in aerial photograph and satellite image, and for updating topographic map. Meanwhile, spatial resolution, pixel size, scale, geometric accuracy and correction, image quality and information contents are important requirements needed for the generation of topographic map using these kinds of data. In this study, ground control points (GCPs) and check points (CPs) were established using real time kinematic Global Positioning System (RTK-GPS) technique. There are two types of analysis that are carried out in this study which are quantitative and qualitative assessments. Quantitative assessment is carried out by calculating root mean square error (RMSE). The outputs of this study include topographic map and orthophoto. From this study, the accuracy of UAV image is ± 0.460 m. As conclusion, UAV image has the potential to be used for updating of topographic maps.

  3. A fast image encryption algorithm based on chaotic map

    NASA Astrophysics Data System (ADS)

    Liu, Wenhao; Sun, Kehui; Zhu, Congxu

    2016-09-01

    Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.

  4. Utility of imaging spectrometry for lithologic mapping in Greenland

    NASA Technical Reports Server (NTRS)

    Rivard, Benoit; Arvidson, Raymond E.

    1992-01-01

    Landsat Thematic Mapper (TM) multispectral image data and field-based spectral reflectance measurements for a portion of the island of Storo, southwestern Greenland, were used to evaluate the potential of imaging spectrometry for lithologic mapping in arctic terrains. TM data allow mapping of tundra vegetation that typically covers moraines at lower elevations, and lichen-covered bedrock exposed at higher elevations. However, the ubiquitous lichen cover, combined with the limited spectral and radiometric capabilities of TM, severely hamper mapping of the amphibolite, anorthosite, gneiss, and granite outcrops on the island. Diagnostic mineral signatures can be discerned from high spectral and radiometric resolution observations, because lichen cover is patchy at mineral and outcrop scales. Results imply that high resolution imaging spectrometer data (e.g., from the HIRIS sensor to fly on the Earth Observing System), detailed field work, and application of subpixel mixing models will dramatically improve the ability to identify and map bedrock in similar terrains.

  5. Deep subspace mapping in hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Wadströmer, Niclas; Gustafsson, David; Perersson, Henrik; Bergström, David

    2016-10-01

    We propose a novel Deep learning approach using autoencoders to map spectral bands to a space of lower dimensionality while preserving the information that makes it possible to discriminate different materials. Deep learning is a relatively new pattern recognition approach which has given promising result in many applications. In Deep learning a hierarchical representation of increasing level of abstraction of the features is learned. Autoencoder is an important unsupervised technique frequently used in Deep learning for extracting important properties of the data. The learned latent representation is a non-linear mapping of the original data which potentially preserve the discrimination capacity.

  6. Web Image Retrieval Using Self-Organizing Feature Map.

    ERIC Educational Resources Information Center

    Wu, Qishi; Iyengar, S. Sitharama; Zhu, Mengxia

    2001-01-01

    Provides an overview of current image retrieval systems. Describes the architecture of the SOFM (Self Organizing Feature Maps) based image retrieval system, discussing the system architecture and features. Introduces the Kohonen model, and describes the implementation details of SOFM computation and its learning algorithm. Presents a test example…

  7. Enhanced Mental Image Mapping in Autism

    ERIC Educational Resources Information Center

    Soulieres, I.; Zeffiro, T. A.; Girard, M. L.; Mottron, L.

    2011-01-01

    The formation and manipulation of mental images represents a key ability for successfully solving visuospatial tasks like Wechsler's Block Design or visual reasoning problems, tasks where autistics perform at higher levels than predicted by their Wechsler IQ. Visual imagery can be used to compare two mental images, allowing judgment of their…

  8. Minimal Power Latch for Single-Slope ADCs

    NASA Technical Reports Server (NTRS)

    Hancock, Bruce R.

    2013-01-01

    Column-parallel analog-to-digital converters (ADCs) for imagers involve simultaneous operation of many ADCs. Single-slope ADCs are well adapted to this use because of their simplicity. Each ADC contains a comparator, comparing its input signal level to an increasing reference signal (ramp). When the ramp is equal to the input, the comparator triggers a latch that captures an encoded counter value (code). Knowing the captured code, the ramp value and hence the input signal are determined. In a column-parallel ADC, each column contains only the comparator and the latches; the ramp and code generation are shared. In conventional latch or flip-flop circuits, there is an input stage that tracks the input signal, and this stage consumes switching current every time the input changes. With many columns, many bits, and high code rates, this switching current can be substantial. It will also generate noise that may corrupt the analog signals. A latch was designed that does not track the input, and consumes power only at the instant of latching the data value. The circuit consists of two S-R (set-reset) latches, gated by the comparator. One is set by high data values and the other by low data values. The latches are cross-coupled so that the first one to set blocks the other. In order that the input data not need an inversion, which would consume power, the two latches are made in complementary polarity. This requires complementary gates from the comparator, instead of complementary data values, but the comparator only triggers once per conversion, and usually has complementary outputs to begin with. An efficient CMOS (complementary metal oxide semiconductor) implementation of this circuit is shown in the figure, where C is the comparator output, D is the data (code), and Q0 and Q1 are the outputs indicating the capture of a zero or one value. The latch for Q0 has a negative-true set signal and output, and is implemented using OR-AND-INVERT logic, while the latch for Q1 uses

  9. Hyperspectral image super-resolution: a hybrid color mapping approach

    NASA Astrophysics Data System (ADS)

    Zhou, Jin; Kwan, Chiman; Budavari, Bence

    2016-07-01

    NASA has been planning a hyperspectral infrared imager mission which will provide global coverage using a hyperspectral imager with 60-m resolution. In some practical applications, such as special crop monitoring or mineral mapping, 60-m resolution may still be too coarse. There have been many pansharpening algorithms for hyperspectral images by fusing high-resolution (HR) panchromatic or multispectral images with low-resolution (LR) hyperspectral images. We propose an approach to generating HR hyperspectral images by fusing high spatial resolution color images with low spatial resolution hyperspectral images. The idea is called hybrid color mapping (HCM) and involves a mapping between a high spatial resolution color image and a low spatial resolution hyperspectral image. Several variants of the color mapping idea, including global, local, and hybrid, are proposed and investigated. It was found that the local HCM yielded the best performance. Comparison of the local HCM with >10 state-of-the-art algorithms using five performance metrics has been carried out using actual images from the air force and NASA. Although our HCM method does not require a point spread function (PSF), our results are comparable to or better than those methods that do require PSF. More importantly, our performance is better than most if not all methods that do not require PSF. After applying our HCM algorithm, not only the visual performance of the hyperspectral image has been significantly improved, but the target classification performance has also been improved. Another advantage of our technique is that it is very efficient and can be easily parallelized. Hence, our algorithm is very suitable for real-time applications.

  10. Integrated terrain mapping with digital Landsat images in Queensland, Australia

    USGS Publications Warehouse

    Robinove, Charles Joseph

    1979-01-01

    Mapping with Landsat images usually is done by selecting single types of features, such as soils, vegetation, or rocks, and creating visually interpreted or digitally classified maps of each feature. Individual maps can then be overlaid on or combined with other maps to characterize the terrain. Integrated terrain mapping combines several terrain features into each map unit which, in many cases, is more directly related to uses of the land and to methods of land management than the single features alone. Terrain brightness, as measured by the multispectral scanners in Landsat 1 and 2, represents an integration of reflectance from the terrain features within the scanner's instantaneous field of view and is therefore more correlatable with integrated terrain units than with differentiated ones, such as rocks, soils, and vegetation. A test of the feasibilty of the technique of mapping integrated terrain units was conducted in a part of southwestern Queensland, Australia, in cooperation with scientists of the Queensland Department of Primary Industries. The primary purpose was to test the use of digital classification techniques to create a 'land systems map' usable for grazing land management. A recently published map of 'land systems' in the area (made by aerial photograph interpretation and ground surveys), which are integrated terrain units composed of vegetation, soil, topography, and geomorphic features, was used as a basis for comparison with digitally classified Landsat multispectral images. The land systems, in turn, each have a specific grazing capacity for cattle (expressed in beasts per km 2 ) which is estimated following analysis of both research results and property carrying capacities. Landsat images, in computer-compatible tape form, were first contrast-stretched to increase their visual interpretability, and digitally classified by the parallelepiped method into distinct spectral classes to determine their correspondence to the land systems classes and

  11. Mapping diverse vegetation with multichannel radar images

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Wickland, D. E.; Ocampo, A.; Sharitz, R. R.

    1986-01-01

    Airborne-SAR, SIR-A, Seasat SAR, and Landsat TM images of the Savannah River Plant, a gently sloping area of South Carolina covered with diverse vegetation, are presented and briefly characterized. Preliminary results indicate that multiple-polarization images constructed from the airborne-SAR data give some indication of forest density and understory growth but do not permit discrimination between evergreen and deciduous forests. Heat-tolerant vegetation growing on sand bars in streams bearing thermal effluents from nuclear reactors on the site is found to have a distinguishing polarization signature.

  12. High dynamic range image compression by optimizing tone mapped image quality index.

    PubMed

    Ma, Kede; Yeganeh, Hojatollah; Zeng, Kai; Wang, Zhou

    2015-10-01

    Tone mapping operators (TMOs) aim to compress high dynamic range (HDR) images to low dynamic range (LDR) ones so as to visualize HDR images on standard displays. Most existing TMOs were demonstrated on specific examples without being thoroughly evaluated using well-designed and subject-validated image quality assessment models. A recently proposed tone mapped image quality index (TMQI) made one of the first attempts on objective quality assessment of tone mapped images. Here, we propose a substantially different approach to design TMO. Instead of using any predefined systematic computational structure for tone mapping (such as analytic image transformations and/or explicit contrast/edge enhancement), we directly navigate in the space of all images, searching for the image that optimizes an improved TMQI. In particular, we first improve the two building blocks in TMQI—structural fidelity and statistical naturalness components—leading to a TMQI-II metric. We then propose an iterative algorithm that alternatively improves the structural fidelity and statistical naturalness of the resulting image. Numerical and subjective experiments demonstrate that the proposed algorithm consistently produces better quality tone mapped images even when the initial images of the iteration are created by the most competitive TMOs. Meanwhile, these results also validate the superiority of TMQI-II over TMQI.

  13. Multispectral Image Road Extraction Based Upon Automated Map Conflation

    NASA Astrophysics Data System (ADS)

    Chen, Bin

    Road network extraction from remotely sensed imagery enables many important and diverse applications such as vehicle tracking, drone navigation, and intelligent transportation studies. There are, however, a number of challenges to road detection from an image. Road pavement material, width, direction, and topology vary across a scene. Complete or partial occlusions caused by nearby buildings, trees, and the shadows cast by them, make maintaining road connectivity difficult. The problems posed by occlusions are exacerbated with the increasing use of oblique imagery from aerial and satellite platforms. Further, common objects such as rooftops and parking lots are made of materials similar or identical to road pavements. This problem of common materials is a classic case of a single land cover material existing for different land use scenarios. This work addresses these problems in road extraction from geo-referenced imagery by leveraging the OpenStreetMap digital road map to guide image-based road extraction. The crowd-sourced cartography has the advantages of worldwide coverage that is constantly updated. The derived road vectors follow only roads and so can serve to guide image-based road extraction with minimal confusion from occlusions and changes in road material. On the other hand, the vector road map has no information on road widths and misalignments between the vector map and the geo-referenced image are small but nonsystematic. Properly correcting misalignment between two geospatial datasets, also known as map conflation, is an essential step. A generic framework requiring minimal human intervention is described for multispectral image road extraction and automatic road map conflation. The approach relies on the road feature generation of a binary mask and a corresponding curvilinear image. A method for generating the binary road mask from the image by applying a spectral measure is presented. The spectral measure, called anisotropy-tunable distance (ATD

  14. Mapping individual cosmid DNAs by direct AFM imaging.

    PubMed

    Allison, D P; Kerper, P S; Doktycz, M J; Thundat, T; Modrich, P; Larimer, F W; Johnson, D K; Hoyt, P R; Mucenski, M L; Warmack, R J

    1997-05-01

    Individual cosmid clones have been restriction mapped by directly imaging, with the atomic force microscope (AFM), a mutant EcoRI endonuclease site-specifically bound to DNA. Images and data are presented that locate six restriction sites, predicted from gel electrophoresis, on a 35-kb cosmid isolated from mouse chromosome 7. Measured distances between endonuclease molecules bound to lambda DNA, when compared to known values, demonstrate the accuracy of AFM mapping to better than 1%. These results may be extended to identify other important site-specific protein-DNA interactions, such as transcription factor and mismatch repair enzyme binding, difficult to resolve by current techniques.

  15. Morphological reconstruction of semantic layers in map images

    NASA Astrophysics Data System (ADS)

    Podlasov, Alexey; Ageenko, Eugene J.; Franti, Pasi

    2006-01-01

    Map images are composed of semantic layers depicted in arbitrary color. Color separation is often needed to divide the image into layers for storage and processing. Separation can result in severe artifacts because of the overlapping of the layers. In this work, we introduce a technique to restore the original semantic layers after the color separation. The proposed restoration technique improves compression performance of the reconstructed layers in comparison to the corrupted ones when compressed by lossless algorithms such as International Communication Unit (ITU) Group 4 (TIFF G4), Portable Network Graphics (PNG), Joint Bi-level Image experts Group (JBIG), and context tree method. The resulting technique also provides good visual quality of the reconstructed image layers, and can therefore be applied for selective layer removal/extraction in other map processing applications, e.g., area measurement.

  16. Radarsat Antarctic Mapping Project: Antarctic Imaging Campaign 2

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Radarsat Antarctic Mapping Project is a collaboration between NASA and the Canadian Space Agency to map Antarctica using synthetic aperture radar (SAR). The first Antarctic Mapping Mission (AMM-1) was successfully completed in October 1997. Data from the acquisition phase of the 1997 campaign have been used to achieve the primary goal of producing the first, high-resolution SAR image map of Antarctica. The limited amount of data suitable for interferometric analysis have also been used to produce remarkably detailed maps of surface velocity for a few selected regions. Most importantly, the results from AMM-1 are now available to the general science community in the form of various resolution, radiometrically calibrated and geometrically accurate image mosaics. The second Antarctic imaging campaign occurred during the fall of 2000. Modified from AMM-1, the satellite remained in north looking mode during AMM-2 restricting coverage to regions north of about -80 degrees latitude. But AMM-2 utilized for the first time RADARSAT-1 fine beams providing an unprecedented opportunity to image many of Antarctica's fast glaciers whose extent was revealed through AMM-1 data. AMM-2 also captured extensive data suitable for interferometric analysis of the surface velocity field. This report summarizes the science goals, mission objectives, and project status through the acquisition phase and the start of the processing phase. The reports describes the efforts of team members including Alaska SAR Facility, Jet Propulsion Laboratory, Vexcel Corporation, Goddard Space Flight Center, Wallops Flight Facility, Ohio State University, Environmental Research Institute of Michigan, White Sands Facility, Canadian Space Agency Mission Planning and Operations Groups, and the Antarctic Mapping Planning Group.

  17. Client-Side Image Maps: Achieving Accessibility and Section 508 Compliance

    ERIC Educational Resources Information Center

    Beasley, William; Jarvis, Moana

    2004-01-01

    Image maps are a means of making a picture "clickable", so that different portions of the image can be hyperlinked to different URLS. There are two basic types of image maps: server-side and client-side. Besides requiring access to a CGI on the server, server-side image maps are undesirable from the standpoint of accessibility--creating…

  18. Image encryption using eight dimensional chaotic cat map

    NASA Astrophysics Data System (ADS)

    Ganesan, K.; Murali, K.

    2014-06-01

    In recent years, a large number of discrete chaotic cryptographic algorithms have been proposed. However, most of them encounter some problems such as lack of robustness and security. In this paper, we introduce a new image encryption algorithm based on eight-dimensional (nonlinear) chaotic cat map. Encryption of image is different from that of texts due to some intrinsic features of image such as bulk data capacity and high redundancy, which are generally difficult to handle by traditional methods. In traditional methods the key space is small and the security is weak. The proposed algorithm tries to address these problems and also tries to enhance the encryption speed. In this paper an eight dimensional chaotic cat map is used to encrypt the intensity values of pixels using lookup table method thereby significantly increasing the speed and security of encryption. The proposed algorithm is found to be resistive against chosen/known-plaintext attacks, statistical and differential attacks.

  19. Forest and Non-Forest Mapping with Envisat ASAR Images

    NASA Astrophysics Data System (ADS)

    Ling, F.; Li, Z.; Chen, E.; Huang, Y.; Tian, X.; Schmullius, C.; Leiterer, R.; Reiche, J.; Santoro, M.

    2013-01-01

    Envisat Advanced Synthetic Aperture Radar (ASAR) dual-polarization data are shown to be effective for regional forest monitoring. To this scope, an automatic SAR image preprocessing procedure was developed using SRTM DEM and Landsat TM image for geocoding in rugged terrain and smooth terrain areas, respectively. An object-oriented forest and non-forest classification method is then proposed based on the HH to HV intensity ratio and HV images of ASAR data at single acquisition in winter. The developed methods were applied to forest and non-forest mapping in Northeast China. The overall accuracy, the user’s accuracy and the producer’s accuracy of forest are 83.7%, 85.6% and 75.7% respectively. The results indicate that the proposed methods are promising for operational forest mapping at regional scale.

  20. The Peak Pairs algorithm for strain mapping from HRTEM images.

    PubMed

    Galindo, Pedro L; Kret, Sławomir; Sanchez, Ana M; Laval, Jean-Yves; Yáñez, Andrés; Pizarro, Joaquín; Guerrero, Elisa; Ben, Teresa; Molina, Sergio I

    2007-11-01

    Strain mapping is defined as a numerical image-processing technique that measures the local shifts of image details around a crystal defect with respect to the ideal, defect-free, positions in the bulk. Algorithms to map elastic strains from high-resolution transmission electron microscopy (HRTEM) images may be classified into two categories: those based on the detection of peaks of intensity in real space and the Geometric Phase approach, calculated in Fourier space. In this paper, we discuss both categories and propose an alternative real space algorithm (Peak Pairs) based on the detection of pairs of intensity maxima in an affine transformed space dependent on the reference area. In spite of the fact that it is a real space approach, the Peak Pairs algorithm exhibits good behaviour at heavily distorted defect cores, e.g. interfaces and dislocations. Quantitative results are reported from experiments to determine local strain in different types of semiconductor heterostructures.

  1. Ground Surface Visualization Using Red Relief Image Map for a Variety of Map Scales

    NASA Astrophysics Data System (ADS)

    Chiba, T.; Hasi, B.

    2016-06-01

    There are many methods to express topographical features of ground surface. In which, contour map has been the traditional method and along with development of digital data, surface model such as shaded relief map has been using for ground surface expression. Recently, data acquisition has been developed very much quick, demanding more advanced visualization method to express ground surface so as to effectively use the high quality data. In this study, the authors using the Red Relief Image Map (RRIM, Chiba et al., 2008) to express ground surface visualization for a variety of map scales. The authors used 30 m mesh data of SRTM to show the topographical features of western Mongolian and micro-topographical features of ground surface in tectonically active regions of Japan. The results show that, compared to traditional and other similar methods, the RRIM can express ground surface more precisely and 3-dimensionally, suggested its advanced usage for many fields of topographical visualization.

  2. Satellite image based methods for fuels maps updating

    NASA Astrophysics Data System (ADS)

    Alonso-Benito, Alfonso; Hernandez-Leal, Pedro A.; Arbelo, Manuel; Gonzalez-Calvo, Alejandro; Moreno-Ruiz, Jose A.; Garcia-Lazaro, Jose R.

    2016-10-01

    Regular updating of fuels maps is important for forest fire management. Nevertheless complex and time consuming field work is usually necessary for this purpose, which prevents a more frequent update. That is why the assessment of the usefulness of satellite data and the development of remote sensing techniques that enable the automatic updating of these maps, is of vital interest. In this work, we have tested the use of the spectral bands of OLI (Operational Land Imager) sensor on board Landsat 8 satellite, for updating the fuels map of El Hierro Island (Spain). From previously digitized map, a set of 200 reference plots for different fuel types was created. A 50% of the plots were randomly used as a training set and the rest were considered for validation. Six supervised and 2 unsupervised classification methods were applied, considering two levels of detail. A first level with only 5 classes (Meadow, Brushwood, Undergrowth canopy cover >50%, Undergrowth canopy cover <15%, and Xeric formations), and the second one containing 19 fuel types. The level 1 classification methods yielded an overall accuracy ranging from 44% for Parellelepided to an 84% for Maximun Likelihood. Meanwhile, level 2 results showed at best, an unacceptable overall accuracy of 34%, which prevents the use of this data for such a detailed characterization. Anyway it has been demonstrated that in some conditions, images of medium spatial resolution, like Landsat 8-OLI, could be a valid tool for an automatic upgrade of fuels maps, minimizing costs and complementing traditional methodologies.

  3. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    NASA Astrophysics Data System (ADS)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  4. Neural response imaging (NRI) cochlear mapping: prospects for clinical application.

    PubMed

    Arnold, L; Lindsey, P; Hacking, C; Boyle, P

    2007-12-01

    The objective of the study was to investigate the potential for clinical application of neural response imaging (NRI) cochlear mapping. Cochlear mapping was performed at each fitting session up to at least six months following initial fitting. Stimulation was delivered to one electrode site. NRI was recorded from each of the remaining sites. The procedure was repeated for apical, medial and basal stimulation sites, stimulating at subjective threshold and most comfortable levels. Responses were obtained in five out of six subjects and are discussed in terms of: reproducibility, quality, changes over time. Cochlear mapping provided repeatable data that gave interesting insights into the implanted cochlea. Further work is required to determine whether this approach could contribute to programme optimisation.

  5. Strain Mapping in Metals Using Ultrasonic Array Speckle Images

    NASA Astrophysics Data System (ADS)

    Bowler, A. I.; Drinkwater, B. W.; Wilcox, P. D.

    2009-03-01

    The full-field non-destructive measurement of internal displacement and strain fields is of interest in many engineering applications. This paper describes an approach to measuring internal displacements and strains in metals which uses the correlation of ultrasonic speckle images of the internal structure of the material. This has the key advantage over optical surface displacement and strain measurement techniques in that internal information can be obtained. Experiments are described which use a 1-D ultrasonic array to map 2-D displacement fields for uniform translation and uniaxial tension of a metallic bar. The full matrix of transmit-receive signals from the array was post-processed to generate speckle images using a Fourier-domain imaging algorithm. Block-search cross-correlation was used to find the displacements of small sub-images corresponding to regions within the bar. Potential applications include characterising crack networks and creep damage detection.

  6. Surface plasmon resonance imaging by holographic enhanced mapping.

    PubMed

    Mandracchia, B; Pagliarulo, V; Paturzo, M; Ferraro, P

    2015-04-21

    We designed, constructed and tested a holographic surface plasmon resonance (HoloSPR) objective-based microscope for simultaneous amplitude-contrast and phase-contrast surface plasmon resonance imaging (SPRi). SPRi is a widely spread tool for label-free detection of changes in refractive index and concentration, as well as mapping of thin films. Currently, most of the SPR sensors rely on the detection of amplitude or phase changes of light. Despite the high sensitivities achieved so far, each technique alone has a limited detection range with optimal sensitivity. Here we use a high numerical aperture objective that avoids all the limitations due to the use of a prism-based configuration, yielding highly magnified and distortion-free images. Holographic reconstructions of SPR images and real-time kinetic measurements are presented to show the capability of HoloSPR to provide a versatile imaging method for high-throughput SPR detection complementary to conventional SPR techniques.

  7. Minimal Power Latch for Single-Slope ADCs

    NASA Technical Reports Server (NTRS)

    Hancock, Bruce R. (Inventor)

    2015-01-01

    A latch circuit that uses two interoperating latches. The latch circuit has the beneficial feature that it switches only a single time during a measurement that uses a stair step or ramp function as an input signal in an analog to digital converter. This feature minimizes the amount of power that is consumed in the latch and also minimizes the amount of high frequency noise that is generated by the latch. An application using a plurality of such latch circuits in a parallel decoding ADC for use in an image sensor is given as an example.

  8. Multipolarization radar images for geologic mapping and vegetation discrimination

    NASA Technical Reports Server (NTRS)

    Evans, D. L.; Farr, T. G.; Ford, J. P.; Thompson, T. W.; Werner, C. L.

    1986-01-01

    NASA has developed an airborne SAR that simultaneously yields image data in four linear polarizations in L-band with 10-m resolution over a swath of about 10 km. Signal data are recorded both optically and digitally and annotated in each of the channels to facilitate completely automated digital correlation. Comparison of the relative intensities of the different polarizations furnishes discriminatory mapping information. Local intensity variations in like-polarization images result from topographic effects, while strong cross polarization responses denote the effects of vegetation cover and, in some cases, possible scattering from the subsurface. In each of the areas studied, multiple polarization data led to the discrimination and mapping of unique surface unit features.

  9. Imaging enzymes at work: metabolic mapping by enzyme histochemistry.

    PubMed

    Van Noorden, Cornelis J F

    2010-06-01

    For the understanding of functions of proteins in biological and pathological processes, reporter molecules such as fluorescent proteins have become indispensable tools for visualizing the location of these proteins in intact animals, tissues, and cells. For enzymes, imaging their activity also provides information on their function or functions, which does not necessarily correlate with their location. Metabolic mapping enables imaging of activity of enzymes. The enzyme under study forms a reaction product that is fluorescent or colored by conversion of either a fluorogenic or chromogenic substrate or a fluorescent substrate with different spectral characteristics. Most chromogenic staining methods were developed in the latter half of the twentieth century but still find new applications in modern cell biology and pathology. Fluorescence methods have rapidly evolved during the last decade. This review critically evaluates the methods that are available at present for metabolic mapping in living animals, unfixed cryostat sections of tissues, and living cells, and refers to protocols of the methods of choice.

  10. Compact intraoperative imaging device for sentinel lymph node mapping

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Bauer, Adam Q.; Akers, Walter; Sudlow, Gail; Liang, Kexian; Shen, Duanwen; Berezin, Mikhail; Culver, Joseph P.; Achilefu, Samuel

    2011-03-01

    We have developed a novel real-time intraoperative fluorescence imaging device that can detect near-infrared (NIR) fluorescence and map sentinel lymph nodes (SLNs). In contrast to conventional imaging systems, this device is compact, portable, and battery-operated. It is also wearable and thus allows hands-free operation of clinicians. The system directly displays the fluorescence in its goggle eyepiece, eliminating the need for a remote monitor. Using this device in murine lymphatic mapping, the SLNs stained with indocyanine green (ICG) can be readily detected. Fluorescence-guided SLN resection under the new device was performed with ease. Ex vivo examination of resected tissues also revealed high fluorescence level in the SLNs. Histology further confirmed the lymphatic nature of the resected SLNs.

  11. Mapping microbubble viscosity using fluorescence lifetime imaging of molecular rotors

    PubMed Central

    Hosny, Neveen A.; Mohamedi, Graciela; Rademeyer, Paul; Owen, Joshua; Wu, Yilei; Tang, Meng-Xing; Eckersley, Robert J.; Stride, Eleanor; Kuimova, Marina K.

    2013-01-01

    Encapsulated microbubbles are well established as highly effective contrast agents for ultrasound imaging. There remain, however, some significant challenges to fully realize the potential of microbubbles in advanced applications such as perfusion mapping, targeted drug delivery, and gene therapy. A key requirement is accurate characterization of the viscoelastic surface properties of the microbubbles, but methods for independent, nondestructive quantification and mapping of these properties are currently lacking. We present here a strategy for performing these measurements that uses a small fluorophore termed a “molecular rotor” embedded in the microbubble surface, whose fluorescence lifetime is directly related to the viscosity of its surroundings. We apply fluorescence lifetime imaging to show that shell viscosities vary widely across the population of the microbubbles and are influenced by the shell composition and the manufacturing process. We also demonstrate that heterogeneous viscosity distributions exist within individual microbubble shells even with a single surfactant component. PMID:23690599

  12. Velocity map ion imaging study of Ar2+ photodissociation

    NASA Astrophysics Data System (ADS)

    Maner, J. A.; Mauney, D. T.; Duncan, M. A.

    2017-03-01

    The argon dimer cation is produced in a plasma generated by a laser spark in a supersonic expansion. The cold ions are mass selected and investigated by photodissociation at 355 nm, with velocity map imaging of the Ar+ photofragment. Using the radius of the image, we determine the kinetic energy release and derive the ground state dissociation energy of Ar2+ as D0″ = 1.32 +0.03/-0.02 eV. Additionally, the angular distribution is described with β = 1.71-1.95, consistent with excitation of the parallel-type 2Σg+ ← 2Σu+ transition.

  13. Algorithm for mapping cutaneous tissue oxygen concentration using hyperspectral imaging.

    PubMed

    Miclos, Sorin; Parasca, Sorin Viorel; Calin, Mihaela Antonina; Savastru, Dan; Manea, Dragos

    2015-09-01

    The measurement of tissue oxygenation plays an important role in the diagnosis and therapeutic assessment of a large variety of diseases. Many different methods have been developed and are currently applied in clinical practice for the measurement of tissue oxygenation. Unfortunately, each of these methods has its own limitations. In this paper we proposed the use of hyperspectral imaging as new method for the assessment of the tissue oxygenation level. To extract this information from hyperspectral images a new algorithm for mapping cutaneous tissue oxygen concentration was developed. This algorithm takes into account and solves some problems related to setting and calculation of some parameters derived from hyperspectral images. The algorithm was tested with good results on synthetic images and then validated on the fingers of a hand with different blood irrigation states. The results obtained have proved the ability of hyperspectral imaging together with the developed algorithm to map the oxy- and deoxyhemoglobin distribution on the analyzed fingers. These are only preliminary results and other studies should be done before this approach to be used in the clinical setting for the diagnosis and monitoring of various diseases.

  14. Mapping tissue oxygen in vivo by photoacoustic lifetime imaging

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Morgounova, Ekaterina; Choi, Jeung-Hwan; Jiang, Chunlan; Bischof, John; Ashkenazi, Shai

    2013-03-01

    Oxygen plays a key role in the energy metabolism of living organisms. Any imbalance in the oxygen levels will affect the metabolic homeostasis and lead to pathophysiological diseases. Hypoxia, a status of low tissue oxygen, is a key factor in tumor biology as it is highly prominent in tumor tissues. However, clinical tools for assessing tissue oxygenation are limited. The gold standard is polarographic needle electrode which is invasive and not capable of mapping (imaging) the oxygen content in tissue. We applied the method of photoacoustic lifetime imaging (PALI) of oxygen-sensitive dye to small animal tissue hypoxia research. PALI is new technology for direct, non-invasive imaging of oxygen. The technique is based on mapping the oxygen-dependent transient optical absorption of Methylene Blue (MB) by pump-probe photoacoustic imaging. Our studies show the feasibility of imaging of dissolved oxygen distribution in phantoms. In vivo experiments demonstrate that the hypoxia region is consistent with the site of subcutaneously xenografted prostate tumor in mice with adequate spatial resolution and penetration depth.

  15. High resolution spatial map imaging of a gaseous target

    NASA Astrophysics Data System (ADS)

    Stei, Martin; von Vangerow, Johannes; Otto, Rico; Kelkar, Aditya H.; Carrascosa, Eduardo; Best, Thorsten; Wester, Roland

    2013-06-01

    Electrostatic ion imaging with the velocity map imaging mode is a widely used method in atomic and molecular physics and physical chemistry. In contrast, the spatial map imaging (SMI) mode has received very little attention, despite the fact that it has been proposed earlier [A. T. J. B. Eppink and D. H. Parker, Rev. Sci. Instrum. 68, 3477 (1997)], 10.1063/1.1148310. Here, we present a detailed parametric characterization of SMI both by simulation and experiment. One-, two- and three-dimensional imaging modes are described. The influence of different parameters on the imaging process is described by means of a Taylor expansion. To experimentally quantify elements of the Taylor expansion and to infer the spatial resolution of our spectrometer, photoionization of toluene with a focused laser beam has been carried out. A spatial resolution of better than 4 μm out of a focal volume of several mm in diameter has been achieved. Our results will be useful for applications of SMI to the characterization of laser beams, the overlap control of multiple particle or light beams, and the determination of absolute collision cross sections.

  16. Mapping of glacial landforms from Seasat radar images

    NASA Technical Reports Server (NTRS)

    Ford, J. P.

    1984-01-01

    Glacial landforms in the drumlin drift belt of Ireland and the Alaska Range can be identified and mapped from Seasat synthetic-aperture radar (SAR) images. Drumlins cover 60 percent of the Ireland scene. The width/length ratio of individual drumlins can be measured on the SAR images, allowing regional differences in drumlin shape to be mapped. This cannot be done with corresponding Landsat multispectral scanner (MSS) images because of lower spatial resolution and because of shadowing effects that vary seasonally. The Alaska scene shows the extent and nature of morphological features such as medial and lateral moraines, stagnant ice, and fluted ground moraine in glaciated valleys. Perception of these features on corresponding Landsat MSS images is limited by seasonal diffrences in solar illumination. Because SAR is not affected by such differences or by cloud cover, it is particularly well suited for monitoring glacial movement. The disadvantage of distorted high-relief features on Seasat SAR images can be reduced in future SAR systems by modifying the radar illumination geometry.

  17. Mapping potentialy asbestos-bearing rocks using imaging spectroscopy

    USGS Publications Warehouse

    Swayze, G.A.; Kokaly, R.F.; Higgins, C.T.; Clinkenbeard, J.P.; Clark, R.N.; Lowers, H.A.; Sutley, S.J.

    2009-01-01

    Rock and soil that may contain naturally occurring asbestos (NOA), a known human carcinogen, were mapped in the Sierra Nevada, California, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) to determine if these materials could be uniquely identified with spectroscopy. Such information can be used to prepare or refine maps of areas that may contain minerals that can be asbestiform, such as serpentine and tremolite-actinolite, which were the focus of this study. Although thick vegetation can conceal underlying rock and soil, use of linear-mixture spectra calculated from spectra of dry grass and serpentine allowed detection of serpentine in some parts of the study area with up to ???80% dry-grass cover. Chaparral vegetation, which was dominantly, but not exclusively, found in areas underlain by serpentinized ultramafic rocks, was also mapped. Overall, field checking at 201 sites indicated highly accurate identification by AVIRIS of mineral (94%) and vegetation (89%) categories. Practical applications of AVIRIS to mapping areas that may contain NOA include locating roads that are surfaced with serpentine aggregate, identifying sites that may require enhanced dust control or other safety measures, and filling gaps in geologic mapping where field access is limited. ?? 2009 Geological Society of America.

  18. Image mosaic and topographic map of the moon

    USGS Publications Warehouse

    Hare, Trent M.; Hayward, Rosalyn K.; Blue, Jennifer S.; Archinal, Brent A.

    2015-01-01

    Sheet 2: This map is based on data from the Lunar Orbiter Laser Altimeter (LOLA; Smith and others, 2010), an instrument on the National Aeronautics and Space Administration (NASA) Lunar Reconnaissance Orbiter (LRO) spacecraft (Tooley and others, 2010). The image used for the base of this map represents more than 6.5 billion measurements gathered between July 2009 and July 2013, adjusted for consistency in the coordinate system described below, and then converted to lunar radii (Mazarico and others, 2012). For the Mercator portion, these measurements were converted into a digital elevation model (DEM) with a resolution of 0.015625 degrees per pixel, or 64 pixels per degree. In projection, the pixels are 473.8 m in size at the equator. For the polar portion, the LOLA elevation points were used to create a DEM at 240 meters per pixel. A shaded relief map was generated from each DEM with a sun angle of 45° from horizontal, and a sun azimuth of 270°, as measured clockwise from north with no vertical exaggeration. The DEM values were then mapped to a global color look-up table, with each color representing a range of 1 km of elevation. For this map sheet, only larger feature names are shown. For references listed above, please open the full PDF.

  19. In-pixel conversion with a 10 bit SAR ADC for next generation X-ray FELs

    NASA Astrophysics Data System (ADS)

    Lodola, L.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G. F.; Fabris, L.; Forti, F.; Grassi, M.; Latreche, S.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Rizzo, G.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    This work presents the design of an interleaved Successive Approximation Register (SAR) ADC, part of the readout channel for the PixFEL detector. The PixFEL project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging for applications at the next generation Free Electron Laser (FEL) facilities. For this purpose, the collaboration is developing the fundamental microelectronic building blocks for the readout channel. This work focuses on the design of the ADC carried out in a 65 nm CMOS technology. To obtain a good tradeoff between power consumption, conversion speed and area occupation, an interleaved SAR ADC architecture was adopted.

  20. Refinement of Colored Mobile Mapping Data Using Intensity Images

    NASA Astrophysics Data System (ADS)

    Yamakawa, T.; Fukano, K.; Onodera, R.; Masuda, H.

    2016-06-01

    Mobile mapping systems (MMS) can capture dense point-clouds of urban scenes. For visualizing realistic scenes using point-clouds, RGB colors have to be added to point-clouds. To generate colored point-clouds in a post-process, each point is projected onto camera images and a RGB color is copied to the point at the projected position. However, incorrect colors are often added to point-clouds because of the misalignment of laser scanners, the calibration errors of cameras and laser scanners, or the failure of GPS acquisition. In this paper, we propose a new method to correct RGB colors of point-clouds captured by a MMS. In our method, RGB colors of a point-cloud are corrected by comparing intensity images and RGB images. However, since a MMS outputs sparse and anisotropic point-clouds, regular images cannot be obtained from intensities of points. Therefore, we convert a point-cloud into a mesh model and project triangle faces onto image space, on which regular lattices are defined. Then we extract edge features from intensity images and RGB images, and detect their correspondences. In our experiments, our method worked very well for correcting RGB colors of point-clouds captured by a MMS.

  1. Multi-layer 3D imaging using a few viewpoint images and depth map

    NASA Astrophysics Data System (ADS)

    Suginohara, Hidetsugu; Sakamoto, Hirotaka; Yamanaka, Satoshi; Suyama, Shiro; Yamamoto, Hirotsugu

    2015-03-01

    In this paper, we propose a new method that makes multi-layer images from a few viewpoint images to display a 3D image by the autostereoscopic display that has multiple display screens in the depth direction. We iterate simple "Shift and Subtraction" processes to make each layer image alternately. The image made in accordance with depth map like a volume slicing by gradations is used as the initial solution of iteration process. Through the experiments using the prototype stacked two LCDs, we confirmed that it was enough to make multi-layer images from three viewpoint images to display a 3D image. Limiting the number of viewpoint images, the viewing area that allows stereoscopic view becomes narrow. To broaden the viewing area, we track the head motion of the viewer and update screen images in real time so that the viewer can maintain correct stereoscopic view within +/- 20 degrees area. In addition, we render pseudo multiple viewpoint images using depth map, then we can generate motion parallax at the same time.

  2. Statistical mapping of sheet aiquile SE-20-9 (national map) making use of ERTS images

    NASA Technical Reports Server (NTRS)

    Torrez, J. G.; Brockman, C. E.; Castro, A. F.

    1977-01-01

    New possibilities of remote sensing by means of satellites to do research on natural resources are reported. These images make it possible to carry out integrated studies of natural resources in the shortest time possible and with small investments. Various maps and a complete description of each are included. With the use of these satellites, scientists can hopefully plan development projects at the national level.

  3. Application of shuttle imaging radar to geologic mapping

    NASA Technical Reports Server (NTRS)

    Labotka, T. C.

    1986-01-01

    Images from the Shuttle Imaging Radar - B (SIR-B) experiment covering the area of the Panamint Mountains, Death Valley, California, were examined in the field and in the laboratory to determine their usefulness as aids for geologic mapping. The covered area includes the region around Wildrose Canyon where rocks ranging in age from Precambrian to Cenozoic form a moderately rugged portion of the Panamint Mountains, including sharp ridges, broad alluviated upland valleys, and fault-bounded grabens. The results of the study indicate that the available SIR-B images of this area primarily illustrate variations in topography, except in the broadly alluviated areas of Panamint Valley and Death Valley where deposits of differing reflectivity can be recognized. Within the mountainous portion of the region, three textures can be discerned, each representing a different mode of topographic expression related to the erosion characteristics of the underlying bedrock. Regions of Precambrian bedrock have smooth slopes and sharp ridges with a low density of gullies. Tertiary monolithologic breccias have smooth, steep slopes with an intermediate density of gullies with rounded ridges. Tertiary fanglomerates have steep rugged slopes with numerous steep-sided gullies and knife-sharp ridges. The three topographic types reflect the consistancy and relative susceptibility to erosion of the bedrock; the three types can readily be recognized on topographic maps. At present, it has not been possible to distinguish on the SIR-B image of the mountainous terrain the type of bedrock, independent of the topographic expression.

  4. Image encryption using the two-dimensional logistic chaotic map

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Yang, Gelan; Jin, Huixia; Noonan, Joseph P.

    2012-01-01

    Chaos maps and chaotic systems have been proved to be useful and effective for cryptography. In our study, the two-dimensional logistic map with complicated basin structures and attractors are first used for image encryption. The proposed method adopts the classic framework of the permutation-substitution network in cryptography and thus ensures both confusion and diffusion properties for a secure cipher. The proposed method is able to encrypt an intelligible image into a random-like one from the statistical point of view and the human visual system point of view. Extensive simulation results using test images from the USC-SIPI image database demonstrate the effectiveness and robustness of the proposed method. Security analysis results of using both the conventional and the most recent tests show that the encryption quality of the proposed method reaches or excels the current state-of-the-art methods. Similar encryption ideas can be applied to digital data in other formats (e.g., digital audio and video). We also publish the cipher MATLAB open-source-code under the web page https://sites.google.com/site/tuftsyuewu/source-code.

  5. A comprehensive neuropsychological mapping battery for functional magnetic resonance imaging.

    PubMed

    Karakas, Sirel; Baran, Zeynel; Ceylan, Arzu Ozkan; Tileylioglu, Emre; Tali, Turgut; Karakas, Hakki Muammer

    2013-11-01

    Existing batteries for FMRI do not precisely meet the criteria for comprehensive mapping of cognitive functions within minimum data acquisition times using standard scanners and head coils. The goal was to develop a battery of neuropsychological paradigms for FMRI that can also be used in other brain imaging techniques and behavioural research. Participants were 61 healthy, young adult volunteers (48 females and 13 males, mean age: 22.25 ± 3.39 years) from the university community. The battery included 8 paradigms for basic (visual, auditory, sensory-motor, emotional arousal) and complex (language, working memory, inhibition/interference control, learning) cognitive functions. Imaging was performed using standard functional imaging capabilities (1.5-T MR scanner, standard head coil). Structural and functional data series were analysed using Brain Voyager QX2.9 and Statistical Parametric Mapping-8. For basic processes, activation centres for individuals were within a distance of 3-11 mm of the group centres of the target regions and for complex cognitive processes, between 7 mm and 15 mm. Based on fixed-effect and random-effects analyses, the distance between the activation centres was 0-4 mm. There was spatial variability between individual cases; however, as shown by the distances between the centres found with fixed-effect and random-effects analyses, the coordinates for individual cases can be used to represent those of the group. The findings show that the neuropsychological brain mapping battery described here can be used in basic science studies that investigate the relationship of the brain to the mind and also as functional localiser in clinical studies for diagnosis, follow-up and pre-surgical mapping.

  6. Motion robust PPG-imaging through color channel mapping

    PubMed Central

    Moço, Andreia V.; Stuijk, Sander; de Haan, Gerard

    2016-01-01

    Photoplethysmography (PPG)-imaging is an emerging noninvasive technique that maps spatial blood-volume variations in living tissue with a video camera. In this paper, we clarify how cardiac-related (i.e., ballistocardiographic; BCG) artifacts occur in this imaging modality and address these using algorithms from the remote-PPG literature. Performance is assessed under stationary conditions at the immobilized hand. Our proposal outperforms the state-of-the-art, blood pulsation imaging [Biomed. Opt. Express 5, 3123 (2014)25401026. ], even in our best attempt to create diffused illumination. BCG-artifacts are suppressed to an order of magnitude below PPG-signal strength, which is sufficient to prevent interpretation errors. PMID:27231618

  7. Mapping pigment distribution in mud samples through hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Mehrübeoglu, Mehrube; Nicula, Cosmina; Trombley, Christopher; Smith, Shane W.; Smith, Dustin K.; Shanks, Elizabeth S.; Zimba, Paul V.

    2015-09-01

    Mud samples collected from bodies of water reveal information about the distribution of microorganisms in the local sediments. Hyperspectral imaging has been investigated as a technology to identify phototropic organisms living on sediments collected from the Texas Coastal Bend area based on their spectral pigment profiles and spatial arrangement. The top pigment profiles identified through high-performance liquid chromatography (HPLC) have been correlated with spectral signatures extracted from the hyperspectral data of mud using fast Fourier transform (FFT). Spatial distributions have also been investigated using 2D hyperspectral image processing. 2D pigment distribution maps have been created based on the correlation with pigment profiles in the FFT domain. Among the tested pigments, the results show match among four out of five pigment distribution trends between HPLC and hyperspectral data analysis. Differences are attributed mainly to the difference between area and volume of scale between the HPLC analysis and area covered by hyperspectral imaging.

  8. Digital image registration method based upon binary boundary maps

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R., Jr.; Andrus, J. F.; Campbell, C. W.

    1974-01-01

    A relatively fast method is presented for matching or registering the digital data of imagery from the same ground scene acquired at different times, or from different multispectral images, sensors, or both. It is assumed that the digital images can be registed by using translations and rotations only, that the images are of the same scale, and that little or no distortion exists between images. It is further assumed that by working with several local areas of the image, the rotational effects in the local areas can be neglected. Thus, by treating the misalignments of local areas as translations, it is possible to determine rotational and translational misalignments for a larger portion of the image containing the local areas. This procedure of determining the misalignment and then registering the data according to the misalignment can be repeated until the desired degree of registration is achieved. The method to be presented is based upon the use of binary boundary maps produced from the raw digital imagery rather than the raw digital data.

  9. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    PubMed

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  10. AdcAII of Streptococcus pneumoniae Affects Pneumococcal Invasiveness

    PubMed Central

    Brown, Lindsey R.; Gunnell, Steven M.; Cassella, Adam N.; Keller, Lance E.; Scherkenbach, Lisa A.; Mann, Beth; Brown, Matthew W.; Hill, Rebecca; Fitzkee, Nicholas C.; Rosch, Jason W.; Tuomanen, Elaine I.; Thornton, Justin A.

    2016-01-01

    Across bacterial species, metal binding proteins can serve functions in pathogenesis in addition to regulating metal homeostasis. We have compared and contrasted the activities of zinc (Zn2+)-binding lipoproteins AdcA and AdcAII in the Streptococcus pneumoniae TIGR4 background. Exposure to Zn2+-limiting conditions resulted in delayed growth in a strain lacking AdcAII (ΔAdcAII) when compared to wild type bacteria or a mutant lacking AdcA (ΔAdcA). AdcAII failed to interact with the extracellular matrix protein laminin despite homology to laminin-binding proteins of related streptococci. Deletion of AdcA or AdcAII led to significantly increased invasion of A549 human lung epithelial cells and a trend toward increased invasion in vivo. Loss of AdcAII, but not AdcA, was shown to negatively impact early colonization of the nasopharynx. Our findings suggest that expression of AdcAII affects invasiveness of S. pneumoniae in response to available Zn2+ concentrations. PMID:26752283

  11. Ubiquitous map-image access through wireless overlay networks

    NASA Astrophysics Data System (ADS)

    Cai, Jianfei; Huang, Haijie; Ni, Zefeng; Chen, Chang Wen

    2004-10-01

    With the availability of various wireless link-layer technologies, such as Bluetooth, WLAN and GPRS, in one wireless device, ubiquitous communications can be realized through managing vertical handoff in the environment of wireless overlay networks. In this paper, we propose a vertical handoff management system based on mobile IPv6, which can automatically manage the multiple network interfaces on the mobile device, and make decisions on network interface selection according to the current situation. Moreover, we apply our proposed vertical handoff management with JPEG-2000 codec to the wireless application of map image access. The developed system is able to provide seamless communications, as well as fast retrieve any interested map region with any block size, in different resolutions and different color representations directly from the compressed bitstream.

  12. In-line e-beam inspection with optimized sampling and newly developed ADC

    NASA Astrophysics Data System (ADS)

    Ikota, Masami; Miura, Akihiro; Fukunishi, Munenori; Hiroi, Takashi; Sugimoto, Aritoshi

    2003-07-01

    An electron beam inspection is strongly required for HARI to detect contact and via defects that an optical inspection cannot detect. Conventionally, an e-beam inspection system is used as an analytical tool for checking the process margin. Due to its low throughput speed, it has not been used for in-line QC. Therefore, we optimized the inspection area and developed a new auto defect classification (ADC) to use with e-beam inspection as an in-line inspection tool. A 10% interval scan sampling proved able to estimate defect densities. Inspection could be completed within 1 hour. We specifically adapted the developed ADC for use with e-beam inspection because the voltage contrast images were not sufficiently clear so that classifications could not be made with conventional ADC based on defect geometry. The new ADC used the off-pattern area of the defect to discriminate particles from other voltage contrast defects with an accuracy of greater than 90%. Using sampling optimization and the new ADC, we achieved inspection and auto defect review with throughput of less than 1 and one-half hours. We implemented the system as a procedure for product defect QC and proved its effectiveness for in-line e-beam inspection.

  13. Feature maps driven no-reference image quality prediction of authentically distorted images

    NASA Astrophysics Data System (ADS)

    Ghadiyaram, Deepti; Bovik, Alan C.

    2015-03-01

    Current blind image quality prediction models rely on benchmark databases comprised of singly and synthetically distorted images, thereby learning image features that are only adequate to predict human perceived visual quality on such inauthentic distortions. However, real world images often contain complex mixtures of multiple distortions. Rather than a) discounting the effect of these mixtures of distortions on an image's perceptual quality and considering only the dominant distortion or b) using features that are only proven to be efficient for singly distorted images, we deeply study the natural scene statistics of authentically distorted images, in different color spaces and transform domains. We propose a feature-maps-driven statistical approach which avoids any latent assumptions about the type of distortion(s) contained in an image, and focuses instead on modeling the remarkable consistencies in the scene statistics of real world images in the absence of distortions. We design a deep belief network that takes model-based statistical image features derived from a very large database of authentically distorted images as input and discovers good feature representations by generalizing over different distortion types, mixtures, and severities, which are later used to learn a regressor for quality prediction. We demonstrate the remarkable competence of our features for improving automatic perceptual quality prediction on a benchmark database and on the newly designed LIVE Authentic Image Quality Challenge Database and show that our approach of combining robust statistical features and the deep belief network dramatically outperforms the state-of-the-art.

  14. Value of ADC measurements for nodal staging after chemoradiation in locally advanced rectal cancer—a per lesion validation study

    PubMed Central

    Lambregts, Doenja M. J.; Maas, Monique; Riedl, Robert G.; Bakers, Frans C. H.; Verwoerd, Jan L.; Kessels, Alfons G. H.; Lammering, Guido; Boetes, Carla; Beets, Geerard L.

    2010-01-01

    Objectives To evaluate the performance of diffusion-weighted MRI (DWI) in addition to T2-weighted (T2W) MRI for nodal restaging after chemoradiation in rectal cancer. Methods Thirty patients underwent chemoradiation followed by MRI (1.5 T) and surgery. Imaging consisted of T2W-MRI and DWI (b0, 500, 1000). On T2W-MRI, nodes were scored as benign/malignant by two independent readers (R1, R2). Mean apparent diffusion coefficient (ADC) was measured for each node. Diagnostic performance was compared for T2W-MRI, ADC and T2W+ADC, using a per lesion histological validation. Results ADC was higher for the malignant nodes (1.43 ± 0.38 vs 1.19 ± 0.27 *10−3 mm2/s, p < 0.001). Area under the ROC curve/sensitivity/specificity were 0.88/65%/93% (R1) and 0.95/71%/91% (R2) using T2W-MRI; 0.66/53%/82% using ADC (mean of two readers); and 0.91/56%/98% (R1) and 0.96/56%/99% (R2) using T2W+ADC. There was no significant difference between T2W-MRI and T2W+ADC. Interobserver reproducibility was good for T2W-MRI (κ0.73) and ADC (intraclass correlation coefficient 0.77). Conclusions After chemoradiation, ADC measurements may have potential for nodal characterisation, but DWI on its own is not reliable. Addition of DWI to T2W-MRI does not improve accuracy and T2W-MRI is already sufficiently accurate. PMID:20730540

  15. Motion Correction for Myocardial T1 Mapping using Image Registration with Synthetic Image Estimation

    PubMed Central

    Xue, Hui; Shah, Saurabh; Greiser, Andreas; Guetter, Christoph; Littmann, Arne; Jolly, Marie-Pierre; Arai, Andrew E; Zuehlsdorff, Sven; Guehring, Jens; Kellman, Peter

    2013-01-01

    Quantification of myocardial T1 relaxation has potential value in the diagnosis of both ischemic and non-ischemic cardiomyopathies. Image acquisition using the Modified Look-Locker Inversion Recovery technique is clinically feasible for T1 mapping. However, respiratory motion limits its applicability and degrades the accuracy of T1 estimation. The robust registration of acquired inversion recovery images is particularly challenging due to the large changes in image contrast, especially for those images acquired near the signal null point of the inversion recovery and other inversion times for which there is little tissue contrast. In this paper, we propose a novel motion correction algorithm. This approach is based on estimating synthetic images presenting contrast changes similar to the acquired images. The estimation of synthetic images is formulated as a variational energy minimization problem. Validation on a consecutive patient data cohort shows that this strategy can perform robust non-rigid registration to align inversion recovery images experiencing significant motion and lead to suppression of motion induced artifacts in the T1 map. PMID:22135227

  16. Optical imaging to map blood-brain barrier leakage

    NASA Astrophysics Data System (ADS)

    Jaffer, Hayder; Adjei, Isaac M.; Labhasetwar, Vinod

    2013-11-01

    Vascular leakage in the brain is a major complication associated with brain injuries and certain pathological conditions due to disruption of the blood-brain barrier (BBB). We have developed an optical imaging method, based on excitation and emission spectra of Evans Blue dye, that is >1000-fold more sensitive than conventional ultraviolet spectrophotometry. We used a rat thromboembolic stroke model to validate the usefulness of our method for vascular leakage. Optical imaging data show that vascular leakage varies in different areas of the post-stroke brain and that administering tissue plasminogen activator causes further leakage. The new method is quantitative, simple to use, requires no tissue processing, and can map the degree of vascular leakage in different brain locations. The high sensitivity of our method could potentially provide new opportunities to study BBB leakage in different pathological conditions and to test the efficacy of various therapeutic strategies to protect the BBB.

  17. Hierarchical image-based rendering using texture mapping hardware

    SciTech Connect

    Max, N

    1999-01-15

    Multi-layered depth images containing color and normal information for subobjects in a hierarchical scene model are precomputed with standard z-buffer hardware for six orthogonal views. These are adaptively selected according to the proximity of the viewpoint, and combined using hardware texture mapping to create ''reprojected'' output images for new viewpoints. (If a subobject is too close to the viewpoint, the polygons in the original model are rendered.) Specific z-ranges are selected from the textures with the hardware alpha test to give accurate 3D reprojection. The OpenGL color matrix is used to transform the precomputed normals into their orientations in the final view, for hardware shading.

  18. Dynamic speckle image segmentation using self-organizing maps

    NASA Astrophysics Data System (ADS)

    Pra, Ana L. Dai; Meschino, Gustavo J.; Guzmán, Marcelo N.; Scandurra, Adriana G.; González, Mariela A.; Weber, Christian; Trivi, Marcelo; Rabal, Héctor; Passoni, Lucía I.

    2016-08-01

    The aim of this work is to build a computational model able to automatically identify, after training, dynamic speckle pattern regions with similar properties. The process is carried out using a set of descriptors applied to the intensity variations with time in every pixel of a speckle image sequence. An image obtained by projecting a self-organized map is converted into regions of similar activity that can be easily distinguished. We propose a general procedure that could be applied to numerous situations. As examples we show different situations: (a) an activity test in a simplified situation; (b) a non-biological example and (c) biological active specimens. The results obtained are encouraging; they significantly improve upon those obtained using a single descriptor and will eventually permit automatic quantitative assessment.

  19. Improved sliced velocity map imaging apparatus optimized for H photofragments

    SciTech Connect

    Ryazanov, Mikhail; Reisler, Hanna

    2013-04-14

    Time-sliced velocity map imaging (SVMI), a high-resolution method for measuring kinetic energy distributions of products in scattering and photodissociation reactions, is challenging to implement for atomic hydrogen products. We describe an ion optics design aimed at achieving SVMI of H fragments in a broad range of kinetic energies (KE), from a fraction of an electronvolt to a few electronvolts. In order to enable consistently thin slicing for any imaged KE range, an additional electrostatic lens is introduced in the drift region for radial magnification control without affecting temporal stretching of the ion cloud. Time slices of {approx}5 ns out of a cloud stretched to Greater-Than-Or-Slanted-Equal-To 50 ns are used. An accelerator region with variable dimensions (using multiple electrodes) is employed for better optimization of radial and temporal space focusing characteristics at each magnification level. The implemented system was successfully tested by recording images of H fragments from the photodissociation of HBr, H{sub 2}S, and the CH{sub 2}OH radical, with kinetic energies ranging from <0.4 eV to >3 eV. It demonstrated KE resolution Less-Than-Or-Equivalent-To 1%-2%, similar to that obtained in traditional velocity map imaging followed by reconstruction, and to KE resolution achieved previously in SVMI of heavier products. We expect it to perform just as well up to at least 6 eV of kinetic energy. The tests showed that numerical simulations of the electric fields and ion trajectories in the system, used for optimization of the design and operating parameters, provide an accurate and reliable description of all aspects of system performance. This offers the advantage of selecting the best operating conditions in each measurement without the need for additional calibration experiments.

  20. Mapping soil heterogeneity using RapidEye satellite images

    NASA Astrophysics Data System (ADS)

    Piccard, Isabelle; Eerens, Herman; Dong, Qinghan; Gobin, Anne; Goffart, Jean-Pierre; Curnel, Yannick; Planchon, Viviane

    2016-04-01

    In the frame of BELCAM, a project funded by the Belgian Science Policy Office (BELSPO), researchers from UCL, ULg, CRA-W and VITO aim to set up a collaborative system to develop and deliver relevant information for agricultural monitoring in Belgium. The main objective is to develop remote sensing methods and processing chains able to ingest crowd sourcing data, provided by farmers or associated partners, and to deliver in return relevant and up-to-date information for crop monitoring at the field and district level based on Sentinel-1 and -2 satellite imagery. One of the developments within BELCAM concerns an automatic procedure to detect soil heterogeneity within a parcel using optical high resolution images. Such heterogeneity maps can be used to adjust farming practices according to the detected heterogeneity. This heterogeneity may for instance be caused by differences in mineral composition of the soil, organic matter content, soil moisture or soil texture. Local differences in plant growth may be indicative for differences in soil characteristics. As such remote sensing derived vegetation indices may be used to reveal soil heterogeneity. VITO started to delineate homogeneous zones within parcels by analyzing a series of RapidEye images acquired in 2015 (as a precursor for Sentinel-2). Both unsupervised classification (ISODATA, K-means) and segmentation techniques were tested. Heterogeneity maps were generated from images acquired at different moments during the season (13 May, 30 June, 17 July, 31 August, 11 September and 1 November 2015). Tests were performed using blue, green, red, red edge and NIR reflectances separately and using derived indices such as NDVI, fAPAR, CIrededge, NDRE2. The results for selected winter wheat, maize and potato fields were evaluated together with experts from the collaborating agricultural research centers. For a few fields UAV images and/or yield measurements were available for comparison.

  1. Automated in situ brain imaging for mapping the Drosophila connectome.

    PubMed

    Lin, Chi-Wen; Lin, Hsuan-Wen; Chiu, Mei-Tzu; Shih, Yung-Hsin; Wang, Ting-Yuan; Chang, Hsiu-Ming; Chiang, Ann-Shyn

    2015-01-01

    Mapping the connectome, a wiring diagram of the entire brain, requires large-scale imaging of numerous single neurons with diverse morphology. It is a formidable challenge to reassemble these neurons into a virtual brain and correlate their structural networks with neuronal activities, which are measured in different experiments to analyze the informational flow in the brain. Here, we report an in situ brain imaging technique called Fly Head Array Slice Tomography (FHAST), which permits the reconstruction of structural and functional data to generate an integrative connectome in Drosophila. Using FHAST, the head capsules of an array of flies can be opened with a single vibratome sectioning to expose the brains, replacing the painstaking and inconsistent brain dissection process. FHAST can reveal in situ brain neuroanatomy with minimal distortion to neuronal morphology and maintain intact neuronal connections to peripheral sensory organs. Most importantly, it enables the automated 3D imaging of 100 intact fly brains in each experiment. The established head model with in situ brain neuroanatomy allows functional data to be accurately registered and associated with 3D images of single neurons. These integrative data can then be shared, searched, visualized, and analyzed for understanding how brain-wide activities in different neurons within the same circuit function together to control complex behaviors.

  2. Enhancement of vegetation mapping using Stokes parameter images

    NASA Astrophysics Data System (ADS)

    Duggin, Michael J.; Kinn, Gerald J.; Schrader, M.

    1997-10-01

    Relatively little work has been performed to investigate the potential of polarization techniques to provide contrast enhancement information for vegetation mapping, and for vegetation condition assessment. Largely, this is because film is less accurate radiometrically than digital FPA sensing devices. Since polarization studies necessitate the differencing of images obtained with a linear polarizer rotated about the optic axis of a camera between sequential exposures, and since some of the differences are small, film has generally lacked the radiometric accuracy needed to reliably record such differences. Kodak has developed a high spatial resolution camera, and the development of linear drivers to read the data from the camera into the computer has resulted in a device which can be used as a multiband imaging polarimeter. Here we examine the potential of digital image acquisition as a potential quantitative method to obtain new information uncorrelated with that obtained by more conventional multiband imaging methods. Such information can potentially be used to form more sensitive vegetation indices, to differentiate species, and to penetrate canopy. We present promising examples of an active on-going research program.

  3. Automated band mapping in electrophoretic gel images using background information

    PubMed Central

    Zerr, Troy; Henikoff, Steven

    2005-01-01

    Some popular methods for polymorphism and mutation discovery involve ascertainment of novel bands by the examination of electrophoretic gel images. Although existing strategies for mapping bands work well for specific applications, such as DNA sequencing, these strategies are not well suited for novel band detection. Here, we describe a general strategy for band mapping that uses background banding patterns to facilitate lane calling and size calibration. We have implemented this strategy in GelBuddy, a user-friendly Java-based program for PC and Macintosh computers, which includes several utilities to assist discovery of mutations and polymorphisms. We demonstrate the use of GelBuddy in applications based on single-base mismatch cleavage of heteroduplexed PCR products. Use of software designed to facilitate novel band detection can significantly shorten the time needed for image analysis and data entry in a high-throughput setting. Furthermore, the interactive strategy implemented in GelBuddy has been successfully applied to DNA fingerprinting applications, such as AFLP. GelBuddy promises to make electrophoretic gel analysis a viable alternative to DNA resequencing for discovery of mutations and polymorphisms. PMID:15894797

  4. ADC and TDC implemented using FPGA

    SciTech Connect

    Wu, Jinyuan; Hansen, Sten; Shi, Zonghan; /Fermilab

    2007-11-01

    Several tests of FPGA devices programmed as analog waveform digitizers are discussed. The ADC uses the ramping-comparing scheme. A multi-channel ADC can be implemented with only a few resistors and capacitors as external components. A periodic logic levels are shaped by passive RC network to generate exponential ramps. The FPGA differential input buffers are used as comparators to compare the ramps with the input signals. The times at which these ramps cross the input signals are digitized by time-to-digital-converters (TDCs) implemented within the FPGA. The TDC portion of the logic alone has potentially a broad range of HEP/nuclear science applications. A 96-channel TDC card using FPGAs as TDCs being designed for the Fermilab MIPP electronics upgrade project is discussed. A deserializer circuit based on multisampling circuit used in the TDC, the 'Digital Phase Follower' (DPF) is also documented.

  5. Hetero- and homodimerization of Arabidopsis thaliana arginine decarboxylase AtADC1 and AtADC2.

    PubMed

    Maruri-López, Israel; Jiménez-Bremont, Juan F

    2017-03-11

    The arginine decarboxylase enzyme (ADC) carries out the production of agmatine from arginine, which is the precursor of the first polyamine (PA) known as putrescine; subsequently, putrescine is turned into the higher PAs, spermidine and spermine. In Arabidopsis thaliana PA production occurs only from arginine and this step is initiated by two ADC paralogues, AtADC1 and AtADC2. PA production is essential for A. thaliana life cycle. Here, we analyzed the sub-cellular localization of AtADC1 and AtADC2 enzymes through GFP translational fusions. Our data revealed that the A. thaliana arginine decarboxylase enzymes exhibit a dual sub-cellular localization both in the cytosol and chloroplast. Moreover, we examined the protein dimer assembly using a Bimolecular Fluorescence Complementation (BiFC) approach, which showed that AtADC1 and AtADC2 proteins were able to form homodimers in the cytosol and chloroplast. Interestingly, we found the formation of AtADC1/AtADC2 heterodimers with similar sub-cellular localization than homodimers. This study reveals that both ADC proteins are located in the same cell compartments, and they are able to form protein interaction complexes with each other.

  6. Quantitation and mapping of tissue optical properties using modulated imaging

    NASA Astrophysics Data System (ADS)

    Cuccia, David J.; Bevilacqua, Frederic; Durkin, Anthony J.; Ayers, Frederick R.; Tromberg, Bruce J.

    2009-03-01

    We describe the development of a rapid, noncontact imaging method, modulated imaging (MI), for quantitative, wide-field characterization of optical absorption and scattering properties of turbid media. MI utilizes principles of frequency-domain sampling and model-based analysis of the spatial modulation transfer function (s-MTF). We present and compare analytic diffusion and probabilistic Monte Carlo models of diffuse reflectance in the spatial frequency domain. Next, we perform MI measurements on tissue-simulating phantoms exhibiting a wide range of l* values (0.5 mm to 3 mm) and (μs'/μa) ratios (8 to 500), reporting an overall accuracy of approximately 6% and 3% in absorption and reduced scattering parameters, respectively. Sampling of only two spatial frequencies, achieved with only three camera images, is found to be sufficient for accurate determination of the optical properties. We then perform MI measurements in an in vivo tissue system, demonstrating spatial mapping of the absorption and scattering optical contrast in a human forearm and dynamic measurements of a forearm during venous occlusion. Last, metrics of spatial resolution are assessed through both simulations and measurements of spatially heterogeneous phantoms.

  7. A new image encryption algorithm based on logistic chaotic map with varying parameter.

    PubMed

    Liu, Lingfeng; Miao, Suoxia

    2016-01-01

    In this paper, we proposed a new image encryption algorithm based on parameter-varied logistic chaotic map and dynamical algorithm. The parameter-varied logistic map can cure the weaknesses of logistic map and resist the phase space reconstruction attack. We use the parameter-varied logistic map to shuffle the plain image, and then use a dynamical algorithm to encrypt the image. We carry out several experiments, including Histogram analysis, information entropy analysis, sensitivity analysis, key space analysis, correlation analysis and computational complexity to evaluate its performances. The experiment results show that this algorithm is with high security and can be competitive for image encryption.

  8. Mineral mapping at Cuprite, Nevada with a 63-channel imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Kierein-Young, K. S.; Boardman, J. W.

    1990-01-01

    Geophysical and Environmental Research Imaging Spectrometer (GERIS) 63-channel scanner data covering the spectral region 0.4 to 2.5 microns were analyzed for the Cuprite mining district, Esmeralda and Nye Counties, Nevada. Individual and spatially averaged spectra extracted from the GERIS data were used to identify the minerals alunite, kaolinite, buddingtonite, and hematite by their spectral characteristics. The images were classified in the spectral domain to produce color-coded image maps of mineral distribution that clearly show the zoned nature of the hydrothermal system. Comparison of the thematic mineral maps with existing geologic and alteration maps demonstrates the utility of imaging spectrometers for producing detailed maps for mineral exploration.

  9. Attitude Determination and Control Subsystem (ADCS) Preparations for the EPOXI Flyby of Comet Hartley 2

    NASA Technical Reports Server (NTRS)

    Luna, Michael E.; Collins, Steven M.

    2011-01-01

    On November 4, 2010 the former "Deep Impact" spacecraft, renamed "EPOXI" for its extended mission, flew within 700km of comet 103P/Hartley 2. In July 2005, the spacecraft had previously imaged a probe impact of comet Tempel 1. The EPOXI flyby was the fifth close encounter of a spacecraft with a comet nucleus and marked the first time in history that two comet nuclei were imaged at close range with the same suite of onboard science instruments. This challenging objective made the function of the attitude determination and control subsystem (ADCS) critical to the successful execution of the EPOXI flyby.As part of the spacecraft flyby preparations, the ADCS operations team had to perform meticulous sequence reviews, implement complex spacecraft engineering and science activities and perform numerous onboard calibrations. ADCS contributions included design and execution of 10 trajectory correction maneuvers, the science calibration of the two telescopic instruments, an in-flight demonstration of high-rate turns between Earth and comet point, and an ongoing assessment of reaction wheel health. The ADCS team was also responsible for command sequences that included updates to the onboard ephemeris and sun sensor coefficients and implementation of reaction wheel assembly (RWA) de-saturations.

  10. Compositional maps of Saturn's moon Phoebe from imaging spectroscopy.

    PubMed

    Clark, Roger N; Brown, Robert H; Jaumann, Ralf; Cruikshank, Dale P; Nelson, Robert M; Buratti, Bonnie J; McCord, Thomas B; Lunine, J; Baines, K H; Bellucci, G; Bibring, J-P; Capaccioni, F; Cerroni, P; Coradini, A; Formisano, V; Langevin, Y; Matson, D L; Mennella, V; Nicholson, P D; Sicardy, B; Sotin, C; Hoefen, Todd M; Curchin, John M; Hansen, Gary; Hibbits, Karl; Matz, K-D

    2005-05-05

    The origin of Phoebe, which is the outermost large satellite of Saturn, is of particular interest because its inclined, retrograde orbit suggests that it was gravitationally captured by Saturn, having accreted outside the region of the solar nebula in which Saturn formed. By contrast, Saturn's regular satellites (with prograde, low-inclination, circular orbits) probably accreted within the sub-nebula in which Saturn itself formed. Here we report imaging spectroscopy of Phoebe resulting from the Cassini-Huygens spacecraft encounter on 11 June 2004. We mapped ferrous-iron-bearing minerals, bound water, trapped CO2, probable phyllosilicates, organics, nitriles and cyanide compounds. Detection of these compounds on Phoebe makes it one of the most compositionally diverse objects yet observed in our Solar System. It is likely that Phoebe's surface contains primitive materials from the outer Solar System, indicating a surface of cometary origin.

  11. Compositional maps of Saturn's moon Phoebe from imaging spectroscopy

    USGS Publications Warehouse

    Clark, R.N.; Brown, R.H.; Jaumann, R.; Cruikshank, D.P.; Nelson, R.M.; Buratti, B.J.; McCord, T.B.; Lunine, J.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Formisano, V.; Langevin, Y.; Matson, D.L.; Mennella, V.; Nicholson, P.D.; Sicardy, B.; Sotin, C.; Hoefen, T.M.; Curchin, J.M.; Hansen, G.; Hibbits, K.; Matz, K.-D.

    2005-01-01

    The origin of Phoebe, which is the outermost large satellite of Saturn, is of particular interest because its inclined, retrograde orbit suggests that it was gravitationally captured by Saturn, having accreted outside the region of the solar nebula in which Saturn formed. By contrast, Saturn's regular satellites (with prograde, low-inclination, circular orbits) probably accreted within the sub-nebula in which Saturn itself formed. Here we report imaging spectroscopy of Phoebe resulting from the Cassini-Huygens spacecraft encounter on 11 June 2004. We mapped ferrous-iron-bearing minerals, bound water, trapped CO2, probable phyllosilicates, organics, nitriles and cyanide compounds. Detection of these compounds on Phoebe makes it one of the most compositionally diverse objects yet observed in our Solar System. It is likely that Phoebe's surface contains primitive materials from the outer Solar System, indicating a surface of cometary origin.

  12. Velocity Map Imaging Studies of Non-Conventional Methanethiol Photochemistry

    NASA Astrophysics Data System (ADS)

    Toulson, Benjamin W.; Alaniz, Jonathan; Murray, Craig

    2014-06-01

    Velocity map imaging (VMI) in combination with state-selective resonance enhanced multiphoton ionization (REMPI) has been used to study the photodissociation dynamics of methanethiol following excitation to the first and second singlet electronically excited states. Formation of sulfur atoms, in both the singlet and triplet manifolds, is observed and can be attributed to primary dissociation of the parent molecule. We will report the nascent photofragment velocity distributions, and hence the internal energy of the methane co-fragment. Sulfur atom quantum yields are benchmarked against a known standard to evaluate the significance of this pathway. The role of non-conventional photochemical mechanisms such as roaming-mediated intersystem crossing, previously observed in methylamine photochemistry, will be discussed. James O. Thomas, Katherine E. Lower, and Craig Murray, The Journal of Physical Chemistry Letters, 2012, 3 (10), 1341-1345.

  13. 'Molecular photography': velocity-map imaging of chemical events.

    PubMed

    Vallance, Claire

    2004-12-15

    Every chemical reaction bears its own unique fingerprint, embodied in the kinetic energy, angular distribution and rotational and vibrational motion of the newly formed reaction products. These quantities reflect the forces acting during the chemical reaction, and their measurement often provides unparalleled insight into the basic physics governing chemical reactivity. One experimental technique that has truly captured the imagination of the reaction-dynamics community is velocity-map ion imaging, which provides a visual 'snapshot' of the complete product scattering distribution in a single measurement. Originally developed to study gas-phase photodissociation, the technique is now routinely being applied to bimolecular processes, particularly inelastic and reactive scattering. This article will review recent developments in the field, using examples from studies of a range of chemical processes.

  14. Mapping crop coefficients in irrigated areas from Landsat TM images

    NASA Astrophysics Data System (ADS)

    D'Urso, Guido; Menenti, Massimo

    1995-11-01

    It is well known that reflectance of Earth surface largely depends upon amount of biomass, crop type, development stage, ground coverage. The knowledge of these parameters -- together with groundbased meteorological data -- allows for the estimate of crop water requirements and their spatial distribution. Recent research has shown the possibility of using multispectral satellite images in combination with other information for mapping crop coefficients in irrigated areas. This approach is based on the assumption that crop coefficients (Kc) are greatly influenced by canopy development and vegetation fractional ground cover; since these parameters directly affect the reflectance of cropped areas, it is possible to establish a correlation between multispectral measurements of canopies reflectance and the corresponding Kc values. Within this frame, two different approaches may be applied: (1) definition of spectral classes corresponding to different crop coefficient values and successive supervised classification for the derivation of crop coefficients maps; (2) use of analytical relationships between the surface reflectance and the corresponding values of vegetation parameters, i.e., the leaf area index, the albedo and the surface roughness, needed for the calculation of the potential evapotranspiration according to the combination type equation. The two different techniques are discussed with reference to the results of their application to specific case-studies. The aim of this report is to illustrate the suitability of remote sensing techniques as an operational tool for assessing crop water demand at regional scale.

  15. Multimodality Functional Imaging in Radiation Therapy Planning: Relationships between Dynamic Contrast-Enhanced MRI, Diffusion-Weighted MRI, and 18F-FDG PET

    PubMed Central

    Mera Iglesias, Moisés; Aramburu Núñez, David; del Olmo Claudio, José Luis; Salvador Gómez, Francisco; Driscoll, Brandon; Coolens, Catherine; Alba Castro, José L.; Muñoz, Victor

    2015-01-01

    Objectives. Biologically guided radiotherapy needs an understanding of how different functional imaging techniques interact and link together. We analyse three functional imaging techniques that can be useful tools for achieving this objective. Materials and Methods. The three different imaging modalities from one selected patient are ADC maps, DCE-MRI, and 18F-FDG PET/CT, because they are widely used and give a great amount of complementary information. We show the relationship between these three datasets and evaluate them as markers for tumour response or hypoxia marker. Thus, vascularization measured using DCE-MRI parameters can determine tumour hypoxia, and ADC maps can be used for evaluating tumour response. Results. ADC and DCE-MRI include information from 18F-FDG, as glucose metabolism is associated with hypoxia and tumour cell density, although 18F-FDG includes more information about the malignancy of the tumour. The main disadvantage of ADC maps is the distortion, and we used only low distorted regions, and extracellular volume calculated from DCE-MRI can be considered equivalent to ADC in well-vascularized areas. Conclusion. A dataset for achieving the biologically guided radiotherapy must include a tumour density study and a hypoxia marker. This information can be achieved using only MRI data or only PET/CT studies or mixing both datasets. PMID:25788972

  16. Using imaging spectroscopy to map acidic mine waste

    USGS Publications Warehouse

    Swayze, G.A.; Smith, K.S.; Clark, R.N.; Sutley, S.J.; Pearson, R.M.; Vance, J.S.; Hageman, P.L.; Briggs, P.H.; Meier, A.L.; Singleton, M.J.; Roth, S.

    2000-01-01

    The process of pyrite oxidation at the surface of mine waste may produce acidic water that is gradually neutralized as it drains away from the waste, depositing different Fe-bearing secondary minerals in roughly concentric zones that emanate from mine-waste piles. These Fe-bearing minerals are indicators of the geochemical conditions under which they form. Airborne and orbital imaging spectrometers can be used to map these mineral zones because each of these Fe-bearing secondary minerals is spectrally unique. In this way, imaging spectroscopy can be used to rapidly screen entire mining districts for potential sources of surface acid drainage and to detect acid producing minerals in mine waste or unmined rock outcrops. Spectral data from the AVIRIS instrument were used to evaluate mine waste at the California Gulch Superfund Site near Leadville, CO. Laboratory leach tests of surface samples show that leachate pH is most acidic and metals most mobile in samples from the inner jarosite zone and that leachate pH is near-neutral and metals least mobile in samples from the outer goethite zone.

  17. Mapping cardiac surface mechanics with structured light imaging

    PubMed Central

    Laughner, Jacob I.; Zhang, Song; Li, Hao; Shao, Connie C.

    2012-01-01

    Cardiovascular disease often manifests as a combination of pathological electrical and structural heart remodeling. The relationship between mechanics and electrophysiology is crucial to our understanding of mechanisms of cardiac arrhythmias and the treatment of cardiac disease. While several technologies exist for describing whole heart electrophysiology, studies of cardiac mechanics are often limited to rhythmic patterns or small sections of tissue. Here, we present a comprehensive system based on ultrafast three-dimensional (3-D) structured light imaging to map surface dynamics of whole heart cardiac motion. Additionally, we introduce a novel nonrigid motion-tracking algorithm based on an isometry-maximizing optimization framework that forms correspondences between consecutive 3-D frames without the use of any fiducial markers. By combining our 3-D imaging system with nonrigid surface registration, we are able to measure cardiac surface mechanics at unprecedented spatial and temporal resolution. In conclusion, we demonstrate accurate cardiac deformation at over 200,000 surface points of a rabbit heart recorded at 200 frames/s and validate our results on highly contrasting heart motions during normal sinus rhythm, ventricular pacing, and ventricular fibrillation. PMID:22796539

  18. Novel and efficient ADC concept for BlackGEM telescope

    NASA Astrophysics Data System (ADS)

    ter Horst, Rik; Kragt, Jan; Lesman, Dirk; Navarro, Ramon

    2016-07-01

    Ground based telescopes suffer from Atmospheric Dispersion that can be compensated for with an Atmospheric Dispersion Corrector (ADC). In the BlackGEM array of 650 mm diameter telescopes, the ADC is fully integrated in the three-lens field corrector and requires lateral displacement of only one lens for a full correction of the Atmospheric Dispersion. This concept results in a very compact and efficient ADC design without the need for any additional optical components. This paper describes the optical trade-offs, optical design and optimization, as well as the mechanical design and implementation of this novel ADC solution.

  19. Advantage of spatial map ion imaging in the study of large molecule photodissociation

    NASA Astrophysics Data System (ADS)

    Lee, Chin; Lin, Yen-Cheng; Lee, Shih-Huang; Lee, Yin-Yu; Tseng, Chien-Ming; Lee, Yuan-Tseh; Ni, Chi-Kung

    2017-07-01

    The original ion imaging technique has low velocity resolution, and currently, photodissociation is mostly investigated using velocity map ion imaging. However, separating signals from the background (resulting from undissociated excited parent molecules) is difficult when velocity map ion imaging is used for the photodissociation of large molecules (number of atoms ≥ 10). In this study, we used the photodissociation of phenol at the S1 band origin as an example to demonstrate how our multimass ion imaging technique, based on modified spatial map ion imaging, can overcome this difficulty. The photofragment translational energy distribution obtained when multimass ion imaging was used differed considerably from that obtained when velocity map ion imaging and Rydberg atom tagging were used. We used conventional translational spectroscopy as a second method to further confirm the experimental results, and we conclude that data should be interpreted carefully when velocity map ion imaging or Rydberg atom tagging is used in the photodissociation of large molecules. Finally, we propose a modified velocity map ion imaging technique without the disadvantages of the current velocity map ion imaging technique.

  20. Rectified images of selected geologic maps in the Northern Rockies Area, Idaho, Montana, Washington, and Wyoming

    USGS Publications Warehouse

    Larsen, Jeremy C.; Assmus, Kenneth C.; Causey, J. Douglas; Zientek, Michael L.

    2004-01-01

    Selected geologic maps covering parts of the Northern Rocky Mountains and adjacent areas were converted to raster images and georeferenced (rectified) for use in a geographic information system (GIS). These rectified images were created for the purpose of visually comparing published geologic maps with other geospatial information. However, they cannot be queried or used for spatial analysis thus limiting their use in a GIS. The 42 georeferenced images included in this report range in scale from 1:250,000 to 1:100,000.Tagged Image Format (TIFF) images of the maps were generated by scanning an original paper map or converting previously published Portable Document Format (PDF) images or Encapsulated Post-Script (EPS) files. To reduce file size and minimize image overlap, the TIFF images were cropped, and then rectified using ArcMap? 8 and converted to MrSID? images. Information in the explanation and cross sections can be viewed in un-rectified images of the original publications that are included with this report. In addition, the text in the map unit description along with the unit name, map label, and a citation are organized in a searchable PDF file.

  1. A Preliminary Mapping of Web Queries Using Existing Image Query Schemes.

    ERIC Educational Resources Information Center

    Jansen, Bernard J.

    End user searching on the Web has become the primary method of locating images for many people. This study investigates the nature of Web image queries by attempting to map them to known image classification schemes. In this study, approximately 100,000 image queries from a major Web search engine were collected in 1997, 1999, and 2001. A…

  2. Comparing Image-Based Methods for Assessing Visual Clutter in Generalized Maps

    NASA Astrophysics Data System (ADS)

    Touya, G.; Decherf, B.; Lalanne, M.; Dumont, M.

    2015-08-01

    Map generalization abstracts and simplifies geographic information to derive maps at smaller scales. The automation of map generalization requires techniques to evaluate the global quality of a generalized map. The quality and legibility of a generalized map is related to the complexity of the map, or the amount of clutter in the map, i.e. the excessive amount of information and its disorganization. Computer vision research is highly interested in measuring clutter in images, and this paper proposes to compare some of the existing techniques from computer vision, applied to generalized maps evaluation. Four techniques from the literature are described and tested on a large set of maps, generalized at different scales: edge density, subband entropy, quad tree complexity, and segmentation clutter. The results are analyzed against several criteria related to generalized maps, the identification of cluttered areas, the preservation of the global amount of information, the handling of occlusions and overlaps, foreground vs background, and blank space reduction.

  3. Computational Tension Mapping of Adherent Cells Based on Actin Imaging.

    PubMed

    Manifacier, Ian; Milan, Jean-Louis; Jeanneau, Charlotte; Chmilewsky, Fanny; Chabrand, Patrick; About, Imad

    2016-01-01

    Forces transiting through the cytoskeleton are known to play a role in adherent cell activity. Up to now few approaches haves been able to determine theses intracellular forces. We thus developed a computational mechanical model based on a reconstruction of the cytoskeleton of an adherent cell from fluorescence staining of the actin network and focal adhesions (FA). Our custom made algorithm converted the 2D image of an actin network into a map of contractile interactions inside a 2D node grid, each node representing a group of pixels. We assumed that actin filaments observed under fluorescence microscopy, appear brighter when thicker, we thus presumed that nodes corresponding to pixels with higher actin density were linked by stiffer interactions. This enabled us to create a system of heterogeneous interactions which represent the spatial organization of the contractile actin network. The contractility of this interaction system was then adapted to match the level of force the cell truly exerted on focal adhesions; forces on focal adhesions were estimated from their vinculin expressed size. This enabled the model to compute consistent mechanical forces transiting throughout the cell. After computation, we applied a graphical approach on the original actin image, which enabled us to calculate tension forces throughout the cell, or in a particular region or even in single stress fibers. It also enabled us to study different scenarios which may indicate the mechanical role of other cytoskeletal components such as microtubules. For instance, our results stated that the ratio between intra and extra cellular compression is inversely proportional to intracellular tension.

  4. Computational Tension Mapping of Adherent Cells Based on Actin Imaging

    PubMed Central

    Manifacier, Ian; Milan, Jean-Louis; Jeanneau, Charlotte; Chmilewsky, Fanny; Chabrand, Patrick; About, Imad

    2016-01-01

    Forces transiting through the cytoskeleton are known to play a role in adherent cell activity. Up to now few approaches haves been able to determine theses intracellular forces. We thus developed a computational mechanical model based on a reconstruction of the cytoskeleton of an adherent cell from fluorescence staining of the actin network and focal adhesions (FA). Our custom made algorithm converted the 2D image of an actin network into a map of contractile interactions inside a 2D node grid, each node representing a group of pixels. We assumed that actin filaments observed under fluorescence microscopy, appear brighter when thicker, we thus presumed that nodes corresponding to pixels with higher actin density were linked by stiffer interactions. This enabled us to create a system of heterogeneous interactions which represent the spatial organization of the contractile actin network. The contractility of this interaction system was then adapted to match the level of force the cell truly exerted on focal adhesions; forces on focal adhesions were estimated from their vinculin expressed size. This enabled the model to compute consistent mechanical forces transiting throughout the cell. After computation, we applied a graphical approach on the original actin image, which enabled us to calculate tension forces throughout the cell, or in a particular region or even in single stress fibers. It also enabled us to study different scenarios which may indicate the mechanical role of other cytoskeletal components such as microtubules. For instance, our results stated that the ratio between intra and extra cellular compression is inversely proportional to intracellular tension. PMID:26812601

  5. Photodissociation dynamics of 2-bromopropane using velocity map imaging technique.

    PubMed

    Zhu, Rongshu; Tang, Bifeng; Zhang, Xiu; Zhang, Bing

    2010-06-03

    Photodissociation dynamics of 2-bromopropane in the A band was investigated at several wavelengths between 232 and 267 nm using resonance-enhanced multiphoton ionization technique combined with velocity map ion-imaging detection. The ion images of Br ((2)P(3/2)) and Br* ((2)P(1/2)) were analyzed to yield corresponding total translational energy and angular distributions. The total translational energy distributions showed that the channel leading to Br carried more internal energy in the 2-C(3)H(7) moiety than the channel leading to Br*. The anisotropy parameters of beta (Br) were obtained to be between 0.68 and 1.49, and beta (Br*) between 0.73 and 1.96, indicating that the Br* product originates from direct excitation of the (3)Q(0) state and the (1)Q(1) --> (3)Q(0) nonadiabatic transition, and the Br product from direct excitation of the (1)Q(1) or (3)Q(1) state and the (3)Q(0) --> (1)Q(1) nonadiabatic transition. The curve crossing probabilities were determined to be increase with the wavelength. As compared with the case of CH(3)Br, the two heavier branched CH(3) groups significantly enhance the Br ((2)P(3/2)) production from nonadiabatic contribution. The curve crossing from the (3)Q(0) to the (1)Q(1) surface is much higher than that of the reverse from the (1)Q(1) to the (3)Q(0) surface, which may have resulted from the difference in shape between the potential energy surfaces of the (3)Q(0) and (1)Q(1) states. Finally, based on the experimental data, the partial absorption cross sections of the A band for the (3)Q(0), (3)Q(1), and (1)Q(1) states were extracted.

  6. A novel color image encryption scheme using alternate chaotic mapping structure

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Zhao, Yuanyuan; Zhang, Huili; Guo, Kang

    2016-07-01

    This paper proposes an color image encryption algorithm using alternate chaotic mapping structure. Initially, we use the R, G and B components to form a matrix. Then one-dimension logistic and two-dimension logistic mapping is used to generate a chaotic matrix, then iterate two chaotic mappings alternately to permute the matrix. For every iteration, XOR operation is adopted to encrypt plain-image matrix, then make further transformation to diffuse the matrix. At last, the encrypted color image is obtained from the confused matrix. Theoretical analysis and experimental results has proved the cryptosystem is secure and practical, and it is suitable for encrypting color images.

  7. Higher resolution satellite remote sensing and the impact on image mapping

    USGS Publications Warehouse

    Watkins, Allen H.; Thormodsgard, June M.

    1987-01-01

    Recent advances in spatial, spectral, and temporal resolution of civil land remote sensing satellite data are presenting new opportunities for image mapping applications. The U.S. Geological Survey's experimental satellite image mapping program is evolving toward larger scale image map products with increased information content as a result of improved image processing techniques and increased resolution. Thematic mapper data are being used to produce experimental image maps at 1:100,000 scale that meet established U.S. and European map accuracy standards. Availability of high quality, cloud-free, 30-meter ground resolution multispectral data from the Landsat thematic mapper sensor, along with 10-meter ground resolution panchromatic and 20-meter ground resolution multispectral data from the recently launched French SPOT satellite, present new cartographic and image processing challenges. The need to fully exploit these higher resolution data increases the complexity of processing the images into large-scale image maps. The removal of radiometric artifacts and noise prior to geometric correction can be accomplished by using a variety of image processing filters and transforms. Sensor modeling and image restoration techniques allow maximum retention of spatial and radiometric information. An optimum combination of spectral information and spatial resolution can be obtained by merging different sensor types. These processing techniques are discussed and examples are presented. 

  8. Imaging Systems Provide Maps for U.S. Soldiers

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Spanning nearly four decades, the remarkable Landsat program has continuously provided data about the Earth s surface, including detailed maps of vegetation, land use, forest extent and health, surface water, population distribution, as well as how these features have changed over time. Managed by NASA and the U.S. Geological Survey, Landsat s series of satellites obtain data through passive remote sensing, or the use of sensors to read the energy reflected or emitted from the Earth s surface. After the data from the sensors is processed and analyzed, it can be applied to create information-rich images of the planet. While the Landsat program has launched seven satellites since 1972, only Landsat 5 and 7 are currently operating. The next spacecraft in line to ensure continuity of data for years to come is the Landsat Data Continuity Mission (LDCM). Planned for launch in 2012, LDCM will take measurements of the Earth in visible, nearinfrared, shortwave infrared, and thermal infrared bands. In addition to widespread use for land use planning and monitoring on local to regional scales, support for disaster response and evaluations, as well as water use monitoring, LDCM measurements will directly serve NASA s research in the areas of climate, the carbon cycle, ecosystems, the water cycle, biogeochemistry, and Earth s surface and interior.

  9. Mapping social target detection with functional magnetic resonance imaging.

    PubMed

    Dichter, Gabriel S; Felder, Jennifer N; Bodfish, James W; Sikich, Linmarie; Belger, Aysenil

    2009-03-01

    The neural correlates of cognitive control and social processing functions, as well as the characteristic patterns of anomalous brain activation patterns in psychiatric conditions associated with impairment in these functions, have been well characterized. However, these domains have primarily been examined in isolation. The present study used event-related functional magnetic resonance imaging to map brain areas recruited during a target-detection task designed to evaluate responses to both non-social (i.e. shape) and social (i.e. face) target stimuli. Both shape and face targets activated a similar brain network, including the postcentral gyrus, the anterior and posterior cingulate gyri and the right midfrontal gyrus, whereas face targets additionally activated the thalamus, fusiform and temporooccipital cortex, lingual gyrus and paracingulate gyrus. Comparison of activations to social and non-social target events revealed that a small portion of the dorsal anterior cingulate gyrus (Brodmann's area 32) and the supracalcarine cortex were preferentially activated to face targets. These findings indicate that non-social and social stimuli embedded within a cognitive control task activate overlapping and distinct brain regions. Clinical cognitive neuroscience research of disorders characterized by cognitive dysfunction and impaired social processing would benefit from the use of tasks that evaluate the combined effects of deficits in these two domains.

  10. Hyperspectral image classification for mapping agricultural tillage practices

    NASA Astrophysics Data System (ADS)

    Ran, Qiong; Li, Wei; Du, Qian; Yang, Chenghai

    2015-01-01

    An efficient classification framework for mapping agricultural tillage practice using hyperspectral remote sensing imagery is proposed, which has the potential to be implemented practically to provide rapid, accurate, and objective surveying data for precision agricultural management and appraisal from large-scale remote sensing images. It includes a local region filter [i.e., Gaussian low-pass filter (GLF)] to extract spatial-spectral features, a dimensionality reduction process [i.e., local fisher's discriminate analysis (LFDA)], and the traditional k-nearest neighbor (KNN) classifier, and is denoted as GLF-LFDA-KNN. Compared to our previously used local average filter and adaptive weighted filter, the GLF also considers spatial features in a small neighborhood, but it emphasizes the central pixel itself and is data-independent; therefore, it can achieve the balance between classification accuracy and computational complexity. The KNN classifier has a lower computational complexity compared to the traditional support vector machine (SVM). After classification separability is enhanced by the GLF and LFDA, the less powerful KNN can outperform SVM and the overall computational cost remains lower. The proposed framework can also outperform the SVM with composite kernel (SVM-CK) that uses spatial-spectral features.

  11. Noo Peroxy Isomer Exposed with Velocity-Map Imaging

    NASA Astrophysics Data System (ADS)

    Laws, Benjamin A.; Cavanagh, Steven J.; Lewis, Brenton R.; Gibson, Stephen T.

    2016-06-01

    O2, a toxic gas formed in most combustion processes, plays an important role in the Earth's atmosphere due to its role in the production of both photochemical smog and tropospheric ozone. The existence of the peroxy radial, NOO, has been proposed, both as a collision reaction intermediate, and as a negative-ion in some discharge sources, in order to account for extended tails seen in some photoelectron spectra. In this work a velocity-mapped image of NO2- photodetachment measured at 519 nm, shown, reveals high-energy electron structure, that persists at detachment energies lower than the electron affinity of ONO, 2.273 eV. {b} The central ring has the spectral signature of O^-, while the outer-ripples, that appear in character to be similar to NO- detachment, are, we propose due to the NOO- peroxy radical, which is also responsible for the presence of O-. The photoelectron spectrum resolves the vibrational structure to characterize the neutral peroxy radical. The identification is further supported by ab initio calculations. The photoelectron angular distributions associated with the peroxy radical have a negative anisotropy parameter, opposite in sign to detachment from ONO^-. K. M. Ervin and J. Ho and W. C. Lineberger, J. Phys. Chem. 92, 5405 (1988). doi:10.1021/j100330a017 Research supported by the ARC DP160102585.

  12. Serial pixel analog-to-digital converter (ADC)

    NASA Astrophysics Data System (ADS)

    Larson, Eric D.

    2010-02-01

    This method reduces the data path from the counter to the pixel register of the analog-to-digital converter (ADC) from as many as 10 bits to a single bit. The reduction in data path width is accomplished by using a coded serial data stream similar to a pseudo random number (PRN) generator. The resulting encoded pixel data is then decoded into a standard hexadecimal format before storage. The high-speed serial pixel ADC concept is based on the single-slope integrating pixel ADC architecture. Previous work has described a massively parallel pixel readout of a similar architecture. The serial ADC connection is similar to the state-of-the art method with the exception that the pixel ADC register is a shift register and the data path is a single bit. A state-of-the-art individual-pixel ADC uses a single-slope charge integration converter architecture with integral registers and "one-hot" counters. This implies that parallel data bits are routed among the counter and the individual on-chip pixel ADC registers. The data path bit-width to the pixel is therefore equivalent to the pixel ADC bit resolution.

  13. Mapping luminescence of uranium-bearing sandstones using an imaging Fraunhofer line discriminator

    USGS Publications Warehouse

    Watson, Robert D.; Theisen, Arnold F.

    1977-01-01

    Measurements with a Fraunhofer Line Discriminator (FLD) imaging system over uranium-bearing sandstones in the Galisteo Formation, Sandia Mountains, New Mexico, show that luminescence of these sandstones is detectable and in general agreement with their distribution as mapped on the ground. The FLD imaging system coupled with a color television monitor and recorder, provides an inexpensive and reasonably accurate method of mapping the extent of luminescent materials, without the need of sophisticated aircraft image-motion compensation.

  14. Mapping Fire Severity Using Imaging Spectroscopy and Kernel Based Image Analysis

    NASA Astrophysics Data System (ADS)

    Prasad, S.; Cui, M.; Zhang, Y.; Veraverbeke, S.

    2014-12-01

    Improved spatial representation of within-burn heterogeneity after wildfires is paramount to effective land management decisions and more accurate fire emissions estimates. In this work, we demonstrate feasibility and efficacy of airborne imaging spectroscopy (hyperspectral imagery) for quantifying wildfire burn severity, using kernel based image analysis techniques. Two different airborne hyperspectral datasets, acquired over the 2011 Canyon and 2013 Rim fire in California using the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) sensor, were used in this study. The Rim Fire, covering parts of the Yosemite National Park started on August 17, 2013, and was the third largest fire in California's history. Canyon Fire occurred in the Tehachapi mountains, and started on September 4, 2011. In addition to post-fire data for both fires, half of the Rim fire was also covered with pre-fire images. Fire severity was measured in the field using Geo Composite Burn Index (GeoCBI). The field data was utilized to train and validate our models, wherein the trained models, in conjunction with imaging spectroscopy data were used for GeoCBI estimation wide geographical regions. This work presents an approach for using remotely sensed imagery combined with GeoCBI field data to map fire scars based on a non-linear (kernel based) epsilon-Support Vector Regression (e-SVR), which was used to learn the relationship between spectra and GeoCBI in a kernel-induced feature space. Classification of healthy vegetation versus fire-affected areas based on morphological multi-attribute profiles was also studied. The availability of pre- and post-fire imaging spectroscopy data over the Rim Fire provided a unique opportunity to evaluate the performance of bi-temporal imaging spectroscopy for assessing post-fire effects. This type of data is currently constrained because of limited airborne acquisitions before a fire, but will become widespread with future spaceborne sensors such as those on

  15. An Efficient Algorithm for Mapping Imaging Data to 3D Unstructured Grids in Computational Biomechanics

    SciTech Connect

    Einstein, Daniel R.; Kuprat, Andrew P.; Jiao, Xiangmin; Carson, James P.; Einstein, David M.; Corley, Richard A.; Jacob, Rick E.

    2013-01-01

    Geometries for organ scale and multiscale simulations of organ function are now routinely derived from imaging data. However, medical images may also contain spatially heterogeneous information other than geometry that are relevant to such simulations either as initial conditions or in the form of model parameters. In this manuscript, we present an algorithm for the efficient and robust mapping of such data to imaging based unstructured polyhedral grids in parallel. We then illustrate the application of our mapping algorithm to three different mapping problems: 1) the mapping of MRI diffusion tensor data to an unstuctured ventricular grid; 2) the mapping of serial cyro-section histology data to an unstructured mouse brain grid; and 3) the mapping of CT-derived volumetric strain data to an unstructured multiscale lung grid. Execution times and parallel performance are reported for each case.

  16. A fast microchannel plate-scintillator detector for velocity map imaging and imaging mass spectrometry

    SciTech Connect

    Winter, B.; King, S. J.; Vallance, C.; Brouard, M.

    2014-02-15

    The time resolution achievable using standard position-sensitive ion detectors, consisting of a chevron pair of microchannel plates coupled to a phosphor screen, is primarily limited by the emission lifetime of the phosphor, around 70 ns for the most commonly used P47 phosphor. We demonstrate that poly-para-phenylene laser dyes may be employed extremely effectively as scintillators, exhibiting higher brightness and much shorter decay lifetimes than P47. We provide an extensive characterisation of the properties of such scintillators, with a particular emphasis on applications in velocity-map imaging and microscope-mode imaging mass spectrometry. The most promising of the new scintillators exhibits an electron-to-photon conversion efficiency double that of P47, with an emission lifetime an order of magnitude shorter. The new scintillator screens are vacuum stable and show no signs of signal degradation even over longer periods of operation.

  17. Surface height map estimation from a single image using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaowei; Zhong, Guoqiang; Qi, Lin; Dong, Junyu; Pham, Tuan D.; Mao, Jianzhou

    2017-02-01

    Surface height map estimation is an important task in high-resolution 3D reconstruction. This task differs from general scene depth estimation in the fact that surface height maps contain more high frequency information or fine details. Existing methods based on radar or other equipments can be used for large-scale scene depth recovery, but might fail in small-scale surface height map estimation. Although some methods are available for surface height reconstruction based on multiple images, e.g. photometric stereo, height map estimation directly from a single image is still a challenging issue. In this paper, we present a novel method based on convolutional neural networks (CNNs) for estimating the height map from a single image, without any equipments or extra prior knowledge of the image contents. Experimental results based on procedural and real texture datasets show the proposed algorithm is effective and reliable.

  18. User's guide for mapIMG 3--Map image re-projection software package

    USGS Publications Warehouse

    Finn, Michael P.; Mattli, David M.

    2012-01-01

    Version 0.0 (1995), Dan Steinwand, U.S. Geological Survey (USGS)/Earth Resources Observation Systems (EROS) Data Center (EDC)--Version 0.0 was a command line version for UNIX that required four arguments: the input metadata, the output metadata, the input data file, and the output destination path. Version 1.0 (2003), Stephen Posch and Michael P. Finn, USGS/Mid-Continent Mapping Center (MCMC--Version 1.0 added a GUI interface that was built using the Qt library for cross platform development. Version 1.01 (2004), Jason Trent and Michael P. Finn, USGS/MCMC--Version 1.01 suggested bounds for the parameters of each projection. Support was added for larger input files, storage of the last used input and output folders, and for TIFF/ GeoTIFF input images. Version 2.0 (2005), Robert Buehler, Jason Trent, and Michael P. Finn, USGS/National Geospatial Technical Operations Center (NGTOC)--Version 2.0 added Resampling Methods (Mean, Mode, Min, Max, and Sum), updated the GUI design, and added the viewer/pre-viewer. The metadata style was changed to XML and was switched to a new naming convention. Version 3.0 (2009), David Mattli and Michael P. Finn, USGS/Center of Excellence for Geospatial Information Science (CEGIS)--Version 3.0 brings optimized resampling methods, an updated GUI, support for less than global datasets, UTM support and the whole codebase was ported to Qt4.

  19. A novel chaotic map and an improved chaos-based image encryption scheme.

    PubMed

    Zhang, Xianhan; Cao, Yang

    2014-01-01

    In this paper, we present a novel approach to create the new chaotic map and propose an improved image encryption scheme based on it. Compared with traditional classic one-dimensional chaotic maps like Logistic Map and Tent Map, this newly created chaotic map demonstrates many better chaotic properties for encryption, implied by a much larger maximal Lyapunov exponent. Furthermore, the new chaotic map and Arnold's Cat Map based image encryption method is designed and proved to be of solid robustness. The simulation results and security analysis indicate that such method not only can meet the requirement of imagine encryption, but also can result in a preferable effectiveness and security, which is usable for general applications.

  20. A Novel Chaotic Map and an Improved Chaos-Based Image Encryption Scheme

    PubMed Central

    2014-01-01

    In this paper, we present a novel approach to create the new chaotic map and propose an improved image encryption scheme based on it. Compared with traditional classic one-dimensional chaotic maps like Logistic Map and Tent Map, this newly created chaotic map demonstrates many better chaotic properties for encryption, implied by a much larger maximal Lyapunov exponent. Furthermore, the new chaotic map and Arnold's Cat Map based image encryption method is designed and proved to be of solid robustness. The simulation results and security analysis indicate that such method not only can meet the requirement of imagine encryption, but also can result in a preferable effectiveness and security, which is usable for general applications. PMID:25143990

  1. Disparity map generation from illumination variant stereo images using efficient hierarchical dynamic programming.

    PubMed

    Borisagar, Viral H; Zaveri, Mukesh A

    2014-01-01

    A novel hierarchical stereo matching algorithm is presented which gives disparity map as output from illumination variant stereo pair. Illumination difference between two stereo images can lead to undesirable output. Stereo image pair often experience illumination variations due to many factors like real and practical situation, spatially and temporally separated camera positions, environmental illumination fluctuation, and the change in the strength or position of the light sources. Window matching and dynamic programming techniques are employed for disparity map estimation. Good quality disparity map is obtained with the optimized path. Homomorphic filtering is used as a preprocessing step to lessen illumination variation between the stereo images. Anisotropic diffusion is used to refine disparity map to give high quality disparity map as a final output. The robust performance of the proposed approach is suitable for real life circumstances where there will be always illumination variation between the images. The matching is carried out in a sequence of images representing the same scene, however in different resolutions. The hierarchical approach adopted decreases the computation time of the stereo matching problem. This algorithm can be helpful in applications like robot navigation, extraction of information from aerial surveys, 3D scene reconstruction, and military and security applications. Similarity measure SAD is often sensitive to illumination variation. It produces unacceptable disparity map results for illumination variant left and right images. Experimental results show that our proposed algorithm produces quality disparity maps for both wide range of illumination variant and invariant stereo image pair.

  2. Statistical properties of Jacobian maps and the realization of unbiased large-deformation nonlinear image registration.

    PubMed

    Leow, Alex D; Yanovsky, Igor; Chiang, Ming-Chang; Lee, Agatha D; Klunder, Andrea D; Lu, Allen; Becker, James T; Davis, Simon W; Toga, Arthur W; Thompson, Paul M

    2007-06-01

    Maps of local tissue compression or expansion are often computed by comparing magnetic resonance imaging (MRI) scans using nonlinear image registration. The resulting changes are commonly analyzed using tensor-based morphometry to make inferences about anatomical differences, often based on the Jacobian map, which estimates local tissue gain or loss. Here, we provide rigorous mathematical analyses of the Jacobian maps, and use themto motivate a new numerical method to construct unbiased nonlinear image registration. First, we argue that logarithmic transformation is crucial for analyzing Jacobian values representing morphometric differences. We then examine the statistical distributions of log-Jacobian maps by defining the Kullback-Leibler (KL) distance on material density functions arising in continuum-mechanical models. With this framework, unbiased image registration can be constructed by quantifying the symmetric KL-distance between the identity map and the resulting deformation. Implementation details, addressing the proposed unbiased registration as well as the minimization of symmetric image matching functionals, are then discussed and shown to be applicable to other registration methods, such as inverse consistent registration. In the results section, we test the proposed framework, as well as present an illustrative application mapping detailed 3-D brain changes in sequential magnetic resonance imaging scans of a patient diagnosed with semantic dementia. Using permutation tests, we show that the symmetrization of image registration statistically reduces skewness in the log-Jacobian map.

  3. Tone mapping infrared images using conditional filtering-based multi-scale retinex

    NASA Astrophysics Data System (ADS)

    Luo, Haibo; Xu, Lingyun; Hui, Bin; Chang, Zheng

    2015-10-01

    Tone mapping can be used to compress the dynamic range of the image data such that it can be fitted within the range of the reproduction media and human vision. The original infrared images that captured with infrared focal plane arrays (IFPA) are high dynamic images, so tone mapping infrared images is an important component in the infrared imaging systems, and it has become an active topic in recent years. In this paper, we present a tone mapping framework using multi-scale retinex. Firstly, a Conditional Gaussian Filter (CGF) was designed to suppress "halo" effect. Secondly, original infrared image is decomposed into a set of images that represent the mean of the image at different spatial resolutions by applying CGF of different scale. And then, a set of images that represent the multi-scale details of original image is produced by dividing the original image pointwise by the decomposed image. Thirdly, the final detail image is reconstructed by weighted sum of the multi-scale detail images together. Finally, histogram scaling and clipping is adopted to remove outliers and scale the detail image, 0.1% of the pixels are clipped at both extremities of the histogram. Experimental results show that the proposed algorithm efficiently increases the local contrast while preventing "halo" effect and provides a good rendition of visual effect.

  4. Graded functional diffusion map-defined characteristics of apparent diffusion coefficients predict overall survival in recurrent glioblastoma treated with bevacizumab.

    PubMed

    Ellingson, Benjamin M; Cloughesy, Timothy F; Lai, Albert; Mischel, Paul S; Nghiemphu, Phioanh L; Lalezari, Shadi; Schmainda, Kathleen M; Pope, Whitney B

    2011-10-01

    Diffusion imaging has shown promise as a predictive and prognostic biomarker in glioma. We assessed the ability of graded functional diffusion maps (fDMs) and apparent diffusion coefficient (ADC) characteristics to predict overall survival (OS) in recurrent glioblastoma multiforme (GBM) patients treated with bevacizumab. Seventy-seven patients with recurrent GBMs were retrospectively examined. MRI scans were obtained before and approximately 6 weeks after treatment with bevacizumab. Graded fDMs were created by registering datasets to each patient's pretreatment scan and then performing voxel-wise subtraction between post- and pretreatment ADC maps. Voxels were categorized according to the degree of change in ADC within pretreatment fluid-attenuated inversion recovery (FLAIR) and contrast-enhancing regions of interest (ROIs). We found that the volume of tissue showing decreased ADC within both FLAIR and contrast-enhancing regions stratified OS (log-rank, P < .05). fDMs applied to contrast-enhancing ROIs more accurately predicted OS compared with fDMs applied to FLAIR ROIs. Graded fDMs (showing voxels with decreased ADC between 0.25 and 0.4 µm(2)/ms) were more predictive of OS than traditional (single threshold) fDMs, and the predictive ability of graded fDMs could be enhanced even further by adding the ADC characteristics from the fDM-classified voxels to the analysis (log-rank, P < .001). These results demonstrate that spatially resolved diffusion-based tumor metrics are a powerful imaging biomarker of survival in patients with recurrent GBM treated with bevacizumab.

  5. Global Magellan-image map of Venus at full resolution

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Edwards, K. B.; Morgan, H. F.; Soderblom, L. A.; Stoewe, T. L.

    1993-01-01

    During its first 243-day mapping cycle, the Magellan spacecraft succeeded in imaging 84 percent of the surface of Venus at resolutions on the order of 100 meters; subsequent cycles have increased the total coverage to over 97 percent and provided redundant coverage of much of the planet with differing viewing geometries. Unfortunately, this full-resolution global dataset is in the form of thousands of individual orbit tracks (F-BIDR's) whose length-to-width ratio of nearly 1000:1 makes them minimally useful unless mosaicked. The Magellan project produced full-resolution mosaics (F-MIDR's) only for selected regions on the planet, whereas a global set of mosaics was made only at threefold degraded resolution (C1-MIDR's). Furthermore, although the F-MIDR's, which are approximately equidimensional, are much better suited for scientific interpretation than the F-BIDR's, they are still an unwieldy dataset: over 1500 quadrangles, each showing a region only about 600 km on a side, would be required to cover the entire planet. The USGS has therefore undertaken to produce and distribute a global, full resolution set of mosaics of the Magellan image data in a format that will be efficient for both hardcopy and digital use. The initial motivation was that it would provide an efficient means of verifying the integrity of the F-BIDR's to be archived on computer-compatible tape at the USGS Flagstaff facility. However, the resulting product, known as the FMAP, should also serve as an important resource for future scientific interpretation. It will offer several advantages beyond global coverage at full resolution. The first, alluded to above, is its division of the planet's surface to minimize the number of quadrangles and maximize their area, subject to the limits on the number of pixels imposed by state-of-the-art digital recording media and hardcopy output devices. The second, the use of improved 'cosmetic' processing techniques, will greatly reduce tonal discontinuities

  6. Molecular Strong Field Ionization viewed with Photoelectron Velocity Map Imaging

    NASA Astrophysics Data System (ADS)

    Sandor, Peter

    In this thesis, work is presented on molecular strong-field ionization, during which an electron is removed from polyatomic molecules in the presence of strong laser fields. This is a process which is the basis of a number of experimental techniques to uncover electronic dynamics in atoms and molecules on the femtosecond and attosecond timescale. 'Strong' refers to an electric field strength which leads to a response from the system which can not be modeled perturbatively. These fields can be easily produced in the focus of femtosecond laser radiation, as is done in this work. With the use of velocity map imaging of the photoelectron in coincidence with the fragment ion, multiple ionization--dissociation pathways can be distinguished. It is shown that as opposed to early attempts to model the process, multiple low-lying states are populated in the ion, and also the signatures of multielectron dynamics are revealed. By changing the laser pulse duration from 30 fs to below 10 fs, control is demonstrated over which quantum states of the ion are populated. It is also shown that for pulses shorter than 10 fs (which is a timescale below the shortest vibrational period in molecules), ionization pathways that involve motion of the nuclei are almost completely shut off. Finally, the origin of electrons with <1 meV kinetic energy is discussed. A two-step model is proposed for creating the electrons: the first step is population transfer to high-lying excited states of the neutral molecule by the laser field; the second step is ionization. Different ionization mechanisms are examined and their viability is checked against available data.

  7. Spatial data software integration - Merging CAD/CAM/mapping with GIS and image processing

    NASA Technical Reports Server (NTRS)

    Logan, Thomas L.; Bryant, Nevin A.

    1987-01-01

    The integration of CAD/CAM/mapping with image processing using geographic information systems (GISs) as the interface is examined. Particular emphasis is given to the development of software interfaces between JPL's Video Image Communication and Retrieval (VICAR)/Imaged Based Information System (IBIS) raster-based GIS and the CAD/CAM/mapping system. The design and functions of the VICAR and IBIS are described. Vector data capture and editing are studied. Various software programs for interfacing between the VICAR/IBIS and CAD/CAM/mapping are presented and analyzed.

  8. Role of Arginine decarboxylase (ADC) in Arabidopsis thaliana defence against the pathogenic bacterium Pseudomonas viridiflava.

    PubMed

    Rossi, F R; Marina, M; Pieckenstain, F L

    2015-07-01

    Polyamine biosynthesis starts with putrescine production through the decarboxylation of arginine or ornithine. In Arabidopsis thaliana, putrescine is synthesised exclusively by arginine decarboxylase (ADC), which exists as two isoforms (ADC1 and 2) that are differentially regulated by abiotic stimuli, but their role in defence against pathogens has not been studied in depth. This work analysed the participation of ADC in Arabidopsis defence against Pseudomonas viridiflava. ADC activity and expression, polyamine levels and bacterial resistance were analysed in null mutants of each ADC isoform. In non-infected wild-type (WT) plants, ADC2 expression was much higher than ADC1. Analysis of adc mutants demonstrated that ADC2 contributes to a much higher extent than ADC1 to basal ADC activity and putrescine biosynthesis. In addition, adc2 mutants showed increased basal expression of salicylic acid- and jasmonic acid-dependent PR genes. Bacterial infection induced putrescine accumulation and ADC1 expression in WT plants, but pathogen-induced putrescine accumulation was blocked in adc1 mutants. Results suggest a specific participation of ADC1 in defence, although basal resistance was not decreased by dysfunction of either of the two ADC genes. In addition, and as opposed to WT plants, bacterial infection increased ADC2 expression and ADC activity in adc1 mutants, which could counterbalance the lack of ADC1. Results demonstrate a major contribution of ADC2 to total ADC activity and the specific induction of ADC1 in response to infection. A certain degree of functional redundancy between the two isoforms in relation to their contribution to basal resistance is also evident.

  9. Merging satellite images and maps to improve operations, Niger delta, Nigeria

    SciTech Connect

    Ellis, J.M.; Caldwell, P.D.; Goodwin, P.B. )

    1991-03-01

    Satellite images that are merged with digital maps provide an accurate and cost-effective base for analyzing petroleum activity, environmental conditions, and culture across the Niger delta. Landsat Thematic Mapper (TM) images reveal numerous uncharted shoals and spits along the margin of the delta. It also documents extensive changes and errors in existing maps of the delta's coastline. TM band 4 clearly delineates the land/water contact of widespread mangrove swamps. Acceptable Landsat and SPOT images are usually acquired between November and February when clouds and airborne dust ('Harmattan') are at a minimum. Landsat TM imagery was selected as the optimum onshore sensor primarily because the three reflected IR bands retain their resolution during mild Harmattan conditions (visible-light images are severely degraded). Black and white SPOT imagery (10 m resolution, one band) is used to resolve offshore petroleum structures, when atmospheric conditions permit. Clear SPOT images can be merged with color TM to maximize onshore information. Existing airborne radar images (acquired 1976-1977) are excellent for regional geology, but cannot support current, large-scale (>1:100,000) mapping requirements. In order to upgrade satellite images into map-oriented, large-scale plots useful for field operations and to correct the geographical content of basemaps, images and maps were digitally merged together. Images are registered to Nigeria's 'Colony Grid Bell' map projection, and map files (Lat/Long, wells, seismic, facilities, names, etc.) are digitally embedded into the images. Wells, surveyed monuments, and Global Positioning System (GPS) fixes that are visible on the images are used for this registration.

  10. High performance 14-bit pipelined redundant signed digit ADC

    NASA Astrophysics Data System (ADS)

    Narula, Swina; Pandey, Sujata

    2016-03-01

    A novel architecture of a pipelined redundant-signed-digit analog to digital converter (RSD-ADC) is presented featuring a high signal to noise ratio (SNR), spurious free dynamic range (SFDR) and signal to noise plus distortion (SNDR) with efficient background correction logic. The proposed ADC architecture shows high accuracy with a high speed circuit and efficient utilization of the hardware. This paper demonstrates the functionality of the digital correction logic of 14-bit pipelined ADC at each 1.5 bit/stage. This prototype of ADC architecture accounts for capacitor mismatch, comparator offset and finite Op-Amp gain error in the MDAC (residue amplification circuit) stages. With the proposed architecture of ADC, SNDR obtained is 85.89 dB, SNR is 85.9 dB and SFDR obtained is 102.8 dB at the sample rate of 100 MHz. This novel architecture of digital correction logic is transparent to the overall system, which is demonstrated by using 14-bit pipelined ADC. After a latency of 14 clocks, digital output will be available at every clock pulse. To describe the circuit behavior of the ADC, VHDL and MATLAB programs are used. The proposed architecture is also capable of reducing the digital hardware. Silicon area is also the complexity of the design.

  11. Introduction of heat map to fidelity assessment of compressed CT images

    SciTech Connect

    Lee, Hyunna; Kim, Bohyoung; Seo, Jinwook; Park, Seongjin; Shin, Yeong-Gil; Kim, Kil Joong; Lee, Kyoung Ho

    2011-08-15

    Purpose: This study aimed to introduce heat map, a graphical data presentation method widely used in gene expression experiments, to the presentation and interpretation of image fidelity assessment data of compressed computed tomography (CT) images. Methods: The authors used actual assessment data that consisted of five radiologists' responses to 720 computed tomography images compressed using both Joint Photographic Experts Group 2000 (JPEG2000) 2D and JPEG2000 3D compressions. They additionally created data of two artificial radiologists, which were generated by partly modifying the data from two human radiologists. Results: For each compression, the entire data set, including the variations among radiologists and among images, could be compacted into a small color-coded grid matrix of the heat map. A difference heat map depicted the advantage of 3D compression over 2D compression. Dendrograms showing hierarchical agglomerative clustering results were added to the heat maps to illustrate the similarities in the data patterns among radiologists and among images. The dendrograms were used to identify two artificial radiologists as outliers, whose data were created by partly modifying the responses of two human radiologists. Conclusions: The heat map can illustrate a quick visual extract of the overall data as well as the entirety of large complex data in a compact space while visualizing the variations among observers and among images. The heat map with the dendrograms can be used to identify outliers or to classify observers and images based on the degree of similarity in the response patterns.

  12. Forest cover of insular Southeast Asia mapped from recent satellite images of coarse spatial resolution.

    PubMed

    Stibig, Hans-Jürgen; Malingreau, Jean-Paul

    2003-11-01

    The study provides an example of mapping tropical forest cover from SPOT-Vegetation satellite images of coarse spatial resolution (1 km) for the subregion of insular Southeast Asia. A satellite image mosaic has been generated from satellite images acquired for the period 1998 to 2000. Forest cover has been mapped by unsupervised digital classification. The mapping result has then been compared to selected forest maps from the subregion, demonstrating the potential to provide basic information on forest area extent and distribution, but also on massive forest cover change in the subregional context. Forest area estimates derived from the map for the subregion have been found comparable to those compiled by FAO. The results indicate that many of the remaining tropical forests in Southeast Asia, rich in timber resources and biodiversity, may be lost in the near future if deforestation continues at present or previous rates.

  13. A new image enhancement algorithm with applications to forestry stand mapping

    NASA Technical Reports Server (NTRS)

    Kan, E. P.; Lo, J. K.; Smelser, R. L.

    1975-01-01

    The theory and applications are presented of a new image enhancement algorithm which refines computer classification maps of multispectral data. The refinement eliminates connected sets smaller than a prespecified size and merges them to the surrounding area. Conventional practices in forestry timber stand mapping requires small geographic areas to be absorbed by surrounding large areas to form homogeneous stands. This homogeneity is often incompatible with the statistical formulation of homogeneity. Elements within a timber stand which should be labeled as one feature often correspond to more than one class mapped by existing computer classification techniques. The new algorithm is designed to postprocess classification maps to result in more usable timber stand maps. The new image enhancement technique is compared with an accepted neighbor-checking postprocessing technique, demonstrating the superiority of the new technique for forestry stand mapping.

  14. Diffusion-weighted imaging improves outcome prediction in pediatric traumatic brain injury.

    PubMed

    Galloway, Nicholas R; Tong, Karen A; Ashwal, Stephen; Oyoyo, Udochukwu; Obenaus, André

    2008-10-01

    Diffusion-weighted imaging (DWI) and consequent apparent diffusion coefficient (ADC) maps have been used for lesion detection and as a predictor of outcome in adults with traumatic brain injury (TBI), but few studies have been reported in children. We evaluated the role of DWI and ADC for outcome prediction after pediatric TBI (n=37 TBI; n=10 controls). Fifteen regions of interest (ROIs) were manually drawn on ADC maps that were grouped for analysis into peripheral gray matter, peripheral white matter, deep gray and white matter, and posterior fossa. All ROIs excluded areas that appeared abnormal on T2-weighted images (T2WI). Acute injury severity was measured using the Glasgow Coma Scale (GCS) score, and 6-12-month outcomes were assessed using the Pediatric Cerebral Performance Category Scale (PCPCS) score. Patients were categorized into five groups: (1) controls; (2) all TBI patients; (3) mild/moderate TBI with good outcomes; (4) severe TBI with good outcomes; and (5) severe TBI with poor outcomes. ADC values in the peripheral white matter were significantly reduced in children with severe TBI with poor outcomes (72.8+/-14.4x10(-3) mm2/sec) compared to those with severe TBI and good outcomes (82.5+/-3.8x10(-3) mm2/sec; p<0.05). We also found that the average total brain ADC value alone had the greatest ability to predict outcome and could correctly predict outcome in 84% of cases. Assessment of DWI and ADC values in pediatric TBI is useful in evaluating injury, particularly in brain regions that appear normal on conventional imaging. Early identification of children at high risk for poor outcome may assist in aggressive clinical management of pediatric TBI patients.

  15. Mapping broom snakeweed through image analysis of color-infrared photography and digital imagery.

    PubMed

    Everitt, J H; Yang, C

    2007-11-01

    A study was conducted on a south Texas rangeland area to evaluate aerial color-infrared (CIR) photography and CIR digital imagery combined with unsupervised image analysis techniques to map broom snakeweed [Gutierrezia sarothrae (Pursh.) Britt. and Rusby]. Accuracy assessments performed on computer-classified maps of photographic images from two sites had mean producer's and user's accuracies for broom snakeweed of 98.3 and 88.3%, respectively; whereas, accuracy assessments performed on classified maps from digital images of the same two sites had mean producer's and user's accuracies for broom snakeweed of 98.3 and 92.8%, respectively. These results indicate that CIR photography and CIR digital imagery combined with image analysis techniques can be used successfully to map broom snakeweed infestations on south Texas rangelands.

  16. Intravoxel incoherent motion diffusion-weighted MR imaging in assessing and characterizing solitary pulmonary lesions

    PubMed Central

    Wan, Qi; Deng, Ying-Shi; Zhou, Jia-Xuan; Yu, Yu-Dong; Bao, Ying-Ying; Lei, Qiang; Chen, Hou-Jin; Peng, Ya-Hui; Mei, Ying-Jie; Zeng, Qing-Si; Li, Xin-Chun

    2017-01-01

    This study aimed to investigate the potential of intravoxel incoherent motion (IVIM) diffusion-weighted MR imaging in assessing solitary pulmonary lesions (SPLs). Sixty-two patients with pathologically confirmed SPLs, including 51 and 11 cases of malignant and benign lesions, respectively, were assessed. Diffusion weighted imaging (DWI) with 13 b values was used to derive apparent diffusion coefficient (ADC) and IVIM parameters, including true diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f). Our results showed that, there was an excellent inter-observer agreement on the measurements of D and ADC between observers (inter-class correlation coefficient, ICC = 0.902 and 0.884, respectively). Meanwhile, f and D* showed good and substantial reproducibility (ICC = 0.787 and 0.623, respectively). D and ADC of malignant lesions were significantly lower than those of benign lesions (both P ≤ 0.001), while similar values were obtained in both groups for D* and f (both P > 0.05). In receiver operating characteristic (ROC) analysis, D showed the highest area under curve (AUC) for distinguishing malignant from benign lesions, followed by ADC. Accompanying signs of SPLs have specific features on IVIM maps. In conclusion, IVIM provides functional information in characterizing SPLs which is helpful to differential diagnosis. D and ADC have a significantly higher diagnostic value than f and D*. PMID:28225064

  17. Multislice diffusion mapping for 3-D evolution of cerebral ischemia in a rat stroke model.

    PubMed

    Reith, W; Hasegawa, Y; Latour, L L; Dardzinski, B J; Sotak, C H; Fisher, M

    1995-01-01

    Diffusion-weighted magnetic resonance imaging (DWI) can quantitatively demonstrate cerebral ischemia within minutes after the onset of ischemia. The use of a DWI echo-planar multislice technique in this study and the mapping of the apparent diffusion coefficient (ADC) of water, a reliable indicator of ischemic regions, allow for the detection of the three-dimensional (3-D) evolution of ischemia in a rat stroke model. We evaluated 13 time points from 5 to 180 minutes after occlusion of the middle cerebral artery (MCA) and monitored the 3-D spread of ischemia. Within 5 minutes after the onset of ischemia, regions with reduced ADC values occurred. The core of the lesion, with the lowest absolute ADC values, first appeared in the lateral caudoputamen and frontoparietal cortex, then spread to adjacent areas. The volume of ischemic tissue was 224 +/- 48.5 mm3 (mean +/- SEM) after 180 minutes, ranging from 92 to 320 mm3, and this correlated well with the corrected infarct volume at postmortem (194 +/- 23.1 mm3, r = 0.72, p < 0.05). This experiment demonstrated that 3-D multislice diffusion mapping can detect ischemic regions noninvasively 5 minutes after MCA occlusion and follow the development of ischemia. The distribution of changes in absolute ADC values within the ischemic region can be followed over time, giving important information about the evolution of focal ischemia.

  18. Ground truth and mapping capability of urban areas in large scale using GE images

    NASA Astrophysics Data System (ADS)

    Ramzi, Ahmed I.

    2015-10-01

    Monitoring and mapping complex urban features (e.g. roads and buildings) from remotely sensed data multispectral and hyperspectral has gained enormous research interest. Accurate ground truth allows for high quality assessment of classified images and to verify the produced map. Ground truth can be acquired from: field using the handheld Global Positioning System (GPS) device and from Images with high resolution extracted from Google Earth in additional to field. Ground truth or training samples could be achieved from VHR satellite images such as QuickBird, Ikonos, Geoeye-1 and Wordview images. Archived images are costly for researchers in developing countries. Images from GE with high spatial resolution are free for public and can be used directly producing large scale maps, in producing LULC mapping and training samples. Google Earth (GE) provides free access to high resolution satellite imagery, but is the quality good enough to map urban areas. Costal of the Red sea, Marsa Alam could be mapped using GE images. The main objective of this research is exploring the accuracy assessment of producing large scale maps from free Google Earth imagery and to collect ground truth or training samples in limited geographical extend. This research will be performed on Marsa Alam city or located on the western shore of the Red Sea, Red sea Governorate, Egypt. Marsa Alam is located 274 km south of Hurghada. The proposed methodology involves image collection taken into consideration the resolution of collected photographs which depend on the height of view. After that, image rectification using suitable rectification methods with different number and distributions of GCPs and CPs. Database and Geographic information systems (GIS) layers were created by on-screen vectorization based on the requirement of large scale maps. Attribute data have been collected from the field. The obtained results show that the planmetric accuracy of the produced map from Google Earth Images met map

  19. From Anthramycin to Pyrrolobenzodiazepine (PBD)‐Containing Antibody–Drug Conjugates (ADCs)

    PubMed Central

    Mantaj, Julia; Jackson, Paul J. M.; Rahman, Khondaker M.

    2016-01-01

    Abstract The pyrrolo[2,1‐c][1,4]benzodiazepines (PBDs) are a family of sequence‐selective DNA minor‐groove binding agents that form a covalent aminal bond between their C11‐position and the C2‐NH2 groups of guanine bases. The first example of a PBD monomer, the natural product anthramycin, was discovered in the 1960s, and the best known PBD dimer, SJG‐136 (also known as SG2000, NSC 694501 or BN2629), was synthesized in the 1990s and has recently completed Phase II clinical trials in patients with leukaemia and ovarian cancer. More recently, PBD dimer analogues are being attached to tumor‐targeting antibodies to create antibody–drug conjugates (ADCs), a number of which are now in clinical trials, with many others in pre‐clinical development. This Review maps the development from anthramycin to the first PBD dimers, and then to PBD‐containing ADCs, and explores both structure–activity relationships (SARs) and the biology of PBDs, and the strategies for their use as payloads for ADCs. PMID:27862776

  20. Preliminary Image Map of the 2007 Buckweed Fire Perimeter, Green Valley Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  1. Preliminary Image Map of the 2007 Ranch Fire Perimeter, Piru Quadrangle, Ventura County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  2. Preliminary Image Map of the 2007 Poomacha Fire Perimeter, Pala Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  3. Preliminary Image Map of the 2007 Santiago Fire Perimeter, Tustin Quadrangle, Orange County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  4. Preliminary Image Map of the 2007 Harris Fire Perimeter, Morena Reservoir Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  5. Preliminary Image Map of the 2007 Buckweed Fire Perimeter, Sleepy Valley Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  6. Preliminary Image Map of the 2007 Poomacha Fire Perimeter, Palomar Observatory Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  7. Preliminary Image Map of the 2007 Slide Fire Perimeter, Harrison Mountain Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  8. Preliminary Image Map of the 2007 Harris Fire Perimeter, Otay Mountain Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  9. Preliminary Image Map of the 2007 Harris Fire Perimeter, Tecate Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  10. Preliminary Image Map of the 2007 Witch Fire Perimeter, Poway Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  11. Preliminary Image Map of the 2007 Harris Fire Perimeter, Otay Mesa Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  12. Preliminary Image Map of the 2007 Rice Fire Perimeter, Bonsall Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  13. Preliminary Image Map of the 2007 Ranch Fire Perimeter, Fillmore Quadrangle, Ventura County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  14. Preliminary Image Map of the 2007 Ammo Fire Perimeter, Margarita Peak Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  15. Preliminary Image Map of the 2007 Slide Fire Perimeter, Butler Peak Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  16. Preliminary Image Map of the 2007 Cajon Fire Perimeter, Devore Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  17. Preliminary Image Map of the 2007 Harris Fire Perimeter, Barrett Lake Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  18. Preliminary Image Map of the 2007 Canyon Fire Perimeter, Malibu Beach Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  19. Preliminary Image Map of the 2007 Harris Fire Perimeter, Dulzura Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  20. Preliminary Image Map of the 2007 Witch Fire Perimeter, Escondido Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  1. Preliminary Image Map of the 2007 Witch Fire Perimeter, Santa Ysabel Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  2. Preliminary Image Map of the 2007 Witch Fire Perimeter, San Pasqual Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  3. Preliminary Image Map of the 2007 Witch Fire Perimeter, Ramona Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  4. Preliminary Image Map of the 2007 Harris Fire Perimeter, Jamul Mountains Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  5. Preliminary Image Map of the 2007 Witch Fire Perimeter, Warners Ranch Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  6. Preliminary Image Map of the 2007 Poomacha Fire Perimeter, Boucher Hill Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  7. Preliminary Image Map of the 2007 Buckweed Fire Perimeter, Agua Dulce Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  8. Preliminary Image Map of the 2007 Buckweed Fire Perimeter, Mint Canyon Quadrangle, Los Angeles County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  9. Preliminary Image Map of the 2007 Harris Fire Perimeter, Potrero Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  10. Preliminary Image Map of the 2007 Witch Fire Perimeter, Tule Springs Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  11. Preliminary Image Map of the 2007 Slide Fire Perimeter, Keller Peak Quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  12. A Topographic Image Map of the Sabrina Valles Region Including Information on Large Martian Impact Craters

    NASA Astrophysics Data System (ADS)

    Gehrke, S.; Köhring, R.; Barlow, N. G.; Gwinner, K.; Scholten, F.; Lehmann, H.; Albertz, J.

    2007-03-01

    The Catalog of Large Martian Impact Craters provides detailed information on 42,283 craters >5 km; it is planned to be integrated in the Topographic Image Map Mars 1:200,000 series. Such an update is shown in a special target map, based on HRSC data.

  13. Preliminary Image Map of the 2007 Santiago Fire Perimeter, Orange Quadrangle, Orange County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  14. Preliminary Image Map of the 2007 Santiago Fire Perimeter, Lake Forest Quadrangle, Orange County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  15. Preliminary Image Map of the 2007 Witch Fire Perimeter, Valley Center Quadrangle, San Diego County, California

    USGS Publications Warehouse

    Clark, Perry S.; Scratch, Wendy S.; Bias, Gaylord W.; Stander, Gregory B.; Sexton, Jenne L.; Krawczak, Bridgette J.

    2008-01-01

    In the fall of 2007, wildfires burned out of control in southern California. The extent of these fires encompassed large geographic areas that included a variety of landscapes from urban to wilderness. The U.S. Geological Survey National Geospatial Technical Operations Center (NGTOC) is currently (2008) developing a quadrangle-based 1:24,000-scale image map product. One of the concepts behind the image map product is to provide an updated map in electronic format to assist with emergency response. This image map is one of 55 preliminary image map quadrangles covering the areas burned by the southern California wildfires. Each map is a layered, geo-registered Portable Document Format (.pdf) file. For more information about the layered geo-registered .pdf, see the readme file (http://pubs.usgs.gov/of/2008/1029/downloads/CA_Agua_Dulce_of2008-1029_README.txt). To view the areas affected and the quadrangles mapped in this preliminary project, see the map index (http://pubs.usgs.gov/of/2008/1029/downloads/CA_of2008_1029-1083_index.pdf) provided with this report.

  16. Mapping land cover from satellite images: A basic, low cost approach

    NASA Technical Reports Server (NTRS)

    Elifrits, C. D.; Barney, T. W.; Barr, D. J.; Johannsen, C. J.

    1978-01-01

    Simple, inexpensive methodologies developed for mapping general land cover and land use categories from LANDSAT images are reported. One methodology, a stepwise, interpretive, direct tracing technique was developed through working with university students from different disciplines with no previous experience in satellite image interpretation. The technique results in maps that are very accurate in relation to actual land cover and relative to the small investment in skill, time, and money needed to produce the products.

  17. Implementation of High Dimensional Feature Map for Segmentation of MR Images

    PubMed Central

    He, Renjie; Sajja, Balasrinivasa Rao; Narayana, Ponnada A.

    2005-01-01

    A method that considerably reduces the computational and memory complexities associated with the generation of high dimensional (≥3) feature maps for image segmentation is described. The method is based on the K-nearest neighbor (KNN) classification and consists of two parts: preprocessing of feature space and fast KNN. This technique is implemented on a PC and applied for generating three-and four-dimensional feature maps for segmenting MR brain images of multiple sclerosis patients. PMID:16240091

  18. Overview of the technical and scientific status of the EnMAP imaging spectroscopy mission

    NASA Astrophysics Data System (ADS)

    Guanter, L.; Segl, K.; Foerster, S.; Hollstein, A.; Kaufmann, H.; Rossner, G.; Chlebek, C.; Mueller, A.; Storch, T.; Sang, B.

    2015-12-01

    The Environmental Mapping and Analysis Program (EnMAP) is a spaceborne imaging spectroscopy mission being developed by a consortium of German Earth observation institutions. EnMAP will contribute to the development and exploitation of spaceborne imaging spectroscopy applications by making high-quality data freely available to scientific users worldwide. The core payload of EnMAP consists of a dual-spectrometer instrument measuring in the optical spectral range between 420 and 2450 nm. EnMAP images will cover a 30 km wide area in the across-track direction with a ground sampling distance of 30 m. An across-track tilted observation capability will enable a target revisit time of up to 4 days at Equator and better at high latitudes. EnMAP is currently scheduled for launch in 2018, with an expected mission lifetime of 5 years. An overview of the main characteristics and current status of the mission will be provided in this contribution. Among others, this presentation will cover on-going activities such as the implementation of the EnMAP end-to-end scene simulator and the development of a collection of scientific algorithms to be made available to the user community as part of the EnMAP-BOX software. We will discuss the potential of the data acquired during the U.S. NASA Remote Measurement Science Campaign deployed for the preparation for the future HyspIRI mission as an input for on-going EnMAP activities.

  19. Hyperspectral image classification for mapping agricultural tillage practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An efficient classification framework for mapping agricultural tillage practice using hyperspectral remote sensing imagery is proposed, which has the potential to be implemented practically to provide rapid, accurate, and objective surveying data for precision agricultural management and appraisal f...

  20. Diffusion-weighted MR imaging of solid and cystic lesions of the pancreas.

    PubMed

    Wang, Yi; Miller, Frank H; Chen, Zongming E; Merrick, Laura; Mortele, Koenraad J; Hoff, Frederick L; Hammond, Nancy A; Yaghmai, Vahid; Vahid, Yaghmai; Nikolaidis, Paul

    2011-01-01

    Diffusion-weighted magnetic resonance (MR) imaging is increasingly used in the detection and characterization of pancreatic lesions. Diffusion-weighted imaging may provide additional information to radiologists evaluating patients who have cystic or solid neoplasms of the pancreas. Because of greater freedom of motion of water molecules in fluid-rich environments, simple cysts in the pancreas have higher signal intensity on diffusion-weighted images with a b value of 0 sec/mm2 and lower signal intensity on high-b-value images. High apparent diffusion coefficient (ADC) values can be obtained on ADC maps because of the T2 “shine-through” effect. In contrast, solid neoplasms of the pancreas show increased signal intensity relative to the pancreas on diffusion-weighted images with a b value of 0 sec/mm2 and relatively high signal intensity on high-b-value images. Diffusion-weighted imaging can help detect solid pancreatic neoplasms with extremely dense cellularity or extracellular fibrosis by demonstrating significantly low ADC values, and these neoplasms may be better detected on diffusion-weighted MR images because of better contrast, although the resolution is generally worse. However, diffusion-weighted imaging may not be capable of helping definitively characterize solid lesions as inflammatory or neoplastic because of an overlap in ADC values between the two types. For example, it is difficult to distinguish poorly differentiated pancreatic adenocarcinoma from mass-forming pancreatitis at diffusion-weighted imaging because of similarly low ADC values attributed to dense fibrosis.

  1. Diffusion-weighted imaging of the abdomen: Impact of b-values on texture analysis features.

    PubMed

    Becker, Anton S; Wagner, Matthias W; Wurnig, Moritz C; Boss, Andreas

    2017-01-01

    The purpose of this work was to systematically assess the impact of the b-value on texture analysis in MR diffusion-weighted imaging (DWI) of the abdomen. In eight healthy male volunteers, echo-planar DWI sequences at 16 b-values ranging between 0 and 1000 s/mm(2) were acquired at 3 T. Three different apparent diffusion coefficient (ADC) maps were computed (0, 750/100, 390, 750 s/mm(2) /all b-values). Texture analysis of rectangular regions of interest in the liver, kidney, spleen, pancreas, paraspinal muscle and subcutaneous fat was performed on DW images and the ADC maps, applying 19 features computed from the histogram, grey-level co-occurrence matrix (GLCM) and grey-level run-length matrix (GLRLM). Correlations between b-values and texture features were tested with a linear and an exponential model; the best fit was determined by the smallest sum of squared residuals. Differences between the ADC maps were assessed with an analysis of variance. A Bonferroni-corrected p-value less than 0.008 (=0.05/6) was considered statistically significant. Most GLCM and GLRLM-derived texture features (12-18 per organ) showed significant correlations with the b-value. Four texture features correlated significantly with changing b-values in all organs (p < 0.008). Correlation coefficients varied between 0.7 and 1.0. The best fit varied across different structures, with fat exhibiting mostly exponential (17 features), muscle mostly linear (12 features) and the parenchymatous organs mixed feature alterations. Two GLCM features showed significant variability in the different ADC maps. Several texture features vary systematically in healthy tissues at different b-values, which needs to be taken into account if DWI data with different b-values are analyzed. Histogram and GLRLM-derived texture features are stable on ADC maps computed from different b-values.

  2. An authenticated image encryption scheme based on chaotic maps and memory cellular automata

    NASA Astrophysics Data System (ADS)

    Bakhshandeh, Atieh; Eslami, Ziba

    2013-06-01

    This paper introduces a new image encryption scheme based on chaotic maps, cellular automata and permutation-diffusion architecture. In the permutation phase, a piecewise linear chaotic map is utilized to confuse the plain-image and in the diffusion phase, we employ the Logistic map as well as a reversible memory cellular automata to obtain an efficient and secure cryptosystem. The proposed method admits advantages such as highly secure diffusion mechanism, computational efficiency and ease of implementation. A novel property of the proposed scheme is its authentication ability which can detect whether the image is tampered during the transmission or not. This is particularly important in applications where image data or part of it contains highly sensitive information. Results of various analyses manifest high security of this new method and its capability for practical image encryption.

  3. Landsat Image Map Production Methods at the U. S. Geological Survey

    USGS Publications Warehouse

    Kidwell, R.D.; Binnie, D.R.; Martin, S.

    1987-01-01

    To maintain consistently high quality in satellite image map production, the U. S. Geological Survey (USGS) has developed standard procedures for the photographic and digital production of Landsat image mosaics, and for lithographic printing of multispectral imagery. This paper gives a brief review of the photographic, digital, and lithographic procedures currently in use for producing image maps from Landsat data. It is shown that consistency in the printing of image maps is achieved by standardizing the materials and procedures that affect the image detail and color balance of the final product. Densitometric standards are established by printing control targets using the pressplates, inks, pre-press proofs, and paper to be used for printing.

  4. Artifacts reduction in strain maps of tagged magnetic resonance imaging using harmonic phase

    PubMed Central

    Wang, Daolei; Fu, YaBo; Ashraf, Muhammad Aqeel

    2015-01-01

    Tagged Magnetic Resonance Imaging (MRI) is a noninvasive technique for examining myocardial function and deformation. Tagged MRI can also be used in quasi-static MR elastography to acquire strain maps of other biological soft tissues. Harmonic phase (HARP) provides automatic and rapid analysis of tagged MR images for the quantification and visualization of myocardial strain. We propose a new artifact reduction method in strain maps. Image intensity of the DC component is estimated and subtracted from spatial modulation of magnetization (SPAMM) tagged MR images. DC peak interference in harmonic phase extraction is greatly reduced after DC component subtraction. The proposed method is validated using both simulated and MR acquired tagged images. Strain maps are obtained with better accuracy and smoothness after DC component subtraction. PMID:28352731

  5. Texture Analysis of Chaotic Coupled Map Lattices Based Image Encryption Algorithm

    NASA Astrophysics Data System (ADS)

    Khan, Majid; Shah, Tariq; Batool, Syeda Iram

    2014-09-01

    As of late, data security is key in different enclosures like web correspondence, media frameworks, therapeutic imaging, telemedicine and military correspondence. In any case, a large portion of them confronted with a few issues, for example, the absence of heartiness and security. In this letter, in the wake of exploring the fundamental purposes of the chaotic trigonometric maps and the coupled map lattices, we have presented the algorithm of chaos-based image encryption based on coupled map lattices. The proposed mechanism diminishes intermittent impact of the ergodic dynamical systems in the chaos-based image encryption. To assess the security of the encoded image of this scheme, the association of two nearby pixels and composition peculiarities were performed. This algorithm tries to minimize the problems arises in image encryption.

  6. The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zhou, Liqing

    2015-12-01

    With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.

  7. Asymmetric double-image encryption based on cascaded discrete fractional random transform and logistic maps.

    PubMed

    Sui, Liansheng; Duan, Kuaikuai; Liang, Junli; Hei, Xinhong

    2014-05-05

    A double-image encryption is proposed based on the discrete fractional random transform and logistic maps. First, an enlarged image is composited from two original images and scrambled in the confusion process which consists of a number of rounds. In each round, the pixel positions of the enlarged image are relocated by using cat maps which are generated based on two logistic maps. Then the scrambled enlarged image is decomposed into two components. Second, one of two components is directly separated into two phase masks and the other component is used to derive the ciphertext image with stationary white noise distribution by using the cascaded discrete fractional random transforms generated based on the logistic map. The cryptosystem is asymmetric and has high resistance against to the potential attacks such as chosen plaintext attack, in which the initial values of logistic maps and the fractional orders are considered as the encryption keys while two decryption keys are produced in the encryption process and directly related to the original images. Simulation results and security analysis verify the feasibility and effectiveness of the proposed encryption scheme.

  8. Use of radar image texture in geologic mapping

    NASA Technical Reports Server (NTRS)

    Farr, T. G.

    1983-01-01

    Large slope angle radar and small slope angle radar techniques are discussed. The techniques are developed to aid in the geologic interpretation of synthetic aperture radar (SAR) images. The application presented is for heavy vegetation and where very little other data can be obtained directly from remote sensing images. To understand the relationships between image texture, topography, lithology, geomorphology, and climate improves, textural information from SAR images are used for the identification of rock types to discriminate units. An active program is to integrate textural information from radar images directly with backscatter data from the same images, and with compositional information derived from visible near infrared sensors such as LANDSAT is explored. The role of quantitative textural information in this type of multisensor analysis which promises to be significant is outlined.

  9. On-chip ADC for infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Chen, Guo-qiang; Wang, Pan; Ding, Rui-jun

    2013-09-01

    This paper presents a low power and small area analog-digital converter (ADC) for infrared focal plane arrays (IRFPA) readout integrated circuit (ROIC). Successive approximation register (SAR) ADC architecture is used in this IRFPA readout integrated circuit. Each column of the IRFPA shares one SAR ADC. The most important part is the three-level DAC. Compared to the previous design, this three-level DAC needs smaller area, has lower power, and more suitable for IRFPA ROIC. In this DAC, its most significant bit (MSB) sub-DAC uses charge scaling, while the least significant bit (LSB) sub-DAC uses voltage scaling. Where the MSB sub-DAC consists of a four-bit charge scaling DAC and a five-bit sub-charge scaling DAC. We need to put a scaling capacitor Cs between these two sub-DACs. Because of the small area, we have more design methods to make the ADC has a symmetrical structure and has higher accuracy. The ADC also needs a high resolution comparator. In this design the comparator uses three-stage operational amplifier structure to have a 77dB differential gain. As the IR focal plane readout circuit signal is stepped DC signal, the circuit design time without adding the sample and hold circuit, so we can use a DC signal instead of infrared focal plane readout circuit output analog signals to be simulated. The simulation result shows that the resolution of the ADC is 12 bit.

  10. Images Are Not the (Only) Truth: Brain Mapping, Visual Knowledge, and Iconoclasm.

    ERIC Educational Resources Information Center

    Beaulieu, Anne

    2002-01-01

    Debates the paradoxical nature of claims about the emerging contributions of functional brain mapping. Examines the various ways that images are deployed and rejected and highlights an approach that provides insight into the current demarcation of imaging. (Contains 68 references.) (DDR)

  11. New Colors for Histology: Optimized Bivariate Color Maps Increase Perceptual Contrast in Histological Images

    PubMed Central

    Kather, Jakob Nikolas; Weis, Cleo-Aron; Marx, Alexander; Schuster, Alexander K.; Schad, Lothar R.; Zöllner, Frank Gerrit

    2015-01-01

    Background Accurate evaluation of immunostained histological images is required for reproducible research in many different areas and forms the basis of many clinical decisions. The quality and efficiency of histopathological evaluation is limited by the information content of a histological image, which is primarily encoded as perceivable contrast differences between objects in the image. However, the colors of chromogen and counterstain used for histological samples are not always optimally distinguishable, even under optimal conditions. Methods and Results In this study, we present a method to extract the bivariate color map inherent in a given histological image and to retrospectively optimize this color map. We use a novel, unsupervised approach based on color deconvolution and principal component analysis to show that the commonly used blue and brown color hues in Hematoxylin—3,3’-Diaminobenzidine (DAB) images are poorly suited for human observers. We then demonstrate that it is possible to construct improved color maps according to objective criteria and that these color maps can be used to digitally re-stain histological images. Validation To validate whether this procedure improves distinguishability of objects and background in histological images, we re-stain phantom images and N = 596 large histological images of immunostained samples of human solid tumors. We show that perceptual contrast is improved by a factor of 2.56 in phantom images and up to a factor of 2.17 in sets of histological tumor images. Context Thus, we provide an objective and reliable approach to measure object distinguishability in a given histological image and to maximize visual information available to a human observer. This method could easily be incorporated in digital pathology image viewing systems to improve accuracy and efficiency in research and diagnostics. PMID:26717571

  12. Natural-Color-Image Map of Quadrangle 3164, Lashkargah (605) and Kandahar (606) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  13. Natural-Color-Image Map of Quadrangle 3162, Chakhansur (603) and Kotalak (604) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  14. Natural-Color-Image Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  15. Natural-Color-Image Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  16. Natural-Color-Image Map of Quadrangle 3564, Chahriaq (Joand) (405) and Gurziwan (406) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  17. Natural-Color-Image Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  18. Natural-Color-Image Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a natural-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The natural colors were generated using calibrated red-, green-, and blue-wavelength Landsat image data, which were correlated with red, green, and blue values of corresponding picture elements in MODIS (Moderate Resolution Imaging Spectrometer) 'true color' mosaics of Afghanistan. These mosaics have been published on http://www.truecolorearth.com and modified to match more closely the Munsell colors of sampled surfaces. Peak elevations are derived from Shuttle Radar Topography Mission (SRTM) digital data, averaged over a pixel representing an area of 85 m2, and they are slightly lower than the highest corresponding local point. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  19. Speciation Mapping of Environmental Samples Using XANES Imaging

    EPA Science Inventory

    Fast X-ray detectors with large solid angles and high dynamic ranges open the door to XANES imaging, in which millions of spectra are collected to image the speciation of metals at micrometre resolution, over areas up to several square centimetres. This paper explores how such mu...

  20. Artificial intelligence for geologic mapping with imaging spectrometers

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.

    1993-01-01

    This project was a three year study at the Center for the Study of Earth from Space (CSES) within the Cooperative Institute for Research in Environmental Science (CIRES) at the University of Colorado, Boulder. The goal of this research was to develop an expert system to allow automated identification of geologic materials based on their spectral characteristics in imaging spectrometer data such as the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). This requirement was dictated by the volume of data produced by imaging spectrometers, which prohibits manual analysis. The research described is based on the development of automated techniques for analysis of imaging spectrometer data that emulate the analytical processes used by a human observer. The research tested the feasibility of such an approach, implemented an operational system, and tested the validity of the results for selected imaging spectrometer data sets.

  1. Position Estimation and Local Mapping Using Omnidirectional Images and Global Appearance Descriptors

    PubMed Central

    Berenguer, Yerai; Payá, Luis; Ballesta, Mónica; Reinoso, Oscar

    2015-01-01

    This work presents some methods to create local maps and to estimate the position of a mobile robot, using the global appearance of omnidirectional images. We use a robot that carries an omnidirectional vision system on it. Every omnidirectional image acquired by the robot is described only with one global appearance descriptor, based on the Radon transform. In the work presented in this paper, two different possibilities have been considered. In the first one, we assume the existence of a map previously built composed of omnidirectional images that have been captured from previously-known positions. The purpose in this case consists of estimating the nearest position of the map to the current position of the robot, making use of the visual information acquired by the robot from its current (unknown) position. In the second one, we assume that we have a model of the environment composed of omnidirectional images, but with no information about the location of where the images were acquired. The purpose in this case consists of building a local map and estimating the position of the robot within this map. Both methods are tested with different databases (including virtual and real images) taking into consideration the changes of the position of different objects in the environment, different lighting conditions and occlusions. The results show the effectiveness and the robustness of both methods. PMID:26501289

  2. Position estimation and local mapping using omnidirectional images and global appearance descriptors.

    PubMed

    Berenguer, Yerai; Payá, Luis; Ballesta, Mónica; Reinoso, Oscar

    2015-10-16

    This work presents some methods to create local maps and to estimate the position of a mobile robot, using the global appearance of omnidirectional images. We use a robot that carries an omnidirectional vision system on it. Every omnidirectional image acquired by the robot is described only with one global appearance descriptor, based on the Radon transform. In the work presented in this paper, two different possibilities have been considered. In the first one, we assume the existence of a map previously built composed of omnidirectional images that have been captured from previously-known positions. The purpose in this case consists of estimating the nearest position of the map to the current position of the robot, making use of the visual information acquired by the robot from its current (unknown) position. In the second one, we assume that we have a model of the environment composed of omnidirectional images, but with no information about the location of where the images were acquired. The purpose in this case consists of building a local map and estimating the position of the robot within this map. Both methods are tested with different databases (including virtual and real images) taking into consideration the changes of the position of different objects in the environment, different lighting conditions and occlusions. The results show the effectiveness and the robustness of both methods.

  3. Combined Diffusion and Perfusion MR Imaging as Biomarkers of Prognosis in Immunocompetent Patients with Primary Central Nervous System Lymphoma

    PubMed Central

    Valles, F.E.; Perez-Valles, C.L.; Regalado, S.; Barajas, R.F.; Rubenstein, J.L.; Cha, S.

    2014-01-01

    BACKGROUND AND PURPOSE ADC derived from DWI has been shown to correlate with PFS and OS in immunocompetent patients with PCNSL. The purpose of our study was to confirm the validity of ADC measurements as a prognostic biomarker and to determine whether rCBV measurements derived from DSC perfusion MR imaging provide prognostic information. MATERIALS AND METHODS Pretherapy baseline DWI and DSC perfusion MR imaging in 25 patients with PCNSL was analyzed before methotrexate-based induction chemotherapy. Contrast-enhancing tumor was segmented and coregistered with ADC and rCBV maps, and mean and minimum values were measured. Patients were separated into high or low ADC groups on the basis of previously published threshold values of ADCmin < 384 × 10−6 mm2/s. High and low rCBV groups were defined on the basis of receiver operating curve analysis. High and low ADC and rCBV groups were analyzed independently and in combination. Multivariate Cox survival analysis was performed. RESULTS Patients with ADCmin values < 384 × 10−6 mm2/s or rCBVmean values < 1.43 had worse PFS and OS. The patient cohort with combined low ADCmin–low rCBVmean had the worst prognosis. No other variables besides ADC and rCBV significantly affected survival. CONCLUSIONS Our study reinforces the validity of ADC values as a prognostic biomarker and provides the first evidence of low tumor rCBV as a novel risk factor for adverse prognosis in immunocompetent patients with PCNSL. PMID:22936096

  4. Development of a novel 2D color map for interactive segmentation of histological images

    PubMed Central

    Chaudry, Qaiser; Sharma, Yachna; Raza, Syed H.; Wang, May D.

    2016-01-01

    We present a color segmentation approach based on a two-dimensional color map derived from the input image. Pathologists stain tissue biopsies with various colored dyes to see the expression of biomarkers. In these images, because of color variation due to inconsistencies in experimental procedures and lighting conditions, the segmentation used to analyze biological features is usually ad-hoc. Many algorithms like K-means use a single metric to segment the image into different color classes and rarely provide users with powerful color control. Our 2D color map interactive segmentation technique based on human color perception information and the color distribution of the input image, enables user control without noticeable delay. Our methodology works for different staining types and different types of cancer tissue images. Our proposed method’s results show good accuracy with low response and computational time making it a feasible method for user interactive applications involving segmentation of histological images.

  5. Quantum image encryption based on generalized affine transform and logistic map

    NASA Astrophysics Data System (ADS)

    Liang, Hao-Ran; Tao, Xiang-Yang; Zhou, Nan-Run

    2016-07-01

    Quantum circuits of the generalized affine transform are devised based on the novel enhanced quantum representation of digital images. A novel quantum image encryption algorithm combining the generalized affine transform with logistic map is suggested. The gray-level information of the quantum image is encrypted by the XOR operation with a key generator controlled by the logistic map, while the position information of the quantum image is encoded by the generalized affine transform. The encryption keys include the independent control parameters used in the generalized affine transform and the logistic map. Thus, the key space is large enough to frustrate the possible brute-force attack. Numerical simulations and analyses indicate that the proposed algorithm is realizable, robust and has a better performance than its classical counterpart in terms of computational complexity.

  6. Noise characteristics of CT perfusion imaging: how does noise propagate from source images to final perfusion maps?

    NASA Astrophysics Data System (ADS)

    Li, Ke; Chen, Guang-Hong

    2016-03-01

    Cerebral CT perfusion (CTP) imaging is playing an important role in the diagnosis and treatment of acute ischemic strokes. Meanwhile, the reliability of CTP-based ischemic lesion detection has been challenged due to the noisy appearance and low signal-to-noise ratio of CTP maps. To reduce noise and improve image quality, a rigorous study on the noise transfer properties of CTP systems is highly desirable to provide the needed scientific guidance. This paper concerns how noise in the CTP source images propagates to the final CTP maps. Both theoretical deviations and subsequent validation experiments demonstrated that, the noise level of background frames plays a dominant role in the noise of the cerebral blood volume (CBV) maps. This is in direct contradiction with the general belief that noise of non-background image frames is of greater importance in CTP imaging. The study found that when radiation doses delivered to the background frames and to all non-background frames are equal, lowest noise variance is achieved in the final CBV maps. This novel equality condition provides a practical means to optimize radiation dose delivery in CTP data acquisition: radiation exposures should be modulated between background frames and non-background frames so that the above equality condition is satisïnAed. For several typical CTP acquisition protocols, numerical simulations and in vivo canine experiment demonstrated that noise of CBV can be effectively reduced using the proposed exposure modulation method.

  7. Mapping of forested wetland: use of Seasat radar images to complement conventional sources ( USA).

    USGS Publications Warehouse

    Place, J.L.

    1985-01-01

    Distinguishing forested wetland from dry forest using aerial photographs is handicapped because photographs often do not reveal the presence of water below tree canopies. Radar images obtained by the Seasat satellite reveal forested wetland as highly reflective patterns on the coastal plain between Maryland and Florida. Seasat radar images may complement aerial photographs for compiling maps of wetland. A test with experienced photointerpreters revealed that interpretation accuracy was significantly higher when using Seasat radar images than when using only conventional sources.-Author

  8. Bas-relief map using texture analysis with application to live enhancement of ultrasound images.

    PubMed

    Du, Huarui; Ma, Rui; Wang, Xiaoying; Zhang, Jue; Fang, Jing

    2015-05-01

    For ultrasound imaging, speckle is one of the most important factors in the degradation of contrast resolution because it masks meaningful texture and has the potential to interfere with diagnosis. It is expected that researchers would explore appropriate ways to reduce the speckle noise, to find the edges of structures and enhance weak borders between different organs in ultrasound imaging. Inspired by the principle of differential interference contrast microscopy, a "bas-relief map" is proposed that depicts the texture structure of ultrasound images. Based on a bas-relief map, an adaptive bas-relief filter was developed for ultrafast despeckling. Subsequently, an edge map was introduced to enhance the edges of images in real time. The holistic bas-relief map approach has been used experimentally with synthetic phantoms and digital ultrasound B-scan images of liver, kidney and gallbladder. Based on the visual inspection and the performance metrics of the despeckled images, it was found that the bas-relief map approach is capable of effectively reducing the speckle while significantly enhancing contrast and tissue boundaries for ultrasonic images, and its speckle reduction ability is comparable to that of Kuan, Lee and Frost filters. Meanwhile, the proposed technique could preserve more intra-region details compared with the popular speckle reducing anisotropic diffusion technique and more effectively enhance edges. In addition, the adaptive bas-relief filter was much less time consuming than the Kuan, Lee and Frost filter and speckle reducing anisotropic diffusion techniques. The bas-relief map strategy is effective for speckle reduction and live enhancement of ultrasound images, and can provide a valuable tool for clinical diagnosis.

  9. The linac coherent light source single particle imaging road map

    PubMed Central

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; Elmlund, H.; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.; Hau-Riege, S. P.; Huang, Z.; Lattman, E. E.; Maia, F. R. N. C.; Marchesini, S.; Ourmazd, A.; Pellegrini, C.; Santra, R.; Schlichting, I.; Schroer, C.; Spence, J. C. H.; Vartanyants, I. A.; Wakatsuki, S.; Weis, W. I.; Williams, G. J.

    2015-01-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources. PMID:26798801

  10. The linac coherent light source single particle imaging road map

    DOE PAGES

    Aquila, A.; Barty, A.; Bostedt, C.; ...

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electronmore » laser sources.« less

  11. The linac coherent light source single particle imaging road map

    SciTech Connect

    Aquila, A.; Barty, A.; Bostedt, C.; Boutet, S.; Carini, G.; dePonte, D.; Drell, P.; Doniach, S.; Downing, K. H.; Earnest, T.; Elmlund, H.; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.; Hau-Riege, S. P.; Huang, Z.; Lattman, E. E.; Maia, F. R.N.C.; Marchesini, S.; Ourmazd, A.; Pellegrini, C.; Schlichting, I.; Schroer, C.; Spence, J. C. H.; Vartanyants, I. A.; Wakatsuki, S.; Weis, W. I.; Williams, G. J.

    2015-07-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources.

  12. MR elastography to measure the effects of cancer and pathology fixation on prostate biomechanics, and comparison with T 1, T 2 and ADC

    NASA Astrophysics Data System (ADS)

    McGrath, Deirdre M.; Lee, Jenny; Foltz, Warren D.; Samavati, Navid; van der Kwast, Theo; Jewett, Michael A. S.; Chung, Peter; Ménard, Cynthia; Brock, Kristy K.

    2017-02-01

    MRI is under evaluation for image-guided intervention for prostate cancer. The sensitivity and specificity of MRI parameters is determined via correlation with the gold-standard of histopathology. Whole-mount histopathology of prostatectomy specimens can be digitally registered to in vivo imaging for correlation. When biomechanical-based deformable registration is employed to account for deformation during histopathology processing, the ex vivo biomechanical properties are required. However, these properties are altered by pathology fixation, and vary with disease. Hence, this study employs magnetic resonance elastography (MRE) to measure ex vivo prostate biomechanical properties before and after fixation. A quasi-static MRE method was employed to measure high resolution maps of Young’s modulus (E) before and after fixation of canine prostate and prostatectomy specimens (n  =  4) from prostate cancer patients who had previously received radiation therapy. For comparison, T 1, T 2 and apparent diffusion coefficient (ADC) were measured in parallel. E (kPa) varied across clinical anatomy and for histopathology-identified tumor: peripheral zone: 99(±22), central gland: 48(±37), tumor: 85(±53), and increased consistently with fixation (factor of 11  ±  5 p  <  0.02). T 2 decreased consistently with fixation, while changes in T 1 and ADC were more complex and inconsistent. The biomechanics of the clinical prostate specimens varied greatly with fixation, and to a lesser extent with disease and anatomy. The data obtained will improve the precision of prostate pathology correlation, leading to more accurate disease detection and targeting.

  13. Comparison of manually produced and automated cross country movement maps using digital image processing techniques

    NASA Technical Reports Server (NTRS)

    Wynn, L. K.

    1985-01-01

    The Image-Based Information System (IBIS) was used to automate the cross country movement (CCM) mapping model developed by the Defense Mapping Agency (DMA). Existing terrain factor overlays and a CCM map, produced by DMA for the Fort Lewis, Washington area, were digitized and reformatted into geometrically registered images. Terrain factor data from Slope, Soils, and Vegetation overlays were entered into IBIS, and were then combined utilizing IBIS-programmed equations to implement the DMA CCM model. The resulting IBIS-generated CCM map was then compared with the digitized manually produced map to test similarity. The numbers of pixels comprising each CCM region were compared between the two map images, and percent agreement between each two regional counts was computed. The mean percent agreement equalled 86.21%, with an areally weighted standard deviation of 11.11%. Calculation of Pearson's correlation coefficient yielded +9.997. In some cases, the IBIS-calculated map code differed from the DMA codes: analysis revealed that IBIS had calculated the codes correctly. These highly positive results demonstrate the power and accuracy of IBIS in automating models which synthesize a variety of thematic geographic data.

  14. Fast CEUS image segmentation based on self organizing maps

    NASA Astrophysics Data System (ADS)

    Paire, Julie; Sauvage, Vincent; Albouy-Kissi, Adelaïde; Ladam Marcus, Viviane; Marcus, Claude; Hoeffel, Christine

    2014-03-01

    Contrast-enhanced ultrasound (CEUS) has recently become an important technology for lesion detection and characterization. CEUS is used to investigate the perfusion kinetics in tissue over time, which relates to tissue vascularization. In this paper, we present an interactive segmentation method based on the neural networks, which enables to segment malignant tissue over CEUS sequences. We use Self-Organizing-Maps (SOM), an unsupervised neural network, to project high dimensional data to low dimensional space, named a map of neurons. The algorithm gathers the observations in clusters, respecting the topology of the observations space. This means that a notion of neighborhood between classes is defined. Adjacent observations in variables space belong to the same class or related classes after classification. Thanks to this neighborhood conservation property and associated with suitable feature extraction, this map provides user friendly segmentation tool. It will assist the expert in tumor segmentation with fast and easy intervention. We implement SOM on a Graphics Processing Unit (GPU) to accelerate treatment. This allows a greater number of iterations and the learning process to converge more precisely. We get a better quality of learning so a better classification. Our approach allows us to identify and delineate lesions accurately. Our results show that this method improves markedly the recognition of liver lesions and opens the way for future precise quantification of contrast enhancement.

  15. Postfire soil burn severity mapping with hyperspectral image unmixing

    USGS Publications Warehouse

    Robichaud, P.R.; Lewis, S.A.; Laes, D.Y.M.; Hudak, A.T.; Kokaly, R.F.; Zamudio, J.A.

    2007-01-01

    Burn severity is mapped after wildfires to evaluate immediate and long-term fire effects on the landscape. Remotely sensed hyperspectral imagery has the potential to provide important information about fine-scale ground cover components that are indicative of burn severity after large wildland fires. Airborne hyperspectral imagery and ground data were collected after the 2002 Hayman Fire in Colorado to assess the application of high resolution imagery for burn severity mapping and to compare it to standard burn severity mapping methods. Mixture Tuned Matched Filtering (MTMF), a partial spectral unmixing algorithm, was used to identify the spectral abundance of ash, soil, and scorched and green vegetation in the burned area. The overall performance of the MTMF for predicting the ground cover components was satisfactory (r2 = 0.21 to 0.48) based on a comparison to fractional ash, soil, and vegetation cover measured on ground validation plots. The relationship between Landsat-derived differenced Normalized Burn Ratio (dNBR) values and the ground data was also evaluated (r2 = 0.20 to 0.58) and found to be comparable to the MTMF. However, the quantitative information provided by the fine-scale hyperspectral imagery makes it possible to more accurately assess the effects of the fire on the soil surface by identifying discrete ground cover characteristics. These surface effects, especially soil and ash cover and the lack of any remaining vegetative cover, directly relate to potential postfire watershed response processes. ?? 2006 Elsevier Inc. All rights reserved.

  16. A method of spatial mapping and reclassification for high-spatial-resolution remote sensing image classification.

    PubMed

    Wang, Guizhou; Liu, Jianbo; He, Guojin

    2013-01-01

    This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine). Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy.

  17. Imaging-intensive guidance with confirmatory physiological mapping for neurosurgery of movement disorders

    NASA Astrophysics Data System (ADS)

    Nauta, Haring J.; Bonnen, J. G.; Soukup, V. M.; Gonzalez, A.; Schiess, Mya C.

    1998-06-01

    Stereotactic surgery for movement disorders is typically performed using both imaging and physiologic guidance. However, different neurosurgical centers vary in the emphasis placed on either the imaging or the physiological mapping used to locate the target in the brain. The relative ease with which imaging data is acquired currently and the relative complexity and invasiveness associated with physiologic mapping prompted an evaluation of a method that seeks to maximize the imaging component of the guidance in order to minimize the need for the physiologic mapping. The evaluation was carried out in 37 consecutive stereotactic procedures for movement disorders in 28 patients. Imaging was performed with the patients in a stereotactic head frame. Imaging data from MRI in three planes, CT and positive contrast ventriculography was all referenced to this headframe and combined in a stereotactic planning computer. Physiologic definition of the target was performed by macroelectrode stimulation. Any discrepancy between the coordinates of the imaging predicted target and physiologically defined target was measured. The imaging- predicted target coordinates allowed the physiologically defined target to be reached on the first electrode penetration in 70% of procedures and within two penetrations in 92%. The mean error between imaging predicted and physiologically defined target position was 1.24 mm. Lesion location was confirmed by postoperative MRI. There were no permanent complications in this series. Functional outcomes were comparable to those achieved by centers mapping with multiple microelectrode penetrations. The findings suggest that while physiologic guidance remains necessary, the extent to which it is needed can be reduced by acquiring as much imaging information as possible in the initial stages of the procedure. These data can be combined and prioritized in a stereotactic planning computer such that the surgeon can take full advantage of the most reliable

  18. Simulation of seagrass bed mapping by satellite images based on the radiative transfer model

    NASA Astrophysics Data System (ADS)

    Sagawa, Tatsuyuki; Komatsu, Teruhisa

    2015-06-01

    Seagrass and seaweed beds play important roles in coastal marine ecosystems. They are food sources and habitats for many marine organisms, and influence the physical, chemical, and biological environment. They are sensitive to human impacts such as reclamation and pollution. Therefore, their management and preservation are necessary for a healthy coastal environment. Satellite remote sensing is a useful tool for mapping and monitoring seagrass beds. The efficiency of seagrass mapping, seagrass bed classification in particular, has been evaluated by mapping accuracy using an error matrix. However, mapping accuracies are influenced by coastal environments such as seawater transparency, bathymetry, and substrate type. Coastal management requires sufficient accuracy and an understanding of mapping limitations for monitoring coastal habitats including seagrass beds. Previous studies are mainly based on case studies in specific regions and seasons. Extensive data are required to generalise assessments of classification accuracy from case studies, which has proven difficult. This study aims to build a simulator based on a radiative transfer model to produce modelled satellite images and assess the visual detectability of seagrass beds under different transparencies and seagrass coverages, as well as to examine mapping limitations and classification accuracy. Our simulations led to the development of a model of water transparency and the mapping of depth limits and indicated the possibility for seagrass density mapping under certain ideal conditions. The results show that modelling satellite images is useful in evaluating the accuracy of classification and that establishing seagrass bed monitoring by remote sensing is a reliable tool.

  19. Hyperspectral Image Classification using a Self-Organizing Map

    NASA Technical Reports Server (NTRS)

    Martinez, P.; Gualtieri, J. A.; Aguilar, P. L.; Perez, R. M.; Linaje, M.; Preciado, J. C.; Plaza, A.

    2001-01-01

    The use of hyperspectral data to determine the abundance of constituents in a certain portion of the Earth's surface relies on the capability of imaging spectrometers to provide a large amount of information at each pixel of a certain scene. Today, hyperspectral imaging sensors are capable of generating unprecedented volumes of radiometric data. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), for example, routinely produces image cubes with 224 spectral bands. This undoubtedly opens a wide range of new possibilities, but the analysis of such a massive amount of information is not an easy task. In fact, most of the existing algorithms devoted to analyzing multispectral images are not applicable in the hyperspectral domain, because of the size and high dimensionality of the images. The application of neural networks to perform unsupervised classification of hyperspectral data has been tested by several authors and also by us in some previous work. We have also focused on analyzing the intrinsic capability of neural networks to parallelize the whole hyperspectral unmixing process. The results shown in this work indicate that neural network models are able to find clusters of closely related hyperspectral signatures, and thus can be used as a powerful tool to achieve the desired classification. The present work discusses the possibility of using a Self Organizing neural network to perform unsupervised classification of hyperspectral images. In sections 3 and 4, the topology of the proposed neural network and the training algorithm are respectively described. Section 5 provides the results we have obtained after applying the proposed methodology to real hyperspectral data, described in section 2. Different parameters in the learning stage have been modified in order to obtain a detailed description of their influence on the final results. Finally, in section 6 we provide the conclusions at which we have arrived.

  20. Correlation of (18)F-FDG PET and MR Apparent Diffusion Coefficient (ADC) Histogram Metrics with Survival in Diffuse Intrinsic Pontine Glioma: A Report from the Pediatric Brain Tumor Consortium.

    PubMed

    Zukotynski, Katherine; Vajapeyam, Sridhar; Fahey, Frederic H; Kocak, Mehmet; Brown, Douglas; Ricci, Kelsey; Onar-Thomas, Arzu; Fouladi, Maryam; Poussaint, Tina Young

    2017-03-30

    Rationale: To describe baseline (18)F-labeled 2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) voxel characteristics in pediatric diffuse intrinsic pontine glioma (DIPG) and to correlate these metrics with baseline magnetic resonance (MR) apparent diffusion coefficient (ADC) histogram metrics, progression-free survival (PFS) and overall survival (OS). Methods: Baseline brain FDG-PET and MR scans were obtained in 33 children from Pediatric Brain Tumor Consortium (PBTC) clinical DIPG trials. FDG-PET, post-gadolinium (PG) and ADC images were registered to baseline fluid attenuation inversion recovery (FLAIR) images. Three-dimensional regions of interest on FLAIR and PG images and FDG-PET and ADC histograms were generated. Metrics evaluated included peak number, skewness and kurtosis. Correlation between PET and ADC histogram metrics was evaluated. PET pixel values within the ROI for each tumor were plotted against ADC values. Association of these imaging markers with survival was described. Results: PET histograms were almost always unimodal (94% vs. 6% bimodal). None of the PET histogram parameters (skewness or kurtosis) had a significant association with PFS, although a higher PET PG skewness tended towards less favorable PFS (Hazard Ratio (95% CI)=3.48 (0.75, 16.28); P = 0.11). There was a significant association of higher ADC PG skewness with shorter PFS (Hazard Ratio (95% CI)=2.56 (1.11, 5.91); P = 0.028) and the suggestion that this also led to shorter OS (Hazard Ratio (95% CI)=2.18 (0.95, 5.04); P = 0.067). Higher ADC PG kurtosis tended towards shorter PFS (Hazard Ratio (95% CI)=1.30 (0.98, 1.74); P = 0.073). In a number of cases, PET and ADC pixel values were negatively correlated using the Pearson correlation coefficient. Further, the level of PET and ADC correlation was significantly positively associated with PFS; tumors with higher values of ADC-PET correlation had more favorable PFS (Hazard Ratio (95% CI)=0.17 (0.03, 0.89), P = 0

  1. A fast schema for parameter estimation in diffusion kurtosis imaging

    PubMed Central

    Yan, Xu; Zhou, Minxiong; Ying, Lingfang; Liu, Wei; Yang, Guang; Wu, Dongmei; Zhou, Yongdi; Peterson, Bradley S.; Xu, Dongrong

    2014-01-01

    Diffusion kurtosis imaging (DKI) is a new model in magnetic resonance imaging (MRI) characterizing restricted diffusion of water molecules in living tissues. We propose a method for fast estimation of the DKI parameters. These parameters –apparent diffusion coefficient (ADC) and apparent kurtosis coefficient (AKC) – are evaluated using an alternative iteration schema (AIS). This schema first roughly estimates a pair of ADC and AKC values from a subset of the DKI data acquired at 3 b-values. It then iteratively and alternately updates the ADC and AKC until they are converged. This approach employs the technique of linear least square fitting to minimize estimation error in each iteration. In addition to the common physical and biological constrains that set the upper and lower boundaries of the ADC and AKC values, we use a smoothing procedure to ensure that estimation is robust. Quantitative comparisons between our AIS methods and the conventional methods of unconstrained nonlinear least square (UNLS) using both synthetic and real data showed that our unconstrained AIS method can significantly accelerate the estimation procedure without compromising its accuracy, with the computational time for a DKI dataset successfully reduced to only one or two minutes. Moreover, the incorporation of the smoothing procedure using one of our AIS methods can significantly enhance the contrast of AKC maps and greatly improve the visibility of details in fine structures. PMID:25016957

  2. Effect of spatial smoothing on t-maps: arguments for going back from t-maps to masked contrast images.

    PubMed

    Reimold, Matthias; Slifstein, Mark; Heinz, Andreas; Mueller-Schauenburg, Wolfgang; Bares, Roland

    2006-06-01

    Voxelwise statistical analysis has become popular in explorative functional brain mapping with fMRI or PET. Usually, results are presented as voxelwise levels of significance (t-maps), and for clusters that survive correction for multiple testing the coordinates of the maximum t-value are reported. Before calculating a voxelwise statistical test, spatial smoothing is required to achieve a reasonable statistical power. Little attention is being given to the fact that smoothing has a nonlinear effect on the voxel variances and thus the local characteristics of a t-map, which becomes most evident after smoothing over different types of tissue. We investigated the related artifacts, for example, white matter peaks whose position depend on the relative variance (variance over contrast) of the surrounding regions, and suggest improving spatial precision with 'masked contrast images': color-codes are attributed to the voxelwise contrast, and significant clusters (e.g., detected with statistical parametric mapping, SPM) are enlarged by including contiguous pixels with a contrast above the mean contrast in the original cluster, provided they satisfy P < 0.05. The potential benefit is demonstrated with simulations and data from a [11C]Carfentanil PET study. We conclude that spatial smoothing may lead to critical, sometimes-counterintuitive artifacts in t-maps, especially in subcortical brain regions. If significant clusters are detected, for example, with SPM, the suggested method is one way to improve spatial precision and may give the investigator a more direct sense of the underlying data. Its simplicity and the fact that no further assumptions are needed make it a useful complement for standard methods of statistical mapping.

  3. Tissue probability map constrained CLASSIC for increased accuracy and robustness in serial image segmentation

    NASA Astrophysics Data System (ADS)

    Xue, Zhong; Shen, Dinggang; Wong, Stephen T. C.

    2009-02-01

    Traditional fuzzy clustering algorithms have been successfully applied in MR image segmentation for quantitative morphological analysis. However, the clustering results might be biased due to the variability of tissue intensities and anatomical structures. For example, clustering-based algorithms tend to over-segment white matter tissues of MR brain images. To solve this problem, we introduce a tissue probability map constrained clustering algorithm and apply it to serialMR brain image segmentation for longitudinal study of human brains. The tissue probability maps consist of segmentation priors obtained from a population and reflect the probability of different tissue types. More accurate image segmentation can be achieved by using these segmentation priors in the clustering algorithm. Experimental results of both simulated longitudinal MR brain data and the Alzheimer's Disease Neuroimaging Initiative (ADNI) data using the new serial image segmentation algorithm in the framework of CLASSIC show more accurate and robust longitudinal measures.

  4. Multispectral x-ray imaging for core temperature and density maps retrieval in direct drive implosions

    SciTech Connect

    Tommasini, Riccardo; Koch, Jeffrey A.; Izumi, Nobuhiko; Welser, Leslie A.; Mancini, Roberto C.; Delettrez, Jacques; Regan, Sean; Smalyuk, Vladimir

    2006-10-15

    We report on the experiments aimed at obtaining core temperature and density maps in direct drive implosions at the Omega laser facility using multimonochromatic x-ray imagers. These instruments use an array of pinholes and a flat multilayer mirror to provide unique multispectral images distributed over a wide spectral range. Using argon as a dopant in the direct-drive filled plastic shells produces emission images in the Ar He-{beta} and Ly-{beta} spectral regions. These images allow the retrieval of temperature and density maps of the plasma. We deployed three identical multimonochromatic x-ray imagers in a quasiorthogonal line-of-sight configuration to allow tomographic reconstruction of the structure of the imploding core.

  5. A chaotic cryptosystem for images based on Henon and Arnold cat map.

    PubMed

    Soleymani, Ali; Nordin, Md Jan; Sundararajan, Elankovan

    2014-01-01

    The rapid evolution of imaging and communication technologies has transformed images into a widespread data type. Different types of data, such as personal medical information, official correspondence, or governmental and military documents, are saved and transmitted in the form of images over public networks. Hence, a fast and secure cryptosystem is needed for high-resolution images. In this paper, a novel encryption scheme is presented for securing images based on Arnold cat and Henon chaotic maps. The scheme uses Arnold cat map for bit- and pixel-level permutations on plain and secret images, while Henon map creates secret images and specific parameters for the permutations. Both the encryption and decryption processes are explained, formulated, and graphically presented. The results of security analysis of five different images demonstrate the strength of the proposed cryptosystem against statistical, brute force and differential attacks. The evaluated running time for both encryption and decryption processes guarantee that the cryptosystem can work effectively in real-time applications.

  6. Image Mining in Remote Sensing for Coastal Wetlands Mapping: from Pixel Based to Object Based Approach

    NASA Astrophysics Data System (ADS)

    Farda, N. M.; Danoedoro, P.; Hartono; Harjoko, A.

    2016-11-01

    The availably of remote sensing image data is numerous now, and with a large amount of data it makes “knowledge gap” in extraction of selected information, especially coastal wetlands. Coastal wetlands provide ecosystem services essential to people and the environment. The aim of this research is to extract coastal wetlands information from satellite data using pixel based and object based image mining approach. Landsat MSS, Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI images located in Segara Anakan lagoon are selected to represent data at various multi temporal images. The input for image mining are visible and near infrared bands, PCA band, invers PCA bands, mean shift segmentation bands, bare soil index, vegetation index, wetness index, elevation from SRTM and ASTER GDEM, and GLCM (Harralick) or variability texture. There is three methods were applied to extract coastal wetlands using image mining: pixel based - Decision Tree C4.5, pixel based - Back Propagation Neural Network, and object based - Mean Shift segmentation and Decision Tree C4.5. The results show that remote sensing image mining can be used to map coastal wetlands ecosystem. Decision Tree C4.5 can be mapped with highest accuracy (0.75 overall kappa). The availability of remote sensing image mining for mapping coastal wetlands is very important to provide better understanding about their spatiotemporal coastal wetlands dynamics distribution.

  7. Panoramic Images Mapping Tools Integrated Within the ESRI ArcGIS Software

    NASA Astrophysics Data System (ADS)

    Guo, Jiao; Zhong, Ruofei; Zeng, Fanyang

    2014-03-01

    There is a general study on panoramic images which are presented along with appearance of the Google street map. Despite 360 degree viewing of street, we can realize more applications over panoramic images. This paper developed a toolkits plugged in ArcGIS, which can view panoramic photographs at street level directly from ArcMap and measure and capture all visible elements as frontages, trees and bridges. We use a series of panoramic images adjoined with absolute coordinate through GPS and IMU. There are two methods in this paper to measure object from these panoramic images: one is to intersect object position through a stereogram; the other one is multichip matching involved more than three images which all cover the object. While someone wants to measure objects from these panoramic images, each two panoramic images which both contain the object can be chosen to display on ArcMap. Then we calculate correlation coefficient of the two chosen panoramic images so as to calculate the coordinate of object. Our study test different patterns of panoramic pairs and compare the results of measurement to the real value of objects so as to offer the best choosing suggestion. The article has mainly elaborated the principles of calculating correlation coefficient and multichip matching.

  8. A Chaotic Cryptosystem for Images Based on Henon and Arnold Cat Map

    PubMed Central

    Sundararajan, Elankovan

    2014-01-01

    The rapid evolution of imaging and communication technologies has transformed images into a widespread data type. Different types of data, such as personal medical information, official correspondence, or governmental and military documents, are saved and transmitted in the form of images over public networks. Hence, a fast and secure cryptosystem is needed for high-resolution images. In this paper, a novel encryption scheme is presented for securing images based on Arnold cat and Henon chaotic maps. The scheme uses Arnold cat map for bit- and pixel-level permutations on plain and secret images, while Henon map creates secret images and specific parameters for the permutations. Both the encryption and decryption processes are explained, formulated, and graphically presented. The results of security analysis of five different images demonstrate the strength of the proposed cryptosystem against statistical, brute force and differential attacks. The evaluated running time for both encryption and decryption processes guarantee that the cryptosystem can work effectively in real-time applications. PMID:25258724

  9. Identifying Student Use of Ball-and-Stick Images versus Electrostatic Potential Map Images via Eye Tracking

    ERIC Educational Resources Information Center

    Williamson, Vickie M.; Hegarty, Mary; Deslongchamps, Ghislain; Williamson, Kenneth C., III

    2013-01-01

    This pilot study examined students' use of ball-and-stick images versus electrostatic potential maps when asked questions about electron density, positive charge, proton attack, and hydroxide attack with six different molecules (two alcohols, two carboxylic acids, and two hydroxycarboxylic acids). Students' viewing of these dual images…

  10. Evaluation of LANDSAT multispectral scanner images for mapping altered rocks in the east Tintic Mountains, Utah

    NASA Technical Reports Server (NTRS)

    Rowan, L. C.; Abrams, M. J. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Positive findings of earlier evaluations of the color-ratio compositing technique for mapping limonitic altered rocks in south-central Nevada are confirmed, but important limitations in the approach used are pointed out. These limitations arise from environmental, geologic, and image processing factors. The greater vegetation density in the East Tintic Mountains required several modifications in procedures to improve the overall mapping accuracy of the CRC approach. Large format ratio images provide better internal registration of the diazo films and avoids the problems associated with magnifications required in the original procedure. Use of the Linoscan 204 color recognition scanner permits accurate consistent extraction of the green pixels representing limonitic bedrock maps that can be used for mapping at large scales as well as for small scale reconnaissance.

  11. Multiscale target extraction using a spectral saliency map for a hyperspectral image.

    PubMed

    Zhang, Jing; Geng, Wenhao; Zhuo, Li; Tian, Qi; Cao, Yan

    2016-10-01

    With the rapid growth of the capabilities for hyperspectral imagery acquisition, how to efficiently find the significant target in hyperspectral imagery has become a fundamental task for remote-sensing applications. Existing target extraction methods mainly separate targets from background with a threshold based on pixels and single-scale image information extraction. However, due to the high dimensional characteristics and the complex background of hyperspectral imagery, it is difficult to obtain good extraction results with existing methods. Saliency detection has been a promising topic because saliency features can quickly locate saliency regions from complex backgrounds. Considering the spatial and spectral characteristics of a hyperspectral image, a multiscale target extraction method using a spectral saliency map is proposed for a hyperspectral image, which includes: (1) a spectral saliency model is constructed for detecting spectral saliency map in a hyperspectral image; (2) focus of attention (FOA) as the seed point is competed in the spectral saliency map by the winner-take-all (WTA) network; (3) the multiscale image is segmented by region growing based on the minimum-heterogeneity rule after calculating the heterogeneity of the seed point with its surrounding pixels; (4) the salient target is detected and segmented under the constraint of the spectral saliency map. The experimental results show that the proposed method can effectively improve the accuracy of target extraction for hyperspectral images.

  12. Using ERS-2 and ALOS PALSAR images for soil moisture and inundation mapping in Cyprus

    NASA Astrophysics Data System (ADS)

    Alexakis, Dimitrios D.; Agapiou, Athos; Themistocleous, Kyriacos; Retalis, Adrianos; Hadjimitsis, Diofantos G.

    2013-08-01

    Floods are among the most frequent and costly natural disasters in terms of human and economic loss and are considered to be a weather-related natural disaster. This study strives to highlight the potential of active remote sensing imagery in flood inundation monitoring and mapping in a catchment area in Cyprus (Yialias river). GeoEye-1 and ASTER images were employed to create updated Land use /Land cover maps of the study area. Following, the application of fully polarimetric (ALOS PALSAR) and dual polarimetric (ERS - 2) Synthetic Aperture Radar (SAR) data for soil moisture and inundation mapping is presented. For this purpose 2 ALOS PALSAR images and 3 ERS-2 images were acquired. This study offers an integrated methodology by the use of multi-angle radar images to estimate roughness and soil moisture without the use of ancillary field data such as field measurements. The relationship between soil moisture and backscattering coefficient was thoroughly studied and linear regression models were developed to predict future flood inundation events. Multi-temporal FCC images, classification, image fusion, moisture indices, texture and PCA analysis were employed to assist soil moisture mapping. Certain land cover classes were characterized as flood prone areas according to statistics of their signal response. The results will be incorporated in an integrated flood risk assessment model of Yialias catchment area.

  13. Multiresolution MAP despeckling of SAR images based on locally adaptive generalized Gaussian pdf modeling.

    PubMed

    Argenti, Fabrizio; Bianchi, Tiziano; Alparone, Luciano

    2006-11-01

    In this paper, a new despeckling method based on undecimated wavelet decomposition and maximum a posteriori MIAP) estimation is proposed. Such a method relies on the assumption that the probability density function (pdf) of each wavelet coefficient is generalized Gaussian (GG). The major novelty of the proposed approach is that the parameters of the GG pdf are taken to be space-varying within each wavelet frame. Thus, they may be adjusted to spatial image context, not only to scale and orientation. Since the MAP equation to be solved is a function of the parameters of the assumed pdf model, the variance and shape factor of the GG function are derived from the theoretical moments, which depend on the moments and joint moments of the observed noisy signal and on the statistics of speckle. The solution of the MAP equation yields the MAP estimate of the wavelet coefficients of the noise-free image. The restored SAR image is synthesized from such coefficients. Experimental results, carried out on both synthetic speckled images and true SAR images, demonstrate that MAP filtering can be successfully applied to SAR images represented in the shift-invariant wavelet domain, without resorting to a logarithmic transformation.

  14. An Image Morphing Technique Based on Optimal Mass Preserving Mapping

    DTIC Science & Technology

    2007-06-01

    Yan Yang, Steven Haker , and Allen Tannenbaum Abstract—Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one...of Technology, Atlanta, GA 30332 USA (e-mail: zlzl@ece.gatech.edu; zhulei1976@hotmail.com; yan.yang@gatech.edu; tannenba@ece.gatech.edu). S. Haker is...with the Surgical Planning Laboratory, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA (e-mail: haker @bwh.harvard.edu

  15. Low power, high resolution MAPS for particle tracking and imaging

    NASA Astrophysics Data System (ADS)

    Giubilato, P.; Cavicchioli, C.; Chalmet, P.; Kugathasan, T.; Marin Tobon, C.; Mattiazzo, S.; Mugnier, H.; Pantano, D.; Pozzobon, N.; Rousset, J.; Snoeys, W.; Yang, P.

    2015-05-01

    We describe here the first monolithic pixel detector prototype embedding the OrthoPix architecture, specifically designed to deal with imaging applications where the relevant number of pixel hit per frame (occupancy) is small (on the order or less than 1%), like in High Energy Physics, Medical Imaging and other applications. Current state of the art employs complex circuitry into the pixel cell to discriminate relevant signals, leading to an extremely effective, non-destructive compression at the price of large power consumption and pixel area limitations. The OrthoPix architecture instead implements a passive projective compression scheme, leading to low power, small pixel cell and large area devices.

  16. Advanced InSAR imaging for dune mapping

    NASA Astrophysics Data System (ADS)

    Havivi, Shiran; August, Yitzhak; Blumberg, Dan G.; Rotman, Stanley R.

    2015-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970's, remote sensing imagery both optical and radar, are used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of Aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two images or more. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This research aims to demonstrate how interferometric decorrelation, or, coherence change detection, can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the Nitzanim coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of varying levels of stability and vegetation cover and have been monitored meteorologically, geomorphologically and

  17. Exact analytical results for ADC with oscillating diffusion sensitizing gradients

    PubMed Central

    Sukstanskii, A.L.

    2013-01-01

    The apparent diffusion coefficient (ADC) is analyzed for the case of oscillating diffusion sensitizing gradients. Exact analytical expressions are obtained in the high-frequency expansion of the ADC for an arbitrary number of oscillations N. These expressions are universal and valid for arbitrary system geometry. The validity conditions of the high-frequency expansion of ADC are obtained in the framework of a simple 1D model of restricted diffusion. These conditions are shown to be substantially different for cos- and sin-type gradients: for the cos-type gradients, the high-frequency expansion is valid when the period of a single oscillation is smaller than the characteristic diffusion time, the frequency dependence of ADC being practically the same for any N. In contrast, for the sin-type gradients, the high-frequency regime can be achieved only when the total diffusion time is smaller than the characteristic diffusion time, the frequency dependence of ADC being different for different N. PMID:23876779

  18. User's Guide for MapIMG 2: Map Image Re-projection Software Package

    USGS Publications Warehouse

    Finn, Michael P.; Trent, Jason R.; Buehler, Robert A.

    2006-01-01

    BACKGROUND Scientists routinely accomplish small-scale geospatial modeling in the raster domain, using high-resolution datasets for large parts of continents and low-resolution to high-resolution datasets for the entire globe. Direct implementation of point-to-point transformation with appropriate functions yields the variety of projections available in commercial software packages, but implementation with data other than points requires specific adaptation of the transformation equations or prior preparation of the data to allow the transformation to succeed. It seems that some of these packages use the U.S. Geological Survey's (USGS) General Cartographic Transformation Package (GCTP) or similar point transformations without adaptation to the specific characteristics of raster data (Usery and others, 2003a). Usery and others (2003b) compiled and tabulated the accuracy of categorical areas in projected raster datasets of global extent. Based on the shortcomings identified in these studies, geographers and applications programmers at the USGS expanded and evolved a USGS software package, MapIMG, for raster map projection transformation (Finn and Trent, 2004). Daniel R. Steinwand of Science Applications International Corporation, National Center for Earth Resources Observation and Science, originally developed MapIMG for the USGS, basing it on GCTP. Through previous and continuing efforts at the USGS' National Geospatial Technical Operations Center, this program has been transformed from an application based on command line input into a software package based on a graphical user interface for Windows, Linux, and other UNIX machines.

  19. RGB imaging system for mapping and monitoring of hemoglobin distribution in skin

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Rubins, Uldis; Spigulis, Janis

    2011-10-01

    A prototype R-G-B imaging system for mapping of skin hemoglobin distribution has been designed and tested. Device basically consists of a commercial RGB sensor (CMOS, max. frame rate 87 fps for VGA resolution), RGB LED ringlight illuminator and orthogonally orientated polarizers for reducing specular reflectance. The system was examined for monitoring of hemoglobin concentration changes during specific provocations - arterial/venous occlusions and heat test. Hemoglobin distribution maps of several skin malformations were obtained, as well.

  20. Automatic segmentation of MR images using self-organizing feature mapping and neural networks

    NASA Astrophysics Data System (ADS)

    Alirezaie, Javad; Jernigan, M. Ed; Nahmias, Claude

    1997-04-01

    In this paper we present an unsupervised clustering technique for multispectral segmentation of magnetic resonance (MR) images of the human brain. Our scheme utilizes the self-organizing feature map (SOFM) artificial neural network (ANN) for feature mapping and generates a set of codebook vectors for each tissue class. Features are selected from three image spectra: T1, T2 and proton density (PD) weighted images. An algorithm has been developed for isolating the cerebrum from the head scan prior to the segmentation. To classify the map, we extend the network by adding an associative layer. Three tissue types of the brain: white matter, gray matter and cerebral spinal fluid (CSF) are segmented accurately. Any unclassified tissues were remained as unknown tissue class.

  1. QIN DAWG Validation of Gradient Nonlinearity Bias Correction Workflow for Quantitative Diffusion-Weighted Imaging in Multicenter Trials

    PubMed Central

    Malyarenko, Dariya I.; Wilmes, Lisa J.; Arlinghaus, Lori R.; Jacobs, Michael A.; Huang, Wei; Helmer, Karl G.; Taouli, Bachir; Yankeelov, Thomas E.; Newitt, David; Chenevert, Thomas L.

    2017-01-01

    Previous research has shown that system-dependent gradient nonlinearity (GNL) introduces a significant spatial bias (nonuniformity) in apparent diffusion coefficient (ADC) maps. Here, the feasibility of centralized retrospective system-specific correction of GNL bias for quantitative diffusion-weighted imaging (DWI) in multisite clinical trials is demonstrated across diverse scanners independent of the scanned object. Using corrector maps generated from system characterization by ice-water phantom measurement completed in the previous project phase, GNL bias correction was performed for test ADC measurements from an independent DWI phantom (room temperature agar) at two offset locations in the bore. The precomputed three-dimensional GNL correctors were retrospectively applied to test DWI scans by the central analysis site. The correction was blinded to reference DWI of the agar phantom at magnet isocenter where the GNL bias is negligible. The performance was evaluated from changes in ADC region of interest histogram statistics before and after correction with respect to the unbiased reference ADC values provided by sites. Both absolute error and nonuniformity of the ADC map induced by GNL (median, 12%; range, −35% to +10%) were substantially reduced by correction (7-fold in median and 3-fold in range). The residual ADC nonuniformity errors were attributed to measurement noise and other non-GNL sources. Correction of systematic GNL bias resulted in a 2-fold decrease in technical variability across scanners (down to site temperature range). The described validation of GNL bias correction marks progress toward implementation of this technology in multicenter trials that utilize quantitative DWI. PMID:28105469

  2. Color-coded visualization of magnetic resonance imaging multiparametric maps

    NASA Astrophysics Data System (ADS)

    Kather, Jakob Nikolas; Weidner, Anja; Attenberger, Ulrike; Bukschat, Yannick; Weis, Cleo-Aron; Weis, Meike; Schad, Lothar R.; Zöllner, Frank Gerrit

    2017-01-01

    Multiparametric magnetic resonance imaging (mpMRI) data are emergingly used in the clinic e.g. for the diagnosis of prostate cancer. In contrast to conventional MR imaging data, multiparametric data typically include functional measurements such as diffusion and perfusion imaging sequences. Conventionally, these measurements are visualized with a one-dimensional color scale, allowing only for one-dimensional information to be encoded. Yet, human perception places visual information in a three-dimensional color space. In theory, each dimension of this space can be utilized to encode visual information. We addressed this issue and developed a new method for tri-variate color-coded visualization of mpMRI data sets. We showed the usefulness of our method in a preclinical and in a clinical setting: In imaging data of a rat model of acute kidney injury, the method yielded characteristic visual patterns. In a clinical data set of N = 13 prostate cancer mpMRI data, we assessed diagnostic performance in a blinded study with N = 5 observers. Compared to conventional radiological evaluation, color-coded visualization was comparable in terms of positive and negative predictive values. Thus, we showed that human observers can successfully make use of the novel method. This method can be broadly applied to visualize different types of multivariate MRI data.

  3. Color-coded visualization of magnetic resonance imaging multiparametric maps

    PubMed Central

    Kather, Jakob Nikolas; Weidner, Anja; Attenberger, Ulrike; Bukschat, Yannick; Weis, Cleo-Aron; Weis, Meike; Schad, Lothar R.; Zöllner, Frank Gerrit

    2017-01-01

    Multiparametric magnetic resonance imaging (mpMRI) data are emergingly used in the clinic e.g. for the diagnosis of prostate cancer. In contrast to conventional MR imaging data, multiparametric data typically include functional measurements such as diffusion and perfusion imaging sequences. Conventionally, these measurements are visualized with a one-dimensional color scale, allowing only for one-dimensional information to be encoded. Yet, human perception places visual information in a three-dimensional color space. In theory, each dimension of this space can be utilized to encode visual information. We addressed this issue and developed a new method for tri-variate color-coded visualization of mpMRI data sets. We showed the usefulness of our method in a preclinical and in a clinical setting: In imaging data of a rat model of acute kidney injury, the method yielded characteristic visual patterns. In a clinical data set of N = 13 prostate cancer mpMRI data, we assessed diagnostic performance in a blinded study with N = 5 observers. Compared to conventional radiological evaluation, color-coded visualization was comparable in terms of positive and negative predictive values. Thus, we showed that human observers can successfully make use of the novel method. This method can be broadly applied to visualize different types of multivariate MRI data. PMID:28112222

  4. Velocity map imaging with non-uniform detection: Quantitative molecular axis alignment measurements via Coulomb explosion imaging.

    PubMed

    Underwood, Jonathan G; Procino, I; Christiansen, L; Maurer, J; Stapelfeldt, H

    2015-07-01

    We present a method for inverting charged particle velocity map images which incorporates a non-uniform detection function. This method is applied to the specific case of extracting molecular axis alignment from Coulomb explosion imaging probes in which the probe itself has a dependence on molecular orientation which often removes cylindrical symmetry from the experiment and prevents the use of standard inversion techniques for the recovery of the molecular axis distribution. By incorporating the known detection function, it is possible to remove the angular bias of the Coulomb explosion probe process and invert the image to allow quantitative measurement of the degree of molecular axis alignment.

  5. Integration of visible-through microwave-range multispectral image data sets for geologic mapping

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.; Dietz, John B.

    1991-01-01

    Multispectral remote sensing data sets collected during the Geologic Remote Sensing Field Experiment (GRSFE) conducted during 1989 in the southwestern U.S. were used to produce thematic image maps showing details of the surface geology. LANDSAT TM (Thematic Mapper) images were used to map the distribution of clays, carbonates, and iron oxides. AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data were used to identify and map calcite, dolomite, sericite, hematite, and geothite, including mixtures. TIMS (Thermal Infrared Multispectral Scanner) data were used to map the distribution of igneous rock phases and carbonates based on their silica contents. AIRSAR (Airborne Synthetic Aperture Radar) data were used to map surface textures related to the scale of surface roughness. The AIRSAR also allowed identification of previously unmapped fault segments and structural control of lithology and minerology. Because all of the above data sets were geographically referenced, combination of different data types and direct comparison of the results with conventional field and laboratory data sets allowed improved geologic mapping of the test site.

  6. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation.

    PubMed

    Asner, G P; Martin, R E; Knapp, D E; Tupayachi, R; Anderson, C B; Sinca, F; Vaughn, N R; Llactayo, W

    2017-01-27

    Functional biogeography may bridge a gap between field-based biodiversity information and satellite-based Earth system studies, thereby supporting conservation plans to protect more species and their contributions to ecosystem functioning. We used airborne laser-guided imaging spectroscopy with environmental modeling to derive large-scale, multivariate forest canopy functional trait maps of the Peruvian Andes-to-Amazon biodiversity hotspot. Seven mapped canopy traits revealed functional variation in a geospatial pattern explained by geology, topography, hydrology, and climate. Clustering of canopy traits yielded a map of forest beta functional diversity for land-use analysis. Up to 53% of each mapped, functionally distinct forest presents an opportunity for new conservation action. Mapping functional diversity advances our understanding of the biosphere to conserve more biodiversity in the face of land use and climate change.

  7. The Cyborg Astrobiologist: matching of prior textures by image compression for geological mapping and novelty detection

    NASA Astrophysics Data System (ADS)

    McGuire, P. C.; Bonnici, A.; Bruner, K. R.; Gross, C.; Ormö, J.; Smosna, R. A.; Walter, S.; Wendt, L.

    2014-07-01

    We describe an image-comparison technique of Heidemann and Ritter (2008a, b), which uses image compression, and is capable of: (i) detecting novel textures in a series of images, as well as of: (ii) alerting the user to the similarity of a new image to a previously observed texture. This image-comparison technique has been implemented and tested using our Astrobiology Phone-cam system, which employs Bluetooth communication to send images to a local laptop server in the field for the image-compression analysis. We tested the system in a field site displaying a heterogeneous suite of sandstones, limestones, mudstones and coal beds. Some of the rocks are partly covered with lichen. The image-matching procedure of this system performed very well with data obtained through our field test, grouping all images of yellow lichens together and grouping all images of a coal bed together, and giving 91% accuracy for similarity detection. Such similarity detection could be employed to make maps of different geological units. The novelty-detection performance of our system was also rather good (64% accuracy). Such novelty detection may become valuable in searching for new geological units, which could be of astrobiological interest. The current system is not directly intended for mapping and novelty detection of a second field site based on image-compression analysis of an image database from a first field site, although our current system could be further developed towards this end. Furthermore, the image-comparison technique is an unsupervised technique that is not capable of directly classifying an image as containing a particular geological feature; labelling of such geological features is done post facto by human geologists associated with this study, for the purpose of analysing the system's performance. By providing more advanced capabilities for similarity detection and novelty detection, this image-compression technique could be useful in giving more scientific autonomy

  8. A hierarchical Bayesian-MAP approach to inverse problems in imaging

    NASA Astrophysics Data System (ADS)

    Raj, Raghu G.

    2016-07-01

    We present a novel approach to inverse problems in imaging based on a hierarchical Bayesian-MAP (HB-MAP) formulation. In this paper we specifically focus on the difficult and basic inverse problem of multi-sensor (tomographic) imaging wherein the source object of interest is viewed from multiple directions by independent sensors. Given the measurements recorded by these sensors, the problem is to reconstruct the image (of the object) with a high degree of fidelity. We employ a probabilistic graphical modeling extension of the compound Gaussian distribution as a global image prior into a hierarchical Bayesian inference procedure. Since the prior employed by our HB-MAP algorithm is general enough to subsume a wide class of priors including those typically employed in compressive sensing (CS) algorithms, HB-MAP algorithm offers a vehicle to extend the capabilities of current CS algorithms to include truly global priors. After rigorously deriving the regression algorithm for solving our inverse problem from first principles, we demonstrate the performance of the HB-MAP algorithm on Monte Carlo trials and on real empirical data (natural scenes). In all cases we find that our algorithm outperforms previous approaches in the literature including filtered back-projection and a variety of state-of-the-art CS algorithms. We conclude with directions of future research emanating from this work.

  9. A novel image encryption algorithm based on chaos maps with Markov properties

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Li, Pei-yue; Zhang, Ming-chao; Sui, Yong-xin; Yang, Huai-jiang

    2015-02-01

    In order to construct high complexity, secure and low cost image encryption algorithm, a class of chaos with Markov properties was researched and such algorithm was also proposed. The kind of chaos has higher complexity than the Logistic map and Tent map, which keeps the uniformity and low autocorrelation. An improved couple map lattice based on the chaos with Markov properties is also employed to cover the phase space of the chaos and enlarge the key space, which has better performance than the original one. A novel image encryption algorithm is constructed on the new couple map lattice, which is used as a key stream generator. A true random number is used to disturb the key which can dynamically change the permutation matrix and the key stream. From the experiments, it is known that the key stream can pass SP800-22 test. The novel image encryption can resist CPA and CCA attack and differential attack. The algorithm is sensitive to the initial key and can change the distribution the pixel values of the image. The correlation of the adjacent pixels can also be eliminated. When compared with the algorithm based on Logistic map, it has higher complexity and better uniformity, which is nearer to the true random number. It is also efficient to realize which showed its value in common use.

  10. Plenoptic mapping for imaging and retrieval of the complex field amplitude of a laser beam.

    PubMed

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher C

    2016-12-26

    The plenoptic sensor has been developed to sample complicated beam distortions produced by turbulence in the low atmosphere (deep turbulence or strong turbulence) with high density data samples. In contrast with the conventional Shack-Hartmann wavefront sensor, which utilizes all the pixels under each lenslet of a micro-lens array (MLA) to obtain one data sample indicating sub-aperture phase gradient and photon intensity, the plenoptic sensor uses each illuminated pixel (with significant pixel value) under each MLA lenslet as a data point for local phase gradient and intensity. To characterize the working principle of a plenoptic sensor, we propose the concept of plenoptic mapping and its inverse mapping to describe the imaging and reconstruction process respectively. As a result, we show that the plenoptic mapping is an efficient method to image and reconstruct the complex field amplitude of an incident beam with just one image. With a proof of concept experiment, we show that adaptive optics (AO) phase correction can be instantaneously achieved without going through a phase reconstruction process under the concept of plenoptic mapping. The plenoptic mapping technology has high potential for applications in imaging, free space optical (FSO) communication and directed energy (DE) where atmospheric turbulence distortion needs to be compensated.

  11. Stokes Imaging: Mapping the Accretion Region(s) in Magnetic Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Potter, Stephen B.

    Stokes imaging is the first objective and analytical technique that robustly models the cyclotron emission and maps the accretion zones in magnetic Cataclysmic Variables (mCVs) (Potter et al., MNRAS 297:1261, 1998). I discuss polarisation modelling followed by a summary of the Stokes imaging technique and its application to a real data set. In the final sections I discuss two ongoing developments to Stokes imaging, namely: using a more realistic "stratified" accretion shock model in order to calculate cyclotron spectra, and using Stokes imaging in conjunction with other tomographic techniques in order to gain better insights into magnetic accretion.

  12. A quantitative evaluation of diffusion-weighted MR imaging of focal hepatic lesions by using an optimal b-value for differentiation of malignant and benign tumors

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kim, Kwang

    2013-12-01

    In this study, we aimed to determine an optimized b-value for the characterization of focal hepatic lesions (malignant and benign tumors) and to perform a quantitative analysis of the results. To achieve this, we obtained diffusion-weighted images (DWIs) from 30 focal hepatic disease patients (liver metastasis: 20 patients, and liver hemangioma: 10 patients) by using a 1.5 T MR system and varying the b-value from 0 through 200. The experimental results revealed that at a b-value of 50, the DWIs of the lesions showed high signal-to-noise ratios (SNRs; SN R liver_meta . = 229.83 ± 19.08, SNR liver_hema . = 241.66 ± 29.02), high contrast-to-noise ratios (CNRs; CN R liver_meta . = 39.66 ± 3.87, C N R liver_hema . = 142.55 ± 12.97) and low signal intensities of the apparent diffusion coefficients (ADCs; ADC liver_meta . = 1.40 × 10-3 ± 0.29, ADC liver_hema . = 2.55 × 10-3 ± 0.92). The focal hepatic lesions were clearly depicted, with DW images and ADC maps corresponding well. Thus, we could present an optimized b-value ( b = 50) for the characterization of focal hepatic lesions. Additionally, the ADC values of liver lesions were found to be useful in differentiating benign from malignant tumors.

  13. Application of ERTS images and image processing to regional geologic problems and geologic mapping in northern Arizona

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H. (Principal Investigator); Billingsley, F. C.; Gillespie, A. R.; Abrams, M. J.; Squires, R. L.; Shoemaker, E. M.; Lucchitta, I.; Elston, D. P.

    1975-01-01

    The author has identified the following significant results. Computer image processing was shown to be both valuable and necessary in the extraction of the proper subset of the 200 million bits of information in an ERTS image to be applied to a specific problem. Spectral reflectivity information obtained from the four MSS bands can be correlated with in situ spectral reflectance measurements after path radiance effects have been removed and a proper normalization has been made. A detailed map of the major fault systems in a 90,000 sq km area in northern Arizona was compiled from high altitude photographs and pre-existing published and unpublished map data. With the use of ERTS images, three major fault systems, the Sinyala, Bright Angel, and Mesa Butte, were identified and their full extent measured. A byproduct of the regional studies was the identification of possible sources of shallow ground water, a scarce commodity in these regions.

  14. False-Color-Image Map of Quadrangle 3164, Lashkargah (605) and Kandahar (606) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  15. False-Color-Image Map of Quadrangle 3568, Polekhomri (503) and Charikar (504) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  16. False-Color-Image Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  17. False-Color-Image Map of Quadrangle 3162, Chakhansur (603) and Kotalak (604) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  18. False-Color-Image Map of Quadrangle 3564, Chahriaq (Joand) (405) and Gurziwan (406) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  19. False-Color-Image Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  20. False-Color-Image Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.; Turner, Kenzie J.

    2007-01-01

    This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.

  1. Spectral Ratio Imaging with Hyperion Satellite Data for Geological Mapping

    NASA Technical Reports Server (NTRS)

    Vincent, Robert K.; Beck, Richard A.

    2005-01-01

    Since the advent of LANDSAT I in 1972, many different multispectral satellites have been orbited by the U.S. and other countries. These satellites have varied from 4 spectral bands in LANDSAT I to 14 spectral bands in the ASTER sensor aboard the TERRA space platform. Hyperion is a relatively new hyperspectral sensor with over 220 spectral bands. The huge increase in the number of spectral bands offers a substantial challenge to computers and analysts alike when it comes to the task of mapping features on the basis of chemical composition, especially if little or no ground truth is available beforehand from the area being mapped. One approach is the theoretical approach of the modeler, where all extraneous information (atmospheric attenuation, sensor electronic gain and offset, etc.) is subtracted off and divided out, and laboratory (or field) spectra of materials are used as training sets to map features in the scene of similar composition. This approach is very difficult to keep accurate because of variations in the atmosphere, solar illumination, and sensor electronic gain and offset that are not always perfectly recorded or accounted for. For instance, to apply laboratory or field spectra of materials as data sets from the theoretical approach, the header information of the files must reflect the correct, up-to-date sensor electronic gain and offset and the analyst must pick the exact atmospheric model that is appropriate for the day of data collection in order for classification procedures to accurately match pixels in the scene with the laboratory or field spectrum of a desired target on the basis of the hyperspectral data. The modeling process is so complex that it is difficult to tell when it is operating well or determine how to fix it when it is incorrect. Recently RSI has announced that the latest version of their ENVI software package is not performing atmospheric corrections correctly with the FLAASH atmospheric model. It took a long time to determine

  2. Digital background calibration of charge pump based pipelined ADC

    NASA Astrophysics Data System (ADS)

    Singh, Anil; Agarwal, Alpana

    2016-11-01

    In the presented work, digital background calibration of a charge pump based pipelined ADC is presented. A 10-bit 100 MS/s pipelined ADC is designed using TSMC 0.18 µm CMOS technology operating on a 1.8 V power supply voltage. A power efficient opamp-less charge pump based technique is chosen to achieve the desired stage voltage gain of 2 and digital background calibration is used to calibrate the inter-stage gain error. After calibration, the ADC achieves an SNDR of 66.78 dB and SFDR of 79.3 dB. Also, DNL improves to +0.6/-0.4 LSB and INL improves from +9.3/-9.6 LSB to within ±0.5 LSB, consuming 16.53 mW of power.

  3. Mapping Variation in Vegetation Functioning with Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Townsend, P. A.; Couture, J. J.; Kruger, E. L.; Serbin, S.; Singh, A.

    2015-12-01

    Imaging spectroscopy (otherwise known as hyperspectral remote sensing) offers the potential to characterize the spatial and temporal variation in biophysical and biochemical properties of vegetation that can be costly or logistically difficult to measure comprehensively using traditional methods. A number of recent studies have illustrated the capacity for imaging spectroscopy data, such as from NASA's AVIRIS sensor, to empirically estimate functional traits related to foliar chemistry and physiology (Singh et al. 2015, Serbin et al. 2015). Here, we present analyses that illustrate the implications of those studies to characterize within-field or -stand variability in ecosystem functioning. In agricultural ecosystems, within-field photosynthetic capacity can vary by 30-50%, likely due to within-field variations in water availability and soil fertility. In general, the variability of foliar traits is lower in forests than agriculture, but can still be significant. Finally, we demonstrate that functional trait variability at the stand scale is strongly related to vegetation diversity. These results have two significant implications: 1) reliance on a small number of field samples to broadly estimate functional traits likely underestimates variability in those traits, and 2) if trait estimations from imaging spectroscopy are reliable, such data offer the opportunity to greatly increase the density of measurements we can use to predict ecosystem function.

  4. A Multivariate Model for Coastal Water Quality Mapping Using Satellite Remote Sensing Images

    PubMed Central

    Su, Yuan-Fong; Liou, Jun-Jih; Hou, Ju-Chen; Hung, Wei-Chun; Hsu, Shu-Mei; Lien, Yi-Ting; Su, Ming-Daw; Cheng, Ke-Sheng; Wang, Yeng-Fung

    2008-01-01

    This study demonstrates the feasibility of coastal water quality mapping using satellite remote sensing images. Water quality sampling campaigns were conducted over a coastal area in northern Taiwan for measurements of three water quality variables including Secchi disk depth, turbidity, and total suspended solids. SPOT satellite images nearly concurrent with the water quality sampling campaigns were also acquired. A spectral reflectance estimation scheme proposed in this study was applied to SPOT multispectral images for estimation of the sea surface reflectance. Two models, univariate and multivariate, for water quality estimation using the sea surface reflectance derived from SPOT images were established. The multivariate model takes into consideration the wavelength-dependent combined effect of individual seawater constituents on the sea surface reflectance and is superior over the univariate model. Finally, quantitative coastal water quality mapping was accomplished by substituting the pixel-specific spectral reflectance into the multivariate water quality estimation model. PMID:27873872

  5. A Multivariate Model for Coastal Water Quality Mapping Using Satellite Remote Sensing Images.

    PubMed

    Su, Yuan-Fong; Liou, Jun-Jih; Hou, Ju-Chen; Hung, Wei-Chun; Hsu, Shu-Mei; Lien, Yi-Ting; Su, Ming-Daw; Cheng, Ke-Sheng; Wang, Yeng-Fung

    2008-10-10

    his study demonstrates the feasibility of coastal water quality mapping using satellite remote sensing images. Water quality sampling campaigns were conducted over a coastal area in northern Taiwan for measurements of three water quality variables including Secchi disk depth, turbidity, and total suspended solids. SPOT satellite images nearly concurrent with the water quality sampling campaigns were also acquired. A spectral reflectance estimation scheme proposed in this study was applied to SPOT multispectral images for estimation of the sea surface reflectance. Two models, univariate and multivariate, for water quality estimation using the sea surface reflectance derived from SPOT images were established. The multivariate model takes into consideration the wavelength-dependent combined effect of individual seawater constituents on the sea surface reflectance and is superior over the univariate model. Finally, quantitative coastal water quality mapping was accomplished by substituting the pixel-specific spectral reflectance into the multivariate water quality estimation model.

  6. Geologic mapping of the Bauru Group in Sao Paulo state by LANDSAT images. [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Godoy, A. M.

    1983-01-01

    The occurrence of the Bauru Group in Sao Paulo State was studied, with emphasis on the western plateau. Regional geological mapping was carried out on a 1:250.000 scale with the help of MSS/LANDSAT images. The visual interpretation of images consisted basically of identifying different spectral characteristics of the geological units using channels 5 and 7. Complementary studies were made for treatment of data with an Interative Image (I-100) analyser in order to facilitate the extraction of information, particularly for areas where visual interpretation proved to be difficult. Regional characteristics provided by MSS/LANDSAT images, coupled with lithostratigraphic studies carried out in the areas of occurrence of Bauru Group sediments, enabled the homogenization of criteria for the subdivision of this group. A spatial distribution of the mapped units was obtained for the entire State of Sao Paulo and results were correlated with proposed stratigraphic divisions.

  7. Dual-band infrared imaging applications: Locating buried minefields, mapping sea ice, and inspecting aging aircraft

    SciTech Connect

    Del Grande, N.K.; Durbin, P.F.; Perkins, D.E.

    1992-09-01

    We discuss the use of dual-band infrared (DBIR) imaging for three quantitative NDE applications: location buried surrogate mines, mapping sea ice thicknesses and inspecting subsurface flaws in aging aircraft parts. Our system of DBIR imaging offers a unique combination of thermal resolution, detectability, and interpretability. Pioneered at Lawrence Livermore Laboratory, it resolves 0.2 {degrees}C differences in surface temperatures needed to identify buried mine sites and distinguish them from surface features. It produces both surface temperature and emissivity-ratio images of sea ice, needed to accurately map ice thicknesses (e.g., by first removing clutter due to snow and surface roughness effects). The DBIR imaging technique depicts subsurface flaws in composite patches and lap joints of aircraft, thus providing a needed tool for aging aircraft inspections.

  8. Dual-band infrared imaging applications: Locating buried minefields, mapping sea ice, and inspecting aging aircraft

    NASA Astrophysics Data System (ADS)

    Delgrande, N. K.; Durbin, P. F.; Perkins, D. E.

    1992-09-01

    We discuss the use of dual-band infrared (DBIR) imaging for three quantitative NDE applications: location buried surrogate mines, mapping sea ice thicknesses, and inspecting subsurface flaws in aging aircraft parts. Our system of DBIR imaging offers a unique combination of thermal resolution, detectability, and interpretability. Pioneered at Lawrence Livermore Laboratory, it resolves 0.2 C differences in surface temperatures needed to identify buried mine sites and distinguish them from surface features. It produces both surface temperature and emissivity-ratio images of sea ice, needed to accurately map ice thicknesses (e.g., by first removing clutter due to snow and surface roughness effects). The DBIR imaging technique depicts subsurface flaws in composite patches and lap joints of aircraft, thus providing a needed tool for aging aircraft inspections.

  9. Note: A simple method to suppress the artificial noise for velocity map imaging spectroscopy

    SciTech Connect

    Qin, Zhengbo E-mail: zctang@dicp.ac.cn; Li, Chunsheng; Qu, Zehua; Tang, Zichao E-mail: zctang@dicp.ac.cn

    2015-04-15

    A simple method has been proposed to suppress artificial noise from the counts with respect to the central line (or point) for the reconstructed 3D images with cylindrical symmetry in the velocity-map imaging spectroscopy. A raw 2D projection around the z-axis (usually referred to as central line) for photodetachment, photoionization, or photodissociation experiments is pre-processed via angular tailored method to avoid the signal counts distributed near the central line (or point). Two types of photoelectron velocity-map imaging (O{sup −} and Au{sup −} ⋅ NH{sub 3}) are demonstrated to give rise to the 3D images with significantly reduced central line noise after pre-processing operation. The major advantages of the pre-operation are the ability of suppression of central-line noise to resolve weak structures or vibrational excitation in atoms or molecules near photon threshold.

  10. Note: A simple method to suppress the artificial noise for velocity map imaging spectroscopy.

    PubMed

    Qin, Zhengbo; Li, Chunsheng; Qu, Zehua; Tang, Zichao

    2015-04-01

    A simple method has been proposed to suppress artificial noise from the counts with respect to the central line (or point) for the reconstructed 3D images with cylindrical symmetry in the velocity-map imaging spectroscopy. A raw 2D projection around the z-axis (usually referred to as central line) for photodetachment, photoionization, or photodissociation experiments is pre-processed via angular tailored method to avoid the signal counts distributed near the central line (or point). Two types of photoelectron velocity-map imaging (O(-) and Au(-)⋅NH3) are demonstrated to give rise to the 3D images with significantly reduced central line noise after pre-processing operation. The major advantages of the pre-operation are the ability of suppression of central-line noise to resolve weak structures or vibrational excitation in atoms or molecules near photon threshold.

  11. Methods to Design and Synthesize Antibody-Drug Conjugates (ADCs)

    PubMed Central

    Yao, Houzong; Jiang, Feng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Antibody-drug conjugates (ADCs) have become a promising targeted therapy strategy that combines the specificity, favorable pharmacokinetics and biodistributions of antibodies with the destructive potential of highly potent drugs. One of the biggest challenges in the development of ADCs is the application of suitable linkers for conjugating drugs to antibodies. Recently, the design and synthesis of linkers are making great progress. In this review, we present the methods that are currently used to synthesize antibody-drug conjugates by using thiols, amines, alcohols, aldehydes and azides. PMID:26848651

  12. Parallel data analysis in a multichannel flash-ADC-system

    SciTech Connect

    Eckerlin, G.; Elsen, E.; Schmitt, H.V.D.; Wagner, A.; Walter, P.V.; Zimmer, M.

    1987-02-01

    Parallel analysis of drift chamber signals with M68000 processors has proven to be an efficient way to deal with the tremendous data flow generated by high speed (100 MHz) Flash-ADCs in real time. The authors report on the experience gained with a network of 34 processors, placed in 3 VME crates, to read out the 3072 Flash-ADC channels of the JADE Jet-Chamber at PETRA (1). The properties of such a system are compared to more conventional readout schemes for drift chambers.

  13. TU-A-19A-01: Image Registration I: Deformable Image Registration, Contour Propagation and Dose Mapping: 101 and 201

    SciTech Connect

    Kessler, M

    2014-06-15

    Deformable image registration, contour propagation and dose mapping have become common, possibly essential tools for modern image-guided radiation therapy. Historically, these tools have been largely developed at academic medical centers and used in a rather limited and well controlled fashion. Today these tools are now available to the radiotherapy community at large, both as stand-alone applications and as integrated components of both treatment planning and treatment delivery systems. Unfortunately, the details of how these tools work and their limitations are not generally documented or described by the vendors that provide them. Although “it looks right”, determining that unphysical deformations may have occurred is crucial. Because of this, understanding how and when to use, and not use these tools to support everyday clinical decisions is far from straight forward. The goal of this session will be to present both the theory (basic and advanced) and practical clinical use of deformable image registration, contour propagation and dose mapping. To the extent possible, the “secret sauce” that different vendor use to produce reasonable/acceptable results will be described. A detailed explanation of the possible sources of errors and actual examples of these will be presented. Knowing the underlying principles of the process and understanding the confounding factors will help the practicing medical physicist be better able to make decisions (about making decisions) using these tools available. Learning Objectives: Understand the basic (101) and advanced (201) principles of deformable image registration, contour propagation and dose mapping data mapping. Understand the sources and impact of errors in registration and data mapping and the methods for evaluating the performance of these tools. Understand the clinical use and value of these tools, especially when used as a “black box”.

  14. Tracking algorithms using log-polar mapped image coordinates

    NASA Technical Reports Server (NTRS)

    Weiman, Carl F. R.; Juday, Richard D.

    1990-01-01

    The use of log-polar image sampling coordinates rather than conventional Cartesian coordinates offers a number of advantages for visual tracking and docking of space vehicles. Pixel count is reduced without decreasing the field of view, with commensurate reduction in peripheral resolution. Smaller memory requirements and reduced processing loads are the benefits in working environments where bulk and energy are at a premium. Rotational and zoom symmetries of log-polar coordinates accommodate range and orientation extremes without computational penalties. Separation of radial and rotational coordinates reduces the complexity of several target centering algorithms, described below.

  15. An image encryption algorithm based on 3D cellular automata and chaotic maps

    NASA Astrophysics Data System (ADS)

    Del Rey, A. Martín; Sánchez, G. Rodríguez

    2015-05-01

    A novel encryption algorithm to cipher digital images is presented in this work. The digital image is rendering into a three-dimensional (3D) lattice and the protocol consists of two phases: the confusion phase where 24 chaotic Cat maps are applied and the diffusion phase where a 3D cellular automata is evolved. The encryption method is shown to be secure against the most important cryptanalytic attacks.

  16. High Resolution Velocity Map Imaging Photoelectron Spectroscopy of the Beryllium Oxide Anion, BeO-

    NASA Astrophysics Data System (ADS)

    Dermer, Amanda Reed; Mascaritolo, Kyle; Heaven, Michael

    2016-06-01

    The photodetachment spectrum of BeO- has been studied using high resolution velocity map imaging photoelectron spectroscopy. The vibrational contours were imaged and compared with Franck-Condon simulations for the ground and excited states of the neutral. The electron affinity of BeO was measured for the first time, and anisotropies of several transitions were determined. Experimental findings are compared to high level ab initio calculations.

  17. Imaging diffuse clouds: bright and dark gas mapped in CO

    NASA Astrophysics Data System (ADS)

    Liszt, H. S.; Pety, J.

    2012-05-01

    Aims: We wish to relate the degree scale structure of galactic diffuse clouds to sub-arcsecond atomic and molecular absorption spectra obtained against extragalactic continuum background sources. Methods: We used the ARO 12 m telescope to map J = 1-0 CO emission at 1' resolution over 30' fields around the positions of 11 background sources occulted by 20 molecular absorption line components, of which 11 had CO emission counterparts. We compared maps of CO emission to sub-arcsec atomic and molecular absorption spectra and to the large-scale distribution of interstellar reddening. Results: 1) The same clouds, identified by their velocity, were seen in absorption and emission and atomic and molecular phases, not necessarily in the same direction. Sub-arcsecond absorption spectra are a preview of what is seen in CO emission away from the continuum. 2) The CO emission structure was amorphous in 9 cases, quasi-periodic or wave-like around B0528+134 and tangled and filamentary around BL Lac. 3) Strong emission, typically 4-5 K at EB - V ≤ 0.15 mag and up to 10-12 K at EB - V ≲ 0.3 mag was found, much brighter than toward the background targets. Typical covering factors of individual features at the 1 K km s-1 level were 20%. 4) CO-H2 conversion factors as much as 4-5 times below the mean value N(H2)/WCO = 2 × 1020 H2 cm-2 (K km s-1)-1 are required to explain the luminosity of CO emission at/above the level of 1 K km s-1. Small conversion factors and sharp variability of the conversion factor on arcminute scales are due primarily to CO chemistry and need not represent unresolved variations in reddening or total column density. Conclusions: Like Fermi and Planck we see some gas that is dark in CO and other gas in which CO is overluminous per H2. A standard CO-H2 conversion factor applies overall owing to balance between the luminosities per H2 and surface covering factors of bright and dark CO, but with wide variations between sightlines and across the faces of

  18. Imaging sensor constellation for tomographic chemical cloud mapping.

    PubMed

    Cosofret, Bogdan R; Konno, Daisei; Faghfouri, Aram; Kindle, Harry S; Gittins, Christopher M; Finson, Michael L; Janov, Tracy E; Levreault, Mark J; Miyashiro, Rex K; Marinelli, William J

    2009-04-01

    A sensor constellation capable of determining the location and detailed concentration distribution of chemical warfare agent simulant clouds has been developed and demonstrated on government test ranges. The constellation is based on the use of standoff passive multispectral infrared imaging sensors to make column density measurements through the chemical cloud from two or more locations around its periphery. A computed tomography inversion method is employed to produce a 3D concentration profile of the cloud from the 2D line density measurements. We discuss the theoretical basis of the approach and present results of recent field experiments where controlled releases of chemical warfare agent simulants were simultaneously viewed by three chemical imaging sensors. Systematic investigations of the algorithm using synthetic data indicate that for complex functions, 3D reconstruction errors are less than 20% even in the case of a limited three-sensor measurement network. Field data results demonstrate the capability of the constellation to determine 3D concentration profiles that account for ~?86%? of the total known mass of material released.

  19. A new substitution-diffusion based image cipher using chaotic standard and logistic maps

    NASA Astrophysics Data System (ADS)

    Patidar, Vinod; Pareek, N. K.; Sud, K. K.

    2009-07-01

    In this paper, we propose a new loss-less symmetric image cipher based on the widely used substitution-diffusion architecture which utilizes chaotic standard and logistic maps. It is specifically designed for the coloured images, which are 3D arrays of data streams. The initial condition, system parameter of the chaotic standard map and number of iterations together constitute the secret key of the algorithm. The first round of substitution/confusion is achieved with the help of intermediate XORing keys calculated from the secret key. Then two rounds of diffusion namely the horizontal and vertical diffusions are completed by mixing the properties of horizontally and vertically adjacent pixels, respectively. In the fourth round, a robust substitution/confusion is accomplished by generating an intermediate chaotic key stream (CKS) image in a novel manner with the help of chaotic standard and logistic maps. The security and performance of the proposed image encryption technique has been analyzed thoroughly using various statistical analysis, key sensitivity analysis, differential analysis, key space analysis, speed analysis, etc. Results of the various types of analysis are encouraging and suggest that the proposed image encryption technique is able to manage the trade offs between the security and speed and hence suitable for the real-time secure image and video communication applications.

  20. A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution.

    PubMed

    Khan, Adnan Mujahid; Rajpoot, Nasir; Treanor, Darren; Magee, Derek

    2014-06-01

    Histopathology diagnosis is based on visual examination of the morphology of histological sections under a microscope. With the increasing popularity of digital slide scanners, decision support systems based on the analysis of digital pathology images are in high demand. However, computerized decision support systems are fraught with problems that stem from color variations in tissue appearance due to variation in tissue preparation, variation in stain reactivity from different manufacturers/batches, user or protocol variation, and the use of scanners from different manufacturers. In this paper, we present a novel approach to stain normalization in histopathology images. The method is based on nonlinear mapping of a source image to a target image using a representation derived from color deconvolution. Color deconvolution is a method to obtain stain concentration values when the stain matrix, describing how the color is affected by the stain concentration, is given. Rather than relying on standard stain matrices, which may be inappropriate for a given image, we propose the use of a color-based classifier that incorporates a novel stain color descriptor to calculate image-specific stain matrix. In order to demonstrate the efficacy of the proposed stain matrix estimation and stain normalization methods, they are applied to the problem of tumor segmentation in breast histopathology images. The experimental results suggest that the paradigm of color normalization, as a preprocessing step, can significantly help histological image analysis algorithms to demonstrate stable performance which is insensitive to imaging conditions in general and scanner variations in particular.

  1. A digital image-based method for computational tissue fate mapping during early avian morphogenesis.

    PubMed

    Zamir, Evan A; Czirók, András; Rongish, Brenda J; Little, Charles D

    2005-06-01

    The early stages of vertebrate development, encompassing gastrulation, segmentation, and caudal axis formation, presumably involve large (finite) morphogenetic deformations; however, there are few quantitative biomechanical data available for describing such large-scale or tissue-level deformations in the embryo. In this study, we present a new method for automated computational "tissue fate mapping," by combining a recently developed high-resolution time-lapse digital microscopy system for whole-avian embryo imaging with particle image velocimetry (PIV), a well-established digital image correlation technique for measuring continuum deformations. Tissue fate mapping, as opposed to classical cell fate mapping or other cell tracking methods, is used to track the spatiotemporal trajectories of arbitrary (virtual) tissue material points in various layers of the embryo, which can then be used to calculate finite morphogenetic deformation or strain maps. To illustrate the method, we present representative tissue fate and strain mapping data for normal early-stage quail embryos. These data demonstrate, to our knowledge, for the first time, large tissue-level deformations that are shared between different germ layers in the embryo, suggesting a more global morphogenetic patterning mechanism than had been previously appreciated.

  2. Local search for optimal global map generation using mid-decadal landsat images

    USGS Publications Warehouse

    Khatib, L.; Gasch, J.; Morris, Robert; Covington, S.

    2007-01-01

    NASA and the US Geological Survey (USGS) are seeking to generate a map of the entire globe using Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor data from the "mid-decadal" period of 2004 through 2006. The global map is comprised of thousands of scene locations and, for each location, tens of different images of varying quality to chose from. Furthermore, it is desirable for images of adjacent scenes be close together in time of acquisition, to avoid obvious discontinuities due to seasonal changes. These characteristics make it desirable to formulate an automated solution to the problem of generating the complete map. This paper formulates a Global Map Generator problem as a Constraint Optimization Problem (GMG-COP) and describes an approach to solving it using local search. Preliminary results of running the algorithm on image data sets are summarized. The results suggest a significant improvement in map quality using constraint-based solutions. Copyright ?? 2007, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

  3. A Spherical Brain Mapping of MR Images for the Detection of Alzheimer's Disease.

    PubMed

    Martinez-Murcia, F J; Górriz, J M; Ramírez, J; Ortiz, A; For The Alzheimer's Disease Neuroimaging Initiative

    2016-01-01

    Magnetic Resonance Imaging (MRI) is of fundamental importance in neuroscience, providing good contrast and resolution, as well as not being considered invasive. Despite the development of newer techniques involving radiopharmaceuticals, it is still a recommended tool in Alzheimer's Disease (AD) neurological practice to assess neurodegeneration, and recent research suggests that it could reveal changes in the brain even before the symptomatology appears. In this paper we propose a method that performs a Spherical Brain Mapping, using different measures to project the three-dimensional MR brain images onto two-dimensional maps revealing statistical characteristics of the tissue. The resulting maps could be assessed visually, but also perform a significant feature reduction that will allow further supervised or unsupervised processing, reducing the computational load while maintaining a large amount of the original information. We have tested our methodology against a MRI database comprising 180 AD affected patients and 180 normal controls, where some of the mappings have revealed as an optimum strategy for the automatic processing and characterization of AD patterns, achieving up to a 90.9% of accuracy, as well as significantly reducing the computational load. Additionally, our maps allow the visual analysis and interpretation of the images, which can be of great help in the diagnosis of this and other types of dementia.

  4. Segmentation and automated measurement of chronic wound images: probability map approach

    NASA Astrophysics Data System (ADS)

    Ahmad Fauzi, Mohammad Faizal; Khansa, Ibrahim; Catignani, Karen; Gordillo, Gayle; Sen, Chandan K.; Gurcan, Metin N.

    2014-03-01

    estimated 6.5 million patients in the United States are affected by chronic wounds, with more than 25 billion US dollars and countless hours spent annually for all aspects of chronic wound care. There is need to develop software tools to analyze wound images that characterize wound tissue composition, measure their size, and monitor changes over time. This process, when done manually, is time-consuming and subject to intra- and inter-reader variability. In this paper, we propose a method that can characterize chronic wounds containing granulation, slough and eschar tissues. First, we generate a Red-Yellow-Black-White (RYKW) probability map, which then guides the region growing segmentation process. The red, yellow and black probability maps are designed to handle the granulation, slough and eschar tissues, respectively found in wound tissues, while the white probability map is designed to detect the white label card for measurement calibration purpose. The innovative aspects of this work include: 1) Definition of a wound characteristics specific probability map for segmentation, 2) Computationally efficient regions growing on 4D map; 3) Auto-calibration of measurements with the content of the image. The method was applied on 30 wound images provided by the Ohio State University Wexner Medical Center, with the ground truth independently generated by the consensus of two clinicians. While the inter-reader agreement between the readers is 85.5%, the computer achieves an accuracy of 80%.

  5. Building keypoint mappings on multispectral images by a cascade of classifiers with a resurrection mechanism.

    PubMed

    Li, Yong; Jing, Jing; Jin, Hongbin; Qiao, Wei

    2015-05-21

    Inspired by the boosting technique for detecting objects, this paper proposes a cascade structure with a resurrection mechanism to establish keypoint mappings on multispectral images. The cascade structure is composed of four steps by utilizing best bin first (BBF), color and intensity distribution of segment (CIDS), global information and the RANSAC process to remove outlier keypoint matchings. Initial keypoint mappings are built with the descriptors associated with keypoints; then, at each step, only a small number of keypoint mappings of a high confidence are classified to be incorrect. The unclassified keypoint mappings will be passed on to subsequent steps for determining whether they are correct. Due to the drawback of a classification rule, some correct keypoint mappings may be misclassified as incorrect at a step. Observing this, we design a resurrection mechanism, so that they will be reconsidered and evaluated by the rules utilized in subsequent steps. Experimental results show that the proposed cascade structure combined with the resurrection mechanism can effectively build more reliable keypoint mappings on multispectral images than existing methods.

  6. Mapping of the Seagrass Cover Along the Mediterranean Coast of Turkey Using Landsat 8 Oli Images

    NASA Astrophysics Data System (ADS)

    Bakirman, T.; Gumusay, M. U.; Tuney, I.

    2016-06-01

    Benthic habitat is defined as ecological environment where marine animals, plants and other organisms live in. Benthic habitat mapping is defined as plotting the distribution and extent of habitats to create a map with complete coverage of the seabed showing distinct boundaries separating adjacent habitats or the use of spatially continuous environmental data sets to represent and predict biological patterns on the seafloor. Seagrass is an essential endemic marine species that prevents coast erosion and regulates carbon dioxide absorption in both undersea and atmosphere. Fishing, mining, pollution and other human activities cause serious damage to seabed ecosystems and reduce benthic biodiversity. According to the latest studies, only 5-10% of the seafloor is mapped, therefore it is not possible to manage resources effectively, protect ecologically important areas. In this study, it is aimed to map seagrass cover using Landsat 8 OLI images in the northern part of Mediterranean coast of Turkey. After pre-processing (e.g. radiometric, atmospheric, water depth correction) of Landsat images, coverage maps are produced with supervised classification using in-situ data which are underwater photos and videos. Result maps and accuracy assessment are presented and discussed.

  7. Multi-parameter optical image interpretations based on self-organizing mapping

    NASA Astrophysics Data System (ADS)

    Klose, Christian D.; Klose, A. K.; Netz, U.; Scheel, A.; Beuthan, J.; Hielscher, Andreas H.

    2008-02-01

    We found that using more than one parameter derived from optical tomographic images can lead to better image classification results compared to cases when only one parameter is used.. In particular we present a multi-parameter classification approach, called self-organizing mapping (SOM), for detecting synovitis in arthritic finger joints based on sagittal laser optical tomography (SLOT). This imaging modality can be used to determine various physical parameters such as minimal absorption and scattering coefficients in an image of the proximal interphalengeal joint. Results were compared to different gold standards: magnet resonance imaging, ultra-sonography and clinical evaluation. When compared to classifications based on single-parameters, e.g., absorption minimum only, the study reveals that multi-parameter classifications lead to higher classification sensitivities and specificities and statistical significances with p-values <5 per cent. Finally, the data suggest that image analyses are more reliable and avoid ambiguous interpretations when using more than one parameter.

  8. Shape-Based Image Matching Using Heat Kernels and Diffusion Maps

    NASA Astrophysics Data System (ADS)

    Vizilter, Yu. V.; Gorbatsevich, V. S.; Rubis, A. Yu.; Zheltov, S. Yu.

    2014-08-01

    2D image matching problem is often stated as an image-to-shape or shape-to-shape matching problem. Such shape-based matching techniques should provide the matching of scene image fragments registered in various lighting, weather and season conditions or in different spectral bands. Most popular shape-to-shape matching technique is based on mutual information approach. Another wellknown approach is a morphological image-to-shape matching proposed by Pytiev. In this paper we propose the new image-to-shape matching technique based on heat kernels and diffusion maps. The corresponding Diffusion Morphology is proposed as a new generalization of Pytiev morphological scheme. The fast implementation of morphological diffusion filtering is described. Experimental comparison of new and aforementioned shape-based matching techniques is reported applying to the TV and IR image matching problem.

  9. Visual Links in the World-Wide Web: The Uses and Limitations of Image Maps.

    ERIC Educational Resources Information Center

    Cochenour, John J.; And Others

    As information delivery systems on the Internet increasingly evolve into World Wide Web browsers, understanding key graphical elements of the browser interface is critical to the design of effective information display and access tools. Image maps are one such element, and this document describes a pilot study that collected, reviewed, and…

  10. Images of the World: Mental Maps of U.S. Military Officers

    DTIC Science & Technology

    1992-05-01

    landscapes of the world . This project is premised upon the belief that people comprehend and arrange the world in terms relative to their own experience...mental maps of the officers from the United States Air Force, Navy and Army. The images of the world as perceived by the cadets, from the U.S. Military

  11. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map

    PubMed Central

    Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen

    2015-01-01

    This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate. PMID:26378543

  12. Event-Based Tone Mapping for Asynchronous Time-Based Image Sensor

    PubMed Central

    Simon Chane, Camille; Ieng, Sio-Hoi; Posch, Christoph; Benosman, Ryad B.

    2016-01-01

    The asynchronous time-based neuromorphic image sensor ATIS is an array of autonomously operating pixels able to encode luminance information with an exceptionally high dynamic range (>143 dB). This paper introduces an event-based methodology to display data from this type of event-based imagers, taking into account the large dynamic range and high temporal accuracy that go beyond available mainstream display technologies. We introduce an event-based tone mapping methodology for asynchronously acquired time encoded gray-level data. A global and a local tone mapping operator are proposed. Both are designed to operate on a stream of incoming events rather than on time frame windows. Experimental results on real outdoor scenes are presented to evaluate the performance of the tone mapping operators in terms of quality, temporal stability, adaptation capability, and computational time. PMID:27642275

  13. Mapping agroecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images

    NASA Technical Reports Server (NTRS)

    Menenti, M.; Azzali, S.; Verhoef, W.; Van Swol, R.

    1993-01-01

    Examples are presented of applications of a fast Fourier transform algorithm to analyze time series of images of Normalized Difference Vegetation Index values. The results obtained for a case study on Zambia indicated that differences in vegetation development among map units of an existing agroclimatic map were not significant, while reliable differences were observed among the map units obtained using the Fourier analysis.

  14. The Cyborg Astrobiologist: Image Compression for Geological Mapping and Novelty Detection

    NASA Astrophysics Data System (ADS)

    McGuire, P. C.; Bonnici, A.; Bruner, K. R.; Gross, C.; Ormö, J.; Smosna, R. A.; Walter, S.; Wendt, L.

    2013-09-01

    We describe an image-comparison technique of Heidemann and Ritter [4,5] that uses image compression, and is capable of: (i) detecting novel textures in a series of images, as well as of: (ii) alerting the user to the similarity of a new image to a previously-observed texture. This image-comparison technique has been implemented and tested using our Astrobiology Phone-cam system, which employs Bluetooth communication to send images to a local laptop server in the field for the image-compression analysis. We tested the system in a field site displaying a heterogeneous suite of sandstones, limestones, mudstones and coalbeds. Some of the rocks are partly covered with lichen. The image-matching procedure of this system performed very well with data obtained through our field test, grouping all images of yellow lichens together and grouping all images of a coal bed together, and giving a 91% accuracy for similarity detection. Such similarity detection could be employed to make maps of different geological units. The novelty-detection performance of our system was also rather good (a 64% accuracy). Such novelty detection may become valuable in searching for new geological units, which could be of astrobiological interest. By providing more advanced capabilities for similarity detection and novelty detection, this image-compression technique could be useful in giving more scientific autonomy to robotic planetary rovers, and in assisting human astronauts in their geological exploration.

  15. Chronic imaging of cortical sensory map dynamics using a genetically encoded calcium indicator.

    PubMed

    Minderer, Matthias; Liu, Wenrui; Sumanovski, Lazar T; Kügler, Sebastian; Helmchen, Fritjof; Margolis, David J

    2012-01-01

    In vivo optical imaging can reveal the dynamics of large-scale cortical activity, but methods for chronic recording are limited. Here we present a technique for long-term investigation of cortical map dynamics using wide-field ratiometric fluorescence imaging of the genetically encoded calcium indicator (GECI) Yellow Cameleon 3.60. We find that wide-field GECI signals report sensory-evoked activity in anaesthetized mouse somatosensory cortex with high sensitivity and spatiotemporal precision, and furthermore, can be measured repeatedly in separate imaging sessions over multiple weeks. This method opens new possibilities for the longitudinal study of stability and plasticity of cortical sensory representations.

  16. Images as embedding maps and minimal surfaces: Movies, color, and volumetric medical images

    SciTech Connect

    Kimmel, R.; Malladi, R.; Sochen, N.

    1997-02-01

    A general geometrical framework for image processing is presented. The authors consider intensity images as surfaces in the (x,I) space. The image is thereby a two dimensional surface in three dimensional space for gray level images. The new formulation unifies many classical schemes, algorithms, and measures via choices of parameters in a {open_quote}master{close_quotes} geometrical measure. More important, it is a simple and efficient tool for the design of natural schemes for image enhancement, segmentation, and scale space. Here the authors give the basic motivation and apply the scheme to enhance images. They present the concept of an image as a surface in dimensions higher than the three dimensional intuitive space. This will help them handle movies, color, and volumetric medical images.

  17. Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis Palus, Gale crater, Mars

    USGS Publications Warehouse

    Stack, Kathryn M.; Edwards, Christopher; Grotzinger, J. P.; Gupta, S.; Sumner, D.; Edgar, Lauren; Fraeman, A.; Jacob, S.; LeDeit, L.; Lewis, K.W.; Rice, M.S.; Rubin, D.; Calef, F.; Edgett, K.; Williams, R.M.E.; Williford, K.H.

    2016-01-01

    This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity’s Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well-exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer-cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations.

  18. Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis Palus, Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Stack, K. M.; Edwards, C. S.; Grotzinger, J. P.; Gupta, S.; Sumner, D. Y.; Calef, F. J.; Edgar, L. A.; Edgett, K. S.; Fraeman, A. A.; Jacob, S. R.; Le Deit, L.; Lewis, K. W.; Rice, M. S.; Rubin, D.; Williams, R. M. E.; Williford, K. H.

    2016-12-01

    This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity's Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well-exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer-cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations.

  19. Breast density mapping based upon system calibration, x-ray techniques, and FFDM images

    NASA Astrophysics Data System (ADS)

    Chen, Biao; Smith, Andrew P.; Jing, Zhenxue; Wu, Tao

    2007-03-01

    Clinical studies have correlated a high breast density to a women's risk of breast cancer. A breast density measurement that can quantitatively depict the volume distribution and percentage of dense tissues in breasts would be very useful for risk factor assessment of breast cancer, and might be more predictive of risks than the common but subjective and coarse 4-point BIRADS scale. This paper proposes to use a neural-network mapping to compute the breast density information based upon system calibration data, x-ray techniques, and Full Field Digital Mammography (FFDM) images. The mapping consists of four modules, namely, system calibration, generator of beam quality, generator of normalized absorption, and a multi-layer feed-forward neural network. As the core of breast density mapping, the network accepts x-ray target/filter combination, normalized x-ray absorption, pixel-wise breast thickness map, and x-ray beam quality during image acquisition as input elements, and exports a pixel-wise breast density distribution and a single breast density percentage for the imaged breast. Training and testing data sets for the design and verification of the network were formulated from calibrated x-ray beam quality, imaging data with a step wedge phantom under a variety x-ray imaging techniques, and nominal breast densities of tissue equivalent materials. The network was trained using a Levenberg-Marquardt algorithm based back-propagation learning method. Various thickness and glandular density phantom studies were performed with clinical x-ray techniques. Preliminary results showed that the neural network mapping is promising in accurately computing glandular density distribution and breast density percentage.

  20. Natural-Color Image Mosaics of Afghanistan: Digital Databases and Maps

    USGS Publications Warehouse

    Davis, Philip A.; Hare, Trent M.

    2007-01-01

    Explanation: The 50 tiled images in this dataset are natural-color renditions of the calibrated six-band Landsat mosaics created from Landsat Enhanced Thematic Mapper Plus (ETM+) data. Natural-color images depict the surface as seen by the human eye. The calibration of the Landsat ETM+ maps produced by Davis (2006) are relative reflectance and need to be grounded with ground-reflectance data, but the difficulties in performing fieldwork in Afghanistan precluded ground-reflectance surveys. For natural color calibration, which involves only the blue, green, and red color bands of Landsat, we could use ground photographs, Munsell color readings of ground surfaces, or another image base that accurately depicts the surface color. Each map quadrangle is 1? of latitude by? of longitude. The numbers assigned to each map quadrangle refer to the latitude and longitude coordinates of the lower left corner of the quadrangle. For example, quadrangle Q2960 has its lower left corner at lat 29? N., long 60? E. Each quadrangle overlaps adjacent quadrangles by 100 pixels (2.85 km). Only the 14.25-m-spacial-resolution UTM and 28.5-m-spacial-resolution WGS84 geographic geotiff datasets are available in this report to decrease the amount of space needed. The images are (three-band, eight-bit) geotiffs with embedded georeferencing. As such, most software will not require the associated world files. An index of all available images in geographic is displayed here: Index_Geo_DD.pdf. The country of Afghanistan spans three UTM zones: (41-43). Maps are stored as geoTIFFs in their respective UTM zone projection. Indexes of all available topographic map sheets in their respective UTM zone are displayed here: Index_UTM_Z41.pdf, Index_UTM_Z42.pdf, Index_UTM_Z43.pdf. You will need Adobe Reader to view the PDF files. Download a copy of the latest version of Adobe Reader for free.

  1. High Resolution Transferred Substrate HBT Microwave/RF ADCs

    DTIC Science & Technology

    2007-11-02

    of wideband delta sigma ADCs using high speed Indium Phosphide bipolar transistors . 15. SUBJECTTERMS DISTRIBUTION STATEMENTA Approved for Public...kept below several hundred transistors , at high level only a single-bit internal quantizer is feasible. Secondly, although the transferred-substrate... transistor counts. Instead, in this program, higher resolutions were sought through the highest possible clock frequencies. Transferred-substrate HBTs

  2. ADC's Insertion Devices and Magnetic Measurement Systems Capabilities

    NASA Astrophysics Data System (ADS)

    Deyhim, A.; Kulesza, J.

    2013-03-01

    In this paper Advance Design Consulting USA, Inc. (ADC) will discuss ADC's major improved capabilities for building Wiggler Insertion Devices, Undulator Planar Devices, Elliptical Polarizing Undulators (EPU), In-Vacuum Undulators (IVU), Cryogenically Cooled in-vacuum Undulators (CPMU), Super Conductive Undulator, and Insertion Device Magnetic Measurement Systems. ADC has designed, built and delivered Insertion Devices and Magnetic Measurement Systems to such facilities as MAX-lab (two EPUs, a Planar, and Measurement System), ALBA and ASP (Wigglers), BNL (CPMU), SSRF (two IVUs and a Measurement System), PAL (one IVU and Measurement System), NSRRC (one 4m EPU), and SRC (Planar and EPU). ADC's magnetic field measurement system is a sophisticated and sensitive machine for the measurement of magnetic fields in undulators (Planar and EPU), wigglers and in-vacuum ID units. The magnetic fields are measured using 3 axis hall-effect probes, mounted orthogonally, to a thin wand. The wand is mounted to a carriage that rides on vacuum air bearings. The base is granite. A flip coil is provided on two vertical towers with X, Y and Theta axes. Special software is provided to assist in homing, movement, and data collection and analysis.

  3. Pseudo Asynchronous Level Crossing adc for ecg Signal Acquisition.

    PubMed

    Marisa, T; Niederhauser, T; Haeberlin, A; Wildhaber, R A; Vogel, R; Goette, J; Jacomet, M

    2017-02-07

    A new pseudo asynchronous level crossing analogue-to-digital converter (adc) architecture targeted for low-power, implantable, long-term biomedical sensing applications is presented. In contrast to most of the existing asynchronous level crossing adc designs, the proposed design has no digital-to-analogue converter (dac) and no continuous time comparators. Instead, the proposed architecture uses an analogue memory cell and dynamic comparators. The architecture retains the signal activity dependent sampling operation by generating events only when the input signal is changing. The architecture offers the advantages of smaller chip area, energy saving and fewer analogue system components. Beside lower energy consumption the use of dynamic comparators results in a more robust performance in noise conditions. Moreover, dynamic comparators make interfacing the asynchronous level crossing system to synchronous processing blocks simpler. The proposed adc was implemented in [Formula: see text] complementary metal-oxide-semiconductor (cmos) technology, the hardware occupies a chip area of 0.0372 mm(2) and operates from a supply voltage of [Formula: see text] to [Formula: see text]. The adc's power consumption is as low as 0.6 μW with signal bandwidth from [Formula: see text] to [Formula: see text] and achieves an equivalent number of bits (enob) of up to 8 bits.

  4. Whole-Body Diffusion-Weighted Imaging in Chronic Recurrent Multifocal Osteomyelitis in Children

    PubMed Central

    Leclair, Nadine; Thörmer, Gregor; Sorge, Ina; Ritter, Lutz; Schuster, Volker; Hirsch, Franz Wolfgang

    2016-01-01

    Objective Chronic recurrent multifocal osteomyelitis/ chronic non-bacterial osteomyelitis (CRMO/ CNO) is a rare auto-inflammatory disease and typically manifests in terms of musculoskeletal pain. Because of a high frequency of musculoskeletal disorders in children/ adolescents, it can be quite challenging to distinguish CRMO/ CNO from nonspecific musculosketetal pain or from malignancies. The purpose of this study was to evaluate the visibility of CRMO lesions in a whole-body diffusion-weighted imaging (WB-DWI) technique and its potential clinical value to better characterize MR-visible lesions. Material and Methods Whole-body imaging at 3T was performed in 16 patients (average: 13 years) with confirmed CRMO. The protocol included 2D Short Tau Inversion Recovery (STIR) imaging in coronal and axial orientation as well as diffusion-weighted imaging in axial orientation. Visibility of lesions in DWI and STIR was evaluated by two readers in consensus. The apparent diffusion coefficient (ADC) was measured for every lesion and corresponding reference locations. Results A total of 33 lesions (on average 2 per patient) visible in STIR and DWI images (b = 800 s/mm2 and ADC maps) were included, predominantly located in the long bones. With a mean value of 1283 mm2/s in lesions, the ADC was significantly higher than in corresponding reference regions (782 mm2/s). By calculating the ratio (lesion to reference), 82% of all lesions showed a relative signal increase of 10% or higher and 76% (25 lesions) showed a signal increase of more than 15%. The median relative signal increase was 69%. Conclusion This study shows that WB-DWI can be reliably performed in children at 3T and predominantly, the ADC values were substantially elevated in CRMO lesions. WB-DWI in conjunction with clinical data is seen as a promising technique to distinguish benign inflammatory processes (in terms of increased ADC values) from particular malignancies. PMID:26799970

  5. Personal identificaton through facial image based on isodensity maps

    NASA Astrophysics Data System (ADS)

    Fujimoto, Kenji; Nakamura, Osamu; Minami, Toshi

    1994-11-01

    The feasibility of a human face identification system using isodensity lines is demonstrated through experimental investigation. Isodensity lines are the boundaries of constant gray level areas obtained by quantizing a facial image. Utilization of these lines has the following advantages: (1) The technique is algorithmically and computationally simple to implement, both in hardware and in software. (2) Significant 3D structures can be reflected in the description of the face. (3) High discrimination accuracy is achieved, even for faces with spectacles or with thin bears (stubble). This system consists of a delineation of isodensity lines and a matching process. Extraction of the facial area is very easily put into practice by using a isodensity lines to represent the contour lines of the face. The matching process consists of template matching (global matching) and local compactness matching (fine matching) of registered and input isodensity lines. Experimental results show a 97.7% accuracy in matching 44 pairs of the same persons and a 100% accuracy in discriminating between 1892 pairs of different persons, including men with glasses or thin beards and women with or without make-up.

  6. Mapping Amazonian Canopy Foliar Traits with Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Asner, G. P.; Martin, R.; Anderson, C. B.; Knapp, D. E.

    2014-12-01

    Spatial and temporal information on plant functional traits is lacking in ecology, which limits our understanding of how plant communities and ecosystems are changing. This problem is acute in remote tropical regions such as in Andean and Amazonian forests, where information on plant functional traits is difficult to ascertain. We used Carnegie Airborne Observatory visible-to-shortwave infrared (VSWIR) imaging spectroscopy with light detection and ranging (LiDAR) to assess the chemical composition of tropical forests along a 3000 m elevation gradient from lowland Amazonia to the Andean treeline. We calibrated and validated the retrieval of 15 canopy foliar chemicals and leaf mass per area (LMA) in 81 one-hectare field plots using a new VSWIR-LiDAR fusion approach. Remotely sensed estimates of elevational changes in forest foliar pigments, nitrogen, phosphorus, water, soluble and total carbon, cellulose and LMA were similar to those derived via laborious field survey and laboratory analysis. This new airborne approach addresses the inherent limitations and sampling biases associated with field-based studies of forest functional traits, particularly in structurally and floristically complex tropical canopies.

  7. The imaging system design of three-line LMCCD mapping camera

    NASA Astrophysics Data System (ADS)

    Zhou, Huai-de; Liu, Jin-Guo; Wu, Xing-Xing; Lv, Shi-Liang; Zhao, Ying; Yu, Da

    2011-08-01

    In this paper, the authors introduced the theory about LMCCD (line-matrix CCD) mapping camera firstly. On top of the introduction were consists of the imaging system of LMCCD mapping camera. Secondly, some pivotal designs which were Introduced about the imaging system, such as the design of focal plane module, the video signal's procession, the controller's design of the imaging system, synchronous photography about forward and nadir and backward camera and the nadir camera of line-matrix CCD. At last, the test results of LMCCD mapping camera imaging system were introduced. The results as following: the precision of synchronous photography about forward and nadir and backward camera is better than 4 ns and the nadir camera of line-matrix CCD is better than 4 ns too; the photography interval of line-matrix CCD of the nadir camera can satisfy the butter requirements of LMCCD focal plane module; the SNR tested in laboratory is better than 95 under typical working condition(the solar incidence degree is 30, the reflectivity of the earth's surface is 0.3) of each CCD image; the temperature of the focal plane module is controlled under 30° in a working period of 15 minutes. All of these results can satisfy the requirements about the synchronous photography, the temperature control of focal plane module and SNR, Which give the guarantee of precision for satellite photogrammetry.

  8. Inverting ion images without Abel inversion: maximum entropy reconstruction of velocity maps.

    PubMed

    Dick, Bernhard

    2014-01-14

    A new method for the reconstruction of velocity maps from ion images is presented, which is based on the maximum entropy concept. In contrast to other methods used for Abel inversion the new method never applies an inversion or smoothing to the data. Instead, it iteratively finds the map which is the most likely cause for the observed data, using the correct likelihood criterion for data sampled from a Poissonian distribution. The entropy criterion minimizes the information content in this map, which hence contains no information for which there is no evidence in the data. Two implementations are proposed, and their performance is demonstrated with simulated and experimental data: Maximum Entropy Velocity Image Reconstruction (MEVIR) obtains a two-dimensional slice through the velocity distribution and can be compared directly to Abel inversion. Maximum Entropy Velocity Legendre Reconstruction (MEVELER) finds one-dimensional distribution functions Q(l)(v) in an expansion of the velocity distribution in Legendre polynomials P((cos θ) for the angular dependence. Both MEVIR and MEVELER can be used for the analysis of ion images with intensities as low as 0.01 counts per pixel, with MEVELER performing significantly better than MEVIR for images with low intensity. Both methods perform better than pBASEX, in particular for images with less than one average count per pixel.

  9. Diffusion weighted magnetic resonance imaging in the diagnosis of parotid masses. Preliminary results

    PubMed Central

    Yologlu, Zeynel; Aydin, Hasan; Alp, Nalan A.; Aribas, Bilgin K.; Kizilgoz, Volkan; Arda, Kemal

    2016-01-01

    Objective To demonstrate the diagnostic potentials of MRI, diffusion weighted imaging (DWI), and apparent diffusion coefficient (ADC) mapping in the detection of parotid masses correlated to the histopathological results. Methods Study design was retrospective. Fifteen patients with parotid gland masses were included as the study group and contralateral normal parotis glands of same patients were taken as the control group. Patients with bilateral parotid gland tumors were excluded, 7 right-sided and 8 left-sided parotid masses were included in the research. The study took place at the Department of Radiology, Ankara, Turkey, between May 2012 and September 2014. Results Apparent diffusion coefficient measurements of 15 parotis tumors in 1000 and 750 sec/mm2 b-values with comparison to the contralateral normal gland parenchyma were demonstrated. Neurofibromas was predicted as the highest, and lipomas as the lowest ADC values. Pleomorphic adenomas, Warthin’s tumor, and normal parotid parenchyma indicate significant statistical differences from each other on the basis of mean ADC values (p<0.05). Conclusion The DWI and ADC mapping of parotis gland could aid in the differential diagnosis of benign and malignant masses. PMID:27874161

  10. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation

    SciTech Connect

    Lu, L.; Fan, D.; Luo, S. N.; Bie, B. X.; Ran, X. X.; Qi, M. L.; Parab, N.; Sun, J. Z.; Liao, H. J.; Hudspeth, M. C.; Claus, B.; Fezzaa, K.; Sun, T.; Chen, W.; Gong, X. L.

    2014-07-15

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  11. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation.

    PubMed

    Lu, L; Fan, D; Bie, B X; Ran, X X; Qi, M L; Parab, N; Sun, J Z; Liao, H J; Hudspeth, M C; Claus, B; Fezzaa, K; Sun, T; Chen, W; Gong, X L; Luo, S N

    2014-07-01

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  12. Mapping of hydrothermal alternation zones and regional rock types using computer enhanced ERTS MSS images. [Nevada

    NASA Technical Reports Server (NTRS)

    Rowan, L. C.; Wetlaufer, P. H.; Billingsley, F. C.; Goetz, A. F. H.

    1974-01-01

    A combination of digital computer processing and color compositing of ERTS MSS images has been used to map hydrothermal alternation zones and regional rock types in south-central Nevada. The technique is based on enhancement of subtle visible and near infrared reflectivity differences between mineralogically dissimilar rocks, especially unaltered and altered rocks. MSS spectral bands are ratioed, pixel by pixel, in the computer and subsequently stretched. These ratio values are used to produce a new black and white image which shows the subtle spectral reflectivity differences. Additional enhancement is achieved by preparing color composites of two or more stretched ratio images. The choice of MSS bands for rationing depends on the spectral reflectance properties of the rocks to be discriminated. Although this technique is in the initial stage of development and is untested in other areas, it already appears to have considerable potential for targeting mineral prospects and for regional geologic mapping.

  13. Estimation of the Local Incidence Angle Map from a Single SAR Image

    NASA Astrophysics Data System (ADS)

    Di Martino, Gerardo; Di Simone, Alessio; Iodice, Antonio; Riccio, Daniele; Ruello, Giuseppe

    2016-08-01

    The ongoing ESA SENTINEL-1 mission witnesses the key role of synthetic aperture radar (SAR) systems in Earth observation and monitoring by means of a continuous radar mapping of our planet's surface. By exploiting the peculiarities of the radiation-matter interaction, SAR data contain huge information concerning the physical and chemical properties of the illuminated surface. Due to the huge number of surface parameters influencing SAR data formation, very few scientific papers concern the estimation of such parameters directly from a single SAR image. In this paper, a technique aimed at the estimation of the local incidence angle map from a single SAR image is derived. The proposed method relies on a solid theoretical background and well-assessed models and methods. The efficacy of the new estimation technique is assessed with both simulated and actual SAR images.

  14. Single Image Super-Resolution Using Global Regression Based on Multiple Local Linear Mappings.

    PubMed

    Choi, Jae-Seok; Kim, Munchurl

    2017-03-01

    Super-resolution (SR) has become more vital, because of its capability to generate high-quality ultra-high definition (UHD) high-resolution (HR) images from low-resolution (LR) input images. Conventional SR methods entail high computational complexity, which makes them difficult to be implemented for up-scaling of full-high-definition input images into UHD-resolution images. Nevertheless, our previous super-interpolation (SI) method showed a good compromise between Peak-Signal-to-Noise Ratio (PSNR) performances and computational complexity. However, since SI only utilizes simple linear mappings, it may fail to precisely reconstruct HR patches with complex texture. In this paper, we present a novel SR method, which inherits the large-to-small patch conversion scheme from SI but uses global regression based on local linear mappings (GLM). Thus, our new SR method is called GLM-SI. In GLM-SI, each LR input patch is divided into 25 overlapped subpatches. Next, based on the local properties of these subpatches, 25 different local linear mappings are applied to the current LR input patch to generate 25 HR patch candidates, which are then regressed into one final HR patch using a global regressor. The local linear mappings are learned cluster-wise in our off-line training phase. The main contribution of this paper is as follows: Previously, linear-mapping-based conventional SR methods, including SI only used one simple yet coarse linear mapping to each patch to reconstruct its HR version. On the contrary, for each LR input patch, our GLM-SI is the first to apply a combination of multiple local linear mappings, where each local linear mapping is found according to local properties of the current LR patch. Therefore, it can better approximate nonlinear LR-to-HR mappings for HR patches with complex texture. Experiment results show that the proposed GLM-SI method outperforms most of the state-of-the-art methods, and shows comparable PSNR performance with much lower

  15. Visible and infrared reflectance imaging spectroscopy of paintings: pigment mapping and improved infrared reflectography

    NASA Astrophysics Data System (ADS)

    Delaney, John K.; Zeibel, Jason G.; Thoury, Mathieu; Littleton, Roy; Morales, Kathryn M.; Palmer, Michael; de la Rie, E. René

    2009-07-01

    Reflectance imaging spectroscopy, the collection of images in narrow spectral bands, has been developed for remote sensing of the Earth. In this paper we present findings on the use of imaging spectroscopy to identify and map artist pigments as well as to improve the visualization of preparatory sketches. Two novel hyperspectral cameras, one operating from the visible to near-infrared (VNIR) and the other in the shortwave infrared (SWIR), have been used to collect diffuse reflectance spectral image cubes on a variety of paintings. The resulting image cubes (VNIR 417 to 973 nm, 240 bands, and SWIR 970 to 1650 nm, 85 bands) were calibrated to reflectance and the resulting spectra compared with results from a fiber optics reflectance spectrometer (350 to 2500 nm). The results show good agreement between the spectra acquired with the hyperspectral cameras and those from the fiber reflectance spectrometer. For example, the primary blue pigments and their distribution in Picasso's Harlequin Musician (1924) are identified from the reflectance spectra and agree with results from X-ray fluorescence data and dispersed sample analysis. False color infrared reflectograms, obtained from the SWIR hyperspectral images, of extensively reworked paintings such as Picasso's The Tragedy (1903) are found to give improved visualization of changes made by the artist. These results show that including the NIR and SWIR spectral regions along with the visible provides for a more robust identification and mapping of artist pigments than using visible imaging spectroscopy alone.

  16. An upgraded camera-based imaging system for mapping venous blood oxygenation in human skin tissue

    NASA Astrophysics Data System (ADS)

    Li, Jun; Zhang, Xiao; Qiu, Lina; Leotta, Daniel F.

    2016-07-01

    A camera-based imaging system was previously developed for mapping venous blood oxygenation in human skin. However, several limitations were realized in later applications, which could lead to either significant bias in the estimated oxygen saturation value or poor spatial resolution in the map of the oxygen saturation. To overcome these issues, an upgraded system was developed using improved modeling and image processing algorithms. In the modeling, Monte Carlo (MC) simulation was used to verify the effectiveness of the ratio-to-ratio method for semi-infinite and two-layer skin models, and then the relationship between the venous oxygen saturation and the ratio-to-ratio was determined. The improved image processing algorithms included surface curvature correction and motion compensation. The curvature correction is necessary when the imaged skin surface is uneven. The motion compensation is critical for the imaging system because surface motion is inevitable when the venous volume alteration is induced by cuff inflation. In addition to the modeling and image processing algorithms in the upgraded system, a ring light guide was used to achieve perpendicular and uniform incidence of light. Cross-polarization detection was also adopted to suppress surface specular reflection. The upgraded system was applied to mapping of venous oxygen saturation in the palm, opisthenar and forearm of human subjects. The spatial resolution of the oxygenation map achieved is much better than that of the original system. In addition, the mean values of the venous oxygen saturation for the three locations were verified with a commercial near-infrared spectroscopy system and were consistent with previously published data.

  17. An interactive image segmentation method for lithological boundary detection: A rapid mapping tool for geologists

    NASA Astrophysics Data System (ADS)

    Vasuki, Yathunanthan; Holden, Eun-Jung; Kovesi, Peter; Micklethwaite, Steven

    2017-03-01

    Large volumes of images are collected by geoscientists using remote sensing platforms. Manual analysis of these images is a time consuming task and there is a need for fast and robust image interpretation tools. In particular the reliable mapping of lithological boundaries is a critical step for geological interpretation. In this contribution we developed an interactive image segmentation algorithm that harnesses the geologist's input and exploits automated image analysis to provide a practical tool for lithology boundary detection, using photographic images of rock surfaces. In the proposed method, the user is expected to draw rough markings to indicate the locations of different geological units in the image. Image segmentation is performed by segmenting regions based on their homogeneity in colour. This results in a high density of segmented regions which are then iteratively merged based on the colour of different geological units and the user input. Finally, a post-processing step allows the user to edit the boundaries. An experiment was conducted using photographic rock surface images collected by a UAV and a handheld digital camera. The proposed technique was applied to detect lithology boundaries. It was found that the proposed method reduced the interpretation time by a factor of four relative to manual segmentation, while achieving more than 96% similarity in boundary detection. As a result the proposed method has the potential to provide practical support for interpreting large volume of complex geological images.

  18. 3-D ultrafast Doppler imaging applied to the noninvasive mapping of blood vessels in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Demene, Charlie; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2015-08-01

    Ultrafast Doppler imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D ultrafast ultrasound imaging, a technique that can produce thousands of ultrasound volumes per second, based on a 3-D plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that noninvasive 3-D ultrafast power Doppler, pulsed Doppler, and color Doppler imaging can be used to perform imaging of blood vessels in humans when using coherent compounding of 3-D tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D ultrafast imaging. Using a 32 × 32, 3-MHz matrix phased array (Vermon, Tours, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. The proof of principle of 3-D ultrafast power Doppler imaging was first performed by imaging Tygon tubes of various diameters, and in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D color and pulsed Doppler imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer.

  19. Charged particle velocity map image reconstruction with one-dimensional projections of spherical functions

    SciTech Connect

    Gerber, Thomas; Liu Yuzhu; Knopp, Gregor; Hemberger, Patrick; Bodi, Andras; Radi, Peter; Sych, Yaroslav

    2013-03-15

    Velocity map imaging (VMI) is used in mass spectrometry and in angle resolved photo-electron spectroscopy to determine the lateral momentum distributions of charged particles accelerated towards a detector. VM-images are composed of projected Newton spheres with a common centre. The 2D images are usually evaluated by a decomposition into base vectors each representing the 2D projection of a set of particles starting from a centre with a specific velocity distribution. We propose to evaluate 1D projections of VM-images in terms of 1D projections of spherical functions, instead. The proposed evaluation algorithm shows that all distribution information can be retrieved from an adequately chosen set of 1D projections, alleviating the numerical effort for the interpretation of VM-images considerably. The obtained results produce directly the coefficients of the involved spherical functions, making the reconstruction of sliced Newton spheres obsolete.

  20. In Vivo Flow Mapping in Complex Vessel Networks by Single Image Correlation

    PubMed Central

    Sironi, Laura; Bouzin, Margaux; Inverso, Donato; D'Alfonso, Laura; Pozzi, Paolo; Cotelli, Franco; Guidotti, Luca G.; Iannacone, Matteo; Collini, Maddalena; Chirico, Giuseppe

    2014-01-01

    We describe a novel method (FLICS, FLow Image Correlation Spectroscopy) to extract flow speeds in complex vessel networks from a single raster-scanned optical xy-image, acquired in vivo by confocal or two-photon excitation microscopy. Fluorescent flowing objects produce diagonal lines in the raster-scanned image superimposed to static morphological details. The flow velocity is obtained by computing the Cross Correlation Function (CCF) of the intensity fluctuations detected in pairs of columns of the image. The analytical expression of the CCF has been derived by applying scanning fluorescence correlation concepts to drifting optically resolved objects and the theoretical framework has been validated in systems of increasing complexity. The power of the technique is revealed by its application to the intricate murine hepatic microcirculatory system where blood flow speed has been mapped simultaneously in several capillaries from a single xy-image and followed in time at high spatial and temporal resolution. PMID:25475129

  1. MODIS phenology image service ArcMap toolbox

    USGS Publications Warehouse

    Talbert, Colin; Kern, Tim J.; Morisette, Jeff; Brown, Don; James, Kevin

    2013-01-01

    implementing long-term conservation plans). In either case, it is important to first grasp the magnitude of natural variation so that it is not confused with actual trends. This work used existing and freely available remote sensing data, specifically the NASA-funded 250-meter (m) spatial resolution land-surface phenology product for North America. This product is calculated from an annual record of vegetation health observed by NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The land-surface phenology product is, in essence, a method to summarize all the observations throughout a year into a few key, ecologically relevant “metrics”.

  2. Evaluation of data fusion and image segmentation in earth observation based rapid mapping workflows

    NASA Astrophysics Data System (ADS)

    Witharana, Chandi; Civco, Daniel L.; Meyer, Thomas H.

    2014-01-01

    This paper is an exploratory study, which aimed to discover the synergies of data fusion and image segmentation in the context of EO-based rapid mapping workflows. Our approach pillared on the geographic object-based image analysis (GEOBIA) focusing on multiscale, internally-displaced persons' (IDP) camp information extraction from very high spatial resolution (VHSR) images. We applied twelve pansharpening algorithms to two subsets of a GeoEye-1 image scene that was taken over a former war-induced ephemeral settlement in Sri Lanka. A multidimensional assessment was employed to benchmark pansharpening algorithms with respect to their spectral and spatial fidelity. The multiresolution segmentation (MRS) algorithm of the eCognition Developer software served as the key algorithm in the segmentation process. The first study site was used for comparing segmentation results produced from the twelve fused products at a series of scale, shape, and compactness settings of the MRS algorithm. The segmentation quality and optimum parameter settings of the MRS algorithm were estimated by using empirical discrepancy measures. Non-parametric statistical tests were used to compare the quality of image object candidates, which were derived from the twelve pansharpened products. A wall-to-wall classification was performed based on a support vector machine (SVM) classifier to classify image objects candidates of the fused images. The second site simulated a more realistic crisis information extraction scenario where the domain expertise is crucial in segmentation and classification. We compared segmentation and classification results of the original images (non-fused) and twelve fused images to understand the efficacy of data fusion. We have shown that the GEOBIA has the ability to create meaningful image objects during the segmentation process by compensating the fused image's spectral distortions with the high-frequency information content that has been injected during fusion. Our

  3. Method of separating scanned maps into arbitrary colorants using filter images and logical operators

    NASA Astrophysics Data System (ADS)

    Fryer, Patrick D.; Johnson, Tony

    1999-12-01

    This paper describes a process for separating a map, originally printed using an unknown ink specification into its component colors before being reprinted using a known ink specification. The methodology is based on two earlier papers by Kanamori and Kotera, (1991) and Harrington (1992) in which the use of logical operators in color central were explored. A detailed analysis of the scanned map identified primary, secondary and transition colors. Filter images containing pixels taken from across the scanned image were developed to describe the variation of color found within each of these color groups. The maximum and minimum values of hue, lightness and chroma were then used to derive logical operators and true/false statements which when applied to L*a*b* pixel arrays separate the scanned map it into its primary color components. This technique was refined to include secondary and transition colors. By combining true/false statements it was possible to separate more specific areas within the scanned map. The method was used to reproduce the map using the known ink specification with a (Delta) E value ranging between 2.1 (Yellow) to 11.9 (Black), for the known and unknown ink specifications. It was also used to change geographic features represented by each color component through the addition and deletion of color detail.

  4. The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results.

    PubMed

    Eickhoff, Simon B; Amunts, Katrin; Mohlberg, Hartmut; Zilles, Karl

    2006-02-01

    In this study we describe the localization of the cytoarchitectonic subdivisions of the human parietal operculum in stereotaxic space and relate these anatomically defined cortical areas to the location of the functionally defined secondary somatosensory cortex (SII cortex) using a meta-analysis of functional imaging results. The human parietal operculum consists of four distinct cytoarchitectonic areas (OP 1-4) as shown in the preceding publication. The 10 cytoarchitectonically examined brains were 3-D-reconstructed and spatially normalized to the T1-weighted single-subject template of the Montreal Neurological Institute (MNI). A probabilistic map was calculated for each area in this standard stereotaxic space. A cytoarchitectonic summary map of the four cortical areas on the human parietal operculum which combines these probabilistic maps was subsequently computed for the comparison with a meta-analysis of functional locations of SII. The meta-analysis used the results from 57 fMRI and PET studies and allowed the comparison of the functionally defined SII region to the cytoarchitectonic map of the parietal operculum. The functional localization of SII showed a good match to the cytoarchitectonically defined region. Therefore the cytoarchitectonic maps of OP 1-4 of the human parietal operculum can be interpreted as an anatomical correlate of the (functionally defined) human SII region. Our results also suggest that the SII foci reported in functional imaging studies may actually reflect activations in either of its architectonic subregions.

  5. Real-time volume rendering of 4D image using 3D texture mapping

    NASA Astrophysics Data System (ADS)

    Hwang, Jinwoo; Kim, June-Sic; Kim, Jae Seok; Kim, In Young; Kim, Sun Il

    2001-05-01

    Four dimensional image is 3D volume data that varies with time. It is used to express deforming or moving object in virtual surgery of 4D ultrasound. It is difficult to render 4D image by conventional ray-casting or shear-warp factorization methods because of their time-consuming rendering time or pre-processing stage whenever the volume data are changed. Even 3D texture mapping is used, repeated volume loading is also time-consuming in 4D image rendering. In this study, we propose a method to reduce data loading time using coherence between currently loaded volume and previously loaded volume in order to achieve real time rendering based on 3D texture mapping. Volume data are divided into small bricks and each brick being loaded is tested for similarity to one which was already loaded in memory. If the brick passed the test, it is defined as 3D texture by OpenGL functions. Later, the texture slices of the brick are mapped into polygons and blended by OpenGL blending functions. All bricks undergo this test. Continuously deforming fifty volumes are rendered in interactive time with SGI ONYX. Real-time volume rendering based on 3D texture mapping is currently available on PC.

  6. Seamless texture mapping algorithm for image-based three-dimensional reconstruction

    NASA Astrophysics Data System (ADS)

    Liu, Jiapeng; Liu, Bin; Fang, Tao; Huo, Hong; Zhao, Yuming

    2016-09-01

    Texture information plays an important role in rendering true objects, especially with the wide application of image-based three-dimensional (3-D) reconstruction and 3-D laser scanning. This paper proposes a seamless texture mapping algorithm to achieve a high-quality visual effect for 3-D reconstruction. At first, a series of image sets is produced by analyzing the visibility of triangular facets, the image sets are clustered and segmented into a number of optimal reference texture patches. Second, the generated texture patches are sequenced to create a rough texture map, then a weighting process is adopted to reduce the color discrepancies between adjacent patches. Finally, a multiresolution decomposition and fusion technique is used to generate the transition section and eliminate the boundary effect. Experiments show that the proposed algorithm is effective and practical for obtaining high-quality 3-D texture mapping for 3-D reconstruction. Compared with traditional methods, it maintains the texture clarity while eliminating the color seams, in addition, it also supports 3-D texture mapping for big data application.

  7. Mapping alteration minerals at prospect, outcrop and drill core scales using imaging spectrometry.

    PubMed

    Kruse, Fred A; L Bedell, Richard; Taranik, James V; Peppin, William A; Weatherbee, Oliver; Calvin, Wendy M

    2012-03-20

    Imaging spectrometer data (also known as 'hyperspectral imagery' or HSI) are well established for detailed mineral mapping from airborne and satellite systems. Overhead data, however, have substantial additional potential when used together with ground-based measurements. An imaging spectrometer system was used to acquire airborne measurements and to image in-place outcrops (mine walls) and boxed drill core and rock chips using modified sensor-mounting configurations. Data were acquired at 5 nm nominal spectral resolution in 360 channels from 0.4 to 2.45 μm. Analysis results using standardized hyperspectral methodologies demonstrate rapid extraction of representative mineral spectra and mapping of mineral distributions and abundances in map-plan, with core depth, and on the mine walls. The examples shown highlight the capabilities of these data for mineral mapping. Integration of these approaches promotes improved understanding of relations between geology, alteration and spectral signatures in three dimensions and should lead to improved efficiency of mine development, operations and ultimately effective mine closure.

  8. Mapping alteration minerals at prospect, outcrop and drill core scales using imaging spectrometry

    PubMed Central

    Kruse, Fred A.; L. Bedell, Richard; Taranik, James V.; Peppin, William A.; Weatherbee, Oliver; Calvin, Wendy M.

    2011-01-01

    Imaging spectrometer data (also known as ‘hyperspectral imagery’ or HSI) are well established for detailed mineral mapping from airborne and satellite systems. Overhead data, however, have substantial additional potential when used together with ground-based measurements. An imaging spectrometer system was used to acquire airborne measurements and to image in-place outcrops (mine walls) and boxed drill core and rock chips using modified sensor-mounting configurations. Data were acquired at 5 nm nominal spectral resolution in 360 channels from 0.4 to 2.45 μm. Analysis results using standardized hyperspectral methodologies demonstrate rapid extraction of representative mineral spectra and mapping of mineral distributions and abundances in map-plan, with core depth, and on the mine walls. The examples shown highlight the capabilities of these data for mineral mapping. Integration of these approaches promotes improved understanding of relations between geology, alteration and spectral signatures in three dimensions and should lead to improved efficiency of mine development, operations and ultimately effective mine closure. PMID:25937681

  9. Automatic segmentation method of striatum regions in quantitative susceptibility mapping images

    NASA Astrophysics Data System (ADS)

    Murakawa, Saki; Uchiyama, Yoshikazu; Hirai, Toshinori

    2015-03-01

    Abnormal accumulation of brain iron has been detected in various neurodegenerative diseases. Quantitative susceptibility mapping (QSM) is a novel contrast mechanism in magnetic resonance (MR) imaging and enables the quantitative analysis of local tissue susceptibility property. Therefore, automatic segmentation tools of brain regions on QSM images would be helpful for radiologists' quantitative analysis in various neurodegenerative diseases. The purpose of this study was to develop an automatic segmentation and classification method of striatum regions on QSM images. Our image database consisted of 22 QSM images obtained from healthy volunteers. These images were acquired on a 3.0 T MR scanner. The voxel size was 0.9×0.9×2 mm. The matrix size of each slice image was 256×256 pixels. In our computerized method, a template mating technique was first used for the detection of a slice image containing striatum regions. An image registration technique was subsequently employed for the classification of striatum regions in consideration of the anatomical knowledge. After the image registration, the voxels in the target image which correspond with striatum regions in the reference image were classified into three striatum regions, i.e., head of the caudate nucleus, putamen, and globus pallidus. The experimental results indicated that 100% (21/21) of the slice images containing striatum regions were detected accurately. The subjective evaluation of the classification results indicated that 20 (95.2%) of 21 showed good or adequate quality. Our computerized method would be useful for the quantitative analysis of Parkinson diseases in QSM images.

  10. Mapping permeability in low-resolution micro-CT images: A multiscale statistical approach

    NASA Astrophysics Data System (ADS)

    Botha, Pieter W. S. K.; Sheppard, Adrian P.

    2016-06-01

    We investigate the possibility of predicting permeability in low-resolution X-ray microcomputed tomography (µCT). Lower-resolution whole core images give greater sample coverage and are therefore more representative of heterogeneous systems; however, the lower resolution causes connecting pore throats to be represented by intermediate gray scale values and limits information on pore system geometry, rendering such images inadequate for direct permeability simulation. We present an imaging and computation workflow aimed at predicting absolute permeability for sample volumes that are too large to allow direct computation. The workflow involves computing permeability from high-resolution µCT images, along with a series of rock characteristics (notably open pore fraction, pore size, and formation factor) from spatially registered low-resolution images. Multiple linear regression models correlating permeability to rock characteristics provide a means of predicting and mapping permeability variations in larger scale low-resolution images. Results show excellent agreement between permeability predictions made from 16 and 64 µm/voxel images of 25 mm diameter 80 mm tall core samples of heterogeneous sandstone for which 5 µm/voxel resolution is required to compute permeability directly. The statistical model used at the lowest resolution of 64 µm/voxel (similar to typical whole core image resolutions) includes open pore fraction and formation factor as predictor characteristics. Although binarized images at this resolution do not completely capture the pore system, we infer that these characteristics implicitly contain information about the critical fluid flow pathways. Three-dimensional permeability mapping in larger-scale lower resolution images by means of statistical predictions provides input data for subsequent permeability upscaling and the computation of effective permeability at the core scale.

  11. Hierarchical layered and semantic-based image segmentation using ergodicity map

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing

    2010-04-01

    Image segmentation plays a foundational role in image understanding and computer vision. Although great strides have been made and progress achieved on automatic/semi-automatic image segmentation algorithms, designing a generic, robust, and efficient image segmentation algorithm is still challenging. Human vision is still far superior compared to computer vision, especially in interpreting semantic meanings/objects in images. We present a hierarchical/layered semantic image segmentation algorithm that can automatically and efficiently segment images into hierarchical layered/multi-scaled semantic regions/objects with contextual topological relationships. The proposed algorithm bridges the gap between high-level semantics and low-level visual features/cues (such as color, intensity, edge, etc.) through utilizing a layered/hierarchical ergodicity map, where ergodicity is computed based on a space filling fractal concept and used as a region dissimilarity measurement. The algorithm applies a highly scalable, efficient, and adaptive Peano- Cesaro triangulation/tiling technique to decompose the given image into a set of similar/homogenous regions based on low-level visual cues in a top-down manner. The layered/hierarchical ergodicity map is built through a bottom-up region dissimilarity analysis. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level of detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanisms for contextual topological object/region relationship generation. Experiments have been conducted within the maritime image environment where the segmented layered semantic objects include the basic level objects (i.e. sky/land/water) and deeper level objects in the sky/land/water surfaces. Experimental results demonstrate the proposed algorithm has the capability to robustly and efficiently segment images into layered semantic objects

  12. An investigation of multispectral imaging for the mapping of pigments in paintings

    NASA Astrophysics Data System (ADS)

    Zhao, Yonghui; Berns, Roy S.; Taplin, Lawrence A.; Coddington, James

    2008-02-01

    Compared with colorimetric imaging, multispectral imaging has the advantage of retrieving spectral reflectance factor of each pixel of a painting. Using this spectral information, pigment mapping is concerned with decomposing the spectrum into its constituent pigments and their relative contributions. The output of pigment mapping is a series of spatial concentration maps of the pigments comprising the painting. This approach was used to study Vincent van Gogh's The Starry Night. The artist's palette was approximated using ten oil pigments, selected from a large database of pigments used in oil paintings and a priori analytical research on one of his self portraits, executed during the same time period. The pigment mapping was based on single-constant Kubelka-Munk theory. It was found that the region of blue sky where the stars were located contained, predominantly, ultramarine blue while the swirling sky and region surrounding the moon contained, predominantly, cobalt blue. Emerald green, used in light bluish-green brushstrokes surrounding the moon, was not used to create the dark green in the cypresses. A measurement of lead white from Georges Seurat's La Grande Jatte was used as the white when mapping The Starry Night. The absorption and scattering properties of this white were replaced with a modern dispersion of lead white in linseed oil and used to simulate the painting's appearance before the natural darkening and yellowing of lead white oil paint. Pigment mapping based on spectral imaging was found to be a viable and practical approach for analyzing pigment composition, providing new insight into an artist's working method, the possibility for aiding in restorative inpainting, and lighting design.

  13. Use of field reflectance data for crop mapping using airborne hyperspectral image

    NASA Astrophysics Data System (ADS)

    Nidamanuri, Rama Rao; Zbell, Bernd

    2011-09-01

    Recent developments in hyperspectral remote sensing technologies enable acquisition of image with high spectral resolution, which is typical to the laboratory or in situ reflectance measurements. There has been an increasing interest in the utilization of in situ reference reflectance spectra for rapid and repeated mapping of various surface features. Here we examined the prospect of classifying airborne hyperspectral image using field reflectance spectra as the training data for crop mapping. Canopy level field reflectance measurements of some important agricultural crops, i.e. alfalfa, winter barley, winter rape, winter rye, and winter wheat collected during four consecutive growing seasons are used for the classification of a HyMAP image acquired for a separate location by (1) mixture tuned matched filtering (MTMF), (2) spectral feature fitting (SFF), and (3) spectral angle mapper (SAM) methods. In order to answer a general research question "what is the prospect of using independent reference reflectance spectra for image classification", while focussing on the crop classification, the results indicate distinct aspects. On the one hand, field reflectance spectra of winter rape and alfalfa demonstrate excellent crop discrimination and spectral matching with the image across the growing seasons. On the other hand, significant spectral confusion detected among the winter barley, winter rye, and winter wheat rule out the possibility of existence of a meaningful spectral matching between field reflectance spectra and image. While supporting the current notion of "non-existence of characteristic reflectance spectral signatures for vegetation", results indicate that there exist some crops whose spectral signatures are similar to characteristic spectral signatures with possibility of using them in image classification.

  14. Astronomy in the Cloud: Using MapReduce for Image Co-Addition

    NASA Astrophysics Data System (ADS)

    Wiley, K.; Connolly, A.; Gardner, J.; Krughoff, S.; Balazinska, M.; Howe, B.; Kwon, Y.; Bu, Y.

    2011-03-01

    In the coming decade, astronomical surveys of the sky will generate tens of terabytes of images and detect hundreds of millions of sources every night. The study of these sources will involve computation challenges such as anomaly detection and classification and moving-object tracking. Since such studies benefit from the highest-quality data, methods such as image co-addition, i.e., astrometric registration followed by per-pixel summation, will be a critical preprocessing step prior to scientific investigation. With a requirement that these images be analyzed on a nightly basis to identify moving sources such as potentially hazardous asteroids or transient objects such as supernovae, these data streams present many computational challenges. Given the quantity of data involved, the computational load of these problems can only be addressed by distributing the workload over a large number of nodes. However, the high data throughput demanded by these applications may present scalability challenges for certain storage architectures. One scalable data-processing method that has emerged in recent years is MapReduce, and in this article we focus on its popular open-source implementation called Hadoop. In the Hadoop framework, the data are partitioned among storage attached directly to worker nodes, and the processing workload is scheduled in parallel on the nodes that contain the required input data. A further motivation for using Hadoop is that it allows us to exploit cloud computing resources: i.e., platforms where Hadoop is offered as a service. We report on our experience of implementing a scalable image-processing pipeline for the SDSS imaging database using Hadoop. This multiterabyte imaging data set provides a good testbed for algorithm development, since its scope and structure approximate future surveys. First, we describe MapReduce and how we adapted image co-addition to the MapReduce framework. Then we describe a number of optimizations to our basic approach

  15. A joint image encryption and watermarking algorithm based on compressive sensing and chaotic map

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Cai, Hong-Kun; Zheng, Hong-Ying

    2015-06-01

    In this paper, a compressive sensing (CS) and chaotic map-based joint image encryption and watermarking algorithm is proposed. The transform domain coefficients of the original image are scrambled by Arnold map firstly. Then the watermark is adhered to the scrambled data. By compressive sensing, a set of watermarked measurements is obtained as the watermarked cipher image. In this algorithm, watermark embedding and data compression can be performed without knowing the original image; similarly, watermark extraction will not interfere with decryption. Due to the characteristics of CS, this algorithm features compressible cipher image size, flexible watermark capacity, and lossless watermark extraction from the compressed cipher image as well as robustness against packet loss. Simulation results and analyses show that the algorithm achieves good performance in the sense of security, watermark capacity, extraction accuracy, reconstruction, robustness, etc. Project supported by the Open Research Fund of Chongqing Key Laboratory of Emergency Communications, China (Grant No. CQKLEC, 20140504), the National Natural Science Foundation of China (Grant Nos. 61173178, 61302161, and 61472464), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 106112013CDJZR180005 and 106112014CDJZR185501).

  16. In vivo inflammation mapping of periodontal disease based on diffuse reflectance spectral imaging: a clinical study

    NASA Astrophysics Data System (ADS)

    Prasanth, Chandra Sekhar; Betsy, Joseph; Jayanthi, Jayaraj L.; Nisha, Unni G.; Prasantila, Janam; Subhash, Narayanan

    2013-02-01

    Since conventional techniques using periodontal probes have inherent drawbacks in the diagnosis of different grades of gingival inflammation, development of noninvasive screening devices becomes significant. Diffuse reflectance (DR) spectra recorded with white light illumination is utilized to detect periodontal inflammation from the oxygenated hemoglobin absorption ratio R620/R575. A multispectral imaging system is utilized to record narrow-band DR images at 575 and 620 nm from the anterior sextant of the gingivia of 15 healthy volunteers and 25 patients (N=40). An experienced periodontist assesses the level of gingival inflammation at each site through periodontal probing and assigns diagnosis as healthy, mild, moderate, or severe inflammation. The DR image ratio R620/R575 computed for each pixel (8-μm resolution) from the monochrome images is pseudo-color-mapped to identify gingival inflammation sites. The DR image ratio values at each site are compared with clinical diagnosis to estimate the specificity and sensitivity of the DR imaging technique in inflammation mapping. The high diagnostic accuracy is utilized to detect underlying inflammation in six patients with a previous history of periodontitis.

  17. Image Encryption Algorithm Based on Hyperchaotic Maps and Nucleotide Sequences Database

    PubMed Central

    2017-01-01

    Image encryption technology is one of the main means to ensure the safety of image information. Using the characteristics of chaos, such as randomness, regularity, ergodicity, and initial value sensitiveness, combined with the unique space conformation of DNA molecules and their unique information storage and processing ability, an efficient method for image encryption based on the chaos theory and a DNA sequence database is proposed. In this paper, digital image encryption employs a process of transforming the image pixel gray value by using chaotic sequence scrambling image pixel location and establishing superchaotic mapping, which maps quaternary sequences and DNA sequences, and by combining with the logic of the transformation between DNA sequences. The bases are replaced under the displaced rules by using DNA coding in a certain number of iterations that are based on the enhanced quaternary hyperchaotic sequence; the sequence is generated by Chen chaos. The cipher feedback mode and chaos iteration are employed in the encryption process to enhance the confusion and diffusion properties of the algorithm. Theoretical analysis and experimental results show that the proposed scheme not only demonstrates excellent encryption but also effectively resists chosen-plaintext attack, statistical attack, and differential attack. PMID:28392799

  18. Mapping gray-scale image to 3D surface scanning data by ray tracing

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jones, Peter R. M.

    1997-03-01

    The extraction and location of feature points from range imaging is an important but difficult task in machine vision based measurement systems. There exist some feature points which are not able to be detected from pure geometric characteristics, particularly in those measurement tasks related to the human body. The Loughborough Anthropometric Shadow Scanner (LASS) is a whole body surface scanner based on structured light technique. Certain applications of LASS require accurate location of anthropometric landmarks from the scanned data. This is sometimes impossible from existing raw data because some landmarks do not appear in the scanned data. Identification of these landmarks has to resort to surface texture of the scanned object. Modifications to LASS were made to allow gray-scale images to be captured before or after the object was scanned. Two-dimensional gray-scale image must be mapped to the scanned data to acquire the 3D coordinates of a landmark. The method to map 2D images to the scanned data is based on the colinearity conditions and ray-tracing method. If the camera center and image coordinates are known, the corresponding object point must lie on a ray starting from the camera center and connecting to the image coordinate. By intersecting the ray with the scanned surface of the object, the 3D coordinates of a point can be solved. Experimentation has demonstrated the feasibility of the method.

  19. Identification and mapping of natural vegetation on a coastal site using a Worldview-2 satellite image.

    PubMed

    Rapinel, Sébastien; Clément, Bernard; Magnanon, Sylvie; Sellin, Vanessa; Hubert-Moy, Laurence

    2014-11-01

    Identification and mapping of natural vegetation are major issues for biodiversity management and conservation. Remotely sensed data with very high spatial resolution are currently used to study vegetation, but most satellite sensors are limited to four spectral bands, which is insufficient to identify some natural vegetation formations. The study objectives are to discriminate natural vegetation and identify natural vegetation formations using a Worldview-2 satellite image. The classification of the Worldview-2 image and ancillary thematic data was performed using a hybrid pixel-based and object-oriented approach. A hierarchical scheme using three levels was implemented, from land cover at a field scale to vegetation formation. This method was applied on a 48 km² site located on the French Atlantic coast which includes a classified NATURA 2000 dune and marsh system. The classification accuracy was very high, the Kappa index varying between 0.90 and 0.74 at land cover and vegetation formation levels respectively. These results show that Wordlview-2 images are suitable to identify natural vegetation. Vegetation maps derived from Worldview-2 images are more detailed than existing ones. They provide a useful medium for environmental management of vulnerable areas. The approach used to map natural vegetation is reproducible for a wider application by environmental managers.

  20. Incorporating real time velocity map image reconstruction into closed-loop coherent control

    NASA Astrophysics Data System (ADS)

    Rallis, C. E.; Burwitz, T. G.; Andrews, P. R.; Zohrabi, M.; Averin, R.; De, S.; Bergues, B.; Jochim, Bethany; Voznyuk, A. V.; Gregerson, Neal; Gaire, B.; Znakovskaya, I.; McKenna, J.; Carnes, K. D.; Kling, M. F.; Ben-Itzhak, I.; Wells, E.

    2014-11-01

    We report techniques developed to utilize three-dimensional momentum information as feedback in adaptive femtosecond control of molecular dynamics. Velocity map imaging is used to obtain the three-dimensional momentum map of the dissociating ions following interaction with a shaped intense ultrafast laser pulse. In order to recover robust feedback information, however, the two-dimensional momentum projection from the detector must be inverted to reconstruct the full three-dimensional momentum of the photofragments. These methods are typically slow or require manual inputs and are therefore accomplished offline after the images have been obtained. Using an algorithm based upon an "onion-peeling" (also known as "back projection") method, we are able to invert 1040 × 1054 pixel images in under 1 s. This rapid inversion allows the full photofragment momentum to be used as feedback in a closed-loop adaptive control scheme, in which a genetic algorithm tailors an ultrafast laser pulse to optimize a specific outcome. Examples of three-dimensional velocity map image based control applied to strong-field dissociation of CO and O2 are presented.

  1. Object-based landslide mapping on satellite images from different sensors

    NASA Astrophysics Data System (ADS)

    Hölbling, Daniel; Friedl, Barbara; Eisank, Clemens; Blaschke, Thomas

    2015-04-01

    Several studies have proven that object-based image analysis (OBIA) is a suitable approach for landslide mapping using remote sensing data. Mostly, optical satellite images are utilized in combination with digital elevation models (DEMs) for semi-automated mapping. The ability of considering spectral, spatial, morphometric and contextual features in OBIA constitutes a significant advantage over pixel-based methods, especially when analysing non-uniform natural phenomena such as landslides. However, many of the existing knowledge-based OBIA approaches for landslide mapping are rather complex and are tailored to specific data sets. These restraints lead to a lack of transferability of OBIA mapping routines. The objective of this study is to develop an object-based approach for landslide mapping that is robust against changing input data with different resolutions, i.e. optical satellite imagery from various sensors. Two study sites in Taiwan were selected for developing and testing the landslide mapping approach. One site is located around the Baolai village in the Huaguoshan catchment in the southern-central part of the island, the other one is a sub-area of the Taimali watershed in Taitung County near the south-eastern Pacific coast. Both areas are regularly affected by severe landslides and debris flows. A range of very high resolution (VHR) optical satellite images was used for the object-based mapping of landslides and for testing the transferability across different sensors and resolutions: (I) SPOT-5, (II) Formosat-2, (III) QuickBird, and (IV) WorldView-2. Additionally, a digital elevation model (DEM) with 5 m spatial resolution and its derived products (e.g. slope, plan curvature) were used for supporting the semi-automated mapping, particularly for differentiating source areas and accumulation areas according to their morphometric characteristics. A focus was put on the identification of comparatively stable parameters (e.g. relative indices), which could be

  2. Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) Global Snow-Cover Maps

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.; Scharfen, Greg R.

    2000-01-01

    Following the 1999 launch of the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), the capability exists to produce global snow-cover maps on a daily basis at 500-m resolution. Eight-day composite snow-cover maps will also be available. MODIS snow-cover products are produced at Goddard Space Flight Center and archived and distributed by the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado. The products are available in both orbital and gridded formats. An online search and order tool and user-services staff will be available at NSIDC to assist users with the snow products. The snow maps are available at a spatial resolution of 500 m, and 1/4 degree x 1/4 degree spatial resolution, and provide information on sub-pixel (fractional) snow cover. Pre-launch validation work has shown that the MODIS snow-mapping algorithms perform best under conditions of continuous snow cover in low vegetation areas, but can also map snow cover in dense forests. Post-launch validation activities will be performed using field and aircraft measurements from a February 2000 validation mission, as well as from existing satellite-derived snow-cover maps from NOAA and Landsat-7 Enhanced Thematic Mapper Plus (ETM+).

  3. Assessment of allograft function using diffusion-weighted magnetic resonance imaging in kidney transplant patients.

    PubMed

    Kaul, Anupma; Sharma, Raj Kumar; Gupta, Rakesh Kumar; Lal, Hira; Yadav, Abhishek; Bhadhuria, Dharmendra; Prasad, Narayan; Gupta, Amit

    2014-11-01

    Developing a non-invasive method such as diffusion-weighted magnetic resonance imaging (DWMRI) could be used as a feasible and reproducible modality in the differential diagnosis of allograft dysfunction. We assessed the functional status of the renal allograft by DWMRI and its applicability in assessment of graft dysfunction on all end-stage renal transplant patients who attained normal renal function on the 7th day post-transplantation. Follow-up imaging of the recipient allograft was performed at the end of 90 and 180 days and in case of graft dysfunction. Kidney biopsies were performed to correlate with the corresponding MRI. The apparent diffusion coefficient (ADC) maps of the cortex and medulla were obtained by studying the DWMRI. The ADC values were significantly lower in the medulla compared with the cortex in normal donor kidneys and normally functioning transplanted kidneys, while they decreased significantly when rejection occurred. The reduction in ADC values occurred both in the cortex and in the medulla, and correlated with the degree of rejection on the kidney biopsies. The ADC values increased significantly during the recovery from rejection. We conclude that DWMRI can be beneficial in the diagnosis and follow-up of transplant patients during acute rejection.

  4. Intra-field CDU map correlation between SEMs and aerial image characterization

    NASA Astrophysics Data System (ADS)

    Ning, Guoxiang; Philipp, Peter; Litt, Lloyd C.; Meusemann, Stefan; Thaler, Thomas; Schulz, Kristian; Tschinkl, Martin; Ackmann, Paul

    2014-09-01

    Reticle critical dimension uniformity (CDU) is one of the major sources of wafer CD variations which include both inter-field variations and intra-field variations. Generally, wafer critical dimension (CD) measurement sample size interfield is much less than intra-field. Intra-field CDU correction requires time-consumption of metrology. In order to improve wafer intra-field CDU, several methods can be applied such as intra-field dose correction to improve wafer intra-field CDU. Corrections can be based on CD(SEM) or aerial image metrology data from the reticle. Reticle CDU and wafer CDU maps are based on scanning electron microscope (SEM) metrology, while reticle inspection intensity mapping (NuFLare 6000) and wafer level critical dimension (WLCD) utilize aerial images or optical techniques. Reticle inspecton tools such as those from KLA and NuFlare, offer the ability to collect optical measurement data to produce an optical CDU map. WLCD of Zeiss has the advantage of using the same illumination condition as the scanner to measure the aerial images or optical CD. In this study, the intra-field wafer CDU map correlation between SEMs and aerial images are characterized. The layout of metrology structures is very important for the correlation between wafer intra-field CDU, measured by SEM, and the CDU determined by aerial images. The selection of metrology structures effects on the correlation to SEM CD to wafer is also demonstrated. Both reticle CDU, intensity CDU and WLCD are candidates for intra-field wafer CDU characterization and the advantages and limitations of each approach are discussed.

  5. A Modified Hopfield Neural Network Algorithm (MHNNA) Using ALOS Image for Water Quality Mapping.

    PubMed

    Kzar, Ahmed Asal; Mat Jafri, Mohd Zubir; Mutter, Kussay N; Syahreza, Saumi

    2015-12-30

    Decreasing water pollution is a big problem in coastal waters. Coastal health of ecosystems can be affected by high concentrations of suspended sediment. In this work, a Modified Hopfield Neural Network Algorithm (MHNNA) was used with remote sensing imagery to classify the total suspended solids (TSS) concentrations in the waters of coastal Langkawi Island, Malaysia. The adopted remote sensing image is the Advanced Land Observation Satellite (ALOS) image acquired on 18 January 2010. Our modification allows the Hopfield neural network to convert and classify color satellite images. The samples were collected from the study area simultaneously with the acquiring of satellite imagery. The sample locations were determined using a handheld global positioning system (GPS). The TSS concentration measurements were conducted in a lab and used for validation (real data), classification, and accuracy assessments. Mapping was achieved by using the MHNNA to classify the concentrations according to their reflectance values in band 1, band 2, and band 3. The TSS map was color-coded for visual interpretation. The efficiency of the proposed algorithm was investigated by dividing the validation data into two groups. The first group was used as source samples for supervisor classification via the MHNNA. The second group was used to test the MHNNA efficiency. After mapping, the locations of the second group in the produced classes were detected. Next, the correlation coefficient (R) and root mean square error (RMSE) were calculated between the two groups, according to their corresponding locations in the classes. The MHNNA exhibited a higher R (0.977) and lower RMSE (2.887). In addition, we test the MHNNA with noise, where it proves its accuracy with noisy images over a range of noise levels. All results have been compared with a minimum distance classifier (Min-Dis). Therefore, TSS mapping of polluted water in the coastal Langkawi Island, Malaysia can be performed using the adopted

  6. A Modified Hopfield Neural Network Algorithm (MHNNA) Using ALOS Image for Water Quality Mapping

    PubMed Central

    Kzar, Ahmed Asal; Mat Jafri, Mohd Zubir; Mutter, Kussay N.; Syahreza, Saumi

    2015-01-01

    Decreasing water pollution is a big problem in coastal waters. Coastal health of ecosystems can be affected by high concentrations of suspended sediment. In this work, a Modified Hopfield Neural Network Algorithm (MHNNA) was used with remote sensing imagery to classify the total suspended solids (TSS) concentrations in the waters of coastal Langkawi Island, Malaysia. The adopted remote sensing image is the Advanced Land Observation Satellite (ALOS) image acquired on 18 January 2010. Our modification allows the Hopfield neural network to convert and classify color satellite images. The samples were collected from the study area simultaneously with the acquiring of satellite imagery. The sample locations were determined using a handheld global positioning system (GPS). The TSS concentration measurements were conducted in a lab and used for validation (real data), classification, and accuracy assessments. Mapping was achieved by using the MHNNA to classify the concentrations according to their reflectance values in band 1, band 2, and band 3. The TSS map was color-coded for visual interpretation. The efficiency of the proposed algorithm was investigated by dividing the validation data into two groups. The first group was used as source samples for supervisor classification via the MHNNA. The second group was used to test the MHNNA efficiency. After mapping, the locations of the second group in the produced classes were detected. Next, the correlation coefficient (R) and root mean square error (RMSE) were calculated between the two groups, according to their corresponding locations in the classes. The MHNNA exhibited a higher R (0.977) and lower RMSE (2.887). In addition, we test the MHNNA with noise, where it proves its accuracy with noisy images over a range of noise levels. All results have been compared with a minimum distance classifier (Min-Dis). Therefore, TSS mapping of polluted water in the coastal Langkawi Island, Malaysia can be performed using the adopted

  7. Mineralogical Mapping of Asteroid Itokawa using Calibrated Hayabusa AMICA images and NIRS Spectrometer Data

    NASA Astrophysics Data System (ADS)

    Le Corre, Lucille; Becker, Kris J.; Reddy, Vishnu; Li, Jian-Yang; Bhatt, Megha

    2016-10-01

    The goal of our work is to restore data from the Hayabusa spacecraft that is available in the Planetary Data System (PDS) Small Bodies Node. More specifically, our objectives are to radiometrically calibrate and photometrically correct AMICA (Asteroid Multi-Band Imaging Camera) images of Itokawa. The existing images archived in the PDS are not in reflectance and not corrected from the effect of viewing geometry. AMICA images are processed with the Integrated Software for Imagers and Spectrometers (ISIS) system from USGS, widely used for planetary image analysis. The processing consists in the ingestion of the images in ISIS (amica2isis), updates to AMICA start time (sumspice), radiometric calibration (amicacal) including smear correction, applying SPICE ephemeris, adjusting control using Gaskell SUMFILEs (sumspice), projecting individual images (cam2map) and creating global or local mosaics. The application amicacal has also an option to remove pixels corresponding to the polarizing filters on the left side of the image frame. The amicacal application will include a correction for the Point Spread Function. The last version of the PSF published by Ishiguro et al. in 2014 includes correction for the effect of scattered light. This effect is important to correct because it can add 10% level in error and is affecting mostly the longer wavelength filters such as zs and p. The Hayabusa team decided to use the color data for six of the filters for scientific analysis after correcting for the scattered light. We will present calibrated data in I/F for all seven AMICA color filters. All newly implemented ISIS applications and map projections from this work have been or will be distributed to the community via ISIS public releases. We also processed the NIRS spectrometer data, and we will perform photometric modeling, then apply photometric corrections, and finally extract mineralogical parameters. The end results will be the creation of pyroxene chemistry and olivine

  8. Mapping temporal changes in connectivity using high-resolution aerial data and object based image analysis

    NASA Astrophysics Data System (ADS)

    Masselink, Rens; Anders, Niels; Keesstra, Saskia; Seeger, Manuel

    2014-05-01

    Within the field of geomorphology mapping has always been an important tool to interpret spatial and temporal distributions of phenomena and processes at the surface. In the field of connectivity however, although throughout the past decade many articles have been published, there are only very few that go into the mapping of connectivity. This study aimed at developing a new, automated method for mapping connectivity within agricultural catchments. The method, which is a combination of Object-Based Image Analysis (OBIA) and traditional geomorphological field mapping, was applied to two agricultural catchments in Navarre, Spain, both with an area of approximately 2 sq.km. An unmanned aerial vehicle (UAV) was used to take aerial photographs with a resolution of 6 cm, of which a DEM with a 12 cm resolution was created using structure-from-motion photogrammetry. Connectivity was mapped within the study areas using OBIA using a top down method, meaning that connectivity was mapped at different scale levels, starting at the largest scale. Firstly sub-catchments were automatically delineated, after which several characteristics and features that affect connectivity within the sub-catchments were classified, e.g. landuse, landslides, rills, gullies, riparian vegetation, changes in slope, ploughing direction etc. In two consecutive years (2013-2014) photographs were taken and connectivity of both catchments of both years will be compared. Future work will include a quantification of the mapped connectivity (highly connected years vs. low connected years), causes and consequences of these differences in connectivity, comparison to existing connectivity indices and comparison of mapped connectivity in sub-catchments and measured discharge.

  9. Retrospective estimation of the susceptibility driven field map for distortion correction in echo planar imaging.

    PubMed

    Takeda, Hiroyuki; Kim, Boklye

    2013-01-01

    Echo planar imaging (EPI) sequence used for acquiring functional MRI (fMRI) time series data provides the advantage of high temporal resolution, but also is highly sensitive to the magnetic field inhomogeneity resulting in geometric distortions. A static field-inhomogeneity map measured before or after the fMRI scan to correct for such distortions does not account for magnetic field changes due to the head motion during the time series acquisition. In practice, the field map dynamically changes with head motion during the scan and leads to variations in the geometric distortion. We model in this work the field inhomogeneity with the object and the scanner dependent terms. The object-specific term varies with the object's magnetic susceptibility and orientation, i.e., head position with respect to B0. Thus, the simple transformation of the acquired field may not yield an accurate field map. We assume that the scanner-specific field remains unchanged and independent of the head motion. Our approach in this study is to retrospectively estimate the object's magnetic susceptibility (chi) map from an observed high-resolution static field map using an estimator derived from a probability density function of non-uniform noise. This approach is capable of finding the susceptibility map regardless of the wrapping effect. A dynamic field map at each head position can be estimated by applying a rigid body transformation to the estimated chi-map and the 3-D susceptibility voxel convolution (SVC) which is a physics-based discrete convolution model for computing chi-induced field inhomogeneity.

  10. Combined use of visible, reflected infrared, and thermal infrared images for mapping Hawaiian lava flows

    NASA Technical Reports Server (NTRS)

    Abrams, Michael; Abbott, Elsa; Kahle, Anne

    1991-01-01

    The weathering of Hawaiian basalts is accompanied by chemical and physical changes of the surfaces. These changes have been mapped using remote sensing data from the visible and reflected infrared and thermal infrared wavelength regions. They are related to the physical breakdown of surface chill coats, the development and erosion of silica coatings, the oxidation of mafic minerals, and the development of vegetation cover. These effects show systematic behavior with age and can be mapped using the image data and related to relative ages of pahoehoe and aa flows. The thermal data are sensitive to silica rind development and fine structure of the scene; the reflectance data show the degree of oxidation and differentiate vegetation from aa and cinders. Together, data from the two wavelength regions show more than either separately. The combined data potentially provide a powerful tool for mapping basalt flows in arid to semiarid volcanic environments.

  11. Planetary maps

    USGS Publications Warehouse

    ,

    1992-01-01

    An important goal of the USGS planetary mapping program is to systematically map the geology of the Moon, Mars, Venus, and Mercury, and the satellites of the outer planets. These geologic maps are published in the USGS Miscellaneous Investigations (I) Series. Planetary maps on sale at the USGS include shaded-relief maps, topographic maps, geologic maps, and controlled photomosaics. Controlled photomosaics are assembled from two or more photographs or images using a network of points of known latitude and longitude. The images used for most of these planetary maps are electronic images, obtained from orbiting television cameras, various optical-mechanical systems. Photographic film was only used to map Earth's Moon.

  12. Velocity map imaging of HBr photodissociation in large rare gas clusters.

    PubMed

    Fedor, J; Kocisek, J; Poterya, V; Votava, O; Pysanenko, A; Lipciuc, M L; Kitsopoulos, T N; Fárník, M

    2011-04-21

    We have implemented the velocity map imaging technique to study clustering in the pulsed supersonic expansions of hydrogen bromide in helium, argon, and xenon. The expansions are characterized by direct imaging of the beam velocity distributions. We have investigated the cluster generation by means of UV photodissociation and photoionization of HBr molecules. Two distinct features appear in the hydrogen atom photofragment images in the clustering regime: (i) photofragments with near zero kinetic energies and (ii) "hot" photofragments originating from vibrationally excited HBr molecules. The origin of both features is attributed to the fragment caging by the cluster. We discuss the nature of the formed clusters based on the change of the photofragment images with the expansion parameters and on the photoionization mass spectra and conclude that single HBr molecule encompassed with rare gas "snowball" is consistent with the experimental observations.

  13. Velocity map imaging of HBr photodissociation in large rare gas clusters

    SciTech Connect

    Fedor, J.; Kocisek, J.; Poterya, V.; Votava, O.; Pysanenko, A.; Farnik, M.; Lipciuc, M. L.; Kitsopoulos, T. N.

    2011-04-21

    We have implemented the velocity map imaging technique to study clustering in the pulsed supersonic expansions of hydrogen bromide in helium, argon, and xenon. The expansions are characterized by direct imaging of the beam velocity distributions. We have investigated the cluster generation by means of UV photodissociation and photoionization of HBr molecules. Two distinct features appear in the hydrogen atom photofragment images in the clustering regime: (i) photofragments with near zero kinetic energies and (ii) ''hot'' photofragments originating from vibrationally excited HBr molecules. The origin of both features is attributed to the fragment caging by the cluster. We discuss the nature of the formed clusters based on the change of the photofragment images with the expansion parameters and on the photoionization mass spectra and conclude that single HBr molecule encompassed with rare gas ''snowball'' is consistent with the experimental observations.

  14. Velocity map photoelectron-photoion coincidence imaging on a single detector.

    PubMed

    Lehmann, C Stefan; Ram, N Bhargava; Janssen, Maurice H M

    2012-09-01

    Here we report on a new simplified setup for velocity map photoelectron-photoion coincidence imaging using only a single particle detector. We show that both photoelectrons and photoions can be extracted toward the same micro-channel-plate delay line detector by fast switching of the high voltages on the ion optics. This single detector setup retains essentially all the features of a standard two-detector coincidence imaging setup, viz., the high spatial resolution for electron and ion imaging, while only slightly decreasing the ion time-of-flight mass resolution. The new setup paves the way to a significant cost reduction in building a coincidence imaging setup for experiments aiming to obtain the complete correlated three-dimensional momentum distribution of electrons and ions.

  15. Velocity map photoelectron-photoion coincidence imaging on a single detector

    SciTech Connect

    Lehmann, C. Stefan; Ram, N. Bhargava; Janssen, Maurice H. M.

    2012-09-15

    Here we report on a new simplified setup for velocity map photoelectron-photoion coincidence imaging using only a single particle detector. We show that both photoelectrons and photoions can be extracted toward the same micro-channel-plate delay line detector by fast switching of the high voltages on the ion optics. This single detector setup retains essentially all the features of a standard two-detector coincidence imaging setup, viz., the high spatial resolution for electron and ion imaging, while only slightly decreasing the ion time-of-flight mass resolution. The new setup paves the way to a significant cost reduction in building a coincidence imaging setup for experiments aiming to obtain the complete correlated three-dimensional momentum distribution of electrons and ions.

  16. SU-F-303-13: Initial Evaluation of Four Dimensional Diffusion- Weighted MRI (4D-DWI) and Its Effect On Apparent Diffusion Coefficient (ADC) Measurement

    SciTech Connect

    Liu, Y; Yin, F; Czito, B; Bashir, M; Palta, M; Cai, J; Zhong, X; Dale, B

    2015-06-15

    Purpose: Diffusion-weighted imaging(DWI) has been shown to have superior tumor-to-tissue contrast for cancer detection.This study aims at developing and evaluating a four dimensional DWI(4D-DWI) technique using retrospective sorting method for imaging respiratory motion for radiotherapy planning,and evaluate its effect on Apparent Diffusion Coefficient(ADC) measurement. Materials/Methods: Image acquisition was performed by repeatedly imaging a volume of interest using a multi-slice single-shot 2D-DWI sequence in the axial planes and cine MRI(served as reference) using FIESTA sequence.Each 2D-DWI image were acquired in xyz-diffusion-directions with a high b-value(b=500s/mm2).The respiratory motion was simultaneously recorded using bellows.Retrospective sorting was applied in each direction to reconstruct 4D-DWI.The technique was evaluated using a computer simulated 4D-digital human phantom(XCAT),a motion phantom and a healthy volunteer under an IRB-approved study.Motion trajectories of regions-of-interests(ROI) were extracted from 4D-DWI and compared with reference.The mean motion trajectory amplitude differences(D) between the two was calculated.To quantitatively analyze the motion artifacts,XCAT were controlled to simulate regular motion and the motions of 10 liver cancer patients.4D-DWI,free-breathing DWI(FB- DWI) were reconstructed.Tumor volume difference(VD) of each phase of 4D-DWI and FB-DWI from the input static tumor were calculated.Furthermore, ADC was measured for each phase of 4D-DWI and FB-DWI data,and mean tumor ADC values(M-ADC) were calculated.Mean M-ADC over all 4D-DWI phases was compared with M-ADC calculated from FB-DWI. Results: 4D-DWI of XCAT,the motion phantom and the healthy volunteer demonstrated the respiratory motion clearly.ROI D values were 1.9mm,1.7mm and 2.0mm,respectively.For motion artifacts analysis,XCAT 4D-DWI images show much less motion artifacts compare to FB-DWI.Mean VD for 4D-WDI and FB-DWI were 8.5±1.4% and 108±15

  17. Combining wavelets transform and Hu moments with self-organizing maps for medical image categorization

    NASA Astrophysics Data System (ADS)

    Silva, Leandro A.; Del-Moral-Hernandez, Emilio; Moreno, Ramon A.; Furuie, Sérgio S.

    2011-10-01

    Images are fundamental sources of information in modern medicine. The images stored in a database and divided in categories are an important step for image retrieval. For an automatic categorization process, detailed analysis is done regarding image representation and generalization method. The baseline method for this process, in the medical image context, is using thumbnails and K-nearest neighbor (KNN), which is easily implemented and has had satisfactory results in literature. This work addresses an alternative method for automatic categorization, which jointly uses discrete wavelet transform with Hu's moments for image representation and self-organizing maps (SOM) neural networks combined with the KNN classifier (SOM-KNN), for medical image categorization. Furthermore, extensive experiments are conducted, to define the best wavelet family and to select the best coefficients set, to consider the remaining wavelet coefficients set (not selected as the best ones) through their Hu's moments, and to carry out a contrastive study with other successful approaches for categorization. The categorization result from a database with 10,000 images in 116 categories yielded 81.8% of correct rate, which is much better than the 67.9% obtained by the baseline method; and the time consumed in classification processing with SOM-KNN is 100 times shorter than KNN.

  18. Ab initio multiple cloning simulations of pyrrole photodissociation: TKER spectra and velocity map imaging

    DOE PAGES

    Makhov, Dmitry V.; Saita, Kenichiro; Martinez, Todd J.; ...

    2014-12-11

    In this study, we report a detailed computational simulation of the photodissociation of pyrrole using the ab initio Multiple Cloning (AIMC) method implemented within MOLPRO. The efficiency of the AIMC implementation, employing train basis sets, linear approximation for matrix elements, and Ehrenfest configuration cloning, allows us to accumulate significant statistics. We calculate and analyze the total kinetic energy release (TKER) spectrum and Velocity Map Imaging (VMI) of pyrrole and compare the results directly with experimental measurements. Both the TKER spectrum and the structure of the velocity map image (VMI) are well reproduced. Previously, it has been assumed that the isotropicmore » component of the VMI arises from long time statistical dissociation. Instead, our simulations suggest that ultrafast dynamics contributes significantly to both low and high energy portions of the TKER spectrum.« less

  19. Structured light 3D depth map enhancement and gesture recognition using image content adaptive filtering

    NASA Astrophysics Data System (ADS)

    Ramachandra, Vikas; Nash, James; Atanassov, Kalin; Goma, Sergio

    2013-03-01

    A structured-light system for depth estimation is a type of 3D active sensor that consists of a structured-light projector that projects an illumination pattern on the scene (e.g. mask with vertical stripes) and a camera which captures the illuminated scene. Based on the received patterns, depths of different regions in the scene can be inferred. In this paper, we use side information in the form of image structure to enhance the depth map. This side information is obtained from the received light pattern image reflected by the scene itself. The processing steps run real time. This post-processing stage in the form of depth map enhancement can be used for better hand gesture recognition, as is illustrated in this paper.

  20. High-resolution Ceres High Altitude Mapping Orbit atlas derived from Dawn Framing Camera images

    NASA Astrophysics Data System (ADS)

    Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2016-09-01

    The Dawn spacecraft Framing Camera (FC) acquired over 2400 clear filter images of Ceres with a resolution of about 140 m/pixel during the six cycles in the High Altitude Mapping Orbit (HAMO) phase between August 18 and October 21, 2015. We ortho-rectified the images from the first cycle and produced a global, high-resolution, controlled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 15 tiles mapped at a scale of 1:750,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page

  1. Inelastic scattering of hydroxyl radicals with helium and argon by velocity-map imaging.

    PubMed

    Sarma, Gautam; Marinakis, Sarantos; ter Meulen, J J; Parker, David H; McKendrick, Kenneth G

    2012-12-01

    The hydroxyl radical (OH) is one of the most interesting molecules in molecular dynamics. In particular, inelastic collisions of free radicals such as OH are profoundly important in environments ranging from combustion to astrochemistry. However, measuring the velocities of OH molecules in specific internal quantum states has proven to be very difficult. A method that can provide this important information is velocity-map imaging. Although this technique is very widely applicable in principle, it does require a sensitive and selective laser-ionization scheme. Here we show that, under the right conditions, velocity-map imaging can be applied to the study of the inelastic scattering of OH using crossed-molecular-beam methods. We measure fully quantum-state-specified product angular distributions for OH collisions with helium and argon. The agreement between exact close-coupling quantum scattering calculations on ab initio potential energy surfaces and experimental data is generally very satisfactory, except for scattering in the most forward directions.

  2. Adaptive Forward Modeling Method for Analysis and Reconstructions of Orientation Image Map

    SciTech Connect

    Frankie Li, Shiu Fai

    2014-06-01

    IceNine is a MPI-parallel orientation reconstruction and microstructure analysis code. It's primary purpose is to reconstruct a spatially resolved orientation map given a set of diffraction images from a high energy x-ray diffraction microscopy (HEDM) experiment (1). In particular, IceNine implements the adaptive version of the forward modeling method (2, 3). Part of IceNine is a library used to for conbined analysis of the microstructure with the experimentally measured diffraction signal. The libraries is also designed for tapid prototyping of new reconstruction and analysis algorithms. IceNine is also built with a simulator of diffraction images with an input microstructure.

  3. GPS and GIS-Based Data Collection and Image Mapping in the Antarctic Peninsula

    USGS Publications Warehouse

    Sanchez, Richard D.

    1999-01-01

    High-resolution satellite images combined with the rapidly evolving global positioning system (GPS) and geographic information system (GIS) technology may offer a quick and effective way to gather information in Antarctica. GPS- and GIS-based data collection systems are used in this project to determine their applicability for gathering ground truthing data in the Antarctic Peninsula. These baseline data will be used in a later study to examine changes in penguin habitats resulting in part from regional climate warming. The research application in this study yields important information on the usefulness and limits of data capture and high-resolution images for mapping in the Antarctic Peninsula.

  4. Mapping in the Oman ophiolite using enhanced Landsat Thematic Mapper images

    NASA Technical Reports Server (NTRS)

    Abrams, M. J.; Rothery, D. A.; Pontual, A.

    1988-01-01

    The level of apparent lithological discrimination possible with Landsat TM images in the Oman are discussed. It is found that by using parts of the short-wavelength IR spectrum, the discrimination revealed by the TM data is sufficiently uniform throughout the Oman ophiolite to produce lithological maps at 1:100,000 scale. Decorrelation stretching of the data produces images in which allows for the recognition of variations in gabbro composition, the identification of small acidic, gabbroic, and ultramafic intrusions, the discrimation of the uppermost mantle from the deeper mantle, the precise location of the Moho, and the delineation of gossans and areas subject to choritic-epidotic alteration.

  5. Development of a handheld fluorescence imaging camera for intraoperative sentinel lymph node mapping

    NASA Astrophysics Data System (ADS)

    Szyc, Łukasz; Bonifer, Stefanie; Walter, Alfred; Jagemann, Uwe; Grosenick, Dirk; Macdonald, Rainer

    2015-05-01

    We present a compact fluorescence imaging system developed for real-time sentinel lymph node mapping. The device uses two near-infrared wavelengths to record fluorescence and anatomical images with a single charge-coupled device camera. Experiments on lymph node and tissue phantoms confirmed that the amount of dye in superficial lymph nodes can be better estimated due to the absorption correction procedure integrated in our device. Because of the camera head's small size and low weight, all accessible regions of tissue can be reached without the need for any adjustments.

  6. Novel Image Encryption Scheme Based on Chebyshev Polynomial and Duffing Map

    PubMed Central

    2014-01-01

    We present a novel image encryption algorithm using Chebyshev polynomial based on permutation and substitution and Duffing map based on substitution. Comprehensive security analysis has been performed on the designed scheme using key space analysis, visual testing, histogram analysis, information entropy calculation, correlation coefficient analysis, differential analysis, key sensitivity test, and speed test. The study demonstrates that the proposed image encryption algorithm shows advantages of more than 10113 key space and desirable level of security based on the good statistical results and theoretical arguments. PMID:25143970

  7. Nanometric resolution magnetic resonance imaging methods for mapping functional activity in neuronal networks.

    PubMed

    Boretti, Albert; Castelletto, Stefania

    2016-01-01

    This contribution highlights and compares some recent achievements in the use of k-space and real space imaging (scanning probe and wide-filed microscope techniques), when applied to a luminescent color center in diamond, known as nitrogen vacancy (NV) center. These techniques combined with the optically detected magnetic resonance of NV, provide a unique platform to achieve nanometric magnetic resonance imaging (MRI) resolution of nearby nuclear spins (known as nanoMRI), and nanometric NV real space localization. •Atomic size optically detectable spin probe.•High magnetic field sensitivity and nanometric resolution.•Non-invasive mapping of functional activity in neuronal networks.

  8. Visualizing human brain surface from T1-weighted MR images using texture-mapped triangle meshes.

    PubMed

    Seppä, Mika; Hämäläinen, Matti

    2005-05-15

    We describe a novel method for visualizing brain surface from anatomical magnetic resonance images (MRIs). The method utilizes standard 2D texture mapping capabilities of OpenGL graphics language. It combines the benefits of volume rendering and triangle-mesh rendering, allowing fast and realistic-looking brain surface visualizations. Consequently, relatively low-resolution triangle meshes can be used while the texture images provide the necessary details. The mapping is optimized to provide good texture-image resolution for the triangles with respect to their original sizes in the 3D MRI volume. The actual 2D texture images are generated by depth integration from the original MRI data. Our method adapts to anisotropic voxel sizes without any need to interpolate the volume data into cubic voxels, and it is very well suited for visualizing brain anatomy from standard T(1)-weighted MR images. Furthermore, other OpenGL objects and techniques can be easily combined, for example, to use cut planes, to show other surfaces and objects, and to visualize functional data in addition to the anatomical information.

  9. Increasing the potential of Razaksat images for map-updating in the Tropics

    NASA Astrophysics Data System (ADS)

    Pohl, C.; Hashim, M.

    2014-02-01

    The high resolution remote sensing satellite Razaksat is a unique satellite system since it operates in a near-equatorial orbit with a low inclination angle of 9. In a first study scientists have found the images suitable for feature extraction in an urban context to update the road network at a scale of 1:25,000. In a preceding project for land cover mapping the research team used the five available bands of Razaksat imagery. This paper describes a continuation of the former study in which techniques are used to fuse the high resolution panchromatic band with the lower resolution multispectral bands. The study investigates the impact of pansharpening on the spatial and spectral content of the data. It compares various image fusion techniques and their impact on land use classification results. The image fusion techniques investigated are Brovey Transform, High Pass Filtering, Principal Component Analysis, Wavelet Approach and Ehlers Fusion. The images are classified using a maximum likelihood classifier. The results show that the use of an appropriate image fusion technique with adequately tuned parameters can improve quality of the resulting thematic maps.

  10. Semi-automatic mapping for identifying complex geobodies in seismic images

    NASA Astrophysics Data System (ADS)

    Domínguez-C, Raymundo; Romero-Salcedo, Manuel; Velasquillo-Martínez, Luis G.; Shemeretov, Leonid

    2017-03-01

    Seismic images are composed of positive and negative seismic wave traces with different amplitudes (Robein 2010 Seismic Imaging: A Review of the Techniques, their Principles, Merits and Limitations (Houten: EAGE)). The association of these amplitudes together with a color palette forms complex visual patterns. The color intensity of such patterns is directly related to impedance contrasts: the higher the contrast, the higher the color intensity. Generally speaking, low impedance contrasts are depicted with low tone colors, creating zones with different patterns whose features are not evident for a 3D automated mapping option available on commercial software. In this work, a workflow for a semi-automatic mapping of seismic images focused on those areas with low-intensity colored zones that may be associated with geobodies of petroleum interest is proposed. The CIE L*A*B* color space was used to perform the seismic image processing, which helped find small but significant differences between pixel tones. This process generated binary masks that bound color regions to low-intensity colors. The three-dimensional-mask projection allowed the construction of 3D structures for such zones (geobodies). The proposed method was applied to a set of digital images from a seismic cube and tested on four representative study cases. The obtained results are encouraging because interesting geobodies are obtained with a minimum of information.

  11. Nonrigid Registration of Brain Tumor Resection MR Images Based on Joint Saliency Map and Keypoint Clustering

    PubMed Central

    Gu, Zhijun; Qin, Binjie

    2009-01-01

    This paper proposes a novel global-to-local nonrigid brain MR image registration to compensate for the brain shift and the unmatchable outliers caused by the tumor resection. The mutual information between the corresponding salient structures, which are enhanced by the joint saliency map (JSM), is maximized to achieve a global rigid registration of the two images. Being detected and clustered at the paired contiguous matching areas in the globally registered images, the paired pools of DoG keypoints in combination with the JSM provide a useful cluster-to-cluster correspondence to guide the local control-point correspondence detection and the outlier keypoint rejection. Lastly, a quasi-inverse consistent deformation is smoothly approximated to locally register brain images through the mapping the clustered control points by compact support radial basis functions. The 2D implementation of the method can model the brain shift in brain tumor resection MR images, though the theory holds for the 3D case. PMID:22303173

  12. Remote mapping of river bathymetry from publicly available multispectral image data

    NASA Astrophysics Data System (ADS)

    Legleiter, C. J.

    2011-12-01

    Remote sensing could facilitate efficient characterization of river systems for research and management purposes, provided that suitable image data are available and that the information derived therefrom is reliable. This study evaluated the utility of public domain multispectral images for estimating flow depths in a small stream and a larger gravel-bed river, using data acquired through a task-oriented consortium and the National Agricultural Imagery Program (NAIP). Field measurements were used to calibrate image-derived quantities to observed depths and to assess depth retrieval accuracy. A band ratio-based algorithm yielded coherent, hydraulically reasonable bathymetric maps for both field sites and three different types of image data. Applying a spatial filter reduced image noise and improved depth retrieval performance, with a strong calibration relationship (R2 = 0.68) and an observed (field-surveyed) vs. predicted (image-derived) R2 of 0.6 for tasked images of the smaller stream. The NAIP data were less useful in this environment due to geo-referencing errors and a coarser spatial resolution. On the larger river, NAIP-derived bathymetry was more accurate, with an observed vs. predicted R2 value of 0.64 for a compressed county mosaic easily accessible via the internet. Comparison of remotely sensed bathymetric maps with field surveys indicated that although the locations of pools were determined accurately, their full depth could not be detected due to limited sensor radiometric resolution. Although a number of other constraints also must be considered, such as the need for local calibration data, depth retrieval from publicly available image data is feasible under appropriate conditions.

  13. 4 Vesta in Color: High Resolution Mapping from Dawn Framing Camera Images

    NASA Technical Reports Server (NTRS)

    Reddy, V.; LeCorre, L.; Nathues, A.; Sierks, H.; Christensen, U.; Hoffmann, M.; Schroeder, S. E.; Vincent, J. B.; McSween, H. Y.; Denevi, B. W.; Li, J.-Y.; Pieters, C. M.; Gaffey, M.; Mittlefehldt, D.; Buratti, B.; Hicks, M.; McCord, T.; Combe, J.-P.; DeSantis, M. C.; Russell, C. T.; Raymond, C. A.; Marques, P. Gutierrez; Maue, T.; Hall, I.

    2011-01-01

    Rotational surface variations on asteroid 4 Vesta have been known from ground-based and HST observations, and they have been interpreted as evidence of compositional diversity. NASA s Dawn mission entered orbit around Vesta on July 16, 2011 for a year-long global characterization. The framing cameras (FC) onboard the Dawn spacecraft will image the asteroid in one clear (broad) and seven narrow band filters covering the wavelength range between 0.4-1.0 microns. We present color mapping results from the Dawn FC observations of Vesta obtained during Survey orbit (approx.3000 km) and High-Altitude Mapping Orbit (HAMO) (approx.950 km). Our aim is to create global color maps of Vesta using multi spectral FC images to identify the spatial extent of compositional units and link them with other available data sets to extract the basic mineralogy. While the VIR spectrometer onboard Dawn has higher spectral resolution (864 channels) allowing precise mineralogical assessment of Vesta s surface, the FC has three times higher spatial resolution in any given orbital phase. In an effort to extract maximum information from FC data we have developed algorithms using laboratory spectra of pyroxenes and HED meteorites to derive parameters associated with the 1-micron absorption band wing. These parameters will help map the global distribution of compositionally related units on Vesta s surface. Interpretation of these units will involve the integration of FC and VIR data.

  14. Map building and monte carlo localization using global appearance of omnidirectional images.

    PubMed

    Payá, Luis; Fernández, Lorenzo; Gil, Arturo; Reinoso, Oscar

    2010-01-01

    In this paper we deal with the problem of map building and localization of a mobile robot in an environment using the information provided by an omnidirectional vision sensor that is mounted on the robot. Our main objective consists of studying the feasibility of the techniques based in the global appearance of a set of omnidirectional images captured by this vision sensor to solve this problem. First, we study how to describe globally the visual information so that it represents correctly locations and the geometrical relationships between these locations. Then, we integrate this information using an approach based on a spring-mass-damper model, to create a topological map of the environment. Once the map is built, we propose the use of a Monte Carlo localization approach to estimate the most probable pose of the vision system and its trajectory within the map. We perform a comparison in terms of computational cost and error in localization. The experimental results we present have been obtained with real indoor omnidirectional images.

  15. Map Building and Monte Carlo Localization Using Global Appearance of Omnidirectional Images

    PubMed Central

    Payá, Luis; Fernández, Lorenzo; Gil, Arturo; Reinoso, Oscar

    2010-01-01

    In this paper we deal with the problem of map building and localization of a mobile robot in an environment using the information provided by an omnidirectional vision sensor that is mounted on the robot. Our main objective consists of studying the feasibility of the techniques based in the global appearance of a set of omnidirectional images captured by this vision sensor to solve this problem. First, we study how to describe globally the visual information so that it represents correctly locations and the geometrical relationships between these locations. Then, we integrate this information using an approach based on a spring-mass-damper model, to create a topological map of the environment. Once the map is built, we propose the use of a Monte Carlo localization approach to estimate the most probable pose of the vision system and its trajectory within the map. We perform a comparison in terms of computational cost and error in localization. The experimental results we present have been obtained with real indoor omnidirectional images. PMID:22163538

  16. Improving chemical mapping algorithm and visualization in full-field hard x-ray spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Chang, Cheng; Xu, Wei; Chen-Wiegart, Yu-chen Karen; Wang, Jun; Yu, Dantong

    2013-12-01

    X-ray Absorption Near Edge Structure (XANES) imaging, an advanced absorption spectroscopy technique, at the Transmission X-ray Microscopy (TXM) Beamline X8C of NSLS enables high-resolution chemical mapping (a.k.a. chemical composition identification or chemical spectra fitting). Two-Dimensional (2D) chemical mapping has been successfully applied to study many functional materials to decide the percentages of chemical components at each pixel position of the material images. In chemical mapping, the attenuation coefficient spectrum of the material (sample) can be fitted with the weighted sum of standard spectra of individual chemical compositions, where the weights are the percentages to be calculated. In this paper, we first implemented and compared two fitting approaches: (i) a brute force enumeration method, and (ii) a constrained least square minimization algorithm proposed by us. Next, as 2D spectra fitting can be conducted pixel by pixel, so theoretically, both methods can be implemented in parallel. In order to demonstrate the feasibility of parallel computing in the chemical mapping problem and investigate how much efficiency improvement can be achieved, we used the second approach as an example and implemented a parallel version for a multi-core computer cluster. Finally we used a novel way to visualize the calculated chemical compositions, by which domain scientists could grasp the percentage difference easily without looking into the real data.

  17. The Tomographic Ionized-Carbon Mapping Experiment (TIME) CII Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Staniszewski, Z.; Bock, J. J.; Bradford, C. M.; Brevik, J.; Cooray, A.; Gong, Y.; Hailey-Dunsheath, S.; O'Brient, R.; Santos, M.; Shirokoff, E.; Silva, M.; Zemcov, M.

    2014-09-01

    The Tomographic Ionized-Carbon Mapping Experiment (TIME) and TIME-Pilot are proposed imaging spectrometers to measure reionization and large scale structure at redshifts 5-9. We seek to exploit the 158 restframe emission of [CII], which becomes measurable at 200-300 GHz at reionization redshifts. Here we describe the scientific motivation, give an overview of the proposed instrument, and highlight key technological developments underway to enable these measurements.

  18. Geometric Context and Orientation Map Combination for Indoor Corridor Modeling Using a Single Image

    NASA Astrophysics Data System (ADS)

    Baligh Jahromi, Ali; Sohn, Gunho

    2016-06-01

    Since people spend most of their time indoors, their indoor activities and related issues in health, security and energy consumption have to be understood. Hence, gathering and representing spatial information of indoor spaces in form of 3D models become very important. Considering the available data gathering techniques with respect to the sensors cost and data processing time, single images proved to be one of the reliable sources. Many of the current single image based indoor space modeling methods are defining the scene as a single box primitive. This domain-specific knowledge is usually not applicable in various cases where multiple corridors are joined at one scene. Here, we addressed this issue by hypothesizing-verifying multiple box primitives which represents the indoor corridor layout. Middle-level perceptual organization is the foundation of the proposed method, which relies on finding corridor layout boundaries using both detected line segments and virtual rays created by orthogonal vanishing points. Due to the presence of objects, shadows and occlusions, a comprehensive interpretation of the edge relations is often concealed. This necessitates the utilization of virtual rays to create a physically valid layout hypothesis. Many of the former methods used Orientation Map or Geometric Context to evaluate their proposed layout hypotheses. Orientation map is a map that reveals the local belief of region orientations computed from line segments, and in a segmented image geometric context uses color, texture, edge, and vanishing point cues to estimate the likelihood of each possible label for all super-pixels. Here, the created layout hypotheses are evaluated by an objective function which considers the fusion of orientation map and geometric context with respect to the horizontal viewing angle at each image pixel. Finally, the best indoor corridor layout hypothesis which gets the highest score from the scoring function will be selected and converted to a 3D

  19. Prediction of CT Substitutes from MR Images Based on Local Diffeomorphic Mapping for Brain PET Attenuation Correction.

    PubMed

    Wu, Yao; Yang, Wei; Lu, Lijun; Lu, Zhentai; Zhong, Liming; Huang, Meiyan; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan

    2016-10-01

    Attenuation correction is important for PET reconstruction. In PET/MR, MR intensities are not directly related to attenuation coefficients that are needed in PET imaging. The attenuation coefficient map can be derived from CT images. Therefore, prediction of CT substitutes from MR images is desired for attenuation correction in PET/MR.

  20. Attitude Determination and Control Subsystem (ADCS) Preparations for the EPOXI Flyby of Comet Haley 2

    NASA Technical Reports Server (NTRS)

    Luna, Michael E.; Collins, Stephen M.

    2011-01-01

    On November 4, 2010 the already "in-flight" Deep Impact spacecraft flew within 700km of comet 103P/Hartley 2 as part of its extended mission EPOXI, the 5th time to date any spacecraft visited a comet. In 2005, the spacecraft had previously imaged a probe impact comet Tempel 1. The EPOXI flyby marked the first time in history that two comets were explored with the same instruments on a re-used spacecraft-with hardware and software originally designed and optimized for a different mission. This made the function of the attitude determination and control subsystem (ADCS) critical to the successful execution of the EPOXI flyby. As part of the spacecraft team preparations, the ADCS team had to perform thorough sequence reviews, key spacecraft activities and onboard calibrations. These activities included: review of background sequences for the initial conditions vector, sun sensor coefficients, and reaction wheel assembly (RWA) de-saturations; design and execution of 10 trajectory correction maneuvers; science calibration of the two telescope instruments; a flight demonstration of the fastest turns conducted by the spacecraft between Earth and comet point; and assessment of RWA health (given RWA problems on other spacecraft).

  1. Encrypting three-dimensional information system based on integral imaging and multiple chaotic maps

    NASA Astrophysics Data System (ADS)

    Xing, Yan; Wang, Qiong-Hua; Xiong, Zhao-Long; Deng, Huan

    2016-02-01

    An encrypting three-dimensional (3-D) information system based on integral imaging (II) and multiple chaotic maps is proposed. In the encrypting process, the elemental image array (EIA) which represents spatial and angular information of the real 3-D scene is picked up by a microlens array. Subsequently, R, G, and B color components decomposed by the EIA are encrypted using multiple chaotic maps. Finally, these three encrypted components are interwoven to obtain the cipher information. The decryption process implements the reverse operation of the encryption process for retrieving the high-quality 3-D images. Since the encrypted EIA has the data redundancy property due to II, and all parameters of the pickup part are the secret keys of the encrypting system, the system sensitivity on the changes of the plaintext and secret keys can be significantly improved. Moreover, the algorithm based on multiple chaotic maps can effectively enhance the security. A preliminary experiment is carried out, and the experimental results verify the effectiveness, robustness, and security of the proposed system.

  2. Double-image encryption using discrete fractional random transform and logistic maps

    NASA Astrophysics Data System (ADS)

    Sui, Liansheng; Lu, Haiwei; Wang, Zhanmin; Sun, Qindong

    2014-05-01

    A double-image encryption is proposed based on the discrete fractional random transform and logistic maps. Firstly, an enlarged image is composited from two original plaintexts, in which the pixel positions are relocated and the intensity values are changed by a chaotic confusion-diffusion process, and then two scrambled plaintexts are recovered from the enlarged image. Secondly, the two scrambled plaintexts are encoded into the phase and amplitude part of a complex function which is encrypted into a ciphertext with stationary white noise distribution by using the discrete fractional random transform generated based on logistic map. Not only the initial values of the logistic maps used in the cryptosystem but also the phase distribution produced in the encryption process can be used as private keys, which makes the proposed scheme has the characteristic of asymmetric encryption technique and high resistance against to the conventional attacks such as chosen plaintext attack, ciphertext-only attack. Simulation results and security analysis verify the feasibility and effectiveness of the proposed method.

  3. Effect Of Clock Mode On Radiation Hardness Of An ADC

    NASA Technical Reports Server (NTRS)

    Lee, Choon I.; Rax, Bernie G.; Johnston, Allan H.

    1995-01-01

    Report discusses techniques for testing and evaluating effects of total dosages of ionizing radiation on performances of high-resolution successive-approximation analog-to-digital converters (ADCs), without having to test each individual bit or transition. Reduces cost of testing by reducing tests to few critical parametric measurements, from which one determines approximate radiation failure levels providing good approximations of responses of converters for purpose of total-dose-radiation evaluations.

  4. Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches

    NASA Astrophysics Data System (ADS)

    Diesing, Markus; Green, Sophie L.; Stephens, David; Lark, R. Murray; Stewart, Heather A.; Dove, Dayton

    2014-08-01

    Marine spatial planning and conservation need underpinning with sufficiently detailed and accurate seabed substrate and habitat maps. Although multibeam echosounders enable us to map the seabed with high resolution and spatial accuracy, there is still a lack of fit-for-purpose seabed maps. This is due to the high costs involved in carrying out systematic seabed mapping programmes and the fact that the development of validated, repeatable, quantitative and objective methods of swath acoustic data interpretation is still in its infancy. We compared a wide spectrum of approaches including manual interpretation, geostatistics, object-based image analysis and machine-learning to gain further insights into the accuracy and comparability of acoustic data interpretation approaches based on multibeam echosounder data (bathymetry, backscatter and derivatives) and seabed samples with the aim to derive seabed substrate maps. Sample data were split into a training and validation data set to allow us to carry out an accuracy assessment. Overall thematic classification accuracy ranged from 67% to 76% and Cohen's kappa varied between 0.34 and 0.52. However, these differences were not statistically significant at the 5% level. Misclassifications were mainly associated with uncommon classes, which were rarely sampled. Map outputs were between 68% and 87% identical. To improve classification accuracy in seabed mapping, we suggest that more studies on the effects of factors affecting the classification performance as well as comparative studies testing the performance of different approaches need to be carried out with a view to developing guidelines for selecting an appropriate method for a given dataset. In the meantime, classification accuracy might be improved by combining different techniques to hybrid approaches and multi-method ensembles.

  5. MRI-based elastic-mapping method for inter-subject comparison of brain FDG-PET images

    SciTech Connect

    Yang, J.; Huang, S.C.; Lin, K.P.; Small, G.; Phelps, M.E.

    1996-12-31

    Inter-subject anatomic differences prohibits direct image-wise statistical evaluation of brain FDG-PET images of Alzheimer`s disease (AD) patients. In this study, we propose a MRI-based elastic-mapping method which enables image-wise evaluation. The method involves intra-subject MR-PET registration, 3-D elastic mapping of two set of MR images, and elastically transforming the co-registered PET images. The MR-PET registration used simulated PET images, which were based on segmentation of MR images. In the 3-D elastic mapping stage, first a global linear scaling was applied to compensate for brain size difference, then a deformation field was obtained by minimizing the regional sum of squared difference between the two sets of MR images. Two groups (AD patient and normal control), each with three subjects, were included in the current study. After processing, images from all subjects have similar shapes. Averaging the images across all subjects (either within the individual group or for both groups) give images indistinguishable from original single subject FDG images (i.e. without much spatial resolution loss), except with lower image noise level. The method is expected to allow statistical image-wise analysis to be performed across different subjects.

  6. ADF/ADC Web Tools for Browsing and Visualizing Astronomical Catalogs and NASA Astrophysics Mission Metadata

    NASA Astrophysics Data System (ADS)

    Shaya, E.; Kargatis, V.; Blackwell, J.; Borne, K.; White, R. A.; Cheung, C.

    1998-05-01

    Several new web based services have been introduced this year by the Astrophysics Data Facility (ADF) at the NASA Goddard Space Flight Center. IMPReSS is a graphical interface to astrophysics databases that presents the user with the footprints of observations of space-based missions. It also aids astronomers in retrieving these data by sending requests to distributed data archives. The VIEWER is a reader of ADC astronomical catalogs and journal tables that allows subsetting of catalogs by column choices and range selection and provides database-like search capability within each table. With it, the user can easily find the table data most appropriate for their purposes and then download either the subset table or the original table. CATSEYE is a tool that plots output tables from the VIEWER (and soon AMASE), making exploring the datasets fast and easy. Having completed the basic functionality of these systems, we are enhancing the site to provide advanced functionality. These will include: market basket storage of tables and records of VIEWER output for IMPReSS and AstroBrowse queries, non-HTML table responses to AstroBrowse type queries, general column arithmetic, modularity to allow entrance into the sequence of web pages at any point, histogram plots, navigable maps, and overplotting of catalog objects on mission footprint maps. When completed, the ADF/ADC web facilities will provide astronomical tabled data and mission retrieval information in several hyperlinked environments geared for users at any level, from the school student to the typical astronomer to the expert datamining tools at state-of-the-art data centers.

  7. Dose distribution and mapping with 3D imaging presentation in intraoral and panoramic examinations

    NASA Astrophysics Data System (ADS)

    Chen, Hsiu-Ling; Huang, Yung-Hui; Wu, Tung-Hsin; Wang, Shih-Yuan; Lee, Jason J. S.

    2011-10-01

    In current medical imaging applications, high quality images not only provide more diagnostic value for anatomic delineation but also offer functional information for treatment direction. However, this approach would potentially subscribe higher radiation dose in dental radiographies, which has been putatively associated with low-birth-weight during pregnancy, which affects the hypothalamus-pituitary-thyroid axis or thereby directly affects the reproductive organs. The aim of this study was to apply the high resolution 3-D image mapping technique to evaluate radiation doses from the following aspects: (1) verifying operating parameters of dental X-ray units, (2) measuring the leakage radiations and (3) mapping dose with 3-D radiographic imaging to evaluate dose distribution in head and neck regions. From the study results, we found that (1) leakage radiation from X-ray units was about 21.31±15.24 mR/h (<100 mR/h), (2) error of actual tube voltage for 60 kVp setting was from 0.2% to 6.5%, with an average of 2.5% (<7%) and (3) the error of exposure time for a 0.5-1.5 s setting was within 0.7-8.5%, with an average of 7.3% (<10%) error as well. Our 3-D dose mapping demonstrated that dose values were relatively lower in soft tissues and higher in bone surfaces compared with other investigations. Multiple causes could contribute to these variations, including irradiation geometry, image equipment and type of technique applied, etc. From the results, we also observed that larger accumulated doses were presented in certain critical organs, such as salivary gland, thyroid gland and bone marrow. Potential biological affects associated with these findings warrant further investigation.

  8. Bathymetry and seafloor image surveys for benthic habitat mapping of Dokdo

    NASA Astrophysics Data System (ADS)

    Kim, Chang Hwan; Rho, Hyun Soo; Lee, Myung Hoon

    2014-05-01

    Dokdo (do means a island), our study area, is a volcanic island, which is located in the northeastern part of the Ulleung Back-Arc Basin, the East Sea and approximately 216.8 km away from the eastern part of the Korean peninsula. The Dokdo volcano anomalously emerges, rising abruptly from the sea floor (~2,100 m below sea level). Dokdo comprises two main islets (Seo-do and Dong-do) and the associated submerged volcanic edifice. To management the eco-system of coastal area and establish the policy against the change of marine environment, advanced nations for marine have conducted benthic habitat mapping studies like PIBHMC (Pacific Islands Benthic Habitat Mapping Center) and MESH (Mapping European Seabed Habitats) projects. For the benthic habitat mapping of the southern coastal area of Seo-do, the precise topographical map of the coastal area was made using the detailed bathymetry data from multi-beam echosounder (EM 3001, Kongsberg). The seafloor images of the survey area were obtained by Side Scan Sonar (4125, Edgetech). The grain size and TOC (Total Organic Carbon) of 6 surface sediment samples of the survey area were analyzed. We used small research vessels for this study, because of shallow water. The bathymetry data of the survey area show that the range of water depth is about from 1 m to 28 m and the underwater reefs are irregularly scattered and extended from inland of Seo-do, with shallow water depth (within about 10 m). In the underwater reefs area, the flank slopes are very steep and irregular, overlain by many large or small submerged rocks, indicating partial erosion due to waves, strong currents and weathering. And below ~15 m, the bathymetry gradually transitions to a relatively even undulation with a smooth slope. The seafloor images, from Side Scan Sonar, show that many large or small submerged rocks occur in the shallow water and other seabed area is covered with small gravels. The grain size of sediments is varied along bathymetric gradients

  9. Mapping the different methods adopted for diagnostic imaging instruction at medical schools in Brazil

    PubMed Central

    Chojniak, Rubens; Carneiro, Dominique Piacenti; Moterani, Gustavo Simonetto Peres; Duarte, Ivone da Silva; Bitencourt, Almir Galvão Vieira; Muglia, Valdair Francisco; D'Ippolito, Giuseppe

    2017-01-01

    Objective To map the different methods for diagnostic imaging instruction at medical schools in Brazil. Materials and Methods In this cross-sectional study, a questionnaire was sent to each of the coordinators of 178 Brazilian medical schools. The following characteristics were assessed: teaching model; total course hours; infrastructure; numbers of students and professionals involved; themes addressed; diagnostic imaging modalities covered; and education policies related to diagnostic imaging. Results Of the 178 questionnaires sent, 45 (25.3%) were completed and returned. Of those 45 responses, 17 (37.8%) were from public medical schools, whereas 28 (62.2%) were from private medical schools. Among the 45 medical schools evaluated, the method of diagnostic imaging instruction was modular at 21 (46.7%), classic (independent discipline) at 13 (28.9%), hybrid (classical and modular) at 9 (20.0%), and none of the preceding at 3 (6.7%). Diagnostic imaging is part of the formal curriculum at 36 (80.0%) of the schools, an elective course at 3 (6.7%), and included within another modality at 6 (13.3%). Professors involved in diagnostic imaging teaching are radiologists at 43 (95.5%) of the institutions. Conclusion The survey showed that medical courses in Brazil tend to offer diagnostic imaging instruction in courses that include other content and at different time points during the course. Radiologists are extensively involved in undergraduate medical education, regardless of the teaching methodology employed at the institution. PMID:28298730

  10. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain.

    PubMed

    Liu, Chunlei; Li, Wei; Tong, Karen A; Yeom, Kristen W; Kuzminski, Samuel

    2015-07-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging.

  11. Correlation mapping: rapid method for retrieving microcirculation morphology from optical coherence tomography intensity images

    NASA Astrophysics Data System (ADS)

    Jonathan, E.; Enfield, J.; Leahy, M. J.

    2011-03-01

    The microcirculation plays a critical role is maintaining organ health and function by serving as a vascular are where trophic metabolism exchanges between blood and tissue takes place. To facilitate regular assessment in vivo, noninvasive microcirculation imagers are required in clinics. Among this group of clinical devices, are those that render microcirculation morphology such as nailfold capillaroscopy, a common device for early diagnosis and monitoring of microangiopathies. However, depth ambiguity disqualify this and other similar techniques in medical tomography where due to the 3-D nature of biological organs, imagers that support depth-resolved 2-D imaging and 3-D image reconstruction are required. Here, we introduce correlation map OCT (cmOCT), a promising technique for microcirculation morphology imaging that combines standard optical coherence tomography and an agile imaging analysis software based on correlation statistic. Promising results are presented of the microcirculation morphology images of the brain region of a small animal model as well as measurements of vessel geometry at bifurcations, such as vessel diameters, branch angles. These data will be useful for obtaining cardiovascular related characteristics such as volumetric flow, velocity profile and vessel-wall shear stress for circulatory and respiratory system.

  12. Images in plastic surgery: digital thermographic photography ("thermal imaging") for preoperative perforator mapping.

    PubMed

    Chubb, Daniel; Rozen, Warren M; Whitaker, Iain S; Ashton, Mark W

    2011-04-01

    Preoperative imaging to identify the location of individual perforators has been shown to improve operative outcomes, and while computed tomographic angiography (CTA) and magnetic resonance angiography are currently the most widely used modalities, these have substantial limitations. Such limitations include the need for intravenous access, the need for iodinated contrast media, radiation exposure with CTA, and long scanning times with magnetic resonance angiography. Complications from the use of contrast media are also noteworthy, and can include anaphylactoid reactions and renal toxicity. In a move to avoid these problems, we have recently introduced a technique that is readily available and easy to implement for preoperative imaging, and may show an accuracy that matches the more advanced imaging modalities. Thermal imaging is a readily performed technique, and can be undertaken by the reconstructive surgeon themselves at the initial consultation, enabling prompt operative planning, and avoiding the need for delays in imaging, confusion in the interpretation of a radiologist report, and the need for an intermediary radiologist altogether. In our experience thus far, the technique matches the accuracy for location of CTA, and a larger clinical trial of the technique is underway.

  13. Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Zhang, Pei; An, Le; Ma, Guangkai; Kang, Jiayin; Shi, Feng; Wu, Xi; Zhou, Jiliu; Lalush, David S.; Lin, Weili; Shen, Dinggang

    2016-01-01

    Positron emission tomography (PET) has been widely used in clinical diagnosis for diseases and disorders. To obtain high-quality PET images requires a standard-dose radionuclide (tracer) injection into the human body, which inevitably increases risk of radiation exposure. One possible solution to this problem is to predict the standard-dose PET image from its low-dose counterpart and its corresponding multimodal magnetic resonance (MR) images. Inspired by the success of patch-based sparse representation (SR) in super-resolution image reconstruction, we propose a mapping-based SR (m-SR) framework for standard-dose PET image prediction. Compared with the conventional patch-based SR, our method uses a mapping strategy to ensure that the sparse coefficients, estimated from the multimodal MR images and low-dose PET image, can be applied directly to the prediction of standard-dose PET image. As the mapping between multimodal MR images (or low-dose PET image) and standard-dose PET images can be particularly complex, one step of mapping is often insufficient. To this end, an incremental refinement framework is therefore proposed. Specifically, the predicted standard-dose PET image is further mapped to the target standard-dose PET image, and then the SR is performed again to predict a new standard-dose PET image. This procedure can be repeated for prediction refinement of the iterations. Also, a patch selection based dictionary construction method is further used to speed up the prediction process. The proposed method is validated on a human brain dataset. The experimental results show that our method can outperform benchmark methods in both qualitative and quantitative measures.

  14. Investigating synergies of data fusion and image segmentation in earth observation based rapid mapping workflows

    NASA Astrophysics Data System (ADS)

    Witharana, C.

    2013-12-01

    In humanitarian emergencies, the timeliness of data provision and the short time-window available for dispatching value-added information pose major challenges to the mapping community. We have been engaged with a continuous research effort to explore novel ways to catalyze the EO-based humanitarian crisis information retrieval chain. This paper is an exploratory study, which aimed to discover the synergies of data fusion and image segmentation in the context of EO-based rapid mapping workflows. Our approach pillared on the geographic object-based image analysis (GEOBIA) focusing on multiscale, internally-displaced persons' (IDP) camp information extraction from very high spatial resolution (VHSR) images. We applied twelve pansharpening algorithms to two subsets of a GeoEye-1 image scene that was taken over a former war-induced ephemeral settlement in Sri Lanka. A multidimensional assessment was employed to benchmark pansharpening algorithms with respect to their spectral and spatial fidelity. The multiresolution segmentation (MRS) algorithm of the eCognition Developer software served as the key algorithm in the segmentation process. The first study site was used for comparing segmentation results produced from the twelve fused products at a series of scale, shape, and compactness settings of the MRS algorithm. The segmentation quality and optimum parameter settings of the MRS algorithm were estimated by using empirical discrepancy measures. Non-parametric statistical tests were used to compare the quality of image object candidates, which were derived from the twelve pansharpened products. A wall-to-wall classification was performed based on a support vector machine (SVM) classifier to classify image objects candidates of the fused images. The second site simulated a more realistic crisis information extraction scenario where the domain expertise is crucial in segmentation and classification. We compared segmentation and classification results of the original

  15. Automated matching of pairs of SIR-B images for elevation mapping

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.; Strong, J. P.; Murray, C. W., Jr.; Hung, Y.

    1986-01-01

    During the SIR-B mission in October 1984, a significant number of overlapping synthetic aperture radar (SAR) images of various ground areas was collected. This has offered the first opportunity to perform stereo analyses on images from space that cover large ground areas to determine elevation information. This paper presents the preliminary results of an investigation to obtain elevation data from stereo pairs of SIR-B images. First, the accuracy with which elevation information can be derived from SIR-B image pairs is evaluated theoretically. It is shown that elevation accuracy is a function of the slant range resolution, the incidence angles with which the stereo pair is obtained, the accuracies in spacecraft state estimation, and determination of corresponding pixels in the stereo pair. Next, a hierarchical method is developed to match the corresponding pixels. This method involves iterative removal of local distortions and correlations of pairs of local neighborhoods in the two images. Since it is necessary to perform the matching at every pixel in the image, it is very computationally intensive. Therefore, it has been implemented on the Massively Parallel Processor (MPP) at the Goddard Space Flight Center (GSFC). The MPP's speed permits two iterations of this technique to operate on a pair of 512 x 512 images within 7 s. Results of applying this algorithm of SIR-B images of Mount Shasta, CA, are shown. The matching algorithm performs well in regions of the image with significant features. An approximate elevation image derived from the matching process corresponds to published topographic map data, except for certain obvious discontinuities.

  16. A preliminary study for fully automated quantification of psoriasis severity using image mapping

    NASA Astrophysics Data System (ADS)

    Mukai, Kazuhiro; Iyatomi, Hitoshi

    2014-03-01

    Psoriasis is a common chronic skin disease and it detracts patients' QoL seriously. Since there is no known permanent cure so far, controlling appropriate disease condition is necessary and therefore quantification of its severity is important. In clinical, psoriasis area and severity index (PASI) is commonly used for abovementioned purpose, however it is often subjective and troublesome. A fully automatic computer-assisted area and severity index (CASI) was proposed to make an objective quantification of skin disease. It investigates the size and density of erythema based on digital image analysis, however it does not consider various inadequate effects caused by different geometrical conditions under clinical follow-up (i.e. variability in direction and distance between camera and patient). In this study, we proposed an image alignment method for clinical images and investigated to quantify the severity of psoriasis under clinical follow-up combined with the idea of CASI. The proposed method finds geometrical same points in patient's body (ROI) between images with Scale Invariant Feature Transform (SIFT) and performs the Affine transform to map the pixel value to the other. In this study, clinical images from 7 patients with psoriasis lesions on their trunk under clinical follow-up were used. In each series, our image alignment algorithm align images to the geometry of their first image. Our proposed method aligned images appropriately on visual assessment and confirmed that psoriasis areas were properly extracted using the approach of CASI. Although we cannot evaluate PASI and CASI directly due to their different definition of ROI, we confirmed that there is a large correlation between those scores with our image quantification method.

  17. A new mapping method of underwater bottom topography in the shallow sea by using SAR images

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Zhang, Huaguo; Yang, Jingsong; Ren, Lin; Wang, Xiaozhen

    2016-10-01

    Synthetic aperture radar (SAR) is an active instrument which is used to create images of an object. Underwater bottom topography can be retrieved indirectly by measuring variations of the sea surface roughness in the SAR images, although the microwaves cannot penetrate into the water. In this paper, we present a new simple method for bathymetric mapping in the shallow sea. Based on the radiometric correction, sea surface roughness is derived using SAR images. These results are then used for water depth inversions based on the Alpers-Hennings (AH) model, supported by a few true depth data points (sounding data or chart data). This method is used to bathymetric mapping of two areas in the Subei shoal. The study results of the two cases show that the trend of the inversion and true depths match well. The retrieval accuracy depends on the true depth data points. In a case, the true depth data is the sounding data, the relative errors between the inversion and true depths is less than 20%. In the other case, the true depth data is the chart data. And the result is worse, because the measure time of the chart is 1979, and the time of SAR images are 2000s. The bottom topography was changed. The proposed method has two advantages in that it does not require environmental parameters and it is relatively simple to operate.

  18. Development of phosphor imaging diagnostics for particle energization and field line mapping studies in MRX

    NASA Astrophysics Data System (ADS)

    Fox, W.; Zweben, S. J.; Yoo, J.; Jara-Almonte, J.; Myers, C.; Yamada, M.; Ji, H.

    2014-10-01

    The energization of particles by magnetic reconnection is one of its most important roles in space and astrophysical plasmas. We present results from phosphor-screen imaging diagnostics for the Magnetic Reconnection Experiment, developed to measure the location and timing of particle energization by magnetic reconnection and to map field lines. Phosphor-based imaging diagnostics have previously been to study plasma dynamics in in non-neutral plasmas and low-temperature linear machines. In MRX, movable, phosphor-coated probes are scanned across the current sheet, and phosphor emission is imaged on a fast camera acquiring at typically 500 k frames/sec. Optical filters isolate the phosphor emission from line emission in the plasma. The energy sensitivity of the probe is determined by the characteristics of the phosphor and bias of the probe with respect to the plasma. We also present the development of an e-beam diagnostic to directly map the magnetic field line structure and possibly to measure the parallel electric field and/or cross-field electron transport. A modulated electron beam from a hot tungsten filament will be detected downstream by Langmuir probes and the phosphor imager.

  19. Elasticity mapping of murine abdominal organs in vivo using harmonic motion imaging (HMI)

    NASA Astrophysics Data System (ADS)

    Payen, Thomas; Palermo, Carmine F.; Sastra, Stephen A.; Chen, Hong; Han, Yang; Olive, Kenneth P.; Konofagou, Elisa E.

    2016-08-01

    Recently, ultrasonic imaging of soft tissue mechanics has been increasingly studied to image otherwise undetectable pathologies. However, many underlying mechanisms of tissue stiffening remain unknown, requiring small animal studies and adapted elasticity mapping techniques. Harmonic motion imaging (HMI) assesses tissue viscoelasticity by inducing localized oscillation from a periodic acoustic radiation force. The objective of this study was to evaluate the feasibility of HMI for in vivo elasticity mapping of abdominal organs in small animals. Pathological cases, i.e. chronic pancreatitis and pancreatic cancer, were also studied in vivo to assess the capability of HMI for detection of the change in mechanical properties. A 4.5 MHz focused ultrasound transducer (FUS) generated an amplitude-modulated beam resulting in 50 Hz harmonic tissue oscillations at its focus. Axial tissue displacement was estimated using 1D-cross-correlation of RF signals acquired with a 7.8 MHz diagnostic transducer confocally aligned with the FUS. In vitro results in canine liver and kidney showed the correlation between HMI displacement and Young’s moduli measured by rheometry compression testing. HMI was capable of providing reproducible elasticity maps of the mouse abdominal region in vivo allowing the identification of, from stiffest to softest, the murine kidney, pancreas, liver, and spleen. Finally, pancreata affected by pancreatitis and pancreatic cancer showed HMI displacements 1.7 and 2.2 times lower than in the control case, respectively, indicating higher stiffness. The HMI displacement amplitude was correlated with the extent of fibrosis as well as detecting the very onset of stiffening even before fibrosis could be detected on H&E. This work shows that HMI can produce reliable elasticity maps of mouse abdominal region in vivo, thus providing a potentially critical tool to assess pathologies affecting organ elasticity.

  20. Direct optical imaging and flux mapping of CH4 in landscapes

    NASA Astrophysics Data System (ADS)

    Gålfalk, M.; Olofsson, G.; Crill, P. M.; Bastviken, D.

    2014-12-01

    Methane (CH4) is a very potent greenhouse gas with many and diverse natural and anthropogenic emission sources such as wetlands, animals, biogas production, waste and sewage management systems. It has increased 2.5-fold since 1750 and is expected to continue to rise, with possible large implications for future climates. Although many individual sources have unknown fluxes, and distributions could be both hotspots or continuous, measurements are mostly made on either a very small scale (chambers or flux towers) with point-like or uncertain footprints, or on the very large scale of satellites with km-sized footprints. There is thus a missing intermediate scale, a scale which would allow both pin-pointing of individual CH4 emission sources and mapping a large enough area to cover a whole landscape. A general such method would be beneficial for connecting scattered local measurements and integrated large scale estimates. Remote sensing is a tool that is often used to map surface materials and the atmosphere from space. This technique, optimized for ground-based or near-ground, sensitive CH4 detection using high spectral resolution, could be a future method for detecting and mapping CH4 sources and fluxes in the environment. We present a new camera system with the ability to both detect and quantify CH4 at low levels in landscapes using remote sensing. Detection is made through thermal infrared (IR) imaging spectroscopy, using the heat radiation of objects in a scene to provide background light (e.g. tree leaves, rocks, grass or the sky). Using spectroscopic and radiative transfer modelling for each pixel (spectrum) in an image, we can calculate a CH4 distribution map from the measured spectra. The system uses imaging at high frequency (hundreds of Hz) to build the spectra - this also enables us to make simultaneous CH4 flux movies that can be used to calculate flows. Our method has broad applications and we will present examples from different environments.

  1. Molecular imaging by confocal Raman mapping: enabling technologies for speed, multivariate analysis, and convenience

    NASA Astrophysics Data System (ADS)

    Adar, Fran; Lee, Eunah; Whitley, Andrew

    2009-05-01

    In spite of the fact that the original Raman microscope was designed in the early 1970's for Raman imaging, wide-spread practical use of the technology did not appear until the last 5 years. The instruments are smaller, faster, easier-to-use, promoting reports of a variety of interesting applications in fields as diverse as nanomaterials, pharmaceuticals, composites, semiconductors, bio-clinical studies, polymers, ceramics and glasses. While the information content in Raman analysis is quite high, the time to acquire an image has been a deterrent to its application. Recent innovations including Swift and DUO Scan have addressed and are addressing these issues. SWIFT (Scanning with Incredibly Fast Times) is a rapid CCD read-out technique that is based on the synchronization between the XY motion of the motorized or piezo stage and the CCD readout. DUO scanning uses a set of scanning mirrors above the microscope objective to raster rapidly the laser beam across a sample area. This can be used to create a "giant pixel" in the map without compromising the NA of the light collection, or to create a map with step sizes as small as 10nm. Swift, in combination with DUO scan, as been used to produce full spectral maps of pharmaceutical tablets in times as short as 10 minutes, something that was previously believed to be near impossible. Off-line analysis of such a map using multivariate techniques produces Raman images indicating the quality of component mixing, and also the presence of minor, difficult-to-detect components (such as Mgstearate in pharmaceutical tablets).

  2. Elasticity mapping of murine abdominal organs in vivo using harmonic motion imaging (HMI).

    PubMed

    Payen, Thomas; Palermo, Carmine F; Sastra, Stephen A; Chen, Hong; Han, Yang; Olive, Kenneth P; Konofagou, Elisa E

    2016-08-07

    Recently, ultrasonic imaging of soft tissue mechanics has been increasingly studied to image otherwise undetectable pathologies. However, many underlying mechanisms of tissue stiffening remain unknown, requiring small animal studies and adapted elasticity mapping techniques. Harmonic motion imaging (HMI) assesses tissue viscoelasticity by inducing localized oscillation from a periodic acoustic radiation force. The objective of this study was to evaluate the feasibility of HMI for in vivo elasticity mapping of abdominal organs in small animals. Pathological cases, i.e. chronic pancreatitis and pancreatic cancer, were also studied in vivo to assess the capability of HMI for detection of the change in mechanical properties. A 4.5 MHz focused ultrasound transducer (FUS) generated an amplitude-modulated beam resulting in 50 Hz harmonic tissue oscillations at its focus. Axial tissue displacement was estimated using 1D-cross-correlation of RF signals acquired with a 7.8 MHz diagnostic transducer confocally aligned with the FUS. In vitro results in canine liver and kidney showed the correlation between HMI displacement and Young's moduli measured by rheometry compression testing. HMI was capable of providing reproducible elasticity maps of the mouse abdominal region in vivo allowing the identification of, from stiffest to softest, the murine kidney, pancreas, liver, and spleen. Finally, pancreata affected by pancreatitis and pancreatic cancer showed HMI displacements 1.7 and 2.2 times lower than in the control case, respectively, indicating higher stiffness. The HMI displacement amplitude was correlated with the extent of fibrosis as well as detecting the very onset of stiffening even before fibrosis could be detected on H&E. This work shows that HMI can produce reliable elasticity maps of mouse abdominal region in vivo, thus providing a potentially critical tool to assess pathologies affecting organ elasticity.

  3. Signal-to-noise analysis of cerebral blood volume maps from dynamic NMR imaging studies.

    PubMed

    Boxerman, J L; Rosen, B R; Weisskoff, R M

    1997-01-01

    The use of cerebral blood volume (CBV) maps generated from dynamic MRI studies tracking the bolus passage of paramagnetic contrast agents strongly depends on the signal-to-noise ratio (SNR) of the maps. The authors present a semianalytic model for the noise in CBV maps and introduce analytic and Monte Carlo techniques for determining the effect of experimental parameters and processing strategies upon CBV-SNR. CBV-SNR increases as more points are used to estimate the baseline signal level. For typical injections, maps made with 10 baseline points have 34% more noise than those made with 50 baseline points. For a given peak percentage signal drop, an optimum TE can be chosen that, in general, is less than the baseline T2. However, because CBV-SNR is relatively insensitive to TE around this optimum value, choosing TE approximately equal to T2 does not sacrifice much SNR for typical doses of contrast agent. The TR that maximizes spin-echo CBV-SNR satisfies TR/T1 approximately equal to 1.26, whereas as short a TR as possible should be used to maximize gradient-echo CBV-SNR. In general, CBV-SNR is maximized for a given dose of contrast agent by selecting as short an input bolus duration as possible. For image SNR exceeding 20-30, the gamma-fitting procedure adds little extra noise compared with simple numeric integration. However, for noisier input images, can be the case for high resolution echo-planar images, the covarying parameters of the gamma-variate fit broaden the distribution of the CBV estimate and thereby decrease CBV-SNR. The authors compared the analytic noise predicted by their model with that of actual patient data and found that the analytic model accounts for roughly 70% of the measured variability of CBV within white matter regions of interest.

  4. Iron in Multiple Sclerosis and Its Noninvasive Imaging with Quantitative Susceptibility Mapping

    PubMed Central

    Stüber, Carsten; Pitt, David; Wang, Yi

    2016-01-01

    Iron is considered to play a key role in the development and progression of Multiple Sclerosis (MS). In particular, iron that accumulates in myeloid cells after the blood-brain barrier (BBB) seals may contribute to chronic inflammation, oxidative stress and eventually neurodegeneration. Magnetic resonance imaging (MRI) is a well-established tool for the non-invasive study of MS. In recent years, an advanced MRI method, quantitative susceptibility mapping (QSM), has made it possible to study brain iron through in vivo imaging. Moreover, immunohistochemical investigations have helped defining the lesional and cellular distribution of iron in MS brain tissue. Imaging studies in MS patients and of brain tissue combined with histological studies have provided important insights into the role of iron in inflammation and neurodegeneration in MS. PMID:26784172

  5. Matrix-Assisted Laser Desorption Ionization Imaging Mass Spectrometry: In Situ Molecular Mapping

    PubMed Central

    Angel, Peggi M.; Caprioli, Richard M.

    2013-01-01

    Matrix-assisted laser desorption ionization imaging mass spectrometry (IMS) is a relatively new imaging modality that allows mapping of a wide range of biomolecules within a thin tissue section. The technology uses a laser beam to directly desorb and ionize molecules from discrete locations on the tissue that are subsequently recorded in a mass spectrometer. IMS is distinguished by the ability to directly measure molecules in situ ranging from small metabolites to proteins, reporting hundreds to thousands of expression patterns from a single imaging experiment. This article reviews recent advances in IMS technology, applications, and experimental strategies that allow it to significantly aid in the discovery and understanding of molecular processes in biological and clinical samples. PMID:23259809

  6. DIGITAL PROCESSING TECHNIQUES FOR IMAGE MAPPING WITH LANDSAT TM AND SPOT SIMULATOR DATA.

    USGS Publications Warehouse

    Chavez, Pat S.; ,

    1984-01-01

    To overcome certain problems associated with the visual selection of Landsat TM bands for image mapping, the author used a quantitative technique that ranks the 20 possible three-band combinations based upon their information content. Standard deviations and correlation coefficients can be used to compute a value called the Optimum Index Factor (OIF) for each of the 20 possible combinations. SPOT simulator images were digitally processed and compared with Landsat-4 Thematic Mapper (TM) images covering a semi-arid region in northern Arizona and a highly vegetated urban area near Washington, D. C. Statistical comparisons indicate the more radiometric or color information exists in certain TM three-band combinations than in the three SPOT bands.

  7. Workshop on the Use of Future Multispectral Imaging Capabilities for Lithologic Mapping: Workshop summary

    NASA Technical Reports Server (NTRS)

    Settle, M.; Adams, J.

    1982-01-01

    Improved orbital imaging capabilities from the standpoint of different scientific disciplines, such as geology, botany, hydrology, and geography were evaluated. A discussion on how geologists might exploit the anticipated measurement capabilities of future orbital imaging systems to discriminate and characterize different types of geologic materials exposed at the Earth's surface is presented. Principle objectives are to summarize past accomplishments in the use of multispectral imaging techniques for lithologic mapping; to identify critical gaps in earlier research efforts that currently limit the ability to extract useful information about the physical and chemical characteristics of geological materials from orbital multispectral surveys; and to define major thresholds, resolution and sensitivity within the visible and infrared portions of the electromagnetic spectrum which, if achieved would result in significant improvement in our ability to discriminate and characterize different geological materials exposed at the Earth's surface.

  8. HSI mapping of marine and coastal environments using the advanced airborne hyperspectral imaging system (AAHIS)

    NASA Astrophysics Data System (ADS)

    Holasek, Rick E.; Portigal, Frederick P.; Mooradian, Gregory C.; Voelker, Mark A.; Even, Detlev M.; Fene, Michael W.; Owensby, Pamela D.; Breitwieser, David S.

    1997-08-01

    The advanced airborne hyperspectral imaging system (AAHIS) is an operational, high signal-to-noise ratio, high resolution, integrated hyperspectral imaging spectrometer. The compact, lightweight and portable AAHIS system is normally flown in Piper Aztec aircraft. AAHIS collect 'push- broom' data with 385 spatial channels and 288 simultaneous spectral channels from 433 nm to 832 nm, recording at 12 bits up to 55 frames/second. Typical operation incorporates on-chip pixel binning of four pixels spectrally and two pixels spatially, increasing the signal-to-noise ratio and reducing data rate. When binned, the spectral resolution is 5.5 nm and the instantaneous field-of-view is 1 mrad, resulting in a ground sample distance of 0.5 m from 500 m altitude. The sensor is optimized for littoral region remote sensing for a variety of civilian and defense applications including ecosystem surveying and inventory, detection and monitoring of environmental pollution, infrastructure mapping, and surveillance. Since August 1994, AAHIS has acquired over 120 GB of hyperspectral image data of littoral, urban, desert and tropical scenes. System upgrades include real-time spectral image processing, integrated flight navigation and 3-axis image stabilization. A description of the sensor system, its performance characteristics, and several processed images demonstrating material discrimination are presented. The remote assessment, characterization, and mapping of coral reef health and species identification and floral species at Nu'upia Ponds, are shown and compared to extensive ground truthing in and around Kaneohe Bay, Oahu, Hawaii. SETS emphasizes providing georegistered, GIS-integrated, value- added data products for customers to help them solve real- world problems.

  9. Discret aperture mapping with a micro-lenses array for interferometric direct imaging

    NASA Astrophysics Data System (ADS)

    Patru, Fabien; Antichi, Jacopo; Rabou, Patrick; Giro, Enrico; Mawet, Dimitri; Milli, Julien; Girard, Julien; Carbillet, Marcel; Mourard, Denis

    2013-12-01

    A challenging study for high resolution and high-contrast imaging is the detection and the characterization of planets in the habitable zone. The problem of detection in imaging is due to both the contrast ratio and the tiny separation between the hosting star and the exoplanet. Certainly, many techniques in high-contrast imaging will have to be optimized simultaneously to enhance the detection treshold and to probe the candidates for life. In this context, the objective is to demonstrate the technical faisability and to get scientific returns with a new concept called Discret Aperture Mapping or DAM (Patru et al. 2011). DAM is a new interferometric technique allowing high contrast imaging over a narrow field of view imaged by the present class of mono-pupil telescopes equipped with adaptive optics (AO). DAM consists in mapping the telescope pupil to provide a correct sampling of the spatial frequency content of the telescope. DAM can be realized by an afocal double lenslet array array (BIGRE-DAM, Antichi et al. 2011), or by a single-mode fiber combiner (Fibered-DAM, Patru et al. 2008). The spatial filtering used in interferometry allows to subdivide the entrance pupil of a large telescope into many coherent sub-pupils, so that the intra-sub-pupil residual phase is averaged out. On the other side, frequencies higher than the deformable mirror sampling one are not corected by AO impling aliasing effect and a strong impact of Fresnel propagation on the compensated wavefront up to the final focus (Antichi et al. 2010). DAM is then a high frequency optical filter able to remove part of the AO residuals and to remove most of the halo in the image. It may improve the contrast limit to explore the inner region of new stellar systems (disk, exoplanet). We show here first simulation results on the DAM concept.

  10. Development of an ADC radiation tolerance characterization system for the upgrade of the ATLAS LAr calorimeter

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Bin; Chen, Hu-Cheng; Chen, Kai; Kierstead, James; Lanni, Francesco; Takai, Helio; Jin, Ge

    2017-02-01

    ATLAS LAr calorimeter will undergo its Phase-I upgrade during the long shutdown (LS2) in 2018, and a new LAr Trigger Digitizer Board (LTDB) will be designed and installed. Several commercial-off-the-shelf (COTS) multi-channel high-speed ADCs have been selected as possible backups of the radiation tolerant ADC ASICs for the LTDB. To evaluate the radiation tolerance of these backup commercial ADCs, we developed an ADC radiation tolerance characterization system, which includes the ADC boards, data acquisition (DAQ) board, signal generator, external power supplies and a host computer. The ADC board is custom designed for different ADCs, with ADC drivers and clock distribution circuits integrated on board. The Xilinx ZC706 FPGA development board is used as a DAQ board. The data from the ADC are routed to the FPGA through the FMC (FPGA Mezzanine Card) connector, de-serialized and monitored by the FPGA, and then transmitted to the host computer through the Gigabit Ethernet. A software program has been developed with Python, and all the commands are sent to the DAQ board through Gigabit Ethernet by this program. Two ADC boards have been designed for the ADC, ADS52J90 from Texas Instruments and AD9249 from Analog Devices respectively. TID tests for both ADCs have been performed at BNL, and an SEE test for the ADS52J90 has been performed at Massachusetts General Hospital (MGH). Test results have been analyzed and presented. The test results demonstrate that this test system is very versatile, and works well for the radiation tolerance characterization of commercial multi-channel high-speed ADCs for the upgrade of the ATLAS LAr calorimeter. It is applicable to other collider physics experiments where radiation tolerance is required as well. Supported by the U. S. Department of Energy (DE-SC001270)

  11. A Comparison of Spatial and Spectral Image Resolution for Mapping Invasive Plants in Coastal California

    NASA Astrophysics Data System (ADS)

    Underwood, Emma C.; Ustin, Susan L.; Ramirez, Carlos M.

    2007-01-01

    We explored the potential of detecting three target invasive species: iceplant ( Carpobrotus edulis), jubata grass ( Cortaderia jubata), and blue gum ( Eucalyptus globulus) at Vandenberg Air Force Base, California. We compared the accuracy of mapping six communities (intact coastal scrub, iceplant invaded coastal scrub, iceplant invaded chaparral, jubata grass invaded chaparral, blue gum invaded chaparral, and intact chaparral) using four images with different combinations of spatial and spectral resolution: hyperspectral AVIRIS imagery (174 wavebands, 4 m spatial resolution), spatially degraded AVIRIS (174 bands, 30 m), spectrally degraded AVIRIS (6 bands, 4 m), and both spatially and spectrally degraded AVIRIS (6 bands, 30 m, i.e., simulated Landsat ETM data). Overall success rates for classifying the six classes was 75% (kappa 0.7) using full resolution AVIRIS, 58% (kappa 0.5) for the spatially degraded AVIRIS, 42% (kappa 0.3) for the spectrally degraded AVIRIS, and 37% (kappa 0.3) for the spatially and spectrally degraded AVIRIS. A true Landsat ETM image was also classified to illustrate that the results from the simulated