Sample records for added carbon source

  1. [Effects of adding straw carbon source to root knot nematode diseased soil on soil microbial biomass and protozoa abundance].

    PubMed

    Zhang, Si-Hui; Lian, Jian-Hong; Cao, Zhi-Ping; Zhao, Li

    2013-06-01

    A field experiment with successive planting of tomato was conducted to study the effects of adding different amounts of winter wheat straw (2.08 g x kg(-1), 1N; 4.16 g x kg(-1), 2N; and 8.32 g x kg(-1), 4N) to the soil seriously suffered from root knot nematode disease on the soil microbial biomass and protozoa abundance. Adding straw carbon source had significant effects on the contents of soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) and the abundance of soil protozoa, which all decreased in the order of 4N > 2N > 1N > CK. The community structure of soil protozoa also changed significantly under straw addition. In the treatments with straw addition, the average proportion of fagellate, amoeba, and ciliates accounted for 36.0%, 59.5%, and 4.5% of the total protozoa, respectively. Under the same adding amounts of wheat straw, there was an increase in the soil MBC and MBN contents, MBC/MBN ratio, and protozoa abundance with increasing cultivation period.

  2. Effects of iron and calcium carbonate on the variation and cycling of carbon source in integrated wastewater treatments.

    PubMed

    Zhimiao, Zhao; Xinshan, Song; Yufeng, Zhao; Yanping, Xiao; Yuhui, Wang; Junfeng, Wang; Denghua, Yan

    2017-02-01

    Iron and calcium carbonate were added in wastewater treatments as the adjusting agents to improve the contaminant removal performance and regulate the variation of carbon source in integrated treatments. At different temperatures, the addition of the adjusting agents obviously improved the nitrogen and phosphorous removals. TN and TP removals were respectively increased by 29.41% and 23.83% in AC-100 treatment under 1-day HRT. Carbon source from dead algae was supplied as green microbial carbon source and Fe 2+ was supplied as carbon source surrogate. COD concentration was increased to 30mg/L and above, so the problem of the shortage of carbon source was solved. Dead algae and Fe 2+ as carbon source supplement or surrogate played significant role, which was proved by microbial community analysis. According to the denitrification performance in the treatments, dead algae as green microbial carbon source combined with iron and calcium carbonate was the optimal supplement carbon source in wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Rediscovering Acetate Metabolism: Its Potential Sources and Utilization for Biobased Transformation into Value-Added Chemicals.

    PubMed

    Lim, Hyun Gyu; Lee, Ji Hoon; Noh, Myung Hyun; Jung, Gyoo Yeol

    2018-04-25

    One of the great advantages of microbial fermentation is the capacity to convert various carbon compounds into value-added chemicals. In this regard, there have been many efforts to engineer microorganisms to facilitate utilization of abundant carbon sources. Recently, the potential of acetate as a feedstock has been discovered; efforts have been made to produce various biochemicals from acetate based on understanding of its metabolism. In this review, we discuss the potential sources of acetate and summarized the recent progress to improve acetate utilization with microorganisms. Furthermore, we also describe representative studies that engineered microorganisms for the production of biochemicals from acetate.

  4. AdS5 solutions from M5-branes on Riemann surface and D6-branes sources

    DOE PAGES

    Bah, Ibrahima

    2015-09-24

    Here, we describe the gravity duals of four-dimensional N = 1 superconformal field theories obtained by wrapping M5-branes on a punctured Riemann surface. The internal geometry, normal to the AdS 5 factor, generically preserves two U(1)s, with generators (J +, J –), that are fibered over the Riemann surface. The metric is governed by a single potential that satisfies a version of the Monge-Ampère equation. The spectrum of N = 1 punctures is given by the set of supersymmetric sources of the potential that are localized on the Riemann surface and lead to regular metrics near a puncture. We usemore » this system to study a class of punctures where the geometry near the sources corresponds to M-theory description of D6-branes. These carry a natural (p, q) label associated to the circle dual to the killing vector pJ + + qJ – which shrinks near the source. In the generic case the world volume of the D6-branes is AdS 5 × S 2 and they locally preserve N = 2 supersymmetry. When p = –q, the shrinking circle is dual to a flavor U(1). The metric in this case is non-degenerate only when there are co-dimension one sources obtained by smearing M5-branes that wrap the AdS 5 factor and the circle dual the superconformal R-symmetry. The D6-branes are extended along the AdS 5 and on cups that end on the co-dimension one branes. In the special case when the shrinking circle is dual to the R-symmetry, the D6-branes are extended along the AdS 5 and wrap an auxiliary Riemann surface with an arbitrary genus. When the Riemann surface is compact with constant curvature, the system is governed by a Monge-Ampère equation.« less

  5. [Effects of carbon sources, temperature and electron acceptors on biological phosphorus removal].

    PubMed

    Han, Yun; Xu, Song; Dong, Tao; Wang, Bin-Fan; Wang, Xian-Yao; Peng, Dang-Cong

    2015-02-01

    Effects of carbon sources, temperature and electron acceptors on phosphorus uptake and release were investigated in a pilot-scale oxidation ditch. Phosphorus uptake and release rates were measured with different carbon sources (domestic sewage, sodium acetate, glucose) at 25 degrees C. The results showed that the minimum phosphorus uptake and release rates of glucose were 5.12 mg x (g x h)(-1) and 6.43 mg x (g x h)(-1), respectively, and those of domestic sewage are similar to those of sodium acetate. Phosphorus uptake and release rates increased with the increase of temperature (12, 16, 20 and 25 degrees C) using sodium acetate as carbon sources. Anoxic phosphorus uptake rate decreased with added COD. Electron acceptors (oxygen, nitrate, nitrite) had significant effects on phosphorus uptake rate and their order was in accordance with oxygen > nitrate > nitrite. The mass ratio of anoxic P uptake and N consumption (P(uptake)/N (consumption)) of nitrate and nitrite were 0.96 and 0.65, respectively.

  6. Using liquid waste streams as the moisture source during the hydrothermal carbonization of municipal solid wastes.

    PubMed

    Li, Liang; Hale, McKenzie; Olsen, Petra; Berge, Nicole D

    2014-11-01

    Hydrothermal carbonization (HTC) is a thermal conversion process that can be an environmentally beneficial approach for the conversion of municipal solid wastes to value-added products. The influence of using activated sludge and landfill leachate as initial moisture sources during the carbonization of paper, food waste and yard waste over time at 250°C was evaluated. Results from batch experiments indicate that the use of activated sludge and landfill leachate are acceptable alternative supplemental liquid sources, ultimately imparting minimal impact on carbonization product characteristics and yields. Regression results indicate that the initial carbon content of the feedstock is more influential than any of the characteristics of the initial liquid source and is statistically significant when describing the relationship associated with all evaluated carbonization products. Initial liquid-phase characteristics are only statistically significant when describing the solids energy content and the mass of carbon in the gas-phase. The use of these alternative liquid sources has the potential to greatly increase the sustainability of the carbonization process. A life cycle assessment is required to quantify the benefits associated with using these alternative liquid sources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Efficient Utilization of Waste Carbon Source for Advanced Nitrogen Removal of Landfill Leachate

    PubMed Central

    Yin, Wenjun; Tan, Fengxun

    2017-01-01

    A modified single sequencing batch reactor (SBR) was developed to remove the nitrogen of the real landfill leachate in this study. To take the full advantage of the SBR, stir phase was added before and after aeration, respectively. The new mechanism in this experiment could improve the removal of nitrogen efficiently by the utilization of carbon source in the raw leachate. This experiment adopts the SBR process to dispose of the real leachate, in which the COD and ammonia nitrogen concentrations were about 3800 mg/L and 1000 mg/L, respectively. Results showed that the removal rates of COD and total nitrogen were above 85% and 95%, respectively, and the effluent COD and total nitrogen were less than 500 mg/L and 40 mg/L under the condition of not adding any carbon source. Also, the specific nitrogen removal rate was 1.48 mgN/(h·gvss). In this process, polyhydroxyalkanoate (PHA) as a critical factor for the highly efficient nitrogen removal (>95%) was approved to be the primary carbon source in the sludge. Because most of the organic matter in raw water was used for denitrification, in the duration of this 160-day experiment, zero discharge of sludge was realized when the effluent suspended solids were 30–50 mg/L. PMID:29435456

  8. Important fossil source contribution to brown carbon in Beijing during winter

    NASA Astrophysics Data System (ADS)

    Yan, Caiqing; Zheng, Mei; Bosch, Carme; Andersson, August; Desyaterik, Yury; Sullivan, Amy P.; Collett, Jeffrey L.; Zhao, Bin; Wang, Shuxiao; He, Kebin; Gustafsson, Örjan

    2017-03-01

    Organic aerosol (OA) constitutes a substantial fraction of fine particles and affects both human health and climate. It is becoming clear that OA absorbs light substantially (hence termed Brown Carbon, BrC), adding uncertainties to global aerosol radiative forcing estimations. The few current radiative-transfer and chemical-transport models that include BrC primarily consider sources from biogenic and biomass combustion. However, radiocarbon fingerprinting here clearly indicates that light-absorbing organic carbon in winter Beijing, the capital of China, is mainly due to fossil sources, which contribute the largest part to organic carbon (OC, 67 ± 3%) and its sub-constituents (water-soluble OC, WSOC: 54 ± 4%, and water-insoluble OC, WIOC: 73 ± 3%). The dual-isotope (Δ14C/δ13C) signatures, organic molecular tracers and Beijing-tailored emission inventory identify that this fossil source is primarily from coal combustion activities in winter, especially from the residential sector. Source testing on Chinese residential coal combustion provides direct evidence that intensive coal combustion could contribute to increased light-absorptivity of ambient BrC in Beijing winter. Coal combustion is an important source to BrC in regions such as northern China, especially during the winter season. Future modeling of OA radiative forcing should consider the importance of both biomass and fossil sources.

  9. Important fossil source contribution to brown carbon in Beijing during winter

    PubMed Central

    Yan, Caiqing; Zheng, Mei; Bosch, Carme; Andersson, August; Desyaterik, Yury; Sullivan, Amy P.; Collett, Jeffrey L.; Zhao, Bin; Wang, Shuxiao; He, Kebin; Gustafsson, Örjan

    2017-01-01

    Organic aerosol (OA) constitutes a substantial fraction of fine particles and affects both human health and climate. It is becoming clear that OA absorbs light substantially (hence termed Brown Carbon, BrC), adding uncertainties to global aerosol radiative forcing estimations. The few current radiative-transfer and chemical-transport models that include BrC primarily consider sources from biogenic and biomass combustion. However, radiocarbon fingerprinting here clearly indicates that light-absorbing organic carbon in winter Beijing, the capital of China, is mainly due to fossil sources, which contribute the largest part to organic carbon (OC, 67 ± 3%) and its sub-constituents (water-soluble OC, WSOC: 54 ± 4%, and water-insoluble OC, WIOC: 73 ± 3%). The dual-isotope (Δ14C/δ13C) signatures, organic molecular tracers and Beijing-tailored emission inventory identify that this fossil source is primarily from coal combustion activities in winter, especially from the residential sector. Source testing on Chinese residential coal combustion provides direct evidence that intensive coal combustion could contribute to increased light-absorptivity of ambient BrC in Beijing winter. Coal combustion is an important source to BrC in regions such as northern China, especially during the winter season. Future modeling of OA radiative forcing should consider the importance of both biomass and fossil sources. PMID:28266611

  10. Enhanced biological phosphorus removal with different carbon sources.

    PubMed

    Shen, Nan; Zhou, Yan

    2016-06-01

    Enhanced biological phosphorus removal (EBPR) process is one of the most economical and sustainable methods for phosphorus removal from wastewater. However, the performance of EBPR can be affected by available carbon sources types in the wastewater that may induce different functional microbial communities in the process. Glycogen accumulating organisms (GAOs) and polyphosphate accumulating organisms (PAOs) are commonly found by coexisting in the EBPR process. Predominance of GAO population may lead to EBPR failure due to the competition on carbon source with PAO without contributing phosphorus removal. Carbon sources indeed play an important role in alteration of PAOs and GAOs in EBPR processes. Various types of carbon sources have been investigated for EBPR performance. Certain carbon sources tend to enrich specific groups of GAOs and/or PAOs. This review summarizes the types of carbon sources applied in EBPR systems and highlights the roles of these carbon sources in PAO and GAO competition. Both single (e.g., acetate, propionate, glucose, ethanol, and amino acid) and complex carbon sources (e.g., yeast extract, peptone, and mixed carbon sources) are discussed in this review. Meanwhile, the environmental friendly and economical carbon sources that are derived from waste materials, such as crude glycerol and wasted sludge, are also discussed and compared.

  11. Effect of carbon source on the morphology and electrochemical performances of LiFePO4/C nanocomposites.

    PubMed

    Liu, Shuxin; Wang, Haibin; Yin, Hengbo; Wang, Hong; He, Jichuan

    2014-03-01

    The carbon coated LiFePO4 (LiFePO4/C) nanocomposites materials were successfully synthesized by sol-gel method. The microstructure and morphology of LiFePO4/C nanocomposites were characterized by X-ray diffraction, Raman spectroscopy and scanning electron microscopy. The results showed that the carbon layers decomposed by different dispersant and carbon source had different graphitization degree, and the sugar could decompose to form more graphite-like structure carbon. The carbon source and heat-treatment temperature had some effect on the particle size and morphology, the sample LFP-S700 synthesized by adding sugar as carbon source at 700 degrees C had smaller particle size, uniform size distribution and spherical shape. The electrochemical behavior of LiFePO4/C nanocomposites was analyzed using galvanostatic measurements and cyclic voltammetry (CV). The results showed that the sample LFP-S700 had higher discharge specific capacities, higher apparent lithium ion diffusion coefficient and lower charge transfer resistance. The excellent electrochemical performance of sample LFP-S700 could be attributed to its high graphitization degree of carbon, smaller particle size and uniform size distribution.

  12. Evaluating vertical concentration profile of carbon source released from slow-releasing carbon source tablets and in situ biological nitrate denitrification activity

    NASA Astrophysics Data System (ADS)

    Yeum, Y.; HAN, K.; Yoon, J.; Lee, J. H.; Song, K.; Kang, J. H.; Park, C. W.; Kwon, S.; Kim, Y.

    2017-12-01

    Slow-releasing carbon source tablets were manufactured during the design of a small-scale in situ biological denitrification system to reduce high-strength nitrate (> 30 mg N/L) from a point source such as livestock complexes. Two types of slow-releasing tablets, precipitating tablet (PT, apparent density of 2.0 g/mL) and floating tablet (FT), were prepared to achieve a vertically even distribution of carbon source (CS) in a well and an aquifer. Hydroxypropyl methylcellulose (HPMC) was used to control the release rate, and microcrystalline cellulose pH 101 (MCC 101) was added as a binder. The #8 sand was used as a precipitation agent for the PTs, and the floating agents for the FTs were calcium carbonate and citric acid. FTs floated within 30 min. and remained in water because of the buoyance from carbon dioxide, which formed during the acid-base reaction between citric acid and calcium carbonate. The longevities of PTs with 300 mg of HPMC and FTs with 400 mg of HPMC were 25.4 days and 37.3 days, respectively. We assessed vertical CS profile in a continuous flowing physical aquifer model (release test, RT) and its efficiency on biological nitrate denitrification (denitrification test, DT). During the RT, PTs, FTs and a tracer (as 1 mg rhodamine B/L) were initially injected into a well of physical aquifer model (PAM). Concentrations of CS and the tracer were monitored along the streamline in the PAM to evaluate vertical profile of CS. During the DT, the same experiment was performed as RT, except continuous injection of solution containing 30 mg N/L into the PAM to evaluate biological denitrification activity. As a result of RT, temporal profiles of CS were similar at 3 different depths of monitoring wells. These results suggest that simultaneous addition of PT and FT be suitable for achieving a vertically even distribution of the CS in the injection well and an aquifer. In DT, similar profile of CS was detected in the injection well, and nitrate was biologically

  13. New PHA products using unrelated carbon sources

    PubMed Central

    Matias, Fernanda; de Andrade Rodrigues, Maria Filomena

    2011-01-01

    Polyhydroxyalkanoates (PHA) are natural polyesters stored by a wide range of bacteria as carbon source reserve. Due to its chemical characteristics and biodegradability PHA can be used in chemical, medical and pharmaceutical industry for many human purposes. Over the past years, few Burkholderia species have become known for production of PHA. Aside from that, these bacteria seem to be interesting for discovering new PHA compositions which is important to different industrial applications. In this paper, we introduce two new strains which belong either to Burkholderia cepacia complex (Bcc) or genomovar-type, Burkholderia cepacia SA3J and Burkholderia contaminans I29B, both PHA producers from unrelated carbon sources. The classification was based on 16S rDNA and recA partial sequence genes and cell wall fatty acids composition. These two strains were capable to produce different types of PHA monomers or precursors. Unrelated carbon sources were used for growth and PHA accumulation. The amount of carbon source evaluated, or mixtures of them, was increased with every new experiment until it reaches eighteen carbon sources. As first bioprospection experiments staining methods were used with colony fluorescent dye Nile Red and the cell fluorescent dye Nile Blue A. Gas chromatography analysis coupled to mass spectrometry was used to evaluate the PHA composition on each strain cultivated on different carbon sources. The synthesized polymers were composed by short chain length-PHA (scl-PHA), especially polyhydroxybutyrate, and medium chain length-PHA (mcl-PHA) depending on the carbon source used. PMID:24031764

  14. Carbon uptake in granular basalt is mitigated by added organic carbon.

    NASA Astrophysics Data System (ADS)

    Howard, E. L.; Van Haren, J. L. M.; Dontsova, K.

    2017-12-01

    Soils represent a large, and potentially long-term, storage component of the global carbon budget. Accurate projections of the response of soil respiration -the release of CO2 from soils generated either through root respiration or microbial respiration- to rainfall events remains one of the largest uncertainties in global carbon cycling models. Similarly poorly represented in models is the uptake of CO2 by basalt soils. In an attempt to address these unknowns, we have investigated how the addition of carbon influences the negative CO2 flux observed after wetting basalt. At Biosphere 2 we have constructed a large scale environmentally controlled experiment known as the Landscape Evolution Observatory (LEO). The objective of LEO is to observe the interactions between water, microbes, and climate in the formation of soil and landscapes utilizing granular basalt as a young soil. Previous studies show that water addition to the LEO soil leads to considerable CO2 uptake and that the addition of plants does not alter this response. In this study, we conducted soil incubations to investigate the effect of varying soil carbon content on CO2 fluxes. During incubations we measured CO2 emissions from two types of soil (granular basalt and sand soil) mixed with seven (0, 5, 10, 25, 50, 75, 100%) different proportions of Kalso prairie. The carbon content varied from nearly zero in the basalt to 6.5% in the Kalso Prarie soil. Other parameters that influence soil CO2 fluxes such as pH were taken into account. In conclusion, our experiments confirm that unweathered basalt will consume CO2 when wetted, whereas added carbon will cause a strong pulse of CO2 following water addition. This supports our hypotheses that the carbon content is a large contributor and that maturation of basalt flows will lead to a shift in the carbon dynamics from inorganic to organic dominated. Likewise, these transitions would be expected to be present during soil formation after primary succession and

  15. Source attribution of black carbon in Arctic snow.

    PubMed

    Hegg, Dean A; Warren, Stephen G; Grenfell, Thomas C; Doherty, Sarah J; Larson, Timothy V; Clarke, Antony D

    2009-06-01

    Snow samples obtained at 36 sites in Alaska, Canada, Greenland, Russia, and the Arctic Ocean in early 2007 were analyzed for light-absorbing aerosol concentration together with a suite of associated chemical species. The light absorption data, interpreted as black carbon concentrations, and other chemical data were input into the EPA PMF 1.1 receptor model to explore the sources for black carbon in the snow. The analysis found four factors or sources: two distinct biomass burning sources, a pollution source, and a marine source. The first three of these were responsible for essentially all of the black carbon, with the two biomass sources (encompassing both open and closed combustion) together accounting for >90% of the black carbon.

  16. Polyhydroxyalkanoate biosynthesis by Hydrogenophaga pseudoflava DSM1034 from structurally unrelated carbon sources.

    PubMed

    Povolo, Silvana; Romanelli, Maria Giovanna; Basaglia, Marina; Ilieva, Vassilka Ivanova; Corti, Andrea; Morelli, Andrea; Chiellini, Emo; Casella, Sergio

    2013-09-25

    In the present paper we report the exclusive microbial preparation of polyhydroxyalkanoates (PHA) containing 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV) and 4-hydroxybutyrate (4HB) as comonomers through the use of unexpensive carbon sources such as whey from dairy industry. Polymers were produced by growing H. pseudoflava DSM 1034 in minimal medium supplemented with sucrose, lactose or whey without any co-substrate added. The chemical and physical properties of the polymers were fully characterized by GPC, DSC, TGA analyses and the composition by GC and (1)H NMR examinations to especially confirm the content of different monomeric units. The presence of 4HB units into PHA samples is particularly aimed in thermoplastic applications where greater flexibility is required and conventional rigid PHAs tend to fail. Usually the insertion of 4HB into chain backbone consisting of 3-hydroxyalkanoates requires expensive carbon sources mostly of petrochemical origin. According to our study the production of P(3HB-co-3HV-co-4HB) terpolymer can be obtained directly by the use of lactose or waste raw materials such as cheese whey as carbon sources. Although the amount of 4HB in the produced terpolymers was usually low and not exceeding 10% of the total molar composition, a PHA containing 18.4% of 4HB units was produced in 1 step fermentation process from this structurally unrelated carbon sources. The crystallinity of the terpolymer is basically to be markedly affected with respect to that of conventional PHAs, thus obtaining a comparatively less rigid material and easier to be processed. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Deep mantle: Enriched carbon source detected

    NASA Astrophysics Data System (ADS)

    Barry, Peter H.

    2017-09-01

    Estimates of carbon in the deep mantle vary by more than an order of magnitude. Coupled volcanic CO2 emission data and magma supply rates reveal a carbon-rich mantle plume source region beneath Hawai'i with 40% more carbon than previous estimates.

  18. Microbial production of value-added nutraceuticals.

    PubMed

    Wang, Jian; Guleria, Sanjay; Koffas, Mattheos Ag; Yan, Yajun

    2016-02-01

    Nutraceuticals are important natural bioactive compounds that confer health-promoting and medical benefits to humans. Globally growing demands for value-added nutraceuticals for prevention and treatment of human diseases have rendered nutraceuticals a multi-billion dollar market. However, supply limitations and extraction difficulties from natural sources such as plants, animals or fungi, restrict the large-scale use of nutraceuticals. Metabolic engineering via microbial production platforms has been advanced as an eco-friendly alternative approach for production of value-added nutraceuticals from simple carbon sources. Microbial platforms like the most widely used Escherichia coli and Saccharomyces cerevisiae have been engineered as versatile cell factories for production of diverse and complex value-added chemicals such as phytochemicals, prebiotics, polysaccaharides and poly amino acids. This review highlights the recent progresses in biological production of value-added nutraceuticals via metabolic engineering approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Denitrification-Efficiencies of Alternate Carbon Sources

    DTIC Science & Technology

    1984-07-01

    carbon source evaluated, while sweet whey, corn steep liquor , acid whey and soluble potato solids followed in order of decreasing efficiency. Three of...denitrification and total organic carbon removal with ’I. sweet whey 11 3. Percent denitrification and total organic carbon removal with corn steep liquor ...and total organic carbon removal with hydrolyzed sludge 18 10. Percent denitrification and total organic carbon removal with fish stick 19 11

  20. Constraining the subsoil carbon source to cave-air CO2 and speleothem calcite in central Texas

    NASA Astrophysics Data System (ADS)

    Bergel, Shelly J.; Carlson, Peter E.; Larson, Toti E.; Wood, Chris T.; Johnson, Kathleen R.; Banner, Jay L.; Breecker, Daniel O.

    2017-11-01

    Canonical models for speleothem formation and the subsurface carbon cycle invoke soil respiration as the dominant carbon source. However, evidence from some karst regions suggests that belowground CO2 originates from a deeper, older source. We therefore investigated the carbon sources to central Texas caves. Drip-water chemistry of two caves in central Texas implies equilibration with calcite at CO2 concentrations (PCO2_sat) higher than the maximum CO2 concentrations observed in overlying soils. This observation suggests that CO2 is added to waters after they percolate through the soils, which requires a subsoil carbon source. We directly evaluate the carbon isotope composition of the subsoil carbon source using δ13C measurements on cave-air CO2, which we independently demonstrate has little to no contribution from host rock carbon. We do so using the oxidative ratio, OR, defined as the number of moles of O2 consumed per mole of CO2 produced during respiration. However, additional belowground processes that affect O2 and CO2 concentrations, such as gas-water exchange and/or diffusion, may also influence the measured oxidative ratio, yielding an apparent OR (ORapparent). Cave air in Natural Bridge South Cavern has ORapparent values (1.09 ± 0.06) indistinguishable from those expected for respiration alone (1.08 ± 0.06). Pore space gases from soils above the cave have lower values (ORapparent = 0.67 ± 0.05) consistent with respiration and gas transport by diffusion. The simplest explanation for these observations is that cave air in NB South is influenced by respiration in open-system bedrock fractures such that neither diffusion nor exchange with water influence the composition of the cave air. The radiocarbon activities of NB South cave-air CO2 suggest the subsoil carbon source is hundreds of years old. The calculated δ13C values of the subsoil carbon source are consistent with tree-sourced carbon (perhaps decomposing root matter), the δ13C values of which

  1. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices

    PubMed Central

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-01-01

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm2·V−1·s−1), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution. PMID:26567845

  2. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices

    NASA Astrophysics Data System (ADS)

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-11-01

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm2·V-1·s-1), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution.

  3. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices.

    PubMed

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-11-16

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm(2)·V(-1)·s(-1)), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution.

  4. Availability of added sugars in Brazil: distribution, food sources and time trends.

    PubMed

    Levy, Renata Bertazzi; Claro, Rafael Moreira; Bandoni, Daniel Henrique; Mondini, Lenise; Monteiro, Carlos Augusto

    2012-03-01

    To describe the regional and socio-economic distribution of consumption of added sugar in Brazil in 2002/03, particularly products, sources of sugar and trends in the past 15 years. The study used data from Household Budget Surveys since the 1980s about the type and quantity of food and beverages bought by Brazilian families. Different indicators were analyzed: % of sugar calories over the total diet energy and caloric % of table sugar fractions and sugar added to processed food/ sugar calories of diet. In 2002/03, of the total energy available for consumption, 16.7% came from added sugar in all regional and socio-economic strata. The table sugar/ sugar added to processed food ratio was inversely proportional to increase in income. Although this proportion fell in the past 15 years, sugar added to processed food doubled, especially in terms of consumption of soft drinks and cookies. Brazilians consume more sugar than the recommended levels determined by the WHO and the sources of consumption of sugar have changed significantly.

  5. An atomic carbon source for high temperature molecular beam epitaxy of graphene.

    PubMed

    Albar, J D; Summerfield, A; Cheng, T S; Davies, A; Smith, E F; Khlobystov, A N; Mellor, C J; Taniguchi, T; Watanabe, K; Foxon, C T; Eaves, L; Beton, P H; Novikov, S V

    2017-07-26

    We report the use of a novel atomic carbon source for the molecular beam epitaxy (MBE) of graphene layers on hBN flakes and on sapphire wafers at substrate growth temperatures of ~1400 °C. The source produces a flux of predominantly atomic carbon, which diffuses through the walls of a Joule-heated tantalum tube filled with graphite powder. We demonstrate deposition of carbon on sapphire with carbon deposition rates up to 12 nm/h. Atomic force microscopy measurements reveal the formation of hexagonal moiré patterns when graphene monolayers are grown on hBN flakes. The Raman spectra of the graphene layers grown on hBN and sapphire with the sublimation carbon source and the atomic carbon source are similar, whilst the nature of the carbon aggregates is different - graphitic with the sublimation carbon source and amorphous with the atomic carbon source. At MBE growth temperatures we observe etching of the sapphire wafer surface by the flux from the atomic carbon source, which we have not observed in the MBE growth of graphene with the sublimation carbon source.

  6. [Effect of carbon and nitrogen sources and complex B vitamins on the synthesis of alkaline protease by different strains of Bacillus mesentericus and Bacillus subtilis].

    PubMed

    Emtseva, T V

    1975-01-01

    The effect of different sources of carbon, nitrogen, amino acids and vitamins on the synthesis of alkaline proteases by the stock and mutant strains of Bacillus mesentericus and by the natural strain of Bacillus subtilis-12 has been investigated. The maximum synthesis of alkaline protease has been obtained in the media containing starch or its hydrolysates--dextrine and maltose as the carbon source. Ammonium phosphate and casein as the nitrogen source prove to be optimal for Bac. mesentericus and Bac. subtilis, respectively. Complex B vitamins added to the nutrient medium accelerate the enzyme synthesis 2.5-4-fold.

  7. Sugar-Sweetened Beverages Are the Main Sources of Added Sugar Intake in the Mexican Population.

    PubMed

    Sánchez-Pimienta, Tania G; Batis, Carolina; Lutter, Chessa K; Rivera, Juan A

    2016-09-01

    Sugar intake has been associated with an increased prevalence of obesity, other noncommunicable diseases, and dental caries. The WHO recommends that free sugars should be <10% of total energy intake (TEI) and that additional health benefits could be obtained with a reduction below 5% of TEI. The objective of this study was to estimate the total, intrinsic, and added sugar intake in the Mexican diet and to identify the food groups that are the main sources of these sugars. We used data from a national probabilistic survey [ENSANUT (National Health and Nutrition Survey) 2012], which represents 3 geographic regions and urban and rural areas. Dietary information was obtained by administering a 24-h recall questionnaire to 10,096 participants. Total sugar intake was estimated by using the National Institute of Public Health (INSP) food-composition table and an established method to estimate added sugars. The mean intakes of total, intrinsic, and added sugars were 365, 127, and 238 kcal/d, respectively. Added sugars contributed 13% of TEI. Sugar-sweetened beverages (SSBs) were the main source of sugars, contributing 69% of added sugars. Food products high in saturated fat and/or added sugar (HSFAS) were the second main sources of added sugars, contributing 25% of added sugars. The average intake of added sugars in the Mexican diet is higher than WHO recommendations, which may partly explain the high prevalence of obesity and diabetes in Mexico. Because SSBs and HSFAS contribute >94% of total added sugars, strategies to reduce their intake should be strengthened. This includes stronger food labels to warn the consumer about the content of added sugars in foods and beverages. © 2016 American Society for Nutrition.

  8. Lignin-Derived Advanced Carbon Materials

    DOE PAGES

    Chatterjee, Sabornie; Saito, Tomonori

    2015-11-16

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, it has been found that lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein, we discuss the lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure–property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templatedmore » carbon.« less

  9. Lignin-Derived Advanced Carbon Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sabornie; Saito, Tomonori

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, it has been found that lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein, we discuss the lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure–property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templatedmore » carbon.« less

  10. Growth of graphene films from non-gaseous carbon sources

    DOEpatents

    Tour, James; Sun, Zhengzong; Yan, Zheng; Ruan, Gedeng; Peng, Zhiwei

    2015-08-04

    In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.

  11. Consumption of added sugars among US children and adults by food purchase location and food source.

    PubMed

    Drewnowski, Adam; Rehm, Colin D

    2014-09-01

    The proposed changes to the Nutrition Facts Label by the US Food and Drug Administration will include information on added sugars for the first time. The objective was to evaluate the sources of added sugars in the diets of a representative sample of US children and adults by food purchase location and food source (eg, food group). This cross-sectional study among 31,035 children, adolescents, and adults aged ≥6 y from the 2003-2004, 2005-2006, 2007-2008, and 2009-2010 NHANES used data from a 24-h dietary recall to evaluate consumption of added sugars. Food locations of origin were identified as stores (supermarket or grocery store), quick-service restaurants/pizza (QSRs), full-service restaurants (FSRs), schools, and others (eg, vending machines or gifts). Added sugars consumption by food purchase location was evaluated by age, family income-to-poverty ratio, and race-ethnicity. Food group sources of added sugars were identified by using the National Cancer Institute food categories. Added sugars accounted for ∼14.1% of total dietary energy. Between 65% and 76% of added sugars came from stores, 6% and 12% from QSRs, and 4% and 6% from FSRs, depending on age. Older adults (aged ≥51 y) obtained a significantly greater proportion of added sugars from stores than did younger adults. Lower-income adults obtained a significantly greater proportion of added sugars from stores than did higher-income adults. Intake of added sugars did not vary by family income among children/adolescents. Soda and energy and sports drinks were the largest food group sources of added sugars (34.4%), followed by grain desserts (12.7%), fruit drinks (8.0%), candy (6.7%), and dairy desserts (5.6%). Most added sugars came from foods obtained from stores. The proposed changes to the Nutrition Facts Label should capture the bulk of added sugars in the US food supply, which suggests that the recommended changes have the potential to reduce added sugars consumption. © 2014 American Society

  12. Glycerol conversion into value added chemicals over bimetallic catalysts in supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hidayati, Luthfiana N.; Sudiyarmanto, Adilina, Indri B.

    2017-01-01

    Development of alternative energy from biomass encourage the experiments and production of biodiesel lately. Biodiesel industries widely expand because biodiesel as substitute of fossil fuel recognized as promising renewable energy. Glycerol is a byproduct of biodiesel production, which is resulted 10% wt average every production. Meanwhile, carbon dioxide is a gas that is very abundant amount in the atmosphere. Glycerol and carbon dioxide can be regarded as waste, possibly will produce value-added chemical compounds through chemically treated. In this preliminary study, conversion of glycerol and carbon dioxide using bimetallic catalyst Ni-Sn with various catalyst supports : MgO, γ-Al2O3, and hydrotalcite. Catalysts which have been prepared, then physically characterized by XRD, surface area and porosity analysis, and thermal gravity analysis. Catalytic test performance using supercritical carbon dioxide conditions. Furthermore, the products were analyzed by GC. The final product mostly contained of propylene glycol and glycerol carbonate.

  13. Carbon source in the future chemical industries

    NASA Astrophysics Data System (ADS)

    Hofmann, Peter; Heinrich Krauch, Carl

    1982-11-01

    Rising crude oil prices favour the exploitation of hitherto unutilised energy carriers and the realisation of new technologies in all sectors where carbon is used. These changed economic constraints necessitate both savings in conventional petrochemistry and a change to oil-independent carbon sources in the chemical industry. While, in coal chemistry, the synthesis and process principles of petrochemistry — fragmentation of the raw material and subsequent buildup of molecular structures — can be maintained, the raw material structure largely remains unchanged in the chemistry of renewable raw materials. This lecture is to demonstrate the structural as well as the technological and energy criteria of the chemistry of alternative carbon sources, to forecast the chances of commercial realization and to discuss some promising fields of research and development.

  14. Carbon utilization profiles of river bacterial strains facing sole carbon sources suggest metabolic interactions.

    PubMed

    Goetghebuer, Lise; Servais, Pierre; George, Isabelle F

    2017-05-01

    Microbial communities play a key role in water self-purification. They are primary drivers of biogenic element cycles and ecosystem processes. However, these communities remain largely uncharacterized. In order to understand the diversity-heterotrophic activity relationship facing sole carbon sources, we assembled a synthetic community composed of 20 'typical' freshwater bacterial species mainly isolated from the Zenne River (Belgium). The carbon source utilization profiles of each individual strain and of the mixed community were measured in Biolog Phenotype MicroArrays PM1 and PM2A microplates that allowed testing 190 different carbon sources. Our results strongly suggest interactions occurring between our planktonic strains as our synthetic community showed metabolic properties that were not displayed by its single components. Finally, the catabolic performances of the synthetic community and a natural community from the same sampling site were compared. The synthetic community behaved like the natural one and was therefore representative of the latter in regard to carbon source consumption. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Sources of Added Sugars in Young Children, Adolescents, and Adults with Low and High Intakes of Added Sugars

    PubMed Central

    Fulgoni, Victor L.; Cowan, Alexandra E.; Gaine, P. Courtney

    2018-01-01

    High intake of added sugars is associated with excess energy intake and poorer diet quality. The objective of this cross-sectional study (n = 16,806) was to estimate usual intakes and the primary food sources of added sugars across the range of intakes (i.e., deciles) among U.S. children (2–8 years), adolescents and teens (9–18 years), and adults (≥19 years) using the National Health and Nutrition Examination (NHANES) data from 2009–2012. The percent energy contributed by added sugars was 14.3 ± 0.2% (2–8 years), 16.2 ± 0.2% (9–18 years), and 13.1 ± 0.2% (≥19 years), suggesting the highest intakes are among adolescents and teens. However, the primary foods/beverages that contribute to added sugars were remarkably consistent across the range of intakes, with the exception of the lowest decile, and include sweetened beverages and sweet bakery products. Interestingly across all age groups, even those in the lowest decile of added sugars exceed the 10% guidelines. Additional foods contributing to high intakes were candy and other desserts (e.g., ice cream) in children and adolescents, and coffee and teas in adults. Tailoring public health messaging to reduce intakes of these identified food groups may be of utility in designing effective strategies to reduce added sugar intake in the U.S. PMID:29342109

  16. Sources of Added Sugars in Young Children, Adolescents, and Adults with Low and High Intakes of Added Sugars.

    PubMed

    Bailey, Regan L; Fulgoni, Victor L; Cowan, Alexandra E; Gaine, P Courtney

    2018-01-17

    High intake of added sugars is associated with excess energy intake and poorer diet quality. The objective of this cross-sectional study ( n = 16,806) was to estimate usual intakes and the primary food sources of added sugars across the range of intakes (i.e., deciles) among U.S. children (2-8 years), adolescents and teens (9-18 years), and adults (≥19 years) using the National Health and Nutrition Examination (NHANES) data from 2009-2012. The percent energy contributed by added sugars was 14.3 ± 0.2% (2-8 years), 16.2 ± 0.2% (9-18 years), and 13.1 ± 0.2% (≥19 years), suggesting the highest intakes are among adolescents and teens. However, the primary foods/beverages that contribute to added sugars were remarkably consistent across the range of intakes, with the exception of the lowest decile, and include sweetened beverages and sweet bakery products. Interestingly across all age groups, even those in the lowest decile of added sugars exceed the 10% guidelines. Additional foods contributing to high intakes were candy and other desserts (e.g., ice cream) in children and adolescents, and coffee and teas in adults. Tailoring public health messaging to reduce intakes of these identified food groups may be of utility in designing effective strategies to reduce added sugar intake in the U.S.

  17. Consumption of added sugars among US children and adults by food purchase location and food source123

    PubMed Central

    Drewnowski, Adam; Rehm, Colin D

    2014-01-01

    Background: The proposed changes to the Nutrition Facts Label by the US Food and Drug Administration will include information on added sugars for the first time. Objective: The objective was to evaluate the sources of added sugars in the diets of a representative sample of US children and adults by food purchase location and food source (eg, food group). Design: This cross-sectional study among 31,035 children, adolescents, and adults aged ≥6 y from the 2003–2004, 2005–2006, 2007–2008, and 2009–2010 NHANES used data from a 24-h dietary recall to evaluate consumption of added sugars. Food locations of origin were identified as stores (supermarket or grocery store), quick-service restaurants/pizza (QSRs), full-service restaurants (FSRs), schools, and others (eg, vending machines or gifts). Added sugars consumption by food purchase location was evaluated by age, family income-to-poverty ratio, and race-ethnicity. Food group sources of added sugars were identified by using the National Cancer Institute food categories. Results: Added sugars accounted for ∼14.1% of total dietary energy. Between 65% and 76% of added sugars came from stores, 6% and 12% from QSRs, and 4% and 6% from FSRs, depending on age. Older adults (aged ≥51 y) obtained a significantly greater proportion of added sugars from stores than did younger adults. Lower-income adults obtained a significantly greater proportion of added sugars from stores than did higher-income adults. Intake of added sugars did not vary by family income among children/adolescents. Soda and energy and sports drinks were the largest food group sources of added sugars (34.4%), followed by grain desserts (12.7%), fruit drinks (8.0%), candy (6.7%), and dairy desserts (5.6%). Conclusions: Most added sugars came from foods obtained from stores. The proposed changes to the Nutrition Facts Label should capture the bulk of added sugars in the US food supply, which suggests that the recommended changes have the potential to

  18. Utilization of carbon sources by clinical isolates of Aeromonas.

    PubMed

    Prediger, Karoline C; Surek, Monica; Dallagassa, Cibelle B; Assis, Flávia E A; Piantavini, Mario S; Souza, Emanuel M; Pedrosa, Fábio O; Farah, Sônia M S S; Alberton, Dayane; Fadel-Picheth, Cyntia M T

    2017-04-01

    Bacteria in the genus Aeromonas are primarily aquatic organisms; however, some species can cause diseases in humans, ranging from wound infections to septicemia, of which diarrhea is the most common condition. The ability to use a variety of carbon substrates is advantageous for pathogenic bacteria. Therefore, we used Biolog GN2 microplates to analyze the ability of 103 clinical, predominantly diarrheal, isolates of Aeromonas to use various carbon sources, and we verified whether, among the substrates metabolized by these strains, there were some endogenous to the human intestine. The results indicate that Aeromonas present great diversity in the utilization of carbon sources, and that they preferentially use carbohydrates and amino acids as carbon sources. Among the carbon sources metabolized by Aeromonas in vitro, some were found to be components of intestinal mucin, including aspartic acid, glutamic acid, l-serine, galactose, N-acetyl-glucosamine, and glucose, which were used by all strains tested. Additionally, mannose, d-serine, proline, threonine, and N-acetyl-galactosamine were used by several strains. The potential to metabolize substrates endogenous to the intestine may contribute to Aeromonas' capacity to grow in and colonize the intestine. We speculate that this may help explain the ability of Aeromonas to cause diarrhea.

  19. Substrate quality alters microbial mineralization of added substrate and soil organic carbon

    NASA Astrophysics Data System (ADS)

    Jagadamma, S.; Mayes, M. A.; Steinweg, J. M.; Schaeffer, S. M.

    2014-03-01

    The rate and extent of decomposition of soil organic carbon (SOC) is dependent on substrate chemistry and microbial dynamics. Our objectives were to understand the influence of substrate chemistry on microbial processing of carbon (C), and to use model fitting to quantify differences in pool sizes and mineralization rates. We conducted an incubation experiment for 270 days using four uniformly-labeled 14C substrates (glucose, starch, cinnamic acid and stearic acid) on four different soils (a temperate Mollisol, a tropical Ultisol, a sub-arctic Andisol, and an arctic Gelisol). The 14C labeling enabled us to separate CO2 respired from added substrates and from native SOC. Microbial gene copy numbers were quantified at days 4, 30 and 270 using quantitative polymerase chain reaction (qPCR). Substrate C respiration was always higher for glucose than other substrates. Soils with cinnamic and stearic acid lost more native SOC than glucose- and starch-amended soils, despite an initial delay in respiration. Cinnamic and stearic acid amendments also exhibited higher fungal gene copy numbers at the end of incubation compared to unamended soils. We found that 270 days was sufficient to model decomposition of simple substrates (glucose and starch) with three pools, but was insufficient for more complex substrates (cinnamic and stearic acid) and native SOC. This study reveals that substrate quality imparts considerable control on microbial decomposition of newly added and native SOC, and demonstrates the need for multi-year incubation experiments to constrain decomposition parameters for the most recalcitrant fractions of SOC and added substrates.

  20. A comparative study of methanol as a supplementary carbon source for enhancing denitrification in primary and secondary anoxic zones.

    PubMed

    Ginige, Maneesha P; Bowyer, Jocelyn C; Foley, Leah; Keller, Jürg; Yuan, Zhiguo

    2009-04-01

    A comparative study on the use of methanol as a supplementary carbon source to enhance denitrification in primary and secondary anoxic zones is reported. Three lab-scale sequencing batch reactors (SBR) were operated to achieve nitrogen and carbon removal from domestic wastewater. Methanol was added to the primary anoxic period of the first SBR, and to the secondary anoxic period of the second SBR. No methanol was added to the third SBR, which served as a control. The extent of improvement on the denitrification performance was found to be dependent on the reactor configuration. Addition to the secondary anoxic period is more effective when very low effluent nitrate levels are to be achieved and hence requires a relatively large amount of methanol. Adding a small amount of methanol to the secondary anoxic period may cause nitrite accumulation, which does not improve overall nitrogen removal. In the latter case, methanol should be added to the primary anoxic period. The addition of methanol can also improve biological phosphorus removal by creating anaerobic conditions and increasing the availability of organic carbon in wastewater for polyphosphate accumulating organisms. This potentially provides a cost-effective approach to phosphorus removal from wastewater with a low carbon content. New fluorescence in situ hybridisation (FISH) probes targeting methanol-utilising denitrifiers were designed using stable isotope probing. Microbial structure analysis of the sludges using the new and existing FISH probes clearly showed that the addition of methanol stimulated the growth of specific methanol-utilizing denitrifiers, which improved the capability of sludge to use methanol and ethanol for denitrification, but reduced its capability to use wastewater COD for denitrification. Unlike acetate, long-term application of methanol has no negative impact on the settling properties of the sludge.

  1. Microstructure and Properties of Zircon-Added Carbon Refractories for Blast Furnace

    NASA Astrophysics Data System (ADS)

    Zhu, Tianbin; Li, Yawei; Sang, Shaobai; Chen, Xilai; Zhao, Lei; Li, Yuanbing; Li, Shujing

    2012-11-01

    Microstructure and properties of zircon-added carbon refractory specimens for blast furnace (BF) were investigated with the aid of X-ray diffraction (XRD), a scanning electron microscope (SEM), energy-dispersive X-ray, mercury porosimetry, and a laser thermal conductivity (TC) meter. Additives could influence the matrix structures and improve the properties of specimens. With the increase of zircon powder content, the amount of SiC whiskers formed increased and their aspect ratio became larger, and the SiC whiskers tended to be distributed homogeneously. Zircon powder additions decreased the mean pore diameter and increased <1- μm pore volume by filling in pores via SiC, improved the TC and the cold crushing strength (CCS) due to the in-situ formation of the more well-developed SiC whiskers with high TC, and significantly reduced the molten iron attack to carbon specimens.

  2. Application of biogenic carbon dioxide produced by yeast with different carbon sources for attraction of mosquitoes towards adult mosquito traps.

    PubMed

    Sukumaran, D; Ponmariappan, S; Sharma, Atul K; Jha, Hemendra K; Wasu, Yogesh H; Sharma, Ajay K

    2016-04-01

    Surveillance is a prime requisite for controlling arthropod vectors like mosquitoes that transmit diseases such as malaria, dengue and chikungunya. Carbon dioxide (CO2) is one of the main cues from vertebrate breath that attracts mosquitoes towards the host. Hence, CO2 is used as an attractant during surveillance of mosquitoes either from commercial cylinders or dry ice for mosquito traps. In the present study, the biogenic carbon dioxide production was optimized with different carbon sources such as glucose, simple sugar and jaggery with and without yeast peptone dextrose (YPD) media using commercial baker's yeast. The results showed that yeast produced more biogenic CO2 with simple sugar as compared to other carbon sources. Further substrate concentration was optimized for the continuous production of biogenic CO2 for a minimum of 12 h by using 10 g of baker's yeast with 50 g of simple sugar added to 1.5 l distilled water (without YPD media) in a 2-l plastic bottle. This setup was applied in field condition along with two different mosquito traps namely Mosquito Killing System (MKS) and Biogents Sentinel (BGS) trap. Biogenic CO2 from this setup has increased the trapping efficiency of MKS by 6.48-fold for Culex quinquefasciatus, 2.62-fold for Aedes albopictus and 1.5-fold for Anopheles stephensi. In the case of BGS, the efficiency was found to be increased by 3.54-fold for Ae. albopictus, 4.33-fold for An. stephensi and 1.3-fold for Armigeres subalbatus mosquitoes. On the whole, plastic bottle setup releasing biogenic CO2 from sugar and yeast has increased the efficiency of MKS traps by 6.38-fold and 2.74-fold for BGS traps as compared to traps without biogenic CO2. The present study reveals that, among different carbon sources used, simple sugar as a substance (which is economical and readily available across the world) yielded maximum biogenic CO2 with yeast. This setup can be used as an alternative to CO2 cylinder and dry ice in any adult mosquito traps to

  3. Different carbon sources affect PCB accumulation by marine bivalves.

    PubMed

    Laitano, M V; Silva Barni, M F; Costa, P G; Cledón, M; Fillmann, G; Miglioranza, K S B; Panarello, H O

    2016-02-01

    Pampean creeks were evaluated in the present study as potential land-based sources of PCB marine contamination. Different carbon and nitrogen sources from such creeks were analysed as boosters of PCB bioaccumulation by the filter feeder bivalve Brachidontes rodriguezii and grazer limpet Siphonaria lessoni. Carbon of different source than marine and anthropogenic nitrogen assimilated by organisms were estimated through their C and N isotopic composition. PCB concentration in surface sediments and mollusc samples ranged from 2.68 to 6.46 ng g(-1) (wet weight) and from 1074 to 4583 ng g(-1) lipid, respectively, reflecting a punctual source of PCB contamination related to a landfill area. Thus, despite the low flow of creeks, they should not be underestimated as contamination vectors to the marine environment. On the other hand, mussels PCB bioaccumulation was related with the carbon source uptake which highlights the importance to consider this factor when studying PCB distribution in organisms of coastal systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Tracking Nonpoint Source Nitrogen and Carbon in Watersheds of Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Kaushal, S.; Pennino, M. J.; Duan, S.; Blomquist, J.

    2012-12-01

    Humans have altered nitrogen and carbon cycles in rivers regionally with important impacts on coastal ecosystems. Nonpoint source nitrogen pollution is a leading contributor to coastal eutrophication and hypoxia. Shifts in sources of carbon impact downstream ecosystem metabolism and fate and transport of contaminants in coastal zones. We used a combination of stable isotopes and optical tracers to investigate fate and transport of nitrogen and carbon sources in tributaries of the largest estuary in the U.S., the Chesapeake Bay. We analyzed isotopic composition of water samples from major tributaries including the Potomac River, Susquehanna River, Patuxent River, and Choptank River during routine and storm event sampling over multiple years. A positive correlation between δ15N-NO3- and δ18O-NO3- in the Potomac River above Washington D.C. suggested denitrification or biological uptake in the watershed was removing agriculturally-derived N during summer months. In contrast, the Patuxent River in Maryland showed elevated δ15N-NO3- (5 - 12 per mil) with no relationship to δ18O-NO3- suggesting the importance of wastewater sources. From the perspective of carbon sources, there were distinct isotopic values of the δ13C-POM of particulate organic matter and fluorescence excitation emission matrices (EEMS) for rivers influenced by their dominant watershed land use. EEMS showed that there were increases in the humic and fulvic fractions of dissolved organic matter during spring floods, particularly in the Potomac River. Stable isotopic values of δ13C-POM also showed rapid depletion suggesting terrestrial carbon "pulses" in the Potomac River each spring. The δ15N-POM peaked to 10 - 15 per mil each spring suggested a potential manure source or result of biological processing within the watershed. Overall, there were considerable changes in sources and transformations of nitrogen and carbon that varied across rivers and that contribute to nitrogen and carbon loads

  5. Effects of Added Organic Matter and Water on Soil Carbon Sequestration in an Arid Region

    PubMed Central

    Tian, Yuan; Jiang, Lianhe; Zhao, Xuechun; Zhu, Linhai; Chen, Xi; Gao, Yong; Wang, Shaoming; Zheng, Yuanrun; Rimmington, Glyn M.

    2013-01-01

    It is generally predicted that global warming will stimulate primary production and lead to more carbon (C) inputs to soil. However, many studies have found that soil C does not necessarily increase with increased plant litter input. Precipitation has increased in arid central Asia, and is predicted to increase more, so we tested the effects of adding fresh organic matter (FOM) and water on soil C sequestration in an arid region in northwest China. The results suggested that added FOM quickly decomposed and had minor effects on the soil organic carbon (SOC) pool to a depth of 30 cm. Both FOM and water addition had significant effects on the soil microbial biomass. The soil microbial biomass increased with added FOM, reached a maximum, and then declined as the FOM decomposed. The FOM had a more significant stimulating effect on microbial biomass with water addition. Under the soil moisture ranges used in this experiment (21.0%–29.7%), FOM input was more important than water addition in the soil C mineralization process. We concluded that short-term FOM input into the belowground soil and water addition do not affect the SOC pool in shrubland in an arid region. PMID:23875022

  6. Carbon-14 in methane sources and in atmospheric methane - The contribution from fossil carbon

    NASA Technical Reports Server (NTRS)

    Wahlen, M.; Tanaka, N.; Henry, R.; Deck, B.; Zeglen, J.

    1989-01-01

    Measurements of carbon-14 in small samples of methane from major biogenic sources, from biomass burning, and in clean air samples from both the Northern and Southern hemispheres reveal that methane from ruminants contains contemporary carbon, whereas that from wetlands, peat bogs, rice fields, and tundra, is somewhat depleted in carbon-14. Atmospheric (C-14)H4 seems to have increased from 1986 to 1987, and levels at the end of 1987 were 123.3 + or - 0.8 percent modern carbon in the Northern Hemisphere and 120.0 + or - 0.7 percent modern carbon in the Southern Hemisphere.

  7. Sources and Fate of Reactive Carbon over North America

    NASA Astrophysics Data System (ADS)

    Chen, X.; Millet, D. B.; Singh, H. B.; Wisthaler, A.

    2016-12-01

    We apply a high-resolution chemical transport model (GEOS-Chem CTM at 0.25°×0.3125°) to generate, a comprehensive gas-phase reactive carbon budget over North America. Based on state-of-science source inventories and known chemistry, we find in the model that biogenic sources dominate the overall reactive carbon budget, with 49, 15, 4, and 39 TgC, respectively, introduced to the North American atmosphere from the biosphere, anthropogenic sources, fires, and from methane oxidation in 2013. Biogenic and anthropogenic non-methane volatile organic compounds contribute 60% and 10%, respectively, to the total OH reactivity over the Southeast US, along with other contributions from methane and inorganics. Oxidation to CO and CO2 then represents the overwhelming fate of that reactive carbon, with 65, 15, 7 and 5 TgC, respectively, oxidized to produce CO/CO2, dry deposited, wet deposited and transported (net) out of North America. We confront this simulation with an ensemble of recent airborne measurements over North America (SEAC4RS, SENEX, DISCOVER-AQ, DC3) and interpret the model-measurement comparisons in terms of their implications for current understanding of atmospheric reactive carbon and the processes driving its distribution.

  8. Shunting arc plasma source for pure carbon ion beam.

    PubMed

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  9. Shunting arc plasma source for pure carbon ion beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koguchi, H.; Sakakita, H.; Kiyama, S.

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  10. Glucose becomes one of the worst carbon sources for E.coli on poor nitrogen sources due to suboptimal levels of cAMP

    PubMed Central

    Bren, Anat; Park, Junyoung O.; Towbin, Benjamin D.; Dekel, Erez; Rabinowitz, Joshua D.; Alon, Uri

    2016-01-01

    In most conditions, glucose is the best carbon source for E. coli: it provides faster growth than other sugars, and is consumed first in sugar mixtures. Here we identify conditions in which E. coli strains grow slower on glucose than on other sugars, namely when a single amino acid (arginine, glutamate, or proline) is the sole nitrogen source. In sugar mixtures with these nitrogen sources, E. coli still consumes glucose first, but grows faster rather than slower after exhausting glucose, generating a reversed diauxic shift. We trace this counterintuitive behavior to a metabolic imbalance: levels of TCA-cycle metabolites including α-ketoglutarate are high, and levels of the key regulatory molecule cAMP are low. Growth rates were increased by experimentally increasing cAMP levels, either by adding external cAMP, by genetically perturbing the cAMP circuit or by inhibition of glucose uptake. Thus, the cAMP control circuitry seems to have a ‘bug’ that leads to slow growth under what may be an environmentally rare condition. PMID:27109914

  11. Implication of using different carbon sources for denitrification in wastewater treatments.

    PubMed

    Cherchi, Carla; Onnis-Hayden, Annalisa; El-Shawabkeh, Ibrahim; Gu, April Z

    2009-08-01

    Application of external carbon sources for denitrification becomes necessary for wastewater treatment plants that have to meet very stringent effluent nitrogen limits (e.g., 3 to 5 mgTN/L). In this study, we evaluated and compared three carbon sources--MicroC (Environmental Operating Solutions, Bourne, Massachusetts), methanol, and acetate-in terms of their denitrification rates and kinetics, effect on overall nitrogen removal performance, and microbial community structure of carbon-specific denitrifying enrichments. Denitrification rates and kinetics were determined with both acclimated and non-acclimated biomass, obtained from laboratory-scale sequencing batch reactor systems or full-scale plants. The results demonstrate the feasibility of the use of MicroC for denitrification processes, with maximum denitrification rates (k(dmax)) of 6.4 mgN/gVSSh and an observed yield of 0.36 mgVSS/mgCOD. Comparable maximum nitrate uptake rates were found with methanol, while acetate showed a maximum denitrification rate nearly twice as high as the others. The maximum growth rates measured at 20 degrees C for MicroC and methanol were 3.7 and 1.2 day(-1), respectively. The implications resulting from the differences in the denitrification rates and kinetics of different carbon sources on the full-scale nitrogen removal performance, under various configurations and operational conditions, were assessed using Biowin (EnviroSim Associates, Ltd., Flamborough, Ontario, Canada) simulations for both pre- and post-denitrification systems. Examination of microbial population structures using Automated Ribosomal Intergenic Spacer Analysis (ARISA) throughout the study period showed dynamic temporal changes and distinct microbial community structures of different carbon-specific denitrifying cultures. The ability of a specific carbon-acclimated denitrifying population to instantly use other carbon source also was investigated, and the chemical-structure-associated behavior patterns observed

  12. Dual-Carbon sources fuel the OCS deep-reef Community, a stable isotope investigation

    USGS Publications Warehouse

    Sulak, Kenneth J.; Berg, J.; Randall, Michael T.; Dennis, George D.; Brooks, R.A.

    2008-01-01

    The hypothesis that phytoplankton is the sole carbon source for the OCS deep-reef community (>60 m) was tested. Trophic structure for NE Gulf of Mexico deep reefs was analyzed via carbon and nitrogen stable isotopes. Carbon signatures for 114 entities (carbon sources, sediment, fishes, and invertebrates) supported surface phytoplankton as the primary fuel for the deep reef. However, a second carbon source, the macroalga Sargassum, with its epiphytic macroalgal associate, Cladophora liniformis, was also identified. Macroalgal carbon signatures were detected among 23 consumer entities. Most notably, macroalgae contributed 45 % of total carbon to the 13C isotopic spectrum of the particulate-feeding reef-crest gorgonian Nicella. The discontinuous spatial distribution of some sessile deep-reef invertebrates utilizing pelagic macroalgal carbon may be trophically tied to the contagious distribution of Sargassum biomass along major ocean surface features.

  13. Polyhydroxyalkanoates (PHA) production using wastewater as carbon source and activated sludge as microorganisms.

    PubMed

    Yan, S; Tyagi, R D; Surampalli, R Y

    2006-01-01

    Activated sludge from different full-scale wastewater treatment plants (municipal, pulp and paper industry, starch manufacturing and cheese manufacturing wastewaters) was used as a source of microorganisms to produce biodegradable plastics in shake flask experiments. Acetate, glucose and different wastewaters were used as carbon sources. Pulp and paper wastewater sludge was found to accumulate maximum concentration (43% of dry weight of suspended solids) of polyhydroxy alkanoates (PHA) with acetate as carbon source. Among the different wastewaters tested as a source of carbon, pulp and paper industry and starch industry wastewaters were found to be the best source of carbon while employing pulp and paper activated sludge for maximum accumulation of PHA. High concentration of volatile fatty acids in these wastewaters was the probable reason.

  14. Differences in carbon source utilization of Salmonella Oranienburg and Saintpaul isolated from river water.

    PubMed

    Medrano-Félix, Andrés; Estrada-Acosta, Mitzi; Peraza-Garay, Felipe; Castro-Del Campo, Nohelia; Martínez-Urtaza, Jaime; Chaidez, Cristóbal

    2017-08-01

    Long-term exposure to river water by non-indigenous micro-organisms such as Salmonella may affect metabolic adaptation to carbon sources. This study was conducted to determine differences in carbon source utilization of Salmonella Oranienburg and Salmonella Saintpaul (isolated from tropical river water) as well as the control strain Salmonella Typhimurium exposed to laboratory, river water, and host cells (Hep-2 cell line) growth conditions. Results showed that Salmonella Oranienburg and Salmonella Saintpaul showed better ability for carbon source utilization under the three growth conditions evaluated; however, S. Oranienburg showed the fastest and highest utilization on different carbon sources, including D-Glucosaminic acid, N-acetyl-D-Glucosamine, Glucose-1-phosphate, and D-Galactonic acid, while Salmonella Saintpaul and S. Typhimurium showed a limited utilization of carbon sources. In conclusion, this study suggests that environmental Salmonella strains show better survival and preconditioning abilities to external environments than the control strain based on their plasticity on diverse carbon sources use.

  15. A Precisely Assembled Carbon Source to Synthesize Fluorescent Carbon Quantum Dots for Sensing Probes and Bioimaging Agents.

    PubMed

    Qiao, Yiqiang; Luo, Dan; Yu, Min; Zhang, Ting; Cao, Xuanping; Zhou, Yanheng; Liu, Yan

    2018-02-09

    A broad range of carbon sources have been used to fabricate varieties of carbon quantum dots (CQDs). However, the majority of these studies concern the influence of primary structures and chemical compositions of precursors on the CQDs; it is still unclear whether or not the superstructures of carbon sources have effects on the physiochemical properties of the synthetic CQDs. In this work, the concept of molecular assembly is first introduced into the design of a new carbon source. Compared with the tropocollagen molecules, the hierarchically assembled collagen scaffolds, as a new carbon source, immobilize functional groups of the precursors through hydrogen bonds, electrostatic attraction, and hydrophobic forces. Moreover, the accumulation of functional groups in collagen self-assembly further promotes the covalent bond formation in the obtained CQDs through a hydrothermal process. Both of these two chemical superiorities give rise to high quality CQDs with enhanced emission. The assembled collagen scaffold-based CQDs with heteroatom doping exhibit superior stability, and could be further applied as effective fluorescent probes for Fe 3+ detection and cellular cytosol imaging. These findings open a wealth of possibilities to explore more nanocarbons from precursors with assembled superstructures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Carbon footprint of urban source separation for nutrient recovery.

    PubMed

    Kjerstadius, H; Bernstad Saraiva, A; Spångberg, J; Davidsson, Å

    2017-07-15

    Source separation systems for the management of domestic wastewater and food waste has been suggested as more sustainable sanitation systems for urban areas. The present study used an attributional life cycle assessment to investigate the carbon footprint and potential for nutrient recovery of two sanitation systems for a hypothetical urban area in Southern Sweden. The systems represented a typical Swedish conventional system and a possible source separation system with increased nutrient recovery. The assessment included the management chain from household collection, transport, treatment and final return of nutrients to agriculture or disposal of the residuals. The results for carbon footprint and nutrient recovery (phosphorus and nitrogen) concluded that the source separation system could increase nutrient recovery (0.30-0.38 kg P capita -1 year -1 and 3.10-3.28 kg N capita -1 year -1 ), while decreasing the carbon footprint (-24 to -58 kg CO 2 -eq. capita -1 year -1 ), compared to the conventional system. The nutrient recovery was increased by the use of struvite precipitation and ammonium stripping at the wastewater treatment plant. The carbon footprint decreased, mainly due to the increased biogas production, increased replacement of mineral fertilizer in agriculture and less emissions of nitrous oxide from wastewater treatment. In conclusion, the study showed that source separation systems could potentially be used to increase nutrient recovery from urban areas, while decreasing the climate impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A Fluorescent Source NDIR Carbon Monoxide Analyzer

    NASA Technical Reports Server (NTRS)

    Link, W. T.; McClatchie, E. A.; Watson, D. A.; Compher, A. B.

    1971-01-01

    This paper describes a new technique for measuring trace quantities of carbon monoxide by the nondispersive infrared (NDIR) methods. The technique uses the property of infrared fluorescence in a gas to generate a specific source of radiation which is an exact match of the absorption spectrum of the fundamental band of carbon monoxide. This results in an instrument with high sensitivity and specificity for CO. A novel method of referencing using an isotopic species of CO confers great stability on the instrument.

  18. [Quantitative estimation source of urban atmospheric CO2 by carbon isotope composition].

    PubMed

    Liu, Wei; Wei, Nan-Nan; Wang, Guang-Hua; Yao, Jian; Zeng, You-Shi; Fan, Xue-Bo; Geng, Yan-Hong; Li, Yan

    2012-04-01

    To effectively reduce urban carbon emissions and verify the effectiveness of currently project for urban carbon emission reduction, quantitative estimation sources of urban atmospheric CO2 correctly is necessary. Since little fractionation of carbon isotope exists in the transportation from pollution sources to the receptor, the carbon isotope composition can be used for source apportionment. In the present study, a method was established to quantitatively estimate the source of urban atmospheric CO2 by the carbon isotope composition. Both diurnal and height variations of concentrations of CO2 derived from biomass, vehicle exhaust and coal burning were further determined for atmospheric CO2 in Jiading district of Shanghai. Biomass-derived CO2 accounts for the largest portion of atmospheric CO2. The concentrations of CO2 derived from the coal burning are larger in the night-time (00:00, 04:00 and 20:00) than in the daytime (08:00, 12:00 and 16:00), and increase with the increase of height. Those derived from the vehicle exhaust decrease with the height increase. The diurnal and height variations of sources reflect the emission and transport characteristics of atmospheric CO2 in Jiading district of Shanghai.

  19. [Optimization Study on the Nitrogen and Phosphorus Removal of Modified Two- sludge System Under the Condition of Low Carbon Source].

    PubMed

    Yang, Wei-qiang; Wang, Dong-bo; Li, Xiao-ming; Yang, Qi; Xu, Qiu-xiang; Zhang, Zhi-bei; Li, Zhi-jun; Xiang, Hai-hong; Wang, Ya-li; Sun, Jian

    2016-04-15

    This paper explored the method of resolving insufficient carbon source in urban sewage by comparing and analyzing denitrification and phosphorus removal (NPR) effect between modified two-sludge system and traditional anaerobic-aerobic-anoxic process under the condition of low carbon source wastewater. The modified two-sludge system was the experimental reactor, which was optimized by adding two stages of micro-aeration (aeration rate 0.5 L · mm⁻¹) in the anoxic period of the original two-sludge system, and multi-stage anaerobic-aerobic-anoxic SBR was the control reactor. When the influent COD, ammonia nitrogen, SOP concentration were respectively 200, 35, 10 mg · L⁻¹, the NPR effect of the experimental reactor was hetter than that of thecontrol reactor with the removal efficiency of TN being 94.8% vs 60.9%, and TP removal being 96.5% vs 75%, respectively. The effluent SOP, ammonia, TN concentration of the experimental reactor were 0.35, 0.50, 1.82 mg · L⁻¹, respectively, which could fully meet the first class of A standard of the Pollutants Emission Standard of Urban Wastewater Treatment Firm (GB 18918-2002). Using the optimized treatment process, the largest amounts of nitrogen and phosphorus removal per unit carbon source (as COD) were 0.17 g · g⁻¹ and 0.048 g · g⁻¹ respectively, which could furthest solve the lower carbon concentration in current municipal wastewater.

  20. Carbon isotopes of dissolved inorganic carbon reflect utilization of different carbon sources by microbial communities in two limestone aquifer assemblages

    NASA Astrophysics Data System (ADS)

    Nowak, Martin E.; Schwab, Valérie F.; Lazar, Cassandre S.; Behrendt, Thomas; Kohlhepp, Bernd; Totsche, Kai Uwe; Küsel, Kirsten; Trumbore, Susan E.

    2017-08-01

    Isotopes of dissolved inorganic carbon (DIC) are used to indicate both transit times and biogeochemical evolution of groundwaters. These signals can be complicated in carbonate aquifers, as both abiotic (i.e., carbonate equilibria) and biotic factors influence the δ13C and 14C of DIC. We applied a novel graphical method for tracking changes in the δ13C and 14C of DIC in two distinct aquifer complexes identified in the Hainich Critical Zone Exploratory (CZE), a platform to study how water transport links surface and shallow groundwaters in limestone and marlstone rocks in central Germany. For more quantitative estimates of contributions of different biotic and abiotic carbon sources to the DIC pool, we used the NETPATH geochemical modeling program, which accounts for changes in dissolved ions in addition to C isotopes. Although water residence times in the Hainich CZE aquifers based on hydrogeology are relatively short (years or less), DIC isotopes in the shallow, mostly anoxic, aquifer assemblage (HTU) were depleted in 14C compared to a deeper, oxic, aquifer complex (HTL). Carbon isotopes and chemical changes in the deeper HTL wells could be explained by interaction of recharge waters equilibrated with post-bomb 14C sources with carbonates. However, oxygen depletion and δ13C and 14C values of DIC below those expected from the processes of carbonate equilibrium alone indicate considerably different biogeochemical evolution of waters in the upper aquifer assemblage (HTU wells). Changes in 14C and 13C in the upper aquifer complexes result from a number of biotic and abiotic processes, including oxidation of 14C-depleted OM derived from recycled microbial carbon and sedimentary organic matter as well as water-rock interactions. The microbial pathways inferred from DIC isotope shifts and changes in water chemistry in the HTU wells were supported by comparison with in situ microbial community structure based on 16S rRNA analyses. Our findings demonstrate the large

  1. Microbial production of rhamnolipids using sugars as carbon sources.

    PubMed

    Tan, Yun Nian; Li, Qingxin

    2018-06-08

    Rhamnolipids are a class of biosurfactants with effective surface-active properties. The high cost of microbial production of rhamnolipids largely affects their commercial applications. To reduce the production post, research has been carried out in screening more powerful strains, engineering microbes with higher biosurfactant yields and exploring cheaper substrates to reduce the production cost. Extensive refining is required for biosurfactant production using oils and oil-containing wastes, necessitating the use of complex and expensive biosurfactant recovery methods such as extraction with solvents or acid precipitation. As raw materials normally can account for 10-30% of the overall production cost, sugars have been proven to be an alternative carbon source for microbial production of rhamnolipids due to its lower costs and straightforward processing techniques. Studies have thus been focused on using tropical agroindustrial crop residues as renewable substrates. Herein, we reviewed studies that are using sugar-containing substrates as carbon sources for producing rhamnolipids. We speculate that sugars derived from agricultural wastes rich in cellulose and sugar-containing wastes are potential carbon sources in fermentation while challenges still remain in large scales.

  2. Review: role of carbon sources for in vitro plant growth and development.

    PubMed

    Yaseen, Mehwish; Ahmad, Touqeer; Sablok, Gaurav; Standardi, Alvaro; Hafiz, Ishfaq Ahmad

    2013-04-01

    In vitro plant cells, tissues and organ cultures are not fully autotrophic establishing a need for carbohydrates in culture media to maintain the osmotic potential, as well as to serve as energy and carbon sources for developmental processes including shoot proliferation, root induction as well as emission, embryogenesis and organogenesis, which are highly energy demanding developmental processes in plant biology. A variety of carbon sources (both reducing and non-reducing) are used in culture media depending upon genotypes and specific stages of growth. However, sucrose is most widely used as a major transport-sugar in the phloem sap of many plants. In micropropagation systems, morphogenetic potential of plant tissues can greatly be manipulated by varying type and concentration of carbon sources. The present article reviews the past and current findings on carbon sources and their sustainable utilization for in vitro plant tissue culture to achieve better growth rate and development.

  3. Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as the sole carbon source.

    PubMed

    Pijuan, M; Saunders, A M; Guisasola, A; Baeza, J A; Casas, C; Blackall, L L

    2004-01-05

    An enhanced biological phosphorus removal (EBPR) system was developed in a sequencing batch reactor (SBR) using propionate as the sole carbon source. The microbial community was followed using fluorescence in situ hybridization (FISH) techniques and Candidatus 'Accumulibacter phosphatis' were quantified from the start up of the reactor until steady state. A series of SBR cycle studies was performed when 55% of the SBR biomass was Accumulibacter, a confirmed polyphosphate accumulating organism (PAO) and when Candidatus 'Competibacter phosphatis', a confirmed glycogen-accumulating organism (GAO), was essentially undetectable. These experiments evaluated two different carbon sources (propionate and acetate), and in every case, two different P-release rates were detected. The highest rate took place while there was volatile fatty acid (VFA) in the mixed liquor, and after the VFA was depleted a second P-release rate was observed. This second rate was very similar to the one detected in experiments performed without added VFA.A kinetic and stoichiometric model developed as a modification of Activated Sludge Model 2 (ASM2) including glycogen economy, was fitted to the experimental profiles. The validation and calibration of this model was carried out with the cycle study experiments performed using both VFAs. The effect of pH from 6.5 to 8.0 on anaerobic P-release and VFA-uptake and aerobic P-uptake was also studied using propionate. The optimal overall working pH was around 7.5. This is the first study of the microbial community involved in EBPR developed with propionate as a sole carbon source along with detailed process performance investigations of the propionate-utilizing PAOs. Copyright 2003 Wiley Periodicals, Inc.

  4. Abundant pre-industrial carbon detected in Canadian Arctic headwaters: implications for the permafrost carbon feedback

    NASA Astrophysics Data System (ADS)

    Dean, J. F.; van der Velde, Y.; Garnett, M. H.; Dinsmore, K. J.; Baxter, R.; Lessels, J. S.; Smith, P.; Street, L. E.; Subke, J.-A.; Tetzlaff, D.; Washbourne, I.; Wookey, P. A.; Billett, M. F.

    2018-03-01

    Mobilization of soil/sediment organic carbon into inland waters constitutes a substantial, but poorly-constrained, component of the global carbon cycle. Radiocarbon (14C) analysis has proven a valuable tool in tracing the sources and fate of mobilized carbon, but aquatic 14C studies in permafrost regions rarely detect ‘old’ carbon (assimilated from the atmosphere into plants and soil prior to AD1950). The emission of greenhouse gases derived from old carbon by aquatic systems may indicate that carbon sequestered prior to AD1950 is being destabilized, thus contributing to the ‘permafrost carbon feedback’ (PCF). Here, we measure directly the 14C content of aquatic CO2, alongside dissolved organic carbon, in headwater systems of the western Canadian Arctic—the first such concurrent measurements in the Arctic. Age distribution analysis indicates that the age of mobilized aquatic carbon increased significantly during the 2014 snow-free season as the active layer deepened. This increase in age was more pronounced in DOC, rising from 101-228 years before sampling date (a 120%-125% increase) compared to CO2, which rose from 92-151 years before sampling date (a 59%-63% increase). ‘Pre-industrial’ aged carbon (assimilated prior to ~AD1750) comprised 15%-40% of the total aquatic carbon fluxes, demonstrating the prevalence of old carbon to Arctic headwaters. Although the presence of this old carbon is not necessarily indicative of a net positive PCF, we provide an approach and baseline data which can be used for future assessment of the PCF.

  5. Stream restoration and sewers impact sources and fluxes of water, carbon, and nutrients in urban watersheds

    NASA Astrophysics Data System (ADS)

    Pennino, Michael J.; Kaushal, Sujay S.; Mayer, Paul M.; Utz, Ryan M.; Cooper, Curtis A.

    2016-08-01

    An improved understanding of sources and timing of water, carbon, and nutrient fluxes associated with urban infrastructure and stream restoration is critical for guiding effective watershed management globally. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in urban stream restoration and sewer infrastructure. We compared an urban restored stream with two urban degraded streams draining varying levels of urban development and one stream with upland stormwater management systems over a 3-year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower (p < 0.05) monthly peak runoff (9.4 ± 1.0 mm day-1) compared with two urban degraded streams (ranging from 44.9 ± 4.5 to 55.4 ± 5.8 mm day-1) draining higher impervious surface cover, and the stream-draining stormwater management systems and less impervious surface cover in its watershed (13.2 ± 1.9 mm day-1). The restored stream exported most carbon, nitrogen, and phosphorus at relatively lower streamflow than the two more urban catchments, which exported most carbon and nutrients at higher streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha-1 yr-1), total nitrogen (4.5 ± 0.3 kg ha-1 yr-1), and total phosphorus (161 ± 15 kg ha-1 yr-1) were significantly lower in the restored stream compared to both urban degraded streams (p < 0.05), but statistically similar to the stream draining stormwater management systems, for N exports. However, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the urban restored stream was derived from leaky sanitary sewers (during baseflow), statistically similar to the urban degraded streams. These isotopic results as well as additional tracers, including fluoride (added to drinking water) and iodide (contained in dietary salt

  6. The extraction of negative carbon ions from a volume cusp ion source

    NASA Astrophysics Data System (ADS)

    Melanson, Stephane; Dehnel, Morgan; Potkins, Dave; McDonald, Hamish; Hollinger, Craig; Theroux, Joseph; Martin, Jeff; Stewart, Thomas; Jackle, Philip; Philpott, Chris; Jones, Tobin; Kalvas, Taneli; Tarvainen, Olli

    2017-08-01

    Acetylene and carbon dioxide gases are used in a filament-powered volume-cusp ion source to produce negative carbon ions for the purpose of carbon implantation for gettering applications. The beam was extracted to an energy of 25 keV and the composition was analyzed with a spectrometer system consisting of a 90° dipole magnet and a pair of slits. It is found that acetylene produces mostly C2- ions (up to 92 µA), while carbon dioxide produces mostly O- with only trace amounts of C-. Maximum C2- current was achieved with 400 W of arc power and, the beam current and composition were found to be highly dependent on the pressure in the source. The beam properties as a function of source settings are analyzed, and plasma properties are measured with a Langmuir probe. Finally, we describe testing of a new RF H- ion source, found to produce more than 6 mA of CW H- beam.

  7. USE OF FATTY ACID STABLE CARBON ISOTOPE RATIO TO INDICATE MICROBIAL CARBON SOURCE IN TROPICAL SOILS

    EPA Science Inventory


    We use measurements of the concentration and stable carbon isotope ratio of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels, broad microbial community structure, and microbial carbon source. For studies of soil o...

  8. [Kinetic simulation of enhanced biological phosphorus removal with fermentation broth as carbon source].

    PubMed

    Zhang, Chao; Chen, Yin-Guang

    2013-07-01

    As a high-quality carbon source, fermentation broth could promote the phosphorus removal efficiency in enhanced biological phosphorus removal (EBPR). The transformation of substrates in EBPR fed with fermentation broth was well simulated using the modified activated sludge model No. 2 (ASM2) based on the carbon source metabolism. When fermentation broth was used as the sole carbon source, it was found that heterotrophic bacteria acted as a promoter rather than a competitor to the phosphorus accumulating organisms (PAO). When fermentation broth was used as a supplementary carbon source of real municipal wastewater, the wastewater composition was optimized for PAO growth; and the PAO concentration, which was increased by 3.3 times compared to that in EBPR fed with solely real municipal wastewater, accounting for about 40% of the total biomass in the reactor.

  9. Characterization of Black and Brown Carbon Concentrations and Sources during winter in Beijing

    NASA Astrophysics Data System (ADS)

    Yan, Caiqing; Liu, Yue; Hansen, Anthony D. A.; Močnik, Griša; Zheng, Mei

    2017-04-01

    Carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), play important roles in air quality, human health, and climate change. A better understanding of sources of light-absorbing carbonaceous aerosol (including black carbon and brown carbon) is particular critical for formulating emission-based control strategies and reducing uncertainties in current aerosol radiative forcing estimates. Beijing, the capital of China, has experienced serious air pollution problems and high concentrations of carbonaceous aerosols in recent years, especially during heating seasons. During November and December of 2016, several severe haze episodes occurred in Beijing, with hourly average PM2.5 mass concentration up to 400 μg/m3. In this study, concentration levels and sources of black carbon and brown carbon were investigated based on 7-wavelength Aethalometer (AE-33) with combination of other PM2.5 chemical composition information. Contributions of traffic and non-traffic emissions (e.g., coal combustion, biomass burning) were apportioned, and brown carbon was separated from black carbon. Our preliminary results showed that (1) Concentrations of BC were around 5.3±4.2 μg/m3 during the study period, with distinct diurnal variations during haze and non-haze days. (2) Traffic emissions contributed to about 37±17% of total BC, and exhibited higher contributions during non-haze days compared to haze days. (3) Coal combustion was a major source of black carbon and brown carbon in Beijing, which was more significant compared to biomass burning. Sources and the relative contributions to black carbon and brown carbon during haze and non-haze days will be further discussed.

  10. Investigating effectiveness of activated carbons of natural sources on various supercapacitors

    NASA Astrophysics Data System (ADS)

    Faisal, Md. Shahnewaz Sabit; Rahman, Muhammad M.; Asmatulu, Ramazan

    2016-04-01

    Activated carbon can be produced from natural sources, such as pistachio and acorn shells, which can be an inexpensive and sustainable sources of natural wastes for the energy storage devices, such as supercapacitors. The carbonaceous materials used in this study were carbonized at the temperatures of 700°C and 900°C after the stabilization process at 240°C for two hours. These shells showed approximately 60% carbon yield. Carbonized nutshells were chemically activated using1wt% potassium hydroxide (KOH). Activated carbon powders with polyvinylidene fluoride (PVdF) were used to construct carbon electrodes. A 1M of tetraethylammonium tetrafluoroborate (TEABF4) and propylene carbonate (PC) were used as electrolytes. Electrochemical techniques, such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for the characterization of the supercapacitors. Scanning electron microscopy (SEM) was used to inspect the surface texture of the activated carbons. Activated pistachio shells carbonized at 700°C showed more porous surface texture than those carbonized at 900°C. Effects of the carbonization temperatures were studied for their electrochemical characteristics. The shells carbonized at 700°C showed better electrochemical characteristics compared to those carbonized at 900°C. The test results provided about 27,083 μF/g specific capacitance at a scan rate of 10mV/s. This study showed promising results for using these activated carbons produced from the natural wastes for supercapacitor applications.

  11. High value added lipids produced by microorganisms: a potential use of sugarcane vinasse.

    PubMed

    Fernandes, Bruna Soares; Vieira, João Paulo Fernandes; Contesini, Fabiano Jares; Mantelatto, Paulo Eduardo; Zaiat, Marcelo; Pradella, José Geraldo da Cruz

    2017-12-01

    This review aims to present an innovative concept of high value added lipids produced by heterotrophic microorganisms, bacteria and fungi, using carbon sources, such as sugars, acids and alcohols that could come from sugarcane vinasse, which is the main byproduct from ethanol production that is released in the distillation step. Vinasse is a rich carbon source and low-cost feedstock produced in large amounts from ethanol production. In 2019, the Brazilian Ministry of Agriculture, Livestock and Food Supply estimates that growth of ethanol domestic consumption will be 58.8 billion liters, more than double the amount in 2008. This represents the annual production of more than 588 billion liters of vinasse, which is currently used as a fertilizer in the sugarcane crop, due to its high concentration of minerals, mainly potassium. However, studies indicate some disadvantages such as the generation of Greenhouse Gas emission during vinasse distribution in the crop, as well as the possibility of contaminating the groundwater and soil. Therefore, the development of programs for sustainable use of vinasse is a priority. One profitable alternative is the fermentation of vinasse, followed by an anaerobic digester, in order to obtain biomaterials such as lipids, other byproducts, and methane. Promising high value added lipids, for instance carotenoids and polyunsaturated fatty acids (PUFAS), with a predicted market of millions of US$, could be produced using vinasse as carbon source, to guide an innovative concept for sustainable production. Example of lipids obtained from the fermentation of compounds present in vinasse are vitamin D, which comes from yeast sucrose fermentation and Omega 3, which can be obtained by bacteria and fungi fermentation. Additionally, several other compounds present in vinasse can be used for this purpose, including sucrose, ethanol, lactate, pyruvate, acetate and other carbon sources. Finally, this paper illustrates the potential market and

  12. Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization

    NASA Astrophysics Data System (ADS)

    Kim, Eugene; Hopke, Philip K.; Edgerton, Eric S.

    Daily integrated PM 2.5 (particulate matter ⩽2.5 μm in aerodynamic diameter) composition data including eight individual carbon fractions collected at the Jefferson Street monitoring site in Atlanta were analyzed with positive matrix factorization (PMF). Particulate carbon was analyzed using the thermal optical reflectance method that divides carbon into four organic carbon (OC), pyrolized organic carbon (OP), and three elemental carbon (EC) fractions. A total of 529 samples and 28 variables were measured between August 1998 and August 2000. PMF identified 11 sources in this study: sulfate-rich secondary aerosol I (50%), on-road diesel emissions (11%), nitrate-rich secondary aerosol (9%), wood smoke (7%), gasoline vehicle (6%), sulfate-rich secondary aerosol II (6%), metal processing (3%), airborne soil (3%), railroad traffic (3%), cement kiln/carbon-rich (2%), and bus maintenance facility/highway traffic (2%). Differences from previous studies using only the traditional OC and EC data (J. Air Waste Manag. Assoc. 53(2003a)731; Atmos Environ. (2003b)) include four traffic-related combustion sources (gasoline vehicle, on-road diesel, railroad, and bus maintenance facility) containing carbon fractions whose abundances were different between the various sources. This study indicates that the temperature resolved fractional carbon data can be utilized to enhance source apportionment study, especially with respect to the separation of diesel emissions from gasoline vehicle sources. Conditional probability functions using surface wind data and identified source contributions aid the identifications of local point sources.

  13. [Carbon sources metabolic characteristics of airborne microbial communities in constructed wetlands].

    PubMed

    Song, Zhi-Wen; Wang, Lin; Xu, Ai-Ling; Wu, Deng-Deng; Xia, Yan

    2015-02-01

    Using BIOLOG-GN plates, this article describes the carbon sources metabolic characteristics of airborne microbial communities in a free surface-flow constructed wetland in different seasons and clarify the correlation between airborne microbial metabolic functions and environmental factors. The average well color development (AWCD), carbon metabolic profiles and McIntosh values of airborne microbial communities in different seasons were quite different. Analysis of the variations showed that AWCD in spring and summer differed significantly from that in autumn and winter (P < 0.01). In the same season, the degree of utilization of different types of carbon by airborne microbes was different. Summer had a significant difference from other seasons (P < 0.05). Dominant communities of airborne microbes in four seasons were carboxylic acids metabolic community, carbohydrates metabolic community, polymers metabolic community and carboxylic acids metabolic community respectively. Principal component analysis showed that the carbon metabolic characteristics of airborne microbial community in autumn were similar to those in winter but different from those in spring and summer. The characteristics of carbon metabolism revealed differences between summer and spring, autumn, or winter. These differences were mainly caused by amines or amides while the differences between spring and autumn or winter were mainly caused by carboxylic acids. Environmental factors, including changes in wind speed, temperature, and humidity acted to influence the carbon sources metabolic properties of airborne microbial community. The dominant environmental factors that acted to influence the carbon sources metabolic properties of airborne microbial community varied between different seasons.

  14. Effect of carbon source on nitrogen removal in anaerobic ammonium oxidation (anammox) process.

    PubMed

    Zhu, Weiqiang; Zhang, Peiyu; Dong, Huiyu; Li, Jin

    2017-04-01

    Anaerobic ammonium oxidation (anammox) has been regarded as an efficient process to treat high-strength wastewater without organic carbon source. To investigate nitrogen removal performance of anammox in presence of organic carbon source can broaden its application on organic wastewater treatment. In this work, effect of carbon source on anammox process was explored. Operating temperature was set at 35 ± 1°C. Influent pH and hydraulic retention time were 7.5 and 6 h, respectively. Effluent [Formula: see text] was affected little with COD no more than 480 mg/L. Independent of carbon source content, nitrite removal rate was around 99%. The variation of [Formula: see text] lagged behind [Formula: see text] at high COD content, and pH could be used as an indicator for [Formula: see text] removal. Specific anammox activity dropped from 0.39 to 0.19  [Formula: see text] at COD=720 mg/L. The remodified logistic model was quite appropriate for describing the nitrogen removal kinetics and predicting the performance of anammox process in presence of carbon source. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Mineral Carbonation Potential of CO2 from Natural and Industrial-based Alkalinity Sources

    NASA Astrophysics Data System (ADS)

    Wilcox, J.; Kirchofer, A.

    2014-12-01

    Mineral carbonation is a Carbon Capture and Storage (CSS) technology where gaseous CO2 is reacted with alkaline materials (such as silicate minerals and alkaline industrial wastes) and converted into stable and environmentally benign carbonate minerals (Metz et al., 2005). Here, we present a holistic, transparent life cycle assessment model of aqueous mineral carbonation built using a hybrid process model and economic input-output life cycle assessment approach. We compared the energy efficiency and the net CO2 storage potential of various mineral carbonation processes based on different feedstock material and process schemes on a consistent basis by determining the energy and material balance of each implementation (Kirchofer et al., 2011). In particular, we evaluated the net CO2 storage potential of aqueous mineral carbonation for serpentine, olivine, cement kiln dust, fly ash, and steel slag across a range of reaction conditions and process parameters. A preliminary systematic investigation of the tradeoffs inherent in mineral carbonation processes was conducted and guidelines for the optimization of the life-cycle energy efficiency are provided. The life-cycle assessment of aqueous mineral carbonation suggests that a variety of alkalinity sources and process configurations are capable of net CO2 reductions. The maximum carbonation efficiency, defined as mass percent of CO2 mitigated per CO2 input, was 83% for CKD at ambient temperature and pressure conditions. In order of decreasing efficiency, the maximum carbonation efficiencies for the other alkalinity sources investigated were: olivine, 66%; SS, 64%; FA, 36%; and serpentine, 13%. For natural alkalinity sources, availability is estimated based on U.S. production rates of a) lime (18 Mt/yr) or b) sand and gravel (760 Mt/yr) (USGS, 2011). The low estimate assumes the maximum sequestration efficiency of the alkalinity source obtained in the current work and the high estimate assumes a sequestration efficiency

  16. Dynamic balancing of isoprene carbon sources reflects photosynthetic and photorespiratory responses to temperature stress.

    PubMed

    Jardine, Kolby; Chambers, Jeffrey; Alves, Eliane G; Teixeira, Andrea; Garcia, Sabrina; Holm, Jennifer; Higuchi, Niro; Manzi, Antonio; Abrell, Leif; Fuentes, Jose D; Nielsen, Lars K; Torn, Margaret S; Vickers, Claudia E

    2014-12-01

    The volatile gas isoprene is emitted in teragrams per annum quantities from the terrestrial biosphere and exerts a large effect on atmospheric chemistry. Isoprene is made primarily from recently fixed photosynthate; however, alternate carbon sources play an important role, particularly when photosynthate is limiting. We examined the relative contribution of these alternate carbon sources under changes in light and temperature, the two environmental conditions that have the strongest influence over isoprene emission. Using a novel real-time analytical approach that allowed us to examine dynamic changes in carbon sources, we observed that relative contributions do not change as a function of light intensity. We found that the classical uncoupling of isoprene emission from net photosynthesis at elevated leaf temperatures is associated with an increased contribution of alternate carbon. We also observed a rapid compensatory response where alternate carbon sources compensated for transient decreases in recently fixed carbon during thermal ramping, thereby maintaining overall increases in isoprene production rates at high temperatures. Photorespiration is known to contribute to the decline in net photosynthesis at high leaf temperatures. A reduction in the temperature at which the contribution of alternate carbon sources increased was observed under photorespiratory conditions, while photosynthetic conditions increased this temperature. Feeding [2-(13)C]glycine (a photorespiratory intermediate) stimulated emissions of [(13)C1-5]isoprene and (13)CO2, supporting the possibility that photorespiration can provide an alternate source of carbon for isoprene synthesis. Our observations have important implications for establishing improved mechanistic predictions of isoprene emissions and primary carbon metabolism, particularly under the predicted increases in future global temperatures. © 2014 American Society of Plant Biologists. All Rights Reserved.

  17. Methane and carbon at equilibrium in source rocks

    PubMed Central

    2013-01-01

    Methane in source rocks may not exist exclusively as free gas. It could exist in equilibrium with carbon and higher hydrocarbons: CH4 + C < = > Hydrocarbon. Three lines of evidence support this possibility. 1) Shales ingest gas in amounts and selectivities consistent with gas-carbon equilibrium. There is a 50% increase in solid hydrocarbon mass when Fayetteville Shale is exposed to methane (450 psi) under moderate conditions (100°C): Rock-Eval S2 (mg g-1) 8.5 = > 12.5. All light hydrocarbons are ingested, but with high selectivity, consistent with competitive addition to receptor sites in a growing polymer. Mowry Shale ingests butane vigorously from argon, for example, but not from methane under the same conditions. 2) Production data for a well producing from Fayetteville Shale declines along the theoretical curve for withdrawing gas from higher hydrocarbons in equilibrium with carbon. 3) A new general gas-solid equilibrium model accounts for natural gas at thermodynamic equilibrium, and C6-C7 hydrocarbons constrained to invariant compositions. The results make a strong case for methane in equilibrium with carbon and higher hydrocarbons. If correct, the higher hydrocarbons in source rocks are gas reservoirs, raising the possibility of substantially more gas in shales than analytically apparent, and far more gas in shale deposits than currently recognized. PMID:24330266

  18. IMPROVING SOURCE PROFILES AND APPORTIONMENT OF COMBUSTION SOURCES USING THERMAL CARBON FRACTIONS IN MULTIVARIATE RECEPTOR MODELS

    EPA Science Inventory

    The purpose of this study was to improve combustion source profiles and apportionment of a PM2.5 urban aerosol by using 7 individual organic and elemental carbon thermal fractions in place of total organic and elemental carbon. This study used 3 years (96-99) of speciated data...

  19. The Aspergillus nidulans Pyruvate Dehydrogenase Kinases Are Essential To Integrate Carbon Source Metabolism.

    PubMed

    Ries, Laure Nicolas Annick; de Assis, Leandro José; Rodrigues, Fernando José Santos; Caldana, Camila; Rocha, Marina Campos; Malavazi, Iran; Bayram, Özgür; Goldman, Gustavo H

    2018-05-24

    The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilisation in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilisation in the reference filamentous fungus Aspergillus nidulans , in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localised to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of pkpA and pkpC resulted in reduced glucose utilisation, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilisation of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications. Copyright © 2018, G3: Genes, Genomes, Genetics.

  20. Food sources of sodium, saturated fat and added sugar in the Spanish hypertensive and diabetic population.

    PubMed

    Guallar-Castillón, Pilar; Muñoz-Pareja, Maritza; Aguilera, Ma Teresa; León-Muñoz, Luz María; Rodríguez-Artalejo, Fernando

    2013-07-01

    Previous research has shown that the diet of hypertensive and diabetic patients has a low accordance with the main nutritional recommendations, mostly due to the high intake of sodium, saturated fat and added sugars. This is the first study to identify the main food sources of these nutrients in these patients. Cross-sectional study conducted in 2008-2010 in a representative sample of the Spanish adult population, including 2323 patients with hypertension and 635 with diabetes. The habitual diet was assessed using a validated diet history. The intake of sodium, saturated fat and added sugars was estimated with Spanish food composition tables. The hypertensive and diabetic population showed, respectively, an intake of 2.9 and 3.1 g/day of sodium, 26 and 26 g/day of saturated fat, and 33 and 24 g/day of added sugar. In hypertensive and diabetic patients, respectively, most sodium intake came from bread (35%, 34%), raw-cured sausages (15%, 15%), cooked sausages (6%, 7%), and soup (5%, 6%). The main sources of saturated fat were cured cheese (13%, 13%), bakery products (12%, 11%), red meat (10%, 11%), raw-cured sausages (8%, 9%) and whole milk (4%, 4%). The food groups that most contributed to added sugar intake were sugar directly added to coffee and other beverages (27%, 19%), bakery products (15%, 19%), sugary soft drinks (10%, 13%), and whole yogurt (9%, 12%). The main food sources of nutrients were similar in all sex and age groups. In patients with hypertension and diabetes, the intake of sodium, saturated fat and added sugar can be substantially reduced by prioritizing low-salt varieties of bread, reducing the consumption of bakery products and sausages, replacing cured cheese and other whole dairy products by low-fat products, using non-sugary sweeteners, and substituting sugar-free soft drinks, or plain water, for sugary sodas. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. A review of carbon monoxide sources, sinks, and concentrations in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Bortner, M. H.; Kummler, R. H.; Jaffe, L. S.

    1972-01-01

    Carbon monoxide is a toxic pollutant which is continually introduced into the earth's atmosphere in significant quantities. There are apparently some mechanisms operating which destroy most of the CO in the atmosphere, i.e., a carbon monoxide sink. These mechanisms have not as yet been established in a quantitative sense. This report discusses the various possible removal mechanisms which warrant serious consideration. Particular emphasis is given to chemical reactions (especially that with OH), soil bacteria and other biological action, and transport effects. The sources of carbon monoxide, both natural and anthropogenic, are reviewed and it is noted that there is quite possibly a significant undefined natural source. Atmospheric CO concentrations are discussed and their implications on carbon monoxide lifetime, sinks and sources are considered.

  2. A Novel Airborne Carbon Isotope Analyzer for Methane and Carbon Dioxide Source Fingerprinting

    NASA Astrophysics Data System (ADS)

    Berman, E. S.; Huang, Y. W.; Owano, T. G.; Leifer, I.

    2014-12-01

    Recent field studies on major sources of the important greenhouse gas methane (CH4) indicate significant underestimation of methane release from fossil fuel industrial (FFI) and animal husbandry sources, among others. In addition, uncertainties still exist with respect to carbon dioxide (CO2) measurements, especially source fingerprinting. CO2 isotopic analysis provides a valuable in situ measurement approach to fingerprint CH4 and CO2as associated with combustion sources, leakage from geologic reservoirs, or biogenic sources. As a result, these measurements can characterize strong combustion source plumes, such as power plant emissions, and discriminate these emissions from other sources. As part of the COMEX (CO2 and MEthane eXperiment) campaign, a novel CO2 isotopic analyzer was installed and collected data aboard the CIRPAS Twin Otter aircraft. Developing methods to derive CH4 and CO2 budgets from remote sensing data is the goal of the summer 2014 COMEX campaign, which combines hyperspectral imaging (HSI) and non-imaging spectroscopy (NIS) with in situ airborne and surface data. COMEX leverages the synergy between high spatial resolution HSI and moderate spatial resolution NIS. The carbon dioxide isotope analyzer developed by Los Gatos Research (LGR) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures CO2 concentration as well as δ13C, δ18O, and δ17O from CO2 at natural abundance (100-3000 ppm). The laboratory accuracy is ±1.2 ppm (1σ) in CO2 from 370-1000 ppm, with a long-term (1000 s) precision of ±0.012 ppm. The long-term precision for both δ13C and δ18O is 0.04 ‰, and for δ17O is 0.06 ‰. The analyzer was field-tested as part of the COWGAS campaign, a pre-cursor campaign to COMEX in March 2014, where it successfully discriminated plumes related to combustion processes associated with

  3. Photoautotrophic microorganisms as a carbon source for temperate soil invertebrates.

    PubMed

    Schmidt, Olaf; Dyckmans, Jens; Schrader, Stefan

    2016-01-01

    We tested experimentally if photoautotrophic microorganisms are a carbon source for invertebrates in temperate soils. We exposed forest or arable soils to a (13)CO2-enriched atmosphere and quantified (13)C assimilation by three common animal groups: earthworms (Oligochaeta), springtails (Hexapoda) and slugs (Gastropoda). Endogeic earthworms (Allolobophora chlorotica) and hemiedaphic springtails (Ceratophysella denticulata) were highly (13)C enriched when incubated under light, deriving up to 3.0 and 17.0%, respectively, of their body carbon from the microbial source in 7 days. Earthworms assimilated more (13)C in undisturbed soil than when the microbial material was mixed into the soil, presumably reflecting selective surface grazing. By contrast, neither adult nor newly hatched terrestrial slugs (Deroceras reticulatum) grazed on algal mats. Non-photosynthetic (13)CO2 fixation in the dark was negligible. We conclude from these preliminary laboratory experiments that, in addition to litter and root-derived carbon from vascular plants, photoautotrophic soil surface microorganisms (cyanobacteria, algae) may be an ecologically important carbon input route for temperate soil animals that are traditionally assigned to the decomposer channel in soil food web models and carbon cycling studies. © 2016 The Author(s).

  4. Characterizing and sourcing ambient PM2.5 over key emission regions in China III: Carbon isotope based source apportionment of black carbon

    NASA Astrophysics Data System (ADS)

    Yu, Kuangyou; Xing, Zhenyu; Huang, Xiaofeng; Deng, Junjun; Andersson, August; Fang, Wenzheng; Gustafsson, Örjan; Zhou, Jiabin; Du, Ke

    2018-03-01

    Regional haze over China has severe implications for air quality and regional climate. To effectively combat these effects the high uncertainties regarding the emissions from different sources needs to be reduced. In this paper, which is the third in a series on the sources of PM2.5 in pollution hotspot regions of China, we focus on the sources of black carbon aerosols (BC), using carbon isotope signatures. Four-season samples were collected at two key locations: Beijing-Tianjin-Hebei (BTH, part of Northern China plain), and the Pearl River Delta (PRD). We find that that fossil fuel combustion was the predominant source of BC in both BTH and PRD regions, accounting for 75 ± 5%. However, the contributions of what fossil fuel components were dominating differed significantly between BTH and PRD, and varied dramatically with seasons. Coal combustion is overall the all-important BC source in BTH, accounting for 46 ± 12% of the BC in BTH, with the maximum value (62%) found in winter. In contrast for the PRD region, liquid fossil fuel combustion (e.g., oil, diesel, and gasoline) is the dominant source of BC, with an annual mean value of 41 ± 15% and the maximum value of 55% found in winter. Region- and season-specific source apportionments are recommended to both accurately assess the climate impact of carbonaceous aerosol emissions and to effectively mitigate deteriorating air quality caused by carbonaceous aerosols.

  5. USE OF STABLE CARBON ISOTOPE RATIOS OF FATTY ACIDS TO EVALUATE MICROBIAL CARBON SOURCES IN TERRESTRIAL ENVIRONMENTS

    EPA Science Inventory

    We use measurements of the concentration and stable carbon isotopic ratio (D 13C) of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels and microbial carbon source. We found that intensive sugar cane cultivation leads to ...

  6. Active Thrusting Offshore Mount Lebanon: Source of the Tsunamigenic A.D. 551 Beirut-Tripoli Earthquake

    NASA Astrophysics Data System (ADS)

    Tapponnier, P.; Elias, A.; Singh, S.; King, G.; Briais, A.; Daeron, M.; Carton, H.; Sursock, A.; Jacques, E.; Jomaa, R.; Klinger, Y.

    2007-12-01

    On July 9, AD 551, a large earthquake, followed by a tsunami destroyed most of the coastal cities of Phoenicia (modern-day Lebanon). This was arguably one of the most devastating historical submarine earthquakes in the eastern Mediterranean. Geophysical data from the Shalimar survey unveils the source of this Mw=7.5 event: rupture of the offshore, hitherto unknown, 100?150 km-long, active, east-dipping Mount Lebanon Thrust (MLT). Deep-towed sonar swaths along the base of prominent bathymetric escarpments reveal fresh, west facing seismic scarps that cut the sediment-smoothed seafloor. The MLT trace comes closest (~ 8 km) to the coast between Beirut and Enfeh, where as 13 radiocarbon-calibrated ages indicate, a shoreline-fringing Vermetid bench suddenly emerged by ~ 80 cm in the 6th century AD. At Tabarja, the regular vertical separation (~ 1 m) of higher fossil benches, suggests uplift by 3 more comparable-size earthquakes since the Holocene sea-level reached a maximum ca. 7-6 ka, implying a 1500?1750 yr recurrence time. Unabated thrusting on the MLT likely orchestrated the growth of Mt. Lebanon since the late Miocene. The newly discovered MLT has been the missing piece in the Dead Sea Transform and eastern Mediterranean tectonic scheme. Identifying the source of the AD 551 event thus ends a complete reassessment of the sources of the major historical earthquakes on the various faults of the Lebanese Restraining Bend of the Levant Fault System (or Dead Sea Transform).

  7. Active Thrusting Offshore Mount Lebanon: Source of the Tsunamigenic A.D. 551 Beirut-Tripoli Earthquake

    NASA Astrophysics Data System (ADS)

    Tapponnier, P.; Elias, A.; Singh, S.; King, G.; Briais, A.; Daeron, M.; Carton, H.; Sursock, A.; Jacques, E.; Jomaa, R.; Klinger, Y.

    2004-12-01

    On July 9, AD 551, a large earthquake, followed by a tsunami destroyed most of the coastal cities of Phoenicia (modern-day Lebanon). This was arguably one of the most devastating historical submarine earthquakes in the eastern Mediterranean. Geophysical data from the Shalimar survey unveils the source of this Mw=7.5 event: rupture of the offshore, hitherto unknown, 100?150 km-long, active, east-dipping Mount Lebanon Thrust (MLT). Deep-towed sonar swaths along the base of prominent bathymetric escarpments reveal fresh, west facing seismic scarps that cut the sediment-smoothed seafloor. The MLT trace comes closest (~ 8 km) to the coast between Beirut and Enfeh, where as 13 radiocarbon-calibrated ages indicate, a shoreline-fringing Vermetid bench suddenly emerged by ~ 80 cm in the 6th century AD. At Tabarja, the regular vertical separation (~ 1 m) of higher fossil benches, suggests uplift by 3 more comparable-size earthquakes since the Holocene sea-level reached a maximum ca. 7-6 ka, implying a 1500?1750 yr recurrence time. Unabated thrusting on the MLT likely orchestrated the growth of Mt. Lebanon since the late Miocene. The newly discovered MLT has been the missing piece in the Dead Sea Transform and eastern Mediterranean tectonic scheme. Identifying the source of the AD 551 event thus ends a complete reassessment of the sources of the major historical earthquakes on the various faults of the Lebanese Restraining Bend of the Levant Fault System (or Dead Sea Transform).

  8. The roles of inoculants' carbon source use in the biocontrol of potato scab disease.

    PubMed

    Sun, Pingping; Zhao, Xinbei; Shangguan, Nini; Chang, Dongwei; Ma, Qing

    2015-04-01

    Despite the application of multiple strains in the biocontrol of plant diseases, multistrain inoculation is still constrained by its inconsistency in the field. Nutrients, especially carbons, play an important role in the biocontrol processes. However, little work has been done on the systematic estimation of inoculants' carbon source use on biocontrol efficacies in vivo. In the present study, 7 nonpathogenic Streptomyces strains alone and in different combinations were inoculated as biocontrol agents against the potato scab disease, under field conditions and greenhouse treatments. The influence of the inoculants' carbon source use properties on biocontrol efficacies was investigated. The results showed that increasing the number of inoculated strains did not necessarily result in greater biocontrol efficacy in vivo. However, single strains with higher growth rates or multiple strains with less carbon source competition had positive effects on the biocontrol efficacies. These findings may shed light on optimizing the consistent biocontrol of plant disease with the consideration of inoculants' carbon source use properties.

  9. An alternative parameter to characterize biogas materials: Available carbon-nitrogen ratio.

    PubMed

    Wang, Ming; Li, Wenzhe; Li, Pengfei; Yan, Shuiping; Zhang, Yanlin

    2017-04-01

    Available carbon-nitrogen ratio (AC/N) was proposed as an alternative parameter for evaluating the potential of biogas materials in this paper. In the calculation of AC/N ratio, only the carbon that could be effectively utilized in anaerobic digestion (AD) process is included. Compared with total C/N, AC/N is particularly more suitable for the characterization of biogas materials rich in recalcitrant components. Nine common biogas materials were selected and a series of semi-continuous tests for up to 110days were carried out to investigate the source of available carbon and the relationship between AC/N and the stability of AD process. The results showed that only the carbon existing in proteins, sugars, fat and hemicelluose should be considered as available carbon for anaerobic microbes. Besides, the optimal AC/N for semi-continuous AD process was preliminarily determined to be 11-15. Taken together, our results demonstrate that AC/N is more effective than total C/N in the evaluation of the potential performance of AD process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Agenda and Meeting Summary from Final Workshop on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency, Battelle Memorial Institute and WWF-Russia organized the final workshop on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources on November 5, 2014 in Murmansk, Russia.

  11. Effects of soil amendment with different carbon sources and other factors on the bioremediation of an aged PAH-contaminated soil.

    PubMed

    Teng, Ying; Luo, Yongming; Ping, Lifeng; Zou, Dexun; Li, Zhengao; Christie, Peter

    2010-04-01

    Carbon supplementation, soil moisture and soil aeration are believed to enhance in situ bioremediation of PAH-contaminated soils by stimulating the growth of indigenous microorganisms. However, the effects of added carbon and nitrogen together with soil moisture and soil aeration on the dissipation of PAHs and on associated microbial counts have yet to be fully assessed. In this study the effects on bioremediation of carbon source, carbon-to-nitrogen ratio, soil moisture and aeration on an aged PAH-contaminated agricultural soil were studied in microcosms over a 90-day period. Additions of starch, glucose and sodium succinate increased soil bacterial and fungal counts and accelerated the dissipation of phenanthrene and benzo(a)pyrene in soil. Decreases in phenanthrene and benzo(a)pyrene concentrations were effective in soil supplemented with glucose and sodium succinate (both 0.2 g C kg(-1) dry soil) and starch (1.0 g C kg(-1) dry soil). The bioremediation effect at a C/N ratio of 10:1 was significantly higher (P < 0.05) than at a C/N of either 25:1 or 40:1. Soil microbial counts and PAH dissipation were lower in the submerged soil but soil aeration increased bacterial and fungal counts, enhanced indigenous microbial metabolic activities, and accelerated the natural degradation of phenanthrene and benzo(a)pyrene. The results suggest that optimizing carbon source, C/N ratio, soil moisture and aeration conditions may be a feasible remediation strategy in certain PAH contaminated soils with large active microbial populations.

  12. Russia's black carbon emissions: focus on diesel sources

    NASA Astrophysics Data System (ADS)

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    2016-09-01

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25-30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60 % of the on-road BC emissions, while cars represent only 5 % (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58 % of all diesel BC in Russia.

  13. Impact of substituting added sugar in carbonated soft drinks by intense sweeteners in young adults in the Netherlands: example of a benefit-risk approach.

    PubMed

    Hendriksen, Marieke A; Tijhuis, Mariken J; Fransen, Heidi P; Verhagen, Hans; Hoekstra, Jeljer

    2011-02-01

    Substituting added sugar in carbonated soft drinks with intense sweeteners may have potential beneficial, but also adverse health effects. This study assessed the benefits and risks associated with substituting added sugar in carbonated soft drinks with intense sweeteners in young adults in the Netherlands. A tiered approach was used analogous to the risk assessment paradigm, consisting of benefit and hazard identification, exposure assessment and finally benefit and risk characterization and comparison. Two extreme scenarios were compared in which all carbonated soft drinks were sweetened with either intense sweeteners or added sugar. National food consumption survey data were used, and intake of added sugar and intense sweeteners was calculated using the food composition table or analytical data for sweetener content. Reduction in dental caries and body weight were identified as benefits of substituting sugar. The mean difference in total energy intake between the scenarios was 542 kJ per day in men and 357 kJ per day in women, under the assumption that no compensation takes place. In the 100% sweetener scenario, the average BMI decreased 1.7 kg/m(2) in men and 1.3 kg/m(2) in women when compared to the 100% sugar scenario. Risks are negligible, as the intake of intense sweeteners remains below the ADI in the substitution scenario. Substitution of added sugar by intense sweeteners in carbonated soft drinks has beneficial effects on BMI and the reduction in dental caries, and does not seem to have adverse health effects in young adults, given the available knowledge and assumptions made.

  14. The influence of various carbon and nitrogen sources on oil production by Fusarium oxysporum.

    PubMed

    Joshi, S; Mathur, J M

    1987-01-01

    The oil-synthesizing capacity of Fusarium oxysporum, cultivated on basal nutrient medium, was evaluated using different carbon and nitrogen sources. In one of the media, molasses was also used as a principal carbon source. Media containing glucose and ammonium nitrate were found to be most efficient for oil production. Fatty acid profile of the fungal oil indicated the presence of a wide range of fatty acids ranging from C8 to C24. Fatty acid composition largely depends on the type of carbon and nitrogen sources.

  15. Effect of the addition of nitrogen sources to cassava fiber and carbon-to-nitrogen ratios on Agaricus brasiliensis growth.

    PubMed

    Mantovani, T R D; Linde, G A; Colauto, N B

    2007-01-01

    The same substratum formulation to grow Agaricus bisporus has been used to grow Agaricus brasiliensis since its culture started in Brazil. Despite being different species, many of the same rules have been used for composting or axenic cultivation when it comes to nitrogen content and source in the substrate. The aim of this study was to verify the mycelial growth of A. brasiliensis in different ammonium sulfate and (or) urea concentrations added to cassava fiber and different carbon-to-nitrogen (C:N) ratios to increase the efficiency of axenic cultivation. Two nitrogen sources (urea and (or) ammonium sulfate) added to cassava fiber were tested for the in vitro mycelial growth in different C:N ratios (ranging from 2.5:l to 50:l) in the dark at 28 degrees C. The radial mycelial growth was measured after 8 days of growth and recorded photographically at the end of the experiment. Nitrogen from urea enhanced fungal growth better than ammonium sulfate or any mixture of nitrogen. The best C:N ratios for fungal growth were from 10:l to 50:l; C:N ratios below 10:l inhibited fungal growth.

  16. Glycerol as an additional carbon source for bacterial cellulose synthesis

    NASA Astrophysics Data System (ADS)

    Agustin, Y. E.; Padmawijaya, K. S.; Rixwari, H. F.; Yuniharto, V. A. S.

    2018-03-01

    Bacterial cellulose, the fermentation result of Acetobacter xylinus can be produced when glycerol was used as an additional carbon source. In this research, bacterial cellulose produced in two different fermentation medium, Hestrin and Scharmm (HS) medium and HS medium with additional MgSO4. Concentration of glycerol that used in this research were 0%; 5%; 10%; and 15% (v/v). The optimum conditions of bacterial cellulose production on each experiment variations determined by characterization of the mechanical properties, including thickness, tensile strength and elongation. Fourier Transform Infra Red Spectroscopy (FTIR) revealed the characterization of bacterial cellulose. Results showed that the growth rate of bacterial cellulose in HS-MgSO4-glycerol medium was faster than in HS-glycerol medium. Increasing concentrations of glycerol will lower the value of tensile strength and elongation. Elongation test showed that the elongation bacterial cellulose (BC) with the addition of 4.95% (v/v) glycerol in the HS-MgSO4 medium is the highest elongation value. The optimum bacterial cellulose production was achieved when 4.95% (v/v) of glycerol added into HS-MgSO4 medium with stress at break of 116.885 MPa and 4.214% elongation.

  17. Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae.

    PubMed

    Lane, Stephan; Dong, Jia; Jin, Yong-Su

    2018-07-01

    The substantial research efforts into lignocellulosic biofuels have generated an abundance of valuable knowledge and technologies for metabolic engineering. In particular, these investments have led to a vast growth in proficiency of engineering the yeast Saccharomyces cerevisiae for consuming lignocellulosic sugars, enabling the simultaneous assimilation of multiple carbon sources, and producing a large variety of value-added products by introduction of heterologous metabolic pathways. While microbial conversion of cellulosic sugars into large-volume low-value biofuels is not currently economically feasible, there may still be opportunities to produce other value-added chemicals as regulation of cellulosic sugar metabolism is quite different from glucose metabolism. This review summarizes these recent advances with an emphasis on employing engineered yeast for the bioconversion of lignocellulosic sugars into a variety of non-ethanol value-added products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Substrate quality alters the microbial mineralization of added substrate and soil organic carbon

    NASA Astrophysics Data System (ADS)

    Jagadamma, S.; Mayes, M. A.; Steinweg, J. M.; Schaeffer, S. M.

    2014-09-01

    The rate and extent of decomposition of soil organic carbon (SOC) is dependent, among other factors, on substrate chemistry and microbial dynamics. Our objectives were to understand the influence of substrate chemistry on microbial decomposition of carbon (C), and to use model fitting to quantify differences in pool sizes and mineralization rates. We conducted an incubation experiment for 270 days using four uniformly labeled 14C substrates (glucose, starch, cinnamic acid and stearic acid) on four different soils (a temperate Mollisol, a tropical Ultisol, a sub-arctic Andisol, and an arctic Gelisol). The 14C labeling enabled us to separate CO2 respired from added substrates and from native SOC. Microbial gene copy numbers were quantified at days 4, 30 and 270 using quantitative polymerase chain reaction (qPCR). Substrate C respiration was always higher for glucose than other substrates. Soils with cinnamic and stearic acid lost more native SOC than glucose- and starch-amended soils. Cinnamic and stearic acid amendments also exhibited higher fungal gene copy numbers at the end of incubation compared to unamended soils. We found that 270 days were sufficient to model the decomposition of simple substrates (glucose and starch) with three pools, but were insufficient for more complex substrates (cinnamic and stearic acid) and native SOC. This study reveals that substrate quality exerts considerable control on the microbial decomposition of newly added and native SOC, and demonstrates the need for multi-year incubation experiments to constrain decomposition parameters for the most recalcitrant fractions of SOC and complex substrates.

  19. Novel quantitative insights into carbon sources for synthesis of poly hydroxybutyrate in Synechocystis PCC 6803.

    PubMed

    Dutt, Vaishali; Srivastava, Shireesh

    2018-06-01

    Many freshwater cyanobacteria accumulate polyhydroxybutyrate (PHB) under nitrogen or phosphorus deprivation. While prior literature has shed lights on transcriptomic and metabolomic changes in the model cyanobacterium Synechocystis PCC 6803 cells, the quantitative contributions of the newly fixed carbon following nitrogen deprivation or the externally added acetate to PHB synthesis are not clear. Similarly, it is not clear how photomixotrophy affects precursor contributions. In this study, we show that (i) the pre-growth mode (photoautotrophic or photomixotrophic), while significantly impacting glycogen levels, does not have any significant effect on PHB levels, (ii) the carbon fixed following nitrogen deprivation contributes 26% of C for PHB synthesis in photoautotrophically pre-grown cells and its contribution to the PHB synthesis goes down with the addition of acetate at the resuspension phase or with photomixotrophic pre-growth, (iii) the acetate added at the start of nitrogen deprivation, doubles the intracellular PHB levels and contributes 44-48% to PHB synthesis and this value is not greatly affected by how the cells were pre-grown. Indirectly, the labeling studies also show that the intracellular C recycling is the most important source of precursors for PHB synthesis, contributing about 74-87% of the C for PHB synthesis in the absence of acetate. The addition of acetate significantly reduces its contribution. In photoautotrophic pre-growth followed by acetate addition under nitrogen starvation, the contribution of intracellular C reduces to about 34%. Thus, our study provides several novel quantitative insights on how prior nutritional status affects the precursor contributions for PHB synthesis.

  20. Laboratory Evaluation of Selected Ways for Determining Black Carbon Source Emissions

    EPA Science Inventory

    A number of studies have been conducted which compare various methods for the determination of black carbon in the atmosphere. Relatively little attention has been paid, however, to similar measurements of black carbon from different types of emission sources. Of particular int...

  1. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayorga, E; Aufdenkampe, A K; Masiello, C A

    2005-06-23

    Rivers are generally supersaturated with respect to carbon dioxide, resulting in large gas evasion fluxes that can be a significant component of regional net carbon budgets. Amazonian rivers were recently shown to outgas more than ten times the amount of carbon exported to the ocean in the form of total organic carbon or dissolved inorganic carbon. High carbon dioxide concentrations in rivers originate largely from in situ respiration of organic carbon, but little agreement exists about the sources or turnover times of this carbon. Here we present results of an extensive survey of the carbon isotope composition ({sup 13}C andmore » {sup 14}C) of dissolved inorganic carbon and three size-fractions of organic carbon across the Amazonian river system. We find that respiration of contemporary organic matter (less than 5 years old) originating on land and near rivers is the dominant source of excess carbon dioxide that drives outgassing in mid-size to large rivers, although we find that bulk organic carbon fractions transported by these rivers range from tens to thousands of years in age. We therefore suggest that a small, rapidly cycling pool of organic carbon is responsible for the large carbon fluxes from land to water to atmosphere in the humid tropics.« less

  2. Mangroves, a major source of dissolved organic carbon to the oceans

    NASA Astrophysics Data System (ADS)

    Dittmar, Thorsten; Hertkorn, Norbert; Kattner, Gerhard; Lara, RubéN. J.

    2006-03-01

    Organic matter, which is dissolved in low concentrations in the vast waters of the oceans, contains a total amount of carbon similar to atmospheric carbon dioxide. To understand global biogeochemical cycles, it is crucial to quantify the sources of marine dissolved organic carbon (DOC). We investigated the impact of mangroves, the dominant intertidal vegetation of the tropics, on marine DOC inventories. Stable carbon isotopes and proton nuclear magnetic resonance spectroscopy showed that mangroves are the main source of terrigenous DOC in the open ocean off northern Brazil. Sunlight efficiently destroyed aromatic molecules during transport offshore, removing about one third of mangrove-derived DOC. The remainder was refractory and may thus be distributed over the oceans. On a global scale, we estimate that mangroves account for >10% of the terrestrially derived, refractory DOC transported to the ocean, while they cover only <0.1% of the continents' surface.

  3. Evaluation of natural materials as exogenous carbon sources for biological treatment of low carbon-to-nitrogen wastewater.

    PubMed

    Ramírez-Godínez, Juan; Beltrán-Hernández, Icela; Álvarez-Hernández, Alejandro; Coronel-Olivares, Claudia; Contreras-López, Elizabeth; Quezada-Cruz, Maribel; Vázquez-Rodríguez, Gabriela

    2015-01-01

    In the bacterial processes involved in the mitigation of nitrogen pollution, an adequately high carbon-to-nitrogen (C : N) ratio is key to sustain denitrification. We evaluated three natural materials (woodchips, barley grains, and peanut shells) as carbon sources for low C : N wastewater. The amount of organic matter released from these materials to aqueous media was evaluated, as well as their pollution swapping potential by measuring the release of total Kjeldahl nitrogen, N-NH4 (+), NO2 (-), and NO3 (-), and total phosphorous. Barley grains yielded the highest amount of organic matter, which also showed to be the most easily biodegradable. Woodchips and peanut shells released carbon rather steadily and so they would not require frequent replenishment from biological reactors. These materials produced eluates with lower concentrations of nutrients than the leachates from barley grains. However, as woodchips yielded lower amounts of suspended solids, they constitute an adequate exogenous source for the biological treatment of carbon-deficient effluents.

  4. Evaluation of Natural Materials as Exogenous Carbon Sources for Biological Treatment of Low Carbon-to-Nitrogen Wastewater

    PubMed Central

    Ramírez-Godínez, Juan; Beltrán-Hernández, Icela; Álvarez-Hernández, Alejandro; Coronel-Olivares, Claudia; Contreras-López, Elizabeth; Quezada-Cruz, Maribel

    2015-01-01

    In the bacterial processes involved in the mitigation of nitrogen pollution, an adequately high carbon-to-nitrogen (C : N) ratio is key to sustain denitrification. We evaluated three natural materials (woodchips, barley grains, and peanut shells) as carbon sources for low C : N wastewater. The amount of organic matter released from these materials to aqueous media was evaluated, as well as their pollution swapping potential by measuring the release of total Kjeldahl nitrogen, N-NH4 +, NO2 −, and NO3 −, and total phosphorous. Barley grains yielded the highest amount of organic matter, which also showed to be the most easily biodegradable. Woodchips and peanut shells released carbon rather steadily and so they would not require frequent replenishment from biological reactors. These materials produced eluates with lower concentrations of nutrients than the leachates from barley grains. However, as woodchips yielded lower amounts of suspended solids, they constitute an adequate exogenous source for the biological treatment of carbon-deficient effluents. PMID:26495313

  5. How organic carbon derived from multiple sources contributes to carbon sequestration processes in a shallow coastal system?

    PubMed Central

    Watanabe, Kenta; Kuwae, Tomohiro

    2015-01-01

    Carbon captured by marine organisms helps sequester atmospheric CO2, especially in shallow coastal ecosystems, where rates of primary production and burial of organic carbon (OC) from multiple sources are high. However, linkages between the dynamics of OC derived from multiple sources and carbon sequestration are poorly understood. We investigated the origin (terrestrial, phytobenthos derived, and phytoplankton derived) of particulate OC (POC) and dissolved OC (DOC) in the water column and sedimentary OC using elemental, isotopic, and optical signatures in Furen Lagoon, Japan. Based on these data analysis, we explored how OC from multiple sources contributes to sequestration via storage in sediments, water column sequestration, and air–sea CO2 exchanges, and analyzed how the contributions vary with salinity in a shallow seagrass meadow as well. The relative contribution of terrestrial POC in the water column decreased with increasing salinity, whereas autochthonous POC increased in the salinity range 10–30. Phytoplankton-derived POC dominated the water column POC (65–95%) within this salinity range; however, it was minor in the sediments (3–29%). In contrast, terrestrial and phytobenthos-derived POC were relatively minor contributors in the water column but were major contributors in the sediments (49–78% and 19–36%, respectively), indicating that terrestrial and phytobenthos-derived POC were selectively stored in the sediments. Autochthonous DOC, part of which can contribute to long-term carbon sequestration in the water column, accounted for >25% of the total water column DOC pool in the salinity range 15–30. Autochthonous OC production decreased the concentration of dissolved inorganic carbon in the water column and thereby contributed to atmospheric CO2 uptake, except in the low-salinity zone. Our results indicate that shallow coastal ecosystems function not only as transition zones between land and ocean but also as carbon sequestration filters

  6. The influence of different nitrogen and carbon sources on mycotoxin production in Alternaria alternata.

    PubMed

    Brzonkalik, Katrin; Herrling, Tanja; Syldatk, Christoph; Neumann, Anke

    2011-05-27

    The aim of this study was to determine the influence of different carbon and nitrogen sources on the production of the mycotoxins alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TA) by Alternaria alternata at 28°C using a semi-synthetic medium (modified Czapek-Dox broth) supplemented with nitrogen and carbon sources. Additionally the effect of shaken and static cultivation on mycotoxin production was tested. Initial experiments showed a clear dependency between nitrogen depletion and mycotoxin production. To assess whether nitrogen limitation in general or the type of nitrogen source triggers the production, various nitrogen sources including several ammonium/nitrate salts and amino acids were tested. In static culture the production of AOH/AME can be enhanced greatly with phenylalanine whereas some nitrogen sources seem to inhibit the AOH/AME production completely. TA was not significantly affected by the choice of nitrogen source. In shaken culture the overall production of all mycotoxins was lower compared to static cultivation. Furthermore tests with a wide variety of carbon sources including monosaccharides, disaccharides, complex saccharides such as starch as well as glycerol and acetate were performed. In shaken culture AOH was produced when glucose, fructose, sucrose, acetate or mixtures of glucose/sucrose and glucose/acetate were used as carbon sources. AME production was not detected. The use of sodium acetate resulted in the highest AOH production. In static culture AOH production was also stimulated by acetate and the amount is comparable to shaken conditions. Under static conditions production of AOH was lower except when cultivated with acetate. In static cultivation 9 of 14 tested carbon sources induced mycotoxin production compared to 4 in shaken culture. This is the first study which analyses the influence of carbon and nitrogen sources in a semi-synthetic medium and assesses the effects of culture conditions on

  7. Dietary sources of energy, solid fats, and added sugars among children and adolescents in the United States.

    PubMed

    Reedy, Jill; Krebs-Smith, Susan M

    2010-10-01

    The objective of this research was to identify top dietary sources of energy, solid fats, and added sugars among 2- to 18-year-olds in the United States. Data from the National Health and Nutrition Examination Survey, a cross-sectional study, were used to examine food sources (percentage contribution and mean intake with standard errors) of total energy (data from 2005-2006) and energy from solid fats and added sugars (data from 2003-2004). Differences were investigated by age, sex, race/ethnicity, and family income, and the consumption of empty calories-defined as the sum of energy from solid fats and added sugars-was compared with the corresponding discretionary calorie allowance. The top sources of energy for 2- to 18-year-olds were grain desserts (138 kcal/day), pizza (136 kcal/day), and soda (118 kcal/day). Sugar-sweetened beverages (soda and fruit drinks combined) provided 173 kcal/day. Major contributors varied by age, sex, race/ethnicity, and income. Nearly 40% of total energy consumed (798 of 2,027 kcal/day) by 2- to 18-year-olds were in the form of empty calories (433 kcal from solid fat and 365 kcal from added sugars). Consumption of empty calories far exceeded the corresponding discretionary calorie allowance for all sex-age groups (which range from 8% to 20%). Half of empty calories came from six foods: soda, fruit drinks, dairy desserts, grain desserts, pizza, and whole milk. There is an overlap between the major sources of energy and empty calories: soda, grain desserts, pizza, and whole milk. The landscape of choices available to children and adolescents must change to provide fewer unhealthy foods and more healthy foods with less energy. Identifying top sources of energy and empty calories can provide targets for changes in the marketplace and food environment. However, product reformulation alone is not sufficient-the flow of empty calories into the food supply must be reduced.

  8. Dietary Sources of Energy, Solid Fats, and Added Sugars Among Children and Adolescents in the United States

    PubMed Central

    Reedy, Jill; Krebs-Smith, Susan M.

    2010-01-01

    Objective The objective of this research was to identify top dietary sources of energy, solid fats, and added sugars among 2–18 year olds in the United States. Methods Data from the National Health and Nutrition Examination Survey (NHANES), a cross-sectional study, were used to examine food sources (percentage contribution and mean intake with standard errors) of total energy (2005–06) and calories from solid fats and added sugars (2003–04). Differences were investigated by age, sex, race/ethnicity, and family income, and the consumption of empty calories—defined as the sum of calories from solid fats and added sugars—was compared with the corresponding discretionary calorie allowance. Results The top sources of energy for 2–18 year olds were grain desserts (138 kcal/day), pizza (136 kcal), and soda (118 kcal). Sugar-sweetened beverages (soda and fruit drinks combined) provided 173 kcal/day. Major contributors varied by age, sex, race/ethnicity, and income. Nearly 40% of total calories consumed (798 kcal/day of 2027 kcal) by 2–18 year olds were in the form of empty calories (433 kcal from solid fat and 365 kcal from added sugars). Consumption of empty calories far exceeded the corresponding discretionary calorie allowance for all sex-age groups (which range from 8–20%). Half of empty calories came from six foods: soda, fruit drinks, dairy desserts, grain desserts, pizza, and whole milk. Conclusion There is an overlap between the major sources of energy and empty calories: soda, grain desserts, pizza, and whole milk. The landscape of choices available to children and adolescents must change to provide fewer unhealthy foods and more healthy foods with fewer calories. Identifying top sources of energy and empty calories can provide targets for changes in the marketplace and food environment. However, product reformulation alone is not sufficient—the flow of empty calories into the food supply must be reduced. PMID:20869486

  9. Effect of carbon and nitrogen sources on simultaneous production of α-amylase and green food packaging polymer by Bacillus sp. CFR 67.

    PubMed

    Sreekanth, M S; Vijayendra, S V N; Joshi, G J; Shamala, T R

    2013-04-01

    In this paper, effect of different carbon and nitrogen sources, including hydrolysates of rice bran and wheat bran, on simultaneous production of α-amylase (for hydrolysis of starch in food systems) and polyhydroxyalkanoates (PHA, a green biopolymer, which can be used as a packing material for foods) by Bacillus sp. CFR 67 was studied by submerged fermentation. Amongst various carbon sources tested, glucose and sucrose supported production of significantly (P < 0.05) higher amount of α-amylase (66 U/ml) and PHA (444 mg/l), respectively. Of the nitrogen sources tested, ammonium acetate and beef extract led to the production of maximum amount of amylase (36 U/ml) and PHA (592 mg/l), respectively. Supplementation of the production medium with wheat bran hydrolysate (50 ml/l) produced significantly higher amounts of amylase (73 U/ml) and PHA (524 mg/l). Thus this study indicated the potential of agro-residues for the production of value added biomolecules, which can reduce the cost of production of these molecules and enables to reduce the pollution mainly caused by the use of non biodegradable plastics.

  10. Synthesis and capacitance properties of N-doped porous carbon/NiO nanosheet composites using coal-based polyaniline as carbon and nitrogen source

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqin; Li, Qiaoqin; Zhang, Yong; Yang, Yufei; Cao, Zhi; Xiong, Shanxin

    2018-06-01

    A novel synthesis approach of N-doped porous carbon (NPC)/NiO composites possessing some honeycomb-shaped nanoporous carbon and plentiful NiO nanosheets is exploited. First NPC/Ni composites are achieved with NPC yield of 52.9% through a catalytic pyrolysis method, using coal-based polyaniline particles prepared by an in-situ polymerization method as a carbon and nitrogen source, and nickel particles as a catalyst, respectively. Next NPC/NiO composites are achieved unexpectedly with plentiful NiO nanosheets and N content of 1.00 wt% after a liquid oxidation process. In NPC/NiO composites, porous carbon mainly presents in the amorphous state, while the incorporated nitrogen mainly presents in the form of pyrrolic N (92.9 at.%) and oxidized N (7.1 at.%). Plentiful NiO nanosheets are embedded in the pores or on the NPC surface. 33.3 at.% Ni2O3 components exist in the surface of NiO nanosheets. NPC/NiO composites possess not only rich micropores, but also significant mesopores and nanoscale macropores. The BET specific surface area, BET average pore width and BJH adsorption average pore diameter are 627.5 m2/g, 2.0 nm and 5.1 nm, respectively. NPC/NiO composites demonstrate a high specific capacitance of 404.1 F/g at 1 A/g, and a good cycling stability maintaining high specific capacitance of 212.4 F/g (84.3% of the initial capacitance) at 5 A/g after 5000 cycles of charge and discharge, attributed to some honeycomb-shaped nanopores of carbon and large specific surface area of NiO nanosheets, and the synergistic effects between electric double-layer capacitance of NPC and pseudocapacitance of NiO. This study may provide a novel approach for the value-added applications of low-rank coal.

  11. Elucidating carbon sources driving microbial metabolism during oil sands reclamation.

    PubMed

    Bradford, Lauren M; Ziolkowski, Lori A; Goad, Corey; Warren, Lesley A; Slater, Gregory F

    2017-03-01

    Microbial communities play key roles in remediation and reclamation of contaminated environments via biogeochemical cycling of organic and inorganic components. Understanding the trends in in situ microbial community abundance, metabolism and carbon sources is therefore a crucial component of effective site management. The focus of this study was to use radiocarbon analysis to elucidate the carbon sources driving microbial metabolism within the first pilot wetland reclamation project in the Alberta oil sands region where the observation of H 2 S had indicated the occurrence of microbial sulphate reduction. The reclamation project involved construction of a three compartment system consisting of a freshwater wetland on top of a sand cap overlying a composite tailings (CT) deposit. Radiocarbon analysis demonstrated that both dissolved and sediment associated organic carbon associated with the deepest compartments (the CT and sand cap) was primarily fossil (Δ 14 C = -769 to -955‰) while organic carbon in the overlying peat was hundreds to thousands of years old (Δ 14 C = -250 to -350‰). Radiocarbon contents of sediment associated microbial phospholipid fatty acids (PLFA) were consistent with the sediment bulk organic carbon pools (Peat: Δ 14 C PLFA  = -257‰; Sand cap Δ 14 C PLFA  = -805‰) indicating that these microbes were using sediment associated carbon. In contrast, microbial PLFA grown on biofilm units installed in wells within the deepest compartments contained much more modern carbon that the associated bulk carbon pools. This implied that the transfer of relatively more modern carbon was stimulating the microbial community at depth within the system. Correlation between cellular abundance estimates based on PLFA concentrations and the Δ 14 C PLFA indicated that the utilization of this more modern carbon was stimulating the microbial community at depth. These results highlight the importance of understanding the occurrence and potential

  12. Agenda and Meeting Summary from Best Practices Training on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources

    EPA Pesticide Factsheets

    From April 15-19, 2013, EPA's partners hosted the Best Practices Training on Arctic Black Carbon: Reduction of Black Carbon from Diesel Sources in Murmansk, Russia. Over the course of this event, participants:

  13. Russia's black carbon emissions: focus on diesel sources

    DOE PAGES

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    2016-09-12

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission modelmore » (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58% of all diesel BC in Russia.« less

  14. Russia's black carbon emissions: focus on diesel sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission modelmore » (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58% of all diesel BC in Russia.« less

  15. Russia's black carbon emissions: focus on diesel sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30% of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputermore » Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58% of all diesel BC in Russia.« less

  16. Organic carbon export from the Greenland Ice Sheet: sources, sinks and downstream fluxes

    NASA Astrophysics Data System (ADS)

    Wadham, J. L.; Lawson, E.; Tranter, M.; Stibal, M.; Telling, J.; Lis, G. P.; Nienow, P. W.; Anesio, A. M.; Butler, C. E.

    2012-12-01

    Runoff from small glacier systems has been shown to contain dissolved organic carbon (DOC) rich in low molecular weight (LMW), and hence more labile forms, designating glaciers as an important source of carbon for downstream heterotrophic activity. Here we assess glacier surfaces as potential sources of labile DOC to downstream ecosystems, presenting data from a wide range of glacier systems to determine sources and sinks of DOC in glacial and proglacial systems. We subsequently focus upon the Greenland Ice Sheet (GrIS) which is the largest source of glacial runoff at present (400 km3 yr-1), with predicted increases in future decades. We report high fluxes of particulate organic carbon (POC), DOC and LMW labile fractions from a large GrIS catchment during two contrasting melt seasons. POC dominates OC export, is sourced from the ice sheet bed and contains a significant bioreactive component (~10% carbohydrates). The LMW-DOC "labile" fraction derives almost entirely from microbial activity on the ice sheet surface, which is supported by data from glacier systems also presented here. Annual fluxes of DOC, POC and labile components were lower in 2010 than 2009, despite a ~2 fold increase in runoff fluxes in 2010, suggesting production-limited DOC/POC sources. Scaled to the entire ice sheet, combined DOC and POC fluxes are of a similar order of magnitude to other large Arctic river systems and may represent an important source of organic carbon to the North Atlantic, Greenland and Labrador Seas.

  17. Effect of carbon source type on intracellular stored polymers during endogenous denitritation (ED) treating landfill leachate.

    PubMed

    Miao, Lei; Wang, Shuying; Li, Baikun; Cao, Tianhao; Zhang, Fangzhai; Wang, Zhong; Peng, Yongzhen

    2016-09-01

    Glycogen accumulating organisms (GAOs) capable of storing organic compounds as polyhydroxyalkanoate (PHA) have been used for endogenous denitritation (ED), but the effect of carbon sources type on nitrogen removal performance of GAOs treating landfill leachate is unclear. In this study, a successful ED system treating landfill leachate (COD/NH4(+)-N (C/N): 4) without external carbon source addition was applied. The mature leachate with C/N of 1 was used as the feeding base solution, with acetate, propionate, and glucose examined as the carbon sources, and their effects on yields and compositions of PHA produced by GAOs were determined and associated with nitrogen removal performance. In the case of sole carbon source, acetate was much easier to be stored than propionate and glucose, which led to a higher nitrogen removal efficiency. Glucose had the lowest amount of PHA storage and led to the lowest performance. In the case of composite carbon sources (two scenarios: acetate + propionate; acetate + propionate + glucose), GAOs stored sufficient PHA and exhibited similar nitrogen removal efficiencies. Moreover, type of carbon source influenced the compositions of PHA. The polyhydroxybutyrate (PHB) fraction in PHA was far more than polyhydroxyvalerate (PHV) in all tests. PHV was synthesized only when acetate existed in carbon source. The microbial diversity analysis revealed that Proteobacteria was the most abundant phylum. Among the 108 genera detected in this ED system, the genera responsible for denitritation were Thauera, Paracoccus, Ottowia and Comamonadaceae_unclassified, accounting for 46.21% of total bacteria. Especially, Paracoccus and Comamonadaceae_unclassified transformed the carbon source into PHA for denitritation, and carried out endogenous denitritation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Carbon source-sink limitations differ between two species with contrasting growth strategies.

    PubMed

    Burnett, Angela C; Rogers, Alistair; Rees, Mark; Osborne, Colin P

    2016-11-01

    Understanding how carbon source and sink strengths limit plant growth is a critical knowledge gap that hinders efforts to maximize crop yield. We investigated how differences in growth rate arise from source-sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO 2 concentrations ([CO 2 ]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbon and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO 2 ] indicating that source strength was near maximal at current [CO 2 ]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO 2 ] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO 2 ], and lower non-structural carbohydrate accumulation. Alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO 2 ]. © 2016 John Wiley & Sons Ltd.

  19. Cultivation of Chlorella vulgaris using different sources of carbon and its impact on lipid production

    NASA Astrophysics Data System (ADS)

    Fransiscus, Yunus; Purwanto, Edy

    2017-05-01

    A cultivation process of Chlorella vulgaris has been done in different treatment to investigate the optimum condition for lipid production. Firstly, autotroph and heterotroph condition have been applied to test the significance impact of carbon availability to the growth and lipid production of Chlorella vulgaris. And for the same purpose, heterotroph condition using glucose, fructose and sucrose as carbon sources was independently implemented. The growth rate of Chlorella vulgaris in autotroph condition was much slower than those in heterotroph. The different sources of carbon gave no significant different in the growth pattern, but in term of lipid production it was presented a considerable result. At lower concentration (3 and 6 gr/L) of carbon sources there was only slight different in lipid production level. At higher concentration (12 gr/L) glucose as a carbon source produced the highest result, 60.18% (w/w) compared to fructose and sucrose that produced 27.34% (w/w) and 18.19% (w/w) respectively.

  20. Distribution of organic carbon and petroleum source rock potential of Cretaceous and lower Tertiary carbonates, South Florida Basin: preliminary results

    USGS Publications Warehouse

    Palacas, James George

    1978-01-01

    Analyses of 134 core samples from the South Florida Basin show that the carbonates of Comanchean age are relatively richer in average organic carbon (0.41 percent) than those of Coahuilan age (0.28 percent), Gulfian age (0.18 percent) and Paleocene age (0.20 percent). They are also nearly twice as rich as the average world, wide carbonate (average 0.24 percent). The majority of carbonates have organic carbons less than 0.30 percent but the presence of many relatively organic rich beds composed of highly bituminous, argillaceous, highly stylolitic, and algal-bearing limestones and dolomites accounts for the higher percentage of organic carbon in some of the stratigraphic units. Carbonate rocks that contain greater than 0.4 percent organic carbon and that might be considered as possible petroleum sources were noted in almost each subdivision of the Coahuilan and Comanchean Series but particularly the units of Fredericksburg 'B', Trinity 'A', Trinity 'F', and Upper Sunniland. Possible source rocks have been ascribed by others to the Lower Sunniland, but lack of sufficient samples precluded any firm assessment in this initial report. In the shallower section of the basin, organic-rich carbonates containing as much as 3.2 percent organic carbon were observed in the lowermost part of the Gulfian Series and carbonate rocks with oil staining or 'dead' and 'live oil' were noted by others in the uppermost Gulfian and upper Cedar Keys Formation. It is questionable whether these shallower rocks are of sufficient thermal maturity to have generated commercial oil. The South Florida basin is still sparsely drilled and produces only from the Sunniland Limestone at an average depth of 11,500 feet (3500 m). Because the Sunniland contains good reservoir rocks and apparently adequate source rocks, and because the success rate of new oil field discoveries has increased in recent years, the chances of finding additional oil reserves in the Sunniland are promising. Furthermore, the

  1. Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source.

    PubMed

    Gupta, Prabuddha L; Choi, Hee-Jeong; Pawar, Radheshyam R; Jung, Sokhee P; Lee, Seung-Mok

    2016-12-15

    The study aimed to utilize the domestic wastewater as nutrient feedstock for mixotrophic cultivation of microalgae by evaluating appropriate carbon source. The microalgae Chlorella vulgaris was cultivated in municipal wastewater under various carbon sources (glucose, glycerol, and acetate), followed by optimization of appropriate carbon source concentration to augment the biomass, lipid, and carbohydrate contents. Under optimized conditions, namely of 5 g/L glucose, C. vulgaris showed higher increments of biomass with 1.39 g/L dry cell weight achieving biomass productivity of 0.13 g/L/d. The biomass accumulated 19.29 ± 1.83% total lipid, 41.4 ± 1.46% carbohydrate, and 33.06 ± 1.87% proteins. Moreover, the cultivation of Chlorella sp. in glucose-supplemented wastewater removed 96.9% chemical oxygen demand, 65.3% total nitrogen, and 71.2% total phosphate. The fatty acid methyl ester obtained showed higher amount (61.94%) of saturated fatty acid methyl esters associated with the improved fuel properties. These results suggest that mixotrophic cultivation using glucose offers great potential in the production of renewable biomass, wastewater treatment, and consequent production of high-value microalgal oil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A mobile light source for carbon/nitrogen cameras

    NASA Astrophysics Data System (ADS)

    Trower, W. P.; Karev, A. I.; Melekhin, V. N.; Shvedunov, V. I.; Sobenin, N. P.

    1995-05-01

    The pulsed light source for carbon/nitrogen cameras developed to image concealed narcotics/explosives is described. This race-track microtron will produce 40 mA pulses of 70 MeV electrons, have minimal size and weight, and maximal ruggedness and reliability, so that it can be transported on a truck.

  3. Selling Health to the Distracted: Consumer Responses to Source Credibility and Ad Appeal Type in a Direct-to-Consumer Advertisement.

    PubMed

    Lemanski, Jennifer L; Villegas, Jorge

    2015-01-01

    Since 1997, when the U.S. Food and Drug Administration first allowed prescription drug companies to release ads directly targeting the public, direct-to-consumer (DTC) advertising has become an integral part of the pharmaceutical industry marketing toolkit, reaching over $4 billion in 2005. In an experiment where cognitive load, a task that requires the investment of a subject's memory in an unrelated task; source credibility; and advertising appeal type (affective or cognitive) were manipulated, attitude toward the ad was measured for a print DTC meningitis vaccine ad. Main effect results for source credibility and advertising appeal type on attitude toward the ad were found, and interactions between manipulated variables were apparent when the individual difference variables related to a specific illness (vaccination history, living in a dorm, family members or friends who had suffered the illness) were taken into account.

  4. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; Wang, Yun; Dai, Xiao

    2015-08-01

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  5. Improved Nitrogen Removal Effect In Continuous Flow A2/O Process Using Typical Extra Carbon Source

    NASA Astrophysics Data System (ADS)

    Wu, Haiyan; Gao, Junyan; Yang, Dianhai; Zhou, Qi; Cai, Bijing

    2010-11-01

    In order to provide a basis for optimal selection of carbon source, three typical external carbon sources (i.e. methanol, sodium acetate and leachate) were applied to examine nitrogen removal efficiency of continuous flow A2/O system with the influent from the effluent of grit chamber in the second Kunming wastewater treatment plant. The best dosage was determined, and the specific nitrogen removal rate and carbon consumption rate were calculated with regard to individual external carbon source in A2/O system. Economy and technology analysis was also conducted to select the suitable carbon source with a low operation cost. Experimental results showed that the external typical carbon source caused a remarkable enhancement of system nitrate degradation ability. In comparison with the blank test, the average TN and NH3-N removal efficiency of system with different dosing quantities of external carbon source was improved by 15.2% and 34.2%, respectively. The optimal dosage of methanol, sodium acetate and leachate was respectively up to 30 mg/L, 40 mg/L and 100 mg COD/L in terms of a high nitrogen degradation effect. The highest removal efficiency of COD, TN and NH3-N reached respectively 92.3%, 73.9% and 100% with methanol with a dosage of 30 mg/L. The kinetic analysis and calculation revealed that the greatest denitrification rate was 0.0107 mg TN/mg MLVSSṡd with sodium acetate of 60 mg/L. As to carbon consumption rate, however, the highest value occurred in the blank test with a rate of 0.1955 mg COD/mg MLVSSṡd. Also, further economic analysis proved leachate to be pragmatic external carbon source whose cost was far cheaper than methanol.

  6. Heavy metal removal from synthetic wastewaters in an anaerobic bioreactor using stillage from ethanol distilleries as a carbon source.

    PubMed

    Gonçalves, M M M; da Costa, A C A; Leite, S G F; Sant'Anna, G L

    2007-11-01

    This work was conducted to investigate the possibility of using stillage from ethanol distilleries as substrate for sulfate reducing bacteria (SRB) growth and to evaluate the removal efficiency of heavy metals present in wastewaters containing sulfates. The experiments were carried out in a continuous bench-scale Upflow Anaerobic Sludge Blanket reactor (13 l) operated with a hydraulic retention time of 18 h. The bioreactor was inoculated with 7 l of anaerobic sludge. Afterwards, an enrichment procedure to increase SRB numbers was started. After this, cadmium and zinc were added to the synthetic wastewater, and their removal as metal sulfide was evaluated. The synthetic wastewater used represented the drainage from a dam of a metallurgical industry to which a carbon source (stillage) was added. The results showed that high percentages of removal (>99%) of Cd and Zn were attained in the bioreactor, and that the removal as sulfide precipitates was not the only form of metal removal occurring in the bioreactor environment.

  7. The Effect of Carbon Source and Fluoride Concentrations in the "Streptococcus Mutans" Biofilm Formation

    ERIC Educational Resources Information Center

    Paulino, Tony P.; Andrade, Ricardo O.; Bruschi-Thedei, Giuliana C. M.; Thedei, Geraldo, Jr.; Ciancaglini, Pietro

    2004-01-01

    The main objective of this class experiment is to show the influence of carbon source and of different fluoride concentrations on the biofilm formation by the bacterium "Streptococcus mutans." The observation of different biofilm morphology as a function of carbon source and fluoride concentration allows an interesting discussion regarding the…

  8. Evaluating measurements of carbon dioxide emissions using a precision source--A natural gas burner.

    PubMed

    Bryant, Rodney; Bundy, Matthew; Zong, Ruowen

    2015-07-01

    A natural gas burner has been used as a precise and accurate source for generating large quantities of carbon dioxide (CO2) to evaluate emissions measurements at near-industrial scale. Two methods for determining carbon dioxide emissions from stationary sources are considered here: predicting emissions based on fuel consumption measurements-predicted emissions measurements, and direct measurement of emissions quantities in the flue gas-direct emissions measurements. Uncertainty for the predicted emissions measurement was estimated at less than 1%. Uncertainty estimates for the direct emissions measurement of carbon dioxide were on the order of ±4%. The relative difference between the direct emissions measurements and the predicted emissions measurements was within the range of the measurement uncertainty, therefore demonstrating good agreement. The study demonstrates how independent methods are used to validate source emissions measurements, while also demonstrating how a fire research facility can be used as a precision test-bed to evaluate and improve carbon dioxide emissions measurements from stationary sources. Fossil-fuel-consuming stationary sources such as electric power plants and industrial facilities account for more than half of the CO2 emissions in the United States. Therefore, accurate emissions measurements from these sources are critical for evaluating efforts to reduce greenhouse gas emissions. This study demonstrates how a surrogate for a stationary source, a fire research facility, can be used to evaluate the accuracy of measurements of CO2 emissions.

  9. Consumption of added sugars from liquid but not solid sources predicts impaired glucose homeostasis and insulin resistance among youth at risk of obesity.

    PubMed

    Wang, Jiawei; Light, Kelly; Henderson, Mélanie; O'Loughlin, Jennifer; Mathieu, Marie-Eve; Paradis, Gilles; Gray-Donald, Katherine

    2014-01-01

    Little is known about longitudinal associations between added sugar consumption (solid and liquid sources) and glucose-insulin homeostasis among youth. Caucasian children (8-10 y) with at least one obese biological parent were recruited in the QUébec Adipose and Lifestyle InvesTigation in Youth (QUALITY) cohort (n = 630) and followed-up 2 y later (n = 564). Added sugars were assessed by 3 24-h dietary recalls at baseline. Two-year changes were examined in multivariate linear regression models, adjusting for baseline level, age, sex, Tanner stage, energy intake, fat mass (dual-energy X-ray absorptiometry), and physical activity (7 d accelerometer). Added sugar intake in either liquid or solid sources was not related to changes in adiposity measures (fat mass, body mass index, or waist circumference). However, a higher consumption (10 g/d) of added sugars from liquid sources was associated with 0.04 mmol/L higher fasting glucose, 2.3 pmol/L higher fasting insulin, 0.1 unit higher homeostasis model assessment of insulin resistance (HOMA-IR), and 0.4 unit lower Matsuda-insulin sensitivity index (Matsuda-ISI) in all participants (P < 0.01). No associations were observed with consumption of added sugars from solid sources. Overweight/obese children at baseline had greater increases in adiposity indicators, fasting insulin, and HOMA-IR and decreases in Matsuda-ISI during those 2 y than normal-weight children. Consumption of added sugars from liquid or solid sources was not associated with changes in adiposity, but liquid added sugars were a risk factor for the development of impaired glucose homeostasis and insulin resistance over 2 y among youth at risk of obesity.

  10. Kupier prize lecture: Sources of solar-system carbon

    NASA Technical Reports Server (NTRS)

    Anders, Edward; Zinner, Ernst

    1994-01-01

    We have tried to deconvolve Solar-System carbon into its sources, on the basis of C-12/C-13 ratios (equivalent to R). Interstellar SiC in meteorites, representing greater than 4.6-Ga-old stardust from carbon stars, is isotopically heavier (bar R = 38 +/- 2) than Solar-System carbon (89), implying that the latter contains an additional, light component. A likely source are massive stars, mainly Type II supernovae and Wolf-Rayet stars, which, being O-rich, eject their C largely as CO rather than carbonaceous dust. The fraction of such light C in the Solar System depends on R(sub light) in the source. For R(sub light) = 180-1025 (as in 'Group 4' meteoritic graphite spherules, which apparently came from massive stars greater than 4.6 Ga ago), the fraction of light C is 0.79-0.61. Similar results are obtained for present-day data on red giants and interstellar gas. Although both have become enriched in C-13 due to galactic evolution (to bar-R = 20 and 57), the fraction of the light component in interstellar gas again is near 0.7. (Here bar R represents the mean of a mixture calculated via atom fractions; it is not identical to the arithmetic mean R). Interstellar graphite, unlike SiC, shows a large peak at R approximately equal 90, near the solar value. Although some of the grains may be of local origin, others show anomalies in other elements and hence are exotic. Microdiamonds, with R = 93, also are exotic on the basis of their Xe and N. Apparently R approximately 90 was a fairly common composition 4.6 Ga ago, of stars as well as the ISM.

  11. Floquet scalar dynamics in global AdS

    NASA Astrophysics Data System (ADS)

    Biasi, Anxo; Carracedo, Pablo; Mas, Javier; Musso, Daniele; Serantes, Alexandre

    2018-04-01

    We study periodically driven scalar fields and the resulting geometries with global AdS asymptotics. These solutions describe the strongly coupled dynamics of dual finite-size quantum systems under a periodic driving which we interpret as Floquet condensates. They span a continuous two-parameter space that extends the linearized solutions on AdS. We map the regions of stability in the solution space. In a significant portion of the unstable subspace, two very different endpoints are reached depending upon the sign of the perturbation. Collapse into a black hole occurs for one sign. For the opposite sign instead one attains a regular solution with periodic modulation. We also construct quenches where the driving frequency and amplitude are continuously varied. Quasistatic quenches can interpolate between pure AdS and sourced solutions with time periodic vev. By suitably choosing the quasistatic path one can obtain boson stars dual to Floquet condensates at zero driving field. We characterize the adiabaticity of the quenching processes. Besides, we speculate on the possible connections of this framework with time crystals.

  12. Seasonal variations in elemental carbon aerosol, carbon monoxide and sulfur dioxide: Implications for sources

    NASA Astrophysics Data System (ADS)

    Antony Chen, L.-W.; Doddridge, Bruce G.; Dickerson, Russell R.; Chow, Judith C.; Mueller, Peter K.; Quinn, John; Butler, William A.

    As part of Maryland Aerosol Research and CHaracterization (MARCH-Atlantic) study, measurements of 24-hr average elemental carbon (EC) aerosol concentration were made at Fort Meade, Maryland, USA, a suburban site within the Baltimore-Washington corridor during July 1999, October 1999, January 2000, April 2000 and July 2000. Carbon monoxide (CO) and sulfur dioxide (SO2) were also measured nearly continuously over the period. Tight correlation between EC and CO in every month suggests common or proximate sources, likely traffic emissions. The EC versus CO slope varies in different seasons and generally increases with ambient temperature. The temperature dependence of EC/CO ratios suggests that EC source strength peaks in summer. By using the well established emission inventory for CO, and EC/CO ratio found in this study, EC emission over North America is estimated at 0.31±0.12 Tg yr-1, on the low end but in reasonable agreement with prior inventories based on emission factors and fuel consumption.

  13. Seasonal variations in elemental carbon aerosol, carbon monoxide and sulfur dioxide: Implications for sources

    NASA Astrophysics Data System (ADS)

    Chen, L.-W. Antony; Doddridge, Bruce G.; Dickerson, Russell R.; Chow, Judith C.; Mueller, Peter K.; Quinn, John; Butler, William A.

    2001-05-01

    As part of Maryland Aerosol Research and CHaracterization (MARCH-Atlantic) study, measurements of 24-hr average elemental carbon (EC) aerosol concentration were made at Fort Meade, Maryland, USA, a suburban site within the Baltimore-Washington corridor during July 1999, October 1999, January 2000, April 2000 and July 2000. Carbon monoxide (CO) and sulfur dioxide (SO2) were also measured nearly continuously over the period. Tight correlation between EC and CO in every month suggests common or proximate sources, likely traffic emissions. The EC versus CO slope varies in different seasons and generally increases with ambient temperature. The temperature dependence of EC/CO ratios suggests that EC source strength peaks in summer. By using the well established emission inventory for CO, and EC/CO ratio found in this study, EC emission over North America is estimated at 0.31+/-0.12Tgyr-1, on the low end but in reasonable agreement with prior inventories based on emission factors and fuel consumption.

  14. High-level production of recombinant trypsin in transgenic rice cell culture through utilization of an alternative carbon source and recycling system.

    PubMed

    Kim, Nan-Sun; Yu, Hwa-Young; Chung, Nguyen-Duc; Kwon, Tae-Ho; Yang, Moon-Sik

    2014-09-01

    Productivity of recombinant bovine trypsin using a rice amylase 3D promoter has been studied in transgenic rice suspension culture. Alternative carbon sources were added to rice cell suspension cultures in order to improve the production of recombinant bovine trypsin. It was demonstrated that addition of alternative carbon sources such as succinic acid, fumaric acid and malic acid in the culture medium could increase the productivity of recombinant bovine trypsin 3.8-4.3-fold compared to those in the control medium without carbon sources. The highest accumulated trypsin reached 68.2 mg/L on day 5 in the culture medium with 40 mM fumaric acid. The feasibility of repeated use of the cells for recombinant trypsin production was tested in transgenic rice cell suspension culture with the culture medium containing the combination of variable sucrose concentration and 40 mM fumaric acid. Among the used combinations, the combination of 1% sucrose and 40 mM fumaric acid resulted in a yield of up to 53 mg/L five days after incubation. It also increased 31% (W/W) of dry cell weight and improved 43% of cell viability compared to that in control medium without sucrose. Based on these data, recycling of the trypsin production process with repeated 1% sucrose and 40 mM fumaric acid supplying-harvesting cycles was developed in flask scale culture. Recombinant bovine trypsin could be stably produced with a yield of up to 53-39 mg/L per cycle during five recycling cycles. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Sources and yields of dissolved carbon in northern Wisconsin stream catchments with differing amounts of Peatland

    USGS Publications Warehouse

    Elder, J.F.; Rybicki, N.B.; Carter, V.; Weintraub, V.

    2000-01-01

    In five tributary streams (four inflowing and one outflowing) of 1600-ha Trout Lake in northern Wisconsin, USA, we examined factors that can affect the magnitude of stream flow and transport of dissolved organic and inorganic carbon (DOC and DIC) through the streams to the lake. One catchment, the Allequash Creek basin, was investigated in more detail to describe the dynamics of carbon flow and to identify potential carbon sources. Stream flows and carbon loads showed little or no relation to surface-water catchment area. They were more closely related to ground-water watershed area because ground-water discharge, from both local and regional sources, is a major contributor to the hydrologic budgets of these catchments. An important factor in determining carbon influx to the stream is the area of peatland in the catchment. Peatland porewaters contain DOC concentrations up to 40 mg l-1 and are a significant potential carbon source. Ground-water discharge and lateral flow through peat are the suspected mechanisms for transport of that carbon to the streams. Carbon and nitrogen isotopes suggested that the sources of DOC in Allequash Creek above Allequash Lake were wetland vegetation and peat and that the sources below Allequash Lake were filamentous algae and wild rice. Catchments with high proportions of peatland, including the Allequash Creek catchment, tended to have elevated DOC loads in outflowing stream water. Respiration and carbon mineralization in lakes within the system tend to produce low DOC and low DOC/DIC in lake outflows, especially at Trout Lake. In Allequash Lake, however, the shallow peat island and vegetation-filled west end were sources of DOC. Despite the vast carbon reservoir in the peatlands, carbon yields were very low in these catchments. Maximum yields were on the order of 2.5 g m-2 y-1 DOC and 5.5 g m-2 y-1 DIC. The small yields were attributable to low stream flows due to lack of significant overland runoff and very limited stream channel

  16. Utilization of carbon sources in a northern Brazilian mangrove ecosystem

    NASA Astrophysics Data System (ADS)

    Giarrizzo, Tommaso; Schwamborn, Ralf; Saint-Paul, Ulrich

    2011-12-01

    Carbon and nitrogen stable isotope ratios ( 13C and 15N) and trophic level (TL) estimates based on stomach content analysis and published data were used to assess the contribution of autotrophic sources to 55 consumers in an intertidal mangrove creek of the Curuçá estuary, northern Brazil. Primary producers showed δ 13C signatures ranging between -29.2 and -19.5‰ and δ 15N from 3.0 to 6.3‰. The wide range of the isotopic composition of carbon of consumers (-28.6 to -17.1‰) indicated that different autotrophic sources are important in the intertidal mangrove food webs. Food web segregation structures the ecosystem into three relatively distinct food webs: (i) mangrove food web, where vascular plants contribute directly or indirectly via POM to the most 13C-depleted consumers (e.g. Ucides cordatus and zooplanktivorous food chains); (ii) algal food web, where benthic algae are eaten directly by consumers (e.g. Uca maracoani, mullets, polychaetes, several fishes); (iii) mixed food web where the consumers use the carbon from different primary sources (mainly benthivorous fishes). An IsoError mixing model was used to determine the contributions of primary sources to consumers, based on δ 13C values. Model outputs were very sensitive to the magnitude of trophic isotope fractionation and to the variability in 13C data. Nevertheless, the simplification of the system by a priori aggregation of primary producers allowed interpretable results for several taxa, revealing the segregation into different food webs.

  17. Nitrogen and carbon source-sink relationships in trees at the Himalayan treelines compared with lower elevations.

    PubMed

    Li, Mai-He; Xiao, Wen-Fa; Shi, Peili; Wang, San-Gen; Zhong, Yong-De; Liu, Xing-Liang; Wang, Xiao-Dan; Cai, Xiao-Hu; Shi, Zuo-Min

    2008-10-01

    No single hypothesis or theory has been widely accepted for explaining the functional mechanism of global alpine/arctic treeline formation. The present study tested whether the alpine treeline is determined by (1) the needle nitrogen content associated with photosynthesis (carbon gain); (2) a sufficient source-sink ratio of carbon; or (3) a sufficient C-N ratio. Nitrogen does not limit the growth and development of trees studied at the Himalayan treelines. Levels of non-structural carbohydrates (NSC) in trees were species-specific and site-dependent; therefore, the treeline cases studied did not show consistent evidence of source/carbon limitation or sink/growth limitation in treeline trees. However, results of the combined three treelines showed that the treeline trees may suffer from a winter carbon shortage. The source capacity and the sink capacity of a tree influence its tissue NSC concentrations and the carbon balance; therefore, we suggest that the persistence and development of treeline trees in a harsh alpine environment may require a minimum level of the total NSC concentration, a sufficiently high sugar:starch ratio, and a balanced carbon source-sink relationship.

  18. Regional prediction of carbon isotopes in soil carbonates for Asian dust source tracer

    NASA Astrophysics Data System (ADS)

    Chen, Bing; Cui, Xinjuan; Wang, Yaqiang

    2016-10-01

    Dust particles emitted from deserts and semi-arid lands in northern China cause particulate pollution that increases the burden of disease particularly for urban population in East Asia. The stable carbon isotopes (δ13C) of carbonates in soils and dust aerosols in northern China were investigated. We found that the δ13C of carbonates in surface soils in northern China showed clearly the negative correlation (R2 = 0.73) with Normalized Difference Vegetation Index (NDVI). Using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite-derived NDVI, we predicted the regional distribution of δ13C of soil carbonates in deserts, sandy lands, and steppe areas. The predictions show the mean δ13C of -0.4 ± 0.7‰ in soil carbonates in Taklimakan Desert and Gobi Deserts, and the isotope values decrease to -3.3 ± 1.1‰ in sandy lands. The increase in vegetation coverage depletes 13C in soil carbonates, thus the steppe areas are predicted by the lowest δ13C levels (-8.1 ± 1.7‰). The measurements of atmospheric dust samples at eight sites showed that the Asian dust sources were well assigned by the 13C mapping in surface soils. Predicting 13C in large geographical areas with fine resolution offers a cost-effective tracer to monitor dust emissions from sandy lands and steppe areas which show an increasing role in Asian dust loading driven by climate change and human activities.

  19. AdS6 solutions of type II supergravity

    NASA Astrophysics Data System (ADS)

    Apruzzi, Fabio; Fazzi, Marco; Passias, Achilleas; Rosa, Dario; Tomasiello, Alessandro

    2014-11-01

    Very few AdS6 × M 4 supersymmetric solutions are known: one in massive IIA, and two IIB solutions dual to it. The IIA solution is known to be unique; in this paper, we use the pure spinor approach to give a classification for IIB supergravity. We reduce the problem to two PDEs on a two-dimensional space Σ. M 4 is then a fibration of S 2 over Σ; the metric and fluxes are completely determined in terms of the solution to the PDEs. The results seem likely to accommodate near-horizon limits of ( p, q)-fivebrane webs studied in the literature as a source of CFT5's. We also show that there are no AdS6 solutions in eleven-dimensional supergravity.

  20. Source attribution using FLEXPART and carbon monoxide emission inventories: SOFT-IO version 1.0

    NASA Astrophysics Data System (ADS)

    Sauvage, Bastien; Fontaine, Alain; Eckhardt, Sabine; Auby, Antoine; Boulanger, Damien; Petetin, Hervé; Paugam, Ronan; Athier, Gilles; Cousin, Jean-Marc; Darras, Sabine; Nédélec, Philippe; Stohl, Andreas; Turquety, Solène; Cammas, Jean-Pierre; Thouret, Valérie

    2017-12-01

    Since 1994, the In-service Aircraft for a Global Observing System (IAGOS) program has produced in situ measurements of the atmospheric composition during more than 51 000 commercial flights. In order to help analyze these observations and understand the processes driving the observed concentration distribution and variability, we developed the SOFT-IO tool to quantify source-receptor links for all measured data. Based on the FLEXPART particle dispersion model (Stohl et al., 2005), SOFT-IO simulates the contributions of anthropogenic and biomass burning emissions from the ECCAD emission inventory database for all locations and times corresponding to the measured carbon monoxide mixing ratios along each IAGOS flight. Contributions are simulated from emissions occurring during the last 20 days before an observation, separating individual contributions from the different source regions. The main goal is to supply added-value products to the IAGOS database by evincing the geographical origin and emission sources driving the CO enhancements observed in the troposphere and lower stratosphere. This requires a good match between observed and modeled CO enhancements. Indeed, SOFT-IO detects more than 95 % of the observed CO anomalies over most of the regions sampled by IAGOS in the troposphere. In the majority of cases, SOFT-IO simulates CO pollution plumes with biases lower than 10-15 ppbv. Differences between the model and observations are larger for very low or very high observed CO values. The added-value products will help in the understanding of the trace-gas distribution and seasonal variability. They are available in the IAGOS database via http://www.iagos.org. The SOFT-IO tool could also be applied to similar data sets of CO observations (e.g., ground-based measurements, satellite observations). SOFT-IO could also be used for statistical validation as well as for intercomparisons of emission inventories using large

  1. Sources and sinks of carbon in boreal ecosystems of interior Alaska: a review

    USGS Publications Warehouse

    Douglas, Thomas A.; Jones, Miriam C.; Hiemstra, Christopher A.

    2014-01-01

    Boreal regions store large quantities of carbon but are increasingly vulnerable to carbon loss due to disturbance and climate warming. The boreal region, underlain by discontinuous permafrost, presents a challenging landscape for itemizing current and potential carbon sources and sinks in the boreal soil and vegetation. The roles of fire, forest succession, and the presence (or absence) of permafrost on carbon cycle, vegetation, and hydrologic processes have been the focus of multidisciplinary research in this area for the past 20 years. However, projections of a warming future climate, an increase in fire severity and extent, and the potential degradation of permafrost could lead to major landscape process changes over the next 20 to 50 years. This provides a major challenge for predicting how the interplay between land management activities and impacts of climate warming will affect carbon sources and sinks in Interior Alaska. To assist land managers in adapting and managing for potential changes in the Interior Alaska carbon cycle we developed this review paper incorporating an overview of the climate, ecosystem processes, vegetation types, and soil regimes in Interior Alaska with a focus on ramifications for the carbon cycle. Our objective is to provide a synthesis of the most current carbon storage estimates and measurements to support policy and land management decisions on how to best manage carbon sources and sinks in Interior Alaska. To support this we have surveyed relevant peer reviewed estimates of carbon stocks in aboveground and belowground biomass for Interior Alaska boreal ecosystems. We have also summarized methane and carbon dioxide fluxes from the same ecosystems. These data have been converted into the same units to facilitate comparison across ecosystem compartments. We identify potential changes in the carbon cycle with climate change and human disturbance including how compounding disturbances can affect the boreal system. Finally, we provide

  2. Development of a stationary carbon emission inventory for Shanghai using pollution source census data

    NASA Astrophysics Data System (ADS)

    Li, Xianzhe; Jiang, Ping; Zhang, Yan; Ma, Weichun

    2016-12-01

    This study utilizes 521,631 activity data points from the 2007 Shanghai Pollution Source Census to compile a stationary carbon emission inventory for Shanghai. The inventory generated from our dataset shows that a large portion of Shanghai's total energy use consists of coal-oriented energy consumption. The electricity and heat production industries, iron and steel mills, and the petroleum refining industry are the main carbon emitters. In addition, most of these industries are located in Baoshan District, which is Shanghai's largest contributor of carbon emissions. Policy makers can use the enterpriselevel carbon emission inventory and the method designed in this study to construct sound carbon emission reduction policies. The carbon trading scheme to be established in Shanghai based on the developed carbon inventory is also introduced in this paper with the aim of promoting the monitoring, reporting and verification of carbon trading. Moreover, we believe that it might be useful to consider the participation of industries, such as those for food processing, beverage, and tobacco, in Shanghai's carbon trading scheme. Based on the results contained herein, we recommend establishing a comprehensive carbon emission inventory by inputting data from the pollution source census used in this study.

  3. Role of metabolite transporters in source-sink carbon allocation

    PubMed Central

    Ludewig, Frank; Flügge, Ulf-Ingo

    2013-01-01

    Plants assimilate carbon dioxide during photosynthesis in chloroplasts. Assimilated carbon is subsequently allocated throughout the plant. Generally, two types of organs can be distinguished, mature green source leaves as net photoassimilate exporters, and net importers, the sinks, e.g., roots, flowers, small leaves, and storage organs like tubers. Within these organs, different tissue types developed according to their respective function, and cells of either tissue type are highly compartmentalized. Photoassimilates are allocated to distinct compartments of these tissues in all organs, requiring a set of metabolite transporters mediating this intercompartmental transfer. The general route of photoassimilates can be briefly described as follows. Upon fixation of carbon dioxide in chloroplasts of mesophyll cells, triose phosphates either enter the cytosol for mainly sucrose formation or remain in the stroma to form transiently stored starch which is degraded during the night and enters the cytosol as maltose or glucose to be further metabolized to sucrose. In both cases, sucrose enters the phloem for long distance transport or is transiently stored in the vacuole, or can be degraded to hexoses which also can be stored in the vacuole. In the majority of plant species, sucrose is actively loaded into the phloem via the apoplast. Following long distance transport, it is released into sink organs, where it enters cells as source of carbon and energy. In storage organs, sucrose can be stored, or carbon derived from sucrose can be stored as starch in plastids, or as oil in oil bodies, or – in combination with nitrogen – as protein in protein storage vacuoles and protein bodies. Here, we focus on transport proteins known for either of these steps, and discuss the implications for yield increase in plants upon genetic engineering of respective transporters. PMID:23847636

  4. Biotechnological Production of Docosahexaenoic Acid Using Aurantiochytrium limacinum: Carbon Sources Comparison And Growth Characterization.

    PubMed

    Abad, Sergi; Turon, Xavier

    2015-12-05

    Aurantiochytrium limacinum, a marine heterotrophic protist/microalga has shown interesting yields of docosahexaenoic acid (DHA) when cultured with different carbon sources: glucose, pure and crude glycerol. A complete study in a lab-scale fermenter allowed for the characterization and comparison of the growth kinetic parameters corresponding to each carbon source. Artificial Marine Medium (AMM) with glucose, pure and crude glycerol offered similar biomass yields. The net growth rates (0.10-0.12 h(-1)), biomass (0.7-0.8 g cells/g Substrate) and product (0.14-0.15 g DHA/g cells) yields, as well as DHA productivity were similar using the three carbon sources. Viable potential applications to valorize crude glycerol are envisioned to avoid an environmental problem due to the excess of byproduct.

  5. Carbon allocation, source-sink relations and plant growth: do we need to revise our carbon centric concepts?

    NASA Astrophysics Data System (ADS)

    Körner, Christian

    2014-05-01

    Since the discovery that plants 'eat air' 215 years ago, carbon supply was considered the largely unquestioned top driver of plant growth. The ease at which CO2 uptake (C source activity) can be measured, and the elegant algorithms that describe the responses of photosynthesis to light, temperature and CO2 concentration, explain why carbon driven growth and productivity became the starting point of all process based vegetation models. Most of these models, nowadays adopt other environmental drivers, such as nutrient availability, as modulating co-controls, but the carbon priority is retained. Yet, if we believe in the basic rules of stoichometry of all life, there is an inevitable need of 25-30 elements other then carbon, oxygen and hydrogen to build a healthy plant body. Plants compete for most of these elements, and their availability (except for N) is finite per unit land area. Hence, by pure plausibility, it is a highly unlikely situation that carbon plays the rate limiting role of growth under natural conditions, except in deep shade or on exceptionally fertile soils. Furthermore, water shortage and low temperature, both act directly upon tissue formation (meristems) long before photosynthetic limitations come into play. Hence, plants will incorporate C only to the extent other environmental drivers permit. In the case of nutrients and mature ecosystems, this sink control of plant growth may be masked in the short term by a tight, almost closed nutrient cycle or by widening the C to other element ratio. Because source and sink activity must match in the long term, it is not possible to identify the hierarchy of growth controls without manipulating the environment. Dry matter allocation to C rich structures and reserves may provide some stoichimetric leeway or periodic escapes from the more fundamental, long-term environmental controls of growth and productivity. I will explain why carbon centric explanations of growth are limited or arrive at plausible answers

  6. Dynamic Balancing of Isoprene Carbon Sources Reflects Photosynthetic and Photorespiratory Responses to Temperature Stress1[W][OPEN

    PubMed Central

    Chambers, Jeffrey; Alves, Eliane G.; Teixeira, Andrea; Garcia, Sabrina; Holm, Jennifer; Higuchi, Niro; Manzi, Antonio; Abrell, Leif; Fuentes, Jose D.; Nielsen, Lars K.; Torn, Margaret S.; Vickers, Claudia E.

    2014-01-01

    The volatile gas isoprene is emitted in teragrams per annum quantities from the terrestrial biosphere and exerts a large effect on atmospheric chemistry. Isoprene is made primarily from recently fixed photosynthate; however, alternate carbon sources play an important role, particularly when photosynthate is limiting. We examined the relative contribution of these alternate carbon sources under changes in light and temperature, the two environmental conditions that have the strongest influence over isoprene emission. Using a novel real-time analytical approach that allowed us to examine dynamic changes in carbon sources, we observed that relative contributions do not change as a function of light intensity. We found that the classical uncoupling of isoprene emission from net photosynthesis at elevated leaf temperatures is associated with an increased contribution of alternate carbon. We also observed a rapid compensatory response where alternate carbon sources compensated for transient decreases in recently fixed carbon during thermal ramping, thereby maintaining overall increases in isoprene production rates at high temperatures. Photorespiration is known to contribute to the decline in net photosynthesis at high leaf temperatures. A reduction in the temperature at which the contribution of alternate carbon sources increased was observed under photorespiratory conditions, while photosynthetic conditions increased this temperature. Feeding [2-13C]glycine (a photorespiratory intermediate) stimulated emissions of [13C1–5]isoprene and 13CO2, supporting the possibility that photorespiration can provide an alternate source of carbon for isoprene synthesis. Our observations have important implications for establishing improved mechanistic predictions of isoprene emissions and primary carbon metabolism, particularly under the predicted increases in future global temperatures. PMID:25318937

  7. Lithium storage in structurally tunable carbon anode derived from sustainable source

    DOE PAGES

    Lim, Daw Gen; Kim, Kyungho; Razdan, Mayuri; ...

    2017-09-01

    Here, a meticulous solid state chemistry approach has been developed for the synthesis of carbon anode from a sustainable source. The reaction mechanism of carbon formation during pyrolysis of sustainable feed-stock was studied in situ by employing Raman microspectroscopy. No Raman spectral changes observed below 160°C (thermally stable precursor) followed by color change, however above 280°C characteristic D and G bands of graphitic carbon are recorded. Derived carbon particles exhibited high specific surface area with low structural ordering (active carbons) to low specific surface area with high graphitic ordering as a function of increasing reaction temperature. Carbons synthesized at 600°Cmore » demonstrated enhanced reversible lithiation capacity (390 mAh g -1), high charge-discharge rate capability, and stable cycle life. On the contrary, carbons synthesized at higher temperatures (>1200°C) produced more graphite-like structure yielding longer specific capacity retention with lower reversible capacity.« less

  8. Delivery and Establishing Slow Release Carbon Source to the Hanford Vadose Zone Using Colloidal Silica Suspension Injection and Subsequent Gelation - Laboratory Study

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Lee, M. H.; Lee, B.; Yang, S.

    2016-12-01

    Delivery of nutrient to and establish a slow release carbon source in the vadose zone and capillary fringe zone is essential for setting up of a long-lasting bioremediation of contaminations in those zones. Conventional solution-based injection and infiltration approaches are facing challenges to achieve the delivery and remedial goals. Aqueous silica suspensions undergo a delayed gelation process under favorite geochemical conditions. The delay in gelation provides a time window for the injection of the suspension into the subsurface; and the gelation of the amendment-silica suspension enables the amendment-laden gel to stay in the target zone and slowly release the constituents for contaminant remediation. This approach can potentially be applied to deliver bio-nutrients to the vadose zone and capillary fringe zone for enhanced bioremediation and achieve remedial goals. This research was conducted to demonstrate delayed gelation of colloidal silica suspensions when carbon sources were added and to prove the gelation occurs in sediments under vadose conditions. Sodium lactate, vegetable oil, ethanol, and molasses were tested as the examples of carbon source (or nutrient) amendments. The rheological properties of the silica suspensions during the gelation were characterized. The influence of silica, salinity, nutrient concentrations, and the type of nutrients was studied. The kinetics of nutrient release from silica-nutrient gel was quantified using molasses as the example, and the influence of suspension gelation time was evaluated. The injection behavior of the suspensions was investigated by monitoring their viscosity changes and the injection pressures when the suspensions were delivered into sediment columns.

  9. Organic carbon sources and sinks in San Francisco Bay: variability induced by river flow

    USGS Publications Warehouse

    Jassby, Alan D.; Powell, T.M.; Cloern, James E.

    1993-01-01

    Sources and sinks of organic carbon for San Francisco Bay (California, USA) were estimated for 1980. Sources for the southern reach were dominated by phytoplankton and benthic microalgal production. River loading of organic matter was an additional important factor in the northern reach. Tidal marsh export and point sources played a secondary role. Autochthonous production in San Francisco Bay appears to be less than the mean for temperate-zone estuaries, primarily because turbidity limits microalgal production and the development of seagrass beds. Exchange between the Bay and Pacific Ocean plays an unknown but potentially important role in the organic carbon balance. Interannual variability in the organic carbon supply was assessed for Suisun Bay, a northern reach subembayment that provides habitat for important fish species (delta smelt Hypomesus transpacificus and larval striped bass Morone saxatilus). The total supply fluctuated by an order of magnitude; depending on the year, either autochthonous sources (phytoplankton production) or allochthonous sources (riverine loading) could be dominant. The primary cause of the year-to-year change was variability of freshwater inflows from the Sacramento and San Joaquin rivers, and its magnitude was much larger than long-term changes arising from marsh destruction and point source decreases. Although interannual variability of the total organic carbon supply could not be assessed for the southern reach, year-to-year changes in phytoplankton production were much smaller than in Suisun Bay, reflecting a relative lack of river influence.

  10. New Potential Sources for Black Onaping Carbon

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Becker, L.; Schultz, P. H.; Wolbach, W. S.

    1997-01-01

    One intriguing and important issue of the Sudbury Structure concerns the source of the relatively large amount of C in the Onaping Formation Black member. This dilemma was recently addressed, and the conclusion was reached that an impactor could not have delivered all of the requisite C. Becker et al. have suggested that much of the C came from the impactor and reported the presence of interstellar He "caged" inside some fullerenes that may have survived the impact. So, conceivably, the C inventory in the Sudbury Structure comes from both target and impactor materials, although the known target rocks have little C. We discuss here the possibility of two terrestrial sources for at least some of the C: (1) impact evaporation/dissociation of C from carbonate target rocks and (2) the presence of heretofore-unrecognized C-rich (up to 26 wt%) siliceous "shale," fragments, which are found in the upper, reworked Black member. Experimental: Hypervelocity impact of a 0.635-diameter Al projectile into dolomite at 5.03 km/s (performed at the Ames Research Center vertical gun range) produced a thin, black layer (= 0.05 mm thick) that partially lined the crater and coated impactor remnants. Scanning electronic microscope (SEM) imagery shows this layer to be spongelike on a submicron scale and Auger spectroscopic analyses yield: 33% C, 22% Mg, 19% 0, and 9% Al (from the projectile). Elemental mapping shows that all of the available 0 is combined with Ca and Mg, Al is not oxidized, and C is in elemental form. Dissociation efficiency of C from CO2 is estimated to be <10% of crater volume. Raman spectroscopy indicates that the C is highly disorganized graphite. Another impact experiment [4] also produced highly disordered graphite from a limestone target (reducing collector), in addition to small amounts of diamond/lonsdaleite/chaoite (oxidizing collector). These experiments confirm the reduction of C from carbonates in impact vapor plumes. Observational: SEM observations and

  11. CO2 mitigation potential of mineral carbonation with industrial alkalinity sources in the United States.

    PubMed

    Kirchofer, Abby; Becker, Austin; Brandt, Adam; Wilcox, Jennifer

    2013-07-02

    The availability of industrial alkalinity sources is investigated to determine their potential for the simultaneous capture and sequestration of CO2 from point-source emissions in the United States. Industrial alkalinity sources investigated include fly ash, cement kiln dust, and iron and steel slag. Their feasibility for mineral carbonation is determined by their relative abundance for CO2 reactivity and their proximity to point-source CO2 emissions. In addition, the available aggregate markets are investigated as possible sinks for mineral carbonation products. We show that in the U.S., industrial alkaline byproducts have the potential to mitigate approximately 7.6 Mt CO2/yr, of which 7.0 Mt CO2/yr are CO2 captured through mineral carbonation and 0.6 Mt CO2/yr are CO2 emissions avoided through reuse as synthetic aggregate (replacing sand and gravel). The emission reductions represent a small share (i.e., 0.1%) of total U.S. CO2 emissions; however, industrial byproducts may represent comparatively low-cost methods for the advancement of mineral carbonation technologies, which may be extended to more abundant yet expensive natural alkalinity sources.

  12. [Harvest of the carbon source in wastewater by the adsorption and desorption of activated sludge].

    PubMed

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang; Mei, Yi-Jun

    2011-04-01

    The carbon source in municipal wastewater was adsorbed by activated sludge and then harvested through the hydrolysis of activated sludge. Results indicated that activated sludge had high absorbing ability towards organic carbon and phosphorus under continuous operation mode, and the average COD and TP absorption rate reached as high as 63% and 76%, respectively. Moreover, about 50% of the soluble carbon source was outside of the sludge cell and could be released under mild hydrolysis condition. Whereas the absorbed amount of nitrogen was relatively low, and the removal rate of ammonia was only 13% . Furthermore, the releases of organic carbon, nitrogen and phosphorus from the sludge absorbing pollutants in the wastewater were studied. By comparing different hydrolysis conditions of normal (pH 7.5, 20 degrees C), heating (pH 7.5, 60 degrees C) and the alkaline heating (pH 11, 60 degrees C), the last one presented the optimum hydrolysis efficiency. Under which, the release rate of COD could reach 320 mg/g after 24 hours, whereas nitrogen and phosphorus just obtained low release rates of 18 mg/g and 2 mg/g, respectively. Results indicate that the carbon source in wastewater could be harvested by the adsorption and desorption of activated sludge, and the concentrations of nitrogen and phosphorus are low and would not influence the reuse of the harvested carbon source.

  13. Characterization of Arctic elemental carbon in Barrow, AK using radiocarbon source apportionment

    NASA Astrophysics Data System (ADS)

    Barrett, T. E.; Usenko, S.; Robinson, E. M.; Sheesley, R. J.

    2013-12-01

    Currently, the Arctic is one of the fastest warming regions on earth with surface temperatures increasing at a rate nearly double the global mean over recent decades. Despite the fact that atmospheric concentrations of elemental carbon (EC) are lower in the Arctic than in lower latitudes, deposition of EC on snow and ice may exacerbate regional warming by simultaneously decreasing albedo and increasing melt rates. Due to the intensifying Arctic oil exploration in areas such as the Beaufort and Chukchi seas, the impact of new emission sources such as heavy fuel and heavy diesel combustion on regional carbon needs to be assessed. The first step in developing mitigation strategies for reducing current and future EC emissions in the Arctic is to determine emission source contributions. This study aims to determine the relative contributions of fossil fuel and biomass combustion and to identify major source regions of EC to the Arctic. Radiocarbon analysis of both total organic carbon (TOC) and EC combined with organic tracer and back trajectory analysis has been applied to a set of wintertime coarse particulate matter (PM10) samples from Barrow, AK. Preliminary apportionment for January 2013 indicates roughly half of TOC is from biogenic/biomass burning emissions and one third of EC is due to biomass burning emissions. The radiocarbon results will be combined with organic tracer analysis (polycyclic aromatic hydrocarbons, petroleum biomarkers and normal alkanes), increasing the specificity of the relative contribution of both the fossil and modern (biogenic/biomass burning) carbon emission sources. This research represents the first reported radiocarbon values for Arctic EC, providing highly conclusive source apportionment prior to the influence of increased drilling operations and ship traffic in the Beaufort and Chukchi seas.

  14. Constraints on primary and secondary particulate carbon sources using chemical tracer and 14C methods during CalNex-Bakersfield

    NASA Astrophysics Data System (ADS)

    Sheesley, Rebecca J.; Nallathamby, Punith Dev; Surratt, Jason D.; Lee, Anita; Lewandowski, Michael; Offenberg, John H.; Jaoui, Mohammed; Kleindienst, Tadeusz E.

    2017-10-01

    The present study investigates primary and secondary sources of organic carbon for Bakersfield, CA, USA as part of the 2010 CalNex study. The method used here involves integrated sampling that is designed to allow for detailed and specific chemical analysis of particulate matter (PM) in the Bakersfield airshed. To achieve this objective, filter samples were taken during thirty-four 23-hr periods between 19 May and 26 June 2010 and analyzed for organic tracers by gas chromatography - mass spectrometry (GC-MS). Contributions to organic carbon (OC) were determined by two organic tracer-based techniques: primary OC by chemical mass balance and secondary OC by a mass fraction method. Radiocarbon (14C) measurements of the total organic carbon were also made to determine the split between the modern and fossil carbon and thereby constrain unknown sources of OC not accounted for by either tracer-based attribution technique. From the analysis, OC contributions from four primary sources and four secondary sources were determined, which comprised three sources of modern carbon and five sources of fossil carbon. The major primary sources of OC were from vegetative detritus (9.8%), diesel (2.3%), gasoline (<1.0%), and lubricating oil impacted motor vehicle exhaust (30%); measured secondary sources resulted from isoprene (1.5%), α-pinene (<1.0%), toluene (<1.0%), and naphthalene (<1.0%, as an upper limit) contributions. The average observed organic carbon (OC) was 6.42 ± 2.33 μgC m-3. The 14C derived apportionment indicated that modern and fossil components were nearly equivalent on average; however, the fossil contribution ranged from 32 to 66% over the five week campaign. With the fossil primary and secondary sources aggregated, only 25% of the fossil organic carbon could not be attributed. Whereas, nearly 80% of the modern carbon could not be attributed to primary and secondary sources accessible to this analysis, which included tracers of biomass burning, vegetative

  15. Constraints on primary and secondary particulate carbon sources using chemical tracer and 14C methods during CalNex-Bakersfield

    PubMed Central

    Sheesley, Rebecca J.; Nallathamby, Punith Dev; Surratt, Jason D.; Lee, Anita; Lewandowski, Michael; Offenberg, John H.; Jaoui, Mohammed; Kleindienst, Tadeusz E.

    2018-01-01

    The present study investigates primary and secondary sources of organic carbon for Bakersfield, CA, USA as part of the 2010 CalNex study. The method used here involves integrated sampling that is designed to allow for detailed and specific chemical analysis of particulate matter (PM) in the Bakersfield airshed. To achieve this objective, filter samples were taken during thirty-four 23-hr periods between 19 May and 26 June 2010 and analyzed for organic tracers by gas chromatography – mass spectrometry (GC-MS). Contributions to organic carbon (OC) were determined by two organic tracer-based techniques: primary OC by chemical mass balance and secondary OC by a mass fraction method. Radiocarbon (14C) measurements of the total organic carbon were also made to determine the split between the modern and fossil carbon and thereby constrain unknown sources of OC not accounted for by either tracer-based attribution technique. From the analysis, OC contributions from four primary sources and four secondary sources were determined, which comprised three sources of modern carbon and five sources of fossil carbon. The major primary sources of OC were from vegetative detritus (9.8%), diesel (2.3%), gasoline (<1.0%), and lubricating oil impacted motor vehicle exhaust (30%); measured secondary sources resulted from isoprene (1.5%), α-pinene (<1.0%), toluene (<1.0%), and naphthalene (<1.0%, as an upper limit) contributions. The average observed organic carbon (OC) was 6.42 ± 2.33 μgC m−3. The 14C derived apportionment indicated that modern and fossil components were nearly equivalent on average; however, the fossil contribution ranged from 32-66% over the five week campaign. With the fossil primary and secondary sources aggregated, only 25% of the fossil organic carbon could not be attributed. Whereas, nearly 80% of the modern carbon could not be attributed to primary and secondary sources accessible to this analysis, which included tracers of biomass burning, vegetative

  16. Carbon Sources Influence Fumonisin Production in Fusarium proliferatum.

    PubMed

    Li, Taotao; Gong, Liang; Jiang, Guoxiang; Wang, Yong; Gupta, Vijai Kumar; Qu, Hongxia; Duan, Xuewu; Wang, Jiasheng; Jiang, Yueming

    2017-10-01

    Fusarium proliferatum is a worldwide fungal pathogen that produces fumonisins which are harmful to animal and human health. However, environmental factors affecting fumonisin biosynthesis in F. proliferatum are not well understood. Based on our preliminary results, in this study, we investigated the effect of sucrose or mannose as the sole carbon source on fumonisin B (FB) production by F. proliferatum and studied their underlying mechanisms via proteome and gene expression analysis. Our results showed that mannose, used as the sole carbon source, significantly blocked fumonisin B 1 and B 2 production by F. proliferatum as compared with the use of sucrose. Fifty-seven differentially expressed proteins were successfully identified. The downregulated proteins in the mannose-cultured strain were mainly involved in carbon metabolism, response to stress, and methionine metabolism, as compared with the sucrose-cultured strain. Moreover, quantitative real-time PCR analysis indicated that expression of several key genes involved in FB biosynthetic pathway and in transcription regulation were significantly downregulated in the mannose-cultured F. proliferatum, whereas expression of histone deacetylation-related genes were significantly upregulated. These results suggested that the blockage of FB biosynthesis by mannose was associated with the decreases in conversion of acetyl-CoA to polyketide, methionine biosynthesis, and NADPH regeneration. More importantly, milder oxidative stress, downregulated expression of genes involved in biosynthetic pathway and transcription regulation, and upregulated expression of genes with histone deacetylation possibly were responsible for the blockage of FB biosynthesis in F. proliferatum. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Biotechnological Production of Docosahexaenoic Acid Using Aurantiochytrium limacinum: Carbon Sources Comparison And Growth Characterization

    PubMed Central

    Abad, Sergi; Turon, Xavier

    2015-01-01

    Aurantiochytrium limacinum, a marine heterotrophic protist/microalga has shown interesting yields of docosahexaenoic acid (DHA) when cultured with different carbon sources: glucose, pure and crude glycerol. A complete study in a lab-scale fermenter allowed for the characterization and comparison of the growth kinetic parameters corresponding to each carbon source. Artificial Marine Medium (AMM) with glucose, pure and crude glycerol offered similar biomass yields. The net growth rates (0.10–0.12 h−1), biomass (0.7–0.8 g cells/g Substrate) and product (0.14–0.15 g DHA/g cells) yields, as well as DHA productivity were similar using the three carbon sources. Viable potential applications to valorize crude glycerol are envisioned to avoid an environmental problem due to the excess of byproduct. PMID:26690180

  18. Sustainable development of tyre char-based activated carbons with different textural properties for value-added applications.

    PubMed

    Hadi, Pejman; Yeung, Kit Ying; Guo, Jiaxin; Wang, Huaimin; McKay, Gordon

    2016-04-01

    This paper aims at the sustainable development of activated carbons for value-added applications from the waste tyre pyrolysis product, tyre char, in order to make pyrolysis economically favorable. Two activation process parameters, activation temperature (900, 925, 950 and 975 °C) and residence time (2, 4 and 6 h) with steam as the activating agent have been investigated. The textural properties of the produced tyre char activated carbons have been characterized by nitrogen adsorption-desorption experiments at -196 °C. The activation process has resulted in the production of mesoporous activated carbons confirmed by the existence of hysteresis loops in the N2 adsorption-desorption curves and the pore size distribution curves obtained from BJH method. The BET surface area, total pore volume and mesopore volume of the activated carbons from tyre char have been improved to 732 m(2)/g, 0.91 cm(3)/g and 0.89 cm(3)/g, respectively. It has been observed that the BET surface area, mesopore volume and total pore volume increased linearly with burnoff during activation in the range of experimental parameters studied. Thus, yield-normalized surface area, defined as the surface area of the activated carbon per gram of the precursor, has been introduced to optimize the activation conditions. Accordingly, the optimized activation conditions have been demonstrated as an activation temperature of 975 °C and an activation time of 4 h. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Sources and characteristics of terrestrial carbon in Holocene-scale sediments of the East Siberian Sea

    NASA Astrophysics Data System (ADS)

    Keskitalo, Kirsi; Tesi, Tommaso; Bröder, Lisa; Andersson, August; Pearce, Christof; Sköld, Martin; Semiletov, Igor P.; Dudarev, Oleg V.; Gustafsson, Örjan

    2017-09-01

    Thawing of permafrost carbon (PF-C) due to climate warming can remobilise considerable amounts of terrestrial carbon from its long-term storage to the marine environment. PF-C can be then be buried in sediments or remineralised to CO2 with implications for the carbon-climate feedback. Studying historical sediment records during past natural climate changes can help us to understand the response of permafrost to current climate warming. In this study, two sediment cores collected from the East Siberian Sea were used to study terrestrial organic carbon sources, composition and degradation during the past ˜ 9500 cal yrs BP. CuO-derived lignin and cutin products (i.e., compounds solely biosynthesised in terrestrial plants) combined with δ13C suggest that there was a higher input of terrestrial organic carbon to the East Siberian Sea between ˜ 9500 and 8200 cal yrs BP than in all later periods. This high input was likely caused by marine transgression and permafrost destabilisation in the early Holocene climatic optimum. Based on source apportionment modelling using dual-carbon isotope (Δ14C, δ13C) data, coastal erosion releasing old Pleistocene permafrost carbon was identified as a significant source of organic matter translocated to the East Siberian Sea during the Holocene.

  20. Biomass Burning Emissions of Black Carbon from African Sources

    NASA Astrophysics Data System (ADS)

    Aiken, A. C.; Leone, O.; Nitschke, K. L.; Dubey, M. K.; Carrico, C.; Springston, S. R.; Sedlacek, A. J., III; Watson, T. B.; Kuang, C.; Uin, J.; McMeeking, G. R.; DeMott, P. J.; Kreidenweis, S. M.; Robinson, A. L.; Yokelson, R. J.; Zuidema, P.

    2016-12-01

    Biomass burning (BB) emissions are a large source of carbon to the atmosphere via particles and gas phase species. Carbonaceous aerosols are emitted along with gas-phase carbon monoxide (CO) and carbon dioxide (CO2) that can be used to determine particulate emission ratios and modified combustion efficiencies. Black carbon (BC) aerosols are potentially underestimated in global models and are considered to be one of the most important global warming factors behind CO2. Half or more BC in the atmosphere is from BB, estimated at 6-9 Tg/yr (IPCC, 5AR) and contributing up to 0.6 W/m2 atmospheric warming (Bond et al., 2013). With a potential rise in drought and extreme events in the future due to climate change, these numbers are expected to increase. For this reason, we focus on BC and organic carbon aerosol species that are emitted from forest fires and compare their emission ratios, physical and optical properties to those from controlled laboratory studies of single-source BB fuels to understand BB carbonaceous aerosols in the atmosphere. We investigate BC in concentrated BB plumes as sampled from the new U.S. DOE ARM Program campaign, Layered Atlantic Smoke Interactions with Clouds (LASIC). The ARM Aerosol Mobile Facility 1 (AMF1) and Mobile Aerosol Observing System (MAOS) are currently located on Ascension Island in the South Atlantic Ocean, located midway between Angola and Brazil. The location was chosen for sampling maximum aerosol outflow from Africa. The far-field aged BC from LASIC is compared to BC from indoor generation from single-source fuels, e.g. African grass, sampled during Fire Lab At Missoula Experiments IV (FLAME-IV). BC is measured with a single-particle soot photometer (SP2) alongside numerous supporting instrumentation, e.g. particle counters, CO and CO2 detectors, aerosol scattering and absorption measurements, etc. FLAME-IV includes both direct emissions and well-mixed aerosol samples that have undergone dilution, cooling, and condensation. BC

  1. Metabolic analyses of the improved ε-poly-L-lysine productivity using a glucose-glycerol mixed carbon source in chemostat cultures.

    PubMed

    Zhang, Jian-Hua; Zeng, Xin; Chen, Xu-Sheng; Mao, Zhong-Gui

    2018-04-21

    The glucose-glycerol mixed carbon source remarkably reduced the batch fermentation time of ε-poly-L-lysine (ε-PL) production, leading to higher productivity of both biomass and ε-PL, which was of great significance in industrial microbial fermentation. Our previous study confirmed the positive influence of fast cell growth on the ε-PL biosynthesis, while the direct influence of mixed carbon source on ε-PL production was still unknown. In this work, chemostat culture was employed to study the capacity of ε-PL biosynthesis in different carbon sources at a same dilution rate of 0.05 h -1 . The results indicated that the mixed carbon source could enhance the ε-PL productivity besides the rapid cell growth. Analysis of key enzymes demonstrated that the activities of phosphoenolpyruvate carboxylase, citrate synthase, aspartokinase and ε-PL synthetase were all increased in chemostat culture with the mixed carbon source. In addition, the carbon fluxes were also improved in the mixed carbon source in terms of tricarboxylic acid cycle, anaplerotic and diaminopimelate pathway. Moreover, the mixed carbon source also accelerated the energy metabolism, leading to higher levels of energy charge and NADH/NAD + ratio. The overall improvements of primary metabolism in chemostat culture with glucose-glycerol combination provided sufficient carbon skeletons and ATP for ε-PL biosynthesis. Therefore, the significantly higher ε-PL productivity in the mixed carbon source was a combined effect of both superior substrate group and rapid cell growth.

  2. The application of carbon-14 analyses to the source apportionment of atmospheric carbonaceous particulate matter: a review.

    PubMed

    Heal, Mathew R

    2014-01-01

    Organic carbon (OC) and elemental carbon (EC) together constitute a substantial proportion of airborne particulate matter (PM). Insight into the sources of this major contributor to PM is important for policies to mitigate the impact of PM on human health and climate change. In recent years measurement of the abundance of the radioisotope of carbon ((14)C) in samples of PM by accelerator mass spectrometry has been used to help quantify the relative contributions from sources of fossil carbon and contemporary carbon. This review provides an introduction to the different sources of carbon within PM and the role of (14)C measurements, a description of the preparation of PM samples and of the instrumentation used to quantify (14)C, and a summary of the results and source apportionment methods reported in published studies since 2004. All studies report a sizable fraction of the carbonaceous PM as of non-fossil origin. Even for PM collected in urban locations, the proportions of non-fossil carbon generally exceed 30%; typically the proportion in urban background locations is around 40-60% depending on the local influence of biomass burning. Where values have been measured directly, proportions of non-fossil carbon in EC are lower than in OC, reflecting the greater contribution of fossil-fuel combustion to EC and the generally small sources of contemporary EC. Detailed source apportionment studies point to important contributions from biogenic-derived secondary OC, consistent with other evidence of a ubiquitous presence of heavily oxidized background secondary OC. The review concludes with some comments on current issues and future prospects, including progress towards compound-class and individual-compound-specific (14)C analyses.

  3. Contribution of deep sourced carbon from hydrocarbon seeps to sedimentary organic carbon: Evidence from Δ14C and δ13C isotopes

    NASA Astrophysics Data System (ADS)

    Feng, D.; Peckmann, J.; Peng, Y.; Liang, Q.; Roberts, H. H.; Chen, D.

    2017-12-01

    Sulfate-driven anaerobic oxidation of methane (AOM) limits the release of methane from marine sediments and promotes the formation of carbonates close to the seafloor along continental margins. It has been established that hydrocarbon seeps are a source of dissolved inorganic and organic carbon to marine environments. However, questions remain about the contribution of deep sourced carbon from hydrocarbon seeps to the sedimentary organic carbon pool. For a number of hydrocarbon seeps from the South China Sea and the Gulf of Mexico, the portion of modern carbon was determined based on natural radiocarbon abundances (Δ14C) and stable carbon isotope (δ13Corganic carbon) compositions of the non-carbonate fractions extracted from authigenic carbonates. Samples from both areas show a mixing trend between ideal planktonic organic carbon (δ13C = -22‰ VPDB and 90% modern carbon) and the ambient methane. The δ13Corganic carbon values of non-carbonate fractions from three ancient seep deposits (northern Italy, Miocene; western Washington State, USA, Eocene to Oligocene) confirm that the proxy can be used to constrain the record of sulfate-driven AOM through most of Earth history by measuring the δ13C values of organic carbon. This study reveals the potential of using δ13C values of organic carbon to discern seep and non-seep environments. This new approach is particularly promising when authigenic carbonate is not present in ancient sedimentary environments. Acknowledgments: The authors thank BOEM and NOAA for their years' support of the deep-sea dives. Funding was provided by the NSF of China (Grants: 41422602 and 41373085).

  4. Constraining Sources of Subducted and Recycled Carbon Along the Sunda Arc

    NASA Astrophysics Data System (ADS)

    House, B. M.; Bebout, G. E.; Hilton, D. R.; Rodriguez, B.; Plank, T. A.

    2014-12-01

    From sediment subduction rates and C contents at ODP/DSDP sites 765 and 211, we estimate the rate of C subduction along ~2000 km of the East Sunda Arc to be ~0.4 Tg C yr-1, representing a significant source of subducted volatiles [1]. However volatile recycling efficiency and the provenance of recycled volatiles in this region remain poorly understood. With new δ13C measurements of both carbonate and organic carbon from sites 211 and 765, we present the most detailed study yet of the spatial variability of subducted C and recycled CO2 provenance along the strike of the arc. Furthermore we demonstrate the importance of oceanic crustal carbonate as a C source in a subduction zone that is otherwise carbonate starved. Carbonate content throughout the sediment column decreases dramatically between site 765, approximately 250 km from the Australian continental margin, and site 211, approximately 300 km southwest of the trench and outboard of the Sunda Strait between Sumatra and Java. Continental and shelf carbonate input from the Australian margin dominates shallow deposits at site 765, but underlying pelagic sediments are thought to contribute the majority of inorganic C to the arc. The paucity of carbonate in sediments at site 211 suggests that along this segment essentially all carbonate subducted is derived from altered ocean crust, presenting an opportunity to study the effects of crustal carbonate input. While previous C provenance studies relied on globally-averaged δ13C values for organic and inorganic C in subducted sediments, we present new estimates based on measured δ13CVPDB of carbonate (average of ~2‰ in subducted sediments) and organic carbon (-22.5 to -23‰ average) along with previously published efflux data [2]. These estimates suggest that the arc-averaged ratio of carbonate to organic C subducted along the East Sunda Arc is nearly identical to the inorganic to organic C ratio represented in volcanic and hydrothermal CO2 output, suggesting that

  5. Trends in intakes and sources of solid fats and added sugars among US children and adolescents: 1994-2010

    PubMed Central

    Slining, Meghan M.; Popkin, Barry M.

    2013-01-01

    Objective There are increasing global concerns about improving the dietary intakes of children and adolescents. In the United States (U.S.) the focus is on reducing energy from foods and beverages that provide empty calories from solid fats and added sugars (SoFAS). We examine trends in intakes and sources of solid fat and added sugars among U.S. 2- to 18- year olds from 1994-2010. Methods Data from five nationally representative surveys, the Continuing Survey of Food Intakes by Individuals Surveys (1994-1996) and the What We Eat In America, National Health and Nutrition Examination Surveys (2003-2004, 2005-2006, 2007-2008 and 2009-2010) were used to examine key food sources and energy from solid fats and added sugars. Sample sizes ranged from 2,594 to 8,259 per survey period, for a total of 17,268 observations across the five surveys. Food files were linked over time to create comparable food groups and nutrient values. Differences were examined by age, race/ethnicity and family income. Results Daily intake of energy from SoFAS among U.S. 2-18 year olds decreased from 1994-2010, with declines primarily detected in the recent time periods. Solid fats accounted for a greater proportion of total energy intake than did added sugars. Conclusions Although the consumption of solid fats and added sugars among children and adolescents in the United States decreased between 1994–1998 and 2009–2010, mean intakes continue to exceed recommended limits. PMID:23554397

  6. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae

    PubMed Central

    Paulo, Joao A.; O’Connell, Jeremy D.; Gaun, Aleksandr; Gygi, Steven P.

    2015-01-01

    The global proteomic alterations in the budding yeast Saccharomyces cerevisiae due to differences in carbon sources can be comprehensively examined using mass spectrometry–based multiplexing strategies. In this study, we investigate changes in the S. cerevisiae proteome resulting from cultures grown in minimal media using galactose, glucose, or raffinose as the carbon source. We used a tandem mass tag 9-plex strategy to determine alterations in relative protein abundance due to a particular carbon source, in triplicate, thereby permitting subsequent statistical analyses. We quantified more than 4700 proteins across all nine samples; 1003 proteins demonstrated statistically significant differences in abundance in at least one condition. The majority of altered proteins were classified as functioning in metabolic processes and as having cellular origins of plasma membrane and mitochondria. In contrast, proteins remaining relatively unchanged in abundance included those having nucleic acid–related processes, such as transcription and RNA processing. In addition, the comprehensiveness of the data set enabled the analysis of subsets of functionally related proteins, such as phosphatases, kinases, and transcription factors. As a resource, these data can be mined further in efforts to understand better the roles of carbon source fermentation in yeast metabolic pathways and the alterations observed therein, potentially for industrial applications, such as biofuel feedstock production. PMID:26399295

  7. SOURCES AND TRANSFORMATIONS OF NITROGEN, CARBON, AND PHOSPHORUS IN THE POTOMAC RIVER ESTUARY

    NASA Astrophysics Data System (ADS)

    Pennino, M. J.; Kaushal, S.

    2009-12-01

    Global transport of nitrogen (N), carbon (C), and phosphorus (P) in river ecosystems has been dramatically altered due to urbanization. We examined the capacity of a major tributary of the Chesapeake Bay, the Potomac River, to transform carbon, nitrogen, and phosphorus inputs from the world’s largest advanced wastewater treatment facility (Washington D.C. Water and Sewer Authority). Surface water and effluent samples were collected along longitudinal transects of the Potomac River seasonally and compared to long-term interannual records of carbon, nitrogen, and phosphorus. Water samples from seasonal longitudinal transects were analyzed for dissolved organic and inorganic nitrogen and phosphorus, total organic carbon, and particulate carbon, nitrogen, and phosphorus. The source and quality of organic matter was characterized using fluorescence spectroscopy, excitation emission matrices (EEMs), and PARAFAC modeling. Sources of nitrate were tracked using stable isotopes of nitrogen and oxygen. Along the river network stoichiometric ratios of C, N, and P were determined across sites and related to changes in flow conditions. Land use data and historical water chemistry data were also compared to assess the relative importance of non-point sources from land-use change versus point-sources of carbon, nitrogen, and phosphorus. Preliminary data from EEMs suggested that more humic-like organic matter was important above the wastewater treatment plant, but more protein-like organic matter was present below the treatment plant. Levels of nitrate and ammonia showed increases within the vicinity of the wastewater treatment outfall, but decreased rapidly downstream, potentially indicating nutrient uptake and/or denitrification. Phosphate levels decreased gradually along the river with a small increase near the wastewater treatment plant and a larger increase and decrease further downstream near the high salinity zone. Total organic carbon levels show a small decrease

  8. Closed Timelike Curves in (2+1)-AdS Gravity

    NASA Astrophysics Data System (ADS)

    Valtancoli, P.

    We build the (2+1)-AdS gravity generalization of the Gott time machine using a first-order formalism for solving the scattering of point sources. The two-body dynamics is solved by two invariant masses, whose difference is simply related to the total angular momentum of the system. We show how to build a time machine when at least one of the two invariant masses is no more real but acquires an imaginary part.

  9. Estimating the seasonal carbon source-sink geography of a natural, steady-state terrestrial biosphere

    NASA Technical Reports Server (NTRS)

    Box, Elgene O.

    1988-01-01

    The estimation of the seasonal dynamics of biospheric-carbon sources and sinks to be used as an input to global atmospheric CO2 studies and models is discussed. An ecological biosphere model is given and the advantages of the model are examined. Monthly maps of estimated biospheric carbon source and sink regions and estimates of total carbon fluxes are presented for an equilibrium terrestrial biosphere. The results are compared with those from other models. It is suggested that, despite maximum variations of atmospheric CO2 in boreal latitudes, the enormous contributions of tropical wet-dry regions to global atmospheric CO2 seasonality can not be ignored.

  10. [Effects of carbon and nitrogen sources on 5-keto-gluconic acid production].

    PubMed

    Tan, Zhilei; Wang, Hongcui; Wei, Yuqiao; Li, Yanyan; Zhong, Cheng; Jia, Shiru

    2014-01-01

    Gluconobacter oxydans is known to oxidize glucose to gluconic acid (GA), and subsequently, to 2-keto-gluconic acid (2KGA) and 5-keto-gluconic acid (5KGA), while 5KGA can be converted to L-(+)-tartaric acid. In order to increase the production of 5KGA, Gluconobacter oxydans HGI-1 that converts GA to 5KGA exclusively was chosen in this study, and effects of carbon sources (lactose, maltose, sucrose, amylum and glucose) and nitrogen sources (yeast extract, fish meal, corn steep liquor, soybean meal and cotton-seed meal) on 5KGA production were investigated. Results of experiment in 500 mL shake-flask show that the highest yield of 5KGA (98.20 g/L) was obtained using 100 g/L glucose as carbon source. 5KGA reached 100.20 g/L, 109.10 g/L, 99.83 g/L with yeast extract, fish meal and corn steep liquor as nitrogen source respectively, among which the optimal nitrogen source was fish meal. The yield of 5KGA by corn steep liquor is slightly lower than that by yeast extract. For the economic reason, corn steep liquor was selected as nitrogen source and scaled up to 5 L stirred-tank fermentor, and the final concentration of 5KGA reached 93.80 g/L, with its maximum volumetric productivity of 3.48 g/(L x h) and average volumetric productivity of 1.56 g/(L x h). The result obtained in this study showed that carbon and nitrogen sourses for large-scale production of 5KGA by Gluconobacter oxydans HGI-1 were glucose and corn steep liquor, respectively, and the available glucose almost completely (85.93%) into 5KGA.

  11. Tropical forests are a net carbon source based on aboveground measurements of gain and loss

    NASA Astrophysics Data System (ADS)

    Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R. A.

    2017-10-01

    The carbon balance of tropical ecosystems remains uncertain, with top-down atmospheric studies suggesting an overall sink and bottom-up ecological approaches indicating a modest net source. Here we use 12 years (2003 to 2014) of MODIS pantropical satellite data to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world’s tropical forests are a net carbon source of 425.2 ± 92.0 teragrams of carbon per year (Tg C year-1). This net release of carbon consists of losses of 861.7 ± 80.2 Tg C year-1 and gains of 436.5 ± 31.0 Tg C year-1. Gains result from forest growth; losses result from deforestation and from reductions in carbon density within standing forests (degradation or disturbance), with the latter accounting for 68.9% of overall losses.

  12. Carbon source/sink function of a subtropical, eutrophic lake determined from an overall mass balance and a gas exchange and carbon burial balance.

    PubMed

    Yang, Hong; Xing, Yangping; Xie, Ping; Ni, Leyi; Rong, Kewen

    2008-02-01

    Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO(2) and CH(4) causing a net release of CO(2) and CH(4) to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic lake, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 t, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO(2) and CH(4)) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange.

  13. HOW GAS-DYNAMIC FLARE MODELS POWERED BY PETSCHEK RECONNECTION DIFFER FROM THOSE WITH AD HOC ENERGY SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longcope, D. W.; Klimchuk, J. A.

    Aspects of solar flare dynamics, such as chromospheric evaporation and flare light curves, have long been studied using one-dimensional models of plasma dynamics inside a static flare loop, subjected to some energy input. While extremely successful at explaining the observed characteristics of flares, all such models so far have specified energy input ad hoc, rather than deriving it self-consistently. There is broad consensus that flares are powered by magnetic energy released through reconnection. Recent work has generalized Petschek’s basic reconnection scenario, topological change followed by field line retraction and shock heating, to permit its inclusion in a one-dimensional flare loop model. Heremore » we compare the gas dynamics driven by retraction and shocking to those from more conventional static loop models energized by ad hoc source terms. We find significant differences during the first minute, when retraction leads to larger kinetic energies and produces higher densities at the loop top, while ad hoc heating tends to rarify the loop top. The loop-top density concentration is related to the slow magnetosonic shock, characteristic of Petschek’s model, but persists beyond the retraction phase occurring in the outflow jet. This offers an explanation for observed loop-top sources of X-ray and EUV emission, with advantages over that provided by ad hoc heating scenarios. The cooling phases of the two models are, however, notably similar to one another, suggesting that observations at that stage will yield little information on the nature of energy input.« less

  14. Differences in carbon source utilisation by orchid mycorrhizal fungi from common and endangered species of Caladenia (Orchidaceae).

    PubMed

    Mehra, S; Morrison, P D; Coates, F; Lawrie, A C

    2017-02-01

    Terrestrial orchids depend on orchid mycorrhizal fungi (OMF) as symbionts for their survival, growth and nutrition. The ability of OMF from endangered orchid species to compete for available resources with OMF from common species may affect the distribution, abundance and therefore conservation status of their orchid hosts. Eight symbiotically effective OMF from endangered and more common Caladenia species were tested for their ability to utilise complex insoluble and simple soluble carbon sources produced during litter degradation by growth with different carbon sources in liquid medium to measure the degree of OMF variation with host conservation status or taxonomy. On simple carbon sources, fungal growth was assessed by biomass. On insoluble substrates, ergosterol content was assessed using ultra-performance liquid chromatography (UPLC). The OMF grew on all natural materials and complex carbon sources, but produced the greatest biomass on xylan and starch and the least on bark and chitin. On simple carbon sources, the greatest OMF biomass was measured on most hexoses and disaccharides and the least on galactose and arabinose. Only some OMF used sucrose, the most common sugar in green plants, with possible implications for symbiosis. OMF from common orchids produced more ergosterol and biomass than those from endangered orchids in the Dilatata and Reticulata groups but not in the Patersonii and Finger orchids. This suggests that differences in carbon source utilisation may contribute to differences in the distribution of some orchids, if these differences are retained on site.

  15. Low-cost production of 6G-fructofuranosidase with high value-added astaxanthin by Xanthophyllomyces dendrorhous.

    PubMed

    Ning, Yawei; Li, Qiang; Chen, Feng; Yang, Na; Jin, Zhengyu; Xu, Xueming

    2012-01-01

    The effects of medium composition and culture conditions on the production of (6)G-fructofuranosidase with value-added astaxanthin were investigated to reduce the capital cost of neo-fructooligosaccharides (neo-FOS) production by Xanthophyllomyces dendrorhous. The sucrose and corn steep liquor (CSL) were found to be the optimal carbon source and nitrogen source, respectively. CSL and initial pH were selected as the critical factors using Plackett-Burman design. Maximum (6)G-fructofuranosidase 242.57 U/mL with 5.23 mg/L value-added astaxanthin was obtained at CSL 52.5 mL/L and pH 7.89 by central composite design. Neo-FOS yield could reach 238.12 g/L under the optimized medium conditions. Cost analysis suggested 66.3% of substrate cost was reduced compared with that before optimization. These results demonstrated that the optimized medium and culture conditions could significantly enhance the production of (6)G-fructofuranosidase with value-added astaxanthin and remarkably decrease the substrate cost, which opened up possibilities to produce neo-FOS industrially. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen

    PubMed Central

    Ene, Iuliana V; Adya, Ashok K; Wehmeier, Silvia; Brand, Alexandra C; MacCallum, Donna M; Gow, Neil A R; Brown, Alistair J P

    2012-01-01

    The survival of all microbes depends upon their ability to respond to environmental challenges. To establish infection, pathogens such as Candida albicans must mount effective stress responses to counter host defences while adapting to dynamic changes in nutrient status within host niches. Studies of C. albicans stress adaptation have generally been performed on glucose-grown cells, leaving the effects of alternative carbon sources upon stress resistance largely unexplored. We have shown that growth on alternative carbon sources, such as lactate, strongly influence the resistance of C. albicans to antifungal drugs, osmotic and cell wall stresses. Similar trends were observed in clinical isolates and other pathogenic Candida species. The increased stress resistance of C. albicans was not dependent on key stress (Hog1) and cell integrity (Mkc1) signalling pathways. Instead, increased stress resistance was promoted by major changes in the architecture and biophysical properties of the cell wall. Glucose- and lactate-grown cells displayed significant differences in cell wall mass, ultrastructure, elasticity and adhesion. Changes in carbon source also altered the virulence of C. albicans in models of systemic candidiasis and vaginitis, confirming the importance of alternative carbon sources within host niches during C. albicans infections. PMID:22587014

  17. Recent Increase in Black Carbon Concentrations from a Mt. Everest Ice Core Spanning 1860-2000 AD

    NASA Astrophysics Data System (ADS)

    Kaspari, S.; Schwikowski, M.; Gysel, M.; Mayewski, P. A.; Kang, S.; Hou, S.

    2009-12-01

    Black carbon produced by the incomplete combustion of biomass, coal and diesel fuels can significantly contribute to climate change by altering the Earth’s radiative balance. Black carbon in the atmosphere absorbs light and causes atmospheric heating, whereas black carbon deposited on snow and ice can significantly reduce the surface albedo, resulting in rapid melting of snow and ice. Historical records of black carbon concentration and distribution in the atmosphere are needed to determine the role of black carbon in climate change, however most studies have relied on estimated inventories based on wood and/or fossil fuel consumption data. Reconstructing black carbon concentrations in Asia is particularly important because this region has some of the largest black carbon sources globally, which negatively impact climate, water resources, agriculture and human health. We analyzed a Mt. Everest ice core for black carbon using a single particle soot photometer (SP2). The high-resolution black carbon data demonstrates strong seasonality, with peak concentrations during the winter-spring, and low concentrations during the summer monsoon season. Black carbon concentrations from 1975-2000 relative to 1860-1975 have increased approximately threefold, and the timing of this increase is consistent with black carbon emission inventory data from South Asia. It is notable that there is no increasing trend in iron (used as a proxy for dust) since 1860. This is significant because it suggests that if the recent retreat of glaciers in the region is due, at least in part, to the effect of impurities on snow albedo, the reduced albedo is due to changes in black carbon emissions, not dust.

  18. Source contributions to black carbon mass fractions in aerosol particles over the northwestern Pacific

    NASA Astrophysics Data System (ADS)

    Koga, Seizi; Maeda, Takahisa; Kaneyasu, Naoki

    Aerosol particle number size distributions above 0.3 μm in diameter and black carbon mass concentrations in aerosols were observed on Chichi-jima of the Ogasawara Islands in the northwestern Pacific from January 2000 to December 2002. Chichi-jima is suitable to observe polluted air masses from East Asia in winter and clean air masses over the western North Pacific in summer. In winter, aerosols over Chichi-jima were strongly affected by anthropogenic emissions in East Asia. The form of energy consumption in East Asia varies in various regions. Hence, each source region is expected to be characterized by an individual black carbon mass fraction. A three-dimensional Eulerian transport model was used to estimate contribution rates to air pollutants from each source region in East Asia. Because the Miyake-jima eruption began at the end of June 2000, the influence of smokes from Miyake-jima was also considered in the model calculation. The results of model calculations represent what must be noticed about smokes from volcanoes including Miyake-jima to interpret temporal variations of sulfur compounds over the northwestern Pacific. To evaluate black carbon mass fractions in anthropogenic aerosols as a function of source region, the relationships between the volume concentration of aerosol particles and the black carbon mass concentration in the winter were classified under each source region in East Asia. Consequently, the black carbon mass fractions in aerosols from China, Japan and the Korean Peninsula, and other regions were estimated to be 9-13%, 5-7%, and 4-5%, respectively.

  19. Experimental Evidence that Abrasion of Carbonate Sand is a Significant Source of Carbonate Mud

    NASA Astrophysics Data System (ADS)

    Trower, L.; Kivrak, L.; Lamb, M. P.; Fischer, W. W.

    2017-12-01

    aragonite needles 1-3 µm in length identical to those described in carbonate mud from a range of modern environments. Our results suggest that abrasion during bed load and suspended load transport of carbonate sand, even over small areas, is likely a significant potential source of carbonate mud in both modern and ancient carbonate environments.

  20. The Effects of Different External Carbon Sources on Nitrous Oxide Emissions during Denitrification in Biological Nutrient Removal Processes

    NASA Astrophysics Data System (ADS)

    Hu, Xiang; Zhang, Jing; Hou, Hongxun

    2018-01-01

    The aim of this study was to investigate the effects of two different external carbon sources (acetate and ethanol) on the nitrous oxide (N2O) emissions during denitrification in biological nutrient removal processes. Results showed that external carbon source significantly influenced N2O emissions during the denitrification process. When acetate served as the external carbon source, 0.49 mg N/L and 0.85 mg N/L of N2O was produced during the denitrificaiton processes in anoxic and anaerobic/anoxic experiments, giving a ratio of N2O-N production to TN removal of 2.37% and 4.96%, respectively. Compared with acetate, the amount of N2O production is negligible when ethanol used as external carbon addition. This suggested that ethanol is a potential alternative external carbon source for acetate from the point of view of N2O emissions.

  1. Tracing carbonaceous sources by using particulate carbon and sulfate in precipitation in Calgary, Alberta Canada

    NASA Astrophysics Data System (ADS)

    Ge, C.; Stenhouse, K. J.; Du, K.; Xing, Z.; Norman, A. L.

    2016-12-01

    Carbonaceous matter is often the dominant contributor to Particulate Matter (PM) which has a significant influence on climate, air quality and human health. The measurement of particulate carbon in rainfall in Calgary, Alberta has not been studied. This study reports the sulfate and the first concentrations of particulate carbon (PC) in rainfall in Calgary. It traces seasonal carbonaceous sources for the purpose of understanding sources for air quality control. Precipitation samples are collected twice a day at the University of Calgary. Thermo-optical methods are used to analyze concentrations of PC, including elemental carbon (EC), primary organic carbon (POC) and secondary organic carbon (SOC). Sulfate concentrations are measured using ion chromatography. In this study, sources from long range transport and local emissions are examined. We emphasized the apportionment of OC/EC in oil and gas emissions and diurnal variations in transportation emissions. Weekly average data for dry deposition were calculated to estimate the scavenging ratio of EC/POC/SOC and ions in precipitation. The results of this study will be presented with an emphasis on the relationship of carbonaceous material and sulfate. A range of apportionment methods have been applied to examine limitations in quantifying SOC in fall.

  2. AdS 2 holographic dictionary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cvetic, Mirjam; Papadimitriou, Ioannis

    Here, we construct the holographic dictionary for both running and constant dilaton solutions of the two dimensional Einstein-Maxwell-Dilaton theory that is obtained by a circle reduction from Einstein-Hilbert gravity with negative cosmological constant in three dimensions. This specific model ensures that the dual theory has a well defined ultraviolet completion in terms of a two dimensional conformal field theory, but our results apply qualitatively to a wider class of two dimensional dilaton gravity theories. For each type of solutions we perform holographic renormalization, compute the exact renormalized one-point functions in the presence of arbitrary sources, and derive the asymptotic symmetriesmore » and the corresponding conserved charges. In both cases we find that the scalar operator dual to the dilaton plays a crucial role in the description of the dynamics. Its source gives rise to a matter conformal anomaly for the running dilaton solutions, while its expectation value is the only non trivial observable for constant dilaton solutions. The role of this operator has been largely overlooked in the literature. We further show that the only non trivial conserved charges for running dilaton solutions are the mass and the electric charge, while for constant dilaton solutions only the electric charge is non zero. However, by uplifting the solutions to three dimensions we show that constant dilaton solutions can support non trivial extended symmetry algebras, including the one found by Compère, Song and Strominger, in agreement with the results of Castro and Song. Finally, we demonstrate that any solution of this specific dilaton gravity model can be uplifted to a family of asymptotically AdS 2 × S 2 or conformally AdS 2 × S 2 solutions of the STU model in four dimensions, including non extremal black holes. As a result, the four dimensional solutions obtained by uplifting the running dilaton solutions coincide with the so called ‘subtracted geometries

  3. AdS 2 holographic dictionary

    DOE PAGES

    Cvetic, Mirjam; Papadimitriou, Ioannis

    2016-12-02

    Here, we construct the holographic dictionary for both running and constant dilaton solutions of the two dimensional Einstein-Maxwell-Dilaton theory that is obtained by a circle reduction from Einstein-Hilbert gravity with negative cosmological constant in three dimensions. This specific model ensures that the dual theory has a well defined ultraviolet completion in terms of a two dimensional conformal field theory, but our results apply qualitatively to a wider class of two dimensional dilaton gravity theories. For each type of solutions we perform holographic renormalization, compute the exact renormalized one-point functions in the presence of arbitrary sources, and derive the asymptotic symmetriesmore » and the corresponding conserved charges. In both cases we find that the scalar operator dual to the dilaton plays a crucial role in the description of the dynamics. Its source gives rise to a matter conformal anomaly for the running dilaton solutions, while its expectation value is the only non trivial observable for constant dilaton solutions. The role of this operator has been largely overlooked in the literature. We further show that the only non trivial conserved charges for running dilaton solutions are the mass and the electric charge, while for constant dilaton solutions only the electric charge is non zero. However, by uplifting the solutions to three dimensions we show that constant dilaton solutions can support non trivial extended symmetry algebras, including the one found by Compère, Song and Strominger, in agreement with the results of Castro and Song. Finally, we demonstrate that any solution of this specific dilaton gravity model can be uplifted to a family of asymptotically AdS 2 × S 2 or conformally AdS 2 × S 2 solutions of the STU model in four dimensions, including non extremal black holes. As a result, the four dimensional solutions obtained by uplifting the running dilaton solutions coincide with the so called ‘subtracted geometries

  4. DISCOVERY OF THE SECOND WARM CARBON-CHAIN-CHEMISTRY SOURCE, IRAS15398 - 3359 IN LUPUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Nami; Yamamoto, Satoshi; Sakai, Takeshi

    2009-05-20

    We have conducted a search for carbon-chain molecules toward 16 protostars with the Mopra 22 m and Nobeyama 45 m telescopes, and have detected high excitation lines from several species, such as C{sub 4}H (N = 9-8), C{sub 4}H{sub 2}(J = 10{sub 0,10}-9{sub 0,9}), CH{sub 3}CCH(J = 5-4, K = 2), and HC{sub 5}N(J = 32-31), toward the low-mass protostar, IRAS15398 - 3359 in Lupus. The C{sub 4}H line is as bright as 2.4 K measured with the Nobeyama 45 m telescope. The kinetic temperature is derived to be 12.6 {+-} 1.5 K from the K = 1 and Kmore » = 2 lines of CH{sub 3}CCH. These results indicate that the carbon-chain molecules exist in a region of warm and dense gas near the protostar. The observed features are similar to those found toward IRAS04368+2557 in L1527, which shows warm carbon-chain chemistry (WCCC). In WCCC, carbon-chain molecules are produced efficiently by the evaporation of CH{sub 4} from the grain mantles in a lukewarm region near the protostar. Our data clearly indicate that WCCC is no longer specific to L1527, but occurs in IRAS15398 - 3359. In addition, we draw attention to a remarkable contrast between WCCC and hot corino chemistry in low-mass star-forming regions. Carbon-chain molecules are deficient in hot corino sources like NGC1333 IRAS4B, whereas complex organic molecules seem to be less abundant in the WCCC sources. A possible origin for such source-to-source chemical variations is suggested to arise from the timescale of the starless-core phase in each source. If this is the case, the chemical composition provides an important clue to explore the variation of star formation processes between sources and/or molecular clouds.« less

  5. Utilisation of Carbon Sources by Pythium, Phytophthora and Fusarium Species as Determined by Biolog® Microplate Assay

    PubMed Central

    Khalil, Sammar; Alsanius, Beatrix W

    2009-01-01

    This study examined the metabolic activity of pure cultures of five root pathogens commonly found in closed hydroponic cultivation systems (Phytophthora cryptogea (PC), Phytophthora capsici (PCP), Pythium aphanidermatum (PA), Fusarium oxysporum f.sp. radicis-lycopersici (FORL) and Fusarium solani (FS)) using sole carbon source utilisation in order to develop effective biocontrol strategies against these pathogens. Aliquots of 150 µL of the mycelial suspension were inoculated in each well of GN2 microtitre plates. On the basis of average well colour development and number of positive wells, the pathogens were divided into two groups, (i) PA and FORL and (ii) PC, PCP and FS. Group (i) was characterised by a short lag-phase, a rapid exponential phase involving almost all carbon sources offered and a long stationary phase, while group (ii) had a more extended lag-phase and a slower utilisation rate of the carbon sources offered. The three isolates in group (ii) differed significantly during their exponential phase. The lowest utilisation rate of carbon sources and number of sources utilised was found for PCP. Of the major group of carbon sources, six carbohydrates, three carboxylic acids and four amino acids were rapidly used by all isolates tested at an early stage. The carbon sources gentibiose, α-D-glucose, maltose, sucrose, D-trehalose, L-aspartic acid, L-glutamic acid, L-proline persisted to the end of the exponential phase.Moreover, similarities between the metabolic profiles of the tested pathogen and the those of the resident microflora could also be found. These findings are of great importance as regards the role of the resident microflora in the biocontrol. PMID:19294012

  6. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.

    2016-05-01

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon

  7. Improved Electrochemical Performance of LiFePO4@N-Doped Carbon Nanocomposites Using Polybenzoxazine as Nitrogen and Carbon Sources.

    PubMed

    Wang, Ping; Zhang, Geng; Li, Zhichen; Sheng, Wangjian; Zhang, Yichi; Gu, Jiangjiang; Zheng, Xinsheng; Cao, Feifei

    2016-10-03

    Polybenzoxazine is used as a novel carbon and nitrogen source for coating LiFePO 4 to obtain LiFePO 4 @nitrogen-doped carbon (LFP@NC) nanocomposites. The nitrogen-doped graphene-like carbon that is in situ coated on nanometer-sized LiFePO 4 particles can effectively enhance the electrical conductivity and provide fast Li + transport paths. When used as a cathode material for lithium-ion batteries, the LFP@NC nanocomposite (88.4 wt % of LiFePO 4 ) exhibits a favorable rate performance and stable cycling performance.

  8. Optimization of VFAs and ethanol production with waste sludge used as the denitrification carbon source.

    PubMed

    Guo, Liang; Zhang, Jiawen; Yin, Li; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2015-01-01

    An acidification metabolite such as volatile fatty acids (VFAs) and ethanol could be used as denitrification carbon sources for solving the difficult problem of carbon source shortages and low nitrogen removal efficiency. A proper control of environmental factors could be essential for obtaining the optimal contents of VFAs and ethanol. In this study, suspended solids (SS), oxidation reduction potential (ORP) and shaking rate were chosen to investigate the interactive effects on VFAs and ethanol production with waste sludge. It was indicated that T-VFA yield could be enhanced at lower ORP and shaking rate. Changing the SS, ORP and shaking rate could influence the distribution of acetic, propionic, butyric, valeric acids and ethanol. The optimal conditions for VFAs and ethanol production used as a denitrification carbon source were predicted by analyzing response surface methodology (RSM).

  9. Analyzing sources to sedimentary organic carbon in the Gulf of Urabá, southern Caribbean, using carbon stable isotopes

    NASA Astrophysics Data System (ADS)

    Rúa, Alex; Liebezeit, Gerd; Grajales, Heazel; Palacio, Jaime

    2017-10-01

    Carbon stable isotopes analysis serve reconstruction of the origin of organic matter (OM) deposited onto sediments. They also allow tracing vegetation change at different time scales. This study weighs the contribution of both marine and terrestrial sources to sedimentary organic carbon (OC) from a southwestern Caribbean Gulf partly surrounded by large Musa acuminata (banana) croplands. The δ13C values in three sediment cores from the gulf have slightly decreased over 1000 yrs BP, indicating enhanced terrestrial input of detrital carbon owing to river discharge. A two-end mixing model fed with these δ13C values showed that averaged terrestrial contribution of OC to sediment was 52.0% at prodelta, 76.4% at delta front, and 64.2% at Colombia Bay. This agrees well with sediment dynamics. The main source of sedimentary OC within the gulf was terrestrial instead of marine. In fact, a distorted trend in δ13C values for one of the coring sites could be the result of banana crop expansion through the 20th century.

  10. Black carbon emissions from Russian diesel sources. Case study of Murmansk

    DOE PAGES

    Evans, M.; Kholod, N.; Malyshev, V.; ...

    2015-07-27

    Black carbon (BC) is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in the Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), ships and diesel generators. For on-road transport, we conducted several surveys tomore » understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emissions in the Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 69 % of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source, emitting about 13 % of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 50.8 Gg in 2010, and on-road transport contributed 49 % of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.« less

  11. Black carbon emissions from Russian diesel sources. Case study of Murmansk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, M.; Kholod, N.; Malyshev, V.

    Black carbon (BC) is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in the Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), ships and diesel generators. For on-road transport, we conducted several surveys tomore » understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emissions in the Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 69 % of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source, emitting about 13 % of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 50.8 Gg in 2010, and on-road transport contributed 49 % of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.« less

  12. The effect of toxic carbon source on the reaction of activated sludge in the batch reactor.

    PubMed

    Wu, Changyong; Zhou, Yuexi; Zhang, Siyu; Xu, Min; Song, Jiamei

    2018-03-01

    The toxic carbon source can cause higher residual effluent dissolved organic carbon than easily biodegraded carbon source in activated sludge process. In this study, an integrated activated sludge model is developed as the tool to understand the mechanism of toxic carbon source (phenol) on the reaction, regarding the carbon flows during the aeration period in the batch reactor. To estimate the toxic function of phenol, the microbial cells death rate (k death ) is introduced into the model. The integrated model was calibrated and validated by the experimental data and it was found the model simulations matched the all experimental measurements. In the steady state, the toxicity of phenol can result in higher microbial cells death rate (0.1637 h -1 vs 0.0028 h -1 ) and decay rate coefficient of biomass (0.0115 h -1 vs 0.0107 h -1 ) than acetate. In addition, the utilization-associated products (UAP) and extracellular polymeric substances (EPS) formation coefficients of phenol are higher than that of acetate, indicating that more carbon flows into the extracellular components, such as soluble microbial products (SMP), when degrading toxic organics. In the non-steady state of feeding phenol, the yield coefficient for growth and maximum specific growth rate are very low in the first few days (1-10 d), while the decay rate coefficient of biomass and microbial cells death rate are relatively high. The model provides insights into the difference of the dynamic reaction with different carbon sources in the batch reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of CO2 on NADH production of denitrifying microbes via inhibiting carbon source transport and its metabolism.

    PubMed

    Wan, Rui; Chen, Yinguang; Zheng, Xiong; Su, Yinglong; Huang, Haining

    2018-06-15

    The potential effect of CO 2 on environmental microbes has drawn much attention recently. As an important section of the nitrogen cycle, biological denitrification requires electron donor to reduce nitrogen oxide. Nicotinamide adenine dinucleotide (NADH), which is formed during carbon source metabolism, is a widely reported electron donor for denitrification. Here we studied the effect of CO 2 on NADH production and carbon source utilization in the denitrifying microbe Paracoccus denitrificans. We observed that NADH level was decreased by 45.5% with the increase of CO 2 concentration from 0 to 30,000ppm, which was attributed to the significantly decreased utilization of carbon source (i.e., acetate). Further study showed that CO 2 inhibited carbon source utilization because of multiple negative influences: (1) suppressing the growth and viability of denitrifier cells, (2) weakening the driving force for carbon source transport by decreasing bacterial membrane potential, and (3) downregulating the expression of genes encoding key enzymes involved in intracellular carbon metabolism, such as citrate synthase, aconitate hydratase, isocitrate dehydrogenase, succinate dehydrogenase, and fumarate reductase. This study suggests that the inhibitory effect of CO 2 on NADH production in denitrifiers might deteriorate the denitrification performance in an elevated CO 2 climate scenario. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. North America carbon dioxide sources and sinks: magnitude, attribution, and uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Anthony W.; Hayes, Daniel J.; Huntzinger, Deborah N.

    2012-12-01

    North America is both a source and sink of atmospheric CO2. Sources, predominately fossil-fuel combustion in the United States along with contributions from deforestation in Mexico, add CO2 to the atmosphere. Most North America ecosystems, particularly regrowing forests in the United States, are sinks for atmospheric CO2. CO2 is removed from the atmosphere in photosynthesis, converted into biomass and stored as carbon in vegetation, soil and wood products. Fossil-fuel emissions dominate the North American source-sink balance. North America is a net source of atmospheric CO2 with ecosystem sinks balancing approximately 35% of fossil-fuel CO2 emissions from North America.

  15. Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species

    PubMed Central

    Sitepu, Irnayuli; Selby, Tylan; Lin, Ting; Zhu, Shirley; Boundy-Mills, Kyria

    2014-01-01

    Conversion of lignocellulosic hydrolysates to lipids using oleaginous (high lipid) yeasts requires alignment of the hydrolysate composition with the characteristics of the yeast strain, including ability to utilize certain nutrients, ability to grow independently of costly nutrients such as vitamins, and ability to tolerate inhibitors. Some combination of these characteristics may be present in wild strains. In this study, 48 oleaginous yeast strains belonging to 45 species were tested for ability to utilize carbon sources associated with lignocellulosic hydrolysates, tolerate inhibitors, and grow in medium without supplemented vitamins. Some well-studied oleaginous yeast species, as well as some that have not been frequently utilized in research or industrial production, emerged as promising candidates for industrial use due to ability to utilize many carbon sources, including Cryptococcus aureus, Cryptococcus laurentii, Hanaella aff. zeae, Tremella encephala, and Trichosporon coremiiforme. Other species excelled in inhibitor tolerance, including Candida aff. tropicalis, Cyberlindnera jadinii, Metschnikowia pulcherrima Schwanniomyces occidentalis and Wickerhamomyces ciferii. No yeast tested could utilize all carbon sources and tolerate all inhibitors tested. These results indicate that yeast strains should be selected based on characteristics compatible with the composition of the targeted hydrolysate. Other factors to consider include the production of valuable co-products such as carotenoids, availability of genetic tools, biosafety level, and flocculation of the yeast strain. The data generated in this study will aid in aligning yeasts with compatible hydrolysates for conversion of carbohydrates to lipids to be used for biofuels and other oleochemicals. PMID:24818698

  16. Trends in intakes and sources of solid fats and added sugars among U.S. children and adolescents: 1994-2010.

    PubMed

    Slining, M M; Popkin, B M

    2013-08-01

    There are increasing global concerns about improving the dietary intakes of children and adolescents. In the United States (U.S.), the focus is on reducing energy from foods and beverages that provide empty calories from solid fats and added sugars (SoFAS). We examine trends in intakes and sources of solid fat and added sugars among U.S. 2-18 year olds from 1994 to 2010. Data from five nationally representative surveys, the Continuing Survey of Food Intakes by Individuals Surveys (1994-1996) and the What We Eat In America, National Health and Nutrition Examination Surveys (2003-2004, 2005-2006, 2007-2008 and 2009-2010) were used to examine key food sources and energy from solid fats and added sugars. Sample sizes ranged from 2594 to 8259 per survey period, for a total of 17 268 observations across the five surveys. Food files were linked over time to create comparable food groups and nutrient values. Differences were examined by age, race/ethnicity and family income. Daily intake of energy from SoFAS among U.S. 2-18 year olds decreased from 1994 to 2010, with declines primarily detected in the recent time periods. Solid fats accounted for a greater proportion of total energy intake than did added sugars. Although the consumption of solid fats and added sugars among children and adolescents in the U.S. decreased between 1994-1998 and 2009-2010, mean intakes continue to exceed recommended limits. © 2013 The Authors. Pediatric Obesity © 2013 International Association for the Study of Obesity.

  17. Selective enhancement and verification of woody biomass digestibility as a denitrification carbon source.

    PubMed

    Hu, Rongting; Zheng, Xilai; Xin, Jia; Sun, Zhaoyue; Zheng, Tianyuan

    2017-11-01

    The denitrification efficiency of woody biomass as carbon source is low because of its poor carbon availability. In this study, representative poplar sawdust was pretreated with lime and peracetic acid to enhance the biomass digestibility to different degrees; sawdust was then mixed with soil to investigate its denitrification efficiency. Under controllable conditions (25-95°C, 12-24h, varying dosages), sawdust digestibility (characterized by reducing sugar yield) was selectively enhanced 1.0-21.8 times over that of the raw sawdust (28.8mgeq.glucoseg -1 dry biomass). This increase was mainly attributed to the removal of lignin from the biomass. As a carbon source, the sawdust (digestibility enhanced by 5.4 times) increased the nitrate removal rate by 4.7 times, without N 2 O emission. However, the sawdust with high digestibility (12.6 or 18.0 times), despite releasing more dissolved organic carbon (DOC), did not exhibit further increase in denitrification efficiency, and emitted N 2 O. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The use of fermentation liquid of wastewater primary sedimentation sludge as supplemental carbon source for denitrification based on enhanced anaerobic fermentation.

    PubMed

    Liu, Feng; Tian, Yu; Ding, Yi; Li, Zhipeng

    2016-11-01

    Wastewater primary sedimentation sludge was prepared into fermentation liquid as denitrification carbon source, and the main components of fermentation liquid was short-chain volatile fatty acids. Meanwhile, the acetic acid and propionic acid respectively accounted for about 29.36% and 26.56% in short-chain volatile fatty acids. The performance of fermentation liquid, methanol, acetic acid, propionic acid and glucose used as sole carbon source were compared. It was found that the denitrification rate with fermentation liquid as carbon source was 0.17mgNO3(-)-N/mg mixed liquor suspended solid d, faster than that with methanol, acetic acid, and propionic acid as sole carbon source, and lower than that with glucose as sole carbon source. For the fermentation liquid as carbon source, the transient accumulation of nitrite was insignificantly under different initial total nitrogen concentration. Therefore, the use of fermentation liquid for nitrogen removal could improve denitrification rate, and reduce nitrite accumulation in denitrification process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers

    NASA Astrophysics Data System (ADS)

    Li, Chaoliu; Bosch, Carme; Kang, Shichang; Andersson, August; Chen, Pengfei; Zhang, Qianggong; Cong, Zhiyuan; Chen, Bing; Qin, Dahe; Gustafsson, Örjan

    2016-08-01

    Combustion-derived black carbon (BC) aerosols accelerate glacier melting in the Himalayas and in Tibet (the Third Pole (TP)), thereby limiting the sustainable freshwater supplies for billions of people. However, the sources of BC reaching the TP remain uncertain, hindering both process understanding and efficient mitigation. Here we present the source-diagnostic Δ14C/δ13C compositions of BC isolated from aerosol and snowpit samples in the TP. For the Himalayas, we found equal contributions from fossil fuel (46+/-11%) and biomass (54+/-11%) combustion, consistent with BC source fingerprints from the Indo-Gangetic Plain, whereas BC in the remote northern TP predominantly derives from fossil fuel combustion (66+/-16%), consistent with Chinese sources. The fossil fuel contributions to BC in the snowpits of the inner TP are lower (30+/-10%), implying contributions from internal Tibetan sources (for example, yak dung combustion). Constraints on BC sources facilitate improved modelling of climatic patterns, hydrological effects and provide guidance for effective mitigation actions.

  20. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents.

    PubMed

    Sethupathi, Sumathi; Bashir, Mohammed Jk; Akbar, Zinatizadeh Ali; Mohamed, Abdul Rahman

    2015-04-01

    Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out. © The Author(s) 2015.

  1. Recovery and Utilization of Palm Oil Mill Effluent Source as Value-Added Food Products.

    PubMed

    Teh, Soek Sin; Hock Ong, Augustine Soon; Mah, Siau Hui

    2017-01-01

    The environmental impacts of palm oil mill effluent (POME) have been a concern due to the water pollution and greenhouse gases emissions. Thus, this study was conducted to recover the value-added products from POME source before being discharged. The samples, before (X) and after (Y) the pre-recovery system in the clarification tank were sampled and analysed and proximate analysis indicated that both samples are energy rich source of food due to high contents of fats and carbohydrates. GCMS analysis showed that the oil extracts contain predominantly palmitic, oleic, linoleic and stearic acids. Regiospecific analysis of oil extracts by quantitative 13 C-NMR spectroscopy demonstrated that both oil extracts contain similar degree of saturation of fatty acids at sn-2 and sn-1,3 positions. The samples are rich in various phytonutrients, pro-vitamin A, vitamin E, squalene and phytosterols, thus contributing to exceptionally high total flavonoid contents and moderate antioxidant activities. Overall, samples X and Y are good alternative food sources, besides reducing the environmental impact of POME.

  2. Mycobacteria Modify Their Cell Size Control under Sub-Optimal Carbon Sources

    PubMed Central

    Priestman, Miles; Thomas, Philipp; Robertson, Brian D.; Shahrezaei, Vahid

    2017-01-01

    The decision to divide is the most important one that any cell must make. Recent single cell studies suggest that most bacteria follow an “adder” model of cell size control, incorporating a fixed amount of cell wall material before dividing. Mycobacteria, including the causative agent of tuberculosis Mycobacterium tuberculosis, are known to divide asymmetrically resulting in heterogeneity in growth rate, doubling time, and other growth characteristics in daughter cells. The interplay between asymmetric cell division and adder size control has not been extensively investigated. Moreover, the impact of changes in the environment on growth rate and cell size control have not been addressed for mycobacteria. Here, we utilize time-lapse microscopy coupled with microfluidics to track live Mycobacterium smegmatis cells as they grow and divide over multiple generations, under a variety of growth conditions. We demonstrate that, under optimal conditions, M. smegmatis cells robustly follow the adder principle, with constant added length per generation independent of birth size, growth rate, and inherited pole age. However, the nature of the carbon source induces deviations from the adder model in a manner that is dependent on pole age. Understanding how mycobacteria maintain cell size homoeostasis may provide crucial targets for the development of drugs for the treatment of tuberculosis, which remains a leading cause of global mortality. PMID:28748182

  3. [Effects of carbon sources changes on the property and morphology of 2,4-D degraded aerobic sludge granules].

    PubMed

    Ma, Jing-Yun; Quan, Xian-Chun; Xiong, Wei-Cong

    2010-11-01

    This study investigated the changes of the morphology, structure, and capability of removing the target contamination of the aerobic granules pre-cultured with mixed substrates of glucose and 2,4-dichlorophenoxyacetic acid (2,4-D) in a long-time running sequence batch reactor (SBR), when the carbon source transformed into the sole carbon source of 2,4-D. Results showed that when the substrate turned to the sole carbon source of 2,4-D, the aerobic granules still maintained a strong degradation ability to the target contamination; a 2,4-D removal percentage of 99.2% -100% and an average COD removal rate of 85.6% were achieved at the initial 2,4-D concentration of 361-564 mg/L. Carbon source transformation caused certain damages to the original aerobic granule structure, made some parts of granules disintegrated, and led to granule size decline from 513 microm to 302 microm. However, those granules maintained the main body, re-aggregated and grew after a period of adaptation due to their strong resistance to toxicity. Aerobic granules capable of utilizing 2,4-D as the sole carbon source with a good settling ability (SYI 20-40 mL/g) and a mean diameter of 489 microm were finally obtained in this study. Scanning electron microscope (SEM) observation showed that the diversity of granule microbial species was declined when turned to the sole carbon source.

  4. Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints

    DOE PAGES

    Campbell, J. E.; Whelan, Mary; Seibt, U.; ...

    2015-04-16

    Carbonyl sulfide (COS) has recently emerged as an atmospheric tracer of gross primary production. All modeling studies of COS air-monitoring data rely on a climatological anthropogenic inventory that does not reflect present conditions or support interpretation of ice core and firn trends. Here we develop a global anthropogenic inventory for the years 1850 to 2013 based on new emission measurements and material-specific data. By applying methods from a recent regional inventory to global data, we find that the anthropogenic source is similar in magnitude to the plant sink, confounding carbon cycle applications. However, a material-specific approach results in a currentmore » anthropogenic source that is only one third of plant uptake and is concentrated in Asia, supporting carbon cycle applications of global air-monitoring data. As a result, changes in the anthropogenic source alone cannot explain the century-scale mixing ratio growth, which suggests that ice and firn data may provide the first global history of gross primary production.« less

  5. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazurek, M.A.; Hildemann, L.M.; Cass, G.R.

    1990-04-01

    Extractable organic compounds having between 6 to 40 carbon atoms comprise an important mass fraction of the fine particulate matter samples from major urban emission sources. Depending on the emission source type, this solvent-soluble fraction accounts for <20% to 100% of the total organic aerosol mass, as measured by quantitative high-resolution has chromatography (HRGC) with flame ionization detection. In addition to total extract quantitation, HRGC can be applied to further analyses of the mass distributions of elutable organics present in the complex aerosol extract mixtures, thus generating profiles that serve as fingerprints'' for the sources of interest. This HRGC analyticalmore » method is applied to emission source samples that contain between 7 to 12,000 {mu}g/filter organic carbon. It is shown to be a sensitive technique for analysis of carbonaceous aerosol extract mixtures having diverse mass loadings and species distributions. This study describes the analytical chemical methods that have been applied to: the construction of chemical mass balances based on the mass of fine organic aerosol emitted for major urban sources of particulate carbon; and the generation of discrete emission source chemical profiles derived from chromatographic characteristics of the organic aerosol components. 21 refs., 1 fig., 2 tabs.« less

  6. Tropical forests are a net carbon source based on aboveground measurements of gain and loss.

    PubMed

    Baccini, A; Walker, W; Carvalho, L; Farina, M; Sulla-Menashe, D; Houghton, R A

    2017-10-13

    The carbon balance of tropical ecosystems remains uncertain, with top-down atmospheric studies suggesting an overall sink and bottom-up ecological approaches indicating a modest net source. Here we use 12 years (2003 to 2014) of MODIS pantropical satellite data to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world's tropical forests are a net carbon source of 425.2 ± 92.0 teragrams of carbon per year (Tg C year -1 ). This net release of carbon consists of losses of 861.7 ± 80.2 Tg C year -1 and gains of 436.5 ± 31.0 Tg C year -1 Gains result from forest growth; losses result from deforestation and from reductions in carbon density within standing forests (degradation or disturbance), with the latter accounting for 68.9% of overall losses. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Mode S and ADS-B as a Source of Clear-Air Turbulence Measurements

    NASA Astrophysics Data System (ADS)

    Kopeć, Jacek; Kwiatkowski, Kamil; de Haan, Siebren; Malinowski, Szymon

    2016-04-01

    Clear-Air Turbulence (CAT) beside being the most common cause for commercial aircraft incidents in the cruise phase is a complex physical phenomenon. CAT is an effect of various underlying physical mechanisms such as different kinds of hydrodynamic instabilities or large scale forcing. In order to properly understand and correctly forecast it one needs a significant amount of observation data. Up to date the best available observations are the in-situ EDR (from eddy dissipation rate - a measure of turbulence intensity). Those observations are reported every ~1 min of flight (roughly every 15 km). Yet their availability is limited by the willingness of the airlines to cooperate in adjusting on-board software. However there is a class of data that can be accessed more freely. In this communication we present and discuss a feasibility analysis of the three methods of processing Mode S/ADS-B messages into viable turbulence measurements. The Mode S/ADS-B messages are unrestricted navigational data broadcast by most of the commercial aircraft. The unique characteristic of this data is a very high temporal resolution. This allows to employ processing which results in obtaining turbulence information characterized by spatial resolution comparable with the best available data sources. Moreover due to using Mode-S/ASS-B data, the number of aircraft that are providing observations increases significantly. The methods are either using simple positioning information available in the ADS-B or high-resolution wind information from the Mode S. The paper is largely based on the results of the methods application to the data originating from DELICAT flight campaign that took place in 2013. The flight campaign was conducted using NLR operated Cessna Citation II. The reference Mode-S/ADS-B data partly overlapping with the research flights were supplied by the KNMI. Analysis shows very significant potential of the Mode-S wind based methods. J. M. Kopeć, K. Kwiatkowski, S. de Haan, and

  8. Carbon source-sink limitations differ between two species with contrasting growth strategies: Source-sink limitations vary with growth strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnett, Angela C.; Rogers, A.; Rees, M.

    When we understand how carbon source and sink strengths limit plant growth we realized how critical the knowledge gap is in hindering efforts to maximize crop yield. Here, we investigated how differences in growth rate arise from source–sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO 2 concentrations ([CO 2]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbonmore » and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO 2] indicating that source strength was near maximal at current [CO 2]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO 2] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO 2], and lower non-structural carbohydrate accumulation. Finally, by alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO 2].« less

  9. Carbon source-sink limitations differ between two species with contrasting growth strategies: Source-sink limitations vary with growth strategy

    DOE PAGES

    Burnett, Angela C.; Rogers, A.; Rees, M.; ...

    2016-09-22

    When we understand how carbon source and sink strengths limit plant growth we realized how critical the knowledge gap is in hindering efforts to maximize crop yield. Here, we investigated how differences in growth rate arise from source–sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO 2 concentrations ([CO 2]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbonmore » and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO 2] indicating that source strength was near maximal at current [CO 2]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO 2] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO 2], and lower non-structural carbohydrate accumulation. Finally, by alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO 2].« less

  10. Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments

    NASA Astrophysics Data System (ADS)

    Pearson, Ann; Hurley, Sarah J.; Walter, Sunita R. Shah; Kusch, Stephanie; Lichtin, Samantha; Zhang, Yi Ge

    2016-05-01

    Thaumarchaeota, the major sources of marine glycerol dibiphytanyl glycerol tetraether lipids (GDGTs), are believed to fix the majority of their carbon directly from dissolved inorganic carbon (DIC). The δ13C values of GDGTs (δ13CGDGT) may be powerful tools for reconstructing variations in the ocean carbon cycle, including paleoproductivity and water mass circulation, if they can be related to values of δ13CDIC. To date, isotope measurements primarily are made on the C40 biphytane skeletons of GDGTs, rather than on complete tetraether structures. This approach erases information revealed by the isotopic heterogeneity of GDGTs within a sample and may impart an isotopic fractionation associated with the ether cleavage. To circumvent these issues, we present δ13C values for GDGTs from twelve recent sediments representing ten continental margin locations. Samples are purified by orthogonal dimensions of HPLC, followed by measurement of δ13C values by Spooling Wire Microcombustion (SWiM)-isotope ratio mass spectrometry (IRMS) with 1σ precision and accuracy of ±0.25‰. Using this approach, we confirm that GDGTs, generally around -19‰, are isotopically ;heavy; compared to other marine lipids. However, measured δ13CGDGT values are inconsistent with predicted values based on the 13C content of DIC in the overlying water column and the previously-published biosynthetic isotope fractionation for a pure culture of an autotrophic marine thaumarchaeon. In some sediments, the isotopic composition of individual GDGTs differs, indicating multiple source inputs. The data appear to confirm that crenarchaeol primarily is a biomarker for Thaumarchaeota, but its δ13C values still cannot be explained solely by autotrophic carbon fixation. Overall the complexity of the results suggests that both organic carbon assimilation (ca. 25% of total carbon) and multiple source(s) of exogenous GDGTs (contributing generally <30% of input to sediments) are necessary to explain the observed

  11. Effect of geological carbon sources on eddy covariance measurements: analysis and possible correction approaches

    NASA Astrophysics Data System (ADS)

    Papale, D.; Rey, A.; Belelli-Marchesini, L.; Etiope, G.; Pegoraro, E.

    2013-12-01

    A recent set of studies carried out in the SE of Spain highlighted the need to consider geological carbon sources when estimating the net ecosystem carbon balance (NECB) of terrestrial ecosystems located in areas potentially affected by geofluid circulation. In this study we present the mechanisms and propose a new methodology using physical parameters of the atmospheric boundary layer to quantify the CO2 coming from deep origin. To test our approach, we compare NECB estimates with seasonal patterns of soil CO2 efflux and vegetation activity measured by satellite images (NDVI) over two-year period at this site (2007/2008). According with the eddy covariance measurements the alpha grass ecosystem was a net carbon source (93.7 and 145.0 g C m-2, for the years 2007 and 2008, respectively) particularly as a result of large amounts of carbon released over the dry period. This relevant CO2 emission (reaching up to 15 umol m-2 s-1) was however not related to ecosystem activities as confirmed by measurements of soil CO2 efflux using chambers (ca. 0.5 umol m-2 s-1) and plant productivity that was minimal during this period. A simple correction based on a linear relationship between NECB and wind speed for different stability conditions and wind sectors has been used to estimate the geological flux FGEO and subtracted it from the NECB to obtain the biological flux FBIO. We then partitioned FBIO into gross primary productivity and ecosystem respiration and proved that, after removing FGEO, ecosystem and soil respiration followed similar temporal patterns. The annual contribution of the geological component to NECB was 49.6 and 46.7 % for the year 2007 and 2008, respectively. Therefore, potential contribution of geological carbon sources should be tested and quantified in those ecosystems located in areas with potential natural emission of geologic gases to the surface. References: REY A., BELELLI MARCHESINI L., WERE A., SERRANO ORTIZ P., ETIOPE G., PAPALE D, DOMINGO F

  12. Thermal Conductivity of Single-Walled Carbon Nanotube with Internal Heat Source Studied by Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Wei; Cao, Bing-Yang

    2013-12-01

    The thermal conductivity of (5, 5) single-walled carbon nanotubes (SWNTs) with an internal heat source is investigated by using nonequilibrium molecular dynamics (NEMD) simulation incorporating uniform heat source and heat source-and-sink schemes. Compared with SWNTs without an internal heat source, i.e., by a fixed-temperature difference scheme, the thermal conductivity of SWNTs with an internal heat source is much lower, by as much as half in some cases, though it still increases with an increase of the tube length. Based on the theory of phonon dynamics, a function called the phonon free path distribution is defined to develop a simple one-dimensional heat conduction model considering an internal heat source, which can explain diffusive-ballistic heat transport in carbon nanotubes well.

  13. Effect of solids retention time on the bioavailability of organic carbon in anaerobically digested swine waste.

    PubMed

    Kinyua, Maureen N; Cunningham, Jeffrey; Ergas, Sarina J

    2014-06-01

    Anaerobic digestion (AD) can be used to stabilize and produce energy from livestock waste; however, digester effluents may require further treatment to remove nitrogen. This paper quantifies the effects of varying solids retention time (SRT) methane yield, volatile solids (VS) reduction and organic carbon bioavailability for denitrification during swine waste AD. Four bench-scale anaerobic digesters, with SRTs of 14, 21, 28 and 42 days, operated with swine waste feed. Effluent organic carbon bioavailability was measured using anoxic microcosms and respirometry. Excellent performance was observed for all four digesters, with >60% VS removal and CH4 yields between 0.1 and 0.3(m(3)CH4)/(kg VS added). Organic carbon in the centrate as an internal organic carbon source for denitrification supported maximum specific denitrification rates between 47 and 56(mg NO3(-)-N)/(g VSS h). The digester with the 21-day SRT had the highest CH4 yield and maximum specific denitrification rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The effect of various carbon sources on the growth of single-celled cyanophyta

    NASA Technical Reports Server (NTRS)

    Avilov, I. A.; Sidorenkova, E. S.

    1983-01-01

    In 19 strains of unicellular blue-green algae, belonging to general Synechococcus, Synechocystis, Aphanocapsa and Aphanothece, the capacity of growth under mixotrophic conditions in mineral media with organic carbon sources (carbohydrates, polyols) was investigated. At moderate light intensity (1200 lx) and 0.5% of carbon source there was revealed: (1) Stimulation of growth; (2) Partial or complete inhibition of growth; (3) No influence of carbohydrate and polyols on the growth of some algae strains. Three physiological groups for the investigated strains have been outlined on the basis of data obtained. The possibility of using the differences revealed in classification of unicellular blue-green algae is discussed.

  15. Differences in carbon source usage by dental plaque in children with and without early childhood caries

    PubMed Central

    Zhao, Yan; Zhong, Wen-Jie; Xun, Zhe; Zhang, Qian; Song, Ye-Qing; Liu, Yun-Song; Chen, Feng

    2017-01-01

    Early childhood caries (ECC) is a considerable pediatric and public health problem worldwide. Preceding studies have focused primarily on bacterial diversity at the taxonomic level. Although these studies have provided significant information regarding the connection between dental caries and oral microbiomes, further comprehension of this microbial community’s ecological relevance is limited. This study identified the carbon source metabolic differences in dental plaque between children with and without ECC. We compared the microbial community functional diversity in 18 caries-free subjects with 18 severe ECC patients based on sole carbon source usage using a Biolog assay. The anaerobic microbial community in the ECC patients displayed greater metabolic activity than that of the control group. Specific carbon source metabolism differed significantly between the two groups. Subjects from the two groups were well distinguished by cluster and principal component analyses based on discriminative carbon sources. Our results implied that the microbial functional diversity between the ECC patients and healthy subjects differed significantly. In addition, the Biolog assay furthered our understanding of oral microbiomes as a composite of functional abilities, thus enabling us to identify the ecologically relevant functional differences among oral microbial communities.

  16. Intake and sources of added sugars among Australian children and adolescents.

    PubMed

    Louie, Jimmy Chun Yu; Moshtaghian, Hanieh; Rangan, Anna M; Flood, Victoria M; Gill, Timothy P

    2016-12-01

    To examine the intake and sources of added sugars (AS) of Australian children and adolescents, and compare their intake of free sugars (FS) to the recommended limit set by the World Health Organization (<10 % energy from FS). Data of 4140 children and adolescents aged 2-16 years with plausible intakes based on 2 × 24 h recalls from the 2007 Australian National Children Nutrition and Physical Activity Survey were used. AS content of foods was estimated based on a published method. Intakes of AS and FS, as well as food sources of AS, were calculated. One-way ANOVA was used for comparisons between age groups and gender. The mean (SD) AS intake was 58.9 (35.1) g/day, representing 11.9 (5.6) % of daily energy intake and 46.9 (17.5) % of daily total sugars intake. More than 80 % of the subjects had % energy from FS > 10 %. Significant increasing trends for AS intake, % energy from AS, % energy from FS across age groups were observed. Sugar-sweetened beverages (19.6 %), cakes, biscuits, pastries and batter-based products (14.3 %), and sugar and sweet spreads (10.5 %) were the top three contributors of AS intake in the whole sample. Higher contribution of AS from sugar-sweetened beverages was observed in adolescents (p trend  < 0.001). A large proportion of Australian youths are consuming excessive amounts of energy from AS. Since the main sources of AS were energy-dense, nutrient-poor foods, interventions which target the reduction in these foods would reduce energy and AS intake with minimal impact to core nutrient intake.

  17. [Carbon Source Utilization Characteristics of Soil Microbial Community for Apple Orchard with Interplanting Herbage].

    PubMed

    Du, Yi-fei; Fang, Kai-kai; Wang, Zhi-kang; Li, Hui-ke; Mao, Peng-juan; Zhang, Xiang-xu; Wang, Jing

    2015-11-01

    As soil fertility in apple orchard with clean tillage is declined continuously, interplanting herbage in orchard, which is a new orchard management model, plays an important role in improving orchard soil conditions. By using biolog micro-plate technique, this paper studied the functional diversity of soil microbial community under four species of management model in apple orchards, including clear tillage model, interplanting white clover model, interplanting small crown flower model and interplanting cocksfoot model, and the carbon source utilization characteristics of microbial community were explored, which could provide a reference for revealing driving mechanism of ecological process of orchard soil. The results showed that the functional diversity of microbial community had a significant difference among different treatments and in the order of white clover > small crown flower > cocksfoot > clear tillage. The correlation analysis showed that the average well color development (AWCD), Shannon index, Richness index and McIntosh index were all highly significantly positively correlated with soil organic carbon, total nitrogen, microbial biomass carbon, and Shannon index was significantly positively correlated with soil pH. The principal component analysis and the fingerprints of the physiological carbon metabolism of the microbial community demonstrated that grass treatments improved carbon source metabolic ability of soil microbial community, and the soil microbes with perennial legumes (White Clover and small crown flower) had a significantly higher utilization rate in carbohydrates (N-Acetyl-D-Glucosamine, D-Mannitol, β-Methyl-D-Glucoside), amino acids (Glycyl-L-Glutamic acid, L-Serine, L-Threonine) and polymers (Tween 40, Glycogen) than the soil microbes with clear tillage. It was considered that different treatments had the unique microbial community structure and peculiar carbon source utilization characteristics.

  18. Use of food waste-recycling wastewater as an alternative carbon source for denitrification process: A full-scale study.

    PubMed

    Kim, Eunji; Shin, Seung Gu; Jannat, Md Abu Hanifa; Tongco, Jovale Vincent; Hwang, Seokhwan

    2017-12-01

    Using organic wastes as an alternative to commercial carbon sources could be beneficial by reducing costs and environmental impacts. In this study, food waste-recycling wastewater (FRW) was evaluated as an alternative carbon source for biological denitrification over a period of seven months in a full-scale sewage wastewater treatment plant. The denitrification performance was stable with a mean nitrate removal efficiency of 97.2%. Propionate was initially the most persistent volatile fatty acid, but was completely utilized after 19days. Eubacteriacea, Saprospiraceae, Rhodocyclaceae and Comamonadaceae were the major bacterial families during FRW treatment and were regarded as responsible for hydrolysis (former two) and nitrate removal (latter two) of FRW. These results demonstrate that FRW can be an effective external carbon source; process stabilization was linked to the acclimation and function of bacterial populations to the change of carbon source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Ruthenium-catalysed alkoxycarbonylation of alkenes with carbon dioxide.

    PubMed

    Wu, Lipeng; Liu, Qiang; Fleischer, Ivana; Jackstell, Ralf; Beller, Matthias

    2014-01-01

    Alkene carbonylations represent a major technology for the production of value-added bulk and fine chemicals. Nowadays, all industrial carbonylation processes make use of highly toxic and flammable carbon monoxide. Here we show the application of abundantly available carbon dioxide as C1 building block for the alkoxycarbonylations of industrially important olefins in the presence of a convenient and inexpensive ruthenium catalyst system. In our system, carbon dioxide works much better than the traditional combination of carbon monoxide and alcohols. The unprecedented in situ formation of carbon monoxide from carbon dioxide and alcohols permits an efficient synthesis of carboxylic acid esters, which can be used as detergents and polymer-building blocks. Notably, this transformation allows the catalytic formation of C-C bonds with carbon dioxide as C1 source and avoids the use of sensitive and/or expensive reducing agents (for example, Grignard reagents, diethylzinc or triethylaluminum).

  20. Source brightness and useful beam current of carbon nanotubes and other very small emitters

    NASA Astrophysics Data System (ADS)

    Kruit, P.; Bezuijen, M.; Barth, J. E.

    2006-01-01

    The potential application of carbon nanotubes as electron sources in electron microscopes is analyzed. The resolution and probe current that can be obtained from a carbon nanotube emitter in a low-voltage scanning electron microscope are calculated and compared to the state of the art using Schottky electron sources. Many analytical equations for probe-size versus probe-current relations in different parameter regimes are obtained. It is shown that for most carbon nanotube emitters, the gun lens aberrations are larger than the emitters' virtual source size and thus restrict the microscope's performance. The result is that the advantages of the higher brightness of nanotube emitters are limited unless the angular emission current is increased over present day values or the gun lens aberrations are decreased. For some nanotubes with a closed cap, it is known that the emitted electron beam is coherent over the full emission cone. We argue that for such emitters the parameter ``brightness'' becomes meaningless. The influence of phase variations in the electron wave front emitted from such a nanotube emitter on the focusing of the electron beam is analyzed.

  1. Influence of carbon source amendment on effectiveness of anaerobic soil disinfestation

    USDA-ARS?s Scientific Manuscript database

    Anaerobic soil disinfestation (ASD; also termed biological soil disinfestation or soil reductive sterilization) is a non-chemical soil disinfestation process which includes 1) soil incorporation of a labile carbon (C) source, 2) mulching with a polyethylene film to limit gas exchange, and 3) drip ir...

  2. High-resolution (30 m), annual (1986 - 2010) carbon stocks and fluxes for southeastern US forests derived from remote sensing, inventory data, and a carbon cycle model

    NASA Astrophysics Data System (ADS)

    Gu, H.; Zhou, Y.; Williams, C. A.

    2016-12-01

    Disturbance events are highly heterogeneous in space and time, impacting forest carbon dynamics and challenging the quantification and reporting of carbon stocks and flux. This study documents annual carbon stocks and fluxes from 1986 and 2010 mapped at 30-m resolution across southeastern US forests, characterizing how they respond to disturbances and ensuing regrowth. Forest inventory data (FIA) are used to parameterize a carbon cycle model (CASA) to represent post-disturbance carbon trajectories of carbon pools and fluxes for harvest, fire and bark beetle disturbances of varying severity and across forest types and site productivity settings. Time since disturbance at 30 meters is inferred from two remote-sensing data sources: disturbance year (NAFD, MTBS and ADS) and biomass (NBCD 2000) intersected with inventory-derived curves of biomass accumulation with stand age. All of these elements are combined to map carbon stocks and fluxes at a 30-m resolution for the year 2010, and to march backward in time for continuous, annual reporting. Results include maps of annual carbon stocks and fluxes for forests of the southeastern US, and analysis of spatio-temporal patterns of carbon sources/sinks at local and regional scales.

  3. The potential of carbon and nitrogen isotopes to conservatively discriminate between subsoil sediment sources

    NASA Astrophysics Data System (ADS)

    Laceby, J. Patrick; Olley, Jon

    2013-04-01

    Moreton Bay, in South East Queensland, Australia, is a Ramsar wetland of international significance. A decline of the bay's ecosystem health has been primarily attributed to sediments and nutrients from catchment sources. Sediment budgets for three catchments indicated gully erosion dominates the supply of sediment in Knapp Creek and the Upper Bremer River whereas erosion from cultivated soils is the primary sediment source in Blackfellow Creek. Sediment tracing with fallout-radionuclides confirmed subsoil erosion processes dominate the supply of sediment in Knapp Creek and the Upper Bremer River whereas in Blackfellow Creek cultivated and subsoil sources contribute >90% of sediments. Other sediment properties are required to determine the relative sediment contributions of channel bank, gully and cultivated sources in these catchments. The potential of total organic carbon (TOC), total nitrogen (TN), and carbon and nitrogen stable isotopes (δ13C, δ15N) to conservatively discriminate between subsoil sediment sources is presented. The conservativeness of these sediment properties was examined through evaluating particle size variations in depth core soil samples and investigating whether they remain constant in source soils over two sampling occasions. Varying conservative behavior and source discrimination was observed. TN in the

  4. Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia

    PubMed Central

    Lavigne, Franck; Degeai, Jean-Philippe; Komorowski, Jean-Christophe; Guillet, Sébastien; Robert, Vincent; Lahitte, Pierre; Oppenheimer, Clive; Stoffel, Markus; Vidal, Céline M.; Surono; Pratomo, Indyo; Wassmer, Patrick; Hajdas, Irka; Hadmoko, Danang Sri; de Belizal, Edouard

    2013-01-01

    Polar ice core records attest to a colossal volcanic eruption that took place ca. A.D. 1257 or 1258, most probably in the tropics. Estimates based on sulfate deposition in these records suggest that it yielded the largest volcanic sulfur release to the stratosphere of the past 7,000 y. Tree rings, medieval chronicles, and computational models corroborate the expected worldwide atmospheric and climatic effects of this eruption. However, until now there has been no convincing candidate for the mid-13th century “mystery eruption.” Drawing upon compelling evidence from stratigraphic and geomorphic data, physical volcanology, radiocarbon dating, tephra geochemistry, and chronicles, we argue the source of this long-sought eruption is the Samalas volcano, adjacent to Mount Rinjani on Lombok Island, Indonesia. At least 40 km3 (dense-rock equivalent) of tephra were deposited and the eruption column reached an altitude of up to 43 km. Three principal pumice fallout deposits mantle the region and thick pyroclastic flow deposits are found at the coast, 25 km from source. With an estimated magnitude of 7, this event ranks among the largest Holocene explosive eruptions. Radiocarbon dates on charcoal are consistent with a mid-13th century eruption. In addition, glass geochemistry of the associated pumice deposits matches that of shards found in both Arctic and Antarctic ice cores, providing compelling evidence to link the prominent A.D. 1258/1259 ice core sulfate spike to Samalas. We further constrain the timing of the mystery eruption based on tephra dispersal and historical records, suggesting it occurred between May and October A.D. 1257. PMID:24082132

  5. Sampling Singular and Aggregate Point Sources of Carbon Dioxide from Space Using OCO-2

    NASA Astrophysics Data System (ADS)

    Schwandner, F. M.; Gunson, M. R.; Eldering, A.; Miller, C. E.; Nguyen, H.; Osterman, G. B.; Taylor, T.; O'Dell, C.; Carn, S. A.; Kahn, B. H.; Verhulst, K. R.; Crisp, D.; Pieri, D. C.; Linick, J.; Yuen, K.; Sanchez, R. M.; Ashok, M.

    2016-12-01

    Anthropogenic carbon dioxide (CO2) sources increasingly tip the natural balance between natural carbon sources and sinks. Space-borne measurements offer opportunities to detect and analyze point source emission signals anywhere on Earth. Singular continuous point source plumes from power plants or volcanoes turbulently mix into their proximal background fields. In contrast, plumes of aggregate point sources such as cities, and transportation or fossil fuel distribution networks, mix into each other and may therefore result in broader and more persistent excess signals of total column averaged CO2 (XCO2). NASA's first satellite dedicated to atmospheric CO2observation, the Orbiting Carbon Observatory-2 (OCO-2), launched in July 2014 and now leads the afternoon constellation of satellites (A-Train). While continuously collecting measurements in eight footprints across a narrow ( < 10 km) wide swath it occasionally cross-cuts coincident emission plumes. For singular point sources like volcanoes and coal fired power plants, we have developed OCO-2 data discovery tools and a proxy detection method for plumes using SO2-sensitive TIR imaging data (ASTER). This approach offers a path toward automating plume detections with subsequent matching and mining of OCO-2 data. We found several distinct singular source CO2signals. For aggregate point sources, we investigated whether OCO-2's multi-sounding swath observing geometry can reveal intra-urban spatial emission structures in the observed variability of XCO2 data. OCO-2 data demonstrate that we can detect localized excess XCO2 signals of 2 to 6 ppm against suburban and rural backgrounds. Compared to single-shot GOSAT soundings which detected urban/rural XCO2differences in megacities (Kort et al., 2012), the OCO-2 swath geometry opens up the path to future capabilities enabling urban characterization of greenhouse gases using hundreds of soundings over a city at each satellite overpass. California Institute of Technology

  6. Effects of nitrogen and carbon sources on the production of inulinase from strain Bacillus sp. SG113

    NASA Astrophysics Data System (ADS)

    Gavrailov, Simeon; Ivanova, Viara

    2016-03-01

    The effects of the carbon and nitrogen substrates on the growth of Bacillus sp. SG113 strain were studied. The use of organic nitrogen sources (peptone, beef extract, yeast extract, casein) leads to rapid cellular growth and the best results for the Bacillus strain were obtained with casein hydrolysate. From the inorganic nitrogen sources studied, the (NH4) 2SO4 proved to be the best nitrogen source. Casein hydrolysate and (NH4) 2SO4 stimulated the invertase synthesis. In the presence of Jerusalem artichoke, onion and garlic extracts as carbon sources the strain synthesized from 6 to 10 times more inulinase.

  7. Carbon Source Preference in Chemosynthetic Hot Spring Communities

    PubMed Central

    Urschel, Matthew R.; Kubo, Michael D.; Hoehler, Tori M.; Peters, John W.

    2015-01-01

    Rates of dissolved inorganic carbon (DIC), formate, and acetate mineralization and/or assimilation were determined in 13 high-temperature (>73°C) hot springs in Yellowstone National Park (YNP), Wyoming, in order to evaluate the relative importance of these substrates in supporting microbial metabolism. While 9 of the hot spring communities exhibited rates of DIC assimilation that were greater than those of formate and acetate assimilation, 2 exhibited rates of formate and/or acetate assimilation that exceeded those of DIC assimilation. Overall rates of DIC, formate, and acetate mineralization and assimilation were positively correlated with spring pH but showed little correlation with temperature. Communities sampled from hot springs with similar geochemistries generally exhibited similar rates of substrate transformation, as well as similar community compositions, as revealed by 16S rRNA gene-tagged sequencing. Amendment of microcosms with small (micromolar) amounts of formate suppressed DIC assimilation in short-term (<45-min) incubations, despite the presence of native DIC concentrations that exceeded those of added formate by 2 to 3 orders of magnitude. The concentration of added formate required to suppress DIC assimilation was similar to the affinity constant (Km) for formate transformation, as determined by community kinetic assays. These results suggest that dominant chemoautotrophs in high-temperature communities are facultatively autotrophic or mixotrophic, are adapted to fluctuating nutrient availabilities, and are capable of taking advantage of energy-rich organic substrates when they become available. PMID:25819970

  8. Role of wildfire in controlling the source and flux of particulate organic carbon from a small, mountainous, semi-arid watershed

    NASA Astrophysics Data System (ADS)

    Hatten, J. A.; Goni, M. A.; Gray, A. B.; Pasternack, G. B.; Warrick, J. A.; Watson, E.; Wheatcroft, R. A.

    2016-12-01

    The delivery of particulate organic carbon (POC) from rivers to marine sediments is the major long-term sink of CO2 on Earth and a net source of oxygen over millennial time scales. Small mountainous river systems (SMRS) may be responsible for half of the POC delivery to global oceans. The flux of POC in semi-arid SMRS has been thought to be regulated by hydro-geomorphic factors, such as runoff, tectonic uplift rates, and bedrock geology. Fire has been shown to be very important for the flux of suspended sediment from chaparral dominated watersheds, therefore the same should be true for carbon associated with sediment. To date, the role of landscape disturbances such as fire has not been investigated. A large wildfire (2008) in the chaparral-dominated Arroyo Seco watershed, a smaller watershed within the Salinas River basin, provided a unique opportunity to examine the effects of fire on POC source and flux at the watershed-scale. Suspended sediments were collected from the Arroyo Seco for 2 years post fire, and 1 year pre- and 3 years post-fire in the Salinas River. We analyzed these sediments for C, N, 13C, 15N, ad CuO oxidation products (e.g. lignin, char). We found there was an increase in POC flux that is largely a function of elevated sediment flux, but elemental, stable isotope, and biomarker analyses show that both burned and unburned organic matter has contributed to the elevated carbon flux as a result of enhanced surface erosion processes. While these fire-flood events may be rare, sediment associated constituent yield will be greatly underestimated if these events are not considered. Fire-flood events may be especially important to consider in light of shifting fire regimes and more frequent extreme precipitation events predicted as a result of climate change.

  9. Fermionic currents in AdS spacetime with compact dimensions

    NASA Astrophysics Data System (ADS)

    Bellucci, S.; Saharian, A. A.; Vardanyan, V.

    2017-09-01

    We derive a closed expression for the vacuum expectation value (VEV) of the fermionic current density in a (D +1 )-dimensional locally AdS spacetime with an arbitrary number of toroidally compactified Poincaré spatial dimensions and in the presence of a constant gauge field. The latter can be formally interpreted in terms of a magnetic flux treading the compact dimensions. In the compact subspace, the field operator obeys quasiperiodicity conditions with arbitrary phases. The VEV of the charge density is zero and the current density has nonzero components along the compact dimensions only. They are periodic functions of the magnetic flux with the period equal to the flux quantum and tend to zero on the AdS boundary. Near the horizon, the effect of the background gravitational field is small and the leading term in the corresponding asymptotic expansion coincides with the VEV for a massless field in the locally Minkowski bulk. Unlike the Minkowskian case, in the system consisting of an equal number of fermionic and scalar degrees of freedom, with same masses, charges and phases in the periodicity conditions, the total current density does not vanish. In these systems, the leading divergences in the scalar and fermionic contributions on the horizon are canceled and, as a consequence of that, the charge flux, integrated over the coordinate perpendicular to the AdS boundary, becomes finite. We show that in odd spacetime dimensions the fermionic fields realizing two inequivalent representations of the Clifford algebra and having equal phases in the periodicity conditions give the same contribution to the VEV of the current density. Combining the contributions from these fields, the current density in odd-dimensional C -,P - and T -symmetric models are obtained. As an application, we consider the ground state current density in curved carbon nanotubes described in terms of a (2 +1 )-dimensional effective Dirac model.

  10. Stream restoration and sanitary infrastructure alter sources and fluxes of water, carbon, and nutrients in urban watersheds

    NASA Astrophysics Data System (ADS)

    Pennino, M. J.; Kaushal, S. S.; Mayer, P. M.; Utz, R. M.; Cooper, C. A.

    2015-12-01

    An improved understanding of sources and timing of water and nutrient fluxes associated with urban stream restoration is critical for guiding effective watershed management. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in stream restoration and sanitary infrastructure. We compared a restored stream with 3 unrestored streams draining urban development and stormwater management over a 3 year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower monthly peak runoff (9.4 ± 1.0 mm d-1) compared with two urban unrestored streams (ranging from 44.9 ± 4.5 to 55.4 ± 5.8 mm d-1) draining higher impervious surface cover. Peak runoff in the restored stream was more similar to a less developed stream draining extensive stormwater management (13.2 ± 1.9 mm d-1). Interestingly, the restored stream exported most carbon, nitrogen, and phosphorus loads at relatively lower streamflow than the 2 more urban streams, which exported most of their loads at higher and less frequent streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha-1 yr-1), total nitrogen (4.5 ± 0.3 kg ha-1 yr-1), and total phosphorus (161 ± 15 g ha-1 yr-1) were significantly lower in the restored stream compared to both urban unrestored streams (p < 0.05) and similar to the stream draining stormwater management. Although stream restoration appeared to potentially influence hydrology to some degree, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the restored stream was derived from leaky sanitary sewers (during baseflow), similar to the unrestored streams. Longitudinal synoptic surveys of water and nitrate isotopes along all 4 watersheds suggested the importance of urban groundwater contamination from leaky piped infrastructure. Urban groundwater

  11. Conversion of sweet sorghum bagasse into value-added biochar

    USDA-ARS?s Scientific Manuscript database

    Sweet sorghum bagasse is an untapped resourceful carbon-rich material that can be thermochemically converted into value-added biochars. These biochars can be applied to the field as soil amendment for soil health enhancement, improved soil carbon content, water holding capacity, soil drainage and a...

  12. Substrate Dependent Ad-Atom Migration on Graphene and the Impact on Electron-Beam Sculpting Functional Nanopores.

    PubMed

    Freedman, Kevin J; Goyal, Gaurav; Ahn, Chi Won; Kim, Min Jun

    2017-05-10

    The use of atomically thin graphene for molecular sensing has attracted tremendous attention over the years and, in some instances, could displace the use of classical thin films. For nanopore sensing, graphene must be suspended over an aperture so that a single pore can be formed in the free-standing region. Nanopores are typically drilled using an electron beam (e-beam) which is tightly focused until a desired pore size is obtained. E-beam sculpting of graphene however is not just dependent on the ability to displace atoms but also the ability to hinder the migration of ad-atoms on the surface of graphene. Using relatively lower e-beam fluxes from a thermionic electron source, the C-atom knockout rate seems to be comparable to the rate of carbon ad-atom attraction and accumulation at the e-beam/graphene interface (i.e., R knockout ≈ R accumulation ). Working at this unique regime has allowed the study of carbon ad-atom migration as well as the influence of various substrate materials on e-beam sculpting of graphene. We also show that this information was pivotal to fabricating functional graphene nanopores for studying DNA with increased spatial resolution which is attributed to atomically thin membranes.

  13. Influence of Three Contrasting Detrital Carbon Sources on Planktonic Bacterial Metabolism in a Mesotrophic Lake.

    PubMed

    Wehr; Petersen; Findlay

    1999-01-01

    Abstract Lakes receive organic carbon from a diversity of sources which vary in their contribution to planktonic microbial food webs. We conducted a mesocosm study to test the effects of three different detrital carbon sources (algae, aquatic macrophytes, terrestrial leaves) on several measures of microbial metabolism in a small meso-eutrophic lake (DOC approximately 5 mg/L). Small DOC additions (DeltaC < 1 mg/L) affected bacterial numbers, growth, and pathways of carbon acquisition. Macrophyte and leaf detritus significantly increased TDP and color, but bacterial densities initially (+12 h) were unaffected. After 168 h, densities in systems amended with terrestrial detritus were 60% less than in controls, while production rates in mesocosms with macrophyte detritus were 4-fold greater. Detritus treatments resulted in greater per-cell production rates either through stable cell numbers and greater growth rates (macrophyte-C) or lower densities with stable production rates (terrestrial-C). After only 12 h, rates of leucine aminopeptidase (LAPase) activity were 2.5x greater in macrophyte-C systems than in controls, but LAPase and beta-N-acetylglucosamindase activities in systems amended with terrestrial-C were only 50% of rates in controls. After 168 h, beta-xylosidase rates were significantly greater in communities with terrestrial and phytoplankton detritus. Microbial utilization of >20% of 102 carbon sources tested were affected by at least one detritus addition. Macrophyte-C had positive (6% of substrates) and negative (14%) effects on substrate use; terrestrial detritus had mainly positive effects. An ordination based on carbon-use profiles (+12 h) revealed a cluster of macrophyte-amended communities with greater use of psicose, lactulose, and succinamic acid; controls and algal-detritus systems were more effective in metabolizing two common sugars and cellobiose. After 168 h, communities receiving terrestrial detritus were most tightly clustered, exhibiting

  14. Alluvial Mountain Meadow Source-Sink Dynamics: Land-Cover Effects on Water and Fluvial Carbon Export

    NASA Astrophysics Data System (ADS)

    Weiss, T.; Covino, T. P.; Wohl, E.; Rhoades, C.; Fegel, T.; Clow, D. W.

    2017-12-01

    Fluvial networks of historically glaciated mountain landscapes alternate between confined and unconfined valley segments. In low-gradient unconfined reaches, river-connected wet meadows commonly establish, and have been recognized as important locations of long-term water, carbon, and nutrient storage. Among connected meadow floodplains, sink-source behavior shifts as a function of flow state; storing water at high flows (snowmelt) and contributing toward higher late-season baseflows. Despite these benefits, historical and contemporary land-use practices often result in the simplification of wet meadow systems, leading to reduced river-floodplain connectivity, lower water-tables and reductions in hydrologic buffering capacity. In this study, we are exploring hydrologic-carbon relationships across a gradient of valley confinement and river-floodplain connectivity (connected, n=3; disconnected, n=4) within the Colorado Rockies. Our approach includes hydrologic analysis, fluorometric assays, water chemistry, instream metabolic measures, and land-cover assessment to examine patterns between land-form, carbon quantity and quality, and stream ecosystem productivity. Between different meadow types, preliminary results suggest differences between instream productivity, carbon qualities, and hydrologic-carbon sink-source dynamics across the season. These data and analyses will provide insight into water, carbon and nutrient flux dynamics as a function of land-cover in mountain headwaters.

  15. A time resolved metabolomics study: the influence of different carbon sources during growth and starvation of Bacillus subtilis.

    PubMed

    Meyer, Hanna; Weidmann, Hendrikje; Mäder, Ulrike; Hecker, Michael; Völker, Uwe; Lalk, Michael

    2014-07-01

    In its natural environment, the soil, the Gram-positive model bacterium Bacillus subtilis frequently encounters nutrient limitation and other stress factors. Efficient adaptation mechanisms are necessary to cope with this wide range of environmental challenges. The ability to utilize diverse carbon sources represents a key adaptation process that allows B. subtilis to thrive in its natural habitat. To gain a comprehensive insight into the metabolism of B. subtilis, global metabolite analyses were performed during growth with glucose alone or glucose with either malate, fumarate or citrate as carbon/energy sources. Furthermore, to achieve a comprehensive coverage of a wide range of chemically different metabolites, complementary GC-MS, LC-MS and (1)H-NMR analyses were applied. This study reveals that the availability of different carbon sources results in different extracellular metabolite profiles whereas a regulated intracellular metabolite equilibrium was observed. In addition, the typical energy-starvation induced activation of the general stress sigma factor σ(B) was only observed upon entry into the stationary phase with glucose or glucose and malate as carbon sources.

  16. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 2. Modeling carbon sources, sinks, and δ13C evolution

    USGS Publications Warehouse

    McMahon, Peter B.; Chapelle, Francis H.

    1991-01-01

    Stable isotope data for dissolved inorganic carbon (DIC), carbonate shell material and cements, and microbial CO2 were combined with organic and inorganic chemical data from aquifer and confining-bed pore waters to construct geochemical reaction models along a flowpath in the Black Creek aquifer of South Carolina. Carbon-isotope fractionation between DIC and precipitating cements was treated as a Rayleigh distillation process. Organic matter oxidation was coupled to microbial fermentation and sulfate reduction. All reaction models reproduced the observed chemical and isotopic compositions of final waters. However, model 1, in which all sources of carbon and electron-acceptors were assumed to be internal to the aquifer, was invalidated owing to the large ratio of fermentation CO2 to respiration CO2 predicted by the model (5–49) compared with measured ratios (two or less). In model 2, this ratio was reduced by assuming that confining beds adjacent to the aquifer act as sources of dissolved organic carbon and sulfate. This assumption was based on measured high concentrations of dissolved organic acids and sulfate in confining-bed pore waters (60–100 μM and 100–380 μM, respectively) relative to aquifer pore waters (from less than 30 μM and 2–80 μM, respectively). Sodium was chosen as the companion ion to organic-acid and sulfate transport from confining beds because it is the predominant cation in confining-bed pore waters. As a result, excessive amounts of Na-for-Ca ion exchange and calcite precipitation (three to four times more cement than observed in the aquifer) were required by model 2 to achieve mass and isotope balance of final water. For this reason, model 2 was invalidated. Agreement between model-predicted and measured amounts of carbonate cement and ratios of fermentation CO2 to respiration CO2 were obtained in a reaction model that assumed confining beds act as sources of DIC, as well as organic acids and sulfate. This assumption was supported

  17. Ascorbate, added after irradiation, reduces the mutant yield and alters the spectrum of CD59- mutations in A(L) cells irradiated with high LET carbon ions

    NASA Technical Reports Server (NTRS)

    Ueno, Akiko; Vannais, Diane; Lenarczyk, Marek; Waldren, Charles A.; Chatterjee, A. (Principal Investigator)

    2002-01-01

    It has been reported that X-ray induced HPRT- mutation in cultured human cells is prevented by ascorbate added after irradiation. Mutation extinction is attributed to neutralization by ascorbate, of radiation-induced long-lived radicals (LLR) with half-lives of several hours. We here show that post-irradiation treatment with ascorbate (5 mM added 30 min after radiation) reduces, but does not eliminate, the induction of CD59- mutants in human-hamster hybrid A(L) cells exposed to high-LET carbon ions (LET of 100 KeV/microm). RibCys, [2(R,S)-D-ribo-1',2',3',4'-Tetrahydroxybutyl]-thiazolidene-4(R)-ca riboxylic acid] (4 mM) gave a similar but lesser effect. The lethality of the carbon ions was not altered by these chemicals. Preliminary data are presented that ascorbate also alters the spectrum of CD59- mutations induced by the carbon beam, mainly by reducing the incidence of small mutations and mutants displaying transmissible genomic instability (TGI), while large mutations are unaffected. Our results suggest that LLR are important in initiating TGI.

  18. Adding source positions to the IVS Combination

    NASA Astrophysics Data System (ADS)

    Bachmann, S.; Thaller, D.

    2016-12-01

    Simultaneous estimation of source positions, Earth orientation parameters (EOPs) and station positions in one common adjustment is crucial for a consistent generation of celestial and terrestrial reference frame (CRF and TRF, respectively). VLBI is the only technique to guarantee this consistency. Previous publications showed that the VLBI intra-technique combination could improve the quality of the EOPs and station coordinates compared to the individual contributions. By now, the combination of EOP and station coordinates is well established within the IVS and in combination with other space geodetic techniques (e.g. inter-technique combined TRF like the ITRF). Most of the contributing IVS Analysis Centers (AC) now provide source positions as a third parameter type (besides EOP and station coordinates), which have not been used for an operational combined solution yet. A strategy for the combination of source positions has been developed and integrated into the routine IVS combination. Investigations are carried out to compare the source positions derived from different IVS ACs with the combined estimates to verify whether the source positions are improved by the combination, as it has been proven for EOP and station coordinates. Furthermore, global solutions of source positions, i.e., so-called catalogues describing a CRF, are generated consistently with the TRF similar to the IVS operational combined quarterly solution. The combined solutions of the source positions time series and the consistently generated TRF and CRF are compared internally to the individual solutions of the ACs as well as to external CRF catalogues and TRFs. Additionally, comparisons of EOPs based on different CRF solutions are presented as an outlook for consistent EOP, CRF and TRF realizations.

  19. Influence of carbon and lipid sources on variation of mercury and other trace elements in polar bears (Ursus maritimus).

    PubMed

    Routti, Heli; Letcher, Robert J; Born, Erik W; Branigan, Marsha; Dietz, Rune; Evans, Thomas J; McKinney, Melissa A; Peacock, Elizabeth; Sonne, Christian

    2012-12-01

    In the present study, the authors investigated the influence of carbon and lipid sources on regional differences in liver trace element (As, Cd, Cu, total Hg, Mn, Pb, Rb, Se, and Zn) concentrations measured in polar bears (Ursus maritimus) (n = 121) from 10 Alaskan, Canadian Arctic, and East Greenland subpopulations. Carbon and lipid sources were assessed using δ(13) C in muscle tissue and fatty acid (FA) profiles in subcutaneous adipose tissue as chemical tracers. A negative relationship between total Hg and δ(13) C suggested that polar bears feeding in areas with higher riverine inputs of terrestrial carbon accumulate more Hg than bears feeding in areas with lower freshwater input. Mercury concentrations were also positively related to the FA 20:1n-9, which is biosynthesized in large amounts in Calanus copepods. This result raises the hypothesis that Calanus glacialis are an important link in the uptake of Hg in the marine food web and ultimately in polar bears. Unadjusted total Hg, Se, and As concentrations showed greater geographical variation among polar bear subpopulations compared with concentrations adjusted for carbon and lipid sources. The Hg concentrations adjusted for carbon and lipid sources in Bering-Chukchi Sea polar bear liver tissue remained the lowest among subpopulations. Based on these findings, the authors suggest that carbon and lipid sources for polar bears should be taken into account when one is assessing spatial and temporal trends of long-range transported trace elements. Copyright © 2012 SETAC.

  20. ADS pilot program Plan

    NASA Technical Reports Server (NTRS)

    Clauson, J.; Heuser, J.

    1981-01-01

    The Applications Data Service (ADS) is a system based on an electronic data communications network which will permit scientists to share the data stored in data bases at universities and at government and private installations. It is designed to allow users to readily locate and access high quality, timely data from multiple sources. The ADS Pilot program objectives and the current plans for accomplishing those objectives are described.

  1. Recent (<4 year old) Leaf Litter is Not a Major Source of Microbial Carbon in a Temperate Forest Mineral Soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Christiane; Trumbore, Susan E.; Froberg, Mats J.

    2010-01-01

    Microbial communities in soil A horizons derive their carbon from several potential sources: organic carbon (C) transported down from overlying litter and organic horizons, root-derived C, or soil organic matter. We took advantage of a multi-year experiment that manipulated the {sup 14}C isotope signature of surface leaf litter inputs in a temperate forest at the Oak Ridge Reservation, Tennessee, USA, to quantify the contribution of recent leaf litter C to microbial respiration and biomarkers in the underlying mineral soil. We observed no measurable difference (< {approx}40{per_thousand} given our current analytical methods) in the radiocarbon signatures of microbial phospholipid fatty acidsmore » (PLFA) isolated from the top 10 cm of mineral soil in plots that experienced 3 years of litterfall that differed in each year by {approx}750{per_thousand} between high-{sup 14}C and low-{sup 14}C treatments. Assuming any difference in {sup 14}C between the high- and low-{sup 14}C plots would reflect C derived from these manipulated litter additions, we estimate that <6% of the microbial C after 4 years was derived from the added 1-4-year-old surface litter. Large contributions of C from litter < 1 year (or >4 years) old (which fell after (or prior to) the manipulation and therefore did not differ between plots) are not supported because the {sup 14}C signatures of the PLFA compounds (averaging 200-220{per_thousand}) is much higher that of the 2004-5 leaf litter (115{per_thousand}) or pre-2000 litter. A mesocosm experiment further demonstrated that C leached from {sup 14}C-enriched surface litter or the O horizon was not a detectable C source in underlying mineral soil microbes during the first eight months after litter addition. Instead a decline in the {sup 14}C of PLFA over the mesocosm experiment likely reflected the loss of a pre-existing substrate not associated with added leaf litter. Measured PLFA {Delta}{sup 14}C signatures were higher than those measured in

  2. Tracing Carbon Sources through Aquatic and Terrestrial Food Webs Using Amino Acid Stable Isotope Fingerprinting

    PubMed Central

    Larsen, Thomas; Ventura, Marc; Andersen, Nils; O’Brien, Diane M.; Piatkowski, Uwe; McCarthy, Matthew D.

    2013-01-01

    Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring δ13C patterns among amino acids (δ13CAA) could distinguish between multiple aquatic and terrestrial primary production sources. We found that δ13CAA patterns in contrast to bulk δ13C values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their δ13CAA patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk δ13C values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer δ13C patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs. PMID:24069196

  3. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting.

    PubMed

    Larsen, Thomas; Ventura, Marc; Andersen, Nils; O'Brien, Diane M; Piatkowski, Uwe; McCarthy, Matthew D

    2013-01-01

    Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring δ(13)C patterns among amino acids (δ(13)CAA) could distinguish between multiple aquatic and terrestrial primary production sources. We found that δ(13)CAA patterns in contrast to bulk δ(13)C values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their δ(13)CAA patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk δ(13)C values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer δ(13)C patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs.

  4. Elucidating the Role of Carbon Sources on Abiotic and Biotic Release of Arsenic into Cambodian Aquifers

    NASA Astrophysics Data System (ADS)

    Koeneke, M.

    2017-12-01

    Arsenic (As) is a naturally occurring contaminant in Cambodia that has been contaminating well-water sources of millions of people. Commonly, studies look into the biotic factors that cause the arsenic to be released from aquifer sediments to groundwater. However, abiotic release of As from sediments, though little studied, may also play key roles in As contamination of well water. The goal of this research is to quantitatively compare organic-carbon mediated abiotic and biotic release of arsenic from sediments to groundwater. Batch anaerobic incubation experiments under abiotic (sodium azide used to immobilize microbes) and biotic conditions were conducted using Cambodian aquifer sediments, four different organic carbon sources (sodium lactate, sodium citrate, sodium oxalate, and humic acid), and six different carbon concentrations (0, 1, 2.5, 5, 10, 25mg C/L). Dissolved arsenic, iron(Fe), and manganese(Mn) concentrations in the treatments were measured 112 days . In addition, sediment and solution carbon solution was measured . Collectively, these show how different carbon sources, different carbon concentrations, and how abiotic and biotic factors impact the release of arsenic from Cambodian sediments into aquifers. Overall, an introduction of organic carbon to the soil increases the amount of As released from the sediment. The biotic + abiotic and abiotic conditions seemed to play a minimal role in the amount of As released. Dissolved species analysis showed us that 100% of the As was As(V), Our ICP-MS results vary due to the heterogeneity of samples, but when high levels are Fe are seen in solution, we also see high levels of As. We also see higher As concentrations when there is a smaller amount of Mn in solution.

  5. Enhanced primary sludge sonication by heat insulation to reclaim carbon source for biological phosphorous removal.

    PubMed

    Tian, Qing; Wang, Qi; Zhu, Yanbing; Li, Fang; Zhuang, Lin; Yang, Bo

    2017-01-01

    Ultrasound pretreatment is a potent step to disintegrate primary sludge (PS). The supernatant of sonicated PS is recycled as an alternative carbon source for biological phosphorus removal. In this study, we investigated the role of temperature on PS disintegration during sonication. We found that a temperature of 60°C yielded a dissolution rate of about 2% soluble chemical oxygen demand (SCOD) as compared to 7% SCOD using sonication at the specific energy (SE) of 7359kJ/kg TS. Using the SE of 6000kJ/kg TS with heat insulation during sonication, the SCOD dissolution rate of PS was similar to the result at the SE of 7051kJ/kg TS without heat insulation. Upon treatment with sonication, the PS released low concentrations of Cu and Zn into the supernatant. The phosphorus-accumulating organisms (PAOs) used the supernatant of sonicated PS as the carbon source. Supplementation with the diluted sonicated PS supernatant (SCOD≈1000mg/L) in anaerobic phase resulted in the release of phosphorus (36mg/L) and the production of polyhydroxyalkanoates (PHAs) (0.36g PHA/g SS). Compared with sodium acetate, higher polyhydroxyvalerate (PHV) faction in the polyhydroxyalkanoates (PHAs) was observed in the biomass when incubated with sonicated PS as the carbon source. This work provides a simple pathway to conserve energy and to enhance efficiencies of ultrasonic pretreatment and the recovery of carbon source from the sludge for improving the phosphorus removal in the ENR system. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Carbon Transformations and Source - Sink Dynamics along a River, Marsh, Estuary, Ocean Continuum

    NASA Astrophysics Data System (ADS)

    Anderson, I. C.; Crosswell, J.; Czapla, K.; Van Dam, B.

    2017-12-01

    Estuaries, the transition zone between land and the coastal ocean, are highly dynamic systems in which carbon sourced from watersheds, marshes, atmosphere, and ocean may be transformed, sequestered, or exported. The net fate of carbon in estuaries, governed by the interactions of biotic and physical drivers varying on spatial and temporal scales, is currently uncertain because of limited observational data. In this study, conducted in a temperate, microtidal, and shallow North Carolina USA estuary, carbon exchanges via river, tributary, and fringing salt marsh, air-water fluxes, sediment C accumulation, and metabolism were monitored over two-years, with sharply different amounts of rainfall. Air-water CO2 fluxes and metabolic variables were simultaneously measured in channel and shoal by conducting high-resolution surveys at dawn, dusk and the following dawn. Marsh CO2 exchanges, sediment C inputs, and lateral exports of DIC and DOC were also measured. Carbon flows between estuary regions and export to the coastal ocean were calculated by quantifying residual transport of DIC and TOC down-estuary as flows were modified by sources, sinks and internal transformations. Variation in metabolic rates, CO2, TOC and DIC exchanges were large when determined for short time and limited spatial scales. However, when scaled to annual and whole estuarine scales, variation tended to decrease because of counteracting metabolic rates and fluxes between channel and shoal or between seasons. Although overall salt marshes accumulated OC, they were a negligible source of DIC and DOC to the estuary, and net inputs of C to the marsh were mainly derived from sediment OC. These results, as observed in other observational studies of estuaries, show that riverine input, light, temperature and metabolism are major controls on carbon cycling. Comparison of our results with other types of estuaries varying in depth, latitude, and nutrification demonstrates large discrepancies underscoring the

  7. Carbon Storages in Plantation Ecosystems in Sand Source Areas of North Beijing, China

    PubMed Central

    Liu, Xiuping; Zhang, Wanjun; Cao, Jiansheng; Shen, Huitao; Zeng, Xinhua; Yu, Zhiqiang; Zhao, Xin

    2013-01-01

    Afforestation is a mitigation option to reduce the increased atmospheric carbon dioxide levels as well as the predicted high possibility of climate change. In this paper, vegetation survey data, statistical database, National Forest Resource Inventory database, and allometric equations were used to estimate carbon density (carbon mass per hectare) and carbon storage, and identify the size and spatial distribution of forest carbon sinks in plantation ecosystems in sand source areas of north Beijing, China. From 2001 to the end of 2010, the forest areas increased more than 2.3 million ha, and total carbon storage in forest ecosystems was 173.02 Tg C, of which 82.80 percent was contained in soil in the top 0–100 cm layer. Younger forests have a large potential for enhancing carbon sequestration in terrestrial ecosystems than older ones. Regarding future afforestation efforts, it will be more effective to increase forest area and vegetation carbon density through selection of appropriate tree species and stand structure according to local climate and soil conditions, and application of proper forest management including land-shaping, artificial tending and fencing plantations. It would be also important to protect the organic carbon in surface soils during forest management. PMID:24349223

  8. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    PubMed Central

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; Brooks, William A.; Onasch, Timothy B.; Jayne, John T.; Worsnop, Douglas R.; China, Swarup; Sharma, Noopur; Mazzoleni, Claudio; Xu, Lu; Ng, Nga L.; Liu, Dantong; Allan, James D.; Lee, James D.; Fleming, Zoë L.; Mohr, Claudia; Zotter, Peter; Szidat, Sönke; Prévôt, André S. H.

    2015-01-01

    Black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC's light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ∼1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC's warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. We conclude that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models. PMID:26419204

  9. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    DOE PAGES

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; ...

    2015-09-30

    We report that black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ~1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combinationmore » of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. In conclusion, we find that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.« less

  10. Coupling experimental and field-based approaches to decipher carbon sources in the shell of the great scallop, Pecten maximus (L.)

    NASA Astrophysics Data System (ADS)

    Marchais, V.; Richard, J.; Jolivet, A.; Flye-Sainte-Marie, J.; Thébault, J.; Jean, F.; Richard, P.; Paulet, Y.-M.; Clavier, J.; Chauvaud, L.

    2015-11-01

    This research investigated how the carbon isotopic composition of food source (δ13Cfood) and dissolved inorganic carbon (δ13CDIC) influences the carbon isotopic composition of Pecten maximus shells (δ13Cshell) under both experimental and natural conditions. The objectives are to better understand the relationship between P. maximus and its environment, and to specifically distinguish conditions under which calcification is influenced by respired CO2 derived from food sources versus conditions in which calcification uses inorganic carbon from seawater. Laboratory experiment investigated carbon incorporation into shell carbonates by maintaining scallops under conditions where the stable carbon isotopic composition of food sources was considerably depleted (-54‰), relative to values observed in the natural environment (-21‰). Laboratory experiment ran for 78 days under three temperature conditions, 15 °C, 21 °C and 25 °C. A survey of the environmental parameters and stable carbon isotopic composition into shell carbonate of natural population of P. maximus was also realized during the same year in the Bay of Brest, France. Data collected from both laboratory experiment and the natural environment confirmed that both δ13CDIC and δ13Cfood influence δ13Cshell values and that organic carbon incorporation (CM) averages about 10% (4.3-6.8% under experimental conditions and 1.9-16.6% in the natural environment). The shift in stable carbon isotopic composition from the uptake of depleted food sources under experimental conditions realized a marked divergence in the predicted equilibrium between calcium carbonate and ambient bicarbonate, relative to the natural environment. This offset was 1.7 ± 0.6‰ for scallops in their natural environment and 2.5 ± 0.5 and 3.2 ± 0.9‰ for scallops under experimental conditions at water temperatures of 15 °C and 21 °C, respectively. The offset of 3‰ for scallops subjected to laboratory experiment could not be explained

  11. Assessment of Contribution of Contemporary Carbon Sources to Size-Fractionated Particulate Matter and Time-Resolved Bulk Particulate Matter Using the Measurement of Radiocarbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, H M; Young, T M; Buchholz, B A

    2009-04-16

    This study was motivated by a desire to improve understanding of the sources contributing to the carbon that is an important component of airborne particulate matter (PM). The ultimate goal of this project was to lay a ground work for future tools that might be easily implemented with archived or routinely collected samples. A key feature of this study was application of radiocarbon measurement that can be interpreted to indicate the relative contributions from fossil and non-fossil carbon sources of atmospheric PM. Size-resolved PM and time-resolved PM{sub 10} collected from a site in Sacramento, CA in November 2007 (Phase I)more » and March 2008 (Phase II) were analyzed for radiocarbon and source markers such as levoglucosan, cholesterol, and elemental carbon. Radiocarbon data indicates that the contributions of non-fossil carbon sources were much greater than that from fossil carbon sources in all samples. Radiocarbon and source marker measurements confirm that a greater contribution of non-fossil carbon sources in Phase I samples was highly likely due to residential wood combustion. The present study proves that measurement of radiocarbon and source markers can be readily applied to archived or routinely collected samples for better characterization of PM sources. More accurate source apportionment will support ARB in developing more efficient control strategies.« less

  12. FOREST HARVESTS AND WOOD PRODUCTS: SOURCES AND SINKS OF ATMOSPHERIC CARBON DIOXIDE

    EPA Science Inventory

    Changes in the net carbon(c)sink-source balance related to a country's forest harvesting and use of wood products is an important component in making country-level inventories of greenhouse gas emissions,a current activity within many signatory nations to the UN Framework Convent...

  13. Diagnostic air quality model evaluation of source-specific primary and secondary fine particulate carbon.

    PubMed

    Napelenok, Sergey L; Simon, Heather; Bhave, Prakash V; Pye, Havala O T; Pouliot, George A; Sheesley, Rebecca J; Schauer, James J

    2014-01-01

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004-February 2005) provided an unprecedented opportunity to diagnostically evaluate the results of a numerical air quality model. Previous analyses of these measurements demonstrated excellent mass closure for the variety of contributing sources. In this study, a carbon-apportionment version of the Community Multiscale Air Quality (CMAQ) model was used to track primary organic and elemental carbon emissions from 15 independent sources such as mobile sources and biomass burning in addition to four precursor-specific classes of secondary organic aerosol (SOA) originating from isoprene, terpenes, aromatics, and sesquiterpenes. Conversion of the source-resolved model output into organic tracer concentrations yielded a total of 2416 data pairs for comparison with observations. While emission source contributions to the total model bias varied by season and measurement location, the largest absolute bias of -0.55 μgC/m(3) was attributed to insufficient isoprene SOA in the summertime CMAQ simulation. Biomass combustion was responsible for the second largest summertime model bias (-0.46 μgC/m(3) on average). Several instances of compensating errors were also evident; model underpredictions in some sectors were masked by overpredictions in others.

  14. Composite carbon foam electrode

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  15. Composite carbon foam electrode

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  16. Tracing the source of sedimentary organic carbon in the Loess Plateau of China: An integrated elemental ratio, stable carbon signatures, and radioactive isotopes approach.

    PubMed

    Liu, Chun; Dong, Yuting; Li, Zhongwu; Chang, Xiaofeng; Nie, Xiaodong; Liu, Lin; Xiao, Haibing; Bashir, Hassan

    2017-02-01

    Soil erosion, which will induce the redistribution of soil and associated soil organic carbon (SOC) on the Earth's surface, is of critically importance for biogeochemical cycling of essential elements and terrestrial carbon sequestration. Despite the importance of soil erosion, surprisingly few studies have evaluated the sources of eroded carbon (C). This study used natural abundance levels of the stable isotope signature ( 13 C) and radioactive isotopes ( 137 Cs and 210 Pb ex ), along with elements ratio (C/N) based on a two end member mixing model to qualitatively and quantitatively identify the sources of sedimentary OC retained by check dam in the Qiaozigou small watershed in the Loess Plateau, China. Sediment profiles (0-200 cm) captured at natural depositional area of the basin was compared to possible source materials, which included: superficial Loess mineral soils (0-20 cm) from three land use types [i.e., grassland (Medicago sativa), forestland (Robinia pseudoacacia.), shrubland (Prunus sibirica), and gully land (Loess parent material.)]. The results demonstrated that SOC in sediments showed significantly negative correlation with pH (P < 0.01), and positive correlation with soil water content (SWC) (P < 0.05). The sedimentary OC was not derived from grasslands or gullies. Forestland and shrubland were two main sources of eroded organic carbon within the surface sediment (0-60 cm deep), except for that in the 20-40 cm soil layer. Radionuclides analyses also implied that the surface sediments retained by check-dams mainly originated from soils of forestland and shrubland. Results of the two end-member mixing model demonstrated that more than 50% SOC (mean probability estimate (MPE) 50.13% via 13 C and 60.53% via C/N) in surface sediment (0-20 cm deep) derived from forestland, whereas subsurface sedimentary SOC (20-200 cm) mainly resulted from shrubland (MPE > 50%). Although uncertainties on the sources of SOC in deep soils exist, the soil

  17. Intakes and sources of total and added sugars among 4 to 13-year-old children in China, Mexico and the United States.

    PubMed

    Afeiche, M C; Koyratty, B N S; Wang, D; Jacquier, E F; Lê, K-A

    2018-04-01

    Intakes of dietary sugars is a global concern, and many national and international organizations have set targets to limit consumption. However, it is unclear to what extent intakes of total and added sugars vary between geographies. The aim of this study was to assess the differences in intakes of total and added sugars in 4 to 13-year-old children in China, Mexico and the United States. The secondary aim was to identify main sources of total and added sugars in the diets of these children. Secondary data analysis was conducted using the 2011 China Health and Nutrition Survey, 2012 Mexican National Health and Nutrition Survey, and 2009-2012 US National Health and Nutrition Examination Surveys. Total and added sugar intakes were calculated using the US Food Patterns Equivalents Database. Mean intakes of total and added sugars were 26 and 9 g d -1 among Chinese children, 92 and 55 g d -1 among Mexican children, and 124 and 76 g d -1 among US children, respectively. The top food sources of total sugars were fruits among Chinese children, and sugar-sweetened beverages and milk-based beverages among Mexican and US children. These data highlight the heterogeneity of food patterns worldwide and the need for adapted country-specific public health recommendations on sugars. © 2017 The Authors. Pediatric Obesity published by John Wiley & Sons Ltd on behalf of World Obesity Federation.

  18. Factors influencing buyers' willingness to offer price premiums for carbon credits sourced from urban forests

    Treesearch

    N.C. Poudyal; J.M. Bowker; J.P. Siry

    2015-01-01

    Marketing carbon offset credits generated by urban forest projects could help cities and local governments achieve their financial self-sufficiency and environmental sustainability goals. Understanding the value of carbon credits sourced from urban forests, and the factors that determine buyers’ willingness to pay a premium for such credits could benefit cities in...

  19. Production of bacterial cellulose using different carbon sources and culture media.

    PubMed

    Mohammadkazemi, Faranak; Azin, Mehrdad; Ashori, Alireza

    2015-03-06

    In this work, the effects of carbon sources and culture media on the production and structural properties of bacterial cellulose (BC) have been studied. BC nanofibers were synthesized using Gluconacetobacter xylinus strain PTCC 1734. Media used were Hestrin-Schramm (H), Yamanaka (Y), and Zhou (Z). Five different carbon sources, namely date syrup, glucose, mannitol, sucrose, and food-grade sucrose were used in these media. All the produced BC pellicles were characterized in terms of dry weight production, biomass yield, thermal stability, crystallinity and morphology by thermogravimetric analysis (TGA), x-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The obtained results showed that mannitol lead to the highest yield, followed by sucrose. The highest production efficiency of mannitol might be due to the nitrogen source, which plays an important role. The maximum improvement on the thermal stability of the composites was achieved when mannitol was used in H medium. In addition, the crystallinity was higher in BC formed in H medium compared to other media. FE-SEM micrographs illustrated that the BC pellicles, synthesized in the culture media H and Z, were stable, unlike those in medium Y that were unstable. The micrographs of BC produced in media containing mannitol and sucrose provided evidence of the strong interfacial adhesion between the BC fibers without noticeable aggregates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Determining sources of dissolved organic carbon and disinfection byproduct precursors to the McKenzie River, Oregon

    USGS Publications Warehouse

    Kraus, Tamara E.C.; Anderson, Chauncey W.; Morgenstern, Karl; Downing, Bryan D.; Pellerin, Brian A.; Bergamaschi, Brian A.

    2010-01-01

    This study was conducted to determine the main sources of dissolved organic carbon (DOC) and disinfection byproduct (DBP) precursors to the McKenzie River, Oregon (USA). Water samples collected from the mainstem, tributaries, and reservoir outflows were analyzed for DOC concentration and DBP formation potentials (trihalomethanes [THMFPs] and haloacetic acids [HAAFPs]). In addition, optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) were measured to provide insight into DOM composition and assess whether optical properties are useful proxies for DOC and DBP precursor concentrations. Optical properties indicative of composition suggest that DOM in the McKenzie River mainstem was primarily allochthonous - derived from soils and plant material in the upstream watershed. Downstream tributaries had higher DOC concentrations than mainstem sites (1.6 ?? 0.4 vs. 0.7 ?? 0.3 mg L-1) but comprised <5% of mainstem flows and had minimal effect on overall DBP precursor loads. Water exiting two large upstream reservoirs also had higher DOC concentrations than the mainstem site upstream of the reservoirs, but optical data did not support in situ algal production as a source of the added DOC during the study. Results suggest that the first major rain event in the fall contributes DOM with high DBP precursor content. Although there was interference in the absorbance spectra in downstream tributary samples, fluorescence data were strongly correlated to DOC concentration (R 2 = 0.98), THMFP (R2 = 0.98), and HAAFP (R2 = 0.96). These results highlight the value of using optical measurements for identifying the concentration and sources of DBP precursors in watersheds, which will help drinking water utilities improve source water monitoring and management programs. Copyright ?? 2010 by the American Society of Agronomy.

  1. Elevated carboxyhemoglobin: sources of carbon monoxide exposure.

    PubMed

    Buchelli Ramirez, Herminia; Fernández Alvarez, Ramón; Rubinos Cuadrado, Gemma; Martinez Gonzalez, Cristina; Rodriguez Jerez, Francisco; Casan Clara, Pere

    2014-11-01

    Inhalation of carbon monoxide (CO) can result in poisoning, with symptoms ranging from mild and nonspecific to severe, or even death. CO poisoning is often underdiagnosed because exposure to low concentrations goes unnoticed, and threshold values for normal carboxyhemoglobin vary according to different authors. The aim of our study was to analyze carboxyhemoglobin (COHb) levels in an unselected population and detect sources of CO exposure In a cross-sectional descriptive study, we analyzed consecutive arterial blood gas levels processed in our laboratory. We selected those with COHb≥2.5% in nonsmokers and ≥5% in smokers. In these cases a structured telephone interview was conducted. Elevated levels of COHb were found in 64 (20%) of 306 initial determinations. Of these, data from 51 subjects aged 65±12 years, 31 (60%) of which were men, were obtained. Mean COHb was 4.0%. Forty patients (78%) were non-smokers with mean COHb of 3.2%, and 11 were smokers with COHb of 6.7%. In 45 patients (88.2%) we detected exposure to at least one source of ambient CO other than cigarette smoke. A significant proportion of individuals from an unselected sample had elevated levels of COHb. The main sources of CO exposure were probably the home, so this possibility should be explored. The population should be warned about the risks and encouraged to take preventive measures. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  2. The fabrication of carbon nanotube field-effect transistors with semiconductors as the source and drain contact materials.

    PubMed

    Xiao, Z; Camino, F E

    2009-04-01

    Sb(2)Te(3) and Bi(2)Te(2)Se semiconductor materials were used as the source and drain contact materials in the fabrication of carbon nanotube field-effect transistors (CNTFETs). Ultra-purified single-walled carbon nanotubes (SWCNTs) were ultrasonically dispersed in N-methyl pyrrolidone solvent. Dielectrophoresis was used to deposit and align SWCNTs for fabrication of CNTFETs. The Sb(2)Te(3)- and Bi(2)Te(2)Se-based CNTFETs demonstrate p-type metal-oxide-silicon-like I-V curves with high on/off drain-source current ratio at large drain-source voltages and good saturation of drain-source current with increasing drain-source voltage. The fabrication process developed is novel and has general meaning, and could be used for the fabrication of SWCNT-based integrated devices and systems with semiconductor contact materials.

  3. Dry season limnological conditions and basin geology exhibit complex relationships with δ13C and δ15N of carbon sources in four Neotropical floodplains.

    PubMed

    Zaia Alves, Gustavo H; Hoeinghaus, David J; Manetta, Gislaine I; Benedito, Evanilde

    2017-01-01

    Studies in freshwater ecosystems are seeking to improve understanding of carbon flow in food webs and stable isotopes have been influential in this work. However, variation in isotopic values of basal production sources could either be an asset or a hindrance depending on study objectives. We assessed the potential for basin geology and local limnological conditions to predict stable carbon and nitrogen isotope values of six carbon sources at multiple locations in four Neotropical floodplain ecosystems (Paraná, Pantanal, Araguaia, and Amazon). Limnological conditions exhibited greater variation within than among systems. δ15N differed among basins for most carbon sources, but δ13C did not (though high within-basin variability for periphyton, phytoplankton and particulate organic carbon was observed). Although δ13C and δ15N values exhibited significant correlations with some limnological factors within and among basins, those relationships differed among carbon sources. Regression trees for both carbon and nitrogen isotopes for all sources depicted complex and in some cases nested relationships, and only very limited similarity was observed among trees for different carbon sources. Although limnological conditions predicted variation in isotope values of carbon sources, we suggest the resulting models were too complex to enable mathematical corrections of source isotope values among sites based on these parameters. The importance of local conditions in determining variation in source isotope values suggest that isotopes may be useful for examining habitat use, dispersal and patch dynamics within heterogeneous floodplain ecosystems, but spatial variability in isotope values needs to be explicitly considered when testing ecosystem models of carbon flow in these systems.

  4. Research on denitrification efficiency of three types of solid carbon source

    NASA Astrophysics Data System (ADS)

    Cai, Y.; Zhang, J. D.; Li, F.; Cao, Y. X.; Zhu, L. Y.; Xiao, M. S.

    2018-01-01

    C/N rates can greatly influence efficiency of denitrification. It is difficult for current treated effluent to reach GB18918-2002 primary effluent standard because of its low C/N rate. To improve the efficiency of denitrification, the quality of effluent, and realize the waste recycling, this article selected magnolia leaves, loofah and degradable meal box as the solid carbon source and set different solid-liquid ratio of magnolia leaves for periodic denitrification stage to study the change of NO3 --N, TN, COD, NO2 --N, NH4 +, PO4 3- and color. The results showed that in the condition of influent nitrate concentration of 40 mg/L, carbon dosage of 10 g, the reaction temperature of 25°C, the nitrate removal rates of magnolia leaves and loofah reached 89.0% and 96.8% respectively, rather higher than degradable meal box (56.3%). The TN removal rates of magnolia leaves (91.7%) and loofah (77.7%) were both higher than degradable meal box (53.9%), and the effluent TN concentration of loofah and degradable meal box reached 25.4 mg/L and 21.1 mg/L respectively, which couldn’t be discharged according to the primary effluent concentration standard of GB18918-2002. The released concentration of ammonia nitrogen and phosphate: loofah> magnolia> degradable meal box. The high solid-liquid ratio of magnolia leaves helped to improve the TN removal rate, which reached 75.0% (1:200) and 91.7% (1:100), but it caused higher released concentration of carbon, ammonia nitrogen and phosphate to effect system heavily. Under the integrated analysis, the low solid-liquid ratio (1:200) of magnolia leaves was more suitable to be the denitrification external carbon source.

  5. Microbial synthesis of rhamnolipids by Pseudomonas aeruginosa (ATCC 10145) on waste frying oil as low cost carbon source.

    PubMed

    Wadekar, S D; Kale, S B; Lali, A M; Bhowmick, D N; Pratap, A P

    2012-01-01

    Vegetable edible oils and fats are mainly used for frying purposes in households and the food industry. The oil undergoes degradation during frying and hence has to be replaced from time to time. Rhamnolipids are produced by microbial cultivation using refined vegetable oils as a carbon source and Pseudomonas aeruginosa (ATCC 10145). The raw material cost accounts for 10-30% of the overall cost of biosurfactant production and can be reduced by using low-cost substrates. In this research, attention was focused on the preparation of rhamnolipids, which are biosurfactants, using potential frying edible oils as a carbon source via a microbial fermentation technique. The use of low-cost substrates as a carbon source was emphasized to tilt the cost of production for rhamnolipids. The yield was 2.8 g/L and 7.5 g/L from waste frying oil before and after activated earth treatment, respectively. The crude product contained mainly dirhamnolipids, confirmed by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), liquid chromatography-mass spectroscopy (LC-MS), and (1)H-nuclear magnetic resonance (NMR). Hence, the treatment can be used to convert waste frying oil as a low-cost substrate into a cost-effective carbon source.

  6. Investigating the effect of carbon source on rabies virus glycoprotein production in Pichia pastoris by a transcriptomic approach.

    PubMed

    Ben Azoun, Safa; Kallel, Héla

    2017-08-01

    Several factors affect protein expression in Pichia pastoris, one among them is the carbon source. In this work, we studied the effect of this factor on the expression level of rabies virus glycoprotein (RABV-G) in two recombinant clones harboring seven copies of the gene of interest. The expression was driven either by the constitutive glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter or the inducible alcohol oxidase1 (AOX1) promoter. Clones were compared in terms of cell physiology and carbon source metabolism. The transcription levels of 16 key genes involved in the central metabolic pathway, the methanol catabolism, and the oxidative stress were investigated in both clones. Cell size, as a parameter reflecting cell physiological changes, was also monitored. Our results showed that when glucose was used as the sole carbon source, large cells were obtained. Transcript levels of the genes of the central metabolic pathway were also upregulated, whereas antioxidative gene transcript levels were low. By contrast, the use of methanol as a carbon source generated small cells and a shift in carbon metabolism toward the dissimilatory pathway by the upregulation of formaldehyde dehydrogenase gene and the downregulation of those of the central metabolic. These observations are in favor of the use of glucose to enhance the expression of RABV-G in P. pastoris. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. Intakes and sources of total and added sugars among 4 to 13‐year‐old children in China, Mexico and the United States

    PubMed Central

    Afeiche, M. C.; Koyratty, B. N. S.; Wang, D.; Jacquier, E. F.

    2017-01-01

    Summary Background Intakes of dietary sugars is a global concern, and many national and international organizations have set targets to limit consumption. However, it is unclear to what extent intakes of total and added sugars vary between geographies. Objectives The aim of this study was to assess the differences in intakes of total and added sugars in 4 to 13‐year‐old children in China, Mexico and the United States. The secondary aim was to identify main sources of total and added sugars in the diets of these children. Methods Secondary data analysis was conducted using the 2011 China Health and Nutrition Survey, 2012 Mexican National Health and Nutrition Survey, and 2009–2012 US National Health and Nutrition Examination Surveys. Total and added sugar intakes were calculated using the US Food Patterns Equivalents Database. Results Mean intakes of total and added sugars were 26 and 9 g d−1 among Chinese children, 92 and 55 g d−1 among Mexican children, and 124 and 76 g d−1 among US children, respectively. The top food sources of total sugars were fruits among Chinese children, and sugar‐sweetened beverages and milk‐based beverages among Mexican and US children. Conclusions These data highlight the heterogeneity of food patterns worldwide and the need for adapted country‐specific public health recommendations on sugars. PMID:28960843

  8. Added Value of Reliability to a Microgrid: Simulations of Three California Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marnay, Chris; Lai, Judy; Stadler, Michael

    The Distributed Energy Resources Customer Adoption Model is used to estimate the value an Oakland nursing home, a Riverside high school, and a Sunnyvale data center would need to put on higher electricity service reliability for them to adopt a Consortium for Electric Reliability Technology Solutions Microgrid (CM) based on economics alone. A fraction of each building's load is deemed critical based on its mission, and the added cost of CM capability to meet it added to on-site generation options. The three sites are analyzed with various resources available as microgrid components. Results show that the value placed on highermore » reliability often does not have to be significant for CM to appear attractive, about 25 $/kWcdota and up, but the carbon footprint consequences are mixed because storage is often used to shift cheaper off-peak electricity to use during afternoon hours in competition with the solar sources.« less

  9. Carbon Nanotubes, Nanocrystal Forms, and Complex Nanoparticle Aggregates in common fuel-gas combustion sources and the ambient air

    NASA Astrophysics Data System (ADS)

    Murr, L. E.; Bang, J. J.; Esquivel, E. V.; Guerrero, P. A.; Lopez, D. A.

    2004-06-01

    Aggregated multiwall carbon nanotubes (with diameters ranging from ˜3 to 30nm) and related carbon nanocrystal forms ranging in size from 0.4 to 2 μm (average diameter) have been collected in the combustion streams for methane/air, natural gas/air, and propane gas/air flames using a thermal precipitator. Individual particle aggregates were collected on carbon/formvar-coated 3mm nickel grids and examined in a transmission electron microscope, utilizing bright-field imaging, selected-area electron diffraction analysis, and energy-dispersive X-ray spectrometry techniques. The natural gas and propane gas sources were domestic (kitchen) stoves, and similar particle aggregates collected in the outdoor air were correspondingly identified as carbon nanocrystal aggregates and sometimes more complex aggregates of silica nanocrystals intermixed with the carbon nanotubes and other carbon nanocrystals. Finally, and in light of the potential for methane-series gas burning as major sources of carbon nanocrystal aggregates in both the indoor and outdoor air, data for natural gas consumption and corresponding asthma deaths and incidence are examined with a degree of speculation regarding any significance in the correlations.

  10. Sedimentary sources of old high molecular weight dissolved organic carbon from the ocean margin benthic nepheloid layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, L. Santschi, P.H.

    2000-02-01

    Average {sup 14}C ages of dissolved organic carbon (DOC) in the ocean are 3--6,000 years, and are influenced by old DOC from continental margins. However, sources of DOC from terrestrial, autochthonous, and sedimentary organic carbon seem to be too young to be responsible for the old DOC observed in the ocean. Since colloidal organic carbon (COC, i.e., high molecular weight DOC), which is chemically very similar to that of bulk DOC, can be effectively isolated from seawater using cross-flow ultrafiltration, it can hold clues to sources and pathways of DOC turnover in the ocean. Radiocarbon measurements on COC in themore » water column and benthic nepheloid layer (BNL) from two continental margin areas (the Middle Atlantic Bight and the Gulf of Mexico) and controlled laboratory experiments were carried out to study sources of old DOC in the ocean margin areas. Vertical distributions of suspended particulate matter (SPM), particulate organic carbon (POC), nitrogen (PON), and DOC in the water column and bottom waters near the sediment-water interface all demonstrate a well developed benthic nepheloid layer in both ocean margin areas. COC from the BNL was much older than COC from the overlying water column. These results, together with strong concentration gradients of SPM, POC, PON, and DOC, suggest a sedimentary source for organic carbon species and possibly for old COC as well in BNL waters. This is confirmed by the results from controlled laboratory experiments. The heterogeneity of {Delta}{sup 14}C signatures in bulk SOC thus points to a preferential release of old organic components from sediment resuspension, which can be the transport mechanism of the old benthic COC observed in ocean margin areas. Old COC from continental margin nepheloid layers may thus be a potential source of old DOC to the deep ocean.« less

  11. Computational and experimental investigations of one-step conversion of poly(carbonate)s into value-added poly(aryl ether sulfone)s.

    PubMed

    Jones, Gavin O; Yuen, Alexander; Wojtecki, Rudy J; Hedrick, James L; García, Jeannette M

    2016-07-12

    It is estimated that ∼2.7 million tons poly(carbonate)s (PCs) are produced annually worldwide. In 2008, retailers pulled products from store shelves after reports of bisphenol A (BPA) leaching from baby bottles, reusable drink bottles, and other retail products. Since PCs are not typically recycled, a need for the repurposing of the PC waste has arisen. We report the one-step synthesis of poly(aryl ether sulfone)s (PSUs) from the depolymerization of PCs and in situ polycondensation with bis(aryl fluorides) in the presence of carbonate salts. PSUs are high-performance engineering thermoplastics that are commonly used for reverse osmosis and water purification membranes, medical equipment, as well as high temperature applications. PSUs generated through this cascade approach were isolated in high purity and yield with the expected thermal properties and represent a procedure for direct conversion of one class of polymer to another in a single step. Computational investigations performed with density functional theory predict that the carbonate salt plays two important catalytic roles in this reaction: it decomposes the PCs by nucleophilic attack, and in the subsequent polyether formation process, it promotes the reaction of phenolate dimers formed in situ with the aryl fluorides present. We envision repurposing poly(BPA carbonate) for the production of value-added polymers.

  12. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 2. Modeling carbon sources, sinks, and δ13C evolution

    USGS Publications Warehouse

    McMahon, Peter B.; Chapelle, Francis H.

    1991-01-01

    Stable isotope data for dissolved inorganic carbon (DIC), carbonate shell material and cements, and microbial CO2 were combined with organic and inorganic chemical data from aquifer and confining-bed pore waters to construct geochemical reaction models along a flowpath in the Black Creek aquifer of South Carolina. Carbon-isotope fractionation between DIC and precipitating cements was treated as a Rayleigh distillation process. Organic matter oxidation was coupled to microbial fermentation and sulfate reduction. All reaction models reproduced the observed chemical and isotopic compositions of final waters. However, model 1, in which all sources of carbon and electron-acceptors were assumed to be internal to the aquifer, was invalidated owing to the large ratio of fermentation CO2 to respiration CO2 predicted by the model (5–49) compared with measured ratios (two or less). In model 2, this ratio was reduced by assuming that confining beds adjacent to the aquifer act as sources of dissolved organic carbon and sulfate. This assumption was based on measured high concentrations of dissolved organic acids and sulfate in confining-bed pore waters (60–100 μM and 100–380 μM, respectively) relative to aquifer pore waters (from less than 30 μM and 2–80 μM, respectively). Sodium was chosen as the companion ion to organic-acid and sulfate transport from confining beds because it is the predominant cation in confining-bed pore waters. As a result, excessive amounts of Na-for-Ca ion exchange and calcite precipitation (three to four times more cement than observed in the aquifer) were required by model 2 to achieve mass and isotope balance of final water. For this reason, model 2 was invalidated. Agreement between model-predicted and measured amounts of carbonate cement and ratios of fermentation CO2 to respiration CO2 were obtained in a reaction model that assumed confining beds act as sources of DIC, as well as organic acids and sulfate. This assumption was

  13. Dry season limnological conditions and basin geology exhibit complex relationships with δ13C and δ15N of carbon sources in four Neotropical floodplains

    PubMed Central

    Hoeinghaus, David J.; Manetta, Gislaine I.; Benedito, Evanilde

    2017-01-01

    Studies in freshwater ecosystems are seeking to improve understanding of carbon flow in food webs and stable isotopes have been influential in this work. However, variation in isotopic values of basal production sources could either be an asset or a hindrance depending on study objectives. We assessed the potential for basin geology and local limnological conditions to predict stable carbon and nitrogen isotope values of six carbon sources at multiple locations in four Neotropical floodplain ecosystems (Paraná, Pantanal, Araguaia, and Amazon). Limnological conditions exhibited greater variation within than among systems. δ15N differed among basins for most carbon sources, but δ13C did not (though high within-basin variability for periphyton, phytoplankton and particulate organic carbon was observed). Although δ13C and δ15N values exhibited significant correlations with some limnological factors within and among basins, those relationships differed among carbon sources. Regression trees for both carbon and nitrogen isotopes for all sources depicted complex and in some cases nested relationships, and only very limited similarity was observed among trees for different carbon sources. Although limnological conditions predicted variation in isotope values of carbon sources, we suggest the resulting models were too complex to enable mathematical corrections of source isotope values among sites based on these parameters. The importance of local conditions in determining variation in source isotope values suggest that isotopes may be useful for examining habitat use, dispersal and patch dynamics within heterogeneous floodplain ecosystems, but spatial variability in isotope values needs to be explicitly considered when testing ecosystem models of carbon flow in these systems. PMID:28358822

  14. Intake of added sugar in Malaysia: a review.

    PubMed

    Amarra, Maria Sofia V; Khor, Geok Lin; Chan, Pauline

    2016-01-01

    The term 'added sugars' refers to sugars and syrup added to foods during processing or preparation, and sugars and syrups added at the table. Calls to limit the daily intakes of added sugars and its sources arose from evidence analysed by WHO, the American Heart Association and other organizations. The present review examined the best available evidence regarding levels of added sugar consumption among different age and sex groups in Malaysia and sources of added sugars. Information was extracted from food balance sheets, household expenditure surveys, nutrition surveys and published studies. Varying results emerged, as nationwide information on intake of sugar and foods with added sugar were obtained at different times and used different assessment methods. Data from the 2003 Malaysian Adult Nutrition Survey (MANS) using food frequency questionnaires suggested that on average, Malaysian adults consumed 30 grams of sweetened condensed milk (equivalent to 16 grams sugar) and 21 grams of table sugar per day, which together are below the WHO recommendation of 50 grams sugar for every 2000 kcal/day to reduce risk of chronic disease. Published studies suggested that, for both adults and the elderly, frequently consumed sweetened foods were beverages (tea or coffee) with sweetened condensed milk and added sugar. More accurate data should be obtained by conducting population-wide studies using biomarkers of sugar intake (e.g. 24-hour urinary sucrose and fructose excretion or serum abundance of the stable isotope 13C) to determine intake levels, and multiple 24 hour recalls to identify major food sources of added sugar.

  15. Influence of natural and novel organic carbon sources on denitrification in forest, degraded urban, and restored streams

    EPA Science Inventory

    Organic carbon is important in regulating ecosystem function, and its source and abundance may be altered by urbanization. We investigated shifts in organic carbon quantity and quality associated with urbanization and ecosystem restoration, and its potential effects on denitrific...

  16. Accelerating Aerobic Sludge Granulation by Adding Dry Sewage Sludge Micropowder in Sequencing Batch Reactors

    PubMed Central

    Li, Jun; Liu, Jun; Wang, Danjun; Chen, Tao; Ma, Ting; Wang, Zhihong; Zhuo, Weilong

    2015-01-01

    Micropowder (20–250 µm) made from ground dry waste sludge from a municipal sewage treatment plant was added in a sequencing batch reactor (R2), which was fed by synthetic wastewater with acetate as carbon source. Compared with the traditional SBR (R1), aerobic sludge granulation time was shortened 15 days in R2. Furthermore, filamentous bacteria in bulking sludge were controlled to accelerate aerobic granulation and form large granules. Correspondingly, the SVI decreased from 225 mL/g to 37 mL/g. X-ray Fluorescence (XRF) analysis demonstrated that Al and Si from the micropowder were accumulated in granules. A mechanism hypotheses for the acceleration of aerobic granulation by adding dry sludge micropowder is proposed: added micropowder acts as nuclei to induce bacterial attachment; dissolved matters from the micropowder increase abruptly the organic load for starved sludge to control overgrown filamentous bacteria as a framework for aggregation; increased friction from the movement of micropowder forces the filaments which extend outwards to shrink for shaping granules. PMID:26308025

  17. Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodium-Ion Batteries.

    PubMed

    Dou, Xinwei; Hasa, Ivana; Hekmatfar, Maral; Diemant, Thomas; Behm, R Jürgen; Buchholz, Daniel; Passerini, Stefano

    2017-06-22

    Hard carbons are currently the most widely used negative electrode materials in Na-ion batteries. This is due to their promising electrochemical performance with capacities of 200-300 mAh g -1 and stable long-term cycling. However, an abundant and cheap carbon source is necessary in order to comply with the low-cost philosophy of Na-ion technology. Many biological or waste materials have been used to synthesize hard carbons but the impact of the precursors on the final properties of the anode material is not fully understood. In this study the impact of the biomass source on the structural and electrochemical properties of hard carbons is unraveled by using different, representative types of biomass as examples. The systematic structural and electrochemical investigation of hard carbons derived from different sources-namely corncobs, peanut shells, and waste apples, which are representative of hemicellulose-, lignin- and pectin-rich biomass, respectively-enables understanding and interlinking of the structural and electrochemical properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Stream restoration and sewers impact sources and fluxes of water,carbon, and nutrients in urban watersheds

    EPA Science Inventory

    An improved understanding of sources and timing of water and nutrient fluxes associated with urban stream restoration is critical for guiding effective watershed management. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P)...

  19. Agricultural technologies and carbon emissions: evidence from Jordanian economy.

    PubMed

    Ismael, Mohanad; Srouji, Fathi; Boutabba, Mohamed Amine

    2018-04-01

    Theoretically, agriculture can be the victim and the cause of climate change. Using annual data for the period of 1970-2014, this study examines the interaction between agriculture technology factors and the environment in terms of carbon emissions in Jordan. The results provide evidence for unidirectional causality running from machinery, subsidies, and other transfers, rural access to an improved water source and fertilizers to carbon emissions. The results also reveal the existence of bidirectional causality between the real income and carbon emissions. The variance error decompositions highlight the importance of subsidies and machinery in explaining carbon emissions. They also show that fertilizers, the crop and livestock production, the land under cereal production, the water access, the agricultural value added, and the real income have an increasing effect on carbon emissions over the forecast period. These results are important so that policy-makers can build up strategies and take in considerations the indicators in order to reduce carbon emissions in Jordan.

  20. Carbon source and irrigation evaluation for anaerobic soil disinfestation in southern California

    USDA-ARS?s Scientific Manuscript database

    Water use efficiency and utilization of feasible carbon sources have been important factors for successful implementation and adoption of ASD in California and are the focus of current research. In the 2014-15 study at Santa Paula, CA we compared ASD with 9 t of rice bran bed-incorporated with eith...

  1. Constraining carbon sources and cycling of endolithic microbial communities in the Atacama Desert

    NASA Astrophysics Data System (ADS)

    Ziolkowski, L. A.; Slater, G. F.; Davila, A.; Wierzchos, J.

    2010-12-01

    The Atacama Desert, one of the driest places on Earth, is considered a suitable analog for the extremely arid, oxidizing conditions on the surface of Mars. Recent observations suggest the presence of evaporitic deposits on the surface of Mars, such as those found in the Atacama. Halites in the Atacama have been shown to be hygroscopic and are colonized by photosynthetic microbes. While there is considerable evidence for the decrease in abundance and diversity of microbes closer to the hyper-arid core of the Atacama, experimental studies have thus far have yet to estimate the sources of carbon to these communities and the rate at which they cycle. To address these questions, we characterized the isotopic composition (13C and 14C) microbial community biomarkers from four distinct sites in the Atacama. Sites ranged from halites in the hyper-arid core (Yungay, Salar Grande) to volcanic rock and gypsum near the Monturaqui Crater. Our analysis of the phospholipids fatty acids (PLFA) and glycolipid fatty acid (GLFA) methyl esters of the endoliths agreed with previous studies: the abundance and diversity of microbes decreases approaching the hyper-arid core. The total PLFA and GLFA concentrations were lower at Yungay than Salar Grande and higher in the gypsum and volcanic rock samples. Changes in the mole percentage distribution of the PLFA and GLFA illustrated that the endolithic communities inhabiting the volcanic rock and gypsum were more complex than those inhabiting the halites. ∂13C of both PLFA and GLFA showed that non-halite lipids were less depleted in 13C than halite-lipids. This suggested a difference in carbon source or cycling. The 14C content of PLFA and GLFA varied by up to 250 per mil. Endolith PLFA and GLFA from the gypsum had radiocarbon signatures comparable to the modern atmosphere, which suggests that the predominant source of carbon to the system is the modern atmosphere and that lipids are cycling rapidly in this system. However, at the other three

  2. Adiabatic pumping solutions in global AdS

    NASA Astrophysics Data System (ADS)

    Carracedo, Pablo; Mas, Javier; Musso, Daniele; Serantes, Alexandre

    2017-05-01

    We construct a family of very simple stationary solutions to gravity coupled to a massless scalar field in global AdS. They involve a constantly rising source for the scalar field at the boundary and thereby we name them pumping solutions. We construct them numerically in D = 4. They are regular and, generically, have negative mass. We perform a study of linear and nonlinear stability and find both stable and unstable branches. In the latter case, solutions belonging to different sub-branches can either decay to black holes or to limiting cycles. This observation motivates the search for non-stationary exactly timeperiodic solutions which we actually construct. We clarify the role of pumping solutions in the context of quasistatic adiabatic quenches. In D = 3 the pumping solutions can be related to other previously known solutions, like magnetic or translationally-breaking backgrounds. From this we derive an analytic expression.

  3. Impacts of disturbance history on annual carbon stocks and fluxes in southeastern US forests during 1986-2010 using remote sensing, forest inventory data, and a carbon cycle model

    NASA Astrophysics Data System (ADS)

    Gu, H.; Zhou, Y.; Williams, C. A.

    2017-12-01

    Accurate assessment of forest carbon storage and uptake is central to policymaking aimed at mitigating climate change and understanding the role forests play in the global carbon cycle. Disturbance events are highly heterogeneous in space and time, impacting forest carbon dynamics and challenging the quantification and reporting of carbon stocks and fluxes. This study documents annual carbon stocks and fluxes from 1986 and 2010 mapped at 30-m resolution across southeastern US forests, characterizing how they respond to disturbances and ensuing regrowth. Forest inventory data (FIA) are used to parameterize a carbon cycle model (CASA) to represent post-disturbance carbon trajectories of carbon pools and fluxes with time following harvest, fire and bark beetle disturbances of varying severity and across forest types and site productivity settings. Time since disturbance at 30 meters is inferred from two remote-sensing data sources: disturbance year (NAFD, MTBS and ADS) and biomass (NBCD 2000) intersected with FIA-derived curves of biomass accumulation with stand age. All of these elements are combined to map carbon stocks and fluxes at a 30-m resolution for the year 2010, and to march backward in time for continuous, annual reporting. Results include maps of annual carbon stocks and fluxes for forests of the southeastern US, and analysis of spatio-temporal patterns of carbon sources/sinks at local and regional scales.

  4. Changes in Intakes of Total and Added Sugar and their Contribution to Energy Intake in the U.S.

    PubMed Central

    Chun, Ock K.; Chung, Chin E.; Wang, Ying; Padgitt, Andrea; Song, Won O.

    2010-01-01

    This study was designed to document changes in total sugar intake and intake of added sugars, in the context of total energy intake and intake of nutrient categories, between the 1970s and the 1990s, and to identify major food sources contributing to those changes in intake. Data from the NHANES I and III were analyzed to obtain nationally representative information on food consumption for the civilian, non-institutionalized population of the U.S. from 1971 to 1994. In the past three decades, in addition to the increase in mean intakes of total energy, total sugar, added sugars, significant increases in the total intake of carbohydrates and the proportion of carbohydrates to the total energy intake were observed. The contribution of sugars to total carbohydrate intake decreased in both 1–18 y and 19+ y age subgroups, and the contribution of added sugars to the total energy intake did not change. Soft drinks/fluid milk/sugars and cakes, pastries, and pies remained the major food sources for intake of total sugar, total carbohydrates, and total energy during the past three decades. Carbonated soft drinks were the most significant sugar source across the entire three decades. Changes in sugar consumption over the past three decades may be a useful specific area of investigation in examining the effect of dietary patterns on chronic diseases. PMID:22254059

  5. Changes in intakes of total and added sugar and their contribution to energy intake in the U.S.

    PubMed

    Chun, Ock K; Chung, Chin E; Wang, Ying; Padgitt, Andrea; Song, Won O

    2010-08-01

    This study was designed to document changes in total sugar intake and intake of added sugars, in the context of total energy intake and intake of nutrient categories, between the 1970s and the 1990s, and to identify major food sources contributing to those changes in intake. Data from the NHANES I and III were analyzed to obtain nationally representative information on food consumption for the civilian, non-institutionalized population of the U.S. from 1971 to 1994. In the past three decades, in addition to the increase in mean intakes of total energy, total sugar, added sugars, significant increases in the total intake of carbohydrates and the proportion of carbohydrates to the total energy intake were observed. The contribution of sugars to total carbohydrate intake decreased in both 1-18 y and 19+ y age subgroups, and the contribution of added sugars to the total energy intake did not change. Soft drinks/fluid milk/sugars and cakes, pastries, and pies remained the major food sources for intake of total sugar, total carbohydrates, and total energy during the past three decades. Carbonated soft drinks were the most significant sugar source across the entire three decades. Changes in sugar consumption over the past three decades may be a useful specific area of investigation in examining the effect of dietary patterns on chronic diseases.

  6. Co-fermentation of carbon sources by Enterobacter aerogenes ATCC 29007 to enhance the production of bioethanol.

    PubMed

    Thapa, Laxmi Prasad; Lee, Sang Jun; Yang, Xiao Guang; Yoo, Hah Young; Kim, Sung Bong; Park, Chulhwan; Kim, Seung Wook

    2014-06-01

    We investigated the enhancement of bioethanol production in Enterobacter aerogenes ATCC 29007 by co-fermentation of carbon sources such as glycerol, glucose, galactose, sucrose, fructose, xylose, starch, mannitol and citric acid. Biofuel production increases with increasing growth rate of microorganisms; that is why we investigated the optimal growth rate of E. aerogenes ATCC 29007, using mixtures of different carbon sources with glycerol. E. aerogenes ATCC 29007 was incubated in media containing each carbon source and glycerol; growth rate and bioethanol production improved in all cases compared to those in medium containing glycerol alone. The growth rate and bioethanol production were highest with mannitol. Fermentation was carried out at 37 °C for 18 h, pH 7, using 50 mL defined production medium in 100 mL serum bottles at 200 rpm. Bioethanol production under optimized conditions in medium containing 16 g/L mannitol and 20 g/L glycerol increased sixfold (32.10 g/L) than that containing glycerol alone (5.23 g/L) as the carbon source in anaerobic conditions. Similarly, bioethanol production using free cells in continuous co-fermentation also improved (27.28 g/L) when 90.37 % of 16 g/L mannitol and 67.15 % of 20 g/L glycerol were used. Although naturally existing or engineered microorganisms can ferment mixed sugars sequentially, the preferential utilization of glucose to non-glucose sugars often results in lower overall yield and productivity of ethanol. Here, we present new findings in E. aerogenes ATCC 29007 that can be used to improve bioethanol production by simultaneous co-fermentation of glycerol and mannitol.

  7. Influence of carbon sources on the viability and resuscitation of Acetobacter senegalensis during high-temperature gluconic acid fermentation.

    PubMed

    Shafiei, Rasoul; Zarmehrkhorshid, Raziyeh; Mounir, Majid; Thonart, Philippe; Delvigne, Frank

    2017-05-01

    Much research has been conducted about different types of fermentation at high temperature, but only a few of them have studied cell viability changes during high-temperature fermentation. In this study, Acetobacter senegalensis, a thermo-tolerant strain, was used for gluconic acid production at 38 °C. The influences of different carbon sources and physicochemical conditions on cell viability and the resuscitation of viable but nonculturable (VBNC) cells formed during fermentation were studied. Based on the obtained results, A. senegalensis could oxidize 95 g l - 1 glucose to gluconate at 38 °C (pH 5.5, yield 83%). However, despite the availability of carbon and nitrogen sources, the specific rates of glucose consumption (q s ) and gluconate production (q p ) reduced progressively. Interestingly, gradual q s and q p reduction coincided with gradual decrease in cellular dehydrogenase activity, cell envelope integrity, and cell culturability as well as with the formation of VBNC cells. Entry of cells into VBNC state during stationary phase partly stemmed from high fermentation temperature and long-term oxidation of glucose, because just about 48% of VBNC cells formed during stationary phase were resuscitated by supplementing the culture medium with an alternative favorite carbon source (low concentration of ethanol) and/or reducing incubation temperature to 30 °C. This indicates that ethanol, as a favorable carbon source, supports the repair of stressed cells. Since formation of VBNC cells is often inevitable during high-temperature fermentation, using an alternative carbon source together with changing physicochemical conditions may enable the resuscitation of VBNC cells and their use for several production cycles.

  8. De novo biosynthesis of sterols and fatty acids in the Trypanosoma brucei procyclic form: Carbon source preferences and metabolic flux redistributions

    PubMed Central

    Bouyssou, Guillaume; Allmann, Stefan; Kiema, Tiila-Riikka; Biran, Marc; Plazolles, Nicolas; Dittrich-Domergue, Franziska; Crouzols, Aline; Wierenga, Rik K.; Rotureau, Brice; Moreau, Patrick

    2018-01-01

    De novo biosynthesis of lipids is essential for Trypanosoma brucei, a protist responsible for the sleeping sickness. Here, we demonstrate that the ketogenic carbon sources, threonine, acetate and glucose, are precursors for both fatty acid and sterol synthesis, while leucine only contributes to sterol production in the tsetse fly midgut stage of the parasite. Degradation of these carbon sources into lipids was investigated using a combination of reverse genetics and analysis of radio-labelled precursors incorporation into lipids. For instance, (i) deletion of the gene encoding isovaleryl-CoA dehydrogenase, involved in the leucine degradation pathway, abolished leucine incorporation into sterols, and (ii) RNAi-mediated down-regulation of the SCP2-thiolase gene expression abolished incorporation of the three ketogenic carbon sources into sterols. The SCP2-thiolase is part of a unidirectional two-step bridge between the fatty acid precursor, acetyl-CoA, and the precursor of the mevalonate pathway leading to sterol biosynthesis, 3-hydroxy-3-methylglutaryl-CoA. Metabolic flux through this bridge is increased either in the isovaleryl-CoA dehydrogenase null mutant or when the degradation of the ketogenic carbon sources is affected. We also observed a preference for fatty acids synthesis from ketogenic carbon sources, since blocking acetyl-CoA production from both glucose and threonine abolished acetate incorporation into sterols, while incorporation of acetate into fatty acids was increased. Interestingly, the growth of the isovaleryl-CoA dehydrogenase null mutant, but not that of the parental cells, is interrupted in the absence of ketogenic carbon sources, including lipids, which demonstrates the essential role of the mevalonate pathway. We concluded that procyclic trypanosomes have a strong preference for fatty acid versus sterol biosynthesis from ketogenic carbon sources, and as a consequence, that leucine is likely to be the main source, if not the only one, used by

  9. Assessing the TARES as an ethical model for antismoking ads.

    PubMed

    Lee, Seow Ting; Cheng, I-Huei

    2010-01-01

    This study examines the ethical dimensions of public health communication, with a focus on antismoking public service announcements (PSAs). The content analysis of 826 television ads from the U.S. Centers for Disease Control and Prevention's (CDC) Media Campaign Resource Center is an empirical testing of Baker and Martinson's (2001) TARES Test that directly examines persuasive messages for truthfulness, authenticity, respect, equity, and social responsibility. In general, the antismoking ads score highly on ethicality. There are significant relationships between ethicality and message attributes (thematic frame, emotion appeal, source, and target audience). Ads that portrayed smoking as damaging to health and socially unacceptable score lower in ethicality than ads that focus on tobacco industry manipulation, addiction, dangers of secondhand smoke, and cessation. Emotion appeals of anger and sadness are associated with higher ethicality than shame and humor appeals. Ads targeting teen/youth audiences score lower on ethicality than ads targeting adult and general audiences. There are significant differences in ethicality based on source; ads produced by the CDC rate higher in ethicality than other sources. Theoretical implications and practical recommendations are discussed.

  10. Springtime carbon episodes at Gosan background site revealed by total carbon, stable carbon isotopic composition, and thermal characteristics of carbonaceous particles

    NASA Astrophysics Data System (ADS)

    Jung, J.; Kawamura, K.

    2011-05-01

    In order to investigate the carbon episodes at Gosan background super-site (33.17° N, 126.10° E) in East Asia during spring of 2007 and 2008, total suspended particles (TSP) were collected and analyzed for particulate organic carbon, elemental carbon, total carbon (TC), total nitrogen (TN), and stable carbon isotopic composition (δ13C) of TC. The carbon episodes at the Gosan site were categorized as long-range transported anthropogenic pollutant (LTP) from Asian continent, Asian dust (AD) accompanying with LTP, and local pollen episodes. The stable carbon isotopic composition of TC (δ13CTC) was found to be lowest during the pollen episodes (range: -26.2 ‰ to -23.5 ‰, avg.: -25.2 ± 0.9 ‰), followed by the LTP episodes (range: -23.5 ‰ to -23.0 ‰, avg.: -23.3 ± 0.3 ‰) and the AD episodes (range: -23.3 to -20.4 %, avg.: -21.8 ± 2.0 ‰). The δ13CTC of the airborne pollens (-28.0 ‰) collected at the Gosan site showed value similar to that of tangerine fruit (-28.1 ‰) produced from Jeju Island. Based on the carbon isotope mass balance equation and the TN and TC regression approach, we found that ∼40-45 % of TC in the TSP samples during the pollen episodes was attributed to airborne pollens from Japanese cedar trees planted around tangerine farms in Jeju Island. The δ13C of citric acid in the airborne pollens (-26.3 ‰) collected at the Gosan site was similar to that in tangerine fruit (-27.4 ‰). The negative correlation between the citric acid-carbon/TC ratios and δ13CTC were obtained during the pollen episodes. These results suggest that citric acid emitted from tangerine fruit may be adsorbed on the airborne pollens and then transported to the Gosan site. Based on the thermal evolution pattern of organic aerosols during the carbon episodes, we found that organic aerosols originated from East China are more volatile on heating and are more likely to form pyrolized organic carbon than the pollen-enriched organic aerosols and organic

  11. Carbon Nanotube Bundle Array Cold Cathodes for THz Vacuum Tube Sources

    NASA Astrophysics Data System (ADS)

    Manohara, Harish M.; Toda, Risaku; Lin, Robert H.; Liao, Anna; Bronikowski, Michael J.; Siegel, Peter H.

    2009-12-01

    We present high performance cold cathodes composed of arrays of carbon nanotube bundles that routinely produce > 15 A/cm2 at applied fields of 5 to 8 V/µm without any beam focusing. They have exhibited robust operation in poor vacuums of 10-6 to 10-4 Torr- a typically achievable range inside hermetically sealed microcavities. A new double-SOI process was developed to monolithically integrate a gate and additional beam tailoring electrodes. The ability to design the electrodes for specific requirements makes carbon nanotube field emission sources extremely flexible. The lifetime of these cathodes is found to be affected by two effects: a gradual decay of emission due to anode sputtering, and catastrophic failure because of dislodging of CNT bundles at high fields ( > 10 V/µm).

  12. Paleofacies of Eocene Lower Ngimbang Source Rocks in Cepu Area, East Java Basin based on Biomarkers and Carbon-13 Isotopes

    NASA Astrophysics Data System (ADS)

    Devi, Elok A.; Rachman, Faisal; Satyana, Awang H.; Fahrudin; Setyawan, Reddy

    2018-02-01

    The Eocene Lower Ngimbang carbonaceous shales are geochemically proven hydrocarbon source rocks in the East Java Basin. Sedimentary facies of source rock is important for the source evaluation that can be examined by using biomarkers and carbon-13 isotopes data. Furthermore, paleogeography of the source sedimentation can be reconstructed. The case study was conducted on rock samples of Lower Ngimbang from two exploration wells drilled in Cepu area, East Java Basin, Kujung-1 and Ngimbang-1 wells. The biomarker data include GC and GC-MS data of normal alkanes, isoprenoids, triterpanes, and steranes. Carbon-13 isotope data include saturate and aromatic fractions. Various crossplots of biomarker and carbon-13 isotope data of the Lower Ngimbang source samples from the two wells show that the source facies of Lower Ngimbang shales changed from transitional/deltaic setting at Kujung-1 well location to marginal marine setting at Ngimbang-1 well location. This reveals that the Eocene paleogeography of the Cepu area was composed of land area in the north and marine setting to the south. Biomarkers and carbon-13 isotopes are powerful data for reconstructing paleogeography and paleofacies. In the absence of fossils in some sedimentary facies, these geochemical data are good alternatives.

  13. Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube

    DOEpatents

    Zhang, Zhiqiang [Lexington, KY; Lockwood, Frances E [Georgetown, KY

    2008-03-25

    A fluid media such as oil or water, and a selected effective amount of carbon nanomaterials necessary to enhance the thermal conductivity of the fluid. One of the preferred carbon nanomaterials is a high thermal conductivity graphite, exceeding that of the neat fluid to be dispersed therein in thermal conductivity, and ground, milled, or naturally prepared with mean particle size less than 500 nm, and preferably less than 200 nm, and most preferably less than 100 nm. The graphite is dispersed in the fluid by one or more of various methods, including ultrasonication, milling, and chemical dispersion. Carbon nanotubes with graphitic structure is another preferred source of carbon nanomaterial, although other carbon nanomaterials are acceptable. To confer long term stability, the use of one or more chemical dispersants is preferred. The thermal conductivity enhancement, compared to the fluid without carbon nanomaterial, is proportional to the amount of carbon nanomaterials (carbon nanotubes and/or graphite) added.

  14. Sources and turnover of organic carbon and methane in fjord and shelf sediments off northern Norway

    NASA Astrophysics Data System (ADS)

    Sauer, Simone; Hong, Wei-Li; Knies, Jochen; Lepland, Aivo; Forwick, Matthias; Klug, Martin; Eichinger, Florian; Baranwal, Soma; Crémière, Antoine; Chand, Shyam; Schubert, Carsten J.

    2016-10-01

    To better understand the present and past carbon cycling and transformation processes in methane-influenced fjord and shelf areas of northern Norway, we compared two sediment cores from the Hola trough and from Ullsfjorden. We investigated (1) the organic matter composition and sedimentological characteristics to study the sources of organic carbon (Corg) and the factors influencing Corg burial, (2) pore water geochemistry to determine the contribution of organoclastic sulfate reduction and methanogenesis to total organic carbon turnover, and (3) the carbon isotopic signature of hydrocarbons to identify the carbon transformation processes and gas sources. High sedimentation and Corg accumulation rates in Ullsfjorden support the notion that fjords are important Corg sinks. The depth of the sulfate-methane-transition (SMT) in the fjord is controlled by the supply of predominantly marine organic matter to the sediment. Organoclastic sulfate reduction accounts for 60% of the total depth-integrated sulfate reduction in the fjord. In spite of the presence of ethane, propane, and butane, we suggest a purely microbial origin of light hydrocarbons in the sediments based on their low δ13C values. In the Hola trough, sedimentation and Corg accumulation rates changed during the deglacial-to-post-glacial transition from approximately 80 cm ka-1 to erosion at present. Thus, Corg burial in this part of the shelf is presently absent. Low organic matter content in the sediment and low rates of organoclastic sulfate reduction (only 3% of total depth-integrated sulfate reduction) entail that the shallow depth of the SMT is controlled mostly by ascending thermogenic methane from deeper sources.

  15. [Effects of long-term fertilization on microbial biomass carbon and nitrogen and on carbon source utilization of microbes in a red soil].

    PubMed

    Sun, Feng-xia; Zhang, Wei-hua; Xu, Ming-gang; Zhang, Wen-ju; Li, Zhao-qiang; Zhang, Jing-ye

    2010-11-01

    In order to explore the effects of long-term fertilization on the microbiological characters of red soil, soil samples were collected from a 19-year long-term experimental field in Qiyang of Hunan, with their microbial biomass carbon (MBC) and nitrogen (MBN) and microbial utilization ratio of carbon sources analyzed. The results showed that after 19-year fertilization, the soil MBC and MBN under the application of organic manure and of organic manure plus inorganic fertilizers were 231 and 81 mg x kg(-1) soil, and 148 and 73 mg x kg(-1) soil, respectively, being significantly higher than those under non-fertilization, inorganic fertilization, and inorganic fertilization plus straw incorporation. The ratio of soil MBN to total N under the application of organic manure and of organic manure plus inorganic fertilizers was averagely 6.0%, significantly higher than that under non-fertilization and inorganic fertilization. Biolog-ECO analysis showed that the average well color development (AWCD) value was in the order of applying organic manure plus inorganic fertilizers = applying organic manure > non-fertilization > inorganic fertilization = inorganic fertilization plus straw incorporation. Under the application of organic manure or of organic manure plus inorganic fertilizers, the microbial utilization rate of carbon sources, including carbohydrates, carboxylic acids, amino acids, polymers, phenols, and amines increased; while under inorganic fertilization plus straw incorporation, the utilization rate of polymers was the highest, and that of carbohydrates was the lowest. Our results suggested that long-term application of organic manure could increase the red soil MBC, MBN, and microbial utilization rate of carbon sources, improve soil fertility, and maintain a better crop productivity.

  16. Evaluating North Sea carbon sources using radiogenic (224Ra and 228Ra) and stable carbon isotope (DI13C) tracers

    NASA Astrophysics Data System (ADS)

    Burt, William; Thomas, Helmuth; Hagens, Mathilde; Brenner, Heiko; Paetsch, Johannes; Clargo, Nikki

    2015-04-01

    In the North Sea, much uncertainty still exists regarding the role of boundary fluxes (e.g. benthic input from sediments or lateral inputs from the coastline) in the overall biogeochemical cycling of the system. The stable carbon isotope signature of dissolved inorganic carbon (δ13C-DIC) is a common tool for following transformations of carbon in the water column and identifying carbon sources and sinks. Here, analyses of the first basin-wide observations of δ13C-DIC reveal that a balance between biological production and respiration, as well as a freshwater input near the European continental coast, predominantly control surface distributions in the North Sea. A strong relationship between the biological component of DIC (DICbio) and δ13C-DIC is then used to quantify the metabolic DIC flux associated with changes in the carbon isotopic signature. Correlations are also found between δ13C-DIC and naturally-occurring Radium isotopes (224Ra and 228Ra), which have well-identified sources from the seafloor and coastal boundaries. The relationship between δ13C-DIC and the longer-lived 228Ra isotope (half-life = 5.8 years) is used to derive a metabolic DIC flux from the European continental coastline. 228Ra is also shown to be a highly effective tracer of North Sea total alkalinity (TA) compared to the more conventional use of salinity as a tracer. Coastal alkalinity inputs are calculated using relationships with 228Ra, and ratios of DIC and TA suggest denitrification as the main metabolic pathway for the formation of these coastal inputs. Finally, coastal TA inputs are translated into inputs of protons to quantify their impact on the buffering capacity of the Southern North Sea.

  17. Homogeneous Reduction of Carbon Dioxide with Hydrogen.

    PubMed

    Dong, Kaiwu; Razzaq, Rauf; Hu, Yuya; Ding, Kuiling

    2017-04-01

    Carbon dioxide (CO 2 ), a key greenhouse gas produced from both anthropogenic and natural sources, has been recently considered to be an important C1 building-block for the synthesis of many industrial fuels and chemicals. Catalytic hydrogenation of CO 2 using a homogeneous system is regarded as an efficient process for CO 2 valorization. This approach leads to the direct products including formic acid (HCOOH), carbon monoxide (CO), methanol (MeOH), and methane (CH 4 ). The hydrogenation of CO 2 to CO followed by alkene carbonylation provides value-added compounds, which also avoids the tedious separation and transportation of toxic CO. Moreover, the reduction of CO 2 with H 2 in the presence of amines is of significance to attain fine chemicals through catalytic formylation and methylation reactions. The synthesis of higher alcohols and dialkoxymethane from CO 2 and H 2 has been demonstrated recently, which opens access to new molecular structures using CO 2 as an important C1 source.

  18. Malate as a key carbon source of leaf dark-respired CO2 across different environmental conditions in potato plants.

    PubMed

    Lehmann, Marco M; Rinne, Katja T; Blessing, Carola; Siegwolf, Rolf T W; Buchmann, Nina; Werner, Roland A

    2015-09-01

    Dissimilation of carbon sources during plant respiration in support of metabolic processes results in the continuous release of CO2. The carbon isotopic composition of leaf dark-respired CO2 (i.e. δ (13) C R ) shows daily enrichments up to 14.8‰ under different environmental conditions. However, the reasons for this (13)C enrichment in leaf dark-respired CO2 are not fully understood, since daily changes in δ(13)C of putative leaf respiratory carbon sources (δ (13) C RS ) are not yet clear. Thus, we exposed potato plants (Solanum tuberosum) to different temperature and soil moisture treatments. We determined δ (13) C R with an in-tube incubation technique and δ (13) C RS with compound-specific isotope analysis during a daily cycle. The highest δ (13) C RS values were found in the organic acid malate under different environmental conditions, showing less negative values compared to δ (13) C R (up to 5.2‰) and compared to δ (13) C RS of soluble carbohydrates, citrate and starch (up to 8.8‰). Moreover, linear relationships between δ (13) C R and δ (13) C RS among different putative carbon sources were strongest for malate during daytime (r(2)=0.69, P≤0.001) and nighttime (r(2)=0.36, P≤0.001) under all environmental conditions. A multiple linear regression analysis revealed δ (13) C RS of malate as the most important carbon source influencing δ (13) C R . Thus, our results strongly indicate malate as a key carbon source of (13)C enriched dark-respired CO2 in potato plants, probably driven by an anapleurotic flux replenishing intermediates of the Krebs cycle. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Malate as a key carbon source of leaf dark-respired CO2 across different environmental conditions in potato plants

    PubMed Central

    Lehmann, Marco M.; Rinne, Katja T.; Blessing, Carola; Siegwolf, Rolf T. W.; Buchmann, Nina; Werner, Roland A.

    2015-01-01

    Dissimilation of carbon sources during plant respiration in support of metabolic processes results in the continuous release of CO2. The carbon isotopic composition of leaf dark-respired CO2 (i.e. δ 13 C R) shows daily enrichments up to 14.8‰ under different environmental conditions. However, the reasons for this 13C enrichment in leaf dark-respired CO2 are not fully understood, since daily changes in δ13C of putative leaf respiratory carbon sources (δ 13 C RS) are not yet clear. Thus, we exposed potato plants (Solanum tuberosum) to different temperature and soil moisture treatments. We determined δ 13 C R with an in-tube incubation technique and δ 13 C RS with compound-specific isotope analysis during a daily cycle. The highest δ 13 C RS values were found in the organic acid malate under different environmental conditions, showing less negative values compared to δ 13 C R (up to 5.2‰) and compared to δ 13 C RS of soluble carbohydrates, citrate and starch (up to 8.8‰). Moreover, linear relationships between δ 13 C R and δ 13 C RS among different putative carbon sources were strongest for malate during daytime (r2=0.69, P≤0.001) and nighttime (r2=0.36, P≤0.001) under all environmental conditions. A multiple linear regression analysis revealed δ 13 C RS of malate as the most important carbon source influencing δ 13 C R. Thus, our results strongly indicate malate as a key carbon source of 13C enriched dark-respired CO2 in potato plants, probably driven by an anapleurotic flux replenishing intermediates of the Krebs cycle. PMID:26139821

  20. AdDroid: Privilege Separation for Applications and Advertisers in Android

    DTIC Science & Technology

    2013-05-14

    integrates these three components into the Android Open Source Project, version 2.3.3 (Ginger- bread ). 4.1 AdDroid Library API The AdDroid userspace...AdPropert ies IAB MRECT public stat ic int NO REFRESH stat ic enum AdPropert ies . Al ign BOTTOM TOP UNSET Class AdRequest public AdRequest ( ) public

  1. Sources of organic carbon for Rimicaris hybisae: Tracing individual fatty acids at two hydrothermal vent fields in the Mid-Cayman rise

    NASA Astrophysics Data System (ADS)

    Streit, Kathrin; Bennett, Sarah A.; Van Dover, Cindy L.; Coleman, Max

    2015-06-01

    Hydrothermal vents harbor ecosystems mostly decoupled from organic carbon synthesized with the energy of sunlight (photosynthetic carbon source) but fueled instead by oxidation of reduced compounds to generate a chemosynthetic carbon source. Our study aimed to disentangle photosynthetic and chemosynthetic organic carbon sources for the shrimp species Rimicaris hybisae, a primary consumer presumed to obtain its organic carbon mainly from ectosymbiotic chemoautotrophic bacteria living on its gill cover membrane. To provide ectosymbionts with ideal conditions for chemosynthesis, these shrimp live in dense clusters around vent chimneys; they are, however, also found sparsely distributed adjacent to diffuse vent flows, where they might depend on alternative food sources. Densely and sparsely distributed shrimp were sampled and dissected into abdominal tissue and gill cover membrane, covered with ectosymbiotic bacteria, at two hydrothermal vent fields in the Mid-Cayman rise that differ in vent chemistry. Fatty acids (FA) were extracted from shrimp tissues and their carbon isotopic compositions assessed. The FA data indicate that adult R. hybisae predominantly rely on bacteria for their organic carbon needs. Their FA composition is dominated by common bacterial FA of the n7 family (~41%). Bacterial FA of the n4 FA family are also abundant and found to constitute good biomarkers for gill ectosymbionts. Sparsely distributed shrimp contain fractions of n4 FA in gill cover membranes ~4% lower than densely packed ones (~18%) and much higher fractions of photosynthetic FA in abdominal tissues, ~4% more (compared with 1.6%), suggesting replacement of ectosymbionts along with exoskeletons (molt), while they take up alternative diets of partly photosynthetic organic carbon. Abdominal tissues also contain photosynthetic FA from a second source taken up presumably during an early dispersal phase and still present to c. 3% in adult shrimp. The contribution of photosynthetic carbon to

  2. New CO and HCN sources associated with IRAS carbon stars

    NASA Technical Reports Server (NTRS)

    NGUYEN-Q-RIEU; Epchtein, N.; TRUONG-BACH; Cohen, M.

    1987-01-01

    Emission of CO and HCN was detected in 22 out of a sample of 53 IRAS sources classified as unidentified carbon-rich objects. The sample was selected according to the presence of the silicon carbide feature as revealed by low-resolution spectra. The molecular line widths indicate that the CO and HCN emission arises from the circumstellar envelopes of very highly evolved stars undergoing mass loss. The visible stars tend to be deficient in CO as compared with unidentified sources. Most the detected CO and HCN IRAS stars are distinct and thick-shelled objects, but their infrared and CO luminosities are similar to those of IRC + 102156 AFGL and IRC-CO evolved stars. The 12 micron flux seems to be a good indicator of the distance, hence a guide for molecular searches.

  3. The Quest for Value-Added Products from Carbon Dioxide and Water in a Dielectric Barrier Discharge: A Chemical Kinetics Study.

    PubMed

    Snoeckx, Ramses; Ozkan, Alp; Reniers, Francois; Bogaerts, Annemie

    2017-01-20

    Recycling of carbon dioxide by its conversion into value-added products has gained significant interest owing to the role it can play for use in an anthropogenic carbon cycle. The combined conversion with H 2 O could even mimic the natural photosynthesis process. An interesting gas conversion technique currently being considered in the field of CO 2 conversion is plasma technology. To investigate whether it is also promising for this combined conversion, we performed a series of experiments and developed a chemical kinetics plasma chemistry model for a deeper understanding of the process. The main products formed were the syngas components CO and H 2 , as well as O 2 and H 2 O 2 , whereas methanol formation was only observed in the parts-per-billion to parts-per-million range. The syngas ratio, on the other hand, could easily be controlled by varying both the water content and/or energy input. On the basis of the model, which was validated with experimental results, a chemical kinetics analysis was performed, which allowed the construction and investigation of the different pathways leading to the observed experimental results and which helped to clarify these results. This approach allowed us to evaluate this technology on the basis of its underlying chemistry and to propose solutions on how to further improve the formation of value-added products by using plasma technology. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Using radiocarbon to constrain black and organic carbon aerosol sources in Salt Lake City

    NASA Astrophysics Data System (ADS)

    Mouteva, Gergana O.; Randerson, James T.; Fahrni, Simon M.; Bush, Susan E.; Ehleringer, James R.; Xu, Xiaomei; Santos, Guaciara M.; Kuprov, Roman; Schichtel, Bret A.; Czimczik, Claudia I.

    2017-09-01

    Black carbon (BC) and organic carbon (OC) aerosols are important components of fine particulate matter (PM2.5) in polluted urban environments. Quantifying the contribution of fossil fuel and biomass combustion to BC and OC concentrations is critical for developing and validating effective air quality control measures and climate change mitigation policy. We used radiocarbon (14C) to measure fossil and contemporary biomass contributions to BC and OC at three locations in Salt Lake City, Utah, USA, during 2012-2014, including during winter inversion events. Aerosol filters were analyzed with the Swiss_4S thermal-optical protocol to isolate BC. We measured fraction modern (fM) of BC and total carbon in PM2.5 with accelerator mass spectrometry and derived the fM of OC using isotope mass balance. Combined with 14C information of end-member composition, our data set of 31 14C aerosol measurements provided a baseline of the fossil and contemporary biomass components of carbonaceous aerosol. We show that fossil fuels were the dominant source of carbonaceous aerosol during winter, contributing 88% (80-98%) of BC and 58% (48-69%) of OC. While the concentration of both BC and OC increased during inversion events, the relative source contributions did not change. The sources of BC also did not vary throughout the year, while OC had a considerably higher contemporary biomass component in summer at 62% (49-76%) and was more variable. Our results suggest that in order to reduce PM2.5 levels in Salt Lake City to meet national standards, a more stringent policy targeting mobile fossil fuel sources may be necessary.

  5. Computational and experimental investigations of one-step conversion of poly(carbonate)s into value-added poly(aryl ether sulfone)s

    PubMed Central

    Yuen, Alexander; Wojtecki, Rudy J.; Hedrick, James L.; García, Jeannette M.

    2016-01-01

    It is estimated that ∼2.7 million tons poly(carbonate)s (PCs) are produced annually worldwide. In 2008, retailers pulled products from store shelves after reports of bisphenol A (BPA) leaching from baby bottles, reusable drink bottles, and other retail products. Since PCs are not typically recycled, a need for the repurposing of the PC waste has arisen. We report the one-step synthesis of poly(aryl ether sulfone)s (PSUs) from the depolymerization of PCs and in situ polycondensation with bis(aryl fluorides) in the presence of carbonate salts. PSUs are high-performance engineering thermoplastics that are commonly used for reverse osmosis and water purification membranes, medical equipment, as well as high temperature applications. PSUs generated through this cascade approach were isolated in high purity and yield with the expected thermal properties and represent a procedure for direct conversion of one class of polymer to another in a single step. Computational investigations performed with density functional theory predict that the carbonate salt plays two important catalytic roles in this reaction: it decomposes the PCs by nucleophilic attack, and in the subsequent polyether formation process, it promotes the reaction of phenolate dimers formed in situ with the aryl fluorides present. We envision repurposing poly(BPA carbonate) for the production of value-added polymers. PMID:27354514

  6. Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian; Romer, Rolf L.; Stracke, Andreas; Steenfelt, Agnete; Smart, Katie A.; Muehlenbachs, Karlis; Torsvik, Trond H.

    2017-05-01

    Kimberlite and carbonatite magmas that intrude cratonic lithosphere are among the deepest probes of the terrestrial carbon cycle. Their co-existence on thick continental shields is commonly attributed to continuous partial melting sequences of carbonated peridotite at >150 km depths, possibly as deep as the mantle transition zone. At Tikiusaaq on the North Atlantic craton in West Greenland, approximately 160 Ma old ultrafresh kimberlite dykes and carbonatite sheets provide a rare opportunity to study the origin and evolution of carbonate-rich melts beneath cratons. Although their Sr-Nd-Hf-Pb-Li isotopic compositions suggest a common convecting upper mantle source that includes depleted and recycled oceanic crust components (e.g., negative ΔεHf coupled with > + 5 ‰ δ7Li), incompatible trace element modelling identifies only the kimberlites as near-primary low-degree partial melts (0.05-3%) of carbonated peridotite. In contrast, the trace element systematics of the carbonatites are difficult to reproduce by partial melting of carbonated peridotite, and the heavy carbon isotopic signatures (-3.6 to - 2.4 ‰ δ13C for carbonatites versus -5.7 to - 3.6 ‰ δ13C for kimberlites) require open-system fractionation at magmatic temperatures. Given that the oxidation state of Earth's mantle at >150 km depth is too reduced to enable larger volumes of 'pure' carbonate melt to migrate, it is reasonable to speculate that percolating near-solidus melts of carbonated peridotite must be silicate-dominated with only dilute carbonate contents, similar to the Tikiusaaq kimberlite compositions (e.g., 16-33 wt.% SiO2). This concept is supported by our findings from the North Atlantic craton where kimberlite and other deeply derived carbonated silicate melts, such as aillikites, exsolve their carbonate components within the shallow lithosphere en route to the Earth's surface, thereby producing carbonatite magmas. The relative abundances of trace elements of such highly

  7. Denitrifying sulfur conversion-associated EBPR: Effects of temperature and carbon source on anaerobic metabolism and performance.

    PubMed

    Guo, Gang; Wu, Di; Ekama, George A; Hao, Tianwei; Mackey, Hamish Robert; Chen, Guanghao

    2018-04-16

    The recently developed Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) process has demonstrated simultaneous removal of organics, nitrogen and phosphorus with minimal sludge production in the treatment of saline/brackish wastewater. Its performance, however, is sensitive to operating and environmental conditions. In this study, the effects of temperature (20, 25, 30 and 35 °C) and the ratio of influent acetate to propionate (100-0, 75-25, 50-50, 25-75 and 0-100%) on anaerobic metabolism were investigated, and their optimal values/controls for performance optimization were identified. A mature DS-EBPR sludge enriched with approximately 30% sulfate-reducing bacteria (SRB) and 33% sulfide-oxidizing bacteria (SOB) was used in this study. The anaerobic stoichiometry of this process was insensitive to temperature or changes in the carbon source. However, an increase in temperature from 20 to 35 °C accelerated the kinetic reactions of the functional bacteria (i.e. SRB and SOB) and raised the energy requirement for their anaerobic maintenance, while a moderate temperature (25-30 °C) resulted in better P removal (≥93%, 18.6 mg P/L removal from total 20 mg P/L in the influent) with a maximum sulfur conversion of approximately 16 mg S/L. These results indicate that the functional bacteria are likely to be mesophilic. When a mixed carbon source (75-25 and 50-50% acetate to propionate ratios) was supplied, DS-EBPR achieved a stable P removal (≥89%, 17.8 mg P/L for 400 mg COD/L in the influent) with sulfur conversions at around 23 mg S/L, suggesting the functional bacteria could effectively adapt to changes in acetate or propionate as the carbon source. The optimal temperatures or carbon source conditions maximized the functional bacteria competition against glycogen-accumulating organisms by favoring their activity and synergy. Therefore, the DS-EBPR process can be optimized by setting the temperature

  8. Carbon Isotopes of Methane in the Atlantic Realm: Links Between Background Station Data and Emission Source Regions

    NASA Astrophysics Data System (ADS)

    Lowry, D.; Fisher, R. E.; Lanoisellé, M.; Nisbet, E. G.

    2011-12-01

    Large networks of cavity ring-down spectroscopy (CRDS) instruments to measure mixing ratios of greenhouse gases are currently being developed in wealthier populated regions. However, many major natural source regions are remote from wealthy nations, and there are often great logistical obstacles to setting up and maintaining continuous monitoring of these sources. Thus flux assessments in many regions of the world rely on a few unequally spaced 'background' stations, plus satellite interpolation. This limited network can be supplemented to great effect by methane isotope data to identify emissions from different sources and their region of emission. Ideally both carbon and hydrogen isotope signatures are needed for maximum separation of source groups. However the more complex analytical procedure and larger sample requirements for D/H measurement mean that resources are currently better utilized for high-precision carbon isotope (δ13C) measurement of methane. In particular, NOAA maintains an invaluable isotopic measurement network. Since 2008 the greenhouse gas group at Royal Holloway and partners have been measuring methane in and around the Atlantic region, currently measuring mixing ratios by CRDS at Barra (Scotland), Ascension, and E. Falklands. In addition, regular flask sampling for δ13C of CH4 is underway at these sites, plus Cape Point, South Africa, and Ny-Alesund, Spitzbergen, supplemented by collection at Sable Island, Canada, and sampling campaigns on-board the British Antarctic Survey ship, RRS James Clark Ross, between 50°S and 80°N. Methane mixing ratio and δ13C, when combined with back trajectory analysis, help to identify sources over which the air masses have passed. While the South Atlantic shows little N-S variation in δ13C (predominantly -47.2 to -46.8%) it is punctuated by emission plumes from sources in South America and Africa, and although infrequently sampled, they can in some instances be compared with the isotopic characteristics

  9. Carbon Composition of Particulate Organic Carbon in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Rogers, K.; Montoya, J. P.; Weber, S.; Bosman, S.; Chanton, J.

    2016-02-01

    The Deepwater Horizon blowout released 5.0x1011 g C from gaseous hydrocarbons and up to 6.0x1011g C from oil into the water column. Another carbon source, adding daily to the water column, leaks from the natural hydrocarbon seeps that pepper the seafloor of the Gulf of Mexico. How much of this carbon from the DWH and natural seeps is assimilated into particulate organic carbon (POC) in the water column? We filtered seawater collected in 2010, 2012, and 2013 from seep and non-seep sites, collecting POC on 0.7µm glass microfiber filters and analyzing the POC for stable and radiocarbon isotopes. Mixing models based on carbon isotopic endmembers of methane, oil, and modern production were used to estimate the percentage of hydrocarbon incorporated into POC. Significant differences were seen between POC from shallow and deep waters and between POC collected from seep, non-seep, and blowout sites; however yearly differences were not as evident suggesting the GOM has a consistent supply of depleted carbon. Stable carbon isotopes signatures of POC in the Gulf averaged -23.7±2.5‰ for shallow samples and -26.65±2.9‰ for deep POC samples, while radiocarbon signatures averaged -100.4±146.1‰ for shallow and -394.6±197‰ for deep samples. POC in the northern Gulf are composed of 23-91% modern carbon, 2-21% methane, and 0-71% oil. Oil plays a major role in the POC composition of the GOM, especially at the natural seep GC600.

  10. Effect of Different Carbon Sources on Bacterial Nanocellulose Production and Structure Using the Low pH Resistant Strain Komagataeibacter Medellinensis

    PubMed Central

    Molina-Ramírez, Carlos; Castro, Margarita; Osorio, Marlon; Torres-Taborda, Mabel; Gómez, Beatriz; Zuluaga, Robin; Gómez, Catalina; Gañán, Piedad; Rojas, Orlando J.; Castro, Cristina

    2017-01-01

    Bacterial cellulose (BC) is a polymer obtained by fermentation with microorganism of different genera. Recently, new producer species have been discovered, which require identification of the most important variables affecting cellulose production. In this work, the influence of different carbon sources in BC production by a novel low pH-resistant strain Komagataeibacter medellinensis was established. The Hestrin-Schramm culture medium was used as a reference and was compared to other media comprising glucose, fructose, and sucrose, used as carbon sources at three concentrations (1, 2, and 3% w/v). The BC yield and dynamics of carbon consumption were determined at given fermentation times during cellulose production. While the carbon source did not influence the BC structural characteristics, different production levels were determined: glucose > sucrose > fructose. These results highlight considerations to improve BC industrial production and to establish the BC property space for applications in different fields. PMID:28773001

  11. Tracing the source of soil organic matter eroded from temperate forest catchments using carbon and nitrogen isotopes

    Treesearch

    Emma P. McCorkle; Asmeret Asefaw Berhe; Carolyn T. Hunsaker; Dale W. Johnson; Karis J. McFarlane; Marilyn L. Fogel; Stephen C. Hart

    2016-01-01

    Soil erosion continuously redistributes soil and associated soil organic matter (SOM) on the Earth's surface, with important implications for biogeochemical cycling of essential elements and terrestrial carbon sequestration. Despite the importance of soil erosion, surprisingly few studies have evaluated the sources of eroded carbon (C). We used natural abundance...

  12. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.

    PubMed

    Leßmeier, Lennart; Pfeifenschneider, Johannes; Carnicer, Marc; Heux, Stephanie; Portais, Jean-Charles; Wendisch, Volker F

    2015-12-01

    Methanol, a one-carbon compound, can be utilized by a variety of bacteria and other organisms as carbon and energy source and is regarded as a promising substrate for biotechnological production. In this study, a strain of non-methylotrophic Corynebacterium glutamicum, which was able to produce the polyamide building block cadaverine as non-native product, was engineered for co-utilization of methanol. Expression of the gene encoding NAD+-dependent methanol dehydrogenase (Mdh) from the natural methylotroph Bacillus methanolicus increased methanol oxidation. Deletion of the endogenous aldehyde dehydrogenase genes ald and fadH prevented methanol oxidation to carbon dioxide and formaldehyde detoxification via the linear formaldehyde dissimilation pathway. Heterologous expression of genes for the key enzymes hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase of the ribulose monophosphate (RuMP) pathway in this strain restored growth in the presence of methanol or formaldehyde, which suggested efficient formaldehyde detoxification involving RuMP key enzymes. While growth with methanol as sole carbon source was not observed, the fate of 13C-methanol added as co-substrate to sugars was followed and the isotopologue distribution indicated incorporation into central metabolites and in vivo activity of the RuMP pathway. In addition, 13C-label from methanol was traced to the secreted product cadaverine. Thus, this synthetic biology approach led to a C. glutamicum strain that converted the non-natural carbon substrate methanol at least partially to the non-native product cadaverine.

  13. Source apportionment of fine particulate matter organic carbon in Shenzhen, China by chemical mass balance and radiocarbon methods.

    PubMed

    Al-Naiema, Ibrahim M; Yoon, Subin; Wang, Yu-Qin; Zhang, Yuan-Xun; Sheesley, Rebecca J; Stone, Elizabeth A

    2018-09-01

    Chemical mass balance (CMB) modeling and radiocarbon measurements were combined to evaluate the sources of carbonaceous fine particulate matter (PM 2.5 ) in Shenzhen, China during and after the 2011 summer Universiade games when air pollution control measurements were implemented to achieve air quality targets. Ambient PM 2.5 filter samples were collected daily at two sampling sites (Peking University Shenzhen campus and Longgang) over 24 consecutive days, covering the controlled and uncontrolled periods. During the controlled period, the average PM 2.5 concentration was less than half of what it was after the controls were lifted. Organic carbon (OC), organic molecular markers (e.g., levoglucosan, hopanes, polycyclic aromatic hydrocarbons), and secondary organic carbon (SOC) tracers were all significantly lower during the controlled period. After pollution controls ended, at Peking University, OC source contributions included gasoline and diesel engines (24%), coal combustion (6%), biomass burning (12.2%), vegetative detritus (2%), biogenic SOC (from isoprene, α-pinene, and β-caryophyllene; 7.1%), aromatic SOC (23%), and other sources not included in the model (25%). At Longgang after the controls ended, similar source contributions were observed: gasoline and diesel engines (23%), coal combustion (7%), biomass burning (17.7%), vegetative detritus (1%), biogenic SOC (from isoprene, α-pinene, and β-caryophyllene; 5.3%), aromatic SOC (13%), and other sources (33%). The contributions of the following sources were smaller during the pollution controls: biogenic SOC (by a factor of 10-16), aromatic SOC (4-12), coal combustion (1.5-6.8), and biomass burning (2.3-4.9). CMB model results and radiocarbon measurements both indicated that fossil carbon dominated over modern carbon, regardless of pollution controls. However, the CMB model needs further improvement to apportion contemporary carbon (i.e. biomass burning, biogenic SOC) in this region. This work defines the

  14. Measurement of carbon capture efficiency and stored carbon leakage

    DOEpatents

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  15. Estimated intakes and sources of total and added sugars in the Canadian diet.

    PubMed

    Brisbois, Tristin D; Marsden, Sandra L; Anderson, G Harvey; Sievenpiper, John L

    2014-05-08

    National food supply data and dietary surveys are essential to estimate nutrient intakes and monitor trends, yet there are few published studies estimating added sugars consumption. The purpose of this report was to estimate and trend added sugars intakes and their contribution to total energy intake among Canadians by, first, using Canadian Community Health Survey (CCHS) nutrition survey data of intakes of sugars in foods and beverages, and second, using Statistics Canada availability data and adjusting these for wastage to estimate intakes. Added sugars intakes were estimated from CCHS data by categorizing the sugars content of food groups as either added or naturally occurring. Added sugars accounted for approximately half of total sugars consumed. Annual availability data were obtained from Statistics Canada CANSIM database. Estimates for added sugars were obtained by summing the availability of "sugars and syrups" with availability of "soft drinks" (proxy for high fructose corn syrup) and adjusting for waste. Analysis of both survey and availability data suggests that added sugars average 11%-13% of total energy intake. Availability data indicate that added sugars intakes have been stable or modestly declining as a percent of total energy over the past three decades. Although these are best estimates based on available data, this analysis may encourage the development of better databases to help inform public policy recommendations.

  16. Estimated Intakes and Sources of Total and Added Sugars in the Canadian Diet

    PubMed Central

    Brisbois, Tristin D.; Marsden, Sandra L.; Anderson, G. Harvey; Sievenpiper, John L.

    2014-01-01

    National food supply data and dietary surveys are essential to estimate nutrient intakes and monitor trends, yet there are few published studies estimating added sugars consumption. The purpose of this report was to estimate and trend added sugars intakes and their contribution to total energy intake among Canadians by, first, using Canadian Community Health Survey (CCHS) nutrition survey data of intakes of sugars in foods and beverages, and second, using Statistics Canada availability data and adjusting these for wastage to estimate intakes. Added sugars intakes were estimated from CCHS data by categorizing the sugars content of food groups as either added or naturally occurring. Added sugars accounted for approximately half of total sugars consumed. Annual availability data were obtained from Statistics Canada CANSIM database. Estimates for added sugars were obtained by summing the availability of “sugars and syrups” with availability of “soft drinks” (proxy for high fructose corn syrup) and adjusting for waste. Analysis of both survey and availability data suggests that added sugars average 11%–13% of total energy intake. Availability data indicate that added sugars intakes have been stable or modestly declining as a percent of total energy over the past three decades. Although these are best estimates based on available data, this analysis may encourage the development of better databases to help inform public policy recommendations. PMID:24815507

  17. Hydrocarbon generation and expulsion in shale Vs. carbonate source rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leythaeuser, D.; Krooss, B.; Hillebrand, T.

    1993-09-01

    For a number of commercially important source rocks of shale and of carbonate lithologies, which were studied by geochemical, microscopical, and petrophysical techniques, a systematic comparison was made of the processes on how hydrocarbon generation and migration proceed with maturity progress. In this way, several fundamental differences between both types of source rocks were recognized, which are related to differences of sedimentary facies and, more importantly, of diagenetic processes responsible for lithification. Whereas siliciclastic sediments lithify mainly by mechanical compaction, carbonate muds get converted into lithified rocks predominantly by chemical diagenesis. With respect to their role as hydrocarbon source rocks,more » pressure solution processes appear to be key elements. During modest burial stages and prior to the onset of hydrocarbon generation reactions by thermal decomposition of kerogen, pressure solution seams and stylolites. These offer favorable conditions for hydrocarbon generation and expulsion-a three-dimensional kerogen network and high organic-matter concentrations that lead to effective saturation of the internal pore fluid system once hydrocarbon generation has started. As a consequence, within such zones pore fluids get overpressured, leading ultimately to fracturing. Petroleum expulsion can then occur at high efficiencies and in an explosive fashion, whereby clay minerals and residual kerogen particles are squeezed in a toothpaste-like fashion into newly created fractures. In order to elucidate several of the above outlined steps of hydrocarbon generation and migration processes, open-system hydrous pyrolysis experiments were performed. This approach permits one to monitor changes in yield and composition of hydrocarbon products generated and expelled at 10[degrees]C temperature increments over temperature range, which mimics in the laboratory the conditions prevailing in nature over the entire liquid window interval.« less

  18. Stable bioemulsifiers are produced by Acinetobacter bouvetii UAM25 growing in different carbon sources.

    PubMed

    Ortega-de la Rosa, Nestor D; Vázquez-Vázquez, Jose L; Huerta-Ochoa, Sergio; Gimeno, Miquel; Gutiérrez-Rojas, Mariano

    2018-06-01

    Acinetobacter species are identified as producing surface-active and emulsifying molecules known as bioemulsifiers. Production, characterization and stability of bioemulsifiers produced by Acinetobacter bouvetii UAM25 were studied. A. bouvetii UAM25 grew in three different carbon and energy sources: ethanol, a glycerol-hexadecane mixture and waste cooking oil in an airlift bioreactor, showing that bioemulsifier production was growth associated. The three purified bioemulsifiers were lipo-heteropolysaccharides of high molecular weight (4866 ± 533 and 462 ± 101 kDa). The best carbon source and energy for bioemulsifier production was wasted cooking oil, with a highest emulsifying capacity (76.2 ± 3.5 EU mg -1 ) as compared with ethanol (46.6 ± 7.1 EU mg -1 ) and the glycerol-hexadecane mixture (49.5 ± 4.2 EU mg -1 ). The three bioemulsifiers in our study displayed similar macromolecular structures, regardless of the nature (hydrophobic or hydrophilic) of the carbon and energy source. Bioemulsifiers did not decrease surface tension, but the emulsifying capacity of all of them was retained under extreme variation in salinity (0-50 g NaCl L -1 ), pH (3-10) and temperature (25-121 °C), indicative of remarkable stability. These findings contribute to understanding of the relationship between: production, physical properties, chemical composition and stability of bioemulsifiers for their potential applications in biotechnology, such as bioremediation of hydrocarbon-contaminated soil and water.

  19. Stable carbon isotopes and levoglucosan for PM2.5 elemental carbon source apportionments in the largest city of Northwest China

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuzi; Cao, Junji; Zhang, Ting; Shen, Zhenxing; Ni, Haiyan; Tian, Jie; Wang, Qiyuan; Liu, Suixin; Zhou, Jiamao; Gu, Jian; Shen, Ganzhou

    2018-07-01

    Stable carbon isotopes provide information on aerosol sources, but no extensive long-term studies of these isotopes have been conducted in China, and they have mainly been used for qualitative rather than quantitative purposes. Here, 24 h PM2.5 samples (n = 58) were collected from July 2008 to June 2009 at Xi'an, China. The concentrations of organic and elemental carbon (OC and EC), water-soluble OC, and the stable carbon isotope abundances of OC and EC were determined. In spring, summer, autumn and winter, the mean stable carbon isotope in OC (δ13COC) were -26.4 ± 0.6, -25.8 ± 0.7, -25.0 ± 0.6 and -24.4 ± 0.8‰, respectively, and the corresponding δ13CEC values were -25.5 ± 0.4, -25.5 ± 0.8, -25.2 ± 0.7 and -23.7 ± 0.6‰. Large δ13CEC and δ13COC values in winter can be linked to the burning coal for residential heating. Less biomass is burned during spring and summer than winter or fall (manifested in the levels of levoglucosan, i.e., 178, 85, 370, 935 ng m-3 in spring, summer, autumn, and winter), and the more negative δ13COC in the warmer months can be explained by the formation of secondary organic aerosols. A levoglucosan tracer method combined with an isotope mass balance analysis indicated that biomass burning accounted for 1.6-29.0% of the EC, and the mean value in winter (14.9 ± 7.5%) was 7 times higher than summer (2.1 ± 0.4%), with intermediate values of 6.1 ± 5.6 and 4.5 ± 2.4% in autumn and spring. Coal combustion accounted for 45.9 ± 23.1% of the EC overall, and the percentages were 63.0, 37.2, 36.7, and 33.7% in winter, autumn, summer and spring respectively. Motor vehicles accounted for 46.6 ± 26.5% of the annual EC, and these contributed over half (56.7-61.8%) of the EC in all seasons except winter. Correlations between motor vehicle-EC and coal combustion-EC with established source indicators (B(ghi)P and As) support the source apportionment results. This paper describes a simple and accurate method for apportioning the

  20. J-type Carbon Stars: A Dominant Source of 14 N-rich Presolar SiC Grains of Type AB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick

    We report Mo isotopic data of 27 new presolar SiC grains, including 12 N-14-rich AB (N-14/N-15 > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s-process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s-process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process (i-process) takes place, as theirmore » stellar source. On the other hand, low-mass CO novae and early R-and J-type carbon stars show C-13 and N-14 excesses but no s-process enhancements and are thus potential stellar sources of AB2 grains. Because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%-15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.« less

  1. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86

    PubMed Central

    Mohan, Karishma

    2017-01-01

    ABSTRACT Pseudomonas putida CSV86 degrades lignin-derived metabolic intermediates, viz., veratryl alcohol, ferulic acid, vanillin, and vanillic acid, as the sole sources of carbon and energy. Strain CSV86 also degraded lignin sulfonate. Cell respiration, enzyme activity, biotransformation, and high-pressure liquid chromatography (HPLC) analyses suggest that veratryl alcohol and ferulic acid are metabolized to vanillic acid by two distinct carbon source-dependent inducible pathways. Vanillic acid was further metabolized to protocatechuic acid and entered the central carbon pathway via the β-ketoadipate route after ortho ring cleavage. Genes encoding putative enzymes involved in the degradation were found to be present at fer, ver, and van loci. The transcriptional analysis suggests a carbon source-dependent cotranscription of these loci, substantiating the metabolic studies. Biochemical and quantitative real-time (qRT)-PCR studies revealed the presence of two distinct O-demethylases, viz., VerAB and VanAB, involved in the oxidative demethylation of veratric acid and vanillic acid, respectively. This report describes the various steps involved in metabolizing lignin-derived aromatic compounds at the biochemical level and identifies the genes involved in degrading veratric acid and the arrangement of phenylpropanoid metabolic genes as three distinct inducible transcription units/operons. This study provides insight into the bacterial degradation of lignin-derived aromatics and the potential of P. putida CSV86 as a suitable candidate for producing valuable products. IMPORTANCE Pseudomonas putida CSV86 metabolizes lignin and its metabolic intermediates as a carbon source. Strain CSV86 displays a unique property of preferential utilization of aromatics, including for phenylpropanoids over glucose. This report unravels veratryl alcohol metabolism and genes encoding veratric acid O-demethylase, hitherto unknown in pseudomonads, thereby providing new insight into the

  2. Transition from AdS universe to DS universe in the BPP model

    NASA Astrophysics Data System (ADS)

    Kim, Wontae; Yoon, Myungseok

    2007-04-01

    It can be shown that in the BPP model the smooth phase transition from the asymptotically decelerated AdS universe to the asymptotically accelerated DS universe is possible by solving the modified semiclassical equations of motion. This transition comes from noncommutative Poisson algebra, which gives the constant curvature scalars asymptotically. The decelerated expansion of the early universe is due to the negative energy density with the negative pressure induced by quantum back reaction, and the accelerated late-time universe comes from the positive energy and the negative pressure which behave like dark energy source in recent cosmological models.

  3. Association of δ13C in Fingerstick Blood with Added Sugars and Sugar-sweetened Beverage Intake

    PubMed Central

    Davy, Brenda M.; Jahren, A. Hope; Hedrick, Valisa E.; Comber, Dana L.

    2011-01-01

    A reliance on self-reported dietary intake measures is a common research limitation, thus the need for dietary biomarkers. Added sugar intake may play a role in the development and progression of obesity and related co-morbidities; common sweeteners include corn and sugar cane derivatives. These plants contain a high amount of 13C, a naturally-occurring stable carbon isotope. Consumption of these sweeteners, of which sugar-sweetened beverages (SSB) are the primary dietary source, may be reflected in the δ13C value of blood. Fingerstick blood represents an ideal substrate for bioassay due to its ease of acquisition. The objective of this investigation was to determine if the δ13C value of fingerstick blood is a potential biomarker of added sugar and SSB intake. Individuals aged ≥21 years (n=60) were recruited to attend three laboratory visits; assessments completed at each visit depended upon a randomly assigned sequence (sequence one or two). The initial visit included assessment of height, weight, and dietary intake (sequence one: beverage intake questionnaire [BEVQ], sequence two: four-day food intake record [FIR]). Sequence one participants completed an FIR at visit two, and non-fasting blood samples were obtained via routine finger sticks at visits one and three. Sequence two participants completed a BEVQ at visit two, and provided fingerstick blood samples at visits two and three. Samples were analyzed for δ13C value using natural abundance stable isotope mass spectrometry. δ13C value was compared to dietary outcomes in all participants, as well as among those in the highest and lowest tertile of added sugar intake. Reported mean added sugar consumption was 66±5g/day, and SSB consumption was 330±53g/day and 134±25 kcal/day. Mean fingerstick δ13C value was −19.94±0.10‰, which differed by BMI status. δ13C value was associated (all p<0.05) with intake of total added sugars (g, r=0.37; kcal, r=0.37), soft drinks (g, r=0.26; kcal, r=0.27), and total

  4. Siberian Arctic black carbon sources constrained by model and observation

    PubMed Central

    Andersson, August; Eckhardt, Sabine; Stohl, Andreas; Semiletov, Igor P.; Dudarev, Oleg V.; Charkin, Alexander; Shakhova, Natalia; Klimont, Zbigniew; Heyes, Chris; Gustafsson, Örjan

    2017-01-01

    Black carbon (BC) in haze and deposited on snow and ice can have strong effects on the radiative balance of the Arctic. There is a geographic bias in Arctic BC studies toward the Atlantic sector, with lack of observational constraints for the extensive Russian Siberian Arctic, spanning nearly half of the circum-Arctic. Here, 2 y of observations at Tiksi (East Siberian Arctic) establish a strong seasonality in both BC concentrations (8 ng⋅m−3 to 302 ng⋅m−3) and dual-isotope–constrained sources (19 to 73% contribution from biomass burning). Comparisons between observations and a dispersion model, coupled to an anthropogenic emissions inventory and a fire emissions inventory, give mixed results. In the European Arctic, this model has proven to simulate BC concentrations and source contributions well. However, the model is less successful in reproducing BC concentrations and sources for the Russian Arctic. Using a Bayesian approach, we show that, in contrast to earlier studies, contributions from gas flaring (6%), power plants (9%), and open fires (12%) are relatively small, with the major sources instead being domestic (35%) and transport (38%). The observation-based evaluation of reported emissions identifies errors in spatial allocation of BC sources in the inventory and highlights the importance of improving emission distribution and source attribution, to develop reliable mitigation strategies for efficient reduction of BC impact on the Russian Arctic, one of the fastest-warming regions on Earth. PMID:28137854

  5. Production of microbial secondary metabolites: regulation by the carbon source.

    PubMed

    Ruiz, Beatriz; Chávez, Adán; Forero, Angela; García-Huante, Yolanda; Romero, Alba; Sánchez, Mauricio; Rocha, Diana; Sánchez, Brenda; Rodríguez-Sanoja, Romina; Sánchez, Sergio; Langley, Elizabeth

    2010-05-01

    Microbial secondary metabolites are low molecular mass products, not essential for growth of the producing cultures, but very important for human health. They include antibiotics, antitumor agents, cholesterol-lowering drugs, and others. They have unusual structures and are usually formed during the late growth phase of the producing microorganisms. Its synthesis can be influenced greatly by manipulating the type and concentration of the nutrients formulating the culture media. Among these nutrients, the effect of the carbon sources has been the subject of continuous studies for both, industry and research groups. Different mechanisms have been described in bacteria and fungi to explain the negative carbon catabolite effects on secondary metabolite production. Their knowledge and manipulation have been useful either for setting fermentation conditions or for strain improvement. During the last years, important advances have been reported on these mechanisms at the biochemical and molecular levels. The aim of the present review is to describe these advances, giving special emphasis to those reported for the genus Streptomyces.

  6. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    NASA Astrophysics Data System (ADS)

    Oestreich, W. K.; Ganju, N. K.; Pohlman, J. W.; Suttles, S. E.

    2016-02-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM-fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m-1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from -19.7 to -26.1 ‰ and -20.8 to -26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of DOC source to CDOM : f

  7. adLIMS: a customized open source software that allows bridging clinical and basic molecular research studies.

    PubMed

    Calabria, Andrea; Spinozzi, Giulio; Benedicenti, Fabrizio; Tenderini, Erika; Montini, Eugenio

    2015-01-01

    Many biological laboratories that deal with genomic samples are facing the problem of sample tracking, both for pure laboratory management and for efficiency. Our laboratory exploits PCR techniques and Next Generation Sequencing (NGS) methods to perform high-throughput integration site monitoring in different clinical trials and scientific projects. Because of the huge amount of samples that we process every year, which result in hundreds of millions of sequencing reads, we need to standardize data management and tracking systems, building up a scalable and flexible structure with web-based interfaces, which are usually called Laboratory Information Management System (LIMS). We started collecting end-users' requirements, composed of desired functionalities of the system and Graphical User Interfaces (GUI), and then we evaluated available tools that could address our requirements, spanning from pure LIMS to Content Management Systems (CMS) up to enterprise information systems. Our analysis identified ADempiere ERP, an open source Enterprise Resource Planning written in Java J2EE, as the best software that also natively implements some highly desirable technological advances, such as the high usability and modularity that grants high use-case flexibility and software scalability for custom solutions. We extended and customized ADempiere ERP to fulfil LIMS requirements and we developed adLIMS. It has been validated by our end-users verifying functionalities and GUIs through test cases for PCRs samples and pre-sequencing data and it is currently in use in our laboratories. adLIMS implements authorization and authentication policies, allowing multiple users management and roles definition that enables specific permissions, operations and data views to each user. For example, adLIMS allows creating sample sheets from stored data using available exporting operations. This simplicity and process standardization may avoid manual errors and information backtracking, features

  8. Evaluation of Pyrolysis Oil as Carbon Source for Fungal Fermentation

    PubMed Central

    Dörsam, Stefan; Kirchhoff, Jennifer; Bigalke, Michael; Dahmen, Nicolaus; Syldatk, Christoph; Ochsenreither, Katrin

    2016-01-01

    Pyrolysis oil, a complex mixture of several organic compounds, produced during flash pyrolysis of organic lignocellulosic material was evaluated for its suitability as alternative carbon source for fungal growth and fermentation processes. Therefore several fungi from all phyla were screened for their tolerance toward pyrolysis oil. Additionally Aspergillus oryzae and Rhizopus delemar, both established organic acid producers, were chosen as model organisms to investigate the suitability of pyrolysis oil as carbon source in fungal production processes. It was observed that A. oryzae tolerates pyrolysis oil concentrations between 1 and 2% depending on growth phase or stationary production phase, respectively. To investigate possible reasons for the low tolerance level, eleven substances from pyrolysis oil including aldehydes, organic acids, small organic compounds and phenolic substances were selected and maximum concentrations still allowing growth and organic acid production were determined. Furthermore, effects of substances to malic acid production were analyzed and compounds were categorized regarding their properties in three groups of toxicity. To validate the results, further tests were also performed with R. delemar. For the first time it could be shown that small amounts of phenolic substances are beneficial for organic acid production and A. oryzae might be able to degrade isoeugenol. Regarding pyrolysis oil toxicity, 2-cyclopenten-1-on was identified as the most toxic compound for filamentous fungi; a substance never described for anti-fungal or any other toxic properties before and possibly responsible for the low fungal tolerance levels toward pyrolysis oil. PMID:28066378

  9. Evaluation of Pyrolysis Oil as Carbon Source for Fungal Fermentation.

    PubMed

    Dörsam, Stefan; Kirchhoff, Jennifer; Bigalke, Michael; Dahmen, Nicolaus; Syldatk, Christoph; Ochsenreither, Katrin

    2016-01-01

    Pyrolysis oil, a complex mixture of several organic compounds, produced during flash pyrolysis of organic lignocellulosic material was evaluated for its suitability as alternative carbon source for fungal growth and fermentation processes. Therefore several fungi from all phyla were screened for their tolerance toward pyrolysis oil. Additionally Aspergillus oryzae and Rhizopus delemar , both established organic acid producers, were chosen as model organisms to investigate the suitability of pyrolysis oil as carbon source in fungal production processes. It was observed that A. oryzae tolerates pyrolysis oil concentrations between 1 and 2% depending on growth phase or stationary production phase, respectively. To investigate possible reasons for the low tolerance level, eleven substances from pyrolysis oil including aldehydes, organic acids, small organic compounds and phenolic substances were selected and maximum concentrations still allowing growth and organic acid production were determined. Furthermore, effects of substances to malic acid production were analyzed and compounds were categorized regarding their properties in three groups of toxicity. To validate the results, further tests were also performed with R. delemar . For the first time it could be shown that small amounts of phenolic substances are beneficial for organic acid production and A. oryzae might be able to degrade isoeugenol. Regarding pyrolysis oil toxicity, 2-cyclopenten-1-on was identified as the most toxic compound for filamentous fungi; a substance never described for anti-fungal or any other toxic properties before and possibly responsible for the low fungal tolerance levels toward pyrolysis oil.

  10. Seasonal and spatial trends in the sources of fine particle organic carbon in Israel, Jordan, and Palestine

    NASA Astrophysics Data System (ADS)

    von Schneidemesser, Erika; Zhou, Jiabin; Stone, Elizabeth A.; Schauer, James J.; Qasrawi, Radwan; Abdeen, Ziad; Shpund, Jacob; Vanger, Arye; Sharf, Geula; Moise, Tamar; Brenner, Shmuel; Nassar, Khaled; Saleh, Rami; Al-Mahasneh, Qusai M.; Sarnat, Jeremy A.

    2010-09-01

    A study of carbonaceous particulate matter (PM) was conducted in the Middle East at sites in Israel, Jordan, and Palestine. The sources and seasonal variation of organic carbon, as well as the contribution to fine aerosol (PM 2.5) mass, were determined. Of the 11 sites studied, Nablus had the highest contribution of organic carbon (OC), 29%, and elemental carbon (EC), 19%, to total PM 2.5 mass. The lowest concentrations of PM 2.5 mass, OC, and EC were measured at southern desert sites, located in Aqaba, Eilat, and Rachma. The OC contribution to PM 2.5 mass at these sites ranged between 9.4% and 16%, with mean annual PM 2.5 mass concentrations ranging from 21 to 25 ug m -3. These sites were also observed to have the highest OC to EC ratios (4.1-5.0), indicative of smaller contributions from primary combustion sources and/or a higher contribution of secondary organic aerosol. Biomass burning and vehicular emissions were found to be important sources of carbonaceous PM in this region at the non-southern desert sites, which together accounted for 30%-55% of the fine particle organic carbon at these sites. The fraction of measured OC unapportioned to primary sources (1.4 μgC m -3 to 4.9 μgC m -3; 30%-74%), which has been shown to be largely from secondary organic aerosol, is relatively constant at the sites examined in this study. This suggests that secondary organic aerosol is important in the Middle East during all seasons of the year.

  11. Biological denitrification from mature landfill leachate using a food-waste-derived carbon source.

    PubMed

    Yan, Feng; Jiang, Jianguo; Zhang, Haowei; Liu, Nuo; Zou, Quan

    2018-05-15

    The mature landfill leachate containing high ammonia concentration (>1000 mg/L) is a serious threat to environment; however, the low COD to TN ratio (C/N, <3) strongly inhibits the denitrification process and poses a severe obstacle for efficient treatment. Herein, two kinds of acidogenic liquids, fermented from oil-removed food waste and oil-added food waste, were first applied as external carbon sources for the biological nitrogen removal from mature landfill leachate in an aerobic/anoxic membrane bioreactor. "Acidogenic liquid b" served quite better than commercial sodium acetate, considering the higher denitrification efficiency and the slightly rapider denitrification rate. The effect of C/N and temperature were investigated under hydraulic retention time (HRT) of 7 d, which showed that C/N ≥ 7 (25 °C) was enough to meet the general discharge standards of NH 4 + -N, TN and COD in China. Even for some special areas of China, the more stringent discharge standards (NH 4 + -N ≤ 8 mg/L, TN ≤ 20 mg/L) could also be achieved under longer HRT of 14 d and C/N ≥ 6. Notably, the COD concentration in effluent could also be well reduced to 50-55 mg/L, without further physical-chemical treatment. This proposed strategy, involving the high-value utilization of food waste, is thus promising for efficient nitrogen removal from mature landfill leachate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Upscaling carbon fluxes over the Great Plains grasslands: Sinks and sources

    USGS Publications Warehouse

    Zhang, Li; Wylie, Bruce K.; Ji, Lei; Gilmanov, Tagir G.; Tieszen, Larry L.; Howar, Daniel M.

    2011-01-01

    Previous studies suggested that the grasslands may be carbon sinks or near equilibrium, and they often shift between carbon sources in drought years and carbon sinks in other years. It is important to understand the responses of net ecosystem production (NEP) to various climatic conditions across the U.S. Great Plains grasslands. Based on 15 grassland flux towers, we developed a piecewise regression model and mapped the grassland NEP at 250 m spatial resolution over the Great Plains from 2000 to 2008. The results showed that the Great Plains was a net sink with an averaged annual NEP of 24 ± 14 g C m−2 yr−1, ranging from a low value of 0.3 g C m−2 yr−1 in 2002 to a high value of 47.7 g C m−2 yr−1 in 2005. The regional averaged NEP for the entire Great Plains grasslands was estimated to be 336 Tg C yr−1 from 2000 to 2008. In the 9 year period including 4 dry years, the annual NEP was very variable in both space and time. It appeared that the carbon gains for the Great Plains were more sensitive to droughts in the west than the east. The droughts in 2000, 2002, 2006, and 2008 resulted in increased carbon losses over drought-affected areas, and the Great Plains grasslands turned into a relatively low sink with NEP values of 15.8, 0.3, 20.1, and 10.2 g C m−2 yr−1 for the 4 years, respectively.

  13. Aerobic biodegradation of the sulfonamide antibiotic sulfamethoxazole by activated sludge applied as co-substrate and sole carbon and nitrogen source.

    PubMed

    Müller, Elisabeth; Schüssler, Walter; Horn, Harald; Lemmer, Hilde

    2013-08-01

    Potential aerobic biodegradation mechanisms of the widely used polar, low-adsorptive sulfonamide antibiotic sulfamethoxazole (SMX) were investigated in activated sludge at bench scale. The study focused on (i) SMX co-metabolism with acetate and ammonium nitrate and (ii) SMX utilization when present as the sole carbon and nitrogen source. With SMX adsorption being negligible, elimination was primarily based on biodegradation. Activated sludge was able to utilize SMX both as a carbon and/or nitrogen source. SMX biodegradation was enhanced when a readily degradable energy supply (acetate) was provided which fostered metabolic activity. Moreover, it was raised under nitrogen deficiency conditions. The mass balance for dissolved organic carbon showed an incomplete SMX mineralization with two scenarios: (i) with SMX as a co-substrate, 3-amino-5-methyl-isoxazole represented the main stable metabolite and (ii) SMX as sole carbon and nitrogen source possibly yielded hydroxyl-N-(5-methyl-1,2-oxazole-3-yl)benzene-1-sulfonamide as a further metabolite. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Fossil and contemporary sources of organic and elemental carbon at a rural and an urban site in the Netherlands

    NASA Astrophysics Data System (ADS)

    Dusek, U.; Monaco, M.; Weijers, E.; Röckmann, T.

    2012-04-01

    Measurement of the radioactive carbon isotope 14C in aerosols can provide a direct estimate of the contribution of fossil fuel sources to aerosol carbon. In aerosol science, measurements of 14C/12C ratios are usually reported as fraction modern (fm), relative to an oxalic acid standard that, by definition, has fm=1. The radiocarbon signature gives a clear distinction between 'modern' carbon sources (fm around 1.1-1.2 for biomass burning and around 1.05 for biogenic secondary organic aerosol) and 'fossil' carbon sources (fm =0 for primary and secondary formation from fossil fuel combustion). High volume filter samples have been collected since February 2011 at Cabauw, a rural location in the Netherlands, and additionally in May and June at two suburban locations around Rotterdam. We report measurements of fm for total carbon (TC), organic carbon (OC), water insoluble OC (WIOC) and thermally refractory carbon (RC) as a proxy for elemental carbon. The carbon fractions are isolated by combusting TC at 650 °C, OC and WIOC at 360 °C. Refractory carbon is defined as the carbon remaining on the filter after water extraction, combustion at 360 °C for 15 min and at 450 °C for 2 minutes. The method has been tested with test substances and real aerosol filters and shows little charring for water-extracted filters. First results of 7 filter samples taken from February - Mai 2011 show fm(OC) generally larger than 0.86 at the rural site, except for one case, when a strongly polluted air mass originating in Eastern Europe reached the site. This indicates a strong contribution of natural sources to OC, even in the Netherlands, a very densely populated country with one of the highest levels of aerosol pollution in Western Europe. In particular, WSOC in the rural springtime aerosol seems to originate almost entirely from contemporary sources. Refractory carbon also showed relatively high fm, generally between 0.3-0.5, except in two cases, when marine air masses reached the site

  15. Proteomic and metabolomic analysis of the carotenogenic yeast Xanthophyllomyces dendrorhous using different carbon sources.

    PubMed

    Martinez-Moya, Pilar; Niehaus, Karsten; Alcaíno, Jennifer; Baeza, Marcelo; Cifuentes, Víctor

    2015-04-12

    Astaxanthin is a potent antioxidant with increasing biotechnological interest. In Xanthophyllomyces dendrorhous, a natural source of this pigment, carotenogenesis is a complex process regulated through several mechanisms, including the carbon source. X. dendrorhous produces more astaxanthin when grown on a non-fermentable carbon source, while decreased astaxanthin production is observed in the presence of high glucose concentrations. In the present study, we used a comparative proteomic and metabolomic analysis to characterize the yeast response when cultured in minimal medium supplemented with glucose (fermentable) or succinate (non-fermentable). A total of 329 proteins were identified from the proteomic profiles, and most of these proteins were associated with carotenogenesis, lipid and carbohydrate metabolism, and redox and stress responses. The metabolite profiles revealed 92 metabolites primarily associated with glycolysis, the tricarboxylic acid cycle, amino acids, organic acids, sugars and phosphates. We determined the abundance of proteins and metabolites of the central pathways of yeast metabolism and examined the influence of these molecules on carotenogenesis. Similar to previous proteomic-stress response studies, we observed modulation of abundance from several redox, stress response, carbohydrate and lipid enzymes. Additionally, the accumulation of trehalose, absence of key ROS response enzymes, an increased abundance of the metabolites of the pentose phosphate pathway and tricarboxylic acid cycle suggested an association between the accumulation of astaxanthin and oxidative stress in the yeast. Moreover, we observed the increased abundance of late carotenogenesis enzymes during astaxanthin accumulation under succinate growth conditions. The use of succinate as a carbon source in X. dendrorhous cultures increases the availability of acetyl-CoA for the astaxanthin production compared with glucose, likely reflecting the positive regulation of metabolic

  16. Sourcing of Steam and Electricity for Carbon Capture Retrofits.

    PubMed

    Supekar, Sarang D; Skerlos, Steven J

    2017-11-07

    This paper compares different steam and electricity sources for carbon capture and sequestration (CCS) retrofits of pulverized coal (PC) and natural gas combined cycle (NGCC) power plants. Analytical expressions for the thermal efficiency of these power plants are derived under 16 different CCS retrofit scenarios for the purpose of illustrating their environmental and economic characteristics. The scenarios emerge from combinations of steam and electricity sources, fuel used in each source, steam generation equipment and process details, and the extent of CO 2 capture. Comparing these scenarios reveals distinct trade-offs between thermal efficiency, net power output, levelized cost, profit, and net CO 2 reduction. Despite causing the highest loss in useful power output, bleeding steam and extracting electric power from the main power plant to meet the CCS plant's electricity and steam demand maximizes plant efficiency and profit while minimizing emissions and levelized cost when wholesale electricity prices are below 4.5 and 5.2 US¢/kWh for PC-CCS and NGCC-CCS plants, respectively. At prices higher than these higher profits for operating CCS retrofits can be obtained by meeting 100% of the CCS plant's electric power demand using an auxiliary natural gas turbine-based combined heat and power plant.

  17. Eutrophication and carbon sources in Chesapeake Bay over the last 2700 yr: Human impacts in context

    USGS Publications Warehouse

    Bratton, J.F.; Colman, Steven M.; Seal, R.R.

    2003-01-01

    To compare natural variability and trends in a developed estuary with human-influenced patterns, stable isotope ratios (δ13C and δ15N) were measured in sediments from five piston cores collected in Chesapeake Bay. Mixing of terrestrial and algal carbon sources primarily controls patterns of δ13Corg profiles, so this proxy shows changes in estuary productivity and in delivery of terrestrial carbon to the bay. Analyses of δ15N show periods when oxygen depletion allowed intense denitrification and nutrient recycling to develop in the seasonally stratified water column, in addition to recycling taking place in surficial sediments. These conditions produced 15N-enriched (heavy) nitrogen in algal biomass, and ultimately in sediment. A pronounced increasing trend in δ15N of +4‰ started in about A.D. 1750 to 1800 at all core sites, indicating greater eutrophication in the bay and summer oxygen depletion since that time. The timing of the change correlates with the advent of widespread land clearing and tillage in the watershed, and associated increases in erosion and sedimentation. Isotope data show that the region has experienced up to 13 wet-dry cycles in the last 2700 yr. Relative sea-level rise and basin infilling have produced a net freshening trend overprinted with cyclic climatic variability. Isotope data also constrain the relative position of the spring productivity maximum in Chesapeake Bay and distinguish local anomalies from sustained changes impacting large regions of the bay. This approach to reconstructing environmental history should be generally applicable to studies of other estuaries and coastal embayments impacted by watershed development.

  18. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.

    2008-11-01

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C4+ based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C4+ was obtained to be 618 eμA under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  19. Optimization of Carbon and Nitrogen Sources for Extracellular Polymeric Substances Production by Chryseobacterium indologenes MUT.2.

    PubMed

    Khani, Mojtaba; Bahrami, Ali; Chegeni, Asma; Ghafari, Mohammad Davoud; Mansouran Zadeh, ALi

    2016-06-01

    Bacterial Extracellular Polymeric Substances (EPS) are environmental friendly and versatile polymeric materials that are used in a wide range of industries such as: food, textile, cosmetics, and pharmaceuticals. To make the production process of the EPS cost-effective, improvements in the production yield is required which could be implemented through application of processes such as optimized culture conditions, and development of the strains with higher yield ( e.g . through genetic manipulation), or using low-cost substrates. In this work, the effects of carbon and nitrogen sources were studied in order to improve the EPS production by the submerged cultivation of Chryseobacterium indologenes MUT.2. The mesophilic microorganism Chryseobacterium indologenes MUT.2, was grown and maintained in the Luria Bertani agar. The initial basal medium contained: glucose (20 g.L -1 ), yeast extracts (5 g.L -1 ), K 2 HPO 4 (6 g.L -1 ), NaH 2 PO 4 (7 g.L -1 ), NH 4 CL (0.7 g.L -1 ), and MgSO 4 (0.5 g.L -1 ). For evaluating the carbon and nitrogen sources' effect on the fermentation performance, cultures were prepared in 500 mL flasks filled with 300 mL of the medium. The single-factor experiments based on statistics was employed to evaluate and optimize the carbon and nitrogen sources for EPS production in the liquid culture medium of Chryseobacterium indologenes MUT.2. The preferred carbon-sources, sucrose and glucose, commonly gave the highest EPS production of 8.32 and 6.37 g.L -1 , respectively, and the maximum EPS production of 8.87 g.L -1 was achieved when glutamic acid (5 g.L -1 ) was employed as the nitrogen source. In this work, the culture medium for production of EPS by Chryseobacterium indologenes MUT.2 was optimized. Compared to the basal culture medium in shake-flasks and stirred tank bioreactor, the use of optimized culture medium has resulted in a 53% and 73% increase in the EPS production, respectively.

  20. Method for fabricating composite carbon foam

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    2001-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  1. Long-term trends in California mobile source emissions and ambient concentrations of black carbon and organic aerosol.

    PubMed

    McDonald, Brian C; Goldstein, Allen H; Harley, Robert A

    2015-04-21

    A fuel-based approach is used to assess long-term trends (1970-2010) in mobile source emissions of black carbon (BC) and organic aerosol (OA, including both primary emissions and secondary formation). The main focus of this analysis is the Los Angeles Basin, where a long record of measurements is available to infer trends in ambient concentrations of BC and organic carbon (OC), with OC used here as a proxy for OA. Mobile source emissions and ambient concentrations have decreased similarly, reflecting the importance of on- and off-road engines as sources of BC and OA in urban areas. In 1970, the on-road sector accounted for ∼90% of total mobile source emissions of BC and OA (primary + secondary). Over time, as on-road engine emissions have been controlled, the relative importance of off-road sources has grown. By 2010, off-road engines were estimated to account for 37 ± 20% and 45 ± 16% of total mobile source contributions to BC and OA, respectively, in the Los Angeles area. This study highlights both the success of efforts to control on-road emission sources, and the importance of considering off-road engine and other VOC source contributions when assessing long-term emission and ambient air quality trends.

  2. Isotopic Analysis of Sporocarp Protein and Structural Material Improves Resolution of Fungal Carbon Sources

    PubMed Central

    Chen, Janet; Hofmockel, Kirsten S.; Hobbie, Erik A.

    2016-01-01

    Fungal acquisition of resources is difficult to assess in the field. To determine whether fungi received carbon from recent plant photosynthate, litter or soil-derived organic (C:N bonded) nitrogen, we examined differences in δ13C among bulk tissue, structural carbon, and protein extracts of sporocarps of three fungal types: saprotrophic fungi, fungi with hydrophobic ectomycorrhizae, or fungi with hydrophilic ectomycorrhizae. Sporocarps were collected from experimental plots of the Duke Free-air CO2 enrichment experiment during and after CO2 enrichment. The differential 13C labeling of ecosystem pools in CO2 enrichment experiments was tracked into fungi and provided novel insights into organic nitrogen use. Specifically, sporocarp δ13C as well as δ15N of protein and structural material indicated that fungi with hydrophobic ectomycorrhizae used soil-derived organic nitrogen sources for protein carbon, fungi with hydrophilic ectomycorrhizae used recent plant photosynthates for protein carbon and both fungal groups used photosynthates for structural carbon. Saprotrophic fungi depended on litter produced during fumigation for both protein and structural material. PMID:28082951

  3. Quantifying Contemporary Terrestrial Carbon Sources and Sinks in the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Liu, S.; Loveland, T.

    2003-12-01

    U.S. land likely accounts for a significant portion of the unidentified global carbon sink, although the magnitude is highly uncertain. The ultimate goal of this study is to quantify the contemporary temporal and spatial patterns of carbon sources and sinks in the conterminous United States from the early 1970s to 2000, and to explain the mechanisms that cause the variability and changes. Because of the difficulty and massive cost for developing land cover change databases for the conterminous United States, we adopt an ecoregion-based sampling approach. Carbon dynamics within thousands of 20 km by 20 km or 10 km by 10 km sampling blocks, stratified by Omernik Level III ecoregions, are simulated using the General Ensemble Biogeochemical Modeling System at the spatial resolution of 60 m by 60 m. The land use change data, providing unprecedented accuracy and consistency, are derived from Landsat imagery for five time points (nominally 1972, 1980, 1986, 1992, and 2000). Mechanisms have been implemented to assimilate data from key national benchmark databases (including the USDA Forest Service­_s Forest Inventory and Analysis data and the USDA­_s agricultural census data). The dynamics of carbon stocks in vegetation, soil, and harvested wood materials are quantified. Results from three ecoregions (i.e., Southeastern Plains, Piedmont, and Northern Piedmont) indicated that the carbon sink strength has been decreasing from the 1970s to 2000. The relative contribution of biomass accumulation to the sink decreased during this period, while those of soil organic carbon and harvested wood materials increased.

  4. Application of enzyme-hydrolyzed cassava dregs as a carbon source in aquaculture.

    PubMed

    Shang, Qian; Tang, Haifang; Wang, Yinghui; Yu, Kefu; Wang, Liwei; Zhang, Ruijie; Wang, Shaopeng; Xue, Rui; Wei, Chaoshuai

    2018-02-15

    As a kind of tropical agricultural solid waste, cassava dregs had become a thorny nonpoint source pollution problem. This study investigated the feasibility of applying cassava dregs as a substitute for sucrose in biofloc technology (BFT) systems. Three types of biofloc systems (using three different carbon sources sucrose (BFT1), cassava dregs (BFT2) and enzyme-hydrolyzed cassava dregs (BFT3) respectively), and the control were constructed in this experiment in 200L tanks with a C/N ratio of 20/1. The comparison of the water quality indicators (The total ammonia nitrogen (TAN), nitrite (NO 2 - -N), nitrate (NO 3 - -N), chemical oxygen demand (COD)), biofloc for the above four groups was performed, and the results indicated that BFT3 showed greater potential to the formation of biofloc, which was beneficial for the water quality control. So the shrimp survival rate was the highest and the feed conversion rate was the lowest in BFT3. Besides, the high-throughput sequencing results showed that the relative abundance of heterotrophic bacteria in the top 30 dominant microbial communities in BFT3 was higher than those in BFT1 and BFT2 by 20.70% and 1.19%, respectively, which could decrease TAN to improve the water quality. Overall, the results had proved that the cassava dregs of enzymes hydrolysis could be used as an ideal and cheap carbon source in BFT. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A review of total & added sugar intakes and dietary sources in Europe.

    PubMed

    Azaïs-Braesco, Véronique; Sluik, Diewertje; Maillot, Matthieu; Kok, Frans; Moreno, Luis A

    2017-01-21

    Public health policies, including in Europe, are considering measures and recommendations to limit the intake of added or free sugars. For such policies to be efficient and monitored, a precise knowledge of the current situation regarding sugar intake in Europe is needed. This review summarizes published or re-analyzed data from 11 representative surveys in Belgium, France, Denmark, Hungary, Ireland, Italy, Norway, The Netherlands, Spain and the UK. Relative intakes were higher in children than in adults: total sugars ranged between 15 and 21% of energy intake in adults and between 16 and 26% in children. Added sugars (or non-milk extrinsic sugars (NMES), in the UK) contributed 7 to 11% of total energy intake in adults and represented a higher proportion of children's energy intake (11 to 17%). Educational level did not significantly affect intakes of total or added sugars in France and the Netherlands. Sweet products (e.g. confectionery, chocolates, cakes and biscuits, sugar, and jam) were major contributors to total sugars intake in all countries, genders and age groups, followed by fruits, beverages and dairy products. Fruits contributed more and beverages contributed less to adults' total sugars intakes than to children's. Added sugars were provided mostly by sweet products (36 to 61% in adults and 40 to 50% in children), followed by beverages (12 to 31% in adults and 20 to 34% in children, fruit juices excluded), then by dairy products (4 to 15% in adults and 6 to 18% in children). Caution is needed, however, as survey methodologies differ on important items such as dietary data collection, food composition tables or estimation of added sugars. Cross-country comparisons are thus not meaningful and overall information might thus not be robust enough to provide a solid basis for implementation of policy measures. Data nevertheless confirm that intakes of total and added sugars are high in the European countries considered, especially in children, and point to

  6. Quantifying Sources and Fluxes of Aquatic Carbon in U.S. Streams and Reservoirs Using Spatially Referenced Regression Models

    NASA Astrophysics Data System (ADS)

    Boyer, E. W.; Smith, R. A.; Alexander, R. B.; Schwarz, G. E.

    2004-12-01

    Organic carbon (OC) is a critical water quality characteristic in riverine systems that is an important component of the aquatic carbon cycle and energy balance. Examples of processes controlled by OC interactions are complexation of trace metals; enhancement of the solubility of hydrophobic organic contaminants; formation of trihalomethanes in drinking water; and absorption of visible and UV radiation. Organic carbon also can have indirect effects on water quality by influencing internal processes of aquatic ecosystems (e.g. photosynthesis and autotrophic and heterotrophic activity). The importance of organic matter dynamics on water quality has been recognized, but challenges remain in quantitatively addressing OC processes over broad spatial scales in a hydrological context. In this study, we apply spatially referenced watershed models (SPARROW) to statistically estimate long-term mean-annual rates of dissolved- and total- organic carbon export in streams and reservoirs across the conterminous United States. We make use of a GIS framework for the analysis, describing sources, transport, and transformations of organic matter from spatial databases providing characterizations of climate, land use, primary productivity, topography, soils, and geology. This approach is useful because it illustrates spatial patterns of organic carbon fluxes in streamflow, highlighting hot spots (e.g., organic-rich environments in the southeastern coastal plain). Further, our simulations provide estimates of the relative contributions to streams from allochthonous and autochthonous sources. We quantify surface water fluxes of OC with estimates of uncertainty in relation to the overall US carbon budget; our simulations highlight that aquatic sources and sinks of OC may be a more significant component of regional carbon cycling than was previously thought. Further, we are using our simulations to explore the potential role of climate and other changes in the terrestrial environment on

  7. The Lifestyle Carbon Dividend: Assessment of the Carbon Sequestration Potential of Grasslands and Pasturelands Reverted to Native Forests

    NASA Astrophysics Data System (ADS)

    Rao, S.; Jain, A. K.; Shu, S.

    2015-12-01

    What is the potential of a global transition to a vegan lifestyle to sequester carbon and mitigate climate change? To answer this question, we use an Earth System Model (ESM), the Integrated Science Assessment Model (ISAM). ISAM is a fully coupled biogeochemistry (carbon and nitrogen cycles) and biogeophysics (hydrology and thermal energy) ESM, which calculates carbon sources and sinks due to land cover and land use change activities, such as reforestation and afforestation. We calculate the carbon sequestration potential of grasslands and pasturelands that can be reverted to native forests as 265 GtC on 1.96E+7 km2 of land area, just 41% of the total area of such lands on Earth. The grasslands and pasturelands are assumed to revert back to native forests which existed prior to any human intervention and these include tropical, temperate and boreal forests. The results are validated with above ground regrowth measurements. Since this carbon sequestration potential is greater than the 240 GtC of that has been added to the atmosphere since the industrial era began, it shows that such global lifestyle transitions have tremendous potential to mitigate and even reverse climate change.

  8. Metabolic engineering of Pseudomonas putida for the utilization of parathion as a carbon and energy source.

    PubMed

    Walker, Andy W; Keasling, Jay D

    2002-06-30

    Pseudomonas putida KT2442 was engineered to use the organophosphate pesticide parathion, a compound similar to other organophosphate pesticides and chemical warfare agents, as a source of carbon and energy. The initial step in the engineered degradation pathway was parathion hydrolysis by organophosphate hydrolase (OPH) to p-nitrophenol (PNP) and diethyl thiophosphate, compounds that cannot be metabolized by P. putida KT2442. The gene encoding the native OPH (opd), with and without the secretory leader sequence, was cloned into broad-host-range plasmids under the control of tac and taclac promoters. Expression of opd from the tac promoter resulted in high OPH activity, whereas expression from the taclac promoter resulted in low activity. A plasmid-harboring operons encoding enzymes for p-nitrophenol transformation to beta-ketoadipate was transformed into P. putida allowing the organism to use 0.5 mM PNP as a carbon and energy source. Transformation of P. putida with the plasmids harboring opd and the PNP operons allowed the organism to utilize 0.8 mM parathion as a source of carbon and energy. Degradation studies showed that parathion formed a separate dense, non-aqueous phase liquid phase but was still bioavailable. Copyright 2002 Wiley Periodicals, Inc.

  9. Variations in microbial carbon sources and cycling in the deep continental subsurface

    NASA Astrophysics Data System (ADS)

    Simkus, Danielle N.; Slater, Greg F.; Lollar, Barbara Sherwood; Wilkie, Kenna; Kieft, Thomas L.; Magnabosco, Cara; Lau, Maggie C. Y.; Pullin, Michael J.; Hendrickson, Sarah B.; Wommack, K. Eric; Sakowski, Eric G.; van Heerden, Esta; Kuloyo, Olukayode; Linage, Borja; Borgonie, Gaetan; Onstott, Tullis C.

    2016-01-01

    Deep continental subsurface fracture water systems, ranging from 1.1 to 3.3 km below land surface (kmbls), were investigated to characterize the indigenous microorganisms and elucidate microbial carbon sources and their cycling. Analysis of phospholipid fatty acid (PLFA) abundances and direct cell counts detected varying biomass that was not correlated with depth. Compound-specific carbon isotope analyses (δ13C and Δ14C) of the phospholipid fatty acids (PLFAs) and carbon substrates combined with genomic analyses did identify, however, distinct carbon sources and cycles between the two depth ranges studied. In the shallower boreholes at circa 1 kmbls, isotopic evidence indicated microbial incorporation of biogenic CH4 by the in situ microbial community. At the shallowest site, 1.05 kmbls in Driefontein mine, this process clearly dominated the isotopic signal. At slightly deeper depths, 1.34 kmbls in Beatrix mine, the isotopic data indicated the incorporation of both biogenic CH4 and dissolved inorganic carbon (DIC) derived from CH4 oxidation. In both of these cases, molecular genetic analysis indicated that methanogenic and methanotrophic organisms together comprised a small component (<5%) of the microbial community. Thus, it appears that a relatively minor component of the prokaryotic community is supporting a much larger overall bacterial community in these samples. In the samples collected from >3 kmbls in Tau Tona mine (TT107, TT109 Bh2), the CH4 had an isotopic signature suggesting a predominantly abiogenic origin with minor inputs from microbial methanogenesis. In these samples, the isotopic enrichments (δ13C and Δ14C) of the PLFAs relative to CH4 were consistent with little incorporation of CH4 into the biomass. The most 13C-enriched PLFAs were observed in TT107 where the dominant CO2-fixation pathway was the acetyl-CoA pathway by non-acetogenic bacteria. The differences in the δ13C of the PLFAs and the DIC and DOC for TT109 Bh2 were ∼-24‰ and 0

  10. [Carbon source metabolic diversity of soil microbial community under different climate types in the area affected by Wenchuan earthquake].

    PubMed

    Zhang, Guang-Shuai; Lin, Yong-Ming; Ma, Rui-Feng; Deng, Hao-Jun; Du, Kun; Wu, Cheng-Zhen; Hong, Wei

    2015-02-01

    The MS8.0 Wenchuan earthquake in 2008 led to huge damage to land covers in northwest Sichuan, one of the critical fragile eco-regions in China which can be divided into Semi-arid dry hot climate zone (SDHC) and Subtropical humid monsoon climate zone (SHMC). Using the method of Bilog-ECO-microplate technique, this paper aimed to determine the functional diversity of soil microbial community in the earthquake-affected areas which can be divided into undamaged area (U), recover area (R) and damaged area without recovery (D) under different climate types, in order to provide scientific basis for ecological recovery. The results indicated that the average-well-color-development (AWCD) in undamaged area and recovery area showed SDHC > SHMC, which was contrary to the AWCD in the damaged area without recovery. The AWCD of damaged area without recovery was the lowest in both climate zones. The number of carbon source utilization types of soil microbial in SHMC zone was significantly higher than that in SDHC zone. The carbon source utilization types in both climate zones presented a trend of recover area > undamaged area > damaged area without recovery. The carbon source metabolic diversity characteristic of soil microbial community was significantly different in different climate zones. The diversity index and evenness index both showed a ranking of undamaged area > recover area > damaged area without recovery. In addition, the recovery area had the highest richness index. The soil microbial carbon sources metabolism characteristic was affected by soil nutrient, aboveground vegetation biomass and vegetation coverage to some extent. In conclusion, earthquake and its secondary disasters influenced the carbon source metabolic diversity characteristic of soil microbial community mainly through the change of aboveground vegetation and soil environmental factors.

  11. Hydrologic controls on Congo River particulate organic carbon source and reservoir age

    NASA Astrophysics Data System (ADS)

    Hemingway, J. D.; Schefuß, E.; Spencer, R. G.; Dinga, B. J.; Eglinton, T. I.; McIntyre, C.; Galy, V.

    2016-12-01

    Tropical rivers are a major source of organic matter (OM) to the coastal ocean and play a large role in the global carbon cycle. As such, it is critical to understand the sources, sinks, and transformations of OM during fluvial transit over seasonal and inter-annual timescales. Here we present dissolved organic carbon (DOC) concentrations, particulate OM (POM) composition (δ13C, δ15N, Δ14C, N/C), and glycerol dialkyl glycerol tetraether (GDGT) biomarker distributions from a 34-month time-series near the mouth of the Congo River. An end-member mixing model based on δ13C and N/C indicates that exported POM is consistently dominated by C3 tropical rainforest soil inputs, with increasing contributions by C3 tropical plant vegetation and decreasing contributions by autochthonous phytoplankton at high discharge. Calculated Δ14C values of the C3-soil end member reveal significant and variable pre-aging prior to export, especially during the year 2011 when southern-hemisphere discharge reached record lows (mean = -176‰, standard deviation = 93‰). In contrast, Δ14C values were stable near -50‰ between January and June 2013 when southern-hemisphere discharge was highest. These results indicate that headwater POM is diluted and/or overprinted by pre-aged soils during transit through the Cuvette Congolaise swamp forest, while left-bank tributaries export significantly less pre-aged material. GDGT distributions are in agreement, as the methylation and cyclization of branched tetraethers and the GDGT-0/crenarchaeol ratio reflect a significant incorporation of compounds produced in permanently inundated Cuvette Congolaise swamp-forest soils when discharge through this region is high, especially in 2011. This study provides a mechanistic link between hydrology and carbon cycling in the world's second largest tropical river and suggests that, if recent observed decreases in springtime precipitation over the Congo basin persist, future hydrologic conditions will further

  12. BACTERIOPLANKTON DYNAMICS IN PENSACOLA BAY, FL, USA: ROLE OF PHYTOPLANKTON AND DETRIAL CARBON SOURCES

    EPA Science Inventory

    Bacterioplankton Dynamics in Pensacola Bay, FL, USA: Role of Phytoplankton and Detrital Carbon Sources (Abstract). To be presented at the16th Biennial Conference of the Estuarine Research Foundation, ERF 2001: An Estuarine Odyssey, 4-8 November 2001, St. Pete Beach, FL. 1 p. (ER...

  13. J-type Carbon Stars: A Dominant Source of 14 N-rich Presolar SiC Grains of Type AB

    DOE PAGES

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick; ...

    2017-07-21

    Here, we report Mo isotopic data of 27 new presolar SiC grains, including 12 14N-rich AB ( 14N/ 15N > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s-process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s-process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process (i-process) takesmore » place, as their stellar source. On the other hand, low-mass CO novae and early R- and J-type carbon stars show 13C and 14N excesses but no s-process enhancements and are thus potential stellar sources of AB2 grains. And because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%–15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.« less

  14. J-type Carbon Stars: A Dominant Source of 14 N-rich Presolar SiC Grains of Type AB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick

    Here, we report Mo isotopic data of 27 new presolar SiC grains, including 12 14N-rich AB ( 14N/ 15N > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s-process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s-process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process (i-process) takesmore » place, as their stellar source. On the other hand, low-mass CO novae and early R- and J-type carbon stars show 13C and 14N excesses but no s-process enhancements and are thus potential stellar sources of AB2 grains. And because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%–15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.« less

  15. Barrow Black Carbon Source and Impact Study Final Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Tate

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact (BBCSI) Study was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement site in Barrow, AK. The carbonaceous component was characterized via measurement of the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the particulate matter, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine (PM2.5) and 49 coarse (PM10) particulate matter fractions were collected at weekly and bi-monthly intervals. The PM2.5 samplermore » operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the BBCSI used standard Tisch hi-vol motors which have a known lifetime of ~1 month under constant use; this necessitated monthly maintenance and it is suggested that the motors be upgraded to industrial blowers for future deployment in the Arctic. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric particulate matter samples from Barrow, AK from July 2012 to June 2013. Preliminary analysis of the organic and black carbon concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer.« less

  16. Role of carbon source in the shift from oxidative to hydrolytic wood decomposition by Postia placenta.

    PubMed

    Zhang, Jiwei; Schilling, Jonathan S

    2017-09-01

    Brown rot fungi initiate wood decay using oxidative pretreatments to improve access for cellulolytic enzymes. These pretreatments are incompatible with enzymes, and we recently showed that Postia placenta overcomes this issue by delaying glycoside hydrolase (GH) gene upregulation briefly (<48h) until expression of oxidoreductases (ORs) is repressed. This implies an inducible cellulase system rather than a constitutive system, as often reported, and it remains unclear what cues this transition. To address this, we grew P. placenta along wood wafers and spatially mapped expression (via quantitative PCR) of twelve ORs and GHs targeted using functional genomics analyses. By layering expression patterns over solubilized sugar data (via HPLC) from wood, we observed solubilization of wood glucose, cellobiose, mannose, and xylose coincident with the OR-GH transition. We then tested effects of these soluble sugars, plus polymeric carbon sources (spruce powder, cellulose), on P. placenta gene expression in liquid cultures. Expression of ORs was strictly (aox1, cro5) or progressively repressed over time (qrd1, lcc1) by all soluble sugars, including cellobiose, but not by polymeric sources. Simple sugars repressed hemicellulase gene expression over time, but these sugars did not repress cellulases. Cellulase genes were upregulated, however, along with hemicellulases in the presence of soluble cellobiose and in the presence of polymeric carbon sources, relative to starvation (carbon-free). This verifies an inducible cellulase system in P. placenta that lacks carbon catabolite repression (CCR), and it suggests that brown rot fungi use soluble sugars, particularly cellobiose, to cue a critical oxidative-hydrolytic transition. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Evaluation of Lighting Systems, Carbon Sources, and Bacteria Cultures on Photofermentative Hydrogen Production.

    PubMed

    Hu, Chengcheng; Choy, Sing-Ying; Giannis, Apostolos

    2018-05-01

    Fluorescent and incandescent lighting systems were applied for batch photofermentative hydrogen production by four purple non-sulfur photosynthetic bacteria (PNSB). The hydrogen production efficiency of Rhodopseudomonas palustris, Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodospirillum rubrum was evaluated using different carbon sources (acetate, butyrate, lactate, and malate). Incandescent light was found to be more effective for bacteria cell growth and hydrogen production. It was observed that PNSB followed substrate selection criteria for hydrogen production. Only R. palustris was able to produce hydrogen using most carbon sources. Cell density was almost constant, but cell growth rate and hydrogen production were significantly varied under the different lighting systems. The kinetics study suggested that initial substrate concentration had a positive correlation with lag phase duration. Among the PNSB, R. palustris grew faster and had higher hydrogen yields of 1.58, 4.92, and 2.57 mol H 2 /mol using acetate, butyrate, and lactate, respectively. In the integrative approach with dark fermentation effluents rich in organic acids, R. palustris should be enriched in the phototrophic microbial consortium of the continuous hydrogen production system.

  18. Optical properties and possible sources of brown carbon in PM2.5 over Xi'an, China

    NASA Astrophysics Data System (ADS)

    Shen, Zhenxing; Zhang, Qian; Cao, Junji; Zhang, Leiming; Lei, Yali; Huang, Yu; Huang, R.-J.; Gao, Jinjin; Zhao, Zhuzi; Zhu, Chongshu; Yin, Xiuli; Zheng, Chunli; Xu, Hongmei; Liu, Suixin

    2017-02-01

    To quantify optical and chemical properties of PM2.5 brown carbon (BrC) in Xi'an, 58 high-volume ambient PM2.5 samples were collected during 2 November 2009 to 13 October 2010. Mass concentrations of chemical components were determined, including water-soluble ions, water-soluble organic carbon, levoglucosan, organic carbon (OC), and element carbon (EC). BrC, as an unidentified and wavelength-dependent organic compound, was also measured from water-soluble carbon (WSOC) at 340 nm using UV-vis spectrometer. The wavelength-dependent absorption coefficient (babs) and mass absorption coefficient (MAC) were much abundant at 340 nm, and the high Absorption Ångström coefficient (AAC) values were observed around 5.4, corresponding to the existence of BrC in ambient PM2.5, especially in winter. Good correlations (R > 0.60) between babs and biomass burning markers, such as levoglucosan and K+, in winter indicated significant amounts of primary BrC from biomass burning emissions. Secondary organic carbon BrC (SOCsbnd BrC) was more abundant in winter than in summer. SOCsbnd BrC in winter was mainly fresh SOC formed from aqueous phase reactions while in summer, aged SOC from photo-chemical formation. Source profiles of BrC optical parameters were detected, which verified sources of BrC from biomass burning and coal burning emissions in areas surrounding Xi'an. The rapidly decreasing babs-340nm values from biomass burning smoldering to straw pellet burning suggested that burning straw pellet instead of burning straw directly is an effective measure for reducing BrC emissions.

  19. The AD775 cosmic event revisited: the Sun is to blame

    NASA Astrophysics Data System (ADS)

    Usoskin, I. G.; Kromer, B.; Ludlow, F.; Beer, J.; Friedrich, M.; Kovaltsov, G. A.; Solanki, S. K.; Wacker, L.

    2013-04-01

    Aims: Miyake et al. (2012, Nature, 486, 240, henceforth M12) recently reported, based on 14C data, an extreme cosmic event in about AD775. Using a simple model, M12 claimed that the event was too strong to be caused by a solar flare within the standard theory. This implied a new paradigm of either an impossibly strong solar flare or a very strong cosmic ray event of unknown origin that occurred around AD775. However, as we show, the strength of the event was significantly overestimated by M12. Several subsequent works have attempted to find a possible exotic source for such an event, including a giant cometary impact upon the Sun or a gamma-ray burst, but they are all based on incorrect estimates by M12. We revisit this event with analysis of new datasets and consistent theoretical modelling. Methods: We verified the experimental result for the AD775 cosmic ray event using independent datasets including 10Be series and newly measured 14C annual data. We surveyed available historical chronicles for astronomical observations for the period around the AD770s to identify potential sightings of aurorae borealis and supernovae. We interpreted the 14C measurements using an appropriate carbon cycle model. Results: We show that: (1) The reality of the AD775 event is confirmed by new measurements of 14C in German oak; (2) by using an inappropriate carbon cycle model, M12 strongly overestimated the event's strength; (3) the revised magnitude of the event (the global 14C production Q = (1.1 - 1.5) × 108 atoms/cm2) is consistent with different independent datasets (14C, 10Be, 36Cl) and can be associated with a strong, but not inexplicably strong, solar energetic particle event (or a sequence of events), and provides the first definite evidence for an event of this magnitude (the fluence >30 MeV was about 4.5 × 1010 cm-2) in multiple datasets; (4) this interpretation is in agreement with increased auroral activity identified in historical chronicles. Conclusions: The results

  20. BLACK Carbon Emissions from Diesel Sources in the Largest Arctic City: Case Study of Murmansk

    NASA Astrophysics Data System (ADS)

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2014-12-01

    Russia has very little data on its black carbon (BC) emissions. Because Russia makes up such a large share of the Arctic, understanding Russian emissions will improve our understanding of overall BC levels, BC in the Arctic and the link between BC and climate change. This paper provides a detailed, bottom-up inventory of BC emissions from diesel sources in Murmansk, Russia, along with uncertainty estimates associated with these emissions. The research team developed a detailed data collection methodology. The methodology involves assessing the vehicle fleet and activity in Murmansk using traffic, parking lot and driver surveys combined with an existing database from a vehicle inspection station and statistical data. The team also assessed the most appropriate emission factors, drawing from both Russian and international inventory methodologies. The researchers also compared fuel consumption using statistical data and bottom-up fuel calculations. They then calculated emissions for on-road transportation, off-road transportation (including mines), diesel generators, fishing and other sources. The article also provides a preliminary assessment of Russia-wide emissions of black carbon from diesel sources.

  1. Source of released carbon fibers

    NASA Technical Reports Server (NTRS)

    Bell, V. L.

    1979-01-01

    The potential for the release of carbon fibers from aircraft crashes/fires is addressed. Simulation of the conditions of aircraft crash fires in order to predict the quantities and forms of fibrous materials which might be released from civilian aircraft crashes/fires is considered. Figures are presented which describe some typical fiber release test activities together with some very preliminary results of those activities. The state of the art of carbon fiber release is summarized as well as some of the uncertainties concerning accidental fiber release.

  2. Tracing the sources of organic carbon in freshwater systems

    NASA Astrophysics Data System (ADS)

    Glendell, Miriam; Meersmans, Jeroen; Barclay, Rachel; Yvon-Durocher, Gabriel; Barker, Sam; Jones, Richard; Hartley, Iain; Dungait, Jennifer; Quine, Timothy

    2016-04-01

    both terrestrial and aquatic sources as recorded in lake sediments to the measured rates of soil erosion and terrestrial & aquatic CO2 respiration rates, this study has paved a way towards a novel and cross-disciplinary approach to investigate and further improve current status of knowledge as regards C-cycling across the entire terrestrial-aquatic continuum. 137Cs was found to be useful to understand the dynamics and spatial pattern of lateral fluxes of sediment & C at the catchment scale, while tracing chemical composition of C using n-alkanes and stable isotopes (δ13C, δ15N) allowed distinguishing between the terrestrial vs. aquatic origin of C and determining main sources of particulate organic carbon in the aquatic environment within the two study catchments.

  3. Quality of poultry litter-derived granular activated carbon.

    PubMed

    Qiu, Guannan; Guo, Mingxin

    2010-01-01

    Utilization of poultry litter as a source material for generating activated carbon is a value-added and environmentally beneficial approach to recycling organic waste. In this study, the overall quality of poultry litter-derived granular activated carbon was systematically evaluated based on its various physical and chemical properties. Granular activated carbon generated from pelletized poultry litter following a typical steam-activation procedure possessed numerous micropores in the matrix. The product exhibited a mean particle diameter of 2.59 mm, an apparent density of 0.45 g cm(-3), a ball-pan hardness of 91.0, an iodine number of 454 mg g(-1), and a BET surface area of 403 m(2) g(-1). It contained high ash, nitrogen, phosphorus contents and the trace elements Cu, Zn, and As. Most of the nutrients and toxic elements were solidified and solution-unextractable. In general, poultry litter-based activated carbon demonstrated overall quality comparable to that of low-grade commercial activated carbon derived from coconut shell and bituminous coal. It is promising to use poultry litter as a feedstock to manufacture activated carbon for wastewater treatment.

  4. Preferential Use of Carbon Sources in Culturable Aerobic Mesophilic Bacteria of Coptotermes curvignathus's (Isoptera: Rhinotermitidae) Gut and Its Foraging Area.

    PubMed

    Wong, W Z; H'ng, P S; Chin, K L; Sajap, Ahmad Said; Tan, G H; Paridah, M T; Othman, Soni; Chai, E W; Go, W Z

    2015-10-01

    The lower termite, Coptotermes curvignathus, is one of the most prominent plantation pests that feed upon, digest, and receive nourishment from exclusive lignocellulose diets. The objective of this study was to examine the utilization of sole carbon sources by isolated culturable aerobic bacteria among communities from the gut and foraging pathway of C. curvignathus. We study the bacteria occurrence from the gut of C. curvignathus and its surrounding feeding area by comparing the obtained phenotypic fingerprint with Biolog's extensive species library. A total of 24 bacteria have been identified mainly from the family Enterobacteriaceae from the identification of Biolog Gen III. Overall, the bacteria species in the termite gut differ from those of foraging pathway within a location, except Acintobacter baumannii, which was the only bacteria species found in both habitats. Although termites from a different study area do not have the same species of bacteria in the gut, they do have a bacterial community with similar role in degrading certain carbon sources. Sugars were preferential in termite gut isolates, while nitrogen carbon sources were preferential in foraging pathway isolates. The preferential use of specific carbon sources by these two bacterial communities reflects the role of bacteria for regulation of carbon metabolism in the termite gut and foraging pathway. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. What drives uncertainty in model diagnoses of carbon dynamics in southern US forests: climate, vegetation, disturbance, or model parameters?

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Gu, H.; Williams, C. A.

    2017-12-01

    Results from terrestrial carbon cycle models have multiple sources of uncertainty, each with its behavior and range. Their relative importance and how they combine has received little attention. This study investigates how various sources of uncertainty propagate, temporally and spatially, in CASA-Disturbance (CASA-D). CASA-D simulates the impact of climatic forcing and disturbance legacies on forest carbon dynamics with the following steps. Firstly, we infer annual growth and mortality rates from measured biomass stocks (FIA) over time and disturbance (e.g., fire, harvest, bark beetle) to represent annual post-disturbance carbon fluxes trajectories across forest types and site productivity settings. Then, annual carbon fluxes are estimated from these trajectories by using time since disturbance which is inferred from biomass (NBCD 2000) and disturbance maps (NAFD, MTBS and ADS). Finally, we apply monthly climatic scalars derived from default CASA to temporally distribute annual carbon fluxes to each month. This study assesses carbon flux uncertainty from two sources: driving data including climatic and forest biomass inputs, and three most sensitive parameters in CASA-D including maximum light use efficiency, temperature sensitivity of soil respiration (Q10) and optimum temperature identified by using EFAST (Extended Fourier Amplitude Sensitivity Testing). We quantify model uncertainties from each, and report their relative importance in estimating forest carbon sink/source in southeast United States from 2003 to 2010.

  6. Colored dissolved organic matter in shallow estuaries: relationships between carbon sources and light attenuation

    USGS Publications Warehouse

    Oestreich, W.K.; Ganju, Neil K.; Pohlman, John; Suttles, Steven E.

    2016-01-01

    Light availability is of primary importance to the ecological function of shallow estuaries. For example, benthic primary production by submerged aquatic vegetation is contingent upon light penetration to the seabed. A major component that attenuates light in estuaries is colored dissolved organic matter (CDOM). CDOM is often measured via a proxy, fluorescing dissolved organic matter (fDOM), due to the ease of in situ fDOM sensor measurements. Fluorescence must be converted to CDOM absorbance for use in light attenuation calculations. However, this CDOM–fDOM relationship varies among and within estuaries. We quantified the variability in this relationship within three estuaries along the mid-Atlantic margin of the eastern United States: West Falmouth Harbor (MA), Barnegat Bay (NJ), and Chincoteague Bay (MD/VA). Land use surrounding these estuaries ranges from urban to developed, with varying sources of nutrients and organic matter. Measurements of fDOM (excitation and emission wavelengths of 365 nm (±5 nm) and 460 nm (±40 nm), respectively) and CDOM absorbance were taken along a terrestrial-to-marine gradient in all three estuaries. The ratio of the absorption coefficient at 340 nm (m−1) to fDOM (QSU) was higher in West Falmouth Harbor (1.22) than in Barnegat Bay (0.22) and Chincoteague Bay (0.17). The CDOM : fDOM absorption ratio was variable between sites within West Falmouth Harbor and Barnegat Bay, but consistent between sites within Chincoteague Bay. Stable carbon isotope analysis for constraining the source of dissolved organic matter (DOM) in West Falmouth Harbor and Barnegat Bay yielded δ13C values ranging from −19.7 to −26.1 ‰ and −20.8 to −26.7 ‰, respectively. Concentration and stable carbon isotope mixing models of DOC (dissolved organic carbon) indicate a contribution of 13C-enriched DOC in the estuaries. The most likely source of 13C-enriched DOC for the systems we investigated is Spartina cordgrass. Comparison of

  7. Garage carbon monoxide levels from sources commonly used in intentional poisoning.

    PubMed

    Hampson, Neil B; Holm, James R; Courtney, Todd G

    2017-01-01

    The incidence of intentional carbon monoxide (CO) poisoning is believed to have declined due to strict federal CO emissions standards for motor vehicles and the uniform application of catalytic converters (CC). We sought to compare ambient CO levels produced by automobiles with and without catalytic converters in a residential garage, as well as from other CO sources commonly used for intentional poisoning. CO levels were measured inside a freestanding 73 m3 one-car garage. CO sources included a 1971 automobile without CC, 2003 automobile with CC, charcoal grill, electrical generator, lawn mower and leaf blower. After 20 minutes of operation, the CO level in the garage was 253 PPM for the car without a catalytic converter and 30 PPM for the car equipped withone. CO levels after operating or burning the other sources were: charcoal 200 PPM; generator >999 PPM; lawn mower 198 PPM; and leaf blower 580 PPM. While emissions controls on automobiles have reduced intentional CO poisonings, alternate sources may produce CO at levels of the same magnitude as vehicles manufactured prior to the use of catalytic converters. Those involved in the care of potentially suicidal individuals should be aware of this.

  8. Special role of corn flour as an ideal carbon source for aerobic denitrification with minimized nitrous oxide emission.

    PubMed

    Zhu, Shuangyue; Zheng, Maosheng; Li, Can; Gui, Mengyao; Chen, Qian; Ni, Jinren

    2015-06-01

    Much effort has been made for reducing nitrous oxide (N2O) emission in wastewater treatment processes. This paper presents an interesting way to minimize N2O in aerobic denitrification by strain Pseudomonas stutzeri PCN-1 with help of corn flour as cheaper additional carbon source. Experimental results showed that maximal N2O accumulation by strain PCN-1 was only 0.02% of removed nitrogen if corn flour was used as sole carbon source, which was significantly reduced by 52.07-99.81% comparing with others such as succinate, glucose, acetate and citrate. Sustained release of reducing sugar from starch and continuous expression of nosZ coding for N2O reductase contributed to the special role of corn flour as the ideal carbon source for strain PCN-1. Further experiments in sequencing batch reactors (SBRs) demonstrated similarly efficient nitrogen removal with much less N2O emission due to synergy of the novel strain and activated sludge, which was then confirmed by quantitative PCR analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Sources of greenhouse gases and carbon monoxide in central London (UK)

    NASA Astrophysics Data System (ADS)

    Helfter, Carole; Tremper, Anja; Zazzeri, Giulia; Barlow, Janet F.; Nemitz, Eiko

    2015-04-01

    Biosphere-atmosphere exchange of carbon dioxide (CO2) has been on the scientific agenda for several decades and new technology now also allows for high-precision, continuous monitoring of fluxes of methane (CH4) and nitrous oxide (N2O). Compared to the natural environment, flux measurements in the urban environment, which is home to over 50% of the population globally, are still rare despite high densities of anthropogenic sources of pollutants. We report on over three years of measurements atop a 192 m tower in central London (UK), Europe's largest city, which started in October 2011. Fluxes of methane, carbon monoxide (CO) and carbon dioxide are measured by eddy-covariance (EC) at the British Telecom tower (51° 31' 17.4' N 0° 8' 20.04' W). In addition to the long-term measurements, EC fluxes of nitrous oxide (N2O) were measured in February 2014. All four trace gases exhibit diurnal trends consistent with anthropogenic activities with minimum emissions at night and early afternoon maxima. Segregating emissions by wind direction reveals heterogeneous source distributions with temporal patterns and source strengths that differ between compounds. The lowest emissions for CO, CO2 and CH4 were recorded for NW winds. The highest emissions of methane were in the SE sector, in the NE for CO2 and in the W for CO. Fluxes of all 3 gases exhibited marked seasonal trends characterised by a decrease in emissions in summer (63% reduction for CO, 36% for CO2 and 22% for CH4). Monthly fluxes of CO and CO2 were linearly correlated to air temperature (R2 = 0.7 and 0.59 respectively); a weaker dependence upon temperature was also observed for CH4 (R2 = 0.31). Diurnal and seasonal emissions of CO and CO2 are mainly controlled by local fossil fuel combustion and vehicle cold starts are thought to account for 20-30% of additional emissions of CO during the winter. Fugitive emissions of CH4 from the natural gas distribution network are thought to be substantial, which is consistent

  10. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch

    USGS Publications Warehouse

    Walter Anthony, K. M.; Zimov, S. A.; Grosse, G.; Jones, Miriam C.; Anthony, P.; Chapin, F. S.; Finlay, J. C.; Mack, M. C.; Davydov, S.; Frenzel, P.F.; Frolking, S.

    2014-01-01

    Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene epoch1,2,3,4. However, the same thermokarst lakes can also sequester carbon5, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial timescales. We assess thermokarst-lake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47±10 grams of carbon per square metre per year; mean±standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears7

  11. An analytical study of nitrogen oxides and carbon monoxide emissions in hydrocarbon combustion with added nitrogen, preliminary results

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1979-01-01

    The effect of combustor operating conditions on the conversion of fuel-bound nitrogen (FBN) to nitrogen oxides NO sub x was analytically determined. The effect of FBN and of operating conditions on carbon monoxide (CO) formation was also studied. For these computations, the combustor was assumed to be a two stage, adiabatic, perfectly-stirred reactor. Propane-air was used as the combustible mixture and fuel-bound nitrogen was simulated by adding nitrogen atoms to the mixture. The oxidation of propane and formation of NO sub x and CO were modeled by a fifty-seven reaction chemical mechanism. The results for NO sub x and CO formation are given as functions of primary and secondary stage equivalence ratios and residence times.

  12. C:N and δ13C indicate aquatic carbon source for methanogenesis in peatland lakes

    NASA Astrophysics Data System (ADS)

    Horruitiner, C. D.; Palace, M. W.; Wik, M.; Johnson, J. E.; Varner, R.

    2017-12-01

    Emissions from high latitude lakes are a large source of atmospheric methane (CH4) and are thought to be controlled primarily by temperature and the availability of labile organic carbon (C). The sediment loading of organic carbon from aquatic versus terrestrial sources is not well understood, nor is its effect on methane dynamics or how this will change with a warming Arctic. In the summer of 2017, we studied the C loading of aquatic vegetation and its effects on methane dynamics across a system of lakes within Stordalen Mire, a thawing permafrost peatland, using an underwater camera to characterize bottom vegetation. Preliminary C:N elemental ratios were performed on both aquatic and terrestrial vegetation, indicating an aquatic C:N signature in sediments and little diagenetic alteration of C:N ratios with decomposition. Inclusion of δ13C of aquatic vegetation and sediment further validate the hypothesis of a highly aquatic signature in sediment carbon, meaning organic C in these lakes is predominantly autochthonous. Previous work indicates that the isotopic signature of the CH4 produced is within the range of hydrogenotrophic methanogenesis, via the reduction of CO2, as opposed to the fermentation of acetate. Pending acetate concentration analysis will validate this as the predominant methanogenic pathway. We suggest that in-situ aquatic vegetation can fuel much of the CH4 production in high latitude shallow lakes, a C source that may respond positively in a warming climate with CO2 fertilization and longer ice-free seasons.

  13. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal.

    PubMed

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-04-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49-5.99 g N/(kg MLVSS⋅h) (MLVSS is mixed liquor volatile suspended solids) and 6.63-6.81 g N/(kg MLVSS⋅h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes.

  14. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal*

    PubMed Central

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-01-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49–5.99 g N/(kg MLVSS∙h) (MLVSS is mixed liquor volatile suspended solids) and 6.63–6.81 g N/(kg MLVSS∙h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes. PMID:25845364

  15. Carbon and Nitrogen Sources for Shrimp Postlarvae Fed Natural Diets from a Tropical Mangrove System

    NASA Astrophysics Data System (ADS)

    Dittel, A. I.; Epifanio, C. E.; Cifuentes, L. A.; Kirchman, D. L.

    1997-11-01

    Postlarvae ofPenaeus vannameiwere fed various diets in order to examine the importance of detritus and other possible prey items in supporting postlarval growth. Stable isotopes (C and N) were used to determine the carbon and nitrogen source of the prey in the various diets. The zooplankton diet contained mostly copepods. The subtidal detritus treatment consisted mostly of plant material whereas the diets from both intertidal sites contained a mixture of plant detritus and associated meiofauna. Postlarvae reared on zooplankton and detritus plus meiofauna diets more than tripled their weight during a 6-day period. In contrast, postlarvae fed the detritus diet barely doubled their weight. Based on isotopic composition, postlarvae appear to obtain their carbon and nitrogen from various food sources. Postlarvae were enriched by 0·4‰ in13C and 2·7‰ in15N relative to the zooplankton diet, which is consistent with isotopic fractionation between successive trophic levels. In turn, the isotopic signal of the zooplankton was consistent with phytoplankton being the initial source of organic matter. In contrast, mean δ13C values of the shrimp fed detritus plus meiofauna were significantly different from their respective diets. Isotopic ratios of the postlarvae fed the mixed diet from Chomes were two trophic levels above benthic algae suggesting that the shrimp preyed on organisms that derived their carbon and nitrogen from benthic algae and/or phytoplankton.

  16. Effect of Multiwalled Carbon Nanotubes on the Mechanical Properties of Carbon Fiber-Reinforced Polyamide-6/Polypropylene Composites for Lightweight Automotive Parts.

    PubMed

    Nguyen-Tran, Huu-Duc; Hoang, Van-Tho; Do, Van-Ta; Chun, Doo-Man; Yum, Young-Jin

    2018-03-15

    The development of lightweight automotive parts is an important issue for improving the efficiency of vehicles. Polymer composites have been widely applied to reduce weight and improve mechanical properties by mixing polymers with carbon fibers, glass fibers, and carbon nanotubes. Polypropylene (PP) has been added to carbon fiber-reinforced nylon-6 (CF/PA6) composite to achieve further weight reduction and water resistance. However, the mechanical properties were reduced by the addition of PP. In this research, multiwalled carbon nanotubes (CNTs) were added to compensate for the reduced mechanical properties experienced when adding PP. Tensile testing and bending tests were carried out to evaluate the mechanical properties. A small amount of CNTs improved the mechanical properties of carbon fiber-reinforced PA6/PP composites. For example, the density of CF/PA6 was reduced from 1.214 to 1.131 g/cm³ (6.8%) by adding 30 wt % PP, and the tensile strength of 30 wt % PP composite was improved from 168 to 173 MPa (3.0%) by adding 0.5 wt % CNTs with small increase of density (1.135 g/cm³). The developed composite will be widely used for lightweight automotive parts with improved mechanical properties.

  17. Culture medium pH influence on Gluconacetobacter physiology: Cellulose production rate and yield enhancement in presence of multiple carbon sources.

    PubMed

    Yassine, Fatima; Bassil, Nathalie; Flouty, Roula; Chokr, Ali; Samrani, Antoine El; Boiteux, Gisèle; Tahchi, Mario El

    2016-08-01

    Gluconacetobacter genera are valued for bacterial cellulose (BC) and acetic acid production. BC is produced at optimal yields in classical microbiological media that are expensive for a large scale of production. In addition, BC usage for industrial purposes is limited due to low conversion rate into cellulose and to long incubation duration. In this paper, Gluconacetobacter isolated from apple vinegar was kinetically studied to evaluate cellulose production in presence of different carbon sources. Acetic and citric acid effect on Gluconacetobacter metabolism is clarified. It was shown that Gluconacetobacter uses glucose as a primary carbon source for cells growth and products formation. Acetic acid employment as a co-carbon source in Hestrin Schramm medium showed an increase of 17% in BC yield with a moderate decrease in the crystallite size of the resulting polymer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. COMBUSTION AREA SOURCES: DATA SOURCES

    EPA Science Inventory

    The report identifies, documents, and evaluates data sources for stationary area source emissions, including solid waste and agricultural burning. Area source emissions of particulate matter, sulfur dioxide, oxides of nitrogen, reactive volatile organic compounds, and carbon mon...

  19. Effect of Adding Cerium on Microstructure and Morphology of Ce-Based Inclusions Formed in Low-Carbon Steel

    PubMed Central

    Adabavazeh, Z.; Hwang, W. S.; Su, Y. H.

    2017-01-01

    Intra-granular Acicular Ferrite (IAF), as one of the most well-known desirable microstructure of ferrite with a chaotic crystallographic orientation, can not only refine the microstructure and retard the propagation of cleavage crack but also provide excellent combination of strength and toughness in steel. The effect of adding cerium on microstructure and controlling proper cerium-based inclusions in order to improve properties in low-carbon commercial steel (SS400) were investigated. The type of inclusions can be controlled by changing S/O ratio and Ce content. Without Ce modification, MnS is a dominate inclusion. After adding Ce, the stable inclusion phases change from AlCeO3 to Ce2O2S. The optimum amount of cerium, 0.0235 wt.%, lead in proper grain refinement and formation of cerium oxide, oxy-sulfide and sulfide inclusions. Having a high amount of cerium results in increasing the number of inclusions significantly as a result it cannot be effective enough and the inclusions will act like barriers for others. It is found that the inclusions with a size of about 4∼7 μm can serve as heterogeneous nucleation sites for AF formation. Thermodynamic calculations have been applied to predict the inclusion formation in this molten steel as well, which show a good agreement with experimental one. PMID:28485376

  20. Nitrogen-doped microporous carbon: An efficient oxygen reduction catalyst for Zn-air batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Yuan; Wang, Meng-Ran; Lai, Yan-Qing; Li, Xiao-Yan

    2017-08-01

    N-doped microporous carbon as an exceptional metal-free catalyst from waste biomass (banana peel as representative) was obtained via fast catalysis carbonization, followed by N-doping modification. The method achieves a relatively high C conversion efficiency of ∼41.9%. The final carbon materials are doped by N (∼3 at.%) and possess high surface area (∼1097 m2 g-1) and abundant micropores. Compared to commercial Pt/C materials, the as-prepared carbon catalyst exhibits a comparable electrocatalytic activity and much better stability. Furthermore, the metal-free catalyst loaded Zn-air battery possesses higher discharge voltage and power density as compared with that of commercial Pt/C. This novel technique can also be readily applied to produce metal-free carbon catalysts from other typical waste biomass (e.g., orange peel, leaves) as the carbon sources. The method can be developed as a potentially general and effective industrial route to transform waste biomass into high value-added microporous carbon with superior functionalities.

  1. Source Apportionment of Elemental Carbon in Beijing, China: Insights from Radiocarbon and Organic Marker Measurements.

    PubMed

    Zhang, Yan-Lin; Schnelle-Kreis, Jürgen; Abbaszade, Gülcin; Zimmermann, Ralf; Zotter, Peter; Shen, Rong-rong; Schäfer, Klaus; Shao, Longyi; Prévôt, André S H; Szidat, Sönke

    2015-07-21

    Elemental carbon (EC) or black carbon (BC) in the atmosphere has a strong influence on both climate and human health. In this study, radiocarbon ((14)C) based source apportionment is used to distinguish between fossil fuel and biomass burning sources of EC isolated from aerosol filter samples collected in Beijing from June 2010 to May 2011. The (14)C results demonstrate that EC is consistently dominated by fossil-fuel combustion throughout the whole year with a mean contribution of 79% ± 6% (ranging from 70% to 91%), though EC has a higher mean and peak concentrations in the cold season. The seasonal molecular pattern of hopanes (i.e., a class of organic markers mainly emitted during the combustion of different fossil fuels) indicates that traffic-related emissions are the most important fossil source in the warm period and coal combustion emissions are significantly increased in the cold season. By combining (14)C based source apportionment results and picene (i.e., an organic marker for coal emissions) concentrations, relative contributions from coal (mainly from residential bituminous coal) and vehicle to EC in the cold period were estimated as 25 ± 4% and 50 ± 7%, respectively, whereas the coal combustion contribution was negligible or very small in the warm period.

  2. Aerosol black carbon at an urban site-Srinagar, Northwestern Himalaya, India: Seasonality, sources, meteorology and radiative forcing

    NASA Astrophysics Data System (ADS)

    Bhat, Mudasir Ahmad; Romshoo, Shakil Ahmad; Beig, Gufran

    2017-09-01

    Black carbon (BC) mass concentration was measured first-time at a high altitude urban site-Srinagar (1600 m asl), in northwestern Himalaya, India using an Aethalometer during 2013 to study temporal variations (monthly, diurnal and seasonal), meteorological influences, source and its radiative forcing. Diurnal variations with two peaks (at 8-10 h and 20-23 h) and two dips (at 13-17 h and 0-3 h) were observed throughout the year with varying magnitude. November and April showed the highest (13.6 μg/m3) and the lowest (3.4 μg/m3) mean monthly BC concentration respectively. Seasonally, autumn displayed the highest (9.2 μg/m3) and spring the lowest (3.5 μg/m3) mean BC concentration. Annual average BC concentration was quite higher (6 μg/m3) than those reported for other high altitude stations. Wind speed, Minimum temperature and total precipitation showed a clear negative correlation with BC (r = -0.63, -0.51 and -0.55 respectively), while as, the evening relative humidity showed positive correlation (r = 0.56). During autumn, spring and winter seasons, the main source of BC at Srinagar is the biomass burning, while during summer season, equal contribution of BC is from fossil fuel and biomass burning. Back trajectory simulations revealed that, except summer, westerly air masses are the dominant winds, transporting BC from central Asia, west Asia, south Asia, Africa and some parts of Europe to Srinagar adding to its local sources. Clear-sky short wave radiative forcing of atmosphere due to BC was highest (58.2 W m-2) during autumn which leads to the increase in lower atmospheric heating rate by 1.6 K/d. The high concentration of BC observed over the high-altitude Himalayan Kashmir region has serious implications for the regional climate, hydrology and cryosphere which needs to be investigated.

  3. Active thrusting offshore Mount Lebanon: Source of the tsunamigenic A.D. 551 Beirut-Tripoli earthquake

    NASA Astrophysics Data System (ADS)

    Elias, Ata; Tapponnier, Paul; Singh, Satish C.; King, Geoffrey C. P.; Briais, Anne; Daëron, Mathieu; Carton, Helene; Sursock, Alexander; Jacques, Eric; Jomaa, Rachid; Klinger, Yann

    2007-08-01

    On 9 July A.D. 551, a large earthquake, followed by a tsunami, destroyed most of the coastal cities of Phoenicia (modern-day Lebanon). Tripoli is reported to have “drowned,” and Berytus (Beirut) did not recover for nearly 1300 yr afterwards. Geophysical data from the Shalimar survey unveil the source of this event, which may have had a moment magnitude (Mw) of 7.5 and was arguably one of the most devastating historical submarine earthquakes in the eastern Mediterranean: rupture of the offshore, hitherto unknown, ˜100-150-km-long active, east-dipping Mount Lebanon thrust. Deep-towed sonar swaths along the base of prominent bathymetric escarpments reveal fresh, west-facing seismic scarps that cut the sediment-smoothed seafloor. The Mount Lebanon thrust trace comes closest (˜8 km) to the coast between Beirut and Enfeh, where, as 13 14C-calibrated ages indicate, a shoreline-fringing vermetid bench suddenly emerged by ˜80 cm in the sixth century A.D. At Tabarja, the regular vertical separation (˜1 m) of higher fossil benches suggests uplift by three more earthquakes of comparable size since the Holocene sea level reached a maximum ca. 7-6 ka, implying a 1500-1750 yr recurrence time. Unabated thrusting on the Mount Lebanon thrust likely drove the growth of Mount Lebanon since the late Miocene.

  4. New Carbon Source From Microbial Degradation of Pre-Production Resin Pellets from the North Pacific Gyre

    NASA Astrophysics Data System (ADS)

    Neal, A.; Mielke, R.; Stam, C. N.; Gonsior, M.; Tsapin, A. I.; Lee, G.; Leftwich, B.; Narayan, R.; Coleman, H.; Argyropoulos, N.; Sheavly, S. B.; Gorby, Y. A.

    2011-12-01

    Numerous pollutants are transported through the world's oceans that impact oceanic health. Diffuse sources include land-based runoff, atmospheric depositions, shipping industry wastes, and others. Synthetic polymer marine debris is a multi-faceted problem that includes interactions with environmental toxins, carbon cycling systems, ocean surface chemistry, fine minerals deposition, and nano-particles. The impact that synthetic polymer-microbe interactions have on carbon input into the open ocean is poorly understood. Here we demonstrate that both biotic and abiotic processes contribute to degradation of pre-production resin pellets (PRPs), in open ocean environments and new methodologies to determine carbon loss from this synthetic polymer debris. Our data shows that material degradation of environmental polyethylene PRPs can potentially deposit 13 mg/g to 65 mg/g of carbon per PRP into our marine environments. Environmental pre-production resin pellets were collected on the S/V Kaisei cruise in 2009 which covered over 3,000 nautical miles and sampled over 102,000 m3 of the first 15cm of the water column in the Subtropical Convergence Zone of the North Pacific Gyre. Environmental PRP degradation and the role microbial communities play in this was evaluated using a combination of Fourier transform infrared spectroscopy, environmental scanning electron microscopy, scanning transmission electron microscopy, X-ray microtomography, and ArcGIS mapping. More research is needed to understand the environmental impact of this new carbon source arising from synthetic polymers as they degrade in oceanic environments.

  5. Current sources of carbon tetrachloride (CCl4) in our atmosphere

    NASA Astrophysics Data System (ADS)

    Sherry, David; McCulloch, Archie; Liang, Qing; Reimann, Stefan; Newman, Paul A.

    2018-02-01

    Carbon tetrachloride (CCl4 or CTC) is an ozone-depleting substance whose emissive uses are controlled and practically banned by the Montreal Protocol (MP). Nevertheless, previous work estimated ongoing emissions of 35 Gg year-1 of CCl4 into the atmosphere from observation-based methods, in stark contrast to emissions estimates of 3 (0-8) Gg year-1 from reported numbers to UNEP under the MP. Here we combine information on sources from industrial production processes and legacy emissions from contaminated sites to provide an updated bottom-up estimate on current CTC global emissions of 15-25 Gg year-1. We now propose 13 Gg year-1 of global emissions from unreported non-feedstock emissions from chloromethane and perchloroethylene plants as the most significant CCl4 source. Additionally, 2 Gg year-1 are estimated as fugitive emissions from the usage of CTC as feedstock and possibly up to 10 Gg year-1 from legacy emissions and chlor-alkali plants.

  6. Multiple Phosphatases Regulate Carbon Source-Dependent Germination and Primary Metabolism in Aspergillus nidulans

    PubMed Central

    de Assis, Leandro José; Ries, Laure Nicolas Annick; Savoldi, Marcela; Dinamarco, Taisa Magnani; Goldman, Gustavo Henrique; Brown, Neil Andrew

    2015-01-01

    Aspergillus nidulans is an important mold and a model system for the study of fungal cell biology. In addition, invasive A. nidulans pulmonary infections are common in humans with chronic granulomatous disease. The morphological and biochemical transition from dormant conidia into active, growing, filamentous hyphae requires the coordination of numerous biosynthetic, developmental, and metabolic processes. The present study exhibited the diversity of roles performed by seven phosphatases in regulating cell cycle, development, and metabolism in response to glucose and alternative carbon sources. The identified phosphatases highlighted the importance of several signaling pathways regulating filamentous growth, the action of the pyruvate dehydrogenase complex as a metabolic switch controlling carbon usage, and the identification of the key function performed by the α-ketoglutarate dehydrogenase during germination. These novel insights into the fundamental roles of numerous phosphatases in germination and carbon sensing have provided new avenues of research into the identification of inhibitors of fungal germination, with implications for the food, feed, and pharmaceutical industries. PMID:25762568

  7. Capacitor with a composite carbon foam electrode

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  8. Capacitor with a composite carbon foam electrode

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1999-04-27

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  9. Carbon source recovery from excess sludge by mechanical disintegration for biological denitrification.

    PubMed

    Zubrowska-Sudol, M

    2018-04-01

    The goal of the study was to evaluate the possibility of carbon source recovery from excess sludge by mechanical disintegration for biological denitrification. The total efficiency of denitrification, unit demand for organic compounds for denitrification, unit volume of disintegrated sludge and unit cost of nitrogen removal as a function of energy density used for excess sludge disintegration (70, 140 and 210 kJ/L) were analyzed. In the study a full-scale disc disintegrator was used (motor power: 30 kWh, motor speed: 2,950 rpm). It was shown that the amounts of organic compounds released from the activated sludge flocs at all tested levels of energy density are high enough to be used to intensify the removal of nitrogen compounds from wastewater. It was also documented that the energy density provided during process of disintegration was an important factor determining the characteristics of organic compounds obtained under the disintegration for their use in order to intensify the process of denitrification. The highest value of total efficiency of denitrification (50.5 ± 3.1 mg N/L) was obtained for carbon source recovery from excess sludge at 70 kJ/L, but the lowest unit cost of nitrogen removal occurred for 140 kJ/L (0.0019 ± 0.0011 EUR/g N).

  10. From sink to source: Regional variation in U.S. forest carbon futures

    PubMed Central

    Wear, David N.; Coulston, John W.

    2015-01-01

    The sequestration of atmospheric carbon (C) in forests has partially offset C emissions in the United States (US) and might reduce overall costs of achieving emission targets, especially while transportation and energy sectors are transitioning to lower-carbon technologies. Using detailed forest inventory data for the conterminous US, we estimate forests’ current net sequestration of atmospheric C to be 173 Tg yr−1, offsetting 9.7% of C emissions from transportation and energy sources. Accounting for multiple driving variables, we project a gradual decline in the forest C emission sink over the next 25 years (to 112 Tg yr−1) with regional differences. Sequestration in eastern regions declines gradually while sequestration in the Rocky Mountain region declines rapidly and could become a source of atmospheric C due to disturbances such as fire and insect epidemics. C sequestration in the Pacific Coast region stabilizes as forests harvested in previous decades regrow. Scenarios simulating climate-induced productivity enhancement and afforestation policies increase sequestration rates, but would not fully offset declines from aging and forest disturbances. Separating C transfers associated with land use changes from sequestration clarifies forests’ role in reducing net emissions and demonstrates that retention of forest land is crucial for protecting or enhancing sink strength. PMID:26558439

  11. From sink to source: Regional variation in U.S. forest carbon futures.

    PubMed

    Wear, David N; Coulston, John W

    2015-11-12

    The sequestration of atmospheric carbon (C) in forests has partially offset C emissions in the United States (US) and might reduce overall costs of achieving emission targets, especially while transportation and energy sectors are transitioning to lower-carbon technologies. Using detailed forest inventory data for the conterminous US, we estimate forests' current net sequestration of atmospheric C to be 173 Tg yr(-1), offsetting 9.7% of C emissions from transportation and energy sources. Accounting for multiple driving variables, we project a gradual decline in the forest C emission sink over the next 25 years (to 112 Tg yr(-1)) with regional differences. Sequestration in eastern regions declines gradually while sequestration in the Rocky Mountain region declines rapidly and could become a source of atmospheric C due to disturbances such as fire and insect epidemics. C sequestration in the Pacific Coast region stabilizes as forests harvested in previous decades regrow. Scenarios simulating climate-induced productivity enhancement and afforestation policies increase sequestration rates, but would not fully offset declines from aging and forest disturbances. Separating C transfers associated with land use changes from sequestration clarifies forests' role in reducing net emissions and demonstrates that retention of forest land is crucial for protecting or enhancing sink strength.

  12. Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle.

    PubMed

    Belshe, E F; Schuur, E A G; Bolker, B M

    2013-10-01

    Are tundra ecosystems currently a carbon source or sink? What is the future trajectory of tundra carbon fluxes in response to climate change? These questions are of global importance because of the vast quantities of organic carbon stored in permafrost soils. In this meta-analysis, we compile 40 years of CO2 flux observations from 54 studies spanning 32 sites across northern high latitudes. Using time-series analysis, we investigated if seasonal or annual CO2 fluxes have changed over time, and whether spatial differences in mean annual temperature could help explain temporal changes in CO2 flux. Growing season net CO2 uptake has definitely increased since the 1990s; the data also suggest (albeit less definitively) an increase in winter CO2 emissions, especially in the last decade. In spite of the uncertainty in the winter trend, we estimate that tundra sites were annual CO2 sources from the mid-1980s until the 2000s, and data from the last 7 years show that tundra continue to emit CO2 annually. CO2 emissions exceed CO2 uptake across the range of temperatures that occur in the tundra biome. Taken together, these data suggest that despite increases in growing season uptake, tundra ecosystems are currently CO2 sources on an annual basis. © 2013 John Wiley & Sons Ltd/CNRS.

  13. Importance of seagrass as a carbon source for heterotrophic bacteria in a subtropical estuary (Florida Bay)

    NASA Astrophysics Data System (ADS)

    Williams, Clayton J.; Jaffé, Rudolf; Anderson, William T.; Jochem, Frank J.

    2009-11-01

    A stable carbon isotope approach was taken to identify potential organic matter sources incorporated into biomass by the heterotrophic bacterial community of Florida Bay, a subtropical estuary with a recent history of seagrass loss and phytoplankton blooms. To gain a more complete understanding of bacterial carbon cycling in seagrass estuaries, this study focused on the importance of seagrass-derived organic matter to pelagic, seagrass epiphytic, and sediment surface bacteria. Particulate organic matter (POM), seagrass epiphytic, seagrass ( Thalassia testudinum) leaf, and sediment surface samples were collected from four Florida Bay locations with historically different organic matter inputs, macrophyte densities, and primary productivities. Bulk (observed and those reported previously) and compound-specific bacterial fatty acid δ 13C values were used to determine important carbon sources to the estuary and benthic and pelagic heterotrophic bacteria. The δ 13C values of T. testudinum green leaves with epiphytes removed ranged from -9.9 to -6.9‰. Thalassia testudinum δ 13C values were significant more enriched in 13C than POM, epiphytic, and sediment samples, which ranged from -16.4 to -13.5, -16.2 to -9.6, and -16.7 to -11.0‰, respectively. Bacterial fatty acid δ 13C values (measured for br14:0, 15:0, i15:0, a15:0, br17:0, and 17:0) ranged from -25.5 to -8.2‰. Assuming a -3‰ carbon source fractionation from fatty acid to whole bacteria, pelagic, epiphytic, and sediment bacterial δ 13C values were generally more depleted in 13C than T. testudinum δ 13C values, more enriched in 13C than reported δ 13C values for mangroves, and similar to reported δ 13C values for algae. IsoSource mixing model results indicated that organic matter derived from T. testudinum was incorporated by both benthic and pelagic bacterial communities, where 13-67% of bacterial δ 13C values could arise from consumption of seagrass-derived organic matter. The IsoSource model

  14. An innovative wood-chip-framework substrate used as slow-release carbon source to treat high-strength nitrogen wastewater.

    PubMed

    Li, Huai; Chi, Zifang; Yan, Baixing; Cheng, Long; Li, Jianzheng

    2017-01-01

    Removal of nitrogen in wastewater before discharge into receiving water courses is an important consideration in treatment systems. However, nitrogen removal efficiency is usually limited due to the low carbon/nitrogen (C/N) ratio. A common solution is to add external carbon sources, but amount of liquid is difficult to determine. Therefore, a combined wood-chip-framework substrate (with wood, slag and gravel) as a slow-release carbon source was constructed in baffled subsurface-flow constructed wetlands to overcome the problem. Results show that the removal rate of ammonia nitrogen (NH 4 + -N), total nitrogen (TN) and chemical oxygen demand (COD) could reach 37.5%-85%, 57.4%-86%, 32.4%-78%, respectively, indicating the combined substrate could diffuse sufficient oxygen for the nitrification process (slag and gravel zone) and provide carbon source for denitrification process (wood-chip zone). The nitrification and denitrification were determined according to the location of slag/gravel and wood-chip, respectively. Nitrogen removal was efficient at the steady phase before a shock loading using slag-wood-gravel combined substrate because of nitrification-denitrification process, while nitrogen removal was efficient under a shock loading with wood-slag-gravel combined substrate because of ANAMMOX process. This study provides a new idea for wetland treatment of high-strength nitrogen wastewater. Copyright © 2016. Published by Elsevier B.V.

  15. Utilizing Waste Thermocol Sheets and Rusted Iron Wires to Fabricate Carbon-Fe3O4 Nanocomposite Based Supercapacitors: Turning Wastes into Value-Added Materials.

    PubMed

    Vadiyar, Madagonda M; Liu, Xudong; Ye, Zhibin

    2018-05-14

    In the present work, we demonstrate the synthesis of porous activated carbon (specific surface area, 1,883 m2 g-1), Fe3O4 nanoparticles, and carbon-Fe3O4 nanocomposites using local waste thermocol sheets and rusted iron wires. The resulting carbon, Fe3O4 nanoparticles, and carbon-Fe3O4 composites are used as electrode materials for supercapacitor application. In particular, C-Fe3O4 composite electrodes exhibit a high specific capacitance of 1,375 F g-1 at 1 A g-1 and longer cyclic stability with 98 % of capacitance retention over 10,000 cycles. Subsequently, asymmetric supercapacitor, i. e., C-Fe3O4//Ni(OH)2/CNT device exhibits a high energy density of 91.1 Wh kg-1 and a remarkable cyclic stability, showing 98% of capacitance retention over 10,000 cycles. Thus, this work has important implications not only for the fabrication of low-cost electrodes for high-performance supercapacitors but also for the recycling of waste thermocol sheets and rust iron wires for value-added reuse. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Constructing the AdS dual of a Fermi liquid: AdS black holes with Dirac hair

    NASA Astrophysics Data System (ADS)

    Čubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad

    2011-10-01

    We provide evidence that the holographic dual to a strongly coupled charged Fermi liquid has a non-zero fermion density in the bulk. We show that the pole-strength of the stable quasiparticle characterizing the Fermi surface is encoded in the AdS probability density of a single normalizable fermion wavefunction in AdS. Recalling Migdal's theorem which relates the pole strength to the Fermi-Dirac characteristic discontinuity in the number density at ω F , we conclude that the AdS dual of a Fermi liquid is described by occupied on-shell fermionic modes in AdS. Encoding the occupied levels in the total spatially averaged probability density of the fermion field directly, we show that an AdS Reissner-Nordström black holein a theory with charged fermions has a critical temperature, at which the system undergoes a first-order transition to a black hole with a non-vanishing profile for the bulk fermion field. Thermodynamics and spectral analysis support that the solution with non-zero AdS fermion-profile is the preferred ground state at low temperatures.

  17. Optimization of Carbon and Nitrogen Sources for Extracellular Polymeric Substances Production by Chryseobacterium indologenes MUT.2

    PubMed Central

    Khani, Mojtaba; Bahrami, Ali; Chegeni, Asma; Ghafari, Mohammad Davoud; Mansouran Zadeh, ALi

    2016-01-01

    Background Bacterial Extracellular Polymeric Substances (EPS) are environmental friendly and versatile polymeric materials that are used in a wide range of industries such as: food, textile, cosmetics, and pharmaceuticals. To make the production process of the EPS cost-effective, improvements in the production yield is required which could be implemented through application of processes such as optimized culture conditions, and development of the strains with higher yield (e.g. through genetic manipulation), or using low-cost substrates. Objectives In this work, the effects of carbon and nitrogen sources were studied in order to improve the EPS production by the submerged cultivation of Chryseobacterium indologenes MUT.2. Materials and Methods The mesophilic microorganism Chryseobacterium indologenes MUT.2, was grown and maintained in the Luria Bertani agar. The initial basal medium contained: glucose (20 g.L-1), yeast extracts (5 g.L-1), K2HPO4 (6 g.L-1), NaH2PO4 (7 g.L-1), NH4CL (0.7 g.L-1), and MgSO4 (0.5 g.L-1). For evaluating the carbon and nitrogen sources’ effect on the fermentation performance, cultures were prepared in 500 mL flasks filled with 300 mL of the medium. The single-factor experiments based on statistics was employed to evaluate and optimize the carbon and nitrogen sources for EPS production in the liquid culture medium of Chryseobacterium indologenes MUT.2. Results The preferred carbon-sources, sucrose and glucose, commonly gave the highest EPS production of 8.32 and 6.37 g.L-1, respectively, and the maximum EPS production of 8.87 g.L-1 was achieved when glutamic acid (5 g.L-1) was employed as the nitrogen source. Conclusions In this work, the culture medium for production of EPS by Chryseobacterium indologenes MUT.2 was optimized. Compared to the basal culture medium in shake-flasks and stirred tank bioreactor, the use of optimized culture medium has resulted in a 53% and 73% increase in the EPS production, respectively. PMID:28959321

  18. Influence of regional biomass burning on the highly elevated organic carbon concentrations observed at Gosan, South Korea during a strong Asian dust period.

    PubMed

    Nguyen, Duc Luong; Kim, Jin Young; Ghim, Young Sung; Shim, Shang-Gyoo

    2015-03-01

    PM2.5 carbonaceous particles were measured at Gosan, South Korea during 29 March-11 April 2002 which includes a pollution period (30 March-01 April) when the highest concentrations of major anthropogenic species (nss-SO4 (2-), NO3 (-), and NH4 (+)) were observed and a strong Asian dust (AD) period (08-10 April) when the highest concentrations of mainly dust-originated trace elements (Al, Ca, Mg, and Fe) were seen. The concentrations of elemental carbon (EC) measured in the pollution period were higher than those measured in the strong AD period, whereas an inverse variation in the concentrations of organic carbon (OC) was observed. Based on the OC/EC ratios, the possible source that mainly contributed to the highly elevated OC concentrations measured in the strong AD period was biomass burning. The influence of the long-range transport of smoke plumes emitted from regional biomass burning sources was evaluated by using MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data for fire locations and the potential source contribution function analysis. The most potential source regions of biomass burning were the Primorsky and Amur regions in Far Eastern Russia and southeastern and southwestern Siberia, Russia. Further discussion on the source characteristics suggested that the high OC concentrations measured in the strong AD period were significantly affected by the smoldering phase of biomass burning. In addition to biomass burning, secondary OC (SOC) formed during atmospheric long-range transport should be also considered as an important source of OC concentration measured at Gosan. Although this study dealt with the episodic case of the concurrent increase of dust and biomass burning particles, understanding the characteristics of heterogeneous mixing aerosol is essential in assessing the radiative forcing of aerosol.

  19. Synthesis of highly aligned carbon nanotubes by one-step liquid-phase process: Effects of carbon sources on morphology of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yamagiwa, Kiyofumi; Kuwano, Jun

    2017-06-01

    This paper describes a unique and innovative synthesis technique for carbon nanotubes (CNTs) by a one-step liquid-phase process under ambient pressure. Vertically aligned multi-walled CNT arrays with a maximum height of 100 µm are prepared on stainless steel substrates, which are submerged and electrically heated in straight-chain primary alcohols with n C = 1-4 (n C: number of C atoms in the molecule) containing an appropriate amount of cobalt-based organometallic complex as a catalyst precursor. Structural isomers of butanol were also used for the synthesis to examine the effects of structural factors on the morphology of the deposited products. Notably, 2-methyl-2-propanol, which is a tertiary alcohol, produced only a small amount of low-crystallinity carbonaceous deposits, whereas vertically aligned CNTs were grown from the other isomers of butanol. These results suggest that the presence or absence of β-hydrogen in the molecular structure is a key factor for understanding the dissociation behavior of the carbon source molecules on the catalyst.

  20. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990

    NASA Astrophysics Data System (ADS)

    Miettinen, Jukka; Hooijer, Aljosja; Vernimmen, Ronald; Liew, Soo Chin; Page, Susan E.

    2017-02-01

    Tropical peatlands of the western part of insular Southeast Asia have experienced extensive land cover changes since 1990. Typically involving drainage, these land cover changes have resulted in increased peat oxidation in the upper peat profile. In this paper we provide current (2015) and cumulative carbon emissions estimates since 1990 from peat oxidation in Peninsular Malaysia, Sumatra and Borneo, utilizing newly published peatland land cover information and the recently agreed Intergovernmental Panel on Climate Change (IPCC) peat oxidation emission values for tropical peatland areas. Our results highlight the change of one of the Earth’s most efficient long-term carbon sinks to a short-term emission source, with cumulative carbon emissions since 1990 estimated to have been in the order of 2.5 Gt C. Current (2015) levels of emissions are estimated at around 146 Mt C yr-1, with a range of 132-159 Mt C yr-1 depending on the selection of emissions factors for different land cover types. 44% (or 64 Mt C yr-1) of the emissions come from industrial plantations (mainly oil palm and Acacia pulpwood), followed by 34% (49 Mt C yr-1) of emissions from small-holder areas. Thus, altogether 78% of current peat oxidation emissions come from managed land cover types. Although based on the latest information, these estimates may still include considerable, yet currently unquantifiable, uncertainties (e.g. due to uncertainties in the extent of peatlands and drainage networks) which need to be focused on in future research. In comparison, fire induced carbon dioxide emissions over the past ten years for the entire equatorial Southeast Asia region have been estimated to average 122 Mt C yr-1 (www.globalfiredata.org/_index.html). The results emphasise that whilst reducing emissions from peat fires is important, urgent efforts are also needed to mitigate the constantly high level of emissions arising from peat drainage, regardless of fire occurrence.

  1. J-type Carbon Stars: A Dominant Source of {sup 14}N-rich Presolar SiC Grains of Type AB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.

    We report Mo isotopic data of 27 new presolar SiC grains, including 12 {sup 14}N-rich AB ({sup 14}N/{sup 15}N > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s -process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s -process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture processmore » ( i -process) takes place, as their stellar source. On the other hand, low-mass CO novae and early R- and J-type carbon stars show {sup 13}C and {sup 14}N excesses but no s -process enhancements and are thus potential stellar sources of AB2 grains. Because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%–15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.« less

  2. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-02-01

    A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  3. Microbial Metabolic Response to Carbon Sources in a Uranium Contaminated Floodplain

    NASA Astrophysics Data System (ADS)

    Barragan, L.; Boye, K.; Bargar, J.; Fendorf, S. E.

    2016-12-01

    In Riverton, Wyoming, uranium (U) from a former ore processing plant, contaminated the groundwater and accumulated in Naturally Reduced Zones (NRZs). The NRZs have now become a secondary source of U and are releasing U into the ground water due to seasonal water table fluctuations. Microorganisms that mediate the mobilization and retention of U are likely to reside in these zones enriched with organic matter that comprises their energy source of carbon (C) for respiration. In this study, we are measuring microbial respiration (basal and substrate induced) by the MicroRespTM system, which is a quick screening method for respiratory activity in natural samples. This can provide information about the microbial community composition at certain depths and insight into their metabolic pathways which may explain U behavior in the ground water. In addition, we are determining elemental composition in the sediments by X-ray fluorescence spectroscopy (XRF) and elemental analysis (EA). Water soluble cations, anions and organic C is determined by inductively coupled plasma (ICP), mass spectrometry, ion chromatography (IC) and non-purgeable organic carbon (NPOC) analyses, respectively. If the behavior of the microbial community in the NRZ environment (enriched in both U and C) differs from that in unsaturated sediments, this can provide crucial clues to understand what causes U to be retained or released from the NRZs. This information will be used to develop and improve models aimed at predicting U mobility in the floodplain groundwater systems.

  4. Preliminary study on preparation of BCNO phosphor particles using citric acid as carbon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuryadin, Bebeh W.; Pratiwi, Tripuspita; Faryuni, Irfana D.

    A citric acid was used as a carbon source in the preparation of boron carbon oxy-nitride (BCNO) phosphor particles by a facile process. The preparation process was conducted at relatively low temperature 750 °C and at ambient pressure. The prepared BCNO phosphors showed a high photoluminescence (PL) performance at peak emission wavelength of 470 nm under excitation by a UV light 365 nm. The effects of carbon/boron and nitrogen/boron molar ratios on the PL properties were also investigated. The result showed that the emission spectra with a wavelength peak ranging from 444 nm to 496 nm can be obtained bymore » varying carbon/boron ratios from 0.1 to 0.9. In addition, the observations showed that the BCNO phosphor material has two excitation peaks located at the 365 nm (UV) and 420 nm (blue). Based on these observations, we believe that the citric acid derived BCNO phosphor particles can be a promising inexpensive material for phosphor conversion-based white LED.« less

  5. Gas-solid carbonation as a possible source of carbonates in cold planetary environments

    NASA Astrophysics Data System (ADS)

    Garenne, A.; Montes-Hernandez, G.; Beck, P.; Schmitt, B.; Brissaud, O.; Pommerol, A.

    2013-02-01

    Carbonates are abundant sedimentary minerals at the surface and sub-surface of the Earth and they have been proposed as tracers of liquid water in extraterrestrial environments. Their formation mechanism is since generally associated with aqueous alteration processes. Recently, carbonate minerals have been discovered on Mars' surface by different orbitals or rover missions. In particular, the phoenix mission has measured from 1% to 5% of calcium carbonate (calcite type) within the soil (Smith et al., 2009). These occurrences have been reported in area where the relative humidity is significantly high (Boynton et al., 2009). The small concentration of carbonates suggests an alternative process on mineral grain surfaces (as suggested by Shaheen et al., 2010) than carbonation in aqueous conditions. Such an observation could rather point toward a possible formation mechanism by dust-gas reaction under current Martian conditions. To understand the mechanism of carbonate formation under conditions relevant to current Martian atmosphere and surface, we designed an experimental setup consisting of an infrared microscope coupled to a cryogenic reaction cell (IR-CryoCell setup). Three different mineral precursors of carbonates (Ca and Mg hydroxides, and a hydrated Ca silicate formed from Ca2SiO4), low temperature (from -10 to +30 °C), and reduced CO2 pressure (from 100 to 2000 mbar) were utilized to investigate the mechanism of gas-solid carbonation at mineral surfaces. These mineral materials are crucial precursors to form Ca and Mg carbonates in humid environments (0%carbonation process for Ca hydroxide and hydrated Ca silicate. Conversely, only a moderate carbonation is observed for the Mg hydroxide. These results suggest that gas-solid carbonation process or carbonate formation at the dust-water ice-CO2 interfaces could be a currently active Mars' surface

  6. Segmented strings in AdS 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callebaut, Nele; Gubser, Steven S.; Samberg, Andreas

    We study segmented strings in flat space and in AdS 3. In flat space, these well known classical motions describe strings which at any instant of time are piecewise linear. In AdS 3, the worldsheet is composed of faces each of which is a region bounded by null geodesics in an AdS 2 subspace of AdS 3. The time evolution can be described by specifying the null geodesic motion of kinks in the string at which two segments are joined. The outcome of collisions of kinks on the worldsheet can be worked out essentially using considerations of causality. We studymore » several examples of closed segmented strings in AdS 3 and find an unexpected quasi-periodic behavior. Here, we also work out a WKB analysis of quantum states of yo-yo strings in AdS 5 and find a logarithmic term reminiscent of the logarithmic twist of string states on the leading Regge trajectory.« less

  7. Segmented strings in AdS 3

    DOE PAGES

    Callebaut, Nele; Gubser, Steven S.; Samberg, Andreas; ...

    2015-11-17

    We study segmented strings in flat space and in AdS 3. In flat space, these well known classical motions describe strings which at any instant of time are piecewise linear. In AdS 3, the worldsheet is composed of faces each of which is a region bounded by null geodesics in an AdS 2 subspace of AdS 3. The time evolution can be described by specifying the null geodesic motion of kinks in the string at which two segments are joined. The outcome of collisions of kinks on the worldsheet can be worked out essentially using considerations of causality. We studymore » several examples of closed segmented strings in AdS 3 and find an unexpected quasi-periodic behavior. Here, we also work out a WKB analysis of quantum states of yo-yo strings in AdS 5 and find a logarithmic term reminiscent of the logarithmic twist of string states on the leading Regge trajectory.« less

  8. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    Treesearch

    Michael R. Olson; Mercedes Victoria Garcia; Michael A. Robinson; Paul Van Rooy; Mark A. Dietenberger; Michael Bergin; James Jay Schauer

    2015-01-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings....

  9. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes

    USGS Publications Warehouse

    Crawford, John T.; Dornblaser, Mark M.; Stanley, Emily H.; Clow, David W.; Striegl, Robert G.

    2015-01-01

    Inland waters are an important component of the global carbon cycle through transport, storage, and direct emissions of CO2 and CH4 to the atmosphere. Despite predictions of high physical gas exchange rates due to turbulent flows and ubiquitous supersaturation of CO2—and perhaps also CH4—patterns of gas emissions are essentially undocumented for high mountain ecosystems. Much like other headwater networks around the globe, we found that high-elevation streams in Rocky Mountain National Park, USA, were supersaturated with CO2 during the growing season and were net sources to the atmosphere. CO2concentrations in lakes, on the other hand, tended to be less than atmospheric equilibrium during the open water season. CO2 and CH4 emissions from the aquatic conduit were relatively small compared to many parts of the globe. Irrespective of the physical template for high gas exchange (high k), we found evidence of CO2 source limitation to mountain streams during the growing season, which limits overall CO2emissions. Our results suggest a reduced importance of aquatic ecosystems for carbon cycling in high-elevation landscapes having limited soil development and high CO2 consumption via mineral weathering.

  10. Effect of Multiwalled Carbon Nanotubes on the Mechanical Properties of Carbon Fiber-Reinforced Polyamide-6/Polypropylene Composites for Lightweight Automotive Parts

    PubMed Central

    Nguyen-Tran, Huu-Duc; Do, Van-Ta; Yum, Young-Jin

    2018-01-01

    The development of lightweight automotive parts is an important issue for improving the efficiency of vehicles. Polymer composites have been widely applied to reduce weight and improve mechanical properties by mixing polymers with carbon fibers, glass fibers, and carbon nanotubes. Polypropylene (PP) has been added to carbon fiber-reinforced nylon-6 (CF/PA6) composite to achieve further weight reduction and water resistance. However, the mechanical properties were reduced by the addition of PP. In this research, multiwalled carbon nanotubes (CNTs) were added to compensate for the reduced mechanical properties experienced when adding PP. Tensile testing and bending tests were carried out to evaluate the mechanical properties. A small amount of CNTs improved the mechanical properties of carbon fiber-reinforced PA6/PP composites. For example, the density of CF/PA6 was reduced from 1.214 to 1.131 g/cm3 (6.8%) by adding 30 wt % PP, and the tensile strength of 30 wt % PP composite was improved from 168 to 173 MPa (3.0%) by adding 0.5 wt % CNTs with small increase of density (1.135 g/cm3). The developed composite will be widely used for lightweight automotive parts with improved mechanical properties. PMID:29543754

  11. Food sources of sodium, saturated fat, and added sugar in the Physical Activity and Nutrition for Diabetes in Alberta (PANDA) trial.

    PubMed

    Asaad, Ghada; Chan, Catherine B

    2017-12-01

    Diabetic patients may find it difficult to achieve recommended nutrient intakes embedded within dietary guidelines. The objective of this analysis was to document total sodium, saturated fat, and added sugar intake as well as the main food sources of these nutrients in Canadian adults with type 2 diabetes before and after an intervention focused on healthy eating. Participants were enrolled in a single-arm dietary intervention trial designed to improve glycemic control and adherence to dietary recommendations. A 4-week menu plan and recipes were provided for participants along with a 6-week educational curriculum. Three repeated 24-h dietary recalls were collected at baseline and 3 months. Food sources of sodium, saturated fat, and added sugar were a secondary outcome derived from the dietary recalls. After 3 months, there was a reduction (p < 0.05) in sodium intake of 561 mg/day, which was mainly due to reduced consumption of processed meats, soups, and condiments. Significantly lower intake of processed meat contributed to -2.9 g/day saturated fat intake (p < 0.1) while added sugar intake declined by 7 g/day (p < 0.1), which was due to lower consumption of baked goods/desserts and chocolate (both p < 0.05). The intervention was beneficial for type 2 diabetes patients in terms of changing dietary habits. However, the majority of the participants still exceeded the dietary guidelines for sodium and saturated fat. In addition to the efforts of individuals and their healthcare providers, strategies to increase the nutritional quality of prepared foods could provide widespread benefits.

  12. Method for synthesizing carbon nanotubes

    DOEpatents

    Fan, Hongyou

    2012-09-04

    A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

  13. Source apportionments of PM2.5 organic carbon using molecular marker Positive Matrix Factorization and comparison of results from different receptor models

    NASA Astrophysics Data System (ADS)

    Heo, Jongbae; Dulger, Muaz; Olson, Michael R.; McGinnis, Jerome E.; Shelton, Brandon R.; Matsunaga, Aiko; Sioutas, Constantinos; Schauer, James J.

    2013-07-01

    Four hundred fine particulate matter (PM2.5) samples collected over a 1-year period at two sites in the Los Angeles Basin were analyzed for organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC) and organic molecular markers. The results were used in a Positive Matrix Factorization (PMF) receptor model to obtain daily, monthly and annual average source contributions to PM2.5 OC. Results of the PMF model showed similar source categories with comparable year-long contributions to PM2.5 OC across the sites. Five source categories providing reasonably stable profiles were identified: mobile, wood smoke, primary biogenic, and two types of secondary organic carbon (SOC) (i.e., anthropogenic and biogenic emissions). Total primary emission factors and total SOC factors contributed approximately 60% and 40%, respectively, to the annual-average OC concentrations. Primary sources showed strong seasonal patterns with high winter peaks and low summer peaks, while SOC showed a reverse pattern with highs in the spring and summer in the region. Interestingly, smoke from forest fires which occurred episodically in California during the summer and fall of 2009 was identified and combined with the primary biogenic source as one distinct factor to the OC budget. The PMF resolved factors were further investigated and compared to a chemical mass balance (CMB) model and a second multi-variant receptor model (UNMIX) using molecular markers considered in the PMF. Good agreement between the source contribution from mobile sources and biomass burning for three models were obtained, providing additional weight of evidence that these source apportionment techniques are sufficiently accurate for policy development. However, the CMB model did not quantify primary biogenic emissions, which were included in other sources with the SOC. Both multivariate receptor models, the PMF and the UNMIX, were unable to separate source contributions from diesel and gasoline engines.

  14. Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean

    USGS Publications Warehouse

    Wang, Zhaohui Aleck; Kroeger, Kevin D.; Ganju, Neil K.; Gonneea, Meagan; Chu, Sophie N.

    2016-01-01

    Dynamic tidal export of dissolved inorganic carbon (DIC) to the coastal ocean from highly productive intertidal marshes and its effects on seawater carbonate chemistry are thoroughly evaluated. The study uses a comprehensive approach by combining tidal water sampling of CO2parameters across seasons, continuous in situ measurements of biogeochemically-relevant parameters and water fluxes, with high-resolution modeling in an intertidal salt marsh of the U.S. northeast region. Salt marshes can acidify and alkalize tidal water by injecting CO2 (DIC) and total alkalinity (TA). DIC and TA generation may also be decoupled due to differential effects of marsh aerobic and anaerobic respiration on DIC and TA. As marsh DIC is added to tidal water, the buffering capacity first decreases to a minimum and then increases quickly. Large additions of marsh DIC can result in higher buffering capacity in ebbing tide than incoming tide. Alkalization of tidal water, which mostly occurs in the summer due to anaerobic respiration, can further modify buffering capacity. Marsh exports of DIC and alkalinity may have complex implications for the future, more acidified ocean. Marsh DIC export exhibits high variability over tidal and seasonal cycles, which is modulated by both marsh DIC generation and by water fluxes. The marsh DIC export of 414 g C m−2 yr−1, based on high-resolution measurements and modeling, is more than twice the previous estimates. It is a major term in the marsh carbon budget and translates to one of the largest carbon fluxes along the U.S. East Coast.

  15. Influence of carbon source and inoculum type on anaerobic biomass adhesion on polyurethane foam in reactors fed with acid mine drainage.

    PubMed

    Rodriguez, Renata P; Zaiat, Marcelo

    2011-04-01

    This paper analyzes the influence of carbon source and inoculum origin on the dynamics of biomass adhesion to an inert support in anaerobic reactors fed with acid mine drainage. Formic acid, lactic acid and ethanol were used as carbon sources. Two different inocula were evaluated: one taken from an UASB reactor and other from the sediment of a uranium mine. The values of average colonization rates and the maximum biomass concentration (C(max)) were inversely proportional to the number of carbon atoms in each substrate. The highest C(max) value (0.35 g TVS g(-1) foam) was observed with formic acid and anaerobic sludge as inoculum. Maximum colonization rates (v(max)) were strongly influenced by the type of inoculum when ethanol and lactic acid were used. For both carbon sources, the use of mine sediment as inoculum resulted in a v(max) of 0.013 g TVS g(-1) foam day(-1), whereas 0.024 g TVS g(-1) foam day(-1) was achieved with anaerobic sludge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. The sources of atmospheric black carbon at a European gateway to the Arctic

    NASA Astrophysics Data System (ADS)

    Winiger, P.; Andersson, A.; Eckhardt, S.; Stohl, A.; Gustafsson, Ö.

    2016-09-01

    Black carbon (BC) aerosols from incomplete combustion of biomass and fossil fuel contribute to Arctic climate warming. Models--seeking to advise mitigation policy--are challenged in reproducing observations of seasonally varying BC concentrations in the Arctic air. Here we compare year-round observations of BC and its δ13C/Δ14C-diagnosed sources in Arctic Scandinavia, with tailored simulations from an atmospheric transport model. The model predictions for this European gateway to the Arctic are greatly improved when the emission inventory of anthropogenic sources is amended by satellite-derived estimates of BC emissions from fires. Both BC concentrations (R2=0.89, P<0.05) and source contributions (R2=0.77, P<0.05) are accurately mimicked and linked to predominantly European emissions. This improved model skill allows for more accurate assessment of sources and effects of BC in the Arctic, and a more credible scientific underpinning of policy efforts aimed at efficiently reducing BC emissions reaching the European Arctic.

  17. The sources of atmospheric black carbon at a European gateway to the Arctic

    PubMed Central

    Winiger, P; Andersson, A; Eckhardt, S; Stohl, A; Gustafsson, Ö.

    2016-01-01

    Black carbon (BC) aerosols from incomplete combustion of biomass and fossil fuel contribute to Arctic climate warming. Models—seeking to advise mitigation policy—are challenged in reproducing observations of seasonally varying BC concentrations in the Arctic air. Here we compare year-round observations of BC and its δ13C/Δ14C-diagnosed sources in Arctic Scandinavia, with tailored simulations from an atmospheric transport model. The model predictions for this European gateway to the Arctic are greatly improved when the emission inventory of anthropogenic sources is amended by satellite-derived estimates of BC emissions from fires. Both BC concentrations (R2=0.89, P<0.05) and source contributions (R2=0.77, P<0.05) are accurately mimicked and linked to predominantly European emissions. This improved model skill allows for more accurate assessment of sources and effects of BC in the Arctic, and a more credible scientific underpinning of policy efforts aimed at efficiently reducing BC emissions reaching the European Arctic. PMID:27627859

  18. Exploring cover crops as carbon sources for anaerobic soil disinfestation in a vegetable production system

    USDA-ARS?s Scientific Manuscript database

    In a raised-bed plasticulture vegetable production system utilizing anaerobic soil disinfestation (ASD) in Florida field trials, pathogen, weed, and parasitic nematode control was equivalent to or better than the methyl bromide control. Molasses was used as the labile carbon source to stimulate micr...

  19. Electrosynthesis of enaminones directly from methyl ketones and amines with nitromethane as a carbon source.

    PubMed

    Xu, Kun; Zhang, Zhenlei; Qian, Peng; Zha, Zhenggen; Wang, Zhiyong

    2015-07-14

    An efficient and mechanistically different method for the electrosynthesis of enaminone directly from methyl ketones, amines and nitromethane was developed. This transition-metal-free method proceeded at room temperature to give a wide array of enaminones in one step, utilizing nitromethane as the carbon source.

  20. Sources and Dynamics of Inorganic Carbon within the Upper Reaches of the Xi River Basin, Southwest China

    PubMed Central

    Zou, Junyu

    2016-01-01

    The carbon isotopic composition (δ13C) of dissolved and particulate inorganic carbon (DIC; PIC) was used to compare and analyze the origin, dynamics and evolution of inorganic carbon in two headwater tributaries of the Xi River, Southwest China. Carbonate dissolution and soil CO2 were regarded as the primary sources of DIC on the basis of δ13CDIC values which varied along the Nanpan and Beipan Rivers, from −13.9‰ to 8.1‰. Spatial trends in DIC differed between the two rivers (i.e., the tributaries), in part because factors controlling pCO2, which strongly affected carbonate dissolution, differed between the two river basins. Transport of soil CO2 and organic carbon through hydrologic conduits predominately controlled the levels of pCO2 in the Nanpan River. However, pCO2 along the upper reaches of the Nanpan River also was controlled by the extent of urbanization and industrialization relative to agriculture. DIC concentrations in the highly urbanized upper reaches of the Nanpan River were typical higher than in other carbonate-dominated areas of the upper Xi River. Within the Beipan River, the oxidation of organic carbon is the primary process that maintains pCO2 levels. The pCO2 within the Beipan River was more affected by sulfuric acid from coal industries, inputs from a scenic spot, and groundwater than along the Nanpan River. With regards to PIC, the contents and δ13C values in the Nanpan River were generally lower than those in the Beipan River, indicating that chemical and physical weathering contributes more marine carbonate detritus to the PIC along the Beipan River. The CO2 evasion flux from the Nanpan River was higher than that in the Beipan River, and generally higher than along the middle and lower reaches of the Xi River, demonstrating that the Nanpan River is an important net source of atmospheric CO2 in Southwest China. PMID:27513939

  1. Microwave assisted synthesis of cyclic carbonates from olefins with sodium bicarbonates as the C1 source.

    PubMed

    Yang, Xiaoqing; Wu, Jie; Mao, Xianwen; Jamison, Timothy F; Hatton, T Alan

    2014-03-25

    An effective transformation of alkenes into cyclic carbonates has been achieved using NaHCO3 as the C1 source in acetone-water under microwave heating, with selectivities and yields significantly surpassing those obtained using conventional heating.

  2. Effect of dissolved oxygen on biological denitrification using biodegradable plastic as the carbon source

    NASA Astrophysics Data System (ADS)

    Zhang, Xucai; Zhang, Jianmei

    2018-02-01

    Biological denitrification is currently a common approach to remove nitrate from wastewater. This study was conducted to evaluate the influence of dissolved oxygen on denitrification in wastewater treatment using biodegradable plastic as carbon source by designing the aerated, anoxic, and low-oxygen experimental treatment groups. The results showed that the removal rates of nitrate in anoxic and low-oxygen groups were 30.6 g NO3 --Nm-3 d-1 and 30.8 g NO3 --N m-3 d-1 at 83 h, respectively, both of which were higher than that of the aerated group. There was no significant difference between the anoxic and low-oxygen treatment groups for the nitrate removal. Additional, the nitrite accumulated during the experiments, and the nitrite concentrations in anoxic and aerated groups were lower than those in low-oxygen group. No nitrite was detected in all groups at the end of the experiments. These findings indicated that dissolved oxygen has important influence on denitrification, and anoxic and low-oxygen conditions can support completely denitrification when using BP as carbon source in nitrate-polluted wastewater treatment.

  3. Introducing ADS 2.0

    NASA Astrophysics Data System (ADS)

    Accomazzi, Alberto; Kurtz, M. J.; Henneken, E. A.; Grant, C. S.; Thompson, D.; Luker, J.; Chyla, R.; Murray, S. S.

    2014-01-01

    In the spring of 1993, the Smithsonian/NASA Astrophysics Data System (ADS) first launched its bibliographic search system. It was known then as the ADS Abstract Service, a component of the larger Astrophysics Data System effort which had developed an interoperable data system now seen as a precursor of the Virtual Observatory. As a result of the massive technological and sociological changes in the field of scholarly communication, the ADS is now completing the most ambitious technological upgrade in its twenty-year history. Code-named ADS 2.0, the new system features: an IT platform built on web and digital library standards; a new, extensible, industrial strength search engine; a public API with various access control capabilities; a set of applications supporting search, export, visualization, analysis; a collaborative, open source development model; and enhanced indexing of content which includes the full-text of astronomy and physics publications. The changes in the ADS platform affect all aspects of the system and its operations, including: the process through which data and metadata are harvested, curated and indexed; the interface and paradigm used for searching the database; and the follow-up analysis capabilities available to the users. This poster describes the choices behind the technical overhaul of the system, the technology stack used, and the opportunities which the upgrade is providing us with, namely gains in productivity and enhancements in our system capabilities.

  4. Q ‑ Φ criticality and microstructure of charged AdS black holes in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Deng, Gao-Ming; Huang, Yong-Chang

    2017-12-01

    The phase transition and critical behaviors of charged AdS black holes in f(R) gravity with a conformally invariant Maxwell (CIM) source and constant curvature are further investigated. As a highlight, this research is carried out by employing new state parameters (T,Q, Φ) and contributes to deeper understanding of the thermodynamics and phase structure of black holes. Our analyses manifest that the charged f(R)-CIM AdS black hole undergoes a first-order small-large black hole phase transition, and the critical behaviors qualitatively behave like a Van der Waals liquid-vapor system. However, differing from the case in Einstein’s gravity, phase structures of the black holes in f(R) theory exhibit an interesting dependence on gravity modification parameters. Moreover, we adopt the thermodynamic geometry to probe the black hole microscopic properties. The results show that, on the one hand, both the Ruppeiner curvature and heat capacity diverge exactly at the critical point, on the other hand, the f(R)-CIM AdS black hole possesses the property as ideal Fermi gases. Of special interest, we discover a microscopic similarity between the black holes and a Van der Waals liquid-vapor system.

  5. Associations between added sugar (solid vs. liquid) intakes, diet quality, and adiposity indicators in Canadian children.

    PubMed

    Wang, JiaWei; Shang, Lei; Light, Kelly; O'Loughlin, Jennifer; Paradis, Gilles; Gray-Donald, Katherine

    2015-08-01

    Little is known about the influence of different forms of added sugar intake on diet quality or their association with obesity among youth. Dietary intake was assessed by three 24-h recalls in 613 Canadian children (aged 8-10 years). Added sugars (mean of 3-day intakes) were categorized according to source (solid or liquid). Dietary intake and the Canadian Healthy Eating Index (« HEI-C ») were compared across tertiles of solid and liquid added sugars separately as were adiposity indicators (body mass index (BMI), fat mass (dual-energy X-ray absorptiometry), and waist circumference). Cross-sectional associations were examined in linear regression models adjusting for age, sex, energy intake, and physical activity (7-day accelerometer). Added sugar contributed 12% of total energy intake (204 kcal) on average, of which 78% was from solid sources. Higher consumption of added sugars from either solid or liquid source was associated with higher total energy, lower intake of micronutrients, vegetables and fruit, and lower HEI-C score. Additionally liquid sources were associated with lower intake of dairy products. A 10-g higher consumption of added sugars from liquid sources was associated with 0.4 serving/day lower of vegetables and fruit, 0.4-kg/m(2) higher BMI, a 0.5-kg higher fat mass, and a 0.9-cm higher waist circumference whereas the associations of added sugars from solid sources and adiposity indicators tended to be negative. In conclusion, higher consumption of added sugar from either solid or liquid sources was associated with lower overall diet quality. Adiposity indicators were only positively associated with added sugars from liquid sources.

  6. Association of δ¹³C in fingerstick blood with added-sugar and sugar-sweetened beverage intake.

    PubMed

    Davy, Brenda M; Jahren, A Hope; Hedrick, Valisa E; Comber, Dana L

    2011-06-01

    A reliance on self-reported dietary intake measures is a common research limitation, thus the need for dietary biomarkers. Added-sugar intake may play a role in the development and progression of obesity and related comorbidities; common sweeteners include corn and sugar cane derivatives. These plants contain a high amount of ¹³C, a naturally occurring stable carbon isotope. Consumption of these sweeteners, of which sugar-sweetened beverages are the primary dietary source, might be reflected in the δ¹³C value of blood. Fingerstick blood represents an ideal substrate for bioassay because of its ease of acquisition. The objective of this investigation was to determine if the δ¹³C value of fingerstick blood is a potential biomarker of added-sugar and sugar-sweetened beverage intake. Individuals aged 21 years and older (n = 60) were recruited to attend three laboratory visits; assessments completed at each visit depended upon a randomly assigned sequence (sequence one or two). The initial visit included assessment of height, weight, and dietary intake (sequence one: beverage intake questionnaire, sequence two: 4-day food intake record). Sequence one participants completed a food intake record at visit two, and nonfasting blood samples were obtained via routine fingersticks at visits one and three. Sequence two participants completed a beverage intake questionnaire at visit two, and provided fingerstick blood samples at visits two and three. Samples were analyzed for δ¹³C value using natural abundance stable isotope mass spectrometry. δ¹³C value was compared to dietary outcomes in all participants, as well as among those in the highest and lowest tertile of added-sugar intake. Reported mean added-sugar consumption was 66 ± 5 g/day, and sugar-sweetened beverage consumption was 330 ± 53 g/day and 134 ± 25 kcal/day. Mean fingerstick δ¹³C value was -19.94‰ ± 0.10‰, which differed by body mass index status. δ¹³C value was associated (all P < 0

  7. Direct growth and patterning of multilayer graphene onto a targeted substrate without an external carbon source.

    PubMed

    Kang, Dongseok; Kim, Won-Jun; Lim, Jung Ah; Song, Yong-Won

    2012-07-25

    Using only a simple tube furnace, we demonstrate the synthesis of patterned graphene directly on a designed substrate without the need for an external carbon source. Carbon atoms are absorbed onto Ni evaporator sources as impurities, and incorporated into catalyst layers during the deposition. Heat treatment conditions were optimized so that the atoms diffused out along the grain boundaries to form nanocrystals at the catalyst-substrate interfaces. Graphene patterns were obtained under patterned catalysts, which restricted graphene formation to within patterned areas. The resultant multilayer graphene was characterized by Raman spectroscopy and transmission electron microscopy to verify the high crystallinity and two-dimensional nanomorphology. Finally, a metal-semiconductor diode with a catalyst-graphene contact structure were fabricated and characterized to assess the semiconducting properties of the graphene sheets with respect to the display of asymmetric current-voltage behavior.

  8. Microbially mediated carbon mineralization: Geoengineering a carbon-neutral mine

    NASA Astrophysics Data System (ADS)

    Power, I. M.; McCutcheon, J.; Harrison, A. L.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2013-12-01

    Ultramafic and mafic mine tailings are a potentially valuable feedstock for carbon mineralization, affording the mining industry an opportunity to completely offset their carbon emissions. Passive carbon mineralization has previously been documented at the abandoned Clinton Creek asbestos mine, and the active Diavik diamond mine and Mount Keith nickel mine, yet the majority of tailings remain unreacted. Examples of microbe-carbonate interactions at each mine suggest that biological pathways could be harnessed to promote carbon mineralization. In suitable environmental conditions, microbes can mediate geochemical processes to accelerate mineral dissolution, increase the supply of carbon dioxide (CO2), and induce carbonate precipitation, all of which may accelerate carbon mineralization. Tailings mineralogy and the availability of a CO2 point source are key considerations in designing tailings storage facilities (TSF) for optimizing carbon mineralization. We evaluate the efficacy of acceleration strategies including bioleaching, biologically induced carbonate precipitation, and heterotrophic oxidation of waste organics, as well as abiotic strategies including enhancing passive carbonation through modifying tailings management practices and use of CO2 point sources (Fig. 1). With the aim of developing carbon-neutral mines, implementation of carbon mineralization strategies into TSF design will be driven by economic incentives and public pressure for environmental sustainability in the mining industry. Figure 1. Schematic illustrating geoengineered scenarios for carbon mineralization of ultramafic mine tailings. Scenarios A and B are based on non-point and point sources of CO2, respectively.

  9. Warped AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Song, Wei; Anninos, Dionysios; Li, Wei; Padi, Megha; Strominger, Andrew

    2009-03-01

    Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -ell-2 and positive Newton constant G admits an AdS3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μell = 1. However we show herein that for every value of μell ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,Bbb R) × U(1)-invariant warped AdS3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μell = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μell > 3, there are known warped black hole solutions which are asymptotic to warped AdS3. We show that these black holes are discrete quotients of warped AdS3 just as BTZ black holes are discrete quotients of ordinary AdS3. Moreover new solutions of this type, relevant to any theory with warped AdS3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μell > 3, the warped AdS3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c_R-formula and c_L-formula.

  10. Warped AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; Li, Wei; Padi, Megha; Song, Wei; Strominger, Andrew

    2009-03-01

    Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -l-2 and positive Newton constant G admits an AdS3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μl = 1. However we show herein that for every value of μl ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,Bbb R) × U(1)-invariant warped AdS3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μl = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μl > 3, there are known warped black hole solutions which are asymptotic to warped AdS3. We show that these black holes are discrete quotients of warped AdS3 just as BTZ black holes are discrete quotients of ordinary AdS3. Moreover new solutions of this type, relevant to any theory with warped AdS3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μl > 3, the warped AdS3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c_R-formula and c_L-formula.

  11. Sources of ground movement at Vesuvius before the AD 79 eruption: Evidence from contemporary accounts and archaeological studies

    NASA Astrophysics Data System (ADS)

    Marturano, Aldo

    2008-11-01

    Historical sources have recorded earthquake shocks, their effects and difficulties that local inhabitants experienced before the AD 79 Pompeii eruption. Archaeological studies pointed out the effects of such seismicity, and have also evidenced that several water crises were occurring at Pompeii in that period. Indeed numerous sources show that, at the time of eruption, and probably some time before, the civic aqueduct, having ceased to be supplied by the regional one, was out of order and that a new one was being built. Since Roman aqueducts were usually built with a recommended minimum mean slope of 20 cm/km and Pompeii's aqueduct sloped from the nearby Apennines toward the town, this slope could have been easily cancelled by uplift that occurred in the area even if this was only moderate. For the crustal deformations a volcanic origin is proposed and a point source model is used to explain the observations. Simple analysis of the available data suggests that the ground deformations were caused by a < 2 km 3 volumetric change at a depth of ˜ 8 km that happened over the course of several decades.

  12. Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources.

    PubMed

    Yin, Yanan; Zhang, Yifeng; Karakashev, Dimitar Borisov; Wang, Jianlong; Angelidaki, Irini

    2017-10-01

    Caproate is a valuable industrial product and chemical precursor. In this study, batch tests were conducted to investigate the fermentative caproate production through chain elongation from acetate and ethanol. The effect of acetate/ethanol ratio and initial ethanol concentration on caproate production was examined. When substrate concentration was controlled at 100mM total carbon, hydrogen was used as an additional electron donor. The highest caproate concentration of 3.11g/L was obtained at an ethanol/acetate ratio of 7:3. No additional electron donor was needed upon an ethanol/acetate ratio ≥7:3. Caproate production increased with the increase of carbon source until ethanol concentration over 700mM, which inhibited the fermentation process. The highest caproate concentration of 8.42g/L was achieved from high ethanol strength wastewater with an ethanol/acetate ratio of 10:1 (550mM total carbon). Results obtained in this study can pave the way towards efficient chain elongation from ethanol-rich wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Fluid source inferred from strontium isotopes in pore fluid and carbonate recovered during Expedition 337 off Shimokita, Japan

    NASA Astrophysics Data System (ADS)

    Hong, W.; Moen, N.; Haley, B. A.

    2013-12-01

    IODP Expedition 337 was designed to understand the relationship between a deep-buried (2000 meters below seafloor) hydrocarbon reservoir off the Shimokita peninsula (Japan), and the microbial community that this carbon reservoir sustains at such depth. Understanding sources and pathways of flow of fluids that carry hydrocarbons, nutrients, and other reduced components is of particular interest to fulfilling the expedition objectives, since this migrating fluid supports microbial activity not only of the deep-seated communities but also to the shallow-dwelling organisms. To this aim, the concentration and isotopic signature of Sr can be valuable due to that it is relatively free from biogenic influence and pristine in terms of drill fluid contamination. From the pore water Sr profile, concentration gradually increases from 1500 to 2400 mbsf. The depth where highest Sr concentration is observed corresponds to the depths where couple layers of carbonate were observed. Such profile suggests an upward-migrating fluid carries Sr from those deep-seated carbonate layers (>2400 mbsf) to shallower sediments. To confirm this inference, pore water, in-situ formation fluid, and carbonate samples were analyzed for Sr isotopes to investigate the fluid source.

  14. Sources and atmospheric processing of size segregated aerosol particles revealed by stable carbon isotope ratios and chemical speciation.

    PubMed

    Masalaite, A; Holzinger, R; Ceburnis, D; Remeikis, V; Ulevičius, V; Röckmann, T; Dusek, U

    2018-05-07

    Size-segregated aerosol particles were collected during winter sampling campaigns at a coastal (55°37' N, 21°03'E) and an urban (54°64' N, 25°18' E) site. Organic compounds were thermally desorbed from the samples at different temperature steps ranging from 100 °C to 350 °C. The organic matter (OM) desorbed at each temperature step is analysed for stable carbon isotopes using an isotope ratio mass spectrometer (IRMS) and for individual organic compounds using a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-MS). The OM desorbed at temperatures <200 °C was classified as less refractory carbon and the OM desorbed at temperatures between 200 °C and 350 °C was classified as more refractory carbon. At the coastal site, we identified two distinct time periods. The first period was more frequently influenced by marine air masses than the second time period, which was characterized by Easterly wind directions and continental air masses. During the first period OM contained a large fraction of hydrocarbons and had a carbon isotopic signature typical of liquid fossil fuels in the region. Organic mass spectra provide strong evidence that shipping emissions are a significant source of OM at this coastal site. The isotopic and chemical composition of OM during the second period at the coastal site was similar to the composition at the urban site. There was a clear distinction in source contribution between the less refractory OM and the more refractory OM at these sites. According to the source apportionment method used in this study, we were able to identify fossil fuel burning as predominant source of the less refractory OM in the smallest particles (D 50  < 0.18 μm), and biomass burning as predominant source of the more refractory OM in the larger size range (0.32 < D 50  < 1 μm). Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A Carbon Source Apportionment Shift in Mexico City Atmospheric Particles During 2003-2004 as Determined with Stable Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Lopez-Veneroni, D. G.; Vega, E.

    2013-05-01

    The stable carbon isotope composition of atmospheric particles (PM2.5) was measured at La Merced (MER), a commercial site in the eastern sector, and at Xalostoc (XAL) an industrial site in the NE sector of Mexico City, during three sampling periods in autumn 2003, and spring and autumn 2004. At each site and sampling campaign particle samples were collected daily with minivol samplers during two week periods. Ancillary data included organic and elemental carbon, trace elements and ionic species. This data base was complement with air quality data from the RAMA (Automatic Atmospheric Monitoring Network). In general, particle concentrations, ionic species and some air quality species showed higher concentrations in autumn and lowest values in spring. Moreover, the concentrations of these chemical species were highest at XAL compared to MER. The stable carbon isotope composition of PM2.5 during autumn 2003 and spring 2004 had and average value of -26.04 (± 1.54) ‰ vs. PDB. Differences in the isotopic composition between the two sites were non significant. The average δ13C during these seasons were 1 ‰ lighter relative to data collected previously at these sites during 2000 and 2001, and is consistent with a predominant source of hydrocarbon combustion. In autumn 2004, however, average δ13C at XAL and MER increased to -22.8 (± 0.9) and -20.6 (± 3.1) ‰, respectively. Organic carbon concentrations during this period increased concomitantly at these sites. The shift in the isotopic composition in ambient particles suggests a predominance of soil-derived carbon during this period. The possible causes and implications of this are discussed.

  16. An audit of the global carbon budget: identifying and reducing sources of uncertainty

    NASA Astrophysics Data System (ADS)

    Ballantyne, A. P.; Tans, P. P.; Marland, G.; Stocker, B. D.

    2012-12-01

    Uncertainties in our carbon accounting practices may limit our ability to objectively verify emission reductions on regional scales. Furthermore uncertainties in the global C budget must be reduced to benchmark Earth System Models that incorporate carbon-climate interactions. Here we present an audit of the global C budget where we try to identify sources of uncertainty for major terms in the global C budget. The atmospheric growth rate of CO2 has increased significantly over the last 50 years, while the uncertainty in calculating the global atmospheric growth rate has been reduced from 0.4 ppm/yr to 0.2 ppm/yr (95% confidence). Although we have greatly reduced global CO2 growth rate uncertainties, there remain regions, such as the Southern Hemisphere, Tropics and Arctic, where changes in regional sources/sinks will remain difficult to detect without additional observations. Increases in fossil fuel (FF) emissions are the primary factor driving the increase in global CO2 growth rate; however, our confidence in FF emission estimates has actually gone down. Based on a comparison of multiple estimates, FF emissions have increased from 2.45 ± 0.12 PgC/yr in 1959 to 9.40 ± 0.66 PgC/yr in 2010. Major sources of increasing FF emission uncertainty are increased emissions from emerging economies, such as China and India, as well as subtle differences in accounting practices. Lastly, we evaluate emission estimates from Land Use Change (LUC). Although relative errors in emission estimates from LUC are quite high (2 sigma ~ 50%), LUC emissions have remained fairly constant in recent decades. We evaluate the three commonly used approaches to estimating LUC emissions- Bookkeeping, Satellite Imagery, and Model Simulations- to identify their main sources of error and their ability to detect net emissions from LUC.; Uncertainties in Fossil Fuel Emissions over the last 50 years.

  17. Extreme Meteorological Events from documentary sources on old Aragon Kingdom, AD1000-1500. Firsts results after a systematic approach to data availability

    NASA Astrophysics Data System (ADS)

    Rama, Eduard; Barriendos, Mariano

    2010-05-01

    Extreme Meteorological Events from documentary sources on old Aragon Kingdom, AD 1000-1500. Firsts results after a systematic approach to data availability Eduard Rama1, Mariano Barriendos2 1 Research Laboratory on Climate, Scientific Park of Barcelona 2 Department of Modern History, University of Barcelona Research on documentary sources focused on detection and reconstruction of climatic data and extreme meteorological events is an activity with notable tradition on palaeoclimatic discipline. Historical climatology offers a good source of climatic and environmental proxy-data. This information covers past centuries establishing good overlapping with instrumental data availability period. Best qualities of historical information are a high temporal resolution, an exact and reliable datation, and complementary information related to environmental and human impacts. Historical climatology offers a large number of data chronologies for Europe covering historiographical periods from Low Middle Age to Contemporary Age (14th to 20th Centuries). Into framework of EU IP Millennium, a systematic research assumed the challenge to collect data from High Middle Age. Documentary sources are discontinuous and scattered, information is not precise and reliable, but all possible original information can be useful to characterize the Warm Medieval Period, most recent climatic period similar to possible climate of next future, at least concerning thermic conditions. Present work shows a systematic effort on documentary sources of Old Aragon Kingdom (actually, spanish regions of Catalonia, Aragon, Valentia and Balearic Islands), collecting extreme weather events for period AD1000-1500. Historical context of Aragon Kingdom was no easy in this period, focused on recovering territory in front of Muslim Kingdoms (Reconsquista) up to 13th Century from North to South. After this, consolidation of modern institutions and urban network took 14-15th Centuries. Data sources has been all

  18. Sources of carbon and sulfur nutrition for consumers in three meromictic lakes of New York State

    NASA Technical Reports Server (NTRS)

    Fry, B.; Hayes, J. M. (Principal Investigator)

    1986-01-01

    The trophic importance of bacterioplankton as a source of carbon and sulfur nutrition for consumers in meromictic lakes was tested using stable carbon (delta 13C) and sulfur (delta 34S) isotopic measurements. Studies in three lakes near Syracuse, New York, showed that most consumers ultimately derive their C and S nutrition from a mixture of terrestrial detritus, phytoplankton, and littoral vegetation, rather than from bacterioplankton. Food webs in these meromictic lakes are thus similar to those in other lakes that lack dense populations of bacterioplankton.

  19. Long Carbon Chains in the Warm Carbon-chain-chemistry Source L1527: First Detection of C7H in Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi

    2017-09-01

    Long carbon-chain molecules were searched for toward the low-mass star-forming region L1527, which is a prototypical source of warm carbon-chain chemistry (WCCC), using the 100 m Green Bank Telescope. Long carbon-chain molecules, C7H (2Π1/2), C6H (2Π3/2 and 2Π1/2), CH3C4H, and C6H2 (cumulene carbene, CCCCCCH2), and cyclic species of C3H and C3H2O were detected. In particular, C7H was detected for the first time in molecular clouds. The column density of C7H is determined to be 6 × 1010 cm-2. The column densities of the carbon-chain molecules including CH3C4H and C6H in L1527 relative to those in the starless dark cloud Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP) tend to be systematically lower for long carbon-chain lengths. However, the column densities of C7H and C6H2 do not follow this trend and are found to be relatively abundant in L1527. This result implies that these long carbon-chain molecules are remnants of the cold starless phase. The results—that both the remnants and WCCC products are observed toward L1527—are consistent with the suggestion that the protostar can also be born in the parent core at a relatively early stage in the chemical evolution.

  20. Biodegradation and utilization of 4-n-nonylphenol by Aspergillus versicolor as a sole carbon and energy source.

    PubMed

    Krupiński, Mariusz; Janicki, Tomasz; Pałecz, Bartłomiej; Długoński, Jerzy

    2014-09-15

    4-n-Nonylphenol (4-n-NP) is an environmental pollutant with endocrine-disrupting activities that is formed during the degradation of nonylphenol polyethoxylates, which are widely used as surfactants. Utilization of 4-n-NP by the filamentous fungus Aspergillus versicolor as the sole carbon and energy source was investigated. By means of gas chromatography-mass spectrometry, we showed that in the absence of any carbon source other than 4-n-NP in the medium, A. versicolor completely removed the xenobiotic (100 mg L(-1)) after 3 d of cultivation. Moreover, mass spectrometric analysis of intracellular extracts led to the identification of eight intermediates. The mineralization of the xenobiotic in cultures supplemented with 4-n-NP [ring-(14)C(U)] as a growth substrate was also assessed. After 3 d of incubation, approximately 50% of the initially applied radioactivity was recovered in the form of (14)CO2, proving that this xenobiotic was completely metabolized and utilized by A. versicolor as a carbon source. Based on microscopic analysis, A. versicolor is capable of germinating spores under such conditions. To confirm these observations, a microcalorimetric method was used. The results show that even the highest amount of 4-n-NP initiates heat production in the fungal samples, proving that metabolic processes were affected by the use of 4-n-NP as an energetic substrate. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Effect of carbon and nitrogen addition on nitrous oxide and carbon dioxide fluxes from thawing forest soils

    NASA Astrophysics Data System (ADS)

    Haohao, Wu; Xingkai, Xu; Cuntao, Duan; TuanSheng, Li; Weiguo, Cheng

    2017-07-01

    Packed soil-core incubation experiments were done to study the effects of carbon (glucose, 6.4 g C m-2) and nitrogen (NH4Cl and KNO3, 4.5 g N m-2) addition on nitrous oxide (N2O) and carbon dioxide (CO2) fluxes during thawing of frozen soils under two forest stands (broadleaf and Korean pine mixed forest and white birch forest) with two moisture levels (55 and 80% water-filled pore space). With increasing soil moisture, the magnitude and longevity of the flush N2O flux from forest soils was enhanced during the early period of thawing, which was accompanied by great NO3--N consumption. Without N addition, the glucose-induced cumulative CO2 fluxes ranged from 9.61 to 13.49 g CO2-C m-2, which was larger than the dose of carbon added as glucose. The single addition of glucose increased microbial biomass carbon but slightly affected soil dissolved organic carbon pool. Thus, the extra carbon released upon addition of glucose can result from the decomposition of soil native organic carbon. The glucose-induced N2O and CO2 fluxes were both significantly correlated to the glucose-induced total N and dissolved organic carbon pools and influenced singly and interactively by soil moisture and KNO3 addition. The interactive effects of glucose and nitrogen inputs on N2O and CO2 fluxes from forest soils after frost depended on N sources, soil moisture, and vegetation types.

  2. Enhanced water window x-ray emission from in situ formed carbon clusters irradiated by intense ultra-short laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarty, U.; Rao, B. S.; Arora, V.

    Enhanced water window x-ray emission (23–44 Å) from carbon clusters, formed in situ using a pre-pulse, irradiated by intense (I > 10{sup 17} W/cm{sup 2}) ultra-short laser pulse, is demonstrated. An order of magnitude x-ray enhancement over planar graphite target is observed in carbon clusters, formed by a sub-ns pre-pulse, interacting with intense main pulse after a delay. The effect of the delay and the duration of the main pulse is studied for optimizing the x-ray emission in the water window region. This x-ray source has added advantages of being an efficient, high repetition rate, and low debris x-ray source.

  3. Using Novel Laboratory Incubations and Field Experiments to Identify the Source and Fate of Reactive Organic Carbon in an Arsenic-contaminated Aquifer System

    NASA Astrophysics Data System (ADS)

    Stahl, M.; Tarek, M. H.; Badruzzaman, B.; Harvey, C. F.

    2017-12-01

    Characterizing the sources and fate of organic matter (OM) within aquifer systems is key to our understanding of both the broader global carbon cycle as well as the quality of our groundwater resources. The linkage between the subsurface carbon cycle and groundwater quality is perhaps nowhere more apparent than in the aquifer systems of South and Southeast Asia, where the contamination of groundwater with geogenic arsenic (As) is widespread and threatens the health of millions of individuals. OM fuels the biogeochemical processes driving As mobilization within these aquifers, however the source (i.e., modern surface-derived or aged sedimentary OM) of the reactive OM is widely debated. To characterize the sources of OM driving aquifer redox processes we tracked DIC and DOC concentrations and isotopes (stable and radiocarbon) along groundwater flow-paths and beneath an instrumented study pond at a field site in Bangladesh. We also conducted a set of novel groundwater incubation experiments, where we carbon-dated the DOC at the start and end of a experiment in order to determine the age of the OM that was mineralized. Our carbon/isotope balance reveals that aquifer recharge introduces a large quantity of young (i.e. near modern) OM that is efficiently mineralized within the upper few meters of the aquifer, effectively limiting this pool of reactive surface-sourced OM from being transported deeper into the aquifer where significant As mobilization takes place. The OM mineralized past the upper few meters is an aged, sedimentary source. Consistent with our field data, our incubation experiments show that past the upper few meters of the aquifer the reactive DOC is significantly older than the bulk DOC and has an age consistent with sedimentary OM. Combining our novel set of incubation experiments and a carbon/isotope balance along groundwater flow-paths and beneath our study pond we have identified the sources of reactive OM across different aquifer depths in a

  4. Fossil and Nonfossil Sources of Organic and Elemental Carbon Aerosols in the Outflow from Northeast China.

    PubMed

    Zhang, Yan-Lin; Kawamura, Kimitaka; Agrios, Konstantinos; Lee, Meehye; Salazar, Gary; Szidat, Sönke

    2016-06-21

    Source quantification of carbonaceous aerosols in the Chinese outflow regions still remains uncertain despite their high mass concentrations. Here, we unambiguously quantified fossil and nonfossil contributions to elemental carbon (EC) and organic carbon (OC) of total suspended particles (TSP) from a regional receptor site in the outflow of Northeast China using radiocarbon measurement. OC and EC concentrations were lower in summer, representing mainly marine air, than in other seasons, when air masses mostly traveled over continental regions in Mongolia and northeast China. The annual-mean contribution from fossil-fuel combustion to EC was 76 ± 11% (0.1-1.3 μg m(-3)). The remaining 24 ± 11% (0.03-0.42 μg m(-3)) was attributed to biomass burning, with slightly higher contribution in the cold period (∼31%) compared to the warm period (∼21%) because of enhanced emissions from regional biomass combustion sources in China. OC was generally dominated by nonfossil sources, with an annual average of 66 ± 11% (0.5-2.8 μg m(-3)), approximately half of which was apportioned to primary biomass-burning sources (34 ± 6%). In winter, OC almost equally originated from primary OC (POC) emissions and secondary OC (SOC) formation from fossil fuel and biomass-burning sources. In contrast, summertime OC was dominated by primary biogenic emissions as well as secondary production from biogenic and biomass-burning sources, but fossil-derived SOC was the smallest contributor. Distinction of POC and SOC was performed using primary POC-to-EC emission ratios separated for fossil and nonfossil emissions.

  5. Activated carbon material

    DOEpatents

    Evans, A. Gary

    1978-01-01

    Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

  6. Production of targeted poly(3-hydroxyalkanoates) copolymers by glycogen accumulating organisms using acetate as sole carbon source.

    PubMed

    Dai, Yu; Yuan, Zhiguo; Jack, Kevin; Keller, Jurg

    2007-05-01

    One of the main limitations in bacterial polyhydroxyalkanoate (PHA) production with mixed cultures is the fact that primarily polyhydroxybutyrate (PHB) homopolymers are generated from acetate as the main carbon source, which is brittle and quite fragile. The incorporation of different 3-hydroxyalkanoate (HA) components into the polymers requires the addition of additional carbon sources, leading to extra costs and complexity. In this study, the production of poly(3-hydroxybutyrate (3HB)-co-3-hydroxyvalerate (3HV)-co-3-hydroxy-2-methylvalerate (3HMV)), with 7-35C-mol% of 3HV fractions from acetate as the only carbon source was achieved with the use of glycogen accumulating organisms (GAOs). An enriched GAO culture was obtained in a lab-scale reactor operated under alternating anaerobic and aerobic conditions with acetate fed at the beginning of the anaerobic period. The production of PHAs utilizing the enriched GAO culture was investigated under both aerobic and anaerobic conditions. A polymer content of 14-41% of dry cell weight was obtained. The PHA product accumulated by GAOs under anaerobic conditions contained a relatively constant proportion of non-3HB monomers (30+/-5C-mol%), irrespective of the amount of acetate assimilated. In contrast, under aerobic conditions, GAOs only produced 3HB monomers from acetate causing a gradually decreasing 3HV fraction during this aerobic feeding period. The PHAs were characterized by gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The data demonstrated that the copolymers possessed similar characteristics to those of commercially available poly(3HB-co-3HV) (PHBV) products. The PHAs produced under solely anaerobic conditions possessed lower melting points and crystallinity, higher molecular weights, and narrower molecular-weight distributions, compared to the aerobically produced polymers. This paper hence demonstrates the significant potential of GAOs to produce high quality polymers from a

  7. Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric CO2 concentrations.

    PubMed

    Trowbridge, Amy M; Asensio, Dolores; Eller, Allyson S D; Way, Danielle A; Wilkinson, Michael J; Schnitzler, Jörg-Peter; Jackson, Robert B; Monson, Russell K

    2012-01-01

    Biogenically released isoprene plays important roles in both tropospheric photochemistry and plant metabolism. We performed a (13)CO(2)-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS) to examine the kinetics of recently assimilated photosynthate into isoprene emitted from poplar (Populus × canescens) trees grown and measured at different atmospheric CO(2) concentrations. This is the first study to explicitly consider the effects of altered atmospheric CO(2) concentration on carbon partitioning to isoprene biosynthesis. We studied changes in the proportion of labeled carbon as a function of time in two mass fragments, M41(+), which represents, in part, substrate derived from pyruvate, and M69(+), which represents the whole unlabeled isoprene molecule. We observed a trend of slower (13)C incorporation into isoprene carbon derived from pyruvate, consistent with the previously hypothesized origin of chloroplastic pyruvate from cytosolic phosphenolpyruvate (PEP). Trees grown under sub-ambient CO(2) (190 ppmv) had rates of isoprene emission and rates of labeling of M41(+) and M69(+) that were nearly twice those observed in trees grown under elevated CO(2) (590 ppmv). However, they also demonstrated the lowest proportion of completely labeled isoprene molecules. These results suggest that under reduced atmospheric CO(2) availability, more carbon from stored/older carbon sources is involved in isoprene biosynthesis, and this carbon most likely enters the isoprene biosynthesis pathway through the pyruvate substrate. We offer direct evidence that extra-chloroplastic rather than chloroplastic carbon sources are mobilized to increase the availability of pyruvate required to up-regulate the isoprene biosynthesis pathway when trees are grown under sub-ambient CO(2).

  8. Contribution of Various Carbon Sources Toward Isoprene Biosynthesis in Poplar Leaves Mediated by Altered Atmospheric CO2 Concentrations

    PubMed Central

    Trowbridge, Amy M.; Asensio, Dolores; Eller, Allyson S. D.; Way, Danielle A.; Wilkinson, Michael J.; Schnitzler, Jörg-Peter; Jackson, Robert B.; Monson, Russell K.

    2012-01-01

    Biogenically released isoprene plays important roles in both tropospheric photochemistry and plant metabolism. We performed a 13CO2-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS) to examine the kinetics of recently assimilated photosynthate into isoprene emitted from poplar (Populus × canescens) trees grown and measured at different atmospheric CO2 concentrations. This is the first study to explicitly consider the effects of altered atmospheric CO2 concentration on carbon partitioning to isoprene biosynthesis. We studied changes in the proportion of labeled carbon as a function of time in two mass fragments, M41+, which represents, in part, substrate derived from pyruvate, and M69+, which represents the whole unlabeled isoprene molecule. We observed a trend of slower 13C incorporation into isoprene carbon derived from pyruvate, consistent with the previously hypothesized origin of chloroplastic pyruvate from cytosolic phosphenolpyruvate (PEP). Trees grown under sub-ambient CO2 (190 ppmv) had rates of isoprene emission and rates of labeling of M41+ and M69+ that were nearly twice those observed in trees grown under elevated CO2 (590 ppmv). However, they also demonstrated the lowest proportion of completely labeled isoprene molecules. These results suggest that under reduced atmospheric CO2 availability, more carbon from stored/older carbon sources is involved in isoprene biosynthesis, and this carbon most likely enters the isoprene biosynthesis pathway through the pyruvate substrate. We offer direct evidence that extra-chloroplastic rather than chloroplastic carbon sources are mobilized to increase the availability of pyruvate required to up-regulate the isoprene biosynthesis pathway when trees are grown under sub-ambient CO2. PMID:22384238

  9. Diagnostic Evaluation of Carbon Sources in CMAQ

    EPA Science Inventory

    Traditional monitoring networks measure only total elemental carbon (EC) and organic carbon (OC) routinely. Diagnosing model biases with such limited information is difficult. Measurements of organic tracer compounds have recently become available and allow for more detailed di...

  10. Preparation and Physicochemical Evaluation of Controlled-release Carbon Source Tablet for Groundwater in situ Denitrification

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kang, J. H.; Yeum, Y.; Han, K. J.; Kim, D. W.; Park, C. W.

    2015-12-01

    Nitric nitrogen could be the one of typical pollution source such asNO3-through domestic sewage, livestock and agricultural wastewater. Resident microflorain aquifer has known to remove the nitric nitrogen spontaneously following the denitration process with the carbon source (CS) as reactant. However, it could be reacted very slowly with the rack of CS and there have been some studies for controlled addition of CS (Ref #1-3). The aim of this study was to prepare the controlled-release carbon source (CR-CS) tablet and to evaluate in vitro release profile for groundwater in situ denitrification. CR-CS tablet could be manufactured by direct compression method using hydraulic laboratory press (Caver® 3850) with 8 mm rounded concave punch/ die.Seven kinds of CR-CS tablet were prepared to determine the nature of the additives and their ratio such as sodium silicate, dicalcium phosphate, bentonite and sand#8.For each formulation, the LOD% and flowability of pre-mixed powders and the hardness of compressed tablets were analyzed. In vitro release study was performed to confirm the dissolution profiles following the USP Apparatus 2 method with Distilled water of 900mL, 20 °C. As a result, for each lubricated powders, they were compared in terms of ability to give an acceptable dry pre-mixed powder for tableting process. The hardness of the compressed tablets is acceptable whatever the formulations tested. After in vitro release study, it could confirm that the different formulations of CR-CS tablet have a various release rate patterns, which could release 100% at 3 hrs, 6 hrs and 12 hrs. The in vitro dissolution profiles were in good correlation of Higuchi release kinetic model. In conclusion, this study could be used as a background for development and evaluation of the controlled-release carbon source (CR-CS) tablet for the purification of groundwater following the in situ denitrification.

  11. Functional Stability Of A Mixed Microbial Consortia Producing PHA From Waste Carbon Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David N. Thompson; Erik R. Coats; William A. Smith

    2006-04-01

    Polyhydroxyalkanoates (PHAs), naturally-occurring biological polyesters that are microbially synthesized from a myriad of carbon sources, can be utilized as biodegradable substitutes for petroleum-derived thermoplastics. However, current PHA commercialization schemes are limited by high feedstock costs, the requirement for aseptic reactors, and high separation and purification costs. Bacteria indigenous to municipal waste streams can accumulate large quantities of PHA under environmentally controlled conditions; hence, a potentially more environmentally-effective method of production would utilize these consortia to produce PHAs from inexpensive waste carbon sources. In this study, PHA production was accomplished in sequencing batch bioreactors utilizing mixed microbial consortia from municipal activatedmore » sludge as inoculum, in cultures grown on real wastewaters. PHA production averaged 85%, 53%, and 10% of the cell dry weight from methanol-enriched pulp-and-paper mill foul condensate, fermented municipal primary solids, and biodiesel wastewater, respectively. The PHA-producing microbial consortia were examined to explore the microbial community changes that occurred during reactor operations, employing denaturing gradient gel electrophoresis (DGGE) of 16S-rDNA from PCR-amplified DNA extracts. Distinctly different communities were observed both between and within wastewaters following enrichment. More importantly, stable functions were maintained despite the differing and contrasting microbial populations.« less

  12. Sources and Transformations of Carbon and Nitrogen in the Potomac River Estuary

    NASA Astrophysics Data System (ADS)

    Pennino, M. J.; Kaushal, S.; Murthy, S.

    2011-12-01

    Urbanization has altered the transport of nitrogen (N) and carbon (C) in river ecosystems, making it important to understand how rivers are responding to these increased inputs of C and N. This study examines the capacity of a major tributary of the Chesapeake Bay, the Potomac River, to transform N and C inputs from the world's largest advanced wastewater treatment facility (Washington D.C. Water and Sewer Authority). Surface water and effluent samples were collected monthly for one year, along longitudinal transects of the Potomac River. Water samples were analyzed for the major dissolved and particulate forms of C and N. Nitrate stable isotopes were used to trace the fate of wastewater nitrate, as well as how other nitrate sources vary downriver. Sources of carbon downriver were traced using fluorescence spectroscopy, excitation emission matrices (EEMs), and PARAFAC modeling. Historical influent and effluent data on C and N levels were also compared with regional population growth data, climate change data, and long-term interannual records of C and N levels within downstream stations along the Potomac River. Improvements in treatment technology over the past two decades have shown significant decreases in effluent nitrogen levels, with corresponding decreases overtime of nutrients at downstream sampling stations. Levels of nitrate show increases within the vicinity of the wastewater treatment outfall, but decrease rapidly downstream, potentially indicating nutrient uptake and/or denitrification. Total organic carbon levels show a smaller decrease downstream, resulting in an increase in the C:N ratio downstream. Longitudinal river chemistry data also show that dissolved inorganic nitrogen goes down while total organic nitrogen goes up with distance downriver, indicating biological transformations are taking place along the river. Preliminary data from fluorescence EEMs suggested that more humic-like organic matter is important above the wastewater treatment plant

  13. Sources and burial fluxes of soot black carbon in sediments on the Mackenzie, Chukchi, and Bering Shelves

    NASA Astrophysics Data System (ADS)

    Yang, Weifeng; Guo, Laodong

    2018-03-01

    Black carbon (BC) has been recognized as a climate forcing and a major component in the global carbon budget. However, studies on BC in the Arctic Ocean remain scarce. We report here variations in the abundance, sources and burial fluxes of sedimentary soot black carbon (soot-BC) in the western Arctic Ocean. The soot-BC contents averaged 1.6 ± 0.3, 0.46 ± 0.04 and 0.56 ± 0.10 mg-C g-1 on the Mackenzie, Chukchi and Bering Shelves, respectively, accounting for 16.6%, 10.2% and 10.4% of the total organic carbon in surface sediment. Temporally, contents of soot-BC remained fairly stable before 1910, but increased rapidly after the 1970s on the Mackenzie Shelf, indicating enhanced source input related to warming. Comparable δ13C signatures of soot-BC (- 24.95‰ to - 24.57‰) to C3 plants pointed to a major biomass source of soot-BC to the Beaufort Sea. Soot-BC showed similar temporal patterns with large fluctuations in the Chukchi/Bering shelf regions, implying the same source terms for soot-BC in these areas. Two events with elevated soot-BC corresponded to a simultaneous increase in biomass combustion and fossil fuel (coal and oil) consumption in Asia. The similar temporal variability in sedimentary soot-BC between the Arctic shelves and Asian lakes and the comparable δ13C values manifested that anthropogenic emission from East Asia was an important source of soot-BC in the western Arctic and subarctic regions. The burial fluxes of soot-BC, estimated from both 137Cs- and 210Pb-derived sedimentation rates, were 2.43 ± 0.42 g-C m-2 yr-1 on the Mackenzie Shelf, representing an efficient soot-BC sink. Soot-BC showed an increase in buried fluxes from 0.56 ± 0.02 g-C m-2 yr-1 during 1963-1986 to 0.88 ± 0.05 g-C m-2 yr-1 after 1986 on the Chukchi Shelf, and from 1.00 ± 0.18 g-C m-2 yr-1 to 2.58 ± 1.70 g-C m-2 yr-1 on the Bering Shelf, which were consistent with recent anthropogenically enhanced BC input observed especially in Asia. Overall, the three Arctic

  14. [Derepression of cellulase synthesis in Trichoderma lignorum during limitation of consumption of readily available carbon sources].

    PubMed

    Lobanok, A G; Pavlovskaia Zhi

    1975-01-01

    The synthesis of Cx-cellulase was de-repressed in Trichoderma lignorum growing on various easily metabolized carbon sources when their assimilation was limited. A reverse correlation has been established between the growth rate and the rate of the enzyme synthesis in the fungus.

  15. Fungal carbon sources in a pine forest: evidence from a 13C-labeled global change experiment

    Treesearch

    Erik A. Hobbie; Kirsten S. Hofmockel; Linda T.A. Van Diepen; Erik A. Lilleskov; Andrew P. Oiumette; Adrien C. Finzi

    2014-01-01

    We used natural abundance 13C:12C (δ13C) and 8 yr of labeling with 13C-depleted CO2 in a Pinus taeda Free Air CO2 Enrichment (FACE) experiment to investigate carbon sources of saprotrophic fungi, ectomycorrhizal...

  16. Utilization of Glyphosate as Phosphate Source: Biochemistry and Genetics of Bacterial Carbon-Phosphorus Lyase

    PubMed Central

    Zechel, David L.; Jochimsen, Bjarne

    2014-01-01

    SUMMARY After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses. PMID:24600043

  17. Bacterioplankton: A Sink for Carbon in a Coastal Marine Plankton Community

    NASA Astrophysics Data System (ADS)

    Ducklow, Hugh W.; Purdie, Duncan A.; Leb. Williams, Peter J.; Davies, John M.

    1986-05-01

    Recent determinations of high production rates (up to 30 percent of primary production in surface waters) implicate free-living marine bacterioplankton as a link in a ``microbial loop'' that supplements phytoplankton as food for herbivores. An enclosed water column of 300 cubic meters was used to test the microbial loop hypothesis by following the fate of carbon-14--labeled bacterioplankton for over 50 days. Only 2 percent of the label initially fixed from carbon-14--labeled glucose by bacteria was present in larger organisms after 13 days, at which time about 20 percent of the total label added remained in the particulate fraction. Most of the label appeared to pass directly from particles smaller than 1 micrometer (heterotrophic bacterioplankton and some bacteriovores) to respired labeled carbon dioxide or to regenerated dissolved organic carbon-14. Secondary (and, by implication, primary) production by organisms smaller than 1 micrometer may not be an important food source in marine food chains. Bacterioplankton can be a sink for carbon in planktonic food webs and may serve principally as agents of nutrient regeneration rather than as food.

  18. Sources of Below-Ground Respired Carbon in a Northern Minnesota Ombrotrophic Spruce Bog and the Influence of Heating Manipulations.

    NASA Astrophysics Data System (ADS)

    Guilderson, T. P.; McFarlane, K. J.; McNicol, G.; Hanson, P. J.; Chanton, J.; Wilson, R.; Bosworth, R.; Singleton, M. J.

    2015-12-01

    A significant uncertainty in future land-surface carbon budgets is the response of wetlands to climate change. A related question is the future net climate (radiative) forcing impact due to ecosystem and environmental change in wetlands. Active wetlands emit both CO2 and CH4 to the atmosphere. CH4 is, over a few decades, a much more potent greenhouse gas than CO2 whereas as a consequence of a much longer atmospheric lifetime, CO2 has a longer 'tail' to its influence. Whether wetlands are a net source or sink of atmospheric carbon under future climate change will depend on the response of the ecosystem to rising temperatures and elevated CO2. The largest uncertainty in future wetland budgets, and its climate forcing, is the stability of the large belowground carbon stocks, often in the form of peat, and the partitioning of CO2 and CH4released via ecosystem respiration. We have characterized the isotopic signatures (14,13C of CO2 and CH4, D-CH4) of the respired carbon used for the production of CO2 and CH4 from the DOE Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) site in the Marcell Experimental Forest, which contains replicated mesocosm manipulations including above/below ground warming and elevated CO2. Deep warming (1-2 m) was initiated in July of 2014 and above ground heating will be initiated in July 2015. Comparison of the respired CO2 and CH4with recently fixed photosynthate, below-ground peat (up to 11,000 years old), and dissolved organic carbon allow us to determine the primary substrates used by the microbial community. Control and pre-perturbed plots are characterized by the consumption and respiration of recently fixed photosynthate and recent (few years to 15 yr) carbon. Although CH4 fluxes have begun to respond to deep-heating, the source of carbon remains similar in the control and perturbed plots. Respired CO2 remains consistent with being sourced from carbon only a few years old. We will present additional data

  19. Source apportionment of PM2.5 organic carbon in the San Joaquin Valley using monthly and daily observations and meteorological clustering.

    PubMed

    Skiles, Matthew J; Lai, Alexandra M; Olson, Michael R; Schauer, James J; de Foy, Benjamin

    2018-06-01

    Two hundred sixty-three fine particulate matter (PM 2.5 ) samples collected on 3-day intervals over a 14-month period at two sites in the San Joaquin Valley (SJV) were analyzed for organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC), and organic molecular markers. A unique source profile library was applied to a chemical mass balance (CMB) source apportionment model to develop monthly and seasonally averaged source apportionment results. Five major OC sources were identified: mobile sources, biomass burning, meat smoke, vegetative detritus, and secondary organic carbon (SOC), as inferred from OC not apportioned by CMB. The SOC factor was the largest source contributor at Fresno and Bakersfield, contributing 44% and 51% of PM mass, respectively. Biomass burning was the only source with a statistically different average mass contribution (95% CI) between the two sites. Wintertime peaks of biomass burning, meat smoke, and total OC were observed at both sites, with SOC peaking during the summer months. Exceptionally strong seasonal variation in apportioned meat smoke mass could potentially be explained by oxidation of cholesterol between source and receptor and trends in wind transport outlined in a Residence Time Analysis (RTA). Fast moving nighttime winds prevalent during warmer months caused local emissions to be replaced by air mass transported from the San Francisco Bay Area, consisting of mostly diluted, oxidized concentrations of molecular markers. Good agreement was observed between SOC derived from the CMB model and from non-biomass burning WSOC mass, suggesting the CMB model is sufficiently accurate to assist in policy development. In general, uncertainty in monthly mass values derived from daily CMB apportionments were lower than that of CMB results produced with monthly marker composites, further validating daily sampling methodologies. Strong seasonal trends were observed for biomass and meat smoke OC apportionment, and monthly

  20. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    PubMed

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  1. Ethers as Oxygen Donor and Carbon Source in Non-hydrolytic Sol-Gel: One-Pot, Atom-Economic Synthesis of Mesoporous TiO2 -Carbon Nanocomposites.

    PubMed

    Escamilla-Pérez, Angel Manuel; Louvain, Nicolas; Boury, Bruno; Brun, Nicolas; Mutin, P Hubert

    2018-04-03

    Mesoporous TiO 2 -carbon nanocomposites were synthesized using an original non-hydrolytic sol-gel (NHSG) route, based on the reaction of simple ethers (diisopropyl ether or tetrahydrofuran) with titanium tetrachloride. In this atom-economic, solvent-free process, the ether acts not only as an oxygen donor but also as the sole carbon source. Increasing the reaction temperature to 180 °C leads to the decomposition of the alkyl chloride by-product and to the formation of hydrocarbon polymers, which are converted to carbon by pyrolysis under argon. The carbon-TiO 2 nanocomposites and their TiO 2 counterparts (obtained by calcination) were characterized by nitrogen physisorption, XRD, solid state 13 C NMR and Raman spectroscopies, SEM, and TEM. The nanocomposites are mesoporous with surface areas of up to 75 m 2  g -1 and pore sizes around 10 nm. They are composed of aggregated anatase nanocrystals coated by an amorphous carbon film. Playing on the nature of the ether and on the reaction temperature allows control over the carbon content in the nanocomposites. The nature of the ether also influences the size of the TiO 2 crystallites and the morphology of the nanocomposite. To further characterize the carbon coating, the behavior of the carbon-TiO 2 nanocomposites and bare TiO 2 samples toward lithium insertion-deinsertion was investigated in half-cells. This simple NHSG approach should provide a general method for the synthesis of a wide range of carbon-metal oxide nanocomposites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Identifying dissolved organic carbon sources at a gaged headwater catchment using FDOM sensors

    NASA Astrophysics Data System (ADS)

    Malzone, J. M.; Shanley, J. B.

    2014-12-01

    The United States Geological Survey's (USGS) W-9 gage at the headwaters of Sleepers River, Vermont has been monitored for dissolved organic carbon (DOC) concentration for more than 20 years. However, the sources of this DOC during base flow and hydrologic events remain unclear. The major objectives of this research were to identify sources of DOC during storm events and to explain the observed DOC-streamflow counterclockwise hysteresis during hydrologic events. Two main hypotheses to explain hysteresis during hydrologic events were tested: (1) distant headwater wetlands are the major DOC source, which lags behind peak flow due to travel time; and (2) the entire watershed contributes to the DOC at the gage, but the response of DOC lags behind the period when groundwater contributes most to streamflow. Sources of DOC were tracked using fluorescent dissolved organic matter (FDOM) sensors in surface water and groundwater wells. Wells were installed at four depths, 0.3, 0.6, 0.9, and 1.2 m, at four sites: a peaty low-gradient riparian area near the headwaters; a mid-hillslope area on a long hillslope mid-watershed; a near-stream area on a long hillslope mid-watershed; and a low-gradient tributary confluence area just above the gage. During storm events, FDOM and hydraulic head were measured at the nested groundwater wells. Samples for DOC analysis were also taken to determine the relationship between FDOM and DOC. Results suggest that both distant sources and the greater watershed played a role in the transport of DOC to the W-9 gage. Distant peaty sources dominated during large storms and contributed the highest surface water FDOM measurements. The peak FDOM at the gage was therefore best described as a result of transport. However, export from these distant sources terminated rapidly and did not explain continued elevated FDOM at the gage. Groundwater across the watershed exhibited hysteresis analogous to that in the stream itself, with FDOM peaking as head receded

  3. Selection and application of agricultural wastes as solid carbon sources and biofilm carriers in MBR.

    PubMed

    Yang, Xiao-Li; Jiang, Qi; Song, Hai-Liang; Gu, Tian-Tian; Xia, Ming-Qian

    2015-01-01

    This paper examined the feasibility of agricultural wastes used as solid carbon sources and the effect of determined agricultural wastes on improving denitrification. Eight agricultural wastes were evaluated in MBR tests to find out their carbon release capacity, denitrification potential, leaching elements and surface properties. The results showed that retinervus luffae fructus, wheat straw, corncob and rice straw had higher carbon release capacity with COD of 13.17-21.07 mg g(-1)day(-1), BOD5 of 3.33-7.33 mg g(-1)day(-1) and respirable carbon of 8.64-10.71 mg g(-1)day(-1). Correspondingly, they displayed a good denitrification potential of 105.3-140.1mg NO3(-)-Ng(-1). Rice straw, retinervus luffae fructus and corncob were then applied in MBRs. These three agricultural wastes were found to be effective in enhancing the denitrification process, where the TN removal increased from 43.44% (control MBR) to 82.34, 68.92 and 62.97%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Photochemical alteration of dissolved organic matter and the subsequent effects on bacterial carbon cycling and diversity.

    PubMed

    Lønborg, Christian; Nieto-Cid, Mar; Hernando-Morales, Victor; Hernández-Ruiz, Marta; Teira, Eva; Álvarez-Salgado, Xosé Antón

    2016-05-01

    The impact of solar radiation on dissolved organic matter (DOM) derived from 3 different sources (seawater, eelgrass leaves and river water) and the effect on the bacterial carbon cycling and diversity were investigated. Seawater with DOM from the sources was first either kept in the dark or exposed to sunlight (4 days), after which a bacterial inoculum was added and incubated for 4 additional days. Sunlight exposure reduced the coloured DOM and carbon signals, which was followed by a production of inorganic nutrients. Bacterial carbon cycling was higher in the dark compared with the light treatment in seawater and river samples, while higher levels were found in the sunlight-exposed eelgrass experiment. Sunlight pre-exposure stimulated the bacterial growth efficiency in the seawater experiments, while no impact was found in the other experiments. We suggest that these responses are connected to differences in substrate composition and the production of free radicals. The bacterial community that developed in the dark and sunlight pre-treated samples differed in the seawater and river experiments. Our findings suggest that impact of sunlight exposure on the bacterial carbon transfer and diversity depends on the DOM source and on the sunlight-induced production of inorganic nutrients. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli.

    PubMed

    Wang, Ning; Wang, Yiting; Guo, Tingting; Yang, Ting; Chen, Mingli; Wang, Jianhua

    2016-11-15

    A simple one-step hydrothermal green approach was reported for the preparation of carbon dots (CDs) without any further decoration or modification with papaya powder as natural carbon source. In this economical and eco-friendly system, deionized water or 90% ethanol was used as solvent to produce water-soluble or ethanol-soluble CDs, respectively, termed as W-CDs and E-CDs. The quantum yield (QY) for W-CDs was 18.98%, while that for E-CDs was 18.39%. The potentials of the prepared carbon dots toward diverse applications were thoroughly investigated. W-CDs and E-CDs provide promising probes for fluorescence detection of Fe(3+), offering limits of detection of 0.48μmolL(-1) and 0.29μmolL(-1), respectively. W-CDs was further demonstrated to be a promising probe for fluorescence sensing of Escherichia coli O157: H7, along with a limit of detection of 9.5×10(4)cfumL(-1). Meanwhile, both W-CDs and E-CDs exhibit favorable biocompatibility, and demonstrated to be efficient for Hela cell imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Stable carbon isotope ratios in atmospheric methane and some of its sources

    NASA Technical Reports Server (NTRS)

    Tyler, Stanley C.

    1986-01-01

    Ratios of C-13/C-12 have been measured in atmospheric methane and in methane collected from sites and biota that represent potentially large sources of atmospheric methane. These include temperate marshes (about -48 percent to about -54 percent), landfills (about -51 percent to about -55 percent), and the first reported values for any species of termite (-72.8 + or - 3.1 percent for Reticulitermes tibialis and -57.3 + or - 1.6 percent for Zootermopsis angusticollis). Numbers in parentheses are delta C-13 values with respect to PDB (Peedee belemnite) carbonate. Most methane sources reported thus far are depleted in C-13 with respect to atmospheric methane (-47.0 + or - 0.3 percent). Individual sources of methane should have C-13/C-12 ratios characteristic of mechanisms of CH4 formation and consumption prior to release to the atmosphere. The mass-weighted average isotopic composition of all sources should equal the mean C-13 of atmospheric methane, corrected for a kinetic isotope effect in the OH attack of CH4. Assuming the kinetic isotope effect to be small (about -3.0 percent correction to -47.0), as in the literature, the new values given here for termite methane do not help to explain the apparent discrepancy between C-13/C-12 ratios of the known CH4 sources and that of atmospheric CH4.

  7. Use of stable isotopes of carbon and nitrogen to identify sources of organic matter to bed sediments of the Tualatin River, Oregon

    USGS Publications Warehouse

    Bonn, Bernadine A.; Rounds, Stewart A.

    2010-01-01

    The potential sources of organic matter to bed sediment of the Tualatin River in northwestern Oregon were investigated by comparing the isotopic fractionation of carbon and nitrogen and the carbon/nitrogen ratios of potential sources and bed sediments. Samples of bed sediment, suspended sediment, and seston, as well as potential source materials, such as soil, plant litter, duckweed, and wastewater treatment facility effluent particulate were collected in 1998-2000. Based on the isotopic data, terrestrial plants and soils were determined to be the most likely sources of organic material to Tualatin River bed sediments. The delta 13C fractionation matched well, and although the delta 15N and carbon/nitrogen ratio of fresh plant litter did not match those of bed sediments, the changes expected with decomposition would result in a good match. The fact that the isotopic composition of decomposed terrestrial plant material closely resembled that of soils and bed sediments supports this conclusion. Phytoplankton probably was not a major source of organic matter to bed sediments. Compared to the values for bed sediments, the delta 13C values and carbon/nitrogen ratios of phytoplankton were too low and the delta 15N values were too high. Decomposition would only exacerbate these differences. Although phytoplankton cannot be considered a major source of organic material to bed sediment, a few bed sediment samples in the lower reach of the river showed a small influence from phytoplankton as evidenced by lower delta 13C values than in other bed sediment samples. Isotopic data and carbon/nitrogen ratios for bed sediments generally were similar throughout the basin, supporting the idea of a widespread source such as terrestrial material. The delta 15N was slightly lower in tributaries and in the upper reaches of the river. Higher rates of sediment oxygen demand have been measured in the tributaries in previous studies and coupled with the isotopic data may indicate the

  8. Understanding the Effect of Land Cover Classification on Model Estimates of Regional Carbon Cycling in the Boreal Forest Biome

    NASA Technical Reports Server (NTRS)

    Kimball, John; Kang, Sinkyu

    2003-01-01

    The original objectives of this proposed 3-year project were to: 1) quantify the respective contributions of land cover and disturbance (i.e., wild fire) to uncertainty associated with regional carbon source/sink estimates produced by a variety of boreal ecosystem models; 2) identify the model processes responsible for differences in simulated carbon source/sink patterns for the boreal forest; 3) validate model outputs using tower and field- based estimates of NEP and NPP; and 4) recommend/prioritize improvements to boreal ecosystem carbon models, which will better constrain regional source/sink estimates for atmospheric C02. These original objectives were subsequently distilled to fit within the constraints of a 1 -year study. This revised study involved a regional model intercomparison over the BOREAS study region involving Biome-BGC, and TEM (A.D. McGuire, UAF) ecosystem models. The major focus of these revised activities involved quantifying the sensitivity of regional model predictions associated with land cover classification uncertainties. We also evaluated the individual and combined effects of historical fire activity, historical atmospheric CO2 concentrations, and climate change on carbon and water flux simulations within the BOREAS study region.

  9. Compound specific radiocarbon analyses to apportion sources of combustion products in sedimentary pyrogenic carbon deposits

    NASA Astrophysics Data System (ADS)

    Hanke, Ulrich M.; Schmidt, Michael W. I.; McIntyre, Cameron P.; Reddy, Christopher M.; Wacker, Lukas; Eglinton, Timothy I.

    2016-04-01

    Pyrogenic carbon (PyC) is a collective term for carbon-rich residues comprised of a continuum of products generated during biomass burning and fossil fuel combustion. PyC is a key component of the global carbon cycle due to its slow intrinsic decomposition rate and its ubiquity in the environment. It can originate from natural or anthropogenic vegetation fires, coal mining, energy production, industry and transport. Subsequently, PyC can be transported over long distances by wind and water and can eventually be buried in sediments. Information about the origin of PyC (biomass burning vs. fossil fuel combustion) deposited in estuarine sediments is scarce. We studied the highly anoxic estuarine sediments of the Pettaquamscutt River (Rhode Island, U.S.) in high temporal resolution over 250 years and found different combustion proxies reflect local and regional sources of PyC (Hanke et al. in review; Lima et al. 2003). The polycyclic aromatic hydrocarbons (PAH) originate from long-range atmospheric transport, whereas bulk PyC, detected as benzene polycarboxylic acids (BPCA), mainly stems from local catchment run-off. However, to unambiguously apportion PyC sources, we need additional information, such as compound specific radiocarbon (14C) measurements. We report 14C data for individual BPCA including error analysis and for combustion-related PAH. First results indicate that biomass burning is the main source of PyC deposits, with additional minor contributions from fossil fuel combustion. References Hanke U.M., T.I. Eglinton, A.L.L. Braun, C. Reddy, D.B. Wiedemeier, M.W.I. Schmidt. Decoupled sedimentary records of combustion: causes and implications. In review. Lima, A. L.; Eglinton, T. I.; Reddy, C. M., High-resolution record of pyrogenic polycyclic aromatic hydrocarbon deposition during the 20th century. ES&T, 2003, 37 (1), 53-61.

  10. [Characteristics of atmospheric CO2 concentration and variation of carbon source & sink at Lin'an regional background station].

    PubMed

    Pu, Jing-Jiao; Xu, Hong-Hui; Kang, Li-Li; Ma, Qian-Li

    2011-08-01

    Characteristics of Atmospheric CO2 concentration obtained by Flask measurements were analyzed at Lin'an regional background station from August 2006 to July 2009. According to the simulation results of carbon tracking model, the impact of carbon sources and sinks on CO2 concentration was evaluated in Yangtze River Delta. The results revealed that atmospheric CO2 concentrations at Lin'an regional background station were between 368.3 x 10(-6) and 414.8 x 10(-6). The CO2 concentration varied as seasons change, with maximum in winter and minimum in summer; the annual difference was about 20.5 x 10(-6). The long-term trend of CO2 concentration showed rapid growth year by year; the average growth rate was about 3.2 x 10(-6)/a. CO2 flux of Yangtze River Delta was mainly contributed by fossil fuel burning, terrestrial biosphere exchange and ocean exchange, while the contribution of fire emission was small. CO2 flux from fossil fuel burning played an important role in carbon source; terrestrial biosphere and ocean were important carbon sinks in this area. Seasonal variations of CO2 concentration at Lin'an regional background station were consistent with CO2 fluxes from fossil fuel burning and terrestrial biosphere exchange.

  11. Optimization of carbon source and glucose feeding strategy for improvement of L-isoleucine production by Escherichia coli.

    PubMed

    Wang, Jian; Wen, Bing; Xu, Qingyang; Xie, Xixian; Chen, Ning

    2015-03-04

    Fed-batch cultivations of L-isoleucine-producing Escherichia coli TRFP (SG r , α -ABA r , with a pTHR101 plasmid containing a thr operon and ilvA) were carried out on different carbon sources: glucose, sucrose, fructose, maltose and glycerol. The results indicated that sucrose was the best initial carbon source for L-isoleucine production and then sucrose concentration of 30 g·L -1 was determined in the production medium. The results of different carbon sources feeding showed that the glucose solution was the most suitable feeding media. The dissolved oxygen (DO) of L-isoleucine fermentation was maintained at 5%, 15% and 30% with DO-stat feeding, respectively. The results indicated that when the DO level was maintained at 30%, the highest biomass and L-isoleucine production were obtained. The accumulation of acetate was decreased and the production of L-isoleucine was increased markedly, when the glucose concentration was maintained at 0.15 g·L -1 by using glucose-stat feeding. Finally, the glucose concentration was maintained at 0.10 g·L -1 and the DO level was controlled at approximately 30% during the whole fermentation period, using the combined feeding strategy of glucose-stat feeding and DO feedback feeding. The acetate accumulation was decreased to 7.23 g·L -1 , and biomass and production of L-isoleucine were increased to 46.8 and 11.95 g·L -1 , respectively.

  12. Optimization of carbon source and glucose feeding strategy for improvement of L-isoleucine production by Escherichia coli

    PubMed Central

    Wang, Jian; Wen, Bing; Xu, Qingyang; Xie, Xixian; Chen, Ning

    2015-01-01

    Fed-batch cultivations of L-isoleucine-producing Escherichia coli TRFP (SGr, α-ABAr, with a pTHR101 plasmid containing a thr operon and ilvA) were carried out on different carbon sources: glucose, sucrose, fructose, maltose and glycerol. The results indicated that sucrose was the best initial carbon source for L-isoleucine production and then sucrose concentration of 30 g·L−1 was determined in the production medium. The results of different carbon sources feeding showed that the glucose solution was the most suitable feeding media. The dissolved oxygen (DO) of L-isoleucine fermentation was maintained at 5%, 15% and 30% with DO-stat feeding, respectively. The results indicated that when the DO level was maintained at 30%, the highest biomass and L-isoleucine production were obtained. The accumulation of acetate was decreased and the production of L-isoleucine was increased markedly, when the glucose concentration was maintained at 0.15 g·L−1 by using glucose-stat feeding. Finally, the glucose concentration was maintained at 0.10 g·L−1 and the DO level was controlled at approximately 30% during the whole fermentation period, using the combined feeding strategy of glucose-stat feeding and DO feedback feeding. The acetate accumulation was decreased to 7.23 g·L−1, and biomass and production of L-isoleucine were increased to 46.8 and 11.95 g·L−1, respectively. PMID:26019655

  13. Reduction of nitrous oxide emissions from partial nitrification process by using innovative carbon source (mannitol).

    PubMed

    Zhang, Xinwen; Wang, Xiaoqing; Zhang, Jian; Huang, Xiaoyu; Wei, Dong; Lan, Wei; Hu, Zhen

    2016-10-01

    The purpose of this study was to evaluate the effect of mannitol as carbon source on nitrogen removal and nitrous oxide (N2O) emission during partial nitrification (PN) process. Laboratory-scale PN sequencing batch reactors (SBRs) were operated with mannitol and sodium acetate as carbon sources, respectively. Results showed that mannitol could remarkably reduce N2O-N emission by 41.03%, without influencing the removal efficiency of NH4(+)-N. However, it has a significant influence on nitrite accumulation ratio (NAR) and TN removal, which were 19.97% and 13.59% lower than that in PN with sodium acetate, respectively. Microbial analysis showed that the introduction of mannitol could increase the abundance of bacteria encoding nosZ genes. In addition, anti-oxidant enzymes (T-SOD, POD and CAT) activities were significantly reduced and the dehydrogenase activity had an obvious increase in mannitol system, indicating that mannitol could alleviate the inhibition of N2O reductase (N2OR) activities caused by high NO2(-)-N concentration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Combined use of radiocarbon and stable carbon isotope to constrain the sources and cycling of particulate organic carbon in a large freshwater lake, China.

    PubMed

    Chen, Jingan; Yang, Haiquan; Zeng, Yan; Guo, Jianyang; Song, Yilong; Ding, Wei

    2018-06-01

    The concentrations and isotopic compositions of dissolved inorganic carbon (DIC) and particulate organic carbon (POC) were measured in order to better constrain the sources and cycling of POC in Lake Fuxian, the largest deep freshwater lake in China. Model results based on the combined δ 13 C and Δ 14 C, showed that the average lake-wide contributions of autochthonous POC, terrestrial POC, and resuspended sediment POC to the bulk POC in Lake Fuxian were 61%, 22%, and 17%, respectively. This indicated autochthonous POC might play a dominant role in sustaining large oligotrophic lake ecosystem. A mean 17% contribution of resuspended sediment POC to the bulk POC implied that sediment might have more significant influence on aquatic environment and ecosystem than previously recognized in large deep lakes. The contributions of different sources POC to the water-column POC were a function of the initial composition of the source materials, photosynthesis, physical regime of the lake, sediment resuspension, respiration and degradation of organic matter, and were affected indirectly by environmental factors such as light, temperature, DO, wind speed, turbidity, and nutrient concentration. This study is not only the first systematic investigation on the radiocarbon and stable isotope compositions of POC in large deep freshwater lake in China, but also one of the most extensive radiocarbon studies on the ecosystem of any great lakes in the world. The unique data constrain relative influences of autochthonous POC, terrestrial POC, and resuspended sediment POC, and deepen the understanding of the POC cycling in large freshwater lakes. This study is far from comprehensive, but it serves to highlight the potential of combined radiocarbon and stable carbon isotope for constraining the sources and cycling of POC in large lake system. More radiocarbon investigations on the water-column POC and the aquatic food webs are necessary to illuminate further the fate of autochthonous POC

  15. Soil organic carbon dust emission: an omitted global source of atmospheric CO2.

    PubMed

    Chappell, Adrian; Webb, Nicholas P; Butler, Harry J; Strong, Craig L; McTainsh, Grant H; Leys, John F; Viscarra Rossel, Raphael A

    2013-10-01

    Soil erosion redistributes soil organic carbon (SOC) within terrestrial ecosystems, to the atmosphere and oceans. Dust export is an essential component of the carbon (C) and carbon dioxide (CO(2)) budget because wind erosion contributes to the C cycle by removing selectively SOC from vast areas and transporting C dust quickly offshore; augmenting the net loss of C from terrestrial systems. However, the contribution of wind erosion to rates of C release and sequestration is poorly understood. Here, we describe how SOC dust emission is omitted from national C accounting, is an underestimated source of CO(2) and may accelerate SOC decomposition. Similarly, long dust residence times in the unshielded atmospheric environment may considerably increase CO(2) emission. We developed a first approximation to SOC enrichment for a well-established dust emission model and quantified SOC dust emission for Australia (5.83 Tg CO(2)-e yr(-1)) and Australian agricultural soils (0.4 Tg CO(2)-e yr(-1)). These amount to underestimates for CO(2) emissions of ≈10% from combined C pools in Australia (year = 2000), ≈5% from Australian Rangelands and ≈3% of Australian Agricultural Soils by Kyoto Accounting. Northern hemisphere countries with greater dust emission than Australia are also likely to have much larger SOC dust emission. Therefore, omission of SOC dust emission likely represents a considerable underestimate from those nations' C accounts. We suggest that the omission of SOC dust emission from C cycling and C accounting is a significant global source of uncertainty. Tracing the fate of wind-eroded SOC in the dust cycle is therefore essential to quantify the release of CO(2) from SOC dust to the atmosphere and the contribution of SOC deposition to downwind C sinks. © 2013 John Wiley & Sons Ltd.

  16. The impact of adding organic carbon on the concentrations of total residual oxidants and disinfection by-products in approval tests for ballast water management systems.

    PubMed

    Lee, Jihyun; Shon, Myung-Baek; Cha, Hyung-Gon; Choi, Keun-Hyung

    2017-12-15

    In the G8 and G9 approval tests for ballast water management systems, organic carbon additives are frequently supplemented into test water to satisfy the water quality requirements. Because organic additives can affect the approval test, the additive selected, and its use and validation should be included in the test report. This study assessed the effects of organic carbon additives on the concentration of total residual oxidants (TROs) and the formation of disinfection by-products (DBPs). The concentration of dissolved organic carbon (DOC) in test water containing additives varied depending on the type of additive, but all additives, except for methylcellulose, had concentrations similar to or higher than the theoretical values. There was a low concentration of particulate organic carbon (POC) compared to the amount of corn starch added. Over the course of the five-day holding time, TRO concentrations tended to decrease. In general, substances with a large molecular size had a higher DBP concentration than their counterparts with a smaller molecular size, some of which, however produced the highest DBP concentrations due to their molecular structure. The results suggest that the formation of DBPs is affected by the reaction with TROs, molecular size, and molecular structure in a complex manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effects of carbon sources and COD/N ratio on N2O emissions in subsurface flow constructed wetlands.

    PubMed

    Lyu, Wanlin; Huang, Lei; Xiao, Guangquan; Chen, Yucheng

    2017-12-01

    A set of constructed wetlands under two different carbon sources, namely, glucose (CW) and sodium acetate (YW), was established at a laboratory scale with influent COD/N ratios of 20:1, 10:1, 7:1, 4:1, and 0 to analyze the influence of carbon supply on nitrous oxide emissions. Results showed that the glucose systems generated higher N 2 O emissions than those of the sodium acetate systems. The higher amount of N 2 O-releasing fluxes in the CWs than in the YWs was consistent with the higher NO 2 - -N accumulation in the former than in the latter. Moreover, electron competition was tighter in the CWs and contributed to the incomplete denitrification with poor N 2 O production performance. Illumina MiSeq sequencing demonstrated that some denitrifying bacteria, such as Denitratisoma, Bacillus, and Zoogloea, were higher in the YWs than in the CWs. This result indicated that the carbon source is important in controlling N 2 O emissions in microbial communities. Copyright © 2017. Published by Elsevier Ltd.

  18. Physical factors controlling carbon cycling dynamics in blackwater river-dominated and particle dominated estuaries

    NASA Astrophysics Data System (ADS)

    Arellano, A. R.; Bianchi, T. S.; Osburn, C. L.; D'Sa, E. J.; Oviedo-Vargas, D.; Ward, N. D.; Joshi, I.

    2017-12-01

    While most blue carbon habitat (wetlands, seagrass beds and mangroves) research has focused on carbon burial/stocks and habitat fragmentation of these communities, few studies have examined physical factors that control exports and losses of blue carbon sources of organic matter (OM) to adjacent coastal waters. Here, we report on spatiotemporal changes in the composition and concentration of dissolved organic carbon (DOC), particulate organic carbon (POC), particulate nitrogen, pCO2, δ13C-DOC, δ13C-POC, δ13C-CO2, dissolved lignin-phenols (dΣ8), particulate lignin-phenols (pΣ8) and carbon normalized dissolved and particulate lignin phenol yields (dΛ8 and pΛ8) in surface waters of the Apalachicola and Barataria bays in the Gulf of Mexico. Discriminant analysis described spatial variability along canonical axis I (24.4%) while temporal variability was explained by canonical axis II (23.2%). Apalachicola Bay was low in POC concentration and characterized by high values for pCO2, DOC, C:N, dΣ8 and (Ad:Al)V. The latter three parameters indicated a clear terrestrial source of OM at Apalachicola Bay reflecting the importance of riverine DOM inputs in this system. In contrast, Barataria Bay was characterized by high values for POC, C:V, S:V, and δ13C-POC, indicating blue-carbon sources due to a lack of direct river inputs and high prevalence of wetlands, some recently submerged. Extreme weather, such as intense precipitation events in Apalachicola Bay and enhanced northerly winds in Barataria Bay were characterized by δ13C-CO2, dΛ8, C:V (Barataria), and C:N (Apalachicola). Results indicate that such physical factors can exert strong control on OM sources and sinks across the gradient of coastal wetlands and shelf waters and lead to enhanced transfer and degradation of wetland-derived blue carbon in coastal waters.

  19. Production of Prebiotic Molecule Precursors from Hypervelocity Impact Simulation Experiments on Carbonate Sediments

    NASA Astrophysics Data System (ADS)

    Farcy, B. J.; Grubisic, A.; Li, X.; Pinnick, V. T.; Sutton, M.; Pavlov, A.; Brinckerhoff, W. B.

    2017-12-01

    Organic molecules, including amino acids and other biotic precursors, have been shown to form in the cooling and expanding plasma plume generated from hypervelocity impacts through the processes of atomization, ionization, and molecular recombination of impactor and impact surface. Various sources of carbon, such as atmospheric methane and carbonaceous material from meteorites, are known to yield cyano-bearing molecules and simple amino acids from impact plasmas. However, the role of mineralogical carbon has not yet been investigated in this process. We have performed experiments using laser ablation mass spectrometry (LA-MS) to study the negative ion yield of plasma-produced prebiotic molecules. A mixture of 10% NH4Cl and 90% CaCO3 was pressed into a pellet and ablated with a 1064 nm Nd:YAG laser, and the resultant negative ions were measured by a plasma analyzer quadrupole MS. Mass spectra show characteristic peaks at m/z = 26 and m/z = 42, indicating the presence of CN- and CNO- ions. When isotopically labeled 15NH4Cl and Ca13CO3 were used in the sample ablation pellet, the purported CN- and CNO- peaks shifted according to their added isotopic mass. Indeed, comparison of resulting ion formation from momentum-based techniques, such as massive cluster secondary ion mass spectrometry, show comparable fragmentation and recombination of CN- and CNO- ions. These findings show that CN- ions, as well as CN radicals and thus HCN, can be formed during meteoritic bombardment of carbonate minerals. During the late heavy bombardment of the earth from 4.1-3.8 Ga, impact-driven chemistry could have played a dominant role in shaping the earth's early prebiotic inventory and sources of chemical energy. As carbonate sediments are common in the Archean, carbonate deposits are most likely an important contributor of carbon for this process, along with atmospheric and meteoritic carbon sources.

  20. A Multi-Walled Carbon Nanotube-based Biosensor for Monitoring Microcystin-LR in Sources of Drinking Water Supplies

    EPA Science Inventory

    A multi-walled carbon nanotube-based electrochemical biosensor is developed for monitoring microcystin-LR (MC-LR), a toxic cyanobacterial toxin, in sources of drinking water supplies. The biosensor electrodes are fabricated using dense, mm-long multi-walled CNT (MWCNT) arrays gro...

  1. Consumption of added sugar among U.S. children and adolescents, 2005-2008.

    PubMed

    Ervin, R Bethene; Kit, Brian K; Carroll, Margaret D; Ogden, Cynthia L

    2012-03-01

    Approximately 16% of children and adolescents’ total caloric intakes came from added sugars. Boys consumed more added sugars than girls. Preschool-aged children consumed the fewest calories from added sugars. Although girls consumed a smaller absolute amount of calories from added sugars than boys, their intakes were not that different from boys when the amounts are expressed as a percentage of total caloric intakes. Non-Hispanic white children and adolescents consumed a larger percentage of their calories from added sugars than Mexican-American children and adolescents. Also, Non-Hispanic black girls consumed a larger percentage of their calories from added sugars than Mexican-American girls. There was very little difference in added sugar consumption based on PIR. More of the added sugars calories came from foods as opposed to beverages. Previous research has demonstrated that sodas are the single leading food source of added sugars intakes among children, adolescents, and adults (2,4). Our results showed a little more than 40% of calories from added sugars came from beverages. Poti and Popkin (5) have suggested that eating location impacts daily energy intake in children and adolescents and that foods prepared away from home, are contributing to their increased total energy intake. Our results showed that more of the added sugars calories were consumed at home rather than away from home. A substantial percentage of calories in the diets of children and adolescents between 2005 and 2008 came from added sugars. According to the 2010 Dietary Guidelines "reducing the consumption of these sources of added sugars will lower the caloric content of the diet, without compromising its nutrient adequacy (3)." This strategy could play an important role in reducing the high prevalence of obesity in the United States (6) without compromising adequate nutrition. All material appearing in this report is in the public domain and may be reproduced or copied without permission

  2. Distribution, Sources, and Association of Polycyclic Aromatic Hydrocarbons, Black Carbon, and Total Organic Carbon in Size-Segregated Soil Samples Along a Background–Urban–Rural Transect

    PubMed Central

    Ray, Sharmila; Khillare, Pandit Sudan; Kim, Ki-Hyun; Brown, Richard J.C.

    2012-01-01

    Abstract Soil samples were collected over a year-long period along a background–urban–rural transect in Delhi, India for the analysis of polycyclic aromatic hydrocarbons (PAHs), black carbon (BC), and total organic carbon (TOC) in five grain size fractions, x, in μm of 0≤x<53 (I), 53≤x<250 (II), 250≤x<500 (III), 500≤x<2000 (IV), and their sum (total: T). Maximum concentrations of PAH, BC, and TOC were observed in the smallest fraction (I) comprising silt and clay, irrespective of site or season. Results of the molecular diagnostic ratios and principal component analysis (PCA) identified coal, wood, biomass burning, and vehicular emissions as major sources of PAHs at all the three sites, while BC/TOC ratios pointed toward biomass combustion as the chief source of carbonaceous species. This work presents the first such rural-urban transect study considering PAH, BC, and TOC in soil. PMID:23133309

  3. Formation of Polyhydroxyalkanoate in Aerobic Anoxygenic Phototrophic Bacteria and Its Relationship to Carbon Source and Light Availability▿

    PubMed Central

    Xiao, Na; Jiao, Nianzhi

    2011-01-01

    Aerobic anoxygenic phototrophic bacteria (AAPB) are unique players in carbon cycling in the ocean. Cellular carbon storage is an important mechanism regulating the nutrition status of AAPB but is not yet well understood. In this paper, six AAPB species (Dinoroseobacter sp. JL1447, Roseobacter denitrificans OCh 114, Roseobacter litoralis OCh 149, Dinoroseobacter shibae DFL 12T, Labrenzia alexandrii DFL 11T, and Erythrobacter longus DSMZ 6997) were examined, and all of them demonstrated the ability to form the carbon polymer polyhydroxyalkanoate (PHA) in the cell. The PHA in Dinoroseobacter sp. JL1447 was identified as poly-beta-hydroxybutyrate (PHB) according to evidence from Fourier transform infrared spectroscopy, differential scanning calorimetry, and 1H nuclear magnetic resonance spectroscopy examinations. Carbon sources turned out to be critical for PHA production in AAPB. Among the eight media tested with Dinoroseobacter sp. JL1447, sodium acetate, giving a PHA production rate of 72%, was the most productive carbon source, followed by glucose, with a 68% PHA production rate. Such PHA production rates are among the highest recorded for all bacteria. The C/N ratio of substrates was verified by the experiments as another key factor in PHA production. In the case of R. denitrificans OCh 114, PHA was not detected when the organism was cultured at C/N ratios of <2 but became apparent at C/N ratios of >3. Light is also important for the formation of PHA in AAPB. In the case of Dinoroseobacter sp. JL1447, up to a one-quarter increase in PHB production was observed when the culture underwent growth in a light-dark cycle compared to growth completely in the dark. PMID:21908634

  4. Added sugars: consumption and associated factors among adults and the elderly. São Paulo, Brazil.

    PubMed

    Bueno, Milena Baptista; Marchioni, Dirce Maria Lobo; César, Chester Luis Galvão; Fisberg, Regina Mara

    2012-06-01

    To investigate added sugar intake, main dietary sources and factors associated with excessive intake of added sugar. A population-based household survey was carried out in São Paulo, the largest city in Brazil. Cluster sampling was performed and the study sample comprised 689 adults and 622 elderly individuals. Dietary intake was estimated based on a 24-hour food recall. Usual nutrient intake was estimated by correcting for the within-person variance of intake using the Iowa State University (ISU) method. Linear regression analysis was conducted to identify factors associated with added sugar intake. Average of energy intake (EI) from added sugars was 9.1% (95% CI: 8.9%; 9.4%) among adults and 8.4% (95% CI: 8.2%; 8.7%) among the elderly (p < 0.05). Average added sugar intake (% EI) was higher among women than among men (p < 0.05). Soft drink was the main source of added sugar among adults, while table sugar was the main source of added sugar among the elderly. Added sugar intake increased with age among adults. Moreover, higher socioeconomic level was associated with added sugar intake in the same group. Added sugar intake is higher among younger adults of higher socioeconomic level. Soft drink and table sugar accounted for more than 50% of the sugar consumed.

  5. Modeling Tree Growth Taking into Account Carbon Source and Sink Limitations.

    PubMed

    Hayat, Amaury; Hacket-Pain, Andrew J; Pretzsch, Hans; Rademacher, Tim T; Friend, Andrew D

    2017-01-01

    Increasing CO 2 concentrations are strongly controlled by the behavior of established forests, which are believed to be a major current sink of atmospheric CO 2 . There are many models which predict forest responses to environmental changes but they are almost exclusively carbon source (i.e., photosynthesis) driven. Here we present a model for an individual tree that takes into account the intrinsic limits of meristems and cellular growth rates, as well as control mechanisms within the tree that influence its diameter and height growth over time. This new framework is built on process-based understanding combined with differential equations solved by numerical method. Our aim is to construct a model framework of tree growth for replacing current formulations in Dynamic Global Vegetation Models, and so address the issue of the terrestrial carbon sink. Our approach was successfully tested for stands of beech trees in two different sites representing part of a long-term forest yield experiment in Germany. This model provides new insights into tree growth and limits to tree height, and addresses limitations of previous models with respect to sink-limited growth.

  6. Heat conduction in double-walled carbon nanotubes with intertube additional carbon atoms.

    PubMed

    Cui, Liu; Feng, Yanhui; Tan, Peng; Zhang, Xinxin

    2015-07-07

    Heat conduction of double-walled carbon nanotubes (DWCNTs) with intertube additional carbon atoms was investigated for the first time using a molecular dynamics method. By analyzing the phonon vibrational density of states (VDOS), we revealed that the intertube additional atoms weak the heat conduction along the tube axis. Moreover, the phonon participation ratio (PR) demonstrates that the heat transfer in DWCNTs is dominated by low frequency modes. The added atoms cause the mode weight factor (MWF) of the outer tube to decrease and that of the inner tube to increase, which implies a lower thermal conductivity. The effects of temperature, tube length, and the number and distribution of added atoms were studied. Furthermore, an orthogonal array testing strategy was designed to identify the most important structural factor. It is indicated that the tendencies of thermal conductivity of DWCNTs with added atoms change with temperature and length are similar to bare ones. In addition, thermal conductivity decreases with the increasing number of added atoms, more evidently for atom addition concentrated at some cross-sections rather than uniform addition along the tube length. Simultaneously, the number of added atoms at each cross-section has a considerably more remarkable impact, compared to the tube length and the density of chosen cross-sections to add atoms.

  7. Sources and Fate of DIC in Swedish Streams

    NASA Astrophysics Data System (ADS)

    Campeau, A.; Wallin, M.; Bishop, K. H.; Giesler, R.; Mörth, C. M.; Venkiteswaran, J. J.

    2015-12-01

    DIC export by streams and rivers is a major component of the global C cycle. However, many questions remain about the source and fate of aquatic DIC and CO2. Stable carbon isotope δ13C can provide information about the source and evolution of DIC and CO2 along hydrological networks. But the interpretation of δ13C values must be made with caution, since several biogeochemical processes affect the isotopic signal. In this study, we developed a systematic approach resolving these influences when interpreting large-scale patterns in δ13C-DIC and δ13C-CO2 values with regard to the source and fate of C in low order streams. We analyzed δ13C-DIC values in streams from four different regions of Sweden. Taken together they span large gradients in climate, geomorphology and lithology. The source of the DIC pool was predominantly biogenic in three of the regions (δ13C-DICsource = -17.4‰), but not the northernmost, where a clear geogenic input could be identified (δ13C-DICsource =-8.2 ‰). Our results suggest that soil respired CO2 is the main source of stream CO2 (δ13C-CO2source=-22.9‰) in all four regions, yet aquatic processes can also be a contributing component of the DIC pool in streams, with corresponding influence on the δ13C values. Once CO2 was in the stream, degassing was the primary control on its fate. However, there were indications that aquatic biological processes added CO2, (by DOC degradation) in the southernmost region, and that CO2 was removed (by photosynthesis) in the most central region. Correctly interpreted, the carbon stable isotope data can serve as a powerful tool for identifying the source and fate of stream DIC.

  8. N2O production in the Fe(II)(EDTA)-NO reduction process: the effects of carbon source and pH.

    PubMed

    Chen, Jun; Wang, Lei; Zheng, Ji; Chen, Jianmeng

    2015-07-01

    Chemical absorption-biological reduction (BioDeNOx), which uses Fe(II)(EDTA) as a complexing agent for promoting the mass transfer efficiency of NO from gas to water, is a promising technology for removing nitric oxide (NO) from flue gases. The carbon source and pH are important parameters for Fe(II)(EDTA)-NO (the production of absorption) reduction and N2O emissions from BioDeNOx systems. Batch tests were performed to evaluate the effects of four different carbon sources (i.e., methanol, ethanol, sodium acetate, and glucose) on Fe(II)(EDTA)-NO reduction and N2O emissions at an initial pH of 7.2 ± 0.2. The removal efficiency of Fe(II)(EDTA)-NO was 93.9%, with a theoretical rate of 0.77 mmol L(-1) h(-1) after 24 h of operation. The highest N2O production was 0.025 mmol L(-1) after 3 h when glucose was used as the carbon source. The capacities of the carbon sources to enhance the activity of the Fe(II)(EDTA)-NO reductase enzyme decreased in the following order based on the C/N ratio: glucose > ethanol > sodium acetate > methanol. Over the investigated pH range of 5.5-8.5, the Fe(II)(EDTA)-NO removal efficiency was highest at a pH of 7.5, with a theoretical rate of 0.88 mmol L(-1) h(-1). However, the N2O production was lowest at a pH of 8.5. The primary effect of pH on denitrification resulted from the inhibition of nosZ in acidic conditions.

  9. Evaluation of Physarum polycephalum plasmodial growth and lipid production using rice bran as a carbon source.

    PubMed

    Tran, Hanh; Stephenson, Steven; Pollock, Erik

    2015-08-01

    The myxomycete Physarum polycephalum appears to have remarkable potential as a lipid source for biodiesel production. The present study evaluated the use of rice bran as a carbon source and determined the medium components for optimum growth and lipid production for this organism. Optimization of medium components by response surface methodology showed that rice bran and yeast extract had significant influences on lipid and biomass production. The optimum medium consisted of 37.5 g/L rice bran, 0.79 g/L yeast extract and 12.5 g/L agar, and this yielded 7.5 g/L dry biomass and 0.9 g/L lipid after 5 days. The biomass and lipid production profiles revealed that these parameters increased over time and reached their maximum values (10.5 and 1.26 g/L, respectively) after 7 days. Physarum polycephalum growth decreased on the spent medium but using the latter increased total biomass and lipid concentrations to 14.3 and 1.72 g/L, respectively. An effective method for inoculum preparation was developed for biomass and lipid production by P. polycephalum on a low-cost medium using rice bran as the main carbon source. These results also demonstrated the feasibility of scaling up and reusing the medium for additional biomass and lipid production.

  10. Calculation of correlation times for the. gamma. -alumina-supported molybdenum subcarbonyl, Mo(CO) sub 3 (ads)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, G.W.; Hanson, B.E.

    1989-07-05

    The theory of carbon-13 NMR line widths in the solid state for molecules with large chemical shift anisotropies is applied to the adsorbed molybdenum subcarbonyls Mo(CO){sub 3}(ads) and Mo(CO){sub 5}(ads). Correlation times for the rotation of the molybdenum subcarbonyl groups Mo(CO){sub 3}(ads) and Mo(CO){sub 5}(ads) on partially dehydroxylated alumina are calculated. Good agreement is obtained between data reported at observation frequencies of 15 to 75.5 MHz for carbon-13 for Mo(CO){sub 3}(ads). The correlation time for this adsorbed species is calculated to have a lower limit of 4.6 {plus minus} 0.5 ms. The presence of broad lines in the room temperaturemore » spectra for Mo(CO){sub 3}(ads) is thus explained by a slow molecular motion. Data for Mo(CO){sub 5}(ads) are available at observation frequencies of 15 to 90.5 MHz. A good fit to the experimental data is obtained assuming either long or short correlation times for this species. Thus literature estimates of <10{sup {minus}6}s for the correlation time for this species cannot be confirmed with certainty from the analysis presented here.« less

  11. Apportioning carbon sources of authigenic carbonate of extremely 13C-depleted foraminifera from the western North Pacific sediments: Implication from the coupled 13C and 14C isotopic mass balance approach

    NASA Astrophysics Data System (ADS)

    Uchida, M.; Ohkushi, K.; Ahagon, N.; Kimoto, K.; Inagaki, F.; Shibata, Y.

    2005-12-01

    Recently, Uchida et al. (G-cubed, 2004) and Ohkushi et al. (G-cubed, 2005) interprete /delta 13C variations of planktonic and benthic foraminifera found in Last Glacial sediments in off Shimokita Peninsula and Tokachi as evidence for periodic releases of methane, arising from the dissociation of methane hydrate, and its subsequent oxidation in bottom- and/or surface-water environments. According to recent observations of anomalous bottom-simulating reflections, northwest Pacific marginal sediments around Japan main islands bear large abundances of methane hydrate. In this study, analyzed piston cores (42° 21.42' N, 144° 13.36' E) at a water depth 1066-m was retrieved from the off Tokachi continental slope in the Oyashio current region, where recently is found to bear immense amounts of methane hydrate. The piston core covered past 22 ka with high-resolution. Here we showed that carbon isotope signals indicated that planktonic and benthic foraminifera in several glacial sediment layers in the core were highly depleted in13 C; both the planktonic and benthic foraminiferal /delta 13C values ranged from about -10/permil to -2/permil. Most foraminiferal tests in these horizons were brown as a result of postdepositional alteration. Foraminiferal oxygen isotopes fluctuated abnormally in the glacial sediment layers, showing small (about 0.5/permil) positive shifts relative to normal glacial values. We attributed the positive shifts to authigenic carbonate formation in the foraminiferal tests. In order to decipher the relation between foraminifera carbon isotopic signal and methane release from the seafloor, we have apportioned carbon sources (methane from methane hydrate or not) of foraminiferal carbon isotopic anomalies using dual mass balance isotopic model (14C/ 12C and 13C/ 12C). It has been suggested that sulfate-dependent anaerobic methane oxidation (AOM) dominates carbon oxidation and attendant authigenic carbonate precipitation to foraminifera. To this assumption

  12. Soil Microbial Community Responses to Additions of Organic Carbon Substrates and Heavy Metals (Pb and Cr)

    PubMed Central

    Nakatsu, Cindy H.; Carmosini, Nadia; Baldwin, Brett; Beasley, Federico; Kourtev, Peter; Konopka, Allan

    2005-01-01

    Microcosm experiments were conducted with soils contaminated with heavy metals (Pb and Cr) and aromatic hydrocarbons to determine the effects of each upon microbial community structure and function. Organic substrates were added as a driving force for change in the microbial community. Glucose represented an energy source used by a broad variety of bacteria, whereas fewer soil species were expected to use xylene. The metal amendments were chosen to inhibit the acute rate of organic mineralization by either 50% or 90%, and lower mineralization rates persisted over the entire 31-day incubation period. Significant biomass increases were abolished when metals were added in addition to organic carbon. The addition of organic carbon alone had the most significant impact on community composition and led to the proliferation of a few dominant phylotypes, as detected by PCR-denaturing gradient gel electrophoresis of bacterial 16S rRNA genes. However, the community-wide effects of heavy metal addition differed between the two carbon sources. For glucose, either Pb or Cr produced large changes and replacement with new phylotypes. In contrast, many phylotypes selected by xylene treatment were retained when either metal was added. Members of the Actinomycetales were very prevalent in microcosms with xylene and Cr(VI); gene copy numbers of biphenyl dioxygenase and phenol hydroxylase (but not other oxygenases) were elevated in these microcosms, as determined by real-time PCR. Much lower metal concentrations were needed to inhibit the catabolism of xylene than of glucose. Cr(VI) appeared to be reduced during the 31-day incubations, but in the case of glucose there was substantial microbial activity when much of the Cr(VI) remained. In the case of xylene, this was less clear. PMID:16332740

  13. Declining consumption of added sugars and sugar-sweetened beverages in Australia: a challenge for obesity prevention.

    PubMed

    Brand-Miller, Jennie C; Barclay, Alan W

    2017-04-01

    Background: Reduced intakes of added sugars and sugar-sweetened beverages (SSBs) have been the main focus of efforts to stall obesity. Although obesity has risen steeply in Australia, some evidence suggests that added-sugars and SSB intakes have declined over the same time frame. Objective: We investigated recent trends in the availability of sugars and sweeteners and changes in intakes of total sugars, added sugars, and SSBs in Australia by using multiple, independent data sources. Design: The study was designed to compare relevant data published by the Food and Agriculture Organization of the United Nations [FAO Statistics Division Database (FAOSTAT)], the Australian government, academia, and the food industry. Results: With the use of the FAOSTAT food balance sheets for Australia, the per capita availability of added or refined sugars and sweeteners was shown to have fallen 16% from 152 g/d in 1980 to 127 g/d in 2011 ( P -trend = 0.001). In national dietary surveys in 1995 and 2011-2012, added-sugars intake declined markedly in adult men (from 72 to 59 g/d; -18%) but not in women (44-42 g/d; NS). As a proportion of total energy, added-sugars intake fell 10% in adult men but nonsignificantly in adult women. Between 1995 and 2011-2012, the proportion of energy from SSBs (including 100% juice) declined 10% in adult men and 20% in women. More marked changes were observed in children aged 2-18 y. Data from national grocery sales indicated that per capita added-sugars intakes derived from carbonated soft drinks fell 26% between 1997 and 2011 (from 23 to 17 g/d) with similar trends for noncarbonated beverages. Conclusions: In Australia, 4 independent data sets confirmed shorter- and longer-term declines in the availability and intake of added sugars, including those contributed by SSBs. The findings challenge the widespread belief that energy from added sugars or sugars in solution are uniquely linked to the prevalence of obesity. © 2017 American Society for Nutrition.

  14. Silicate or Carbonate Weathering: Fingerprinting Sources of Dissolved Inorganic Carbon Using δ13C in a Tropical River, Southern India

    NASA Astrophysics Data System (ADS)

    Bhagat, H.; Ghosh, P.

    2015-12-01

    Rivers are an inherently vital resource for the development of any region and their importance is highlighted by the presence of many ancient human civilizations adjacent to river systems. δ13C - Si/HCO3 systematics has been applied to large south Indian rivers which drain the Deccan basaltic traps in order to quantify their relative contributions from silicate and carbonate weathering. This study investigates δ13C - Si/HCO3 systematics of the Cauvery River basin which flows through silicate lithology in the higher reaches and carbonate lithology with pedogenic and marine carbonates dominating the terrain in the lower reaches of the basin. The samples for the present study were collected at locations within the watershed during Pre-Monsoon and Monsoon Season 2014. The measurements of stable isotope ratios of δ13CDIC and were accomplished through a Thermo Scientific GasBench II interface connected to a MAT 253 IRMS. We captured a large spatial variation in δ13C and Si/HCO3 values during both seasons; Pre-Monsoon δ13C values ranges between -17.57‰ to -4.02‰ and during Monsoon it varies between -9.19‰ to +0.61‰. These results indicate a two end-member mixing component i.e. a silicate and a carbonate end member; governing the weathering interactions of the Cauvery River. Within the drainage basin, we identified silicate and carbonate dominating sources by using contributions of DIC and δ13C. Si/HCO3 values for Pre-Monsoon ranges between 0.028 - 0.67 and for Monsoon it varies between 0.073 - 0.80. Lighter δ13C composition was observed at sampling sites at higher altitude in contrast to sampling sites at flood plain which show relatively enriched δ13C which indicate mixing of soil derived CO2 with C4 plants. Result suggests dominance of carbonate weathering during the Monsoon Period, while silicate weathering is pronounced during Pre- Monsoon period.

  15. A non-marine source of variability in Adélie Penguin demography

    USGS Publications Warehouse

    Fraser, William R.; Patterson-Fraser, Donna L.; Ribic, Christine; Schofield, Oscar; Ducklow, Hugh

    2013-01-01

    A primary research objective of the Palmer Long Term Ecological Research (LTER) program has been to identify and understand the factors that regulate the demography of Adélie penguins (Pygoscelis adeliae). In this context, our work has been focused on variability in the marine environment on which this species depends for virtually all aspects of its life history (Ainley, 2002). As we show here, however, there are patterns evident in the population dynamics of Adélie penguins that are better explained by variability in breeding habitat quality rather than by variability in the marine system. Interactions between the geomorphology of the terrestrial environment that, in turn, affect patterns of snow deposition, drive breeding habitat quality.

  16. Inorganic carbon and fossil organic carbon are source of bias for quantification of sequestered carbon in mine spoil

    NASA Astrophysics Data System (ADS)

    Vindušková, Olga; Frouz, Jan

    2016-04-01

    Carbon sequestration in mine soils has been studied as a possibility to mitigate the rising atmospheric CO2 levels and to improve mine soil quality (Vindu\\vsková and Frouz, 2013). Moreover, these soils offer an unique opportunity to study soil carbon dynamics using the chronosequence approach (using a set of sites of different age on similar parent material). However, quantification of sequestered carbon in mine soils is often complicated by fossil organic carbon (e.g., from coal or kerogen) or inorganic carbon present in the spoil. We present a methodology for quantification of both of these common constituents of mine soils. Our recommendations are based on experiments done on post-mining soils in Sokolov basin, Czech Republic. Here, fossil organic carbon is present mainly as kerogen Type I and II and represents 2-6 wt.% C in these soils. Inorganic carbon in these soils is present mainly as siderite (FeCO3), calcite (CaCO3), and dolomite (CaMg(CO3)2). All of these carbonates are often found in the overburden of coal seams thus being a common constituent of post-mining soils in the world. Vindu\\vsková O, Frouz J, 2013. Soil carbon accumulation after open-cast coal and oil shale mining in Northern Hemisphere: a quantitative review. ENVIRONMENTAL EARTH SCIENCES, 69: 1685-1698. Vindu\\vsková O, Dvořáček V, Prohasková A, Frouz J. 2014. Distinguishing recent and fossil organic matter - A critical step in evaluation of post-mining soil development - using near infrared spectroscopy. ECOLOGICAL ENGINEERING. 73: 643-648. Vindu\\vsková O, Sebag D, Cailleau G, Brus J, Frouz J. 2015. Methodological comparison for quantitative analysis of fossil and recently derived carbon in mine soils with high content of aliphatic kerogen. ORGANIC GEOCHEMISTRY, 89-90:14-22.

  17. Carbon-14 decay as a source of non-canonical bases in DNA.

    PubMed

    Sassi, Michel; Carter, Damien J; Uberuaga, Blas P; Stanek, Chris R; Marks, Nigel A

    2014-01-01

    Significant experimental effort has been applied to study radioactive beta-decay in biological systems. Atomic-scale knowledge of this transmutation process is lacking due to the absence of computer simulations. Carbon-14 is an important beta-emitter, being ubiquitous in the environment and an intrinsic part of the genetic code. Over a lifetime, around 50 billion (14)C decays occur within human DNA. We apply ab initio molecular dynamics to quantify (14)C-induced bond rupture in a variety of organic molecules, including DNA base pairs. We show that double bonds and ring structures confer radiation resistance. These features, present in the canonical bases of the DNA, enhance their resistance to (14)C-induced bond-breaking. In contrast, the sugar group of the DNA and RNA backbone is vulnerable to single-strand breaking. We also show that Carbon-14 decay provides a mechanism for creating mutagenic wobble-type mispairs. The observation that DNA has a resistance to natural radioactivity has not previously been recognized. We show that (14)C decay can be a source for generating non-canonical bases. Our findings raise questions such as how the genetic apparatus deals with the appearance of an extra nitrogen in the canonical bases. It is not obvious whether or not the DNA repair mechanism detects this modification nor how DNA replication is affected by a non-canonical nucleobase. Accordingly, (14)C may prove to be a source of genetic alteration that is impossible to avoid due to the universal presence of radiocarbon in the environment. © 2013.

  18. Biodiesel waste as source of organic carbon for municipal WWTP denitrification.

    PubMed

    Bodík, I; Blstáková, A; Sedlácek, S; Hutnan, M

    2009-04-01

    This paper presents the results of experiments to test biodiesel waste (glycerine--g-phase) as an organic carbon source for the removal of nitrate in a WWTP denitrification process. Investigation of g-phase was first centered on g-phase utilization as an external source for denitrification under laboratory conditions and consequently, after positive results from the laboratory investigation, g-phase was applied in the denitrification process in the WWTP Vrútky (35,000 PE). This WWTP had insufficient nitrogen removal via denitrification. Denitrification was insufficient due to an influent with a low BOD5/N ratio (1.7:1) entering into the activated sludge tank. Laboratory experiments and calculations showed that, to reach Ntotal concentration under 10 mg l(-1) in effluent, a biodiesel waste dose of 500 kg(COD) d(-1) was necessary. Glycerol phase (g-phase) dosing into the denitrification tank increased denitrification efficiency by 2.0 - 5.0 mg(NO)(3)(-N)l(-1) per 100 l of g-phase dose into the denitrification tank.

  19. The significance of carbon-enriched dust for global carbon accounting

    USDA-ARS?s Scientific Manuscript database

    Soil carbon stores amount to 54% of the terrestrial carbon pool and twice the atmospheric carbon pool, but soil organic carbon (SOC) can be transient. There is an ongoing debate about whether soils are a net source or sink of carbon, and understanding the role of aeolian processes in SOC erosion, tr...

  20. Year-round Source Contributions of Fossil Fuel and Biomass Combustion to Elemental Carbon on the North Slope Alaska Utilizing Radiocarbon Analysis

    NASA Astrophysics Data System (ADS)

    Barrett, T. E.; Gustafsson, O.; Winiger, P.; Moffett, C.; Back, J.; Sheesley, R. J.

    2015-12-01

    It is well documented that the Arctic has undergone rapid warming at an alarming rate over the past century. Black carbon (BC) affects the radiative balance of the Arctic directly and indirectly through the absorption of incoming solar radiation and by providing a source of cloud and ice condensation nuclei. Among atmospheric aerosols, BC is the most efficient absorber of light in the visible spectrum. The solar absorbing efficiency of BC is amplified when it is internally mixed with sulfates. Furthermore, BC plumes that are fossil fuel dominated have been shown to be approximately 100% more efficient warming agents than biomass burning dominated plumes. The renewal of offshore oil and gas exploration in the Arctic, specifically in the Chukchi Sea, will introduce new BC sources to the region. This study focuses on the quantification of fossil fuel and biomass combustion sources to atmospheric elemental carbon (EC) during a year-long sampling campaign in the North Slope Alaska. Samples were collected at the Department of Energy Atmospheric Radiation Measurement (ARM) climate research facility in Barrow, AK, USA. Particulate matter (PM10) samples collected from July 2012 to June 2013 were analyzed for EC and sulfate concentrations combined with radiocarbon (14C) analysis of the EC fraction. Radiocarbon analysis distinguishes fossil fuel and biomass burning contributions based on large differences in end members between fossil and contemporary carbon. To perform isotope analysis on EC, it must be separated from the organic carbon fraction of the sample. Separation was achieved by trapping evolved CO2 produced during EC combustion in a cryo-trap utilizing liquid nitrogen. Radiocarbon results show an average fossil contribution of 85% to atmospheric EC, with individual samples ranging from 47% to 95%. Source apportionment results will be combined with back trajectory (BT) analysis to assess geographic source region impacts on the EC burden in the western Arctic.