Science.gov

Sample records for add drop medical

  1. Nonreciprocal photonic crystal add-drop filter

    NASA Astrophysics Data System (ADS)

    Tao, Keyu; Xiao, Jun-Jun; Yin, Xiaobo

    2014-11-01

    We present a versatile add-drop integrated photonic filter (ADF) consisting of nonreciprocal waveguides in which the propagation of light is restricted in one predetermined direction. With the bus and add/drop waveguides symmetrically coupled through a cavity, the four-port device allows each individual port to add and/or drop a signal of the same frequency. The scheme is general and we demonstrate the nonreciprocal ADF with magneto-optical photonic crystals. The filter is immune to waveguide defects, allowing straightforward implementation of multi-channel ADFs by cascading the four-port designs. The results should find applications in wavelength-division multiplexing and related integrated photonic techniques.

  2. Nonreciprocal photonic crystal add-drop filter

    SciTech Connect

    Tao, Keyu; Xiao, Jun-Jun; Yin, Xiaobo

    2014-11-24

    We present a versatile add-drop integrated photonic filter (ADF) consisting of nonreciprocal waveguides in which the propagation of light is restricted in one predetermined direction. With the bus and add/drop waveguides symmetrically coupled through a cavity, the four-port device allows each individual port to add and/or drop a signal of the same frequency. The scheme is general and we demonstrate the nonreciprocal ADF with magneto-optical photonic crystals. The filter is immune to waveguide defects, allowing straightforward implementation of multi-channel ADFs by cascading the four-port designs. The results should find applications in wavelength-division multiplexing and related integrated photonic techniques.

  3. Mode-routed fiber-optic add-drop filter

    NASA Technical Reports Server (NTRS)

    Moslehi, Behzad (Inventor); Black, Richard James (Inventor); Shaw, Herbert John (Inventor)

    2000-01-01

    New elements mode-converting two-mode grating and mode-filtering two-mode coupler are disclosed and used as elements in a system for communications, add-drop filtering, and strain sensing. Methods of fabrication for these new two-mode gratings and mode-filtering two-mode couplers are also disclosed.

  4. Optical add/drop filter for wavelength division multiplexed systems

    DOEpatents

    Deri, Robert J.; Strand, Oliver T.; Garrett, Henry E.

    2002-01-01

    An optical add/drop filter for wavelength division multiplexed systems and construction methods are disclosed. The add/drop filter includes a first ferrule having a first pre-formed opening for receiving a first optical fiber; an interference filter oriented to pass a first set of wavelengths along the first optical fiber and reflect a second set of wavelengths; and, a second ferrule having a second pre-formed opening for receiving the second optical fiber, and the reflected second set of wavelengths. A method for constructing the optical add/drop filter consists of the steps of forming a first set of openings in a first ferrule; inserting a first set of optical fibers into the first set of openings; forming a first set of guide pin openings in the first ferrule; dividing the first ferrule into a first ferrule portion and a second ferrule portion; forming an interference filter on the first ferrule portion; inserting guide pins through the first set of guide pin openings in the first ferrule portion and second ferrule portion to passively align the first set of optical fibers; removing material such that light reflected from the interference filter from the first set of optical fibers is accessible; forming a second set of openings in a second ferrule; inserting a second set of optical fibers into the second set of openings; and positioning the second ferrule with respect to the first ferrule such that the second set of optical fibers receive the light reflected from the interference filter.

  5. Novel fiber bottle microresonator add-drop filters

    NASA Astrophysics Data System (ADS)

    Senthil Murugan, Ganapathy; Wilkinson, James S.; Zervas, Michalis N.

    2010-02-01

    Novel bottle microresonators fabricated from standard telecommunications optical fiber were recently shown to support helical whispering gallery modes (WGMs) extending along the bottle length between the bottle necks. Intensity maxima were observed around the turning points on both sides close to the bottle necks where the WGMs are effectively reflected. Selective excitation on one side of the bottle microresonator leads to strong power localization at a symmetrically located turning point for the WGMs and can potentially be exploited to form effective add-drop filters. Channel dropping characteristics have been studied experimentally for the first time in this novel type of microresonator. A tapered optical fiber (drawn down to 2-3 microns in diameter with effective index of approximately 1.2) was placed on one side of the bottle to excite the bottle WGMs. A similar tapered fiber placed symmetrically on the other side of the bottle acted as a probe to extract the excited modes. We have successfully extracted power from all the resonance wavelengths using the probe placed at appropriate positions along the bottle, leading to the potential to construct efficient all fiber add-drop filters.

  6. Multichannel optical add-drop processes in symmetrical waveguide-resonator systems.

    PubMed

    Jiang, Wei; Chen, Ray T

    2003-11-21

    Multichannel optical add-drop processes are studied in a class of symmetric waveguide-resonator systems. With insight gained from group theory, we analyze these systems and show that they can add or drop multiple wavelengths simultaneously, with 100% efficiency. A new mechanism is presented to reduce the remnant light at the dropped wavelengths in the pass-through port. High-order Butterworth filters can also be achieved in these systems. Built upon conventional or photonic-crystal based structures, these systems can be used in optical communication applications.

  7. Four-channel optical add-drop multiplexer based on dual racetrack micro-ring resonators

    NASA Astrophysics Data System (ADS)

    Wu, Danning; Wu, Yuanda; Wang, Yue; An, Junming; Hu, Xiongwei

    2015-11-01

    In this paper we report on a four-channel optical add-drop multiplexer based on dual racetrack micro-ring resonators in submicron SOI rib waveguides. The free spectral range (FSR) is about 18.6 nm. The device can add/drop four optical channels in half C-band. When the device acts as an optical drop multiplexer, the channel spacing is about 1.5 nm, maximum extinction ratio is 23.75 dB, the minimum insertion loss 9.94 dB and the maximum adjacent channels crosstalk is -12.12 dB. When the device acts as an optical add multiplexer, the maximum extinction ratio is 28.72 dB and the minimum insertion loss 7.35 dB. The fabricated device has effectively and perfectly realized the signals upload and download.

  8. Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber.

    PubMed

    Chen, Xi; Shi, Yuechun; Lou, Fei; Chen, Yiting; Yan, Min; Wosinski, Lech; Qiu, Min

    2014-10-20

    An optically pumped thermo-optic (TO) silicon ring add-drop filter with fast thermal response is experimentally demonstrated. We propose that metal-insulator-metal (MIM) light absorber can be integrated into silicon TO devices, acting as a localized heat source which can be activated remotely by a pump beam. The MIM absorber design introduces less thermal capacity to the device, compared to conventional electrically-driven approaches. Experimentally, the absorber-integrated add-drop filter shows an optical response time of 13.7 μs following the 10%-90% rule (equivalent to a exponential time constant of 5 μs) and a wavelength shift over pump power of 60 pm/mW. The photothermally tunable add-drop filter may provide new perspectives for all-optical routing and switching in integrated Si photonic circuits. PMID:25401557

  9. Analysis of reconfigurable multi-channel wavelength add drop multiplexer for intelligent optical networks

    NASA Astrophysics Data System (ADS)

    Ponmalar, S.; Sundaravadivelu, S.

    2011-07-01

    This paper presents design of an electro-optically tunable polymer multi-channel wavelength add drop multiplexer (WADM). The proposed WADM with trapezoidal waveguide geometry and poled electro-optical polymer material in the waveguide cores enables the wavelength tuning speed of WADM as 7.5 ps at the resonance wavelength of 1550 nm and coupling length of 1.5 mm. The device can be electro-optically tuned to add/drop multiple channels. Transmission spectra of the device with varying device parameters are simulated. The proposed WADM with high speed, small size and varying tuning capability makes this device, an important element in faster provisioning and routing of light paths in intelligent optical network.

  10. Add-drop filters based on asymmetric high-order microring resonators

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Huang, Yongqing; Ren, Xiaomin; Duan, Xiaofeng; Shen, Bing; Wang, Qi; Zhang, Xia; Cai, Shiwei

    2012-11-01

    Add/drop filters are key components of Wavelength Division Multiplexing (WDM) communication systems. Free spectral range(FSR) is a key parameter for Add/drop filters, the FSR should operate within the entire C-band (1530-1562nm).And flat-top drop-port response with a sharp rolloff is also import, Flatness of the passband, sharp roll-off from passband to stop band are necessary to minimize the pulse broadening and the packing efficiency of wavelength channels. In this paper, we proposed an asymmetric approach to design high-order microring filters, The aim is to achieve large extension ratios and adequate suppression of the spurious interstitial mode, meanwhile, flat-top and steep-side response in filter could be obtained by this approach. Our simulation results showed an extended FSR of 40nm, reducing the interstitial peak suppression from 5dB to 35dB and a boxlike filter response with sharpe factor(SF) of 0.68. And a quality-factor of 2961 and a 3-dB bandwidth of 0.52nm is achieved.

  11. Reconfigurable optical add-drop multiplexer based on thermally tunable micro-ring resonators

    NASA Astrophysics Data System (ADS)

    Wu, Danning; Wu, Yuanda; Wang, Yue; An, Junming; Hu, Xiongwei

    2016-05-01

    We report on an eight-channel reconfigurable optical add-drop multiplexer (ROADM) based on micro-ring resonators (MRRs). The effective footprint of the device is about 1000×760 μm2. The free spectral range (FSR) is about 18 nm. The adjacent channel crosstalk ranges from -19.02 dB to -8.29 dB. With the help of the multi-wire structure heaters, compact footprint and high tuning efficiency are achieved simultaneously. Therefore, the minimum average tuning efficiency is 2.723 mW/nm.

  12. Remote PCF-based sensors multiplexing by using optical add-drop multiplexers

    NASA Astrophysics Data System (ADS)

    Bravo, Mikel; Candiani, Alessandro; Cucinotta, Annamaria; Selleri, Stefano; Lopez-Amo, Manuel; Kobelke, Jens; Schuster, Kay

    2014-04-01

    A 100 km remote PCF micro-displacement sensor multiplexing system based on optical add-drop multiplexers (OADMs) has been experimentally demonstrated. The PCF sensors are placed in an OADM bus structure which is illuminated by a home-made tunable fiber optic ring laser. Four micro-displacement photonic crystal fiber (PCF) sensors based on a suspended core fiber inserted into a Sagnac loop filter are multiplexed. Furthermore, being the first proposal to solve this issue in PCF sensor multiplexing structures, these sensors can be referenced with an extra wavelength.

  13. Design and simulation of microring resonators for time-domain optical add-drop multiplexing

    NASA Astrophysics Data System (ADS)

    Hong, Jianxun; Li, Chengjun; Zhou, Jianxin; Chen, Shuiping; Zhou, Limin; Chen, Wei

    2008-11-01

    A time-domain optical add-drop multiplexing (OADM) technology using microring resonators is reported. Design and simulation are presented. The microring resonator is predicted to be fabricated by using Pockler electro-optic materials. The microring resonators possess a multistage-cascaded structure to satisfy the requirement to generate switching windows. Cascaded coupled microring resonator can expand the single resonant point into a box-like resonant region and reduce the wings of resonant curve. While multistage resonators are used and a certain shift of the resonant region is arranged between the stages, the total resonant region can be expanded further. We achieve the shift of the resonant region between the two stages by selecting different ring radii. The resulted microring resonators possess a box-like characteristic with shape wings. The OADM includes two microring resonators (MMRs) driven by sine wave voltages, one is used to accomplish the add function the other is used to accomplish the drop function. The only operation differences between the two MMRs are the bias voltage and the phase of the driving signal. The OADM only requires electrical control signal and simple structure instead of high-quality optical control pulse and interferometer structure. FDTD simulation results show that the resonators can stratify the requirements to generate complementary switching windows for OADM operation.

  14. Full-optical tunable add/drop filter based on nonlinear photonic crystal ring resonators

    NASA Astrophysics Data System (ADS)

    Mansouri-Birjandi, Mohammad Ali; Tavousi, Alireza; Ghadrdan, Majid

    2016-09-01

    Here, we propose a full-optical tunable Add/Drop filter based on single (SR) and double-vertically (DR) aligned Kerr-like nonlinear photonic crystal ring resonators (PCRRs). Silicon (Si) nano-crystal is used as the nonlinear material inside and outside of PCRRs. The minimum optical power required to turn-on/turn-off the SR and DR filters are 2000 mW/μm2, and 150 mW/μm2, respectively. We believe since the DR filter has a higher Q-factor rather than SR and also since the optical power reads more nonlinear rods with a longer time to pass the structure, thus the optical power required is much lower (10 folds). In addition, the minimum power required to 1 nm redshift the center operating wavelength of SR filter is 125 mW/μm2 (i.e. ΔnNL = 0.005) and for DR is as low as 8 mW/μm2. Performance of the Add/Drop filter structure is simulated by means of finite difference time domain (FDTD) method, in which the simulations showed an ultra-compact size structure with promising ultrafast tune-ability speeds.

  15. Liquid-crystal-on-silicon-based optical add/drop multiplexer for orbital-angular-momentum-multiplexed optical links.

    PubMed

    Huang, Hao; Yue, Yang; Yan, Yan; Ahmed, Nisar; Ren, Yongxiong; Tur, Moshe; Willner, Alan E

    2013-12-01

    We designed an optical add/drop multiplexer for orbital-angular-momentum (OAM)-multiplexed data links by taking advantage of the ring-shaped intensity profile of OAM beams. We demonstrated adding/dropping a single OAM beam from three multiplexed OAM beams using liquid-crystal-on-silicon-based diffraction optical elements. For multiplexed OAM beams carrying 100 Gbit/s quadrature phase-shift-keying data, a power penalty of <2 dB is observed to achieve a bit-error rate of 2.0×10(-3) for each channel of the add/drop multiplexer.

  16. Design of a reconfigurable optical add/drop multiplexer based on tunable Fabry-Perot array

    NASA Astrophysics Data System (ADS)

    Ye, Jiansen; Wang, Xin; Li, Zhuo; Yang, Yang; Xu, Rui; Shi, Rui

    2015-08-01

    With the development of optical fiber communication, dense wavelength division multiplexing (DWDM) system is important for the rapid management of multi-wavelength in the core node of the optical transmission network. In this paper, a reconfigurable optical add-drop multiplexer (ROADM) based on the tunable Fabry-Perot (F-P) array is proposed. An optical switch with high isolation and low crosstalk is designed by using the characteristics of filtering and tuning for the F-P array. The principle, structure, and function of the tunable F-P array are introduced. The characteristics of filtering and tuning for the F-P filter are also calculated, and the factor for the isolation, crosstalk, response time and insertion loss are analyzed. A single physical channel ROADM with 16 signal channels, which operates in C-band, is designed and optimized by simulation.

  17. Nanophotonic graphene-based racetrack-resonator add/drop filter

    NASA Astrophysics Data System (ADS)

    Wirth L., A.; da Silva, M. G.; Neves, D. M. C.; Sombra, A. S. B.

    2016-05-01

    We are presenting and analyzing a graphene-based nanophotonic device to operate as a resonator-add/drop filter, whose control is obtained by varying the graphene chemical potential. That device consists of graphene-based waveguides, two directional couplers and a racetrack resonator with 90° bends. Since the graphene chemical potential provides the achievement of the necessary parameters, the resonance and filtering of the signals are obtained by applying the correct value of the graphene chemical potential in the graphene nanoribbons. The results of this study should help in the development of new graphene-based nanophotonic devices operating in the terahertz and infrared range (including in the C-band of the International Telecommunication Union - ITU), for use in future communications networks.

  18. Wavelength tunable integrated add-drop filter with 10.6 nm bandwidth adjustability.

    PubMed

    Boroojerdi, M T; Ménard, M; Kirk, A G

    2016-09-19

    We present the design and characterization of a silicon-on-insulator based bandwidth and wavelength-tunable add-drop filter. The tunability of the device is achieved by independently controlling the central wavelength of two cascaded contra-directional grating assisted couplers. The device was fabricated using e-beam lithography and the tuning is demonstrated using the thermo-optic effect, which was obtained with metal heaters fabricated by a lift-off process. It is experimentally demonstrated that within the wavelength range of 1555 nm to 1573 nm the transmission bandwidth of the device can be tuned from 1.1 nm to 11.7 nm. Moreover, more than 4 nm of central wavelength tuning is demonstrated. The tunability of the central wavelength is limited by the breakdown current of the metal heaters. PMID:27661939

  19. A study of high repetition rate pulse generation and all-optical add/drop multiplexing

    NASA Astrophysics Data System (ADS)

    Chen, Hongmin

    Ultra high-speed optical time-division-multiplexed (OTDM) transmission technologies are essential for the construction of ultra high-speed all-optical networks needed in the information era. In this Ph. D thesis dissertation, essential mechanisms associated with ultra high speed OTDM transmission systems, such as, high speed ultra short pulse generation, all optical demultiplexing and all optical add/drop multiplexing, have been studied. Both experimental demonstrations and numerical simulations have been performed. In order to realize high-speed optical TDM systems, high repetition rate, ultra short pulses are needed. A rational harmonic mode-locked ring fiber laser has been used to produce ultrashort pulses, the pulse jitter will be eliminated using a Phase-Locked-Loop (PLL), and the self-pulsation has been suppressed using a semiconductor optical amplifier (SOA). Sub pico-second pulses are very important for all optical sampling in the ultrahigh-speed OTDM transmission system. In this thesis, a two stage compression scheme utilizing the nonlinearity and dispersion of the optical fibers has been constructed and used to compress the gain switched DFB laser pulses. Also a nonlinear optical loop mirror has been constructed to suppress the wings associated with nonlinear compression. Pedestal free, transform-limited pulses with pulse widths in range of 0.2 to 0.4 ps have been generated. LiNbO3 modulators play a very important role in fiber optical communication systems. In this thesis, LiNbO3 modulators have been used to perform high repetition rate pulse generation, all optical demultiplexing and all optical add/drop for the TDM transmission system.

  20. Acoustic add-drop filters based on phononic crystal ring resonators

    NASA Astrophysics Data System (ADS)

    Rostami-Dogolsara, Babak; Moravvej-Farshi, Mohammad Kazem; Nazari, Fakhroddin

    2016-01-01

    We report the design procedure for an acoustic add-drop filter (ADF) composed of two line-defect waveguides coupled through a ring resonator cavity (RRC) all based on a phononic crystal (PnC) platform. Using finite difference time domain and plane wave expansion methods, we study the propagation of acoustic waves through the PnC based ADF structures. Numerical results show that the quality factor for the ADF with a quasisquare ring resonator with a frequency band of 95 Hz centered about 75.21 kHz is Q ˜ 800. We show that the addition of an appropriate scatterer at each RRC corner can reduce the scattering loss, enhancing the quality factor and the transmission efficiency. Moreover, it is also shown that by increasing the coupling gaps between the RRC and waveguides the quality factor can be increased by ˜25 times, at the expense of a significant reduction in the transmission efficiency this is attributed to the enhanced selectivity in expense of weakened coupling. Finally, by varying the effective path length of the acoustic wave in the RRC, via selectively varying the inclusions physical and geometrical properties, we show how one can ultra-fine and fine-tune the resonant frequency of the ADF.

  1. Multi-mode fiber coarse WDM grating router using broadband add/drop filters for wavelength re-use

    SciTech Connect

    Patel, R R; Bond, S W; Larson, M C; Pocha, M D; Lowry, M E; Deri, R J

    1999-06-01

    We demonstrate a grating-router with 37nm channel spacing and 6nm FWHM in the 800-900nm range for WDM over multimode fiber. Broadband thin-film add/drop filters provide wavelength re-use enabling NxN fully non-blocking interconnection with N wavelengths.

  2. Monolithically integrated 20-channel optical add/drop multiplexer subsystem with hybrid-integrated 40-channel photodetector array

    NASA Astrophysics Data System (ADS)

    Schumacher, Andreas B.; Krabe, Detlef; Dieckroeger, Jens; Spott, Thorsten; Kraeker, Tobias; Martins, Evely; Zavrsnik, Miha; Schneider, Hartmut W.; Baumann, Ingo

    2003-03-01

    We built a 20 channel, 200 GHz, fully reconfigurable optical add-/drop multiplexer with integrated variable optical attenuators and power monitor diodes. A single planar lightwave circuit chip contains demultiplexer, switch array, attenuators and multiplexers. It also serves as an "optical motherboard" for a hybrid, flip-chip assembly containing four 10-channel photo detector arrays. A thermal management concept which considers both microscopic and macroscopic aspects of the device was developed. The final device exhibits an insertion loss of 9 dB from "in"- to "through"-port, a 1 dB bandwidth of >50 GHz and switch extinction ratios in excess of 40 dB.

  3. Mothers whose children have ADD/ADHD discuss their children's medication use: an investigation of blogs.

    PubMed

    Clarke, Juanne N; Lang, Laura

    2012-01-01

    This article presents the results of a frame and discourse analysis of Internet blog sites where parents (usually mothers) discuss their concerns about medication use by their children with attention deficit disorder or attention deficit hyperactivity disorder (ADD/ADHD). This is a particularly important topic in an era characterized by powerful circulating discourses around the contentious medicalization of, and prevalent pharmaceutical treatments for, ADD/ADHD, as well as the mother blame associated with having a child diagnosed with ADD/ADHD. The findings document that the mothers see ADD/ADHD as legitimate medical diagnoses and view themselves as caretakers of children with brain and neuro-chemical anomalies affecting the behavior of their children. They favor pharmaceutical use and describe themselves as experts in the difficult and complex issues related to pharmaceuticalized parenting. At the same time their adoption of medicalization is contingent as they express specific critiques of some doctors, some types of doctors, and critically evaluate science.

  4. Medicating for ADD/ADHD: Personal and Social Issues

    ERIC Educational Resources Information Center

    Davis-Berman, Jennifer L.; Pestello, Frances G.

    2010-01-01

    Twenty college students from a private Midwestern university were interviewed about their past and present experiences with taking medication for Attention Deficit Disorder. Analysis of respondent interviews suggested the following themes that were discussed and analyzed: recruitment of the young, little personal stigma, societal issues, side…

  5. Performance Optimization of 45-Channel Superdense Wavelength-Division-Multiplexed (SDWDM) Optical Add-Drop Multiplexer (OADM) Ring Network

    NASA Astrophysics Data System (ADS)

    Sharma, Vikrant; Sharma, Anurag; Kaur, Dalvir

    2015-06-01

    In this paper, performance analysis of high-speed superdense wavelength-division-multiplexing (SDWDM) optical add-drop multiplexer (OADM) optical ring network for 6 nodes, 45 wavelengths having channel spacing of 0.2 nm on 300 km unidirectional nonlinear single-mode fiber ring of 10 Gbit/s has been reported. The performance optimization of the system by comparing different modulation formats has been reported on the basis of eye diagram and bit error rate (BER). It has been reported that CSRZ modulation format can achieve BER as better as e-24, which gives best performance. This paper also presents a study of performance degradation caused by the crosstalk and the effect of channel spacing on SWDM system.

  6. A novel optical path routing network that combines coarse granularity optical multicast with fine granularity add/drop and block

    NASA Astrophysics Data System (ADS)

    Soares, Mauro M.; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi

    2015-01-01

    We propose a novel optical path routing mechanism that combines coarse-granularity optical multicast with fine-granularity add/drop and block. We implement the proposal in an optical cross-connect node with broadcast-and-select functionality that offers high cost-effectiveness since no addition equipment from conventional ROADMs is needed. The proposed method, called branching, enhances the routing capabilities over the original grouped routing networks by enabling wavelength paths to be established through different GRE pipes. We also present a novel path/GRE routing and wavelength/GRE index assignment algorithm that supports the new routing function. Numerical experiments using real network topologies verify the improved routing performance and the superior efficiency of the proposed control algorithm over original GRE-based networks.

  7. Parametric study of dielectric loaded surface plasmon polariton add-drop filters for hybrid silicon/plasmonic optical circuitry

    NASA Astrophysics Data System (ADS)

    Dereux, A.; Hassan, K.; Weeber, J.-C.; Djellali, N.; Bozhevolnyi, S. I.; Tsilipakos, O.; Pitilakis, A.; Kriezis, E.; Papaioannou, S.; Vyrsokinos, K.; Pleros, N.; Tekin, T.; Baus, M.; Kalavrouziotis, D.; Giannoulis, G.; Avramopoulos, H.

    2011-01-01

    Surface plasmons polaritons are electromagnetic waves propagating along the surface of a conductor. Surface plasmons photonics is a promising candidate to satisfy the constraints of miniaturization of optical interconnects. This contribution reviews an experimental parametric study of dielectric loaded surface plasmon waveguides ring resonators and add-drop filters within the perspective of the recently suggested hybrid technology merging plasmonic and silicon photonics on a single board (European FP7 project PLATON "Merging Plasmonic and Silicon Photonics Technology towards Tb/s routing in optical interconnects"). Conclusions relevant for dielectric loaded surface plasmon switches to be integrated in silicon photonic circuitry will be drawn. They rely on the opportunity offered by plasmonic circuitry to carry optical signals and electric currents through the same thin metal circuitry. The heating of the dielectric loading by the electric current enables to design low foot-print thermo-optical switches driving the optical signal flow.

  8. No guard-band wavelength translation of Nyquist OTDM-WDM signal for spectral defragmentation in an elastic add-drop node.

    PubMed

    Tan, Hung Nguyen; Tanizawa, Ken; Inoue, Takashi; Kurosu, Takayuki; Namiki, Shu

    2013-09-01

    We demonstrate a seamless spectral defragmentation in an elastic all-optical add-drop node based on wavelength division multiplexing (WDM) channels of Nyquist optical time division multiplexing (OTDM) signal. A 172 Gbaud Nyquist OTDM signal occupying a 215 GHz range is elastically shifted adjacent to its neighboring channel, completely filling a variable spectral gap caused by the dropped channel. The frequency shift is done in a dual-stage polarization-diversity four wave mixing-based converter using polarization-maintaining highly nonlinear fiber. The spectrally defragmented signals are successfully transmitted over a 80 km fiber link with BER<10(-9).

  9. A hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks.

    PubMed

    Choi, Yong-Kyu; Hosoya, Kenta; Lee, Chung Ghiu; Hanawa, Masanori; Park, Chang-Soo

    2011-03-28

    We propose and experimentally demonstrate a hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks. Dynamic function is implemented by mechanically tuning the Fourier encoder/decoder for optical code division multiple access (OCDMA) encoding/decoding. Wavelength division multiplexing (WDM) is utilized for node assignment and 4-chip Fourier code recovers the matched signal from the codes. For an optical source well adapted to WDM channels and its short optical pulse generation, reflective semiconductor optical amplifiers (RSOAs) are used with a fiber Bragg grating (FBG) and gain-switched. To demonstrate we experimentally investigated a two-node hybrid WDM/OCDMA ring with a 4-chip Fourier encoder/decoder fabricated by cascading four FBGs with the bit error rate (BER) of <10(-9) for the node span of 10.64 km at 1.25 Gb/s.

  10. Coping with Medical Training Demands: Thinking of Dropping Out, or in It for the Long Haul

    ERIC Educational Resources Information Center

    Rogers, Mary E.; Creed, Peter A.; Searle, Judy; Nicholls, Serena L.

    2016-01-01

    Medical trainees are at risk of psychological distress due to training workload demands. Dropping out of medicine has hidden and real costs to both the public and the individual. Using quantitative and qualitative methodologies, this study assessed differences in stress and coping strategies between those serious and not serious about dropping out…

  11. Experimental verification of highly scalable OXC that consists of subsystem-modular express-switch part and multicast-switch-based add/drop part enabling total throughput of 314 Tbps.

    PubMed

    Takashina, Shoichi; Ishida, Hiroto; Niwa, Masaki; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-Ichi; Watanabe, Toshio

    2015-06-01

    We propose a cost-effective and scalable OXC/ROADM that consists of a subsystem-modular express switch part and a transponder-bank-based add/drop part. The effectiveness of the proposed architecture is verified via a hardware scale evaluation, network performance simulations, and transmission experiments. The architecture enables large throughput and offers significant hardware-scale reductions with marginal fiber-utilization penalty against the conventional architectures. A part of the OXC/ROADM designed to accommodate 35x35 express fiber ports and 2,800 transponders for add/drop is constructed. Its net throughput reaches 314 Tbps using 80 channels of 120-Gbps signal (30-Gbaud dual-polarization quadrature phase-shift-keying signals with 7% overhead are assumed). PMID:26072838

  12. Experimental verification of highly scalable OXC that consists of subsystem-modular express-switch part and multicast-switch-based add/drop part enabling total throughput of 314 Tbps.

    PubMed

    Takashina, Shoichi; Ishida, Hiroto; Niwa, Masaki; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-Ichi; Watanabe, Toshio

    2015-06-01

    We propose a cost-effective and scalable OXC/ROADM that consists of a subsystem-modular express switch part and a transponder-bank-based add/drop part. The effectiveness of the proposed architecture is verified via a hardware scale evaluation, network performance simulations, and transmission experiments. The architecture enables large throughput and offers significant hardware-scale reductions with marginal fiber-utilization penalty against the conventional architectures. A part of the OXC/ROADM designed to accommodate 35x35 express fiber ports and 2,800 transponders for add/drop is constructed. Its net throughput reaches 314 Tbps using 80 channels of 120-Gbps signal (30-Gbaud dual-polarization quadrature phase-shift-keying signals with 7% overhead are assumed).

  13. Does Wearable Medical Technology With Video Recording Capability Add Value to On-Call Surgical Evaluations?

    PubMed

    Gupta, Sameer; Boehme, Jacqueline; Manser, Kelly; Dewar, Jannine; Miller, Amie; Siddiqui, Gina; Schwaitzberg, Steven D

    2016-10-01

    Background Google Glass has been used in a variety of medical settings with promising results. We explored the use and potential value of an asynchronous, near-real time protocol-which avoids transmission issues associated with real-time applications-for recording, uploading, and viewing of high-definition (HD) visual media in the emergency department (ED) to facilitate remote surgical consults. Study Design First-responder physician assistants captured pertinent aspects of the physical examination and diagnostic imaging using Google Glass' HD video or high-resolution photographs. This visual media were then securely uploaded to the study website. The surgical consultation then proceeded over the phone in the usual fashion and a clinical decision was made. The surgeon then accessed the study website to review the uploaded video. This was followed by a questionnaire regarding how the additional data impacted the consultation. Results The management plan changed in 24% (11) of cases after surgeons viewed the video. Five of these plans involved decision making regarding operative intervention. Although surgeons were generally confident in their initial management plan, confidence scores increased further in 44% (20) of cases. In addition, we surveyed 276 ED patients on their opinions regarding concerning the practice of health care providers wearing and using recording devices in the ED. The survey results revealed that the majority of patients are amenable to the addition of wearable technology with video functionality to their care. Conclusions This study demonstrates the potential value of a medically dedicated, hands-free, HD recording device with internet connectivity in facilitating remote surgical consultation.

  14. Does Wearable Medical Technology With Video Recording Capability Add Value to On-Call Surgical Evaluations?

    PubMed

    Gupta, Sameer; Boehme, Jacqueline; Manser, Kelly; Dewar, Jannine; Miller, Amie; Siddiqui, Gina; Schwaitzberg, Steven D

    2016-10-01

    Background Google Glass has been used in a variety of medical settings with promising results. We explored the use and potential value of an asynchronous, near-real time protocol-which avoids transmission issues associated with real-time applications-for recording, uploading, and viewing of high-definition (HD) visual media in the emergency department (ED) to facilitate remote surgical consults. Study Design First-responder physician assistants captured pertinent aspects of the physical examination and diagnostic imaging using Google Glass' HD video or high-resolution photographs. This visual media were then securely uploaded to the study website. The surgical consultation then proceeded over the phone in the usual fashion and a clinical decision was made. The surgeon then accessed the study website to review the uploaded video. This was followed by a questionnaire regarding how the additional data impacted the consultation. Results The management plan changed in 24% (11) of cases after surgeons viewed the video. Five of these plans involved decision making regarding operative intervention. Although surgeons were generally confident in their initial management plan, confidence scores increased further in 44% (20) of cases. In addition, we surveyed 276 ED patients on their opinions regarding concerning the practice of health care providers wearing and using recording devices in the ED. The survey results revealed that the majority of patients are amenable to the addition of wearable technology with video functionality to their care. Conclusions This study demonstrates the potential value of a medically dedicated, hands-free, HD recording device with internet connectivity in facilitating remote surgical consultation. PMID:27335083

  15. Cyclosporine nanomicelle eye drop: a novel medication for corneal graft transplantation treatment.

    PubMed

    Zhang, Hongkui; Wang, Ling; Zhang, Longlu

    2015-01-01

    Corneal transplantation has been used to treat severe eye disease for decades, but the therapeutic effect of the operation is highly compromised by immunological allograft rejection. To improve the success rate of corneal transplantation, we studied the protective effects of cyclosporine nanomicelle eye drops (CNED) on immune rejection after high-risk corneal transplantation and its underlying mechanisms. The therapeutic effects against immune rejection of both conventional cyclosporine eye drop (CCED) and CNED in different concentrations were assessed and compared using animal models of corneal transplantation. In addition, the expression of nuclear factor-κ-gene binding (NF-κB) as well as its target intracellular adhesion molecule 1 (ICAM-1) in the corneal samples obtained from recipients treated with either CCED or CNED was also screened. The results showed that the CNED displayed significantly better effects at suppressing the immune response induced by corneal transplantation compared to CCED. CNED also significantly down-regulated the NF-κB and ICAM-1 expressions, indicating NF-κB might play an important role in the initiation of an immune response against the allograft. Our study demonstrates CNED may suppress the NF-κB pathway to attenuate the immune response, which highlights the possible therapeutic applications of cyclosporine nanomicelle eye drops in corneal transplantation.

  16. Preservative toxicity in glaucoma medication: clinical evaluation of benzalkonium chloride-free 0.5% timolol eye drops

    PubMed Central

    Rosin, Lauren M; Bell, Nicholas P

    2013-01-01

    Timolol (generic name) is a frequently used medication for the control of glaucoma. Benzalkonium chloride (BAK) is a commonly used preservative in ophthalmic solutions with a broad range of antimicrobial activity; however, this nonspecificity can result in toxicity. Adverse effects attributed to BAK, including conjunctival inflammation and fibrosis, tear film instability, corneal cytotoxicity, anterior chamber inflammation, trabecular meshwork cell apoptosis, cataract development, macular edema, and even systemic effects, have been well documented. These effects can lead to ocular discomfort, poor intraocular pressure control, glaucoma surgery failure, and decreased patient compliance. BAK use in topical medications has decreased recently as newer and less toxic preservatives have become available. Yet these preservatives still exert some toxic effects, especially in patients with chronic eye disease who use multiple drops over extended periods of time. Thus, attempts to reduce overall preservative loads for patients are important, whether it be decreasing the amount of preservative, decreasing the total number of drops patients use, or eliminating preservatives entirely. A preservative-free formulation of timolol, TIMOPTIC® in OCUDOSE®, is available in unit-dose vials. Preservative-free unit-dose vials minimize toxic adverse effects and are a good option for patients with ocular surface disease, on long-term multidrop therapy, or who simply do not tolerate the effects of preservatives due to discomfort. PMID:24204115

  17. Foot Drop

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Foot Drop Information Page Table of Contents (click to ... research is being done? Clinical Trials What is Foot Drop? Foot drop describes the inability to raise ...

  18. How to add more "family" to the work-life-balance? - family friendliness in medical under- and postgraduate studies and the workplace.

    PubMed

    De Ridder, Daniela

    2012-01-01

    Today universities have to compete for the best brains more than ever before. The issues of reconciliation of work/study and family and the work-life balance have become increasingly important recently in higher education policy development as higher education institutions in the competition for the best minds are already forced to tackle these issues, some of which are still novel to them, as they are faced with demographic change. High dropout rates among students with children, increasing shortages of physicians and high sector emigration and high levels of childlessness among graduates serve as indicators for urgent action towards more family-oriented university and faculty strategies. But how can medical schools, hospitals and (teaching) hospitals achieve a family-oriented profile? Which key players, which areas of higher education management are relevant to management and decision-making structures? What exemplary measures for designing family-friendly medical studies and work places offer success? The underrepresentation of women in the next generation of scientists also poses an additional challenge to the development of an innovative higher education policy if it is to be sustainable. Thus strategies promoting the next generation and family orientation are key factors for a future-oriented higher education policy. These factors should therefore be seen as leadership strategies which will introduce measures that will make (re)design the university's profile. To this end, a holistic approach which will lead to fundamental reforms of higher education structures which are outlined below and illustrated with examples are a prerequisite for successful implementation. PMID:22558028

  19. How to add more "Family" to the Work-Life-Balance? – Family Friendliness in Medical Under- and Postgraduate Studies and the Workplace

    PubMed Central

    De Ridder, Daniela

    2012-01-01

    Today universities have to compete for the best brains more than ever before. The issues of reconciliation of work/study and family and the work-life balance have become increasingly important recently in higher education policy development as higher education institutions in the competition for the best minds are already forced to tackle these issues, some of which are still novel to them, as they are faced with demographic change. High dropout rates among students with children, increasing shortages of physicians and high sector emigration and high levels of childlessness among graduates serve as indicators for urgent action towards more family-oriented university and faculty strategies. But how can medical schools, hospitals and (teaching) hospitals achieve a family-oriented profile? Which key players, which areas of higher education management are relevant to management and decision-making structures? What exemplary measures for designing family-friendly medical studies and work places offer success? The underrepresentation of women in the next generation of scientists also poses an additional challenge to the development of an innovative higher education policy if it is to be sustainable. Thus strategies promoting the next generation and family orientation are key factors for a future-oriented higher education policy. These factors should therefore be seen as leadership strategies which will introduce measures that will make (re)design the university’s profile. To this end, a holistic approach which will lead to fundamental reforms of higher education structures which are outlined below and illustrated with examples are a prerequisite for successful implementation. PMID:22558028

  20. Drop dynamics

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.

    1981-01-01

    The drop dynamics module is a Spacelab-compatible acoustic positioning and control system for conducting drop dynamics experiments in space. It consists basically of a chamber, a drop injector system, an acoustic positioning system, and a data collection system. The principal means of collecting data is by a cinegraphic camera. The drop is positioned in the center of the chamber by forces created by standing acoustic waves generated in the nearly cubical chamber (about 12 cm on a side). The drop can be spun or oscillated up to fission by varying the phse and amplitude of the acoustic waves. The system is designed to perform its experiments unattended, except for start-up and shutdown events and other unique events that require the attention of the Spacelab payload specialist.

  1. Pressure Drop

    NASA Technical Reports Server (NTRS)

    Lawson, Mike

    2010-01-01

    Mike Lawson briefly discussed pressure drop for aerospace applications and presented short stories about adventures experienced while working at NASA and General Dynamics, including exposure to technologies like the Crew and Equipment Translation Aid (CETA) cart and the SWME.

  2. HIV-related stigma among an urban sample of persons living with HIV at risk for dropping out of HIV-oriented primary medical care.

    PubMed

    Relf, Michael V; Rollins, Kate V

    2015-01-01

    HIV-related stigma is one of the greatest barriers to preventing and ending the HIV epidemic. The purpose of our study was to examine HIV-related stigma among urban adults voluntarily seeking HIV-oriented primary medical care and at risk for dropping out after enrolling. The baseline cross-sectional analysis of perceived HIV-related stigma upon enrolling in care examined the level of HIV-related stigma and its sub-domains: personalized, disclosure, negative self-image, and public attitudes. Our study also identified precursors of HIV-related stigma and associated outcomes. HIV-related stigma continues to be a significant problem for persons living with HIV; those perceiving higher levels of HIV-related stigma reported a poorer quality of life, both physically and mentally. The relationship between HIV-related stigma and mental health was closely connected in our sample. PMID:24881591

  3. Discovering Focus: Helping Students with ADD (Attention Deficit Disorder)

    ERIC Educational Resources Information Center

    Valkenburg, Jim

    2012-01-01

    Attention Deficit Disorder (ADD) is a neurological disorder which effects learning and that has a confusing set of diagnostic symptoms and an even more confusing set of remedies ranging from medication to meditation to nothing at all. Current neurological research suggests, however, that there are strategies that the individual with ADD can use to…

  4. Alternate drop pulse polarography

    USGS Publications Warehouse

    Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.

    1976-01-01

    The new technique of alternate drop pulse polarography is presented. An experimental evaluation of alternate drop pulse polarography shows complete compensation of the capacitative background due to drop expansion. The capillary response phenomenon was studied in the absence of faradaic reaction and the capillary response current was found to depend on the pulse width to the -0.72 power. Increased signal-to-noise ratios were obtained using alternate drop pulse polarography at shorter drop times.

  5. Family nurse practitioners: "value add" in outpatient chronic disease management.

    PubMed

    Stephens, Lynn

    2012-12-01

    Nurse practitioners are capable leaders in primary care design as practices nationwide move to consider and adopt the patient-centered medical home. The chronic care model provides a structure to enhance the care of chronic illness. Nurse practitioners are instrumental in many areas of this model as both leaders and caregivers. Safety and quality are basic medical home goals; nurse practitioners enhance both. The addition of a nurse practitioner to a practice is an effective "value add" in every way.

  6. Ternary drop collisions

    NASA Astrophysics Data System (ADS)

    Hinterbichler, Hannes; Planchette, Carole; Brenn, Günter

    2015-10-01

    It has been recently proposed to use drop collisions for producing advanced particles or well-defined capsules, or to perform chemical reactions where the merged drops constitute a micro-reactor. For all these promising applications, it is essential to determine whether the merged drops remain stable after the collision, forming a single entity, or if they break up. This topic, widely investigated for binary drop collisions of miscible and immiscible liquid, is quite unexplored for ternary drop collisions. The current study aims to close this gap by experimentally investigating collisions between three equal-sized drops of the same liquid arranged centri-symmetrically. Three drop generators are simultaneously operated to obtain controlled ternary drop collisions. The collision outcomes are observed via photographs and compared to those of binary collisions. Similar to binary collisions, a regime map is built, showing coalescence and bouncing as well as reflexive and stretching separation. Significant differences are observed in the transitions between these regimes.

  7. Dilating Eye Drops

    MedlinePlus

    ... Conditions Most Common Searches Adult Strabismus Amblyopia Cataract Conjunctivitis Corneal Abrasions Dilating Eye Drops Lazy eye (defined) ... Loading... Most Common Searches Adult Strabismus Amblyopia Cataract Conjunctivitis Corneal Abrasions Dilating Eye Drops Lazy eye (defined) ...

  8. Attracting Water Drops

    NASA Video Gallery

    Astronauts Cady Coleman and Ron Garan perform the Attracting Water Drops experiment from Chabad Hebrew Academy in San Diego, Calif. This research determines if a free-floating water drop can be att...

  9. Misuse of xylometazoline nasal drops by inhalation.

    PubMed

    Anand, Jacek Sein; Salamon, Marek; Habrat, Boguslaw; Scinska, Anna; Bienkowski, Przemyslaw

    2008-12-01

    Six male prisoners who misused xylometazoline nasal drops by inhalation were interviewed by a prison physician in 2006. The prisoners received xylometazoline drops during regular visits in the prison ambulatory service. In order to get the medication, the subjects reported false symptoms of rhinosinusitis and allergic reactions. Psychoactive effects of inhaled xylometazoline were described as "stimulation," "excitation," and "feeling of strength." Although preliminary, our findings suggest that topical adrenergic decongestants can produce rewarding effects when administered by inhalation. PMID:19085441

  10. Drag on Sessile Drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Nobes, David; Sen, Debjyoti; Amirfazli, Alidad; University of Alberta Mechanical Engineering Collaboration

    2013-11-01

    We present the first ever direct measurements of the coefficient of drag on sessile drops at Reynolds numbers from the creeping flow regime up to the point of incipient motion, made using a newly developed floating element differential drag sensor. Surfaces of different wettabilities (PMMA, Teflon, and a superhydrophobic surface (SHS)), wet by water, hexadecane, and various silicone oils, are used to study the effects of drop shape, and fluid properties on drag. The relation between drag coefficient and Reynolds number (scaled by drop height) varies slightly with liquid-solid system and drop volume with results suggesting the drop experiences increased drag compared to similar shaped solid bodies due to drop oscillation influencing the otherwise laminar flow. Drops adopting more spherical shapes are seen to experience the greatest force at any given airspeed. This indicates that the relative exposed areas of drops is an important consideration in terms of force, with implications for the shedding of drops in applications such as airfoil icing and fuel cell flooding. The measurement technique used in this work can be adapted to measure drag force on other deformable, lightly adhered objects such as dust, sand, snow, vesicles, foams, and biofilms. The authours acknowledge NSERC, Alberta Innovates Technology Futures, and the Killam Trusts.

  11. Add grace to psychiatric practice

    PubMed Central

    Patkar, Shobha V.

    2013-01-01

    Background: The uniqueness of mindset of an individual makes psychiatric practice interesting, sensitive, and at times subjective. The practice in setup of an organization makes the situation more complex in view of administrative regulations, existing work culture, and issues like confidentiality, etc., Dilemmas are often faced while balancing loyalty between an organization and the patients, values of the therapist and the patient, and different dimension of justice coming from different cultural backgrounds of the patients and the treating doctors. A lot of mental work needs to be put in by the practitioner to consistently adhere to medical ethics and professional approach for taking key decisions despite of contradictory external forces from within and without. Aims: I thought of sharing my experiences especially in setup of an organization with my colleagues so that the decision-taking process becomes somewhat easy and balancing for them. Settings and Design: I have to try to interpret my clinical experiences gathered while working with my patients from the Department of Atomic Energy as well as from my private practice. Conclusion: The need of psycho education to self and others from time to time never ceases simply to make the practice more objective, justified, and graceful. PMID:23825861

  12. ADDE: Application Development for the Distributed Enterprise.

    ERIC Educational Resources Information Center

    Franckson, Marcel; Hall, John; Helmerich, Alfred; Canadas, Rafael; Dehn, Martin

    1998-01-01

    Describes the Application Development for the Distributed Enterprise (ADDE) project, a methodological set that supports the design of distributed business processes and information and communication technologies. Discusses principles behind ADDE, guidance on definition and planning of application development, guidance on distributed application…

  13. Inviting Calm Within: ADD, Neurology, and Mindfulness

    ERIC Educational Resources Information Center

    Riner, Phillip S.; Tanase, Madalina

    2014-01-01

    The fourth edition of the "Diagnostic and Statistical Manual of Mental Disorders" ("DSM IV") describes ADD as behaviorally observed impairments in attention, impulsivity, and hyperactivity. Officially known as AD/HD, we use ADD here because we are dealing primarily with attention, organizational, and impulsivity issues. A more…

  14. ADD Teacher Inservice Project. Final Grant Report.

    ERIC Educational Resources Information Center

    Edwards, Mark C.; Schulz, Eldon G.

    The report describes activities and achievements of the Attention Deficit Disorder (ADD) Teacher Inservice Project. The inservice program was developed using a formal process to identify the critical issues related to ADD awareness, assessment, and intervention. Program content was designed to address critical issues identified in the research…

  15. Youth Crime Drop. Report.

    ERIC Educational Resources Information Center

    Butts, Jeffrey A.

    This report examines the recent drop in violent crime in the United States, discussing how much of the decrease seen between 1995-99 is attributable to juveniles (under age 18 years) and older youth (18-24 years). Analysis of current FBI arrest data indicates that not only did America's violent crime drop continue through 1999, but falling youth…

  16. Drop Tower Physics

    ERIC Educational Resources Information Center

    Dittrich, William A.

    2014-01-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in "The Physics Teacher" in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at…

  17. Axisymmetric Liquid Hanging Drops

    ERIC Educational Resources Information Center

    Meister, Erich C.; Latychevskaia, Tatiana Yu

    2006-01-01

    The geometry of drops hanging on a circular capillary can be determined by numerically solving a dimensionless differential equation that is independent on any material properties, which enables one to follow the change of the height, surface area, and contact angle of drops hanging on a particular capillary. The results show that the application…

  18. Sessile Rayleigh drop instability

    NASA Astrophysics Data System (ADS)

    Steen, Paul; Bostwick, Josh

    2012-11-01

    Rayleigh (1879) determined the mode shapes and frequencies of the inviscid motion of a free drop held by surface tension. We study the inviscid motions of a sessile Rayleigh drop - a drop which rests on a planar solid and whose contact-line is free to move. Linear stability analysis gives the modes and frequencies of the droplet motions. In this talk, we focus on the ``walking instability,'' an unstable mode wherein the drop moves across a planar substrate in an inviscid rocking-like motion. The mode shape is non-axisymmetric. Although the experimental literature has hinted at such a mode, this is the first prediction from linear stability analysis, as far as we are aware. The ``walking instability'' of the drop converts energy stored in the liquid shape into the energy of liquid motion - which represents a heretofore unknown pathway of energy conversion of potentially wide significance for a broad range of applications.

  19. Liquid Metal Drop Impingement

    NASA Astrophysics Data System (ADS)

    Che, Judy; Han, Jaehoon; Tryggvason, Gretar; Ceccio, Steven

    1996-11-01

    "Ballistic Partical Manufacturing" is a process in which individual drops are layered to form a part. We examine how metal drops deform and solidify, and how the solidification rate affects the material microstructure using both numerical simulations and experiments. A single set of equations governing the conservation of mass, energy, and momentum are written for all phases involved, and the phase boundary is treated as an imbedded interface by adding the appropriate source terms. We have simulated single drops colliding with a surface using a simple model which assumes that a melt solidifies below the melting point. Although simple, this model captures many aspects of the fluid flow and solidification. The experimental apparatus creates a single drop of prescribed size and propels it toward a cooled substrate. Favorable comparisons of experimental and numerical results have been achieved.

  20. Drop Tower Workshop

    NASA Technical Reports Server (NTRS)

    Urban, David

    2013-01-01

    Ground based microgravity facilities are an important proving ground for space experiments, ground-based research and space hardware risk mitigation. An overview of existing platforms will be discussed with an emphasis on drop tower capabilities. The potential for extension to partial gravity conditions will be discussed. Input will be solicited from attendees for their potential to use drop towers in the future and the need for enhanced capabilities (e.g. partial gravity)

  1. Modeling of racetrack-resonator add-drop filters with arbitrary nonlinear directional couplers.

    PubMed

    Gómez-Alcalá, Rafael; Fraile-Peláez, F Javier; Chamorro-Posada, Pedro; Díaz-Otero, Francisco J

    2012-06-01

    In this Letter we employ the general coupled-mode equations of the nonlinear directional coupler and demonstrate that the switching characteristics of prototypical nonlinear racetrack-resonator structures may differ considerably from those obtained when the standard, generally incorrect, coupled-mode equations are used. PMID:22660133

  2. Rain Drop Charge Sensor

    NASA Astrophysics Data System (ADS)

    S, Sreekanth T.

    begin{center} Large Large Rain Drop Charge Sensor Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , S. Murali Das (2) *Atmospheric Sciences Division, Centre for Earth Science Studies, Thiruvananthapuram 695011 (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) Kavyam, Manacaud, Thiruvananthapuram 695009 begin{center} ABSTRACT To study the inter-relations with precipitation electricity and precipitation microphysical parameters a rain drop charge sensor was designed and developed at CESS Electronics & Instrumentation Laboratory. Simultaneous measurement of electric charge and fall speed of rain drops could be done using this charge sensor. A cylindrical metal tube (sensor tube) of 30 cm length is placed inside another thick metal cover opened at top and bottom for electromagnetic shielding. Mouth of the sensor tube is exposed and bottom part is covered with metal net in the shielding cover. The instrument is designed in such a way that rain drops can pass only through unhindered inside the sensor tube. When electrically charged rain drops pass through the sensor tube, it is charged to the same magnitude of drop charge but with opposite polarity. The sensor tube is electrically connected the inverted input of a current to voltage converter operational amplifier using op-amp AD549. Since the sensor is electrically connected to the virtual ground of the op-amp, the charge flows to the ground and the generated current is converted to amplified voltage. This output voltage is recorded using a high frequency (1kHz) voltage recorder. From the recorded pulse, charge magnitude, polarity and fall speed of rain drop are calculated. From the fall speed drop diameter also can be calculated. The prototype is now under test running at CESS campus. As the magnitude of charge in rain drops is an indication of accumulated charge in clouds in lightning, this instrument has potential application in the field of risk and disaster management. By knowing the charge

  3. Liquid metal drop ejection

    NASA Technical Reports Server (NTRS)

    Khuri-Yakub, B. T.

    1993-01-01

    The aim of this project was to demonstrate the possibility of ejecting liquid metals using drop on demand printing technology. The plan was to make transducers for operation in the 100 MHz frequency range and to use these transducers to demonstrate the ability to eject drops of liquid metals such as gallium. Two transducers were made by indium bonding piezoelectric lithium niobate to quartz buffer rods. The lithium niobate plates were thinned by mechanical polishing to a thickness of 37 microns for operation at 100 MHz. Hemispherical lenses were polished in the opposite ends of the buffer rods. The lenses, which focus the sound waves in the liquid metal, had an F-number equals 1. A mechanical housing was made to hold the transducers and to allow precise control over the liquid level above the lens. We started by demonstrating the ability to eject drops of water on demand. The drops of water had a diameter of 15 microns which corresponds to the wavelength of the sound wave in the water. A videotape of this ejection was made. We then used a mixture of Gallium and Indium (used to lower the melting temperature of the Gallium) to demonstrate the ejection of liquid metal drops. This proved to be difficult because of the oxide skin which forms on the surface of the liquid. In some instances, we were able to eject metal drops, however, this was not consistent and reproducible. An experiment was set up at NASA-Lewis to stabilize the process of drop on demand liquid metal ejection. The object was to place the transducer and liquid metal in a vacuum station so that no oxide would form on the surface. We were successful in demonstrating that liquid metals could be ejected on demand and that this technology could be used for making sheet metal in space.

  4. Drying drops of blood

    NASA Astrophysics Data System (ADS)

    Brutin, David; Sobac, Benjamin; Loquet, Boris; Sampol, José.

    2010-11-01

    The drying of a drop of human blood is fascinating by the complexity of the physical mechanisms that occur as well as the beauty of the phenomenon which has never been previously evidenced in the literature. The final stage of full blood evaporation reveals for a healthy person the same regular pattern with a good reproducibility. Other tests on anemia and hyperlipidemic persons were performed and presented different patterns. By means of digital camera, the influence of the motion of red blood cells (RBCs) which represent about 50% of the blood volume, is revealed as well as its consequences on the final stages of drying. The mechanisms which lead to the final pattern of dried blood drops are presented and explained on the basis of fluid and solid mechanics in conjunction with the principles of hematology. Our group is the first to evidence that the specific regular patterns characteristic of a healthy individual do not appear in a dried drop of blood from a person with blood disease. Blood is a complex colloidal suspension for which the flow motion is clearly non-Newtonian. When drops of blood evaporate, all the colloids are carried by the flow motion inside the drop and interact.

  5. How do drops evaporate?

    NASA Astrophysics Data System (ADS)

    Murisic, Nebojsa; Kondic, Lou

    2007-11-01

    The problem of evaporating drops with non-pinned contact line, although seemingly trivial, so far lacks satisfactory theoretical description. In particular, there has been much discussion regarding appropriate evaporative mass flux model. We make an attempt to resolve this issue by comparing our experimental data with the results of several mathematical models for evaporating drops. After describing experimental procedure, we propose several models for mass flux and develop a governing equation for evolution of drop's thickness. Two-dimensional numerical results are then compared to the experimental results, and the most appropriate mass flux model is identified. Finally, we propose the governing equation for the full 3D system and present some new numerical results related to curious phenomena, where so-called ``octopus-shaped'' instabilities appear ahead of the contact line of volatile dropsootnotetextY. Gotkis, I. Ivanov, N. Murisic, L. Kondic, Phys. Rev. Lett. 97, 186101 (2006)..

  6. Drum drop test report

    SciTech Connect

    McBeath, R.S.

    1995-02-28

    Testing was performed to determine actual damage to drums when dropped from higher than currently stacked elevations. The drum configurations were the same as they are placed in storage; single drums and four drums banded to a pallet. Maximum drop weights were selected based on successful preliminary tests. Material was lost from each of the single drum tests while only a small amount of material was lost from one of the pelletized drums. The test results are presented in this report. This report also provides recommendations for further testing to determine the appropriate drum weight which can be stored on a fourth tier.

  7. Nanofluid Drop Evaporation: Experiment, Theory, and Modeling

    NASA Astrophysics Data System (ADS)

    Gerken, William James

    Nanofluids, stable colloidal suspensions of nanoparticles in a base fluid, have potential applications in the heat transfer, combustion and propulsion, manufacturing, and medical fields. Experiments were conducted to determine the evaporation rate of room temperature, millimeter-sized pendant drops of ethanol laden with varying amounts (0-3% by weight) of 40-60 nm aluminum nanoparticles (nAl). Time-resolved high-resolution drop images were collected for the determination of early-time evaporation rate (D2/D 02 > 0.75), shown to exhibit D-square law behavior, and surface tension. Results show an asymptotic decrease in pendant drop evaporation rate with increasing nAl loading. The evaporation rate decreases by approximately 15% at around 1% to 3% nAl loading relative to the evaporation rate of pure ethanol. Surface tension was observed to be unaffected by nAl loading up to 3% by weight. A model was developed to describe the evaporation of the nanofluid pendant drops based on D-square law analysis for the gas domain and a description of the reduction in liquid fraction available for evaporation due to nanoparticle agglomerate packing near the evaporating drop surface. Model predictions are in relatively good agreement with experiment, within a few percent of measured nanofluid pendant drop evaporation rate. The evaporation of pinned nanofluid sessile drops was also considered via modeling. It was found that the same mechanism for nanofluid evaporation rate reduction used to explain pendant drops could be used for sessile drops. That mechanism is a reduction in evaporation rate due to a reduction in available ethanol for evaporation at the drop surface caused by the packing of nanoparticle agglomerates near the drop surface. Comparisons of the present modeling predictions with sessile drop evaporation rate measurements reported for nAl/ethanol nanofluids by Sefiane and Bennacer [11] are in fairly good agreement. Portions of this abstract previously appeared as: W. J

  8. Shift-and-add for astronomical imaging

    NASA Technical Reports Server (NTRS)

    Ribak, Erez; Hege, E. Keith; Strobel, Nicolas V.; Christou, Julian C.

    1989-01-01

    Diffraction-limited astronomical images have been obtained utilizing a variant of the shift-and-add method. It is shown that the matched filter approach for extending the weighted shift-and-add method reduces specklegrams from extended objects and from an object dominated by photon noise. The method is aberration-insensitive and yields very high dynamic range results. The iterative method for arriving at the matched filter does not automatically converge in the case of photon-noisy specklegrams for objects with more than one maximum.

  9. 76 FR 49508 - ``Add Us In'' Initiative

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... Federal Register on August 4, 2011 at 76 FR 150. Specifically, we are correcting the Funding Opportunity... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Office of Disability Employment Program ``Add Us In'' Initiative AGENCY: Office of Disability...

  10. Characterization of biofluids prepared by sessile drop formation.

    PubMed

    Esmonde-White, Karen A; Esmonde-White, Francis W L; Morris, Michael D; Roessler, Blake J

    2014-06-01

    Sessile drop formation, also called drop deposition, has been studied as a potential medical diagnostic, but the effects of complex biofluid rheology on the final deposition pattern are not well understood. We studied two model biofluids, blood plasma and synovial fluid, when deposited onto slightly hydrophilic substrates forming a contact angle of 50-90°. Drops were imaged during the evaporation process and geometric properties of the drop, such as contact angle and drop height, were calculated from the images. The resulting dried biofluid drops were then examined using light microscopy and Raman spectroscopy to assess morphological and chemical composition of the dried drop. The effect of substrate contact angle (surface wetting) and fluid concentration was examined. We found that when biofluids are deposited onto slightly hydrophilic surfaces, with a contact angle of 50-90°, a ring-shaped deposit was formed. Analysis of the drying drop's geometric properties indicates that biofluid dynamics follow the piling model of drop formation, as proposed by Deegan et al. The final deposition pattern varied with substrate surface and concentration, as shown by light microscopy photos of dried drops. The chemical composition of the outer ring was minimally affected by substrate surface, but the spatial heterogeneity of protein distribution within the ring varied with concentration. These results indicate that biofluid drop deposition produces ring-shaped deposits which can be examined by multiple analytical techniques.

  11. Characterization of biofluids prepared by sessile drop formation.

    PubMed

    Esmonde-White, Karen A; Esmonde-White, Francis W L; Morris, Michael D; Roessler, Blake J

    2014-06-01

    Sessile drop formation, also called drop deposition, has been studied as a potential medical diagnostic, but the effects of complex biofluid rheology on the final deposition pattern are not well understood. We studied two model biofluids, blood plasma and synovial fluid, when deposited onto slightly hydrophilic substrates forming a contact angle of 50-90°. Drops were imaged during the evaporation process and geometric properties of the drop, such as contact angle and drop height, were calculated from the images. The resulting dried biofluid drops were then examined using light microscopy and Raman spectroscopy to assess morphological and chemical composition of the dried drop. The effect of substrate contact angle (surface wetting) and fluid concentration was examined. We found that when biofluids are deposited onto slightly hydrophilic surfaces, with a contact angle of 50-90°, a ring-shaped deposit was formed. Analysis of the drying drop's geometric properties indicates that biofluid dynamics follow the piling model of drop formation, as proposed by Deegan et al. The final deposition pattern varied with substrate surface and concentration, as shown by light microscopy photos of dried drops. The chemical composition of the outer ring was minimally affected by substrate surface, but the spatial heterogeneity of protein distribution within the ring varied with concentration. These results indicate that biofluid drop deposition produces ring-shaped deposits which can be examined by multiple analytical techniques. PMID:24757707

  12. Glaucoma eye drops adverse skin reactions.

    PubMed

    Cantisani, Carmen; Ambrifi, Marina; Frascani, Federica; Fazia, Gilda; Paolino, Giovanni; Lisi, Roberto; Calvieri, Stefano

    2014-01-01

    The term "Glaucoma" is used to describe a number of diseases of the eye characterized by a particular form of optic nerve damage that is often associated with high intraocular pressure (IOP). The open-angle glaucoma is the most common form that is also referred to as chronic glaucoma. This is described as an optic neuropathy with multifactorial nature in which there is a loss of characteristics of the optic nerve fibers. Therapeutic options for the treatment of this disease are different, you can take advantage of eye drops, laser therapy and conventional surgery or more combined treatments. Medicated eye drops are the most common way to treat glaucoma. Although eye drops are widely used, adverse reactions are not frequently observed and described. In particular, the adverse skin reactions are not frequently described in the literature, but often seen in dermatologic clinic, we reported their skin reactions and possible alternative treatments described in literature and their patent applications. PMID:25487259

  13. Numerical Simulations of Drop Collisions

    NASA Technical Reports Server (NTRS)

    Nobari, M. R. H.; Tryggvason, G.

    1994-01-01

    Three-dimensional simulations of the off-axis collisions of two drops are presented. The full Navier-Stokes equations are solved by a Front-Tracking/Finite-Difference method that allows a fully deformable fluid interface and the inclusion of surface tension. The drops are accelerated towards each other by a body force that is turned off before the drops collide. Depending on whether the interface between the drops is ruptured or not, the drops either bounce or coalesce. For drops that coalesce, the impact parameter, which measures how far the drops are off the symmetry line, determines the eventual outcome of the collision. For low impact parameters, the drops coalesce permanently, but for higher impact parameters, a grazing collision, where the drops coalesce and then stretch apart again is observed. The results are in agreement with experimental observations.

  14. Drop tube technical tasks

    NASA Technical Reports Server (NTRS)

    Workman, G. L.

    1986-01-01

    Criteria, using fundamental thermochemical dynamics, were developed to assist a scientist using the Drop Tube Facility in designing a good experiment. The types of parameters involved in designing the experiments include the type of furnace, the type of atmosphere, and in general which materials are better behaved than others as determined by past experience in the facility. One of the major advantages of the facility lies in its ability to provide large undercoolings in the cooling curve during the drops. A beginning was to consider the effect of oxygen and other gases upon the amount of undercooling observed. The starting point of the thermochemistry was given by Ellingham and later transformed into what is known as the Richardson Chart. The effect of surface oxidations upon the nucleation phenomena can be observed in each specimen.

  15. Exploding Water Drops

    NASA Astrophysics Data System (ADS)

    Reich, Gary

    2016-01-01

    Water has the unusual property that it expands on freezing, so that ice has a specific gravity of 0.92 compared to 1.0 for liquid water. The most familiar demonstration of this property is ice cubes floating in a glass of water. A more dramatic demonstration is the ice bomb shown in Fig. 1. Here a cast iron flask is filled with water and tightly stoppered. The flask is then cooled, either by leaving it outdoors in winter or by immersing it in a cryogenic fluid, until the water freezes. As the water freezes and expands, the pressure inside the flask increases dramatically, eventually becoming sufficient to fracture the metal walls of the enclosure. A related, but much less familiar, phenomenon is the explosive fracturing of small water drops upon freezing. That water drops can fracture in this way has been known for many years, and the phenomenon has been described in detail in the atmospheric sciences literature, where it is seen as relevant to the freezing of raindrops as they fall through cold air. Carefully controlled experiments have been done documenting how the character and frequency of fracture is affected by such variables as drop size, rate of cooling, chemistry of dissolved gases, etc. Here I describe instead a simple demonstration of fracture suitable for video analysis and appropriate for study at the introductory physics level. Readers may also be interested in other characteristics of freezing and fragmenting water drops, for example, charge separation upon fracture and the appearance of spikes and bulges on the surface.

  16. Encapsulating Ellipsoids in Drops

    NASA Astrophysics Data System (ADS)

    Norton, Michael; Brugarolas, Teresa; Chou, Jonathan; Bau, Haim; Lee, Daeyeon

    2012-11-01

    Large aspect ratio particles were produced by embedding spherical polystyrene particles within a polymer film and subsequently heating and stretching the film. Particles were released by dissolving the film. Using a flow-focusing device, the elongated particles were partially encapsulated within droplets of fluid A, such as water, surrounded by an immiscible fluid B, such as oil. Drop volumes were controlled by adjusting the flow rates of fluids A and B. The contact angle was adjusted indirectly by varying the amount of surfactant adsorbed to the particle surface. The encapsulation process was visualized with a high-speed video camera. We observed cases ranging from partial to complete encapsulation and examined experimentally and theoretically the shape of the interface between fluid A and fluid B as a function of the drop volume. The numerically predicted position of the pinning line and the shape of the drop were compared to experimentally produced conformations and agreed favorably. This work was supported by ITMAT (UL1RR024134 from the NCRR) and the Penn MRSEC (NSF DMR-1120901).

  17. Characterization of Biofluids Prepared by Sessile Drop Formation

    PubMed Central

    Esmonde-White, Karen A.; Esmonde-White, Francis W.L.; Morris, Michael D.; Roessler, Blake J.

    2014-01-01

    Sessile drop formation, also called drop deposition, has been studied as a potential medical diagnostic, but the effects of complex biofluid rheology on the final deposition pattern are not well understood. We studied two model biofluids, blood plasma and synovial fluid, when deposited onto slightly hydrophilic substrates forming a contact angle of 50–90°. Drops were imaged during the evaporation process and geometric properties of the drop, such as contact angle and drop height, were calculated from the images. The resulting dried biofluid drops were then examined using light microscopy and Raman spectroscopy to assess morphological and chemical composition of the dried drop. The effect of substrate contact angle (surface wetting) and fluid concentration was examined. We found that when biofluids are deposited onto slightly hydrophilic surfaces, with a contact angle of 50–90°, a ring-shaped deposit was formed. Analysis of the drying drop’s geometric properties indicates that biofluid dynamics follow the piling model of drop formation, as proposed by Deegan et al. The final deposition pattern varied with substrate surface and concentration, as shown by light microscopy photos of dried drops. The chemical composition of the outer ring was minimally affected by substrate surface, but the spatial heterogeneity of protein distribution within the ring varied with concentration. These results indicate that biofluid drop deposition produces ring-shaped deposits which can be examined by multiple analytical techniques. PMID:24757707

  18. Drop foot corrective device

    NASA Technical Reports Server (NTRS)

    Deis, B. C. (Inventor)

    1986-01-01

    A light weight, economical device to alleviate a plurality of difficulties encountered in walking by a victim suffering from a drop foot condition is discussed. A legband girdles the leg below the knee and above the calf providing an anchor point for the upper end of a ligament having its lower end attached to a toe of a shoe or a toe on the foot. The ligament is of such length that the foot is supported thereby and retained in a normal position during walking.

  19. Liquid drops impacting superamphiphobic coatings.

    PubMed

    Deng, Xu; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2013-06-25

    The dynamics of liquid drops impacting superamphiphobic coatings is studied by high-speed video microscopy. Superamphiphobic coatings repel water and oils. The coating consists of a fractal-like hydrophobized silica network. Mixtures of ethanol-water and glycerin-water are chosen to investigate the influence of interfacial tension and viscosity on spreading and retraction dynamics. Drop spreading is dominated by inertia. At low impact velocity, the drops completely rebound. However, the contact time increases with impact velocity, whereas the restitution coefficient decreases. We suggest that the drop temporarily impales the superamphiphobic coating, although the drop completely rebounds. From an estimate of the pressure, it can be concluded that impalement is dominated by depinning rather than sagging. With increasing velocity, the drops partially pin, and an increasing amount of liquid remains on the coating. A time-resolved study of the retraction dynamics reveals two well-separated phases: a fast inertia-dominated phase followed by a slow decrease of the contact diameter of the drop. The crossover occurs when the diameter of the retracting drop matches the diameter of the drop before impact. We suggest that the depth of impalement increases with impact velocity, where impalement is confined to the initial impact zone of the drop. If the drop partially pins on the coating, the depth of impalement exceeds a depth, preventing the whole drop from being removed during the retraction phase.

  20. Eye Drop Tips

    MedlinePlus

    ... Size Small Text Medium Text Large Text Contrast Dark on Light Light on Dark Donate Search Menu Donate What is Glaucoma? Care ... Low Vision Resources Medication Guide Resources on the Web » See All Articles Help the Cause Glaucoma affects ...

  1. Coalescence of Liquid Drops

    NASA Technical Reports Server (NTRS)

    Yao, Wei-Jun

    2003-01-01

    When two liquid drops come into contact, a neck forms between them and grows rapidly. We are interested in the very early stage of the coalescence process, which can be characterized by the time dependence of the radius of the neck. The functional dependence of the size of the neck on time depends on the properties of the liquid. Experimentally, we are investigating a liquid in Stokes flow regime where the viscosity provides the principal retarding force to the surface tension. Recently, it has been predicted that the neck radius should change as t ln|t| in this regime. Theoretically, we have studied the situation when the velocity at each point on the surface is proportional to the local curvature and directed normal to the surface. This is the case that should be applicable to superfluid helium at low temperature when the mean free path of the thermal excitations are comparable to the size of liquid drops. For this system, the radius of the neck is found to be proportional to t(sup 1/3). We are able to find a simple expression for the shape of the interface in the vicinity of the neck.

  2. Mechanically-Excited Sessile Drops

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Ti; Bostwick, Joshua; Daniel, Susan; Steen, Paul

    2010-11-01

    The volume and contact-line mobility of a sessile drop determine the frequency response of the drop to mechanical excitation. A useful signature of the drop is its response to a sweep of frequency. At particular frequencies the drop exhibits standing wave patterns of different mode numbers and/or azimuthal, spinning motion. We report observations of the spectrum of standing wave patterns and compare to predictions of a linear stability theory. On the side of application, the results suggest how to tune the pinning-unpinning of a sessile drop in order to maximize its translation.

  3. Controlling charge on levitating drops.

    PubMed

    Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M

    2007-08-01

    Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation. PMID:17580951

  4. [The abdominal drop flap].

    PubMed

    Bodin, F; Liverneaux, P; Seigle-Murandi, F; Facca, S; Bruant-Rodier, C; Dissaux, C; Chaput, B

    2015-08-01

    The skin between the mastectomy scar and the future infra-mammary fold may be managed in different ways in delayed breast reconstruction using a DIEP (deep inferior epigastric perforator). Conserving this skin and positioning the flap skin paddle in the middle of the breast usually highlights skin color disparity because of two visible transition zones. Resection of the entire skin under the scar may be more aesthetic but limits direct closure possibility in case of flap failure. In order to benefit from both aesthetic result and safe surgical method, we propose the abdominal drop flap. The inferior thoracic skin flap is detached from the thoracic wall beyond the future infra-mammary fold, preserved and pushed under the breast.

  5. Technology export adds markets for industry

    SciTech Connect

    Not Available

    1984-05-01

    Petroleum-related engineering technology, developed as part of North Sea participation is now being marketed throughout the world by Norwegian engineering, construction, manufacturing and service companies. In moving into international competition, Norwegian companies are primarily testing markets which environmentally resemble the North Sea. Oil is recognized as the best opportunity for investment by Norway's businessmen and is important to the Norwegian economy. According to a recent study a major expansion of offshore activity will be required soon if the level of investment is not to decline after 1985. Production from existing fields is expected to peak at 60 million tons of oil equivalent (MTOE) in 1990, dropping to 10 MTOE by 2000.

  6. User's manual for Axisymmetric Diffuser Duct (ADD) code. Volume 1: General ADD code description

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.; Hankins, G. B., Jr.; Edwards, D. E.

    1982-01-01

    This User's Manual contains a complete description of the computer codes known as the AXISYMMETRIC DIFFUSER DUCT code or ADD code. It includes a list of references which describe the formulation of the ADD code and comparisons of calculation with experimental flows. The input/output and general use of the code is described in the first volume. The second volume contains a detailed description of the code including the global structure of the code, list of FORTRAN variables, and descriptions of the subroutines. The third volume contains a detailed description of the CODUCT code which generates coordinate systems for arbitrary axisymmetric ducts.

  7. Independents add gas reserves, forego romance

    SciTech Connect

    Gill, D.

    1981-08-01

    Incentive pricing for low-permeability reservoirs and tax advantages for drilling them are 2 big reasons why more independents may start making a special effort to add gas reserves to their inventories. If so, it will be a change from past practices, which saw independents build up big gas positions by circumstance rather than by intention. There are always major refiners ready and willing to buy whole crude oil reservoirs from small producers, but purchasers willing to take gas fields in a single investment are few and far between. Lower-than-normal return on equity during the first 20 years, plus the heavy front-end cost of a frac necessary to produce the tight gas might dissuade independents from drilling tight gas sands, but those liabilities are offset by the higher price tight gas gets and the peculiar tax advantages of exploring for it that make a nice fit with the small operator's way of doing business.

  8. Using Joint Interviews to Add Analytic Value.

    PubMed

    Polak, Louisa; Green, Judith

    2016-10-01

    Joint interviewing has been frequently used in health research, and is the subject of a growing methodological literature. We review this literature, and build on it by drawing on a case study of how people make decisions about taking statins. This highlights two ways in which a dyadic approach to joint interviewing can add analytic value compared with individual interviewing. First, the analysis of interaction within joint interviews can help to explicate tacit knowledge and to illuminate the range of often hard-to-access resources that are drawn upon in making decisions. Second, joint interviews mitigate some of the weaknesses of interviewing as a method for studying practices; we offer a cautious defense of the often-tacit assumption that the "naturalness" of joint interviews strengthens their credibility as the basis for analytic inferences. We suggest that joint interviews are a particularly appropriate method for studying complex shared practices such as making health decisions. PMID:25850721

  9. Investigations of levitated helium drops

    NASA Astrophysics Data System (ADS)

    Whitaker, Dwight Lawrence

    1999-11-01

    We report on the development of two systems capable of levitating drops of liquid helium. Helium drops of ˜20 mum have been levitated with the radiation pressure from two counter-propagating Nd:YAG laser beams. Drops are produced with a submerged piezoelectric transducer, and could be held for up to three minutes in our optical trap. Calculations show that Brillouin and Raman scattering of the laser light in the liquid helium produces a negligible rate of evaporation of the drop. Evaporation caused by the enhanced vapor pressure of the curved drop surfaces appears to be a significant effect limiting the drop lifetimes. Helium drops as large as 2 cm in diameter have been suspended in the earth's gravitational field with a magnetic field. A commercial superconducting solenoid provides the necessary field, field-gradient product required to levitate the drops. Drops are cooled to 0.5 K with a helium-3 refrigerator, and can be held in the trap indefinitely. We have found that when two or more drops are levitated in the same magnetic trap, the drops often remain in a state of apparent contact without coalescing. This effect is a result of the evaporation of liquid from between the two drops, and is found to occur only for normal fluid drops. We can induce shape oscillations in charged, levitated drops with an applied ac electric field. We have measured the resonance frequencies and damping rates for the l = 2 mode of oscillation as function of temperature. We have also developed a theory to describe the small amplitude shape oscillations of a He II drop surrounded by its saturated vapor. In our theory, we have considered two sets of boundary conditions---one where the drop does not evaporate and another in which the liquid and vapor are in thermodynamic equilibrium. We have found that both solutions give a frequency that agrees well with experiment, but that the data for the damping rate agree better with the solution without evaporation.

  10. Apfel's superheated drop detector

    NASA Astrophysics Data System (ADS)

    D'Errico, Francesco

    2001-05-01

    The introduction of new approaches for radiation dosimetry is rare. A similar breakthrough occurred in 1979, when Robert Apfel invented the superheated drop detector, a miniature relative of the bubble chamber. A fundamental in high-energy particle physics, the bubble chamber utilizes a liquid briefly brought to a transient, radiation-sensitive superheated state by reducing its pressure. Mass boiling of the liquid is prevented by cyclic pressurization, drastically limiting the detection efficiency. In Apfel's detector, the liquid is kept in a steady superheated state by fractionating it into droplets and dispersing them in an immiscible host fluid, a perfectly smooth and clean container. The approach extends the lifetime of the metastable droplets to the point that practical application in radiation dosimetry is possible. Bubble formation is measured from the volume of vapor or by detecting individual vaporizations acoustically. Various halocarbons are employed and this permits a wide range of applications. Moderately superheated halocarbons are used for neutron measurements, since they are only nucleated by energetic neutron recoil particles. Highly superheated halocarbons nucleate with much smaller energy deposition and are used to detect photons and electrons. This paper reviews the radiation physics of superheated emulsions and their manifold applications.

  11. Pharmacological Interventions for Students with ADD.

    ERIC Educational Resources Information Center

    Austin, Vance L.

    2003-01-01

    A review of the research on pharmacological interventions for students with attention deficit disorder finds that psychostimulants such as methylphenidate (Ritalin) are effective in improving focus and impulse control, but should be used in conjunction with psychosocial and behavioral interventions. Comprehensive medical screenings and guidelines…

  12. HIV charge dropped.

    PubMed

    1997-07-25

    Guilford County Superior Court Judge James Webb ruled there was not enough evidence to convict HIV-positive [name removed] on charges of attempted murder and assault with a deadly weapon in connection with the rape of a 12-year-old girl. Prosecutors argued [name removed] knew he was HIV-positive when the rape occurred and defense attorney Randy Jones argued that there was no medical proof of [name removed]'s HIV status at the time of the attack. The judge dismissed the two charges against [name removed]. A jury later convicted [name removed] of statutory rape and taking indecent liberties with a minor. PMID:11364510

  13. Gas Pressure-Drop Experiment

    ERIC Educational Resources Information Center

    Luyben, William L.; Tuzla, Kemal

    2010-01-01

    Most chemical engineering undergraduate laboratories have fluid mechanics experiments in which pressure drops through pipes are measured over a range of Reynolds numbers. The standard fluid is liquid water, which is essentially incompressible. Since density is constant, pressure drop does not depend on the pressure in the pipe. In addition, flow…

  14. Hanging drop crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  15. Binary drop coalescence in liquids

    NASA Astrophysics Data System (ADS)

    Kim, Jungyong

    Experiments on binary drop collisions within an index-matched liquid were conducted for Weber numbers (We) of 1-50 and collision angles of 15-80° below the horizontal. Drop pairs of water/glycerin mixture were injected into silicone oil and, due to gravitational effects, traveled on downward trajectories before colliding. A dual-field high-speed PIV measurement system was employed to quantify drop trajectories and overall collision conditions while simultaneously examining detailed velocity fields near the collision interface. In the We range examined, for equal size drops, both rebounding and coalescing behavior occurred. The drops coalesced for We > 10 and rebounded for We < 10, and this boundary was found to be insensitive to collision angle. Coalescence was found to result from a combination of vortical flow within drops and strong drop deformation characteristic of higher We. Flow through the centers of opposing ring vortices, strengthened by drop deformation, enhanced drainage of the thin film in the impact region, leading to film rupture and coalescence. The collision angle affected the eventual location of film rupture, with the rupture location moving higher in the thin film region as the collision angle increased. The film rupture location correlated closely with the location of maximum downward velocity in the thin film. The time between collision and rupture increases with We until We = 30. For We > 30, the time decreases as We increases. Unequal size drop collisions with drop size ratios (Ds/D L) of 0.7 and 0.5 were also examined. Coalescence occurs above We* = 11 similar to equal size drops. As drop size ratio decreases, the intervening film deforms more. If the velocity ratio uL/u s < 1, the deformed interface becomes flat before coalescence. The rupture location varies due to the asymmetry of the drops. As collision offset increases (B > 0), the film rupture time is shortened and mixing of the fluid from both drops is enhanced after coalescence

  16. Instant freezing of impacting wax drops

    NASA Astrophysics Data System (ADS)

    Ponomarenko, Alexandre; Virot, Emmanuel; Rubinstein, Shmuel

    2015-11-01

    We present the impact of hot liquid drops of wax on surfaces whose temperature is below the solidifying temperature of the drops. During the fall the drops remain mostly liquid, but upon impact, their temperature quickly decreases resulting in the solidification of the drop. Depending on the impact energy, drops size and the temperature difference between the drop and the surface this results in plethora of solid shapes: simple lenses, triangular drops, spherical caps and popped popcorn shapes.

  17. Pool impacts of Leidenfrost drop

    NASA Astrophysics Data System (ADS)

    Darbois Texier, Baptiste; Maquet, Laurent; Dorbolo, Stephane; Dehandschoewercker, Eline; Pan, Zhao; Truscott, Tadd

    2015-11-01

    This work concerns the impact of a droplet made of a volatile liquid (typically HFE) on a pool of an other liquid (typically silicone oil) which temperature is above the boiling point of the drop. Depending on the properties of the two liquids and the impacting conditions, four different regimes are observed. For low impacting speeds, the droplet bounces on the surface of the bath and finally levitates above it in a Leidenfrost state. Such a regime occurs as soon as the pool temperature exceeds the boiling point of the drop. This observation means that there is no threshold in temperature for a Leidenfrost effect on a liquid surface contrary to the case of a solid substrate. For intermediate impacting velocities, the pinch-off of the surface of the pool entraps the drop in the liquid bulk. The entrapped drop is separated from the pool by a layer of its own vapour in a similar way of antibulles. For increasing impacting speeds, the vapour layer between the drop and the pool does not hold during the pinch-off event. The contact of the drop with the hot liquid provokes a sudden and intense evaporation. At very large impacting speeds, the drop rapidely contacts the pool, spreads and finally induces a hemi-spherical cavity. In the end, these four different regimes are summarized in a Froud-Weber diagram which boundaries are discussed.

  18. Electrokinetics of isolated electrified drops.

    PubMed

    Pillai, Rohit; Berry, Joseph D; Harvie, Dalton J E; Davidson, Malcolm R

    2016-04-14

    Using a recently developed multiphase electrokinetic model, we simulate the transient electrohydrodynamic response of a liquid drop containing ions, to both small and large values of electric field. The temporal evolution is found to be governed primarily by two dimensionless groups: (i) Ohnesorge number (Oh), a ratio of viscous to inertio-capillary effects, and (ii) inverse dimensionless Debye length (κ), a measure of the diffuse regions of charge that develop in the drop. The effects of dielectric polarization dominate at low Oh, while effects of separated charge gain importance with increase in Oh. For small values of electric field, the deformation behaviour of a drop is shown to be accurately described by a simple analytical expression. At large electric fields, the drops are unstable and eject progeny drops. Depending on Oh and κ this occurs via dripping or jetting; the regime transitions are shown by a Oh-κ phase map. In contrast to previous studies, we find universal scaling relations to predict size and charge of progeny drops. Our simulations suggest charge transport plays a significant role in drop dynamics for 0.1 ≤ Oh ≤ 10, a parameter range of interest in microscale flows.

  19. Patterns from drying drops.

    PubMed

    Sefiane, Khellil

    2014-04-01

    The objective of this review is to investigate different deposition patterns from dried droplets of a range of fluids: paints, polymers and biological fluids. This includes looking at mechanisms controlling the patterns and how they can be manipulated for use in certain applications such as medical diagnostics and nanotechnology. This review introduces the fundamental properties of droplets during evaporation. These include profile evolution (constant contact angle regime (CCAR) and constant radius regime (CRR)) and the internal flow (Marangoni and Capillary flow (Deegan et al. [22])). The understanding of these processes and the basic physics behind the phenomenon are crucial to the understanding of the factors influencing the deposition patterns. It concludes with the applications that each of these fluids can be used in and how the manipulation of the deposition pattern is useful. The most commonly seen pattern is the coffee-ring deposit which can be seen frequently in real life from tea/coffee stains and in water colour painting. This is caused by an outward flow known as capillary flow which carries suspended particles out to the edge of the wetted area. Other patterns that were found were uniform, central deposits and concentric rings which are caused by inward Marangoni flow. Complex biological fluids displayed an array of different patterns which can be used to diagnose patients.

  20. Patterns from drying drops.

    PubMed

    Sefiane, Khellil

    2014-04-01

    The objective of this review is to investigate different deposition patterns from dried droplets of a range of fluids: paints, polymers and biological fluids. This includes looking at mechanisms controlling the patterns and how they can be manipulated for use in certain applications such as medical diagnostics and nanotechnology. This review introduces the fundamental properties of droplets during evaporation. These include profile evolution (constant contact angle regime (CCAR) and constant radius regime (CRR)) and the internal flow (Marangoni and Capillary flow (Deegan et al. [22])). The understanding of these processes and the basic physics behind the phenomenon are crucial to the understanding of the factors influencing the deposition patterns. It concludes with the applications that each of these fluids can be used in and how the manipulation of the deposition pattern is useful. The most commonly seen pattern is the coffee-ring deposit which can be seen frequently in real life from tea/coffee stains and in water colour painting. This is caused by an outward flow known as capillary flow which carries suspended particles out to the edge of the wetted area. Other patterns that were found were uniform, central deposits and concentric rings which are caused by inward Marangoni flow. Complex biological fluids displayed an array of different patterns which can be used to diagnose patients. PMID:23746427

  1. Drop out and "Disconnected" Young Adults: Examining the Impact of Neighborhood and School Contexts

    ERIC Educational Resources Information Center

    Rendón, Maria G.

    2014-01-01

    Using data from the National Longitudinal Study of Adolescent Health (Add Health) this study compares if and how neighborhood effects on the likelihood to drop out and be "disconnected" from school and work in young adulthood change when schools are taken into account. As widely documented, I find that neighborhood socioeconomic status…

  2. Leidenfrost drops: Effect of gravity

    NASA Astrophysics Data System (ADS)

    Maquet, L.; Brandenbourger, M.; Sobac, B.; Biance, A.-L.; Colinet, P.; Dorbolo, S.

    2015-04-01

    A specific experimental set-up has been installed in a large centrifuge facility in order to study different aspects of Leidenfrost drops under high-gravity conditions (5, 10, 15 and 20 times the Earth gravity). In particular, the drop lifetime and more precisely the variations of drop diameter vs. time have shown to be in good agreement with previous experiments and scaling analysis (Biance A.-L. et al., Phys. Fluids, 15 (2003) 1632). Moreover, so-called chimneys are expectedly observed in the large puddles, the distance between two chimneys depending linearly on the capillary length. Finally, the Leidenfrost point, i.e. the temperature above which the Leidenfrost effect takes place, was unexpectedly found to increase slightly with gravity. A qualitative explanation based on a refined model (Sobac B. et al., Phys. Rev. E, 90 (2014) 053011) recognizing the non-trivial shape of the vapor film under the drop is proposed to explain this observation.

  3. Orion Capsule Mockup is Dropped

    NASA Video Gallery

    An Orion capsule mockup is dropped from a plane 25,000 feet above the Arizona desert to test its parachute design. Orion will return to Earth at speeds faster than previous human spacecraft, and wi...

  4. All-optical controllable channel-drop filters in two-dimensional square-lattice photonic crystals

    NASA Astrophysics Data System (ADS)

    Fasihi, K.

    2016-05-01

    A novel all-optical controllable channel-drop filter in photonic crystals (PC) of square lattice is presented. We show that using a resonant-cavity-based add-drop filter with a wavelength-selective reflection feedback and a single-control switching module which is based on nonlinear PC microcavities, the dropped channel can be routed to the drop port or returned to the bus waveguide. Using the temporal coupled-mode theory and two-dimensional nonlinear finite-difference time-domain method, the performance of the proposed device is investigated and the simulation results show the validity of the proposed design.

  5. Computational analysis of drop-on-demand drop formation

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Basaran, Osman A.

    2007-10-01

    Motivated by the desire to improve the theoretical understanding of drop-on-demand (DOD) ink-jet printing, a computational analysis is carried out to simulate the formation of liquid drops of incompressible Newtonian fluids from a simple capillary tube by imposing a transient flow rate upstream of the nozzle exit. Since the flow in a typical ink-jet nozzle is toward the nozzle outlet during part of the time and away from the nozzle outlet at other times, an inflow rate is adopted here that captures the essential physics and is given in dimensionless form by Q =(π√We /2)sinΩt, where We is the Weber number (inertial/surface tension force), Ω is the frequency, and t is time. The dynamics are studied as functions of We, Ω, and the Ohnesorge number Oh (viscous/surface tension force). For a common ink forming from a nozzle of 10μm radius, Oh =0.1. For this typical case, a phase or operability diagram in (We,Ω)-space is developed that shows that three regimes of operation are possible. In the first regime, where We is low, breakup does not occur, and drops remain pendant from the nozzle and undergo time periodic oscillations. Thus, the simulations show that fluid inertia, and hence We, must be large enough if a DOD drop is to form, in accord with intuition. A sufficiently large We causes both drop elongation and onset of drop necking, but flow reversal is also necessary for the complete evacuation of the neck and capillary pinching. In the other two regimes, at a given Ω, We is large enough to cause drop breakup. In the first of these two regimes, where Wec1drops do form but have negative velocities, i.e., they would move toward the nozzle upon breakup, which is undesirable. In the second breakup regime, where We >Wec2, not only are DOD drops formed, but they do so with positive velocities.

  6. Electrostatic Liquid-Drop-Levitation System

    NASA Technical Reports Server (NTRS)

    Rhim, Won Kyu; Chung, San Kun; Hyson, Michael T.; Elleman, Daniel D.

    1988-01-01

    Electrostatic levitator has levitated drops of liquid up to 4 mm in diameter while maintaining spherical drop shapes. Stable levitation of spherical drops valuable in experiments involving super-cooling, solidification, and crystal growth.

  7. Forced Oscillations of Supported Drops

    NASA Technical Reports Server (NTRS)

    Wilkes, Edward D.; Basaran, Osman A.

    1996-01-01

    Oscillations of supported liquid drops are the subject of wide scientific interest, with applications in areas as diverse as liquid-liquid extraction, synthesis of ceramic powders, growing of pure crystals in low gravity, and measurement of dynamic surface tension. In this research, axisymmetric forced oscillations of arbitrary amplitude of viscous liquid drops of fixed volume which are pendant from or sessile on a rod with a fixed or moving contact line and surrounded by an inviscid ambient gas are induced by moving the rod in the vertical direction sinusiodally in time. In this paper, a preliminary report is made on the computational analysis of the oscillations of supported drops that have 'clean' interfaces and whose contact lines remain fixed throughout their motions. The relative importance of forcing to damping can be increased by either increasing the amplitude of rod motion A or Reynolds number Re. It is shown that as the ratio of forcing to damping rises, for drops starting from an initial rest state a sharp increase in deformation can occur when they are forced to oscillate in the vicinity of their resonance frequencies, indicating the incipience of hysteresis. However, it is also shown that the existence of a second stable limit cycle and the occurrence of hysteresis can be observed if the drop is subjected to a so-called frequency sweep, where the forcing frequency is first increased and then decreased over a suitable range. Because the change in drop deformation response is abrupt in the vicinity of the forcing frequencies where hysteresis occurs, it should be possible to exploit the phenomenon to accurately measure the viscosity and surface tension of the drop liquid.

  8. Social Capital: Does It Add to the Health Inequalities Debate?

    ERIC Educational Resources Information Center

    Chappell, Neena L.; Funk, Laura M.

    2010-01-01

    This paper empirically examines the relationship between advantage, social capital and health status to assess (a) whether social capital adds explanatory power to what we already know about the relationship between advantage and health and (b) whether social capital adds anything beyond its component parts, namely social participation and trust.…

  9. Solidification of Drops in the MSFC Drop Tube

    NASA Technical Reports Server (NTRS)

    Brush, Lucien N.

    1998-01-01

    Silver drops (99.9%, 7 mm diameter) were levitated, melted, and released to fall through the Marshall Space Flight Center's 105 m drop tube in an He-6% H atmosphere at 170 degrees superheat. The extent of solidification during the approx. 4.6 s of free fall time prior to impact was measured experimentally and computed numerically using a newly developed solidification heat transfer model. Comparison of the experimental observation of the fraction of liquid transformed with the numerical solutions showed reasonable agreement. Possible modifications of the model, in an attempt to close the gap between the experiment and the model comparison are discussed.

  10. Review on drop towers and long drop tubes

    NASA Technical Reports Server (NTRS)

    Bayuzick, R. J.; Hofmeister, W. H.; Robinson, M. B.

    1987-01-01

    A drop tube is an enclosure in which a molten sample can be solidified while falling; three such large tubes are currently in existence, all at NASA research facilities, and are engaged in combustion and fluid physics-related experiments rather than in materials research. JPL possesses smaller tubes, one of which can be cryogenically cooled to produce glass and metal microshells. A new small drop tube will soon begin operating at NASA Lewis that is equipped with four high-speed two-color pyrometers spaced equidistantly along the column.

  11. Static Magnetowetting of Ferrofluid Drops.

    PubMed

    Rigoni, Carlo; Pierno, Matteo; Mistura, Giampaolo; Talbot, Delphine; Massart, René; Bacri, Jean-Claude; Abou-Hassan, Ali

    2016-08-01

    We report results of a comprehensive study of the wetting properties of sessile drops of ferrofluid water solutions at various concentrations deposited on flat substrates and subjected to the action of permanent magnets of different sizes and strengths. The amplitude and the gradient of the magnetic field experienced by the ferrofluid are changed by varying the magnets and their distance to the surface. Magnetic forces up to 100 times the gravitational one and magnetic gradients up to 1 T/cm are achieved. A rich phenomenology is observed, ranging from flattened drops caused by the magnetic attraction to drops extended normally to the substrate because of the normal traction of the magnetic field. We find that the former effect can be conveniently described in terms of an effective Bond number that compares the effective drop attraction with the capillary force, whereas the drop's vertical elongation is effectively expressed by a dimensionless number S, which compares the pressure jump at the ferrofluid interface because of the magnetization with the capillary pressure.

  12. Static Magnetowetting of Ferrofluid Drops.

    PubMed

    Rigoni, Carlo; Pierno, Matteo; Mistura, Giampaolo; Talbot, Delphine; Massart, René; Bacri, Jean-Claude; Abou-Hassan, Ali

    2016-08-01

    We report results of a comprehensive study of the wetting properties of sessile drops of ferrofluid water solutions at various concentrations deposited on flat substrates and subjected to the action of permanent magnets of different sizes and strengths. The amplitude and the gradient of the magnetic field experienced by the ferrofluid are changed by varying the magnets and their distance to the surface. Magnetic forces up to 100 times the gravitational one and magnetic gradients up to 1 T/cm are achieved. A rich phenomenology is observed, ranging from flattened drops caused by the magnetic attraction to drops extended normally to the substrate because of the normal traction of the magnetic field. We find that the former effect can be conveniently described in terms of an effective Bond number that compares the effective drop attraction with the capillary force, whereas the drop's vertical elongation is effectively expressed by a dimensionless number S, which compares the pressure jump at the ferrofluid interface because of the magnetization with the capillary pressure. PMID:27385506

  13. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.810 Section 178.810 Transportation... Drop test. (a) General. The drop test must be conducted for the qualification of all IBC design types... the drop test. (1) Metal, rigid plastic, and composite IBCs intended to contain solids must be...

  14. 49 CFR 178.1045 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.1045 Section 178.1045... Containers § 178.1045 Drop test. (a) General. The drop test must be conducted for the qualification of all... subpart. (b) Special preparation for the drop test. Flexible Bulk Containers must be filled to...

  15. 49 CFR 178.965 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.965 Section 178.965 Transportation... Packagings § 178.965 Drop test. (a) General. The drop test must be conducted for the qualification of all...) Special preparation for the drop test. Large Packagings must be filled in accordance with § 178.960....

  16. 49 CFR 178.603 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Drop test. 178.603 Section 178.603 Transportation... Packagings and Packages § 178.603 Drop test. (a) General. The drop test must be conducted for the... than flat drops, the center of gravity of the test packaging must be vertically over the point...

  17. Getting the Drop on Sediment

    ERIC Educational Resources Information Center

    Galindez, Peter

    1977-01-01

    In this exercise, students examine Aristotle's weight hypothesis by testing variously shaped marble chips. These chips are weighed and dropped down a water tube. Average fall times and weights are recorded and graphed. Students are asked to apply this information to rock and soil deposition by streams. (MA)

  18. Egg Drop: An Invention Workshop

    ERIC Educational Resources Information Center

    McCormack, Alan J.

    1973-01-01

    Describes an activity designed to stimulate elementary and junior high students to become actively engaged in thinking creatively rather than only analytically, convergently, or repetitively. The activity requires students to devise means of dropping an egg from a height without it breaking. (JR)

  19. ``Quantum'' interference with bouncing drops

    NASA Astrophysics Data System (ADS)

    Bohr, Tomas; Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens

    2013-11-01

    In a series of recent papers (most recently) Yves Couder and collaborators have explored the dynamics of walking drops on the surface of a vibrated bath of silicon oil and have demonstrated a close analogy to quantum phenomena. The bouncing drop together with the surface wave that it excites seems to be very similar to the pilot wave envisaged by de Broglie for quantum particles. In particular, have studied a double slit experiment with walking drops, where an interference pattern identical to the quantum version is found even though it is possible to follow the orbits of the drops and unambigously determine which slit it goes through, something which in quantum mechanics would be ruled out by the Heisenberg uncertainly relations. We have repeated the experiment and present a somewhat more complicated picture. Theoretically, we study a Schrödinger equation with a source term originating from a localised ``particle'' being simultaneously guided by the wave. We present simple solutions to such a field theory and discuss the fundamental difficulties met by such a theory in order to comply with quantum mechanics.

  20. Top 5 Ways to Help Students with ADD/ADHD

    ERIC Educational Resources Information Center

    Johnson, Kathy

    2011-01-01

    This article suggests five ways to help students with ADD/ADHD. These are: (1) Integrate the primitive reflexes; (2) Diet; (3) Visual attention; (4) Help for auditory attention; and (5) Cognitive training.

  1. TDRS-K to Add to Vital Space Network

    NASA Video Gallery

    NASA officials discuss the launch of the TDRS-K spacecraft to add to the space network that enables communications between the International Space Station and Earth-orbiting satellites and ground c...

  2. The Stability of Two Connected Pendant Drops

    NASA Technical Reports Server (NTRS)

    Slobozhanin, Lev A.; Alexander, J. Iwan

    2004-01-01

    The stability of an equilibrium system of two drops suspended from circular holes is examined. The drop surfaces are disconnected surfaces of a connected liquid body. For holes of equal radii and identical pendant drops axisymmetric perturbations are always the most dangerous. The stability region for two identical drops differs considerably from that for a single drop. Loss of stability leads to a transition from a critical system of identical drops to a stable system of axisymmetric non-identical. This system of non-identical drops reaches its own stability limit (to isochoric or non-isochoric paturbations). For non-identical drops, loss of stability results in dripping or streaming from the holes. Critical volumes for non-identical drops have been calculated as functions of the Bond number, B. For unequal hole radii, stability regions have been constructed for a set of hole radius, K. The dependence of critical volumes on K and B is analyzed.

  3. Drop impact on a fiber

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Gil; Kim, Wonjung

    2016-04-01

    We present the results of a combined experimental and theoretical investigation of drop impact on a thin fiber. Using high-speed videography, we analyze the dynamics of droplet collision with a fiber. Based on the systematic experiments, we identify three outcomes of collision: capturing, single drop falling, and splitting. The outcomes are presented in a regime map, where the regime boundaries are explained through a scale analysis of forces. We also measure the liquid retention on the fiber after the droplet impact. By considering a liquid film on the fiber, we develop a mechanical model that predicts the residual water mass. Our model reveals that the residual mass depends critically on the fiber thickness and less on the impact speed. Our study can be extended to predicting the remaining droplet, critical problems in air filtration, water collection, and fiber coating.

  4. Thermocapillary motion of deformable drops

    NASA Technical Reports Server (NTRS)

    Haj-Hariri, Hossein; Shi, Qingping; Borhan, Ali

    1994-01-01

    The thermocapillary motion of initially spherical drops/bubbles driven by a constant temperature gradient in an unbounded liquid medium is simulated numerically. Effects of convection of momentum and energy, as well as shape deformations, are addressed. The method used is based on interface tracking on a base cartesian grid, and uses a smeared color or indicator function for the determination of the surface topology. Quad-tree adaptive refinement of the cartesian grid is implemented to enhance the fidelity of the surface tracking. It is shown that convection of energy results in a slowing of the drop, as the isotherms get wrapped around the front of the drop. Shape deformation resulting from inertial effects affect the migration velocity. The physical results obtained are in agreement with the existing literature. Furthermore, remarks are made on the sensitivity of the calculated solutions to the smearing of the fluid properties. Analysis and simulations show that the migration velocity depends very strongly on the smearing of the interfacial force whereas it is rather insensitive to the smearing of other properties, hence the adaptive grid.

  5. Piezoelectric Water Drop Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Al Ahmad, Mahmoud

    2014-02-01

    Piezoelectric materials convert mechanical deformation directly into electrical charges, which can be harvested and used to drive micropower electronic devices. The low power consumption of such systems on the scale of microwatts leads to the possibility of using harvested vibrational energy due to its almost universal nature. Vibrational energy harvested using piezoelectric cantilevers provides sufficient output for small-scale power applications. This work reports on vibrational energy harvesting from free-falling droplets at the tip of lead zirconate titanate piezoelectric-based cantilevers. The harvester incorporates a multimorph clamped-free cantilever made of lead zirconate titanate piezoelectric thick films. During the impact, the droplet's kinetic energy is transferred to the form of mechanical stress, forcing the piezoelectric structure to vibrate and thereby producing charges. Experimental results show an instantaneous drop-power of 2.15 mW cm-3 g-1. The scenario of a medium intensity of falling water drops, i.e., 200 drops per second, yielded a power of 0.48 W cm-3 g-1 per second.

  6. Critical point wetting drop tower experiment

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F.; Tcherneshoff, L. M.; Straits, S. R.

    1984-01-01

    Preliminary results for the Critical Point Wetting CPW Drop Tower Experiment are produced with immiscible systems. Much of the observed phenomena conformed to the anticipated behavior. More drops will be needed to test the CPW theory with these immiscible systems.

  7. Drag and drop display & builder

    SciTech Connect

    Bolshakov, Timofei B.; Petrov, Andrey D.; /Fermilab

    2007-12-01

    The Drag and Drop (DnD) Display & Builder is a component-oriented system that allows users to create visual representations of data received from data acquisition systems. It is an upgrade of a Synoptic Display mechanism used at Fermilab since 2002. Components can be graphically arranged and logically interconnected in the web-startable Project Builder. Projects can be either lightweight AJAX- and SVG-based web pages, or they can be started as Java applications. The new version was initiated as a response to discussions between the LHC Controls Group and Fermilab.

  8. Drop Tower and Aircraft Capabilities

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    2015-01-01

    This presentation is a brief introduction to existing capabilities in drop towers and low-gravity aircraft that will be presented as part of a Symposium: Microgravity Platforms Other Than the ISS, From Users to Suppliers which will be a half day program to bring together the international community of gravity-dependent scientists, program officials and technologists with the suppliers of low gravity platforms (current and future) to focus on the future requirements and use of platforms other than the International Space Station (ISS).

  9. 14 CFR 91.15 - Dropping objects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Dropping objects. 91.15 Section 91.15... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES General § 91.15 Dropping objects. No pilot in command of a civil aircraft may allow any object to be dropped from that aircraft in...

  10. 49 CFR 572.102 - Drop test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Drop test. 572.102 Section 572.102 Transportation..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Free Motion Headform § 572.102 Drop test. (a) When the headform is dropped from a height of 14.8 inches in accordance with paragraph (b)...

  11. 49 CFR 572.102 - Drop test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Drop test. 572.102 Section 572.102 Transportation..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Free Motion Headform § 572.102 Drop test. (a) When the headform is dropped from a height of 14.8 inches in accordance with paragraph (b)...

  12. 49 CFR 572.102 - Drop test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Drop test. 572.102 Section 572.102 Transportation..., DEPARTMENT OF TRANSPORTATION (CONTINUED) ANTHROPOMORPHIC TEST DEVICES Free Motion Headform § 572.102 Drop test. (a) When the headform is dropped from a height of 14.8 inches in accordance with paragraph (b)...

  13. Electrohydrodynamics of a particle-covered drop

    NASA Astrophysics Data System (ADS)

    Ouriemi, Malika; Vlahovska, Petia

    2014-11-01

    We study the dynamics of a drop nearly-completely covered with a particle monolayer in a uniform DC electric field. The weakly conducting fluid system consists of a silicon oil drop suspended in castor oil. A broad range of particle sizes, conductivities, and shapes is explored. In weak electric fields, the presence of particles increases drop deformation compared to a particle-free drop and suppresses the electrohydrodynamic flow. Very good agreement is observed between the measured drop deformation and the small deformation theory derived for surfactant-laden drops (Nganguia et al., 2013). In stronger electric fields, where drops are expected to undergo Quincke rotation (Salipante and Vlahovska, 2010), the presence of the particles greatly decreases the threshold for rotation and the stationary tilted drop configuration observed for clean drop is replaced by a spinning drop with either a wobbling inclination or a very low inclination. These behaviors resemble the predicted response of rigid ellipsoids in uniform electric fields. At even stronger electric fields, the particles can form dynamic wings or the drop implodes. The similar behavior of particle-covered and surfactant-laden drops provides new insights into understanding stability of Pickering emulsions. Supported by NSF-CBET 1437545.

  14. Electrohydrodynamics of a viscous drop with inertia.

    PubMed

    Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F

    2016-05-01

    Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations. PMID:27300985

  15. Electrohydrodynamics of a viscous drop with inertia.

    PubMed

    Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F

    2016-05-01

    Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.

  16. The fate of electrospray drops

    NASA Astrophysics Data System (ADS)

    Basaran, Osman; Collins, Robert; Sambath, Krishnaraj; Harris, Michael

    2015-11-01

    Drops subjected to strong electric fields emit thin fluid jets from conical structures (Taylor cones) that form at their surfaces. Such behavior has practical, e.g. electrospray mass spectrometry, and fundamental, e.g. raindrops in thunderclouds, implications. Theoretical analysis of the temporal development of such EHD tip-streaming phenomena is challenging given the large disparity in length scales between the macroscopic drops and the microscopic jets. Furthermore, there exist conflicting theories and measurements on the size and charge of these small electrospray droplets. We use theory and simulation to show that conductivity can be tuned to yield three scaling regimes for droplet radius and charge, a finding missed by previous studies. The amount of charge Q that electrospray droplets carry determines whether they are coulombically stable and charged below the Rayleigh limit of stability R or are unstable and hence prone to further explosions once formed. Previous experiments reported droplet charge values ranging from 1/10th to in excess of R. Simulations unequivocally show that electrospray droplets are coulombically stable at the instant they are created and that there exists a universal scaling law for droplet charge, Q=0.44 R.

  17. Small drops from large nozzles

    NASA Astrophysics Data System (ADS)

    Castrejon-Pita, Alfonso Arturo; Said Mohamed, Ahmed; Castrejon-Pita, Jose Rafael; Herrada, Miguel Angel

    2015-11-01

    We report experimental and numerical results of the generation of drops which are significantly smaller than the nozzle from which they are generated. The system consists of a cylindrical reservoir and two endplates. One plate is a thin metal sheet with a small orifice in its centre which acts as the nozzle. The other end consists of a piston which moves by the action of an elecromechanical actuator which in turn is driven by sine-shape pull-mode pulses. The meniscus (formed at the nozzle) is thus first overturned, forming a cavity. This cavity collapses and a thin and fast jet emerges from its centre. Under appropriate conditions the tip of this jet breaks up and produces a single diminutive drop. A good agreement between the experimental and numerical results was found. Also, a series of experiments were performed in order to study the effects that the pulse amplitude and width, together with variations in the liquid properties, have over the final size of the droplet. Based on these experiments, a predictive law for the droplet size has been derived. This work was funded by the Royal Society (University Research Fellowship and Research Grant), the John Fell Fund (Oxford University Press), the Ministry of Science and Education (DPI2013-46485 Spain), and the Junta de Andalucia (P08-TEP-31704128 Spain).

  18. Channel drop filter for CWDM systems

    NASA Astrophysics Data System (ADS)

    Youcef Mahmoud, Mahmoud; Bassou, Ghaouti; de Fornel, Frédérique; Taalbi, Ahmed

    2013-10-01

    In this paper, a new design of channel drop filter (CDF) based on two-dimensional photonic crystal ring resonators (PCRRs) is provided by two-dimensional (2D) finite-difference time-domain (FDTD) simulations in triangular lattice photonic crystal (PC) silicon rods. 100% forward dropping efficiency and a quality factor of over 1000 can be achieved at maximum transfer efficiency while the operating wavelength is 1550 nm. Through this novel component, three channel drop operation with 100% dropping efficiencies at all output channels can be obtained. The proposed filter provides a possibility of channel drop filter and could be used in coarse wavelength division multiplexing (CWDM) systems.

  19. Charged drop levitators and their applications

    NASA Technical Reports Server (NTRS)

    Rhim, W. K.; Chung, S. K.; Hyson, M. T.; Elleman, D. D.

    1987-01-01

    An account is given of the charged drop levitation characteristics of two different devices: (1) a feedback-controlled electrostatic levitator able to lift a several mm-diameter drop in 1g conditions, which is applicable to drop dynamics, crystal growth, and supercooling/solidification experiments; and (2) a linear quadrupole levitator, whose advantages are demonstrated in light of the results obtained for the charged drop instability experiment. The cause of the premature drop burstings observed is suggested to be an electron avalanche in the surrounding gaseous medium rather than the Rayleigh limit.

  20. Stealing time. Time management techniques add hours to each day.

    PubMed

    Davis, Nadinia

    2003-06-01

    Time not only flies when we're having fun, but also when we're filing paperwork, checking e-mail, and looking for our car keys. But you can add hours to your day by managing yourself rather than time. Here's how.

  1. Enhancing Teaching using MATLAB Add-Ins for Excel

    ERIC Educational Resources Information Center

    Hamilton, Paul V.

    2004-01-01

    In this paper I will illustrate how to extend the capabilities of Microsoft Excel spreadsheets with add-ins created by MATLAB. Excel provides a broad array of fundamental tools but often comes up short when more sophisticated scenarios are involved. To overcome this short-coming of Excel while retaining its ease of use, I will describe how…

  2. Medicalised Pupils: The Case of ADD/ADHD

    ERIC Educational Resources Information Center

    Kristjansson, Kristjan

    2009-01-01

    Recent decades have seen an increasing number of life's problems conceptualised and interpreted through the prism of disease; among them are those affecting pupils at school. Witness the cases of hyperactivity and deficient attention, so often diagnosed as ADD/ADHD. Research indicates that there is at least some tendency towards overdiagnosis of…

  3. Reading Disabled and ADD Children: Similarities and Differences.

    ERIC Educational Resources Information Center

    Dykman, Roscoe A.; And Others

    This paper covers selected findings from three studies that compared different diagnostic groups: boys with attention deficit disorder (ADD) with or without hyperactivity (HY) but normal reading ability; boys with reading disability (RD) but not HY; and boys with both RD and HY. Studies examined an adapted task to assess frontal and temporal lobe…

  4. The Care Tradition: Beyond "Add Women and Stir."

    ERIC Educational Resources Information Center

    Noddings, Nel

    2001-01-01

    Examines problems of curricular inclusion, emphasizing ways of including the interests and contributions of women in social studies curricula. After describing the inadequacy of the "add women and stir" approach to inclusion, the paper discusses the tradition of care long identified with female life, then explores ways to preserve and extend this…

  5. Drop short control of electrode gap

    DOEpatents

    Fisher, Robert W.; Maroone, James P.; Tipping, Donald W.; Zanner, Frank J.

    1986-01-01

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  6. Visual recovery using small dilating eye drops.

    PubMed

    Gray, R H; Franklin, S J; Reeves, B C

    1992-08-01

    It is well established that reduced size dilating eye drops of 1% tropicamide and 10% phenylephrine (micro drops) are effective for clinical purposes. Excellent pupil dilatation (mydriasis) is achieved and pupil constriction does not occur in response to light. In this study, the effect of micro drops of 1% tropicamide on distance and near visual recovery was compared with standard drops in a group of 20 healthy volunteers. For each person studied, one eye was selected at random to be tested first with the standard drop size, and then after a minimum of one week, the same eye was again tested using a drop of the same drug one fifth standard size. An iris photograph, Snellen visual acuity at 6 m, and reading visual acuity was obtained for each test procedure: before drop instillation and at 30 min, 1, 2 and 4 h after drug instillation. Use of the micro drops caused a small but statistically significant improvement in the rate of recovery of distance and near visual acuity. These findings, allied to the known beneficial effects of reduced systemic absorption using micro drops, lend further weight to the argument that mydriasis may be achieved more safely, with fewer side effects, and with earlier return of normal vision when reduced size drops are used. It is hoped that practical micro drop dispensers will be developed.

  7. Large charged drop levitation against gravity

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang Kun; Hyson, Michael T.; Trinh, Eugene H.; Elleman, Daniel D.

    1987-01-01

    A hybrid electrostatic-acoustic levitator that can levitate and manipulate a large liquid drop in one gravity is presented. To the authors' knowledge, this is the first time such large drops (up to 4 mm in diameter in the case of water) have been levitated against 1-gravity. This makes possible, for the first time, many new experiments both in space and in ground-based laboratories, such as 1)supercooling and superheating, 2) containerless crystal growth from various salt solutions or melts, 3) drop dynamics of oscillating or rotating liquid drops, 4) drop evaporation and Rayleigh bursting, and 5) containerless material processing in space. The digital control system, liquid drop launch process, principles of electrode design, and design of a multipurpose room temperature levitation chamber are described. Preliminary results that demonstrate drop oscillation and rotation, and crystal growth from supersaturated salt solutions are presented.

  8. Dynamics of Aqueous Foam Drops

    NASA Technical Reports Server (NTRS)

    Akhatov, Iskander; McDaniel, J. Gregory; Holt, R. Glynn

    2001-01-01

    We develop a model for the nonlinear oscillations of spherical drops composed of aqueous foam. Beginning with a simple mixture law, and utilizing a mass-conserving bubble-in-cell scheme, we obtain a Rayleigh-Plesset-like equation for the dynamics of bubbles in a foam mixture. The dispersion relation for sound waves in a bubbly liquid is then coupled with a normal modes expansion to derive expressions for the frequencies of eigenmodal oscillations. These eigenmodal (breathing plus higher-order shape modes) frequencies are elicited as a function of the void fraction of the foam. A Mathieu-like equation is obtained for the dynamics of the higher-order shape modes and their parametric coupling to the breathing mode. The proposed model is used to explain recently obtained experimental data.

  9. Who is dropping your course?

    NASA Astrophysics Data System (ADS)

    Storrs, Alex; Ghent, C.; Labattaglia, R.

    2011-01-01

    We present an analysis of pre and post instruction instruments in a basic astronomy course. This analysis is built on the Light and Spectroscopy Concept Inventory (LSCI, Bardar et al. 2007). In addition to assessing our student's gain in knowledge of this fundamental topic, we have added some demographic questions. While the primary purpose is to compare the gain in knowledge during a semester of instruction to changes in instruction, we also look at the demographics of students who take the pretest but not the posttest. These students are usually excluded from this type of analysis. We look for trends in the demographic information among students who drop the course, and suggest ways to make the course more palatable. References: Bardar et al., 2007: "Development and Validation of the Light and Spectroscopy Concept Inventory", Astr. Ed. Rev. 5(2), 103-113

  10. Drop processes in natural clouds

    NASA Technical Reports Server (NTRS)

    Latham, J.

    1982-01-01

    A model of the diffusive mixing of dry and cloudy air, a process considered to be fundamental to the development of natural clouds, is presented. Water drops are formed at the cloud base by condensation upon nuclei and as they rise they grow by vapor diffusion in the slightly supersaturated environment of the clouds. Turbulent mixing between cloudy air and undersaturated air entrained from outside produces fluctuations in supersaturation, not linked to changes in vertical velocity, which cause broadening of the condensate spectrum and the rapid production of droplets large enough to engage in growth by coalescence. The probabilities of permanent union or the production of satellite droplets following the collision of a pair of raindrops is a sensitive function of several parameters. In some circumstances electrohydrodynamic bursting may influence the properties of clouds.

  11. Magnetically focused liquid drop radiator

    DOEpatents

    Botts, Thomas E.; Powell, James R.; Lenard, Roger

    1986-01-01

    A magnetically focused liquid drop radiator for application in rejecting rgy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  12. Magnetically focused liquid drop radiator

    DOEpatents

    Botts, T.E.; Powell, J.R.; Lenard, R.

    1984-12-10

    A magnetically focused liquid drop radiator for application in rejecting energy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  13. Micro-explosion of compound drops

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuei; Lin, Ta-Hui

    2014-08-01

    Introducing water into spray combustion systems, by either water-in-oil emulsification or supplementary water injection, is one of the major techniques for combustion improvement and NOx reduction. Plentiful researches are available on combustion of water-in-oil emulsion fuel drops. The emulsified liquid is a heterogeneous mixture of immiscible liquids. One component forms the continuous phase and the other component forms the discrete phase. The discrete phase consists of globules of the one fluid that are suspended in the continuous phase fluid. Water-in-oil emulsions are commonly considered for combustion applications because emulsions can result in micro-explosion, thereby reducing the average drop diameter to enhance liquid vaporization, and suppressing the formation of soot and NOx. However, the water addition generally does not exceed about 20% for smooth engine operations[!, 21. The combustion characteristics and micro-explosion of emulsion drop were studied by many researchers. The micro-explosion of water in fuel emulsion drops was caused by very fast growth of superheated water vapor bubbles, its superheat limits must be lower than the boiling point temperature of the fuel. These bubbles were primarily governed by the pressure difference between the superheated vapor and the liquid, and by the inertia imparted to the liquid by the motion of the bubble surface[3 6 In this study, we used a coaxial nozzle to generation the multi-component drop. The different type of water-in-oil fuel drops called the compound drops. Unlike an emulsion drop, a compound drop consists of a water core and a fuel shell, which can originate from the phase separation of emulsion[7, 81 or a water drop colliding with a fuel drop[9, 101 Burning and micro-explosion of compound drops have been found to be distinct from those of emulsion drops[9-111 Wang et al.[9 , 101 studied the combustion characteristics of collision merged alkane-water drops. The merged drops appeared in adhesive

  14. Dropping Behavior in the Pea Aphid (Hemiptera: Aphididae): How Does Environmental Context Affect Antipredator Responses?

    PubMed Central

    Harrison, Katharine V.; Preisser, Evan L.

    2016-01-01

    The pea aphid Acyrthosiphon pisumHarris (Hemiptera: Aphididae) is a phloem-feeding insect whose antipredator defenses include kicking, walking away, and dropping from the plant. Aphid dropping, a risky and energetically costly antipredator behavior, can be increased by the release of aphid alarm pheromone; there is also evidence that insect density and plant health can affect the likelihood of aphids engaging in this behavior. We investigated whether interactions between alarm cues, insect density, and plant health can alter the dropping behavior of aphids in response to an artificial disturbance. The presence of the alarm pheromone E-β-farnesene resulted in a nearly 15-fold increase in aphid dropping behavior; the other two factors, however, did not affect dropping and none of the two- or three-way interactions were significant. This was surprising because aphids affected plant health: production of new plant biomass after 5 d of exposure to high aphid densities was 50% lower than in the control treatment. This research adds to our understanding of the factors affecting aphid antipredator behavior; the fact that neither aphid density nor feeding period impacted dropping may reflect the high energetic costs of this activity and an unwillingness to use it in any but the riskiest situations. PMID:27638950

  15. Dropping Behavior in the Pea Aphid (Hemiptera: Aphididae): How Does Environmental Context Affect Antipredator Responses?

    PubMed

    Harrison, Katharine V; Preisser, Evan L

    2016-01-01

    The pea aphid Acyrthosiphon pisum : Harris (Hemiptera: Aphididae) is a phloem-feeding insect whose antipredator defenses include kicking, walking away, and dropping from the plant. Aphid dropping, a risky and energetically costly antipredator behavior, can be increased by the release of aphid alarm pheromone; there is also evidence that insect density and plant health can affect the likelihood of aphids engaging in this behavior. We investigated whether interactions between alarm cues, insect density, and plant health can alter the dropping behavior of aphids in response to an artificial disturbance. The presence of the alarm pheromone E-β-farnesene resulted in a nearly 15-fold increase in aphid dropping behavior; the other two factors, however, did not affect dropping and none of the two- or three-way interactions were significant. This was surprising because aphids affected plant health: production of new plant biomass after 5 d of exposure to high aphid densities was 50% lower than in the control treatment. This research adds to our understanding of the factors affecting aphid antipredator behavior; the fact that neither aphid density nor feeding period impacted dropping may reflect the high energetic costs of this activity and an unwillingness to use it in any but the riskiest situations. PMID:27638950

  16. Planar Microfluidic Drop Splitting and Merging

    NASA Astrophysics Data System (ADS)

    Collignon, Sean; Friend, James; Yeo, Leslie; MAD-LAB Team

    2015-11-01

    Open drop microfluidic platforms offer attractive alternatives to closed microchannel devices, however, to be effective they require efficient schemes for planar drop transport and manipulation. While there are many methods that have been reported for drop transport, it is far more difficult to carry out drop operations of dispensing, merging and splitting. In this work, we introduce a novel alternative to merge and split drops using laterally-offset modulated surface acoustic waves (SAWs). To do so, the energy delivery into the drop is modulated to induce drop stretching. Upon removal of the SAW energy, capillary forces at the center of the elongated drop drain the capillary bridge region towards both ends, resulting in its collapse and consequential splitting of the drop. This occurs only below a critical Ohnesorge number, a balance between the viscous forces that retard the drainage and the sufficiently large capillary forces that cause the liquid bridge to pinch. By this scheme we show the possibility of both reliable symettric splitting of a drop with an average deviation in droplet volumes of only around 4%, and no greater than 10%, as well as asymmetric splitting, by tuning the input energy to the device--thus presenting a comparable alternative to electrowetting.

  17. Non-coalescence of oppositely charged drops.

    PubMed

    Ristenpart, W D; Bird, J C; Belmonte, A; Dollar, F; Stone, H A

    2009-09-17

    Electric fields induce motion in many fluid systems, including polymer melts, surfactant micelles and colloidal suspensions. Likewise, electric fields can be used to move liquid drops. Electrically induced droplet motion manifests itself in processes as diverse as storm cloud formation, commercial ink-jet printing, petroleum and vegetable oil dehydration, electrospray ionization for use in mass spectrometry, electrowetting and lab-on-a-chip manipulations. An important issue in practical applications is the tendency for adjacent drops to coalesce, and oppositely charged drops have long been assumed to experience an attractive force that favours their coalescence. Here we report the existence of a critical field strength above which oppositely charged drops do not coalesce. We observe that appropriately positioned and oppositely charged drops migrate towards one another in an applied electric field; but whereas the drops coalesce as expected at low field strengths, they are repelled from one another after contact at higher field strengths. Qualitatively, the drops appear to 'bounce' off one another. We directly image the transient formation of a meniscus bridge between the bouncing drops, and propose that this temporary bridge is unstable with respect to capillary pressure when it forms in an electric field exceeding a critical strength. The observation of oppositely charged drops bouncing rather than coalescing in strong electric fields should affect our understanding of any process involving charged liquid drops, including de-emulsification, electrospray ionization and atmospheric conduction. PMID:19759616

  18. Leidenfrost drops on a heated liquid pool

    NASA Astrophysics Data System (ADS)

    Maquet, L.; Sobac, B.; Darbois-Texier, B.; Duchesne, A.; Brandenbourger, M.; Rednikov, A.; Colinet, P.; Dorbolo, S.

    2016-09-01

    We show that a volatile liquid drop placed at the surface of a nonvolatile liquid pool warmer than the boiling point of the drop can be held in a Leidenfrost state even for vanishingly small superheats. Such an observation points to the importance of the substrate roughness, negligible in the case considered here, in determining the threshold Leidenfrost temperature. A theoretical model based on the one proposed by Sobac et al. [Phys. Rev. E 90, 053011 (2014), 10.1103/PhysRevE.90.053011] is developed in order to rationalize the experimental data. The shapes of the drop and of the liquid substrate are analyzed. The model notably provides scalings for the vapor film thickness profile. For small drops, these scalings appear to be identical to the case of a Leidenfrost drop on a solid substrate. For large drops, in contrast, they are different, and no evidence of chimney formation has been observed either experimentally or theoretically in the range of drop sizes considered in this study. Concerning the evaporation dynamics, the radius is shown to decrease linearly with time whatever the drop size, which differs from the case of a Leidenfrost drop on a solid substrate. For high superheats, the characteristic lifetime of the drops versus the superheat follows a scaling law that is derived from the model, but, at low superheats, it deviates from this scaling by rather saturating.

  19. Trapping of drops by wetting defects

    PubMed Central

    't Mannetje, Dieter; Ghosh, Somnath; Lagraauw, Rudy; Otten, Simon; Pit, Arjen; Berendsen, Christian; Zeegers, Jos; van den Ende, Dirk; Mugele, Frieder

    2014-01-01

    Controlling the motion of drops on solid surfaces is crucial in many natural phenomena and technological processes including the collection and removal of rain drops, cleaning technology and heat exchangers. Topographic and chemical heterogeneities on solid surfaces give rise to pinning forces that can capture and steer drops in desired directions. Here we determine general physical conditions required for capturing sliding drops on an inclined plane that is equipped with electrically tunable wetting defects. By mapping the drop dynamics on the one-dimensional motion of a point mass, we demonstrate that the trapping process is controlled by two dimensionless parameters, the trapping strength measured in units of the driving force and the ratio between a viscous and an inertial time scale. Complementary experiments involving superhydrophobic surfaces with wetting defects demonstrate the general applicability of the concept. Moreover, we show that electrically tunable defects can be used to guide sliding drops along actively switchable tracks—with potential applications in microfluidics. PMID:24721935

  20. A Different Cone: Bursting Drops in Solids

    NASA Astrophysics Data System (ADS)

    Zhao, Xuanhe

    2013-03-01

    Drops in fluids tend to be spheres--a shape that minimizes surface energy. In thunderstorm clouds, drops can become unstable and emit thin jets when charged beyond certain limits. The instability of electrified drops in gases and liquids has been widely studied and used in applications including ink-jet printing, electrospinning nano-fibers, microfluidics and electrospray ionization. Here we report a different scenario: drops in solids become unstable and burst under sufficiently high electric fields. We find the instability of drops in solids morphologically resembles that in liquids, but the critical electric field for the instability follows a different scaling due to elasticity of solids. Our observations and theoretical models not only advance the fundamental understanding of electrified drops but also suggest a new failure mechanism of high-energy-density dielectric polymers, which have diverse applications ranging from capacitors for power grids and electric vehicles to muscle-like transducers for soft robots and energy harvesting.

  1. Coalescence dynamics of viscous conical drops

    NASA Astrophysics Data System (ADS)

    Lu, Jiakai; Fang, Shengyang; Corvalan, Carlos M.

    2016-02-01

    When two oppositely charged drops come into light contact, a liquid meniscus bridge with double-cone geometry forms between the drops. Recent experiments have demonstrated the existence of a critical cone angle above which the meniscus bridge pinches off and the drops do not coalesce. This striking behavior—which has implications for processes ranging from the coarsening of emulsions to electrospray ionization in mass spectrometry—has been studied theoretically and experimentally for inertial liquid drops. Little is known, however, about the influence of the liquid viscosity on the critical cone angle. Here, we use high-fidelity numerical simulations to gain insight into the coalescence dynamics of conical drops at intermediate Reynolds numbers. The simulations, which account for viscous, inertial, and surface tension effects, predict that the critical cone angle increases as the viscosity of the drops decreases. When approaching the inertial regime, however, the predicted critical angle quickly stabilizes at approximately 27∘, as observed in experiments.

  2. Hydrodynamic instability and drop fragmentation modes

    NASA Astrophysics Data System (ADS)

    Girin, A. G.

    1985-05-01

    A linear analysis of the stability of the drop surface is employed to evaluate the dispersion parameters and to propose mechanisms for several types of degradation. The calculations show that in the Weber number range from 5 to 60 the drop is subjected to periodic perturbations whose wavelengths are larger than the initial drop diameter and comparable to the diameter of the deformed drop. The case where half-wavelength is approximately equal to the drop diameter corresponds to the formation of a parachute shape of the deformed drop; larger Weber numbers (and, correspondingly, smaller wavelengths) lead to the formation of a 'claviform'. A similar approach can be assumed to study the interphase interaction leading to degradation in other systems, such as bubble and film systems.

  3. Add Control: plant virtualization for control solutions in WWTP.

    PubMed

    Maiza, M; Bengoechea, A; Grau, P; De Keyser, W; Nopens, I; Brockmann, D; Steyer, J P; Claeys, F; Urchegui, G; Fernández, O; Ayesa, E

    2013-01-01

    This paper summarizes part of the research work carried out in the Add Control project, which proposes an extension of the wastewater treatment plant (WWTP) models and modelling architectures used in traditional WWTP simulation tools, addressing, in addition to the classical mass transformations (transport, physico-chemical phenomena, biological reactions), all the instrumentation, actuation and automation & control components (sensors, actuators, controllers), considering their real behaviour (signal delays, noise, failures and power consumption of actuators). Its ultimate objective is to allow a rapid transition from the simulation of the control strategy to its implementation at full-scale plants. Thus, this paper presents the application of the Add Control simulation platform for the design and implementation of new control strategies at the WWTP of Mekolalde. PMID:23863420

  4. Stereovision Imaging in Smart Mobile Phone Using Add on Prisms

    NASA Astrophysics Data System (ADS)

    Bar-Magen Numhauser, Jonathan; Zalevsky, Zeev

    2014-03-01

    In this work we present the use of a prism-based add on component installed on top of a smart phone to achieve stereovision capabilities using iPhone mobile operating system. Through these components and the combination of the appropriate application programming interface and mathematical algorithms the obtained results will permit the analysis of possible enhancements for new uses to such system, in a variety of areas including medicine and communications.

  5. Randomized Controlled Trials of Add-On Antidepressants in Schizophrenia

    PubMed Central

    Joffe, Grigori; Stenberg, Jan-Henry

    2015-01-01

    Background: Despite adequate treatment with antipsychotics, a substantial number of patients with schizophrenia demonstrate only suboptimal clinical outcome. To overcome this challenge, various psychopharmacological combination strategies have been used, including antidepressants added to antipsychotics. Methods: To analyze the efficacy of add-on antidepressants for the treatment of negative, positive, cognitive, depressive, and antipsychotic-induced extrapyramidal symptoms in schizophrenia, published randomized controlled trials assessing the efficacy of adjunctive antidepressants in schizophrenia were reviewed using the following parameters: baseline clinical characteristics and number of patients, their on-going antipsychotic treatment, dosage of the add-on antidepressants, duration of the trial, efficacy measures, and outcomes. Results: There were 36 randomized controlled trials reported in 41 journal publications (n=1582). The antidepressants used were the selective serotonin reuptake inhibitors, duloxetine, imipramine, mianserin, mirtazapine, nefazodone, reboxetin, trazodone, and bupropion. Mirtazapine and mianserin showed somewhat consistent efficacy for negative symptoms and both seemed to enhance neurocognition. Trazodone and nefazodone appeared to improve the antipsychotics-induced extrapyramidal symptoms. Imipramine and duloxetine tended to improve depressive symptoms. No clear evidence supporting selective serotonin reuptake inhibitors’ efficacy on any clinical domain of schizophrenia was found. Add-on antidepressants did not worsen psychosis. Conclusions: Despite a substantial number of randomized controlled trials, the overall efficacy of add-on antidepressants in schizophrenia remains uncertain mainly due to methodological issues. Some differences in efficacy on several schizophrenia domains seem, however, to exist and to vary by the antidepressant subgroups—plausibly due to differences in the mechanisms of action. Antidepressants may not worsen

  6. Equilibrium shapes of acoustically levitated drops

    NASA Astrophysics Data System (ADS)

    Trinh, E. H.; Hsu, C.-J.

    1986-05-01

    The quantitative determination of the shape of liquid drops levitated in an ultrasonic standing wave has provided experimental data on the radiation pressure-induced deformations of freely suspended liquids. Within the limits of small deviations from the spherical shape and small drop diameter relative to the acoustic wavelength, an existing approximate theory yields a good agreement with experimental evidence. The data were obtained for millimeter and submillimeter drops levitated in air under 1 g, where g is the sea level gravitational acceleration.

  7. Surface-Controlled Drop Oscillations in Space

    NASA Technical Reports Server (NTRS)

    Holt, R. Glynn; Tian, Yuren; Janovsky, Joseph; Apfel, Robert E.

    1996-01-01

    Large liquid drops were deformed by an acoustic standing wave in a resonant air chanber called the Drop Physics Module, which was carried on Space Shuttle Columbia as part of the second United States Microgravity Laboratory mission. When this deforming force was suddenly reduced, the drops executed free oscillations about a perfect sherical equilibrium. Results are presented for pure water and aqueous solutions of soluble surfactants. [PACS: 43.25.U, 47.55Dz, 68.10.Cr, 83.10.-y].

  8. Medical Telemetry

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Telemetry is the process whereby physiological or other data is acquired by instruments, translated into radio signals and j sent to a receiving station where the signals are decoded and recorded. Extensively used in I space operations, it is finding new Earth applications, among them transmission of medical data between emergency vehicles and hospitals. For example, transmission of an electrocardiogram from an ambulance to a hospital enables a physician to read the telemetered EKG and advise ambulance attendants on emergency procedures. Central Medical Emergency Dispatch (CMED) operates as a regional emergency medical communications center for Cleveland, Ohio and Cuyahoga County. The CMED system includes radio and telephone communications from hospital-to-hospital and from ambulance-to-hospital, but for improved emergency life support CMED sought to add a county-wide telemetry capability. The problem was that there were only eight radio frequencies available for telemetry and there were more than 30 potential users in Cleveland alone. NASA's Lewis Research Center volunteered its expert assistance. The Center's engineers studied the systems of other telemetry using cities, surveyed area hospitals to assure compatibility of telemetry equipment, and advised what types of equipment would be needed in emergency vehicles and at the various hospitals. The Lewis plan suggested that CMED be designated the central coordinating agency for the Cuyahoga County system, monitoring all telemetry frequencies and, when requested, assigning one not in use or one to be used at a sufficient distance that it would create no interference problem.

  9. Add-on unidirectional elastic metamaterial plate cloak

    PubMed Central

    Lee, Min Kyung; Kim, Yoon Young

    2016-01-01

    Metamaterial cloaks control the propagation of waves to make an object invisible or insensible. To manipulate elastic waves in space, a metamaterial cloak is typically embedded in a base system that includes or surrounds a target object. The embedding is undesirable because it structurally weakens or permanently alters the base system. In this study, we propose a new add-on metamaterial elastic cloak that can be placed over and mechanically coupled with a base structure without embedding. We designed an add-on type annular metamaterial plate cloak through conformal mapping, fabricated it and performed cloaking experiments in a thin-plate with a hole. Experiments were performed in a thin plate by using the lowest symmetric Lamb wave centered at 100 kHz. As a means to check the cloaking performance of the add-on elastic plate cloak, possibly as a temporary stress reliever or a so-called “stress bandage”, the degree of stress concentration mitigation and the recovery from the perturbed wave field due to a hole were investigated. PMID:26860896

  10. Add-on unidirectional elastic metamaterial plate cloak.

    PubMed

    Lee, Min Kyung; Kim, Yoon Young

    2016-01-01

    Metamaterial cloaks control the propagation of waves to make an object invisible or insensible. To manipulate elastic waves in space, a metamaterial cloak is typically embedded in a base system that includes or surrounds a target object. The embedding is undesirable because it structurally weakens or permanently alters the base system. In this study, we propose a new add-on metamaterial elastic cloak that can be placed over and mechanically coupled with a base structure without embedding. We designed an add-on type annular metamaterial plate cloak through conformal mapping, fabricated it and performed cloaking experiments in a thin-plate with a hole. Experiments were performed in a thin plate by using the lowest symmetric Lamb wave centered at 100 kHz. As a means to check the cloaking performance of the add-on elastic plate cloak, possibly as a temporary stress reliever or a so-called "stress bandage", the degree of stress concentration mitigation and the recovery from the perturbed wave field due to a hole were investigated. PMID:26860896

  11. Add-on unidirectional elastic metamaterial plate cloak

    NASA Astrophysics Data System (ADS)

    Lee, Min Kyung; Kim, Yoon Young

    2016-02-01

    Metamaterial cloaks control the propagation of waves to make an object invisible or insensible. To manipulate elastic waves in space, a metamaterial cloak is typically embedded in a base system that includes or surrounds a target object. The embedding is undesirable because it structurally weakens or permanently alters the base system. In this study, we propose a new add-on metamaterial elastic cloak that can be placed over and mechanically coupled with a base structure without embedding. We designed an add-on type annular metamaterial plate cloak through conformal mapping, fabricated it and performed cloaking experiments in a thin-plate with a hole. Experiments were performed in a thin plate by using the lowest symmetric Lamb wave centered at 100 kHz. As a means to check the cloaking performance of the add-on elastic plate cloak, possibly as a temporary stress reliever or a so-called “stress bandage”, the degree of stress concentration mitigation and the recovery from the perturbed wave field due to a hole were investigated.

  12. Sublingual atropine drops for the treatment of pediatric sialorrhea.

    PubMed

    Rapoport, Adam

    2010-11-01

    Excess oral secretions or sialorrhea is a common problem affecting children and adults with neurological disorders, as well as those approaching the end of life because of a variety of underlying illnesses. Systemic anticholinergic medications are often prescribed in an attempt to improve quality of life and reduce complications; yet, response rates are variable, and a sizable proportion of patients discontinue these drugs as a result of intolerable side effects. This report describes the successful use of a local treatment, sublingually delivered ophthalmic atropine drops, to reduce sialorrhea in a child receiving palliative care. In addition, medical evidence for the safety and efficacy of traditionally prescribed systemic medications for the treatment of pediatric sialorrhea is reviewed.

  13. Rapid Drop Dynamics During Superhydrophobic Condensation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Boreyko, Jonathan; Chen, Chuan-Hua

    2008-11-01

    Rapid drop motion is observed on superhydrophobic surfaces during condensation; condensate drops with diameter of order 10 μm can move at above 100G and 0.1 m/s. When water vapor condenses on a horizontal superhydrophobic surface, condensate drops move in a seemingly random direction. The observed motion is attributed to the energy released through coalescence of neighboring condensate drops. A scaling analysis captured the initial acceleration and terminal velocity. Our work is a step forward in understanding the dynamics of superhydrophobic condensation occurring in both natural water-repellant plants and engineered dropwise condensers.

  14. Drop motion induced by vertical vibrations

    NASA Astrophysics Data System (ADS)

    Sartori, Paolo; Quagliati, Damiano; Varagnolo, Silvia; Pierno, Matteo; Mistura, Giampaolo; Magaletti, Francesco; Massimo Casciola, Carlo

    2015-11-01

    We have studied the motion of liquid drops on an inclined plate subject to vertical vibrations. The liquids comprised distilled water and different aqueous solutions of glycerol, ethanol and isopropanol spanning the range 1-39 mm2 s-1 in kinematic viscosities and 40-72 mN m-1 in surface tension. At sufficiently low oscillating amplitudes, the drops are always pinned to the surface. Vibrating the plate above a certain amplitude yields sliding of the drop. Further increasing the oscillating amplitude drives the drop upward against gravity. In the case of the most hydrophilic aqueous solutions, this motion is not observed and the drop only slides downward. Images taken with a fast camera show that the drop profile evolves in a different way during sliding and climbing. In particular, the climbing drop experiences a much bigger variation in its profile during an oscillating period. Complementary numerical simulations of 2D drops based on a diffuse interface approach confirm the experimental findings. The overall qualitative behavior is reproduced suggesting that the contact line pinning due to contact angle hysteresis is not necessary to explain the drop climbing.

  15. Impact force of a falling drop

    NASA Astrophysics Data System (ADS)

    Soto, Dan; Clanet, Cristophe; Quere, David; Xavier Boutillon Collaboration

    2012-11-01

    Controlling droplet deposition is crucial in many industrial processes such as spraying pesticides on crops, inkjet printing or spray coating. Therefore, the dynamics of drop impacts have been extensively studied for more than one century. However, few literature describe the impacting force of a drop on a solid flat surface, although it might be a way to measure the size distribution of a collection of falling drops. We investigated experimentally how the instantaneous force at impact depends on impact velocity and drop radius. We also propose a new model to understand our observations. Physique et Mecanique des Milieux Heterogenes, CNRS, ESPCI, Paris France & Ladhyx, CNRS, Ecole Polytechnique, Palaiseau, France.

  16. Saving every drop of water

    NASA Astrophysics Data System (ADS)

    Jinyu, J.

    2012-04-01

    Since the beginning of 2011 there has been extremely low rainfall, which has resulted in drought conditions that have affected several provinces in China. The situation of the acute water shortage requires people to make many changes in the little things they do in their daily life. Saving every drop of water and forming good habits of using water is of the utmost importance. Based on this need, our students, organized by our teachers, reached out into to the communities. By visiting, observing and issuing questionnaires, the students identified unreasonable water usage in the communities. The results of the research showed that the ratio of secondary treatment of domestic waste is very low, especially the ratio of collecting wastewater from washing, greywater, to flush the toilet. In order to solve this problem, students themselves designed a set of water saving facilities by collecting greywater to flush the toilet. They successfully installed these facilities in residential houses in the XiYinLi community, which achieved satisfactory results regarding saving water.

  17. 40 CFR 75.34 - Units with add-on emission controls.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Units with add-on emission controls... add-on emission controls. (a) The owner or operator of an affected unit equipped with add-on SO2 and... which the add-on emission controls are documented to be operating properly, as described in the...

  18. 49 CFR 178.603 - Drop test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...). Bags—single-ply without a side seam, or multi-ply Three—(two drops per bag) First drop: Flat on a wide... feet). (C) Packing Group III: SG × 0.67 m (2.2 feet). (f) Criteria for passing the test. A package...

  19. Drop Ejection From an Oscillating Rod

    NASA Technical Reports Server (NTRS)

    Wilkes, E. D.; Basaran, O. A.

    1999-01-01

    The dynamics of a drop of a Newtonian liquid that is pendant from or sessile on a solid rod that is forced to undergo time-periodic oscillations along its axis is studied theoretically. The free boundary problem governing the time evolution of the shape of the drop and the flow field inside it is solved by a method of lines using a finite element algorithm incorporating an adaptive mesh. When the forcing amplitude is small, the drop approaches a limit cycle at large times and undergoes steady oscillations thereafter. However, drop breakup is the consequence if the forcing amplitude exceeds a critical value. Over a wide range of amplitudes above this critical value, drop ejection from the rod occurs during the second oscillation period from the commencement of rod motion. Remarkably, the shape of the interface at breakup and the volume of the primary drop formed are insensitive to changes in forcing amplitude. The interface shape at times close to and at breakup is a multi-valued function of distance measured along the rod axis and hence cannot be described by recently popularized one-dimensional approximations. The computations show that drop ejection occurs without the formation of a long neck. Therefore, this method of drop formation holds promise of preventing formation of undesirable satellite droplets.

  20. Drops and Bubble in Materials Science

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1982-01-01

    The formation of extended p-n junctions in semiconductors by drop migration, mechanisms and morphologies of migrating drops and bubbles in solids and nucleation and corrections to the Volmer-Weber equations are discussed. Bubble shrinkage in the processing of glass, the formation of glass microshells as laser-fusion targets, and radiation-induced voids in nuclear reactors were examined.

  1. Mixing in colliding, ultrasonically levitated drops.

    PubMed

    Chainani, Edward T; Choi, Woo-Hyuck; Ngo, Khanh T; Scheeline, Alexander

    2014-02-18

    Lab-in-a-drop, using ultrasonic levitation, has been actively investigated for the last two decades. Benefits include lack of contact between solutions and an apparatus and a lack of sample cross-contamination. Understanding and controlling mixing in the levitated drop is necessary for using an acoustically levitated drop as a microreactor, particularly for studying kinetics. A pulsed electrostatic delivery system enables addition and mixing of a desired-volume droplet with the levitated drop. Measurement of mixing kinetics is obtained by high-speed video monitoring of a titration reaction. Drop heterogeneity is visualized as 370 nl of 0.25 M KOH (pH: 13.4) was added to 3.7 μL of 0.058 M HCl (pH: 1.24). Spontaneous mixing time is about 2 s. Following droplet impact, the mixed drop orbits the levitator axis at about 5 Hz during homogenization. The video's green channel (maximum response near 540 nm) shows the color change due to phenolphthalein absorption. While mixing is at least an order of magnitude faster in the levitated drop compared with three-dimensional diffusion, modulation of the acoustic waveform near the surface acoustic wave resonance frequency of the levitated drop does not substantially reduce mixing time. PMID:24460103

  2. [Nasal drops addiction--the case report].

    PubMed

    Korzeniowska, Katarzyna; Simon, Karolina; Jabłecka, Anna

    2012-01-01

    The article describes the case of 34-years old man, who has used nasal drops with xylomethazoline for three years. Health consequence of uncontrolled use of the drops and treatment were prescribed. Described problem confirms the need of physicians and pharmacists cooperation to limit the problem of drug-addiction. PMID:23421118

  3. Spatial Distribution of Large Cloud Drops

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Larsen, M.; Wiscombe, W.

    2004-01-01

    By analyzing aircraft measurements of individual drop sizes in clouds, we have shown in a companion paper (Knyazikhin et al., 2004) that the probability of finding a drop of radius r at a linear scale l decreases as l(sup D(r)) where 0 less than or equal to D(r) less than or equal to 1. This paper shows striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and therefore a Poisson distribution of cloud drops, these models show strong drop clustering, the more so the larger the drops. The degree of clustering is determined by the observed exponents D(r). The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics explaining how rain can form so fast. It also helps explain why remotely sensed cloud drop size is generally biased and why clouds absorb more sunlight than conventional radiative transfer models predict.

  4. University Drop-Out: An Italian Experience

    ERIC Educational Resources Information Center

    Belloc, Filippo; Maruotti, Antonello; Petrella, Lea

    2010-01-01

    University students' drop-out is a crucial issue for the universities' efficiency evaluation and funding. In this paper, we analyze the drop-out rate of the Economics and Business faculty of Sapienza University of Rome. We use administrative data on 9,725 undergraduates students enrolled in three-years bachelor programs from 2001 to 2007 and…

  5. Drop tower with no aerodynamic drag

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Jr.

    1981-01-01

    Cooling air accelerated to match velocity of falling object eliminates drag. 3 meter drop tower with suction fan and specific geometry causes air to accelerate downward at 1 g. Although cooling of molten material released from top is slow because surrounding air moves with it, drop remains nearly spherical.

  6. CPAS Preflight Drop Test Analysis Process

    NASA Technical Reports Server (NTRS)

    Englert, Megan E.; Bledsoe, Kristin J.; Romero, Leah M.

    2015-01-01

    Throughout the Capsule Parachute Assembly System (CPAS) drop test program, the CPAS Analysis Team has developed a simulation and analysis process to support drop test planning and execution. This process includes multiple phases focused on developing test simulations and communicating results to all groups involved in the drop test. CPAS Engineering Development Unit (EDU) series drop test planning begins with the development of a basic operational concept for each test. Trajectory simulation tools include the Flight Analysis and Simulation Tool (FAST) for single bodies, and the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulation for the mated vehicle. Results are communicated to the team at the Test Configuration Review (TCR) and Test Readiness Review (TRR), as well as at Analysis Integrated Product Team (IPT) meetings in earlier and intermediate phases of the pre-test planning. The ability to plan and communicate efficiently with rapidly changing objectives and tight schedule constraints is a necessity for safe and successful drop tests.

  7. Electrolytic drops in an electric field: A numerical study of drop deformation and breakup

    NASA Astrophysics Data System (ADS)

    Pillai, R.; Berry, J. D.; Harvie, D. J. E.; Davidson, M. R.

    2015-07-01

    The deformation and breakup of an axisymmetric, conducting drop suspended in a nonconducting medium and subjected to an external electric field is numerically investigated here using an electrokinetic model. This model uses a combined level set-volume of fluid formulation of the deformable surfaces, along with a multiphase implementation of the Nernst-Planck equation for transport of ions, that allows for varying conductivity inside the drop. A phase diagram, based on a parametric study, is used to characterize the stability conditions. Stable drops with lower ion concentration are characterized by longer drop shapes than those achieved at higher ion concentrations. For higher drop ion concentration, greater charge accumulation is observed at drop tips. Consequently, such drops break up by pinching off rather than tip streaming. The charge contained in droplets released from unstable drops is shown to increase with drop ion concentration. These dynamic drop behaviors depend on the strength of the electric field and the concentration of ions in the drop and result from the interplay between the electric forces arising from the permittivity jump at the drop interface and the ions in the bulk.

  8. Image restoration by the shift-and-add algorithm.

    PubMed

    Bagnuolo, W G

    1985-05-01

    A new method for image restoration based on the shift-and-add (SAA) algorithm is presented, the main advantages of which appear to be speed and simplicity. The SAA pattern produced by an object is given by the object correlated by a nonlinear replica of itself whose intensity distribution is strongly weighted toward the brighter pixels. A method of successive substitutions analogous to Fienup's algorithm can then be used to decorrelate the SAA pattern and recover the object. The method is applied to the case of the extended chromosphere of Betelgeuse. PMID:19724393

  9. Add/Compare/Select Circuit For Rapid Decoding

    NASA Technical Reports Server (NTRS)

    Budinger, James M.; Becker, Neal D.; Johnson, Peter N.

    1993-01-01

    Prototype decoding system operates at 200 Mb/s. ACS (add/compare/select) gate array is highly integrated emitter-coupled-logic circuit implementing arithmetic operations essential to Viterbi decoding of convolutionally encoded data signals. Principal advantage of circuit is speed. Operates as single unit performing eight additions and finds minimum of eight sums, or operates as two independent units, each performing four additions and finding minimum of four sums. Flexibility enables application to variety of different codes. Includes built-in self-testing circuitry, enabling unit to be tested at full speed with help of only simple test fixture.

  10. Pneumatic drop-on-demand generation for production of metal oxide microspheres by internal gelation

    NASA Astrophysics Data System (ADS)

    de Almeida, Valmor F.; Hunt, Rodney D.; Collins, Jack L.

    2010-09-01

    Drop-on-demand generation is an alternative approach to the traditional vibrating nozzle used for the production of nuclear fuel microspheres via the internal gelation method. We integrated a low-cost pneumatic setup and demonstrated that the drop-on-demand approach has some advantages, such as low inventory of feed solution (attractive for laboratory-scale research), improved drop diameter control, reproducibility, scale-up to desired throughput by simple multiplication of the number of dispensing units, and simple remote operation. However, limitations on reproducibility and drop diameter control still exist due to the intrinsic variation of physical properties, viscosity, and dispensing-tip wettability during the internal gelation process. These adverse effects can be mitigated, to a certain extent, by carefully controlling the temperature of the feed as uniformly as possible. We validated the drop-on-demand generation method by producing solid kernels of yttrium-stabilized zirconia and soft gel microspheres of iron hydroxide. In addition, we have measured the diameter change at each principal process stage. Based on the observed gas entrainment/absorption in the gel spheres, we conjectured that aging and washing are likely the critical stages determining the final precision to which microspheres can be made. Finally, we comment on potential improvements that add robustness to the method for handling other metal precursors in aqueous solutions.

  11. Evidence of bird dropping masquerading by a spider to avoid predators

    PubMed Central

    Liu, Min-Hui; Blamires, Sean J.; Liao, Chen-Pan; -Min Tso, I.

    2014-01-01

    Masquerading comes at various costs and benefits. The principal benefit being the avoidance of predators. The orb-web spider Cyclosa ginnaga has a silver body and adds a white discoid-shaped silk decoration to its web. The size, shape and colour of C. ginnaga's body resemble, when viewed by the human eye against its decoration, a bird dropping. We therefore hypothesized that their body colouration might combine with its web decoration to form a bird dropping masquerade to protect it from predators. We measured the spectral reflectance of: (i) the spider's body, (ii) the web decoration, and (iii) bird droppings, in the field against a natural background and found that the colour of the spider bodies and decorations were indistinguishable from each other and from bird droppings when viewed by hymentopteran predators. We monitored the predatory attacks on C. ginnaga when the spider's body and/or its decorations were blackened and found that predator attack probabilities were greater when only the decorations were blackened. Accordingly, we concluded that C. ginnaga's decoration and body colouration forms a bird dropping masquerade, which reduces its probability of predation. PMID:24875182

  12. Benefits and risks of add-on therapies for Alzheimer's disease.

    PubMed

    Magierski, Radoslaw; Sobow, Tomasz

    2015-10-01

    Despite three decades of intensive research, the efforts of scientific society and industry and the expenditures, numerous attempts to develop effective treatments for Alzheimer's disease have failed. Currently, approved and widely used medications to treat cognitive deficits in Alzheimer's disease are symptomatic only and show at best modest efficacy. In this context, the need to develop a successful, disease-modifying treatment is loudly expressed. One way to achieve this goal is the use of add-on therapies or various combinations of existing 'conventional' drugs. Results of several clinical studies and post hoc analyses of combination therapy with all cholinesterase inhibitors and memantine are published. Moreover, there is a need for studies on long-term efficacy of combination therapy in Alzheimer's.

  13. Pattern formation in evaporating drops

    NASA Astrophysics Data System (ADS)

    Li, Fang-I.

    The redistribution of organic solutes during drop evaporation is a nanoscale self assembly process with relevance to technologies ranging from inkjet printing of organic displays to synthesis of bio-smart interfaces for sensing and screening. Atomic force microscopy studies comparing the behavior of different generation dendrimers with different surface chemistry in two solvent alcohols on mica substrates confirm that the detailed morphologies of condensed dendrimer ring structures resulting from micro-droplet evaporation sensitively depend on the surface chemistry, the solute evaporation rate and the dendrimer generation. For the dilute concentration studied here the presence of periodically 'scalloped' molecular rings is ubiquitous. The instability wavelength of the scalloped rings is found to be proportional to the width of the ring, similar to observations of the rim instability in dewetting holes. The effect of the surface chemistry of the dendrimer molecules is obvious in the detailed structure of the self assembled rings. Varying the chain length of solvent alcohol leads to modification of ring patterns. The influence of dendrimer generation on ring structure primarily reflects the increase in dendrimer density with generation number. The evolution of G2-50%C12 -pentanol rings as a function of dendrimer concentration is also described. High surface mobility and phase transformation phenomena in condensed, micro-scale dendrimer structures are documented, again using atomic force microscopy. Stratified dendrimer rings undergo dramatic temperature, time and dendrimer generation dependent morphological changes associated with large-scale molecular rearrangements and partial melting. These transformations produce ring structures consisting of a highly stable first monolayer of the scalloped structure in equilibrium with spherical cap shaped dendrimer islands that form at the center of each pre-existing scallop (creating a 'pearl necklace' structure). Analysis of

  14. The Parkfield Stress Drop Controversy

    NASA Astrophysics Data System (ADS)

    Abercrombie, R. E.; Nadeau, R. M.

    2003-12-01

    Nadeau et al. (1995) found that the seismicity on the San Andreas fault at Parkfield is highly clustered. Individual clusters consist of a sequence of near periodically repeating small earthquakes of similar seismic moment. Nadeau and Johnston (1998) compared the moments and timing of these repeating earthquakes (Mw < 2), and some larger events, with the surface creep rate on the fault to estimate the slip and stress drop (Δ σ ). They obtained conventional values (0.1 to 10 MPa) for the larger earthquakes, but Δ σ increased with decreasing Mw to extremely high values (> 1000 MPa) for the small earthquakes (Mw < 2). Such values are just about physically possible, but they are much higher than those estimated by seismic methods for small earthquakes elsewhere (e. g. Abercrombie 1995). These controversial high Δ σ estimates have sparked a number of theoretical and laboratory studies (e. g. Sammis & Rice 2000, Anooshepoor & Brune 2001, Beeler 2001) aimed at investigating whether the observations could result from earthquakes with more normal Δ σ occurring within the unusual tectonic setting at Parkfield. Lane & Nadeau (2000, 2002) considered whether localized patches of high Δ σ would be resolvable by standard seismic methods. However, to date nobody has used seismic methods to determine source parameters for these controversial small earthquakes at Parkfield. We use closely located earthquakes of different sizes (for example, the sub-clusters of cluster CL14, Nadeau et al., 1995, Mw-0.2 to 1), recorded on the HRSN borehole network to analyse the source parameters. The smaller earthquakes are used as empirical Green's functions to resolve source processes of the larger events. Preliminary results from the earthquakes in cluster CL14 result in a source dimension of about 25 m and Δ σ of about 1 MPa for the Mw1 earthquakes, assuming that rupture velocity is the same as that for large earthquakes. We also resolve source-time functions for these earthquakes at

  15. Condensation on surface energy gradient shifts drop size distribution toward small drops.

    PubMed

    Macner, Ashley M; Daniel, Susan; Steen, Paul H

    2014-02-25

    During dropwise condensation from vapor onto a cooled surface, distributions of drops evolve by nucleation, growth, and coalescence. Drop surface coverage dictates the heat transfer characteristics and depends on both drop size and number of drops present on the surface at any given time. Thus, manipulating drop distributions is crucial to maximizing heat transfer. On earth, manipulation is achieved with gravity. However, in applications with small length scales or in low gravity environments, other methods of removal, such as a surface energy gradient, are required. This study examines how chemical modification of a cooled surface affects drop growth and coalescence, which in turn influences how a population of drops evolves. Steam is condensed onto a horizontally oriented surface that has been treated by silanization to deliver either a spatially uniform contact angle (hydrophilic, hydrophobic) or a continuous radial gradient of contact angles (hydrophobic to hydrophilic). The time evolution of number density and associated drop size distributions are measured. For a uniform surface, the shape of the drop size distribution is unique and can be used to identify the progress of condensation. In contrast, the drop size distribution for a gradient surface, relative to a uniform surface, shifts toward a population of small drops. The frequent sweeping of drops truncates maturation of the first generation of large drops and locks the distribution shape at the initial distribution. The absence of a shape change indicates that dropwise condensation has reached a steady state. Previous reports of heat transfer enhancement on chemical gradient surfaces can be explained by this shift toward smaller drops, from which the high heat transfer coefficients in dropwise condensation are attributed to. Terrestrial applications using gravity as the primary removal mechanism also stand to benefit from inclusion of gradient surfaces because the critical threshold size required for

  16. Monitoring Volcanoes by Use of Air-Dropped Sensor Packages

    NASA Technical Reports Server (NTRS)

    Kedar, Sharon; Rivellini, Tommaso; Webb, Frank; Blaes, Brent; Bracho, Caroline; Lockhart, Andrew; McGee, Ken

    2003-01-01

    Sensor packages that would be dropped from airplanes have been proposed for pre-eruption monitoring of physical conditions on the flanks of awakening volcanoes. The purpose of such monitoring is to gather data that could contribute to understanding and prediction of the evolution of volcanic systems. Each sensor package, denoted a volcano monitoring system (VMS), would include a housing with a parachute attached at its upper end and a crushable foam impact absorber at its lower end (see figure). The housing would contain survivable low-power instrumentation that would include a Global Positioning System (GPS) receiver, an inclinometer, a seismometer, a barometer, a thermometer, and CO2 and SO2 analyzers. The housing would also contain battery power, control, data-logging, and telecommunication subsystems. The proposal for the development of the VMS calls for the use of commercially available sensor, power, and telecommunication equipment, so that efforts could be focused on integrating all of the equipment into a system that could survive impact and operate thereafter for 30 days, transmitting data on the pre-eruptive state of a target volcano to a monitoring center. In a typical scenario, VMSs would be dropped at strategically chosen locations on the flanks of a volcano once the volcano had been identified as posing a hazard from any of a variety of observations that could include eyewitness reports, scientific observations from positions on the ground, synthetic-aperture-radar scans from aircraft, and/or remote sensing from aboard spacecraft. Once dropped, the VMSs would be operated as a network of in situ sensors that would transmit data to a local monitoring center. This network would provide observations as part of an integrated volcano-hazard assessment strategy that would involve both remote sensing and timely observations from the in situ sensors. A similar strategy that involves the use of portable sensors (but not dropping of sensors from aircraft) is

  17. Using Patient Lists to Add Value to Integrated Data Repositories

    PubMed Central

    Wade, Ted D.; Zelarney, Pearlanne T.; Hum, Richard C.; McGee, Sylvia; Batson, Deborah H.

    2014-01-01

    Patient lists are project-specific sets of patients that can be queried in integrated data repositories (IDR’s). By allowing a set of patients to be an addition to the qualifying conditions of a query, returned results will refer to, and only to, that set of patients. We report a variety of use cases for such lists, including: restricting retrospective chart review to a defined set of patients; following a set of patients for practice management purposes; distributing “honest-brokered” (deidentified) data; adding phenotypes to biosamples; and enhancing the content of study or registry data. Among the capabilities needed to implement patient lists in an IDR are: capture of patient identifiers from a query and feedback of these into the IDR; the existence of a permanent internal identifier in the IDR that is mappable to external identifiers; the ability to add queryable attributes to the IDR; the ability to merge data from multiple queries; and suitable control over user access and de-identification of results. We implemented patient lists in a custom IDR of our own design. We reviewed capabilities of other published IDRs for focusing on sets of patients. The widely used i2b2 IDR platform has various ways to address patient sets, and it could be modified to add the low-overhead version of patient lists that we describe. PMID:24534444

  18. The Drop Tower Bremen -An Overview

    NASA Astrophysics Data System (ADS)

    von Kampen, Peter; Könemann, Thorben; Rath, Hans J.

    The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University of Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of ZARM`s drop tower began. Since its inau-guration in September 1990, the eye-catching Drop Tower Bremen with a height of 146m and its characteristic glass roof has become twice a landmark on the campus of the University of Bremen and the emblem of the technology park Bremen. As such an outstanding symbol of space science in Bremen the drop tower provides an european unique facility for experiments under conditions of high-quality weightlessness with residual gravitational accelerations in the microgravity regime. The period of maximum 4.74s of each freely falling experiment at the Drop Tower Bremen is only limited by the height of the drop tower vacuum tube, which was fully manufactured of steal and enclosed by an outer concrete shell. Thus, the pure free fall height of each microgravity drop experiment is approximately 110m. By using the later in-stalled catapult system established in 2004 ZARM`s short-term microgravity laboratory is able to nearly double the time of free fall. This world-wide inimitable capsule catapult system meets scientists` demand of extending the period of weightlessness. During the catapult operation the experiment capsule performs a vertical parabolic flight within the drop tower vacuum tube. In this way the time of microgravity can be extended to slightly over 9s. Either in the drop or in the catapult operation routine the repetition rates of microgravity experiments at ZARM`s drop tower facility are the same, generally up to 3 times per day. In comparison to orbital platforms the ground-based laboratory Drop Tower Bremen represents an economic alternative with a permanent access to weightlessness on earth. Moreover, the exceptional high quality of weightlessness in order of 1e-6 g (in the frequency range below 100

  19. Nonmonotonic Response of Drop Impacting Liquid Film

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoyu; Saha, Abhishek; Zhu, Delin; Sun, Chao; Law, Chung K.

    2015-11-01

    Drop impact on liquid film is ubiquitous in both natural phenomena and industrial applications. The dynamics of the gas layer trapped between the drop and the deformed liquid surface play a crucial role in determining the impact outcomes. However, a quantitative measurement of this gas layer dynamics is extremely challenging because it is hidden behind the deformed liquid film. In this study, high-speed white light interferometry enables the measurement of the gas layer dynamics during the drop impact with high resolutions and is complemented by side view shadowgraphy to observe the penetration process below the liquid surface. Drop impacting with different inertia onto liquid film with various thicknesses is systematically studied to obtain a phase diagram of different outcomes in the h/R-We space, where h/R is the liquid thickness normalized by drop radius, and We is the drop Weber number. It is observed that there exists a critical WeC beyond which the drop always merges with the liquid film. However, for `subcritical' conditions, there exists a merging peninsula in otherwise globally bouncing region. Across this peninsula, as the liquid film thickness increases, the impact outcome transits from bouncing to merging and to bouncing again. The merging time within this peninsula is longer compared to its `supercritical' counterpart, indicating different merging mechanisms. Based on scaling analysis, the boundaries between different zones are identified and compared with experiments.

  20. Pattern formation in drying drops of blood

    NASA Astrophysics Data System (ADS)

    Brutin, D.; Sobac, B.; Loquet, B.; Sampol, J.

    2011-01-01

    The drying of a drop of human blood exhibits coupled physical mechanisms, such as Marangoni flow, evaporation and wettability. The final stage of a whole blood drop evaporation reveals regular patterns with a good reproducibility for a healthy person. Other experiments on anaemic and hyperlipidemic people were performed, and different patterns were revealed. The flow motion inside the blood drop is observed and analyzed with the use of a digital camera: the influence of the red blood cells (RBCs) motion is revealed at the drop periphery as well as its consequences on the final stage of drying. The mechanisms which lead to the final pattern of the dried blood drops are presented and explained on the basis of fluid mechanics in conjunction with the principles of haematology. The blood drop evaporation process is evidenced to be driven only by Marangoni flow. The same axisymetric pattern formation is observed, and can be forecast for different blood drop diameters. The evaporation mass flux can be predicted with a good agreement, assuming only the knowledge of the colloids mass concentration.

  1. Conically shaped drops in electric fields

    NASA Astrophysics Data System (ADS)

    Stone, Howard A.; Brenner, Michael P.; Lister, John R.

    1996-11-01

    When an electric field is applied to a dielectric liquid containing a suspended immiscible fluid drop, the drop deforms into a prolate ellipsoidal shape. Above a critical field strength the drop develops conical ends, as first observed by Zeleny [Phys. Rev. 10, 1 (1917)] and Wilson & Taylor [Proc. Camb. Phil. Soc. 22, 728 (1925)] for, respectively, the case of conducting drops and soap films in air. The case of two dielectric liquids was studied recently using a slender drop approximation by Li, Halsey & Lobkovsky [Europhys. Lett 27, 575 (1994)]. In this presentation we further develop the slender body approximation to obtain coupled ordinary differential equations for the electric field and the drop shape. Analytical formulae are derived which approximately give the cone angle as a function of the dielectric constant ratio between the two fluids, and the minimum applied electric field at which conical tips first form as a function of the dielectric constant ratio. Finally, drops shapes are calculated numerically and compared with the common prolate shape assumption.

  2. Drop rebound in clouds and precipitation

    NASA Technical Reports Server (NTRS)

    Ochs, H. T., III; Beard, K. V.

    1982-01-01

    The possibility of rebound for colliding cloud drops was measured by determining the collection efficiency. The collection efficiency for 17 size pairs of relatively uncharged drops in over 500 experimental runs was measured using two techniques. The collection efficiencies fall in a narrow range of 0.60 to 0.70 even though the collection drop was varied between 63 and 326 microns and the size ratio from 0.05 to 0.33. In addition the measured values of collection efficiencies (Epsilon) were below the computed values of collision efficiencies (E) for rigid spheres. Therefore it was concluded that rebound was occurring for these sizes since inferred coalescence (epsilon = Epsilon/E) efficiencies are about 0.6 yo 0.8. At a very small size ratio (r/R = p = 0.05, R = 326 microns) the coalescence efficiency inferred is in good agreement with the experimental findings for a supported collector drop. At somewhat large size ratios the inferred values of epsilon are well above results of supported drop experiments, but show a slight correspondence in collected drop size dependency to two models of drop rebound. At a large size ratio (p = 0.73, R = 275) the inferred coalescence efficiency is significantly different from all previous results.

  3. Mitomycin eye drops as treatment for pterygium.

    PubMed

    Singh, G; Wilson, M R; Foster, C S

    1988-06-01

    The authors used an antineoplastic-antibiotic agent, mitomycin, in the form of eye drops as adjunctive treatment for primary and recurrent pterygia after surgical excision. Sixteen primary and four recurrent pterygia were treated with 1.0 mg/ml mitomycin eye drops, 14 primary and 10 recurrent pterygia were treated with 0.4 mg/ml mitomycin eye drops, and 18 primary pterygia were treated with placebo eye drops. Postoperative follow-up for the eyes treated with mitomycin eye drops ranged from 3 to 34 weeks (mean, 23 weeks). One of 44 pterygia treated with mitomycin recurred after 5 months (recurrence rate, 2.3%), whereas 16 of 18 primary pterygia treated with placebo eye drops developed postoperative granulomas and recurrent pterygia with a mean postoperative period of 6 weeks (recurrence rate, 88.9%). Topical mitomycin (1.0 mg/ml) caused conjunctival irritation, excessive lacrimation, and mild superficial punctate keratitis. These topical side effects were minimized with the 0.4 mg/ml mitomycin dosage. No systemic toxicity was noted with either dosage. The authors believe that mitomycin eye drops is a safe and effective adjunct to surgical excision in the treatment of primary or recurrent pterygia, or both.

  4. Microjetting from wave focusing on oscillating drops

    NASA Astrophysics Data System (ADS)

    Thoroddsen, S. T.; Etoh, T. G.; Takehara, K.

    2007-05-01

    We present experimental observations of microjetting from an oscillating drop. The jet is generated by the focusing of axisymmetric capillary waves that overturn and collide at an apex of the drop. These jets are up to two orders of magnitude smaller than the original drops. We present two widely different configurations that produce such microjets. The first occurs on a satellite drop, produced by the pinch-off of a water drop from a vertical nozzle. The large oscillations following the contraction of the satellite bridge focus waves at the bottom, sending out a 30μm jet at 9.9m/s. The second jet arises when a water drop, containing surfactants, falls onto and passes through a hemispherical soap film. The gentle deformation of the drop creates a surface wave that focuses at its top, shooting out a tiny jet and entrapping a small bubble inside the drop. This jet is 16±5μm in diameter and emerges at 6.3m/s. In this configuration, the soap film wraps around the drop and acts as a sensor of the air flow, revealing that the liquid jet is preceded by a localized faster-moving air jet. The jetting in both configurations is quite robust and occurs even for slightly asymmetric conditions. These microjets appear for much lower values of the Reynolds and Weber numbers than previously observed, suggesting that free-surface jetting is not limited to the inviscid capillary-inertial regime, which has been the focus of much of the theoretical work.

  5. Condensation-induced jumping water drops.

    PubMed

    Narhe, R D; Khandkar, M D; Shelke, P B; Limaye, A V; Beysens, D A

    2009-09-01

    Water droplets can jump during vapor condensation on solid benzene near its melting point. This phenomenon, which can be viewed as a kind of micro scale steam engine, is studied experimentally and numerically. The latent heat of condensation transferred at the drop three phase contact line melts the substrate during a time proportional to R (the drop radius). The wetting conditions change and a spontaneous jump of the drop results in random direction over length approximately 1.5R , a phenomenon that increases the coalescence events and accelerates the growth. Once properly rescaled by the jump length scale, the growth dynamics is, however, similar to that on a solid surface. PMID:19905120

  6. Condensation-induced jumping water drops

    NASA Astrophysics Data System (ADS)

    Narhe, R. D.; Khandkar, M. D.; Shelke, P. B.; Limaye, A. V.; Beysens, D. A.

    2009-09-01

    Water droplets can jump during vapor condensation on solid benzene near its melting point. This phenomenon, which can be viewed as a kind of micro scale steam engine, is studied experimentally and numerically. The latent heat of condensation transferred at the drop three phase contact line melts the substrate during a time proportional to R (the drop radius). The wetting conditions change and a spontaneous jump of the drop results in random direction over length ˜1.5R , a phenomenon that increases the coalescence events and accelerates the growth. Once properly rescaled by the jump length scale, the growth dynamics is, however, similar to that on a solid surface.

  7. Condensation-induced jumping water drops.

    PubMed

    Narhe, R D; Khandkar, M D; Shelke, P B; Limaye, A V; Beysens, D A

    2009-09-01

    Water droplets can jump during vapor condensation on solid benzene near its melting point. This phenomenon, which can be viewed as a kind of micro scale steam engine, is studied experimentally and numerically. The latent heat of condensation transferred at the drop three phase contact line melts the substrate during a time proportional to R (the drop radius). The wetting conditions change and a spontaneous jump of the drop results in random direction over length approximately 1.5R , a phenomenon that increases the coalescence events and accelerates the growth. Once properly rescaled by the jump length scale, the growth dynamics is, however, similar to that on a solid surface.

  8. Rotation of ultrasonically levitated glycerol drops

    NASA Technical Reports Server (NTRS)

    Biswas, A.; Leung, E. W.; Trinh, E. H.

    1991-01-01

    Ultrasonic levitation is used to suspend single millimeter-size glycerol drops in a rectangular chamber. Audio-frequency laterally standing waves set up in the chamber are used to torque the suspended drops. The shape evolution of the drop under the combined effect of centrifugal forces and the acoustic radiation stress, along with its angular velocity are monitored, using video imaging and light scattering techniques. The results show good qualitative agreement with the theoretically predicted shape evolution as a function of angular velocity.

  9. [Eye-drops from olden times to the XIXth century].

    PubMed

    Esteva de Sagrera, Juan

    2015-01-01

    The Spanish word "colirio" comes from the Latin collyrium, which in turn came from the Greek kollirion. Initially, the Romans use this word in a general way, but due to their use mainly in ophthalmology, the use of the term became restricted to those topical medications destined for the care and prevention of ocular diseases, from solutions and suspensions to poultices, salves and ointments. During the Middle Ages "colirio" included not only substances used to dilate ladies' pupils for aesthetic reasons but also medications for ocular hygiene and treatment. The Industrial Revolution of the XIXth century barely modified ophthalmic pharmaceutical technology. It is only since the World War II that the preparation of eye-drops has undergone a rapid development and improvement, adopting the concept of sterility as a necessary condition for all ophthalmic solutions and taking very precise rules for their elaboration and conditioning from different pharmacopeia. PMID:26710566

  10. Electric field induced deformation of sessile drops

    NASA Astrophysics Data System (ADS)

    Corson, Lindsey; Tsakonas, Costas; Duffy, Brian; Mottram, Nigel; Brown, Carl; Wilson, Stephen

    2014-11-01

    The ability to control the shape of a drop with the application of an electric field has been exploited for many technological applications including measuring surface tension, producing an optical display device, and optimising the optical properties of microlenses. In this work we consider, both theoretically and experimentally, the deformation of pinned sessile drops with contact angles close to either 0° or 90° resting on the lower substrate inside a parallel plate capacitor due to an A.C. electric field. Using both asymptotic and numerical approaches we obtain predictive equations for the static and dynamic drop shape deformations as functions of the key experimental parameters (drop size, capacitor plate separation, electric field magnitude and contact angle). The asymptotic results agree well with the experimental results for a range of liquids. We gratefully acknowledge the financial support of EPSRC via research Grants EP/J009865 and EP/J009873.

  11. Rotating drops of axion dark matter

    NASA Astrophysics Data System (ADS)

    Davidson, Sacha; Schwetz, Thomas

    2016-06-01

    We consider how QCD axions produced by the misalignment mechanism could form galactic dark matter halos. We recall that stationary, gravitationally stable axion field configurations have the size of an asteroid with masses of order 10-13M⊙ (because gradient pressure is insufficient to support a larger object). We call such field configurations "drops." We explore whether rotating drops could be larger, and find that their mass could increase by a factor ˜10 . This mass is comparable to the mass of miniclusters generated from misalignment axions in the scenario where the axion is born after inflation. We speculate that misalignment axions today are in the form of drops, contributing to dark matter like a distribution of asteroids (and not as a coherent oscillating background field). We consider some observational signatures of the drops, which seem consistent with a galactic halo made of axion dark matter.

  12. Detachment of a single water drop

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.; Prokhorov, V. E.

    2014-01-01

    The detachment process of a single water drop from a nozzle made of poorly wetted material is followed using high-speed video equipment. The formation and motion dynamics of various flow components are investigated. These are the drop itself; a liquid bridge (jumper), which connects the drop with the mother liquid; the primary satellite, which is formed from the jumper; and a microsatellite, which is thrown from the satellite and flies to the mother liquid. The strong influence of surface effects, under which the satellite initially moves upward and only at a certain time starts to fall along the ballistic trajectory, is established. Bounce of the microsatellite from the mother liquid, which precedes its absorption, is fixed. It is shown that a stable connection of the formation mechanism of satellites with the jumper dynamics opens the possibility of obtaining uniform-sized drops.

  13. Teen Birth Rates Drop, But Disparities Persist

    MedlinePlus

    ... Features Teen Birth Rates Drop, But Disparities Persist Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir The feature you selected is no longer available. In 10 seconds you will be automatically redirected to the CDC. ...

  14. Shapes of Bubbles and Drops in Motion.

    ERIC Educational Resources Information Center

    O'Connell, James

    2000-01-01

    Explains the shape distortions that take place in fluid packets (bubbles or drops) with steady flow motion by using the laws of Archimedes, Pascal, and Bernoulli rather than advanced vector calculus. (WRM)

  15. Sound field inside acoustically levitated spherical drop

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Wei, B.

    2007-05-01

    The sound field inside an acoustically levitated small spherical water drop (radius of 1mm) is studied under different incident sound pressures (amplitude p0=2735-5643Pa). The transmitted pressure ptr in the drop shows a plane standing wave, which varies mainly in the vertical direction, and distributes almost uniformly in the horizontal direction. The maximum of ptr is always located at the lowermost point of the levitated drop. Whereas the secondary maximum appears at the uppermost point if the incident pressure amplitude p0 is higher than an intermediate value (3044Pa), in which there exists a pressure nodal surface in the drop interior. The value of the maximum ptr lies in a narrow range of 2489-3173Pa, which has a lower limit of 2489Pa when p0=3044Pa. The secondary maximum of ptr is rather small and only remarkable at high incident pressures.

  16. Singular Jets and Bubbles in Drop Impact

    NASA Astrophysics Data System (ADS)

    Bartolo, Denis; Josserand, Christophe; Bonn, Daniel

    2006-03-01

    We show that when water droplets gently impact on a hydrophobic surface, the droplet shoots out a violent jet, the velocity of which can be up to 40 times the drop impact speed. As a function of the impact velocity, two different hydrodynamic singularities are found that correspond to the collapse of the air cavity formed by the deformation of the drop at impact. It is the collapse that subsequently leads to the jet formation. We show that the divergence of the jet velocity can be understood using simple scaling arguments. In addition, we find that very large air bubbles can remain trapped in the drops. The surprising occurrence of the bubbles for low-speed impact is connected with the nature of the singularities, and can have important consequences for drop deposition, e.g., in ink-jet printing.

  17. Drop size measurement of liquid aerosols

    NASA Astrophysics Data System (ADS)

    Liu, B. Y. H.; Pui, D. Y. H.; Xian-Qing, Wang

    The factor B = D/ D' relating the diameter D of a spherical liquid drop to the diameter, D˜, of the same drop collected on a microscope slide has been measured for DOP (di-octyl phthalate) and oleic acid aerosols. The microscope slide was coated with a fluorocarbon, oleophobic surfactant (L-1428, 3M Co., St. Paul, MN). The ratio was found to be independent of drop diameter in the 2-50 μm range and the mean value of B was found to be 0.700 for oleic acid and 0.690 for DOP. Similar measurements for oleic acid and DOP drops collected on a clean, uncoated slide resulted in the values of 0.419 and 0.303, respectively. The experimental values of B were compared with the theoretical values based on contact angle measurements. Good agreement was obtained.

  18. Proceedings of the Second International Colloquium on Drops and Bubbles

    NASA Technical Reports Server (NTRS)

    Lecroissette, D. H. (Editor)

    1982-01-01

    Applications of bubble and drop technologies are discussed and include: low gravity manufacturing, containerless melts, microballoon fabrication, ink printers, laser fusion targets, generation of organic glass and metal shells, and space processing. The fluid dynamics of bubbles and drops were examined. Thermomigration, capillary flow, and interfacial tension are discussed. Techniques for drop control are presented and include drop size control and drop shape control.

  19. Total Gaussian curvature, drop shapes and the range of applicability of drop shape techniques.

    PubMed

    Saad, Sameh M I; Neumann, A Wilhelm

    2014-02-01

    Drop shape techniques are used extensively for surface tension measurement. It is well-documented that, as the drop/bubble shape becomes close to spherical, the performance of all drop shape techniques deteriorates. There have been efforts quantifying the range of applicability of drop techniques by studying the deviation of Laplacian drops from the spherical shape. A shape parameter was introduced in the literature and was modified several times to accommodate different drop constellations. However, new problems arise every time a new configuration is considered. Therefore, there is a need for a universal shape parameter applicable to pendant drops, sessile drops, liquid bridges as well as captive bubbles. In this work, the use of the total Gaussian curvature in a unified approach for the shape parameter is introduced for that purpose. The total Gaussian curvature is a dimensionless quantity that is commonly used in differential geometry and surface thermodynamics, and can be easily calculated for different Laplacian drop shapes. The new definition of the shape parameter using the total Gaussian curvature is applied here to both pendant and constrained sessile drops as an illustration. The analysis showed that the new definition is superior and reflects experimental results better than previous definitions, especially at extreme values of the Bond number.

  20. Total Gaussian curvature, drop shapes and the range of applicability of drop shape techniques.

    PubMed

    Saad, Sameh M I; Neumann, A Wilhelm

    2014-02-01

    Drop shape techniques are used extensively for surface tension measurement. It is well-documented that, as the drop/bubble shape becomes close to spherical, the performance of all drop shape techniques deteriorates. There have been efforts quantifying the range of applicability of drop techniques by studying the deviation of Laplacian drops from the spherical shape. A shape parameter was introduced in the literature and was modified several times to accommodate different drop constellations. However, new problems arise every time a new configuration is considered. Therefore, there is a need for a universal shape parameter applicable to pendant drops, sessile drops, liquid bridges as well as captive bubbles. In this work, the use of the total Gaussian curvature in a unified approach for the shape parameter is introduced for that purpose. The total Gaussian curvature is a dimensionless quantity that is commonly used in differential geometry and surface thermodynamics, and can be easily calculated for different Laplacian drop shapes. The new definition of the shape parameter using the total Gaussian curvature is applied here to both pendant and constrained sessile drops as an illustration. The analysis showed that the new definition is superior and reflects experimental results better than previous definitions, especially at extreme values of the Bond number. PMID:24373931

  1. Add-on laser reading device for a camera phone

    NASA Astrophysics Data System (ADS)

    Mäkinen, Jukka-Tapani; Niemelä, Karri; Vasama, Hannu; Mattila, Rauno; Aikio, Mika; Aikio, Sanna; Aikio, Janne

    2005-09-01

    A novel add-on device to a mobile camera phone has been developed. The prototype system contains both laser and LED illumination as well as imaging optics. Main idea behind the device is to have a small printable diffractive ROM (Read Only Memory) element, which can be read by illuminating it with a laser-beam and recording the resulting datamatrix pattern with a camera phone. The element contains information in the same manner as a traditional bar-code, but due to the 2D-pattern and diffractive nature of the tag, a much larger amount of information can be packed on a smaller area. Optical and mechanical designs of the prototype device have been made in such a way that the system can be used in three different modes: as a laser reader, as a telescope and as a microscope.

  2. A subsurface add-on for standard atomic force microscopes.

    PubMed

    Verbiest, G J; van der Zalm, D J; Oosterkamp, T H; Rost, M J

    2015-03-01

    The application of ultrasound in an Atomic Force Microscope (AFM) gives access to subsurface information. However, no commercially AFM exists that is equipped with this technique. The main problems are the electronic crosstalk in the AFM setup and the insufficiently strong excitation of the cantilever at ultrasonic (MHz) frequencies. In this paper, we describe the development of an add-on that provides a solution to these problems by using a special piezo element with a lowest resonance frequency of 2.5 MHz and by separating the electronic connection for this high frequency piezo element from all other connections. In this sense, we support researches with the possibility to perform subsurface measurements with their existing AFMs and hopefully pave also the way for the development of a commercial AFM that is capable of imaging subsurface features with nanometer resolution.

  3. A subsurface add-on for standard atomic force microscopes

    SciTech Connect

    Verbiest, G. J.; Zalm, D. J. van der; Oosterkamp, T. H.; Rost, M. J.

    2015-03-15

    The application of ultrasound in an Atomic Force Microscope (AFM) gives access to subsurface information. However, no commercially AFM exists that is equipped with this technique. The main problems are the electronic crosstalk in the AFM setup and the insufficiently strong excitation of the cantilever at ultrasonic (MHz) frequencies. In this paper, we describe the development of an add-on that provides a solution to these problems by using a special piezo element with a lowest resonance frequency of 2.5 MHz and by separating the electronic connection for this high frequency piezo element from all other connections. In this sense, we support researches with the possibility to perform subsurface measurements with their existing AFMs and hopefully pave also the way for the development of a commercial AFM that is capable of imaging subsurface features with nanometer resolution.

  4. Bubble, Drop and Particle Unit (BDPU)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication includes the following articles entitled: (1) Oscillatory Thermocapillary Instability; (2) Thermocapillary Convection in Multilayer Systems; (3) Bubble and Drop Interaction with Solidification Front; (4) A Liquid Electrohydrodynamics Experiment; (5) Boiling on Small Plate Heaters under Microgravity and a Comparison with Earth Gravity; (6) Thermocapillary Migration and Interactions of Bubbles and Drops; and (7) Nonlinear Surface Tension Driven Bubble Migration

  5. On the Stability of Rotating Drops

    PubMed Central

    Nurse, A. K.; Coriell, S. R.; McFadden, G. B.

    2015-01-01

    We consider the equilibrium and stability of rotating axisymmetric fluid drops by appealing to a variational principle that characterizes the equilibria as stationary states of a functional containing surface energy and rotational energy contributions, augmented by a volume constraint. The linear stability of a drop is determined by solving the eigenvalue problem associated with the second variation of the energy functional. We compute equilibria corresponding to both oblate and prolate shapes, as well as toroidal shapes, and track their evolution with rotation rate. The stability results are obtained for two cases: (i) a prescribed rotational rate of the system (“driven drops”), or (ii) a prescribed angular momentum (“isolated drops”). For families of axisymmetric drops instabilities may occur for either axisymmetric or non-axisymmetric perturbations; the latter correspond to bifurcation points where non-axisymmetric shapes are possible. We employ an angle-arc length formulation of the problem which allows the computation of equilibrium shapes that are not single-valued in spherical coordinates. We are able to illustrate the transition from spheroidal drops with a strong indentation on the rotation axis to toroidal drops that do not extend to the rotation axis. Toroidal drops with a large aspect ratio (major radius to minor radius) are subject to azimuthal instabilities with higher mode numbers that are analogous to the Rayleigh instability of a cylindrical interface. Prolate spheroidal shapes occur if a drop of lower density rotates within a denser medium; these drops appear to be linearly stable. This work is motivated by recent investigations of toroidal tissue clusters that are observed to climb conical obstacles after self-assembly [Nurse et al., Journal of Applied Mechanics 79 (2012) 051013]. PMID:26958440

  6. La Gocciolina (The Little Drop of Water).

    ERIC Educational Resources Information Center

    Palandra, Maria

    This primary level reader in Italian intended for use in a bilingual education setting, is about the life cycle of a drop of water. The drop of water is personified and the story tells of its adventures as it travels from the top of the lake to the bottom, its meeting with the inhabitants of the lake, and its trip to the clouds. After deciding not…

  7. Blood drop patterns: Formation and applications.

    PubMed

    Chen, Ruoyang; Zhang, Liyuan; Zang, Duyang; Shen, Wei

    2016-05-01

    The drying of a drop of blood or plasma on a solid substrate leads to the formation of interesting and complex patterns. Inter- and intra-cellular and macromolecular interactions in the drying plasma or blood drop are responsible for the final morphologies of the dried patterns. Changes in these cellular and macromolecular components in blood caused by diseases have been suspected to cause changes in the dried drop patterns of plasma and whole blood, which could be used as simple diagnostic tools to identify the health of humans and livestock. However, complex physicochemical driving forces involved in the pattern formation are not fully understood. This review focuses on the scientific development in microscopic observations and pattern interpretation of dried plasma and whole blood samples, as well as the diagnostic applications of pattern analysis. Dried drop patterns of plasma consist of intricate visible cracks in the outer region and fine structures in the central region, which are mainly influenced by the presence and concentration of inorganic salts and proteins during drying. The shrinkage of macromolecular gel and its adhesion to the substrate surface have been thought to be responsible for the formation of the cracks. Dried drop patterns of whole blood have three characteristic zones; their formation as functions of drying time has been reported in the literature. Some research works have applied engineering treatment to the evaporation process of whole blood samples. The sensitivities of the resultant patterns to the relative humidity of the environment, the wettability of the substrates, and the size of the drop have been reported. These research works shed light on the mechanisms of spreading, evaporation, gelation, and crack formation of the blood drops on solid substrates, as well as on the potential applications of dried drop patterns of plasma and whole blood in diagnosis. PMID:26988066

  8. Hanging drop crystal growth apparatus and method

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Smith, Robbie E. (Inventor)

    1989-01-01

    An apparatus (10) is constructed having a cylindrical enclosure (16) within which a disc-shaped wicking element (18) is positioned. A well or recess (22) is cut into an upper side (24) of this wicking element, and a glass cover plate or slip (28) having a protein drop disposed thereon is sealably positioned on the wicking element (18), with drop (12) being positioned over well or recess (22). A flow of control fluid is generated by a programmable gradient former (16), with this control fluid having a vapor pressure that is selectively variable. This flow of control fluid is coupled to the wicking element (18) where control fluid vapor diffusing from walls (26) of the recess (22) is exposed to the drop (12), forming a vapor pressure gradient between the drop (12) and the control fluid vapor. Initially, this gradient is adjusted to draw solvent from the drop (12) at a relatively high rate, and as the critical supersaturation point is approached (the point at which crystal nucleation occurs), the gradient is reduced to more slowly draw solvent from the drop (12). This allows discrete protein molecules more time to orient themselves into an ordered crystalline lattice, producing protein crystals which, when processed by X-ray crystallography, possess a high degree of resolution.

  9. Electrohydrodynamics of a surfactant-covered drop

    NASA Astrophysics Data System (ADS)

    Oberlander, Andrew; Ouriemi, Malika; Vlahovska, Petia

    2014-11-01

    We present an experimental study of the behavior of a drop covered with insoluble surfactant in a uniform DC electric field. Steady drop shapes, drop evolution upon application of the field, and drop relaxation after the field is turned off are observed for a polybutadiene (PB) drop suspended in silicon oil (PDMS). The surfactant is generated at the drop interface by reaction between end-functionalized PB and PDMS. The experimental data is compared with the theory of Nganguia et al. (2013) for the steady shapes, and a new model developed by us which accounts for polarization relaxation. The latter effect turns to be significant for our system of very low conductivity fluids, for which the Maxwell-Wagner time is of the order of tens of seconds. We will discuss the complex interplay of shape deformation, surfactant redistribution, and interfacial charging in droplet electrohydrodynamics. Our results are important for understanding electrorheology of emulsions commonly found in the petroleum industry. Supported by NSF-CBET-1132614.

  10. Leidenfrost drops on liquid baths: theory

    NASA Astrophysics Data System (ADS)

    Sobac, Benjamin; Rednikov, Alexei; Maquet, Laurent; Darbois-Texier, Baptiste; Duchesne, Alexis; Brandenbourger, Martin; Dorbolo, Stéphane; Colinet, Pierre

    2015-11-01

    It is well known that a liquid drop released over a very hot surface generally does not contact the surface nor boils but rather levitates over a thin vapor film generated by its own evaporation (Leidenfrost effect). In particular, the case of a hot (and flat) solid substrate has been extensively studied in recent years. In contrast, we here focus on Leidenfrost drops over a superheated liquid bath, addressing the problem theoretically and comparing our predictions with experimental results, detailed in a separate talk. We predict the geometry of the drop and of the liquid bath, based on the hydrostatic Young-Laplace and lubrication equations. A good agreement is observed with the available experimental data concerning the deformation of the liquid bath. The modeling also yields a rather complete insight into the shape of the drop. As in the case of a solid substrate, the vapor layer generally appears to be composed of a vapor pocket surrounded by a circular neck. The influences of the superheat and of the drop size are parametrically investigated. A number of scaling laws are established. Unlike the case of a solid substrate, no chimney instability was found in the range of drop size studied.

  11. Electrochemistry in an acoustically levitated drop.

    PubMed

    Chainani, Edward T; Ngo, Khanh T; Scheeline, Alexander

    2013-02-19

    Levitated drops show potential as microreactors, especially when radicals are present as reactants or products. Solid/liquid interfaces are absent or minimized, avoiding adsorption and interfacial reaction of conventional microfluidics. We report amperometric detection in an acoustically levitated drop with simultaneous ballistic addition of reactant. A gold microelectrode sensor was fabricated with a lithographic process; active electrode area was defined by a photosensitive polyimide mask. The microdisk gold working electrode of radius 19 μm was characterized using ferrocenemethanol in aqueous buffer. Using cyclic voltammetry, the electrochemically active surface area was estimated by combining a recessed microdisk electrode model with the Randles-Sevcik equation. Computer-controlled ballistic introduction of reactant droplets into the levitated drop was developed. Chronoamperometric measurements of ferrocyanide added ballistically demonstrate electrochemical monitoring using the microfabricated electrode in a levitated drop. Although concentration increases with time due to drop evaporation, the extent of concentration is predictable with a linear evaporation model. Comparison of diffusion-limited currents in pendant and levitated drops show that convection arising from acoustic levitation causes an enhancement of diffusion-limited current on the order of 16%. PMID:23351154

  12. A spreading drop of shallow water

    NASA Astrophysics Data System (ADS)

    Jarecka, Dorota; Jaruga, Anna; Smolarkiewicz, Piotr K.

    2015-05-01

    The theoretical solutions and corresponding numerical simulations of Schär and Smolarkiewicz (1996) [3] are revisited. The original abstract problem of a parabolic, slab-symmetric drop of shallow water spreading under gravity is extended to three spatial dimensions, with the initial drop defined over an elliptical compact support. An axisymmetric drop is considered as a special case. The elliptical drop exhibits enticing dynamics, which may appear surprising at the first glance. In contrast, the evolution of the axisymmetric drop is qualitatively akin to the evolution of the slab-symmetric drop and intuitively obvious. Besides being interesting per se, the derived theoretical results provide a simple means for testing numerical schemes concerned with wetting-drying areas in shallow water flows. Reported calculations use the libmpdata++, a recently released free/libre and open-source software library of solvers for generalized transport equations. The numerical results closely match theoretical predictions, demonstrating strengths of the nonoscillatory forward-in-time integrators comprising the libmpdata++.

  13. Toroidal bubble entrapment under an impacting drop

    NASA Astrophysics Data System (ADS)

    Thoraval, Marie-Jean; Thoroddsen, Sigurdur T.; Takehara, Kohsei; Etoh, Takeharu Goji

    2012-11-01

    We use ultra-high-speed imaging and numerical simulations (GERRIS, http://gfs.sf.net) to observe and analyze the formation of up to 14 air tori when a water drop impacts on a thin liquid film of water or other miscible liquids. They form during the early contact between the drop and the pool by the vertical oscillations of the ejecta sheet. They then break in micro-bubble rings by the Rayleigh instability. Their formation is associated with the shedding of an axisymmetric vortex street into the liquid from the free surface. These vorticity structures and their dynamics are made apparent by the dynamics of the micro-bubbles, added seed particles and the difference of refractive index for different liquids in the drop and the pool. More robust entrapments are observed for a thin film of ethanol or methanol. We show that while the non-spherical drop shape is not responsible for the toroidal bubble entrapments, the number of rings is increasing for more oblate drops. Individual bubble entrapments are also observed from azimuthal destabilizations of the neck between the drop and the pool.

  14. Computational analysis of DOD drop formation

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Basaran, Osman

    2007-11-01

    A fundamental theoretical understanding of drop-on-demand (DOD) ink jet printing remains weak despite the widespread use of the method in practical applications for two decades. To overcome this deficiency, a computational analysis is carried out to simulate the formation of liquid drops of incompressible Newtonian fluids from a nozzle by imposing a transient flow rate upstream of the nozzle exit. The dynamics are studied as functions of the Ohnesorge number Oh (viscous/surface tension force) and the Weber number We (inertial/surface tension force). For a common ink forming from a nozzle of 10 micrometer radius, Oh=0.1. For this typical case, a phase or operability diagram is developed that shows that three regimes of operation are possible. In the first regime, where We is low, breakup does not occur, and drops remain pendant from the nozzle and undergo time periodic oscillations. Thus, the simulations show that sufficient fluid inertia, or a sufficiently large We, is required if a DOD drop is to form, in accord with intuition. At high We, two regimes exist. In the first of these two regimes, DOD drops do form but have negative velocities, i.e. they would move toward the nozzle upon breakup, which is undesirable. In the second breakup regime, not only are DOD drops formed but they do so with positive velocities.

  15. Airflows generated by an impacting drop.

    PubMed

    Bischofberger, Irmgard; Ray, Bahni; Morris, Jeffrey F; Lee, Taehun; Nagel, Sidney R

    2016-03-28

    A drop impacting a solid surface with sufficient velocity will splash and emit many small droplets. However, lowering the ambient air pressure suppresses splashing completely. This effect, robustly found for different liquid and substrate properties, raises the fundamental question of how air affects a spreading drop. In a combined experimental and numerical study we characterize the flow of air induced by the drop after it hits the substrate, using a modified Schlieren optics technique combined with high-speed video imaging and Lattice-Boltzmann simulations. Our experiments reveal the emergence of air structures on different length scales. On large scales, the airflow induced in the drop's wake leads to vortex structures due to interaction with the substrate. On smaller scales, we visualize a ring structure above the outer edge of the spreading liquid generated by the spreading of the drop. Our simulations reveal the interaction between the wake vorticity and the flows originating from the rapidly escaping air from below the impacting drop. We show that the vorticity is governed by a balance between inertial and viscous forces in the air, and is unrelated to the splashing threshold. PMID:26809314

  16. Airflows generated by an impacting drop.

    PubMed

    Bischofberger, Irmgard; Ray, Bahni; Morris, Jeffrey F; Lee, Taehun; Nagel, Sidney R

    2016-03-28

    A drop impacting a solid surface with sufficient velocity will splash and emit many small droplets. However, lowering the ambient air pressure suppresses splashing completely. This effect, robustly found for different liquid and substrate properties, raises the fundamental question of how air affects a spreading drop. In a combined experimental and numerical study we characterize the flow of air induced by the drop after it hits the substrate, using a modified Schlieren optics technique combined with high-speed video imaging and Lattice-Boltzmann simulations. Our experiments reveal the emergence of air structures on different length scales. On large scales, the airflow induced in the drop's wake leads to vortex structures due to interaction with the substrate. On smaller scales, we visualize a ring structure above the outer edge of the spreading liquid generated by the spreading of the drop. Our simulations reveal the interaction between the wake vorticity and the flows originating from the rapidly escaping air from below the impacting drop. We show that the vorticity is governed by a balance between inertial and viscous forces in the air, and is unrelated to the splashing threshold.

  17. 24 CFR 983.206 - HAP contract amendments (to add or substitute contract units).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false HAP contract amendments (to add or... Contract § 983.206 HAP contract amendments (to add or substitute contract units). (a) Amendment to... substitute unit and must determine the reasonable rent for such unit. (b) Amendment to add contract units....

  18. 24 CFR 983.206 - HAP contract amendments (to add or substitute contract units).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false HAP contract amendments (to add or... Contract § 983.206 HAP contract amendments (to add or substitute contract units). (a) Amendment to... substitute unit and must determine the reasonable rent for such unit. (b) Amendment to add contract units....

  19. 12 CFR 502.60 - When will OTS adjust, add, waive, or eliminate a fee?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false When will OTS adjust, add, waive, or eliminate... TREASURY ASSESSMENTS AND FEES Fees § 502.60 When will OTS adjust, add, waive, or eliminate a fee? Under unusual circumstances, the Director may deem it necessary or appropriate to adjust, add, waive,...

  20. 12 CFR 502.60 - When will OTS adjust, add, waive, or eliminate a fee?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 5 2011-01-01 2011-01-01 false When will OTS adjust, add, waive, or eliminate... TREASURY ASSESSMENTS AND FEES Fees § 502.60 When will OTS adjust, add, waive, or eliminate a fee? Under unusual circumstances, the Director may deem it necessary or appropriate to adjust, add, waive,...

  1. The Source for ADD/ADHD: Attention Deficit Disorder and Attention Deficit/Hyperactivity Disorder.

    ERIC Educational Resources Information Center

    Richard, Gail J.; Russell, Joy L.

    This book is intended for professionals who are responsible for designing and implementing educational programs for children with attention deficit disorders and attention deficit/hyperactivity disorder (ADD/ADHD). Chapters address: (1) myths and realities about ADD/ADHD; (2) definitions, disorders associated with ADD/ADHD, and federal educational…

  2. Lifetime of oil drops pressed by buoyancy against a planar interface: large drops.

    PubMed

    Rojas, Clara; García-Sucre, Máximo; Urbina-Villalba, Germán

    2010-11-01

    In a previous report [C. Rojas, G. Urbina-Villalba, and M. García-Sucre, Phys. Rev. E 81, 016302 (2010)] it was shown that emulsion stability simulations are able to reproduce the lifetime of micrometer-size drops of hexadecane pressed by buoyancy against a planar water-hexadecane interface. It was confirmed that small drops (r(i)< 10 μm) stabilized with β -casein behave as nondeformable particles, moving with a combination of Stokes and Taylor tensors as they approach the interface. Here, a similar methodology is used to parametrize the potential of interaction of drops of soybean oil stabilized with bovine serum albumin. The potential obtained is then employed to study the lifetime of deformable drops in the range 10 ≤ r(i) ≤ 1000 μm . It is established that the average lifetime of these drops can be adequately replicated using the model of truncated spheres. However, the results depend sensibly on the expressions of the initial distance of deformation and the maximum film radius used in the calculations. The set of equations adequate for large drops is not satisfactory for medium-size drops (10 ≤ r(i) ≤ 100 μm) , and vice versa. In the case of large particles, the increase in the interfacial area as a consequence of the deformation of the drops generates a very large repulsive barrier which opposes coalescence. Nevertheless, the buoyancy force prevails. As a consequence, it is the hydrodynamic tensor of the drops which determine the characteristic behavior of the lifetime as a function of the particle size. While the average values of the coalescence time of the drops can be justified by the mechanism of film thinning, the scattering of the experimental data of large drops cannot be rationalized using the methodology previously described. A possible explanation of this phenomenon required elaborate simulations which combine deformable drops, capillary waves, repulsive interaction forces, and a time-dependent surfactant adsorption.

  3. The Drop Tower Bremen -Experiment Operation

    NASA Astrophysics Data System (ADS)

    Könemann, Thorben; von Kampen, Peter; Rath, Hans J.

    The idea behind the drop tower facility of the Center of Applied Space Technology and Micro-gravity (ZARM) in Bremen is to provide an inimitable technical opportunity of a daily access to short-term weightlessness on earth. In this way ZARM`s european unique ground-based microgravity laboratory displays an excellent economic alternative for research in space-related conditions at low costs comparable to orbital platforms. Many national and international ex-perimentalists motivated by these prospects decide to benefit from the high-quality and easy accessible microgravity environment only provided by the Drop Tower Bremen. Corresponding experiments in reduced gravity could open new perspectives of investigation methods and give scientists an impressive potential for a future technology and multidisciplinary applications on different research fields like Fundamental Physics, Astrophysics, Fluid Dynamics, Combus-tion, Material Science, Chemistry and Biology. Generally, realizing microgravity experiments at ZARM`s drop tower facility meet new requirements of the experimental hardware and may lead to some technical constraints in the setups. In any case the ZARM Drop Tower Operation and Service Company (ZARM FAB mbH) maintaining the drop tower facility is prepared to as-sist experimentalists by offering own air-conditioned laboratories, clean rooms, workshops and consulting engineers, as well as scientific personal. Furthermore, ZARM`s on-site apartment can be used for accommodations during the experiment campaigns. In terms of approaching drop tower experimenting, consulting of experimentalists is mandatory to successfully accomplish the pursued drop or catapult capsule experiment. For this purpose there will be a lot of expertise and help given by ZARM FAB mbH in strong cooperation to-gether with the experimentalists. However, in comparison to standard laboratory setups the drop or catapult capsule setup seems to be completely different at first view. While defining a

  4. Charge and Size Distributions of Electrospray Drops

    PubMed

    de Juan L; de la Mora JF

    1997-02-15

    The distributions of charge q and diameter d of drops emitted from electrified liquid cones in the cone-jet mode are investigated with two aerosol instruments. A differential mobility analyzer (DMA, Vienna type) first samples the spray drops, selects those with electrical mobilities within a narrow band, and either measures the associated current or passes them to a second instrument. The drops may also be individually counted optically and sized by sampling them into an aerodynamic size spectrometer (API's Aerosizer). For a given cone-jet, the distribution of charge q for the main electrospray drops is some 2.5 times broader than their distribution of diameters d, with qmax/qmin approximately 4. But mobility-selected drops have relative standard deviations of only 5% for both d and q, showing that the support of the (q, d) distribution is a narrow band centered around a curve q(d). The approximate one-dimensionality of this support region is explained through the mechanism of jet breakup, which is a random process with only one degree of freedom: the wavelength of axial modulation of the jet. The observed near constancy of the charge over volume ratio (q approximately d3) shows that the charge is frozen in the liquid surface at the time scale of the breakup process. The charge over volume ratio of the primary drops varies between 98 and 55% of the ratio of spray current I over liquid flow rate Q, and decreases at increasing Q. I/Q is therefore an unreliable measure of the charge density of these drops.

  5. Stress Drops for Potentially Induced Earthquake Sequences

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Beroza, G. C.; Ellsworth, W. L.

    2015-12-01

    Stress drop, the difference between shear stress acting across a fault before and after an earthquake, is a fundamental parameter of the earthquake source process and the generation of strong ground motions. Higher stress drops usually lead to more high-frequency ground motions. Hough [2014 and 2015] observed low intensities in "Did You Feel It?" data for injection-induced earthquakes, and interpreted them to be a result of low stress drops. It is also possible that the low recorded intensities could be a result of propagation effects. Atkinson et al. [2015] show that the shallow depth of injection-induced earthquakes can lead to a lack of high-frequency ground motion as well. We apply the spectral ratio method of Imanishi and Ellsworth [2006] to analyze stress drops of injection-induced earthquakes, using smaller earthquakes with similar waveforms as empirical Green's functions (eGfs). Both the effects of path and linear site response should be cancelled out through the spectral ratio analysis. We apply this technique to the Guy-Greenbrier earthquake sequence in central Arkansas. The earthquakes migrated along the Guy-Greenbrier Fault while nearby injection wells were operating in 2010-2011. Huang and Beroza [GRL, 2015] improved the magnitude of completeness to about -1 using template matching and found that the earthquakes deviated from Gutenberg-Richter statistics during the operation of nearby injection wells. We identify 49 clusters of highly similar events in the Huang and Beroza [2015] catalog and calculate stress drops using the source model described in Imanishi and Ellsworth [2006]. Our results suggest that stress drops of the Guy-Greenbrier sequence are similar to tectonic earthquakes at Parkfield, California (the attached figure). We will also present stress drop analysis of other suspected induced earthquake sequences using the same method.

  6. Mississippi adds bystanders to list entitled to HIV notice.

    PubMed

    1998-05-15

    A new Mississippi law that takes effect in July extends HIV notification to those people who assist victims at traffic accidents or emergencies. House Bill 1029 treats good Samaritans the same way as police, fire, and emergency technicians who are exposed to body fluids. These bystanding caregivers must report the exposure to the hospital where the victim is being treated, and if the victim is later diagnosed with an infectious disease, the caregiver will be notified. By definition, the bystanding caregiver is any person without medical certification who provides care to an injured individual prior to the arrival of medical service providers. PMID:11365330

  7. Characterization of defect cavities and channel-drop filters in the three dimensional woodpile photonic crystal

    NASA Astrophysics Data System (ADS)

    Stieler, Daniel Paul

    Photonic crystals (PCs) are devices with the ability to confine electromagnetic (EM) waves due to their EM bandgap. The three-dimensional woodpile PC studied in this dissertation is appealing because unlike its two-dimensional counter parts, it is able to confine and guide EM waves in all three dimensions. This dissertation examines the fundamental properties of resonant cavities and use of cavities and waveguides (WGs) to create channel-drop filters in the woodpile PC. Resonant cavities are a major building block of photonic integrated circuits devices. Therefore it is important to understand how to control the properties of their resonant modes, such as quality factor (Q), resonant frequency, magnitude, and mode shape. This dissertation examines the effects of incident EM wave polarization, cavity size, cavity permittivity, cavity confinement, material loss, and lattice disorder on the properties of the resonant mode. Channel-drop filters are devices that can be used to transfer EM energy of a specific frequency from one WG to another. Channel-drop filters could be used to optically add or remove a specific carrier frequency from a fiber optic cable transporting many carrier frequencies. Channel-drop filters made from a PC are able to perform this task completely optically. This would speed up the optical network since conversion of the optical signal to an electronic signal is not required. In this dissertation six channel-drop filter configurations are examined. These structures are made both in a single stacking layer and separated by many layers. Five of the structures demonstrated good energy transfer from the input (bus) WG to the output (drop) WG. The ability to control the frequency and Q of the transferred EM mode is achieved by varying the cavity size and confinement.

  8. Colloidal Drop Deposition on Porous Substrates: Competition among Particle Motion, Evaporation, and Infiltration.

    PubMed

    Pack, Min; Hu, Han; Kim, Dong-Ook; Yang, Xin; Sun, Ying

    2015-07-28

    Recent interest in printable electronics and in particular paper- and textile-based electronics has fueled research in inkjet printing of colloidal drops on porous substrates. On nonporous substrates, the interplay of particle motion and solvent evaporation determines the final deposition morphology of the evaporating colloidal drop. For porous substrates, solvent infiltration into the pores adds a layer of complexity to the deposition patterns that have not been fully elucidated in the literature. In this study, the deposition of picoliter-sized aqueous colloidal droplets containing nanometer- and micrometer-sized particles onto nanoporous anodic aluminum oxide substrates is examined for different drop and particle sizes and relative humidities as well as pore diameters, porosities, and wettabilities of the porous substrates. For the cases considered, solvent infiltration is found to be much faster than both evaporation and particle motion near the contact line, and thus when the substrate fully imbibes the solvent, the well-known "coffee-ring" deposition is suppressed. However, when the solvent is only partially imbibed, a residual droplet volume exists upon completion of the infiltration. For such cases, two time scales are of importance: the time for particle motion to the contact line as a result of both diffusion and advection, t(P), and the evaporation time of the residual drop volume, t(EI). Their ratio, t(P)/t(EI), determines whether the coffee-ring deposition will be formed (t(P)/t(EI) < 1) or suppressed (t(P)/t(EI) > 1). PMID:26132211

  9. Self-Diffusion of Drops in a Dilute Sheared Emulsion

    NASA Technical Reports Server (NTRS)

    Loewenberg, Michael; Hinch, E. J.

    1996-01-01

    Self-diffusion coefficients that describe cross-flow migration of non-Brownian drops in a dilute sheared emulsion were obtained by trajectory calculations. A boundary integral formulation was used to describe pairwise interactions between deformable drops; interactions between undeformed drops were described with mobility functions for spherical drops. The results indicate that drops have large anisotropic self-diffusivities which depend strongly on the drop viscosity and modestly on the shear-rate. Pairwise interactions between drops in shear-flow do not appreciably promote drop breakup.

  10. Ethical dilemmas of medically unexplained symptoms.

    PubMed

    Desai, Geetha; Chaturvedi, Santosh K

    2016-01-01

    Medically unexplained symptoms (MUS) are common across health settings. These are defined as "physical symptoms that prompt sufferer to seek healthcare but remain unexplained after an appropriate medical evaluation". Expectedly, MUS are often associated with significant health-seeking behaviours that add to the burden on health resources. PMID:27260826

  11. Abortion - medical

    MedlinePlus

    ... womb (uterus). There are different types of medical abortions: Therapeutic medical abortion is done because the woman has ... Therapeutic medical abortion; Elective medical abortion; Induced abortion; Nonsurgical abortion

  12. Do Bacterial Symbionts Govern Aphid's Dropping Behavior?

    PubMed

    Lavy, Omer; Sher, Noa; Malik, Assaf; Chiel, Elad

    2015-06-01

    Defensive symbiosis is amongst nature's most important interactions shaping the ecology and evolution of all partners involved. The pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), harbors one obligatory bacterial symbiont and up to seven different facultative symbionts, some of which are known to protect the aphid from pathogens, natural enemies, and other mortality factors. Pea aphids typically drop off the plant when a mammalian herbivore approaches it to avoid incidental predation. Here, we examined whether bacterial symbionts govern the pea aphid dropping behavior by comparing the bacterial fauna in dropping and nondropping aphids of two A. pisum populations, using two molecular techniques: high-throughput profiling of community structure using 16 S reads sequenced on the Illumina platform, and diagnostic polymerase chain reaction (PCR). We found that in addition to the obligatory symbiont, Buchnera aphidicola, the tested colonies of A. pisum harbored the facultative symbionts Serratia symbiotica, Regiella insecticola and Rickettsia, with no significant differences in infection proportions between dropping and nondropping aphids. While S. symbiotica was detected by both techniques, R. insecticola and Rickettsia could be detected only by diagnostic PCR. We therefore conclude that A. pisum's dropping behavior is not affected by its bacterial symbionts and is possibly affected by other factors. PMID:26313964

  13. Computations of drop collision and coalescence

    NASA Technical Reports Server (NTRS)

    Tryggvason, Gretar; Juric, Damir; Nobari, Mohammed H. R.; Nas, Selman

    1994-01-01

    Computations of drops collision and coalescence are presented. The computations are made possible by a recently developed finite difference/front tracking technique that allows direct solutions of the Navier-Stokes equations for a multi-fluid system with complex, unsteady internal boundaries. This method has been used to examine the boundaries between the various collision modes for drops of equal size and two examples, one of a 'reflective' collision and another of a 'grazing' collision is shown. From drops of unequal size, coalescence can result in considerable mixing between the fluid from the small and the large drop. This problem is discussed and one example showed. In many cases it is necessary to account also for heat transfer along with the fluid mechanics. We show two preliminary results where we are using extensions of the method to simulate such a problem. One example shows pattern formation among many drops moving due to thermal migration, the other shows unstable evolution of a solidification front.

  14. Drop deployment system for crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H. (Inventor); Snyder, Robert S. (Inventor); Pusey, Marc L. (Inventor)

    1992-01-01

    This invention relates to a crystal growth apparatus (10) generally used for growing protein crystals wherein a vapor diffusion method is used for growing the crystals. In this apparatus, a precipitating solution and a solution containing dissolved crystalline material are stored in separate vials (12, 14), each having a resilient diaphragm (28) across one end and an opening (24) with a puncturable septum (26) thereacross at an opposite end. The vials are placed in receptacles (30) having a manifold (41) with a manifold diaphragm (42) in contact with the vial diaphragm at one end of the receptacle and a hollow needle (36) for puncturing the septum at the other end of the manifold. The needles of each vial communicate with a ball mixer (40) that mixes the precipitate and protein solutions and directs the mixed solution to a drop support (64) disposed in a crystal growth chamber (16), the drop support being a tube with an inner bevelled surface (66) that provides more support for the drop (68) than the tubes of the prior art. A sealable storage region (70) intermediate the drop support and mixer provides storage of the drop (68) and the grown crystals.

  15. Drops with non-circular footprints

    NASA Astrophysics Data System (ADS)

    Ravazzoli, Pablo D.; González, Alejandro G.; Diez, Javier A.

    2016-04-01

    In this paper we study the morphology of drops formed on partially wetting substrates, whose footprint is not circular. These drops are consequence of the breakup processes occurring in thin films when anisotropic contact line motions take place. The anisotropy is basically due to the hysteresis of the contact angle since there is a wetting process in some parts of the contact line, while a dewetting occurs in other parts. Here, we obtain a characteristic drop shape from the rupture of a long liquid filament sitting on a solid substrate. We analyze its shape and contact angles by means of goniometric and refractive techniques. We also find a non-trivial steady state solution for the drop shape within the long wave approximation (lubrication theory), and we compare most of its features with experimental data. This solution is presented both in Cartesian and polar coordinates, whose constants must be determined by a certain group of measured parameters. Besides, we obtain the dynamics of the drop generation from numerical simulations of the full Navier-Stokes equation, where we emulate the hysteretic effects with an appropriate spatial distribution of the static contact angle over the substrate.

  16. Drop splash on a smooth, dry surface

    NASA Astrophysics Data System (ADS)

    Riboux, Guillaume; Gordillo, Jose Manuel; Korobkin, Alexander

    2013-11-01

    It is our purpose here to determine the conditions under which a drop of a given liquid with a known radius R impacting against a smooth impermeable surface at a velocity V, will either spread axisymmetrically onto the substrate or will create a splash, giving rise to usually undesired star-shaped patterns. In our experimental setup, drops are generated injecting low viscosity liquids falling under the action of gravity from a stainless steel hypodermic needle. The experimental observations using two high speed cameras operating simultaneously and placed perpendicularly to each other reveal that, initially, the drop deforms axisymmetrically, with A (T) the radius of the wetted area. For high enough values of the drop impact velocity, a thin sheet of liquid starts to be ejected from A (T) at a velocity Vjet > V for instants of time such that T >=Tc . If Vjet is above a certain threshold, which depends on the solid wetting properties as well as on the material properties of both the liquid and the atmospheric gas, the rim of the lamella dewets the solid to finally break into drops. Using Wagner's theory we demonstrate that A (T) =√{ 3 RVT } and our results also reveal that Tc We - 1 / 2 =(ρV2 R / σ) - 1 / 2 and Vjet We 1 / 4 .

  17. Drop impact on inclined superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Choi, Wonjae; Leclear, Sani; Leclear, Johnathon; Abhijeet, .; Park, Kyoo-Chul

    We report an empirical study and dimensional analysis on the impact patterns of water drops on inclined superhydrophobic surfaces. While the classic Weber number determines the spreading and recoiling dynamics of a water drop on a horizontal / smooth surface, for a superhydrophobic surface, the dynamics depends on two distinct Weber numbers, each calculated using the length scale of the drop or of the pores on the surface. Impact on an inclined superhydrophobic surface is even more complicated, as the velocity that determines the Weber number is not necessarily the absolute speed of the drop but the velocity components normal and tangential to the surface. We define six different Weber numbers, using three different velocities (absolute, normal and tangential velocities) and two different length scales (size of the drop and of the texture). We investigate the impact patterns on inclined superhydrophobic surfaces with three different types of surface texture: (i) posts, (ii) ridges aligned with and (iii) ridges perpendicular to the impact direction. Results suggest that all six Weber numbers matter, but affect different parts of the impact dynamics, ranging from the Cassie-Wenzel transition, maximum spreading, to anisotropic deformation. We acknowledge financial support from the Office of Naval Research (ONR) through Contract 3002453812.

  18. Drop Testing Representative Multi-Canister Overpacks

    SciTech Connect

    Snow, Spencer D.; Morton, Dana K.

    2015-06-01

    The objective of the work reported herein was to determine the ability of the Multi- Canister Overpack (MCO) canister design to maintain its containment boundary after an accidental drop event. Two test MCO canisters were assembled at Hanford, prepared for testing at the Idaho National Engineering and Environmental Laboratory (INEEL), drop tested at Sandia National Laboratories, and evaluated back at the INEEL. In addition to the actual testing efforts, finite element plastic analysis techniques were used to make both pre-test and post-test predictions of the test MCOs structural deformations. The completed effort has demonstrated that the canister design is capable of maintaining a 50 psig pressure boundary after drop testing. Based on helium leak testing methods, one test MCO was determined to have a leakage rate not greater than 1x10-5 std cc/sec (prior internal helium presence prevented a more rigorous test) and the remaining test MCO had a measured leakage rate less than 1x10-7 std cc/sec (i.e., a leaktight containment) after the drop test. The effort has also demonstrated the capability of finite element methods using plastic analysis techniques to accurately predict the structural deformations of canisters subjected to an accidental drop event.

  19. Bubble and Drop Nonlinear Dynamics (BDND)

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Leal, L. Gary; Thomas, D. A.; Crouch, R. K.

    1998-01-01

    Free drops and bubbles are weakly nonlinear mechanical systems that are relatively simple to characterize experimentally in 1-G as well as in microgravity. The understanding of the details of their motion contributes to the fundamental study of nonlinear phenomena and to the measurement of the thermophysical properties of freely levitated melts. The goal of this Glovebox-based experimental investigation is the low-gravity assessment of the capabilities of a modular apparatus based on ultrasonic resonators and on the pseudo- extinction optical method. The required experimental task is the accurate measurements of the large-amplitude dynamics of free drops and bubbles in the absence of large biasing influences such as gravity and levitation fields. A single-axis levitator used for the positioning of drops in air, and an ultrasonic water-filled resonator for the trapping of air bubbles have been evaluated in low-gravity and in 1-G. The basic feasibility of drop positioning and shape oscillations measurements has been verified by using a laptop-interfaced automated data acquisition and the optical extinction technique. The major purpose of the investigation was to identify the salient technical issues associated with the development of a full-scale Microgravity experiment on single drop and bubble dynamics.

  20. Do Bacterial Symbionts Govern Aphid's Dropping Behavior?

    PubMed

    Lavy, Omer; Sher, Noa; Malik, Assaf; Chiel, Elad

    2015-06-01

    Defensive symbiosis is amongst nature's most important interactions shaping the ecology and evolution of all partners involved. The pea aphid, Acyrthosiphon pisum Harris (Hemiptera: Aphididae), harbors one obligatory bacterial symbiont and up to seven different facultative symbionts, some of which are known to protect the aphid from pathogens, natural enemies, and other mortality factors. Pea aphids typically drop off the plant when a mammalian herbivore approaches it to avoid incidental predation. Here, we examined whether bacterial symbionts govern the pea aphid dropping behavior by comparing the bacterial fauna in dropping and nondropping aphids of two A. pisum populations, using two molecular techniques: high-throughput profiling of community structure using 16 S reads sequenced on the Illumina platform, and diagnostic polymerase chain reaction (PCR). We found that in addition to the obligatory symbiont, Buchnera aphidicola, the tested colonies of A. pisum harbored the facultative symbionts Serratia symbiotica, Regiella insecticola and Rickettsia, with no significant differences in infection proportions between dropping and nondropping aphids. While S. symbiotica was detected by both techniques, R. insecticola and Rickettsia could be detected only by diagnostic PCR. We therefore conclude that A. pisum's dropping behavior is not affected by its bacterial symbionts and is possibly affected by other factors.

  1. Does aquaculture add resilience to the global food system?

    PubMed

    Troell, Max; Naylor, Rosamond L; Metian, Marc; Beveridge, Malcolm; Tyedmers, Peter H; Folke, Carl; Arrow, Kenneth J; Barrett, Scott; Crépin, Anne-Sophie; Ehrlich, Paul R; Gren, Asa; Kautsky, Nils; Levin, Simon A; Nyborg, Karine; Österblom, Henrik; Polasky, Stephen; Scheffer, Marten; Walker, Brian H; Xepapadeas, Tasos; de Zeeuw, Aart

    2014-09-16

    Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change. Aquaculture can potentially enhance resilience through improved resource use efficiencies and increased diversification of farmed species, locales of production, and feeding strategies. However, aquaculture's reliance on terrestrial crops and wild fish for feeds, its dependence on freshwater and land for culture sites, and its broad array of environmental impacts diminishes its ability to add resilience. Feeds for livestock and farmed fish that are fed rely largely on the same crops, although the fraction destined for aquaculture is presently small (∼4%). As demand for high-value fed aquaculture products grows, competition for these crops will also rise, as will the demand for wild fish as feed inputs. Many of these crops and forage fish are also consumed directly by humans and provide essential nutrition for low-income households. Their rising use in aquafeeds has the potential to increase price levels and volatility, worsening food insecurity among the most vulnerable populations. Although the diversification of global food production systems that includes aquaculture offers promise for enhanced resilience, such promise will not be realized if government policies fail to provide adequate incentives for resource efficiency, equity, and environmental protection. PMID:25136111

  2. Does aquaculture add resilience to the global food system?

    PubMed Central

    Troell, Max; Naylor, Rosamond L.; Metian, Marc; Beveridge, Malcolm; Tyedmers, Peter H.; Folke, Carl; Arrow, Kenneth J.; Barrett, Scott; Crépin, Anne-Sophie; Ehrlich, Paul R.; Gren, Åsa; Kautsky, Nils; Levin, Simon A.; Nyborg, Karine; Österblom, Henrik; Polasky, Stephen; Scheffer, Marten; Walker, Brian H.; Xepapadeas, Tasos; de Zeeuw, Aart

    2014-01-01

    Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change. Aquaculture can potentially enhance resilience through improved resource use efficiencies and increased diversification of farmed species, locales of production, and feeding strategies. However, aquaculture’s reliance on terrestrial crops and wild fish for feeds, its dependence on freshwater and land for culture sites, and its broad array of environmental impacts diminishes its ability to add resilience. Feeds for livestock and farmed fish that are fed rely largely on the same crops, although the fraction destined for aquaculture is presently small (∼4%). As demand for high-value fed aquaculture products grows, competition for these crops will also rise, as will the demand for wild fish as feed inputs. Many of these crops and forage fish are also consumed directly by humans and provide essential nutrition for low-income households. Their rising use in aquafeeds has the potential to increase price levels and volatility, worsening food insecurity among the most vulnerable populations. Although the diversification of global food production systems that includes aquaculture offers promise for enhanced resilience, such promise will not be realized if government policies fail to provide adequate incentives for resource efficiency, equity, and environmental protection. PMID:25136111

  3. The IRBIT domain adds new functions to the AHCY family.

    PubMed

    Devogelaere, Benoit; Sammels, Eva; De Smedt, Humbert

    2008-07-01

    During the past few years, the IRBIT domain has emerged as an important add-on of S-adenosyl-L-homocystein hydrolase (AHCY), thereby creating the new family of AHCY-like proteins. In this review, we discuss the currently available data on this new family of proteins. We describe the IRBIT domain as a unique part of these proteins and give an overview of its regulation via (de)phosphorylation and proteolysis. The second part of this review is focused on the potential functions of the AHCY-like proteins. We propose that the IRBIT domain serves as an anchor for targeting AHCY-like proteins towards cytoplasmic targets. This leads to regulation of (i) intracellular Ca2+ via the inositol 1,4,5-trisphosphate receptor (IP3R), (ii) intracellular pH via the Na+/HCO3 - cotransporters (NBCs); whereas inactivation of the IRBIT domain induces (iii) nuclear translocation and regulation of AHCY activity. Dysfunction of AHCY-like proteins will disturb these three important functions, with various biological implications. PMID:18536033

  4. The IRBIT domain adds new functions to the AHCY family.

    PubMed

    Devogelaere, Benoit; Sammels, Eva; De Smedt, Humbert

    2008-07-01

    During the past few years, the IRBIT domain has emerged as an important add-on of S-adenosyl-L-homocystein hydrolase (AHCY), thereby creating the new family of AHCY-like proteins. In this review, we discuss the currently available data on this new family of proteins. We describe the IRBIT domain as a unique part of these proteins and give an overview of its regulation via (de)phosphorylation and proteolysis. The second part of this review is focused on the potential functions of the AHCY-like proteins. We propose that the IRBIT domain serves as an anchor for targeting AHCY-like proteins towards cytoplasmic targets. This leads to regulation of (i) intracellular Ca2+ via the inositol 1,4,5-trisphosphate receptor (IP3R), (ii) intracellular pH via the Na+/HCO3 - cotransporters (NBCs); whereas inactivation of the IRBIT domain induces (iii) nuclear translocation and regulation of AHCY activity. Dysfunction of AHCY-like proteins will disturb these three important functions, with various biological implications.

  5. Does aquaculture add resilience to the global food system?

    PubMed

    Troell, Max; Naylor, Rosamond L; Metian, Marc; Beveridge, Malcolm; Tyedmers, Peter H; Folke, Carl; Arrow, Kenneth J; Barrett, Scott; Crépin, Anne-Sophie; Ehrlich, Paul R; Gren, Asa; Kautsky, Nils; Levin, Simon A; Nyborg, Karine; Österblom, Henrik; Polasky, Stephen; Scheffer, Marten; Walker, Brian H; Xepapadeas, Tasos; de Zeeuw, Aart

    2014-09-16

    Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change. Aquaculture can potentially enhance resilience through improved resource use efficiencies and increased diversification of farmed species, locales of production, and feeding strategies. However, aquaculture's reliance on terrestrial crops and wild fish for feeds, its dependence on freshwater and land for culture sites, and its broad array of environmental impacts diminishes its ability to add resilience. Feeds for livestock and farmed fish that are fed rely largely on the same crops, although the fraction destined for aquaculture is presently small (∼4%). As demand for high-value fed aquaculture products grows, competition for these crops will also rise, as will the demand for wild fish as feed inputs. Many of these crops and forage fish are also consumed directly by humans and provide essential nutrition for low-income households. Their rising use in aquafeeds has the potential to increase price levels and volatility, worsening food insecurity among the most vulnerable populations. Although the diversification of global food production systems that includes aquaculture offers promise for enhanced resilience, such promise will not be realized if government policies fail to provide adequate incentives for resource efficiency, equity, and environmental protection.

  6. Settling of copper drops in molten slags

    NASA Astrophysics Data System (ADS)

    Warczok, A.; Utigard, T. A.

    1995-02-01

    The settling of suspended metal and sulfide droplets in liquid metallurgical, slags can be affected by electric fields. The migration of droplets due to electrocapillary motion phenomena may be used to enhance the recovery of suspended matte/metal droplets and thereby to increase the recovery of pay metals. An experimental technique was developed for the purpose of measuring the effect of electric fields on the settling rate of metallic drops in liquid slags. Copper drops suspended in CaO-SiO2-Al2O3-Cu2O slags were found to migrate toward the cathode. Electric fields can increase the settling rate of 5-mm-diameter copper drops 3 times or decrease the settling until levitation by reversal of the electric field. The enhanced settling due to electric fields decreases with increasing Cu2O contents in the slag.

  7. Micro coulometric titration in a liquid drop.

    PubMed

    Kanyanee, Tinakorn; Fuekhad, Pongwasin; Grudpan, Kate

    2013-10-15

    Miniaturized coulometric titration in a liquid drop has been investigated. Assays of ascorbic acid and thiosulfate with iodine titration were chosen as models. Constant volumes of falling liquid drops containing sample or reagent are manipulated via gravimetrical force to move along a slope hydrophobic path and directed to stop or to move out from an electrode. Such manipulation is useful for delivery of sample and reagents, in a way of flow without tubing. Electrochemical generation of titrant, in this case, iodine, is started at the electrode and micro coulometric titration can be performed in a drop by applying constant current. Timing in the titration can be made via naked eye with a stopwatch or via recording with a webcam camera connecting to a computer to detect the change due to the blue color complex of the excess iodine and starch.

  8. Ultrasonic characterization of single drops of liquids

    DOEpatents

    Sinha, Dipen N.

    1998-01-01

    Ultrasonic characterization of single drops of liquids. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities.

  9. Profiles of electrified drops and bubbles

    NASA Technical Reports Server (NTRS)

    Basaran, O. A.; Scriven, L. E.

    1982-01-01

    Axisymmetric equilibrium shapes of conducting drops and bubbles, (1) pendant or sessile on one face of a circular parallel-plate capacitor or (2) free and surface-charged, are found by solving simultaneously the free boundary problem consisting of the augmented Young-Laplace equation for surface shape and the Laplace equation for electrostatic field, given the surface potential. The problem is nonlinear and the method is a finite element algorithm employing Newton iteration, a modified frontal solver, and triangular as well as quadrilateral tessellations of the domain exterior to the drop in order to facilitate refined analysis of sharply curved drop tips seen in experiments. The stability limit predicted by this computer-aided theoretical analysis agrees well with experiments.

  10. Thermocapillary Convection in Bubbles and Drops

    NASA Technical Reports Server (NTRS)

    Balassubramaniam; Subramanian, R. Shankar

    2003-01-01

    When bubbles or drops are present in an immiscible liquid in reduced gravity and the temperature of the liquid is non-uniform, a thermocapillary stress is generated at the interface due to the variation of interfacial tension with temperature. The resulting flow propels the drop freely suspended in the liquid towards warmer regions, so as to minimize the interfacial energy. In this presentation, we will focus on the effect of convective transport of momentum and energy, that are characterized by the Reynolds number and the Marangoni number, respectively. The results of asymptotic analyses for the speed of the drop for low and large values of these parameters will be discussed. These predictions as well as those from numerical simulations will be compared with reduced gravity experimental results obtained from experiments performed aboard the space shuttle.

  11. Drop interaction with the ejecta sheet

    NASA Astrophysics Data System (ADS)

    Thoraval, M.-J.; Thoroddsen, S. T.; Takehara, K.; Etoh, T. G.; Ray, P.; Josserand, C.; Zaleski, S.

    2011-11-01

    We studied experimentally and numerically the dynamics of the ejecta sheet produced by a drop impacting on a deep pool of the same liquid at high Reynolds and Weber numbers. Ultra-high speed imaging revealed a diversity of evolutions by using different mixtures of water and glycerine, and different impact velocities. We observed a transition from a smooth ejecta sheet to a more irregular splashing for a Reynolds number of 3500. In this transition regime, the ejecta sheet interacts with the impacting drop. This interaction can pull the ejecta sheet towards the centre of the drop at lower splash parameters, or generate a bumping on the ejecta sheet moving outwards at higher splash parameters. The volume of fluid (VOF) code Gerris was used to reproduce numerically this peculiar dynamics in axisymmetric conditions. Very good agreement with the experiments was reached by using adaptive refinement and parallelization of the calculations.

  12. Micro coulometric titration in a liquid drop.

    PubMed

    Kanyanee, Tinakorn; Fuekhad, Pongwasin; Grudpan, Kate

    2013-10-15

    Miniaturized coulometric titration in a liquid drop has been investigated. Assays of ascorbic acid and thiosulfate with iodine titration were chosen as models. Constant volumes of falling liquid drops containing sample or reagent are manipulated via gravimetrical force to move along a slope hydrophobic path and directed to stop or to move out from an electrode. Such manipulation is useful for delivery of sample and reagents, in a way of flow without tubing. Electrochemical generation of titrant, in this case, iodine, is started at the electrode and micro coulometric titration can be performed in a drop by applying constant current. Timing in the titration can be made via naked eye with a stopwatch or via recording with a webcam camera connecting to a computer to detect the change due to the blue color complex of the excess iodine and starch. PMID:24054589

  13. Computer simulations of nematic drops: Coupling between drop shape and nematic order

    NASA Astrophysics Data System (ADS)

    Rull, L. F.; Romero-Enrique, J. M.; Fernandez-Nieves, A.

    2012-07-01

    We perform Monte Carlo computer simulations of nematic drops in equilibrium with their vapor using a Gay-Berne interaction between the rod-like molecules. To generate the drops, we initially perform NPT simulations close to the nematic-vapor coexistence region, allow the system to equilibrate and subsequently induce a sudden volume expansion, followed with NVT simulations. The resultant drops coexist with their vapor and are generally not spherical but elongated, have the rod-like particles tangentially aligned at the surface and an overall nematic orientation along the main axis of the drop. We find that the drop eccentricity increases with increasing molecular elongation, κ. For small κ the nematic texture in the drop is bipolar with two surface defects, or boojums, maximizing their distance along this same axis. For sufficiently high κ, the shape of the drop becomes singular in the vicinity of the defects, and there is a crossover to an almost homogeneous texture; this reflects a transition from a spheroidal to a spindle-like drop.

  14. Coalescing drops in microfluidic parking networks: A multifunctional platform for drop-based microfluidics

    PubMed Central

    Bithi, Swastika S.; Wang, William S.; Sun, Meng; Blawzdziewicz, Jerzy; Vanapalli, Siva A.

    2014-01-01

    Multiwell plate and pipette systems have revolutionized modern biological analysis; however, they have disadvantages because testing in the submicroliter range is challenging, and increasing the number of samples is expensive. We propose a new microfluidic methodology that delivers the functionality of multiwell plates and pipettes at the nanoliter scale by utilizing drop coalescence and confinement-guided breakup in microfluidic parking networks (MPNs). Highly monodisperse arrays of drops obtained using a hydrodynamic self-rectification process are parked at prescribed locations in the device, and our method allows subsequent drop manipulations such as fine-gradation dilutions, reactant addition, and fluid replacement while retaining microparticles contained in the sample. Our devices operate in a quasistatic regime where drop shapes are determined primarily by the channel geometry. Thus, the behavior of parked drops is insensitive to flow conditions. This insensitivity enables highly parallelized manipulation of drop arrays of different composition, without a need for fine-tuning the flow conditions and other system parameters. We also find that drop coalescence can be switched off above a critical capillary number, enabling individual addressability of drops in complex MPNs. The platform demonstrated here is a promising candidate for conducting multistep biological assays in a highly multiplexed manner, using thousands of submicroliter samples. PMID:25379078

  15. The reliability of in-home measures of height and weight in large cohort studies: Evidence from Add Health

    PubMed Central

    Hussey, Jon M.; Nguyen, Quynh C.; Whitsel, Eric A.; Richardson, Liana J.; Halpern, Carolyn Tucker; Gordon-Larsen, Penny; Tabor, Joyce W.; Entzel, Pamela P.; Harris, Kathleen Mullan

    2015-01-01

    Background With the emergence of obesity as a global health issue an increasing number of major demographic surveys are collecting measured anthropometric data. Yet little is known about the characteristics and reliability of these data. Objectives We evaluate the accuracy and reliability of anthropometric data collected in the home during Wave IV of the National Longitudinal Study of Adolescent to Adult Health (Add Health), compare our estimates to national standard, clinic-based estimates from the National Health and Nutrition Examination Survey (NHANES) and, using both sources, provide a detailed anthropometric description of young adults in the United States. Methods The reliability of Add Health in-home anthropometric measures was estimated from repeat examinations of a random subsample of study participants. A digit preference analysis evaluated the quality of anthropometric data recorded by field interviewers. The adjusted odds of obesity and central obesity in Add Health vs. NHANES were estimated with logistic regression. Results Short-term reliabilities of in-home measures of height, weight, waist and arm circumference—as well as derived body mass index (BMI, kg/m2)—were excellent. Prevalence of obesity (37% vs. 29%) and central obesity (47% vs. 38%) was higher in Add Health than in NHANES while socio-demographic patterns of obesity and central obesity were comparable in the two studies. Conclusions Properly trained non-medical field interviewers can collect reliable anthropometric data in a nationwide, home visit study. This national cohort of young adults in the United States faces a high risk of early-onset chronic disease and premature mortality. PMID:26146486

  16. Drop deployment system for crystal growth apparatus

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy (Inventor); Snyder, Robert S. (Inventor); Pusey, Marc L. (Inventor)

    1990-01-01

    A crystal growth apparatus is presented. It utilizes a vapor diffusion method for growing protein crystals, and particularly such an apparatus wherein a ball mixer is used to mix the fluids that form a drop within which crystals are grown. Particular novelty of this invention lies in utilizing a ball mixer to completely mix the precipitate and protein solutions prior to forming the drop. Additional novelty lies in details of construction of the vials, the fluid deployment system, and the fluid storage system of the preferred embodiment.

  17. Monitoring of interfacial tensions by drop counting

    SciTech Connect

    Duerksen, W.K.; Boring, C.P.; McLaughlin, J.F.; Harless, D.P.

    1988-11-01

    A capillary tube device was shown to provide a rapid means of measuring the interfacial tension between water and Freon-113. The measurement technique is based on counting the number of drops that form when a fixed volume of water passes through the capillary tube into the bulk Freon. The interfacial tension is predicted to be proportional to the number of drops to the negative 2/3 power. Calibration curves were obtained for Freon-water samples containing known concentrations of a surfactant. A standard Gibbs adsorption curve was obtained. 5 refs., 3 figs., 2 tabs.

  18. Transformation of the bridge during drop separation

    NASA Astrophysics Data System (ADS)

    Chashechkin, Yu. D.; Prokhorov, V. E.

    2016-05-01

    The geometry of flows during separation of pendant drops of liquids with significantly different physical properties (alcohol, water, glycerin, oil) has been studied by high-speed video recording. The dynamics of the processes involving the formation of bridges of two characteristic shapes—slightly nonuniform in thickness and with thinning of the upper and lower ends—has been investigated. It has been shown that the shape change of the separated bridge has a number of stages determined by the properties of the liquid. As a result, the bridge is transformed into a small drop—a satellite drop.

  19. The new Drop Tower catapult system

    NASA Astrophysics Data System (ADS)

    von Kampen, Peter; Kaczmarczik, Ulrich; Rath, Hans J.

    2006-07-01

    The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of the "Drop Tower" began. Since then, the eye-catching tower with a height of 146 m and its characteristic glass roof has become the emblem of the technology centre in Bremen. The Drop Tower Bremen provides a facility for experiments under conditions of weightlessness. Items are considered weightless, when they are in "free fall", i.e. moving without propulsion within the gravity field of the earth. The height of the tower limits the simple "free fall" experiment period to max. 4.74 s. With the inauguration of the catapult system in December 2004, the ZARM is entering a new dimension. This world novelty will meet scientists' demands of extending the experiment period up to 9.5 s. Since turning the first sod on May 3rd, 1988, the later installation of the catapult system has been taken into account by building the necessary chamber under the tower. The catapult system is located in a chamber 10 m below the base of the tower. This chamber is almost completely occupied by 12 huge pressure tanks. These tanks are placed around the elongation of the vacuum chamber of the drop tube. In its centre there is the pneumatic piston that accelerates the drop capsule by the pressure difference between the vacuum inside the drop tube and the pressure inside the tanks. The acceleration level is adjusted by means of a servo hydraulic breaking system controlling the piston velocity. After only a quarter of a second the drop capsule achieves its lift-off speed of 175 km/h. With this exact speed, the capsule will rise up to the top of the tower and afterwards fall down again into the deceleration unit which has been moved under the drop tube in the meantime. The scientific advantages of the doubled experiment time are obvious: during almost 10 s of high

  20. Corners, Cusps, and Pearls in Running Drops

    SciTech Connect

    Podgorski, T.; Flesselles, J.-M.; Limat, L.

    2001-07-16

    Small drops sliding down a partially wetting substrate bifurcate between different shapes depending on their capillary number Ca . At low Ca , they are delimited by a rounded, smooth contact line. At intermediate values they develop a corner at the trailing edge, the angle of which evolves from flat to 60{sup o} with increasing velocity. Further up, they exhibit a cusped tail that emits smaller drops (''pearls''). These bifurcations may be qualitatively and quantitatively recovered by considering the dynamic contact angle along the contact line.

  1. Static shape of an acoustically levitated drop with wave-drop interaction

    NASA Astrophysics Data System (ADS)

    Lee, C. P.; Anilkumar, A. V.; Wang, T. G.

    1994-11-01

    The static shape of a drop levitated and flattened by an acoustic standing wave field in air is calculated, requiring self-consistency between the drop shape and the wave. The wave is calculated for a given shape using the boundary integral method. From the resulting radiation stress on the drop surface, the shape is determined by solving the Young-Laplace equation, completing an iteration cycle. The iteration is continued until both the shape and the wave converge. Of particular interest are the shapes of large drops that sustain equilibrium, beyond a certain degree of flattening, by becoming more flattened at a decreasing sound pressure level. The predictions for flattening versus acoustic radiation stress, for drops of different sizes, compare favorably with experimental data.

  2. Cecal drop reflects the chickens' cecal microbiome, fecal drop does not.

    PubMed

    Pauwels, J; Taminiau, B; Janssens, G P J; De Beenhouwer, M; Delhalle, L; Daube, G; Coopman, F

    2015-10-01

    Microbiota in the gastro-intestinal tract are closely related to both the intestinal and overall health of the host. Experimental chickens have always been euthanized in order to identify and quantify the bacteria in cecal content. In this study, quantification and identification of the microbial populations in cecal drop, cecal content and fecal drop samples from chickens showed that cecal drop contains a bacterial community that is very similar (concerning bacterial diversity, richness and species composition) to cecal content, as opposed to the bacterial community found in fecal drop. Cecal drop analysis thus allows for longitudinal experiments on chickens' cecal bacteria. The varying results in the analysis of fecal samples question the method's reliability in reflecting the true cecal microbiota in chickens. PMID:26264624

  3. Paying for innovation. Failed strategies add to hospitals' reimbursement losses.

    PubMed

    Pallarito, K

    Hospitals across the country are struggling to balance revenue shortfalls and cost increases as the lid on government and private-payer payments closes tighter. They're also grappling with losses on failed physician and HMO investments, the expense of new medical technologies and larger-than-planned costs related to "millennium bug" cures. This is the second part of a two-part series on financial turmoil in healthcare.

  4. Drug combination adds fuel to US abortion debate.

    PubMed

    Rutter, T L

    1995-09-16

    A recent study in the US showed that abortion was achieved in 171/178 women aged 18 to 47 with pregnancies of 63 days or less duration through the administration of an intramuscular injection of methotrexate (a drug used to treat cancer) followed five to seven days later with a dose of misoprostol (used to treat ulcers). The report of this study prompted the founder of the anti-abortion group Operation Rescue to threaten the report's author with being "hunted down and tried for genocide" should abortion ever be made illegal. While the National Abortion Rights Action League urged that the procedure be judged on medical not political terms, a spokesperson for the National Right to Life Committee expressed concern for the reproductive and psychological health of women undergoing medical abortions. The Population Council is currently completing clinical trials of the regimen which employs RU-486 to achieve medical abortion and expects to file a new drug application with the US Food and Drug Administration (FDA) in 1996. The methotrexate/misoprostol combination would be much less expensive than RU-486 (approximately $10 compared to $250 at current prices), and a pharmaceutical company is currently attempting to raise the six million dollars necessary to fund the large-scale clinical trials which must precede FDA approval. While the availability of medical abortions would make the procedure much more accessible and private for women, proper counseling must be given to the women to avoid unwanted side effects and so that the women know what to expect.

  5. Drug combination adds fuel to US abortion debate.

    PubMed

    Rutter, T L

    1995-09-16

    A recent study in the US showed that abortion was achieved in 171/178 women aged 18 to 47 with pregnancies of 63 days or less duration through the administration of an intramuscular injection of methotrexate (a drug used to treat cancer) followed five to seven days later with a dose of misoprostol (used to treat ulcers). The report of this study prompted the founder of the anti-abortion group Operation Rescue to threaten the report's author with being "hunted down and tried for genocide" should abortion ever be made illegal. While the National Abortion Rights Action League urged that the procedure be judged on medical not political terms, a spokesperson for the National Right to Life Committee expressed concern for the reproductive and psychological health of women undergoing medical abortions. The Population Council is currently completing clinical trials of the regimen which employs RU-486 to achieve medical abortion and expects to file a new drug application with the US Food and Drug Administration (FDA) in 1996. The methotrexate/misoprostol combination would be much less expensive than RU-486 (approximately $10 compared to $250 at current prices), and a pharmaceutical company is currently attempting to raise the six million dollars necessary to fund the large-scale clinical trials which must precede FDA approval. While the availability of medical abortions would make the procedure much more accessible and private for women, proper counseling must be given to the women to avoid unwanted side effects and so that the women know what to expect. PMID:7549678

  6. Best Measuring Time for a Millikan Oil Drop Experiment

    ERIC Educational Resources Information Center

    Kapusta, J. I.

    1975-01-01

    In a Millikan oil drop experiment, there is a best measuring time for observing the drop, due to Brownian motion of the drop and the experimenter's reaction time. Derives an equation for the relative error in the measurement of the drop's excess charge, and obtains a formula for the best measuring time. (Author/MLH)

  7. 14 CFR 23.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be...

  8. 14 CFR 23.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be...

  9. 14 CFR 23.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be...

  10. 14 CFR 23.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reserve energy absorption drop test. 23.727... Construction Landing Gear § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in § 23.723(b) is shown by free drop tests, the drop height may not be...

  11. Safety and Efficacy of Phenylephrine Nasal Drops in Bronchiolitis

    PubMed Central

    Soleimani, Gholamreza; Akbarpour, Marzieh; Mohammadi, Mehdi

    2014-01-01

    Objective: Bronchiolitis is a common lower respiratory tract infection in the first year of life. In this disease upper respiratory tract infection is associated with nasal congestion, respiratory distress and hypoxia. We studied the effect of phenylephrine drops as a decongestant in treatment of light and moderately severe cases of acute bronchiolitis. Methods: This is a double blind randomized trial involving 100 children aged 4 weeks to 12 months. The patients were divided into two groups, the first group received 0.1 ml phenylephrine 0.5% and the second group 0.1 ml sodium chloride (NaCl) 0.9% as placebo in both nostrils. Respiratory rate, heart rate, O2 saturation, dyspnea, retractions and wheezing were assessed before and 30 minutes after medication. Findings: After medication, O2 saturation and respiratory muscles retractions in the phenylephrine group were significantly better than those of the placebo group (P=0.004 and P=0.002, respectively). In the phenylephrine group, O2 saturation, retractions and wheezing were also significantly better before than those after medication (P=0.003 and P<0.0001 respectively). In the placebo group no significant difference before and after intervention was observed. Conclusion: Phenylephrine as a topical decongestant is an inexpensive, easily available and suitable means in the treatment of mild to moderately severe bronchiolitis. PMID:25793067

  12. Predicting Students Drop Out: A Case Study

    ERIC Educational Resources Information Center

    Dekker, Gerben W.; Pechenizkiy, Mykola; Vleeshouwers, Jan M.

    2009-01-01

    The monitoring and support of university freshmen is considered very important at many educational institutions. In this paper we describe the results of the educational data mining case study aimed at predicting the Electrical Engineering (EE) students drop out after the first semester of their studies or even before they enter the study program…

  13. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or lower are considered... material having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...: (i) Where the substances to be carried have a specific gravity not exceeding 1.2, the drop...

  14. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or lower are considered... material having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...: (i) Where the substances to be carried have a specific gravity not exceeding 1.2, the drop...

  15. 49 CFR 178.965 - Drop test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... Water/anti-freeze solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or... having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...: (i) Where the substances to be carried have a specific gravity not exceeding 1.2, the drop...

  16. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or lower are considered... material having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...: (i) Where the substances to be carried have a specific gravity not exceeding 1.2, the drop...

  17. 49 CFR 178.965 - Drop test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... Water/anti-freeze solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or... having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...: (i) Where the substances to be carried have a specific gravity not exceeding 1.2, the drop...

  18. 49 CFR 178.965 - Drop test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... Water/anti-freeze solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or... having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...: (i) Where the substances to be carried have a specific gravity not exceeding 1.2, the drop...

  19. Viscosity Measurement Using Drop Coalescence in Microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin C.; Maxwell, Daniel; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We present in here validation studies of a new method for application in microgravity environment which measures the viscosity of highly viscous undercooled liquids using drop coalescence. The method has the advantage of avoiding heterogeneous nucleation at container walls caused by crystallization of undercooled liquids during processing. Homogeneous nucleation can also be avoided due to the rapidity of the measurement using this method. The technique relies on measurements from experiments conducted in near zero gravity environment as well as highly accurate analytical formulation for the coalescence process. The viscosity of the liquid is determined by allowing the computed free surface shape relaxation time to be adjusted in response to the measured free surface velocity for two coalescing drops. Results are presented from two sets of validation experiments for the method which were conducted on board aircraft flying parabolic trajectories. In these tests the viscosity of a highly viscous liquid, namely glycerin, was determined at different temperatures using the drop coalescence method described in here. The experiments measured the free surface velocity of two glycerin drops coalescing under the action of surface tension alone in low gravity environment using high speed photography. The liquid viscosity was determined by adjusting the computed free surface velocity values to the measured experimental data. The results of these experiments were found to agree reasonably well with the known viscosity for the test liquid used.

  20. Reasons Students with Disabilities Drop Out.

    ERIC Educational Resources Information Center

    Bounds, M. Betsy; Gould, Albert

    2000-01-01

    Students with disabilities who dropped out of high school (n=60) cited more school factors (lack of academic success, suspension, peer problems) than personal factors (motivation, pregnancy, family problems) influencing dropout. Three-fourths suggested improved communication with teachers, flexible scheduling, and more relevance would decrease…

  1. Naphazoline nasal drops intoxication in children.

    PubMed

    Vitezić, D; Rozmanić, V; Franulović, J; Ahel, V; Matesić, D

    1994-03-01

    Naphazoline, a sympathomimetic and an imidazoline derivative, is used as 0.05-0.1% solution for local decongestion of the nasal and ocular mucosa. In excessive dosage, or if ingested by accident, may cause depression of the central nervous system (disturbances of consciousness progressing to coma), hypothermia, bradycardia and sweating. These naphazoline effects are particularly strongly pronounced in children. Anglo-Saxon pharmacotherapy excludes the application of naphazoline nasal drops in children younger than six years, whereas the Croatian pharmacotherapeutic literature (and practice) allows its use even in infancy. At the Kantrida Paediatric Clinic, Clinical Hospital Centre in Rijeka, 11 children with signs of intoxication with naphazoline nasal drops were hospitalized from 1990 to 1992. The symptoms pertaining to the central nervous system i.e. disturbances of consciousness in the form of somnolence were clearly marked in all children. Some children developed skin pallor, bradycardia, bradypnoea and hypothermia. Resolution occurred within 24 hours and the findings returned to normal values. Clinical picture followed by rapid resolution and normal findings, with a personal history of drug taking, is a safe indication for diagnosis. There are several reasons to account for intoxication (drops difficult to use with children, containers inadequate for proper dosage), but the major factor is the age of the patient--all hospitalized children were younger than six years. It is pointed out that administration of naphazoline drops at an early age is not advisable.

  2. Allergic Contact Dermatitis to Eye Drops

    PubMed Central

    Bhat, Yasmeen Jabeen; Zeerak, Sumaya; Hassan, Iffat

    2015-01-01

    Allergic contact dermatitis (ACD) occurs due to a milieu of allergens and involves different anatomical sites, including eyelids, and periorbital areas. Topically applied ophthalmic drugs are a potential cause of ACD of the periorbital region. Here we describe the report of a patient who developed ACD to eye drop preparations. PMID:26677304

  3. Understanding the Early Regime of Drop Spreading.

    PubMed

    Mitra, Surjyasish; Mitra, Sushanta K

    2016-09-01

    We present experimental data to characterize the spreading of a liquid drop on a substrate kept submerged in another liquid medium. They reveal that drop spreading always begins in a regime dominated by drop viscosity where the spreading radius scales as r ∼ t with a nonuniversal prefactor. This initial viscous regime either lasts in its entirety or switches to an intermediate inertial regime where the spreading radius grows with time following the well-established inertial scaling of r ∼ t(1/2). This latter case depends on the characteristic viscous length scale of the problem. In either case, the final stage of spreading, close to equilibrium, follows Tanner's law. Further experiments performed on the same substrate kept in ambient air reveal a similar trend, albeit with limited spatiotemporal resolution, showing the universal nature of the spreading behavior. It is also found that, for early times of spreading, the process is similar to coalescence of two freely suspended liquid drops, making the presence of the substrate and consequently the three-phase contact line insignificant. PMID:27513708

  4. 49 CFR 178.810 - Drop test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or lower are considered... material having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...: (i) Where the substances to be carried have a specific gravity not exceeding 1.2, the drop...

  5. 49 CFR 178.965 - Drop test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... Water/anti-freeze solutions with a minimum specific gravity of 0.95 for testing at −18 °C (0 °F) or... having essentially the same physical characteristics. (3) The specific gravity and viscosity of a...: (i) Where the substances to be carried have a specific gravity not exceeding 1.2, the drop...

  6. Drop-Out Challenges: Pathways to Success

    ERIC Educational Resources Information Center

    Conner, Evguenia; McKee, Jan

    2008-01-01

    This article describes an action research at an alternative high school which explores drop-out prevention strategies with first-year students. Student retention is extremely challenging for alternative schools. Because their mission is to provide a second chance to students who could not succeed in a regular setting, those schools regularly must…

  7. Orion Parachute Drop Test, July 18

    NASA Video Gallery

    A C-17 plane dropped a test version of Orion from an altitude of 25,000 feet above the U.S. Army Yuma Proving Ground in southwestern Arizona on July 18, 2012. This test was the second to use an Ori...

  8. Acoustic forcing of a liquid drop

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.

    1992-01-01

    The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.

  9. Inverted drop testing and neck injury potential.

    PubMed

    Forrest, Stephen; Herbst, Brian; Meyer, Steve; Sances, Anthony; Kumaresan, Srirangam

    2003-01-01

    Inverted drop testing of vehicles is a methodology that has long been used by the automotive industry and researchers to test roof integrity and is currently being considered by the National Highway Traffic Safety Administration as a roof strength test. In 1990 a study was reported which involved 8 dolly rollover tests and 5 inverted drop tests. These studies were conducted with restrained Hybrid III instrumented Anthropometric Test Devices (ATD) in production and rollcaged vehicles to investigate the relationship between roof strength and occupant injury potential. The 5 inverted drop tests included in the study provided a methodology producing "repeatable roof impacts" exposing the ATDs to the similar impact environment as those seen in the dolly rollover tests. Authors have conducted two inverted drop test sets as part of an investigation of two real world rollover accidents. Hybrid-III ATD's were used in each test with instrumented head and necks. Both test sets confirm that reduction of roof intrusion and increased headroom can significantly enhance occupant protection. In both test pairs, the neck force of the dummy in the vehicle with less crush and more survival space was significantly lower. Reduced roof crush and dynamic preservation of the occupant survival space resulted in only minor occupant contact and minimal occupant loading, establishing a clear causal relationship between roof crush and neck injuries.

  10. Containerless undercooling and solidification in drop tubes

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Robinson, M. B.; Rathz, T. J.

    1981-01-01

    A containerless low-gravity environment, produced within a 32 m drop tube apparatus, has been used to undercool and solidify metals, alloys or glasses by eliminating crucible induced nucleation processes. Niobium droplets with diameters in the range of 2 to 5 mm have been undercooled by 525 K which corresponds to the maximum undercooling reported by Turnbull and others on fine dispersions of low melting point metals. Solidification at large undercooling resulted in single crystalline spheres with the formation of interdendritic shrinkage channels on the sample surface rather than interior shrinkage cavities. The grain refinement as observed for Ni samples undercooled and solidified in fused silica crucibles does not occur in free-falling drops of Nb. A calculated solidification speed of undercooled Nb is compared to Ni. A solidification speed of 320 m/s is found for the Nb drops. This solidification speed is greater than or comparable to the solidification speeds calculated in splat cooled samples. Thus, a drop tube apparatus can be useful in the preparation and study of high temperature metastable compounds or alloys in bulk form.

  11. A drop theorem without vector topology

    NASA Astrophysics Data System (ADS)

    Wong, Chi-Wing

    2007-05-01

    Danes' drop theorem is extended to bornological vector spaces. An immediate application is to establish Ekeland-type variational principle and its equivalence, Caristi fixed point theorem, in bornological vector spaces. Meanwhile, since every locally convex space becomes a convex bornological vector space when equipped with the canonical von Neumann bornology, Qiu's generalization of Danes' work to locally convex spaces is recovered.

  12. Sessile drop deformations under an impinging jet

    NASA Astrophysics Data System (ADS)

    Feng, James Q.

    2015-08-01

    The problem of steady axisymmetric deformations of a liquid sessile drop on a flat solid surface under an impinging gas jet is of interest for understanding the fundamental behavior of free surface flows as well as for establishing the theoretical basis in process design for the Aerosol direct-write technology. It is studied here numerically using a Galerkin finite-element method, by computing solutions of Navier-Stokes equations. For effective material deposition in Aerosol printing, the desired value of Reynolds number for the laminar gas jet is found to be greater than ~500. The sessile drop can be severely deformed by an impinging gas jet when the capillary number is approaching a critical value beyond which no steady axisymmetric free surface deformation can exist. Solution branches in a parameter space show turning points at the critical values of capillary number, which typically indicate the onset of free surface shape instability. By tracking solution branches around turning points with an arc-length continuation algorithm, critical values of capillary number can be accurately determined. Near turning points, all the free surface profiles in various parameter settings take a common shape with a dimple at the center and bulge near the contact line. An empirical formula for the critical capillary number for sessile drops with contact angle is derived for typical ranges of jet Reynolds number and relative drop sizes especially pertinent to Aerosol printing.

  13. Utah Drop-Out Drug Use Questionnaire.

    ERIC Educational Resources Information Center

    Governor's Citizen Advisory Committee on Drugs, Salt Lake City, UT.

    This questionnaire assesses drug use practices in high school drop-outs. The 79 items (multiple choice or apply/not apply) are concerned with demographic data and use, use history, reasons for use/nonuse, attitudes toward drugs, availability of drugs, and drug information with respect to narcotics, amphetamines, LSD, Marijuana, and barbiturates.…

  14. Sliding viscoelastic drops on slippery surfaces

    NASA Astrophysics Data System (ADS)

    Xu, H.; Clarke, A.; Rothstein, J. P.; Poole, R. J.

    2016-06-01

    We study the sliding of drops of constant-viscosity dilute elastic liquids (Boger fluids) on various surfaces caused by sudden surface inclination. For smooth or roughened hydrophilic surfaces, such as glass or acrylic, there is essentially no difference between these elastic liquids and a Newtonian comparator fluid (with identical shear viscosity, surface tension, and static contact angle). In contrast for embossed polytetrafluoroethylene superhydrophobic surfaces, profound differences are observed: the elastic drops slide at a significantly reduced rate and complex branch-like patterns are left on the surface by the drop's wake including, on various scales, beads-on-a-string like phenomena. Microscopy images indicate that the strong viscoelastic effect is caused by stretching filaments of fluid from isolated islands, residing at pinning sites on the surface pillars, of the order ˜30 μm in size. On this scale, the local strain rates are sufficient to extend the polymer chains, locally increasing the extensional viscosity of the solution, retarding the drop and leaving behind striking branch-like structures on much larger scales.

  15. Instabilities of volatile films and drops

    NASA Astrophysics Data System (ADS)

    Murisic, Nebojsa

    2008-12-01

    We report on instabilities during spreading of volatile liquids, with emphasis on the novel instability observed when isopropyl alcohol (IPA) is deposited on a monocrystalline silicon (Si) wafer. This instability is characterized by emission of drops ahead of the expanding front, with each drop followed by smaller, satellite droplets, forming the structures which we nickname "octopi" due to their appearance. A less volatile liquid, or a substrate of larger heat conductivity, suppress this instability. In addition, we examine the spreading of drops of water (DIW)-IPA mixtures on both Si wafers and plain glass slides, and describe the variety of contact line instabilities which appear. We find that the decrease of IPA concentration in mixtures leads to transition from "octopi" to mushroom-like instabilities. Through manipulation of our experimental set up, we also find that the mechanism responsible for these instabilities appears to be mostly insensitive to both the external application of convection to the gas phase, and the doping of the gas phase with vapor in order to create the saturated environment. In order to better understand the "octopi" instability, we develop a theoretical model for evaporation of a pure liquid drop on a thermally conductive solid substrate. This model includes all relevant physical effects, including evaporation, thermal conductivity in both liquid and solid, (thermocapillary) Marangoni effect, vapor recoil, disjoining pressure, and gravity. The crucial ingredient in this problem is the evaporation model, since it influences both the motion of the drop contact line, and the temperature profiles along the liquid-solid and liquid-gas interfaces. We consider two evaporation models: the equilibrium "lens" model and the non-equilibrium one-sided (NEOS) model. Along with the assumption of equilibrium at the liquid-gas interface, the "lens" model also assumes that evaporation proceeds in a (vapor) diffusion-limited regime, therefore bringing

  16. A dramatic drop in blood pressure following prehospital GTN administration.

    PubMed

    Boyle, Malcolm J

    2007-03-01

    A male in his sixties with no history of cardiac chest pain awoke with chest pain following an afternoon sleep. The patient did not self medicate. The patient's observations were within normal limits, he was administered oxygen via a face mask and glyceryl trinitrate (GTN). Several minutes after the GTN the patient experienced a sudden drop in blood pressure and heart rate, this was rectified by atropine sulphate and a fluid challenge. There was no further deterioration in the patient's condition during transport to hospital. There are very few documented case like this in the prehospital scientific literature. The cause appears to be the Bezold-Jarish reflex, stimulation of the ventricular walls which in turn decreases sympathetic outflow from the vasomotor centre. Prehospital care providers who are managing any patient with a syncopal episode that fails to recover within a reasonable time frame should consider the Bezold-Jarisch reflex as the cause and manage the patient accordingly.

  17. Annual Occurrence of Meteorite-Dropping Fireballs

    NASA Astrophysics Data System (ADS)

    Konovalova, Natalia; Jopek, Tadeusz J.

    2016-07-01

    The event of Chelyabinsk meteorite has brought about change the earlier opinion about limits of the sizes of potentially dangerous asteroidal fragments that crossed the Earth's orbit and irrupted in the Earth's atmosphere making the brightest fireball. The observations of the fireballs by fireball networks allows to get the more precise data on atmospheric trajectories and coordinates of predicted landing place of the meteorite. For the reason to search the periods of fireball activity is built the annual distribution of the numbers of meteorites with the known fall dates and of the meteorite-dropping fireballs versus the solar longitude. The resulting profile of the annual activity of meteorites and meteorite-dropping fireballs shows several periods of increased activity in the course of the year. The analysis of the atmospheric trajectories and physical properties of sporadic meteorite-dropping fireballs observed in Tajikistan by instrumental methods in the summer‒autumn periods of increased fireballs activity has been made. As a result the structural strength, the bulk density and terminal mass of the studied fireballs that can survive in the Earth atmosphere and became meteorites was obtained. From the photographic IAU MDC_2003 meteor database and published sources based on the orbit proximity as determined by D-criterion of Southworth and Hawkins the fireballs that could be the members of group of meteorite-dropping fireballs, was found. Among the near Earth's objects (NEOs) the searching for parent bodies for meteorite-dropping fireballs was made and the evolution of orbits of these objects in the past on a long interval of time was investigated.

  18. Simulations of Evaporating Multicomponent Fuel Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Le Clercq, Patrick

    2005-01-01

    A paper presents additional information on the subject matter of Model of Mixing Layer With Multicomponent Evaporating Drops (NPO-30505), NASA Tech Briefs, Vol. 28, No. 3 (March 2004), page 55. To recapitulate: A mathematical model of a three-dimensional mixing layer laden with evaporating fuel drops composed of many chemical species has been derived. The model is used to perform direct numerical simulations in continuing studies directed toward understanding the behaviors of sprays of liquid petroleum fuels in furnaces, industrial combustors, and engines. The model includes governing equations formulated in an Eulerian and a Lagrangian reference frame for the gas and drops, respectively, and incorporates a concept of continuous thermodynamics, according to which the chemical composition of a fuel is described by use of a distribution function. In this investigation, the distribution function depends solely on the species molar weight. The present paper reiterates the description of the model and discusses further in-depth analysis of the previous results as well as results of additional numerical simulations assessing the effect of the mass loading. The paper reiterates the conclusions reported in the cited previous article, and states some new conclusions. Some new conclusions are: 1. The slower evaporation and the evaporation/ condensation process for multicomponent-fuel drops resulted in a reduced drop-size polydispersity compared to their single-component counterpart. 2. The inhomogeneity in the spatial distribution of the species in the layer increases with the initial mass loading. 3. As evaporation becomes faster, the assumed invariant form of the molecular- weight distribution during evaporation becomes inaccurate.

  19. Ototoxic Medications (Medication Effects)

    MedlinePlus

    ... Toggle navigation Careers Certification Publications Events Advocacy Continuing Education Practice Management Research Home / Information for the Public / Hearing and Balance Ototoxic Medications ( ...

  20. Embedding objects during 3D printing to add new functionalities.

    PubMed

    Yuen, Po Ki

    2016-07-01

    A novel method for integrating and embedding objects to add new functionalities during 3D printing based on fused deposition modeling (FDM) (also known as fused filament fabrication or molten polymer deposition) is presented. Unlike typical 3D printing, FDM-based 3D printing could allow objects to be integrated and embedded during 3D printing and the FDM-based 3D printed devices do not typically require any post-processing and finishing. Thus, various fluidic devices with integrated glass cover slips or polystyrene films with and without an embedded porous membrane, and optical devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber were 3D printed to demonstrate the versatility of the FDM-based 3D printing and embedding method. Fluid perfusion flow experiments with a blue colored food dye solution were used to visually confirm fluid flow and/or fluid perfusion through the embedded porous membrane in the 3D printed fluidic devices. Similar to typical 3D printed devices, FDM-based 3D printed devices are translucent at best unless post-polishing is performed and optical transparency is highly desirable in any fluidic devices; integrated glass cover slips or polystyrene films would provide a perfect optical transparent window for observation and visualization. In addition, they also provide a compatible flat smooth surface for biological or biomolecular applications. The 3D printed fluidic devices with an embedded porous membrane are applicable to biological or chemical applications such as continuous perfusion cell culture or biocatalytic synthesis but without the need for any post-device assembly and finishing. The 3D printed devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber would have applications in display, illumination, or optical applications. Furthermore, the FDM-based 3D printing and embedding method could also be utilized to print casting molds with an integrated glass bottom for polydimethylsiloxane (PDMS) device replication

  1. Embedding objects during 3D printing to add new functionalities.

    PubMed

    Yuen, Po Ki

    2016-07-01

    A novel method for integrating and embedding objects to add new functionalities during 3D printing based on fused deposition modeling (FDM) (also known as fused filament fabrication or molten polymer deposition) is presented. Unlike typical 3D printing, FDM-based 3D printing could allow objects to be integrated and embedded during 3D printing and the FDM-based 3D printed devices do not typically require any post-processing and finishing. Thus, various fluidic devices with integrated glass cover slips or polystyrene films with and without an embedded porous membrane, and optical devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber were 3D printed to demonstrate the versatility of the FDM-based 3D printing and embedding method. Fluid perfusion flow experiments with a blue colored food dye solution were used to visually confirm fluid flow and/or fluid perfusion through the embedded porous membrane in the 3D printed fluidic devices. Similar to typical 3D printed devices, FDM-based 3D printed devices are translucent at best unless post-polishing is performed and optical transparency is highly desirable in any fluidic devices; integrated glass cover slips or polystyrene films would provide a perfect optical transparent window for observation and visualization. In addition, they also provide a compatible flat smooth surface for biological or biomolecular applications. The 3D printed fluidic devices with an embedded porous membrane are applicable to biological or chemical applications such as continuous perfusion cell culture or biocatalytic synthesis but without the need for any post-device assembly and finishing. The 3D printed devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber would have applications in display, illumination, or optical applications. Furthermore, the FDM-based 3D printing and embedding method could also be utilized to print casting molds with an integrated glass bottom for polydimethylsiloxane (PDMS) device replication

  2. The decision to add a second hospital-based EMS helicopter.

    PubMed

    Friedman, R; Leicht, M J; Brotman, S

    1989-11-01

    An analysis of the first seven years of performance of our hospital-based emergency medical services (EMS) helicopter was conducted to evaluate the possible need for a second aircraft. A survey of seven hospitals currently operating two or more helicopters resulted in a consensus that one helicopter can effectively perform only 70 to 90 flights per month. The number of requests for our helicopter service has increased 148% from 610 to 1,512 in seven years while the number of completed missions has increased only 92% from 486 (40.5/month) to 935 (78/month). Requests denied due to inclement weather (265 in 1988) cannot be captured with a second visual-flight-rated (VFR) EMS helicopter; however, those missed due to maintenance requirements of the helicopter and overlapping requests (232 in 1988) can be captured. The need for a second aircraft exists when the number of requests for the service grows while the number of captured flights plateaus. Our data and industry survey suggests this will occur at 75 captured flights per month. Affordability and continued overall growth of trauma and other critical care referrals to the base hospital(s) is mandatory. This study provides a model for hospital-based EMS helicopter operators to apply to the decision whether to add a second aircraft. PMID:10296622

  3. Electrohydrodynamic flow and chaotic mixing inside drops

    NASA Astrophysics Data System (ADS)

    Xu, Xiumei

    Electrohyodynamics, proposed by G. I. Taylor (1966), is the study of fluid motion under the influence of electric fields. In this work, we investigate theoretically and experimentally the electrohydrodynamic flow field inside a dielectric liquid drop and its application in driving chaotic mixing. Previous works on the electrohydrodynamic flows are mainly restricted to neutrally buoyant drops. Since settling drops are expected to occur more commonly in applications, in the first part of this thesis we extend Taylor's theory to deal with translating drops. Both shape distortion and charge convection, when coupled with an asymmetric velocity profile, will produce a net drag and a shift in the settling speed. Corrections to the settling velocity from both contributions are calculated to the first order. Experiments are performed using a PMM/castor oil system, and are in qualitative agreement with the theory: the deformations and the change in settling velocity are all proportional to E2, as predicted, and the settling speed shows the correct trends with drop size. In the second part of this thesis, we investigate three dimensional chaotic mixing driven by the electrohydrodynamic flows. A spatially uniform electric field is periodically switched through an angle, which is equivalent to switching the symmetry axis of the Taylor circulation back and forth, chaotic mixing is therefore generated inside a drop. Mixing efficiency is studied numerically by tracing trajectories of Lagrangian particles. Our calculations of the mixed volume fraction and Lyapunov exponents give optimal mixing conditions. Mixing experiments for a switching angle of 0.5pi are performed using a silicone oil/castor oil system, and show excellent agreement with the theory. In the third part of this thesis, we discuss effects of finite charge relaxation and charge convection on the flow field in both DC and AC electric fields. A pole-to-equator convection, acting together with a slow charge relaxation

  4. Head-on collision of drops: A numerical investigation

    NASA Technical Reports Server (NTRS)

    Nobari, M. R.; Jan, Y.-J.; Tryggvason, G.

    1993-01-01

    The head-on collision of equal sized drops is studied by full numerical simulations. The Navier-Stokes equations are solved for fluid motion both inside and outside the drops using a front tracking/finite difference technique. The drops are accelerated toward each other by a body force that is turned off before the drops collide. When the drops collide, the fluid between them is pushed outward leaving a thin later bounded by the drop surface. This layer gets progressively thinner as the drops continue to deform and in several of the calculations this double layer is artificially removed once it is thin enough, thus modeling rupture. If no rupture takes place, the drops always rebound, but if the film is ruptured the drops may coalesce permanently or coalesce temporarily and then split again.

  5. Liquid drops on vertical and inclined surfaces; I. An experimental study of drop geometry.

    PubMed

    ElSherbini, A I; Jacobi, A M

    2004-05-15

    Experiments have been conducted to investigate the geometric parameters necessary to describe the shapes of liquid drops on vertical and inclined plane surfaces. Two liquids and eight surfaces have been used to study contact angles, contact lines, profiles, and volumes of drops of different sizes for a range of surface conditions. The results show the contact-angle variation along the circumference of a drop to be best fit by a third-degree polynomial in the azimuthal angle. This contact-angle function is expressed in terms of the maximum and minimum contact angles of the drop, which are determined for various conditions. The maximum contact angle, thetamax, is approximately equal to the advancing contact angle, thetaA, of the liquid on the surface. As the Bond number, Bo, increases from 0 to a maximum, the minimum contact angle, thetamin, decreases almost linearly from the advancing to the receding angle. A general relation is found between thetamin/thetaA and Bo for different liquid-surface combinations. The drop contour can be described by an ellipse, with the aspect ratio increasing with Bo. These experimental results are valuable in modeling drop shape, as presented in Part II of this work.

  6. Dropping In a Microgravity Environment (DIME) Contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Students from Sycamore High School in Cincinnati, Ohio (girls), and the COSI Academy, Columbus, Ohio (boys), participated. This image is from a digital still camera; higher resolution is not available.

  7. DROP: Durable Reconnaissance and Observation Platform

    NASA Technical Reports Server (NTRS)

    Parness, Aaron; McKenzie, Clifford F.

    2012-01-01

    Robots have been a valuable tool for providing a remote presence in areas that are either inaccessible or too dangerous for humans. Having a robot with a high degree of adaptability becomes crucial during such events. The adaptability that comes from high mobility and high durability greatly increases the potential uses of a robot in these situations, and therefore greatly increases its usefulness to humans. DROP is a lightweight robot that addresses these challenges with the capability to survive large impacts, carry a usable payload, and traverse a variety of surfaces, including climbing vertical surfaces like wood, stone, and concrete. The platform is crash-proof, allowing it to be deployed in ways including being dropped from an unmanned aerial vehicle or thrown from a large MSL-class (Mars Science Laboratory) rover.

  8. Control of Drop Motion by Mechanical Vibrations

    NASA Astrophysics Data System (ADS)

    Bestehorn, Michael

    2014-11-01

    Since the first experimental observations of Michael Faraday in 1831 it is known that a vibrating liquid may show an instability of its flat free surface with respect to oscillating regular surface patterns. We study thin liquid films on a horizontal substrate in the long wave approximation. The films are parametrically excited by mechanical horizontal or inclined oscillations. Inertia effects are taken into account and the standard thin film formulation is extended by a second equation for the vertically averaged mass flux. The films can be additionally unstable by Van der Waals forces on a partially wetting substrate, leading to the formation of drops. These drops can be manipulated by the vibrations to move in a desired direction. Linear results based on a damped complex valued Mathieu equation as well as fully nonlinear results using a reduced model will be presented, for more details see.

  9. Surface-controlled drop oscillations in space

    NASA Astrophysics Data System (ADS)

    Holt, R. Glynn

    2001-05-01

    A series of experiments probing the effects of surfactants was performed by Bob Apfel and his research group in the 1990s. Several laboratory experiments were carried out in uni-axial acoustic levitators. Two experiments were carried out in a triple-axis levitator called the Drop Physics Module, which was carried on Space Shuttle Columbia as part of the First and Second United States Microgravity Laboratory missions. Liquid drops containing aqueous solutions of soluble surfactants were acoustically positioned and deformed (and in some cases rotated) in order to excite shape mode oscillations. The results of these experiments allowed the inference of surface rheological properties (Gibb's elasticity, surface viscosity coefficients) as functions of surfactant type and concentration. The highlights of this effort will be presented in a semi-technical fashion. [Work supported by NASA.

  10. Measuring the force of drag on air sheared sessile drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Amirfazli, Alidad

    2012-11-01

    To blow a drop along or off of a surface (i.e. to shed the drop), the drag force on the drop (based on flow conditions, drop shape, and fluid properties) must overcome the adhesion force between the drop and the surface (based on surface tension, drop shape, and contact angle). While the shedding of sessile drops by shear flow has been studied [Milne, A. J. B. & Amirfazli, A. Langmuir 25, 14155 (2009).], no independent measurements of the drag or adhesion forces have been made. Likewise, analytic predictions are limited to hemispherical drops and low air velocities. We present, therefore, measurements of the drag force on sessile drops at air velocities up to the point of incipient motion. Measurements were made using a modified floating element shear sensor in a laminar low speed wind tunnel to record drag force over the surface with the drop absent, and over the combined system of the surface and drop partially immersed in the boundary layer. Surfaces of different wettabilities were used to study the effects of drop shape and contact angles, with drop volume ranged between approximately 10 and 100 microlitres. The drag force for incipient motion (which by definition equals the maximum of the adhesion force) is compared to simplified models for drop adhesion such as that of Furmidge

  11. Low-Pressure-Drop Shutoff Valve

    NASA Technical Reports Server (NTRS)

    Thornborrow, John

    1994-01-01

    Flapper valve remains open under normal flow conditions but closes upon sudden increases to high rate of flow and remains closed until reset. Valve is fluid/mechanical analog of electrical fuse or circuit breaker. Low-pressure-drop shutoff valve contains flapper machined from cylindrical surface. During normal flow conditions, flapper presents small cross section to flow. (Useful in stopping loss of fluid through leaks in cooling systems.)

  12. Impact of water drops on small targets

    NASA Astrophysics Data System (ADS)

    Rozhkov, A.; Prunet-Foch, B.; Vignes-Adler, M.

    2002-10-01

    The collision of water drops against small targets was studied experimentally by means of a high-speed photography technique. The drop impact velocity was about 3.5 m/s. Drop diameters were in the range of 2.8-4.0 mm. The target was a stainless steel disk of 3.9 mm diameter. The drop spread beyond the target like a central cap surrounded by a thin, slightly conical lamella bounded by a thicker rim. By mounting a small obstacle near the target, surface-tension driven Mach waves in the flowing lamella were generated, which are formally equivalent to the familiar compressibility driven Mach waves in gas dynamics. From the measurement of the Mach angle, the values of some flow parameters could be obtained as functions of time, which provided insight into the flow structure. The liquid flowed from the central cap to the liquid rim through the thin lamella at constant momentum flux. At a certain stage of the process, most of the liquid accumulated in the rim and the internal part of the lamella became metastable. In this situation, a rupture wave propagating through the metastable internal part of the lamella caused the rim to retract while forming outwardly directed secondary jets. The jets disintegrated into secondary droplets due to the Savart-Plateau-Rayleigh instability. Prior to the end of the retraction, an internal circular wave of rupture was formed. It originated at the target and then it propagated to meet the retracting rim. Their meeting resulted in a crown of tiny droplets. A theoretical analysis of the ejection process is proposed.

  13. Tendon transfers for the drop foot.

    PubMed

    Schweitzer, Karl M; Jones, Carroll P

    2014-03-01

    The paralytic drop foot represents a challenging problem for even the most experienced orthopedic surgeon. Careful patient selection, thorough preoperative examination and planning, and application of tendon transfer biomechanical and physiologic principles outlined in this article can lead to successful results, either through a posterior tibialis tendon transfer, Bridle transfer, or variations on these procedures. Achilles lengthening or gastrocnemius recession may also be needed at the time of tendon transfer. PMID:24548510

  14. Modeling Evaporation of Drops of Different Kerosenes

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2007-01-01

    A mathematical model describes the evaporation of drops of a hydrocarbon liquid composed of as many as hundreds of chemical species. The model is intended especially for application to any of several types of kerosenes commonly used as fuels. The concept of continuous thermodynamics, according to which the chemical composition of the evaporating multicomponent liquid is described by use of a probability distribution function (PDF). However, the present model is more generally applicable than is its immediate predecessor.

  15. Pollination Drop in Juniperus communis: Response to Deposited Material

    PubMed Central

    Mugnaini, Serena; Nepi, Massimo; Guarnieri, Massimo; Piotto, Beti; Pacini, Ettore

    2007-01-01

    Background and Aims The pollination drop is a liquid secretion produced by the ovule and exposed outside the micropyle. In many gymnosperms, pollen lands on the surface of the pollination drop, rehydrates and enters the ovule as the drop retracts. The objective of this work was to study the formation of the pollination drop in Juniperus communis, its carbohydrate composition and the response to deposition of conspecific pollen, foreign pollen and other particulate material, in an attempt to clarify the mechanism of pollination drop retraction. Method Branches with female cones close to pollination drop secretion were collected. On the first day of pollination drop exposure, an eyelash mounted on a wooden stick with paraffin was used to collect pollen or silica gel particles, which were then deposited by contact with the drop. Volume changes in pollination drops were measured by using a stereomicroscope with a micrometer eyepiece 3 h after deposition. The volume of non-pollinated control drops was also recorded. On the first day of secretion, drops were also collected for sugar analysis by high-performance liquid chromatography. Key Results The pollination drop persisted for about 12 d if not pollinated, and formed again after removal for up to four consecutive days. After pollination with viable conspecific pollen, the drop retracted quickly and did not form again. Partial withdrawal occurred after deposition of other biological and non-biological material. Fructose was the dominant sugar; glucose was also present but at a much lower percentage. Conclusions Sugar analysis confirmed the general trend of fructose dominance in gymnosperm pollination drops. Complete pollination drop withdrawal appears to be triggered by a biochemical mechanism resulting from interaction between pollen and drop constituents. The results of particle deposition suggest the existence of a non-specific, particle-size-dependent mechanism that induces partial pollination drop withdrawal

  16. Viscosity Measurement using Drop Coalescence in Microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.; Ethridge, Edwin; Maxwell, Daniel

    1999-01-01

    We present in here details of a new method, using drop coalescence, for application in microgravity environment for determining the viscosity of highly viscous undercooled liquids. The method has the advantage of eliminating heterogeneous nucleation at container walls caused by crystallization of undercooled liquids during processing. Also, due to the rapidity of the measurement, homogeneous nucleation would be avoided. The technique relies on both a highly accurate solution to the Navier-Stokes equations as well as on data gathered from experiments conducted in near zero gravity environment. The liquid viscosity is determined by allowing the computed free surface shape relaxation time to be adjusted in response to the measured free surface velocity of two coalescing drops. Results are presented from two validation experiments of the method which were conducted recently on board the NASA KC-135 aircraft. In these tests the viscosity of a highly viscous liquid, such as glycerine at different temperatures, was determined to reasonable accuracy using the liquid coalescence method. The experiments measured the free surface velocity of two glycerine drops coalescing under the action of surface tension alone in low gravity environment using high speed photography. The free surface velocity was then compared with the computed values obtained from different viscosity values. The results of these experiments were found to agree reasonably well with the calculated values.

  17. Ultrasonic characterization of single drops of liquids

    SciTech Connect

    Sinha, D.N.

    1998-04-14

    Ultrasonic characterization of single drops of liquids is disclosed. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities. 5 figs.

  18. Weight Drop Models in Traumatic Brain Injury.

    PubMed

    Kalish, Brian T; Whalen, Michael J

    2016-01-01

    Weight drop models in rodents have been used for several decades to advance our understanding of the pathophysiology of traumatic brain injury. Weight drop models have been used to replicate focal cerebral contusion as well as diffuse brain injury characterized by axonal damage. More recently, closed head injury models with free head rotation have been developed to model sports concussions, which feature functional disturbances in the absence of overt brain damage assessed by conventional imaging techniques. Here, we describe the history of development of closed head injury models in the first part of the chapter. In the second part, we describe the development of our own weight drop closed head injury model that features impact plus rapid downward head rotation, no structural brain injury, and long-term cognitive deficits in the case of multiple injuries. This rodent model was developed to reproduce key aspects of sports concussion so that a mechanistic understanding of how long-term cognitive deficits might develop will eventually follow. Such knowledge is hoped to impact athletes and war fighters and others who suffer concussive head injuries by leading to targeted therapies aimed at preventing cognitive and other neurological sequelae in these high-risk groups. PMID:27604720

  19. Leaf drop affects herbivory in oaks.

    PubMed

    Pearse, Ian S; Karban, Richard

    2013-11-01

    Leaf phenology is important to herbivores, but the timing and extent of leaf drop has not played an important role in our understanding of herbivore interactions with deciduous plants. Using phylogenetic general least squares regression, we compared the phenology of leaves of 55 oak species in a common garden with the abundance of leaf miners on those trees. Mine abundance was highest on trees with an intermediate leaf retention index, i.e. trees that lost most, but not all, of their leaves for 2-3 months. The leaves of more evergreen species were more heavily sclerotized, and sclerotized leaves accumulated fewer mines in the summer. Leaves of more deciduous species also accumulated fewer mines in the summer, and this was consistent with the idea that trees reduce overwintering herbivores by shedding leaves. Trees with a later leaf set and slower leaf maturation accumulated fewer herbivores. We propose that both leaf drop and early leaf phenology strongly affect herbivore abundance and select for differences in plant defense. Leaf drop may allow trees to dispose of their herbivores so that the herbivores must recolonize in spring, but trees with the longest leaf retention also have the greatest direct defenses against herbivores.

  20. Drop floating on a granular raft

    NASA Astrophysics Data System (ADS)

    Jambon-Puillet, Etienne; Josserand, Christophe; Protiere, Suzie

    2015-11-01

    When a droplet comes in contact with a bath of the same liquid, it coalesces to minimize the surface energy. This phenomenon reduces emulsion stability and is usually fought with surfactant molecules. Another way to slow down coalescence is to use colloidal solid particles. In this case the particles spontaneously migrate to the interface to form ``Pickering'' emulsions and act as a barrier between droplets. Here we use dense, large particles (~ 500 μm) which form a monolayer at an oil/water interface that we call a granular raft. When a droplet is placed on top of such a raft, for a given set of particle properties (contact angle/size), the raft prevents coalescence indefinitely. However, in contrast to what happens when a droplet is placed on a hydrophobic surface and never wets the surface, here the droplet is strongly anchored to the raft and deforms it. We will use this specific configuration to probe the mechanical response of the granular raft: by controlling the droplet volume we can impose tensile or compressive stresses. Finally we will show that the drop, spherical at first, slowly takes a more complex shape as it's volume increases. This shape is not reversible as the drop volume is decreased. The drop can become oblate or prolate with wrinkling of the raft.

  1. Cusp formation in drops inside Taylor cones

    NASA Astrophysics Data System (ADS)

    Marin, Alvaro G.; Loscertales, Ignacio G.; Barrero, Antonio

    2005-11-01

    Here, we report the formation of cusp in insulating drops inside compound Taylor cones. The action of the electrical shear stress acting on the outer interface, which is transmitted by viscous forces inside the Taylor cone, tends to deform the drop of insulating liquid placed inside. For appropriate values of the capillary number, the insulating drop develops a steady cusp angle which depends on both the capillary number and the conducting to insulating viscosity ratio. A self-similar analysis has been developed to qualitatively describe the flow inside these compounds Taylor cones. Any perturbation of the cusp gives rise to an intermittent emission of tiny droplets; this effect may recall the tip-streaming observed by G.I. Taylor in his four-roll mill device. This emission can be stabilized by an appropriate control of the injected flow rate of the insulating liquid. When the capillary number increases, the cusped interface turns into a spout which flows coated by the conducting liquid forming the electrified coaxial jet which has been successfully employed for the production of nanocapsules, coaxial nanofibers and nanotubes (Science 295, n. 5560, 1695, 2002; JACS 126, 5376, 2004).

  2. Leaf drop affects herbivory in oaks.

    PubMed

    Pearse, Ian S; Karban, Richard

    2013-11-01

    Leaf phenology is important to herbivores, but the timing and extent of leaf drop has not played an important role in our understanding of herbivore interactions with deciduous plants. Using phylogenetic general least squares regression, we compared the phenology of leaves of 55 oak species in a common garden with the abundance of leaf miners on those trees. Mine abundance was highest on trees with an intermediate leaf retention index, i.e. trees that lost most, but not all, of their leaves for 2-3 months. The leaves of more evergreen species were more heavily sclerotized, and sclerotized leaves accumulated fewer mines in the summer. Leaves of more deciduous species also accumulated fewer mines in the summer, and this was consistent with the idea that trees reduce overwintering herbivores by shedding leaves. Trees with a later leaf set and slower leaf maturation accumulated fewer herbivores. We propose that both leaf drop and early leaf phenology strongly affect herbivore abundance and select for differences in plant defense. Leaf drop may allow trees to dispose of their herbivores so that the herbivores must recolonize in spring, but trees with the longest leaf retention also have the greatest direct defenses against herbivores. PMID:23774946

  3. Surfactant and nonlinear drop dynamics in microgravity

    NASA Astrophysics Data System (ADS)

    Jankovsky, Joseph Charles

    2000-11-01

    Large amplitude drop dynamics in microgravity were conducted during the second United States Microgravity Laboratory mission carried onboard the Space Shuttle Columbia (20 October-5 November 1995). Centimeter- sized drops were statically deformed by acoustic radiation pressure and released to oscillate freely about a spherical equilibrium. Initial aspect ratios of up to 2.0 were achieved. Experiments using pure water and varying aqueous concentrations of Triton-X 100 and bovine serum albumin (BSA) were performed. The axisymmetric drop shape oscillations were fit using the degenerate spherical shape modes. The frequency and decay values of the fundamental quadrupole and fourth order shape mode were analyzed. Several large amplitude nonlinear oscillation dynamics were observed. Shape entrainment of the higher modes by the fundamental quadrupole mode occurred. Amplitude- dependent effects were observed. The nonlinear frequency shift, where the oscillation frequency is found to decrease with larger amplitudes, was largely unaffected by the presence of surfactants. The percentage of time spent in the prolate shape over one oscillation cycle was found to increase with oscillation amplitude. This prolate shape bias was also unaffected by the addition of surfactants. These amplitude-dependent effects indicate that the nonlinearities are a function of the bulk properties and not the surface properties. BSA was found to greatly enhance the surface viscoelastic properties by increasing the total damping of the oscillation, while Triton had only a small influence on damping. The surface concentration of BSA was found to be diffusion-controlled over the time of the experiments, while the Triton diffusion rate was very rapid. Using the experimental frequency and decay values, the suface viscoelastic properties of surface dilatational viscosity ( ks ) and surface shear viscosity ( ms ) were found for varying surfactant concentrations using the transcendental equation of Lu

  4. Medical Transcriptionists

    MedlinePlus

    ... equipment or software that is connected to their computer. However, technological advances have changed the way medical ... this section Medical transcriptionists must be comfortable using computers. Medical transcriptionists typically need postsecondary education. Prospective medical ...

  5. 7 CFR 360.500 - Petitions to add a taxon to the noxious weed list.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Petitions to add a taxon to the noxious weed list. 360... PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE NOXIOUS WEED REGULATIONS § 360.500 Petitions to add a taxon to the noxious weed list. A person may petition the Administrator to have a...

  6. 7 CFR 360.500 - Petitions to add a taxon to the noxious weed list.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Petitions to add a taxon to the noxious weed list. 360... PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE NOXIOUS WEED REGULATIONS § 360.500 Petitions to add a taxon to the noxious weed list. A person may petition the Administrator to have a...

  7. 7 CFR 360.500 - Petitions to add a taxon to the noxious weed list.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Petitions to add a taxon to the noxious weed list. 360... PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE NOXIOUS WEED REGULATIONS § 360.500 Petitions to add a taxon to the noxious weed list. A person may petition the Administrator to have a...

  8. 7 CFR 360.500 - Petitions to add a taxon to the noxious weed list.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Petitions to add a taxon to the noxious weed list. 360... PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE NOXIOUS WEED REGULATIONS § 360.500 Petitions to add a taxon to the noxious weed list. A person may petition the Administrator to have a...

  9. 75 FR 73075 - Notice of Motion To Add Exhibit to Petition for Declaratory Order and Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... Energy Regulatory Commission Notice of Motion To Add Exhibit to Petition for Declaratory Order and... of Pella, Iowa (Complainant) filed a motion to add a document as Exhibit P-28 to its July 2, 2010... wishing to become a party must file a notice of intervention or motion to intervene, as appropriate....

  10. Measuring Narcissism within Add Health: The Development and Validation of a New Scale

    ERIC Educational Resources Information Center

    Davis, Mark S.; Brunell, Amy B.

    2012-01-01

    This study reports the development of a measure of narcissism within the National Longitudinal Study of Adolescent Health (Add Health) data set. In Study 1, items were selected from Wave III to form the Add Health Narcissism Scale (AHNS). These were factor analyzed, yielding a single factor comprised of five subscales. We correlated the AHNS and…

  11. Prevalence of Aggression and Defiance in Children with ADD/ADHD Tendencies

    ERIC Educational Resources Information Center

    Hill, Janella

    2011-01-01

    Attention Deficit Disorder (ADD) and Attention Deficit Hyperactivity Disorder (ADHD) appear to have become more prevalent in the past few years. Many children who display ADD/ADHD tendencies also display behaviors which cause problems in a classroom setting. Considering the fact that these behaviors could be displayed by the student population as…

  12. Cognitive Control and Attentional Selection in Adolescents with ADHD versus ADD

    ERIC Educational Resources Information Center

    Carr, Laurie; Henderson, John; Nigg, Joel T.

    2010-01-01

    An important research question is whether Attention Deficit Hyperactivity Disorder (ADHD) is related to early- or late-stage attentional control mechanisms and whether this differentiates a nonhyperactive subtype (ADD). This question was addressed in a sample of 145 ADD/ADHD and typically developing comparison adolescents (aged 13-17). Attentional…

  13. Drop by drop scattering properties of a radar bin : a numerical experiment

    NASA Astrophysics Data System (ADS)

    Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2016-04-01

    This paper presents the development and initial results of a numerical simulation of pseudo-radar observations computed as the sum of the electric field backscattered by each drop. Simulations are carried out for three successive radar bins with a gate length of 30 m and beam width of 1°. The first step is the simulation of a 100 m x 100 m x 100 m volume with all its drops. The 3D raindrop generator relies on the findings on the rainfall field very small scales (mm to few tens of m) spatio-temporal structure, of the HYDROP experiment and a recent analysis of 2D video disdrometer data in a Multifractal framework. More precisely: (i) The Liquid Water Content (LWC) distribution is represented with the help a multiplicative cascade down to 0.5 m, below which it is considered as homogeneous. (ii) Within each 0.5 x 0.5 x 0.5 m3 patch, liquid water is distributed into drops according to a pre-defined Drop Size Distribution (DSD) and located randomly uniformly. (iii) Such configuration is compared with the one consisting of the same drops uniformly distributed over the 50 x 50 x 50 m3 volume. Then the backscattered field by the drops located within a radar bin are computed as the sum a individual contribution. Antenna beam weighing is taken into account Due to the fact that the radar wave length is much smaller than the "patches" size for rainfall, it appears that as theoretically expected we retrieved an exponential distribution for potential measure horizontal reflectivity. A much lower dispersion is noticed for differential reflectivity. We show that a simple ballistic assumption for drop velocities does not enable to reproduce radar observations, and turbulence must be taken into account. Finally the sensitivity of these outputs to the various model parameters is quantified.

  14. Dielectrophoresis of a surfactant-laden viscous drop

    NASA Astrophysics Data System (ADS)

    Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-06-01

    The dielectrophoresis of a surfactant-laden viscous drop in the presence of non-uniform DC electric field is investigated analytically and numerically. Considering the presence of bulk-insoluble surfactants at the drop interface, we first perform asymptotic solution for both low and high surface Péclet numbers, where the surface Péclet number signifies the strength of surface convection of surfactants as compared to the diffusion at the drop interface. Neglecting fluid inertia and interfacial charge convection effects, we obtain explicit expression for dielectrophoretic drop velocity for low and high Péclet numbers by assuming small deviation of drop shape from sphericity and small deviation of surfactant concentration from the equilibrium uniform distribution. We then depict a numerical solution, assuming spherical drop, for arbitrary values of Péclet number. Our analyses demonstrate that the asymptotic solution shows excellent agreement with the numerical solution in the limiting conditions of low and high Péclet numbers. The present analysis shows that the flow-induced redistribution of the surfactants at the drop interface generates Marangoni stress, owing to the influence of the surfactant distribution on the local interfacial tension, at the drop interface and significantly alters the drop velocity at steady state. For a perfectly conducting/dielectric drop suspended in perfectly dielectric medium, Marangoni stress always retards the dielectrophoretic velocity of the drop as compared with a surfactant-free drop. For a leaky dielectric drop suspended in another leaky dielectric medium, in the low Péclet number limit, depending on the electrical conductivity and permittivity of both the liquids, the Marangoni stress may aid or retard the dielectrophoretic velocity of the drop. The Marangoni stress also has the ability to move the drop in the opposite direction as compared with a surfactant-free drop. This non-intuitive reverse motion of the drop is

  15. Radio Telescopes Will Add to Cassini-Huygens Discoveries

    NASA Astrophysics Data System (ADS)

    2004-12-01

    When the European Space Agency's Huygens spacecraft makes its plunge into the atmosphere of Saturn's moon Titan on January 14, radio telescopes of the National Science Foundation's National Radio Astronomy Observatory (NRAO) will help international teams of scientists extract the maximum possible amount of irreplaceable information from an experiment unique in human history. Huygens is the 700-pound probe that has accompanied the larger Cassini spacecraft on a mission to thoroughly explore Saturn, its rings and its numerous moons. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) The Robert C. Byrd Green Bank Telescope (GBT) in West Virginia and eight of the ten telescopes of the continent-wide Very Long Baseline Array (VLBA), located at Pie Town and Los Alamos, NM, Fort Davis, TX, North Liberty, IA, Kitt Peak, AZ, Brewster, WA, Owens Valley, CA, and Mauna Kea, HI, will directly receive the faint signal from Huygens during its descent. Along with other radio telescopes in Australia, Japan, and China, the NRAO facilities will add significantly to the information about Titan and its atmosphere that will be gained from the Huygens mission. A European-led team will use the radio telescopes to make extremely precise measurements of the probe's position during its descent, while a U.S.-led team will concentrate on gathering measurements of the probe's descent speed and the direction of its motion. The radio-telescope measurements will provide data vital to gaining a full understanding of the winds that Huygens encounters in Titan's atmosphere. Currently, scientists know little about Titan's winds. Data from the Voyager I spacecraft's 1980 flyby indicated that east-west winds may reach 225 mph or more. North-south winds and possible vertical winds, while probably much weaker, may still be significant. There are competing theoretical models of Titan's winds, and the overall picture is best summarized as

  16. Flow visualization and characterization of evaporating liquid drops

    NASA Technical Reports Server (NTRS)

    Chao, David F. (Inventor); Zhang, Nengli (Inventor)

    2004-01-01

    An optical system, consisting of drop-reflection image, reflection-refracted shadowgraphy and top-view photography, is used to measure the spreading and instant dynamic contact angle of a volatile-liquid drop on a non-transparent substrate. The drop-reflection image and the shadowgraphy is shown by projecting the images of a collimated laser beam partially reflected by the drop and partially passing through the drop onto a screen while the top view photograph is separately viewed by use of a camera video recorder and monitor. For a transparent liquid on a reflective solid surface, thermocapillary convection in the drop, induced by evaporation, can be viewed nonintrusively, and the drop real-time profile data are synchronously recorded by video recording systems. Experimental results obtained from this technique clearly reveal that evaporation and thermocapillary convection greatly affect the spreading process and the characteristics of dynamic contact angle of the drop.

  17. Modeling of drop breakup in the bag breakup regime

    NASA Astrophysics Data System (ADS)

    Wang, C.; Chang, S.; Wu, H.; Xu, J.

    2014-04-01

    Several analytic models for predicting the drop deformation and breakup have been developed over the last three decades, but modeling drop breakup in the bag-type regime is less reported. In this Letter, a breakup model has been proposed to predict the drop deformation length and breakup time in the bag-type breakup regime in a more accurate manner. In the present model, the drop deformation which is approximately as the displacement of the centre of mass (c. m.) along the axis located at the centre of the drop, and the movement of c. m. is obtained by solving the pressure balance equation. The effects of the drop deformation on the drop external aerodynamic force are considered in this model. Drop breakup occurs when the deformation length reaches the maximum value and the maximum deformation length is a function of Weber number. The performance and applicability of the proposed breakup model are tested against the published experimental data.

  18. Drop-by-drop chemical reaction and sample introduction for capillary electrophoresis.

    PubMed

    Chen, Fengming; Rang, Ying; Weng, Ying; Lin, Luyao; Zeng, Hulie; Nakajim, Hizuru; Lin, Jin-Ming; Uchiyama, Katsumi

    2015-06-21

    In this paper, we report a novel sample introduction and chemical reaction strategy by drop-by-drop inkjet injection for an electrophoretically mediated microanalysis (EMMA). This method makes it possible to achieve an on-line introduction of reactant solutions by alternately ejecting small plugs, with an overlapping region of the plugs for mixing the reactants by electrophoresis, supporting chemical reactions, followed by electrophoretic separation of the final compounds. As a proof-of-concept of the method, the EMMA of an inkjetted mixture of 4-fluoro-7-nitrobenzofurazan (NBD-F) and amino acids was carried out as a model chemical reaction. The product NBD-amino acids were quantified by detection with laser induced fluorescence. The optimal conditions for the procedure were: inkjet driving voltage: +40-44 V; pulse width: 20-24 μs; drop-by-drop injection of reactant solutions: alternately 2 drops × 25 times for the amino acid solution and the NBD-F solution; zone overlapping voltage and time: 3 kV and 2 s; incubation time after overlapping: 5 min; separation voltage: 18 kV. Under the optimized conditions, a significant enhancement in sensitivity and a sensitive quantitative analysis were realized. The results obtained were comparable with those using the off-line labeling method. This method is rapid, cost-effective, and readily automated for EMMA. PMID:25728632

  19. Drop-by-drop chemical reaction and sample introduction for capillary electrophoresis.

    PubMed

    Chen, Fengming; Rang, Ying; Weng, Ying; Lin, Luyao; Zeng, Hulie; Nakajim, Hizuru; Lin, Jin-Ming; Uchiyama, Katsumi

    2015-06-21

    In this paper, we report a novel sample introduction and chemical reaction strategy by drop-by-drop inkjet injection for an electrophoretically mediated microanalysis (EMMA). This method makes it possible to achieve an on-line introduction of reactant solutions by alternately ejecting small plugs, with an overlapping region of the plugs for mixing the reactants by electrophoresis, supporting chemical reactions, followed by electrophoretic separation of the final compounds. As a proof-of-concept of the method, the EMMA of an inkjetted mixture of 4-fluoro-7-nitrobenzofurazan (NBD-F) and amino acids was carried out as a model chemical reaction. The product NBD-amino acids were quantified by detection with laser induced fluorescence. The optimal conditions for the procedure were: inkjet driving voltage: +40-44 V; pulse width: 20-24 μs; drop-by-drop injection of reactant solutions: alternately 2 drops × 25 times for the amino acid solution and the NBD-F solution; zone overlapping voltage and time: 3 kV and 2 s; incubation time after overlapping: 5 min; separation voltage: 18 kV. Under the optimized conditions, a significant enhancement in sensitivity and a sensitive quantitative analysis were realized. The results obtained were comparable with those using the off-line labeling method. This method is rapid, cost-effective, and readily automated for EMMA.

  20. Antidiabetic Effects of Add-On Gynostemma pentaphyllum Extract Therapy with Sulfonylureas in Type 2 Diabetic Patients

    PubMed Central

    Huyen, V. T. T.; Phan, D. V.; Thang, P.; Ky, P. T.; Hoa, N. K.; Ostenson, C. G.

    2012-01-01

    Aims. To investigate the antidiabetic effect of the traditional Vietnamese herb Gynostemma pentaphyllum (GP) together with sulfonylurea (SU) in 25 drug-naïve type 2 diabetic patients. Methods. After 4-week treatment with gliclazide (SU), 30 mg daily, all patients were randomly assigned into 2 groups to add on GP extract or placebo extract, 6 g daily, during eight weeks. Results. After 4-week SU treatment, fasting plasma glucose (FPG) and HbA1C decreased significantly (P < 0.001). FPG was further reduced after add-on therapy with 2.9 ± 1.7 and 0.9 ± 0.6 mmol/L in the GP and placebo groups, respectively (P < 0.001). Therapy with GP extract also reduced 30- and 120-minute oral glucose tolerance test postload values. HbA1C levels decreased approximately 2% units in the GP group compared to 0.7% unit in the placebo group (P < 0.001). Conclusion. GP extract in addition to SU offers an alternative to addition of other oral medication to treat type 2 diabetic patients. PMID:23125867

  1. The Integration of the Neurosciences, Child Public Health, and Education Practice: Hemisphere-Specific Remediation Strategies as a Discipline Partnered Rehabilitation Tool in ADD/ADHD.

    PubMed

    Leisman, Gerry; Mualem, Raed; Machado, Calixto

    2013-01-01

    ADD/ADHD is the most common and most studied neurodevelopmental problem. Recent statistics from the U.S. Center for Disease Control state that 11% or approximately one out of every nine children in the US and one in five high school boys are diagnosed with ADD/ADHD. This number is thought to be increasing at around 15-20% per year. The US National Institute of Mental Health's Multi-modal Treatment Study has shown that medication has no long-term benefit for those with ADHD. To effectively address ADD/ADHD from within the framework of child public health, an interdisciplinary strategy is necessary that is based on a neuroeducational model that can be readily implemented on a large-scale within the educational system. This study is based on previous findings that ADD/ADHD children possess underactivity between sub-cortical and cortical regions. An imbalance of activity or arousal in one area can result in functional disconnections similar to that seen in split-brain patients. Since ADD/ADHD children exhibit deficient performance on tests developed to measure perceptual laterality, evidence of weak laterality or failure to develop laterality has been found across various modalities (auditory, visual, tactile). This has reportedly resulted in abnormal cerebral organization and ineffective cortical specialization necessary for the development of language and non-language function. This pilot study examines groups of ADD/ADHD and control elementary school children all of whom were administered all of the subtests of the Wechsler Individual Achievement Tests, the Brown Parent Questionnaire, and given objective performance measures on tests of motor and sensory coordinative abilities. Results measured after a 12-week remediation program aimed at increasing the activity of the hypothesized underactive right hemisphere function, yielded significant improvement of greater than 2 years in grade level in all domains except in mathematical reasoning. The treated group also

  2. Pressure Drop in Radiator Air Tubes

    NASA Technical Reports Server (NTRS)

    Parsons, S R

    1921-01-01

    This report describes a method for measuring the drop in static pressure of air flowing through a radiator and shows (1) a reason for the discrepancy noted by various observers between head resistance and drop in pressure; (2) a difference in degree of contraction of the jet in entering a circular cell and a square cell; (3) the ratio of internal frictional resistance to total head resistance for two representative types; (4) the effect of smoothness of surface on pressure gradient; and (5) the effects of supplying heat to the radiator on pressure gradient. The fact that the pressure gradients are found to be approximately proportional to the square of the rate of flow of air appears to indicate turbulent flow, even in the short tubes of the radiator. It was found that the drop in the static pressure in the air stream through a cellular radiator and the pressure gradient in the air tubes are practically proportional to the square of the air flow in a given air density; that the difference between the head resistance per unit area and the fall of static pressure through the air tubes in radiators is apparent rather than real; and that radiators of different types differ widely in the amount of contraction of the jet at entrance. The frictional resistance was found to vary considerably, and in one case to be two-thirds of the head resistance in the type using circular cells and one-half of the head resistance of the radiator type using square cells of approximately the same dimensions.

  3. Impact dynamics of oxidized liquid metal drops

    NASA Astrophysics Data System (ADS)

    Xu, Qin; Brown, Eric; Jaeger, Heinrich M.

    2013-04-01

    With exposure to air, many liquid metals spontaneously generate an oxide layer on their surface. In oscillatory rheological tests, this skin is found to introduce a yield stress that typically dominates the elastic response but can be tuned by exposing the metal to hydrochloric acid solutions of different concentration. We systematically studied the normal impact of eutectic gallium-indium (eGaIn) drops under different oxidation conditions and show how this leads to two different dynamical regimes. At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from the impacted surface when the oxide layer is removed. In addition, the degree of drop deformation or spreading during impact is controlled by the oxide skin. We show that the scaling law known from ordinary liquids for the maximum spreading radius as a function of impact velocity can still be applied to the case of oxidized eGaIn if an effective Weber number We is employed that uses an effective surface tension factoring in the yield stress. In contrast, no influence on spreading from different oxidations conditions is observed for high impact velocity. This suggests that the initial kinetic energy is mostly damped by bulk viscous dissipation. Results from both regimes can be collapsed in an impact phase diagram controlled by two variables, the maximum spreading factor Pm=R0/Rm, given by the ratio of initial to maximum drop radius, and the impact number K=We/Re4/5, which scales with the effective Weber number We as well as the Reynolds number Re. The data exhibit a transition from capillary to viscous behavior at a critical impact number Kc≈0.1.

  4. Improved Refractometer for Measuring Temperatures of Drops

    NASA Technical Reports Server (NTRS)

    Naqwi, Amir A.

    2004-01-01

    The Dual Rainbow refractometer is an enhanced version of the Rainbow refractometer, which is added to, and extends the capabilities of, a phase Doppler particle analyzer (PDPA). A PDPA utilizes pairs of laser beams to measure individual components of velocity and sizes of drops in a spray. The Rainbow-refractometer addition measures the temperatures of individual drops. The designs of prior versions of the Rainbow refractometer have required substantial modifications of PDPA transmitting optics, plus dedicated lasers as sources of illumination separate from, and in addition to, those needed for PDPA measurements. The enhancement embodied in the Dual Rainbow refractometer eliminates the need for a dedicated laser and confers other advantages as described below. A dedicated laser is no longer needed because the Dual Rainbow refractometer utilizes one of the pairs of laser beams already present in a PDPA. Hence, the design of the Dual Rainbow refractometer simplifies the task of upgrading PDPA hardware to enable measurement of temperature. Furthermore, in a PDPA/Dual Rainbow refractometer system, a single argon-ion laser with three main wavelengths can be used to measure the temperatures, sizes, and all three components of velocity (in contradistinction to only two components of velocity in a prior PDPA/Rainbow refractometer system). In order to enable the Dual Rainbow refractometer to utilize a pair of PDPA laser beams, it was necessary to (1) find a location for the refractometer receiver, such that the combined rainbow patterns of two laser beams amount to a pattern identical to that of a single beam, (2) adjust the polarization of the two beams to obtain the strongest rainbow pattern, and (3) find a location for the PDPA receiver to obtain a linear relationship between the measured phase shift and drop size.

  5. Managing adverse effects of glaucoma medications

    PubMed Central

    Inoue, Kenji

    2014-01-01

    Glaucoma is a chronic, progressive disease in which retinal ganglion cells disappear and subsequent, gradual reductions in the visual field ensues. Glaucoma eye drops have hypotensive effects and like all other medications are associated with adverse effects. Adverse reactions may either result from the main agent or from preservatives used in the drug vehicle. The preservative benzalkonium chloride, is one such compound that causes frequent adverse reactions such as superficial punctate keratitis, corneal erosion, conjunctival allergy, and conjunctival injection. Adverse reactions related to main hypotensive agents have been divided into those affecting the eye and those affecting the entire body. In particular, β-blockers frequently cause systematic adverse reactions, including bradycardia, decrease in blood pressure, irregular pulse and asthma attacks. Prostaglandin analogs have distinctive local adverse reactions, including eyelash bristling/lengthening, eyelid pigmentation, iris pigmentation, and upper eyelid deepening. No systemic adverse reactions have been linked to prostaglandin analog eye drop usage. These adverse reactions may be minimized when they are detected early and prevented by reducing the number of different eye drops used (via fixed combination eye drops), reducing the number of times eye drops are administered, using benzalkonium chloride-free eye drops, using lower concentration eye drops, and providing proper drop instillation training. Additionally, a one-time topical medication can be given to patients to allow observation of any adverse reactions, thereafter the preparation of a topical medication with the fewest known adverse reactions can be prescribed. This does require precise patient monitoring and inquiries about patient symptoms following medication use. PMID:24872675

  6. Drop-in substitute for dichlorodifluoromethane refrigerant

    SciTech Connect

    Goble, G.H.

    1993-06-01

    A method for producing refrigeration in a refrigeration system designed for a dichlorodifluoromethane refrigerant is described, comprising drop-in substituting for said dichlorodifluoromethane a ternary mixture of about 2 to 20 weight percent isobutane, about 21 to 51 weight percent 1-chloro-1,1-difluoroethane, and about 41 to 71 weight percent chlorodifluoromethane, with the weight percentages of said components being weight percentages of the overall mixture; condensing said ternary mixture; and thereafter evaporating said ternary mixture in the vicinity of a body to be cooled.

  7. Naval Waste Package Drop With Emplacement Pallet

    SciTech Connect

    D.G. McLenzie

    2005-08-04

    The objective of this calculation was to determine the structural responses of the Emplacement Pallet and Naval Long Waste Package (WP) to drops from their highest possible lift heights. The scope of this document was limited to reporting the calculation results in terms of maximum stress intensities. The Naval Long WP is classified as Quality Level 1 (Ref 12, page 7, Table 1). The Emplacement Pallet is classified as Quality Level 2 (Ref. 19, page 7, Table 1). Therefore, this calculation is subject to the requirements of the Quality Assurance Requirements and Description (Ref. 11). AP-3.12Q, Calculations, was used to perform the calculation and develop the document (Ref. 3).

  8. [Development of intranasal lactocin (oxytocin) drops technology].

    PubMed

    Klimas, Rimantas; Baranauskas, Algirdas; Gendrolis, Antanas

    2002-01-01

    Pure oxytocin substance was obtained from posterior part of cattle pituitary gland by high pressure liquid chromatography. Biological activity of the substance--450-500 IU/mg. Chromatographically pure Oxytocin substance was used in developing two different compositions of Lactocin intranasal drops (40 IU/ml). Stability evaluation was performed for 2 year period. The technical documentation was prepared on the basis of the research results. Lactocin is active preparation helping lactation and is indicated for lactostasis treatment and its prophylaxis after delivery. PMID:12474675

  9. Solid drop based liquid-phase microextraction.

    PubMed

    Ganjali, Mohammad Reza; Sobhi, Hamid Reza; Farahani, Hadi; Norouzi, Parviz; Dinarvand, Rassoul; Kashtiaray, Amir

    2010-04-16

    Solid drop based liquid-phase microextraction (SDLPME) is a novel sample preparation technique possessing obvious advantages of simple operation with a high pre-concentration factor, low cost and low consumption of organic solvent. SDLPME coupled with gas chromatography (GC), high-performance liquid chromatography (HPLC), and atomic absorption spectrometry (AAS) has been widely applied to the analyses of a different variety of samples. The basic principles, parameters affecting the extraction efficiency, and the latest applications of SDLPME are reviewed in this article. PMID:19962710

  10. Equilibrium of an elastically confined liquid drop

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk-Min; Kim, Ho-Young; Puëll, Jérôme; Mahadevan, L.

    2008-05-01

    When a liquid drop is confined between an elastic plate and a rigid substrate, it spreads spontaneously due to the effects of interfacial forces, eventually reaching an equilibrium shape determined by the balance between elastic and capillary effects. We provide an analytical theory for the static shape of the sheet and the extent of liquid spreading and show that our experiments are quantitatively consistent with the theory. The theory is relevant for the first step of painting when a brush is brought down on to canvas. More mundanely, it allows us to understand the stiction of microcantilevers to wafer substrates occurring in microelectromechanical fabrication processes.

  11. Predicting Pressure Drop In Porous Materials

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.

    1990-01-01

    Theory developed to predict drop in pressure based on drag of individual fibers. Simple correlation method for data also developed. Helps in predicting flow characteristics of many strain-isolation pad (SIP) glow geometries in Shuttle Orbiter tile system. Also helps in predicting venting characteristics of tile assemblies during ascent and leakage of hot gas under tiles during descent. Useful in study of mechanics of flows through fibrous and porous media, and procedures applicable to purged fiberglass insulation, dialysis filters, and other fibrous and porous media.

  12. A ballistic gravimeter with dropping holographic grating

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. L.; Kotova, E. I.; Nikushchenko, E. M.; Smirnova, A. L.; Prokopenko, V. T.

    2014-11-01

    The principle of operation of a ballistic laser gravimeter based on a dropping holographic diffraction grating is described. The free-fall acceleration of the grating is determined from a change in the frequency of beats that arise during the interference of light beams diffracted on the hologram in the zeroth and first orders of diffraction. An experiment demonstrating this principle of measurement is described. The main distinctive features of the proposed gravimeter are simple design, compact size, and the possibility of using this device for analysis of high-frequency fluctuations in the gravitational-field strength.

  13. Thermocapillary Migration and Interactions of Bubbles and Drops

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Lacy, Claud E.; Wozniak, Guenter; Subramanian, R. Shankar

    1996-01-01

    When a drop or bubble is placed in another fluid and subjected to the action of a temperature gradient, the drop will move. Such motion is a direct consequence of the variation of interfacial tension with temperature, and is termed thermocapillary migration. This paper discusses results from experiments conducted in reduced gravity on the thermocapillary motion of bubbles and drops.

  14. The Illustrated Topology of Liquid Drops during Formation

    ERIC Educational Resources Information Center

    Libii, Josue Njock

    2004-01-01

    High-speed photography can show that the shape often used for a newly forming drop is wrong. Knowledge of drop behaviour is important for inkjet printers, and a close look at the formation of drops as given here can enhance critical observation, thinking and analysis.

  15. Dropping out from School. Policy Brief Number 8

    ERIC Educational Resources Information Center

    Hunt, Frances

    2009-01-01

    While initial access to education is increasing in many countries, drop out rates continue to be high. This seriously affects MDG and EFA goals around educational access. This briefing paper looks at the issue of dropping out from school. It is based on the CREATE Pathways to Access Research Monograph, "Dropping out from school: a cross country…

  16. Inverse Leidenfrost Effect: Levitating Drops on Liquid Nitrogen.

    PubMed

    Adda-Bedia, M; Kumar, S; Lechenault, F; Moulinet, S; Schillaci, M; Vella, D

    2016-05-01

    We explore the interaction between a liquid drop (initially at room temperature) and a bath of liquid nitrogen. In this scenario, heat transfer occurs through film-boiling: a nitrogen vapor layer develops that may cause the drop to levitate at the bath surface. We report the phenomenology of this inverse Leidenfrost effect, investigating the effect of the drop size and density by using an aqueous solution of a tungsten salt to vary the drop density. We find that (depending on its size and density) a drop either levitates or instantaneously sinks into the bulk nitrogen. We begin by measuring the duration of the levitation as a function of the radius R and density ρd of the liquid drop. We find that the levitation time increases roughly linearly with drop radius but depends weakly on the drop density. However, for sufficiently large drops, R ≥ Rc(ρd), the drop sinks instantaneously; levitation does not occur. This sinking of a (relatively) hot droplet induces film-boiling, releasing a stream of vapor bubbles for a well-defined length of time. We study the duration of this immersed-drop bubbling finding similar scalings (but with different prefactors) to the levitating drop case. With these observations, we study the physical factors limiting the levitation and immersed-film-boiling times, proposing a simple model that explains the scalings observed for the duration of these phenomena, as well as the boundary of (R,ρd) parameter space that separates them. PMID:27054550

  17. Drop Testing of DOE Spent Nuclear Fuel Canisters

    SciTech Connect

    S. D. Snow; D. K. Morton; T. E. Rahl; R. K. Blandford; T. J. Hill

    2005-07-01

    The National Spent Nuclear Fuel Program (NSNFP) at the Idaho National Engineering and Environmental Laboratory INEEL) prepared four representative Department of Energy DOE) spent nuclear fuel (SNF) canisters for the purpose of drop testing. The first two canisters represented a modified 24- inch diameter standardized DOE SNF canister and the second two canisters represented the Hanford Multi-Canister Overpack MCO). The modified canisters and internals were constructed and assembled at the INEEL. The MCO internal weights were fabricated at the INEEL and assembled into two MCOs at Hanford and later shipped to the INEEL for drop test preparation. Drop testing of these four canisters was completed in August 2004 at Sandia National Laboratories. The modified canisters were dropped from 30 feet onto a flat, essentially unyielding surface, with the canisters oriented at 45 degrees and 70 degrees off-vertical at impact. One representative MCO was dropped from 23 feet onto the same flat surface, oriented vertically at impact. The second representative MCO was dropped onto the flat surface from 2 feet oriented at 60 degrees off-vertical. These drop heights and orientations were chosen to meet or exceed the Yucca Mountain repository drop criteria. This paper discusses the comparison of deformations between the actual dropped canisters and those predicted by pre-drop and limited post-drop finite element evaluations performed using ABAQUS/Explicit. Post-drop containment of all four canisters, demonstrated by way of helium leak testing, is also discussed.

  18. Spent Nuclear Fuel (SNF) Bounding Drop Support Calculations

    SciTech Connect

    CHENAULT, D.M.

    1999-11-16

    This report evaluates different drop heights, concrete and other impact media to which the transport package and/or the MCO is dropped. A prediction method is derived for estimating the resultant impact factor for determining the bounding drop case for the SNF Project.

  19. Variables Affecting Students' Decisions to Drop Out of School

    ERIC Educational Resources Information Center

    Dunn, Caroline; Chambers, Dalee; Rabren, Karen

    2004-01-01

    This study examined factors predictive of dropping out of high school for students with learning disabilities (LD) and mental retardation (MR). The sample was composed of 228 students with LD or MR who dropped out of school and 228 students with LD or MR who had not dropped out. Two sets of pre- dictor variables (student demographics and interview…

  20. 14 CFR 27.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...

  1. 14 CFR 29.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted...

  2. 14 CFR 29.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted...

  3. 14 CFR 29.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted...

  4. 14 CFR 27.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...

  5. 14 CFR 27.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...

  6. 14 CFR 27.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted as...

  7. 14 CFR 29.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION....727 Reserve energy absorption drop test. The reserve energy absorption drop test must be conducted...

  8. Pendant-Drop Surface-Tension Measurement On Molten Metal

    NASA Technical Reports Server (NTRS)

    Man, Kin Fung; Thiessen, David

    1996-01-01

    Method of measuring surface tension of molten metal based on pendant-drop method implemented in quasi-containerless manner and augmented with digital processing of image data. Electrons bombard lower end of sample rod in vacuum, generating hanging drop of molten metal. Surface tension of drop computed from its shape. Technique minimizes effects of contamination.

  9. Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces

    SciTech Connect

    Boreyko, Jonathan B; Collier, Pat

    2013-01-01

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an inter-drop frost wave. The growth of this inter-drop frost front is shown to be up to three times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of inter-drop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an inter-drop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser was found to be superior to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by minimizing the success of interdrop ice bridge formation.

  10. 14 CFR 23.725 - Limit drop tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... their proper relation, from free drop heights not less than those determined by the following formula: h... must be dropped with an effective weight equal to EC28SE91.014 where— W e=the effective weight to be... the drop mass (inches); W=W M for main gear units (lbs), equal to the static weight on that unit...

  11. 14 CFR 23.725 - Limit drop tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... their proper relation, from free drop heights not less than those determined by the following formula: h... must be dropped with an effective weight equal to EC28SE91.014 where— W e=the effective weight to be... the drop mass (inches); W=W M for main gear units (lbs), equal to the static weight on that unit...

  12. PROGRAM DROP: A computer program for prediction of evaporation from freely falling multicomponent drops

    SciTech Connect

    Gavin, P.M.

    1996-12-01

    PROGRAM DROP consists of a series of FORTRAN routine which together are used to model the evaporation of a freely falling, multicomponent drop composed of an arbitrary number of volatile species and a single nonvolatile, inert component. The physics underlying the model are clearly identified, and the model`s relationship to previous work in the literature is described. Test cases are used to illustrate the viability of the model and to highlight its potential usefulness in the accurate prediction of multicomponent droplet vaporization in a variety of applications.

  13. Electrically induced drop detachment and ejection

    NASA Astrophysics Data System (ADS)

    Cavalli, Andrea; Preston, Daniel J.; Tio, Evelyn; Martin, David W.; Miljkovic, Nenad; Wang, Evelyn N.; Blanchette, Francois; Bush, John W. M.

    2016-02-01

    A deformed droplet may leap from a solid substrate, impelled to detach through the conversion of surface energy into kinetic energy that arises as it relaxes to a sphere. Electrowetting provides a means of preparing a droplet on a substrate for lift-off. When a voltage is applied between a water droplet and a dielectric-coated electrode, the wettability of the substrate increases in a controlled way, leading to the spreading of the droplet. Once the voltage is released, the droplet recoils, due to a sudden excess in surface energy, and droplet detachment may follow. The process of drop detachment and lift-off, prevalent in both biology and micro-engineering, has to date been considered primarily in terms of qualitative scaling arguments for idealized superhydrophobic substrates. We here consider the eletrically-induced ejection of droplets from substrates of finite wettability and analyze the process quantitatively. We compare experiments to numerical simulations and analyze how the energy conversion efficiency is affected by the applied voltage and the intrinsic contact angle of the droplet on the substrate. Our results indicate that the finite wettability of the substrate significantly affects the detachment dynamics, and so provide new rationale for the previously reported large critical radius for drop ejection from micro-textured substrates.

  14. Electrohydrodynamically Driven Chaotic Advection in Drops

    NASA Astrophysics Data System (ADS)

    Ward, Thomas; Homsy, G. M.

    2002-11-01

    When a liquid drop of given dielectric constant, resistivity and viscosity is translating in a liquid of different dielectric constant, resistivity and viscosity under Stokes flow conditions in the presence of an electric field, the resulting internal circulation is a superposition of the Hadamard-Rybcynski circulation and the circulation first described theoretically by G. I. Taylor. For sufficiently strong electric field strengths, the quadrapole structure of the Taylor circulation can cause an internal stagnation disk to occur. Our interest is in the situation where a modulation of the electric field causes the stagnation disk to modulate its position, potentially leading to chaotic flows within the drop. The dimensionless electric field strength is characterized by W = 4V(1+lambda)/U where V is the maximum interfacial velocity of the Taylor circulation, U the translational velocity, and lambda the viscosity ratio. The streamfunction for the flow is: 1) psi = (r4-r2) sin2)(theta + W(t) (r3 - r5) sin2 (theta) cos(theta) 2) W(t) = W1 + W2 cos ((epsilon)t) where epsilon is the dimensionless frequency, and W1, W2 are the amplitudes of the DC and AC components, respectively. We have found it useful to replace these parameters by a secondary set, epsilon, Wmax and delta = (1 / W1 - 1 / W2) - (1 / W1 + 1 / W2). As shown in Figure 1a, delta is the dimensionless distance the stagnation disk moves over one period of modulation. The advection equations corresponding to the flow were integrated by standard techniques, and it was found that the trajectories were chaotic over a wide range of parameters. Experiments were conducted to test the predictions of rapid mixing on convective time scales. Drops of silicon oil were suspended in a small 60 mm x 120 mm x 120 mm test cell filled with castor oil, and subject to time-modulated axial electric fields with a wave form corresponding to eq(2). The drops were typically 5 mm in diameter and settled with typical speeds of O(10-1 mm

  15. Loxapine Add-on for Adolescents and Adults with Autism Spectrum Disorders and Irritability

    PubMed Central

    Reed, Gregory; Cain, Sharon E.; Zhou, Xinghua; Barth, Francis X.; Aman, Michael G.; Palaguachi, Gladys I.; Mikhnev, Dmytro; Teng, Rujia; Andridge, Rebecca; Logan, Marilyn; Butler, Merlin G.; Han, Joan C.

    2015-01-01

    Abstract Objectives: Our clinical experience with low dose loxapine (5–15 mg/day) suggests promising efficacy and safety for irritability in autism spectrum disorders (ASD). We studied low dose loxapine prospectively in adolescents and adults with ASD and irritability. Additionally, we measured loxapine and metabolite concentrations, and brain-derived neurotrophic factor (BDNF) as a biomarker of neuromodulation. Methods: We performed a 12 week open trial of add-on loxapine in subjects, ages 13–65 years, diagnosed with ASD, and Aberrant Behavior Checklist-Irritability (ABC-I) subscale scores >14. Loxapine was dosed flexibly up to 15 mg daily, starting with 5 mg on alternate days. From weeks 1 to 6, other psychoactive medications were tapered if possible; from weeks 6 to 12, all medication doses were held stable. The primary outcome was the Clinical Global Impressions-Improvement subscale (CGI-I), ratings of Much Improved or Very Much Improved. Secondary outcomes were the ABC-I, Repetitive Behavior Scale-Revised, and Schalock Quality of Life scale. Serum BDNF and loxapine and metabolite concentrations were assayed. BDNF rs6265 was genotyped. Results: Sixteen subjects were enrolled; 12 completed all visits. Median age was 18 years (range 13–39). Median final loxapine dose was 7.5 mg/day (2.5–15). All 14 subjects (100%) with data at week 12 were rated as Much Improved on CGI-I at 12 weeks. Mean change on ABC-I at 12 weeks was −31%, p=0.01. Mean body mass index (BMI)-Z decreased between weeks 6 and 12, p=0.03. Side effects were minimal, and prolactin elevation occurred in only one subject. BDNF concentrations measured in 11 subjects increased significantly (p=0.04). Subjects with AG genotype for BDNF rs6265 required a lower dose of loxapine at study end, but had similar behavioral and BDNF concentration changes as the GG genotype. Conclusions: Low dose loxapine shows promise as a repurposed drug for irritability in ASD. Loxapine effects on BDNF warrant

  16. Treatment of infectious waste: development and testing of an add-on set for used gravity displacement autoclaves.

    PubMed

    Stolze, René; Kühling, Jan-Gerd

    2009-06-01

    The safe management of potentially infectious healthcare waste is gaining increasing worldwide importance. In developing countries, simple incinerators are used for the treatment of this type of waste stream. However, as these incinerators produce high emissions and represent the main generators of dioxin and furans in these countries, alternative and cost-effective solutions are needed. As steam treatment systems do not produce persistent organic pollutants, the use of existing (older) medical autoclaves could represent a solution for the treatment of infectious waste. ETLog Health EnviroTech & Logistics, the German-based consulting and engineering company carried out the first research into whether gravity air displacement autoclaves can be used for the safe decontamination of infectious waste. The research showed that it is not possible to decontaminate waste using this type of autoclave. A subsequent research and development phase might, however, make it possible to develop a new process cycle. Tests carried out on the basis of international standards and norms showed that by applying this process cycle and using an add-on set, it is possible to treat healthcare waste using the existing stock of older medical autoclaves. The process cycle and the add-on set developed were tested under existing conditions in Hanoi, Vietnam using the treatment cycle developed for a 13-year-old autoclave. All the parameters for infectious waste decontamination were reached. As modified autoclaves prevent the emission of toxic substances, this approach presents an interim solution, which avoids the impacts on human health and the environment caused by the incineration of healthcare waste.

  17. Force-displacement differences in the lower extremities of young healthy adults between drop jumps and drop landings.

    PubMed

    Hackney, James M; Clay, Rachel L; James, Meredith

    2016-10-01

    We measured ground reaction force and lower extremity shortening in ten healthy, young adults in order to compare five trials of drop jumps to drop landings. Our dependent variable was the percentage of displacement (shortening) between the markers on the ASIS and second metatarsal heads on each LE, relative to the maximum shortening (100% displacement) for that trial at the point of greatest ground reaction force. We defined this as "percent displacement at maximum force" (%dFmax). The sample mean %dFmax was 0.73%±0.14% for the drop jumps, and 0.47%±0.09% for the drop landings. The mean within-subject difference score was 0.26%±0.20%. Two-tailed paired t test comparing %dFmax between the drop jump and drop landing yielded P=0.002. For all participants in this study, the %dFmax was greater in drop jumps than in drop landings. This indicates that in drop jumps, the point of maximum force and of maximum shortening was nearly simultaneous, compared to drop landings, where the point of maximum shortening followed that of maximum force by a greater proportion. This difference in force to displacement behavior is explained by linear spring behavior in drop jumps, and linear damping behavior in drop landings. PMID:27344129

  18. Force-displacement differences in the lower extremities of young healthy adults between drop jumps and drop landings.

    PubMed

    Hackney, James M; Clay, Rachel L; James, Meredith

    2016-10-01

    We measured ground reaction force and lower extremity shortening in ten healthy, young adults in order to compare five trials of drop jumps to drop landings. Our dependent variable was the percentage of displacement (shortening) between the markers on the ASIS and second metatarsal heads on each LE, relative to the maximum shortening (100% displacement) for that trial at the point of greatest ground reaction force. We defined this as "percent displacement at maximum force" (%dFmax). The sample mean %dFmax was 0.73%±0.14% for the drop jumps, and 0.47%±0.09% for the drop landings. The mean within-subject difference score was 0.26%±0.20%. Two-tailed paired t test comparing %dFmax between the drop jump and drop landing yielded P=0.002. For all participants in this study, the %dFmax was greater in drop jumps than in drop landings. This indicates that in drop jumps, the point of maximum force and of maximum shortening was nearly simultaneous, compared to drop landings, where the point of maximum shortening followed that of maximum force by a greater proportion. This difference in force to displacement behavior is explained by linear spring behavior in drop jumps, and linear damping behavior in drop landings.

  19. Surface Patterns of Parametrically-Excited Sessile Drops

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Ti; Bostwick, Joshua; Daniel, Susan; Steen, Paul

    2012-11-01

    A mechanically-excited sessile water drop exhibits surface patterns that vary with driving amplitude and frequency. At small amplitudes, drops exhibit axisymmetric wave patterns. At sufficiently large amplitudes and at particular frequencies, symmetry breaks and there appear subharmonically-resonating sectoral and tesseral mode shapes. We report observations from experiment and compare to results from modeling the parametric excitation of the drops. The modeling uses the spectrum and eigenmodes from a linear stability analysis of the inviscid sessile Rayleigh drop with moving/pinned contact-line. Manipulating drop motion can be important to a variety of applications.

  20. Vertical vibration and shape oscillation of acoustically levitated water drops

    SciTech Connect

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B.

    2014-09-08

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  1. Vertical vibration and shape oscillation of acoustically levitated water drops

    NASA Astrophysics Data System (ADS)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B.

    2014-09-01

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  2. Thermocapillary Migration and Interactions of Bubbles and Drops

    NASA Technical Reports Server (NTRS)

    Subramaniam, R. Shankar; Balasubramaniam, R.; Wozniak, G.; Hadland, P. H.

    1999-01-01

    Experiments were performed aboard the LMS mission of the Space Shuttle in summer 1996 in the BDPU on isolated air bubbles and Fluorinert FC-75 drops as well as on interacting bubbles/drops migrating in a temperature gradient in a Dow-Corning DC-200 series silicone oil of nominal viscosity 10 centistokes. The data, recorded in the form of videotape images as well as cine images in selected runs, have been analyzed. The behavior of the isolated objects is consistent with earlier observations made aboard the IML-2 mission while the range of Reynolds and Marangoni numbers has been extended substantially over that in the IML-2 experiments. Large bubbles were found to be slightly deformed to an oblate shape while no deformation could be detected in the case of similarly large drops. Results on interacting drops and bubbles display interesting and unanticipated features. In some experiments, drops are found to follow a three-dimensional trajectory. In others, trailing drops and bubbles are found to move off the axis of the cell when migrating behind a leading drop or bubble which moves along the axis. In this type of run, if the trailing drop is sufficiently large, it is found to pass the leading drop. Finally, behavior similar to that observed in IML-2, namely that a small leading drop slows the movement of a larger trailing drop moving along the cell axis, was observed as well.

  3. An experimental study of dynamics of drop formation

    SciTech Connect

    Zhang, X.; Basaran, O.A.

    1995-06-01

    A liquid being ejected from a nozzle emanates from it as discrete, uniformly sized drops when the flow rate is sufficiently low. In this paper, an experimental study is presented of the dynamics of a viscous liquid drop that is being formed directly at the tip of a vertical tube into ambient air. The evolution in time of the drop shape and volume is monitored with a time resolution of 1/12 to 1 ms. Following the detachment of the previous drop, the profile of the new growing drop at first changes from spherical to pear-shaped. As time advances, the throat of the pear-shaped drop takes on the appearance of a liquid thread that connects the bottom portion of the drop that is about to detach to the rest of the liquid that is pendant from the tube. The focus here is on probing the effects of physical and geometric parameters on the universal features of drop formation, paying special attention to the development, extension, and breakup of the liquid thread and the satellite drops that are formed subsequent to its breakup. The role of surfactants in modifying the dynamics of drop formation is also studied. The effects of finite inertial, capillary, viscous, and gravitational forces are all accounted for to classify drastically different formation dynamics and to elucidate the fate of satellite drops following thread rupture.

  4. Leidenfrost drops and micro-particles: organization and evaporation

    NASA Astrophysics Data System (ADS)

    Maquet, Laurent; Colinet, Pierre; Dorbolo, Stéphane

    2014-11-01

    We investigate the behavior of hydrophilic microparticles dropped into Leidenfrost drops. These particles appears to go through the drop until they reach the bottom surface of the drop where they are dewetted. Due to the evaporation of the drop, the surface of the drop decreases. Thus, the particles that are trapped at the surface of the drop due to the dewetting begin to cover more and more the drop. At a point, they even cover the whole surface of the drop. The superficial density of the particles at the surface is ~0.8 and the fraction of the beads that stay trapped at the surface until the cover is complete is always larger than 0 . 7 . We measured evaporation rates and compared the case of drops with and without particles. These evaporation rates are always decreased by the presence of the particles. This is due to the dewetting. Indeed, the effective surface of evaporation is decreased by the presence of particles at the surface. Thus, knowing how the evaporation is affected by the presence of the particles, we can measure contact angles at the lower surface of these levitating drops.

  5. Directional motion of impacting drops on dual-textured surfaces.

    PubMed

    Vaikuntanathan, V; Sivakumar, D

    2012-09-01

    In this work, we analyze the directional movement of impacting liquid drops on dual-textured solid surfaces comprising two different surface morphologies: a textured surface and a smooth surface. The dynamics of liquid drops impacting onto the junction line between the two parts of the dual-textured surfaces is studied experimentally for varying drop impact velocity. The dual-textured surfaces used here featured a variation in their textures' geometrical parameters as well as their surface chemistry. Two types of liquid drop differing in their surface tension were used. The impact process develops a net horizontal drop velocity towards the higher-wettability surface portion and results in a bulk movement of the impacting drop liquid. The final distance moved by the impacting drop from the junction line decreases with increasing impacting drop Weber number We. A fully theoretical model, employing a balance of forces acting at the drop contact line as well as energy conservation, is formulated to determine the variation, with We, of net horizontal drop velocity and subsequent movement of the impacting drop on the dual-textured surfaces.

  6. Large ultrathin shelled drops produced via non-confined microfluidics.

    PubMed

    Chaurasia, Ankur S; Josephides, Dimitris N; Sajjadi, Shahriar

    2015-02-01

    We present a facile approach for producing large and monodisperse core-shell drops with ultrathin shells using a single-step process. A biphasic compound jet is introduced into a quiescent third (outer) phase that ruptures to form core-shell drops. Ultrathin shelled drops could only be produced within a certain range of surfactant concentrations and flow rates, highlighting the effect of interfacial tension in engulfing the core in a thin shell. An increase in surfactant concentrations initially resulted in drops with thinner shells. However, the drops with thinnest shells were obtained at an optimum surfactant concentration, and a further increase in the surfactant concentrations increased the shell thickness. Highly monodisperse (coefficient of variation smaller than 3 %) core-shell drops with diameter of ∼200 μm-2 mm with shell thickness as small as ∼2 μm were produced. The resulting drops were stable enough to undergo polymerisation and produce ultrathin shelled capsules.

  7. Jumps, somersaults, and symmetry breaking in Leidenfrost drops

    NASA Astrophysics Data System (ADS)

    Chen, Simeng; Bertola, Volfango

    2016-08-01

    When a droplet of water impacts a heated surface, the drop may be observed to bounce. Recently is has been found that small quantities (˜100 ppm) of polymer additives such as polyethylene oxide can significantly increase the maximum bouncing height of drops. This effect has been explained in terms of the reduction of energy dissipation caused by polymer additives during the drop retraction and rebound, resulting in higher mechanical energy available for bouncing. Here we demonstrate, by comparing three types of fluids (Newtonian, shear-thinning, and viscoelastic), that the total kinetic energy carried by low-viscosity Newtonian drops during retraction is partly transformed into rotational kinetic energy rather than dissipated when compared with high-viscosity or non-Newtonian drops. We also show that non-Newtonian effects play little role in the energy distribution during drop impact, while the main effect is due to the symmetry break observed during the retraction of low-viscosity drops.

  8. Jumps, somersaults, and symmetry breaking in Leidenfrost drops.

    PubMed

    Chen, Simeng; Bertola, Volfango

    2016-08-01

    When a droplet of water impacts a heated surface, the drop may be observed to bounce. Recently is has been found that small quantities (∼100 ppm) of polymer additives such as polyethylene oxide can significantly increase the maximum bouncing height of drops. This effect has been explained in terms of the reduction of energy dissipation caused by polymer additives during the drop retraction and rebound, resulting in higher mechanical energy available for bouncing. Here we demonstrate, by comparing three types of fluids (Newtonian, shear-thinning, and viscoelastic), that the total kinetic energy carried by low-viscosity Newtonian drops during retraction is partly transformed into rotational kinetic energy rather than dissipated when compared with high-viscosity or non-Newtonian drops. We also show that non-Newtonian effects play little role in the energy distribution during drop impact, while the main effect is due to the symmetry break observed during the retraction of low-viscosity drops. PMID:27627234

  9. The Oil Drop Experiment: How Did Millikan Decide What Was an Appropriate Drop?

    ERIC Educational Resources Information Center

    Niaz, Mansoor

    2003-01-01

    The oil drop experiment is considered an important contribution to the understanding of modern physics and chemistry. The objective of this investigation is to study and contrast the views and understanding with respect to the experiment of physicists or philosophers of science with those of authors of physics or chemistry textbooks and…

  10. Metal particle compaction during drop-substrate impact for inkjet printing and drop-casting processes

    NASA Astrophysics Data System (ADS)

    Clancy, I.; Amarandei, G.; Nash, C.; Glowacki, B. A.

    2016-02-01

    Direct coating methods using metal particles from aqueous solutions or solvent-based inks become central in the roll-to-roll fabrication processes as these methods can lead to continuous or pre-defined conductive layers on a large variety of substrates. For good electrical conductivity, the metal particles have to be brought into contact, and traditionally, additional sintering treatments are required. Such treatments can degrade the sensitive substrates as paper or polymer films. In this study, the possibility of obtaining conductive layers at room temperature is investigated for direct coating methods with an emphasis on drop-casting and inkjet printing. Thus, it is shown that electrical conductive layers can be achieved if the metal particles can compact during the drop-substrate impact interaction. It is theoretically shown that the compaction process is directly related to the particle and ink drop size, the initial fractional particle loading of the ink, solvent viscosity, and drop velocity. The theoretical predictions on compaction are experimentally validated, and the particle compaction's influence on changes in the electrical conductivity of the resulting layers is demonstrated.

  11. Nonlinear Oscillations of Two-Dimensional, Rotating Inviscid Drops

    NASA Astrophysics Data System (ADS)

    Patzek, T. W.; Basaran, O. A.; Benner, R. E.; Scriven, L. E.

    1995-01-01

    We examine the nonlinear response of a drop, rotating as a rigid body at fixed angular velocity, to two-dimensional finite-amplitude disturbances. With these restrictions, the liquid velocity becomes a superposition of the solid-body rotation and the gradient of a velocity potential. To find the drop motion, we solve an integro-differential Bernoulli's equation for the drop shape and Laplace's equation for the velocity potential field within the drop. The integral part of Bernoulli's equation couples all parts of the drop's surface and sets this problem apart from that of the oscillations of nonrotating drops. We use Galerkin's weighted residual method with finite element basis functions which are deployed on a mesh that deforms in proportion to the deformation of the free surface. To alleviate the roundoff error in the initial conditions of the drop motion, we use a Fourier filter which turns off as soon as the highest resolved oscillation mode grows above the machine noise level. The results include sequences of drop shapes, Fourier analysis of oscillation frequencies, and evolution in time of the components of total mechanical energy of the drop. The Fourier power spectral analysis of large-amplitude oscillations of the drop reveals frequency shifts similar to those of the nonrotating free drops. Constant drop volume, total energy, and angular momentum as well as vanishing mass flow across the drop surface are the standards of accuracy against which we test the nonlinear motion of the drop over tens or hundreds of oscillation periods. Finally, we demonstrate that our finite element method has superior stability, accuracy, and computational efficiency over several boundary element algorithms that have previously appeared in the literature.

  12. 77 FR 59610 - Flonicamid; Applications To Add New Food Uses on Previously Registered Pesticide Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... applications to add new food uses on previously registered pesticide products containing the insecticide, flonicamide, pursuant to the provisions of section 3(c) of the Federal Insecticide, Fungicide, and Rodenticide... registered pesticide products containing the insecticide, flonicamid,...

  13. Medical marijuana

    MedlinePlus

    ... people who have not had relief from other treatments. Unlike medical marijuana, the active ingredient in these drugs can be ... American Academy of Neurology. Medical Marijuana in Certain Medical Disorders. ... . Accessed August 24, 2015. ...

  14. Planar Jumping-Drop Thermal Diodes

    NASA Astrophysics Data System (ADS)

    Boreyko, Jonathan; Zhao, Yuejun; Chen, Chuan-Hua

    2011-11-01

    Phase-change thermal diodes transport heat asymmetrically with a large rectification coefficient unmatched by their solid-state counterparts, but are limited by either the gravitational orientation or one-dimensional configuration. We report a planar phase-change diode scalable to large areas with an orientation-independent diodicity of up to 100, in which water/vapor is enclosed by parallel superhydrophobic and superhydrophilic plates. The thermal rectification is enabled by spontaneously jumping dropwise condensate which only occurs when the superhydrophobic surface is colder than the superhydrophilic surface. Our jumping-drop thermal diode is expected to be particularly useful for the thermal protection of planar electronic components and the thermal regulation of large-area energy harvesting systems.

  15. Crack formation and prevention in colloidal drops

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  16. Load drop evaluation for TWRS FSAR

    SciTech Connect

    Julyk, L.J.; Ralston, G.L.

    1996-09-30

    Operational or remediation activities associated with existing underground high-level waste storage tank structures at the Hanford Site often require the installation/removal of various equipment items. To gain tank access for installation or removal of this equipment, large concrete cover blocks must be removed and reinstalled in existing concrete pits above the tanks. An accidental drop of the equipment or cover blocks while being moved over the tanks that results in the release of contaminants to the air poses a potential risk to onsite workers or to the offsite public. To minimize this potential risk, the use of critical lift hoisting and rigging procedures and restrictions on lift height are being considered during development of the new tank farm Basis for Interim Operation and Final Safety Analysis Report. The analysis contained herein provides information for selecting the appropriate lift height restrictions for these activities.

  17. Horizontal Drop of 21- PWR Waste Package

    SciTech Connect

    A.K. Scheider

    2007-01-31

    The objective of this calculation is to determine the structural response of the waste package (WP) dropped horizontally from a specified height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in-terms of stress intensities. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 16). AP-3.12Q, ''Calculations'' (Ref. 1 1) is used to perform the calculation and develop the document. The sketches attached to this calculation provide the potential dimensions and materials for the 21-PWR WP design.

  18. Drop Impact on a Solid Surface

    NASA Astrophysics Data System (ADS)

    Josserand, C.; Thoroddsen, S. T.

    2016-01-01

    A drop hitting a solid surface can deposit, bounce, or splash. Splashing arises from the breakup of a fine liquid sheet that is ejected radially along the substrate. Bouncing and deposition depend crucially on the wetting properties of the substrate. In this review, we focus on recent experimental and theoretical studies, which aim at unraveling the underlying physics, characterized by the delicate interplay of not only liquid inertia, viscosity, and surface tension, but also the surrounding gas. The gas cushions the initial contact; it is entrapped in a central microbubble on the substrate; and it promotes the so-called corona splash, by lifting the lamella away from the solid. Particular attention is paid to the influence of surface roughness, natural or engineered to enhance repellency, relevant in many applications.

  19. Crack formation and prevention in colloidal drops

    PubMed Central

    Kim, Jin Young; Cho, Kun; Ryu, Seul-a; Kim, So Youn; Weon, Byung Mook

    2015-01-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles. PMID:26279317

  20. Bubble and Drop Nonlinear Dynamics experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Bubble and Drop Nonlinear Dynamics (BDND) experiment was designed to improve understanding of how the shape and behavior of bubbles respond to ultrasound pressure. By understanding this behavior, it may be possible to counteract complications bubbles cause during materials processing on the ground. This 12-second sequence came from video downlinked from STS-94, July 5 1997, MET:3/19:15 (approximate). The BDND guest investigator was Gary Leal of the University of California, Santa Barbara. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced fluid dynamics experiments will be a part of investigations plarned for the International Space Station. (189KB JPEG, 1293 x 1460 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300163.html.

  1. Drop Impact on to Moving Liquid Pools

    NASA Astrophysics Data System (ADS)

    Muñoz-Sánchez, Beatriz Natividad; Castrejón-Pita, José Rafael; Castrejón-Pita, Alfonso Arturo; Hutchings, Ian M.

    2014-11-01

    The deposition of droplets on to moving liquid substrates is an omnipresent situation both in nature and industry. A diverse spectrum of phenomena emerges from this simple process. In this work we present a parametric experimental study that discerns the dynamics of the impact in terms of the physical properties of the fluid and the relative velocity between the impacting drop and the moving liquid pool. The behaviour ranges from smooth coalescence (characterized by little mixing) to violent splashing (generation of multiple satellite droplets and interfacial vorticity). In addition, transitional regimes such as bouncing and surfing are also found. We classify the system dynamics and show a parametric diagram for the conditions of each regime. This work was supported by the EPSRC (Grant EP/H018913/1), the Royal Society, Becas Santander Universidades and the International Relationships Office of the University of Extremadura.

  2. The dynamics of free liquid drops

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Trinh, E. H.; Croonquist, A. P.; Elleman, D. D.

    1988-01-01

    The behavior of rotating and oscillating free liquid drops was studied by many investigators theoretically for many years. More recent numerical treatments have yielded predictions which are yet to be verified experimentally. The purpose is to report the results of laboratory work as well as that of the experiments carried out in space during the flight of Spacelab 3, and to compare it with the existing theoretical studies. Ground-based experiments were attempted as a first approximation to the ideal boundary conditions used by the theoretical treatments by neutralizing the overwhelming effects of the Earth's gravitational field with an outside supporting liquid and with the use of levitation technology. The viscous and inertial loading of such a suspending fluid was found to profoundly effect the results, but the information thus gathered has emphasized the uniqueness of the experimental data obtained in the low-gravity environment of space.

  3. A role for α-adducin (ADD-1) in nematode and human memory

    PubMed Central

    Vukojevic, Vanja; Gschwind, Leo; Vogler, Christian; Demougin, Philippe; de Quervain, Dominique J-F; Papassotiropoulos, Andreas; Stetak, Attila

    2012-01-01

    Identifying molecular mechanisms that underlie learning and memory is one of the major challenges in neuroscience. Taken the advantages of the nematode Caenorhabditis elegans, we investigated α-adducin (add-1) in aversive olfactory associative learning and memory. Loss of add-1 function selectively impaired short- and long-term memory without causing acquisition, sensory, or motor deficits. We showed that α-adducin is required for consolidation of synaptic plasticity, for sustained synaptic increase of AMPA-type glutamate receptor (GLR-1) content and altered GLR-1 turnover dynamics. ADD-1, in a splice-form- and tissue-specific manner, controlled the storage of memories presumably through actin-capping activity. In support of the C. elegans results, genetic variability of the human ADD1 gene was significantly associated with episodic memory performance in healthy young subjects. Finally, human ADD1 expression in nematodes restored loss of C. elegans add-1 gene function. Taken together, our findings support a role for α-adducin in memory from nematodes to humans. Studying the molecular and genetic underpinnings of memory across distinct species may be helpful in the development of novel strategies to treat memory-related diseases. PMID:22307086

  4. North Carolina’s Operation Medicine Drop: Results From One of the Nation’s Largest Drug Disposal Programs

    PubMed Central

    Fleming, Eleanor; Proescholdbell, Scott; Sachdeva, Nidhi; Alexandridis, Apostolos A.; Margolis, Lewis; Ransdell, Kelly

    2016-01-01

    INTRODUCTION In 2013, a total of 1,085 North Carolina residents died due to unintentional poisoning; 91% of these deaths were attributed to medications or drugs (over-the-counter, prescription, or illicit). Proper disposal of unused, unneeded, and/or expired medications is an essential part of preventing these unintentional deaths, as well as averting the other adverse consequences of these drugs on the environment and population health. METHODS Operation Medicine Drop is a medication take-back program coordinated by Safe Kids North Carolina, a county-level, coalition-based injury prevention organization. The Operation Medicine Drop program and event registration system were used to review and validate the number of events, the counties where the events were held, and the number of unit doses (pills) collected from March 2010 to June 2014. SAS version 9.4 was used to generate basic counts and frequencies of events and doses, and ArcGIS version 10.0 was used to create the map. RESULTS From March 2010 to June 2014, Operation Medicine Drop held 1,395 events with 245 different participating law enforcement agencies in 91 counties in North Carolina, and it collected 69.6 million unit doses of medication. More than 60 local Safe Kids North Carolina community coalitions had participated as of June 2014. Every year, Operation Medicine Drop has witnessed increases in events, participating agencies, participating counties, and the number of doses collected. CONCLUSION Operation Medicine Drop is an excellent example of a successful and ongoing collaboration to improve public health. Medication take-back programs may play an important role in preventing future overdose deaths in North Carolina. PMID:26763245

  5. Acute bilateral isolated foot drop: Report of two cases

    PubMed Central

    Kertmen, H.; Gürer, B.; Yimaz, E. R.; Sekerci, Z.

    2015-01-01

    Foot drop is defined as the weakness of the foot and ankle dorsiflexion. Acute unilateral foot drop is a well-documented entity, whereas bilateral foot drop is rarely documented. Slowly progressing bilateral foot drop may occur with various metabolic causes, parasagittal intracranial pathologies, and cauda equina syndrome. Acute onset of bilateral foot drop due to disc herniation is extremely rare. Here we present two cases of acute bilateral foot drop due to disc herniation. The first patient was a 45-year-old man presented with acute bilateral foot drop, without any sign of the cauda equina syndrome. Lumbar magnetic resonance imaging of the patient revealed L4-5 disc herniation. To our knowledge, this is the first presented case of acute bilateral foot drop without any signs of cauda equina syndrome caused by L4-5 disc herniation. The second patient was a 50-year-old man who was also presented with acute bilateral foot drop, and had T12-L1 disc herniation with intradural extension. Also this is the first presented case of T12-L1 disc herniation with intradural extension causing acute bilateral foot drop. We performed emergent decompressive laminectomy to both of the patients and extrude disc materials were excised. Both of the patients were recovered with favorable outcome. PMID:25972945

  6. Colloidal Drop Deposition on Porous Substrates

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Pack, Min; Hu, Han; Kim, Dong-Ook; Yang, Xin

    2015-11-01

    Printable electronics and in particular paper and textile-based electronics have fueled research in inkjet printing on porous substrates. On nonporous substrates, the particle motion of the particles and evaporation of the solvent are the two main mechanisms that drive the final deposition morphology. For porous substrates another factor, mainly infiltration, adds a layer of complexity to the deposition patterns that has not yet been elucidated in literature. In this study, a high-speed camera was used to capture the imbibition of picoliter-sized polystyrene nanoparticles in water droplets into nano-porous anodic aluminum oxide substrates of various porosities and wettabilities. For water, the infiltration rate is much faster than both evaporation and particle motion and thus when the substrate fully imbibes the droplet, the well-known ``coffee ring'' is suppressed. However, when a residual droplet forms upon the termination of the infiltration regime, the competing particle motion and evaporation regimes, tP and tEI respectively, define the critical time scales for which the coffee ring will be formed (tP /tEI <1) or suppressed (tP /tEI >1). National Science Foundation under Grant No. CMMI-1401438.

  7. Marangoni or not Marangoni? Thermal Marangoni flow measurements in evaporating drops

    NASA Astrophysics Data System (ADS)

    Marin, Alvaro Gomez; Liepelt, Robert; Rossi, Massimiliano; Kaehler, Christian

    2013-11-01

    Sessile evaporating droplets fascinate for the rich and complex behavior that hides behind their apparent simplicity. Although the basic physics of the coffee-stain formation can be explained assuming thermal equilibrium (Deegan, 1997), thermal effects play an important role in the flow patterns within the droplet and in the deposits left on the substrate. Understanding such flows would give a chance to add a higher degree of control in these not-so-simple systems. For example, several studies have recently suggested that such thermal Marangoni flows can be strong enough to neutralize the coffee-stain effect. Experimental work in this sense has been scarce due to the difficulty of tracking particles at the surface of the droplet, where the flow is originated. In this study we perform fully three-dimensional and time resolved particle tracking measurements of particles suspended in sessile drops of liquids on substrates with different thermal conductivity ratios. The results are compared with some of the theoretical models and simulations available in the literature. Our final aim is to precisely quantify how important is the thermal Marangoni flow in an evaporating drop and if it can be used for practical applications.

  8. Method for reducing pressure drop through filters, and filter exhibiting reduced pressure drop

    DOEpatents

    Sappok, Alexander; Wong, Victor

    2014-11-18

    Methods for generating and applying coatings to filters with porous material in order to reduce large pressure drop increases as material accumulates in a filter, as well as the filter exhibiting reduced and/or more uniform pressure drop. The filter can be a diesel particulate trap for removing particulate matter such as soot from the exhaust of a diesel engine. Porous material such as ash is loaded on the surface of the substrate or filter walls, such as by coating, depositing, distributing or layering the porous material along the channel walls of the filter in an amount effective for minimizing or preventing depth filtration during use of the filter. Efficient filtration at acceptable flow rates is achieved.

  9. Rheological Properties of Viscoelastic Drops on Superamphiphobic Substrates.

    PubMed

    Harrold, Victoria C; Paven, Maxime; Vollmer, Doris; Sharp, James S

    2016-04-26

    The rheological properties of microliter sized drops of polymer solutions were investigated using measurements of their mechanical vibrational response. Drops were suspended on superamphiphobic substrates and vibrated by the application of a short mechanical impulse. Surface vibrations were monitored by refracting laser light through the drops and focusing the refracted light onto the surface of a photodiode. Time dependent variations in the photodiode output were Fourier transformed to obtain the frequency and spectral width of the mechanical resonances of the drops. These quantities were related to the frequency dependent shear storage and loss moduli (G' and G″, respectively) using a simple theoretical model. The resulting rheological properties were found to be in agreement with microrheology measurements of the same solutions. Drop vibration therefore provides a fast and accurate method of quantifying the rheological properties of single drops.

  10. Evaporation, ignition, and combustion of nondilute clusters of drops

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Harstad, K.

    1990-01-01

    A theory of evaporation, ignition, and burning of moderately dense spherical drop clusters has been developed. The theory takes into account burning of premixed air and fuel internal to the cluster at ignition and subsequent burning of fuel emitted from the cluster by a flame sheet surrounding it. The model considers interdrop interaction, momentum exchange between drops and gas, and turbulent exchange processes between the cluster and its surroundings. Calculations are performed for varying initial air-to-fuel-mass ratios, initial cluster radii, ambient gas temperatures and initial drop temperatures. Results are presented for ratios of fuel mass burned to fuel mass lost from the cluster between drop ignition and drop disappearance, fuel burned fractions at ignition and at the moment of drop disappearance, and jump conditions at ignition.

  11. Bursting drops in solid dielectrics caused by high voltages

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Suo, Zhigang; Zhao, Xuanhe

    2012-10-01

    Fluid drops tend to be spheres—a shape that minimizes surface energy. In thunderstorm clouds, drops can become unstable and emit thin jets when charged beyond certain limits. The instability of electrified drops in gases and liquids has been widely studied and used in applications including ink-jet printing, electrospinning nanofibers, microfluidics and electrospray ionization. Here we report a different scenario: drops in solids become unstable and burst under sufficiently high electric fields. We find the instability of drops in solids morphologically resembles that in liquids, but the critical electric field for the instability follows a different scaling due to elasticity of solids. Our observations and theoretical models not only advance the fundamental understanding of electrified drops, but also suggest a new failure mechanism of high energy density dielectric polymers, which have diverse applications ranging from capacitors for power grids and electric vehicles to muscle-like transducers for soft robots and energy harvesting.

  12. Oscillations of a deformed liquid drop in an acoustic field

    NASA Astrophysics Data System (ADS)

    Shi, Tao; Apfel, Robert E.

    1995-07-01

    The oscillations of an axially symmetric liquid drop in an acoustic standing wave field in air have been studied using the boundary integral method. The interaction between the drop oscillation and sound field has been included in this analysis. Our computations focus on the frequency shift of small-amplitude oscillations of an acoustically deformed drop typical of a drop levitated in air. In the presence or absence of gravity, the trend and the magnitude of the frequency shift have been given in terms of drop size, drop deformation, and the strength of the sound field. Our calculations are compared with experiments performed on the United States Microgravity Laboratory (USML-1) and with ground-based measurements, and are found to be in good agreement within the accuracy of the experimental data.

  13. Bursting drops in solid dielectrics caused by high voltages.

    PubMed

    Wang, Qiming; Suo, Zhigang; Zhao, Xuanhe

    2012-01-01

    Fluid drops tend to be spheres--a shape that minimizes surface energy. In thunderstorm clouds, drops can become unstable and emit thin jets when charged beyond certain limits. The instability of electrified drops in gases and liquids has been widely studied and used in applications including ink-jet printing, electrospinning nanofibers, microfluidics and electrospray ionization. Here we report a different scenario: drops in solids become unstable and burst under sufficiently high electric fields. We find the instability of drops in solids morphologically resembles that in liquids, but the critical electric field for the instability follows a different scaling due to elasticity of solids. Our observations and theoretical models not only advance the fundamental understanding of electrified drops, but also suggest a new failure mechanism of high energy density dielectric polymers, which have diverse applications ranging from capacitors for power grids and electric vehicles to muscle-like transducers for soft robots and energy harvesting. PMID:23093194

  14. Bursting drops in solid dielectrics caused by high voltages.

    PubMed

    Wang, Qiming; Suo, Zhigang; Zhao, Xuanhe

    2012-01-01

    Fluid drops tend to be spheres--a shape that minimizes surface energy. In thunderstorm clouds, drops can become unstable and emit thin jets when charged beyond certain limits. The instability of electrified drops in gases and liquids has been widely studied and used in applications including ink-jet printing, electrospinning nanofibers, microfluidics and electrospray ionization. Here we report a different scenario: drops in solids become unstable and burst under sufficiently high electric fields. We find the instability of drops in solids morphologically resembles that in liquids, but the critical electric field for the instability follows a different scaling due to elasticity of solids. Our observations and theoretical models not only advance the fundamental understanding of electrified drops, but also suggest a new failure mechanism of high energy density dielectric polymers, which have diverse applications ranging from capacitors for power grids and electric vehicles to muscle-like transducers for soft robots and energy harvesting.

  15. 42 CFR 82.16 - How will NIOSH add to monitoring data to remedy limitations of individual monitoring and missed...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false How will NIOSH add to monitoring data to remedy... PROGRAM ACT OF 2000 Dose Reconstruction Process § 82.16 How will NIOSH add to monitoring data to remedy... to add this to the total dose estimate. For monitoring periods where external dosimetry data...

  16. Student Drop Tower Competitions: Dropping In a Microgravity Environment (DIME) and What If No Gravity? (WING)

    NASA Technical Reports Server (NTRS)

    Hall, Nancy R.; Stocker, Dennis P.; DeLombard, Richard

    2011-01-01

    This paper describes two student competition programs that allow student teams to conceive a science or engineering experiment for a microgravity environment. Selected teams design and build their experimental hardware, conduct baseline tests, and ship their experiment to NASA where it is operated in the 2.2 Second Drop Tower. The hardware and acquired data is provided to the teams after the tests are conducted so that the teams can prepare their final reports about their findings.

  17. Fluid dynamics and solidification of levitated drops and shells

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    1990-01-01

    The fluid dynamic investigaton of simple free liquid drops is described based on ground-based and low-gravity experimental results. The behavior of compound drops and liquid shells as described in recent theoretical and experimental studies is discussed. Experimental investigations using both levitation devices and drop tubes are considered in the case of 1-g laboratory investigations, highlighting the advantages and drawbacks of both techniques.

  18. Drop-out from a psychodynamic group psychotherapy outpatient unit.

    PubMed

    Jensen, Hans Henrik; Mortensen, Erik Lykke; Lotz, Martin

    2014-11-01

    BACKGROUND. Drop-out from psychotherapy is common and represents a considerable problem in clinical practice and research. Aim. To explore pre-treatment predictors of early and late drop-out from psychodynamic group therapy in a public outpatient unit for non-psychotic disorders in Denmark. Methods. Naturalistic design including 329 patients, the majority with mood, neurotic and personality disorders referred to 39-session group therapy. Predictors were socio-demographic and clinical variables, self-reported symptoms (Symptom Check List-90-Revised) and personality style (Millon Clinical Multiaxial Inventory-II). Drop-out was classified into early and late premature termination excluding patients who dropped out for external reasons. Results. Drop-out comprised 20.6% (68 patients) of the sample. Logistic regression revealed social functioning, vocational training, alcohol problems and antisocial behavior to be related to drop-out. However, early drop-outs had prominent agoraphobic symptoms, lower interpersonal sensitivity and compulsive personality features, and late drop-outs cognitive and somatic anxiety symptoms and antisocial personality features. Clinical and psychological variables accounted for the major part of variance in predictions of drop-out, which ranged from 15.6% to 19.5% (Nagelkerke Pseudo R-Square). Conclusion. Social functioning was consistently associated with drop-out, but personality characteristics and anxiety symptoms differentiated between early and late drop-out. Failure to discriminate between stages of premature termination may explain some of the inconsistencies in the drop-out literature. Clinical implications. Before selection of patients to time-limited psychodynamic groups, self-reported symptoms should be thoroughly considered. Patients with agoraphobic symptoms should be offered alternative treatment. Awareness of and motivation to work with interpersonal issues may be essential for compliance with group therapy.

  19. How to optimize the drop plate method for enumerating bacteria.

    PubMed

    Herigstad, B; Hamilton, M; Heersink, J

    2001-03-01

    The drop plate (DP) method can be used to determine the number of viable suspended bacteria in a known beaker volume. The drop plate method has some advantages over the spread plate (SP) method. Less time and effort are required to dispense the drops onto an agar plate than to spread an equivalent total sample volume into the agar. By distributing the sample in drops, colony counting can be done faster and perhaps more accurately. Even though it has been present in the laboratory for many years, the drop plate method has not been standardized. Some technicians use 10-fold dilutions, others use twofold. Some technicians plate a total volume of 0.1 ml, others plate 0.2 ml. The optimal combination of such factors would be useful to know when performing the drop plate method. This investigation was conducted to determine (i) the standard deviation of the bacterial density estimate, (ii) the cost of performing the drop plate procedure, (iii) the optimal drop plate design, and (iv) the advantages of the drop plate method in comparison to the standard spread plate method. The optimal design is the combination of factor settings that achieves the smallest standard deviation for a fixed cost. Computer simulation techniques and regression analysis were used to express the standard deviation as a function of the beaker volume, dilution factor, and volume plated. The standard deviation expression is also applicable to the spread plate method.

  20. Quantitative assessment of ribosome drop-off in E. coli

    PubMed Central

    Sin, Celine; Chiarugi, Davide; Valleriani, Angelo

    2016-01-01

    Premature ribosome drop-off is one of the major errors in translation of mRNA by ribosomes. However, repeated analyses of Ribo-seq data failed to quantify its strength in E. coli. Relying on a novel highly sensitive data analysis method we show that a significant rate of ribosome drop-off is measurable and can be quantified also when cells are cultured under non-stressing conditions. Moreover, we find that the drop-off rate is highly variable, depending on multiple factors. In particular, under environmental stress such as amino acid starvation or ethanol intoxication, the drop-off rate markedly increases. PMID:26935582

  1. Evaporation, ignition and combustion of nondilute clusters of drops

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Harstad, K.

    1988-01-01

    A theory of evaporation, ignition, and burning of moderately dense spherical drop clusters has been developed. The theory takes into account burning of premixed air and fuel internal to the cluster at ignition and subsequent burning of fuel emitted from the cluster by a flame sheet surrounding it. The model considers interdrop interaction, momentum exchange between drops and gas, and turbulent exchange processes between the cluster and its surroundings. Calcualtions are performed for varying initial air to fuel mass ratios, initial cluster radii, ambient gas temperatures, and initial drop temperatures. Results are presented for fuel burn fractions at ignition and at the moment of drop disappearance, as well as jump conditions at ignition.

  2. Studies of the Stability and Dynamics of Levitated Drops

    NASA Technical Reports Server (NTRS)

    Anikumar, A.; Lee, Chun Ping; Wang, T. G.

    1996-01-01

    This is a review of our experimental and theoretical studies relating to equilibrium and stability of liquid drops, typically of low viscosity, levitated in air by a sound field. The major emphasis here is on the physical principles and understanding behind the stability of levitated drops. A comparison with experimental data is also given, along with some fascinating pictures from high-speed photography. One of the aspects we shall deal with is how a drop can suddenly burst in an intense sound field; a phenomenon which can find applications in atomization technology. Also, we are currently investigating the phenomenon of suppression of coalescence between drops levitated in intense acoustic fields.

  3. Electrohydrodynamic deformation and interaction of a pair of emulsion drops

    NASA Technical Reports Server (NTRS)

    Baygents, James C.

    1994-01-01

    The response of a pair of emulsion drops to the imposition of a uniform electric field is examined. The case studied is that of equal-sized drops whose line of centers is parallel to the axis of the applied field. A new boundary integral solution to the governing equations of the leaky dielectric model is developed; the formulation accounts for the electrostatic and hydrodynamic interactions between the drops, as well as their deformations. Numerical calculations show that, after an initial transient during which the drops primarily deform, the pair drift slowly together due to their electrostatic interactions.

  4. Substrate constraint modifies the Rayleigh spectrum of vibrating sessile drops

    NASA Astrophysics Data System (ADS)

    Chang, Chun-Ti; Bostwick, Joshua B.; Steen, Paul H.; Daniel, Susan

    2013-08-01

    In this work, we study the resonance behavior of mechanically oscillated, sessile water drops. By mechanically oscillating sessile drops vertically and within prescribed ranges of frequencies and amplitudes, a rich collection of resonance modes are observed and their dynamics subsequently investigated. We first present our method of identifying each mode uniquely, through association with spherical harmonics and according to their geometric patterns. Next, we compare our measured resonance frequencies of drops to theoretical predictions using both the classical theory of Lord Rayleigh and Lamb for free, oscillating drops, and a prediction by Bostwick and Steen that explicitly considers the effect of the solid substrate on drop dynamics. Finally, we report observations and analysis of drop mode mixing, or the simultaneous coexistence of multiple mode shapes within the resonating sessile drop driven by one sinusoidal signal of a single frequency. The dynamic response of a deformable liquid drop constrained by the substrate it is in contact with is of interest in a number of applications, such as drop atomization and ink jet printing, switchable electronically controlled capillary adhesion, optical microlens devices, as well as digital microfluidic applications where control of droplet motion is induced by means of a harmonically driven substrate.

  5. Substrate constraint modifies the Rayleigh spectrum of vibrating sessile drops.

    PubMed

    Chang, Chun-Ti; Bostwick, Joshua B; Steen, Paul H; Daniel, Susan

    2013-08-01

    In this work, we study the resonance behavior of mechanically oscillated, sessile water drops. By mechanically oscillating sessile drops vertically and within prescribed ranges of frequencies and amplitudes, a rich collection of resonance modes are observed and their dynamics subsequently investigated. We first present our method of identifying each mode uniquely, through association with spherical harmonics and according to their geometric patterns. Next, we compare our measured resonance frequencies of drops to theoretical predictions using both the classical theory of Lord Rayleigh and Lamb for free, oscillating drops, and a prediction by Bostwick and Steen that explicitly considers the effect of the solid substrate on drop dynamics. Finally, we report observations and analysis of drop mode mixing, or the simultaneous coexistence of multiple mode shapes within the resonating sessile drop driven by one sinusoidal signal of a single frequency. The dynamic response of a deformable liquid drop constrained by the substrate it is in contact with is of interest in a number of applications, such as drop atomization and ink jet printing, switchable electronically controlled capillary adhesion, optical microlens devices, as well as digital microfluidic applications where control of droplet motion is induced by means of a harmonically driven substrate. PMID:24032932

  6. PRESERVATIVES FROM THE EYE DROPS AND THE OCULAR SURFACE.

    PubMed

    Coroi, Mihaela Cristina; Bungau, Simona; Tit, Mirela

    2015-01-01

    The use of preservatives in eye drops (eyewashes) has known glory at the beginning, but the side effects that they have on the ocular surface have led to a decrease of their popularity. Lachrymal film dysfunction, ocular hyperemia, dotted keratitis or toxic keratopathy were reported and analyzed in terms of pathophysiological mechanism of the role played by preservatives in ophthalmic drops (eyewashes). This article reviews the most common preservatives and the existing alternatives for the maintenance of the eye sterile drops. Keywords: preservatives, eye drops, ocular surface

  7. Surface structuring of particle laden drops using electric fields

    NASA Astrophysics Data System (ADS)

    Dommersnes, P.; Fossum, J. O.

    2016-07-01

    Emulsion drops readily adsorb particles at their surfaces, which may lead to a fluid or solid layer encapsulating the drop, known as an armored drop. In this review, we discuss how electric fields can be used to manipulate colloidal surface structures, by dielectrophoretic or electro-hydrodynamic mechanisms and we also compare this to related phenomena in lipid bilayer vesicles. The phenomena discussed are important for a wide range of uses of particle laden drops, including emulsion stabilization, Janus or patchy mesocapsule-, scaffold- or other materials-production.

  8. Real-Time Access to Meteosat Data Using the ADDE Server Technology

    NASA Astrophysics Data System (ADS)

    Koenig, M.; Gaertner, V. K.

    2006-05-01

    The McIDAS ADDE technology is used by EUMETSAT to provide access to real-time Meteosat-8 image data to globally foster training activities within and outside classroom courses. (McIDAS - Man computer Interactive Data Access System, ADDE - Abstract Data Distribution Environment). The advanced imaging capabilities of Meteosat-8 - a satellite of the Meteosat Second Generation series - provides full disk Earth coverage in 11 spectral channels every 15 minutes. A further 12th channel covers the land surfaces in a 1 km spatial resolution in a solar wavelength. Real-time operational services use the EUMETCast dissemination mechanism for timely access to the image data. EUMETCast covers the geographic area of Europe, Africa, South America and parts of North America and Asia. Details of the EUMETCast system are given in a separate presentation by Gaertner and Koenig in this conference. In addition to EUMETCast, however, for training purposes, access is also made available in near real-time on the basis of the ADDE technology. This is an internet based data access, i.e. it is globally available. ADDE offers the possibility to retrieve only the area of interest, e.g. a special geographic area and only selected channels. This implies that the actual data transfer is small so that the internet is used very efficiently. ADDE was developed as part of the McIDAS software, and is now also freely available in the OpenADDE package (http://www.ssec.wisc.edu/mcidas/software/openadde). Other than McIDAS itself, there is a variety of application packages that are ADDE enabled, as e.g. McIDAS-Lite, the Unidata Integrated Data Viewer, Hydra, IDL, or Matlab. These tools also offer further analysis concepts. Examples will be shown during the presentation. The user community of the ADDE access also needs to be licensed according to the EUMETSAT data policy. After the successful commissioning of Meteosat-9, the data of this satellite will of course be incorporated into the ADDE data provision.

  9. Fertility drop precedes development in Thailand.

    PubMed

    Elliott, R

    1978-01-01

    In Thailand, birthrates among married women have declined by almost 1/2 over a 5-year period. Simultaneously, the proportion of women using contraception has doubled, knowledge of at least the rudiments of contraception has become close to universal, and family size preferences have dropped markedly. Authors John Knodel and Nibbon Debavalya, writing in a recent issue of "International Family Planning Perspectives and Digest," report a concurrent development of one of the world's largest family planning programs. They conclude that existing evidence suggests a relationship between improved fertility regulation and the growth of the family planning programs. The most significant features of the transition between 1968-1975 have included a decline in birthrates among rural women that is twice that of their counterparts and a nearly tripling of the proportion of women who had "ever" used contraception (from 19 to 51%). Also, the impact of the family planning program has been heightened by supportive factors in the Thai culture, the most important of which is the relatively high status of women in that country.

  10. Court decision dropping toxic substance rules stands

    SciTech Connect

    Bryant, C.R.

    1993-06-01

    In a somewhat surprising move, the U.S. Department of Labor has decided not to appeal a court decision essentially dropping regulations established by the Occupational Safety and Health Administration (OSHA) for about 400 hazardous substances. The decision leaves unregulated or subject to reduced standards substances that range from carbon monoxide to perchloroethylene. The Labor Department had until March 22, 1993, to appeal the court decision. On July 8, 1992, the U.S. Court of Appeals for the 11th Circuit overturned OSHA's final Air Contaminants Standard, which was promulgated in 1989. The standard established permissible exposure limits (PELs) for 428 toxic substances. In AFL-CIO vs. OSHA, the Court ruled that OSHA failed to make a separate scientific case for evaluating health risks of each chemical. Because of the decision not to appeal, PELs for more than half of the substances regulated by OSHA now are removed from the books or revert to the voluntary industry standards adopted by OSHA in 1970 and in force prior to the 1989 final rule.

  11. STRESS CORROSION CRACKING IN TEAR DROP SPECIMENS

    SciTech Connect

    Lam, P; Philip Zapp, P; Jonathan Duffey, J; Kerry Dunn, K

    2009-05-01

    Laboratory tests were conducted to investigate the stress corrosion cracking (SCC) of 304L stainless steel used to construct the containment vessels for the storage of plutonium-bearing materials. The tear drop corrosion specimens each with an autogenous weld in the center were placed in contact with moist plutonium oxide and chloride salt mixtures. Cracking was found in two of the specimens in the heat affected zone (HAZ) at the apex area. Finite element analysis was performed to simulate the specimen fabrication for determining the internal stress which caused SCC to occur. It was found that the tensile stress at the crack initiation site was about 30% lower than the highest stress which had been shifted to the shoulders of the specimen due to the specimen fabrication process. This finding appears to indicate that the SCC initiation took place in favor of the possibly weaker weld/base metal interface at a sufficiently high level of background stress. The base material, even subject to a higher tensile stress, was not cracked. The relieving of tensile stress due to SCC initiation and growth in the HAZ and the weld might have foreclosed the potential for cracking at the specimen shoulders where higher stress was found.

  12. GENDER, DEBT, AND DROPPING OUT OF COLLEGE

    PubMed Central

    DWYER, RACHEL E.; HODSON, RANDY; MCLOUD, LAURA

    2012-01-01

    For many young Americans, access to credit has become critical to completing a college education and embarking on a successful career path. Young people increasingly face the trade-off of taking on debt to complete college or foregoing college and taking their chances in the labor market without a college degree. These trade-offs are gendered by differences in college preparation and support and by the different labor market opportunities women and men face that affect the value of a college degree and future difficulties they may face in repaying college debt. We examine these new realities by studying gender differences in the role of debt in the pivotal event of graduating from college using the 1997 cohort of the national longitudinal Survey of youth. In this article, we find that women and men both experience slowing and even diminishing probabilities of graduating when carrying high levels of debt, but that men drop out at lower levels of debt than do women. We conclude by theorizing that high levels of debt are one of the mechanisms that sort women and men into different positions in the social stratification system. PMID:23626403

  13. The Viruses of Wild Pigeon Droppings

    PubMed Central

    Phan, Tung Gia; Vo, Nguyen Phung; Boros, Ákos; Pankovics, Péter; Reuter, Gábor; Li, Olive T. W.; Wang, Chunling; Deng, Xutao; Poon, Leo L. M.; Delwart, Eric

    2013-01-01

    Birds are frequent sources of emerging human infectious diseases. Viral particles were enriched from the feces of 51 wild urban pigeons (Columba livia) from Hong Kong and Hungary, their nucleic acids randomly amplified and then sequenced. We identified sequences from known and novel species from the viral families Circoviridae, Parvoviridae, Picornaviridae, Reoviridae, Adenovirus, Astroviridae, and Caliciviridae (listed in decreasing number of reads), as well as plant and insect viruses likely originating from consumed food. The near full genome of a new species of a proposed parvovirus genus provisionally called Aviparvovirus contained an unusually long middle ORF showing weak similarity to an ORF of unknown function from a fowl adenovirus. Picornaviruses found in both Asia and Europe that are distantly related to the turkey megrivirus and contained a highly divergent 2A1 region were named mesiviruses. All eleven segments of a novel rotavirus subgroup related to a chicken rotavirus in group G were sequenced and phylogenetically analyzed. This study provides an initial assessment of the enteric virome in the droppings of pigeons, a feral urban species with frequent human contact. PMID:24023772

  14. Drop impact on natural porous stones.

    PubMed

    Lee, J B; Derome, D; Carmeliet, J

    2016-05-01

    Drop impact and spreading on three natural porous stones are experimentally determined using high-speed imaging and compared with spreading over an impermeable steel surface. The dynamic non-wetting behavior during spreading and the hydrophobic contact angle >90° is attributed to the presence of an air layer between the droplet and the porous substrate. As the contact line pins at maximum spreading on the porous stone, the maximum spreading determines the liquid contact area on such substrate. The droplet gets pinned when the air layer is broken at the contact line and capillary forces develop in fines pores at the droplet edge, pinning the droplet. Maximum spreading on porous stones increases with impact velocity but does not scale with Weber number at low impact velocity. It is demonstrated that dynamic wetting plays an important role in the spreading at low velocity and that the dynamic wetting as characterized by the dynamic contact angle θD has to be taken into account for predicting the maximum spreading. Correcting the maximum spreading ratio with the dynamic wetting behavior, all data for porous stones and non-porous substrate collapse onto a single curve.

  15. Critical point wetting drop tower experiment

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.

    1990-01-01

    The 100 m Drop Tower at NASA-Marshall was used to provide the step change in acceleration from 1.0 to 0.0005 g. An inter-fluid meniscus oscillates vertically within a cylindrical container when suddenly released from earth's gravity and taken into a microgravity environment. Oscillations damp out from energy dissipative mechanisms such as viscosity and interfacial friction. Damping of the oscillations by the later mechanism is affected by the nature of the interfacial junction between the fluid-fluid interface and the container wall. In earlier stages of the project, the meniscus shape which developed during microgravity conditions was applied to evaluations of wetting phenomena near the critical temperature. Variations in equilibrium contact angle against the container wall were expected to occur under critical wetting conditions. However, it became apparent that the meaningful phenomenon was the damping of interfacial oscillations. This latter concept makes up the bulk of this report. Perfluoromethyl cyclohexane and isopropanol in glass were the materials used for the experiment. The wetting condition of the fluids against the wall changes at the critical wetting transition temperature. This change in wetting causes a change in the damping characteristics of the interfacial excursions during oscillation and no measurable change in contact angle. The effect of contact line friction measured above and below the wetting transition temperature was to increase the period of vertical oscillation for the vapor-liquid interface when below the wetting transition temperature.

  16. Validation of an All-Pressure Fluid Drop Model: Heptane Fluid Drops in Nitrogen

    NASA Technical Reports Server (NTRS)

    Harstad, K.; Bellan, J.; Bulzan, Daniel L. (Technical Monitor)

    2000-01-01

    Despite the fact that supercritical fluids occur both in nature and in industrial situations, the fundamentals of their behavior is poorly understood because supercritical fluids combine the characteristics of both liquids and gases, and therefore their behavior is not intuitive. There are several specific reasons for the lack of understanding: First, data from (mostly optical) measurements can be very misleading because regions of high density thus observed are frequently identified with liquids. A common misconception is that if in an experiment one can optically identify "drops" and "ligaments", the observed fluid must be in a liquid state. This inference is incorrect because in fact optical measurements detect any large change (i.e. gradients) in density. Thus, the density ratio may be well below Omicron(10(exp 3)) that characterizes its liquid/gas value, but the measurement will still identify a change in the index of refraction providing that the change is sudden (steep gradients). As shown by simulations of supercritical fluids, under certain conditions the density gradients may remain large during the supercritical binary fluids mixing, thus making them optically identifiable. Therefore, there is no inconsistency between the optical observation of high density regions and the fluids being in a supercritical state. A second misconception is that because a fluid has a liquid-like density, it is appropriate to model it as a liquid. However, such fluids may have liquid-like densities while their transport properties differ from those of a liquid. Considering that the critical pressure of most fuel hydrocarbons used in Diesel and gas turbine engines is in the range of 1.5 - 3 MPa, and the fact that the maximum pressure attained in these engines is about 6 Mps, it is clear that the fuel in the combustion chamber will experience both subcritical and supercritical conditions. Studies of drop behavior over a wide range of pressures were performed in the past

  17. Study protocol for the randomised controlled trial: Antiglucocorticoid augmentation of anti-Depressants in Depression (The ADD Study)

    PubMed Central

    2013-01-01

    Background Some patients with depression do not respond to first and second line conventional antidepressants and are therefore characterised as suffering from treatment refractory depression (TRD). On-going psychosocial stress and dysfunction of the hypothalamic-pituitary-adrenal axis are both associated with an attenuated clinical response to antidepressants. Preclinical data shows that co-administration of corticosteroids leads to a reduction in the ability of selective serotonin reuptake inhibitors to increase forebrain 5-hydroxytryptamine, while co-administration of antiglucocorticoids has the opposite effect. A Cochrane review suggests that antiglucocorticoid augmentation of antidepressants may be effective in treating TRD and includes a pilot study of the cortisol synthesis inhibitor, metyrapone. The Antiglucocorticoid augmentation of anti-Depressants in Depression (The ADD Study) is a multicentre randomised placebo controlled trial of metyrapone augmentation of serotonergic antidepressants in a large population of patients with TRD in the UK National Health Service. Methods/design Patients with moderate to severe treatment refractory Major Depression aged 18 to 65 will be randomised to metyrapone 500 mg twice daily or placebo for three weeks, in addition to on-going conventional serotonergic antidepressants. The primary outcome will be improvement in Montgomery-Åsberg Depression Rating Scale score five weeks after randomisation (i.e. two weeks after trial medication discontinuation). Secondary outcomes will include the degree of persistence of treatment effect for up to 6 months, improvements in quality of life and also safety and tolerability of metyrapone. The ADD Study will also include a range of sub-studies investigating the potential mechanism of action of metyrapone. Discussion Strengths of the ADD study include broad inclusion criteria meaning that the sample will be representative of patients with TRD treated within the UK National Health

  18. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop.

    PubMed

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J G M; Zhang, Xuehua; Lohse, Detlef

    2016-08-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life-a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called "Ouzo effect." Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop. PMID:27418601

  19. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    NASA Astrophysics Data System (ADS)

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef

    2016-08-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life—a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called “Ouzo effect.” Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.

  20. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop.

    PubMed

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J G M; Zhang, Xuehua; Lohse, Detlef

    2016-08-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life-a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called "Ouzo effect." Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.

  1. Drop interaction with solid boundaries in liquid/liquid systems

    NASA Astrophysics Data System (ADS)

    Bordoloi, Ankur Deep

    The present experimental work was motivated primarily by the CO 2 sequestration process. In a possible scenario during this process, gravity driven CO2 bubbles coalesce at an interface near the rock surface. In another scenario, trapped CO2 fluid may escape from a porous matrix overcoming interfacial force inside a pore. Based on these potential scenarios, the current research was divided into two broad experimental studies. In the first part, coalescence at a quiescent interface of two analogous fluids (silicone oil and water/glycerin mixture) was investigated for water/glycerin drops with Bond number (Bo) ~7 and Ohnesorge number ~ 0.01 using high-speed imaging and time-resolved tomographic PIV. Two perturbation cases with a solid particle wetted in oil and water/glycerin placed adjacent to the coalescing drop were considered. The results were compared with coalescence of a single drop and that of a drop neighBored by a second drop of equivalent size. Each perturbing object caused an initial tilting of the drop, influencing its rupture location, subsequent film retraction and eventual collapse behavior. Once tilted, drops typically ruptured near their lowest vertical position which was located either toward or away from the perturbing object depending on the case. The trends in local retraction speed of the ruptured film and the overall dynamics of the collapsing drops were discussed in detail. In the second part, the motion of gravity driven drops (B o~0.8-11) through a confining orifice d/D<1) was studied using high speed imaging and planar PIV. Drops of water/glycerin, surrounded by silicone oil, fall toward and encounter the orifice plate after reaching terminal speed. The effects of surface wettability were investigated for Both round-edged and sharp-edged orifices. For the round-edged case, a thin film of surrounding oil prevented the drop fluid from contacting the orifice surface, such that the flow outcomes of the drops were independent of surface

  2. Small-Scale Variability of Large Cloud Drops

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Y.; Wiscombe, Warren

    2004-01-01

    Cloud droplet size distribution is one of the most fundamental subjects in cloud physics. Understanding of spatial distribution and small-scale fluctuations of cloud droplets is essential for both cloud physics and atmospheric radiation. For cloud physics, it relates to the coalescence growth of raindrops while for radiation, it has a strong impact on a cloud's radiative properties. Most of the existing cloud radiation and precipitation formation models assume that the mean number of drops with a given radius varies proportionally to volume. The analysis of microphysical data on liquid water drop sizes shows that, for sufficiently small volumes, the number is proportional to the drop size dependent power of the volume. For abundant small drops present, the exponent is 1 as assumed in the conventional approach. However, for rarer large drops, the exponents fall below unity. At small scales, therefore, the mean number of large drops decreases with volume at a slower rate than the conventional approach assumes, suggesting more large drops at these scales than conventional models account for; their impact is consequently underestimated. Size dependent models of spatial distribution of cloud drops that simulate the observed power laws show strong drop clustering, the more so the larger the drops. The degree of clustering is determined by the observed exponents. The strong clustering of large drops arises naturally from the observed power-law statistics. Current theories of photon-cloud interaction and warm rain formation will need radical revision in order to produce these statistics; their underlying equations are unable to yield the observed power law.

  3. Free fall of water drops in laboratory rainfall simulations

    NASA Astrophysics Data System (ADS)

    Chowdhury, M. Nasimul; Testik, Firat Y.; Hornack, Mathew C.; Khan, Abdul A.

    2016-02-01

    Motivated by various hydrological and meteorological applications, this paper investigates the free fall of water drops to provide guidance in laboratory simulations of natural rainfall and to elucidate drop morphodynamics. Drop fall velocity and shape parameters such as axis ratio (ratio of the maximum vertical and horizontal chords of the drop), chord ratio [ratio of the two orthogonal chords where one chord (cl) is the longest chord in the drop and the other one (cs) is the longest chord that is orthogonal to cl], canting angle (angle between the longest chord of the drop and the horizontal axis), and relative fluctuation of chords (difference between vertical and horizontal chord fluctuations) were investigated for three selected water drop sizes (2.6, 3.7, and 5.1 mm spherical volume equivalent diameter) using high speed imaging. Based upon experimental observations, three distinct fall zones were identified: Zone I, in which source-induced oscillations and shape adjustment take place; Zone II, in which equilibrium-shaped drops accelerate to achieve terminal velocity; and Zone III, in which equilibrium-shaped drops fall at terminal velocity. Our results revealed that the fall distance values of approximately 6 m and 12 m can be used as conservative reference values for rainfall experiments with oscillation-free fall of drops (i.e. end of Zone I and onset of Zone II) and with equilibrium-shaped drops falling at terminal velocities (i.e. end of Zone II and onset of Zone III), respectively, for the entire raindrop size spectrum in natural rainfall. These required fall distance values are smaller than the distances discussed in the literature. Methodology and results presented here will facilitate optimum experimental laboratory simulations of natural rainfall.

  4. Small-Scale Drop-Size Variability: Empirical Models for Drop-Size-Dependent Clustering in Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Larsen, Michael L.; Wiscombe, Warren J.

    2005-01-01

    By analyzing aircraft measurements of individual drop sizes in clouds, it has been shown in a companion paper that the probability of finding a drop of radius r at a linear scale l decreases as l(sup D(r)), where 0 less than or equals D(r) less than or equals 1. This paper shows striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and a Poisson distribution of cloud drops, these models illustrate strong drop clustering, especially with larger drops. The degree of clustering is determined by the observed exponents D(r). The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics, including how fast rain can form. For radiative transfer theory, clustering of large drops enhances their impact on the cloud optical path. The clustering phenomenon also helps explain why remotely sensed cloud drop size is generally larger than that measured in situ.

  5. Patients' preferences for treatment outcomes of add-on antiepileptic drugs: a conjoint analysis.

    PubMed

    Manjunath, Ranjani; Yang, Jui-Chen; Ettinger, Alan B

    2012-08-01

    To understand the relative importance of the outcomes of add-on antiepileptic drugs (AEDs) and the willingness of patients with epilepsy to accept therapeutic trade-offs between seizure control and tolerability, we administered a Web-enabled, choice-format conjoint survey to patients with a self-reported physician diagnosis of epilepsy and symptoms of partial seizures. Patients answered nine choice questions to evaluate treatment outcomes of two different hypothetical add-on AEDs. Patients were first asked to choose the better of the two medicines and then asked a follow-up question about whether or not they would add the selected AED to their current treatment regimen. Our study demonstrated that patients with epilepsy consider seizure reduction to be the top priority when ranking it against the reduction or elimination of side effects. This study aids in better understanding of patients' AED treatment preferences and may aid in management of epilepsy.

  6. Sensitivity analysis of add-on price estimate for select silicon wafering technologies

    NASA Technical Reports Server (NTRS)

    Mokashi, A. R.

    1982-01-01

    The cost of producing wafers from silicon ingots is a major component of the add-on price of silicon sheet. Economic analyses of the add-on price estimates and their sensitivity internal-diameter (ID) sawing, multiblade slurry (MBS) sawing and fixed-abrasive slicing technique (FAST) are presented. Interim price estimation guidelines (IPEG) are used for estimating a process add-on price. Sensitivity analysis of price is performed with respect to cost parameters such as equipment, space, direct labor, materials (blade life) and utilities, and the production parameters such as slicing rate, slices per centimeter and process yield, using a computer program specifically developed to do sensitivity analysis with IPEG. The results aid in identifying the important cost parameters and assist in deciding the direction of technology development efforts.

  7. Medical technology: a Pandora's box?

    PubMed

    Hewa, Soma

    1994-01-01

    This paper examines the development of medical technology in terms of Max Weber's theory of rationalization. It argues that medical technology is a part of the general process of social, political and economic changes in modern Western societies. Medical technology today keeps many people alive who, in the past, would have died from their illness. In recent years, burgeoning technological achievements in medicine have been regarded as a threat to the individual's freedom to die. Many people believe that the prolongation of life only adds to the suffering of the patient and to the emotional distress of the family. They argue that a quiet death is preferable to the indignities inflicted by mechanical life support. This paper addresses these issues in light of Weber's theoretical arguments.

  8. Ares I Upper Stage Parachute Drop Test

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry parachute drop test is conducted at the Yuma, Arizona proving ground. The parachute tests demonstrated a three-stage deployment sequence that included the use of an Orbiter drag chute to properly stage the unfurling of the main chute. The parachute recovery system for Orion will be similar to the system used for Apollo command module landings and include two drogue, three pilot, and three main parachutes. (Highest resolution available)

  9. Ares I Upper Stage Parachute Drop Test

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry parachute drop test is conducted at the Yuma, Arizona proving ground. The parachute tests demonstrated a three-stage deployment sequence that included the use of an Orbiter drag chute to properly stage the unfurling of the main chute. The parachute recovery system for Orion will be similar to the system used for Apollo command module landings and include two drogue, three pilot, and three main parachutes. (Highest resolution available)

  10. Spin-orbit splitting in neutron drops

    SciTech Connect

    Pieper, S.C.; Pandharipande, V.R.; Ravenhall, D.G.

    1995-08-01

    Hartree-Fock calculations of very neutron-rich nuclei are an essential source of input for calculations of the properties of neutron-star crusts. The Hartree-Fock calculations often use Skyrme models whose parameters are determined by fits to known (hence not neutron-rich) nuclei and extrapolations to the N >> Z case. The Vautherin and Brink (VB) prescription for the isospin dependence of the spin-orbit potential, V{sub so}, is usually used; this is based on the assumption that most of V{sub so} comes from a short-range L{center_dot}S nucleon-nucleon interaction. In 1993 we showed that more than half of the spin-orbit splitting in {sup 15}N comes from long-range three-nucleon potentials and correlations, which violate the VB assumption. To investigate the isospin dependence of the spin-orbit splitting, we made calculations of the type described in Sec. B.d for systems of 7 (p-wave splitting) and 19 (d-wave) neutrons. The neutrons were confined in external potentials that were adjusted to give physically reasonable densities. We find that the spin-orbit splitting of these drops is less than half the {sup 15}N value. These values can be used to determine an isospin dependence of V{sub so} that is very different from that of VB. Hartree-Fock calculations of known spin-orbit splittings in nuclei with N significantly different from Z are now being made with this new prescription.

  11. Savoring every drop - vampire or mosquito?

    PubMed

    Fischer, Dania Patricia; Zacharowski, Kai D; Meybohm, Patrick

    2014-05-21

    Blood safety with respect to infectious complications has reached very high standards. Nevertheless, reports on transfusion-associated morbidity and mortality gain momentum. Multidisciplinary patient blood management programs can minimize unnecessary exposure to allogeneic blood products by strengthening and conserving patients' own resources. This article outlines concepts designed to maintain hemoglobin concentration, to optimize hemostasis, and to minimize blood loss in ICUs. These measures prevent or at least alleviate hospital-acquired anemia, reduce the need for blood transfusions, and therefore have great potential to improve patient safety and medical outcome.

  12. Savoring every drop – Vampire or Mosquito?

    PubMed Central

    2014-01-01

    Blood safety with respect to infectious complications has reached very high standards. Nevertheless, reports on transfusion-associated morbidity and mortality gain momentum. Multidisciplinary patient blood management programs can minimize unnecessary exposure to allogeneic blood products by strengthening and conserving patients’ own resources. This article outlines concepts designed to maintain hemoglobin concentration, to optimize hemostasis, and to minimize blood loss in ICUs. These measures prevent or at least alleviate hospital-acquired anemia, reduce the need for blood transfusions, and therefore have great potential to improve patient safety and medical outcome. PMID:25032998

  13. The origin of star-shaped oscillations of Leidenfrost drops

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Burton, Justin C.

    We experimentally investigate the oscillations of Leidenfrost drops of water, liquid nitrogen, ethanol, methanol, acetone and isopropyl alcohol. The drops levitate on a cushion of evaporated vapor over a hot, curved surface which keeps the drops stationary. We observe star-shaped modes along the periphery of the drop, with mode numbers n = 2 to 13. The number of observed modes is sensitive to the properties of the liquid. The pressure oscillation frequency in the vapor layer under the drop is approximately twice that of the drop frequency, which is consistent with a parametric forcing mechanism. However, the Rayleigh and thermal Marangoni numbers are of order 10,000, indicating that convection should play a dominating role as well. Surprisingly, we find that the wavelength and frequency of the oscillations only depend on the thickness of the liquid, which is twice the capillary length, and do not depend on the mode number, substrate temperature, or the substrate curvature. This robust behavior suggests that the wavelength for the oscillations is set by thermal convection inside the drop, and is less dependent on the flow in the vapor layer under the drop

  14. Square wave voltammetry at the dropping mercury electrode: Theory

    USGS Publications Warehouse

    Christie, J.H.; Turner, J.A.; Osteryoung, R.A.

    1977-01-01

    The theoretical aspects of square wave voltammetry at the dropping mercury electrode are presented. The technique involves scanning the entire potential range of interest on a single drop of a DME. Asymmetries in the waveform as well as variations in current measurement parameters are discussed. Indications are that previous uses of the waveform may not have utilized all its capabilities.

  15. Delayed frost growth on jumping-drop superhydrophobic surfaces.

    PubMed

    Boreyko, Jonathan B; Collier, C Patrick

    2013-02-26

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.

  16. Results from a search for fractional charges on mercury drops

    SciTech Connect

    Bland, R.W.; Baden, D.; Joyce, D.C.

    1981-01-01

    Results are presented obtained with an automated Millikan apparatus measuring the charge on mercury drops four to six microns in diameter. No fractional charges have been detected in a sample of 42 micrograms (54,000 drops). About two-thirds of the sample was undistilled native mercury.

  17. Millikan Oil-Drop Experiment in the Introductory Laboratory

    ERIC Educational Resources Information Center

    Heald, Mark A.

    1974-01-01

    Discusses a simplified Millikan oil-drop experiment which emphasizes the enplanation of basic concepts in mechanics and electrostatics, the use of home-made apparatus, the request for an individual's observation of his own drop, and the application of statistical analysis in data interpretation. (CC)

  18. 14 CFR 29.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Reserve energy absorption drop test. 29.727 Section 29.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... follows: (a) The drop height must be 1.5 times that specified in § 29.725(a). (b) Rotor lift,...

  19. 14 CFR 27.727 - Reserve energy absorption drop test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Reserve energy absorption drop test. 27.727 Section 27.727 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...: (a) The drop height must be 1.5 times that specified in § 27.725(a). (b) Rotor lift, where...

  20. Drug Failure: The Theoretical Position of the Drop-Out.

    ERIC Educational Resources Information Center

    Vedder, Charles B.

    This paper examines the theoretical position of the person who drops out of illegal drug use. A person was considered a drop-out if he admittedly no longer used any or all the drugs in the following categories: marijuana, hallucinogens, speed, downers, and inhalants. A purposive sample was drawn to capture as many people fitting this criterion as…

  1. Drop Tests of the Closure Ring for the 9975 Package

    SciTech Connect

    Smith, A.C

    1999-09-29

    The drop tests of the closure ring for 9975 packages, described here, were performed to answer questions raised by the regulatory authority as a result of deformation of the closure ring and drum rim observed during drop tests conducted in September 1998.

  2. Drop shape visualization and contact angle measurement on curved surfaces.

    PubMed

    Guilizzoni, Manfredo

    2011-12-01

    The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces.

  3. Drop impact dynamics on liquid-infused superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hyun; Rothstein, Jonathan

    2015-11-01

    In this talk, we present a series of experiments investigating the drop impact dynamics on hydrophobic, air-infused and lubricant-infused superhydrophobic surfaces. To create the superhydrophobic surfaces, smooth Teflon (PTFE) surfaces were roughened by a 240-grit sandpaper. The immiscible and incompressible silicone oils with different viscosities were infused into features of the superhydrophobic surfaces by a skim coating technique. The spreading and retraction dynamics on a series of the tested surfaces will be presented. We will show that the maximal deformation of the drops on lubricant-infused surfaces grows with increasing viscosity ratio between a water drop and the infused oil. We will show that this increase in the maximal deformation with the viscosity ratio is consistent with increasing the velocity and the viscosity of the drops but the rims of the drops destabilize with increasing the drop velocity. Finally, we will demonstrate that increasing the viscosity of the infused oil induces higher viscous force at the contact line, resulting in reduction in the movement of the drops during retraction and corresponding increase in the final drop size.

  4. Drop Out Patterns in the East Los Angeles Community College

    ERIC Educational Resources Information Center

    Waktola, Daniel K.

    2014-01-01

    This study attempted to analyze the drop out problem from spatial perspectives within the context of East Los Angeles Community College, California. Selected urban land-use types, which positively and negatively influence the propensity to drop out or persist-in colleges, were selected and captured during a global positioning system (GPS)-based…

  5. Large Eddy Simulation of jets laden with evaporating drops

    NASA Technical Reports Server (NTRS)

    Leboissetier, A.; Okong'o, N.; Bellan, J.

    2004-01-01

    LES of a circular jet laden with evaporating liquid drops are conducted to assess computational-drop modeling and three different SGS-flux models: the Scale Similarity model (SSC), using a constant coefficient calibrated on a temporal mixing layer DNS database, and dynamic-coefficient Gradient and Smagorinsky models.

  6. 49 CFR 236.758 - Lock, electric, forced drop.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lock, electric, forced drop. 236.758 Section 236.758 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.758 Lock, electric, forced drop. An electric lock in which the locking member is...

  7. 49 CFR 236.758 - Lock, electric, forced drop.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Lock, electric, forced drop. 236.758 Section 236.758 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.758 Lock, electric, forced drop. An electric lock in which the locking member is...

  8. 49 CFR 236.758 - Lock, electric, forced drop.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Lock, electric, forced drop. 236.758 Section 236.758 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.758 Lock, electric, forced drop. An electric lock in which the locking member is...

  9. 49 CFR 236.758 - Lock, electric, forced drop.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Lock, electric, forced drop. 236.758 Section 236.758 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.758 Lock, electric, forced drop. An electric lock in which the locking member is...

  10. Drop shape visualization and contact angle measurement on curved surfaces.

    PubMed

    Guilizzoni, Manfredo

    2011-12-01

    The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces. PMID:21889152

  11. (abstract) Production and Levitation of Free Drops of Liquid Helium

    NASA Technical Reports Server (NTRS)

    Paine, C. G.; Petrac, D.; Rhim, W. K.

    1995-01-01

    We are interested in the nucleation and behavior of quantized vorticies and surface excitations in free drops of superfluid helium. We have constructed an apparatus to maintain liquid helium drops isolated from any material container in the Earth's gravitational field, and have investigated two techniques for generating and introducing liquid drops into the region of confinement. The levitation apparatus utilizes the electrostatic force acting upon a charged liquid drop to counteract the gravitational force, with drop position stability provided by a static magnetic field acting upon the helium diamagnetic moment. Electrically neutral superfluid drops have been produced with a miniature thermomechanical pump; for a given configuration the liquid initial velocity has been varied up to several centimeters per second. Liquid drops carrying either net positive or negative charge are produced by an electrode which generates a flow of ionized liquid from the bulk liquid surface. Potentials of less than one thousand volts to several thousand volts are required. The mass flow is controlled by varying duration of the ionizing voltage pulse; drops as small as 30 micrometers diameter, charged to near the Rayleigh limit, have been observed.

  12. Ground Based Studies of Thermocapillary Flows in Levitated Drops

    NASA Technical Reports Server (NTRS)

    Sadhal, Satwindar Singh; Trinh, Eugene H.

    1996-01-01

    Ground-based experiments together with analytical studies are presently being conducted for levitated drops. Both acoustic and electrostatic techniques are being employed to achieve levitation of drops in a gaseous environment. The scientific effort is principally on the thermal and the fluid phenomena associated with the local heating of levitated drops, both at 1-g and at low-g. In particular, the thermocapillary flow associated with local spot heating is being studied. Fairly stable acoustic levitation of drops has been achieved with some exceptions when random rotational motion of the drop persists. The flow visualization has been carried out by light scattering from smoke particles for the exterior flow and fluorescent tracer particles in the drop. The results indicate a lack of axial symmetry in the internal flow even though the apparatus and the heating are symmetric. The theoretical studies for the past year have included fundamental analyses of acoustically levitated spherical drops. The flow associated with a particle near the velocity antinode is being investigated by the singular perturbation technique. As a first step towards understanding the effect of the particle displacement from the antinode, the flow field about the node has been calculated for the first time. The effect of the acoustic field on the interior of a liquid drop has also been investigated. The results predict that the internal flow field is very weak.

  13. Student Drop-Out from German Higher Education Institutions

    ERIC Educational Resources Information Center

    Heublein, Ulrich

    2014-01-01

    28% of students of any one year currently give up their studies in bachelor degree programmes at German higher education institutions. Drop-out is to be understood as the definite termination in the higher education system without obtaining an academic degree. The drop-out rate is thereby calculated with the help of statistical estimation…

  14. Drops in Space: Super Oscillations and Surfactant Studies

    NASA Technical Reports Server (NTRS)

    Apfel, Robert E.; Tian, Yuren; Jankovsky, Joseph; Shi, Tao; Chen, X.; Holt, R. Glynn; Trinh, Eugene; Croonquist, Arvid; Thornton, Kathyrn C.; Sacco, Albert, Jr.; Coleman, Catherine; Leslie, Fred W.; Matthiesen, David H.

    1996-01-01

    An unprecedented microgravity observation of maximal shape oscillations of a surfactant-bearing water drop the size of a ping pong ball was observed during a mission of Space Shuttle Columbia as part of the second United States Microgravity Laboratory-USML-2 (STS-73, October 20-November 5, 1995). The observation was precipitated by the action of an intense sound field which produced a deforming force on the drop. When this deforming force was suddenly reduced, the drop executed nearly free and axisymmetric oscillations for several cycles, demonstrating a remarkable amplitude of nonlinear motion. Whether arising from the discussion of modes of oscillation of the atomic nucleus, or the explosion of stars, or how rain forms, the complex processes influencing the motion, fission, and coalescence of drops have fascinated scientists for centuries. Therefore, the axisymmetric oscillations of a maximally deformed liquid drop are noteworthy, not only for their scientific value but also for their aesthetic character. Scientists from Yale University, the Jet Propulsion Laboratory (JPL) and Vanderbilt University conducted liquid drop experiments in microgravity using the acoustic positioning/manipulation environment of the Drop Physics Module (DPM). The Yale/JPL group's objectives were to study the rheological properties of liquid drop surfaces on which are adsorbed surfactant molecules, and to infer surface properties such as surface tension, Gibb's elasticity, and surface dilatational viscosity by using a theory which relies on spherical symmetry to solve the momentum and mass transport equations.

  15. Medical neglect.

    PubMed

    Boos, Stephen C; Fortin, Kristine

    2014-11-01

    Medical neglect occurs when children are harmed or placed at significant risk of harm by gaps in their medical care. This is most likely to occur and to be recognized when families lack resources, commonly due to poverty, and when medical demands are high, such as with complex, severe, and chronic illness. A systematic evaluation of the probabilities for harm from gaps in care versus benefits from improved care will define medical neglect. A broad consideration of child, family, community, and medical system contributions to identified gaps will guide management. Special circumstances, such as lapsed immunizations, unremitting obesity, and medically motivated alterations in care, are often challenging for medical providers. Guidance for these specific situations is available from the American Academy of Pediatrics, and from the medical literature.

  16. Medication Errors

    MedlinePlus

    ... to reduce the risk of medication errors to industry and others at FDA. Additionally, DMEPA prospectively reviews ... List of Abbreviations Regulations and Guidances Guidance for Industry: Safety Considerations for Product Design to Minimize Medication ...

  17. Drop breakup and deformation in sudden onset strong flows

    NASA Astrophysics Data System (ADS)

    Marks, Charles Raphael

    This work characterizes the deformation and breakup of a single drop subjected to a sudden onset shear flow. The drop is immersed in a second fluid (the matrix) with which it is immiscible. A cylindrical couette device is used to create a flow field which, in the absence of the drop, would constitute a close approximation of simple shear flow. The magnitude of the imposed shear rate was greater than that which would be necessary to just break the drop. The experiments conducted were limited to matrix fluid viscosities above 7Pa˙ s and shear rates below 15/s, ensuring that the flows considered were inertialess. The matrix fluid was a corn syrup solution. The drop fluids were polybutadiene, paraffin oil and silicone oil, leading to a range of interfacial tensions. At the shear rates used in these experiments the fluids used Newtonian. Viscosity ratios (drop/matrix) ranging from 0.01 to 1 were considered. Two breakup mechanisms were observed to contribute to the dispersion of the original drop. In all cases elongative end pinching, defined by this study, caused the ends of a stretching drop to break off and form daughter drops. Breakup due to elongative end pinching was always the first breakup observed. The daughter drops formed by elongative end pinching were always the largest daughter drops formed. In cases when the experimental conditions were sufficiently stronger than the critical conditions (needed to just barely break up the drop), a second type of breakup, capillary wave breakup, was also observed. Measurement of the characteristic time scales and length scales were made of each type of breakup. The lengths (a) were found to scale as capillary numbers: Ca=a mg/s. The times (t) were found to scale as strains: s=t g. A qualitative explanation for the capillary number scaling is presented and quantitatively compared to predictions based on small deformation analysis. Additionally the daughter drop size distributions resulting from drop breakup is characterized

  18. Building micro-soccer-balls with evaporating colloidal fakir drops

    NASA Astrophysics Data System (ADS)

    Gelderblom, Hanneke; Marín, Álvaro G.; Susarrey-Arce, Arturo; van Housselt, Arie; Lefferts, Leon; Gardeniers, Han; Lohse, Detlef; Snoeijer, Jacco H.

    2013-11-01

    Drop evaporation can be used to self-assemble particles into three-dimensional microstructures on a scale where direct manipulation is impossible. We present a unique method to create highly-ordered colloidal microstructures in which we can control the amount of particles and their packing fraction. To this end, we evaporate colloidal dispersion drops from a special type of superhydrophobic microstructured surface, on which the drop remains in Cassie-Baxter state during the entire evaporative process. The remainders of the drop consist of a massive spherical cluster of the microspheres, with diameters ranging from a few tens up to several hundreds of microns. We present scaling arguments to show how the final particle packing fraction of these balls depends on the drop evaporation dynamics, particle size, and number of particles in the system.

  19. Symmetry breaking in drop bouncing on curved surfaces

    PubMed Central

    Liu, Yahua; Andrew, Matthew; Li, Jing; Yeomans, Julia M.; Wang, Zuankai

    2015-01-01

    The impact of liquid drops on solid surfaces is ubiquitous in nature, and of practical importance in many industrial processes. A drop hitting a flat surface retains a circular symmetry throughout the impact process. Here we show that a drop impinging on Echevaria leaves exhibits asymmetric bouncing dynamics with distinct spreading and retraction along two perpendicular directions. This is a direct consequence of the cylindrical leaves that have a convex/concave architecture of size comparable to the drop. Systematic experimental investigations on mimetic surfaces and lattice Boltzmann simulations reveal that this novel phenomenon results from an asymmetric momentum and mass distribution that allows for preferential fluid pumping around the drop rim. The asymmetry of the bouncing leads to ∼40% reduction in contact time. PMID:26602170

  20. Stress drop with constant, scale independent seismic efficiency and overshoot

    USGS Publications Warehouse

    Beeler, N.M.

    2001-01-01

    To model dissipated and radiated energy during earthquake stress drop, I calculate dynamic fault slip using a single degree of freedom spring-slider block and a laboratory-based static/kinetic fault strength relation with a dynamic stress drop proportional to effective normal stress. The model is scaled to earthquake size assuming a circular rupture; stiffness varies inversely with rupture radius, and rupture duration is proportional to radius. Calculated seismic efficiency, the ratio of radiated to total energy expended during stress drop, is in good agreement with laboratory and field observations. Predicted overshoot, a measure of how much the static stress drop exceeds the dynamic stress drop, is higher than previously published laboratory and seismic observations and fully elasto-dynamic calculations. Seismic efficiency and overshoot are constant, independent of normal stress and scale. Calculated variation of apparent stress with seismic moment resembles the observational constraints of McGarr [1999].