Science.gov

Sample records for added carbon source

  1. Valorization of biodiesel derived glycerol as a carbon source to obtain added-value metabolites: Focus on polyunsaturated fatty acids.

    PubMed

    Abad, Sergi; Turon, Xavier

    2012-01-01

    The amount of glycerol derived from the biodiesel industry is exponentially increasing. The valorization of glycerol has acquired attention and resources with an obvious economic and environmental interest. Glycerol has the potential to improve the profitability of biodiesel in a biorefinery scenario. Added-value metabolites obtained from glycerol-based fermentations are the target of multiple research studies, primarily chemicals and biopolymers. Pigments and polyunsaturated fatty acids are exceptional examples as they have market presence as nutraceuticals. Most of the studies reviewed have been based on microalgae cultures. Depending on the strain and the engineering aspects of such cultures the final yield suffers notable variations. This is an emerging field which shows great potential from the perspective of a byproduct usage and the increasing yields (value) obtained from the bioprocess. PMID:22261015

  2. Effects of frequency on fatigue behavior of type 316 low-carbon, nitrogen-added stainless steel in air and mercury for the spallation neutron source

    NASA Astrophysics Data System (ADS)

    Tian, H.; Liaw, P. K.; Fielden, D. E.; Brooks, C. R.; Brotherton, M. D.; Jiang, L.; Yang, B.; Wang, H.; Strizak, J. P.; Mansur, L. K.

    2006-01-01

    The high-cycle fatigue behavior of type 316 low-carbon, nitrogen-added (LN) stainless steel (SS), the prime-candidate target-container material for the spallation neutron source (SNS), was investigated in air and mercury. Test frequencies ranged from 0.2 to 10 Hz with an R ratio of -1, and 10 to 700 Hz with an R ratio of 0.1. During tension-compression fatigue studies, a significant increase in the specimen temperature was observed at 10 Hz in air, which decreased the fatigue life of the 316 LN SS relative to that at 0.2 Hz. Companion tests in air were carried out, while cooling the specimen with nitrogen gas at 10 Hz in air. In these experiments, fatigue lives were comparable at 10 Hz in air with nitrogen cooling and at 0.2 Hz in air. During tension-tension fatigue studies, a higher specimen temperature was observed at 700 than at 10 Hz. After cooling the specimen, comparable fatigue lives were found at 10 and at 700 Hz. The frequency effect on the fatigue life in mercury was found to be much less than that in air, due to the fact that mercury acts as an effective coolant during the fatigue experiment. Striation spacing on the fracture surface at different test frequencies was closely examined, relative to calculated Δ K values, during fatigue of the 316 LN SS. Specimen self-heating has to be considered in understanding fatigue characteristics of 316 LN SS in air and mercury.

  3. SOURCE ASSESSMENT: CARBON BLACK MANUFACTURE

    EPA Science Inventory

    The report summarizes the assessment of air emissions from the manufacture of carbon black, currently manufactured in the U.S. by two major processes: thermal and oil furnace. Sources of atmospheric emissions within oil furnace plants (about 90% of the 30 U.S. carbon black plants...

  4. Adding Clays to Sandy Soils to Increase Carbon Storage

    NASA Astrophysics Data System (ADS)

    Harper, R. J.; Sochacki, S. J.

    2011-12-01

    Soil carbon storage is often related to clay content and mineralogy. For example, in a dryland farming area (300 mm/year annual rainfall) of Western Australia, carbon storage increased systematically with increasing clay content. Carbon storage in the surface 0.1 m was 42.5 Mg CO2-e/ha in soils with 1.7% clay compared to 99.1 Mg CO2-e/ha for soils with 9.1% clay. Similar results are evident in other data-sets, with carbon storage being related to site water balance, clay content and soil chemical fertility. We thus investigated whether soil carbon storage could be manipulated in sandy soils by adding clay. Clays are often added to farmed sandy soils to overcome water repellency and to reduce nutrient losses by leaching, but are not considered as a carbon management tool. The combined effects can improve plant productivity and thus carbon inputs to soil carbon pools. Bauxite processing residue (10% clay) had been applied in 1982 to sandy soils at different rates in an area with 760 mm/year annual rainfall. Application of 25 Mg clay/ha resulted in an increase in soil carbon content of 47.7 Mg CO2-e/ha. Soils were sampled to a depth of 0.3 m, with most (65%) of the increase being in the surface 0.1 m. Globally, there are large areas of sandy soils occurring across several soil taxonomic orders. In this presentation we describe the implications of clay amendments for increasing the carbon storage in such soils, and suggest areas of further investigation.

  5. AdS5 solutions from M5-branes on Riemann surface and D6-branes sources

    NASA Astrophysics Data System (ADS)

    Bah, Ibrahima

    2015-09-01

    We describe the gravity duals of four-dimensional N=1 superconformal field theories obtained by wrapping M5-branes on a punctured Riemann surface. The internal geometry, normal to the AdS 5 factor, generically preserves two U(1)s, with generators ( J +, J -), that are fibered over the Riemann surface. The metric is governed by a single potential that satisfies a version of the Monge-Ampère equation. The spectrum of N=1 punctures is given by the set of supersymmetric sources of the potential that are localized on the Riemann surface and lead to regular metrics near a puncture. We use this system to study a class of punctures where the geometry near the sources corresponds to M-theory description of D6-branes. These carry a natural ( p, q) label associated to the circle dual to the killing vector pJ + + qJ - which shrinks near the source. In the generic case the world volume of the D6-branes is AdS 5 × S 2 and they locally preserve N=2 supersymmetry. When p = - q, the shrinking circle is dual to a flavor U(1). The metric in this case is non-degenerate only when there are co-dimension one sources obtained by smearing M5-branes that wrap the AdS 5 factor and the circle dual the superconformal R-symmetry. The D6-branes are extended along the AdS 5 and on cups that end on the co-dimension one branes. In the special case when the shrinking circle is dual to the R-symmetry, the D6-branes are extended along the AdS 5 and wrap an auxiliary Riemann surface with an arbitrary genus. When the Riemann surface is compact with constant curvature, the system is governed by a Monge-Ampère equation.

  6. Carbonates from oleochemicals: Biobased materials to value added green chemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Presented is a review with 55 references describing the preparation of oleochemical-based carbonates (esters of carbonic acid H2CO2) utilizing vegetable oil, or vegetable oil derivatives as starting materials. Synthetic routes to prepare both linear and cyclic carbonates are presented, as well as t...

  7. Adding tools to the open source toolbox: The Internet

    NASA Technical Reports Server (NTRS)

    Porth, Tricia

    1994-01-01

    The Internet offers researchers additional sources of information not easily available from traditional sources such as print volumes or commercial data bases. Internet tools such as e-mail and file transfer protocol (ftp) speed up the way researchers communicate and transmit data. Mosaic, one of the newest additions to the Internet toolbox, allows users to combine tools such as ftp, gopher, wide area information server, and the world wide web with multimedia capabilities. Mosaic has quickly become a popular means of making information available on the Internet because it is versatile and easily customizable.

  8. Source of released carbon fibers

    NASA Technical Reports Server (NTRS)

    Bell, V. L.

    1979-01-01

    The potential for the release of carbon fibers from aircraft crashes/fires is addressed. Simulation of the conditions of aircraft crash fires in order to predict the quantities and forms of fibrous materials which might be released from civilian aircraft crashes/fires is considered. Figures are presented which describe some typical fiber release test activities together with some very preliminary results of those activities. The state of the art of carbon fiber release is summarized as well as some of the uncertainties concerning accidental fiber release.

  9. A Fluorescent Source NDIR Carbon Monoxide Analyzer

    NASA Technical Reports Server (NTRS)

    Link, W. T.; McClatchie, E. A.; Watson, D. A.; Compher, A. B.

    1971-01-01

    This paper describes a new technique for measuring trace quantities of carbon monoxide by the nondispersive infrared (NDIR) methods. The technique uses the property of infrared fluorescence in a gas to generate a specific source of radiation which is an exact match of the absorption spectrum of the fundamental band of carbon monoxide. This results in an instrument with high sensitivity and specificity for CO. A novel method of referencing using an isotopic species of CO confers great stability on the instrument.

  10. Carbon source dependent promoters in yeasts

    PubMed Central

    2014-01-01

    Budding yeasts are important expression hosts for the production of recombinant proteins. The choice of the right promoter is a crucial point for efficient gene expression, as most regulations take place at the transcriptional level. A wide and constantly increasing range of inducible, derepressed and constitutive promoters have been applied for gene expression in yeasts in the past; their different behaviours were a reflection of the different needs of individual processes. Within this review we summarize the majority of the large available set of carbon source dependent promoters for protein expression in yeasts, either induced or derepressed by the particular carbon source provided. We examined the most common derepressed promoters for Saccharomyces cerevisiae and other yeasts, and described carbon source inducible promoters and promoters induced by non-sugar carbon sources. A special focus is given to promoters that are activated as soon as glucose is depleted, since such promoters can be very effective and offer an uncomplicated and scalable cultivation procedure. PMID:24401081

  11. Carbon source in the future chemical industries

    NASA Astrophysics Data System (ADS)

    Hofmann, Peter; Heinrich Krauch, Carl

    1982-11-01

    Rising crude oil prices favour the exploitation of hitherto unutilised energy carriers and the realisation of new technologies in all sectors where carbon is used. These changed economic constraints necessitate both savings in conventional petrochemistry and a change to oil-independent carbon sources in the chemical industry. While, in coal chemistry, the synthesis and process principles of petrochemistry — fragmentation of the raw material and subsequent buildup of molecular structures — can be maintained, the raw material structure largely remains unchanged in the chemistry of renewable raw materials. This lecture is to demonstrate the structural as well as the technological and energy criteria of the chemistry of alternative carbon sources, to forecast the chances of commercial realization and to discuss some promising fields of research and development.

  12. Geolocating Russian sources for Arctic black carbon

    NASA Astrophysics Data System (ADS)

    Cheng, Meng-Dawn

    2014-08-01

    To design and implement an effective emission control strategy for black carbon (BC), the locations and strength of BC sources must be identified. Lack of accurate source information from the Russian Federation has created difficulty for a range of research and policy activities in the Arctic because Russia occupies the largest landmass in the Arctic Circle. A project was initiated to resolve emission sources of BC in the Russian Federation by using the Potential Source Contribution Function (PSCF). It used atmospheric BC data from two Arctic sampling stations at Alert Nunavut, Canada, and Tiksi Bay, Russia. The geographical regions of BC emission sources in Russia were identified and summarized as follows: (1) a region surrounding Moscow, (2) regions in Eurasia stretching along the Ural Mountains from the White Sea to the Black Sea, and (3) a number of scattered areas from western Siberia to the Russian Far East. Particulate potassium ions, non-marine sulfate, and vanadium were used to assist in resolving the source types: forest fire/biomass burning, coal-fired power plant, and oil combustion. Correlating these maps with the BC map helped to resolve source regions of BC emissions and connect them to their corresponding source types. The results imply that a region south of Moscow and another north of the Ural Mountains could be significant BC sources, but none of the grid cells in these regions could be linked to forest fires, oil combustion, or coal-fired power plants based on these three markers.

  13. Carbon nanotube electron sources for electron microscopes

    SciTech Connect

    De Jonge, Niels

    2009-01-01

    Electron sources were made from individual multi-walled carbon nanotubes with closed caps and thoroughly cleaned surfaces. Nanotubes from both chemical vapor deposition growth and arc discharge growth were investigated. These emitters provide a highly stable emission current up to a threshold current of a few microamperes. At too large currents several processes take place such as splitting, breaking and cap closing. The emission process is field emission for a workfunction of 5 eV. The electron optical per-formance is highly beneficial for their use as high-brightness point sources in electron microscopes and advantageous with respect to state-of-the-art electron sources. The life-time is at least two years. We have tested the source successfully in a scanning electron microscope.

  14. Testing sources and size of carbon release during the PETM

    NASA Astrophysics Data System (ADS)

    Chun, C. O.; Ridgwell, A. J.; Marsh, R.

    2010-12-01

    Using an intermediate complexity Earth system model (GENIE) configured for the early Eocene, we aim to test hypotheses about the size and magnitude of carbon release during the PETM. We have improved the model by adding a background wetland CH4 flux at x5 preindustrial levels. Ensemble simulations of varying alkalinity, detrital flux, and CaCO3:POC ratios are compared with pre-PETM observations of wt% CaCO3 determined initial conditions. We are then able to compare a series of transient experiments of varying amounts and sources of carbon to the same initial conditions, noting the effects of subtle changes in deep ocean ventilation that are due to perturbed surface heat and freshwater fluxes. Finally, we will discuss the potential role of CH4 released to the atmosphere during the PETM and implications for climate sensitivity.

  15. Real Time Semantic Interoperability in AD HOC Networks of Geospatial Data Sources: Challenges, Achievements and Perspectives

    NASA Astrophysics Data System (ADS)

    Mostafavi, M. A.; Bakillah, M.

    2012-07-01

    Recent advances in geospatial technologies have made available large amount of geospatial data. Meanwhile, new developments in Internet and communication technologies created a shift from isolated geospatial databases to ad hoc networks of geospatial data sources, where data sources can join or leave the network, and form groups to share data and services. However, effective integration and sharing of geospatial data among these data sources and their users are hampered by semantic heterogeneities. These heterogeneities affect the spatial, temporal and thematic aspects of geospatial concepts. There have been many efforts to address semantic interoperability issues in the geospatial domain. These efforts were mainly focused on resolving heterogeneities caused by different and implicit representations of the concepts. However, many approaches have focused on the thematic aspects, leaving aside the explicit representation of spatial and temporal aspects. Also, most semantic interoperability approaches for networks have focused on automating the semantic mapping process. However, the ad hoc network structure is continuously modified by source addition or removal, formation of groups, etc. This dynamic aspect is often neglected in those approaches. This paper proposes a conceptual framework for real time semantic interoperability in ad hoc networks of geospatial data sources. The conceptual framework presents the fundamental elements of real time semantic interoperability through a hierarchy of interrelated semantic states and processes. Then, we use the conceptual framework to set the discussion on the achievements that have already been made, the challenges that remain to be addressed and perspectives with respect to these challenges.

  16. Measurement of uniform flame movement in carbon monoxide - air mixtures containing either added D2O or H2O

    NASA Technical Reports Server (NTRS)

    Mcdonald, Glen E

    1950-01-01

    Relative velocities of the flame in a carbon monoxide - air mixture containing either added heavy water or light water were measured in a glass tube. Throughout the range of carbon monoxide - air composition, the flame containing added light water had a faster speed than the flame containing heavy water.

  17. Double-walled carbon nanotubes synthesized using carbon black as the dot carbon source

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Gang; Li, Feng; Ren, Wen-Cai; Cong, Hongtao; Liu, Chang; Qing Lu, Gao; Cheng, Hui-Ming

    2006-07-01

    Double-walled carbon nanotubes (DWNTs) were synthesized used carbon black as the dot carbon source by a semi-continuous hydrogen arc discharge process. High-resolution transmission electron microscopy (HRTEM) observations revealed that most of the tubes were DWNTs with outer and inner diameters in the range of 2.67-4 nm and 1.96-3.21 nm, respectively. Most of the DWNTs were in a bundle form of about 10-30 nm in diameter with high purity (about 70%) from thermal gravimetric analysis (TGA), resonant laser Raman spectroscopy, scanning electron microscopy (SEM) and TEM characterizations. It was found that carbon black as the dot carbon source could be easy controlled to synthesize one type of nanotube. A simple process combining oxidation and acid treatment to purify the DWNT bundles was used without damaging the bundles. The structure of carbon black, as the key element for influencing purity, bundle formation and purification of DWNTs, is discussed.

  18. Comparison of aerobic denitrifying activity among three cultural species with various carbon sources.

    PubMed

    Otani, Y; Hasegawa, K; Hanaki, K

    2004-01-01

    Abilities of three aerobic denitrifiers such as Alcaligenes faecalis, Microvirgula aerodenitrificans and Paracoccus pantotrophus were compared from the viewpoints of nitrate removal efficiency and organic matter utilization. First, the effect of carbon source was investigated. Although nitrate reduction was observed in all strains under aerobic conditions, a change of carbon source considerably affected the denitrification ability. In the case of P. pantotrophus, nitrate and nitrite were completely removed in three days under sodium acetate or leucine as a carbon source. In the case of A. faecalis, sufficient nitrate removal was observed only when sodium acetate or ethanol was added. P. pantotrophus and A. faecalis showed a higher ability of nitrate removal than that of M. aerodenitrificans. Therefore, P. pantotrophus was selected in order to investigate the effects of concentration and repetitive addition of carbon. Sodium acetate was used as a sole carbon source. Nitrate was not reduced when the carbon concentration was below 500 mgC/L. However, when carbon source was added repeatedly, nitrate was reduced under 100 mgC/L after the optical density of the bacterium reached above 1.0. This result indicated that a high enough level of bacterial density was necessary to express aerobic denitrification activity. PMID:15566182

  19. New Potential Sources for Black Onaping Carbon

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Becker, L.; Schultz, P. H.; Wolbach, W. S.

    1997-01-01

    One intriguing and important issue of the Sudbury Structure concerns the source of the relatively large amount of C in the Onaping Formation Black member. This dilemma was recently addressed, and the conclusion was reached that an impactor could not have delivered all of the requisite C. Becker et al. have suggested that much of the C came from the impactor and reported the presence of interstellar He "caged" inside some fullerenes that may have survived the impact. So, conceivably, the C inventory in the Sudbury Structure comes from both target and impactor materials, although the known target rocks have little C. We discuss here the possibility of two terrestrial sources for at least some of the C: (1) impact evaporation/dissociation of C from carbonate target rocks and (2) the presence of heretofore-unrecognized C-rich (up to 26 wt%) siliceous "shale," fragments, which are found in the upper, reworked Black member. Experimental: Hypervelocity impact of a 0.635-diameter Al projectile into dolomite at 5.03 km/s (performed at the Ames Research Center vertical gun range) produced a thin, black layer (= 0.05 mm thick) that partially lined the crater and coated impactor remnants. Scanning electronic microscope (SEM) imagery shows this layer to be spongelike on a submicron scale and Auger spectroscopic analyses yield: 33% C, 22% Mg, 19% 0, and 9% Al (from the projectile). Elemental mapping shows that all of the available 0 is combined with Ca and Mg, Al is not oxidized, and C is in elemental form. Dissociation efficiency of C from CO2 is estimated to be <10% of crater volume. Raman spectroscopy indicates that the C is highly disorganized graphite. Another impact experiment [4] also produced highly disordered graphite from a limestone target (reducing collector), in addition to small amounts of diamond/lonsdaleite/chaoite (oxidizing collector). These experiments confirm the reduction of C from carbonates in impact vapor plumes. Observational: SEM observations and

  20. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices.

    PubMed

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-01-01

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm(2)·V(-1)·s(-1)), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution. PMID:26567845

  1. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices

    PubMed Central

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-01-01

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm2·V−1·s−1), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution. PMID:26567845

  2. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices

    NASA Astrophysics Data System (ADS)

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-11-01

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm2·V-1·s-1), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution.

  3. Polyacrylamide added as a nitrogen source stimulates methanogenesis in consortia from various wastewaters.

    PubMed

    Haveroen, Melissa E; MacKinnon, Michael D; Fedorak, Phillip M

    2005-09-01

    Polyacrylamides are widely used as flocculants to enhance clarification of drinking waters and domestic wastewaters, for stabilization of agricultural soils, and to aid in managing mine tailings. The flocs produced with polyacrylamide may be deposited into retention areas that become anaerobic. Although it is unlikely that the carbon backbone of these polymers would be cleaved by microbial activity, the amide group could serve as a nitrogen source for microorganisms. Previous studies have shown that aerobic bacteria utilize the nitrogen from polyacrylamide. This study assessed whether methanogenesis was stimulated when an anionic polyacrylamide (Magnafloc LT27AG) was the sole fixed nitrogen source in serum-bottle microcosms. Microorganisms from two oil sands tailings sources, and a domestic anaerobic sewage sludge were used, with benzoate or acetate provided as carbon and energy sources. In each inoculum-substrate combination, the presence of polyacrylamide-enhanced methane production, indicating that polyacrylamide may stimulate microbial activities in anaerobic environments that are rich in fermentable carbon, but lack nitrogen sources. PMID:16023701

  4. Kinetics of dechlorination by Dehalococcoides mccartyi using different carbon sources.

    PubMed

    Schneidewind, Uwe; Haest, Pieter Jan; Atashgahi, Siavash; Maphosa, Farai; Hamonts, Kelly; Maesen, Miranda; Calderer, Montse; Seuntjens, Piet; Smidt, Hauke; Springael, Dirk; Dejonghe, Winnie

    2014-02-01

    Stimulated anaerobic dechlorination is generally considered a valuable step for the remediation of aquifers polluted with chlorinated ethenes (CEs). Correct simulation and prediction of this process in situ, however, require good knowledge of the associated biological reactions. The aim of this study was to evaluate the dechlorination reaction in an aquifer contaminated with trichloroethene (TCE) and its daughter products, discharging into the Zenne River. Different carbon sources were used in batch cultures and these were related to the dechlorination reaction, together with the monitored biomarkers. Appropriate kinetic formulations were assessed. Reductive dechlorination of TCE took place only when external carbon sources were added to microcosms, and occurred concomitant with a pronounced increase in the Dehalococcoides mccartyi cell count as determined by 16S rRNA gene-targeted qPCR. This indicates that native dechlorinating bacteria are present in the aquifer of the Zenne site and that the oligotrophic nature of the aquifer prevents a complete degradation to ethene. The type of carbon source, the cell number of D. mccartyi or the reductive dehalogenase genes, however, did not unequivocally explain the observed differences in degradation rates or the extent of dechlorination. Neither first-order, Michaelis-Menten nor Monod kinetics could perfectly simulate the dechlorination reactions in TCE spiked microcosms. A sensitivity analysis indicated that the inclusion of donor limitation would not significantly enhance the simulations without a clear process understanding. Results point to the role of the supporting microbial community but it remains to be verified how the complexity of the microbial (inter)actions should be represented in a model framework. PMID:24275111

  5. Kinetics of dechlorination by Dehalococcoides mccartyi using different carbon sources

    NASA Astrophysics Data System (ADS)

    Schneidewind, Uwe; Haest, Pieter Jan; Atashgahi, Siavash; Maphosa, Farai; Hamonts, Kelly; Maesen, Miranda; Calderer, Montse; Seuntjens, Piet; Smidt, Hauke; Springael, Dirk; Dejonghe, Winnie

    2014-02-01

    Stimulated anaerobic dechlorination is generally considered a valuable step for the remediation of aquifers polluted with chlorinated ethenes (CEs). Correct simulation and prediction of this process in situ, however, require good knowledge of the associated biological reactions. The aim of this study was to evaluate the dechlorination reaction in an aquifer contaminated with trichloroethene (TCE) and its daughter products, discharging into the Zenne River. Different carbon sources were used in batch cultures and these were related to the dechlorination reaction, together with the monitored biomarkers. Appropriate kinetic formulations were assessed. Reductive dechlorination of TCE took place only when external carbon sources were added to microcosms, and occurred concomitant with a pronounced increase in the Dehalococcoides mccartyi cell count as determined by 16S rRNA gene-targeted qPCR. This indicates that native dechlorinating bacteria are present in the aquifer of the Zenne site and that the oligotrophic nature of the aquifer prevents a complete degradation to ethene. The type of carbon source, the cell number of D. mccartyi or the reductive dehalogenase genes, however, did not unequivocally explain the observed differences in degradation rates or the extent of dechlorination. Neither first-order, Michaelis-Menten nor Monod kinetics could perfectly simulate the dechlorination reactions in TCE spiked microcosms. A sensitivity analysis indicated that the inclusion of donor limitation would not significantly enhance the simulations without a clear process understanding. Results point to the role of the supporting microbial community but it remains to be verified how the complexity of the microbial (inter)actions should be represented in a model framework.

  6. Enhanced biological phosphorus removal with different carbon sources.

    PubMed

    Shen, Nan; Zhou, Yan

    2016-06-01

    Enhanced biological phosphorus removal (EBPR) process is one of the most economical and sustainable methods for phosphorus removal from wastewater. However, the performance of EBPR can be affected by available carbon sources types in the wastewater that may induce different functional microbial communities in the process. Glycogen accumulating organisms (GAOs) and polyphosphate accumulating organisms (PAOs) are commonly found by coexisting in the EBPR process. Predominance of GAO population may lead to EBPR failure due to the competition on carbon source with PAO without contributing phosphorus removal. Carbon sources indeed play an important role in alteration of PAOs and GAOs in EBPR processes. Various types of carbon sources have been investigated for EBPR performance. Certain carbon sources tend to enrich specific groups of GAOs and/or PAOs. This review summarizes the types of carbon sources applied in EBPR systems and highlights the roles of these carbon sources in PAO and GAO competition. Both single (e.g., acetate, propionate, glucose, ethanol, and amino acid) and complex carbon sources (e.g., yeast extract, peptone, and mixed carbon sources) are discussed in this review. Meanwhile, the environmental friendly and economical carbon sources that are derived from waste materials, such as crude glycerol and wasted sludge, are also discussed and compared. PMID:27087523

  7. OpenAD/F : a modular, open-source tool for automatic differentiation of Fortran codes.

    SciTech Connect

    Utke, J.; Naumann, U.; Fagan, M.; Tallent, N.; Strout, M.; Heimbach, P.; Hill, C.; Wunsch, C.; Mathematics and Computer Science; Rheinisch Westfalische Technische Hochschule Aachen; Rice Univ.; Colorado State Univ.; MIT

    2008-01-01

    The OpenAD/F tool allows the evaluation of derivatives of functions defined by a Fortran program. The derivative evaluation is performed by a Fortran code resulting from the analysis and transformation of the original program that defines the function of interest. OpenAD/F has been designed with a particular emphasis on modularity, flexibility, and the use of open source components. While the code transformation follows the basic principles of automatic differentiation, the tool implements new algorithmic approaches at various levels, for example, for basic block preaccumulation and call graph reversal. Unlike most other automatic differentiation tools, OpenAD/F uses components provided by the OpenAD framework, which supports a comparatively easy extension of the code transformations in a language-independent fashion. It uses code analysis results implemented in the OpenAnalysis component. The interface to the language-independent transformation engine is an XML-based format, specified through an XML schema. The implemented transformation algorithms allow efficient derivative computations utilizing locally optimized cross-country sequences of vertex, edge, and face elimination steps. Specifically, for the generation of adjoint codes, OpenAD/F supports various code reversal schemes with hierarchical checkpointing at the subroutine level. As an example from geophysical fluid dynamics a nonlinear time-dependent scalable, yet simple, barotropic ocean model is considered. OpenAD/F's reverse mode is applied to compute sensitivities of some of the model's transport properties with respect to gridded fields such as bottom topography as independent (control) variables.

  8. Carbon Isotopic Constraints on Arctic Methane Sources, 2008-2010

    NASA Astrophysics Data System (ADS)

    Fisher, R. E.; Lowry, D.; Lanoiselle, M.; Sriskantharajah, S.; Nisbet, E. G.

    2010-12-01

    Arctic methane source strengths are particularly vulnerable to large changes with year-to year meteorological variations and with climatic change. A global increase in methane seen in 2007 (Dlugokencky et al., 2009) may have been in part be due to elevated wetland emissions caused by a warm, wet summer over large parts of Siberia. In 2010 wildfires over large areas of Russia will have added methane to the Arctic atmosphere. Carbon isotopic composition of methane in air from the Arctic arriving at a measurement station can be used to identify sources of the gas. Measurement of methane δ13C in air close to sources, including wetlands, permafrost, pine forest and submarine methane clathrate has extended the available data of source signatures of methane from northern sources. Keeling plot analysis of diurnal records from field campaigns in Arctic wetlands show that bulk wetland methane emissions are typically close to δ13CCH4 -69±1 ‰. Air samples from Zeppelin (Spitsbergen, Norway), Pallas (Finland) and Barra (Outer Hebrides, Scotland) have been regularly analysed for methane δ13C. Summer campaigns at Zeppelin point to a 13C depleted bulk Arctic source of dominantly biogenic origin, at -67‰. In spring, while the wetlands are still frozen, the source signature is more enriched, -53‰, with trajectory analysis implying a large contribution from onshore gas fields. Arctic methane emissions respond rapidly to warming with strong positive feedbacks. With rapid warming there is the potential to release large stores of carbon from permafrost and methane hydrates. Isotopic data are powerful discriminants of sources. High frequency, ideally continuous, monitoring of methane δ13C from a number of Arctic sites, onshore and offshore, coupled with back-trajectory analysis and regional modelling, will be important if future changes in Arctic source strengths are to be quantified. Reference: Dlugokencky, E. J., et al. (2009), Observational constraints on recent increases

  9. Are Glaciers and Ice Sheets Carbon Sources or Carbon Sinks?

    NASA Astrophysics Data System (ADS)

    Graly, J. A.; Drever, J. I.; Humphrey, N. F.

    2014-12-01

    Subglacial waters typically contain considerable quantities of HCO3-. Where this HCO3- is coupled with Ca2+ and Mg2+, it will ultimately precipitate as (Ca, Mg)CO3 in the oceans. If the glacial HCO3- is derived from atmospheric CO2, this pathway represents a long-term CO2 sink. If the HCO3- is derived from carbonate minerals, precipitation is equal to dissolution and there is no net effect on the CO2 balance of the atmosphere. Only the weathering of Ca or Mg-bearing silicates can potentially draw CO2 out of the ocean/atmosphere system. Subglacial environments are potential habitats for a range of microbes that may generate CO2 from organic C. If the production of CO2 from organic sources exceeds the weathering of Ca and Mg from silicates, the subglacial environment is a long-term CO2 source. In order to determine whether ice bodies typically act as CO2 sources or sinks, we modeled the evolution of pH and alkalinity through a range of typical subglacial weathering reactions, considering both the case in which CO2 and O2 can openly exchange with the atmosphere and the case in which the subglacial environment is closed from atmospheric interaction. We find that in the closed system scenario, subglacial waters cannot reach atmospheric PCO2 levels under typical conditions. Initial open system weathering followed by closed system weathering can allow CO2 supersaturation when sulfide oxidation is considered. We use this result to analyze pH and alkalinity measurements from a geographically and geologically diverse selection of subglacial waters. The PCO2 of most of the subglacial waters is near or above atmospheric values. This implies that exchange of gases between subglacial waters and the atmosphere is typical and widespread. This input of atmospheric CO2 into the glacial weathering environment implies that about 5 mg of CO2 are typically removed from the atmosphere per l of glacial discharge water. Similar PCO2 values can be produced in an entirely closed system if

  10. Novel molecular sources for dispersing boron in carbon-carbon composites. Final report, 1 Jun-30 Nov 91

    SciTech Connect

    Chen, P.S.; Stevens, W.C.

    1991-12-31

    Improving the oxidation resistance of carbon-carbon composites is key to expanding the use of this material system into higher temperature applications. While boron particles have been added to these materials to seal cracks in protective coatings, oxidation of the carbon matrix neighboring the boron particles seriously affects composite strength. This problem is exacerbate by a natural segregation of the boron particles to fiber rich areas of the composites. Carborane, a robust molecular source of boron, was used as the precursor for atomically dispersed boron in a phenolic derived carbon matrix. Modifications of the chemical structure of carborane were used to improve the solubility in phenolic. Additions of carboranes into the phenolic resins dramatically improved the oxidation resistance of the carbonized char. The char yield of the phenolic resin was also increased significantly.

  11. Effect of Carbon and Energy Source on Bacterial Chromate Reduction

    SciTech Connect

    Smith, William Aaron; Apel, William Arnold; Petersen, J. N.; Peyton, Brent Michael

    2002-07-01

    Studies were conducted to evaluate carbon and energy sources suitable to support hexavalent chromium (Cr(VI)) reduction by a bacterial consortium enriched from dichromate-contaminated aquifer sediments. The consortium was cultured under denitrifying conditions in a minimal, synthetic groundwater medium that was amended with various individual potential carbon and energy sources. The effects of these individual carbon and energy sources on Cr(VI) reduction and growth were measured. The consortium was found to readily reduce Cr(VI) with sucrose, acetate, L-asparagine, hydrogen plus carbon dioxide, ethanol, glycerol, glycolate, propylene glycol, or D-xylose as a carbon and energy source. Minimal Cr(VI) reduction was observed when the consortium was cultured with citrate, 2-ketoglutarate, L-lactate, pyruvate, succinate, or thiosulfate plus carbon dioxide as a carbon and energy source when compared with abiotic controls. The consortium grew on all of the above carbon and energy sources, with the highest cell densities reached using D-xylose and sucrose, demonstrating that the consortium is metabolically diverse and can reduce Cr(VI) using a variety of different carbon and energy sources. The results suggest that the potential exists for the enrichment of Cr(VI)-reducing microbial populations in situ by the addition of a sucrose-containing feedstock such as molasses, which is an economical and readily available carbon and energy source.

  12. New Potential Sources for Black Onaping Carbon

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Becker, L.; Schultz, P. H.; Wolbach, W. S.

    1997-01-01

    One intriguing and important issue of the Sudbury Structure concerns the source of the relatively large amount of C in the Onaping Formation Black member. This dilemma was recently addressed, and the conclusion was reached that an impactor could not have delivered all of the requisite C. Becker et al. have suggested that much of the C came from the impactor and reported the presence of interstellar He "caged" inside some fullerenes that may have survived the impact. So, conceivably, the C inventory in the Sudbury Structure comes from both target and impactor materials, although the known target rocks have little C. We discuss here the possibility of two terrestrial sources for at least some of the C: (1) impact evaporation/dissociation of C from carbonate target rocks and (2) the presence of heretofore-unrecognized C-rich (up to 26 wt%) siliceous "shale," fragments, which are found in the upper, reworked Black member. Experimental: Hypervelocity impact of a 0.635-diameter Al projectile into dolomite at 5.03 km/s (performed at the Ames Research Center vertical gun range) produced a thin, black layer (= 0.05 mm thick) that partially lined the crater and coated impactor remnants. Scanning electronic microscope (SEM) imagery shows this layer to be spongelike on a submicron scale and Auger spectroscopic analyses yield: 33% C, 22% Mg, 19% 0, and 9% Al (from the projectile). Elemental mapping shows that all of the available 0 is combined with Ca and Mg, Al is not oxidized, and C is in elemental form. Dissociation efficiency of C from CO2 is estimated to be <10% of crater volume. Raman spectroscopy indicates that the C is highly disorganized graphite. Another impact experiment [4] also produced highly disordered graphite from a limestone target (reducing collector), in addition to small amounts of diamond/lonsdaleite/chaoite (oxidizing collector). These experiments confirm the reduction of C from carbonates in impact vapor plumes. Observational: SEM observations and

  13. Multiband microwave absorption films based on defective multiwalled carbon nanotubes added carbonyl iron/acrylic resin

    NASA Astrophysics Data System (ADS)

    Li, Yong; Chen, Changxin; Pan, Xiaoyan; Ni, Yuwei; Zhang, Song; Huang, Jie; Chen, Da; Zhang, Yafei

    2009-05-01

    Defective multiwalled carbon nanotubes (MWCNTs) were introduced to the carbonyl iron (CI) based composites to improve its microwave absorption by a simple ultrasonic mixing process. The electromagnetic parameters were measured in the 2-18 GHz range. Microwave absorption of CI based composites with 2 mm in thickness was evidently enhanced by adding as little as 1.0 wt% defective MWCNTs with two well separated absorption peaks exceeding -20 dB, as compared with that of pure CI based and defective MWCNTs composites. The enhancement mechanism is thought due to the interaction and better electromagnetic match between defective MWCNTs and ferromagnetic CI particles.

  14. Binderless carbon nanotube/carbon fibre composites for electrochemical micropower sources.

    PubMed

    Bordjiba, Tarik; Mohamedi, Mohamed; Dao, Lê H

    2007-01-24

    Interesting architectures built with electrically conductive substrates of interest for microelectrochemical power sources were obtained by directly growing carbon nanotubes on each microfibre constituting a carbon paper. The carbon nanotubes were fabricated by the chemical vapour deposition technique. Results of electrochemical tests showed high-resolution responses in different chemical media, which indicate good electrical contact between the carbon nanotubes and the carbon paper substrate. These architectures hold great promise for incorporation into microelectrochemical power sources. PMID:19636112

  15. Diagnostic Evaluation of Carbon Sources in CMAQ

    EPA Science Inventory

    Traditional monitoring networks measure only total elemental carbon (EC) and organic carbon (OC) routinely. Diagnosing model biases with such limited information is difficult. Measurements of organic tracer compounds have recently become available and allow for more detailed di...

  16. Changes in the microstructure and characteristics of carbon/carbon composites with mesophase mesocarbon microbeads added during graphitization

    SciTech Connect

    Hu, H.L.; Ko, T.H.; Ku, W.S.

    2005-12-05

    Carbon/carbon (C/C) composites were prepared from oxidative PAN fiber felts, a resol-type phenolic resin, and mesophase pitch derived from coal tar. In this study, the effects on mesocarbon microbeads (MCMBs), flexural strength, flexural moduli, electric conductivity, and thermal conductivity of C/C composites with a mesophase content ranging from 0 to 30 wt % were examined during pyrolysis. The results show that the C/C composite with the addition of 10-30 wt % mesophase had a higher density, greater stacking size, and higher preferred orientation than the C/C composites without any mesophase during heat treatment. These composites also exhibited an improvement in flexural strength from 19.7 to 30.3%. The flexural moduli of these composites with mesophase added increased by 15.1 to 31.3% compared to that with no mesophase added. These composites also showed improved electric conductivity, from 15.1 to 43.7%, and thermal conductivity, from 12 to 31.3%.

  17. Substrate quality alters microbial mineralization of added substrate and soil organic carbon

    NASA Astrophysics Data System (ADS)

    Jagadamma, S.; Mayes, M. A.; Steinweg, J. M.; Schaeffer, S. M.

    2014-03-01

    The rate and extent of decomposition of soil organic carbon (SOC) is dependent on substrate chemistry and microbial dynamics. Our objectives were to understand the influence of substrate chemistry on microbial processing of carbon (C), and to use model fitting to quantify differences in pool sizes and mineralization rates. We conducted an incubation experiment for 270 days using four uniformly-labeled 14C substrates (glucose, starch, cinnamic acid and stearic acid) on four different soils (a temperate Mollisol, a tropical Ultisol, a sub-arctic Andisol, and an arctic Gelisol). The 14C labeling enabled us to separate CO2 respired from added substrates and from native SOC. Microbial gene copy numbers were quantified at days 4, 30 and 270 using quantitative polymerase chain reaction (qPCR). Substrate C respiration was always higher for glucose than other substrates. Soils with cinnamic and stearic acid lost more native SOC than glucose- and starch-amended soils, despite an initial delay in respiration. Cinnamic and stearic acid amendments also exhibited higher fungal gene copy numbers at the end of incubation compared to unamended soils. We found that 270 days was sufficient to model decomposition of simple substrates (glucose and starch) with three pools, but was insufficient for more complex substrates (cinnamic and stearic acid) and native SOC. This study reveals that substrate quality imparts considerable control on microbial decomposition of newly added and native SOC, and demonstrates the need for multi-year incubation experiments to constrain decomposition parameters for the most recalcitrant fractions of SOC and added substrates.

  18. Decomposition of added and native organic carbon from physically separated fractions of diverse soils

    SciTech Connect

    Jagadamma, Sindhu; Steinweg, Jessica M; Mayes, Melanie; Wang, Gangsheng; Post, Wilfred M

    2013-01-01

    There have been increasing efforts to understand the dynamics of organic carbon (OC) associated with measurable fractions of bulk soil.We compared the decomposition of native OC (native C) with that of an added substrate (glucose) on physically separated fractions of a diverse suite of soils. Five soil orders were selected from four contrasting climate zones (Mollisol from temperate, Ultisol and Oxisol from tropics, Andisol from sub-arctic, and Gelisol from arctic region). Soils from the A horizon were fractionated into particulate OC (POC) and mineral-associated OC (MOC) by a sizebased method. Fractions were incubated at 20 C and 50 % water-holding capacity in the dark after the addition of unlabeled D-glucose (0.4 mg C g 1 fraction) and U 14C glucose (296 Bq g 1 fraction). Respiration of glucose 14C indicated 64 to 84 % of added glucose 14C which was respired from POC and 62 to 70 % from MOC within 150 days of incubation, with more than half of the cumulative respiration occurring within 4 days. Native C respiration varied widely across fractions: 12 to 46 % of native C was respired from POC and 3 to 10 % was respired from MOC fractions. This suggested that native C was more stabilized on the MOC than on the POC, but respiration from the added glucose was generally similar for MOC and POC fractions. Our study suggests a fundamental difference between the behavior of freshly added C and native C from MOC and POC fractions of soils.

  19. Mode S and ADS-B as a Source of Clear-Air Turbulence Measurements

    NASA Astrophysics Data System (ADS)

    Kopeć, Jacek; Kwiatkowski, Kamil; de Haan, Siebren; Malinowski, Szymon

    2016-04-01

    Clear-Air Turbulence (CAT) beside being the most common cause for commercial aircraft incidents in the cruise phase is a complex physical phenomenon. CAT is an effect of various underlying physical mechanisms such as different kinds of hydrodynamic instabilities or large scale forcing. In order to properly understand and correctly forecast it one needs a significant amount of observation data. Up to date the best available observations are the in-situ EDR (from eddy dissipation rate - a measure of turbulence intensity). Those observations are reported every ~1 min of flight (roughly every 15 km). Yet their availability is limited by the willingness of the airlines to cooperate in adjusting on-board software. However there is a class of data that can be accessed more freely. In this communication we present and discuss a feasibility analysis of the three methods of processing Mode S/ADS-B messages into viable turbulence measurements. The Mode S/ADS-B messages are unrestricted navigational data broadcast by most of the commercial aircraft. The unique characteristic of this data is a very high temporal resolution. This allows to employ processing which results in obtaining turbulence information characterized by spatial resolution comparable with the best available data sources. Moreover due to using Mode-S/ASS-B data, the number of aircraft that are providing observations increases significantly. The methods are either using simple positioning information available in the ADS-B or high-resolution wind information from the Mode S. The paper is largely based on the results of the methods application to the data originating from DELICAT flight campaign that took place in 2013. The flight campaign was conducted using NLR operated Cessna Citation II. The reference Mode-S/ADS-B data partly overlapping with the research flights were supplied by the KNMI. Analysis shows very significant potential of the Mode-S wind based methods. J. M. Kopeć, K. Kwiatkowski, S. de Haan, and

  20. Source attribution of black carbon in Arctic snow.

    PubMed

    Hegg, Dean A; Warren, Stephen G; Grenfell, Thomas C; Doherty, Sarah J; Larson, Timothy V; Clarke, Antony D

    2009-06-01

    Snow samples obtained at 36 sites in Alaska, Canada, Greenland, Russia, and the Arctic Ocean in early 2007 were analyzed for light-absorbing aerosol concentration together with a suite of associated chemical species. The light absorption data, interpreted as black carbon concentrations, and other chemical data were input into the EPA PMF 1.1 receptor model to explore the sources for black carbon in the snow. The analysis found four factors or sources: two distinct biomass burning sources, a pollution source, and a marine source. The first three of these were responsible for essentially all of the black carbon, with the two biomass sources (encompassing both open and closed combustion) together accounting for >90% of the black carbon. PMID:19569324

  1. Dopamine as a Carbon Source: The Controlled Synthesis of Hollow Carbon Spheres and Yolk-Structured Carbon Nanocomposites

    SciTech Connect

    Dai, Sheng; Liu, Rui; Mahurin, Shannon Mark; Li, Chen; Unocic, Raymond R; Idrobo Tapia, Juan C; Gao, Hongjun; Pennycook, Stephen J

    2011-01-01

    A facile and versatile synthesis using dopamine as a carbon source gives hollow carbon spheres and yolk-shell Au{at}Carbon nanocomposites. The uniform nature of dopamine coatings and their high carbon yield endow the products with high structural integrity. The Au{at}C nanocomposites are catalytically active.

  2. Substrate quality alters the microbial mineralization of added substrate and soil organic carbon

    NASA Astrophysics Data System (ADS)

    Jagadamma, S.; Mayes, M. A.; Steinweg, J. M.; Schaeffer, S. M.

    2014-09-01

    The rate and extent of decomposition of soil organic carbon (SOC) is dependent, among other factors, on substrate chemistry and microbial dynamics. Our objectives were to understand the influence of substrate chemistry on microbial decomposition of carbon (C), and to use model fitting to quantify differences in pool sizes and mineralization rates. We conducted an incubation experiment for 270 days using four uniformly labeled 14C substrates (glucose, starch, cinnamic acid and stearic acid) on four different soils (a temperate Mollisol, a tropical Ultisol, a sub-arctic Andisol, and an arctic Gelisol). The 14C labeling enabled us to separate CO2 respired from added substrates and from native SOC. Microbial gene copy numbers were quantified at days 4, 30 and 270 using quantitative polymerase chain reaction (qPCR). Substrate C respiration was always higher for glucose than other substrates. Soils with cinnamic and stearic acid lost more native SOC than glucose- and starch-amended soils. Cinnamic and stearic acid amendments also exhibited higher fungal gene copy numbers at the end of incubation compared to unamended soils. We found that 270 days were sufficient to model the decomposition of simple substrates (glucose and starch) with three pools, but were insufficient for more complex substrates (cinnamic and stearic acid) and native SOC. This study reveals that substrate quality exerts considerable control on the microbial decomposition of newly added and native SOC, and demonstrates the need for multi-year incubation experiments to constrain decomposition parameters for the most recalcitrant fractions of SOC and complex substrates.

  3. A comparison of black carbon measurement methods for combustion sources

    NASA Astrophysics Data System (ADS)

    Holder, A. L.; Pavlovic, J.; Yelverton, T.; Hagler, G.; Aurell, J.; Ebersviller, S.; Seay, B.; Jetter, J.; Gullett, B.; Hays, M. D.

    2015-12-01

    Black carbon is an important short-term climate forcer that has been linked with adverse health effects. Multiple black carbon measurement methodologies exist, but no standard measurement method or calibration material has been agreed upon. Moreover, the U.S. Environmental Protection Agency uses elemental carbon in its ambient monitoring networks and in its emissions inventory, assuming that elemental carbon is equivalent to black carbon. Instrument comparisons with ambient aerosols have demonstrated considerable differences between black carbon and elemental carbon, as well as among different black carbon measurements. However, there have been few published comparable studies for source emissions. We used multiple measurement methods to quantify black carbon and elemental carbon emissions from a range of combustion sources (diesel gensets, coal fired boilers, prescribed fires and cookstoves) emitting particles of varying composition and physical characteristics. The ratio of black carbon to elemental carbon (BC/EC) ranged from 0.50 to 2.8 and depended upon the combustion source. The greatest agreement was observed for emissions from cookstoves (BC/EC = 1.1 ± 0.3). The largest differences were seen for emissions from large stationary diesel genset (BC/EC = 2.3 ± 0.5) and were most pronounced when a diesel particulate filter was used (BC/EC 2.5 ± 0.6). This suggests that this source category may be underrepresented in emissions inventories based on elemental carbon. Black carbon concentrations derived from filter-based attenuation were highly correlated with photo-acoustic absorption measurements, but were generally 50% greater. This is likely due to the choice of calibration factor, which is currently ambiguously defined. These results highlight the importance of developing a standard calibration material to improve comparability among measurements.

  4. Growth of graphene films from non-gaseous carbon sources

    DOEpatents

    Tour, James; Sun, Zhengzong; Yan, Zheng; Ruan, Gedeng; Peng, Zhiwei

    2015-08-04

    In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.

  5. Shunting arc plasma source for pure carbon ion beam.

    PubMed

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse. PMID:22380206

  6. Shunting arc plasma source for pure carbon ion beama)

    NASA Astrophysics Data System (ADS)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y.

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm2 at the peak of the pulse.

  7. Hierarchy of Carbon Source Selection in Paracoccus pantotrophus: Strict Correlation between Reduction State of the Carbon Substrate and Aerobic Expression of the nap Operon

    PubMed Central

    Ellington, M. J. K.; Bhakoo, K. K.; Sawers, G.; Richardson, D. J.; Ferguson, S. J.

    2002-01-01

    Paracoccus pantotrophus can express a periplasmic nitrate reductase (Nap) during aerobic growth. A proposed role for this enzyme is the dissipation of excess redox energy during oxidative metabolism of reduced carbon substrates. To investigate the regulation of nap expression, a transcriptional fusion between the nap promoter region of P. pantotrophus and the lacZ gene was constructed. When this fusion was used, analyses showed that transcription from the nap promoter increases as the average reduction state of the carbon atoms increases. Thus, β-galactosidase activities increase as the carbon source changes in the order succinate-acetate-butyrate. This result was obtained regardless of which of the three carbon sources was used for culture of the inoculum. If two carbon sources were presented together, the β-galactosidase activity was always the same as it was when the least-reduced carbon source was added alone. This suggests that the regulation is dependent upon metabolism of the more-reduced carbon sources rather than just their presence in the medium. Analysis of culture medium by 1H nuclear magnetic resonance showed that for aerobic growth P. pantotrophus strictly selected its carbon source in the order succinate-acetate-butyrate. This was reflected by diauxic growth kinetics on medium containing mixed carbon substrates. The regulatory mechanism underpinning such a selection is unknown but is likely to be related to the mechanism which controls the transcription of the nap operon. PMID:12169601

  8. Addressing sources of uncertainty in a global terrestrial carbon model

    NASA Astrophysics Data System (ADS)

    Exbrayat, J.; Pitman, A. J.; Zhang, Q.; Abramowitz, G.; Wang, Y.

    2013-12-01

    Several sources of uncertainty exist in the parameterization of the land carbon cycle in current Earth System Models (ESMs). For example, recently implemented interactions between the carbon (C), nitrogen (N) and phosphorus (P) cycles lead to diverse changes in land-atmosphere C fluxes simulated by different models. Further, although soil organic matter decomposition is commonly parameterized as a first-order decay process, the formulation of the microbial response to changes in soil moisture and soil temperature varies tremendously between models. Here, we examine the sensitivity of historical land-atmosphere C fluxes simulated by an ESM to these two major sources of uncertainty. We implement three soil moisture (SMRF) and three soil temperature (STRF) respiration functions in the CABLE-CASA-CNP land biogeochemical component of the coarse resolution CSIRO Mk3L climate model. Simulations are undertaken using three degrees of biogeochemical nutrient limitation: C-only, C and N, and C and N and P. We first bring all 27 possible combinations of a SMRF with a STRF and a biogeochemical mode to a steady-state in their biogeochemical pools. Then, transient historical (1850-2005) simulations are driven by prescribed atmospheric CO2 concentrations used in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Similarly to some previously published results, representing N and P limitation on primary production reduces the global land carbon sink while some regions become net C sources over the historical period (1850-2005). However, the uncertainty due to the SMRFs and STRFs does not decrease relative to the inter-annual variability in net uptake when N and P limitations are added. Differences in the SMRFs and STRFs and their effect on the soil C balance can also change the sign of some regional sinks. We show that this response is mostly driven by the pool size achieved at the end of the spin-up procedure. Further, there exists a six-fold range in the level

  9. Consumption of added sugars among US children and adults by food purchase location and food source123

    PubMed Central

    Drewnowski, Adam; Rehm, Colin D

    2014-01-01

    Background: The proposed changes to the Nutrition Facts Label by the US Food and Drug Administration will include information on added sugars for the first time. Objective: The objective was to evaluate the sources of added sugars in the diets of a representative sample of US children and adults by food purchase location and food source (eg, food group). Design: This cross-sectional study among 31,035 children, adolescents, and adults aged ≥6 y from the 2003–2004, 2005–2006, 2007–2008, and 2009–2010 NHANES used data from a 24-h dietary recall to evaluate consumption of added sugars. Food locations of origin were identified as stores (supermarket or grocery store), quick-service restaurants/pizza (QSRs), full-service restaurants (FSRs), schools, and others (eg, vending machines or gifts). Added sugars consumption by food purchase location was evaluated by age, family income-to-poverty ratio, and race-ethnicity. Food group sources of added sugars were identified by using the National Cancer Institute food categories. Results: Added sugars accounted for ∼14.1% of total dietary energy. Between 65% and 76% of added sugars came from stores, 6% and 12% from QSRs, and 4% and 6% from FSRs, depending on age. Older adults (aged ≥51 y) obtained a significantly greater proportion of added sugars from stores than did younger adults. Lower-income adults obtained a significantly greater proportion of added sugars from stores than did higher-income adults. Intake of added sugars did not vary by family income among children/adolescents. Soda and energy and sports drinks were the largest food group sources of added sugars (34.4%), followed by grain desserts (12.7%), fruit drinks (8.0%), candy (6.7%), and dairy desserts (5.6%). Conclusions: Most added sugars came from foods obtained from stores. The proposed changes to the Nutrition Facts Label should capture the bulk of added sugars in the US food supply, which suggests that the recommended changes have the potential to

  10. METHOD FOR MEASURING CARBON FIBER EMISSIONS FROM STATIONARY SOURCES

    EPA Science Inventory

    Carbon fibers are highly conductive, lightweight and of small dimensions. When released as emissions from production, manufacturing, processing and disposal sources they may become airborne and disperse over wide areas. If they settle onto electronic or electrical components they...

  11. Enhanced life ion source for germanium and carbon ion implantation

    SciTech Connect

    Hsieh, Tseh-Jen; Colvin, Neil; Kondratenko, Serguei

    2012-11-06

    Germanium and carbon ions represent a significant portion of total ion implantation steps in the process flow. Very often ion source materials that used to produce ions are chemically aggressive, especially at higher temperatures, and result in fast ion source performance degradation and a very limited lifetime [B.S. Freer, et. al., 2002 14th Intl. Conf. on Ion Implantation Technology Proc, IEEE Conf. Proc., p. 420 (2003)]. GeF{sub 4} and CO{sub 2} are commonly used to generate germanium and carbon beams. In the case of GeF{sub 4} controlling the tungsten deposition due to the de-composition of WF{sub 6} (halogen cycle) is critical to ion source life. With CO{sub 2}, the materials oxidation and carbon deposition must be controlled as both will affect cathode thermionic emission and anti-cathode (repeller) efficiencies due to the formation of volatile metal oxides. The improved ion source design Extended Life Source 3 (Eterna ELS3) together with its proprietary co-gas material implementation has demonstrated >300 hours of stable continuous operation when using carbon and germanium ion beams. Optimizing cogas chemistries retard the cathode erosion rate for germanium and carbon minimizes the adverse effects of oxygen when reducing gas is introduced for carbon. The proprietary combination of hardware and co-gas has improved source stability and the results of the hardware and co-gas development are discussed.

  12. Source contributions to atmospheric fine carbon particle concentrations

    NASA Astrophysics Data System (ADS)

    Andrew Gray, H.; Cass, Glen R.

    A Lagrangian particle-in-cell air quality model has been developed that facilitates the study of source contributions to atmospheric fine elemental carbon and fine primary total carbon particle concentrations. Model performance was tested using spatially and temporally resolved emissions and air quality data gathered for this purpose in the Los Angeles area for the year 1982. It was shown that black elemental carbon (EC) particle concentrations in that city were dominated by emissions from diesel engines including both on-highway and off-highway applications. Fine primary total carbon particle concentrations (TC=EC+organic carbon) resulted from the accumulation of small increments from a great variety of emission source types including both gasoline and diesel powered highway vehicles, stationary source fuel oil and gas combustion, industrial processes, paved road dust, fireplaces, cigarettes and food cooking (e.g. charbroilers). Strategies for black elemental carbon particle concentration control will of necessity need to focus on diesel engines, while controls directed at total carbon particle concentrations will have to be diversified over a great many source types.

  13. Feasibility study of using brine for carbon dioxide capture and storage from fixed sources

    SciTech Connect

    Daniel Dziedzic; Kenneth B. Gross; Robert A. Gorski; John T. Johnson

    2006-12-15

    A laboratory-scale reactor was developed to evaluate the capture of carbon dioxide (CO{sub 2}) from a gas into a liquid as an approach to control greenhouse gases emitted from fixed sources. CO{sub 2} at 5-50% concentrations was passed through a gas-exchange membrane and transferred into liquid media - tap water or simulated brine. When using water, capture efficiencies exceeded 50% and could be enhanced by adding base (e.g., sodium hydroxide) or the combination of base and carbonic anhydrase, a catalyst that speeds the conversion of CO{sub 2} to carbonic acid. The transferred CO{sub 2} formed ions, such as bicarbonate or carbonate, depending on the amount of base present. Adding precipitating cations, like Ca{sup ++}, produced insoluble carbonate salts. Simulated brine proved nearly as efficient as water in absorbing CO{sub 2}, with less than a 6% reduction in CO{sub 2} transferred. The CO{sub 2} either dissolved into the brine or formed a mixture of gas and ions. If the chemistry was favorable, carbonate precipitate spontaneously formed. Energy expenditure of pumping brine up and down from subterranean depths was modeled. We concluded that using brine in a gas-exchange membrane system for capturing CO{sub 2} from a gas stream to liquid is technically feasible and can be accomplished at a reasonable expenditure of energy. 24 refs., 9 figs., 2 tabs., 1 app.

  14. Study of the thermo-magnetic fluctuations in carbon nano-tubes added Bi-2223 superconductors

    NASA Astrophysics Data System (ADS)

    Saoudel, A.; Amira, A.; Boudjadja, Y.; Mahamdioua, N.; Amirouche, L.; Varilci, A.; Altintas, S. P.; Terzioglu, C.

    2013-11-01

    We have investigated the effect of addition of carbon nano-tubes (CNT) on the properties of Bi1.6Pb0.4Sr2Ca2Cu3Oy superconductors. The samples are prepared from commercial powders with addition of 0.1 wt% of CNT. They are characterized by XRD, SEM and magneto-resistivity in the transition region. As it was reported for CNT added Y-123 compounds, the refined cell parameters are practically independent of this kind of addition. Under applied magnetic field, a large broadening of resistive transition is observed. The dissipative behavior of resistivity can be explained using the well known expression, ρ=ρ0(T/Tg-1)S. The modified vortex-glass to liquid transition theory is used to calculate the values of the glass-transition temperature Tg and the temperature and magnetic field dependent activation energy U0(B,T). These parameters are seen to decrease with CNT addition and applied magnetic field. Also, we have found that the undoped sample proves a better transition width, residual resistivity (ρ0) and a higher onset critical transition temperature of about 117.75 K. Also, the appearance of a double resistive transition for both samples is a confirmation of the existence of a secondary phase which plays the role of the weak links at the grain boundaries.

  15. Upgrading and dephosphorization of Western Australian iron ore using reduction roasting by adding sodium carbonate

    NASA Astrophysics Data System (ADS)

    Zhu, De-qing; Chun, Tie-jun; Pan, Jian; Lu, Li-ming; He, Zhen

    2013-06-01

    The technology of direct reduction by adding sodium carbonate (Na2CO3) and magnetic separation was developed to treat Western Australian high phosphorus iron ore. The iron ore and reduced product were investigated by optical microscopy and scanning electron microscopy. It is found that phosphorus exists within limonite in the form of solid solution, which cannot be removed through traditional ways. During reduction roasting, Na2CO3 reacts with gangue minerals (SiO2 and Al2O3), forming aluminum silicate-containing phosphorus and damaging the ore structure, which promotes the separation between iron and phosphorus during magnetic separation. Meanwhile, Na2CO3 also improves the growth of iron grains, increasing the iron grade and iron recovery. The iron concentrate, assaying 94.12wt% Fe and 0.07wt% P at the iron recovery of 96.83% and the dephosphorization rate of 74.08%, is obtained under the optimum conditions. The final product (metal iron powder) after briquetting can be used as the burden for steelmaking by an electric arc furnace to replace scrap steel.

  16. Effect of adding carbon fiber textiles to methanogenic bioreactors used to treat an artificial garbage slurry.

    PubMed

    Sasaki, Kengo; Morita, Masahiko; Hirano, Shin-Ichi; Ohmura, Naoya; Igarashi, Yasuo

    2009-08-01

    To compare the performances and microbial populations of methanogenic reactors with and without carbon fiber textiles (CFT), we operated small-scale (200 ml) reactors using a slurry of artificial garbage. For both types of reactors, the organic loading rate (OLR) was stepwisely and rapidly increased in the same manner. Start-up period was shortened by adding CFT. Reactors with CFT showed greater efficiency for removal of suspended solid and volatile suspended solid than reactors without CFT at a long hydraulic retention time (HRT) between 8 and 13 days. The reactors with CFT maintained stable methane production at an OLR of 15.3 g dichromate chemical oxygen demand (CODcr)/l/day and DNAs from microorganisms were highly concentrated in adhering fractions on CFT. As shown by quantitative PCR analysis, the proportions of methanogenic archaea were conserved more than 25% in adhering fractions on CFT in reactors with CFT. By contrast, reactors without CFT showed accumulation of volatile fatty acid and deteriorated at an OLR of 2.4 gCODcr/l/day. Methanogenic proportions dropped to 17.1% in suspended fractions of reactors without CFT. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that all archaeal DGGE bands in both types of reactors were related to methanogens, but more bands were observed in reactors with CFT. Thus the higher performance of reactors with CFT likely reflects the greater abundance of microorganisms and methanogenic diversity. PMID:19619860

  17. Sources of carbon in inclusion bearing diamonds

    NASA Astrophysics Data System (ADS)

    Stachel, Thomas; Harris, Jeff W.; Muehlenbachs, Karlis

    2009-11-01

    The carbon isotopic composition ( δ13C) of diamonds containing peridotitic, eclogitic, websteritic and ultra-deep inclusions is re-evaluated on a detailed level. Applying a binning interval of 0.25‰, the previously recognized mode of peridotitic and eclogitic diamonds at about - 5‰ is shown to reflect at least two subpopulations with abundance peaks at ˜ - 5.75 to - 4.75‰ and ˜ - 4.50 to - 3.50‰. Within the peridotitic suite, diamonds with lherzolitic inclusions overall show higher δ13C values. Evolution away from a δ13C value of ˜ - 5‰, towards both 13C depleted and enriched compositions, is accompanied by decreasing maximum nitrogen contents of peridotitic diamonds. In combination with data on diamonds synthesized under reducing (metal melts) and more oxidizing conditions (carbonate-silicate interactions), this is taken to indicate that nitrogen is a compatible element in diamond that becomes depleted in the growth medium during progressive diamond precipitation. The observed co-variations of nitrogen content and δ13C around - 5‰ can then be modelled as reflecting closed system Rayleigh fractionation during crystallization of diamond from fluids/melts that are both reducing (i.e. methane bearing; evolution from ˜ - 5 to - 10‰) and oxidizing (i.e. CO 32- bearing; evolution from starting points varying between ˜ - 9 to - 5‰ and extending to about 0‰). Lherzolitic diamonds are believed to be mainly derived from diamond forming events subsequent to precipitation of predominantly Mesoarchean harzburgitic diamonds. The shift of lherzolitic diamonds towards higher δ13C values thus may relate to a temporal evolution, with carbonate bearing fluids with an initial isotopic composition ranging between about - 5.5 and - 1.5‰, derived from subducting oceanic crust, becoming increasingly important subsequent to the Mesoarchean. Devolatilization of marine carbonates ( δ13C ˜ 0‰) drives their isotopic composition towards mantle like values and

  18. Estimated Intakes and Sources of Total and Added Sugars in the Canadian Diet

    PubMed Central

    Brisbois, Tristin D.; Marsden, Sandra L.; Anderson, G. Harvey; Sievenpiper, John L.

    2014-01-01

    National food supply data and dietary surveys are essential to estimate nutrient intakes and monitor trends, yet there are few published studies estimating added sugars consumption. The purpose of this report was to estimate and trend added sugars intakes and their contribution to total energy intake among Canadians by, first, using Canadian Community Health Survey (CCHS) nutrition survey data of intakes of sugars in foods and beverages, and second, using Statistics Canada availability data and adjusting these for wastage to estimate intakes. Added sugars intakes were estimated from CCHS data by categorizing the sugars content of food groups as either added or naturally occurring. Added sugars accounted for approximately half of total sugars consumed. Annual availability data were obtained from Statistics Canada CANSIM database. Estimates for added sugars were obtained by summing the availability of “sugars and syrups” with availability of “soft drinks” (proxy for high fructose corn syrup) and adjusting for waste. Analysis of both survey and availability data suggests that added sugars average 11%–13% of total energy intake. Availability data indicate that added sugars intakes have been stable or modestly declining as a percent of total energy over the past three decades. Although these are best estimates based on available data, this analysis may encourage the development of better databases to help inform public policy recommendations. PMID:24815507

  19. Estimated intakes and sources of total and added sugars in the Canadian diet.

    PubMed

    Brisbois, Tristin D; Marsden, Sandra L; Anderson, G Harvey; Sievenpiper, John L

    2014-05-01

    National food supply data and dietary surveys are essential to estimate nutrient intakes and monitor trends, yet there are few published studies estimating added sugars consumption. The purpose of this report was to estimate and trend added sugars intakes and their contribution to total energy intake among Canadians by, first, using Canadian Community Health Survey (CCHS) nutrition survey data of intakes of sugars in foods and beverages, and second, using Statistics Canada availability data and adjusting these for wastage to estimate intakes. Added sugars intakes were estimated from CCHS data by categorizing the sugars content of food groups as either added or naturally occurring. Added sugars accounted for approximately half of total sugars consumed. Annual availability data were obtained from Statistics Canada CANSIM database. Estimates for added sugars were obtained by summing the availability of "sugars and syrups" with availability of "soft drinks" (proxy for high fructose corn syrup) and adjusting for waste. Analysis of both survey and availability data suggests that added sugars average 11%-13% of total energy intake. Availability data indicate that added sugars intakes have been stable or modestly declining as a percent of total energy over the past three decades. Although these are best estimates based on available data, this analysis may encourage the development of better databases to help inform public policy recommendations. PMID:24815507

  20. Source of silicate and carbonate cements during deep burial diagenesis

    SciTech Connect

    Dutta, P.K.

    1986-05-01

    Detrital silicate minerals and silicate cements (formed during shallow burial) of siliciclastic sandstones commonly dissolve during deep burial diagenesis. Quartz, feldspars, mica, and garnet among detrital silicate minerals, and quartz and kaolinite among authigenic silicate minerals show extensive dissolution features during deep burial diagenesis of siliciclastic sandstones of the Gondwana Supergroup, India. No dissolution features were observed in zircon, tourmalene, and rutile among detrital minerals or in chlorite and smectite among early formed authigenic minerals. Dissolution enriched the pore fluids in silica, potassium, sodium, calcium, magnesium, iron, and aluminum. Authigenic cements formed during this stage are illite, quartz, feldspar, iron oxide, and carbonates of calcium, magnesium, and iron. Mass-balance calculations show that the source of all silicate cements formed during deep burial diagenesis was internally derived from the dissolution of both detrital and early formed authigenic cements. However, a considerable gap exists between the amounts of cations (calcium, magnesium, and iron) derived internally and the respective amounts of these cations needed to form the various carbonate cements at this stage. Therefore, an outside source for these cations is needed to explain the formation of carbonate cements. A large mass transfer of cations from outside the sediment source seems remote since ground-water movement, which probably carried cement from an external source, is extremely restricted at great burial depths. Therefore, carbonate cements may have been major constituents during shallow burial diagenesis in Gondwana sandstones. Subsequently, these early formed carbonates were completely dissolved and remobilized as late-stage carbonate cement.

  1. Dietary intake and food sources of added sugar in the Australian population.

    PubMed

    Lei, Linggang; Rangan, Anna; Flood, Victoria M; Louie, Jimmy Chun Yu

    2016-03-14

    Previous studies in Australian children/adolescents and adults examining added sugar (AS) intake were based on now out-of-date national surveys. We aimed to examine the AS and free sugar (FS) intakes and the main food sources of AS among Australians, using plausible dietary data collected by a multiple-pass, 24-h recall, from the 2011-12 Australian Health Survey respondents (n 8202). AS and FS intakes were estimated using a previously published method, and as defined by the WHO, respectively. Food groups contributing to the AS intake were described and compared by age group and sex by one-way ANOVA. Linear regression was used to test for trends across age groups. Usual intake of FS (as percentage energy (%EFS)) was computed using a published method and compared with the WHO cut-off of <10%EFS. The mean AS intake of the participants was 60·3 (SD 52·6) g/d. Sugar-sweetened beverages accounted for the greatest proportion of the AS intake of the Australian population (21·4 (sd 30·1)%), followed by sugar and sweet spreads (16·3 (SD 24·5)%) and cakes, biscuits, pastries and batter-based products (15·7 (sd 24·4)%). More than half of the study population exceeded the WHO's cut-off for FS, especially children and adolescents. Overall, 80-90% of the daily AS intake came from high-sugar energy-dense and/or nutrient-poor foods. To conclude, the majority of Australian adults and children exceed the WHO recommendation for FS intake. Efforts to reduce AS intake should focus on energy-dense and/or nutrient-poor foods. PMID:26794833

  2. Modulation of Candida albicans Biofilm by Different Carbon Sources.

    PubMed

    Pemmaraju, Suma C; Pruthi, Parul A; Prasad, R; Pruthi, Vikas

    2016-06-01

    In the present investigation, the role of carbon sources (glucose, lactate, sucrose, and arabinose) on Candida albicans biofilm development and virulence factors was studied on polystyrene microtiter plates. Besides this, structural changes in cell wall component β-glucan in presence of different carbon sources have also been highlighted. Biofilm formation was analyzed by XTT (2,3-bis[2-Methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay. Glucose-grown cells exhibited the highest metabolic activity during adhesion among all carbon sources tested (p < 0.05). However, cells exposed to sucrose exhibited highest biofilm formation and matrix polysaccharides secretion after 48 h. The results also correlated with the biofilm height and roughness measurements by atomic force microscopy. Exposure to lactate induced hyphal structures with the highest proteinase activity while arabinose-grown cells formed pseudohyphal structures possessing the highest phospholipase activity. Structural changes in β-glucan characterized by Fourier transform infrared (FTIR) spectroscopy displayed characteristic band of β-glucan at 892 cm(-1) in all carbon sources tested. The β(1→6) to β(1→3) glucan ratio calculated as per the band area of the peak was less in lactate (1.15) as compared to glucose (1.73), sucrose (1.62), and arabinose (2.85). These results signify that carbon sources influence C. albicans biofilm development and modulate virulence factors and structural organization of cell wall component β-glucan. PMID:26899861

  3. Denitrification of high nitrate concentration wastewater using alternative carbon sources.

    PubMed

    Fernández-Nava, Y; Marañón, E; Soons, J; Castrillón, L

    2010-01-15

    The use of different organic carbon sources in the denitrification of wastewater containing 2500 mg nitrates/L in a SBR was studied. Three alternative sources of carbon were tested: wastewater from a sweet factory, a residue from a soft drinks factory and a residue from a dairy plant. The first two are sugar-rich, whereas the third presents a high content in lactic acid. Maximum specific denitrification rates of between 42 and 48 mg NO(3)-N/g VSS h were obtained. The effluents were nitrate-free and very low COD concentrations were obtained in 4-6h reaction time, especially with the sugar-rich carbon sources. The values of the denitrifier net yield coefficient were higher than when using methanol (0.93-1.75 g VSS(formed)/g NO(x)-N(reduced)). The lowest value was obtained using the lactic acid-rich residue. The optimum COD/N ratios varied between 4.6 for the lactic acid-rich carbon source and 5.5-6.5 for the sugar-rich carbon sources. PMID:19782470

  4. Carbon-14 in methane sources and in atmospheric methane - The contribution from fossil carbon

    NASA Astrophysics Data System (ADS)

    Wahlen, M.; Tanaka, N.; Henry, R.; Deck, B.; Zeglen, J.

    1989-07-01

    Measurements of carbon-14 in small samples of methane from major biogenic sources, from biomass burning, and in clean air samples from both the Northern and Southern hemispheres reveal that methane from ruminants contains contemporary carbon, whereas that from wetlands, peat bogs, rice fields, and tundra, is somewhat depleted in carbon-14. Atmospheric (C-14)H4 seems to have increased from 1986 to 1987, and levels at the end of 1987 were 123.3 + or - 0.8 percent modern carbon in the Northern Hemisphere and 120.0 + or - 0.7 percent modern carbon in the Southern Hemisphere.

  5. Carbon-14 in methane sources and in atmospheric methane - The contribution from fossil carbon

    NASA Technical Reports Server (NTRS)

    Wahlen, M.; Tanaka, N.; Henry, R.; Deck, B.; Zeglen, J.

    1989-01-01

    Measurements of carbon-14 in small samples of methane from major biogenic sources, from biomass burning, and in clean air samples from both the Northern and Southern hemispheres reveal that methane from ruminants contains contemporary carbon, whereas that from wetlands, peat bogs, rice fields, and tundra, is somewhat depleted in carbon-14. Atmospheric (C-14)H4 seems to have increased from 1986 to 1987, and levels at the end of 1987 were 123.3 + or - 0.8 percent modern carbon in the Northern Hemisphere and 120.0 + or - 0.7 percent modern carbon in the Southern Hemisphere.

  6. IMPROVING SOURCE PROFILES AND APPORTIONMENT OF COMBUSTION SOURCES USING THERMAL CARBON FRACTIONS IN MULTIVARIATE RECEPTOR MODELS

    EPA Science Inventory

    The purpose of this study was to improve combustion source profiles and apportionment of a PM2.5 urban aerosol by using 7 individual organic and elemental carbon thermal fractions in place of total organic and elemental carbon. This study used 3 years (96-99) of speciated data...

  7. Forest Fire Derived Black Carbon in the Adirondack Mountains, NY, ~1745 to 1850 A.D.

    NASA Astrophysics Data System (ADS)

    Husain, L.; Khan, A. J.; Shareef, A.; Ahmed, T.

    2008-12-01

    Black carbon (BC), a product of incomplete combustion, is ubiquitously present in our environment. The term BC and BC (elemental carbon) are often synonymously used. It absorbs solar radiation and causes heating of the atmosphere. Its presence in the atmosphere as fine particles has been linked to cardiac and pulmonary disease. It constitutes a significant portion of the organic matter. Long-term BC data, either in atmosphere or sediments is sparse. The sources of BC are forest fires, biomass burning, coal-, gasoline-, and diesel-combustion. Contributions from these sources have drastically changed over the last three centuries. Before ~1880, little fossil fuel was used in the United States. Hence BC was produced almost entirely from the biomass burning, either as a source of heat or forest fires. Contribution from forest fires must have dominated in the United States before human population reached a significant level. Lake sediments can be used to quantify BC emissions backward in time. Husain et al [JGR 113, D13102, doi:10.1029/2007JD009398, 2008] developed a new technique to calibrate the deposition of BC in to lake sediments, and used the BC measurements in individual sediment samples to determine atmospheric BC concentrations from ~1850 to 2005. In this work we have attempted to extend the measurements back to ~1745. Bottom sediment cores were collected from West Pine Pond (44°20'N, 74°25'W) using gravity coring, sliced into 1.25 or 2.5 cm sections, and freeze dried. The ages or the time of deposition of each section was determined using 210Pb dating technique. The 55- cm long core represented about 260 years or the 1745 to 2005 period. BC was separated from the sediments using a technique described by Husain et al [2008], and concentrations determined using the thermal optical method. The BC concentrations ranged from 0.2 to 3 mg g-1 dry weight of the sediment. The BC concentrations increased sharply around 1890 to 1902, reaching a level of 1.27 mg g-1, or

  8. Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source.

    PubMed

    López-Cuellar, M R; Alba-Flores, J; Rodríguez, J N Gracida; Pérez-Guevara, F

    2011-01-01

    Wautersia eutropha was able to synthesize medium chain length polyhydroxyalkanoates (PHAs) when canola oil was used as carbon source. W. eutropha was cultivated using fructose and ammonium sulphate as carbon and nitrogen sources, respectively, for growth and inoculum development. The experiments were done in a laboratory scale bioreactor in three stages. Initially, the biomass was adapted in a batch culture. Secondly, a fed-batch was used to increase the cell dry weight and PHA concentration to 4.36 g L(-1) and 0.36 g L(-1), respectively. Finally, after the addition of canola oil as carbon source a final concentration of 18.27 g L(-1) PHA was obtained after 40 h of fermentation. With canola oil as carbon source, the polymer content of the cell dry matter was 90%. The polymer was purified from dried cells and analyzed by FTIR, NMR and DSC using PHB as reference. The polymer produced by W. eutropha from canola oil had four carbon monomers in the structure of the PHA and identified by 1H and 13C NMR analysis as 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 3-hydroxyoctanoate (3HO), and 3-hydroxydodecanoate (3HDD). PMID:20933541

  9. Preliminary Black Carbon Record (1805 - 1943 AD) from the High Altitude Dasuopu Ice Core (7200 m) in the Central Himalaya

    NASA Astrophysics Data System (ADS)

    Barker, J. D.; Kaspari, S.; Wegner, A.; Thompson, L. G.; Gabrielli, P.

    2013-12-01

    Black carbon (BC) produced by the incomplete combustion of fossil and biofuels both amplifies mid-tropospheric atmospheric warming and decreases glacier surface albedo, and thus may influence regional climatic trends and water resource availability. The rapidly developing economies in Asia have been identified as significant sources of BC to the atmosphere on a continental scale in recent decades, but records available from this region to reconstruct BC concentrations spatially and temporally are limited. The analysis of BC preserved in glacier ice can provide a record of atmospheric BC content over time. We analyzed the Dasuopu Glacier ice core (Central Himalaya) for BC concentration at ~5 cm resolution using a Single Particle Soot Photometer (Droplet Measurement Technologies), and use the resultant record to describe trends in atmospheric BC from 1805 - 1943 AD. The Dasuopu ice core is unique because it was obtained at an exceptionally high elevation (7200 m a.s.l.) which may insolate it from local BC sources and reflect BC trends in a more mixed upper troposphere. Preliminary analysis of discrete sections shows that the Dasuopu ice core captures the seasonal BC deposition signal exceptionally well, with higher BC concentrations during winter-spring and lower concentrations during the summer monsoon season. Peak winter-spring concentrations pre-1890 are 10 ng g-1, increasing to as high as 30 ng g-1 during the 1890s - 1943. Additionally, background BC concentrations prior to 1890 are less than 0.5 ng g-1, and are consistently higher than 0.5 ng g-1 during the 1890s - 1943. The early 20th century BC increases are coincident with post-colonial industrialization of the Indian subcontinent. Preliminary results from the Dasuopu ice core highlight the utility of the BC record to detect perturbations in the carbon cycle at a regional scale, and the importance of an exceptionally high altitude location for detecting and preserving an atmospheric BC record. Future analyses

  10. Production of biodiesel from carbon sources of macroalgae, Laminaria japonica.

    PubMed

    Xu, Xu; Kim, Ji Young; Oh, Yu Ri; Park, Jong Moon

    2014-10-01

    As aquatic biomass which is called "the third generation biomass", Laminaria japonica (also known as Saccharina japonica) consists of mannitol and alginate which are the main polysaccharides of algal carbohydrates. In this study, oleaginous yeast (Cryptococcus curvatus) was used to produce lipid from carbon sources derived from Laminaria japonica. Volatile fatty acids (VFAs) were produced by fermentation of alginate extracted from L. japonica. Thereafter, mannitol was mixed with VFAs to culture the oleaginous yeast. The highest lipid content was 48.30%. The composition of the fatty acids was similar to vegetable oils. This is the first confirmation of the feasibility of using macroalgae as a carbon source for biodiesel production. PMID:25084043

  11. USE OF FATTY ACID STABLE CARBON ISOTOPE RATIO TO INDICATE MICROBIAL CARBON SOURCE IN TROPICAL SOILS

    EPA Science Inventory


    We use measurements of the concentration and stable carbon isotope ratio of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels, broad microbial community structure, and microbial carbon source. For studies of soil o...

  12. Chemoselective Synthesis of Carbamates using CO2 as Carbon Source.

    PubMed

    Riemer, Daniel; Hirapara, Pradipbhai; Das, Shoubhik

    2016-08-01

    Synthesis of carbamates directly from amines using CO2 as the carbon source is a straightforward and sustainable approach. Herein, we describe a highly effective and chemoselective methodology for the synthesis of carbamates at room temperature and atmospheric pressure. This methodology can also be applied to protect the amino group in amino acids and peptides, and also to synthesize important pharmaceuticals. PMID:27376902

  13. A mobile light source for carbon/nitrogen cameras

    NASA Astrophysics Data System (ADS)

    Trower, W. P.; Karev, A. I.; Melekhin, V. N.; Shvedunov, V. I.; Sobenin, N. P.

    1995-05-01

    The pulsed light source for carbon/nitrogen cameras developed to image concealed narcotics/explosives is described. This race-track microtron will produce 40 mA pulses of 70 MeV electrons, have minimal size and weight, and maximal ruggedness and reliability, so that it can be transported on a truck.

  14. Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes.

    PubMed

    Qu, Wen-Hui; Xu, Yuan-Yuan; Lu, An-Hui; Zhang, Xiang-Qian; Li, Wen-Cui

    2015-08-01

    In this report, corncob residue, the main by-product in the furfural industry, is used as a precursor to prepare porous carbon by a simple and direct thermal treatment: one-step activation without pre-carbonization. As a consequence, the corncob residue derived porous carbon achieves a high surface area of 1210 m(2) g(-1) after ash-removal. The carbon material has the advantages of low cost and low environmental impact, with a superior electrochemical performance compared to those polymer-based synthetic carbons as electrode material for a supercapacitor. The carbon electrode exhibits a high capacitance of 314 F g(-1) in 6M KOH electrolyte. The corresponding sample also shows a superb cycling stability. Almost no capacitance decay was observed after 100,000 cycles. The excellent electrochemical performance is due to the combination of a high specific surface area with a fraction of mesopores and highly stable structure. PMID:25898091

  15. Different carbon sources affect PCB accumulation by marine bivalves.

    PubMed

    Laitano, M V; Silva Barni, M F; Costa, P G; Cledón, M; Fillmann, G; Miglioranza, K S B; Panarello, H O

    2016-02-01

    Pampean creeks were evaluated in the present study as potential land-based sources of PCB marine contamination. Different carbon and nitrogen sources from such creeks were analysed as boosters of PCB bioaccumulation by the filter feeder bivalve Brachidontes rodriguezii and grazer limpet Siphonaria lessoni. Carbon of different source than marine and anthropogenic nitrogen assimilated by organisms were estimated through their C and N isotopic composition. PCB concentration in surface sediments and mollusc samples ranged from 2.68 to 6.46 ng g(-1) (wet weight) and from 1074 to 4583 ng g(-1) lipid, respectively, reflecting a punctual source of PCB contamination related to a landfill area. Thus, despite the low flow of creeks, they should not be underestimated as contamination vectors to the marine environment. On the other hand, mussels PCB bioaccumulation was related with the carbon source uptake which highlights the importance to consider this factor when studying PCB distribution in organisms of coastal systems. PMID:26606107

  16. A non-marine source of variability in Adélie Penguin demography

    USGS Publications Warehouse

    Fraser, William R.; Patterson-Fraser, Donna L.; Ribic, Christine; Schofield, Oscar; Ducklow, Hugh

    2013-01-01

    A primary research objective of the Palmer Long Term Ecological Research (LTER) program has been to identify and understand the factors that regulate the demography of Adélie penguins (Pygoscelis adeliae). In this context, our work has been focused on variability in the marine environment on which this species depends for virtually all aspects of its life history (Ainley, 2002). As we show here, however, there are patterns evident in the population dynamics of Adélie penguins that are better explained by variability in breeding habitat quality rather than by variability in the marine system. Interactions between the geomorphology of the terrestrial environment that, in turn, affect patterns of snow deposition, drive breeding habitat quality.

  17. Photoautotrophic microorganisms as a carbon source for temperate soil invertebrates.

    PubMed

    Schmidt, Olaf; Dyckmans, Jens; Schrader, Stefan

    2016-01-01

    We tested experimentally if photoautotrophic microorganisms are a carbon source for invertebrates in temperate soils. We exposed forest or arable soils to a (13)CO2-enriched atmosphere and quantified (13)C assimilation by three common animal groups: earthworms (Oligochaeta), springtails (Hexapoda) and slugs (Gastropoda). Endogeic earthworms (Allolobophora chlorotica) and hemiedaphic springtails (Ceratophysella denticulata) were highly (13)C enriched when incubated under light, deriving up to 3.0 and 17.0%, respectively, of their body carbon from the microbial source in 7 days. Earthworms assimilated more (13)C in undisturbed soil than when the microbial material was mixed into the soil, presumably reflecting selective surface grazing. By contrast, neither adult nor newly hatched terrestrial slugs (Deroceras reticulatum) grazed on algal mats. Non-photosynthetic (13)CO2 fixation in the dark was negligible. We conclude from these preliminary laboratory experiments that, in addition to litter and root-derived carbon from vascular plants, photoautotrophic soil surface microorganisms (cyanobacteria, algae) may be an ecologically important carbon input route for temperate soil animals that are traditionally assigned to the decomposer channel in soil food web models and carbon cycling studies. PMID:26740559

  18. Active Thrusting Offshore Mount Lebanon: Source of the Tsunamigenic A.D. 551 Beirut-Tripoli Earthquake

    NASA Astrophysics Data System (ADS)

    Tapponnier, P.; Elias, A.; Singh, S.; King, G.; Briais, A.; Daeron, M.; Carton, H.; Sursock, A.; Jacques, E.; Jomaa, R.; Klinger, Y.

    2007-12-01

    On July 9, AD 551, a large earthquake, followed by a tsunami destroyed most of the coastal cities of Phoenicia (modern-day Lebanon). This was arguably one of the most devastating historical submarine earthquakes in the eastern Mediterranean. Geophysical data from the Shalimar survey unveils the source of this Mw=7.5 event: rupture of the offshore, hitherto unknown, 100?150 km-long, active, east-dipping Mount Lebanon Thrust (MLT). Deep-towed sonar swaths along the base of prominent bathymetric escarpments reveal fresh, west facing seismic scarps that cut the sediment-smoothed seafloor. The MLT trace comes closest (~ 8 km) to the coast between Beirut and Enfeh, where as 13 radiocarbon-calibrated ages indicate, a shoreline-fringing Vermetid bench suddenly emerged by ~ 80 cm in the 6th century AD. At Tabarja, the regular vertical separation (~ 1 m) of higher fossil benches, suggests uplift by 3 more comparable-size earthquakes since the Holocene sea-level reached a maximum ca. 7-6 ka, implying a 1500?1750 yr recurrence time. Unabated thrusting on the MLT likely orchestrated the growth of Mt. Lebanon since the late Miocene. The newly discovered MLT has been the missing piece in the Dead Sea Transform and eastern Mediterranean tectonic scheme. Identifying the source of the AD 551 event thus ends a complete reassessment of the sources of the major historical earthquakes on the various faults of the Lebanese Restraining Bend of the Levant Fault System (or Dead Sea Transform).

  19. Active Thrusting Offshore Mount Lebanon: Source of the Tsunamigenic A.D. 551 Beirut-Tripoli Earthquake

    NASA Astrophysics Data System (ADS)

    Tapponnier, P.; Elias, A.; Singh, S.; King, G.; Briais, A.; Daeron, M.; Carton, H.; Sursock, A.; Jacques, E.; Jomaa, R.; Klinger, Y.

    2004-12-01

    On July 9, AD 551, a large earthquake, followed by a tsunami destroyed most of the coastal cities of Phoenicia (modern-day Lebanon). This was arguably one of the most devastating historical submarine earthquakes in the eastern Mediterranean. Geophysical data from the Shalimar survey unveils the source of this Mw=7.5 event: rupture of the offshore, hitherto unknown, 100?150 km-long, active, east-dipping Mount Lebanon Thrust (MLT). Deep-towed sonar swaths along the base of prominent bathymetric escarpments reveal fresh, west facing seismic scarps that cut the sediment-smoothed seafloor. The MLT trace comes closest (~ 8 km) to the coast between Beirut and Enfeh, where as 13 radiocarbon-calibrated ages indicate, a shoreline-fringing Vermetid bench suddenly emerged by ~ 80 cm in the 6th century AD. At Tabarja, the regular vertical separation (~ 1 m) of higher fossil benches, suggests uplift by 3 more comparable-size earthquakes since the Holocene sea-level reached a maximum ca. 7-6 ka, implying a 1500?1750 yr recurrence time. Unabated thrusting on the MLT likely orchestrated the growth of Mt. Lebanon since the late Miocene. The newly discovered MLT has been the missing piece in the Dead Sea Transform and eastern Mediterranean tectonic scheme. Identifying the source of the AD 551 event thus ends a complete reassessment of the sources of the major historical earthquakes on the various faults of the Lebanese Restraining Bend of the Levant Fault System (or Dead Sea Transform).

  20. Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery

    PubMed Central

    Jiang, Guozhan; Hill, David J.; Kowalczuk, Marek; Johnston, Brian; Adamus, Grazyna; Irorere, Victor; Radecka, Iza

    2016-01-01

    Polyhydroxyalkanoates (PHAs) are a group of bioplastics that have a wide range of applications. Extensive progress has been made in our understanding of PHAs’ biosynthesis, and currently, it is possible to engineer bacterial strains to produce PHAs with desired properties. The substrates for the fermentative production of PHAs are primarily derived from food-based carbon sources, raising concerns over the sustainability of their production in terms of their impact on food prices. This paper gives an overview of the current carbon sources used for PHA production and the methods used to transform these sources into fermentable forms. This allows us to identify the opportunities and restraints linked to future sustainable PHA production. Hemicellulose hydrolysates and crude glycerol are identified as two promising carbon sources for a sustainable production of PHAs. Hemicellulose hydrolysates and crude glycerol can be produced on a large scale during various second generation biofuels’ production. An integration of PHA production within a modern biorefinery is therefore proposed to produce biofuels and bioplastics simultaneously. This will create the potential to offset the production cost of biofuels and reduce the overall production cost of PHAs. PMID:27447619

  1. Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery.

    PubMed

    Jiang, Guozhan; Hill, David J; Kowalczuk, Marek; Johnston, Brian; Adamus, Grazyna; Irorere, Victor; Radecka, Iza

    2016-01-01

    Polyhydroxyalkanoates (PHAs) are a group of bioplastics that have a wide range of applications. Extensive progress has been made in our understanding of PHAs' biosynthesis, and currently, it is possible to engineer bacterial strains to produce PHAs with desired properties. The substrates for the fermentative production of PHAs are primarily derived from food-based carbon sources, raising concerns over the sustainability of their production in terms of their impact on food prices. This paper gives an overview of the current carbon sources used for PHA production and the methods used to transform these sources into fermentable forms. This allows us to identify the opportunities and restraints linked to future sustainable PHA production. Hemicellulose hydrolysates and crude glycerol are identified as two promising carbon sources for a sustainable production of PHAs. Hemicellulose hydrolysates and crude glycerol can be produced on a large scale during various second generation biofuels' production. An integration of PHA production within a modern biorefinery is therefore proposed to produce biofuels and bioplastics simultaneously. This will create the potential to offset the production cost of biofuels and reduce the overall production cost of PHAs. PMID:27447619

  2. Trends in intakes and sources of solid fats and added sugars among US children and adolescents: 1994-2010

    PubMed Central

    Slining, Meghan M.; Popkin, Barry M.

    2013-01-01

    Objective There are increasing global concerns about improving the dietary intakes of children and adolescents. In the United States (U.S.) the focus is on reducing energy from foods and beverages that provide empty calories from solid fats and added sugars (SoFAS). We examine trends in intakes and sources of solid fat and added sugars among U.S. 2- to 18- year olds from 1994-2010. Methods Data from five nationally representative surveys, the Continuing Survey of Food Intakes by Individuals Surveys (1994-1996) and the What We Eat In America, National Health and Nutrition Examination Surveys (2003-2004, 2005-2006, 2007-2008 and 2009-2010) were used to examine key food sources and energy from solid fats and added sugars. Sample sizes ranged from 2,594 to 8,259 per survey period, for a total of 17,268 observations across the five surveys. Food files were linked over time to create comparable food groups and nutrient values. Differences were examined by age, race/ethnicity and family income. Results Daily intake of energy from SoFAS among U.S. 2-18 year olds decreased from 1994-2010, with declines primarily detected in the recent time periods. Solid fats accounted for a greater proportion of total energy intake than did added sugars. Conclusions Although the consumption of solid fats and added sugars among children and adolescents in the United States decreased between 1994–1998 and 2009–2010, mean intakes continue to exceed recommended limits. PMID:23554397

  3. Carbon-14 in methane sources and in atmospheric methane: The contribution from fossil carbon

    SciTech Connect

    Wahlen, M.; Tanaka, N.; Henry, R.; Deck, B.; Zeglen, J. ); Vogel, J.S.; Southon, J. ); Shemesh, A.; Fairbanks, R.; Broecker, W. )

    1989-07-21

    Measurements of carbon-14 in small samples of methane from major biogenic sources, from biomass burning, and in clean air samples from both the Northern and Southern hemispheres reveal that methane from ruminants contains contemporary carbon, whereas that from wetlands, peat bogs, rice fields, and tundra is somewhat, depleted in carbon-14. Atmospheric {sup 14}CH{sub 4} seems to have increased from 1986 to 1987, and levels at the end of 1987 were 123.3 {plus minus} 0.8% modern carbon (pMC) in the Northern Hemisphere and 120.0 {plus minus} 0.7 pMC in the Southern Hemisphere. Model calculations of source partitioning based on the carbon-14 data, CH{sub 4} concentrations, and {delta}{sup 13}C in CH{sub 4} indicate that 21 {plus minus} 3% of atmospheric CH{sub 4} was derived from fossil carbon at the end of 1987. The data also indicate that pressurized water reactors are an increasingly important source of {sup 14}CH{sub 4}. 38 refs., 3 figs., 2 tabs.

  4. Microbial Sources of Amyloid and Relevance to Amyloidogenesis and Alzheimer’s Disease (AD)

    PubMed Central

    Zhao, Y; Dua, P; Lukiw, WJ

    2015-01-01

    Since the inception of the human microbiome project (HMP) by the US National Institutes of Health (NIH) in 2007 there has been a keen resurgence in our recognition of the human microbiome and its contribution to development, immunity, neurophysiology, metabolic and nutritive support to central nervous system (CNS) health and disease. What is not generally appreciated is that (i) the ~1014 microbial cells that comprise the human microbiome outnumber human host cells by approximately one hundred-to-one; (ii) together the microbial genes of the microbiome outnumber human host genes by about one hundred-and-fifty to one; (iii) collectively these microbes constitute the largest ‘diffuse organ system’ in the human body, more metabolically active than the liver; strongly influencing host nutritive-, innate-immune, neuroinflammatory-, neuromodulatory- and neurotransmission-functions; and (iv) that these microbes actively secrete highly complex, immunogenic mixtures of lipopolysaccharide (LPS) and amyloid from their outer membranes into their immediate environment. While secreted LPS and amyloids are generally quite soluble as monomers over time they form into highly insoluble fibrous protein aggregates that are implicated in the progressive degenerative neuropathology of several common, age-related disorders of the human CNS including Alzheimer’s disease (AD). This general commentary-perspective paper will highlight some recent findings on microbial-derived secreted LPS and amyloids and the potential contribution of these neurotoxic and proinflammatory microbial exudates to age-related inflammatory amyloidogenesis and neurodegeneration, with specific reference to AD wherever possible. PMID:25977840

  5. Carbon nitride films formed using sputtering and negative carbon ion sources

    SciTech Connect

    Murzin, I.H.; Tompa, G.S.; Wei, J.; Muratov, V.; Fischer, T.E.; Yakovlev, V.

    1997-12-01

    The authors report the results of using sputtering and negative carbon ion sources to prepare thin films of carbon nitride. In this work, they compare the structural, tribological, and optical properties of the carbon nitride films that were prepared by two different ion assisted techniques. In the first approach they used a magnetron gun to sputter deposit carbon in a nitrogen atmosphere. The second method utilized a beam of negatively charged carbon ions of 1 to 5 {micro}A/cm{sup 2} current density impinging the substrate simultaneously with a positive nitrogen ion beam produced by a Kaufman source. They were able to synthesize microscopically smooth coatings with the carbon to nitrogen ratio of 1:0.47. These films possess wear rates lower than 5 {times} 10{sup {minus}7} mm{sup 3}/Nm and friction coefficients in the range of 0.16 to 0.6. Raman spectroscopy revealed that the magnetron sputtered films are more structurally disordered than those formed with the negative carbon ion gun. FTIR showed the presence of the C{triple_bond}N stretching mode in both types of films. Finally, spectroscopic ellipsometry produced films with dielectric constants as low as 2.3 in the photon energy range from 1.2 to 5 eV.

  6. The Ultimate Electron Sources Using Millimeter Long Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Perea, N.; Rebollo, B.; Briones, J. A.; Morelos, A.; Hernandez, D.; Munoz, E.; Lopez-Urias, F.; Botello, A. R.; Charlier, J. C.; Meunier, V.; Hirata, G. A.; Maruyama, B.; Terrones, M.; Terrones, H.

    2012-02-01

    We are reporting the fabrication of a very efficient electron source using long and crystalline carbon nanotubes. These devices start to emit electrons at fields as low as 0.10 V/μm and reach threshold emission at 0.164 V/μm. In addition, these electron sources are very stable for long operation periods up to 200 hrs and can achieve peak current density of 2 Acm-2 at only 0.28 V/μm. To demonstrate intense electron beam generation, these devices were used to produce white light by cathodoluminescence. Finally, to rational the measured properties in open carbon nanotubes of different lengths we used density functional theory. The modeling establishes a clear correlation between length and field enhancement factor.

  7. Sustainable development of tyre char-based activated carbons with different textural properties for value-added applications.

    PubMed

    Hadi, Pejman; Yeung, Kit Ying; Guo, Jiaxin; Wang, Huaimin; McKay, Gordon

    2016-04-01

    This paper aims at the sustainable development of activated carbons for value-added applications from the waste tyre pyrolysis product, tyre char, in order to make pyrolysis economically favorable. Two activation process parameters, activation temperature (900, 925, 950 and 975 °C) and residence time (2, 4 and 6 h) with steam as the activating agent have been investigated. The textural properties of the produced tyre char activated carbons have been characterized by nitrogen adsorption-desorption experiments at -196 °C. The activation process has resulted in the production of mesoporous activated carbons confirmed by the existence of hysteresis loops in the N2 adsorption-desorption curves and the pore size distribution curves obtained from BJH method. The BET surface area, total pore volume and mesopore volume of the activated carbons from tyre char have been improved to 732 m(2)/g, 0.91 cm(3)/g and 0.89 cm(3)/g, respectively. It has been observed that the BET surface area, mesopore volume and total pore volume increased linearly with burnoff during activation in the range of experimental parameters studied. Thus, yield-normalized surface area, defined as the surface area of the activated carbon per gram of the precursor, has been introduced to optimize the activation conditions. Accordingly, the optimized activation conditions have been demonstrated as an activation temperature of 975 °C and an activation time of 4 h. PMID:26775155

  8. [Effects of carbon sources, temperature and electron acceptors on biological phosphorus removal].

    PubMed

    Han, Yun; Xu, Song; Dong, Tao; Wang, Bin-Fan; Wang, Xian-Yao; Peng, Dang-Cong

    2015-02-01

    Effects of carbon sources, temperature and electron acceptors on phosphorus uptake and release were investigated in a pilot-scale oxidation ditch. Phosphorus uptake and release rates were measured with different carbon sources (domestic sewage, sodium acetate, glucose) at 25 degrees C. The results showed that the minimum phosphorus uptake and release rates of glucose were 5.12 mg x (g x h)(-1) and 6.43 mg x (g x h)(-1), respectively, and those of domestic sewage are similar to those of sodium acetate. Phosphorus uptake and release rates increased with the increase of temperature (12, 16, 20 and 25 degrees C) using sodium acetate as carbon sources. Anoxic phosphorus uptake rate decreased with added COD. Electron acceptors (oxygen, nitrate, nitrite) had significant effects on phosphorus uptake rate and their order was in accordance with oxygen > nitrate > nitrite. The mass ratio of anoxic P uptake and N consumption (P(uptake)/N (consumption)) of nitrate and nitrite were 0.96 and 0.65, respectively. PMID:26031087

  9. Electrospun Ni-added SnO2-carbon nanofiber composite anode for high-performance lithium-ion batteries.

    PubMed

    Kim, Dongha; Lee, Daehee; Kim, Joosun; Moon, Jooho

    2012-10-24

    The SnO(2) anode is a promising anode for next-generation Li ion batteries because of its high theoretical capacity. However, it exhibits inherent capacity fading because of the large volume change and pulverization that occur during the charge/discharge cycles. The buffer matrix, such as electrospun carbon nanofibers (CNFs), can alleviate this problem to some extent, but SnO(2) particles are thermodynamically incompatible with the carbon matrix such that large Sn agglomerates form after carbonization upon melting of the Sn. Herein, we introduce well-dispersed nanosized SnO(2) attached to CNFs for high-performance anodes developed by Ni presence. The addition of Ni increases the stability of the SnO(2) such that the morphologies of the dispersed SnO(2) phase are modified as a function of the Ni composition. The optimal adding composition is determined to be Ni:Sn = 10:90 wt % in terms of the crystallite size and the distribution uniformity. A high capacity retention of 447.6 mA h g(-1) after 100 cycles can be obtained for 10 wt % Ni-added SnO(2)-CNFs, whereas Ni-free Sn/SnO(2)-CNFs have a capacity retention of 304.6 mA h g(-1). PMID:22999049

  10. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    SciTech Connect

    Wang, Hao; Wang, Yun; Dai, Xiao; Zou, Guifu E-mail: zouguifu@suda.edu.cn; Gao, Peng; Zhang, Ke-Qin E-mail: zouguifu@suda.edu.cn; Du, Dezhuang; Guo, Jun

    2015-08-01

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  11. Methane and carbon at equilibrium in source rocks

    PubMed Central

    2013-01-01

    Methane in source rocks may not exist exclusively as free gas. It could exist in equilibrium with carbon and higher hydrocarbons: CH4 + C < = > Hydrocarbon. Three lines of evidence support this possibility. 1) Shales ingest gas in amounts and selectivities consistent with gas-carbon equilibrium. There is a 50% increase in solid hydrocarbon mass when Fayetteville Shale is exposed to methane (450 psi) under moderate conditions (100°C): Rock-Eval S2 (mg g-1) 8.5 = > 12.5. All light hydrocarbons are ingested, but with high selectivity, consistent with competitive addition to receptor sites in a growing polymer. Mowry Shale ingests butane vigorously from argon, for example, but not from methane under the same conditions. 2) Production data for a well producing from Fayetteville Shale declines along the theoretical curve for withdrawing gas from higher hydrocarbons in equilibrium with carbon. 3) A new general gas-solid equilibrium model accounts for natural gas at thermodynamic equilibrium, and C6-C7 hydrocarbons constrained to invariant compositions. The results make a strong case for methane in equilibrium with carbon and higher hydrocarbons. If correct, the higher hydrocarbons in source rocks are gas reservoirs, raising the possibility of substantially more gas in shales than analytically apparent, and far more gas in shale deposits than currently recognized. PMID:24330266

  12. Added-value joint source modelling of seismic and geodetic data

    NASA Astrophysics Data System (ADS)

    Sudhaus, Henriette; Heimann, Sebastian; Walter, Thomas R.; Krueger, Frank

    2013-04-01

    In tectonically active regions earthquake source studies strongly support the analysis of the current faulting processes as they reveal the location and geometry of active faults, the average slip released or more. For source modelling of shallow, moderate to large earthquakes often a combination of geodetic (GPS, InSAR) and seismic data is used. A truly joint use of these data, however, usually takes place only on a higher modelling level, where some of the first-order characteristics (time, centroid location, fault orientation, moment) have been fixed already. These required basis model parameters have to be given, assumed or inferred in a previous, separate and highly non-linear modelling step using one of the these data sets alone. We present a new earthquake rupture model implementation that realizes a fully combined data integration of surface displacement measurements and seismic data in a non-linear optimization of simple but extended planar ruptures. The model implementation allows for fast forward calculations of full seismograms and surface deformation and therefore enables us to use Monte Carlo global search algorithms. Furthermore, we benefit from the complementary character of seismic and geodetic data, e. g. the high definition of the source location from geodetic data and the sensitivity of the resolution of the seismic data on moment releases at larger depth. These increased constraints from the combined dataset make optimizations efficient, even for larger model parameter spaces and with a very limited amount of a priori assumption on the source. A vital part of our approach is rigorous data weighting based on the empirically estimated data errors. We construct full data error variance-covariance matrices for geodetic data to account for correlated data noise and also weight the seismic data based on their signal-to-noise ratio. The estimation of the data errors and the fast forward modelling opens the door for Bayesian inferences of the source

  13. Source of the tsunami generated by the 1650 AD eruption of Kolumbo submarine volcano (Aegean Sea, Greece)

    NASA Astrophysics Data System (ADS)

    Ulvrova, Martina; Paris, R.; Nomikou, P.; Kelfoun, K.; Leibrandt, S.; Tappin, D. R.; McCoy, F. W.

    2016-07-01

    The 1650 AD explosive eruption of Kolumbo submarine volcano (Aegean Sea, Greece) generated a destructive tsunami. In this paper we propose a source mechanism of this poorly documented tsunami using both geological investigations and numerical simulations. Sedimentary evidence of the 1650 AD tsunami was found along the coast of Santorini Island at maximum altitudes ranging between 3.5 m a.s.l. (Perissa, southern coast) and 20 m a.s.l. (Monolithos, eastern coast), corresponding to a minimum inundation of 360 and 630 m respectively. Tsunami deposits consist of an irregular 5 to 30 cm thick layer of dark grey sand that overlies pumiceous deposits erupted during the Minoan eruption and are found at depths of 30-50 cm below the surface. Composition of the tsunami sand is similar to the composition of the present-day beach sand but differs from the pumiceous gravelly deposits on which it rests. The spatial distribution of the tsunami deposits was compared to available historical records and to the results of numerical simulations of tsunami inundation. Different source mechanisms were tested: earthquakes, underwater explosions, caldera collapse, and pyroclastic flows. The most probable source of the 1650 AD Kolumbo tsunami is a 250 m high water surface displacement generated by underwater explosion with an energy of ~ 2 × 1016 J at water depths between 20 and 150 m. The tsunamigenic explosion(s) occurred on September 29, 1650 during the transition between submarine and subaerial phases of the eruption. Caldera subsidence is not an efficient tsunami source mechanism as short (and probably unrealistic) collapse durations (< 5 min) are needed. Pyroclastic flows cannot be discarded, but the required flux (106 to 107 m3 · s- 1) is exceptionally high compared to the magnitude of the eruption.

  14. Source of the tsunami generated by the 1650 AD eruption of Kolumbo submarine volcano (Aegean Sea, Greece)

    NASA Astrophysics Data System (ADS)

    Ulvrova, Martina; Paris, Raphael; Nomikou, Paraskevi; Tappin, Dave

    2016-04-01

    The 1650 AD explosive eruption of Kolumbo submarine volcano (Aegean Sea, Greece) generated a destructive tsunami. In this paper we propose a source mechanism of this poorly documented tsunami using both geological investigations and numerical simulations. Sedimentary evidences of the 1650 AD tsunami were found along the coast of Santorini Island at maximum altitudes ranging between 3.5 m a.s.l. (Perissa, southern coast) and 20 m a.s.l. (Monolithos, eastern coast), corresponding to a minimum inundation of 360 and 630 m respectively. Tsunami deposits correspond to an irregular 5 to 30 cm thick layer of dark grey sand intercalated in soil at depths between 30 and 50 cm. Composition of the tsunami sand is similar to the composition of the present-day beach and clearly differs from the pumiceous gravelly soil. Spatial distribution of the tsunami deposits was confronted to available historical records and to the results of numerical simulations of tsunami inundation. Different scenarios of source mechanism were tested: earthquakes, underwater explosions, caldera collapse, and pyroclastic flows. The most probable source of the 1650 AD Kolumbo tsunami is a 250 m high water surface displacement generated by underwater explosion with an energy of ~2 E15 J at water depths between 20 and 150 m. The tsunamigenic explosion(s) occurred on September 29, 1650 during the transition between submarine and subaerial phases. Caldera subsidence is not an efficient source of tsunami, as short (and probably unrealistic) collapse durations (< 5 minutes) are needed. Pyroclastic flows cannot be discarded, but the required flux (E6 to E7 m³.s-1) is exceptionally high compared to the magnitude of the eruption.

  15. Terrestrial sources and sinks of carbon inferred from terrestrial data

    NASA Astrophysics Data System (ADS)

    Houghton, R. A.

    1996-09-01

    Two approaches have been used to calculate changes in terrestrial carbon storage with data obtained from terrestrial ecosystems, rather than with atmospheric or oceanographic data. One approach is based on the changes in carbon that result from changes in land use (conversion of forest to agricultural land, abandonment of agricultural land, harvest and regrowth). The other approach uses measurements of forest biomass obtained through forests inventories to determine change directly. These latter studies may also calculate changes in the amount of carbon stored in wood products and soil, but in this respect the two approaches are similar. If a significant fraction of the missing carbon sink is to be found in mid-latitude forests, one would expect direct measurement of biomass to show greater accumulations of carbon than analyses in which calculated accumulations result only from regrowth following previous harvests or abandonment of agricultural land. Data from Canada, the conterminous US, Europe, and the former USSR show this circumstance to be correct. Accumulations of carbon in biomass and soil are 0.8 PgC yr-1 greater than expected from past management practices (land-use change). In the tropics (where forest inventories are rare), the total net flux of carbon from changes in land use (1.6 PgC yr-1) is consistent with recent estimates of flux based on atmospheric data, but the geographic distribution of the flux is not the same. Globally, terrestrial ecosystems are calculated to have been a net source of 0.8±0.6 PgC yr-1 during the 1980s.

  16. [Denitrification performance of PBS as a solid carbon source of denitrification].

    PubMed

    Liu, Jia; Shen, Zhi-Qiang; Zhou, Yue-Xi; Cao, Rong; Li, Yuan-Zhi

    2014-07-01

    Poly-butylenes succinate (PBS) was used as solid denitrification carbon source and biofilm carrier, to investigate the denitrification performance and the influence of adding inert carrier. The experimental results showed that PBS could serve as solid carbon source for denitrification of low C/N ratio wastewater, but the startup time was longer, about 33 d. There was no accumulation of nitrite nitrogen in the process of denitrification, but it produced less than 0.8 mg x L(-1) ammonia nitrogen. Increasing the amount of biofilm in PBS supported denitrification system by adding the inert carrier could improve the denitrification rate. The denitrification rates of PBS, PBS + 30 g gravel, PBS + 60 g gravel and PBS +90 g gravel systems were 5.33, 7.04, 10.05 and 6.93 mg x (L x h)(-1), respectively, and all reactions were zero order. During the denitrification process (0-9 h), DOC increased before it was reduced. At the end of the denitrification reaction (24 h), DOC of the denitrification system with inert carrier 60 g gravel and 90 g gravel was 16.34 mg x L(-1) and 19.22 mg x L(-1), respectively, higher than that without gravel of 13.48 mg x L(-1). The pH of all denitrification systems were lower than the initial value, which was the result of comprehensive function of acidic substances and alkalinity produced in the process of degradation of solid carbon source and denitrification, respectively. PMID:25244849

  17. Polyhydroxyalkanoate biosynthesis by Hydrogenophaga pseudoflava DSM1034 from structurally unrelated carbon sources.

    PubMed

    Povolo, Silvana; Romanelli, Maria Giovanna; Basaglia, Marina; Ilieva, Vassilka Ivanova; Corti, Andrea; Morelli, Andrea; Chiellini, Emo; Casella, Sergio

    2013-09-25

    In the present paper we report the exclusive microbial preparation of polyhydroxyalkanoates (PHA) containing 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV) and 4-hydroxybutyrate (4HB) as comonomers through the use of unexpensive carbon sources such as whey from dairy industry. Polymers were produced by growing H. pseudoflava DSM 1034 in minimal medium supplemented with sucrose, lactose or whey without any co-substrate added. The chemical and physical properties of the polymers were fully characterized by GPC, DSC, TGA analyses and the composition by GC and (1)H NMR examinations to especially confirm the content of different monomeric units. The presence of 4HB units into PHA samples is particularly aimed in thermoplastic applications where greater flexibility is required and conventional rigid PHAs tend to fail. Usually the insertion of 4HB into chain backbone consisting of 3-hydroxyalkanoates requires expensive carbon sources mostly of petrochemical origin. According to our study the production of P(3HB-co-3HV-co-4HB) terpolymer can be obtained directly by the use of lactose or waste raw materials such as cheese whey as carbon sources. Although the amount of 4HB in the produced terpolymers was usually low and not exceeding 10% of the total molar composition, a PHA containing 18.4% of 4HB units was produced in 1 step fermentation process from this structurally unrelated carbon sources. The crystallinity of the terpolymer is basically to be markedly affected with respect to that of conventional PHAs, thus obtaining a comparatively less rigid material and easier to be processed. PMID:23201074

  18. Role of metabolite transporters in source-sink carbon allocation

    PubMed Central

    Ludewig, Frank; Flügge, Ulf-Ingo

    2013-01-01

    Plants assimilate carbon dioxide during photosynthesis in chloroplasts. Assimilated carbon is subsequently allocated throughout the plant. Generally, two types of organs can be distinguished, mature green source leaves as net photoassimilate exporters, and net importers, the sinks, e.g., roots, flowers, small leaves, and storage organs like tubers. Within these organs, different tissue types developed according to their respective function, and cells of either tissue type are highly compartmentalized. Photoassimilates are allocated to distinct compartments of these tissues in all organs, requiring a set of metabolite transporters mediating this intercompartmental transfer. The general route of photoassimilates can be briefly described as follows. Upon fixation of carbon dioxide in chloroplasts of mesophyll cells, triose phosphates either enter the cytosol for mainly sucrose formation or remain in the stroma to form transiently stored starch which is degraded during the night and enters the cytosol as maltose or glucose to be further metabolized to sucrose. In both cases, sucrose enters the phloem for long distance transport or is transiently stored in the vacuole, or can be degraded to hexoses which also can be stored in the vacuole. In the majority of plant species, sucrose is actively loaded into the phloem via the apoplast. Following long distance transport, it is released into sink organs, where it enters cells as source of carbon and energy. In storage organs, sucrose can be stored, or carbon derived from sucrose can be stored as starch in plastids, or as oil in oil bodies, or – in combination with nitrogen – as protein in protein storage vacuoles and protein bodies. Here, we focus on transport proteins known for either of these steps, and discuss the implications for yield increase in plants upon genetic engineering of respective transporters. PMID:23847636

  19. Trace metal source terms in carbon sequestration environments.

    PubMed

    Karamalidis, Athanasios K; Torres, Sharon G; Hakala, J Alexandra; Shao, Hongbo; Cantrell, Kirk J; Carroll, Susan

    2013-01-01

    Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising; however, possible CO(2) or CO(2)-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define a range of concentrations that can be used as the trace element source term for reservoirs and leakage pathways in risk simulations. Storage source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from cements and sandstones, shales, carbonates, evaporites, and basalts from the Frio, In Salah, Illinois Basin, Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands, and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution was tracked by measuring solution concentrations over time under conditions (e.g., pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for maximum contaminant levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments because of the presence of CO(2). Results indicate that Cr and Pb released from sandstone reservoir and shale cap rocks exceed the MCLs by an order of magnitude, while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the trace element source term for reservoirs and leakage pathways in risk simulations to further evaluate the impact of leakage on groundwater quality. PMID:23215015

  20. Trace Metal Source Terms in Carbon Sequestration Environments

    SciTech Connect

    Karamalidis, Athanasios; Torres, Sharon G.; Hakala, Jacqueline A.; Shao, Hongbo; Cantrell, Kirk J.; Carroll, Susan A.

    2013-01-01

    ABSTRACT: Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising; however, possible CO2 or CO2-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define to provide a range of concentrations that can be used as the trace element source term for reservoirs and leakage pathways in risk simulations. Storage source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from cements and sandstones, shales, carbonates, evaporites, and basalts from the Frio, In Salah, Illinois Basin, Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands, and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution was tracked by measuring solution concentrations over time under conditions (e.g., pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for maximum contaminant levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments because of the presence of CO2. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rocks exceed the MCLs byan order of magnitude, while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the trace element source term for reservoirs and leakage pathways in risk simulations to further evaluate the impact of leakage on groundwater quality.

  1. Trace Metal Source Terms in Carbon Sequestration Environments

    SciTech Connect

    Karamalidis, Athanasios K; Torres, Sharon G; Hakala, J Alexandra; Shao, Hongbo; Cantrell, Kirk J; Carroll, Susan

    2012-02-05

    Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising, however, possible CO₂ or CO₂-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define trace metal source terms from the reaction of supercritical CO₂, storage reservoir brines, reservoir and cap rocks. Storage reservoir source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from sandstones, shales, carbonates, evaporites, basalts and cements from the Frio, In Salah, Illinois Basin – Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution is tracked by measuring solution concentrations over time under conditions (e.g. pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for Maximum Contaminant Levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments due to the presence of CO₂. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rock exceed the MCLs by an order of magnitude while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the reservoir and caprock source term to further evaluate the impact of leakage on groundwater quality.

  2. 'Arthritis' in Byzantium (AD 324-1453): unknown information from non-medical literary sources.

    PubMed Central

    Lascaratos, J

    1995-01-01

    OBJECTIVE--To compile and analyse information contained in non-medical texts of the Byzantine historians and chroniclers concerning arthritis, and to clarify the first use of Colchicum autumnale in the treatment of gout by the fifth century physician, Jacob Psychristus. CONCLUSIONS--This material gives an indication of the problem of arthritis and, in particular, a disease resembling gout that tyrannised a great number of the population in the Byzantine Empire (AD 324-1453). Contemporary historians and chroniclers maintain that the main causes of gout ('podagra') were the over-consumption of alcoholic drinks and food. Most relevant texts include anxiety and heredity among the aetiological factors of the disease. The incidence of this group of diseases among the Byzantine Emperors (it is certain that 14 of a total of 86 had a form of arthritis) and other officials of the State indicates that these diseases were a possible factor in certain political and military difficulties of the Empire. Images PMID:8546526

  3. Sources and sinks of carbon dioxide in the Arctic regions

    SciTech Connect

    Gosink, T. A.; Kelley, J. J.

    1982-01-01

    The data base required to adequately ascertain seasonal source and sink strengths in the arctic regions is difficult to obtain. However, there are now a reasonable quantity of data for this polar region to estimate sources and sinks within the Arctic which may contribute significantly to the annual tropospheric CO/sub 2/ concentration fluctuation. The sea-ice-air and the sea-air interfaces account for most of the contribution to the sources and sinks for carbon dioxide. Although the arctic and subarctic region is small in extent, it certainly is not impervious and ice sealed. Our estimate, based on historical data and current research, indicates that the Arctic, which is about 4% of the earth's surface, is an annual net sink for approx. 10/sup 15/ g CO/sub 2/ accounting for an equivalent of approx. 3% of the annual anthropogenic contribution of CO/sub 2/ to the troposphere.

  4. A Carbon Nanotube Electron Source Based Ionization Vacuum Gauge

    SciTech Connect

    Changkun Dong; Ganapati Myneni

    2003-10-01

    The results of fabrication and performance of an ionization vacuum gauge using a carbon nanotube (CNT) electron source are presented. The electron source was constructed with multi-wall nanotubes (MWNT), which were grown using thermal chemical vapor deposition (CVD) process. The electron emission of the source was stable in vacuum pressure up to 10-7 Torr, which is better than the metal field emitters. The measurement linearity of the gauge was better than {+-}10% from 10-6 to 10-10 Torr. The gauge sensitivity of 4 Torr-1 was achieved under 50 {micro}A electron emission in nitrogen. The gauge is expected to find applications in vacuum measurements from 10-7 Torr to below 10-11 Torr.

  5. Utilization of carbon sources in a northern Brazilian mangrove ecosystem

    NASA Astrophysics Data System (ADS)

    Giarrizzo, Tommaso; Schwamborn, Ralf; Saint-Paul, Ulrich

    2011-12-01

    Carbon and nitrogen stable isotope ratios ( 13C and 15N) and trophic level (TL) estimates based on stomach content analysis and published data were used to assess the contribution of autotrophic sources to 55 consumers in an intertidal mangrove creek of the Curuçá estuary, northern Brazil. Primary producers showed δ 13C signatures ranging between -29.2 and -19.5‰ and δ 15N from 3.0 to 6.3‰. The wide range of the isotopic composition of carbon of consumers (-28.6 to -17.1‰) indicated that different autotrophic sources are important in the intertidal mangrove food webs. Food web segregation structures the ecosystem into three relatively distinct food webs: (i) mangrove food web, where vascular plants contribute directly or indirectly via POM to the most 13C-depleted consumers (e.g. Ucides cordatus and zooplanktivorous food chains); (ii) algal food web, where benthic algae are eaten directly by consumers (e.g. Uca maracoani, mullets, polychaetes, several fishes); (iii) mixed food web where the consumers use the carbon from different primary sources (mainly benthivorous fishes). An IsoError mixing model was used to determine the contributions of primary sources to consumers, based on δ 13C values. Model outputs were very sensitive to the magnitude of trophic isotope fractionation and to the variability in 13C data. Nevertheless, the simplification of the system by a priori aggregation of primary producers allowed interpretable results for several taxa, revealing the segregation into different food webs.

  6. Carbon sources and fates in the Gulf of Papua

    NASA Astrophysics Data System (ADS)

    Goni, M. A.; Monacci, N. M.; Gisewhite, R. A.; Ogston, A.; Crockett, J.; Nittrouer, C.

    2006-12-01

    Seabed sediments were collected along the particle-dispersal system associated with the Fly River-Gulf of Papua continental margin as part of the source to sink program in Papua New Guinea. Box and kasten cores were collected from the subaqueous delta located adjacent to the mouth of the Fly River as well as from the topset, foreset and bottomset regions of the active clinoform in the northern region of the Gulf of Papua. Analyses of elemental (organic carbon, inorganic carbon, nitrogen), stable isotopic (d13C and d15N), radiocarbon (14C), and biomarker (CuO oxidation products) signatures reveal significant differences in the content and composition of sedimentary organic matter (OM) along the dispersal system. The major sources of OM to the system appear to be remains of vascular plants, soil OM from the drainage basin, and materials derived from autochthonous productivity. The geographical contrasts in the concentrations and accumulation fluxes of these distinct types of allochthonous and autochthonous OM are presented in the context of patterns of sediment transport and deposition within the region. An overall OM budget for the whole dispersal system will be presented and its implication for carbon sequestration in fluvial-dominated continental margins discussed.

  7. Application of biogenic carbon dioxide produced by yeast with different carbon sources for attraction of mosquitoes towards adult mosquito traps.

    PubMed

    Sukumaran, D; Ponmariappan, S; Sharma, Atul K; Jha, Hemendra K; Wasu, Yogesh H; Sharma, Ajay K

    2016-04-01

    Surveillance is a prime requisite for controlling arthropod vectors like mosquitoes that transmit diseases such as malaria, dengue and chikungunya. Carbon dioxide (CO2) is one of the main cues from vertebrate breath that attracts mosquitoes towards the host. Hence, CO2 is used as an attractant during surveillance of mosquitoes either from commercial cylinders or dry ice for mosquito traps. In the present study, the biogenic carbon dioxide production was optimized with different carbon sources such as glucose, simple sugar and jaggery with and without yeast peptone dextrose (YPD) media using commercial baker's yeast. The results showed that yeast produced more biogenic CO2 with simple sugar as compared to other carbon sources. Further substrate concentration was optimized for the continuous production of biogenic CO2 for a minimum of 12 h by using 10 g of baker's yeast with 50 g of simple sugar added to 1.5 l distilled water (without YPD media) in a 2-l plastic bottle. This setup was applied in field condition along with two different mosquito traps namely Mosquito Killing System (MKS) and Biogents Sentinel (BGS) trap. Biogenic CO2 from this setup has increased the trapping efficiency of MKS by 6.48-fold for Culex quinquefasciatus, 2.62-fold for Aedes albopictus and 1.5-fold for Anopheles stephensi. In the case of BGS, the efficiency was found to be increased by 3.54-fold for Ae. albopictus, 4.33-fold for An. stephensi and 1.3-fold for Armigeres subalbatus mosquitoes. On the whole, plastic bottle setup releasing biogenic CO2 from sugar and yeast has increased the efficiency of MKS traps by 6.38-fold and 2.74-fold for BGS traps as compared to traps without biogenic CO2. The present study reveals that, among different carbon sources used, simple sugar as a substance (which is economical and readily available across the world) yielded maximum biogenic CO2 with yeast. This setup can be used as an alternative to CO2 cylinder and dry ice in any adult mosquito traps to

  8. Carbon Source Preference in Chemosynthetic Hot Spring Communities

    PubMed Central

    Urschel, Matthew R.; Kubo, Michael D.; Hoehler, Tori M.; Peters, John W.

    2015-01-01

    Rates of dissolved inorganic carbon (DIC), formate, and acetate mineralization and/or assimilation were determined in 13 high-temperature (>73°C) hot springs in Yellowstone National Park (YNP), Wyoming, in order to evaluate the relative importance of these substrates in supporting microbial metabolism. While 9 of the hot spring communities exhibited rates of DIC assimilation that were greater than those of formate and acetate assimilation, 2 exhibited rates of formate and/or acetate assimilation that exceeded those of DIC assimilation. Overall rates of DIC, formate, and acetate mineralization and assimilation were positively correlated with spring pH but showed little correlation with temperature. Communities sampled from hot springs with similar geochemistries generally exhibited similar rates of substrate transformation, as well as similar community compositions, as revealed by 16S rRNA gene-tagged sequencing. Amendment of microcosms with small (micromolar) amounts of formate suppressed DIC assimilation in short-term (<45-min) incubations, despite the presence of native DIC concentrations that exceeded those of added formate by 2 to 3 orders of magnitude. The concentration of added formate required to suppress DIC assimilation was similar to the affinity constant (Km) for formate transformation, as determined by community kinetic assays. These results suggest that dominant chemoautotrophs in high-temperature communities are facultatively autotrophic or mixotrophic, are adapted to fluctuating nutrient availabilities, and are capable of taking advantage of energy-rich organic substrates when they become available. PMID:25819970

  9. Carbon source preference in chemosynthetic hot spring communities.

    PubMed

    Urschel, Matthew R; Kubo, Michael D; Hoehler, Tori M; Peters, John W; Boyd, Eric S

    2015-06-01

    Rates of dissolved inorganic carbon (DIC), formate, and acetate mineralization and/or assimilation were determined in 13 high-temperature (>73 °C) hot springs in Yellowstone National Park (YNP), Wyoming, in order to evaluate the relative importance of these substrates in supporting microbial metabolism. While 9 of the hot spring communities exhibited rates of DIC assimilation that were greater than those of formate and acetate assimilation, 2 exhibited rates of formate and/or acetate assimilation that exceeded those of DIC assimilation. Overall rates of DIC, formate, and acetate mineralization and assimilation were positively correlated with spring pH but showed little correlation with temperature. Communities sampled from hot springs with similar geochemistries generally exhibited similar rates of substrate transformation, as well as similar community compositions, as revealed by 16S rRNA gene-tagged sequencing. Amendment of microcosms with small (micromolar) amounts of formate suppressed DIC assimilation in short-term (<45-min) incubations, despite the presence of native DIC concentrations that exceeded those of added formate by 2 to 3 orders of magnitude. The concentration of added formate required to suppress DIC assimilation was similar to the affinity constant (K(m)) for formate transformation, as determined by community kinetic assays. These results suggest that dominant chemoautotrophs in high-temperature communities are facultatively autotrophic or mixotrophic, are adapted to fluctuating nutrient availabilities, and are capable of taking advantage of energy-rich organic substrates when they become available. PMID:25819970

  10. Roman literary and epigraphic sources for the study of historical seismicity in Algeria circa 42-420 ad

    NASA Astrophysics Data System (ADS)

    Ferdi, Sabah; Harbi, Assia

    2014-04-01

    The seismicity of Algeria since the nineteenth century is relatively well documented. However, compared with the numerous damaging earthquakes that are documented since 1850, fewer than a dozen reports of earthquakes are listed for the pre-1850 ad period, suggesting that the historical record is missing a substantial number of earthquakes. This paper examines the use of literary and epigraphic sources relevant to the investigation of seismicity in Algeria during Roman times. We provide examples where the meager written literary record may be supplemented with appropriate archaeological and epigraphic data describing damage to ancient Roman sites. The examples show that collaboration between earth scientists and archeologists is of utility in improving the seismic record and highlights the need for further study of data sources and repositories located both inside and outside of Algeria.

  11. adLIMS: a customized open source software that allows bridging clinical and basic molecular research studies

    PubMed Central

    2015-01-01

    Background Many biological laboratories that deal with genomic samples are facing the problem of sample tracking, both for pure laboratory management and for efficiency. Our laboratory exploits PCR techniques and Next Generation Sequencing (NGS) methods to perform high-throughput integration site monitoring in different clinical trials and scientific projects. Because of the huge amount of samples that we process every year, which result in hundreds of millions of sequencing reads, we need to standardize data management and tracking systems, building up a scalable and flexible structure with web-based interfaces, which are usually called Laboratory Information Management System (LIMS). Methods We started collecting end-users' requirements, composed of desired functionalities of the system and Graphical User Interfaces (GUI), and then we evaluated available tools that could address our requirements, spanning from pure LIMS to Content Management Systems (CMS) up to enterprise information systems. Our analysis identified ADempiere ERP, an open source Enterprise Resource Planning written in Java J2EE, as the best software that also natively implements some highly desirable technological advances, such as the high usability and modularity that grants high use-case flexibility and software scalability for custom solutions. Results We extended and customized ADempiere ERP to fulfil LIMS requirements and we developed adLIMS. It has been validated by our end-users verifying functionalities and GUIs through test cases for PCRs samples and pre-sequencing data and it is currently in use in our laboratories. adLIMS implements authorization and authentication policies, allowing multiple users management and roles definition that enables specific permissions, operations and data views to each user. For example, adLIMS allows creating sample sheets from stored data using available exporting operations. This simplicity and process standardization may avoid manual errors and

  12. Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia.

    PubMed

    Lavigne, Franck; Degeai, Jean-Philippe; Komorowski, Jean-Christophe; Guillet, Sébastien; Robert, Vincent; Lahitte, Pierre; Oppenheimer, Clive; Stoffel, Markus; Vidal, Céline M; Surono; Pratomo, Indyo; Wassmer, Patrick; Hajdas, Irka; Hadmoko, Danang Sri; de Belizal, Edouard

    2013-10-15

    Polar ice core records attest to a colossal volcanic eruption that took place ca. A.D. 1257 or 1258, most probably in the tropics. Estimates based on sulfate deposition in these records suggest that it yielded the largest volcanic sulfur release to the stratosphere of the past 7,000 y. Tree rings, medieval chronicles, and computational models corroborate the expected worldwide atmospheric and climatic effects of this eruption. However, until now there has been no convincing candidate for the mid-13th century "mystery eruption." Drawing upon compelling evidence from stratigraphic and geomorphic data, physical volcanology, radiocarbon dating, tephra geochemistry, and chronicles, we argue the source of this long-sought eruption is the Samalas volcano, adjacent to Mount Rinjani on Lombok Island, Indonesia. At least 40 km(3) (dense-rock equivalent) of tephra were deposited and the eruption column reached an altitude of up to 43 km. Three principal pumice fallout deposits mantle the region and thick pyroclastic flow deposits are found at the coast, 25 km from source. With an estimated magnitude of 7, this event ranks among the largest Holocene explosive eruptions. Radiocarbon dates on charcoal are consistent with a mid-13th century eruption. In addition, glass geochemistry of the associated pumice deposits matches that of shards found in both Arctic and Antarctic ice cores, providing compelling evidence to link the prominent A.D. 1258/1259 ice core sulfate spike to Samalas. We further constrain the timing of the mystery eruption based on tephra dispersal and historical records, suggesting it occurred between May and October A.D. 1257. PMID:24082132

  13. Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia

    PubMed Central

    Lavigne, Franck; Degeai, Jean-Philippe; Komorowski, Jean-Christophe; Guillet, Sébastien; Robert, Vincent; Lahitte, Pierre; Oppenheimer, Clive; Stoffel, Markus; Vidal, Céline M.; Surono; Pratomo, Indyo; Wassmer, Patrick; Hajdas, Irka; Hadmoko, Danang Sri; de Belizal, Edouard

    2013-01-01

    Polar ice core records attest to a colossal volcanic eruption that took place ca. A.D. 1257 or 1258, most probably in the tropics. Estimates based on sulfate deposition in these records suggest that it yielded the largest volcanic sulfur release to the stratosphere of the past 7,000 y. Tree rings, medieval chronicles, and computational models corroborate the expected worldwide atmospheric and climatic effects of this eruption. However, until now there has been no convincing candidate for the mid-13th century “mystery eruption.” Drawing upon compelling evidence from stratigraphic and geomorphic data, physical volcanology, radiocarbon dating, tephra geochemistry, and chronicles, we argue the source of this long-sought eruption is the Samalas volcano, adjacent to Mount Rinjani on Lombok Island, Indonesia. At least 40 km3 (dense-rock equivalent) of tephra were deposited and the eruption column reached an altitude of up to 43 km. Three principal pumice fallout deposits mantle the region and thick pyroclastic flow deposits are found at the coast, 25 km from source. With an estimated magnitude of 7, this event ranks among the largest Holocene explosive eruptions. Radiocarbon dates on charcoal are consistent with a mid-13th century eruption. In addition, glass geochemistry of the associated pumice deposits matches that of shards found in both Arctic and Antarctic ice cores, providing compelling evidence to link the prominent A.D. 1258/1259 ice core sulfate spike to Samalas. We further constrain the timing of the mystery eruption based on tephra dispersal and historical records, suggesting it occurred between May and October A.D. 1257. PMID:24082132

  14. Kupier prize lecture: Sources of solar-system carbon

    NASA Technical Reports Server (NTRS)

    Anders, Edward; Zinner, Ernst

    1994-01-01

    We have tried to deconvolve Solar-System carbon into its sources, on the basis of C-12/C-13 ratios (equivalent to R). Interstellar SiC in meteorites, representing greater than 4.6-Ga-old stardust from carbon stars, is isotopically heavier (bar R = 38 +/- 2) than Solar-System carbon (89), implying that the latter contains an additional, light component. A likely source are massive stars, mainly Type II supernovae and Wolf-Rayet stars, which, being O-rich, eject their C largely as CO rather than carbonaceous dust. The fraction of such light C in the Solar System depends on R(sub light) in the source. For R(sub light) = 180-1025 (as in 'Group 4' meteoritic graphite spherules, which apparently came from massive stars greater than 4.6 Ga ago), the fraction of light C is 0.79-0.61. Similar results are obtained for present-day data on red giants and interstellar gas. Although both have become enriched in C-13 due to galactic evolution (to bar-R = 20 and 57), the fraction of the light component in interstellar gas again is near 0.7. (Here bar R represents the mean of a mixture calculated via atom fractions; it is not identical to the arithmetic mean R). Interstellar graphite, unlike SiC, shows a large peak at R approximately equal 90, near the solar value. Although some of the grains may be of local origin, others show anomalies in other elements and hence are exotic. Microdiamonds, with R = 93, also are exotic on the basis of their Xe and N. Apparently R approximately 90 was a fairly common composition 4.6 Ga ago, of stars as well as the ISM.

  15. Influence of locational states of submicron fibers added into matrix on mechanical properties of plain-woven Carbon Fiber Composite

    NASA Astrophysics Data System (ADS)

    Kumamoto, Soichiro; Okubo, Kazuya; Fujii, Toru

    2016-01-01

    The aim of this study was to show the influence of locational states of submicron fibers added into epoxy matrix on mechanical properties of modified plane-woven carbon fiber reinforced plastic (CFRP). To change the locational states of submicron fibers, two kinds of fabrication processes were applied in preparing specimen by hand lay-up method. Submicron fibers were simply added into epoxy resin with ethanol after they were stirred by a dispersion process using homogenizer to be located far from the interface between reinforcement and matrix. In contrast, submicron fibers were attached onto the carbon fibers by injecting from a spray nozzle accompanying with ethanol to be located near the interface, after they were tentatively contained in ethanol. The plain-woven CFRP plates were fabricated by hand lay-up method and cured at 80 degree-C for 1 hour and then at 150 degree-C for 3 hours. After curing, the plain-woven CFRP plates were cut into the dimension of specimen. Tensile shear strength and Mode-II fracture toughness of CFRP were determined by tensile lap-shear test and End-notched flexure(ENF) test, respectively. When submicron fibers were located far from the interface between carbon fibers and epoxy resin, tensile shear strength and Mode-II fracture toughness of CFRP were improved 30% and 18% compared with those of unmodified case. The improvement ratio in modified case was rather low (about few percentages) in the case where submicron fibers were located near the interface. The result suggested that crack propagation should be prevented when submicron fibers were existed far from the interface due to the effective stress state around the crack tip.

  16. When Forest become carbon sources: Impact of herbivory on carbon balance

    NASA Astrophysics Data System (ADS)

    Schafer, K. V.; Clark, K. L.; Skowronski, N. S.

    2008-12-01

    Traditionally forests are thought to be carbon sinks and are becoming important trading commodities in the carbon trading markets. However, disturbances such as fire, hurricanes and herbivory can lead to forests being sources rather than sinks of carbon. Here, we investigate the carbon balance of an oak/pine forest in the New Jersey Pine Barrens under herbivory attack in summer 2007. Net primary productivity (NPP) was reduced to ca 70% of previous year NPP (535 g m-2 a-1 in 2006) and canopy net assimilation (AnC), as modeled with the Canopy Conductance Constrained Carbon Assimilation model (4C-A), was reduced to ca 65 % of previous year (1335 g m-2 a-1 in 2006) AnC or ca 1015 g C m-2 a-1. Although the trees were defoliated for only 15 % of the normal annual growing season, the impact amounted to ca 30 % of C accumulation loss when integrated over the year. Overall NPP in 2007 was ca 378 g C m-2 a-1 with 50 % of NPP being allocated to foliage production which constitutes a short term carbon pool. On an ecosystem level net ecosystem exchange amounted to a release of 293 g C m-2 a-1 thus becoming a carbon source over the course of the year rather than being a sink for C. The overall impact of the defoliation spanned 21% of upland forests (320 km2) in the New Jersey Pine Barrens thus representing a significant amount of overall C being emitted back to the atmosphere rather than being accumulated in the biosphere.

  17. North Siberian lakes: A methane source fueled by Pleistocene carbon

    SciTech Connect

    Zimov, S.A.; Davidov, S.P.; Prosiannikov, S.F.; Trumbore, S.

    1997-08-08

    The sizes of major sources and sinks of atmospheric methane (CH{sub 4}), an important greenhouse gas, are poorly known. CH{sub 4} from north Siberian lakes contributes {approximately}1.5 teragrams CH{sub 4} year{sup -1} to observed winter increases in atmospheric CH{sub 4} concentration at high northern latitudes. CH{sub 4} emitted from these lakes in winter had a radiocarbon age of 27,200 years and was derived largely from Pleistocene-aged carbon.

  18. Energy and time modelling of kerbside waste collection: Changes incurred when adding source separated food waste.

    PubMed

    Edwards, Joel; Othman, Maazuza; Burn, Stewart; Crossin, Enda

    2016-10-01

    The collection of source separated kerbside municipal FW (SSFW) is being incentivised in Australia, however such a collection is likely to increase the fuel and time a collection truck fleet requires. Therefore, waste managers need to determine whether the incentives outweigh the cost. With literature scarcely describing the magnitude of increase, and local parameters playing a crucial role in accurately modelling kerbside collection; this paper develops a new general mathematical model that predicts the energy and time requirements of a collection regime whilst incorporating the unique variables of different jurisdictions. The model, Municipal solid waste collect (MSW-Collect), is validated and shown to be more accurate at predicting fuel consumption and trucks required than other common collection models. When predicting changes incurred for five different SSFW collection scenarios, results show that SSFW scenarios require an increase in fuel ranging from 1.38% to 57.59%. There is also a need for additional trucks across most SSFW scenarios tested. All SSFW scenarios are ranked and analysed in regards to fuel consumption; sensitivity analysis is conducted to test key assumptions. PMID:27396681

  19. Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon.

    PubMed

    Lee, Yu-Chi; Lo, Shang-Lien; Kuo, Jeff; Huang, Chin-Pao

    2013-10-15

    Treatment of persistent perfluorooctanoic acid (PFOA) in water using persulfate (PS) oxidation typically requires an elevated temperature or UV irradiation, which is energy-consuming. Under relatively low temperatures of 25-45°C, activated carbon (AC) activated PS oxidation of PFOA was evaluated for its potential of practical applications. With presence of AC in PS oxidation, PFOA removal efficiency at 25°C reached 682% with a high defluorination efficiency of 549% after 12h and few intermediates of short-chain perfluorinated carboxylic acids (PFCAs) were found. The removal and defluorination rates with the combined AC/PS system were approximately 12 and 19 times higher than those of the PS-only system, respectively. Activated carbon not only removes PFOA through adsorption, but also activates PS to form sulfate radicals that accelerate the decomposition and mineralization of PFOA. The activation energy for PS oxidation of PFOA was reduced from 668 to 261kJ/mol by the catalytic effect of AC, which implies a lower reaction temperature and a shorter reaction time would suffice. A 2-cycle schematic reaction mechanism was used to describe PS oxidation of PFOA with the generation of various intermediates and end-products. PMID:23978721

  20. Quantification of carbon sources for isoprene emission in poplar leaves

    NASA Astrophysics Data System (ADS)

    Kreutzwieseer, J.; Graus, M.; Schnitzler, J. P.; Heizmann, U.; Rennenberg, H.; Hansel, A.

    2003-12-01

    Isoprene is the most abundant volatile organic compound emitted by plants and in particular by trees. Current interest in understanding its biosynthesis in chloroplasts is forced by the important role isoprene plays in atmospheric chemistry. Leaf isoprene formation is closely linked to photosynthesis by a dynamic use of recently fixed photosynthetic precursors in the chloroplast. Under steady state conditions in [13C]CO2 atmosphere approximately 75 % of isoprene became labeled within minutes. The source of unlabeled C is suggested to be of extra-chloroplastidic and/or from starch degradation. In order to test whether these alternative carbon sources - leaf internal C-pools and xylem-transported carbohydrates, contribute to leaf isoprene formation in poplar (Populus tremula x P. alba) on-line proton-transfer-reaction-mass spectrometry (PTR-MS) was used to follow 13C-labeling kinetics.

  1. Carbon Nanotube Based Deuterium Ion Source for Improved Neutron Generators

    SciTech Connect

    Fink, R. L.; Jiang, N.; Thuesen, L.; Leung, K. N.; Antolak, A. J.

    2009-03-10

    Field ionization uses high electric fields to cause the ionization and emission of ions from the surface of a sharp electrode. We are developing a novel field ionization neutron generator using carbon nanotubes (CNT) to produce the deuterium ion current. The generator consists of three major components: a deuterium ion source made of carbon nanotubes, a smooth negatively-biased target electrode, and a secondary electron suppression system. When a negative high voltage is applied on the target electrode, a high gradient electric field is formed at the tips of the carbon nanotubes. This field is sufficiently strong to create deuterium (D) ions at or near the nanotubes which are accelerated to the target causing D-D reactions to occur and the production of neutrons. A cross magnetic field is used to suppress secondary emission electrons generated on the target surface. We have demonstrated field ionization currents of 70 nA (1 {mu}A/cm{sup 2}) at hydrogen gas pressure of 10 mTorr. We have found that the current scales proportionally with CNT area and also with the gas pressure in the range of 1 mTorr to 10 mTorr. We have demonstrated pulse cut-off times as short as 2 {mu}sec. Finally, we have shown the feasibility of generating neutrons using deuterium gas.

  2. Barrow Black Carbon Source and Impact Study Final Campaign Report

    SciTech Connect

    Barrett, Tate

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact (BBCSI) Study was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement site in Barrow, AK. The carbonaceous component was characterized via measurement of the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the particulate matter, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine (PM2.5) and 49 coarse (PM10) particulate matter fractions were collected at weekly and bi-monthly intervals. The PM2.5 sampler operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the BBCSI used standard Tisch hi-vol motors which have a known lifetime of ~1 month under constant use; this necessitated monthly maintenance and it is suggested that the motors be upgraded to industrial blowers for future deployment in the Arctic. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric particulate matter samples from Barrow, AK from July 2012 to June 2013. Preliminary analysis of the organic and black carbon concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer.

  3. Barrow Black Carbon Source and Impact Study Final Campaign Report

    SciTech Connect

    Barrett, Tate

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact campaign was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility site in Barrow, Alaska. The carbonaceous component was characterized by measuring the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the PM, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine PM fractions (PM2.5) and 49 coarse (PM10) PM fractions were collected at weekly and bi-monthly intervals. The PM2.5 sampler operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the Barrow Black Carbon Source and Impact (BBCSI) study used standard Tisch “hi-vol” motors that have a known lifetime of approximately 1 month under constant use; this necessitated monthly maintenance, and it is suggested that, for future deployment in the Arctic, the motors be upgraded to industrial blowers. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric PM samples from Barrow, Alaska, from July 2012 to June 2013. Preliminary analysis of the OC and BC concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer. However, the annual OC concentrations had a very different seasonal pattern with the highest concentrations during the summer, lowest concentrations during the fall, and increased concentrations during the winter and spring (Figure 1).

  4. Seasonal Sources of Carbon Exports in a Headwater Stream

    NASA Astrophysics Data System (ADS)

    Argerich, A.; Johnson, S. L.

    2013-12-01

    Climate change is intimately tied to changes in carbon (C) budgets. Understanding the compartments and processes involved in the global C cycle across a landscape is essential to predict future climate change scenarios. While most C budgets focus on terrestrial contributions, river systems contribute to the C cycle by the export of total organic carbon (TOC) and dissolved inorganic carbon (DIC) to the ocean and by exporting CO2 to the atmosphere. Although headwater streams constitute between 60 and 80 percent of fluvial systems their role in the C cycle has often been neglected due to the methodological constrains derived from their heterogeneous morphology. Here we present an analysis of the temporal variation of C export both downstream and evaded to the atmosphere for a headwater stream draining a forested watershed. We relate it to in-stream metabolic processes (respiration and primary production) and to different carbon pools. Specifically, we estimate downstream exports of C in the form of dissolved organic (DOC), dissolved inorganic (DIC), and particulate organic (POC); we estimate the C content in the fine benthic organic matter (FBOM), dead wood, algae, and macroinvertebrate pools; and finally, the amount of CO2 originated and fixed by stream respiration and primary production. Organic exports, both particulate and dissolved, represented 39.7% of the annual downstream export of C while dissolved inorganic C represented 60.3%. Higher exports were observed during periods of high flow (late fall and winter). Highest seasonality in downstream exports was observed for POC (89.5% coefficient of variation in mean monthly fluxes), followed by DOC and DIC (24.3% and 15.9% respectively). Dissolved CO2 had mostly an autochthonous origin during summer (i.e. from stream ecosystem respiration) and originated from allochthonous sources during the rain-dominated months in Oregon (late fall and winter). The stream was net heterotrophic and the amount of C cycled through

  5. Sources of ground movement at Vesuvius before the AD 79 eruption: Evidence from contemporary accounts and archaeological studies

    NASA Astrophysics Data System (ADS)

    Marturano, Aldo

    2008-11-01

    Historical sources have recorded earthquake shocks, their effects and difficulties that local inhabitants experienced before the AD 79 Pompeii eruption. Archaeological studies pointed out the effects of such seismicity, and have also evidenced that several water crises were occurring at Pompeii in that period. Indeed numerous sources show that, at the time of eruption, and probably some time before, the civic aqueduct, having ceased to be supplied by the regional one, was out of order and that a new one was being built. Since Roman aqueducts were usually built with a recommended minimum mean slope of 20 cm/km and Pompeii's aqueduct sloped from the nearby Apennines toward the town, this slope could have been easily cancelled by uplift that occurred in the area even if this was only moderate. For the crustal deformations a volcanic origin is proposed and a point source model is used to explain the observations. Simple analysis of the available data suggests that the ground deformations were caused by a < 2 km 3 volumetric change at a depth of ˜ 8 km that happened over the course of several decades.

  6. Variability of Black Carbon Deposition to the East Antarctic Plateau, 1800-2000 AD

    NASA Technical Reports Server (NTRS)

    Bisiaux, M. M.; Edwards, R.; McConnell, J. R.; Albert, M. R.; Anschutz, H.; Neumann, T. A.; Isaksson, E.; Penner, J. E.

    2012-01-01

    Refractory black carbon aerosols (rBC) from biomass burning and fossil fuel combustion are deposited to the Antarctic ice sheet and preserve a history of emissions and long-range transport from low- and mid-latitudes. Antarctic ice core rBC records may thus provide information with respect to past combustion aerosol emissions and atmospheric circulation. Here, we present six East Antarctic ice core records of rBC concentrations and fluxes covering the last two centuries with approximately annual resolution (cal. yr. 1800 to 2000). The ice cores were drilled in disparate regions of the high East Antarctic ice sheet, at different elevations and net snow accumulation rates. Annual rBC concentrations were log-normally distributed and geometric means of annual concentrations ranged from 0.10 to 0.18 m cro-g/kg. Average rBC fluxes were determined over the time periods 1800 to 2000 and 1963 to 2000 and ranged from 3.4 to 15.5 m /a and 3.6 to 21.8 micro-g/sq m/a, respectively. Geometric mean concentrations spanning 1800 to 2000 increased linearly with elevation at a rate of 0.025 micro-g/kg/500 m. Spectral analysis of the records revealed significant decadal-scale variability, which at several sites was comparable to decadal ENSO variability.

  7. Process Design for the Biocatalysis of Value-Added Chemicals from Carbon Dioxide

    SciTech Connect

    Mark Eiteman

    2007-07-31

    This report describes results toward developing a process to sequester CO{sub 2} centered on the enzymes PEP carboxylase and pyruvate carboxylase. The process involves the use of bacteria to convert CO{sub 2} and glucose as a co-substrate and generates succinic acid as a commodity chemical product. The study reports on strain development and process development. In the area of strain development, knockouts in genes which divert carbon from the enzymatic steps involved in CO{sub 2} consumption were completed, and were shown not to affect significantly the rate of CO{sub 2} sequestration and succinic acid generation. Furthermore, the pyc gene encoding for pyruvate carboxylase proved to be unstable when integrated onto the chromosome. In the area of process development, an optimal medium, pH and base counterion were obtained, leading to a sequestration rate as great as 800 mg/Lh. Detailed studies of gas phase composition demonstrated that CO{sub 2} composition has a significant affect on CO{sub 2} sequestration, while the presence of 'toxic' compounds in the gas, including NO{sub 2}, CO and SO{sub 2} did not have a detrimental effect on sequestration. Some results on prolonging the rate of sequestration indicate that enzyme activities decrease with time, suggesting methods to prolong enzyme activity may benefit the overall process.

  8. High-field properties of carbon-doped MgB2 thin films by hybrid physical-chemical vapor deposition using different carbon sources

    NASA Astrophysics Data System (ADS)

    Dai, Wenqing; Ferrando, V.; Pogrebnyakov, A. V.; Wilke, R. H. T.; Chen, Ke; Weng, Xiaojun; Redwing, Joan; Wung Bark, Chung; Eom, Chang-Beom; Zhu, Y.; Voyles, P. M.; Rickel, Dwight; Betts, J. B.; Mielke, C. H.; Gurevich, A.; Larbalestier, D. C.; Li, Qi; Xi, X. X.

    2011-12-01

    We have studied the high-field properties of carbon-doped MgB2 thin films prepared by hybrid physical-chemical vapor deposition (HPCVD). Carbon doping was accomplished by adding carbon-containing gas, such as bis(methylcyclopentadienyl)magnesium and trimethylboron, into the hydrogen carrier gas during the deposition. In both cases, Tc drops slowly and residual resistivity increases considerably with carbon doping. Both the a and c lattice constants increase with carbon content in the films, a behavior different from that of bulk carbon-doped MgB2 samples. The films heavily doped with trimethylboron show very high parallel Hc2 over 70 T at low temperatures and a large temperature derivative -\\rmd H_{ {c2}}^{\\parallel } /\\rmd T near Tc. These behaviors are found to depend on the unique microstructure of the films, which consists of MgB2 layers a few-nanometers thick separated by non-superconducting MgB2C2 layers. This leads to an increase in the parallel Hc2 by the geometrical effect, which is in addition to the significant enhancement of Hc2 due to changes in the scattering rates within and between the two bands present in films doped using both carbon sources. The high Hc2 and high-field Jc(H) values observed in this work are very promising for the application of MgB2 in high magnetic fields.

  9. An analytical study of nitrogen oxides and carbon monoxide emissions in hydrocarbon combustion with added nitrogen, preliminary results

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1979-01-01

    The effect of combustor operating conditions on the conversion of fuel-bound nitrogen (FBN) to nitrogen oxides NO sub x was analytically determined. The effect of FBN and of operating conditions on carbon monoxide (CO) formation was also studied. For these computations, the combustor was assumed to be a two stage, adiabatic, perfectly-stirred reactor. Propane-air was used as the combustible mixture and fuel-bound nitrogen was simulated by adding nitrogen atoms to the mixture. The oxidation of propane and formation of NO sub x and CO were modeled by a fifty-seven reaction chemical mechanism. The results for NO sub x and CO formation are given as functions of primary and secondary stage equivalence ratios and residence times.

  10. Hydrocarbon generation and expulsion in shale Vs. carbonate source rocks

    SciTech Connect

    Leythaeuser, D. ); Krooss, B.; Hillebrand, T.; Primio, R. di )

    1993-09-01

    For a number of commercially important source rocks of shale and of carbonate lithologies, which were studied by geochemical, microscopical, and petrophysical techniques, a systematic comparison was made of the processes on how hydrocarbon generation and migration proceed with maturity progress. In this way, several fundamental differences between both types of source rocks were recognized, which are related to differences of sedimentary facies and, more importantly, of diagenetic processes responsible for lithification. Whereas siliciclastic sediments lithify mainly by mechanical compaction, carbonate muds get converted into lithified rocks predominantly by chemical diagenesis. With respect to their role as hydrocarbon source rocks, pressure solution processes appear to be key elements. During modest burial stages and prior to the onset of hydrocarbon generation reactions by thermal decomposition of kerogen, pressure solution seams and stylolites. These offer favorable conditions for hydrocarbon generation and expulsion-a three-dimensional kerogen network and high organic-matter concentrations that lead to effective saturation of the internal pore fluid system once hydrocarbon generation has started. As a consequence, within such zones pore fluids get overpressured, leading ultimately to fracturing. Petroleum expulsion can then occur at high efficiencies and in an explosive fashion, whereby clay minerals and residual kerogen particles are squeezed in a toothpaste-like fashion into newly created fractures. In order to elucidate several of the above outlined steps of hydrocarbon generation and migration processes, open-system hydrous pyrolysis experiments were performed. This approach permits one to monitor changes in yield and composition of hydrocarbon products generated and expelled at 10[degrees]C temperature increments over temperature range, which mimics in the laboratory the conditions prevailing in nature over the entire liquid window interval.

  11. Active thrusting offshore Mount Lebanon: Source of the tsunamigenic A.D. 551 Beirut-Tripoli earthquake

    NASA Astrophysics Data System (ADS)

    Elias, Ata; Tapponnier, Paul; Singh, Satish C.; King, Geoffrey C. P.; Briais, Anne; Daëron, Mathieu; Carton, Helene; Sursock, Alexander; Jacques, Eric; Jomaa, Rachid; Klinger, Yann

    2007-08-01

    On 9 July A.D. 551, a large earthquake, followed by a tsunami, destroyed most of the coastal cities of Phoenicia (modern-day Lebanon). Tripoli is reported to have “drowned,” and Berytus (Beirut) did not recover for nearly 1300 yr afterwards. Geophysical data from the Shalimar survey unveil the source of this event, which may have had a moment magnitude (Mw) of 7.5 and was arguably one of the most devastating historical submarine earthquakes in the eastern Mediterranean: rupture of the offshore, hitherto unknown, ˜100-150-km-long active, east-dipping Mount Lebanon thrust. Deep-towed sonar swaths along the base of prominent bathymetric escarpments reveal fresh, west-facing seismic scarps that cut the sediment-smoothed seafloor. The Mount Lebanon thrust trace comes closest (˜8 km) to the coast between Beirut and Enfeh, where, as 13 14C-calibrated ages indicate, a shoreline-fringing vermetid bench suddenly emerged by ˜80 cm in the sixth century A.D. At Tabarja, the regular vertical separation (˜1 m) of higher fossil benches suggests uplift by three more earthquakes of comparable size since the Holocene sea level reached a maximum ca. 7-6 ka, implying a 1500-1750 yr recurrence time. Unabated thrusting on the Mount Lebanon thrust likely drove the growth of Mount Lebanon since the late Miocene.

  12. Size distributions, sources and source areas of water-soluble organic carbon in urban background air

    NASA Astrophysics Data System (ADS)

    Timonen, H.; Saarikoski, S.; Tolonen-Kivimäki, O.; Aurela, M.; Saarnio, K.; Petäjä, T.; Aalto, P. P.; Kulmala, M.; Pakkanen, T.; Hillamo, R.

    2008-04-01

    This paper represents the results of one year long measurement period of the size distributions of water-soluble organic carbon (WSOC), inorganic ions and gravimetric mass of particulate matter. Measurements were done at an urban background station (SMEAR III) by using a micro-orifice uniform deposit impactor (MOUDI). The site is located in northern European boreal region in Helsinki, Finland. The WSOC size distribution measurements were completed with the chemical analysis of inorganic ions, organic carbon (OC) and monosaccharide anhydrides from the filter samples. During the measurements gravimetric mass in the MOUDI collections varied between 3.4 and 55.0 μg m-3 and the WSOC concentration was between 0.3 and 7.4 μg m-3. On average, water-soluble particulate organic matter (WSPOM, WSOC multiplied by 1.6) comprised 25±7.7% and 7.5±3.4% of aerosol PM1 mass and the PM1-10 mass, respectively. Inorganic ions contributed 33±12% and 28±19% of the analyzed PM1 and PM1-10 aerosol mass. Five different aerosol categories corresponding to different sources or source areas were identified (long-range transport aerosols, biomass burning aerosols from wild land fires and from small-scale wood combustion, aerosols originating from marine areas and from the clean arctic areas). Clear differences in WSOC concentrations and size distributions originating from different sources or source areas were observed, although there are also many other factors which might affect the results. E.g. the local conditions and sources of volatile organic compounds (VOCs) and aerosols as well as various transformation processes are likely to have an impact on the measured aerosol composition. Using the source categories, it was identified that especially the oxidation products of biogenic VOCs in summer had a clear effect on WSOC concentrations.

  13. Comparing carbon sequestration potential of pyrogenic carbon from natural and anthropogenic sources

    NASA Astrophysics Data System (ADS)

    Santin, Cristina; Doerr, Stefan; Merino, Augustin

    2014-05-01

    The enhanced resistance to environmental degradation of Pyrogenic Carbon (PyC), both produced in wildfires (charcoal), and man-made (biochar), gives it the potential to sequester carbon by preventing it to be released into the atmosphere. Sustainable addition of biochar to soils is seen as a viable global approach for carbon sequestration and climate change mitigation. Also the role of its 'natural counterpart', i.e. wildfire charcoal, as a long-term carbon sink in soils is widely recognized. However, in spite of their fundamental similarities, research on the potential of 'man-made' biochar and wildfire charcoal for carbon sequestration has been carried out essentially in isolation as analogous materials for accurate comparison are not easily available. Here we assess the carbon sequestration potential of man-made biochar and wildfire charcoal generated from the same material under known production conditions: (i) charcoal from forest floor and down wood produced during an experimental boreal forest fire (FireSmart, June 2012, NWT- Canada) and (ii) biochar produced from the same feedstock by slow pyrolysis [three treatments: 2 h at 350, 500 and 650°C, respectively]. The carbon sequestration potential of these PyC materials is given by the recalcitrance index, R50, proposed by Harvey et al. (2012). R50 is based on the relative thermal stability of a given PyC material to that of graphite and is calculated using thermogravimetric analyses. Our results show highest R50 for PyC materials produced from down wood than from forest floor, which points to the importance of feedstock chemical composition in determining the C sequestration potential of PyC both from natural (charcoal) and anthropogenic (biochar) sources. Moreover, production temperature is also a major factor affecting the carbon sequestration potential of the studied PyC materials, with higher R50 for PyC produced at higher temperatures. Further investigation on the similarities and differences between man

  14. Organic Carbon Sources in Coastal Southeast Alaskan Streams

    NASA Astrophysics Data System (ADS)

    Hood, E.; Edwards, R. T.; D'Amore, D. V.; Lange, B. J.

    2003-12-01

    Dissolved organic matter (DOM) is abundant in southeast Alaskan watersheds and plays an important role in the biological and physical processes in these aquatic systems. Nearly 30% of the land area in southeast Alaska is classified as wetlands, a large proportion of which are peatlands. Peatlands are thought to provide substantial DOM to surface waters. Another important source of carbon to streams is spawning anadromous salmon. This study examines how streamwater concentrations of DOC are influenced by 1) catchments soils and vegetation, particularly wetland extent and 2) the presence or absence of anadromous fish. Our goal is to characterize the quantity and quality of different DOM sources and to develop an understanding of how these sources influence seasonal trends in streamwater DOM in coastal freshwater systems in southeast Alaska. Surface water and well samples were collected on two contrasting streams near Juneau, Alaska: Peterson Creek, a brownwater, high-carbon stream in a wetland-dominated catchment and McGinnis Creek, a clearwater stream draining upland spruce forest and alpine tundra. Both streams have runs of pink, coho, and chum salmon from July-September. Streamwater DOC concentrations on Peterson Creek averaged 5-6 mg C L-1 during the early summer and increased to 8-12 mg C L-1 during late July and August. Streamwater DOC concentrations on McGinnis Creek were typically less than 1 mg C L-1 during the early summer but increased dramatically to 4-9 mg C L-1 during spates in August. Well samples collected upslope from the streamwater sampling sites on Peterson and McGinnis Creeks had a similar range in DOC concentrations (10-40 mg C L-1), however the wells on McGinnis Creek showed much higher seasonal variability. Our initial results suggest that the seasonal increase in DOC in both streams is primarily associated with the flushing of soluble organic carbon from catchment soils by late summer rains. However, leaching of DOC from salmon carcasses may

  15. Exploring the simultaneous existence of Stone-Wales and carbon ad-dimer defects in the zigzag single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Anafcheh, Maryam; Khodadadi, Zahra; Ektefa, Fatemeh; Ghafouri, Reza

    2016-09-01

    We have applied density functional calculations to investigate simultaneous existence of Stone-Wales (SW) and carbon ad-dimer (CD) defects in the zigzag (n, 0) n=5, 6, 7, 8, 9, and 10 SWCNTs, with an extensive search by considering two different orientations of defects. According to our results, the adsorption of a carbon dimer on a hexagonal ring of SWCNTs is easier than the rotation of a C-C bond trough the SW rearrangement. Moreover, the formation of a carbon dimer on the exterior sidewalls of an SW defective SWCNT or the rotation of a C-C bond of a CD defective SWCNT is more favorable than those on the perfect ones. Defect formation energy shows a strong dependence on the both SWCNT radius and defect orientation. The reactivity of SW-CD defective SWCNTs through chemisorption of hydrogen atoms on the central bonds of defect sites shows the thermodynamically lower preference of additions for the CD defective sites in comparison to SW defective sites. Histograms of the 13C NMR chemical shifts of SW-CD defective SWCNTs exhibit individual signals for defect sites, which can be attributed to azupyrene- and pentalelene-like structures for SW and CD defect sites, respectively.

  16. Diamondlike carbon deposition on plastic films by plasma source ion implantation

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Yoshida, M.; Shinohara, M.; Takagi, T.

    2002-05-01

    Application of pulsed high negative voltage (~10 μs pulse width, 300-900 pulses per second) to a substrate is found to induce discharge, thereby increasing ion current with an inductively coupled plasma source. This plasma source ion beam implantation (PSII) technique is investigated for the pretreatment and deposition of diamond-like carbon (DLC) thin layer on polyethylene terepthalate (PET) film. Pretreatment of PET with N2 and Ar plasma is expected to provide added barrier effects when coupled with DLC deposition, with possible application to fabrication of PET beverage bottles. PSII treatment using N2 and Ar in separate stages is found to change the color of the PET film, effectively increasing near-ultraviolet absorption. The effects of this pretreatment on the chemical bonding of C, H, and O are examined by x-ray photoelectron spectroscopy (XPS). DLC thin film was successfully deposited on the PET film. The surface of the DLC thin layer is observed to be smooth by scanning electron microscopy, and its structure characteristics are examined by XPS and laser Raman spectroscopy. Subsequent processing using acetylene or acetylene and Ar (20%) produced thin carbon layers that are confirmed to be graphite-dominated DLC. Also, this PSII method is employed in order to deposit the DLC layer on the inside surface of the PET bottle and to reduce oxygen permeation rate by 40%.

  17. Arylsulfatase in Salmonella typhimurium: detection and influence of carbon source and tyramine on its synthesis.

    PubMed Central

    Henderson, M J; Milazzo, F H

    1979-01-01

    Arylsulfatase synthesis was shown to occur in Salmonella typhimurium LT2. The enzyme had a molecular weight of approximately 50,000 and was separated into five forms by isoelectrofocusing. The optimal pH for substrate hydrolysis was pH 6.7, with Michaelis constants for nitrocatechol sulfate and nitrophenyl sulfate being 4.1 and 7.9 mM, respectively. Enzyme synthesis was strongly influenced by the presence of tyramine in the growth medium. The uptake of [14C]tyramine and arylsulfatase synthesis were initiated during the second phase of a diauxie growth response, when the organism was cultured with different carbon sources. Adenosine 3',5'-cyclic monophosphoric acid enhanced the uptake of tyramine and the levels of arylsulfatase synthesized. However, the addition of glucose and glycerol to organisms actively transporting tyramine and synthesizing enzyme caused a rapid inhibition of both of these processes. This inhibition was not reversed by adding adenosine 3',5'-cyclic monophosphoric acid. The results suggest that the effect of the carbon source on tyramine transport and arylsulfatase synthesis may be explained in terms of inducer exclusion. PMID:222733

  18. Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source.

    PubMed

    Moya Ramírez, Ignacio; Tsaousi, Konstantina; Rudden, Michelle; Marchant, Roger; Jurado Alameda, Encarnación; García Román, Miguel; Banat, Ibrahim M

    2015-12-01

    Olive mill waste (OMW) creates a major environmental problem due to the difficulty of further waste processing. In this work we present an approach to give OMW added value by using it for the production of biosurfactants. Two bacterial species, Pseudomonas aeruginosa and Bacillus subtilis, were grown with OMW as the sole carbon source. Glycerol and waste frying oil were used as comparative carbon sources. B. subtilis produced surfactin (a lipopeptide) at a maximum concentration of 3.12 mg/L with 2% w/v of OMW in the medium, dropping to 0.57 mg/L with 10% w/v of OMW. In contrast, P. aeruginosa produced 8.78 mg/L of rhamnolipid with 2% w/v OMW increasing to 191.46 mg/L with 10% w/v OMW. The use of solvent-extracted OMW reduced the biosurfactant production by 70.8% and 88.3% for B. subtilis and P. aeruginosa respectively. These results confirm that OMW is a potential substrate for biosurfactant production. PMID:26398666

  19. A Novel Airborne Carbon Isotope Analyzer for Methane and Carbon Dioxide Source Fingerprinting

    NASA Astrophysics Data System (ADS)

    Berman, E. S.; Huang, Y. W.; Owano, T. G.; Leifer, I.

    2014-12-01

    Recent field studies on major sources of the important greenhouse gas methane (CH4) indicate significant underestimation of methane release from fossil fuel industrial (FFI) and animal husbandry sources, among others. In addition, uncertainties still exist with respect to carbon dioxide (CO2) measurements, especially source fingerprinting. CO2 isotopic analysis provides a valuable in situ measurement approach to fingerprint CH4 and CO2as associated with combustion sources, leakage from geologic reservoirs, or biogenic sources. As a result, these measurements can characterize strong combustion source plumes, such as power plant emissions, and discriminate these emissions from other sources. As part of the COMEX (CO2 and MEthane eXperiment) campaign, a novel CO2 isotopic analyzer was installed and collected data aboard the CIRPAS Twin Otter aircraft. Developing methods to derive CH4 and CO2 budgets from remote sensing data is the goal of the summer 2014 COMEX campaign, which combines hyperspectral imaging (HSI) and non-imaging spectroscopy (NIS) with in situ airborne and surface data. COMEX leverages the synergy between high spatial resolution HSI and moderate spatial resolution NIS. The carbon dioxide isotope analyzer developed by Los Gatos Research (LGR) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures CO2 concentration as well as δ13C, δ18O, and δ17O from CO2 at natural abundance (100-3000 ppm). The laboratory accuracy is ±1.2 ppm (1σ) in CO2 from 370-1000 ppm, with a long-term (1000 s) precision of ±0.012 ppm. The long-term precision for both δ13C and δ18O is 0.04 ‰, and for δ17O is 0.06 ‰. The analyzer was field-tested as part of the COWGAS campaign, a pre-cursor campaign to COMEX in March 2014, where it successfully discriminated plumes related to combustion processes associated with

  20. Microbial Diversity Indexes Can Explain Soil Carbon Dynamics as a Function of Carbon Source

    PubMed Central

    Maron, Pierre-Alain; Menasseri-Aubry, Safya; Sarr, Amadou; Lévêque, Jean; Mathieu, Olivier; Jolivet, Claudy; Leterme, Philippe; Viaud, Valérie

    2016-01-01

    Mathematical models do not explicitly represent the influence of soil microbial diversity on soil organic carbon (SOC) dynamics despite recent evidence of relationships between them. The objective of the present study was to statistically investigate relationships between bacterial and fungal diversity indexes (richness, evenness, Shannon index, inverse Simpson index) and decomposition of different pools of soil organic carbon by measuring dynamics of CO2 emissions under controlled conditions. To this end, 20 soils from two different land uses (cropland and grassland) were incubated with or without incorporation of 13C-labelled wheat-straw residue. 13C-labelling allowed us to study residue mineralisation, basal respiration and the priming effect independently. An innovative data-mining approach was applied, based on generalized additive models and a predictive criterion. Results showed that microbial diversity indexes can be good covariates to integrate in SOC dynamics models, depending on the C source and the processes considered (native soil organic carbon vs. fresh wheat residue). Specifically, microbial diversity indexes were good candidates to help explain mineralisation of native soil organic carbon, while priming effect processes seemed to be explained much more by microbial composition, and no microbial diversity indexes were found associated with residue mineralisation. Investigation of relationships between diversity and mineralisation showed that higher diversity, as measured by the microbial diversity indexes, seemed to be related to decreased CO2 emissions in the control soil. We suggest that this relationship can be explained by an increase in carbon yield assimilation as microbial diversity increases. Thus, the parameter for carbon yield assimilation in mathematical models could be calculated as a function of microbial diversity indexes. Nonetheless, given limitations of the methods used, these observations should be considered with caution and

  1. Microbial Diversity Indexes Can Explain Soil Carbon Dynamics as a Function of Carbon Source.

    PubMed

    Louis, Benjamin P; Maron, Pierre-Alain; Menasseri-Aubry, Safya; Sarr, Amadou; Lévêque, Jean; Mathieu, Olivier; Jolivet, Claudy; Leterme, Philippe; Viaud, Valérie

    2016-01-01

    Mathematical models do not explicitly represent the influence of soil microbial diversity on soil organic carbon (SOC) dynamics despite recent evidence of relationships between them. The objective of the present study was to statistically investigate relationships between bacterial and fungal diversity indexes (richness, evenness, Shannon index, inverse Simpson index) and decomposition of different pools of soil organic carbon by measuring dynamics of CO2 emissions under controlled conditions. To this end, 20 soils from two different land uses (cropland and grassland) were incubated with or without incorporation of 13C-labelled wheat-straw residue. 13C-labelling allowed us to study residue mineralisation, basal respiration and the priming effect independently. An innovative data-mining approach was applied, based on generalized additive models and a predictive criterion. Results showed that microbial diversity indexes can be good covariates to integrate in SOC dynamics models, depending on the C source and the processes considered (native soil organic carbon vs. fresh wheat residue). Specifically, microbial diversity indexes were good candidates to help explain mineralisation of native soil organic carbon, while priming effect processes seemed to be explained much more by microbial composition, and no microbial diversity indexes were found associated with residue mineralisation. Investigation of relationships between diversity and mineralisation showed that higher diversity, as measured by the microbial diversity indexes, seemed to be related to decreased CO2 emissions in the control soil. We suggest that this relationship can be explained by an increase in carbon yield assimilation as microbial diversity increases. Thus, the parameter for carbon yield assimilation in mathematical models could be calculated as a function of microbial diversity indexes. Nonetheless, given limitations of the methods used, these observations should be considered with caution and

  2. Waste tires: A future source of activated carbon?

    SciTech Connect

    1996-01-01

    Millions of used tires are disposed in the United States each year, causing major environmental problems and representing a loss of valuable resources. Currently, over 80% of discarded tires are landfilled (approximately 200 million per year). Because tires disposed in municipal landfills rarely stay buried, regulators, landfill operators, and even the general public are constantly reminded of this problem. These ever-surfacing tires can serve as a breeding ground for disease-causing mosquitoes; in addition, large mounds of tires often catch fire, causing significant air pollution. Recent research indicates that used tires may soon represent a source of carbon-based adsorbents and energy-rich liquid and gaseous hydrocarbons. Details of this research are discussed briefly in this paper. 3 refs., 2 figs.

  3. Effect of carbon source on pyrimidine biosynthesis in Pseudomonas oryzihabitans.

    PubMed

    West, Thomas P

    2010-08-01

    The effect of carbon source on the regulation of pyrimidine biosynthesis in the opportunistic human pathogen Pseudomonas oryzihabitans was studied at the level of enzyme synthesis. Although pyrimidine supplementation of glucose-grown Ps. oryzihabitans cells produced a slight but statistically significant effect on the de novo pyrimidine biosynthetic pathway enzyme activities, catabolite repression of the enzyme activities by glucose appeared to be occurring. Pyrimidine limitation experiments undertaken using an orotidine 5'-monophosphate decarboxylase mutant strain grown on glucose indicated that repression of enzyme synthesis by pyrimidines was occurring. Following pyrimidine limitation of the mutant strain cells, dihydroorotase and dihydroorotate dehydrogenase activities were found to about double while aspartate transcarbamoylase and orotate phosphoribosyltransferase activities were slightly elevated compared to their activities in the mutant strain cells grown on excess uracil. PMID:20473969

  4. Size distributions, sources and source areas of water-soluble organic carbon in urban background air

    NASA Astrophysics Data System (ADS)

    Timonen, H.; Saarikoski, S.; Tolonen-Kivimäki, O.; Aurela, M.; Saarnio, K.; Petäjä, T.; Aalto, P. P.; Kulmala, M.; Pakkanen, T.; Hillamo, R.

    2008-09-01

    This paper represents the results of one year long measurement period of the size distributions of water-soluble organic carbon (WSOC), inorganic ions and gravimetric mass of particulate matter. Measurements were done at an urban background station (SMEAR III) by using a micro-orifice uniform deposit impactor (MOUDI). The site is located in northern European boreal region in Helsinki, Finland. The WSOC size distribution measurements were completed with the chemical analysis of inorganic ions, organic carbon (OC) and monosaccharide anhydrides from the filter samples (particle aerodynamic diameter smaller than 1 μm, PM1). Gravimetric mass concentration varied during the MOUDI samplings between 3.4 and 55.0 μg m-3 and the WSOC concentrations were between 0.3 and 7.4 μg m-3. On average, water-soluble particulate organic matter (WSPOM, WSOC multiplied by 1.6 to convert the analyzed carbon mass to organic matter mass) comprised 25±7.7% and 7.5±3.4% of aerosol PM1 mass and the PM1-10 mass, respectively. Inorganic ions contributed 33±12% and 28±19% of the analyzed PM1 and PM1-10 aerosol mass. Five different aerosol categories corresponding to different sources or source areas were identified (long-range transport aerosols, biomass burning aerosols from wild land fires and from small-scale wood combustion, aerosols originating from marine areas and from the clean arctic areas). Categories were identified mainly using levoglucosan concentration level for wood combustion and air mass backward trajectories for other groups. Clear differences in WSOC concentrations and size distributions originating from different sources or source areas were observed, although there are also many other factors which might affect the results. E.g. the local conditions and sources of volatile organic compounds (VOCs) and aerosols as well as various transformation processes are likely to have an impact on the measured aerosol composition. Using the source categories, it was identified that

  5. Trends in the sources and sinks of carbon dioxide

    SciTech Connect

    Le Quere, Corrine; Raupach, Mike; Canadell, J.G.; Marland, Gregg; Bopp, Laurent; Ciais, Philippe; Friedlingstein, Pierre; Viovy, Nicolas; Conway, T.J.; Doney, Scott C.; Feely, R. A.; Foster, Pru; House, Joanna I; Prentice, Colin I.; Gurney, Kevin; Houghton, R.A.; Huntingford, Chris; Levy, Peter E.; Lomas, M. R.; Woodward, F. I.; Majkut, Joseph; Sarmiento, Jorge L.; Metzl, Nicolas; Ometto, Jean P; Randerson, James T.; Peters, Glen P; Running, Steven; Sitch, Stephen; Takahashi, Taro; Van der Werf, Guido

    2009-12-01

    Efforts to control climate change require the stabilization of atmospheric CO2 concentrations. This can only be achieved through a drastic reduction of global CO2 emissions. Yet fossil fuel emissions increased by 29% between 2000 and 2008, in conjunction with increased contributions from emerging economies, from the production and international trade of goods and services, and from the use of coal as a fuel source. In contrast, emissions from land-use changes were nearly constant. Between 1959 and 2008, 43% of each year's CO2 emissions remained in the atmosphere on average; the rest was absorbed by carbon sinks on land and in the oceans. In the past 50 years, the fraction of CO2 emissions that remains in the atmosphere each year has likely increased, from about 40% to 45%, and models suggest that this trend was caused by a decrease in the uptake of CO2 by the carbon sinks in response to climate change and variability. Changes in the CO2 sinks are highly uncertain, but they could have a significant influence on future atmospheric CO2 levels. It is therefore crucial to reduce the uncertainties.

  6. Carbon Nanotube/Magnesium Composite as a Hydrogen Source.

    PubMed

    Yu, Min Kyu; Se, Kwon Oh; Kim, Min Joong; Hwang, Jae Won; Yoon, Byoung Young; Kwon, Hyuk Sang

    2015-11-01

    Hydrogen produced using the steam reforming process contains sulfur and carbon monoxide that are harmful to the Pt catalyst in proton-exchange-membrane fuel cells (PEMFCs). However, CO-free hydrogen can be generated from the hydrolysis of either Al in strongly alkaline water or Mg in neutral water with chlorides such as sea water. The hydrogen generation rate from the hydrolysis of Mg is extremely slow and linearly proportional to the corrosion rate of Mg in chloride water. In this work, we fabricated a carbon nanotube (CNT)--reinforced Mg--matrix composite by Spark Plasma Sintering as a fast hydrogen generation source for a PEMFC. The CNTs distributed in the Mg matrix act as numerous local cathodes, and hence cause severe galvanic corrosion between the Mg-matrix anode and CNT-cathode in NaCl solution. It was found that the hydrogen generation rate from the hydrolysis of the 5 vol.% CNT/Mg composite is 3300 times faster than that of the Mg without CNTs due primarily to the galvanic corrosion effect. PMID:26726603

  7. Do Vermont's Floodplains Constitute an Important Source of Labile Carbon?

    NASA Astrophysics Data System (ADS)

    Perdrial, J. N.; Dolan, A.; Kemsley, M.

    2014-12-01

    Floodplains are extremely heterogeneous landscapes with respect to soil and sediment composition and can present an important source of carbon (C) during floods. For example, stream bank soils and sediments are zones of active erosion and deposition of sediment associated C. Due to the presence of plants, riparian soils contain high amounts of C that is exchanged between stream waters and banks. Abandoned channels and meander wetlands that remain hydrologically connected to the main channel contain high amounts of organic matter that can be flushed into the stream during high discharge. This heterogeneity, result of floodplain geomorphology, land cover and use, can profoundly impact the amount and type of dissolved organic matter (DOM) introduced into streams. In order to assess DOM characteristics leached from heterogeneous floodplain soils, aqueous soil extracts were performed on soil samples representative of different land covers (n=20) at four depths. Extracts were analyzed for dissolved organic C and total dissolved nitrogen with a Shimadzu C analyzer. Colored dissolved organic matter characteristics was measured with the Aqualog Fluorescence Spectrometer and quantified with parallel factor analysis (PARAFAC). Preliminary data from three floodplains in Vermont (Connecticut, Missisquoi and Mad River) show a 3D variability of longitudinal, lateral, and vertical extents on water-extractable, mobile C. Dissolved organic carbon concentrations in meander swamp samples were found up to 9 times higher than in those of soils from agricultural field indicative of an important C source. Although C concentrations in adjacent fields were low, high abundance of labile C (indicated by tryptophan-like fluorescence) in water extracts from fields indicates recent biological production of C. This labile C is easily processed by microbes and transformed to the greenhouse gas CO2. These results provide important information on the contribution and lability of different floodplain

  8. Synthesis of nanosized ZSM-5 zeolite using extracted silica from rice husk without adding any alumina source

    NASA Astrophysics Data System (ADS)

    Sari, Zahra Ghasemi Laleh Vajheh; Younesi, Habibollah; Kazemian, Hossein

    2015-08-01

    The synthesis of analcime and nanosized ZSM-5 zeolites was carried out by a hydrothermal method with silica extracted from rice husk, available as an inexpensive local biowaste, and without the use of an extra alumina source. Amorphous silica (with 88 wt% of SiO2) was extracted from rice husk ash by a suitable alkali solution. The effects of crystallization temperature, time and SiO2/Al2O3 ratio of the initial system on the properties of final products were investigated. For the characterization of the synthesized product, X-ray diffraction, scanning electron microscope, energy dispersive X-ray techniques, Fourier transform infrared and Brunauer-Emmett-Teller method were applied. Crystallinity percentages of analcime and nanosized ZSM-5 were 95.86 and 89.56, respectively, with specific surface area of 353.5 m2 g-1 for ZSM-5. The experimental results revealed that the synthesis of analcime and nanosized ZSM-5 zeolites was more practical with using silica extracted from inexpensive raw materials, while the whole crystallization process was accomplished without adding any alumina source during.

  9. Black carbon from the Mississippi River: quantities, sources, and potential implications for the global carbon cycle.

    PubMed

    Mitra, Siddhartha; Bianchi, Thomas S; McKee, Brent A; Sutula, Martha

    2002-06-01

    Black carbon (BC) may be a major component of riverine carbon exported to the ocean, but its flux from large rivers is unknown. Furthermore, the global distribution of BC between natural and anthropogenic sources remains uncertain. We have determined BC concentrations in suspended sediments of the Mississippi River, the 7th largest river in the world in terms of sediment and water discharge, during high flow and low flow in 1999. The 1999 annual flux of BC from the Mississippi River was 5 x 10(-4) petagrams (1 Pg = 10(15) g = 1 gigaton). We also applied a principal components analysis to particulate-phase high molecular weight polycyclic aromatic hydrocarbon isomer ratios in Mississippi River suspended sediments. In doing so, we determined that approximately 27% of the BC discharged from the Mississippi River in 1999 originated from fossil fuel combustion (coal and smelter-derived combustion), implicating fluvial BC as an important source of anthropogenic BC contamination into the ocean. Using our value for BC flux and the annual estimate for BC burial in ocean sediments, we calculate that, in 1999, the Mississippi River discharged approximately 5% of the BC buried annually in the ocean. These results have important implications, not only for the global carbon cycle but also for the fluvial discharge of particulate organic contaminants into the world's oceans. PMID:12075780

  10. Fluxes of carbon, phosphorylation, and redox intermediates during growth of Saccharomyces cerevisiae on different carbon sources

    SciTech Connect

    Cortassa, S.; Aon, J.C.; Aon, M.A.

    1995-07-20

    In the present work the authors developed a method for estimating anabolic fluxes when yeast are growing on various carbon substrates (glucose, glycerol, lactate, pyruvate, acetate, or ethanol) in minimal medium. Fluxes through the central amphibolic pathways were calculated from the product of the total required amount of a specified carbon intermediate times the growth rate. The required amount of each carbon intermediate was estimated from the experimentally determined macromolecular composition of cells grown in each carbon source and the monomer composition of macromolecules. Substrates sharing most metabolic pathways such as ethanol and acetate, despite changes in the macromolecular composition, namely carbohydrate content, did not show large variations in the overall fluxes through the main amphibolic pathways. For instance, in order to supply anabolic precursors to sustain growth rates in the range of 0.16/h to 0.205/h, similar large fluxes through Acetyl CoA synthase were required by acetate or ethanol. The V{sub max} activities of key enzymes of the main amphibolic pathways measured in permeabilized yeast cells allowed to confirm, qualitatively, the operation of those pathways for all substrates and were consistent on most substrates with the estimate fluxes required to sustain growth.

  11. Anthropogenic carbon dioxide source regions observed from space

    NASA Astrophysics Data System (ADS)

    Schneising, Oliver; Heymann, Jens; Buchwitz, Michael; Reuter, Maximilian; Bovensmann, Heinrich; Burrows, John P.

    2013-04-01

    Urban areas, which are home to the majority of today's world population, are responsible for more than two-thirds of the global energy-related carbon dioxide emissions. Given the ongoing demographic growth and rising energy consumption in metropolitan regions particularly in the developing world, urban-based emissions are expected to further increase in the future. As a consequence, monitoring and independent verification of reported anthropogenic emissions is becoming more and more important. It is demonstrated using CO2 column-averaged mole fraction data retrieved from the SCIAMACHY instrument onboard ENVISAT that anthropogenic CO2 emissions can be detected from space and that emission trends might be tracked using satellite observations. This is promising with regard to future satellite missions with high spatial resolution and wide swath imaging capability aiming at constraining anthropogenic emissions down to the point-source scale. By subtracting retrieved background values from those retrieved over urban areas the regional contrasts are quantified and significant CO2 enhancements are found for several anthropogenic source regions around the world. The order of magnitude of the enhancements is in agreement with what is expected for anthropogenic CO2 signals. The validity of the retrieved spatial enhancement patterns and of the temporal trends of the retrieved enhancements is assessed by comparison with anthropogenic emissions from the Emission Database for Global Atmospheric Research (EDGAR).

  12. Towards a Carbon Nanotube Ionization Source for Planetary Atmosphere Exploration

    NASA Astrophysics Data System (ADS)

    Oza, A. V.; Leblanc, F.; Berthelier, J. J.; Becker, J.; Coulomb, R.; Gilbert, P.; Hong, N. T.; Lee, S.; Vettier, L.

    2015-12-01

    The characterization of planetary exospheres today, relies on the development of a highly efficient ionization source, due to the scant neutral molecules (n < 108 cm -3) present in diffuse planetary coronae. These tenuous atmospheres provide insight on to physical processes known to occur such as: space weathering, magneto-atmosphere interactions, as well as atmospheric escape mechanisms, all of which are being heavily investigated via current 3D Monte Carlo simulations (Turc et al. 2014, Leblanc et al. 2016 in prep) at LATMOS. Validation of these studies will rely on in-situ observations in the coming decades. Neutral detection strongly depends on electron-impact ionization which via conventional cathode-sources, such as thermal filaments (heated up to 2000 K), may only produce the target ionization essential for energy-measurements with large power consumption. Carbon nanotubes (CNTs) however are ideal low-power, cold cathodes, when subject to moderate electric fields (E ~ 1 MV / m). We present our current device, a small CNT chip, of emission area 15 mm2, emitting electrons that pass through an anode grid and subsequent electrostatic analyzer. The device currently extracts hundreds of µAmperes with applied external voltages ~ -150 Volts, approaching minimum power consumption < 0.1 Watts. The 3D modeling of field effect electrons ionizing a standard influx of neutrals is shown, using the multiphysics suite COMSOL. To better anticipate the species an ideal in-situ spacecraft equipped with such an ionization source would observe, we discuss Europa's exosphere. Europa's environment is largely shaped by the Jovian plasma sputtering the icy regolith with heavy ions and electrons (keV < E < MeV), producing predominately molecular oxygen (Johnson et al. 2002).

  13. Degraded peatlands as a source of riverine organic carbon and enhanced river outgassing in Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Wit, Francisca; Rixen, Tim

    2014-05-01

    Sumatra, Indonesia, is well known for its widespread tropical peat lands. However, silvi- and agricultural purposes are currently inducing large-scale degradation of peat lands, transforming the landscape into mainly palm-oil plantations. The degradation induces loss of carbon via direct CO2 emissions, but also via riverine outflow of dissolved and particulate organic carbon (DOC and POC, respectively) due to leaching. This organic carbon is then decomposed along the way towards the coast and is hypothesized to enhance coastal and river outgassing of CO2. In the framework of SPICE III, Science for the Protection of Indonesian Coastal Ecosystems, we are quantifying these carbon budgets and fluxes in the rivers and coastal areas of northeast Sumatra. Using underway instruments, we have gathered continuous measurements of various parameters, including pCO2, pH, temperature, salinity and oxygen. In addition, water samples were obtained for DOC, POC, δ13CDIC, alkalinity and nutrient analyses. The results of the first analyses show that pCO2 values in the coastal areas range between 400-600 μatm. However, in the vicinity of the rivers pCO2 concentrations increase tremendously, ranging from 600 near the estuaries to a staggering 9000 μatm further upstream. These values are much higher than the marine pCO2 value of 390 μatm in the South China Sea. When adding carbon isotope results into the story, while knowing that upstream river life is greatly reduced due to oxygen depletion as a result of high DOC decomposition, it appears to be clear from the values, which range between -20 to -24‰ δ13CDIC, that the main source of the organic carbon is indeed originating from the degrading peat lands. In conclusion, our hypothesis can be deemed correct: degrading peat lands enhance organic carbon outflow and therefore elevated decomposition in the rivers, which results in increased river outgassing of CO2. Further analyses will be conducted to precisely quantify the budgets and

  14. Effects of Syn-Pandemic Reforestation on Atmospheric Carbon Dioxide From 1500 to 1700 A.D.

    NASA Astrophysics Data System (ADS)

    Nevle, R. J.; Bird, D. K.

    2005-12-01

    Recent analysis of paleoclimate proxies suggests that biomass burning by humans during the past eight millennia produced quantities of CO2 sufficient to counteract the effects of decreasing insolation driven by orbital variations and thus prevented ice sheet expansion. Correlation between periods of declining population and biomass burning, such as implied by the synchroneity of the American pandemics and decreasing atmospheric CO2 concentration during the 16th-18th centuries, provides an important test of the extent to which pre-industrial anthropogenic activity affected the atmospheric greenhouse gas budget. Numerous studies have attributed the ~5 ppm decline of atmospheric CO2 concentration, as well as the synchronous ~0.1 per mil increase of the δ13C of atmospheric CO2 between 1500 and 1700 A.D., to the effects of Little Ice Age cooling. However, this interpretation is not supported by recent multiproxy-based surface temperature reconstructions, which demonstrate a diminutive global temperature anomaly of ~0.1 C that was unlikely to have independently produced the distinct effect observed in atmospheric CO2 concentration. Alternatively, it is possible that a decline in CO2 concentration driven by massive reforestation produced cooling as a by-product. The timing and magnitude of changes in both the concentration and carbon-isotope composition of atmospheric CO2 recorded by globally distributed climate proxies from the tropics (sponges), temperate latitudes (tree rings), and polar regions (ice cores) are compatible with fixation of >10 Gt C due to reforestation. Reforestation, which explains pre-industrial atmospheric CO2 variations between 1500 and 1700 A.D. in a manner more consistent with the global surface temperature record than explanations requiring substantial cooling, presumably occurred on lands that were cultivated and seasonally burned, then subsequently abandoned, by indigenous Americans who perished in pandemics during European conquest. The

  15. Tracing the sources of organic carbon in freshwater systems

    NASA Astrophysics Data System (ADS)

    Glendell, Miriam; Meersmans, Jeroen; Barclay, Rachel; Yvon-Durocher, Gabriel; Barker, Sam; Jones, Richard; Hartley, Iain; Dungait, Jennifer; Quine, Timothy

    2016-04-01

    both terrestrial and aquatic sources as recorded in lake sediments to the measured rates of soil erosion and terrestrial & aquatic CO2 respiration rates, this study has paved a way towards a novel and cross-disciplinary approach to investigate and further improve current status of knowledge as regards C-cycling across the entire terrestrial-aquatic continuum. 137Cs was found to be useful to understand the dynamics and spatial pattern of lateral fluxes of sediment & C at the catchment scale, while tracing chemical composition of C using n-alkanes and stable isotopes (δ13C, δ15N) allowed distinguishing between the terrestrial vs. aquatic origin of C and determining main sources of particulate organic carbon in the aquatic environment within the two study catchments.

  16. Dual-Carbon sources fuel the OCS deep-reef Community, a stable isotope investigation

    USGS Publications Warehouse

    Sulak, Kenneth J.; Berg, J.; Randall, Michael; Dennis, George D., III; Brooks, R.A.

    2008-01-01

    The hypothesis that phytoplankton is the sole carbon source for the OCS deep-reef community (>60 m) was tested. Trophic structure for NE Gulf of Mexico deep reefs was analyzed via carbon and nitrogen stable isotopes. Carbon signatures for 114 entities (carbon sources, sediment, fishes, and invertebrates) supported surface phytoplankton as the primary fuel for the deep reef. However, a second carbon source, the macroalga Sargassum, with its epiphytic macroalgal associate, Cladophora liniformis, was also identified. Macroalgal carbon signatures were detected among 23 consumer entities. Most notably, macroalgae contributed 45 % of total carbon to the 13C isotopic spectrum of the particulate-feeding reef-crest gorgonian Nicella. The discontinuous spatial distribution of some sessile deep-reef invertebrates utilizing pelagic macroalgal carbon may be trophically tied to the contagious distribution of Sargassum biomass along major ocean surface features.

  17. Selling Health to the Distracted: Consumer Responses to Source Credibility and Ad Appeal Type in a Direct-to-Consumer Advertisement.

    PubMed

    Lemanski, Jennifer L; Villegas, Jorge

    2015-01-01

    Since 1997, when the U.S. Food and Drug Administration first allowed prescription drug companies to release ads directly targeting the public, direct-to-consumer (DTC) advertising has become an integral part of the pharmaceutical industry marketing toolkit, reaching over $4 billion in 2005. In an experiment where cognitive load, a task that requires the investment of a subject's memory in an unrelated task; source credibility; and advertising appeal type (affective or cognitive) were manipulated, attitude toward the ad was measured for a print DTC meningitis vaccine ad. Main effect results for source credibility and advertising appeal type on attitude toward the ad were found, and interactions between manipulated variables were apparent when the individual difference variables related to a specific illness (vaccination history, living in a dorm, family members or friends who had suffered the illness) were taken into account. PMID:26368298

  18. Terrestrial effects of possible astrophysical sources of an AD 774-775 increase in 14C production

    NASA Astrophysics Data System (ADS)

    Thomas, Brian C.; Melott, Adrian L.; Arkenberg, Keith R.; Snyder, Brock R.

    2013-03-01

    We examine possible sources of a substantial increase in tree ring 14C measurements for the years AD 774-775. Contrary to claims regarding a coronal mass ejection (CME), the required CME energy is not several orders of magnitude greater than known solar events. We consider solar proton events (SPEs) with three different fluences and two different spectra. The data may be explained by an event with fluence about one order of magnitude beyond the October 1989 SPE. Two hard spectrum cases considered here result in moderate ozone depletion, so no mass extinction is implied, though we do predict increases in erythema and damage to plants from enhanced solar UV. We are able to rule out an event with a very soft spectrum that causes severe ozone depletion and subsequent biological impacts. Nitrate enhancements are consistent with their apparent absence in ice core data. The modern technological implications of such an event may be extreme, and considering recent confirmation of superflares on solar-type stars, this issue merits attention.

  19. Changing temperature response turned boreal forest from carbon sink into carbon source

    NASA Astrophysics Data System (ADS)

    Grelle, Achim; Hadden, David

    2015-04-01

    19 years of flux measurements reveal that a boreal forest in northern Sweden has turned from a carbon sink into a carbon source. A consistent annual uptake of about 4 tonnes CO2 per hectare turned into annual emissions of the same magnitude within a few years. While biomass increment and gross CO2 uptake remained unchanged, gross respiration has increased, mainly during the autumn periods. This increasingly reduced the annual number of days with net CO2 uptake. No significant trend towards higher temperatures could be observed during the measurement period. However, the temperature responses of ecosystem respiration have changed with time, leading to higher respiration rates in the temperature range between 0 °C and 5 °C, which is the most common range during spring and autumn. Consequently, respiration fluxes under those temperature conditions have increased, both in spring and - even more - in autumn. Thus the change of the carbon balance is not directly caused by climate warming, as stated in other studies, but by changes in ecosystem functioning. The reasons for the rapid change in temperature response are still unknown and may be sought in changes of litterfall and dead wood distribution, changes in fungi- and microbial communities, or hydrological changes.

  20. Reconstructing the diets of Greek Byzantine populations (6th-15th centuries AD) using carbon and nitrogen stable isotope ratios.

    PubMed

    Bourbou, Chryssi; Fuller, Benjamin T; Garvie-Lok, Sandra J; Richards, Michael P

    2011-12-01

    Documentary evidence and artistic representations have traditionally served as the primary sources of information about Byzantine diet. According to these sources, Byzantine diet was based on grain (primarily wheat and barley), oil, and wine, supplemented with legumes, dairy products, meat, and marine resources. Here, we synthesize and compare the results of stable isotope ratio analyses of eight Greek Byzantine populations (6th-15th centuries AD) from throughout Greece. The δ(13) C and δ(15) N values are tightly clustered, suggesting that all of these populations likely consumed a broadly similar diet. Both inland and coastal Byzantine populations consumed an essentially land-based C(3) diet, significant amounts of animal protein, and possibly some C(4) plants, while no evidence of a general dependence on low-δ(15) N legumes was observed. One interesting result observed in the isotopic data is the evidence for the consumption of marine protein at both coastal sites (a reasonable expectation given their location) and for some individuals from inland sites. This pattern contrasts with previous isotopic studies mainly on prehistoric Greek populations, which have suggested that marine species contributed little, or not at all, to the diet. The possibility that fasting practices contributed to marine protein consumption in the period is discussed, as are possible parallels with published isotope data from western European medieval sites. PMID:21952735

  1. Anaerobic biogranulation using phenol as the sole carbon source

    SciTech Connect

    Tay, J.H.; He, Y.X.; Yan, Y.G.

    2000-04-01

    The granulation process was extensively examined using phenol as sole carbon source in a 2-L laboratory upflow anaerobic sludge blanket (UASB) reactor. The study was conducted mesophilically at 35 C. Anaerobically digested sludge was used as seed after a 14-day activation period with glucose feed. Massive initial granules were developed after 3 months of startup, grew at an accelerated pace for 6 months, then became fully grown. The granulation process can be broken into three phases: acclimation, granulation, and maturation. However, granulation with phenol proceeded more slowly than it did in UASB reactors fed with readily biodegradable carbohydrates studied previously. The granular sludge cultivated had a median diameter of 1.8 mm, phenol-degrading activity of 0.65 g chemical oxygen demand (COD)/g volatile suspended solids (VSS){sm_bullet}d, and a sludge volume index of 14 mL/g. Phenol COD removal efficiency of 86% was achieved when the reactor was operating at an influent phenol concentration of 1,260 mg/L (corresponding to 3,000 mg COD/L), hydraulic retention time of 12 hours, and volumetric loading rate of 6 g COD/L{sm_bullet}d. However, the lower-than-expected phenol COD removal efficiency could be attributed to inhibition by the high influent phenol concentration or loading. The batch test demonstrated that the sludge methanogenic activity was reduced by 52 and 75% at phenol concentrations of 420 and 840 mg/L, respectively.

  2. Carbon nanotube based field emission X-ray sources

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan

    This dissertation describes the development of field emission (FE) x-ray sources with a carbon-nanotube (CNT) cathode. Field emission x-rays have advantages over conventional x-rays by replacing the thermionic cathode with a cold cathode so that electrons are emitted at room temperature and emission is voltage controllable. CNTs are found to be excellent electron emitters with low threshold fields and high current density which makes them ideal for generate field emission x-rays. Macroscopic CNT cold cathodes are prepared and the parameters to tune their field emission properties are studied: structure and morphology of CNT cathodes, temperature as well as electronic work function of CNT. Macroscopic CNT cathodes with optimized performance are chosen to build a high-resolution x-ray imaging system. The system can readily generate x-ray radiation with continuous variation of temporal resolution up to nanoseconds and spatial resolution down to 10 micron. Its potential applications for dynamic x-ray imaging and micro-computed tomography are also demonstrated. The performance characteristics of this compact and versatile system are promising for non-destructive testing and for non-invasive small-animal imaging for biomedical research.

  3. Source apportionment of PM10 mass and particulate carbon in the Kathmandu Valley, Nepal

    NASA Astrophysics Data System (ADS)

    Kim, Bong Mann; Park, Jin-Soo; Kim, Sang-Woo; Kim, Hyunjae; Jeon, Haeun; Cho, Chaeyoon; Kim, Ji-Hyoung; Hong, Seungkyu; Rupakheti, Maheswar; Panday, Arnico K.; Park, Rokjin J.; Hong, Jihyung; Yoon, Soon-Chang

    2015-12-01

    The Kathmandu Valley in Nepal is a bowl-shaped urban basin in the Himalayan foothills with a serious problem of fine particulate air pollution that impacts local health and impairs visibility. Particulate carbon concentrations have reached severe levels that threaten the health of 3.5 million local residents. Moreover, snow and ice on the Himalayan mountains are melting as a result of additional warming due to particulate carbon, especially high black carbon concentrations. To date, the sources of the Valley's particulate carbon and the impacts of different sources on particulate carbon concentrations are not well understood. Thus, before an effective control strategy can be developed, these particulate carbon sources must be identified and quantified. Our study has found that the four primary sources of particulate carbon in the Kathmandu Valley during winter are brick kilns, motor vehicles, fugitive soil dust, and biomass/garbage burning. Their source contributions are quantified using a recently developed new multivariate receptor model SMP. In contrast to other highly polluted areas such as China, secondary contribution is almost negligible in Kathmandu Valley. Brick kilns (40%), motor vehicles (37%) and biomass/garbage burning (22%) have been identified as the major sources of elemental carbon (black carbon) in the Kathmandu Valley during winter, while motor vehicles (47%), biomass/garbage burning (32%), and soil dust (13%) have been identified as the most important sources of organic carbon. Our research indicates that controlling emissions from motor vehicles, brick kilns, biomass/garbage burning, and soil dust is essential for the mitigation of the particulate carbon that threatens public health, impairs visibility, and influences climate warming within and downwind from the Kathmandu Valley. In addition, this paper suggests several useful particulate carbon mitigation methods that can be applied to Kathmandu Valley and other areas in South Asia with

  4. USE OF STABLE CARBON ISOTOPE RATIOS OF FATTY ACIDS TO EVALUATE MICROBIAL CARBON SOURCES IN TERRESTRIAL ENVIRONMENTS

    EPA Science Inventory

    We use measurements of the concentration and stable carbon isotopic ratio (D 13C) of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels and microbial carbon source. We found that intensive sugar cane cultivation leads to ...

  5. [Rice straw and sewage sludge as carbon sources for sulfate-reducing bacteria treating acid mine drainage].

    PubMed

    Su, Yu; Wang, Jin; Peng, Shu-chuan; Yue, Zheng-bo; Chen, Tian-hu; Jin, Jie

    2010-08-01

    The performance of three organic carbon sources was assessed in terms of sulfate reduction and main metal removal, by using sewage sludge as the source of sulfate-reducing bacteria (SRB) and adding rice straw and ethanol with equal quantity. Results indicated that sewage sludge which contained certain amount of alkaline material could neutralize acidity of acid mine drainage(AMD) on the first day of experiment, elevating pH value from the initial 2.5 to around 5.4-6.3 and achieving suitable pH condition for SRB growth. Sewage sludge contained fewer biodegradable organic substance, reactive mixture with single sewage sludge showed the lowest sulfate reduction (65.9%). When the single sewage sludge was supplemented with rice straw, SRB reducing sulfate was enhanced (79.2%), because the degradation rate of rice straw was accelerated by the specific bacteria in sewage sludge, providing relatively abundant carbon source for SRB. Control experiment with ethanol was most effective in promoting sulfate reduction (97.9%). Metal removal efficiency in all three reactors was as high as 99% for copper, early copper removal was mainly attributed to the adsorption capacity of sewage sludge prior to SRB acclimation. It is feasible for using rice straw and sewage sludge as carbon sources for SRB treating acid mine drainage at a low cost, this may have significant implication for in situ bioremediation of mine environment. PMID:21090305

  6. Examining the Role of Multiple Carbon Sources in Isoprene Synthesis in Plants Using Stable Isotope Techniques

    NASA Astrophysics Data System (ADS)

    Funk, J. L.; Mak, J. E.; Lerdau, M. T.

    2001-12-01

    The carbon source for phytogenc isoprene is an issue with important ramifications for both atmospheric and biological science because of its impact on the isotopic signature of isoprene and its oxidation products and because it lends insight into the function that isoprene serves within leaves. Although recently assimilated carbon is believed to be the primary carbon source for isoprene production in plants, variation in diurnal and seasonal isoprene fluxes that cannot be explained by temperature, light, and leaf development have led to the suggestion that alternative carbon sources may contribute. Stable isotopes of carbon can be used to identify changes in carbon partitioning into isoprene synthesis, and mixing models can assess the relative importance of each source. In preliminary studies, we document an additional 8-10 \\permil discrimination in isoprene emitted in the absence of photosynthesis. This change in signature suggests that the carbon source is switched from recently obtained photosynthate to a source more depleted in 13C. We propose that intermediates from carbohydrate degradation and/or re-fixation of CO2 from mitichondrial respiration and photorespiration can contribute to isoprene production. In addition, we expect alternative carbon sources to be most important when photosynthate is limiting (e.g. during water stress events). Photosynthesis, respiration, and isoprene emission measurements are used to calculate the isotopic signatures of the three potential carbon pools: photosynthate derived from ambient CO2, photosynthate derived from respired CO2, and carbohydrate-derived intermediates.

  7. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers

    SciTech Connect

    Mayorga, E; Aufdenkampe, A K; Masiello, C A; Krusche, A V; Hedges, J I; Quay, P D; Richey, J E; Brown, T A

    2005-06-23

    Rivers are generally supersaturated with respect to carbon dioxide, resulting in large gas evasion fluxes that can be a significant component of regional net carbon budgets. Amazonian rivers were recently shown to outgas more than ten times the amount of carbon exported to the ocean in the form of total organic carbon or dissolved inorganic carbon. High carbon dioxide concentrations in rivers originate largely from in situ respiration of organic carbon, but little agreement exists about the sources or turnover times of this carbon. Here we present results of an extensive survey of the carbon isotope composition ({sup 13}C and {sup 14}C) of dissolved inorganic carbon and three size-fractions of organic carbon across the Amazonian river system. We find that respiration of contemporary organic matter (less than 5 years old) originating on land and near rivers is the dominant source of excess carbon dioxide that drives outgassing in mid-size to large rivers, although we find that bulk organic carbon fractions transported by these rivers range from tens to thousands of years in age. We therefore suggest that a small, rapidly cycling pool of organic carbon is responsible for the large carbon fluxes from land to water to atmosphere in the humid tropics.

  8. The Effect of Carbon Source and Fluoride Concentrations in the "Streptococcus Mutans" Biofilm Formation

    ERIC Educational Resources Information Center

    Paulino, Tony P.; Andrade, Ricardo O.; Bruschi-Thedei, Giuliana C. M.; Thedei, Geraldo, Jr.; Ciancaglini, Pietro

    2004-01-01

    The main objective of this class experiment is to show the influence of carbon source and of different fluoride concentrations on the biofilm formation by the bacterium "Streptococcus mutans." The observation of different biofilm morphology as a function of carbon source and fluoride concentration allows an interesting discussion regarding the…

  9. Sedimentology and paleoenvironments of the Las Chacritas carbonate paleolake, Cañadón Asfalto Formation (Jurassic), Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Cabaleri, Nora G.; Benavente, Cecilia A.

    2013-02-01

    The Las Chacritas Member is the lower part of the Cañadón Asfalto Formation (Jurassic). The unit is a completely continental limestone succession with volcanic contributions that were deposited during the development of the Cañadón Asfalto Rift Basin (Chubut province, Patagonia, Argentina). A detailed sedimentological analysis was performed in the Fossati depocenter to determine the paleoenvironments that developed in the context of this rift. The Las Chacritas Member represents a carbonate paleolake system with ramp-shaped margins associated with wetlands that were eventually affected by subaerial exposure and pedogenesis. This process is represented by three main subenvironments: a) a lacustrine setting sensu stricto (lacustrine limestone facies association), represented by Mudstones/Wackestones containing porifera spicules (F1), Intraclastic packstones (F6) and Tabular stromatolites (F10) in which deposition and diagenesis were entirely subaqueous; b) a palustrine setting (palustrine limestone facies association) containing Microbial Mudstones (F2), Intraclastic sandy packstone with ostracode remains (F3), Oncolitic packstone (F5), Brecciated limestone (F7) and Nodular-Mottled limestone (F8) representing shallow marginal areas affected by groundwater fluctuations and minor subaerial exposure; and c) a pedogenic paleoenvironment (pedogenic limestone facies association) including Intraclastic limestone (F4) and Packstones containing Microcodium (F9) facies displaying the major features of subaerial exposure, pedogenic diagenesis and the development of paleosols. The fluvial-palustrine-lacustrine succession shows a general shallow upward trend in which contraction-expansion cycles are represented (delimited by exposure and surface erosion). The variations in the successive formations reflect the responses to fluctuations in a combination of two major controls, the tectonic and local climatic variables. The predominance of the palustrine facies associations was

  10. Biosynthetic Pathways of Vibrio succinogenes growing with fumarate as terminal electron acceptor and sole carbon source.

    PubMed

    Bronder, M; Mell, H; Stupperich, E; Kröger, A

    1982-05-01

    1. With fumarate as the terminal electron acceptor and either H2 or formate as donor, Vibrio succinogenes could grow anaerobically in a mineral medium using fumarate as the sole carbon source. Both the growth rate and the cell yield were increased when glutamate was also present in the medium. 2. Glutamate was incorporated only into the amino acids of the glutamate family (glutamate, glutamine, proline and arginine) of the protein. The residual cell constituents were synthesized from fumarate. 3. Pyruvate and phosphoenolpyruvate, as the central intermediates of most of the cell constituents, were formed through the action of malic enzyme and phosphoenolpyruvate synthetase. Fructose-1,6-bisphosphate aldolase was present in the bacterium suggesting that this enzyme is involved in carbohydrate synthesis. 4. In the absence of added glutamate the amino acids of the glutamate family were synthesized from fumarate via citrate. The enzymes involved in glutamate synthesis were present. 5. During growth in the presence of glutamate, net reducing equivalents were needed for cell synthesis. Glutamate and not H2 or formate was used as the source of these reducing equivalents. For this purpose part of the glutamate was oxidized to yield succinate and CO2. 6. The alpha-ketoglutarate dehydrogenase involved in this reaction was found to use ferredoxin as the electron acceptor. The ferredoxin of the bacterium was reoxidized by means of a NADP-ferredoxin oxidoreductase. Enzymes catalyzing the reduction of NAD, NADP or ferredoxin by H2 or formate were not detected in the bacterium. PMID:7103660

  11. High-rate nitrogen removal by the Anammox process with a sufficient inorganic carbon source.

    PubMed

    Yang, Jiachun; Zhang, Li; Fukuzaki, Yasuhiro; Hira, Daisuke; Furukawa, Kenji

    2010-12-01

    This study focused on high-rate nitrogen removal by the anaerobic ammonium oxidation (Anammox) process with a sufficient inorganic carbon (IC) source. Experiments were carried out in an up-flow column Anammox reactor fed with synthetic inorganic wastewater for 110 days. The IC source was added into the influent tank in the form of bicarbonate. The results confirmed the positive impact of inorganic matter on stimulating Anammox activity. After the addition of sufficient IC, the nitrogen removal rate sharply increased from 5.2 to 11.8 kg-Nm(-3)day(-1) within only 32 days. NO(2)-N inhibition was not observed even at NO(2)-N concentrations greater than 460 mgN/L, indicating the enriched Anammox consortium adapted to high NO(2)-N concentrations. The ratio of NO(2)-N removal, NO(3)-N production and NH(4)-N removal for the reactor was correspondingly changed from 1.21:0.21:1 to 1.24:0.18:1. Simultaneously, the sludge volume index of the Anammox granules decreased markedly from 36.8 to 21.5 mL/g, which was attributed to the implementation of proper operational strategy. In addition, DNA analysis revealed that a shift from the KSU-1 strain to the KU2 strain occurred in the Anammox community. PMID:20709538

  12. Investigating effectiveness of activated carbons of natural sources on various supercapacitors

    NASA Astrophysics Data System (ADS)

    Faisal, Md. Shahnewaz Sabit; Rahman, Muhammad M.; Asmatulu, Ramazan

    2016-04-01

    Activated carbon can be produced from natural sources, such as pistachio and acorn shells, which can be an inexpensive and sustainable sources of natural wastes for the energy storage devices, such as supercapacitors. The carbonaceous materials used in this study were carbonized at the temperatures of 700°C and 900°C after the stabilization process at 240°C for two hours. These shells showed approximately 60% carbon yield. Carbonized nutshells were chemically activated using1wt% potassium hydroxide (KOH). Activated carbon powders with polyvinylidene fluoride (PVdF) were used to construct carbon electrodes. A 1M of tetraethylammonium tetrafluoroborate (TEABF4) and propylene carbonate (PC) were used as electrolytes. Electrochemical techniques, such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for the characterization of the supercapacitors. Scanning electron microscopy (SEM) was used to inspect the surface texture of the activated carbons. Activated pistachio shells carbonized at 700°C showed more porous surface texture than those carbonized at 900°C. Effects of the carbonization temperatures were studied for their electrochemical characteristics. The shells carbonized at 700°C showed better electrochemical characteristics compared to those carbonized at 900°C. The test results provided about 27,083 μF/g specific capacitance at a scan rate of 10mV/s. This study showed promising results for using these activated carbons produced from the natural wastes for supercapacitor applications.

  13. Brines as Possible Cation Sources for Biomimetic Carbon Dioxide Sequestration

    NASA Astrophysics Data System (ADS)

    Bond, G. M.; Abel, A.; McPherson, B. J.; Stringer, J.

    2002-12-01

    The utility industry is currently producing 2.1 x 109 tonnes of CO2 per year from burning coal. The amounts of CO2 produced by a single coal-burning station are typically around 0.1 tonnes/MW/h for a coal burn of 0.04 tonnes/MW/h. These large fixed sources of CO2 constitute an obvious target for carbon sequestration to minimize greenhouse-gas emissions. The generally favored approach in present sequestration research is to achieve a CO2 stream that is highly concentrated, compress it, and transport it to geologic sequestration sites, such as deep saline aquifers. The volume of the CO2 is of some interest here. Supercritical CO2, as supplied for example from natural wells to enhanced oil recovery (EOR) sites, has a density of approximately 0.9, and is relatively incompressible, which means that the volume of sequestered supercritical CO2 will be somewhat greater than that of the coal from which it was formed. The volume of water displaced by CO2 injection into aquifers would be closely comparable to the volume of the CO2 itself. An alternative path, which we have been following, would capture the gas as calcium carbonate, CaCO3, in a biomimetic approach that offers some obvious advantages. Sequestration, in this case, is in the form of a safe, stable, environmentally benign product. On a geologic timeframe, considerable amounts of CO2 have been sequestered as, for example, oolitic limestone deposits and dolomite deposits, suggesting that very long-lived or even permanent sequestration is possible in solid carbonate form. Not only would our approach remove the costly steps of concentrating and compressing the CO2, but also it is anticipated that it would remove the need for long-term monitoring to check for CO2 leakage. In a separate collaborative study detailed by Abel and others (this volume), ramifications of geologic sequestration of CO2 and/or bicarbonate-enriched brines are evaluated with laboratory flow experiments and computer model simulations. Porosity and

  14. Application of plant carbon source for denitrification by constructed wetland and bioreactor: review of recent development.

    PubMed

    Hang, Qianyu; Wang, Haiyan; Chu, Zhaosheng; Ye, Bibi; Li, Chunmei; Hou, Zeying

    2016-05-01

    Water quality standard for nitrate becomes more and more strict, and the plant carbon source is widely used for denitrification by constructed wetland (CW) and bioreactor. However, the nitrate removal efficiency by different types of plant carbon source are not evaluated comprehensively. Denitrification performance of different plant carbon sources, and the influence of dosing method and pretreatment are thoroughly reviewed in this paper, which aims to investigate the accurate utilization of plant carbon source for nitrogen (as nitrate) removal. It is concluded that plant carbon source addition for all types of CWs and bioreactors can improve the nitrate removal efficiency to some extent, and the dosing method of plant carbon source for denitrification should be further studied and optimized in the future. The popular carbon sources for CW and bioreactor denitrification enhancement are woodchip, chopped macrophytes, crop plants, macrophytes litters, etc. The recommended optimum C:N ratios for CW and bioreactor are 4.0:5.0 and 1.8:3.0, respectively. The physical and biological pretreatments are selected to supply organic carbon for long-term denitrification. PMID:26971521

  15. The open-ocean source of atmospheric carbon monoxide

    NASA Astrophysics Data System (ADS)

    Stubbins, Aron; Uher, Günther; Kitidis, Vassilis; Law, Cliff S.; Upstill-Goddard, Robert C.; Woodward, E. Malcolm S.

    2006-07-01

    Carbon monoxide (CO) atmospheric mixing ratios and surface-water concentrations were determined during Atlantic Meridional Transect cruise number 10, April-May 2000. Atmospheric CO increased from south (mean=74±9 ppbv) to north (mean=151±19 ppbv) with a steep increase around the intertropical convergence zone. Surface-water CO (0.2-2.6 nmol L -1) showed pronounced diurnal variations with afternoon maxima exceeding pre-dawn minima 5-7 fold. Modest regional variations, as indicated by maximum daily CO concentrations, were also observed. Highest CO maxima occurred at ˜11.5°N, where high solar irradiance was combined with elevated coloured dissolved organic matter (CDOM) levels and modest winds, while lowest CO maxima occurred during periods of high winds and lowest solar irradiance near the western European margin at 45°N. Atlantic Ocean CO emissions were estimated to be 1.5±1.1 Tg CO-C yr -1 based on near-instantaneous atmospheric CO, sea-surface CO and windspeeds from the cruise. However, as spatial and temporal variability in both terms was considered to be unique to the timing and path of the cruise, the mean Atlantic diel cycle of sea-surface CO concentration was estimated by pooling all cruise data into 1-h sections, yielding a mean of 0.94 nmol L -1; and diurnal variations from 0.4 to 1.6 nmol L -1. Using the mean diurnal cycle, the Atlantic and global open-ocean sources of CO to the atmosphere were estimated to be 0.9±0.6 and 3.7±2.6 Tg CO-C yr -1, respectively. Therefore it is our contention that IPCC-2001 (Prather, M., Ehhalt, D., Dentener, F., Derwent, R., Dlugokencky, E., Holland, E., Isaksen, I., Katima, J., Kirchhoff, V., Matson, P., Midgley, P., Wang, M., 2001. Chapter 4: Atmospheric chemistry and greenhouse gases. In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. (Eds.), Climate Change 2001: The Scientific Basis. Contribution of working group 1 to the third assessment report of the

  16. North American rivers a sizable source of atmospheric carbon

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-04-01

    To fulfill the need for an ever more granular, accurate, and complete understanding of the flow of carbon through the Earth system, a flurry of research has taken place in the past decade on previously overlooked aspects of the carbon cycle. Researchers have investigated the roles of rivers, lakes, and streams in transporting carbon, often with mixed, or only broadly constrained, results. Further, many investigations have traditionally focused on a small number of sites. Although such focused measurements are important for pinning down spatial and temporal changes in the local exchange of carbon, they make expanding the results to broader regions difficult.

  17. Effect of Different Carbon Sources on the Growth of Single-Walled Carbon Nanotube from MCM-41 Containing Nickel

    SciTech Connect

    Chen,Y.; Wang, B.; Li, L.; Yang, Y.; Ciuparu, D.; Lim, S.; Haller, G.; Pfefferle, L.

    2007-01-01

    Chemical vapor deposition growth of single-walled carbon nanotubes (SWCNTs) was studied using three representative carbon source sources: CO, ethanol, and methane, and a catalyst of Ni ions incorporated in MCM-41. The resulting SWCNTs were compared for similar reaction conditions. Carbon deposits were analyzed by multi-excitation wavelength Raman, TGA, TEM and AFM. Catalytic particles in the Ni-MCM-41 catalysts were characterized by TEM and synchrotron light source X-ray absorption spectroscopy. Under similar synthesis conditions, SWCNTs produced from CO had a relatively smaller diameter, while those from ethanol had a larger diameter. Methane could not produce SWCNTs on Ni-MCM-41 under the conditions used in this research. These results demonstrate that three carbon sources affect the dynamic balances between metallic cluster formation and carbon deposition/precipitation on the metallic cluster surface. Controlling SWCNT diameter relies on precisely regulating this dynamic process. Using different carbon sources we are able to shift this dynamic balance and produce SWCNTs with different mean diameters.

  18. The combination of different carbon sources enhances bacterial growth efficiency in aquatic ecosystems.

    PubMed

    Fonte, Ellen S; Amado, André M; Meirelles-Pereira, Frederico; Esteves, Francisco A; Rosado, Alexandre S; Farjalla, Vinicius F

    2013-11-01

    The dissolved organic carbon (DOC) pool is composed of several organic carbon compounds from different carbon sources. Each of these sources may support different bacterial growth rates, but few studies have specifically analyzed the effects of the combination of different carbon sources on bacterial metabolism. In this study, we evaluated the response of several metabolic parameters, including bacterial biomass production (BP), bacterial respiration (BR), bacterial growth efficiency (BGE), and bacterial community structure, on the presence of three DOC sources alone and in combination. We hypothesized that the mixture of different DOC sources would increase the efficiency of carbon use by bacteria (BGE). We established a full-factorial substitutive design (seven treatments) in which the effects of the number and identity of DOC sources on bacterial metabolism were evaluated. We calculated the expected metabolic rates of the combined DOC treatments based on the single-DOC treatments and observed a positive interaction on BP, a negative interaction on BR, and, consequently, a positive interaction on BGE for the combinations. The bacterial community composition appeared to have a minor impact on differences in bacterial metabolism among the treatments. Our data indicate that mixtures of DOC sources result in a more efficient biological use of carbon. This study provides strong evidence that the mixture of different DOC sources is a key factor affecting the role of bacteria in the carbon flux of aquatic ecosystems. PMID:23963223

  19. The roles of inoculants' carbon source use in the biocontrol of potato scab disease.

    PubMed

    Sun, Pingping; Zhao, Xinbei; Shangguan, Nini; Chang, Dongwei; Ma, Qing

    2015-04-01

    Despite the application of multiple strains in the biocontrol of plant diseases, multistrain inoculation is still constrained by its inconsistency in the field. Nutrients, especially carbons, play an important role in the biocontrol processes. However, little work has been done on the systematic estimation of inoculants' carbon source use on biocontrol efficacies in vivo. In the present study, 7 nonpathogenic Streptomyces strains alone and in different combinations were inoculated as biocontrol agents against the potato scab disease, under field conditions and greenhouse treatments. The influence of the inoculants' carbon source use properties on biocontrol efficacies was investigated. The results showed that increasing the number of inoculated strains did not necessarily result in greater biocontrol efficacy in vivo. However, single strains with higher growth rates or multiple strains with less carbon source competition had positive effects on the biocontrol efficacies. These findings may shed light on optimizing the consistent biocontrol of plant disease with the consideration of inoculants' carbon source use properties. PMID:25756527

  20. Dissolved black carbon in Antarctic lakes: Chemical signatures of past and present sources

    NASA Astrophysics Data System (ADS)

    Khan, Alia L.; Jaffé, Rudolf; Ding, Yan; McKnight, Diane M.

    2016-06-01

    The perennially ice-covered, closed-basin lakes in the McMurdo Dry Valleys, Antarctica, serve as sentinels for understanding the fate of dissolved black carbon from glacial sources in aquatic ecosystems. Here we show that dissolved black carbon can persist in freshwater and saline surface waters for thousands of years, while preserving the chemical signature of the original source materials. The ancient brines of the lake bottom waters have retained dissolved black carbon with a woody chemical signature, representing long-range transport of black carbon from wildfires. In contrast, the surface waters are enriched in contemporary black carbon from fossil fuel combustion. Comparison of samples collected 25 years apart from the same lake suggests that the enrichment in anthropogenic black carbon is recent. Differences in the chemical composition of dissolved black carbon among the lakes are likely due to biogeochemical processing such as photochemical degradation and sorption on metal oxides.

  1. Wetlands as a large carbon source for inland waters

    NASA Astrophysics Data System (ADS)

    Abril, Gwenaël; Martinez, Jean-Michel; Artigas, L. Felipe; Moreira-Turcq, Patricia; Benedetti, Marc F.; Vidal, Luciana; Meziane, Tarik; Kim, Jung-Hyun; Bernardes, Marcelo C.; Deborde, Jonathan; Lima Souza, Edivaldo; Albéric, Patrick; Landim de Souza, Marcelo F.; Roland, Fabio

    2014-05-01

    Recent estimates suggests that up to 3 PgC y-1 could be emitted as CO2 from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon previously fixed upstream by land plant photosynthesis and subsequently transported downstream with runoff. But the observed carbon fluxes from first-order streams do not account for all of the CO2 outgassing at the scale of entire watersheds. Three-quarters of the world's flooded land are temporary wetlands. However, the contribution of these productive ecosystems to the inland water carbon budget has been largely overlooked. Based on observations in rivers and floodplains of the central Amazon, we suggest that wetlands pump large amounts of atmospheric CO2 into river waters. Indeed, the magnitude of CO2 outgassing in Amazonian waters is spatially and temporally related to their connection with the semi-aquatic vegetation that performs aerial photosynthesis (Flooded forests and floating macrophytes). These wetlands export half of their gross primary production to waters as dissolved CO2 and organic carbon, compared to only a few percent of gross primary production in upland ecosystems. Global carbon budgets should explicitly address temporary or vegetated flooded areas, as these ecosystems combine high aerial primary production with a large and fast carbon export capacity, potentially supporting a significant fraction of CO2 evasion from inland waters.

  2. Natural sources of greenhouse gases: carbon dioxide emissions from volcanoes

    USGS Publications Warehouse

    Gerlach, Terrence

    1990-01-01

    Volcanic degassing of carbon dioxide plays an important role in keeping the atmosphere-ocean portion of the carbon geochemical cycle in balance. The atmosphere-ocean carbon deficit requires replenishment of 6??1012 mol CO2/yr, and places an upper limit on the output of carbon dioxide from volcanoes. The CO2 output of the global mid-oceanic ridge system is ca. 0.7??1012 mol/yr, thus supplying only a fraction of the amount needed to balance the carbon deficit. The carbon dioxide flux from subaerial volcanoes is poorly known, but it appears to be at least as large as the mid-oceanic ridge flux. Much (perhaps most) of the CO2 emitted from volcanoes is degassed noneruptively. This mode of degassing may lead to impacts on the environment and biosphere that are fundamentally different in character from those envisioned in published scenarios, which are based on the assumption that CO2 degassing occurs predominantly by eruptive processes. Although the flux of carbon dioxide from volcanoes is poorly constrained at present, it is clearly two orders of magnitude lower than the anthropogenic output of CO2.

  3. Production of Feruloyl Esterase from Aspergillus niger by Solid-State Fermentation on Different Carbon Sources

    PubMed Central

    Ou, Shiyi; Zhang, Jing; Wang, Yong; Zhang, Ning

    2011-01-01

    A mixture of wheat bran with maize bran as a carbon source and addition of (NH4)SO4 as nitrogen source was found to significantly increase production of feruloyl esterase (FAE) enzyme compared with wheat bran as a sole carbon and nitrogen source. The optimal conditions in conical flasks were carbon source (30 g) to water 1 : 1, maize bran to wheat bran 1 : 2, (NH4)SO4 1.2 g and MgSO4 70 mg. Under these conditions, FAE activity was 7.68 mU/g. The FAE activity on the mixed carbon sources showed, high activity against the plant cell walls contained in the cultures. PMID:21603274

  4. Metabolism of various carbon sources by Azospirillum brasilense.

    PubMed Central

    Westby, C A; Cutshall, D S; Vigil, G V

    1983-01-01

    Azospirillum brasilense Sp7 and two mutants were examined for 19 carbon metabolism enzymes. The results indicate that this nitrogen fixer uses the Entner-Doudoroff pathway for gluconate dissimilation, lacks a catabolic but has an anabolic Embden-Meyerhof-Parnas hexosephosphate pathway, has amphibolic triosephosphate enzymes, lacks a hexose monophosphate shunt, and has lactate dehydrogenase, malate dehydrogenase, and glycerokinase. The mutants are severely deficient in phosphoglycerate and pyruvate kinase and also have somewhat reduced levels of other carbon enzymes. PMID:6417113

  5. Black carbon and carbon monoxide over Bay of Bengal during W_ICARB: Source characteristics

    NASA Astrophysics Data System (ADS)

    Girach, I. A.; Nair, Vijayakumar S.; Babu, S. Suresh; Nair, Prabha R.

    2014-09-01

    The ship borne measurements of near-surface black carbon (BC) and carbon monoxide (CO) were carried out over Bay of Bengal (BoB) during the winter period of 2009 under W_ICARB, the second phase of ‘Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB)'. The CO mixing ratio and BC mass concentration varied in the ranges of 80-480 ppbv and 75-10,000 ng m-3, respectively over this marine region. The BC and CO showed similar variations over northern BoB where airmass from Indo-Gangetic Plain (IGP) region prevailed during the observations period leading to a very strong positive correlation. The association of BC and CO was poor over the eastern and southern part of BoB could be due to the removal of BC aerosols by rain and/or processes of dilution and mixing while transported over to BoB. The highest value of CO observed over eastern BoB was partially due to biomass burning over East Asia. The BC/CO ratio for IGP airmass found to be 20.3 ng m-3 ppb-1 and ∼16 ng m-3 ppb-1 during winter and pre-monsoon, respectively which indicate the role of biomass burning as the source of BC over the region. Based on the emission flux of CO from various inventories and observed BC/CO ratios during pre-monsoon and winter, the BC emission for India is estimated to be in the range of 0.78-1.23 Tg year-1. The analysis of scavenging of BC revealed the loss rate of BC due to relative humidity 0.39 ± 0.08 ng m-3 ppb-1 RH (%)-1 over northern BoB and 0.53 ± 0.04 ng m-3 ppb-1 RH (%)-1 over the southern-BoB during winter.

  6. Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Sierau, B.; Gysel, M.; Laborde, M.; Keller, A.; Kim, J.; Petzold, A.; Onasch, T. B.; Lohmann, U.; Mensah, A. A.

    2014-03-01

    We discuss the major mass spectral features of different types of refractory carbonaceous particles, ionized after laser vaporization with an Aerodyne high-resolution soot-particle aerosol mass spectrometer (SP-AMS). The SP-AMS was operated with a switchable 1064 nm laser and a 600 °C thermal vaporizer, yielding respective measurements of the refractory and non-refractory particle components. Six samples were investigated, all of which were composed primarily of refractory material: fuel-rich and fuel-lean propane/air diffusion-flame combustion particles; graphite-spark-generated particles; a commercial fullerene-enriched soot; Regal Black, a commercial carbon black; and nascent aircraft-turbine combustion particles. All samples exhibited a spectrum of carbon-cluster ions Cxn+ in their refractory mass spectrum. Smaller clusters (x < 6) were found to dominate the Cxn+ distribution. For fullerene soot, fuel-rich-flame particles and spark-generated particles, significant Cxn+ clusters at x ≫ 6 were present, with significant contributions from multiply charged ions (n > 1). In all six cases, the ions C1+ and C3+ contributed over 60% to the total C1 5 were present. When such signals were present, C1+ / C3+ was close to 1. When absent, C1+ / C3+ was < 0.8. This ratio may therefore serve as a proxy to distinguish between the two types of spectra in atmospheric SP-AMS measurements. Significant refractory oxygenated ions such as CO+ and CO2+ were also observed for all samples. We discuss these signals in detail for Regal Black, and describe their formation via decomposition of oxygenated moieties incorporated into the refractory carbon structure. These species may be of importance in atmospheric processes such as water uptake and heterogeneous chemistry. If atmospherically stable, these oxidized species may be useful for distinguishing

  7. Investigation of organic carbon transformation in soils of dominant dissolved organic carbon source zones

    NASA Astrophysics Data System (ADS)

    Pissarello, Anna; Miltner, Anja; Oosterwoud, Marieke; Fleckenstein, Jan; Kästner, Matthias

    2014-05-01

    Over the past 20 years both a decrease in soil organic matter (SOM) and an increase in the dissolved organic carbon (DOC) concentrations in surface water bodies, including drinking water reservoirs, have been recorded in the northern hemisphere. This development has severe consequences for soil fertility and for drinking water purification. As both processes occur simultaneously, we assume that microbial SOM degradation, which transforms SOM into CO2 and DOC, is a possible source of the additional DOC in the surface water. In addition we speculate that both processes are initially triggered by physical mechanisms, resulting in a modification of the organic matter solubility equilibria and thus in higher SOM availability and DOC mobilization. The general hypothesis of the study is therefore that SOM loss and DOC increase are combined consequences of enhanced microbial degradation of SOM and that this is a result of climate variations and global change, e.g. the increase of the temperature, the alteration of the water regime (i.e. increase of the frequency of drying and rewetting cycles and a higher number of heavy rain events), but also the decrease of the atmospheric acid deposition resulting in an increase of soil pH values. The general goal of the study is the identification of the dominant processes and controlling factors involved in soil microbial carbon turnover and mobilization of DOC in soils from catchment areas that contribute DOC to the receiving waters and the downstream Rappbode reservoir, which showed a pronounced increase in DOC concentration in recent years. This reservoir is the source of drinking water for about one million people in northern Germany. Preliminary screening experiments, consisting of 65-day soil batch incubation experiments, have been conducted in order to select the parameters (and the parameter ranges) of relevance for further in-depth experiments. During the experiments, different soil systems were exposed to different

  8. Eutrophication and carbon sources in Chesapeake Bay over the last 2700 yr: Human impacts in context

    USGS Publications Warehouse

    Bratton, J.F.; Colman, Steven M.; Seal, R.R., II

    2003-01-01

    To compare natural variability and trends in a developed estuary with human-influenced patterns, stable isotope ratios (??13C and ??15N) were measured in sediments from five piston cores collected in Chesapeake Bay. Mixing of terrestrial and algal carbon sources primarily controls patterns of ??13Corg profiles, so this proxy shows changes in estuary productivity and in delivery of terrestrial carbon to the bay. Analyses of ??15N show periods when oxygen depletion allowed intense denitrification and nutrient recycling to develop in the seasonally stratified water column, in addition to recycling taking place in surficial sediments. These conditions produced 15N-enriched (heavy) nitrogen in algal biomass, and ultimately in sediment. A pronounced increasing trend in ??15N of +4??? started in about A.D. 1750 to 1800 at all core sites, indicating greater eutrophication in the bay and summer oxygen depletion since that time. The timing of the change correlates with the advent of widespread land clearing and tillage in the watershed, and associated increases in erosion and sedimentation. Isotope data show that the region has experienced up to 13 wet-dry cycles in the last 2700 yr. Relative sea-level rise and basin infilling have produced a net freshening trend overprinted with cyclic climatic variability. Isotope data also constrain the relative position of the spring productivity maximum in Chesapeake Bay and distinguish local anomalies from sustained changes impacting large regions of the bay. This approach to reconstructing environmental history should be generally applicable to studies of other estuaries and coastal embayments impacted by watershed development. Published by Elsevier Ltd.

  9. Eutrophication and carbon sources in Chesapeake Bay over the last 2700 yr: human impacts in context

    NASA Astrophysics Data System (ADS)

    Bratton, John F.; Colman, Steven M.; Seal, Robert R.

    2003-09-01

    To compare natural variability and trends in a developed estuary with human-influenced patterns, stable isotope ratios (δ 13C and δ 15N) were measured in sediments from five piston cores collected in Chesapeake Bay. Mixing of terrestrial and algal carbon sources primarily controls patterns of δ 13C org profiles, so this proxy shows changes in estuary productivity and in delivery of terrestrial carbon to the bay. Analyses of δ 15N show periods when oxygen depletion allowed intense denitrification and nutrient recycling to develop in the seasonally stratified water column, in addition to recycling taking place in surficial sediments. These conditions produced 15N-enriched (heavy) nitrogen in algal biomass, and ultimately in sediment. A pronounced increasing trend in δ 15N of +4‰ started in about A.D. 1750 to 1800 at all core sites, indicating greater eutrophication in the bay and summer oxygen depletion since that time. The timing of the change correlates with the advent of widespread land clearing and tillage in the watershed, and associated increases in erosion and sedimentation. Isotope data show that the region has experienced up to 13 wet-dry cycles in the last 2700 yr. Relative sea-level rise and basin infilling have produced a net freshening trend overprinted with cyclic climatic variability. Isotope data also constrain the relative position of the spring productivity maximum in Chesapeake Bay and distinguish local anomalies from sustained changes impacting large regions of the bay. This approach to reconstructing environmental history should be generally applicable to studies of other estuaries and coastal embayments impacted by watershed development.

  10. Do News Media Messages Mitigate the Effect of Corporate Environmental Ads? A Test of Source Credibility and Message Balance.

    ERIC Educational Resources Information Center

    Trent, John; Greer, Jennifer

    Factors that influence attitudes toward a corporate environmental advertisement and its sponsoring company were examined with a quasi-experimental design. Subjects (undergraduate students) read one of five news stories about an ad touting an oil company's active environmental involvement to test for the effects of publication credibility and…

  11. Food sources and carbon dudget of chinese prawn Penaeus chinensis

    NASA Astrophysics Data System (ADS)

    Dong, Shuang-Lin; Zhang, Shuo; Wang, Fang

    2002-03-01

    This study deals with contribution of artificial food pellet and natural food to Chinese prawn ( Penaeus orientalis) growth in a semi-intensive culture pond. The prawn carbon consumption, budget, and the effects of some factors on the budget were investigated. The results showed that 26.2% of P. orientalis growth carbon came from formulated feed at the initial culture stage (when the prawns were 0.06±0.01 g in wet weight), and was 62.5% when the prawns were 9.56±1.04 g. The remaining part of the growth carbon was derived from organic fertilizer and natural food. The highest growth rate occurred at 20×10-3 salinity. Suitable salinity for culturing Chinese prawn was (20 28)×10-3.

  12. Review: role of carbon sources for in vitro plant growth and development.

    PubMed

    Yaseen, Mehwish; Ahmad, Touqeer; Sablok, Gaurav; Standardi, Alvaro; Hafiz, Ishfaq Ahmad

    2013-04-01

    In vitro plant cells, tissues and organ cultures are not fully autotrophic establishing a need for carbohydrates in culture media to maintain the osmotic potential, as well as to serve as energy and carbon sources for developmental processes including shoot proliferation, root induction as well as emission, embryogenesis and organogenesis, which are highly energy demanding developmental processes in plant biology. A variety of carbon sources (both reducing and non-reducing) are used in culture media depending upon genotypes and specific stages of growth. However, sucrose is most widely used as a major transport-sugar in the phloem sap of many plants. In micropropagation systems, morphogenetic potential of plant tissues can greatly be manipulated by varying type and concentration of carbon sources. The present article reviews the past and current findings on carbon sources and their sustainable utilization for in vitro plant tissue culture to achieve better growth rate and development. PMID:23212616

  13. Quasi-steady carbon plasma source for neutral beam injector

    NASA Astrophysics Data System (ADS)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y.

    2014-02-01

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ˜3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration.

  14. Quasi-steady carbon plasma source for neutral beam injector.

    PubMed

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2014-02-01

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration. PMID:24593646

  15. Quasi-steady carbon plasma source for neutral beam injector

    SciTech Connect

    Koguchi, H. Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y.

    2014-02-15

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration.

  16. Laboratory Evaluation of Selected Ways for Determining Black Carbon Source Emissions

    EPA Science Inventory

    A number of studies have been conducted which compare various methods for the determination of black carbon in the atmosphere. Relatively little attention has been paid, however, to similar measurements of black carbon from different types of emission sources. Of particular int...

  17. Effect of carbon source type on intracellular stored polymers during endogenous denitritation (ED) treating landfill leachate.

    PubMed

    Miao, Lei; Wang, Shuying; Li, Baikun; Cao, Tianhao; Zhang, Fangzhai; Wang, Zhong; Peng, Yongzhen

    2016-09-01

    Glycogen accumulating organisms (GAOs) capable of storing organic compounds as polyhydroxyalkanoate (PHA) have been used for endogenous denitritation (ED), but the effect of carbon sources type on nitrogen removal performance of GAOs treating landfill leachate is unclear. In this study, a successful ED system treating landfill leachate (COD/NH4(+)-N (C/N): 4) without external carbon source addition was applied. The mature leachate with C/N of 1 was used as the feeding base solution, with acetate, propionate, and glucose examined as the carbon sources, and their effects on yields and compositions of PHA produced by GAOs were determined and associated with nitrogen removal performance. In the case of sole carbon source, acetate was much easier to be stored than propionate and glucose, which led to a higher nitrogen removal efficiency. Glucose had the lowest amount of PHA storage and led to the lowest performance. In the case of composite carbon sources (two scenarios: acetate + propionate; acetate + propionate + glucose), GAOs stored sufficient PHA and exhibited similar nitrogen removal efficiencies. Moreover, type of carbon source influenced the compositions of PHA. The polyhydroxybutyrate (PHB) fraction in PHA was far more than polyhydroxyvalerate (PHV) in all tests. PHV was synthesized only when acetate existed in carbon source. The microbial diversity analysis revealed that Proteobacteria was the most abundant phylum. Among the 108 genera detected in this ED system, the genera responsible for denitritation were Thauera, Paracoccus, Ottowia and Comamonadaceae_unclassified, accounting for 46.21% of total bacteria. Especially, Paracoccus and Comamonadaceae_unclassified transformed the carbon source into PHA for denitritation, and carried out endogenous denitritation. PMID:27232984

  18. [Utilization of carbon sources by Fusarium poae (Peck) Wollenw. Strains from different trophic groups].

    PubMed

    Kurchenko, I N; Vasilevskaia, A I; Artyshkova, L V; Nakonechnaia, L T; Iur'eva, E M

    2013-01-01

    It was shown that saprophytic (soil), endophytic and plant pathogenic strains of F. poae under cultivation conditions in the media containing carbon sources from mono- to polysaccharides had different abilities to use them and to accumulate biomass. Maltose, xylose, fructose, pectin were the most favorable carbon sources for the studied strains; less assimilated lactose, arabinose, and especially microcrystalline cellulose were less assimilated. It was found that endophytes and plant pathogens accumulated biomass equally, while soil strains had low ability for that. PMID:23516841

  19. [Spatiotemporal pattern of carbon sources and sinks in Yangtze River Delta region, China].

    PubMed

    Yi, Bai-lu; Han, Ji; Zhou, Xiang; Yang, Fang; Meng, Xing; Cao, Wu-xing; Huang, Lu-xia; Xiang, Wei-ning

    2015-04-01

    Yangtze River Delta region is the world's sixth and China's largest urban agglomeration. Its rapid and massive urbanization has also caused a series of ecological and environmental impacts. This paper accounted the inventory of carbon sources and sinks in Yangtze River Delta region during 1995-2010 and analyzed their spatiotemporal patterns. It was found that the carbon sinks increased by 9.43 million tons from 1995 to 2010, in which forest ecosystem net production in Zhejiang Province was the largest contributor. The "grain for green" policy implemented since 2003 in China played a significant role in increasing the forest area and the carbon sinks. The carbon sources increased by 327 million tons, and energy consumption and industrial processes based emissions accounted for 96% of total carbon sources in 2010. Due to the large share of manufacturing and heavy industries in economy and their dependence on the high carbon intensity energy, either the amount or the growth speed of carbon emissions in Jiangsu Province was the top one in the whole region. Moreover, because the growth speed of net carbon emissions that occurred upon the built-up land was much faster than the sprawl speed of urban built-up land, the net carbon emission intensity kept increasing in the whole region, in which Jiangsu Province demonstrated the fastest increase. PMID:26259436

  20. Distribution of organic carbon and petroleum source rock potential of Cretaceous and lower Tertiary carbonates, South Florida Basin: preliminary results

    USGS Publications Warehouse

    Palacas, James George

    1978-01-01

    Analyses of 134 core samples from the South Florida Basin show that the carbonates of Comanchean age are relatively richer in average organic carbon (0.41 percent) than those of Coahuilan age (0.28 percent), Gulfian age (0.18 percent) and Paleocene age (0.20 percent). They are also nearly twice as rich as the average world, wide carbonate (average 0.24 percent). The majority of carbonates have organic carbons less than 0.30 percent but the presence of many relatively organic rich beds composed of highly bituminous, argillaceous, highly stylolitic, and algal-bearing limestones and dolomites accounts for the higher percentage of organic carbon in some of the stratigraphic units. Carbonate rocks that contain greater than 0.4 percent organic carbon and that might be considered as possible petroleum sources were noted in almost each subdivision of the Coahuilan and Comanchean Series but particularly the units of Fredericksburg 'B', Trinity 'A', Trinity 'F', and Upper Sunniland. Possible source rocks have been ascribed by others to the Lower Sunniland, but lack of sufficient samples precluded any firm assessment in this initial report. In the shallower section of the basin, organic-rich carbonates containing as much as 3.2 percent organic carbon were observed in the lowermost part of the Gulfian Series and carbonate rocks with oil staining or 'dead' and 'live oil' were noted by others in the uppermost Gulfian and upper Cedar Keys Formation. It is questionable whether these shallower rocks are of sufficient thermal maturity to have generated commercial oil. The South Florida basin is still sparsely drilled and produces only from the Sunniland Limestone at an average depth of 11,500 feet (3500 m). Because the Sunniland contains good reservoir rocks and apparently adequate source rocks, and because the success rate of new oil field discoveries has increased in recent years, the chances of finding additional oil reserves in the Sunniland are promising. Furthermore, the

  1. Optimization of an Atmospheric Carbon Source for Extremophile Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Beaubien, Courtney

    This thesis examines the use of the moisture swing resin materials employed at the Center for Negative Carbon Emissions (CNCE) in order to provide carbon dioxide from ambient air to photobioreactors containing extremophile cyanobacteria cultured at the Arizona Center for Algae Technology and Innovation (AzCATI). For this purpose, a carbon dioxide feeding device was designed, built, and tested. The results indicate how much resin should be used with a given volume of algae medium: approximately 500 grams of resin can feed 1% CO2 at about three liters per minute to a ten liter medium of the Galdieria sulphuraria 5587.1 strain for one hour (equivalent to about 0.1 grams of carbon dioxide per hour per seven grams of algae). Using the resin device, the algae grew within their normal growth range: 0.096 grams of ash-free dry weight per liter over a six hour period. Future applications in which the resin-to-algae process can be utilized are discussed.

  2. [Optimization Study on the Nitrogen and Phosphorus Removal of Modified Two- sludge System Under the Condition of Low Carbon Source].

    PubMed

    Yang, Wei-qiang; Wang, Dong-bo; Li, Xiao-ming; Yang, Qi; Xu, Qiu-xiang; Zhang, Zhi-bei; Li, Zhi-jun; Xiang, Hai-hong; Wang, Ya-li; Sun, Jian

    2016-04-15

    This paper explored the method of resolving insufficient carbon source in urban sewage by comparing and analyzing denitrification and phosphorus removal (NPR) effect between modified two-sludge system and traditional anaerobic-aerobic-anoxic process under the condition of low carbon source wastewater. The modified two-sludge system was the experimental reactor, which was optimized by adding two stages of micro-aeration (aeration rate 0.5 L · mm⁻¹) in the anoxic period of the original two-sludge system, and multi-stage anaerobic-aerobic-anoxic SBR was the control reactor. When the influent COD, ammonia nitrogen, SOP concentration were respectively 200, 35, 10 mg · L⁻¹, the NPR effect of the experimental reactor was hetter than that of thecontrol reactor with the removal efficiency of TN being 94.8% vs 60.9%, and TP removal being 96.5% vs 75%, respectively. The effluent SOP, ammonia, TN concentration of the experimental reactor were 0.35, 0.50, 1.82 mg · L⁻¹, respectively, which could fully meet the first class of A standard of the Pollutants Emission Standard of Urban Wastewater Treatment Firm (GB 18918-2002). Using the optimized treatment process, the largest amounts of nitrogen and phosphorus removal per unit carbon source (as COD) were 0.17 g · g⁻¹ and 0.048 g · g⁻¹ respectively, which could furthest solve the lower carbon concentration in current municipal wastewater. PMID:27548974

  3. Development of a stationary carbon emission inventory for Shanghai using pollution source census data

    NASA Astrophysics Data System (ADS)

    Li, Xianzhe; Jiang, Ping; Zhang, Yan; Ma, Weichun

    2016-03-01

    This study utilizes 521,631 activity data points from the 2007 Shanghai Pollution Source Census to compile a stationary carbon emission inventory for Shanghai. The inventory generated from our dataset shows that a large portion of Shanghai's total energy use consists of coal-oriented energy consumption. The electricity and heat production industries, iron and steel mills, and the petroleum refining industry are the main carbon emitters. In addition, most of these industries are located in Baoshan District, which is Shanghai's largest contributor of carbon emissions. Policy makers can use the enterpriselevel carbon emission inventory and the method designed in this study to construct sound carbon emission reduction policies. The carbon trading scheme to be established in Shanghai based on the developed carbon inventory is also introduced in this paper with the aim of promoting the monitoring, reporting and verification of carbon trading. Moreover, we believe that it might be useful to consider the participation of industries, such as those for food processing, beverage, and tobacco, in Shanghai's carbon trading scheme. Based on the results contained herein, we recommend establishing a comprehensive carbon emission inventory by inputting data from the pollution source census used in this study.

  4. Changing sources and sinks of carbon in boreal ecosystems of Interior Alaska: Current and future perspectives

    NASA Astrophysics Data System (ADS)

    Douglas, T. A.; Jones, M.; Hiemstra, C. A.

    2012-12-01

    Future climate scenarios predict a roughly 5°C increase in mean annual air temperatures for the Alaskan Interior over the next 80 years. Increasing temperatures and greater frequency and severity of climate-induced disturbances such as wildfires will be enough to initiate permafrost degradation in many areas of Alaska, leading to major changes in surface hydrology and ecosystem structure and function. This, in turn, is expected to alter the current inventories of carbon sources and sinks in the region and provide a management challenge for carbon itemization efforts. To assist land managers in adapting and planning for potential changes in Interior Alaska carbon cycling we synthesize information on climate, ecosystem processes, vegetation, and soil, permafrost, and hydrologic regimes in Interior Alaska. Our goal is to provide an assessment of the current and likely future regime of Interior Alaska carbon sources and sinks. For our carbon assessment we: 1) synthesize the most recent results from numerous studies on the carbon cycle with a focus on research from the Alaskan boreal biome, 2) assemble a summary of estimates of carbon sources in soil and vegetation in Interior Alaska, 3) categorize carbon sources and sinks for predominant Interior Alaska ecosystems, and 4) identify expected changes in sources and sinks with climate change and human activities. This information is used to provide recommendations on potential actions land managers can take to minimize carbon export from the boreal forest. Though the results from our project are geared primarily toward policy makers and land managers we also provide recommendations for filling research gaps that currently present uncertainty in our understanding of the carbon cycle in boreal forest ecosystems of Interior Alaska.

  5. Dynamic balancing of isoprene carbon sources reflects photosynthetic and photorespiratory responses to temperature stress.

    PubMed

    Jardine, Kolby; Chambers, Jeffrey; Alves, Eliane G; Teixeira, Andrea; Garcia, Sabrina; Holm, Jennifer; Higuchi, Niro; Manzi, Antonio; Abrell, Leif; Fuentes, Jose D; Nielsen, Lars K; Torn, Margaret S; Vickers, Claudia E

    2014-12-01

    The volatile gas isoprene is emitted in teragrams per annum quantities from the terrestrial biosphere and exerts a large effect on atmospheric chemistry. Isoprene is made primarily from recently fixed photosynthate; however, alternate carbon sources play an important role, particularly when photosynthate is limiting. We examined the relative contribution of these alternate carbon sources under changes in light and temperature, the two environmental conditions that have the strongest influence over isoprene emission. Using a novel real-time analytical approach that allowed us to examine dynamic changes in carbon sources, we observed that relative contributions do not change as a function of light intensity. We found that the classical uncoupling of isoprene emission from net photosynthesis at elevated leaf temperatures is associated with an increased contribution of alternate carbon. We also observed a rapid compensatory response where alternate carbon sources compensated for transient decreases in recently fixed carbon during thermal ramping, thereby maintaining overall increases in isoprene production rates at high temperatures. Photorespiration is known to contribute to the decline in net photosynthesis at high leaf temperatures. A reduction in the temperature at which the contribution of alternate carbon sources increased was observed under photorespiratory conditions, while photosynthetic conditions increased this temperature. Feeding [2-(13)C]glycine (a photorespiratory intermediate) stimulated emissions of [(13)C1-5]isoprene and (13)CO2, supporting the possibility that photorespiration can provide an alternate source of carbon for isoprene synthesis. Our observations have important implications for establishing improved mechanistic predictions of isoprene emissions and primary carbon metabolism, particularly under the predicted increases in future global temperatures. PMID:25318937

  6. Estimating the seasonal carbon source-sink geography of a natural, steady-state terrestrial biosphere

    NASA Technical Reports Server (NTRS)

    Box, Elgene O.

    1988-01-01

    The estimation of the seasonal dynamics of biospheric-carbon sources and sinks to be used as an input to global atmospheric CO2 studies and models is discussed. An ecological biosphere model is given and the advantages of the model are examined. Monthly maps of estimated biospheric carbon source and sink regions and estimates of total carbon fluxes are presented for an equilibrium terrestrial biosphere. The results are compared with those from other models. It is suggested that, despite maximum variations of atmospheric CO2 in boreal latitudes, the enormous contributions of tropical wet-dry regions to global atmospheric CO2 seasonality can not be ignored.

  7. Microbial production of value-added nutraceuticals.

    PubMed

    Wang, Jian; Guleria, Sanjay; Koffas, Mattheos A G; Yan, Yajun

    2016-02-01

    Nutraceuticals are important natural bioactive compounds that confer health-promoting and medical benefits to humans. Globally growing demands for value-added nutraceuticals for prevention and treatment of human diseases have rendered nutraceuticals a multi-billion dollar market. However, supply limitations and extraction difficulties from natural sources such as plants, animals or fungi, restrict the large-scale use of nutraceuticals. Metabolic engineering via microbial production platforms has been advanced as an eco-friendly alternative approach for production of value-added nutraceuticals from simple carbon sources. Microbial platforms like the most widely used Escherichia coli and Saccharomyces cerevisiae have been engineered as versatile cell factories for production of diverse and complex value-added chemicals such as phytochemicals, prebiotics, polysaccaharides and poly amino acids. This review highlights the recent progresses in biological production of value-added nutraceuticals via metabolic engineering approaches. PMID:26716360

  8. Sugars as the Source of Energized Carbon for Abiogenesis

    NASA Astrophysics Data System (ADS)

    Weber, A. L.

    2010-04-01

    Reaction of sugars with nitrite under mild conditions yielded ammonia needed for the synthesis of nitrogenous organics for abiogenesis, thereby eliminating the need for a planet-wide source of unstable ammonia for origins processes based on sugars.

  9. Carbon sources of natural cyanamide in Vicia villosa subsp. varia.

    PubMed

    Kamo, Tsunashi; Kasahara, Ryohei; Abe, Shun; Hirota, Mitsuru; Sugano, Mami; Yamaya, Hiroko; Hiradate, Syuntaro; Fujii, Yoshiharu

    2010-10-01

    The ¹³C labels of [¹³C]carbon dioxide and D-[¹³C₆]glucose were incorporated into cyanamide (NH₂CN) when they were administered to Vicia villosa subsp. varia shoots. In contrast, the administration of sodium [2,3-¹³C₂]pyruvate did not affect the relative area of the [M + 1]+ ion of cyanamide in the gas chromatography-mass spectrometry analysis. [2,3-¹³C₂]pyruvate was incorporated into organic acids that are part of the citric acid cycle, such as succinate and fumarate, confirming that the shoots absorbed and metabolised it. These observations demonstrated that the carbon atom of cyanamide is derived from any of the carbohydrates that are present upstream of pyruvate in the metabolic pathway. PMID:20954091

  10. Carbon isotopomers measurement using mid-IR tunable laser sources.

    PubMed

    Weidmann, Damien; Roller, Chad B; Oppenheimer, Clive; Fried, Alan; Tittel, Frank K

    2005-12-01

    Recent developments of two mid-infrared tunable laser spectrometers dedicated to carbon isotope ratio determination are presented. First, a field deployable quantum cascade laser-based sensor is described, along with line selection strategy for (13/12)CO(2) ratio measurements. Secondly, an instrument architecture based on difference frequency generation is presented. The analyses of fundamental limitations, specifically temperature and pressure stability, and water vapor collision broadening, are detailed. PMID:16543185

  11. Could 4 degrees warming change Arctic tundra from carbon sink to carbon source?

    NASA Astrophysics Data System (ADS)

    Torn, M. S.; Abramoff, R. Z.; Chafe, O.; Curtis, J. B.; Smith, L. J.; Wullschleger, S. D.

    2015-12-01

    We have set up a controlled, active warming experiment in permafrost tundra on the North Slope of Alaska. The aim of this micro-warming experiment is to investigate the direct effect of soil warming on microbial decomposition of soil organic matter. We are testing the feasibility of small, short-term, in situ warming that can be run off batteries for distributed deployment and that preserves plant-soil relations and natural variability in wind, temperature, and precipitation. Based on preliminary results, the approach looks promising. One resistance heater cable per plot (25 cm diameter plots) was inserted vertically to 50 cm, spanning the full active layer (maximum thaw depth was 40 cm in 2014). Heaters were turned on August 1, 2015, and heated plots reached the 4ºC warming target within 1-3 days. We are measuring soil microclimate, thaw depth, CO2 and CH4 fluxes, and 14CO2, and microbial composition, as part of the DOE Next Generation Ecosystem Experiments (NGEE-Arctic). Ecosystem respiration increased immediately in the heated plots, and net ecosystem exchange under clear chambers changed from net uptake to net CO2 source in two of the four plots. CH4 flux shifted toward reduced net emissions or greater net uptake in all plots. These rapid responses demonstrate direct changes in decomposition without complications from microbial acclimation, altered community structure or changes in substrate availability. However, future Arctic tundra carbon balance will depend on both short term and long term microbial responses, as well as the links between warming, decomposition, nitrogen mineralization, and plant growth. Thus, we envision that distributed micro-warming plots could be combined with new approaches to aboveground passive warming being developed in NGEE, gradient studies, and modeling.

  12. How organic carbon derived from multiple sources contributes to carbon sequestration processes in a shallow coastal system?

    PubMed Central

    Watanabe, Kenta; Kuwae, Tomohiro

    2015-01-01

    Carbon captured by marine organisms helps sequester atmospheric CO2, especially in shallow coastal ecosystems, where rates of primary production and burial of organic carbon (OC) from multiple sources are high. However, linkages between the dynamics of OC derived from multiple sources and carbon sequestration are poorly understood. We investigated the origin (terrestrial, phytobenthos derived, and phytoplankton derived) of particulate OC (POC) and dissolved OC (DOC) in the water column and sedimentary OC using elemental, isotopic, and optical signatures in Furen Lagoon, Japan. Based on these data analysis, we explored how OC from multiple sources contributes to sequestration via storage in sediments, water column sequestration, and air–sea CO2 exchanges, and analyzed how the contributions vary with salinity in a shallow seagrass meadow as well. The relative contribution of terrestrial POC in the water column decreased with increasing salinity, whereas autochthonous POC increased in the salinity range 10–30. Phytoplankton-derived POC dominated the water column POC (65–95%) within this salinity range; however, it was minor in the sediments (3–29%). In contrast, terrestrial and phytobenthos-derived POC were relatively minor contributors in the water column but were major contributors in the sediments (49–78% and 19–36%, respectively), indicating that terrestrial and phytobenthos-derived POC were selectively stored in the sediments. Autochthonous DOC, part of which can contribute to long-term carbon sequestration in the water column, accounted for >25% of the total water column DOC pool in the salinity range 15–30. Autochthonous OC production decreased the concentration of dissolved inorganic carbon in the water column and thereby contributed to atmospheric CO2 uptake, except in the low-salinity zone. Our results indicate that shallow coastal ecosystems function not only as transition zones between land and ocean but also as carbon sequestration filters

  13. Subsurface Intertidal Microbes: A Cryptic Source Of Organic Carbon For Beach Ecosystems

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Giver, Lorraine J.; Alvarez, Teresa (Technical Monitor)

    1994-01-01

    Some freshwater, marine or hotspring beaches have no visible source of primary production, yet beneath the surface is an interstitial photosynthetic microbial community. To assess the significance of this source of organic carbon, we measured in situ carbon fixation rates in an intertidal marine beach through a diurnal cycle. Gross fixation for a transect (99 x 1 m) perpendicular to the shore was approx. 4041 mg C fixed/ day, or approx. 41 mg C fixed/ sq m day. In contrast, an adjacent well-established cyanobacterial (Lyngbya) mat was approx. 12 x as productive (approx. 490 mg C fixed/sq m day). Thus, subsurface sand mats may be an overlooked, yet important, endogenous source of organic carbon for intertidal ecosystems, as well as a sink in the global carbon cycle.

  14. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch.

    PubMed

    Anthony, K M Walter; Zimov, S A; Grosse, G; Jones, M C; Anthony, P M; Chapin, F S; Finlay, J C; Mack, M C; Davydov, S; Frenzel, P; Frolking, S

    2014-07-24

    Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene epoch. However, the same thermokarst lakes can also sequester carbon, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial timescales. We assess thermokarst-lake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47 ± 10 grams of carbon per square metre per year; mean ± standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160 petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears

  15. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch

    USGS Publications Warehouse

    Walter Anthony, K. M.; Zimov, S. A.; Grosse, G.; Jones, Miriam C.; Anthony, P.; Chapin, F. S., III; Finlay, J. C.; Mack, M. C.; Davydov, S.; Frenzel, P.F.; Frolking, S.

    2014-01-01

    Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene epoch1,2,3,4. However, the same thermokarst lakes can also sequester carbon5, and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial timescales. We assess thermokarst-lake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47±10 grams of carbon per square metre per year; mean±standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears7

  16. Soil Carbon Dynamics in a Shelterbelt in the Midwest: Sources and Spatial Variability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shelterbelt planting in cropland may sequester carbon (C), but sources and spatial variability have not been documented. This study was conducted to assess sources and spatial variation of soil organic C (SOC) in a 35-year-old shelterbelt, and in two adjacent cultivated fields (CF) in eastern Nebras...

  17. Compact ECR ion source with permanent magnets for carbon therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Sakamoto, Y.; Sato, Y.; Yamada, S.; Ogawa, H.; Drentje, A. G.; Biri, S.; Yoshida, Y.

    2004-05-01

    Ion sources for the medical facilities should have the following characteristics of easy maintenance, low electric power, good stability, and long operation time without trouble (1 year or longer). For this, a 10 GHz compact electron cyclotron resonance ion source (ECRIS) with all permanent magnets was developed. The beam intensity and stability for C4+ were 280 e μA and better than 6% during 20 h with no adjustment of any source parameters. These results were acceptable for the medical requirements. Recently, many plans were proposed to construct the next generation cancer treatment facility. For such a facility we have designed an all permanent magnet ECRIS, in which a high magnetic field is chosen for increasing the beam intensity. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas injection side, while the minimum B strength is 0.25 T. The source has a diameter of 32 cm and a length of 29.5 cm. Details of the design of this source and its background are described in this article.

  18. Carbon source quality and placement effects on soil organic carbon status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improved management of agricultural soils has potential for sequestering carbon (C) and reducing the accumulation of atmospheric carbon dioxide. Development of management practices to increase C sequestration is dependent on improved understanding of soil processes influencing long-term storage of ...

  19. Ascorbate, added after irradiation, reduces the mutant yield and alters the spectrum of CD59- mutations in A(L) cells irradiated with high LET carbon ions

    NASA Technical Reports Server (NTRS)

    Ueno, Akiko; Vannais, Diane; Lenarczyk, Marek; Waldren, Charles A.; Chatterjee, A. (Principal Investigator)

    2002-01-01

    It has been reported that X-ray induced HPRT- mutation in cultured human cells is prevented by ascorbate added after irradiation. Mutation extinction is attributed to neutralization by ascorbate, of radiation-induced long-lived radicals (LLR) with half-lives of several hours. We here show that post-irradiation treatment with ascorbate (5 mM added 30 min after radiation) reduces, but does not eliminate, the induction of CD59- mutants in human-hamster hybrid A(L) cells exposed to high-LET carbon ions (LET of 100 KeV/microm). RibCys, [2(R,S)-D-ribo-1',2',3',4'-Tetrahydroxybutyl]-thiazolidene-4(R)-ca riboxylic acid] (4 mM) gave a similar but lesser effect. The lethality of the carbon ions was not altered by these chemicals. Preliminary data are presented that ascorbate also alters the spectrum of CD59- mutations induced by the carbon beam, mainly by reducing the incidence of small mutations and mutants displaying transmissible genomic instability (TGI), while large mutations are unaffected. Our results suggest that LLR are important in initiating TGI.

  20. Glucose becomes one of the worst carbon sources for E.coli on poor nitrogen sources due to suboptimal levels of cAMP

    PubMed Central

    Bren, Anat; Park, Junyoung O.; Towbin, Benjamin D.; Dekel, Erez; Rabinowitz, Joshua D.; Alon, Uri

    2016-01-01

    In most conditions, glucose is the best carbon source for E. coli: it provides faster growth than other sugars, and is consumed first in sugar mixtures. Here we identify conditions in which E. coli strains grow slower on glucose than on other sugars, namely when a single amino acid (arginine, glutamate, or proline) is the sole nitrogen source. In sugar mixtures with these nitrogen sources, E. coli still consumes glucose first, but grows faster rather than slower after exhausting glucose, generating a reversed diauxic shift. We trace this counterintuitive behavior to a metabolic imbalance: levels of TCA-cycle metabolites including α-ketoglutarate are high, and levels of the key regulatory molecule cAMP are low. Growth rates were increased by experimentally increasing cAMP levels, either by adding external cAMP, by genetically perturbing the cAMP circuit or by inhibition of glucose uptake. Thus, the cAMP control circuitry seems to have a ‘bug’ that leads to slow growth under what may be an environmentally rare condition. PMID:27109914

  1. Glucose becomes one of the worst carbon sources for E.coli on poor nitrogen sources due to suboptimal levels of cAMP.

    PubMed

    Bren, Anat; Park, Junyoung O; Towbin, Benjamin D; Dekel, Erez; Rabinowitz, Joshua D; Alon, Uri

    2016-01-01

    In most conditions, glucose is the best carbon source for E. coli: it provides faster growth than other sugars, and is consumed first in sugar mixtures. Here we identify conditions in which E. coli strains grow slower on glucose than on other sugars, namely when a single amino acid (arginine, glutamate, or proline) is the sole nitrogen source. In sugar mixtures with these nitrogen sources, E. coli still consumes glucose first, but grows faster rather than slower after exhausting glucose, generating a reversed diauxic shift. We trace this counterintuitive behavior to a metabolic imbalance: levels of TCA-cycle metabolites including α-ketoglutarate are high, and levels of the key regulatory molecule cAMP are low. Growth rates were increased by experimentally increasing cAMP levels, either by adding external cAMP, by genetically perturbing the cAMP circuit or by inhibition of glucose uptake. Thus, the cAMP control circuitry seems to have a 'bug' that leads to slow growth under what may be an environmentally rare condition. PMID:27109914

  2. A series of tufted carbon fiber cathodes designed for different high power microwave sources.

    PubMed

    Liu, Lie; Li, Limin; Zhang, Jun; Zhang, Xiaoping; Wen, Jianchun; Liu, Yonggui

    2008-06-01

    We report the fabrication technique of tufted carbon fiber cathodes for different microwave sources. Three carbon fiber cathodes were constructed, including a planar cathode, an annular cathode, and a cylindrical cathode for radial emission. Experimental investigations on these cathodes were performed in a reflex triode virtual cathode oscillator (vircator), a backward wave oscillator (BWO), and a magnetically insulated transmission line oscillator (MILO), respectively. The pulse duration of microwave emission from the reflex triode vircator was lengthened by using the planar carbon fiber cathode. In the BWO with the annular carbon fiber cathode, the uniform electron beam with a kA/cm(2) current density was observed. In addition, carbon fiber has great promise as field emitter for MILOs. These results show that the carbon fiber cathodes can be utilized for electron emission in high power diodes with different structures. PMID:18601423

  3. A series of tufted carbon fiber cathodes designed for different high power microwave sources

    NASA Astrophysics Data System (ADS)

    Liu, Lie; Li, Limin; Zhang, Jun; Zhang, Xiaoping; Wen, Jianchun; Liu, Yonggui

    2008-06-01

    We report the fabrication technique of tufted carbon fiber cathodes for different microwave sources. Three carbon fiber cathodes were constructed, including a planar cathode, an annular cathode, and a cylindrical cathode for radial emission. Experimental investigations on these cathodes were performed in a reflex triode virtual cathode oscillator (vircator), a backward wave oscillator (BWO), and a magnetically insulated transmission line oscillator (MILO), respectively. The pulse duration of microwave emission from the reflex triode vircator was lengthened by using the planar carbon fiber cathode. In the BWO with the annular carbon fiber cathode, the uniform electron beam with a kA /cm2 current density was observed. In addition, carbon fiber has great promise as field emitter for MILOs. These results show that the carbon fiber cathodes can be utilized for electron emission in high power diodes with different structures.

  4. Carbon sources and sinks in forest biomes of the former Soviet Union

    SciTech Connect

    Kolchugina, T.P.; Vinson, T.S.

    1993-06-01

    Net primary productivity (NPP) of Soviet forest biomes has been estimated from an equilibrium analysis at seven percent of the global terrestrial NPP, 20 percent of the world's total forest NPP, and half of boreal and temperate forest NPP. However, an equilibrium analysis does not allow the assessment of the role of forest biomes in carbon sequestration because it is based on the assumption that the annual carbon increment in forest biomes equals the amount of carbon released to the atmosphere through respiration. A non-equilibrium analysis accounts for carbon sequestration during specific stages of forest ecosystem development. Sources and sinks of carbon and the sequestration potential of forest biomes in the former Soviet Union are assessed in the present study under non-equilibrium conditions by considering (1) net ecosystem productivity of different age forest stands and their actual coverage, (2) carbon flux related to forest fires, (3) the rate of peat accumulation, and (4) anthropogenic influences.

  5. Source and sink carbon dynamics and carbon allocation in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Doughty, Christopher E.; Metcalfe, D. B.; Girardin, C. A. J.; Amezquita, F. F.; Durand, L.; Huaraca Huasco, W.; Silva-Espejo, J. E.; Araujo-Murakami, A.; Costa, M. C.; Costa, A. C. L.; Rocha, W.; Meir, P.; Galbraith, D.; Malhi, Y.

    2015-05-01

    Changes to the carbon cycle in tropical forests could affect global climate, but predicting such changes has been previously limited by lack of field-based data. Here we show seasonal cycles of the complete carbon cycle for 14, 1 ha intensive carbon cycling plots which we separate into three regions: humid lowland, highlands, and dry lowlands. Our data highlight three trends: (1) there is differing seasonality of total net primary productivity (NPP) with the highlands and dry lowlands peaking in the dry season and the humid lowland sites peaking in the wet season, (2) seasonal reductions in wood NPP are not driven by reductions in total NPP but by carbon during the dry season being preferentially allocated toward either roots or canopy NPP, and (3) there is a temporal decoupling between total photosynthesis and total carbon usage (plant carbon expenditure). This decoupling indicates the presence of nonstructural carbohydrates which may allow growth and carbon to be allocated when it is most ecologically beneficial rather than when it is most environmentally available.

  6. Studying of negative ions source based on reflective discharge in regimes with cesium added and without cesium

    SciTech Connect

    Soloshenko, I. A.; Shchedrin, A. I.; Ryabtsev, A. V.

    1998-08-20

    The results of theoretical and experimental studies of physical processes in the source of hydrogen negative ions are presented. The source is based on reflective discharge with incandescent cathode and H{sup -} ions extraction across magnetic field. Calculations of gas discharge plasma parameters for given current and energy of electrons emitted from the cathode are performed in theoretical part of the proceeding. Plasma parameters, including H{sup -} ions concentration, are determined on a basis of Boltzman equation solution taking into consideration principal collision reactions in a volume and at a surface of the discharge chamber.

  7. Treatment of hydroponic wastewater by denitrification filters using plant prunings as the organic carbon source.

    PubMed

    Park, J B K; Craggs, R J; Sukias, J P S

    2008-05-01

    This study investigated the feasibility of using pre-treated plant liquors as organic carbon sources for the treatment of hydroponic wastewater containing high nitrate-N (>300 mg N/L). The waste plant material was pre-treated to extract organic carbon-rich liquors. When this plant liquor was used as an organic carbon source in denitrification filters at the organic carbon:nitrogen dose rate of 3C:N, nitrate removal efficiencies were >95% and final effluent nitrate concentrations were consistently <20mg N/L. However, at this dose rate, relatively high concentrations (>140 mg/L) of organic carbon (fBOD5) remained in the final effluents. Therefore, a 'compromise' organic carbon:nitrogen dose rate (2C:N) was trialled, at which nitrate removal efficiencies were maintained at >85%, final effluent nitrate concentrations were consistently below 45 mg N/L, and effluent fBOD5 concentrations were <25mg/L. This study has demonstrated that waste plant material is a suitable carbon source for the removal of nitrate from hydroponic wastewater in a denitrification filter. PMID:17714940

  8. A simple and clean source of low-energy atomic carbon

    SciTech Connect

    Krasnokutski, S. A.; Huisken, F.

    2014-09-15

    A carbon source emitting low-energy carbon atoms from a thin-walled, sealed tantalum tube via thermal evaporation has been constructed. The tube is made from a 0.05 mm thick tantalum foil and filled with {sup 12}C or {sup 13}C carbon powder. After being sealed, it is heated by direct electric current. The solvated carbon atoms diffuse to the outer surface of the tube and, when the temperature rises over 2200 K, the evaporation of atomic carbon from the surface of the tantalum tube is observed. As the evaporated species have low energy they are well-suited for the incorporation into liquid helium droplets by the pick-up technique. Mass analysis of the incorporated species reveals the dominant presence of atomic carbon and very low abundances of C{sub 2} and C{sub 3} molecules (<1%). This is in striking contrast to the thermal evaporation of pure carbon, where C{sub 3} molecules are found to be the dominant species in the gas phase. Due to the thermal evaporation and the absence of high-energy application required for the dissociation of C{sub 2} and C{sub 3} molecules, the present source provides carbon atoms with rather low energy.

  9. The effect of carbon source on microbial community structure and Cr(VI) reduction rate.

    PubMed

    Tekerlekopoulou, Athanasia G; Tsiamis, George; Dermou, Eftychia; Siozios, Stefanos; Bourtzis, Kostas; Vayenas, Dimitris V

    2010-10-15

    In the present work, the effect of the carbon source on microbial community structure in batch cultures derived from industrial sludge and hexavalent chromium reduction was studied. Experiments in aerobic batch reactors were carried out by amending industrial sludge with two different carbon sources: sodium acetate and sucrose. In each of the experiments performed, four different initial Cr(VI) concentrations of: 6, 13, 30 and 115 mg/L were tested. The change of carbon source in the batch reactor from sodium acetate to sucrose led to a 1.3-2.1 fold increase in chromium reduction rate and to a 5- to 9.5-fold increase in biomass. Analysis of the microbial structure in the batch reactor showed that the dominant communities were bacterial species (Acinetobacter lwoffii, Defluvibacter lusatiensis, Pseudoxanthomonas japonensis, Mesorhizium chacoense, and Flavobacterium suncheonense) when sodium acetate was used as carbon source and fungal strains (Trichoderma viride and Pichia jadinii), when sodium acetate was replaced by sucrose. These results indicate that the carbon source is a key parameter for microbial dynamics and enhanced chromium reduction and should be taken into account for efficient bioreactor design. PMID:20552669

  10. Source characteristics of marine oils as indicated by carbon isotopic ratios of volatile hydrocarbons

    SciTech Connect

    Chung, H.M.; Claypool, G.E.; Rooney, M.A. ); Squires, R.M. )

    1994-03-01

    Carbon isotopic ratios of volatile hydrocarbon fractions of marine oils are diagnostic of organic facies and depositional environments of source rocks. For carbonate oils, low-molecular-weight volatile hydrocarbons (< C[sub 9]) are isotopically lighter than high-molecular-weight volatile hydrocarbons (C[sub 9]-C[sub 17]). In contrast, for deltaic oils, low-molecular-weight volatile hydrocarbons are isotopically heavier than high-molecular-weight volatile hydrocarbons. Marine shale oils show patterns intermediate between carbonate and deltaic oils. This relative variation of carbon isotopic ratios among volatile hydrocarbons of oils is explained by earlier expulsion of marine oils derived from isotopically homogeneous (algal-bacterial) kerogens in rich source rocks, and secondary cracking of petroleum prior to expulsion for marine oils derived from isotopically heterogeneous (terrestrial) kerogens in lean source rocks. In basins with multiple source rocks, carbon isotopic ratios of volatile hydrocarbons are useful for determining oil-oil correlation and for inferring oil-source rock relationship. 67 refs., 5 figs., 2 tabs.

  11. Electron string ion sources for carbon ion cancer therapy accelerators.

    PubMed

    Boytsov, A Yu; Donets, D E; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C(4+) and C(6+) ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10(10) C(4+) ions per pulse and about 5 × 10(9) C(6+) ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10(11) C(6+) ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the (11)C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C(4+) ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of (11)C, transporting to the tumor with the primary accelerated (11)C(4+) beam, this efficiency is preliminarily considered to be large enough to produce the (11)C(4+) beam from radioactive methane and to inject this beam into synchrotrons. PMID:26329182

  12. Electron string ion sources for carbon ion cancer therapy accelerators

    NASA Astrophysics Data System (ADS)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Katagiri, K.; Noda, K.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C4+ and C6+ ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 1010 C4+ ions per pulse and about 5 × 109 C6+ ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 1011 C6+ ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the 11C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C4+ ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of 11C, transporting to the tumor with the primary accelerated 11C4+ beam, this efficiency is preliminarily considered to be large enough to produce the 11C4+ beam from radioactive methane and to inject this beam into synchrotrons.

  13. Fructose as a carbon source induces an aggressive phenotype in MDA-MB-468 breast tumor cells

    PubMed Central

    MONZAVI-KARBASSI, BEHJATOLAH; HINE, R. JEAN; STANLEY, JOSEPH S.; RAMANI, VISHNU PRAKASH; CARCEL-TRULLOLS, JAIME; WHITEHEAD, TRACY L.; KELLY, THOMAS; SIEGEL, ERIC R.; ARTAUD, CECILE; SHAAF, SAEID; SAHA, RINKU; JOUSHEGHANY, FARIBA; HENRY-TILLMAN, RONDA; KIEBER-EMMONS, THOMAS

    2012-01-01

    Aberrant glycosylation is a universal feature of cancer cells, and certain glycan structures are well-known markers for tumor progression. Availability and composition of sugars in the microenvironment may affect cell glycosylation. Recent studies of human breast tumor cell lines indicate their ability to take up and utilize fructose. Here we tested the hypothesis that adding fructose to culture as a carbon source induces phenotypic changes in cultured human breast tumor cells that are associated with metastatic disease. MDA-MB-468 cells were adapted to culture media in which fructose was substituted for glucose. Changes in cell surface glycan structures, expression of genes related to glycan assembly, cytoskeleton F-actin, migration, adhesion and invasion were determined. Cells cultured in fructose expressed distinct cell-surface glycans. The addition of fructose affected sialylation and fucosylation patterns. Fructose feeding also increased binding of leukoagglutinating Phaseolus vulgaris isolectin, suggesting a possible rise in expression of branching β-1, 6 GlcNAc structures. Rhodamine-phalloidin staining revealed an altered F-actin cytoskeletal system. Fructose accelerated cellular migration and increased invasion. These data suggest that changing the carbon source of the less aggressive MDA-MB-468 cell line induced characteristics associated with more aggressive phenotypes. These data could be of fundamental importance due to the markedly increased consumption of sweeteners containing free fructose in recent years, as they suggest that the presence of fructose in nutritional micro-environment of tumor cells may negatively affect the outcome for some breast cancer patients. PMID:20664930

  14. Fructose as a carbon source induces an aggressive phenotype in MDA-MB-468 breast tumor cells.

    PubMed

    Monzavi-Karbassi, Behjatolah; Hine, R Jean; Stanley, Joseph S; Ramani, Vishnu Prakash; Carcel-Trullols, Jaime; Whitehead, Tracy L; Kelly, Thomas; Siegel, Eric R; Artaud, Cecile; Shaaf, Saeid; Saha, Rinku; Jousheghany, Fariba; Henry-Tillman, Ronda; Kieber-Emmons, Thomas

    2010-09-01

    Aberrant glycosylation is a universal feature of cancer cells, and certain glycan structures are well-known markers for tumor progression. Availability and composition of sugars in the microenvironment may affect cell glycosylation. Recent studies of human breast tumor cell lines indicate their ability to take up and utilize fructose. Here we tested the hypothesis that adding fructose to culture as a carbon source induces phenotypic changes in cultured human breast tumor cells that are associated with metastatic disease. MDA-MB-468 cells were adapted to culture media in which fructose was substituted for glucose. Changes in cell surface glycan structures, expression of genes related to glycan assembly, cytoskeleton F-actin, migration, adhesion and invasion were determined. Cells cultured in fructose expressed distinct cell-surface glycans. The addition of fructose affected sialylation and fucosylation patterns. Fructose feeding also increased binding of leukoagglutinating Phaseolus vulgaris isolectin, suggesting a possible rise in expression of branching beta-1, 6 GlcNAc structures. Rhodamine-phalloidin staining revealed an altered F-actin cytoskeletal system. Fructose accelerated cellular migration and increased invasion. These data suggest that changing the carbon source of the less aggressive MDA-MB-468 cell line induced characteristics associated with more aggressive phenotypes. These data could be of fundamental importance due to the markedly increased consumption of sweeteners containing free fructose in recent years, as they suggest that the presence of fructose in nutritional microenvironment of tumor cells may negatively affect the outcome for some breast cancer patients. PMID:20664930

  15. Extreme Meteorological Events from documentary sources on old Aragon Kingdom, AD1000-1500. Firsts results after a systematic approach to data availability

    NASA Astrophysics Data System (ADS)

    Rama, Eduard; Barriendos, Mariano

    2010-05-01

    Extreme Meteorological Events from documentary sources on old Aragon Kingdom, AD 1000-1500. Firsts results after a systematic approach to data availability Eduard Rama1, Mariano Barriendos2 1 Research Laboratory on Climate, Scientific Park of Barcelona 2 Department of Modern History, University of Barcelona Research on documentary sources focused on detection and reconstruction of climatic data and extreme meteorological events is an activity with notable tradition on palaeoclimatic discipline. Historical climatology offers a good source of climatic and environmental proxy-data. This information covers past centuries establishing good overlapping with instrumental data availability period. Best qualities of historical information are a high temporal resolution, an exact and reliable datation, and complementary information related to environmental and human impacts. Historical climatology offers a large number of data chronologies for Europe covering historiographical periods from Low Middle Age to Contemporary Age (14th to 20th Centuries). Into framework of EU IP Millennium, a systematic research assumed the challenge to collect data from High Middle Age. Documentary sources are discontinuous and scattered, information is not precise and reliable, but all possible original information can be useful to characterize the Warm Medieval Period, most recent climatic period similar to possible climate of next future, at least concerning thermic conditions. Present work shows a systematic effort on documentary sources of Old Aragon Kingdom (actually, spanish regions of Catalonia, Aragon, Valentia and Balearic Islands), collecting extreme weather events for period AD1000-1500. Historical context of Aragon Kingdom was no easy in this period, focused on recovering territory in front of Muslim Kingdoms (Reconsquista) up to 13th Century from North to South. After this, consolidation of modern institutions and urban network took 14-15th Centuries. Data sources has been all

  16. Mineral Carbonation Potential of CO2 from Natural and Industrial-based Alkalinity Sources

    NASA Astrophysics Data System (ADS)

    Wilcox, J.; Kirchofer, A.

    2014-12-01

    Mineral carbonation is a Carbon Capture and Storage (CSS) technology where gaseous CO2 is reacted with alkaline materials (such as silicate minerals and alkaline industrial wastes) and converted into stable and environmentally benign carbonate minerals (Metz et al., 2005). Here, we present a holistic, transparent life cycle assessment model of aqueous mineral carbonation built using a hybrid process model and economic input-output life cycle assessment approach. We compared the energy efficiency and the net CO2 storage potential of various mineral carbonation processes based on different feedstock material and process schemes on a consistent basis by determining the energy and material balance of each implementation (Kirchofer et al., 2011). In particular, we evaluated the net CO2 storage potential of aqueous mineral carbonation for serpentine, olivine, cement kiln dust, fly ash, and steel slag across a range of reaction conditions and process parameters. A preliminary systematic investigation of the tradeoffs inherent in mineral carbonation processes was conducted and guidelines for the optimization of the life-cycle energy efficiency are provided. The life-cycle assessment of aqueous mineral carbonation suggests that a variety of alkalinity sources and process configurations are capable of net CO2 reductions. The maximum carbonation efficiency, defined as mass percent of CO2 mitigated per CO2 input, was 83% for CKD at ambient temperature and pressure conditions. In order of decreasing efficiency, the maximum carbonation efficiencies for the other alkalinity sources investigated were: olivine, 66%; SS, 64%; FA, 36%; and serpentine, 13%. For natural alkalinity sources, availability is estimated based on U.S. production rates of a) lime (18 Mt/yr) or b) sand and gravel (760 Mt/yr) (USGS, 2011). The low estimate assumes the maximum sequestration efficiency of the alkalinity source obtained in the current work and the high estimate assumes a sequestration efficiency

  17. Identification of haze-creating sources from fine particulate matter in Dhaka aerosol using carbon fractions.

    PubMed

    Begum, Bilkis A; Hopke, Philip K

    2013-09-01

    Fine particulate matter (PM2.5) samples were simultaneously collected on Teflon and quartz filters between February 2010 and February 2011 at an urban monitoring site (CAMS2) in Dhaka, Bangladesh. The samples were collected using AirMetrics MiniVol samplers. The samples on Teflon filters were analyzed for their elemental composition by PIXE and PESA. Particulate carbon on quartz filters was analyzed using the IMPROVE thermal optical reflectance (TOR) method that divides carbon into four organic carbons (OC), pyrolized organic carbon (OP), and three elemental carbon (EC) fractions. The data were analyzed by positive matrix factorization using the PMF2 program. Initially, only total OC and total EC were included in the analysis and five sources, including road dust, sea salt and Zn, soil dust, motor vehicles, and brick kilns, were obtained. In the second analysis, the eight carbon fractions (OC1, OC2, OC3, OC4, OP, EC1, EC2, EC3) were included in order to ascertain whether additional source information could be extracted from the data. In this case, it is possible to identify more sources than with only total OC and EC. The motor vehicle source was separated into gasoline and diesel emissions and a fugitive Pb source was identified. Brick kilns contribute 7.9 microg/m3 and 6.0 microg/m3 of OC and EC, respectively, to the fine particulate matter based on the two results. From the estimated mass extinction coefficients and the apportioned source contributions, soil dust, brick kiln, diesel, gasoline, and the Pb sources were found to contribute most strongly to visibility degradation, particularly in the winter. PMID:24151680

  18. Inorganic carbon and fossil organic carbon are source of bias for quantification of sequestered carbon in mine spoil

    NASA Astrophysics Data System (ADS)

    Vindušková, Olga; Frouz, Jan

    2016-04-01

    Carbon sequestration in mine soils has been studied as a possibility to mitigate the rising atmospheric CO2 levels and to improve mine soil quality (Vindu\\vsková and Frouz, 2013). Moreover, these soils offer an unique opportunity to study soil carbon dynamics using the chronosequence approach (using a set of sites of different age on similar parent material). However, quantification of sequestered carbon in mine soils is often complicated by fossil organic carbon (e.g., from coal or kerogen) or inorganic carbon present in the spoil. We present a methodology for quantification of both of these common constituents of mine soils. Our recommendations are based on experiments done on post-mining soils in Sokolov basin, Czech Republic. Here, fossil organic carbon is present mainly as kerogen Type I and II and represents 2-6 wt.% C in these soils. Inorganic carbon in these soils is present mainly as siderite (FeCO3), calcite (CaCO3), and dolomite (CaMg(CO3)2). All of these carbonates are often found in the overburden of coal seams thus being a common constituent of post-mining soils in the world. Vindu\\vsková O, Frouz J, 2013. Soil carbon accumulation after open-cast coal and oil shale mining in Northern Hemisphere: a quantitative review. ENVIRONMENTAL EARTH SCIENCES, 69: 1685-1698. Vindu\\vsková O, Dvořáček V, Prohasková A, Frouz J. 2014. Distinguishing recent and fossil organic matter - A critical step in evaluation of post-mining soil development - using near infrared spectroscopy. ECOLOGICAL ENGINEERING. 73: 643-648. Vindu\\vsková O, Sebag D, Cailleau G, Brus J, Frouz J. 2015. Methodological comparison for quantitative analysis of fossil and recently derived carbon in mine soils with high content of aliphatic kerogen. ORGANIC GEOCHEMISTRY, 89-90:14-22.

  19. Biosynthesis of poly(3-hydroxybutyrate) and its copolymers by Yangia sp. ND199 from different carbon sources.

    PubMed

    Huu Phong, Tran; Van Thuoc, Doan; Sudesh, Kumar

    2016-03-01

    A halophilic bacterium isolated from mangrove soil sample in Northern Vietnam, Yangia sp. ND199 was found capable of producing homopolymer poly(3-hydroxybutyrate) [P(3HB)], copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)], and copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from different carbon sources. The presence of 3HB, 3HV, and 4HB monomers were confirmed by gas chromatography and nuclear magnetic resonance analysis. Only P(3HB) was produced using carbon sources such as fructose or by a combination of fructose with 1,5-pentanediol, 1,6-hexanediol, sodium hexanoate, or sodium octanoate. The biosynthesis of P(3HB-co-3HV) was achieved by adding cosubstrates such as sodium valerate and sodium heptanoate. When 1,4-butanediol, γ-butyrolactone or sodium 4-hydroxybutyrate was added to the culture medium, P(3HB-co-4HB) containing 4.0-7.1mol% 4HB fraction was accumulated. The molecular weights and thermal properties of polyesters were determined by gel permeation chromatography and differential scanning calorimeter, respectively. The results showed that Yangia sp. ND199 is able to produce polyester with high weight average molecular weight ranging from 1.3×10(6) to 2.2×10(6) Dalton and number average molecular weight ranging from 4.2×10(5) to 6.9×10(5) Dalton. The molecular weights, glass transition temperature as well as melting temperature of homopolymer P(3HB) are higher than those of copolymer P(3HB-co-3HV) or P(3HB-co-4HB). PMID:26708435

  20. Computational and experimental investigations of one-step conversion of poly(carbonate)s into value-added poly(aryl ether sulfone)s.

    PubMed

    Jones, Gavin O; Yuen, Alexander; Wojtecki, Rudy J; Hedrick, James L; García, Jeannette M

    2016-07-12

    It is estimated that ∼2.7 million tons poly(carbonate)s (PCs) are produced annually worldwide. In 2008, retailers pulled products from store shelves after reports of bisphenol A (BPA) leaching from baby bottles, reusable drink bottles, and other retail products. Since PCs are not typically recycled, a need for the repurposing of the PC waste has arisen. We report the one-step synthesis of poly(aryl ether sulfone)s (PSUs) from the depolymerization of PCs and in situ polycondensation with bis(aryl fluorides) in the presence of carbonate salts. PSUs are high-performance engineering thermoplastics that are commonly used for reverse osmosis and water purification membranes, medical equipment, as well as high temperature applications. PSUs generated through this cascade approach were isolated in high purity and yield with the expected thermal properties and represent a procedure for direct conversion of one class of polymer to another in a single step. Computational investigations performed with density functional theory predict that the carbonate salt plays two important catalytic roles in this reaction: it decomposes the PCs by nucleophilic attack, and in the subsequent polyether formation process, it promotes the reaction of phenolate dimers formed in situ with the aryl fluorides present. We envision repurposing poly(BPA carbonate) for the production of value-added polymers. PMID:27354514

  1. Removal of carbon monoxide from hydrogen-rich fuels by selective low-temperature oxidation over base metal added platinum catalysts

    NASA Astrophysics Data System (ADS)

    Suh, Dong Jin; Kwak, Chan; Kim, Jin-Hong; Kwon, Se Mann; Park, Tae-Jin

    Various catalysts containing different catalytic materials, supports, and additives were tested for the preferential oxidation (PROX) of carbon monoxide from a hydrogen-rich gas stream. The results were analyzed based on three reactions involved in the PROX: oxidation of carbon monoxide, H 2-O 2 reaction, and methanation. The PROX reactions were performed in two reaction systems, one for catalyst screening and kinetic study and the other for simulation of the catalytic performance under real reaction conditions. The performances of PROX on different catalysts, varying active components, supports, and additives, were ranked in terms of carbon monoxide conversion and hydrogen consumption. Base metal added platinum catalysts exhibited excellent ability for the carbon monoxide removal. TPR results indicated that a new active species was formed resulting in the enhancement of catalytic activity. PtCo/Al 2O 3 was tested with a simulated steam-reformed fuel for confirmation of its high activity. The effect of operating conditions was analyzed on the PtCo/Al 2O 3, and the optimum conditions for PROX were obtained.

  2. What's on the menu? Assessing microbial carbon sources and cycling in soils using natural abundance radiocarbon analysis

    NASA Astrophysics Data System (ADS)

    Mahmoudi, N.; Burns, L.; Mancini, S.; Fulthorpe, R.; Slater, G. F.

    2011-12-01

    Organic matter in soils is composed of diverse materials in various stages of decomposition. Soil organic matter is not in a single pool but rather in multiple carbon pools with different intrinsic turnover times that can be on annual to decadal and even millennial timescales. Microorganisms can influence the total amount of carbon stored in soils and the turnover rates of these different pools. However, the links between microbes and their ability to utilize these various carbon pools are not well understood. Moreover, microbes have been shown to co-utilize a number of available carbon sources rather than a single carbon source under soil conditions which creates difficulties in identifying microbial carbon sources in the natural environment. Compound-specific radiocarbon analysis of microbial phospholipid fatty acids (PLFA) has become a useful tool in elucidating microbial carbon sources in complex environments with multiple carbon sources. We investigated microbial carbon cycling at an industrial site in Ontario which included a variety of carbon sources including vegetation, PAHs and natural organic matter (NOM). Using this approach, the 14C content of microbial membrane lipids (which reflects their carbon source) can be compared to surrounding carbon sources in order to assess which carbon source they are metabolizing and incorporating into their lipids. In addition, we assessed microbial community structure and diversity by analyzing amplified bacterial, eukaryotic and archaeal rDNA fragments with denaturing gel gradient electrophoresis (DGGE). The Δ14C value for PLFAs ranged from +54 to -697% which indicates that microbial carbon sources across soils differ. The Δ14CPLFA for some soils is consistent with modern carbon sources while Δ14CPLFA for other soils is consistent with natural organic matter including older pools of carbon. The microbial communities at this site are not metabolizing PAHs but rather they are utilizing various pools of natural organic

  3. Factors for Microbial Carbon Sources in Organic and Mineral Soils from Eastern United States Deciduous Forests

    NASA Astrophysics Data System (ADS)

    Stitt, C.; McFarlane, K. J.

    2013-12-01

    Forest soils represent a large portion of global terrestrial carbon; however, which soil carbon sources are used by soil microbes and respired as carbon dioxide (CO2) is not well known. This study will focus on characterizing microbial carbon sources from organic and mineral soils from four eastern United States deciduous forests using the unique radiocarbon tracer, 14C. Results from the dark incubation of the organic and mineral soils are heavily influenced by site characteristics when incubated at microbial optimal activity temperature. The sites with the most similarities are statically the same (p> 0.10). The sites with considerable differences in temperature, texture, and location are statically different concluding that site characteristics play a role in soil respiration.

  4. Climatic variability, hydrologic anomaly, and methane emission can turn productive freshwater marshes into net carbon sources.

    PubMed

    Chu, Housen; Gottgens, Johan F; Chen, Jiquan; Sun, Ge; Desai, Ankur R; Ouyang, Zutao; Shao, Changliang; Czajkowski, Kevin

    2015-03-01

    Freshwater marshes are well-known for their ecological functions in carbon sequestration, but complete carbon budgets that include both methane (CH4 ) and lateral carbon fluxes for these ecosystems are rarely available. To the best of our knowledge, this is the first full carbon balance for a freshwater marsh where vertical gaseous [carbon dioxide (CO2 ) and CH4 ] and lateral hydrologic fluxes (dissolved and particulate organic carbon) have been simultaneously measured for multiple years (2011-2013). Carbon accumulation in the sediments suggested that the marsh was a long-term carbon sink and accumulated ~96.9 ± 10.3 (±95% CI) g C m(-2)  yr(-1) during the last ~50 years. However, abnormal climate conditions in the last 3 years turned the marsh to a source of carbon (42.7 ± 23.4 g C m(-2)  yr(-1) ). Gross ecosystem production and ecosystem respiration were the two largest fluxes in the annual carbon budget. Yet, these two fluxes compensated each other to a large extent and led to the marsh being a CO2 sink in 2011 (-78.8 ± 33.6 g C m(-2)  yr(-1) ), near CO2 -neutral in 2012 (29.7 ± 37.2 g C m(-2)  yr(-1) ), and a CO2 source in 2013 (92.9 ± 28.0 g C m(-2)  yr(-1) ). The CH4 emission was consistently high with a three-year average of 50.8 ± 1.0 g C m(-2)  yr(-1) . Considerable hydrologic carbon flowed laterally both into and out of the marsh (108.3 ± 5.4 and 86.2 ± 10.5 g C m(-2)  yr(-1) , respectively). In total, hydrologic carbon fluxes contributed ~23 ± 13 g C m(-2)  yr(-1) to the three-year carbon budget. Our findings highlight the importance of lateral hydrologic inflows/outflows in wetland carbon budgets, especially in those characterized by a flow-through hydrologic regime. In addition, different carbon fluxes responded unequally to climate variability/anomalies and, thus, the total carbon budgets may vary drastically among years. PMID:25287051

  5. Electron string ion sources for carbon ion cancer therapy accelerators

    SciTech Connect

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.; Katagiri, K.; Noda, K.

    2015-08-15

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C{sup 4+} and C{sup 6+} ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10{sup 10} C{sup 4+} ions per pulse and about 5 × 10{sup 9} C{sup 6+} ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10{sup 11} C{sup 6+} ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the {sup 11}C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C{sup 4+} ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of {sup 11}C, transporting to the tumor with the primary accelerated {sup 11}C{sup 4+} beam, this efficiency is preliminarily considered to be large enough to produce the {sup 11}C{sup 4+} beam from radioactive methane and to inject this beam into synchrotrons.

  6. Carbon Sequestration through Sustainably Sourced Algal Fertilizer: Deep Ocean Water.

    NASA Astrophysics Data System (ADS)

    Sherman, M. T.

    2014-12-01

    Drawing down carbon from the atmosphere happens in the oceans when marine plants are growing due to the use of carbon dioxide for biological processes and by raising the pH of the water. Macro- and microscopic marine photosynthesizers are limited in their growth by the availability of light and nutrients (nitrogen, phosphorous, iron, etc.) Deep ocean water (DOW), oceanic water from bellow about 1000m, is a natural medium for marine algae, which contains all (except in rare circumstances) necessary components for algal growth and represents over 90% of the volume of the ocean. The introduction of DOW to a tropical or summer sea can increase chlorophyll from near zero to 60 mg per M3 or more. The form of the utilization infrastructure for DOW can roughly be divided into two effective types; the unconstrained release and the open pond system. Unconstrained release has the advantage of having relatively low infrastructure investment and is available to any area of the ocean. The open pond system has high infrastructure costs but enables intensive use of DOW for harvesting macro- and microalgae and sustainable mariculture. It also enables greater concomitant production of DOW's other potential products such as electricity or potable water. However, unlike an unconstrained release the open pond system can capture much of the biomaterial from the water and limits the impact to the surrounding ecosystem. The Tidal Irrigation and Electrical System (TIESystem), is an open pond that is to be constructed on a continental shelf. It harnesses the tidal flux to pump DOW into the pond on the rising tide and then uses the falling tide to pump biologically rich material out of the pond. This biomaterial represents fixed CO2 and can be used for biofuel or fertilizers. The TIESystem benefits from an economy of scale that increases at a rate that is roughly equal to the relationship of the circumference of a circle (the barrier that creates the open pond) to the area of the pond

  7. Influence of carbon source on nitrate removal by nitrate-tolerant Klebsiella oxytoca CECT 4460 in batch and chemostat cultures

    SciTech Connect

    Pinar, G.; Ramos, J.L.; Kovarova, K.; Egli, T.

    1998-08-01

    The nitrate-tolerant organism Klebsiella oxytoca CECT-4460 tolerates nitrate at concentrations up to 1 M and is used to treat wastewater with high nitrate loads in industrial wastewater treatment plants. The authors studied the influence of the C source (glycerol or sucrose or both) on the growth rate and the efficiency of nitrate removal under laboratory conditions. With sucrose as the sole C source the maximum specific growth rate was 0.3 h{sup {minus}1}, whereas with glycerol it was 0.45 h{sup {minus}1}. In batch cultures K. oxytoca cells grown on sucrose or glycerol were able to immediately use sucrose as a sole C source, suggesting that sucrose uptake and metabolism were constitutive. In contrast, glycerol uptake occurred preferentially in glycerol-grown cells. Independent of the preculture conditions, when sucrose and glycerol were added simultaneously to batch cultures, the sucrose was used first, and once the supply of sucrose was exhausted, the glycerol was consumed. Utilization of nitrate as an N source occurred without nitrite of ammonium accumulation when glycerol was used, but nitrite accumulated when sucrose was used. In chemostat cultures K. oxytoca CECT 4460 efficiently removed nitrate without accumulation of nitrite or ammonium when sucrose, glycerol, or mixtures of these two C sources were used. The growth yields and the efficiencies of C and N utilization were determined at different growth rates in chemostat cultures. Regardless of the C source, yield carbon (Y{sub C}) ranged between 1.3 and 1.0 g (dry weight) per g of sucrose C or glycerol C consumed. Regardless of the specific growth rate and the C source, yield nitrogen (Y{sub N}) ranged from 17.2 to 12.5 g (dry weight) per g of nitrate N consumed.

  8. Sources and sinks of carbon in boreal ecosystems of interior Alaska: a review

    USGS Publications Warehouse

    Douglas, Thomas A.; Jones, Miriam C.; Hiemstra, Christopher A.

    2014-01-01

    Boreal regions store large quantities of carbon but are increasingly vulnerable to carbon loss due to disturbance and climate warming. The boreal region, underlain by discontinuous permafrost, presents a challenging landscape for itemizing current and potential carbon sources and sinks in the boreal soil and vegetation. The roles of fire, forest succession, and the presence (or absence) of permafrost on carbon cycle, vegetation, and hydrologic processes have been the focus of multidisciplinary research in this area for the past 20 years. However, projections of a warming future climate, an increase in fire severity and extent, and the potential degradation of permafrost could lead to major landscape process changes over the next 20 to 50 years. This provides a major challenge for predicting how the interplay between land management activities and impacts of climate warming will affect carbon sources and sinks in Interior Alaska. To assist land managers in adapting and managing for potential changes in the Interior Alaska carbon cycle we developed this review paper incorporating an overview of the climate, ecosystem processes, vegetation types, and soil regimes in Interior Alaska with a focus on ramifications for the carbon cycle. Our objective is to provide a synthesis of the most current carbon storage estimates and measurements to support policy and land management decisions on how to best manage carbon sources and sinks in Interior Alaska. To support this we have surveyed relevant peer reviewed estimates of carbon stocks in aboveground and belowground biomass for Interior Alaska boreal ecosystems. We have also summarized methane and carbon dioxide fluxes from the same ecosystems. These data have been converted into the same units to facilitate comparison across ecosystem compartments. We identify potential changes in the carbon cycle with climate change and human disturbance including how compounding disturbances can affect the boreal system. Finally, we provide

  9. Carbon Storages in Plantation Ecosystems in Sand Source Areas of North Beijing, China

    PubMed Central

    Liu, Xiuping; Zhang, Wanjun; Cao, Jiansheng; Shen, Huitao; Zeng, Xinhua; Yu, Zhiqiang; Zhao, Xin

    2013-01-01

    Afforestation is a mitigation option to reduce the increased atmospheric carbon dioxide levels as well as the predicted high possibility of climate change. In this paper, vegetation survey data, statistical database, National Forest Resource Inventory database, and allometric equations were used to estimate carbon density (carbon mass per hectare) and carbon storage, and identify the size and spatial distribution of forest carbon sinks in plantation ecosystems in sand source areas of north Beijing, China. From 2001 to the end of 2010, the forest areas increased more than 2.3 million ha, and total carbon storage in forest ecosystems was 173.02 Tg C, of which 82.80 percent was contained in soil in the top 0–100 cm layer. Younger forests have a large potential for enhancing carbon sequestration in terrestrial ecosystems than older ones. Regarding future afforestation efforts, it will be more effective to increase forest area and vegetation carbon density through selection of appropriate tree species and stand structure according to local climate and soil conditions, and application of proper forest management including land-shaping, artificial tending and fencing plantations. It would be also important to protect the organic carbon in surface soils during forest management. PMID:24349223

  10. Influence of natural and novel organic carbon sources on denitrification in forest, degraded urban, and restored streams

    EPA Science Inventory

    Organic carbon is important in regulating ecosystem function, and its source and abundance may be altered by urbanization. We investigated shifts in organic carbon quantity and quality associated with urbanization and ecosystem restoration, and its potential effects on denitrific...

  11. Biotechnological Production of Docosahexaenoic Acid Using Aurantiochytrium limacinum: Carbon Sources Comparison And Growth Characterization

    PubMed Central

    Abad, Sergi; Turon, Xavier

    2015-01-01

    Aurantiochytrium limacinum, a marine heterotrophic protist/microalga has shown interesting yields of docosahexaenoic acid (DHA) when cultured with different carbon sources: glucose, pure and crude glycerol. A complete study in a lab-scale fermenter allowed for the characterization and comparison of the growth kinetic parameters corresponding to each carbon source. Artificial Marine Medium (AMM) with glucose, pure and crude glycerol offered similar biomass yields. The net growth rates (0.10–0.12 h−1), biomass (0.7–0.8 g cells/g Substrate) and product (0.14–0.15 g DHA/g cells) yields, as well as DHA productivity were similar using the three carbon sources. Viable potential applications to valorize crude glycerol are envisioned to avoid an environmental problem due to the excess of byproduct. PMID:26690180

  12. Optimization of VFAs and ethanol production with waste sludge used as the denitrification carbon source.

    PubMed

    Guo, Liang; Zhang, Jiawen; Yin, Li; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2015-01-01

    An acidification metabolite such as volatile fatty acids (VFAs) and ethanol could be used as denitrification carbon sources for solving the difficult problem of carbon source shortages and low nitrogen removal efficiency. A proper control of environmental factors could be essential for obtaining the optimal contents of VFAs and ethanol. In this study, suspended solids (SS), oxidation reduction potential (ORP) and shaking rate were chosen to investigate the interactive effects on VFAs and ethanol production with waste sludge. It was indicated that T-VFA yield could be enhanced at lower ORP and shaking rate. Changing the SS, ORP and shaking rate could influence the distribution of acetic, propionic, butyric, valeric acids and ethanol. The optimal conditions for VFAs and ethanol production used as a denitrification carbon source were predicted by analyzing response surface methodology (RSM). PMID:26465305

  13. A new activated primary tank developed for recovering carbon source and its application.

    PubMed

    Jin, Pengkang; Wang, Xianbao; Zhang, Qionghua; Wang, Xiaochang; Ngo, Huu Hao; Yang, Lei

    2016-01-01

    A novel activated primary tank process (APT) was developed for recovering carbon source by fermentation and elutriation of primary sludge. The effects of solids retention time (SRT), elutriation intensity (G) and return sludge ratio (RSR) on this recovery were evaluated in a pilot scale reactor. Results indicated that SRT significantly influenced carbon source recovery, and mechanical elutriation could promote soluble COD (SCOD) and VFA yields. The optimal conditions of APT were SRT=5d, G=152s(-1) and RSR=10%, SCOD and VFA production were 57.0mg/L and 21.7mg/L. Particulate organic matter in sludge was converted into SCOD and VFAs as fermentative bacteria were significantly enriched in APT. Moreover, the APT process was applied in a wastewater treatment plant to solve the problem of insufficient carbon source. The outcomes demonstrated that influent SCOD of biological tank increased by 31.1%, which improved the efficiency of removing nitrogen and phosphorus. PMID:26562688

  14. [Effect of PLA/starch slow-release carbon source on biological denitrification].

    PubMed

    Tang, Dan-Qi; Wang, Juan; Zheng, Tian-Long; Liu, Jian-Guo; Wang, Qun-Hui

    2014-06-01

    We used polylactic acid (PLA) and starch to develop a slow-release carbon source and biofilm carrier by blending and fusing techniques for removing nitrate contamination from groundwater, investigated the changes of nitrate, nitrite concentrations and COD in denitrification process supplied by the slow-release carbon source in different mass ratios [PLA/starch (P: S) were 8:2, 7:3, 6:4, 5:5, respectively]. The experimental results demonstrated that the best mass ratio of PLA/starch was 5:5, resulting in a nitrate removal rate of more than 99%. A high denitrification performance was achieved in continuous fixed-bed reactor, the effluent nitrate concentration was below 2 mg x L(-1). These experiments provide scientific basis for the development of environmentally-friendly and controllable slow-release carbon source. PMID:25158501

  15. Biotechnological Production of Docosahexaenoic Acid Using Aurantiochytrium limacinum: Carbon Sources Comparison And Growth Characterization.

    PubMed

    Abad, Sergi; Turon, Xavier

    2015-12-01

    Aurantiochytrium limacinum, a marine heterotrophic protist/microalga has shown interesting yields of docosahexaenoic acid (DHA) when cultured with different carbon sources: glucose, pure and crude glycerol. A complete study in a lab-scale fermenter allowed for the characterization and comparison of the growth kinetic parameters corresponding to each carbon source. Artificial Marine Medium (AMM) with glucose, pure and crude glycerol offered similar biomass yields. The net growth rates (0.10-0.12 h(-1)), biomass (0.7-0.8 g cells/g Substrate) and product (0.14-0.15 g DHA/g cells) yields, as well as DHA productivity were similar using the three carbon sources. Viable potential applications to valorize crude glycerol are envisioned to avoid an environmental problem due to the excess of byproduct. PMID:26690180

  16. Evidence of zinc ferrite formation on carbon steel in primary-side coolant with added soluble zinc

    NASA Astrophysics Data System (ADS)

    Sawicki, Jerzy A.; Allsop, Heather A.

    1996-12-01

    Conversion electron and X-ray backscattering Mössbauer spectroscopy was used to identify iron compounds that were formed on carbon steel in simulated CANDU® reactor coolant containing 15 to 60 ppb (μg/L H 2O) soluble zinc. Analyses of the coupons exposed to coolant in the absence of zinc indicated the formation of magnetite, whereas, in the presence of zinc, the formation of a layer of zinc-bearing ferrite Zn xFe 3- xO 4 (with x > 0.8 was observed. The role of the high electrical resistivity of zinc ferrite in reducing corrosion rates, corrosion-product release rates, and 60Co activity buildup on carbon steel is briefly discussed.

  17. Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands.

    PubMed

    Lin, Ying-Feng; Jing, Shuh-Ren; Wang, Tze-Wen; Lee, Der-Yuan

    2002-01-01

    Several microcosm wetlands unplanted and planted with five macrophytes (Phragmites australis, Commelina communis, Penniserum purpureum, Ipomoea aquatica, and Pistia stratiotes) were employed to remove nitrate from groundwater at a concentration of 21-47 mg NO3-N/l. In the absence of external carbon, nitrate removal rates ranged from 0.63 to 1.26 g NO3-N/m2/day for planted wetlands. Planted wetlands exhibited significantly greater nitrate removal than unplanted wetlands (P<0.01), indicating that macrophytes are essential to efficient nitrate removal. Additionally, a wetland planted with Penniserum showed consistently higher nitrate removal than those planted with the other four macrophytes, suggesting that macrophytes present species-specific nitrate removal efficiency possibly depending on their ability to produce carbon for denitrification. Although adding external carbon to the influent improved nitrate removal, a significant fraction of the added carbon was lost via microbial oxidation in the wetlands. Planting a wetland with macrophytes with high productivity may be an economic way for removing nitrate from groundwater. According to the harvest result, 4-11% of nitrogen removed by the planted wetland was due to vegetation uptake, and 89-96% was due to denitrification. PMID:12166674

  18. Morphology Study of Prepared Carbon Nanotubes using Palm Oil as Carbon Source in Spray Pyrolysis Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Azira, A. A.; Rusop, M.

    2010-03-01

    Surface morphology study on the influence of starting carbon materials by using newly developed spray pyrolysis chemical vapor deposition (Spray-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from palm oil as carbon sources were synthesized in Argon gas ambient by using Spray-CVD system. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscope (HR-TEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that palm oil can serve as a precursor materials for nanotubes formation. The high-temperature graphitization process induced by the Spray-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs. The palm oil of hydrocarbons not only found acts as the precursors but also enhances the production rate of CNTs.

  19. Evaluation of Natural Materials as Exogenous Carbon Sources for Biological Treatment of Low Carbon-to-Nitrogen Wastewater

    PubMed Central

    Ramírez-Godínez, Juan; Beltrán-Hernández, Icela; Álvarez-Hernández, Alejandro; Coronel-Olivares, Claudia; Contreras-López, Elizabeth; Quezada-Cruz, Maribel; Vázquez-Rodríguez, Gabriela

    2015-01-01

    In the bacterial processes involved in the mitigation of nitrogen pollution, an adequately high carbon-to-nitrogen (C : N) ratio is key to sustain denitrification. We evaluated three natural materials (woodchips, barley grains, and peanut shells) as carbon sources for low C : N wastewater. The amount of organic matter released from these materials to aqueous media was evaluated, as well as their pollution swapping potential by measuring the release of total Kjeldahl nitrogen, N-NH4+, NO2−, and NO3−, and total phosphorous. Barley grains yielded the highest amount of organic matter, which also showed to be the most easily biodegradable. Woodchips and peanut shells released carbon rather steadily and so they would not require frequent replenishment from biological reactors. These materials produced eluates with lower concentrations of nutrients than the leachates from barley grains. However, as woodchips yielded lower amounts of suspended solids, they constitute an adequate exogenous source for the biological treatment of carbon-deficient effluents. PMID:26495313

  20. Determination of primary and secondary sources of organic acids and carbonaceous aerosols using stable carbon isotopes

    NASA Astrophysics Data System (ADS)

    Fisseha, Rebeka; Saurer, Matthias; Jäggi, Maya; Siegwolf, Rolf T. W.; Dommen, Josef; Szidat, Sönke; Samburova, Vera; Baltensperger, Urs

    Stable carbon isotope ratio ( δ13C) data can provide important information regarding the sources and the processing of atmospheric organic carbon species. Formic, acetic and oxalic acid were collected from Zurich city in August-September 2002 and March 2003 in the gas and aerosol phase, and the corresponding δ13C analysis was performed using a wet oxidation method followed by isotope ratio mass spectrometry. In August, the δ13C values of gas phase formic acid showed a significant correlation with ozone (coefficient of determination ( r2) = 0.63) due to the kinetic isotope effect (KIE). This indicates the presence of secondary sources (i.e. production of organic acids in the atmosphere) in addition to direct emission. In March, both gaseous formic and acetic acid exhibited similar δ13C values and did not show any correlation with ozone, indicating a predominantly primary origin. Even though oxalic acid is mainly produced by secondary processes, the δ13C value of particulate oxalic acid was not depleted and did not show any correlation with ozone, which may be due to the enrichment of 13C during the gas - aerosol partitioning. The concentrations and δ13C values of the different aerosol fractions (water soluble organic carbon, water insoluble organic carbon, carbonate and black carbon) collected during the same period were also determined. Water soluble organic carbon (WSOC) contributed about 60% to the total carbon and was enriched in 13C compared to other fractions indicating a possible effect of gas - aerosol partitioning on δ13C of carbonaceous aerosols. The carbonate fraction in general was very low (3% of the total carbon).

  1. North America carbon dioxide sources and sinks: magnitude, attribution, and uncertainty

    SciTech Connect

    King, Anthony W.; Hayes, Daniel J.; Huntzinger, Deborah N.; West, Tristram O.; Post, W. M.

    2012-12-01

    North America is both a source and sink of atmospheric CO2. Sources, predominately fossil-fuel combustion in the United States along with contributions from deforestation in Mexico, add CO2 to the atmosphere. Most North America ecosystems, particularly regrowing forests in the United States, are sinks for atmospheric CO2. CO2 is removed from the atmosphere in photosynthesis, converted into biomass and stored as carbon in vegetation, soil and wood products. Fossil-fuel emissions dominate the North American source-sink balance. North America is a net source of atmospheric CO2 with ecosystem sinks balancing approximately 35% of fossil-fuel CO2 emissions from North America.

  2. The effect of various carbon sources on the growth of single-celled cyanophyta

    NASA Technical Reports Server (NTRS)

    Avilov, I. A.; Sidorenkova, E. S.

    1983-01-01

    In 19 strains of unicellular blue-green algae, belonging to general Synechococcus, Synechocystis, Aphanocapsa and Aphanothece, the capacity of growth under mixotrophic conditions in mineral media with organic carbon sources (carbohydrates, polyols) was investigated. At moderate light intensity (1200 lx) and 0.5% of carbon source there was revealed: (1) Stimulation of growth; (2) Partial or complete inhibition of growth; (3) No influence of carbohydrate and polyols on the growth of some algae strains. Three physiological groups for the investigated strains have been outlined on the basis of data obtained. The possibility of using the differences revealed in classification of unicellular blue-green algae is discussed.

  3. CO2 mitigation potential of mineral carbonation with industrial alkalinity sources in the United States.

    PubMed

    Kirchofer, Abby; Becker, Austin; Brandt, Adam; Wilcox, Jennifer

    2013-07-01

    The availability of industrial alkalinity sources is investigated to determine their potential for the simultaneous capture and sequestration of CO2 from point-source emissions in the United States. Industrial alkalinity sources investigated include fly ash, cement kiln dust, and iron and steel slag. Their feasibility for mineral carbonation is determined by their relative abundance for CO2 reactivity and their proximity to point-source CO2 emissions. In addition, the available aggregate markets are investigated as possible sinks for mineral carbonation products. We show that in the U.S., industrial alkaline byproducts have the potential to mitigate approximately 7.6 Mt CO2/yr, of which 7.0 Mt CO2/yr are CO2 captured through mineral carbonation and 0.6 Mt CO2/yr are CO2 emissions avoided through reuse as synthetic aggregate (replacing sand and gravel). The emission reductions represent a small share (i.e., 0.1%) of total U.S. CO2 emissions; however, industrial byproducts may represent comparatively low-cost methods for the advancement of mineral carbonation technologies, which may be extended to more abundant yet expensive natural alkalinity sources. PMID:23738892

  4. Carbon isotope based aerosol source apportionment in Eastern European city Vilnius

    NASA Astrophysics Data System (ADS)

    Garbaras, Andrius; Sapolaite, Justina; Garbariene, Inga; Ezerinskis, Zilvinas; Pocevicius, Matas; Krikscikas, Laurynas; Jacevicius, Sarunas; Plukis, Arturas; Remeikis, Vidmantas

    2016-04-01

    We present carbonaceous aerosol source apportionment results in Eastern European city Vilnius (capital of Lithuania) using stable carbon isotope ratio (δ13C) and radiocarbon (14C) methods. The aerosol sampling campaigns were performed in 2014-2016 winter seasons in Vilnius. PM1 particles were collected on quartz fiber filters using high volume sampler, while PM10 and size segregated aerosol particles were collected using low volume and MOUDI 128 cascade impactor respectively. δ13C values were measured with EA-IRMS system while radiocarbon analysis was performed using Single Stage Accelerator Mass Spectrometer (SSAMS). For the AMS analysis, filters (or aluminium foils from cascade impactor) were graphitized using Automated Graphitization Equipment. It was estimated that dominant carbonaceous aerosol source in Vilnius was of biogenic/biomass origin (60-90 %). Fossil fuel sources accounted for up to 23 % of total carbon fraction. Combining stable carbon and radiocarbon isotope analysis we were able to quantify the amount of coal derived aerosol particles. The contribution of coal burning emissions were up to 14 %. We will present the applicability of dual carbon (13C and 14C) isotope ratio method for the aerosol source apportionment in different regions of Europe, also the perspectives of using MOUDI cascade impactors to make source apportionment in size segregated aerosol particles.

  5. Study of the effect of nano-sized precipitates on the mechanical properties of boron-added low-carbon steels by neutron scattering techniques

    PubMed Central

    Seong, B. S.; Cho, Y. R.; Shin, E. J.; Kim, S. I.; Choi, S.-H.; Kim, H. R.; Kim, Y. J.

    2008-01-01

    Small-angle neutron scattering (SANS) and neutron powder diffraction (ND) techniques were used to study quantitatively the effect of nano-sized precipitates and boron addition on the mechanical properties of low-carbon steels. SANS was used to evaluate nano-sized precipitates, smaller than about 600 Å in diameter, and ND was used to determine the weight fraction of the cementite precipitates. Fine core–shell structured spherical precipitates with an average radius of ~50 Å, such as MnS and/or CuS, surrounded by BN layers were observed in the boron-added (BA) low-carbon steels; fine spherical precipitates with an average radius of ~48 Å were mainly observed in the boron-free (BF) low-carbon steels. In the BA steels, the number of boron precipitates, such as BN, Fe3(C,B) and MnS, surrounded by BN layers increased drastically at higher hot-rolling temperatures. The volume fraction of the fine precipitates of the BA steels was higher than that of the BF steels; this difference is related to the rapid growth of the BN layers on the MnS and CuS precipitates. Boron addition to low-carbon steels resulted in a reduction in strength and an improvement in elongation; this behaviour is related to the reduction of the solute carbon and the nitrogen contents in the ferrite matrix caused by the precipitation of BN, as well by the increase in the volume fraction of the cementites. PMID:19461851

  6. Study of the effect of nano-sized precipitates on the mechanical properties of boron-added low-carbon steels by neutron scattering techniques.

    PubMed

    Seong, B S; Cho, Y R; Shin, E J; Kim, S I; Choi, S-H; Kim, H R; Kim, Y J

    2008-10-01

    Small-angle neutron scattering (SANS) and neutron powder diffraction (ND) techniques were used to study quantitatively the effect of nano-sized precipitates and boron addition on the mechanical properties of low-carbon steels. SANS was used to evaluate nano-sized precipitates, smaller than about 600 A in diameter, and ND was used to determine the weight fraction of the cementite precipitates. Fine core-shell structured spherical precipitates with an average radius of ~50 A, such as MnS and/or CuS, surrounded by BN layers were observed in the boron-added (BA) low-carbon steels; fine spherical precipitates with an average radius of ~48 A were mainly observed in the boron-free (BF) low-carbon steels. In the BA steels, the number of boron precipitates, such as BN, Fe(3)(C,B) and MnS, surrounded by BN layers increased drastically at higher hot-rolling temperatures. The volume fraction of the fine precipitates of the BA steels was higher than that of the BF steels; this difference is related to the rapid growth of the BN layers on the MnS and CuS precipitates. Boron addition to low-carbon steels resulted in a reduction in strength and an improvement in elongation; this behaviour is related to the reduction of the solute carbon and the nitrogen contents in the ferrite matrix caused by the precipitation of BN, as well by the increase in the volume fraction of the cementites. PMID:19461851

  7. Carbon allocation, source-sink relations and plant growth: do we need to revise our carbon centric concepts?

    NASA Astrophysics Data System (ADS)

    Körner, Christian

    2014-05-01

    Since the discovery that plants 'eat air' 215 years ago, carbon supply was considered the largely unquestioned top driver of plant growth. The ease at which CO2 uptake (C source activity) can be measured, and the elegant algorithms that describe the responses of photosynthesis to light, temperature and CO2 concentration, explain why carbon driven growth and productivity became the starting point of all process based vegetation models. Most of these models, nowadays adopt other environmental drivers, such as nutrient availability, as modulating co-controls, but the carbon priority is retained. Yet, if we believe in the basic rules of stoichometry of all life, there is an inevitable need of 25-30 elements other then carbon, oxygen and hydrogen to build a healthy plant body. Plants compete for most of these elements, and their availability (except for N) is finite per unit land area. Hence, by pure plausibility, it is a highly unlikely situation that carbon plays the rate limiting role of growth under natural conditions, except in deep shade or on exceptionally fertile soils. Furthermore, water shortage and low temperature, both act directly upon tissue formation (meristems) long before photosynthetic limitations come into play. Hence, plants will incorporate C only to the extent other environmental drivers permit. In the case of nutrients and mature ecosystems, this sink control of plant growth may be masked in the short term by a tight, almost closed nutrient cycle or by widening the C to other element ratio. Because source and sink activity must match in the long term, it is not possible to identify the hierarchy of growth controls without manipulating the environment. Dry matter allocation to C rich structures and reserves may provide some stoichimetric leeway or periodic escapes from the more fundamental, long-term environmental controls of growth and productivity. I will explain why carbon centric explanations of growth are limited or arrive at plausible answers

  8. Length dependence of carbon-doped BN nanowires: A-D Rectification and a route to potential molecular devices

    NASA Astrophysics Data System (ADS)

    Qiu, M.; Liew, K. M.

    2013-02-01

    Based on the first-principles approach, electronic transport properties of different lengths of carbon-doped boron-nitrogen nanowires, capped with two thiols as end groups connected to Au electrodes surfaces, are investigated. The results show that rectifying performance and negative differential resistance (NDR) behaviors can be enhanced obviously by increasing the length. Analysis of Mülliken population, transmission spectra, evolutions of frontier orbitals and molecular projected self-consistent Hamiltonian of molecular orbital indicate that electronic transmission strength, charge transfer and distributions of molecular states change are the intrinsic origin of these rectifying performances and NDR behaviors.

  9. Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources.

    PubMed

    Ekasari, Julie; Hanif Azhar, Muhammad; Surawidjaja, Enang H; Nuryati, Sri; De Schryver, Peter; Bossier, Peter

    2014-12-01

    The objective of this study was to document the immunological effects of growing shrimp in biofloc systems. The experiment consisted of four types of biofloc systems in which bioflocs were produced by daily supplementation of four different carbon sources, i.e. molasses, tapioca, tapioca-by-product, and rice bran, at an estimated C/N ratio of 15 and a control system without any organic carbon addition. Each biofloc system was stocked with Pacific white shrimp (Litopenaeus vannamei) juveniles that were reared for 49 days. The use of tapioca-by-product resulted in a higher survival (93%) of the shrimp as compared to the other carbon sources and the control. The highest yield and protein assimilation was observed when tapioca was used as the carbon source. After 49 days, phenoloxidase (PO) activity of the shrimp grown in all biofloc systems was higher than that of the shrimp from the control system. Following a challenge test by injection with infectious myonecrosis virus (IMNV), the levels of PO and respiratory burst (RB) activity in the shrimp of all biofloc treatments were higher than that of the challenged shrimp from the control treatment. An increased immunity was also suggested by the survival of the challenged shrimp from the experimental biofloc groups that was significantly higher as compared to the challenged shrimp from the control treatment, regardless of the organic carbon source used to grow the bioflocs. Overall, this study demonstrated that the application of biofloc technology may contribute to the robustness of cultured shrimp by immunostimulation and that this effect is independent of the type of carbon source used to grow the flocs. PMID:25218685

  10. An analytical study of nitrogen oxides and carbon monoxide emissions in hydrocarbon combustion with added nitrogen - Preliminary results

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1980-01-01

    The influence of ground-based gas turbine combustor operating conditions and fuel-bound nitrogen (FBN) found in coal-derived liquid fuels on the formation of nitrogen oxides and carbon monoxide is investigated. Analytical predictions of NOx and CO concentrations are obtained for a two-stage, adiabatic, perfectly-stirred reactor operating on a propane-air mixture, with primary equivalence ratios from 0.5 to 1.7, secondary equivalence ratios of 0.5 or 0.7, primary stage residence times from 12 to 20 msec, secondary stage residence times of 1, 2 and 3 msec and fuel nitrogen contents of 0.5, 1.0 and 2.0 wt %. Minimum nitrogen oxide but maximum carbon monoxide formation is obtained at primary zone equivalence ratios between 1.4 and 1.5, with percentage conversion of FBN to NOx decreasing with increased fuel nitrogen content. Additional secondary dilution is observed to reduce final pollutant concentrations, with NOx concentration independent of secondary residence time and CO decreasing with secondary residence time; primary zone residence time is not observed to affect final NOx and CO concentrations significantly. Finally, comparison of computed results with experimental values shows a good semiquantitative agreement.

  11. Tracking Nonpoint Source Nitrogen and Carbon in Watersheds of Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Kaushal, S.; Pennino, M. J.; Duan, S.; Blomquist, J.

    2012-12-01

    Humans have altered nitrogen and carbon cycles in rivers regionally with important impacts on coastal ecosystems. Nonpoint source nitrogen pollution is a leading contributor to coastal eutrophication and hypoxia. Shifts in sources of carbon impact downstream ecosystem metabolism and fate and transport of contaminants in coastal zones. We used a combination of stable isotopes and optical tracers to investigate fate and transport of nitrogen and carbon sources in tributaries of the largest estuary in the U.S., the Chesapeake Bay. We analyzed isotopic composition of water samples from major tributaries including the Potomac River, Susquehanna River, Patuxent River, and Choptank River during routine and storm event sampling over multiple years. A positive correlation between δ15N-NO3- and δ18O-NO3- in the Potomac River above Washington D.C. suggested denitrification or biological uptake in the watershed was removing agriculturally-derived N during summer months. In contrast, the Patuxent River in Maryland showed elevated δ15N-NO3- (5 - 12 per mil) with no relationship to δ18O-NO3- suggesting the importance of wastewater sources. From the perspective of carbon sources, there were distinct isotopic values of the δ13C-POM of particulate organic matter and fluorescence excitation emission matrices (EEMS) for rivers influenced by their dominant watershed land use. EEMS showed that there were increases in the humic and fulvic fractions of dissolved organic matter during spring floods, particularly in the Potomac River. Stable isotopic values of δ13C-POM also showed rapid depletion suggesting terrestrial carbon "pulses" in the Potomac River each spring. The δ15N-POM peaked to 10 - 15 per mil each spring suggested a potential manure source or result of biological processing within the watershed. Overall, there were considerable changes in sources and transformations of nitrogen and carbon that varied across rivers and that contribute to nitrogen and carbon loads

  12. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry.

    PubMed

    Ellis, Wade C; Lewis, Charlotte R; Openshaw, Anna P; Farnsworth, Paul B

    2016-09-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration. Graphical Abstract ᅟ. PMID:27380389

  13. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ellis, Wade C.; Lewis, Charlotte R.; Openshaw, Anna P.; Farnsworth, Paul B.

    2016-09-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration.

  14. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ellis, Wade C.; Lewis, Charlotte R.; Openshaw, Anna P.; Farnsworth, Paul B.

    2016-07-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration.

  15. A Carbon Nano Tube electron impact ionisation source for low-power, compact spacecraft mass spectrometers

    NASA Astrophysics Data System (ADS)

    Sheridan, S.; Bardwell, M. W.; Morse, A. D.; Morgan, G. H.

    2012-04-01

    A novel ionisation source which uses commercially available Carbon Nano Tube devices is demonstrated as a replacement for a filament based ionisation source in an ion trap mass spectrometer. The carbon nanotube ion source electron emission was characterised and exhibited typical emission of 30 ± 1.7 μA with an applied voltage differential of 300 V between the carbon nanotube tips and the extraction grid. The ion source was tested for longevity and operated under a condition of continuous emission for a period of 44 h; there was an observed reduction in emission current of 26.5% during operation. Spectra were generated by installing the ion source into a Finnigan Mat ITD700 ion trap mass spectrometer; the spectra recorded showed all of the characteristic m/z peaks from m/z 69 to m/z 219. Perfluorotributylamine spectra were collected and averaged contiguously for a period of 48 h with no significant signal loss or peak mass allocation shift. The low power requirements and low mass of this novel ionisation source are considered be of great value to future space missions where mass spectrometric technology will be employed.

  16. Constraining Sources of Subducted and Recycled Carbon Along the Sunda Arc

    NASA Astrophysics Data System (ADS)

    House, B. M.; Bebout, G. E.; Hilton, D. R.; Rodriguez, B.; Plank, T. A.

    2014-12-01

    From sediment subduction rates and C contents at ODP/DSDP sites 765 and 211, we estimate the rate of C subduction along ~2000 km of the East Sunda Arc to be ~0.4 Tg C yr-1, representing a significant source of subducted volatiles [1]. However volatile recycling efficiency and the provenance of recycled volatiles in this region remain poorly understood. With new δ13C measurements of both carbonate and organic carbon from sites 211 and 765, we present the most detailed study yet of the spatial variability of subducted C and recycled CO2 provenance along the strike of the arc. Furthermore we demonstrate the importance of oceanic crustal carbonate as a C source in a subduction zone that is otherwise carbonate starved. Carbonate content throughout the sediment column decreases dramatically between site 765, approximately 250 km from the Australian continental margin, and site 211, approximately 300 km southwest of the trench and outboard of the Sunda Strait between Sumatra and Java. Continental and shelf carbonate input from the Australian margin dominates shallow deposits at site 765, but underlying pelagic sediments are thought to contribute the majority of inorganic C to the arc. The paucity of carbonate in sediments at site 211 suggests that along this segment essentially all carbonate subducted is derived from altered ocean crust, presenting an opportunity to study the effects of crustal carbonate input. While previous C provenance studies relied on globally-averaged δ13C values for organic and inorganic C in subducted sediments, we present new estimates based on measured δ13CVPDB of carbonate (average of ~2‰ in subducted sediments) and organic carbon (-22.5 to -23‰ average) along with previously published efflux data [2]. These estimates suggest that the arc-averaged ratio of carbonate to organic C subducted along the East Sunda Arc is nearly identical to the inorganic to organic C ratio represented in volcanic and hydrothermal CO2 output, suggesting that

  17. Old fronds serve as a vernal carbon source in the wintergreen fern Dryopteris intermedia (Aspleniaceae).

    PubMed

    Tessier, Jack T; Bornn, Matthew P

    2007-01-01

    Maintaining green leaves beyond the growing season has been hypothesized to benefit plants by supplying either a nutrient or a carbon source. Understanding such ecophysiological aspects of plants will help us to appreciate how a species functions in its environment and predict how it might be affected by future changes in that environment. The wintergreen fern species Dryopteris intermedia does not retranslocate nitrogen and phosphorus from old fronds in spring, but photosynthesis does take place in the old fronds during this season. To determine if carbon fixed in the old fronds is translocated to other parts of the plant, we labeled old fronds with (13)C via photosynthetic uptake and examined old fronds, new fronds, fine roots, and rhizomes for (13)C content 1 day and 1 month after labeling the old fronds. Vernally fixed carbon was translocated to the new fronds but not significantly to the below ground tissues. Old fronds in this species, therefore, serve as a carbon source for vernal growth of new fronds. This is the first study in which a fern was labeled with (13)C to track vernally fixed carbon from old fronds to the rest of the plant in a wintergreen species. Future research should examine the precise timing of this carbon movement and examine other species for a similar or contrasting strategy. PMID:21642204

  18. Deep-sea hydrocarbon seep communities: evidence for energy and nutritional carbon sources

    SciTech Connect

    Brooks, J.M.; Kennicutt, M.C. II; Fisher, C.R.; Macko, S.A.; Cole, K.; Childress, J.J.; Bidigare, R.R.; Vetter, R.D.

    1987-11-20

    Mussels, clams, and tube worms collected in the vicinity of hydrocarbon seeps on the Louisiana slope contain mostly dead carbon, indicating that dietary carbon is largely derived from seeping oil and gas. Enzyme assays, elemental sulfur analysis, and carbon dioxide fixation studies demonstrate that vestimentiferan tube worms and three clam species contain intracellular, autotrophic sulfur bacterial symbionts. Carbon isotopic ratios of 246 individual animal tissues were used to differentiate heterotrophic (delta/sup 14/C = -14 to -20 per mil), sulfur-based (delta/sup 14/C = -30 to -42 per mil), and methane-based (delta/sup 13/C = <-40 per mil) energy sources. Mussels with symbiotic methanotrophic bacteria reflect the carbon isotopic composition of the methane source. Isotopically light nitrogen and sulfur confirm the chemoautotrophic nature of the seep animals. Sulfur-based chemosynthetic animals contain isotopically light sulfur, whereas methane-based symbiotic mussels more closely reflect the heavier oceanic sulfate pool. The nitrogen requirement of some seep animals may be supported by nitrogen-fixing bacteria. Some grazing neogastropods have isotopic values characteristic of chemosynthetic animals, suggesting the transfer of carbon into the background deep-sea fauna.

  19. Can we afford to waste carbon dioxide? Carbon dioxide as a valuable source of carbon for the production of light olefins.

    PubMed

    Centi, Gabriele; Iaquaniello, Gaetano; Perathoner, Siglinda

    2011-09-19

    Concerns about climate change have increased the amount of activity on carbon capture and sequestration (CCS) as one of the solutions to the problem of rising levels of CO(2) in the troposphere, while the reuse of CO(2) (carbon capture and recycling; CCR) has only recently received more attention. CCR is focused on the possibility of using CO(2) as a cheap (or even negative-value) raw material. This Concept paper analyzes this possibility from a different perspective: In a sustainable vision, can we afford to waste CO(2) as a source of carbon in a changing world faced with a fast depletion of natural carbon sources and in need of a low-carbon, resource-efficient economy? One of the points emerging from this discussion concerns the use of CO(2) for the production of olefins (substituting into or integrating with current energy-intensive methodologies that start from oil or syngas from other fossil fuel resources) if H(2) from renewable resources were available at competitive costs. This offers an opportunity to accelerate the introduction of renewable energy into the chemical production chain, and thus to improve resource efficiency in this important manufacturing sector. PMID:21922678

  20. Effect of geological carbon sources on eddy covariance measurements: analysis and possible correction approaches

    NASA Astrophysics Data System (ADS)

    Papale, D.; Rey, A.; Belelli-Marchesini, L.; Etiope, G.; Pegoraro, E.

    2013-12-01

    A recent set of studies carried out in the SE of Spain highlighted the need to consider geological carbon sources when estimating the net ecosystem carbon balance (NECB) of terrestrial ecosystems located in areas potentially affected by geofluid circulation. In this study we present the mechanisms and propose a new methodology using physical parameters of the atmospheric boundary layer to quantify the CO2 coming from deep origin. To test our approach, we compare NECB estimates with seasonal patterns of soil CO2 efflux and vegetation activity measured by satellite images (NDVI) over two-year period at this site (2007/2008). According with the eddy covariance measurements the alpha grass ecosystem was a net carbon source (93.7 and 145.0 g C m-2, for the years 2007 and 2008, respectively) particularly as a result of large amounts of carbon released over the dry period. This relevant CO2 emission (reaching up to 15 umol m-2 s-1) was however not related to ecosystem activities as confirmed by measurements of soil CO2 efflux using chambers (ca. 0.5 umol m-2 s-1) and plant productivity that was minimal during this period. A simple correction based on a linear relationship between NECB and wind speed for different stability conditions and wind sectors has been used to estimate the geological flux FGEO and subtracted it from the NECB to obtain the biological flux FBIO. We then partitioned FBIO into gross primary productivity and ecosystem respiration and proved that, after removing FGEO, ecosystem and soil respiration followed similar temporal patterns. The annual contribution of the geological component to NECB was 49.6 and 46.7 % for the year 2007 and 2008, respectively. Therefore, potential contribution of geological carbon sources should be tested and quantified in those ecosystems located in areas with potential natural emission of geologic gases to the surface. References: REY A., BELELLI MARCHESINI L., WERE A., SERRANO ORTIZ P., ETIOPE G., PAPALE D, DOMINGO F

  1. Enhanced Dielectric Constant for Efficient Electromagnetic Shielding Based on Carbon-Nanotube-Added Styrene Acrylic Emulsion Based Composite

    PubMed Central

    2010-01-01

    An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2–12.4 GHz), showing a good agreement with the measured results. PMID:20596498

  2. Enhanced dielectric constant for efficient electromagnetic shielding based on carbon-nanotube-added styrene acrylic emulsion based composite.

    PubMed

    Li, Yong; Chen, Changxin; Li, Jiang-Tao; Zhang, Song; Ni, Yuwei; Cai, Seng; Huang, Jie

    2010-01-01

    An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2-12.4 GHz), showing a good agreement with the measured results. PMID:20596498

  3. Relative Contributions of Fossil and Contemporary Carbon sources to PM 2.5 Aerosols at Nine IMPROVE Network Sites

    SciTech Connect

    Bench, G; Fallon, S; Schichtel, B; Malm, W; McDade, C

    2006-06-26

    Particulate matter aerosols contribute to haze diminishing vistas and scenery at National Parks and Wilderness Areas within the United States. To increase understanding of the sources of carbonaceous aerosols at these settings, the total carbon loading and {sup 14}C/C ratio of PM 2.5 aerosols at nine IMPROVE (Interagency Monitoring for Protection Of Visual Environments) network sites were measured. Aerosols were collected weekly in the summer and winter at one rural site, two urban sites, five sites located in National Parks and one site located in a Wildlife Preserve. The carbon measurements together with the absence of {sup 14}C in fossil carbon materials and the known {sup 14}C/C levels in contemporary carbon materials were used to derive contemporary and fossil carbon contents of the particulate matter. Contemporary and fossil carbon aerosol loadings varied across the sites and suggest different percentages of carbon source inputs. The urban sites had the highest fossil carbon loadings that comprised around 50% of the total carbon aerosol loading. The Wildlife Preserve and National Park sites together with the rural site had much lower fossil carbon loading components. At these sites, variations in the total carbon aerosol loading were dominated by non-fossil carbon sources. This suggests that reduction of anthroprogenic sources of fossil carbon aerosols may result in little decrease in carbonaceous aerosol loading at many National Parks and rural areas.

  4. Enhancement of post-anoxic denitrification for biological nutrient removal: effect of different carbon sources.

    PubMed

    Chen, Hong-bo; Wang, Dong-bo; Li, Xiao-ming; Yang, Qi; Zeng, Guang-ming

    2015-04-01

    Previous research has demonstrated that post-anoxic denitrification and biological nutrient removal could be achieved in the oxic/anoxic/extended-idle wastewater treatment regime. This study further investigated the effect of different carbon sources on post-anoxic denitrification and biological nutrient removal. Acetate, propionate (volatile fatty acids (VFAs)), glucose (carbohydrate), methanol, and ethanol (alcohol) were used as the sole carbon source, respectively. The experimental results showed that VFA substrates led to an improvement in nitrogen and phosphorus removal. The total nitrogen and phosphorus removal efficiency values driven by acetate achieved 93 and 99%, respectively. In contrast, glucose present in mixed liquor deteriorated total nitrogen and phosphorus removal efficiency values to 72 and 54%. In the reactors cultured with methanol and ethanol, 66 and 63% of the total nitrogen were removed, and phosphorus removal efficiency values were 78 and 71%, respectively. The mechanism studies revealed that different carbon sources affected the transformations of intracellular polyhydroxyalkanoates (PHAs) and glycogen. PHAs are the dominant storages for microorganisms cultured with VFA substrates. Though glycogen is not the favorable energy and carbon source for polyphosphate-accumulating organisms, it can be consumed by microorganisms related to biological nitrogen removal and is able to serve as the electron donor for post-anoxic denitrification. PMID:25354439

  5. Exploring cover crops as carbon sources for anaerobic soil disinfestation in a vegetable production system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a raised-bed plasticulture vegetable production system utilizing anaerobic soil disinfestation (ASD) in Florida field trials, pathogen, weed, and parasitic nematode control was equivalent to or better than the methyl bromide control. Molasses was used as the labile carbon source to stimulate micr...

  6. RAINFALL AND RUNOFF AS A SOURCE OF ORGANIC CARBON ADDITIONS TO BAYOU TEXAR, FLORIDA

    EPA Science Inventory

    Rainfall and Runoff as a Source of Organic Carbon Additions to Bayou Texar, Florida (Abstract). To be presented at the16th Biennial Conference of the Estuarine Research Foundation, ERF 2001: An Estuarine Odyssey, 4-8 November 2001, St. Pete Beach, FL. 1 p. (ERL,GB R852).

    T...

  7. FOREST HARVESTS AND WOOD PRODUCTS: SOURCES AND SINKS OF ATMOSPHERIC CARBON DIOXIDE

    EPA Science Inventory

    Changes in the net carbon(c)sink-source balance related to a country's forest harvesting and use of wood products is an important component in making country-level inventories of greenhouse gas emissions,a current activity within many signatory nations to the UN Framework Convent...

  8. PCDD/F FORMATION RATES FROM FLY ASH AND METHANE COMBUSTION CARBON SOURCES

    EPA Science Inventory

    The abstract discusses polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD,F) from fly ash and methane combustion carbon sources. (NOTE: PCDD,Fs are formed in trace quantities in combustion processes via two primary mechanisms: de novo synthesis in which they ...

  9. Influence of carbon source amendment on effectiveness of anaerobic soil disinfestation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anaerobic soil disinfestation (ASD; also termed biological soil disinfestation or soil reductive sterilization) is a non-chemical soil disinfestation process which includes 1) soil incorporation of a labile carbon (C) source, 2) mulching with a polyethylene film to limit gas exchange, and 3) drip ir...

  10. BACTERIOPLANKTON DYNAMICS IN PENSACOLA BAY, FL, USA: ROLE OF PHYTOPLANKTON AND DETRIAL CARBON SOURCES

    EPA Science Inventory

    Bacterioplankton Dynamics in Pensacola Bay, FL, USA: Role of Phytoplankton and Detrital Carbon Sources (Abstract). To be presented at the16th Biennial Conference of the Estuarine Research Foundation, ERF 2001: An Estuarine Odyssey, 4-8 November 2001, St. Pete Beach, FL. 1 p. (ER...

  11. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae.

    PubMed

    Paulo, Joao A; O'Connell, Jeremy D; Gaun, Aleksandr; Gygi, Steven P

    2015-11-01

    The global proteomic alterations in the budding yeast Saccharomyces cerevisiae due to differences in carbon sources can be comprehensively examined using mass spectrometry-based multiplexing strategies. In this study, we investigate changes in the S. cerevisiae proteome resulting from cultures grown in minimal media using galactose, glucose, or raffinose as the carbon source. We used a tandem mass tag 9-plex strategy to determine alterations in relative protein abundance due to a particular carbon source, in triplicate, thereby permitting subsequent statistical analyses. We quantified more than 4700 proteins across all nine samples; 1003 proteins demonstrated statistically significant differences in abundance in at least one condition. The majority of altered proteins were classified as functioning in metabolic processes and as having cellular origins of plasma membrane and mitochondria. In contrast, proteins remaining relatively unchanged in abundance included those having nucleic acid-related processes, such as transcription and RNA processing. In addition, the comprehensiveness of the data set enabled the analysis of subsets of functionally related proteins, such as phosphatases, kinases, and transcription factors. As a resource, these data can be mined further in efforts to understand better the roles of carbon source fermentation in yeast metabolic pathways and the alterations observed therein, potentially for industrial applications, such as biofuel feedstock production. PMID:26399295

  12. Silica-Based Carbon Source Delivery for In-situ Bioremediation Enhancement

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Lee, M. H.; Lee, B.; Yang, S.

    2015-12-01

    Colloidal silica aqueous suspensions undergo viscosity increasing and gelation over time under favorable geochemical conditions. This property of silica suspension can potentially be applied to deliver remedial amendments to the subsurface and establish slow release amendment sources for enhanced remediation. In this study, silica-based delivery of carbon sources for in-situ bioremediation enhancement is investigated. Sodium lactate, vegetable oil, ethanol, and molasses have been studied for the interaction with colloidal silica in aqueous suspensions. The rheological properties of the carbon source amendments and silica suspension have been investigated. The lactate-, ethanol-, and molasses-silica suspensions exhibited controllable viscosity increase and eventually became gels under favorable geochemical conditions. The gelation rate was a function of the concentration of silica, salinity, amendment, and temperature. The vegetable oil-silica suspensions increased viscosity immediately upon mixing, but did not perform gelation. The carbon source release rate from the lactate-, ethanol-, and molasses-silica gels was determined as a function of silica, salinity, amendment concentration. The microbial activity stimulation and in-situ bioremediation enhancement by the slow-released carbon from the amendment-silica gels will be demonstrated in future investigations planned in this study.

  13. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae

    PubMed Central

    Paulo, Joao A.; O’Connell, Jeremy D.; Gaun, Aleksandr; Gygi, Steven P.

    2015-01-01

    The global proteomic alterations in the budding yeast Saccharomyces cerevisiae due to differences in carbon sources can be comprehensively examined using mass spectrometry–based multiplexing strategies. In this study, we investigate changes in the S. cerevisiae proteome resulting from cultures grown in minimal media using galactose, glucose, or raffinose as the carbon source. We used a tandem mass tag 9-plex strategy to determine alterations in relative protein abundance due to a particular carbon source, in triplicate, thereby permitting subsequent statistical analyses. We quantified more than 4700 proteins across all nine samples; 1003 proteins demonstrated statistically significant differences in abundance in at least one condition. The majority of altered proteins were classified as functioning in metabolic processes and as having cellular origins of plasma membrane and mitochondria. In contrast, proteins remaining relatively unchanged in abundance included those having nucleic acid–related processes, such as transcription and RNA processing. In addition, the comprehensiveness of the data set enabled the analysis of subsets of functionally related proteins, such as phosphatases, kinases, and transcription factors. As a resource, these data can be mined further in efforts to understand better the roles of carbon source fermentation in yeast metabolic pathways and the alterations observed therein, potentially for industrial applications, such as biofuel feedstock production. PMID:26399295

  14. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    PubMed Central

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; Brooks, William A.; Onasch, Timothy B.; Jayne, John T.; Worsnop, Douglas R.; China, Swarup; Sharma, Noopur; Mazzoleni, Claudio; Xu, Lu; Ng, Nga L.; Liu, Dantong; Allan, James D.; Lee, James D.; Fleming, Zoë L.; Mohr, Claudia; Zotter, Peter; Szidat, Sönke; Prévôt, André S. H.

    2015-01-01

    Black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC's light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ∼1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC's warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. We conclude that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models. PMID:26419204

  15. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 2. Modeling carbon sources, sinks, and δ13C evolution

    USGS Publications Warehouse

    McMahon, Peter B.; Chapelle, Francis H.

    1991-01-01

    Stable isotope data for dissolved inorganic carbon (DIC), carbonate shell material and cements, and microbial CO2 were combined with organic and inorganic chemical data from aquifer and confining-bed pore waters to construct geochemical reaction models along a flowpath in the Black Creek aquifer of South Carolina. Carbon-isotope fractionation between DIC and precipitating cements was treated as a Rayleigh distillation process. Organic matter oxidation was coupled to microbial fermentation and sulfate reduction. All reaction models reproduced the observed chemical and isotopic compositions of final waters. However, model 1, in which all sources of carbon and electron-acceptors were assumed to be internal to the aquifer, was invalidated owing to the large ratio of fermentation CO2 to respiration CO2 predicted by the model (5–49) compared with measured ratios (two or less). In model 2, this ratio was reduced by assuming that confining beds adjacent to the aquifer act as sources of dissolved organic carbon and sulfate. This assumption was based on measured high concentrations of dissolved organic acids and sulfate in confining-bed pore waters (60–100 μM and 100–380 μM, respectively) relative to aquifer pore waters (from less than 30 μM and 2–80 μM, respectively). Sodium was chosen as the companion ion to organic-acid and sulfate transport from confining beds because it is the predominant cation in confining-bed pore waters. As a result, excessive amounts of Na-for-Ca ion exchange and calcite precipitation (three to four times more cement than observed in the aquifer) were required by model 2 to achieve mass and isotope balance of final water. For this reason, model 2 was invalidated. Agreement between model-predicted and measured amounts of carbonate cement and ratios of fermentation CO2 to respiration CO2 were obtained in a reaction model that assumed confining beds act as sources of DIC, as well as organic acids and sulfate. This assumption was

  16. Methane-derived authigenic carbonates of mid-Cretaceous age in southern Tibet: Types of carbonate concretions, carbon sources, and formation processes

    NASA Astrophysics Data System (ADS)

    Liang, Huimin; Chen, Xi; Wang, Chengshan; Zhao, Dekun; Weissert, Helmut

    2016-01-01

    Methane-derived authigenic carbonates with distinctive structures and morphologies have been documented worldwide, but they are rarely found from ancient strata in the Eastern Tethys Ocean. The methane-derived authigenic carbonates found in southern Tibet are developed in calcareous or silty shales of mid-Cretaceous age in the Xigaze forearc basin and in the Tethyan Himalaya tectonic zone. The morphology, mineralogy, elemental geochemistry and composition of carbon and oxygen isotopes of these carbonates are studied in detail. The carbonates have nodular, tubular, and tabular morphologies. They are primarily composed of carbonate cement that binds and partly replaces host sediment grains; host siliciclastic sediments are composed mainly of quartz and plagioclase feldspar; a few foraminifers; and framboidal or subhedral to euhedral pyrite. Carbonate cements dominantly are micritic calcite, with minor contribution of dolomite. Nodular concretions are characterized by depleted δ13C values, commonly ranging from -30‰ to -5‰. The δ13C values show a gradual decrease from the periphery to the center, and the CaO, SiO2, Fe2O3, Al2O3, K2O, and TiO2 contents generally show a gradual change. These features indicate that the nodular concretions grew from an early-formed center toward the periphery, and that the carbon source of the nodular concretions was derived from a mixture of methane, methanogenic CO2, and seawater-dissolved inorganic carbon. The tubular concretions are characterized by δ13C values of -8.85‰ to -3.47‰ in the Shangba Section, and -27.37‰ to -23.85‰ in the upper Gamba Section. Unlike the nodular concretions, the tubular concretions show central conduits, which are possible pathways of methane-rich fluids, suggesting that the cementation of tubular concretions begins at the periphery and proceeds inward. Moreover, the tubular concretions show morphological similarity with the methane-derived carbonate chimneys, pipes and slabs reported in

  17. Enhanced performance of gas diffusion electrode for electrochemical reduction of carbon dioxide to formate by adding polytetrafluoroethylene into catalyst layer

    NASA Astrophysics Data System (ADS)

    Wang, Qinian; Dong, Heng; Yu, Han; Yu, Hongbing

    2015-04-01

    Gas diffusion electrode (GDE) with Nafion bonded catalyst layer (CL) for electrochemical reduction of CO2 to formate (ERCF) suffers from CO2 mass transfer limitation. In this work, polytetrafluoroethylene (PTFE) with contents of 5.9 wt%, 7.7 wt%, 11.1 wt% and 20 wt% are added into the CL of the GDE with Sn catalyst (P-SGDE) for ERCF. The morphologies and porous structures of the P-SGDEs are examined by scanning electron microscope and mercury intrusion measurement, respectively. The electrochemical performances of the P-SGDEs are investigated by linear sweep voltammetry, electrochemical impedance spectroscopy and constant potential electrolysis. The results show that the Faraday efficiency (86.75 ± 2.89%) and current density (21.67 ± 1.29 mA cm-2) for ERCF were improved by 25.4% and 25.8% respectively when the content of PTFE is 11.1 wt%, probably owing to the enhancement in the catalyst active surface area and CO2 diffusion. This Faraday efficiency is the highest one found for ERCF with Sn GDE under similar conductions.

  18. Value Added?

    ERIC Educational Resources Information Center

    UCLA IDEA, 2012

    2012-01-01

    Value added measures (VAM) uses changes in student test scores to determine how much "value" an individual teacher has "added" to student growth during the school year. Some policymakers, school districts, and educational advocates have applauded VAM as a straightforward measure of teacher effectiveness: the better a teacher, the better students…

  19. Using stable isotopes to determine sources of eroded carbon in low-order Sierra Nevada catchments

    NASA Astrophysics Data System (ADS)

    McCorkle, E. P.; Berhe, A.; Hunsaker, C. T.; Fogel, M. L.; Hart, S. C.

    2013-12-01

    Recent studies have shown that soil erosion can induce a terrestrial sink for atmospheric carbon dioxide and impose important controls on biogeochemical cycling of other essential elements. However, little information is available on the source of C eroded from different watersheds (i.e., whether most of the eroded material is comprised of litter, soil minerals from topsoil, vs. deep C eroded due to fresh channelization or scouring of stream banks). In order to identify sources of eroded carbon, we compared the C to N ratios and 13C, and 15N stable isotope concentrations of potential source materials to sediments collected in basins at the outlet of low order catchments in the western slopes of the Sierra Nevada. Potential source materials (i.e., surficial organic and mineral soil and stream bank sediments) from three landform positions (crest, back slope, toe slope) were sampled from low- and high-elevation catchments within the Kings River Experimental Watershed. The potential source materials were compared with materials collected from sediment basins at the outlet of the sampled catchments. Preliminary results indicate that the different landform positions have similar concentrations of 13C and 15N, but the stable isotope concentrations of sediments reflect a combination of sources. Further analysis will delineate which pool of carbon is the main contributor to the sediments. Determining the source of the eroded carbon in these catchments is critical for assessing the fate of the eroded C after it is laterally distributed by soil erosion to downslope depositional landforms within the same catchment, or exported out of these catchments.

  20. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    NASA Astrophysics Data System (ADS)

    Shornikov, A.; Wenander, F.

    2016-04-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  1. Mass spectrometry of refractory black carbon particles from six sources: carbon-cluster and oxygenated ions

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Sierau, B.; Gysel, M.; Laborde, M.; Keller, A.; Kim, J.; Petzold, A.; Onasch, T. B.; Lohmann, U.; Mensah, A. A.

    2013-10-01

    We discuss the major mass spectral features of different types of refractory carbonaceous particles, ionized after laser vapourization with an Aerodyne High-Resolution Soot-Particle Aerosol Mass Spectrometer (SP-AMS). The SP-AMS was operated with a switchable 1064 nm laser and a 600 °C thermal vapourizer, yielding respective measurements of the refractory and non-refractory particle components. Six samples were investigated, all of which were composed primarily of refractory material: fuel-rich and fuel-lean propane/air diffusion-flame combustion particles; graphite-spark-generated particles; a commercial Fullerene-enriched Soot; Regal Black, a commercial carbon black; and nascent aircraft-turbine combustion particles. All samples exhibited a spectrum of carbon-cluster ions Cxn+ in their refractory mass spectrum. Smaller clusters (x<6) were found to dominate the Cxn+ distribution. For Fullerene Soot, fuel-rich-flame particles and spark-generated particles, significant Cxn+ clusters at x≫6 were present, with significant contributions from multiply-charged ions (n>1). In all six cases, the ions C1+ and C3+ contributed over 60% to the total C15 were present. When such signals were present, C1+/C3+ was close to 1. When absent, C1+/C3+ was <0.8. This ratio may therefore serve as a proxy to distinguish between the two types of spectra in atmospheric SP-AMS measurements. Significant refractory oxygenated ions such as CO+ and CO2+ were also observed for all samples. We discuss these signals in detail for Regal Black, and describe their formation via decomposition of oxygenated moieties incorporated into the refractory carbon structure. These species may be of importance in atmospheric processes such as water uptake, aging and heterogeneous chemistry.

  2. Biological sulfate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source

    SciTech Connect

    Houten, R.T. van; Hulshoff Pol, L.W.; Lettinga, G. . Dept. of Environmental Technology)

    1994-08-20

    Feasibility and engineering aspects of biological sulfate reduction in gas-lift reactors were studied. Hydrogen and carbon dioxide were used as energy and carbon source. Attention was paid to biofilm formation, sulfide toxicity, sulfate conversion rate optimization, and gas-liquid mass transfer limitations. Sulfate-reducing bacteria formed stable biofilms on pumice particles. Biofilm formation was not observed when basalt particles were used. However, use of basalt particles led to the formation of granules of sulfate-reducing biomass. The sulfate-reducing bacteria, grown on pumice, easily adapted to free H[sub 2]S concentrations up to 450 mg/L. Biofilm growth rate then equilibrated biomass loss rate. These high free H[sub 2]S concentrations caused reversible inhibition rather than acute toxicity. When free H[sub 2]S concentrations were kept below 450 mg/L, a maximum sulfate conversion rate of 30 g SO[sub 4][sup 2[minus

  3. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors.

    PubMed

    Lee, Jung-Yeol; Lee, Sang-Hoon; Park, Hee-Deung

    2016-04-01

    Direct interspecies electron transfer (DIET) via conductive materials can provide significant benefits to anaerobic methane formation in terms of production amount and rate. Although granular activated carbon (GAC) demonstrated its applicability in facilitating DIET in methanogenesis, DIET in continuous flow anaerobic reactors has not been verified. Here, evidences of DIET via GAC were explored. The reactor supplemented with GAC showed 1.8-fold higher methane production rate than that without GAC (35.7 versus 20.1±7.1mL-CH4/d). Around 34% of methane formation was attributed to the biomass attached to GAC. Pyrosequencing of 16S rRNA gene demonstrated the enrichment of exoelectrogens (e.g. Geobacter) and hydrogenotrophic methanogens (e.g. Methanospirillum and Methanolinea) from the biomass attached to GAC. Furthermore, anodic and cathodic currents generation was observed in an electrochemical cell containing GAC biomass. Taken together, GAC supplementation created an environment for enriching the microorganisms involved in DIET, which increased the methane production rate. PMID:26836607

  4. Effect of added silicon carbide nanowires and carbon nanotubes on mechanical properties of 0-3 natural rubber composites

    NASA Astrophysics Data System (ADS)

    Janyakunmongkol, Khantichai; Nhuapeng, Wim; Thamjaree, Wandee

    2016-01-01

    In this work, the mechanical properties of 0-3 nanocomposite materials containing silicon carbide nanowires (SiCNWs), carbon nanotubes (CNTs), and natural rubber were studied. The SiCNWs and CNTs were used as reinforcement fiber whereas natural rubber was used as the matrix phase. The chemical vapor depositions (CVD) was used for synthesizing the nanowire and nanotube phases. The volume fraction of reinforcement was varied from 0 to 10%. The nanophases were mixed in the natural rubber matrix and molded by the hand lay-up technique. The mechanical properties of the samples were examined and compared with those of neat natural rubber. From the results, it was found that the hardness and density of the samples increased with the quantities of nanophases. The nanocomposites with a volume fraction of 10% exhibited maximum hardness (50.5 SHORE A). The maximum tensile strength and extent of elongation at break of the samples were obtained from the 4% volume fraction sample, which were 16.13 MPa and 1,540%, respectively.

  5. Morphogenesis and Production of Enzymes by Penicillium echinulatum in Response to Different Carbon Sources

    PubMed Central

    Schneider, Willian Daniel Hahn; dos Reis, Laísa; Dillon, Aldo José Pinheiro

    2014-01-01

    The effect of different carbon sources on morphology and cellulase and xylanase production of Penicillium echinulatum was evaluated in this work. Among the six carbon sources studied, cellulose and sugar cane bagasse were the most suitable for the production of filter paper activity, endoglucanases, xylanases, and β-glucosidases. However, sucrose and glucose showed β-glucosidase activities similar to those obtained with the insoluble sources. The polyacrylamide gels proved the enzymatic activity, since different standards bands were detected in the media mentioned above. Regarding morphology, it was observed that the mycelium in a dispersed form provided the greatest enzymatic activity, possibly due to greater interaction between the substrate and hyphae. These data are important in understanding the physiology of fungi and could contribute to obtaining enzyme with potential application in the technology of second generation ethanol. PMID:24877074

  6. Morphogenesis and production of enzymes by Penicillium echinulatum in response to different carbon sources.

    PubMed

    Schneider, Willian Daniel Hahn; dos Reis, Laísa; Camassola, Marli; Dillon, Aldo José Pinheiro

    2014-01-01

    The effect of different carbon sources on morphology and cellulase and xylanase production of Penicillium echinulatum was evaluated in this work. Among the six carbon sources studied, cellulose and sugar cane bagasse were the most suitable for the production of filter paper activity, endoglucanases, xylanases, and β-glucosidases. However, sucrose and glucose showed β -glucosidase activities similar to those obtained with the insoluble sources. The polyacrylamide gels proved the enzymatic activity, since different standards bands were detected in the media mentioned above. Regarding morphology, it was observed that the mycelium in a dispersed form provided the greatest enzymatic activity, possibly due to greater interaction between the substrate and hyphae. These data are important in understanding the physiology of fungi and could contribute to obtaining enzyme with potential application in the technology of second generation ethanol. PMID:24877074

  7. Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints

    SciTech Connect

    Campbell, Elliott; Whelan, Mary; Seibt, U.; Smith, Steven J.; Berry, Joe; Hilton, Timothy W.

    2015-04-28

    Carbonyl sulfide (COS) has recently emerged as an atmospheric tracer of gross primary production. All modeling studies of COS air-monitoring data rely on a climatological anthropogenic inventory that does not reflect present conditions or support interpretation of ice core and firn trends. Here we develop a global anthropogenic inventory for the years 1850 to 2013 based on new emission measurements and material-specific data. By applying methods from a recent regional inventory to global data, we find that the anthropogenic source is similar in magnitude to the plant sink, confounding carbon cycle applications. However, a material-specific approach results in a current anthropogenic source that is only one-third of plant uptake and is concentrated in Asia, supporting carbon cycle applications of global air-monitoring data. Furthermore, the source alone cannot explain the century-scale mixing ratio growth, which suggests that ice and firn data may provide the first global history of gross primary production.

  8. Isotopic evidence of magmatism and a sedimentary carbon source at the Endeavour hydrothermal system

    SciTech Connect

    Brown, T A; Proskurowski, G; Lilley, M D

    2004-01-07

    Stable and radiocarbon isotope measurements made on CO{sub 2} from high temperature hydrothermal vents on the Endeavour Segment of the Juan de Fuca Ridge indicate both magmatic and sedimentary sources of carbon to the hydrothermal system. The Endeavour segment is devoid of overlying sediments and has shown no observable signs of surficial magmatic activity during the {approx}20 years of ongoing studies. The appearance of isotopically heavy, radiocarbon dead CO{sub 2} after a 1999 earthquake swarm requires that this earthquake event was magmatic in origin. Evidence for a sedimentary organic carbon source suggests the presence of buried sediments at the ridge axis. These findings, which represent the first temporally coherent set of radiocarbon measurements from hydrothermal vent fluids, demonstrate the utility of radiocarbon analysis in hydrothermal studies. The existence of a sediment source at Endeavour and the occurrence of magmatic episodes illustrate the extremely complex and evolving nature of the Endeavour hydrothermal system.

  9. First principle study of magnetic and electronic properties of single X (X = Al, Si) atom added to small carbon clusters (C n X, n = 2-10)

    NASA Astrophysics Data System (ADS)

    Afshar, M.; Hoseini, S. S.; Sargolzaei, M.

    2016-07-01

    In this paper, the magnetic and electronic properties of single aluminum and silicon atom added to small carbon clusters (C n X; X = Al, Si; n = 2-10) are studied in the framework of generalized-gradient approximation using density functional theory. The calculations were performed for linear, two dimensional and three dimensional clusters based on full-potential local-orbital (FPLO) method. The total energies, HOMO-LUMO energy gap and total magnetic moments of the most stable structures are presented in this work. The calculations show that C n Si clusters have more stability compared to C n Al clusters. In addition, our magnetic calculations were shown that the C n Al isomers are magnetic objects whereas C n Si clusters are nonmagnetic objects.

  10. Mixing Model Analysis of Suspended Sediment and Particulate Organic Carbon Sources in White Clay Creek, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Karwan, D. L.; Aufdenkampe, A. K.; Aalto, R. E.; Marquard, J.; Pizzuto, J. E.; Newbold, J. D.

    2013-12-01

    Material exports from watersheds have consequences to upstream catchment elemental budgets, downstream ecosystem processes and water resources management. Despite this importance, quantifying exports of all major and trace elements associated with suspended sediments is challenging due to the highly episodic nature of that export. Constraining sediment sources using various mixing model approaches is further complicated by the diversity of potential sources. In this study, we leveraged the infrastructure of the Christina River Basin Critical Zone Observatory (CRB-CZO) to collect large volume (200 L) samples from 17 storms, including some of the biggest storms of the decade (i.e. Hurricane Irene and Sandy), and 95 potential source soils and sediments within the White Clay Creek watershed, a third-order watershed in southeastern Pennsylvania. On all samples we analyzed major and minor elements, rare earth elements, and radioisotopes in order to determine the erosional source category of stream suspended material, such that differences in the chemical composition of source materials can be used in a multivariate statistical model to predict the chemical composition of suspended sediment. For example, 137Cs is higher in surface and near-surface terrestrial soils and low in streambanks, deeper soils, road cuts, and road dust. Elemental chromium is much higher in road dust than any other source. We integrate sediment fingerprinting analyses common in geomorphological studies of mineral suspended material with biological and ecological characterizations of particulate organic carbon. Through this combination, we determine particle source, a necessary first step to calculating the amount of excess carbon that has complexed with particles during erosion and transit through the watershed. This interdisciplinary project is conducted as one of many studies in the CRB-CZO and directly contributes to the overall research focus of this CZO: to quantify the net carbon sink or

  11. Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli.

    PubMed

    Park, Si Jae; Lee, Tae Woo; Lim, Sung-Chul; Kim, Tae Wan; Lee, Hyuk; Kim, Min Kyung; Lee, Seung Hwan; Song, Bong Keun; Lee, Sang Yup

    2012-01-01

    content increased. When Ralstonia eutropha phaAB genes were additionally expressed in this recombinant E. coli XLdh strain, P(2HB-co-3HB-co-LA) having small amounts of 2HB and LA monomers could also be produced from glucose as a sole carbon source. The metabolic engineering strategy reported here should be useful for the production of PHAs containing 2HB monomer. PMID:21842437

  12. Recent (<4 year old) Leaf Litter is Not a Major Source of Microbial Carbon in a Temperate Forest Mineral Soil

    SciTech Connect

    Kramer, Christiane; Trumbore, Susan E.; Froberg, Mats J.; Cisneros dozal, Luz Maria; Zhang, Dachun; Xu, Xiamei; Santos, Guaciara; Hanson, Paul J

    2010-01-01

    Microbial communities in soil A horizons derive their carbon from several potential sources: organic carbon (C) transported down from overlying litter and organic horizons, root-derived C, or soil organic matter. We took advantage of a multi-year experiment that manipulated the {sup 14}C isotope signature of surface leaf litter inputs in a temperate forest at the Oak Ridge Reservation, Tennessee, USA, to quantify the contribution of recent leaf litter C to microbial respiration and biomarkers in the underlying mineral soil. We observed no measurable difference (< {approx}40{per_thousand} given our current analytical methods) in the radiocarbon signatures of microbial phospholipid fatty acids (PLFA) isolated from the top 10 cm of mineral soil in plots that experienced 3 years of litterfall that differed in each year by {approx}750{per_thousand} between high-{sup 14}C and low-{sup 14}C treatments. Assuming any difference in {sup 14}C between the high- and low-{sup 14}C plots would reflect C derived from these manipulated litter additions, we estimate that <6% of the microbial C after 4 years was derived from the added 1-4-year-old surface litter. Large contributions of C from litter < 1 year (or >4 years) old (which fell after (or prior to) the manipulation and therefore did not differ between plots) are not supported because the {sup 14}C signatures of the PLFA compounds (averaging 200-220{per_thousand}) is much higher that of the 2004-5 leaf litter (115{per_thousand}) or pre-2000 litter. A mesocosm experiment further demonstrated that C leached from {sup 14}C-enriched surface litter or the O horizon was not a detectable C source in underlying mineral soil microbes during the first eight months after litter addition. Instead a decline in the {sup 14}C of PLFA over the mesocosm experiment likely reflected the loss of a pre-existing substrate not associated with added leaf litter. Measured PLFA {Delta}{sup 14}C signatures were higher than those measured in bulk

  13. Experimental Evidence that Fungi are Dominant Microbes in Carbon Content and Growth Response to Added Soluble Organic Carbon in Moss-rich Tundra Soil.

    PubMed

    Anderson, O Roger; Lee, Jee Min; McGuire, Krista

    2016-05-01

    Global warming significantly affects Arctic tundra, including permafrost thaw and soluble C release that may differentially affect tundra microbial growth. Using laboratory experiments, we report some of the first evidence for the effects of soluble glucose-C enrichment on tundra soil prokaryotes (bacteria and archaea) and fungi, with comparisons to microbial eukaryotes. Fungal increase in C-biomass was equivalent to 10% (w/w) of the added glucose-C, and for prokaryote biomass 2% (w/w), the latter comparable to prior published results. The C-gain after 14 d was 1.3 mg/g soil for fungi, and ~200 μg/g for prokaryotes. PMID:26662659

  14. Prairie restoration and carbon sequestration: difficulties quantifying C sources and sinks using a biometric approach.

    PubMed

    Cahill, Kimberly Nicholas; Kucharik, Christopher J; Foley, Jonathan A

    2009-12-01

    We investigated carbon cycling and ecosystem characteristics among two prairie restoration treatments established in 1987 and adjacent cropland, all part of the Conservation Reserve Program in southwestern Wisconsin, USA. We hypothesized that different plant functional groups (cool-season C3 vs. warm-season C4 grasses) between the two prairie restoration treatments would lead to differences in soil and vegetation characteristics and amount of sequestered carbon, compared to the crop system. We found significant (P < 0.05) differences between the two prairie restoration treatments in soil CO2 respiration and above- and belowground productivity, but no significant differences in long-term (approximately 16-year) carbon sequestration. We used a biometric approach aggregating short-term observations of above- and belowground productivity and CO2 respiration to estimate total net primary production (NPP) and net ecosystem production (NEP) using varied methods suggested in the literature. Net ecosystem production is important because it represents the ecosystem carbon sequestration, which is of interest to land managers and policymakers seeking or regulating credits for ecosystem carbon storage. Such a biometric approach would be attractive because it might offer the ability to rapidly assess the carbon source/sink status of an ecosystem. We concluded that large uncertainties in (1) estimating aboveground NPP, (2) determining belowground NPP, and (3) partitioning soil respiration into microbial and plant components strongly affect the magnitude, and even the sign, of NEP estimates made from aggregating its components. A comparison of these estimates across treatments could not distinguish differences in NEP, nor the absolute sign of the overall carbon balance. Longer-term quantification of carbon stocks in the soil, periodically linked to measurements of individual processes, may offer a more reliable measure of the carbon balance in grassland systems, suitable for

  15. Changes in Black Carbon Deposition to Antarctica from Two Ice Core Records, A.D. 1850-2000

    NASA Technical Reports Server (NTRS)

    Bisiaux, Marion M.; Edward, Ross; McConnell, Joseph R.; Curran, Mark A. J.; VanOmmen, Tas D.; Smith, Andrew M.; Neumann, Thomas A.; Pasteris, Daniel R.; Penner, Joyce E.; Taylor, Kendrick

    2012-01-01

    Continuous flow analysis was based on a steady sample flow and in-line detection of BC and other chemical substances as described in McConnell et al. (2007). In the cold room, previously cut one meter ice core sticks of 3x3cm, are melted continuously on a heated melter head specifically designed to eliminate contamination from the atmosphere or by the external parts of the ice. The melted ice from the most inner part of the ice stick is continuously pumped by a peristaltic pump and carried to a clean lab by Teflon lines. The recorded signal is continuous, integrating a sample volume of about 0.05 mL, for which the temporal resolution depends on the speed of melting, ice density and snow accumulation rate at the ice core drilling site. For annual accumulation derived from the WAIS and Law Dome ice cores, we assumed 3.1 cm water equivalent uncertainty in each year's accumulation from short scale spatial variability (glaciological noise) which was determined from several measurements of annual accumulation in multiple parallel ice cores notably from the WAIS Divide ice core site (Banta et al., 2008) and from South Pole site (McConnell et al., 1997; McConnell et al., 2000). Refractory black carbon (rBC) concentrations were determined using the same method as in (Bisiaux et al., 2011) and adapted to continuous flow measurements as described by (McConnell et al., 2007). The technique uses a single particle intracavity laser induced incandescence photometer (SP2, Droplet Measurement Technologies, Boulder, Colorado) coupled to an ultrasonic nebulizer/desolvation (CETAC UT5000) Flow Injection Analysis (FIA). All analyses, sample preparation etc, were performed in a class 100 cleanroom using anti contamination "clean techniques". The samples were not acidified.

  16. A Carbon Source Apportionment Shift in Mexico City Atmospheric Particles During 2003-2004 as Determined with Stable Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Lopez-Veneroni, D. G.; Vega, E.

    2013-05-01

    The stable carbon isotope composition of atmospheric particles (PM2.5) was measured at La Merced (MER), a commercial site in the eastern sector, and at Xalostoc (XAL) an industrial site in the NE sector of Mexico City, during three sampling periods in autumn 2003, and spring and autumn 2004. At each site and sampling campaign particle samples were collected daily with minivol samplers during two week periods. Ancillary data included organic and elemental carbon, trace elements and ionic species. This data base was complement with air quality data from the RAMA (Automatic Atmospheric Monitoring Network). In general, particle concentrations, ionic species and some air quality species showed higher concentrations in autumn and lowest values in spring. Moreover, the concentrations of these chemical species were highest at XAL compared to MER. The stable carbon isotope composition of PM2.5 during autumn 2003 and spring 2004 had and average value of -26.04 (± 1.54) ‰ vs. PDB. Differences in the isotopic composition between the two sites were non significant. The average δ13C during these seasons were 1 ‰ lighter relative to data collected previously at these sites during 2000 and 2001, and is consistent with a predominant source of hydrocarbon combustion. In autumn 2004, however, average δ13C at XAL and MER increased to -22.8 (± 0.9) and -20.6 (± 3.1) ‰, respectively. Organic carbon concentrations during this period increased concomitantly at these sites. The shift in the isotopic composition in ambient particles suggests a predominance of soil-derived carbon during this period. The possible causes and implications of this are discussed.

  17. Spatial distribution and sources of organic carbon in the surface sediment of the Bosten Lake, China

    NASA Astrophysics Data System (ADS)

    Yu, Z. T.; Wang, X. J.; Zhang, E. L.; Zhao, C. Y.; Lan, H. Y.

    2015-08-01

    Lake sediment is an important carbon reservoir. However, little is known on the dynamics and sources of sediment organic carbon in the Bosten Lake. We collected 13 surface (0-2 cm) sediment samples in the Bosten Lake and analyzed total organic carbon (TOC), total nitrogen (TN), stable carbon isotopic composition in TOC (δ13Corg) and grain size. We found a large spatial variability in TOC content (1.8-4.4 %) and δ13Corg value (-26.77 to -23.98 ‰). Using a three end member mixing model with measured TOC : TN ratio and δ13Corg, we estimated that 54-90 % of TOC was from autochthonous sources. Higher TOC content (> 3.7 %) was found in the east and central-north sections and near the mouth of the Kaidu River, which was attributable to allochthonous, autochthonous plus allochthonous, and autochthonous sources, respectively. The lowest TOC content was found in the mid-west section, which might be a result of high kinetic energy levels. Our study indicated that the spatial distribution of sediment TOC in the Bosten Lake was influenced by multiple and complex processes.

  18. Spatial distribution and sources of organic carbon in the surface sediment of Bosten Lake, China

    NASA Astrophysics Data System (ADS)

    Yu, Z. T.; Wang, X. J.; Zhang, E. L.; Zhao, C. Y.; Liu, X. Q.

    2015-11-01

    Lake sediment is an important carbon reservoir. However, little is known on the dynamics and sources of sediment organic carbon in Bosten Lake. We collected 13 surface (0-2 cm) sediment samples in Bosten Lake and analyzed total organic carbon (TOC), total nitrogen (TN), stable carbon isotopic composition in TOC (δ13Corg), and grain size. We found a large spatial variability in TOC content (1.8-4.4 %) and δ 13Corg value (-26.77 to -23.98 ‰). Using a three-end-member mixing model with measured TOC : TN ratio and δ13Corg, we estimated that 54-90 % of TOC was from autochthonous sources. Higher TOC content (> 3.7 %) was found in the east and central-north sections and near the mouth of the Kaidu River, which was attributable to allochthonous, autochthonous plus allochthonous, and autochthonous sources, respectively. The lowest TOC content was found in the mid-west section, which might be a result of high kinetic energy levels. Our study indicated that the spatial distribution of sediment TOC in the Bosten Lake was influenced by multiple and complex processes.

  19. Denitrification using PBS as carbon source and biofilm support in a packed-bed bioreactor.

    PubMed

    Wu, Weizhong; Yang, Luhua; Wang, Jianlong

    2013-01-01

    Biodegradable polymer was used as carbon source and biofilm support for nitrate removal from aqueous solution as an attractive alternative for biological denitrification. The objective of this paper was to investigate the denitrification performance and microbial community of a packed-bed bioreactor using poly (butanediol succinate) (PBS), a biodegradable polymer, as carbon source and biofilm support. NO(3)-N concentration was determined by UV spectrophotometer. NO(2)-N concentration was assayed by hydrochloric acid naphthyl ethylenediamine spectrophotometry method. Total organic carbon (TOC) was measured using a TOC analyzer. The morphology of the samples was observed using an environmental scanning electron microscope (ESEM). The microbial community was analyzed by pyrosequencing method. The experimental results showed that an average removal efficiency of nitrate was 95 %. ESEM observation and FTIR analysis indicated the changes of PBS granules before and after microbial utilization. Pyrosequencing results showed that Betaproteobacteria predominated, and most of PBS-degrading denitrifying bacteria were assigned to the family Comamonadaceae. Denitrifying bacteria accounted for 13.02 % in total population. The PBS granules were suitable support and carbon source for denitrifying bacteria. PMID:22562343

  20. [Carbon Source Utilization Characteristics of Soil Microbial Community for Apple Orchard with Interplanting Herbage].

    PubMed

    Du, Yi-fei; Fang, Kai-kai; Wang, Zhi-kang; Li, Hui-ke; Mao, Peng-juan; Zhang, Xiang-xu; Wang, Jing

    2015-11-01

    As soil fertility in apple orchard with clean tillage is declined continuously, interplanting herbage in orchard, which is a new orchard management model, plays an important role in improving orchard soil conditions. By using biolog micro-plate technique, this paper studied the functional diversity of soil microbial community under four species of management model in apple orchards, including clear tillage model, interplanting white clover model, interplanting small crown flower model and interplanting cocksfoot model, and the carbon source utilization characteristics of microbial community were explored, which could provide a reference for revealing driving mechanism of ecological process of orchard soil. The results showed that the functional diversity of microbial community had a significant difference among different treatments and in the order of white clover > small crown flower > cocksfoot > clear tillage. The correlation analysis showed that the average well color development (AWCD), Shannon index, Richness index and McIntosh index were all highly significantly positively correlated with soil organic carbon, total nitrogen, microbial biomass carbon, and Shannon index was significantly positively correlated with soil pH. The principal component analysis and the fingerprints of the physiological carbon metabolism of the microbial community demonstrated that grass treatments improved carbon source metabolic ability of soil microbial community, and the soil microbes with perennial legumes (White Clover and small crown flower) had a significantly higher utilization rate in carbohydrates (N-Acetyl-D-Glucosamine, D-Mannitol, β-Methyl-D-Glucoside), amino acids (Glycyl-L-Glutamic acid, L-Serine, L-Threonine) and polymers (Tween 40, Glycogen) than the soil microbes with clear tillage. It was considered that different treatments had the unique microbial community structure and peculiar carbon source utilization characteristics. PMID:26911017

  1. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy.

    PubMed

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L; Roy, Ajit K

    2016-05-01

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested. PMID:27108606

  2. Carbon Nanotubes Using Palm Oil as Carbon Source in Spray Pyrolysis System

    NASA Astrophysics Data System (ADS)

    Azira, A. A.; Zainal, N. F. A.; Nik, S. F.; Rusop, M.

    2009-06-01

    Carbon nanotubes (CNTs) have been synthesized by catalytic decomposition of palm oil, on a silica powder support impregnated with Co, Ni and Co/Ni catalysts in the temperature range 500-900° C by the Spray Pyrolysis System. Co/Ni catalyst with 5 wt.% (molar ratio of Co:Ni = 1:1), impregnated in silica was found most suitable. Field Emission Scanning Electron Microscope (FESEM) reveals that the CNTs diameter ranging from 33-53 nm depending upon the conditions of deposition. The morphological studies support `tip growth mechanism' and `base growth mechanism' depending on the size of catalyst for the growth of the CNT's. FTIR results also presented in the paper.

  3. Sources of carbon and sulfur nutrition for consumers in three meromictic lakes of New York State

    NASA Technical Reports Server (NTRS)

    Fry, B.; Hayes, J. M. (Principal Investigator)

    1986-01-01

    The trophic importance of bacterioplankton as a source of carbon and sulfur nutrition for consumers in meromictic lakes was tested using stable carbon (delta 13C) and sulfur (delta 34S) isotopic measurements. Studies in three lakes near Syracuse, New York, showed that most consumers ultimately derive their C and S nutrition from a mixture of terrestrial detritus, phytoplankton, and littoral vegetation, rather than from bacterioplankton. Food webs in these meromictic lakes are thus similar to those in other lakes that lack dense populations of bacterioplankton.

  4. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype

    PubMed Central

    Vasylkovska, Ruslana; Petriv, Natalia; Semchyshyn, Halyna

    2015-01-01

    Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i) hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii) the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii) metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast. PMID:26843865

  5. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype.

    PubMed

    Vasylkovska, Ruslana; Petriv, Natalia; Semchyshyn, Halyna

    2015-01-01

    Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i) hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii) the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii) metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast. PMID:26843865

  6. SOURCES AND TRANSFORMATIONS OF NITROGEN, CARBON, AND PHOSPHORUS IN THE POTOMAC RIVER ESTUARY

    NASA Astrophysics Data System (ADS)

    Pennino, M. J.; Kaushal, S.

    2009-12-01

    Global transport of nitrogen (N), carbon (C), and phosphorus (P) in river ecosystems has been dramatically altered due to urbanization. We examined the capacity of a major tributary of the Chesapeake Bay, the Potomac River, to transform carbon, nitrogen, and phosphorus inputs from the world’s largest advanced wastewater treatment facility (Washington D.C. Water and Sewer Authority). Surface water and effluent samples were collected along longitudinal transects of the Potomac River seasonally and compared to long-term interannual records of carbon, nitrogen, and phosphorus. Water samples from seasonal longitudinal transects were analyzed for dissolved organic and inorganic nitrogen and phosphorus, total organic carbon, and particulate carbon, nitrogen, and phosphorus. The source and quality of organic matter was characterized using fluorescence spectroscopy, excitation emission matrices (EEMs), and PARAFAC modeling. Sources of nitrate were tracked using stable isotopes of nitrogen and oxygen. Along the river network stoichiometric ratios of C, N, and P were determined across sites and related to changes in flow conditions. Land use data and historical water chemistry data were also compared to assess the relative importance of non-point sources from land-use change versus point-sources of carbon, nitrogen, and phosphorus. Preliminary data from EEMs suggested that more humic-like organic matter was important above the wastewater treatment plant, but more protein-like organic matter was present below the treatment plant. Levels of nitrate and ammonia showed increases within the vicinity of the wastewater treatment outfall, but decreased rapidly downstream, potentially indicating nutrient uptake and/or denitrification. Phosphate levels decreased gradually along the river with a small increase near the wastewater treatment plant and a larger increase and decrease further downstream near the high salinity zone. Total organic carbon levels show a small decrease

  7. Carbon-isotope composition of the carbonatites and a probable source for their material

    SciTech Connect

    Korzhinskii, A.F.; Mamchur, G.P.

    1980-12-01

    The ..delta..C/sup 13/ values in carbonatites of different composition and origin from the Maymecha-Kotuy province of Polar Siberia, the East Sayan province of Eastern Siberia, and the Karelia-Kola province, vary within very narrow limits: from -0.46% for the high-temperature calcitic generations up to -0.24% for the low-temperature dolomitic and ankerite-dolomitic generations of carbonatites. From an analysis of the ..delta..C/sup 13/ values obtained and their comparison with values for deep-seated carbon dioxide (average -0.7%) and carbon dioxide of marine carbonates (average approx. 0.0%), on the one hand, and also allowing for the thermodynamic isotope effect in the system CO/sub 2/ == CO/sub 3//sup -2/, on the other, it follows that the source of the carbon dioxide for the carbonatites may have been a mixture of deep-seated and sedimentary-carbonate CO/sub 2/. Judging by the ..delta..C/sup 13/ values for the high-temperature calcitic carbonatites (0.45/-0.46%), deep-seated carbon dioxide predominated in the original mixture. (JMT)

  8. Diagnostic air quality model evaluation of source-specific primary and secondary fine particulate carbon.

    PubMed

    Napelenok, Sergey L; Simon, Heather; Bhave, Prakash V; Pye, Havala O T; Pouliot, George A; Sheesley, Rebecca J; Schauer, James J

    2014-01-01

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004-February 2005) provided an unprecedented opportunity to diagnostically evaluate the results of a numerical air quality model. Previous analyses of these measurements demonstrated excellent mass closure for the variety of contributing sources. In this study, a carbon-apportionment version of the Community Multiscale Air Quality (CMAQ) model was used to track primary organic and elemental carbon emissions from 15 independent sources such as mobile sources and biomass burning in addition to four precursor-specific classes of secondary organic aerosol (SOA) originating from isoprene, terpenes, aromatics, and sesquiterpenes. Conversion of the source-resolved model output into organic tracer concentrations yielded a total of 2416 data pairs for comparison with observations. While emission source contributions to the total model bias varied by season and measurement location, the largest absolute bias of -0.55 μgC/m(3) was attributed to insufficient isoprene SOA in the summertime CMAQ simulation. Biomass combustion was responsible for the second largest summertime model bias (-0.46 μgC/m(3) on average). Several instances of compensating errors were also evident; model underpredictions in some sectors were masked by overpredictions in others. PMID:24245475

  9. Effect of source gas chemistry on tribological performance of diamond-like carbon films.

    SciTech Connect

    Erdemir, A.; Eryilmaz, O. L.; Fenske, G. R.; Nilufer, I. B.

    1999-08-23

    In this study, we investigated the effects of various source gases (i. e., methane, ethane, ethylene, acetylene and methane + hydrogen) on friction and wear performance of diamond-like carbon (DLC) films. Specifically, we described the anomalous nature and fundamental friction and wear mechanisms of DLC films derived from gas discharge plasmas with very low to very high hydrogen content. The films were deposited on steel substrates by a plasma enhanced chemical vapor deposition process at room temperature and the tribological tests were performed in dry nitrogen. The results of tribological tests revealed a close correlation between the friction and wear coefficients of the DLC films and the source gas chemistry. Specifically, films grown in source gases with higher hydrogen-to-carbon ratios had much lower friction coefficients and wear rates than the films derived from source gases with lower hydrogen-to-carbon ratios. The lowest friction coefficient (0.002) was achieved with a film derived from 25% methane--75% hydrogen while the films derived from acetylene had a coefficient of 0.15. Similar correlations were observed on wear rates. Specifically, the films derived from hydrogen rich plasmas had the least wear while the films derived from pure acetylene suffered the highest wear. We used a combination of scanning and transmission electron microscopy and Raman spectroscopy to characterize the structural chemistry of the resultant DLC films.

  10. Friction and wear performance of diamondlike carbon films grown in various source gas plasmas

    SciTech Connect

    Erdemir, A.; Nilufer, I. B.; Eryilmaz, O. L.; Beschliesser, M.; Fenske, G. R.

    2000-01-18

    In this study, the authors investigated the effects of various source gases (methane, ethane, ethylene, and acetylene) on the friction and wear performance of diamondlike carbon (DLC) films prepared in a plasma enhanced chemical vapor deposition (PECVD) system. Films were deposited on AISI H13 steel substrates and tested in a pin-on-disk machine against DLC-coated M50 balls in dry nitrogen. They found a close correlation between friction coefficient and source gas composition. Specifically, films grown in source gases with higher hydrogen-to-carbon ratios exhibited lower friction coefficients and higher wear resistance than films grown in source gases with lower hydrogen-to-carbon (H/C) ratios. The lowest friction coefficient (0.014) was achieved with a film derived from methane with an WC ratio of 4, whereas the coefficient of films derived from acetylene (H/C = 1) was of 0.15. Similar correlations were observed for wear rates. Specifically, films derived from gases with lower H/C values were worn out and the substrate material was exposed, whereas films from methane and ethane remained intact and wore at rates that were nearly two orders of magnitude lower than films obtained from acetylene.

  11. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting.

    PubMed

    Larsen, Thomas; Ventura, Marc; Andersen, Nils; O'Brien, Diane M; Piatkowski, Uwe; McCarthy, Matthew D

    2013-01-01

    Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring δ(13)C patterns among amino acids (δ(13)CAA) could distinguish between multiple aquatic and terrestrial primary production sources. We found that δ(13)CAA patterns in contrast to bulk δ(13)C values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their δ(13)CAA patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk δ(13)C values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer δ(13)C patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs. PMID:24069196

  12. Tracing Carbon Sources through Aquatic and Terrestrial Food Webs Using Amino Acid Stable Isotope Fingerprinting

    PubMed Central

    Larsen, Thomas; Ventura, Marc; Andersen, Nils; O’Brien, Diane M.; Piatkowski, Uwe; McCarthy, Matthew D.

    2013-01-01

    Tracing the origin of nutrients is a fundamental goal of food web research but methodological issues associated with current research techniques such as using stable isotope ratios of bulk tissue can lead to confounding results. We investigated whether naturally occurring δ13C patterns among amino acids (δ13CAA) could distinguish between multiple aquatic and terrestrial primary production sources. We found that δ13CAA patterns in contrast to bulk δ13C values distinguished between carbon derived from algae, seagrass, terrestrial plants, bacteria and fungi. Furthermore, we showed for two aquatic producers that their δ13CAA patterns were largely unaffected by different environmental conditions despite substantial shifts in bulk δ13C values. The potential of assessing the major carbon sources at the base of the food web was demonstrated for freshwater, pelagic, and estuarine consumers; consumer δ13C patterns of essential amino acids largely matched those of the dominant primary producers in each system. Since amino acids make up about half of organismal carbon, source diagnostic isotope fingerprints can be used as a new complementary approach to overcome some of the limitations of variable source bulk isotope values commonly encountered in estuarine areas and other complex environments with mixed aquatic and terrestrial inputs. PMID:24069196

  13. Stable carbon isotope analysis in a South Texas cave: Investigating sources of CO2 production

    NASA Astrophysics Data System (ADS)

    Thompson, Reece

    Studies of interactions between modern local climate, cave atmosphere, and ?13C ratios are needed to determine sources of CO2 in caves, and the cycles of seasonal variations that alter karst geochemistry. A seasonal study, focusing on the analysis of stable isotopes collected from a modern cave system, was conducted in Robber Baron Cave (RBC) in order to identify sources of CO2 in its atmosphere. Determining what conditions affect cave morphology and the transfer path of carbon through a cave system is necessary in order to assess the role of caves in the carbon cycle and correctly interpret past ecological changes. This study investigates the extent that stable isotopic values of carbon in CO2 are affected by CO2 sourced from soils, bedrock, atmospheric air, and vegetation, and how ?13C signals are transmitted in a modern cave system. This study also measures how ventilation affects CO2 concentration and ?13C on seasonal scales. In-cave air grab samples were collected monthly at various transects located in RBC in order to measure CO2 composition in addition to factors such as temperature, and barometric pressure. Soil gas and limestone bedrock were also collected and tested for ?13C composition. Air samples were analyzed using an Ambient Air-Model G2101-I Picarro Cavity Ring-Down Spectroscopy Analyzer for both the concentration and ?13C isotopic value of CO2. These values were then compared to isotopic values of known sources of CO2 in order to determine possible sources of CO2 that result in high CO2 concentrations found in RBC. The background stable isotopic value of carbon from CO2 measured in RBC is -19.1‰ VPDB.

  14. Lignin-Derived Advanced Carbon Materials.

    PubMed

    Chatterjee, Sabornie; Saito, Tomonori

    2015-12-01

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure-property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templated carbon, are discussed. PMID:26568373

  15. Lignin-Derived Advanced Carbon Materials

    SciTech Connect

    Chatterjee, Sabornie; Saito, Tomonori

    2015-11-16

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By applying specific pretreatments and manufacturing methods, it has been found that lignin can be converted into a variety of value-added carbon materials. However, the physical and chemical heterogeneities of lignin complicate its use as a feedstock. Herein, we discuss the lignin manufacturing process, the effects of pretreatments and manufacturing methods on the properties of product lignin, and structure–property relationships in various applications of lignin-derived carbon materials, such as carbon fibers, carbon mats, activated carbons, carbon films, and templated carbon.

  16. Determining sources of dissolved organic carbon and disinfection byproduct precursors to the McKenzie River, Oregon

    USGS Publications Warehouse

    Kraus, T.E.C.; Anderson, C.A.; Morgenstern, K.; Downing, B.D.; Pellerin, B.A.; Bergamaschi, B.A.

    2010-01-01

    This study was conducted to determine the main sources of dissolved organic carbon (DOC) and disinfection byproduct (DBP) precursors to the McKenzie River, Oregon (USA). Water samples collected from the mainstem, tributaries, and reservoir outflows were analyzed for DOC concentration and DBP formation potentials (trihalomethanes [THMFPs] and haloacetic acids [HAAFPs]). In addition, optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) were measured to provide insight into DOM composition and assess whether optical properties are useful proxies for DOC and DBP precursor concentrations. Optical properties indicative of composition suggest that DOM in the McKenzie River mainstem was primarily allochthonous - derived from soils and plant material in the upstream watershed. Downstream tributaries had higher DOC concentrations than mainstem sites (1.6 ?? 0.4 vs. 0.7 ?? 0.3 mg L-1) but comprised <5% of mainstem flows and had minimal effect on overall DBP precursor loads. Water exiting two large upstream reservoirs also had higher DOC concentrations than the mainstem site upstream of the reservoirs, but optical data did not support in situ algal production as a source of the added DOC during the study. Results suggest that the first major rain event in the fall contributes DOM with high DBP precursor content. Although there was interference in the absorbance spectra in downstream tributary samples, fluorescence data were strongly correlated to DOC concentration (R 2 = 0.98), THMFP (R2 = 0.98), and HAAFP (R2 = 0.96). These results highlight the value of using optical measurements for identifying the concentration and sources of DBP precursors in watersheds, which will help drinking water utilities improve source water monitoring and management programs. Copyright ?? 2010 by the American Society of Agronomy.

  17. Attributing uncertainties in simulated biospheric carbon fluxes to different error sources

    NASA Astrophysics Data System (ADS)

    Lin, J. C.; Pejam, M. R.; Chan, E.; Wofsy, S. C.; Gottlieb, E. W.; Margolis, H. A.; McCaughey, J. H.

    2011-06-01

    Estimating the current sources and sinks of carbon and projecting future levels of CO2 and climate require biospheric carbon models that cover the landscape. Such models inevitably suffer from deficiencies and uncertainties. This paper addresses how to quantify errors in modeled carbon fluxes and then trace them to specific input variables. To date, few studies have examined uncertainties in biospheric models in a quantitative fashion that are relevant to landscape-scale simulations. In this paper, we introduce a general framework to quantify errors in biospheric carbon models that "unmix" the contributions to the total uncertainty in simulated carbon fluxes and attribute the error to different variables. To illustrate this framework we apply and use a simple biospheric model, the Vegetation Photosynthesis and Respiration Model (VPRM), in boreal forests of central Canada, using eddy covariance flux measurement data from two main sites of the Canadian Carbon Program (CCP). We explicitly distinguish between systematic errors ("biases") and random errors and focus on the impact of errors present in biospheric parameters as well as driver data sets (satellite indices, temperature, solar radiation, and land cover). Biases in downward shortwave radiation accumulated to the most significant amount out of the driver data sets and accounted for a significant percentage of the annually summed carbon uptake. However, the largest cumulative errors were shown to stem from biospheric parameters controlling the light-use efficiency and respiration-temperature relationships. This work represents a step toward a carbon model-data fusion system because in such systems the outcome is determined as much by uncertainties as by the measurements themselves.

  18. Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli.

    PubMed

    Wang, Ning; Wang, Yiting; Guo, Tingting; Yang, Ting; Chen, Mingli; Wang, Jianhua

    2016-11-15

    A simple one-step hydrothermal green approach was reported for the preparation of carbon dots (CDs) without any further decoration or modification with papaya powder as natural carbon source. In this economical and eco-friendly system, deionized water or 90% ethanol was used as solvent to produce water-soluble or ethanol-soluble CDs, respectively, termed as W-CDs and E-CDs. The quantum yield (QY) for W-CDs was 18.98%, while that for E-CDs was 18.39%. The potentials of the prepared carbon dots toward diverse applications were thoroughly investigated. W-CDs and E-CDs provide promising probes for fluorescence detection of Fe(3+), offering limits of detection of 0.48μmolL(-1) and 0.29μmolL(-1), respectively. W-CDs was further demonstrated to be a promising probe for fluorescence sensing of Escherichia coli O157: H7, along with a limit of detection of 9.5×10(4)cfumL(-1). Meanwhile, both W-CDs and E-CDs exhibit favorable biocompatibility, and demonstrated to be efficient for Hela cell imaging. PMID:27155118

  19. Carbonate measurements in PM10 near the marble quarries of Carrara (Italy) by infrared spectroscopy (FT-IR) and source apportionment by positive matrix factorization (PMF)

    NASA Astrophysics Data System (ADS)

    Cuccia, E.; Piazzalunga, A.; Bernardoni, V.; Brambilla, L.; Fermo, P.; Massabò, D.; Molteni, U.; Prati, P.; Valli, G.; Vecchi, R.

    2011-11-01

    The concentration of carbonates in atmospheric Particulate Matter (PM) is usually quite low. The surroundings of marble quarries are peculiar sites where the impact of carbonates in PM levels can be significant. We present here the results of a PM10 sampling campaign performed in Carrara (Italy). The town lies between the famous marble quarries and the harbour: about 1000 trucks per day transport marble blocks and debris from the quarries to the harbour passing through the town centre. PM10 was collected on daily basis on PTFE filters analyzed by Energy-Dispersive X-Ray Fluorescence (ED-XRF) and Ion-Chromatography (IC). Carbonate concentration was measured by a non-destructive Infrared Spectroscopy analysis (FT-IR). Time series of elemental (Na-Pb by ED-XRF), ionic (SO 42-, NH 4+ by ion-chromatography) and carbonate (by FT-IR) concentration values were merged in a unique data set and a PMF analysis singled out the major PM10 sources in the area. Marble transportation turned out to be the major pollution source in the town accounting to PM10 for about 36%; this corresponded to a CaCO 3 average level of about 8 μg m -3 during working days. The FT-IR analysis was a crucial part of the work and an ad-hoc analytical procedure was specifically set up, calibrated, and tested as described in the text.

  20. Adherent diamond like carbon coatings on metals via plasma source ion implantation

    SciTech Connect

    Walter, K.C.; Nastasi, M.; Munson, C.P.

    1996-12-01

    Various techniques are currently used to produce diamond-like carbon (DLC) coatings on various materials. Many of these techniques use metallic interlayers, such as Ti or Si, to improve the adhesion of a DLC coating to a ferrous substrate. An alternative processing route would be to use plasma source ion implantation (PSII) to create a carbon composition gradient in the surface of the ferrous material to serve as the interface for a DLC coating. The need for interlayer deposition is eliminated by using a such a graded interfaces PSII approach has been used to form adherent DLC coatings on magnesium, aluminum, silicon, titanium, chromium, brass, nickel, and tungsten. A PSII process tailored to create a graded interface allows deposition of adherent DLC coatings even on metals that exhibit a positive heat of formation with carbon, such as magnesium, iron, brass and nickel.

  1. Introducing Carbon Diffusion Barriers for Uniform, High-Quality Graphene Growth from Solid Sources

    PubMed Central

    2013-01-01

    Carbon diffusion barriers are introduced as a general and simple method to prevent premature carbon dissolution and thereby to significantly improve graphene formation from the catalytic transformation of solid carbon sources. A thin Al2O3 barrier inserted into an amorphous-C/Ni bilayer stack is demonstrated to enable growth of uniform monolayer graphene at 600 °C with domain sizes exceeding 50 μm, and an average Raman D/G ratio of <0.07. A detailed growth rationale is established via in situ measurements, relevant to solid-state growth of a wide range of layered materials, as well as layer-by-layer control in these systems. PMID:24024736

  2. Intrashelf basins: A geologic model for source-bed and reservoir facies deposition within carbonate shelves

    SciTech Connect

    Grover, G. Jr. )

    1993-09-01

    Intrashelf basins (moats, inshore basins, shelf basins, differentiated shelf, and deep-water lagoons of others) are depressions of varying sizes and shapes that occur within tectonically passive and regionally extensive carbonate shelves. Intrashelf basins grade laterally and downdip (seaward) into shallow-water carbonates of the regional shelf, are separated from the open marine basin by the shelf margin, and are largely filled by fine-grained subtidal sediments having attributes of shallow- and deeper water sedimentation. These basins are commonly fringed or overlain by carbonate sands, reefs, or buildups. These facies may mimic those that occur along the regional shelf margin, and they can have trends that are at a high angle to that of the regional shelf. Intrashelf basins are not intracratonic basins. The history of most intrashelf basins is a few million to a few tens of million of years. Examples of intrashelf basins are known throughout the Phanerozoic; the southern portion of the Holocene Belize shelf is a modern example of an intrashelf basin. Two types of intrashelf basins are recognized. Coastal basins pass updip into coastal clastics of the craton with the basin primarily filled by fine clastics. Shelf basins occur on the outer part of the shelf, are surrounded by shallow-water carbonate facies, and are filled by peloidal lime mud, pelagics, and argillaceous carbonates. Intrashelf basins are commonly the site of organic-rich, source-bed deposition, resulting in the close proximity of source beds and reservoir facies that may fringe or overlie the basin. Examples of hydrocarbon-charged reservoirs that were sourced by an intrashelf basin include the Miocene Bombay High field, offshore India; the giant Jurassic (Arab-D) and Cretaceous (Shuaiba) reservoirs of the Arabian Shelf; the Lower Cretaceous Sunniland trend, South Florida basin; and the Permian-Pennsylvanian reservoirs surrounding the Tatum basin in southeastern New Mexico.

  3. Microbial community structure and function of nitrobenzene reduction biocathode in response to carbon source switchover.

    PubMed

    Liang, Bin; Cheng, Haoyi; Van Nostrand, Joy D; Ma, Jincai; Yu, Hao; Kong, Deyong; Liu, Wenzong; Ren, Nanqi; Wu, Liyou; Wang, Aijie; Lee, Duu-Jong; Zhou, Jizhong

    2014-05-01

    The stress of poised cathode potential condition and carbon source switchover for functional biocathode microbial community influences is poorly understood. Using high-throughput functional gene array (GeoChip v4.2) and Illumina 16S rRNA gene MiSeq sequencing, we investigated the phylogenetic and functional microbial community of the initial inoculum and biocathode for bioelectrochemical reduction of nitrobenzene to less toxic aniline in response to carbon source switchover (from organic glucose to inorganic bicarbonate). Selective transformation of nitrobenzene to aniline maintained in the bicarbonate fed biocathode although nitrobenzene reduction rate and aniline formation rate were significantly decreased compared to those of the glucose-fed biocathode. When the electrical circuit of the glucose-fed biocathode was disconnected, both rates of nitrobenzene reduction and of aniline formation were markedly decreased, confirming the essential role of an applied electric field for the enhancement of nitrobenzene reduction. The stress of poised cathode potential condition led to clear succession of microbial communities from the initial inoculum to biocathode and the carbon source switchover obviously changed the microbial community structure of biocathode. Most of the dominant genera were capable of reducing nitroaromatics to the corresponding aromatic amines regardless of the performance mode. Heterotrophic Enterococcus was dominant in the glucose-fed biocathode while autotrophic Paracoccus and Variovorax were dominant in the bicarbonate-fed biocathode. Relatively higher intensity of diverse multi-heme cytochrome c (putatively involved in electrons transfer) and carbon fixation genes was observed in the biocarbonate-fed biocathode, likely met the requirement of the energy conservation and maintained the nitrobenzene selective reduction capability after carbon source switchover. Extracellular pilin, which are important for biofilm formation and potential conductivity

  4. Direct growth and patterning of multilayer graphene onto a targeted substrate without an external carbon source.

    PubMed

    Kang, Dongseok; Kim, Won-Jun; Lim, Jung Ah; Song, Yong-Won

    2012-07-25

    Using only a simple tube furnace, we demonstrate the synthesis of patterned graphene directly on a designed substrate without the need for an external carbon source. Carbon atoms are absorbed onto Ni evaporator sources as impurities, and incorporated into catalyst layers during the deposition. Heat treatment conditions were optimized so that the atoms diffused out along the grain boundaries to form nanocrystals at the catalyst-substrate interfaces. Graphene patterns were obtained under patterned catalysts, which restricted graphene formation to within patterned areas. The resultant multilayer graphene was characterized by Raman spectroscopy and transmission electron microscopy to verify the high crystallinity and two-dimensional nanomorphology. Finally, a metal-semiconductor diode with a catalyst-graphene contact structure were fabricated and characterized to assess the semiconducting properties of the graphene sheets with respect to the display of asymmetric current-voltage behavior. PMID:22709270

  5. Microarray analysis of Neosartorya fischeri using different carbon sources, petroleum asphaltenes and glucose-peptone.

    PubMed

    Hernández-López, Edna L; Ramírez-Puebla, Shamayim T; Vazquez-Duhalt, Rafael

    2015-09-01

    Asphaltenes are considered as the most recalcitrant petroleum fraction and represent a big problem for the recovery, separation and processing of heavy oils and bitumens. Neosartorya fischeri is a saprophytic fungus that is able to grow using asphaltenes as the sole carbon source [1]. We performed transcription profiling using a custom designed microarray with the complete genome from N. fischeri NRRL 181 in order to identify genes related to the transformation of asphaltenes [1]. Data analysis was performed using the genArise software. Results showed that 287 genes were up-regulated and 118 were down-regulated. Here we describe experimental procedures and methods about our dataset (NCBI GEO accession number GSE68146) and describe the data analysis to identify different expression levels in N. fischeri using this recalcitrant carbon source. PMID:26484261

  6. Microarray analysis of Neosartorya fischeri using different carbon sources, petroleum asphaltenes and glucose-peptone

    PubMed Central

    Hernández-López, Edna L.; Ramírez-Puebla, Shamayim T.; Vazquez-Duhalt, Rafael

    2015-01-01

    Asphaltenes are considered as the most recalcitrant petroleum fraction and represent a big problem for the recovery, separation and processing of heavy oils and bitumens. Neosartorya fischeri is a saprophytic fungus that is able to grow using asphaltenes as the sole carbon source [1]. We performed transcription profiling using a custom designed microarray with the complete genome from N. fischeri NRRL 181 in order to identify genes related to the transformation of asphaltenes [1]. Data analysis was performed using the genArise software. Results showed that 287 genes were up-regulated and 118 were down-regulated. Here we describe experimental procedures and methods about our dataset (NCBI GEO accession number GSE68146) and describe the data analysis to identify different expression levels in N. fischeri using this recalcitrant carbon source. PMID:26484261

  7. Stationary scanning x-ray source based on carbon nanotube field emitters

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Zhang, Jian; Cheng, Yuan; Gao, Bo; Qiu, Qi; Lee, Yueh; Lu, Jianping; Zhou, Otto

    2006-03-01

    Carbon nanotube is an ideal field emitter thanks to its large aspect ratio and small diameter. Based on its field emission property, we have developed a stationary scanning x-ray source, which can generate a scanning x-ray beam to image an object from multiple projection angles without mechanical motion. The key component of the device is a gated carbon nanotube field emission cathode with an array of electron emitting pixels that are individually addressable via a metal-oxide-semiconductor field effect transistor-based electronic circuit. The characteristics of this x-ray source are measured and its imaging capability is demonstrated. The device can potentially lead to a fast data acquisition rate for laminography and tomosynthesis.

  8. A Review on Alternative Carbon Sources for Biological Treatment of Nitrate Waste

    NASA Astrophysics Data System (ADS)

    Dhamole, Pradip B.; D'Souza, S. F.; Lele, S. S.

    2015-04-01

    Huge amount of wastewater containing nitrogen is produced by various chemical and biological industries. Nitrogen is present in the form of ammonia, nitrate and nitrite. This review deals with treatment of nitrate based effluent using biological denitrification. Because of its adverse effect on aquatic life and human health, treatment of nitrate bearing effluents has become mandatory before discharge. Treatment of such wastes is a liability for the industries and incurs cost. However, the economics of the process can be controlled by selection of proper method and reduction in the operating cost. This paper reviews the advantages and disadvantages of different methods of nitrate removal with emphasis on biological denitrification. The cost of biological denitrification is controlled by the carbon source. Hence, use of alternative carbon sources such as agricultural wastes, industrial effluent or by products is reviewed in this paper. Policies for reducing the cost of nitrate treatment and enhancing the efficiency have been recommended.

  9. Silicate or Carbonate Weathering: Fingerprinting Sources of Dissolved Inorganic Carbon Using δ13C in a Tropical River, Southern India

    NASA Astrophysics Data System (ADS)

    Bhagat, H.; Ghosh, P.

    2015-12-01

    Rivers are an inherently vital resource for the development of any region and their importance is highlighted by the presence of many ancient human civilizations adjacent to river systems. δ13C - Si/HCO3 systematics has been applied to large south Indian rivers which drain the Deccan basaltic traps in order to quantify their relative contributions from silicate and carbonate weathering. This study investigates δ13C - Si/HCO3 systematics of the Cauvery River basin which flows through silicate lithology in the higher reaches and carbonate lithology with pedogenic and marine carbonates dominating the terrain in the lower reaches of the basin. The samples for the present study were collected at locations within the watershed during Pre-Monsoon and Monsoon Season 2014. The measurements of stable isotope ratios of δ13CDIC and were accomplished through a Thermo Scientific GasBench II interface connected to a MAT 253 IRMS. We captured a large spatial variation in δ13C and Si/HCO3 values during both seasons; Pre-Monsoon δ13C values ranges between -17.57‰ to -4.02‰ and during Monsoon it varies between -9.19‰ to +0.61‰. These results indicate a two end-member mixing component i.e. a silicate and a carbonate end member; governing the weathering interactions of the Cauvery River. Within the drainage basin, we identified silicate and carbonate dominating sources by using contributions of DIC and δ13C. Si/HCO3 values for Pre-Monsoon ranges between 0.028 - 0.67 and for Monsoon it varies between 0.073 - 0.80. Lighter δ13C composition was observed at sampling sites at higher altitude in contrast to sampling sites at flood plain which show relatively enriched δ13C which indicate mixing of soil derived CO2 with C4 plants. Result suggests dominance of carbonate weathering during the Monsoon Period, while silicate weathering is pronounced during Pre- Monsoon period.

  10. Aquatic carbon and GHG export from a permafrost catchment; identifying source areas and primary flow paths.

    NASA Astrophysics Data System (ADS)

    Lessels, J. S.; Dinsmore, K. J.; Billett, M. F.; Street, L. E.; Wookey, P. A.; Tetzlaff, D.; Baxter, R.; Subke, J. A.; Dean, J.; Washbourne, I. J.

    2014-12-01

    The aquatic pathway is increasingly being recognized as an important component of landscape scale greenhouse gas (GHG) budgets. Due to low temperatures and short residence times limiting in-stream production in northern headwater catchments, much of the exported carbon is likely to be allochthonous, transported via throughflow to the surface drainage system. Identifying sources and primary flow pathways is therefore essential in understanding and predicting changes in the aquatic flux magnitude. Arctic landscapes are now widely recognised as being particularly vulnerable to climate driven changes. The HYDRA project ("Permafrost catchments in transition: hydrological controls on carbon cycling and greenhouse gas budgets") aims to understand the fundamental role that hydrological processes play in regulating landscape-scale carbon fluxes, and predict how changes in vegetation and active layer depth in permafrost environments influence the delivery and export of aquatic carbon. In this study we present aquatic concentrations and fluxes of carbon and GHG species collected across two field seasons (2013, 2014) from an arctic headwater catchment in northern Canada. Measured species include dissolved organic (DOC) and inorganic carbon (DIC), CO2, CH4 and N2O. Measurements were made across a range of freshwater types within the tundra landscape, including lakes, ice-wedge polygons, and the 'Siksik' stream which drains the (c.a. 1 km2) primary study catchment. A nested sub-catchment approach was used along the 'Siksik' stream; 'snapshot' sampling of eight points along the stream length allowed specific vegetation communities to be targeted to assess individually their contribution to aquatic export. A combination of stable isotopes and major ion concentrations measured at each sampling point provide additional information to trace source areas and flow paths within the main study catchment. Catchment scale evasion and downstream export were calculated and an initial

  11. Chemical ionization mass spectrometry using carbon nanotube field emission electron sources.

    PubMed

    Radauscher, Erich J; Keil, Adam D; Wells, Mitch; Amsden, Jason J; Piascik, Jeffrey R; Parker, Charles B; Stoner, Brian R; Glass, Jeffrey T

    2015-11-01

    A novel chemical ionization (CI) source has been developed based on a carbon nanotube (CNT) field emission electron source. The CNT-based electron source was evaluated and compared with a standard filament thermionic electron source in a commercial explosives trace detection desktop mass spectrometer. This work demonstrates the first reported use of a CNT-based ion source capable of collecting CI mass spectra. Both positive and negative modes were investigated. Spectra were collected for a standard mass spectrometer calibration compound, perfluorotributylamine (PFTBA), as well as trace explosives including trinitrotoluene (TNT), Research Department explosive (RDX), and pentaerythritol tetranitrate (PETN). The electrical characteristics, lifetime at operating pressure, and power requirements of the CNT-based electron source are reported. The CNT field emission electron sources demonstrated an average lifetime of 320 h when operated in constant emission mode under elevated CI pressures. The ability of the CNT field emission source to cycle on and off can provide enhanced lifetime and reduced power consumption without sacrificing performance and detection capabilities. Graphical Abstract ᅟ. PMID:26133527

  12. Chemical Ionization Mass Spectrometry Using Carbon Nanotube Field Emission Electron Sources

    NASA Astrophysics Data System (ADS)

    Radauscher, Erich J.; Keil, Adam D.; Wells, Mitch; Amsden, Jason J.; Piascik, Jeffrey R.; Parker, Charles B.; Stoner, Brian R.; Glass, Jeffrey T.

    2015-11-01

    A novel chemical ionization (CI) source has been developed based on a carbon nanotube (CNT) field emission electron source. The CNT-based electron source was evaluated and compared with a standard filament thermionic electron source in a commercial explosives trace detection desktop mass spectrometer. This work demonstrates the first reported use of a CNT-based ion source capable of collecting CI mass spectra. Both positive and negative modes were investigated. Spectra were collected for a standard mass spectrometer calibration compound, perfluorotributylamine (PFTBA), as well as trace explosives including trinitrotoluene (TNT), Research Department explosive (RDX), and pentaerythritol tetranitrate (PETN). The electrical characteristics, lifetime at operating pressure, and power requirements of the CNT-based electron source are reported. The CNT field emission electron sources demonstrated an average lifetime of 320 h when operated in constant emission mode under elevated CI pressures. The ability of the CNT field emission source to cycle on and off can provide enhanced lifetime and reduced power consumption without sacrificing performance and detection capabilities.

  13. Stationary scanning x-ray source based on carbon nanotube field emitters

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Yang, G.; Cheng, Y.; Gao, B.; Qiu, Q.; Lee, Y. Z.; Lu, J. P.; Zhou, O.

    2005-05-01

    We report a field emission x-ray source that can generate a scanning x-ray beam to image an object from multiple projection angles without mechanical motion. The key component of the device is a gated carbon nanotube field emission cathode with an array of electron emitting pixels that are individually addressable via a metal-oxide-semiconductor field effect transistor-based electronic circuit. The characteristics of this x-ray source are measured and its imaging capability is demonstrated. The device can potentially lead to a fast data acquisition rate for laminography and tomosynthesis with a simplified experimental setup.

  14. Design of an Intense Muon Source with a Carbon and Mercury Target

    SciTech Connect

    Stratakis, Diktys; Berg, J. Scott; Neuffer, David; Ding, Xiaoping

    2015-06-01

    In high-intensity sources, muons are produced by firing high energy protons onto a target to produce pions. The pions decay to muons which are captured and accelerated. In the present study, we examine the performance of the channel for two different target scenarios: one based on liquid mercury and another one based on a solid carbon target. We produce distributions with the two different target materials and discuss differences in particle spectrum near the sources. We then propagate the distributions through our capture system and compare the full system performance for the two target types.

  15. Design of an intense muon source with a carbon and mercury target

    SciTech Connect

    Stratakis, D.; Berg, J. S.; Neuffer, D.; Ding, X.

    2015-05-03

    In high-intensity sources, muons are produced by firing high energy protons onto a target to produce pions. The pions decay to muons which are captured and accelerated. In the present study, we examine the performance of the channel for two different target scenarios: one based on liquid mercury and another one based on a solid carbon target. We produce distributions with the two different target materials and discuss differences in particle spectrum near the sources. We then propagate the distributions through our capture system and compare the full system performance for the two target types.

  16. Stationary scanning x-ray source based on carbon nanotube field emitters

    SciTech Connect

    Zhang, J.; Yang, G.; Cheng, Y.; Gao, B.; Qiu, Q.; Lee, Y.Z.; Lu, J.P.; Zhou, O.

    2005-05-02

    We report a field emission x-ray source that can generate a scanning x-ray beam to image an object from multiple projection angles without mechanical motion. The key component of the device is a gated carbon nanotube field emission cathode with an array of electron emitting pixels that are individually addressable via a metal-oxide-semiconductor field effect transistor-based electronic circuit. The characteristics of this x-ray source are measured and its imaging capability is demonstrated. The device can potentially lead to a fast data acquisition rate for laminography and tomosynthesis with a simplified experimental setup.

  17. Distinct carbon sources indicate strong differentiation between tropical forest and farmland bird communities.

    PubMed

    Ferger, Stefan W; Böhning-Gaese, Katrin; Wilcke, Wolfgang; Oelmann, Yvonne; Schleuning, Matthias

    2013-02-01

    The conversion of forest into farmland has resulted in mosaic landscapes in many parts of the tropics. From a conservation perspective, it is important to know whether tropical farmlands can buffer species loss caused by deforestation and how different functional groups of birds respond to land-use intensification. To test the degree of differentiation between farmland and forest bird communities across feeding guilds, we analyzed stable C and N isotopes in blood and claws of 101 bird species comprising four feeding guilds along a tropical forest-farmland gradient in Kenya. We additionally assessed the importance of farmland insectivores for pest control in C(4) crops by using allometric relationships, C stable isotope ratios and estimates of bird species abundance. Species composition differed strongly between forest and farmland bird communities. Across seasons, forest birds primarily relied on C(3) carbon sources, whereas many farmland birds also assimilated C(4) carbon. While C sources of frugivores and omnivores did not differ between forest and farmland communities, insectivores used more C(4) carbon in the farmland than in the forest. Granivores assimilated more C(4) carbon than all other guilds in the farmland. We estimated that insectivorous farmland birds consumed at least 1,000 kg pest invertebrates km(-2) year(-1). We conclude that tropical forest and farmland understory bird communities are strongly separated and that tropical farmlands cannot compensate forest loss for insectivorous forest understory birds. In tropical farmlands, insectivorous bird species provide a quantitatively important contribution to pest control. PMID:22898920

  18. Black carbon emissions from Russian diesel sources. Case study of Murmansk

    DOE PAGESBeta

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2015-07-27

    Black carbon (BC) is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in the Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), ships and diesel generators. For on-road transport, we conducted several surveys tomore » understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emissions in the Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 69 % of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source, emitting about 13 % of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 50.8 Gg in 2010, and on-road transport contributed 49 % of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.« less

  19. Black carbon emissions from Russian diesel sources: case study of Murmansk

    NASA Astrophysics Data System (ADS)

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2015-02-01

    Black carbon (BC) is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), fishing and diesel generators. For on-road transport, we conducted several surveys to understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emission in Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 70% of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source emitting about 12% of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 56.7 Gg in 2010, and on-road transport contributed 55% of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.

  20. Black carbon emissions from Russian diesel sources: case study of Murmansk

    NASA Astrophysics Data System (ADS)

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2015-07-01

    Black carbon (BC) is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in the Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), ships and diesel generators. For on-road transport, we conducted several surveys to understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emissions in the Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 69 % of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source, emitting about 13 % of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 50.8 Gg in 2010, and on-road transport contributed 49 % of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.

  1. Black carbon emissions from Russian diesel sources. Case study of Murmansk

    SciTech Connect

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2015-07-27

    Black carbon (BC) is a potent pollutant because of its effects on climate change, ecosystems and human health. Black carbon has a particularly pronounced impact as a climate forcer in the Arctic because of its effect on snow albedo and cloud formation. We have estimated BC emissions from diesel sources in the Murmansk Region and Murmansk City, the largest city in the world above the Arctic Circle. In this study we developed a detailed inventory of diesel sources including on-road vehicles, off-road transport (mining, locomotives, construction and agriculture), ships and diesel generators. For on-road transport, we conducted several surveys to understand the vehicle fleet and driving patterns, and, for all sources, we also relied on publicly available local data sets and analysis. We calculated that BC emissions in the Murmansk Region were 0.40 Gg in 2012. The mining industry is the largest source of BC emissions in the region, emitting 69 % of all BC emissions because of its large diesel consumption and absence of emissions controls. On-road vehicles are the second largest source, emitting about 13 % of emissions. Old heavy duty trucks are the major source of emissions. Emission controls on new vehicles limit total emissions from on-road transportation. Vehicle traffic and fleet surveys show that many of the older cars on the registry are lightly or never used. We also estimated that total BC emissions from diesel sources in Russia were 50.8 Gg in 2010, and on-road transport contributed 49 % of diesel BC emissions. Agricultural machinery is also a significant source Russia-wide, in part because of the lack of controls on off-road vehicles.

  2. Antimony-assisted carbonization of Si(111) with solid source molecular beam epitaxy

    SciTech Connect

    Hackley, Justin; Richardson, Christopher J. K.; Sarney, Wendy L.

    2013-11-15

    The carbonization of an antimony-terminated Si (111) surface in a solid source molecular beam epitaxy system is presented. Reflection high-energy electron diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and cross-sectional transmission electron microscopy are used to characterize samples grown with and without antimony termination. It is shown that the antimony-terminated surface promotes the formation of thin, smooth and continuous SiC films at a relatively low temperature of 800 °C.

  3. Comparison of the effects of conventional and alternative external carbon sources on enhancing the denitrification process.

    PubMed

    Swinarski, Marek; Makinia, Jacek; Czerwionka, Krzysztof; Chrzanowska, Marta; Drewnowski, Jakub

    2009-01-01

    Food industry effluents are considered a potential alternative for methanol when seeking external carbon sources to enhance denitrification in municipal wastewater treatment plants (WWTPs). The aim of this study was to determine the immediate effects of dosing different carbon sources on the denitrification capability of process biomass from the Wschod WWTP in Gdansk (northern Poland). Five carbon sources, including settled wastewater, methanol, and three industrial effluents (distillery, brewery, and fish-pickling process) were tested in two kinds of batch experiments. The acclimation period of biomass to methanol also was investigated in bench-scale systems. During the conventional batch experiments, with the industrial effluents, the observed nitrate utilization rates (NURs) ranged from 2.4 to 6.0 g N/(kg VSS x h), which were only slightly lower than the rates associated with the use of the readily biodegradable fraction in the municipal (settled) wastewater [4.6 to 7.8 g N/(kg VSS x h)]. The conventional NURs observed with methanol and non-acclimated process biomass were low [i.e., 0.4 to 1.5 g N/(kg VSS x h)], and a minimum 2-week acclimation period of biomass to methanol in the bench-scale systems was needed to reach the level of 4.0 g N/(kg VSS x h). In other experiments, dosing the distillery and fish-pickling effluents at the beginning of the anoxic phase (preceded by the anaerobic phase) resulted in considerably higher (over 20%) NURs compared with the same experiments with the other carbon sources. PMID:19860146

  4. [Some considerations about the use of carbon sources in jasmonic acid production.].

    PubMed

    Almeida González, G; Klibansky Delgado, M; Altuna Seijas, B; Eng Sánchez, F; Legrá Mora, S; Armenteros Galarraga, S

    1999-09-01

    The effect of different carbon sources as sucrose, fructose, glucose and molasses were studied in relation to jasmonic acid production. The best results were obtained with a simple medium made up by final molasses, potassium nitrate and acid potassium phosphate, without the addition of other salts like Fe, Zn, Cu, Mo, etc. This alternative guaranteed a 100% increase in jasmonic acid production, compared to pattern medium, since a concentration of 2.08 g/l was obtained. PMID:18473562

  5. Dynamic radiography using a carbon-nanotube-based field-emission x-ray source

    SciTech Connect

    Cheng, Y.; Zhang, J.; Lee, Y.Z.; Gao, B.; Dike, S.; Lin, W.; Lu, J.P.; Zhou, O.

    2004-10-01

    We report a dynamic radiography system with a carbon nanotube based field-emission microfocus x-ray source. The system can readily generate x-ray radiation with continuous variation of temporal resolution as short as nanoseconds. Its potential applications for dynamic x-ray imaging are demonstrated. The performance characteristics of this compact and versatile system are promising for noninvasive imaging in biomedical research and industrial inspection.

  6. ADS pilot program Plan

    NASA Technical Reports Server (NTRS)

    Clauson, J.; Heuser, J.

    1981-01-01

    The Applications Data Service (ADS) is a system based on an electronic data communications network which will permit scientists to share the data stored in data bases at universities and at government and private installations. It is designed to allow users to readily locate and access high quality, timely data from multiple sources. The ADS Pilot program objectives and the current plans for accomplishing those objectives are described.

  7. DISCOVERY OF THE SECOND WARM CARBON-CHAIN-CHEMISTRY SOURCE, IRAS15398 - 3359 IN LUPUS

    SciTech Connect

    Sakai, Nami; Yamamoto, Satoshi; Sakai, Takeshi; Hirota, Tomoya; Burton, Michael

    2009-05-20

    We have conducted a search for carbon-chain molecules toward 16 protostars with the Mopra 22 m and Nobeyama 45 m telescopes, and have detected high excitation lines from several species, such as C{sub 4}H (N = 9-8), C{sub 4}H{sub 2}(J = 10{sub 0,10}-9{sub 0,9}), CH{sub 3}CCH(J = 5-4, K = 2), and HC{sub 5}N(J = 32-31), toward the low-mass protostar, IRAS15398 - 3359 in Lupus. The C{sub 4}H line is as bright as 2.4 K measured with the Nobeyama 45 m telescope. The kinetic temperature is derived to be 12.6 {+-} 1.5 K from the K = 1 and K = 2 lines of CH{sub 3}CCH. These results indicate that the carbon-chain molecules exist in a region of warm and dense gas near the protostar. The observed features are similar to those found toward IRAS04368+2557 in L1527, which shows warm carbon-chain chemistry (WCCC). In WCCC, carbon-chain molecules are produced efficiently by the evaporation of CH{sub 4} from the grain mantles in a lukewarm region near the protostar. Our data clearly indicate that WCCC is no longer specific to L1527, but occurs in IRAS15398 - 3359. In addition, we draw attention to a remarkable contrast between WCCC and hot corino chemistry in low-mass star-forming regions. Carbon-chain molecules are deficient in hot corino sources like NGC1333 IRAS4B, whereas complex organic molecules seem to be less abundant in the WCCC sources. A possible origin for such source-to-source chemical variations is suggested to arise from the timescale of the starless-core phase in each source. If this is the case, the chemical composition provides an important clue to explore the variation of star formation processes between sources and/or molecular clouds.

  8. [Nitrate removal from recirculating aquaculture system using polyhydroxybutyrate-co-hydroxyvalerate as carbon source ].

    PubMed

    Zhang, Lanhe; Liu, Lili; Qiu, Tianlei; Gao, Min; Han, Meilin; Yuan, Ding; Wang, Xuming

    2014-09-01

    [ OBJECTIVE] Polyhydroxybutyrate-co-hydroxyvalerate (PHBV) was used as solid carbon source and biofilm carrier to remove nitrate from recirculating aquaculture system (RAS). Dynamics of microbial community structure in biofilm coating on carbon source packed into denitrification reactor were investigated. [METHODS] Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the microbial community in biofilm from denitrifiation reactor. Bacteria degrading PHBV were isolated from the reactor using pure culture method. [RESULTS] Nitrate decreased remarkably in the RAS connected with dentrification reactor. In contrast, Nitrate increased continuously in the conventional RAS without dentrification reactor. According to the phylogenetic analysis, the microbes in the biofilm samples from denitrification reactor were divided into Proteobacteria ( p-proteobacteria, γ-proteobacteria and δ- proteobacteria) , Firmicutes and Bacteroidetes. The major advantageous populations were Acidovorax and Bacillus in the 40-day reactor. The advantageous populations in the 150-day reactor were in order of Clostridium, Desulfitobacterium, Dechloromonas, Pseudoxanthomonas and Flavobacterium. Pure cultures of bacteria degrading PHBV isolated from denitrification reactor were classified into Acidovorax, Methylibium, Pseudoxanthomonas and Dechloromonas. [CONCLUSION] Nitrate could be removed effectively from RAS using PHBV as carbon source. Advantageous bacteria and their dynamic changes were ascertained in biofilm from denitrification reactor packed with PHBV. PMID:25522594

  9. Preparation of molybdenum carbides with multiple morphologies using surfactants as carbon sources

    SciTech Connect

    Wang, Hongfen; Wang, Zhiqi; Chen, Shougang

    2012-10-15

    Molybdenum carbides with surfactants as carbon sources were prepared using the carbothermal reduction of the appropriate precursors (molybdenum oxides deposited on surfactant micelles) at 1023 K under hydrogen gas. The carburized products were characterized using scanning electron microscopy (SEM), X-ray diffraction and BET surface area measurements. From the SEM images, hollow microspherical and rod-like molybdenum carbides were observed. X-ray diffraction patterns showed that the annealing time of carburization had a large effect on the conversion of molybdenum oxides to molybdenum carbides. And BET surface area measurements indicated that the difference of carbon sources brought a big difference in specific surface areas of molybdenum carbides. - Graphical abstract: Molybdenum carbides having hollow microspherical and hollow rod-like morphologies that are different from the conventional monodipersed platelet-like morphologies. Highlights: Black-Right-Pointing-Pointer Molybdenum carbides were prepared using surfactants as carbon sources. Black-Right-Pointing-Pointer The kinds of surfactants affected the morphologies of molybdenum carbides. Black-Right-Pointing-Pointer The time of heat preservation at 1023 K affected the carburization process. Black-Right-Pointing-Pointer Molybdenum carbides with hollow structures had larger specific surface areas.

  10. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal.

    PubMed

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-04-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49-5.99 g N/(kg MLVSS⋅h) (MLVSS is mixed liquor volatile suspended solids) and 6.63-6.81 g N/(kg MLVSS⋅h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes. PMID:25845364

  11. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal*

    PubMed Central

    Bu, Fan; Hu, Xiang; Xie, Li; Zhou, Qi

    2015-01-01

    The aim of this study was to investigate the effects of one kind of food industry effluent, cassava stillage and its anaerobic fermentation liquid, on biological nutrient removal (BNR) from municipal wastewater in anaerobic-anoxic-aerobic sequencing batch reactors (SBRs). Experiments were carried out with cassava stillage supernatant and its anaerobic fermentation liquid, and one pure compound (sodium acetate) served as an external carbon source. Cyclic studies indicated that the cassava by-products not only affected the transformation of nitrogen, phosphorus, poly-β-hydroxyalkanoates (PHAs), and glycogen in the BNR process, but also resulted in higher removal efficiencies for phosphorus and nitrogen compared with sodium acetate. Furthermore, assays for phosphorus accumulating organisms (PAOs) and denitrifying phosphorus accumulating organisms (DPAOs) demonstrated that the proportion of DPAOs to PAOs reached 62.6% (Day 86) and 61.8% (Day 65) when using cassava stillage and its anaerobic fermentation liquid, respectively, as the external carbon source. In addition, the nitrate utilization rates (NURs) of the cassava by-products were in the range of 5.49–5.99 g N/(kg MLVSS∙h) (MLVSS is mixed liquor volatile suspended solids) and 6.63–6.81 g N/(kg MLVSS∙h), respectively. The improvement in BNR performance and the reduction in the amount of cassava stillage to be treated in-situ make cassava stillage and its anaerobic fermentation liquid attractive alternatives to sodium acetate as external carbon sources for BNR processes. PMID:25845364

  12. Sources of black carbon in aerosols: fossil fuel burning vs. biomass burning

    NASA Astrophysics Data System (ADS)

    Hsieh, Y.

    2013-12-01

    The uncertainty in black carbon (BC) analysis and our inability to directly quantify the BC sources in the atmosphere has led to the uncertainty in compiling a regional or global BC emission inventory attributed to biomass burnings. We initiate this study to demonstrate a new approach, which quantifies the source of BC in the atmosphere between biomass and fossil fuel burnings. We applied the newly developed multi-element scanning thermal analysis (MESTA) technology to quantify BC and organic carbon (OC), respectively, in aerosol samples. MESTA can also separate BC from OC for subsequent radiocarbon analyses. Because fossil fuel has been depleted of radiocarbon and biomass has radiocarbon of the modern atmospheric level, we can quantify the sources of BC between fossil fuel and biomass burnings. We sampled the PM2.5 in the ambient air of central Tallahassee and its rural areas during the May-June (prescribed burning) and Nov-Dec (non-burning) periods. The results indicate that biomass burning contributed 89×1% and 67×2% of BC, respectively, during May-June and Nov.-Dec. periods. The rest of PM2.5 BC was contributed from fossil fuel burning. The radiocarbon contents of the OC was 103.42×0.55 percent modern carbon (pmC), which is consistent with the current atmospheric level with a trace of the bomb radiocarbon remained from the open atmosphere nuclear testing.

  13. Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species

    PubMed Central

    Sitepu, Irnayuli; Selby, Tylan; Lin, Ting; Zhu, Shirley; Boundy-Mills, Kyria

    2014-01-01

    Conversion of lignocellulosic hydrolysates to lipids using oleaginous (high lipid) yeasts requires alignment of the hydrolysate composition with the characteristics of the yeast strain, including ability to utilize certain nutrients, ability to grow independently of costly nutrients such as vitamins, and ability to tolerate inhibitors. Some combination of these characteristics may be present in wild strains. In this study, 48 oleaginous yeast strains belonging to 45 species were tested for ability to utilize carbon sources associated with lignocellulosic hydrolysates, tolerate inhibitors, and grow in medium without supplemented vitamins. Some well-studied oleaginous yeast species, as well as some that have not been frequently utilized in research or industrial production, emerged as promising candidates for industrial use due to ability to utilize many carbon sources, including Cryptococcus aureus, Cryptococcus laurentii, Hanaella aff. zeae, Tremella encephala, and Trichosporon coremiiforme. Other species excelled in inhibitor tolerance, including Candida aff. tropicalis, Cyberlindnera jadinii, Metschnikowia pulcherrima Schwanniomyces occidentalis and Wickerhamomyces ciferii. No yeast tested could utilize all carbon sources and tolerate all inhibitors tested. These results indicate that yeast strains should be selected based on characteristics compatible with the composition of the targeted hydrolysate. Other factors to consider include the production of valuable co-products such as carotenoids, availability of genetic tools, biosafety level, and flocculation of the yeast strain. The data generated in this study will aid in aligning yeasts with compatible hydrolysates for conversion of carbohydrates to lipids to be used for biofuels and other oleochemicals. PMID:24818698

  14. Wine wastes as carbon source for biological treatment of acid mine drainage.

    PubMed

    Costa, M C; Santos, E S; Barros, R J; Pires, C; Martins, M

    2009-05-01

    Possible use of wine wastes containing ethanol as carbon and energy source for sulphate-reducing bacteria (SRB) growth and activity in the treatment of acid mine drainage (AMD) is studied for the first time. The experiments were performed using anaerobic down-flow packed bed reactors in semi-continuous systems. The performance of two bioreactors fed with wine wastes or ethanol as carbon sources is compared in terms of sulphate reduction, metals removal and neutralization. The results show that efficient neutralization and high sulphate removal (>90%) were attained with the use of wine wastes as substrate allowing the production of effluents with concentrations below the required local legislation for irrigation waters. This is only possible provided that the AMD and wine wastes are contacted with calcite tailing, a waste material that neutralizes and provides buffer capacity to the medium. The removal of metals using wine wastes as carbon source was 61-91% for Fe and 97% for both Zn and Cu. The lower removal of iron, when wine waste is used instead of ethanol, may be due to the presence of iron-chelating compounds in the waste, which prevent the formation of iron sulphide, and partial unavailability of sulphide because of re-oxidation to elemental sulphur. However, that did not affect significantly the quality of the effluent for irrigation. This work demonstrates that wine wastes are a potential alternative to traditional SRB substrates. This finding has direct implication to sustainable operation of SRB bioreactors for AMD treatment. PMID:19201010

  15. The activated sludge metabolic characteristics changing sole carbon source from readily biodegradable acetate to toxic phenol.

    PubMed

    Wu, Changyong; Zhou, Yuexi; Song, Jiamei

    2016-01-01

    A sequencing batch reactor was used to investigate the effect of carbon sources on the metabolism of activated sludge. Acetate and phenol, with the chemical oxygen demand (COD) of 330-350 mg L(-1), was used as the carbon source in Periods I and II, respectively. Acetate decreased in the initial 120 min with the intracellular storage materials (XSTO), extracellular polymeric substances (EPS), and the soluble microbial products (SMP) accumulating to 131.0 mg L(-1), 347.5 mg L(-1), and 35.5 mg L(-1), respectively. Then, XSTO and EPS decreased to 124.5 mg L(-1) and 340.0 mg L(-1), respectively, in the following 120 min. When acetate was replaced by phenol, it could not be used at the beginning due to its toxicity. The XSTO decreased from 142 mg L(-1) to 54.6 mg L(-1) during the aeration period. The EPS had a significant increase, with the highest value of 618.1 mg L(-1), which then decreased to 245.6 mg L(-1) at 240 min. The phenol was gradually degraded with the acclimation and it can be fully degraded 18 d later. Meanwhile, the usage ratio of the internal carbon source decreased. The effluent SMP in Period II was 1.7 times that in Period I. PMID:27191552

  16. Poly(3-hydroxybutyrate) production by Bacillus cereus SPV using sugarcane molasses as the main carbon source.

    PubMed

    Akaraonye, Everest; Moreno, Catalina; Knowles, Jonathan C; Keshavarz, Tajalli; Roy, Ipsita

    2012-02-01

    The main hindrance in the use of polyhydroxyalkanoates (PHAs) as a replacement for existing petroleum-based plastics is their high production cost. The carbon source accounts for 50% of the cost for PHA production. Thus, increasing the yield and productivity of PHAs on cheap substrates is an important challenge for biotechnologists to support the commercialization and further applications of these polymers. In this study, we have investigated the use of an agricultural raw material, sugarcane molasses, as the main carbon source for poly(3-hydroxybutyrate) (P(3HB)) production by Bacillus cereus SPV. These studies were carried out in both shaken flasks and 2 L bioreactors. Various conditions were evaluated for their effects on biomass and P(3HB) accumulation. A high polymer yield was obtained, 61.07% dry cell weight (DCW) in a 1 L shaken flask study and 51.37% DCW in a 2 L fermenter study. These yields are 50% higher than previously observed with Bacillus cereus SPV. Hence, the results are encouraging and show that sugarcane molasses are a promising carbon source for an economical and commercially viable production of P(3HB). PMID:22147642

  17. Carbon and Nitrogen Sources for Shrimp Postlarvae Fed Natural Diets from a Tropical Mangrove System

    NASA Astrophysics Data System (ADS)

    Dittel, A. I.; Epifanio, C. E.; Cifuentes, L. A.; Kirchman, D. L.

    1997-11-01

    Postlarvae ofPenaeus vannameiwere fed various diets in order to examine the importance of detritus and other possible prey items in supporting postlarval growth. Stable isotopes (C and N) were used to determine the carbon and nitrogen source of the prey in the various diets. The zooplankton diet contained mostly copepods. The subtidal detritus treatment consisted mostly of plant material whereas the diets from both intertidal sites contained a mixture of plant detritus and associated meiofauna. Postlarvae reared on zooplankton and detritus plus meiofauna diets more than tripled their weight during a 6-day period. In contrast, postlarvae fed the detritus diet barely doubled their weight. Based on isotopic composition, postlarvae appear to obtain their carbon and nitrogen from various food sources. Postlarvae were enriched by 0·4‰ in13C and 2·7‰ in15N relative to the zooplankton diet, which is consistent with isotopic fractionation between successive trophic levels. In turn, the isotopic signal of the zooplankton was consistent with phytoplankton being the initial source of organic matter. In contrast, mean δ13C values of the shrimp fed detritus plus meiofauna were significantly different from their respective diets. Isotopic ratios of the postlarvae fed the mixed diet from Chomes were two trophic levels above benthic algae suggesting that the shrimp preyed on organisms that derived their carbon and nitrogen from benthic algae and/or phytoplankton.

  18. Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle.

    PubMed

    Belshe, E F; Schuur, E A G; Bolker, B M

    2013-10-01

    Are tundra ecosystems currently a carbon source or sink? What is the future trajectory of tundra carbon fluxes in response to climate change? These questions are of global importance because of the vast quantities of organic carbon stored in permafrost soils. In this meta-analysis, we compile 40 years of CO2 flux observations from 54 studies spanning 32 sites across northern high latitudes. Using time-series analysis, we investigated if seasonal or annual CO2 fluxes have changed over time, and whether spatial differences in mean annual temperature could help explain temporal changes in CO2 flux. Growing season net CO2 uptake has definitely increased since the 1990s; the data also suggest (albeit less definitively) an increase in winter CO2 emissions, especially in the last decade. In spite of the uncertainty in the winter trend, we estimate that tundra sites were annual CO2 sources from the mid-1980s until the 2000s, and data from the last 7 years show that tundra continue to emit CO2 annually. CO2 emissions exceed CO2 uptake across the range of temperatures that occur in the tundra biome. Taken together, these data suggest that despite increases in growing season uptake, tundra ecosystems are currently CO2 sources on an annual basis. PMID:23953054

  19. Utilization of Glyphosate as Phosphate Source: Biochemistry and Genetics of Bacterial Carbon-Phosphorus Lyase

    PubMed Central

    Zechel, David L.; Jochimsen, Bjarne

    2014-01-01

    SUMMARY After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses. PMID:24600043

  20. Utilization of glyphosate as phosphate source: biochemistry and genetics of bacterial carbon-phosphorus lyase.

    PubMed

    Hove-Jensen, Bjarne; Zechel, David L; Jochimsen, Bjarne

    2014-03-01

    After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses. PMID:24600043

  1. Variable source areas of runoff generation: influence on soil carbon stocks

    NASA Astrophysics Data System (ADS)

    Salemi, L.; Costa Silva, R. W.; Andrade, T. M.; Fernandes, R. P.; De Moraes, J.; Camargo, P. B.; Martinelli, L.

    2013-12-01

    Variable source areas (VSA) might be considered the main mechanism of runoff generation within humid areas. In this paper we assess the soil carbon stocks within 3 flow convergence zones (FCZs) under high influence of overland-flow (OV). These FCZs had different land-cover (riparian forest and sugarcane plantations) and were subdivided into 3 portions, that is downslope, middleslope and upslope (FCZ-1 and 2: downslope - forest; middleslope and upslope -sugarcane; FCZ-3 downslope and middleslope - forest; upslope -sugarcane). Stocks under riparian forests (FCZ-1) were significantly higher than under sugarcane plantations. More importantly, riparian forests under high OV influence (FCZ-3) presented lower soil carbon stocks compared to riparian forests under lower OV influence. Similarly, sugarcane plantations within high OV areas presented in some cases (FCZ-2) significantly lower carbon stocks compared to sugarcane areas under low OV influence. These results suggest that OV within VSAs is a major driver for particulate carbon fluxes from terrestrial to aquatic ecosystems or for carbon redistribution within riparian ecosystems.

  2. Carbon Isotopes of Methane in the Atlantic Realm: Links Between Background Station Data and Emission Source Regions

    NASA Astrophysics Data System (ADS)

    Lowry, D.; Fisher, R. E.; Lanoisellé, M.; Nisbet, E. G.

    2011-12-01

    Large networks of cavity ring-down spectroscopy (CRDS) instruments to measure mixing ratios of greenhouse gases are currently being developed in wealthier populated regions. However, many major natural source regions are remote from wealthy nations, and there are often great logistical obstacles to setting up and maintaining continuous monitoring of these sources. Thus flux assessments in many regions of the world rely on a few unequally spaced 'background' stations, plus satellite interpolation. This limited network can be supplemented to great effect by methane isotope data to identify emissions from different sources and their region of emission. Ideally both carbon and hydrogen isotope signatures are needed for maximum separation of source groups. However the more complex analytical procedure and larger sample requirements for D/H measurement mean that resources are currently better utilized for high-precision carbon isotope (δ13C) measurement of methane. In particular, NOAA maintains an invaluable isotopic measurement network. Since 2008 the greenhouse gas group at Royal Holloway and partners have been measuring methane in and around the Atlantic region, currently measuring mixing ratios by CRDS at Barra (Scotland), Ascension, and E. Falklands. In addition, regular flask sampling for δ13C of CH4 is underway at these sites, plus Cape Point, South Africa, and Ny-Alesund, Spitzbergen, supplemented by collection at Sable Island, Canada, and sampling campaigns on-board the British Antarctic Survey ship, RRS James Clark Ross, between 50°S and 80°N. Methane mixing ratio and δ13C, when combined with back trajectory analysis, help to identify sources over which the air masses have passed. While the South Atlantic shows little N-S variation in δ13C (predominantly -47.2 to -46.8%) it is punctuated by emission plumes from sources in South America and Africa, and although infrequently sampled, they can in some instances be compared with the isotopic characteristics

  3. PM 2.5 source profiles for black and organic carbon emission inventories

    NASA Astrophysics Data System (ADS)

    Chow, Judith C.; Watson, John G.; Lowenthal, Douglas H.; Antony Chen, L.-W.; Motallebi, Nehzat

    2011-10-01

    Emission inventories for black or elemental (BC or EC) and organic (OC) carbon can be derived by multiplying PM 2.5 emission estimates by mass fractions of these species in representative source profiles. This study examines the variability of source profiles and its effect on EC emission estimates. An examination of available profiles shows that EC and OC ranged from 6-13% and 35-40% for agricultural burning, 4-33% and 22-68% for residential wood combustion, 6-38% and 24-75% for on-road gasoline vehicles, and 33-74% and 20-47% for on-road heavy-duty diesel vehicles, respectively. Source profiles from the U.S. EPA SPECIATE data base were applied to PM 2.5 emissions from the U.S. EPA National Emissions Inventory for 2005. The total estimated EC emissions of 432 Gg yr -1 was apportioned as 42.5% from biomass burning, 35.4% from non-road mobile sources, 15% from on-road mobile sources, 5.4% from fossil fuel (e.g., coal, oil, and natural gas) combustion in stationary sources, 1% from other stationary industrial sources, and 0.5% from fugitive dust. Considering the variability in available source profiles, BC emission estimates for major sources such as open fires and non-road diesels ranged from 42 to 133 (a factor of 3) and 25 to 100 (a factor of 4) Gg yr -1, respectively. The choice of source profiles can be a major source of uncertainty in national and global BC/EC emission inventories.

  4. Improving source identification of fine particles in a rural northeastern U.S. area utilizing temperature-resolved carbon fractions

    NASA Astrophysics Data System (ADS)

    Kim, Eugene; Hopke, Philip K.

    2004-05-01

    Integrated, 24-hour, ambient PM2.5 (particulate matter ≤2.5 μm in aerodynamic diameter) samples were collected at a rural monitoring site in Brigantine, New Jersey, on Wednesdays and Saturdays using Interagency Monitoring of Protected Visual Environments (IMPROVE) samplers. Particulate carbon was analyzed using the thermal optical reflectance method, which divides carbon into four organic carbon (OC), pyrolyzed organic carbon (OP), and three elemental carbon (EC) fractions. A total of 910 samples and 36 variables collected between March 1992 and May 2001 were analyzed using positive matrix factorization, and 11 sources were identified: sulfate-rich secondary aerosol I (48%), gasoline vehicle (13%), aged sea salt (8%), sulfate-rich secondary aerosol II (7%), nitrate-rich secondary aerosol (6%), sulfate-rich secondary aerosol III (5%), sea salt (4%), airborne soil (4%), diesel emission (3%), incinerator (2%), and oil combustion (1%). Temperature-resolved carbon fractions enhanced source separations including three sulfate-rich secondary aerosols and two traffic-related sources that had different abundances of carbon fractions different between sources. Conditional probability functions using surface wind data and deduced source contributions aid in the identification of local sources. Potential source contribution function (PSCF) analysis shows the regional influence of sulfate-rich secondary aerosols. Backward trajectories indicate that the highly elevated airborne soil impacts at the monitoring site were likely caused by either Asian or Sahara dust storms.

  5. Adding Value.

    ERIC Educational Resources Information Center

    Orsini, Larry L.; Hudack, Lawrence R.; Zekan, Donald L.

    1999-01-01

    The value-added statement (VAS), relatively unknown in the United States, is used in financial reports by many European companies. Saint Bonaventure University (New York) has adapted a VAS to make it appropriate for not-for-profit universities by identifying stakeholder groups (students, faculty, administrators/support personnel, creditors, the…

  6. Spatial Distribution, Sources, and Age of Sedimentary Carbon in Lake Malawi, East Africa

    NASA Astrophysics Data System (ADS)

    Kruger, B. R.; Minor, E. C.; Werne, J. P.; Johnson, T. C.

    2011-12-01

    Currently, the source of organic matter to surface sediments of Lake Malawi (East Africa) is unclear; studies of offshore north-basin cores (363 m to 403 m water depth) have produced conflicting results regarding the proportion of aquatic versus terrestrial organic carbon (OC) contained in these sediments. To address this question, ten multi-cores were recovered from the north basin of Lake Malawi along a transect that follows a major river delta into the lake's deep basin, from 82 m to 386 m water depth. Bulk surface sediment data indicate that while the C/N ratio of organic matter decreases with distance from shore (ranging from 9.8 to 8.3, R2 = 0.58), and stable carbon isotope values become increasingly 13C-depleted (ranging from -21.65 to -25.25, R2 = 0.80), the concentration of OC (wt %) generally increases (ranging from 1.9% to 4.5%, R2 = 0.77). These combined trends suggest substantial carbon contribution from aquatic sources, particularly in the deeper-water, open-lake sites. This trend is supported by preliminary biomarker results. N-alcohols from surface sediments were isolated and grouped into aquatically sourced (C20, C22, and C24) and terrestrially sourced (C28 and C30) fractions for quantification as well as radiocarbon dating. N-alcohol abundance results indicate consistent contribution of terrestrial n-alcohols to surface sediments as distance from shore increases, while aquatic n-alcohol input appears to increase. Preliminary results from compound class specific radiocarbon dating indicate that aquatically sourced n-alcohols isolated from surface sediments may be significantly aged relative to bulk surface sediment.

  7. Biological and geological carbon sources in a steppe ecosystem in the SE of Spain

    NASA Astrophysics Data System (ADS)

    Rey, Ana; Belelli-Marchesini, Luca; Etiope, Giuseppe; Papale, Dario

    2015-04-01

    Widespread recognition of the importance of soil CO2 efflux as a major source of CO2 to the atmosphere has led to active research. A large soil respiration database and recent reviews have compiled data, methods, and current challenges. However, some processes of soil CO2 production and transport have not received enough attention. In the current soil respiration literature it has mostly been assumed that soil CO2 efflux is the result of biological processes (i.e. soil respiration) but recent studies demonstrate that pedochemical and geological processes, such as geothermal and volcanic CO2 degassing, are potentially important in some areas. We carried out a study in the SE of Spain that showed that wind was the main determinant of the net ecosystem carbon balance with anomalous CO2 fluxes that could not be attributed to biological activity alone and hypothesised the presence of a geo-CO2 source given that the site was located over an tectonic fault in an ancient volcanic area (Rey et al., 2012a). After proving the existence of a geological CO2 source (Rey et al., 2013b), we developed a methodology using parameters of the boundary layer to derive biological (FBIO) and geological (FGEO) components and then partitioned FBIO into gross primary productivity and ecosystem respiration (Rey et al. 2013). We estimated that ca 50% of the carbon emitted annually came from geological sources. Thus these sources can be very important in some regions and confound our estimates of the CO2 exchange attributed to biological activity. This study highlights the need to improve our understanding of the processes involved in ecosystem and soil CO2 efflux and to standardise current methodologies among the scientific community. The complexity of the CO2 production and transport mechanisms will require a much better interdisciplinary integration (Rey 2014). This should be a research priority given the importance of this flux in the global carbon budget.

  8. Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments

    NASA Astrophysics Data System (ADS)

    Pearson, Ann; Hurley, Sarah J.; Walter, Sunita R. Shah; Kusch, Stephanie; Lichtin, Samantha; Zhang, Yi Ge

    2016-05-01

    Thaumarchaeota, the major sources of marine glycerol dibiphytanyl glycerol tetraether lipids (GDGTs), are believed to fix the majority of their carbon directly from dissolved inorganic carbon (DIC). The δ13C values of GDGTs (δ13CGDGT) may be powerful tools for reconstructing variations in the ocean carbon cycle, including paleoproductivity and water mass circulation, if they can be related to values of δ13CDIC. To date, isotope measurements primarily are made on the C40 biphytane skeletons of GDGTs, rather than on complete tetraether structures. This approach erases information revealed by the isotopic heterogeneity of GDGTs within a sample and may impart an isotopic fractionation associated with the ether cleavage. To circumvent these issues, we present δ13C values for GDGTs from twelve recent sediments representing ten continental margin locations. Samples are purified by orthogonal dimensions of HPLC, followed by measurement of δ13C values by Spooling Wire Microcombustion (SWiM)-isotope ratio mass spectrometry (IRMS) with 1σ precision and accuracy of ±0.25‰. Using this approach, we confirm that GDGTs, generally around -19‰, are isotopically "heavy" compared to other marine lipids. However, measured δ13CGDGT values are inconsistent with predicted values based on the 13C content of DIC in the overlying water column and the previously-published biosynthetic isotope fractionation for a pure culture of an autotrophic marine thaumarchaeon. In some sediments, the isotopic composition of individual GDGTs differs, indicating multiple source inputs. The data appear to confirm that crenarchaeol primarily is a biomarker for Thaumarchaeota, but its δ13C values still cannot be explained solely by autotrophic carbon fixation. Overall the complexity of the results suggests that both organic carbon assimilation (ca. 25% of total carbon) and multiple source(s) of exogenous GDGTs (contributing generally <30% of input to sediments) are necessary to explain the observed

  9. Badlands and the Carbon cycle: a significant source of petrogenic organic carbon in rivers and marine environments?

    NASA Astrophysics Data System (ADS)

    Copard, Yoann; Eyrolle-Boyer, Frederique; Radakovitch, Olivier; Poirel, Alain; Raimbault, Patrick; Lebouteiller, Caroline; Gairoard, Stéphanie; Di-Giovanni, Christian

    2016-04-01

    A key issue in the study of carbon biogeochemical cycle is to well constrain each carbon origin in term of fluxes between all C-reservoirs. From continental surfaces to oceans, rivers convey particulate organic carbon originate from the biomass (biospheric OC) and /or from the sedimentary rocks (petrogenic OC). Existence and importance of this petrogenic OC export to oceans was debated for several decades (see Copard et al., 2007 and ref.), but it is now assumed that 20% of the global carbon export to ocean has a geological origin (Galy et al., 2015). The main current challenge is to constrain the major contributors to this petrogenic OC flux. Amongst the expected sedimentary sources of petrogenic OC in rivers, sedimentary rocks forming badlands can be rightly considered as some viable candidates. Indeed these rocks show a strong erosion rate, may exceed 50 kt km-2 y-1 and in addition, shales, marls and argillaceous rocks, frequently forming badlands (see Nadal-Romero et al., 2011 for the Mediterranean area), contain a significant amount of petrogenic OC (frequently over 0.50 wt. %, Ronov and Yaroshevsky 1976). Our work illustrates the contribution of badlands, mainly distributed within the Durance catchment (a main tributary of the Rhône river), in the petrogenic OC export to the Mediterranean Sea. The approach is based on (i) the use of previous and new data on radiogenic carbon, (ii) bulk organic geochemistry (Rock-Eval pyrolysis), (iii) optical quantification of particulate OM (palynofacies), performed on suspended sediments from the Durance, the Rhône rivers and from small rivers draining the badlands. A mean erosion rate of badlands, previously calculated for instrumented catchments (SOERE Draix-Bléone, Graz et al., 2012) was also applied to the badlands disseminated within the Durance catchment. These different methodologies converge to a petrogenic contribution of the OC export to the Mediterranean Sea close to 30 %. Badlands from the Durance catchment

  10. Carbon Sources and Sinks in Freshwater and Estuarine Environments of the Arctic Coastal Plain.

    NASA Astrophysics Data System (ADS)

    Lougheed, V.; Tarin, G.; Tweedie, C. E.

    2015-12-01

    The source, fate and transport of terrestrially derived carbon as it moves through multiple landscape components (i.e. groundwater, rivers, ponds, wetlands, lakes, lagoons) on a path from land to sea in permafrost-dominated watersheds is poorly understood. Critical to our understanding of Arctic carbon budgets are small, but numerically abundant watersheds that dominate the landscape of the Alaskan Arctic Coastal Plain (ACP), which appears to be changing rapidly in response to climate warming and other environmental changes. This study was designed to understand the contribution of freshwater ecosystems in the Arctic to regional carbon budgets. pCO2 was logged continually in ponds, lakes and streams sites near Barrow, AK and recorded across transects in Elson Lagoon, a coastal lagoon on the Beaufort coast. Average pCO2 of the pond over 2 weeks in August (1196 μatm) was double that of lakes and streams, and four times higher than Elson Lagoon (216 μatm); thus, the Lagoon was acting as a small sink while the pond was a substantial source of CO2 to the atmosphere. The uptake of CO2 in Elson Lagoon, combined with an oversaturation of O2, may be due to enhanced primary productivity caused by freshwater nutrient inputs. Conversely, pCO2, chlorophyll-a and DOC increased substantially in the pond after a large rain event, suggesting that run-off introduced large amounts of terrestrially-derived carbon from groundwater. Further studies are required to elucidate the fate and transport of carbon in the numerically abundant smaller watersheds of the Arctic.

  11. Mass absorption efficiency of elemental carbon for source samples from residential biomass and coal combustions

    NASA Astrophysics Data System (ADS)

    Shen, Guofeng; Chen, Yuanchen; Wei, Siye; Fu, Xiaofang; Zhu, Ying; Tao, Shu

    2013-11-01

    Optical properties of particulate matter are of growing concern due to their complex effects on atmospheric visibility and local/regional climate change. In this study, mass absorption efficiency (MAE) of elemental carbon (EC) was measured for source emission samples obtained from the residential combustions of solid fuels using a thermal-optical carbon analyzer. For source samples from residential wood, crop straw, biomass pellet and coal combustions, MAE of EC measured at 650 nm, were 3.1 (2.4-3.7 as 95% Confidence Interval), 6.6 (5.5-7.6), 9.5 (6.7-12), and 7.9 (4.8-11) m2 g-1, respectively. MAE of EC for source sample from the wood combustion was significantly lower than those for the other fuels, and MAE of EC for coal briquette appeared to be different from that of raw chunk. MAE values of the investigated source emission samples were found to correlate with OC/EC ratio, and a significantly positive correlation was found between MAE and particle-bound polycyclic aromatic hydrocarbons (pPAHs), though pPAHs contributed a relatively small fraction of OC.

  12. Source Apportionment of Elemental Carbon in Beijing, China: Insights from Radiocarbon and Organic Marker Measurements.

    PubMed

    Zhang, Yan-Lin; Schnelle-Kreis, Jürgen; Abbaszade, Gülcin; Zimmermann, Ralf; Zotter, Peter; Shen, Rong-rong; Schäfer, Klaus; Shao, Longyi; Prévôt, André S H; Szidat, Sönke

    2015-07-21

    Elemental carbon (EC) or black carbon (BC) in the atmosphere has a strong influence on both climate and human health. In this study, radiocarbon ((14)C) based source apportionment is used to distinguish between fossil fuel and biomass burning sources of EC isolated from aerosol filter samples collected in Beijing from June 2010 to May 2011. The (14)C results demonstrate that EC is consistently dominated by fossil-fuel combustion throughout the whole year with a mean contribution of 79% ± 6% (ranging from 70% to 91%), though EC has a higher mean and peak concentrations in the cold season. The seasonal molecular pattern of hopanes (i.e., a class of organic markers mainly emitted during the combustion of different fossil fuels) indicates that traffic-related emissions are the most important fossil source in the warm period and coal combustion emissions are significantly increased in the cold season. By combining (14)C based source apportionment results and picene (i.e., an organic marker for coal emissions) concentrations, relative contributions from coal (mainly from residential bituminous coal) and vehicle to EC in the cold period were estimated as 25 ± 4% and 50 ± 7%, respectively, whereas the coal combustion contribution was negligible or very small in the warm period. PMID:26114602

  13. Global Transcriptomic Analysis of Desulfovibrio vulgaris Grown on Different Carbon Sources

    SciTech Connect

    Zhang, Weiwen; Culley, David E.; Scholten, Johannes C.; Hogan, Mike; Vitiritti, Luigi; Brockman, Fred J.

    2006-02-01

    Abstract Whole-genome microarrays of Desulfovibrio vulgaris were used to determine relative transcript levels in cells grown to exponential or stationary phase on a minimal medium containing either lactate or formate as electron donor. The results showed that 158 and 477 genes were differentially expressed when comparing exponential to stationary phase in lactate- or formate-based media, respectively; and 505 and 355 genes were responsive to the electron donor used at exponential or stationary phase, respectively. Functional analyses suggested that genes differentially regulated were involved in almost every aspect of cellular metabolism, with the genes involved in protein synthesis, carbon, and energy metabolism being the most regulated. The results suggested that hynAB-1 might function as a primary periplasmic hydrogenase responsible for oxidation of H2 inked to the proton gradient in lactate-based medium, while several periplasmic hydrogenases including hynAB-1 and hyd might carry out this role in formate-based medium. The results also indicated the proton gradient pathway catalyzed by alcohol dehydrogenase and heterodisulfide reductase might be actively functioning for ATP synthesis in D. vulgaris. The possible pathways for ethanol generation from lactate and formate metabolism were also discussed. In addition, hierarchical clustering analysis using expression data across carbon sources and growth phases allowed the identification of the common change specifically associated with the exponential to stationary phase transition, and that specifically associated with the carbon source change from lactate to formate. The study provides the first global description and a functional interpretation of transcriptomic response to growth phase and carbon source in D. vulgaris.

  14. Using U-series Isotopes To Determine Sources Of Pedogenic Carbonates: Comparison Of Natural And Agricultural Soils In The Semi-arid Southern New Mexico And Western Texas

    NASA Astrophysics Data System (ADS)

    Nyachoti, S. K.; Ma, L.; Borrok, D. M.; Jin, L.; Tweedie, C. E.

    2012-12-01

    Pedogenic carbonates commonly precipitate from infiltrating soil water in arid and semi-arid lands and are observed in soils of southern New Mexico and western Texas. These carbonates could form an impermeable layer in the soil horizons impairing water infiltration, thus affecting crop growth and yield. It is important to determine the source of C and Ca in these carbonates and to understand conditions favoring their formation, kinetics and precipitation rates. In this study, major elements and U-series isotopes in bulk calcic soils, and weak acid leachates and residues were measured from one irrigated alfalfa site in the Hueco basin near El Paso, TX and one natural shrubland site on the USDA Jornada experimental range in southern NM. The combined geochemical and isotopic results allow us to determine the formation ages of the carbonates; investigate the mobility of U, Th, and major elements in these soils; and infer for the effects of irrigation on carbonate formation in agricultural soils. Our results show distinctive U and Th isotope systems in the two soil profiles analyzed. For example, (234U/238U) ratios in the Jornada bulk soils decrease from ~1.01 to 0.96 towards the surface, consistent with a preferential loss of 234U over 238U during chemical weathering. At the Jornada site, (238U/232Th) ratios decrease while (230Th/238U) increase towards the surface, consistent with a general depletion of U and the immobility of Th in the natural soils. By contrast at the Alfalfa site, (234U/238U) ratios of bulk soils increase from ~ 0.97 to 1.02 towards the surface, suggesting an additional source of external uranium, most likely the irrigation water from Rio Grande which has a (234U/238U) ratio of ~ 1.5 near El Paso. The (238U/232Th) and (230Th/238U) ratios also imply leaching of U from shallower soils but precipitation in greater depths at Alfalfa site; suggests that partial dissolution and re-precipitation of younger carbonates occur. Calculated carbonate ages from U

  15. a Study of the Transport, Sources, and Sinks of Atmospheric Carbon Dioxide Using a General Circulation Model

    NASA Astrophysics Data System (ADS)

    Denning, A. Scott

    Prognostic calculation of the mixing ratio of carbon dioxide (CO_2) was added to the Colorado State University (CSU) GCM. CO _2 is represented as a set of 16 passive atmospheric tracers, each of which represents the effect of a single source or sink of atmospheric CO_2 . All but one have unique maps of seasonally varying fluxes at the Earth's surface which are prescribed as boundary conditions in the simulation. One of the tracers, representing the effects of biologically driven CO_2 exchange at the land surface, has boundary fluxes calculated on-line using the Simple Biosphere (SiB2) model. The GCM was run on a six minute time step that (unlike previous studies of CO_2 transport) fully resolves the diurnal cycle of atmospheric circulation. The concentration of each tracer was initialized to be globally uniform, and the tracer calculation was integrated for 14 simulated years. Tracers with purely seasonal sources and sinks (representing seasonal photosynthesis and respiration) exhibited much stronger meridional gradients than previously simulated, because of enhanced correlations between boundary fluxes and simulated vertical mixing due to the inclusion of a variable-depth, well mixed, planetary boundary layer in the CSU GCM. The carbon budget of the atmosphere is expressed as a linear combination of the prescribed surface flux maps, with coefficients calculated by fitting the simulated tracer concentrations to observations. The best fit to observations was obtained for scenarios with a global ocean sink of about 0.9 times 10^ {12} kg of carbon yr^1 (0.9 Gt C yr^{-1}) and a sink of between 2 and 3 Gt C yr^{ -1} in the boreal forest. Tropical deforestation was calculated as a residual in this study because it has very little influence on the meridional concentration gradient, and was smaller than simulated in most previous studies (0 to 0.6 Gt C yr^{-1}). Diurnal variability of CO_2 in the lower troposphere was much more realistic as simulated in the CSU GCM than in

  16. Importance of seagrass as a carbon source for heterotrophic bacteria in a subtropical estuary (Florida Bay)

    NASA Astrophysics Data System (ADS)

    Williams, Clayton J.; Jaffé, Rudolf; Anderson, William T.; Jochem, Frank J.

    2009-11-01

    A stable carbon isotope approach was taken to identify potential organic matter sources incorporated into biomass by the heterotrophic bacterial community of Florida Bay, a subtropical estuary with a recent history of seagrass loss and phytoplankton blooms. To gain a more complete understanding of bacterial carbon cycling in seagrass estuaries, this study focused on the importance of seagrass-derived organic matter to pelagic, seagrass epiphytic, and sediment surface bacteria. Particulate organic matter (POM), seagrass epiphytic, seagrass ( Thalassia testudinum) leaf, and sediment surface samples were collected from four Florida Bay locations with historically different organic matter inputs, macrophyte densities, and primary productivities. Bulk (observed and those reported previously) and compound-specific bacterial fatty acid δ 13C values were used to determine important carbon sources to the estuary and benthic and pelagic heterotrophic bacteria. The δ 13C values of T. testudinum green leaves with epiphytes removed ranged from -9.9 to -6.9‰. Thalassia testudinum δ 13C values were significant more enriched in 13C than POM, epiphytic, and sediment samples, which ranged from -16.4 to -13.5, -16.2 to -9.6, and -16.7 to -11.0‰, respectively. Bacterial fatty acid δ 13C values (measured for br14:0, 15:0, i15:0, a15:0, br17:0, and 17:0) ranged from -25.5 to -8.2‰. Assuming a -3‰ carbon source fractionation from fatty acid to whole bacteria, pelagic, epiphytic, and sediment bacterial δ 13C values were generally more depleted in 13C than T. testudinum δ 13C values, more enriched in 13C than reported δ 13C values for mangroves, and similar to reported δ 13C values for algae. IsoSource mixing model results indicated that organic matter derived from T. testudinum was incorporated by both benthic and pelagic bacterial communities, where 13-67% of bacterial δ 13C values could arise from consumption of seagrass-derived organic matter. The IsoSource model

  17. Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.

    2016-02-01

    A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  18. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    PubMed

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4. PMID:26932119

  19. A fine-focusing x-ray source using carbon-nanofiber field emitter

    SciTech Connect

    Sugimoto, W.; Sugita, S.; Sakai, Y.; Goto, H.; Watanabe, Y.; Ohga, Y.; Kita, S.; Ohara, T.

    2010-08-15

    A fine-focusing x-ray source has been constructed employing a field electron emitter prepared by growing carbon-nanofibers (CNFs) on a metal tip. The x-ray source is composed of a CNF field electron emitter, an electrostatic lens, two magnetic lenses, and a W-target for generating x-rays by electron impact. The CNFs provided field electrons with a current density of J{approx}5x10{sup 9} A/m{sup 2}, which was evaluated with the aid of Fowler-Nordheim theory. The electron beam extracted from the CNF emitter was accelerated to the energies of E=10-25 keV, and then focused by the lenses. By recording the x-ray images of test charts, the optimum resolution of the x-ray source was estimated to be approximately D{sub x}=0.5 {mu}m.

  20. Carbon sources supporting benthic mineralization in mangrove and adjacent seagrass sediments (Gazi Bay, Kenya)

    NASA Astrophysics Data System (ADS)

    Bouillon, S.; Moens, T.; Dehairs, F.

    2004-08-01

    The origin of carbon substrates used by in situ sedimentary bacterial communities was investigated in an intertidal mangrove ecosystem and in adjacent seagrass beds in Gazi bay (Kenya) by δ13C analysis of bacteria-specific PLFA (phospholipid fatty acids) and bulk organic carbon. Export of mangrove-derived organic matter to the adjacent seagrass-covered bay was evident from sedimentary total organic carbon (TOC) and δ13CTOC data. PLFA δ13C data indicate that the substrate used by bacterial communities varied strongly and that exported mangrove carbon was a significant source for bacteria in the adjacent seagrass beds. Within the intertidal mangrove forest, bacterial PLFA at the surface layer (0-1 cm) typically showed more enriched δ13C values than deeper (up to 10 cm) sediment layers, suggesting a contribution from microphytobenthos and/or inwelled seagrass material. Under the assumption that seagrasses and mangroves are the dominant potential end-members, the estimated contribution of mangrove-derived carbon to benthic mineralization in the seagrass beds (16-74%) corresponds fairly well to the estimated contribution of mangrove C to the sedimentary organic matter pool (21-71%) across different seagrass sites. Based on these results and a compilation of literature data, we suggest that allochtonous carbon trapped in seagrass beds may often represent a significant fraction of the substrate for benthic mineralization - both in cases where seagrass C dominates the sediment TOC pool and in cases where external inputs are significant. Hence, it is likely that community respiration data systematically overestimate the role of mineralization in the overall seagrass C budget.

  1. Quantifying Contemporary Terrestrial Carbon Sources and Sinks in the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Liu, S.; Loveland, T.

    2003-12-01

    U.S. land likely accounts for a significant portion of the unidentified global carbon sink, although the magnitude is highly uncertain. The ultimate goal of this study is to quantify the contemporary temporal and spatial patterns of carbon sources and sinks in the conterminous United States from the early 1970s to 2000, and to explain the mechanisms that cause the variability and changes. Because of the difficulty and massive cost for developing land cover change databases for the conterminous United States, we adopt an ecoregion-based sampling approach. Carbon dynamics within thousands of 20 km by 20 km or 10 km by 10 km sampling blocks, stratified by Omernik Level III ecoregions, are simulated using the General Ensemble Biogeochemical Modeling System at the spatial resolution of 60 m by 60 m. The land use change data, providing unprecedented accuracy and consistency, are derived from Landsat imagery for five time points (nominally 1972, 1980, 1986, 1992, and 2000). Mechanisms have been implemented to assimilate data from key national benchmark databases (including the USDA Forest Service­_s Forest Inventory and Analysis data and the USDA­_s agricultural census data). The dynamics of carbon stocks in vegetation, soil, and harvested wood materials are quantified. Results from three ecoregions (i.e., Southeastern Plains, Piedmont, and Northern Piedmont) indicated that the carbon sink strength has been decreasing from the 1970s to 2000. The relative contribution of biomass accumulation to the sink decreased during this period, while those of soil organic carbon and harvested wood materials increased.

  2. Fossil and Nonfossil Sources of Organic and Elemental Carbon Aerosols in the Outflow from Northeast China.

    PubMed

    Zhang, Yan-Lin; Kawamura, Kimitaka; Agrios, Konstantinos; Lee, Meehye; Salazar, Gary; Szidat, Sönke

    2016-06-21

    Source quantification of carbonaceous aerosols in the Chinese outflow regions still remains uncertain despite their high mass concentrations. Here, we unambiguously quantified fossil and nonfossil contributions to elemental carbon (EC) and organic carbon (OC) of total suspended particles (TSP) from a regional receptor site in the outflow of Northeast China using radiocarbon measurement. OC and EC concentrations were lower in summer, representing mainly marine air, than in other seasons, when air masses mostly traveled over continental regions in Mongolia and northeast China. The annual-mean contribution from fossil-fuel combustion to EC was 76 ± 11% (0.1-1.3 μg m(-3)). The remaining 24 ± 11% (0.03-0.42 μg m(-3)) was attributed to biomass burning, with slightly higher contribution in the cold period (∼31%) compared to the warm period (∼21%) because of enhanced emissions from regional biomass combustion sources in China. OC was generally dominated by nonfossil sources, with an annual average of 66 ± 11% (0.5-2.8 μg m(-3)), approximately half of which was apportioned to primary biomass-burning sources (34 ± 6%). In winter, OC almost equally originated from primary OC (POC) emissions and secondary OC (SOC) formation from fossil fuel and biomass-burning sources. In contrast, summertime OC was dominated by primary biogenic emissions as well as secondary production from biogenic and biomass-burning sources, but fossil-derived SOC was the smallest contributor. Distinction of POC and SOC was performed using primary POC-to-EC emission ratios separated for fossil and nonfossil emissions. PMID:27203471

  3. Changes in Arctic black carbon concentrations, deposition, transport, and sources during recent centuries

    NASA Astrophysics Data System (ADS)

    McConnell, J. R.; Dahl-Jensen, D.; Flanner, M. G.; Fritzsche, D.; Kreutz, K. J.; Lamarque, J.; Lawrence, R.; Maselli, O.; Nolan, M.; Opel, T.; Pasteris, D.; Sigl, M.; Steffensen, J.

    2011-12-01

    Rates of climate change in the Arctic are among the highest on Earth. Warming from increased carbon dioxide and other greenhouse gas concentrations is the long-term driver of Arctic climate change, but reductions in short-lived aerosols such as black carbon (BC) that contribute to climate warming offer the possibility of slowing Arctic climate change in the near-term. BC in snow and water is especially important to climate forcing in the Arctic because of its impact on albedo. Detailed understanding of past and present concentrations, deposition rates, sources, and transport pathways of BC to and within the Arctic is critical, however, to the design of effective mitigation policies. With their short lifetimes in the atmosphere, aerosol concentrations and deposition in the Arctic are dominated by regional, rather than global, sources, transport processes, and pathways. Such aerosols consist of continental dust, sea spray, particulates including BC and organic matter from combustion processes, sulfur and trace metals from volcanic emissions, and, during recent centuries, industrial activities. Further, intra- and inter-annual variability of aerosol deposition is large. As a result, spatially distributed measurements of historical, high-time-resolution records with a broad range of analytes are required to understand aerosol concentrations, sources, and variability while providing adequate information for evaluating global circulation, snowpack radiation, and other modeling results. Arrays of ice cores from polar and alpine glaciers and ice sheets offer the potential to provide spatially distributed historical records with very high time resolution and a broad spectrum of aerosols and source tracers, particularly when using a continuous flow analytical system. Here we present and discuss recent findings from measurements of BC and related source tracers in a developing array of ice cores from around the Arctic. We use 1850 to 2000 general circulation modeling to

  4. Serpentinites used for carbon dioxide sequestration : a possible economic source for PGE

    SciTech Connect

    Porter, K. A.

    2001-01-01

    The platinum-group elements (PGE: Ru, Rh, Pd, Os, Ir, Pt) are among the most valuable metals in the world. Their myriad uses in electronics, jewelry, catalysis, and the automotive industry have increased PGE demand several fold in the last few decades, but the past few years have seen PGE supply largely unable to keep up with the increasing demand. Although the PGE are found in many types of rock bodies, in most cases they are present in such low concentrations that it is not economically feasible to extract them. The few economically mineable deposits generally fall into two categories: layered ultramafic intrusive deposits, such as the Bushveld Complex in South Africa, which contain PGE-bearing ore veins; and copper/nickel-bearing veins, such as the Norilsk-Talnakh District in Russia, in which the PGE are extracted as a byproduct of Cu/Ni mining. Only one economic PGE deposit exists in the United States (the Stillwater Complex in Montana), and it is small compared to the Russian and South African deposits (which supply most of the world's PGE needs). The recent interest in the use of serpentinites and ultramafic rocks as possible reservoirs for carbon dioxide sequestration has opened the door to another possible economic source for the PGE. Theoretically, the magnesium silicates in the ultramafic rocks and serpentinites can be reacted with carbon dioxide (either from the air or as a waste stream from a fossil fuel plant) to produce thermodynamically and geologically stable magnesium carbonates, which can be easily disposed of. The deposits being investigated for this process are located throughout the world; there are several in the U.S. alone. The PGE concentrations in these deposits are fairly low, and by themselves the deposits are not economically feasible sources for the PGE. However, part of the proposed carbonation process requires the crushing and magnetic separation of the rocks; the non-magnetic fraction is used for carbonation, while the magnetic

  5. Preparation and Physicochemical Evaluation of Controlled-release Carbon Source Tablet for Groundwater in situ Denitrification

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kang, J. H.; Yeum, Y.; Han, K. J.; Kim, D. W.; Park, C. W.

    2015-12-01

    Nitric nitrogen could be the one of typical pollution source such asNO3-through domestic sewage, livestock and agricultural wastewater. Resident microflorain aquifer has known to remove the nitric nitrogen spontaneously following the denitration process with the carbon source (CS) as reactant. However, it could be reacted very slowly with the rack of CS and there have been some studies for controlled addition of CS (Ref #1-3). The aim of this study was to prepare the controlled-release carbon source (CR-CS) tablet and to evaluate in vitro release profile for groundwater in situ denitrification. CR-CS tablet could be manufactured by direct compression method using hydraulic laboratory press (Caver® 3850) with 8 mm rounded concave punch/ die.Seven kinds of CR-CS tablet were prepared to determine the nature of the additives and their ratio such as sodium silicate, dicalcium phosphate, bentonite and sand#8.For each formulation, the LOD% and flowability of pre-mixed powders and the hardness of compressed tablets were analyzed. In vitro release study was performed to confirm the dissolution profiles following the USP Apparatus 2 method with Distilled water of 900mL, 20 °C. As a result, for each lubricated powders, they were compared in terms of ability to give an acceptable dry pre-mixed powder for tableting process. The hardness of the compressed tablets is acceptable whatever the formulations tested. After in vitro release study, it could confirm that the different formulations of CR-CS tablet have a various release rate patterns, which could release 100% at 3 hrs, 6 hrs and 12 hrs. The in vitro dissolution profiles were in good correlation of Higuchi release kinetic model. In conclusion, this study could be used as a background for development and evaluation of the controlled-release carbon source (CR-CS) tablet for the purification of groundwater following the in situ denitrification.

  6. Preliminary identification of ground-water nitrate sources using nitrogen and carbon stable isotopes, Kansas

    USGS Publications Warehouse

    Townsend, M.A.; Macko, S.A.

    2007-01-01

    Increasing nitrate-N in ground water is a problem in areas with limited ground-water supplies, such as central Kansas. Nitrate-N concentrations in ground water in the study area in Ellis County range from 0.9 to 26 mg/L. Calculated mean values observed in soil cores are 1.2-15 mg/kg. The ??15N signatures of the ground waters are more enriched (+16.8 to +28.7???) than those of the soils (+8.4 to +1 3.7???), strongly suggesting that nitrate-N sources are not from mineralized and labile nitrogen present in the unsaturated zone. Soil cores were collected near municipal wells to determine if soil nitrogen was a contributing source to the ground water. Increased ??15N of total nitrogen with depth suggests that microbial mineralization processes and possible denitrification or volatilization isotope enrichments have affected the observed ?? 15N signatures in the soil. However, the observed soil-nitrogen values are not of sufficient magnitude to explain the nitrate-N concentrations or associated ??15N values observed in the ground water. Stable carbon isotopes provide some supporting evidence that soils are not a major contributor to the observed nitrate-N concentration in the ground water. ?? 13C values of the dissolved organic carbon (DOC) in soils generally become more enriched with depth while corresponding ground-water ??13C (DOC) values are more depleted than in the overlying soils. Carbon isotope values of the soils are indicative of a C4 plant source that is enriched by microbial processes. The ??13C (DOC) of ground water indicates C3 values that may reflect impacts from animal-waste sources.

  7. Source apportionment of carbonaceous aerosols over South and East Asia using dual carbon isotopes

    NASA Astrophysics Data System (ADS)

    Gustafsson, O.; Kirillova, E. N.; Andersson, A.-; Kruså, M.; Sheesley, R. J.; Tiwari, S.-; Lee, M.; Chen, B.; Du, K.

    2012-12-01

    Emissions of black carbon (BC) and other components of carbonaceous aerosols affect both climate and health in South and East Asia, yet substantial uncertainties exist regarding their sources. The relative contribution to atmospheric BC from fossil fuel versus biomass combustion is important to constrain both to direct mitigation and as their different properties make their effects on climate forcing and respiratory health different. This study approached the sourcing challenge by applying microscale radiocarbon measurements to aerosol particles collected in both source regions and at regional receptor observatories of both S Asia (New Delhi and the Maldives Climate Observatory) and of E Asia (Beijing, Shanghai, South China Coastal Observatory and the Korea Climate Observatory - Gosan, KCO-G, Jeju Island). The radiocarbon approach is ideally suited to this task as fossil sources are void of 14C whereas biomass combustion products hold a contemporary 14C signal. For S Asia, the 14C-based observations suggest that biomass combustion contributes half to two-thirds of the BC loading. In contrast, for E Asia, fossil fuel combustion account for four-fifths of the BC emitted from China. This source-diagnostic radiocarbon signal in the ambient aerosol over East Asia establishes a much larger role for fossil fuel combustion than suggested by all fifteen BC emission inventory models. There are also poor constraints on the sources of water-soluble organic carbon (WSOC), a large hydrophilic component of carbonaceous aerosols that enhances the propensity of aerosols to form clouds. In a 15-mo continuous campaign in S Asia, radiocarbon-based source apportionment of WSOC shows the dominance of biogenic/biomass combustion sources but also a substantial anthropogenic fossil-fuel contribution (about 20%). WSOC in E Asia reaching KCO-G were 50% from fossil sources. Aerosols reaching the Maldives after long-range over-ocean transport were enriched by 3-4‰ in δ13C-WSOC. This is

  8. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers.

    PubMed

    Li, Chaoliu; Bosch, Carme; Kang, Shichang; Andersson, August; Chen, Pengfei; Zhang, Qianggong; Cong, Zhiyuan; Chen, Bing; Qin, Dahe; Gustafsson, Örjan

    2016-01-01

    Combustion-derived black carbon (BC) aerosols accelerate glacier melting in the Himalayas and in Tibet (the Third Pole (TP)), thereby limiting the sustainable freshwater supplies for billions of people. However, the sources of BC reaching the TP remain uncertain, hindering both process understanding and efficient mitigation. Here we present the source-diagnostic Δ(14)C/δ(13)C compositions of BC isolated from aerosol and snowpit samples in the TP. For the Himalayas, we found equal contributions from fossil fuel (46±11%) and biomass (54±11%) combustion, consistent with BC source fingerprints from the Indo-Gangetic Plain, whereas BC in the remote northern TP predominantly derives from fossil fuel combustion (66±16%), consistent with Chinese sources. The fossil fuel contributions to BC in the snowpits of the inner TP are lower (30±10%), implying contributions from internal Tibetan sources (for example, yak dung combustion). Constraints on BC sources facilitate improved modelling of climatic patterns, hydrological effects and provide guidance for effective mitigation actions. PMID:27552223

  9. Sources of black carbon to the Himalayan–Tibetan Plateau glaciers

    PubMed Central

    Li, Chaoliu; Bosch, Carme; Kang, Shichang; Andersson, August; Chen, Pengfei; Zhang, Qianggong; Cong, Zhiyuan; Chen, Bing; Qin, Dahe; Gustafsson, Örjan

    2016-01-01

    Combustion-derived black carbon (BC) aerosols accelerate glacier melting in the Himalayas and in Tibet (the Third Pole (TP)), thereby limiting the sustainable freshwater supplies for billions of people. However, the sources of BC reaching the TP remain uncertain, hindering both process understanding and efficient mitigation. Here we present the source-diagnostic Δ14C/δ13C compositions of BC isolated from aerosol and snowpit samples in the TP. For the Himalayas, we found equal contributions from fossil fuel (46±11%) and biomass (54±11%) combustion, consistent with BC source fingerprints from the Indo-Gangetic Plain, whereas BC in the remote northern TP predominantly derives from fossil fuel combustion (66±16%), consistent with Chinese sources. The fossil fuel contributions to BC in the snowpits of the inner TP are lower (30±10%), implying contributions from internal Tibetan sources (for example, yak dung combustion). Constraints on BC sources facilitate improved modelling of climatic patterns, hydrological effects and provide guidance for effective mitigation actions. PMID:27552223

  10. Global warming alters carbon sink and source situation of the Tibetan lakes

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Ni, Q.; Yang, J.; Liu, W.

    2015-12-01

    Global warming would accelerate glacier retreat and permafrost degeneration on the Tibetan Plateau. The carbon stored in permafrost would be released to nearby lakes. However, little is known about how the carbon sink and source situation could be altered and what role the microbial community could play in Tibetan lakes in response to global warming. To fill this knowledge gap, six lakes (Erhai Lake, Qinghai Lake, Tuosu Lake, Gahai Lake, Xiaochaidan Lake and Lake Chaka) on the Tibetan Plateau were studied. In order to compare the seasonal variations in geochemistry and microbial communities, two sampling cruises were performed (May and July of 2015, corresponding to dry and wet seasons, respectively). For each lake, salinity, pH, dissolved organic carbon (DOC), total nitrogen (TN), and chlorophyll were measured for water samples, and salinity and total organic carbon (TOC) were measured for sediments. Chamber-based greenhouse gas flux measurement were performed on the surface of each lake. Microbial communities were analyzed by using MiSeq sequencing technique. The results showed that in response to seasonal variation (from dry to set season), lake surface increased by 5-20% (calculated on the basis of satellite data) and salinity decreased by 4-30% for the studied lakes, suggesting the studied lakes were diluted by precipitations. The DOC contents of the lake waters were almost stable for the studied lakes, whereas TN increased by more than 70% for the lakes with salinity less than 100g/L. In the meanwhile, chlorophyll content increased by more than 180% for lakes with low salinities (Erhai Lake, Qinghai Lake, and Tuosu Lake) and decreased by 17-94% for lakes with high salinities (Gahai Lake, Xiaoxhaidan Lake, and Lake Chaka. This indicated that desalination (precipitation plus glacier melt) would increase carbon fixation potential in Tibetan lakes. Microbial community analyses showed that microbial diversity increased in response to desalination. All in all

  11. Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides.

    PubMed

    Huang, Xiang-Feng; Liu, Jia-Nan; Lu, Li-Jun; Peng, Kai-Ming; Yang, Gao-Xiang; Liu, Jia

    2016-04-01

    Rhodosporidium toruloides AS 2.1389 was tested using different concentrations of acetic acid as a low-cost carbon source for the production of microbial lipids, which are good raw materials for biodiesel production. It grew and had higher lipid contents in media containing 4-20g/L acetic acid as the sole carbon source, compared with that in glucose-containing media under the same culture conditions. At acetic acid concentrations as high as 20g/L and the optimal carbon-to-nitrogen ratio (C/N) of 200 in a batch culture, the highest biomass production was 4.35g/L, with a lipid content of 48.2%. At acetic acid concentrations as low as 4g/L, a sequencing batch culture (SBC) with a C/N of 100 increased biomass production to 4.21g/L, with a lipid content of 38.6%. These results provide usable culture strategies for lipid production by R. toruloides AS 2.1389 when using diverse waste-derived volatile fatty acids. PMID:26851898

  12. Effects of auxiliary carbon sources and electron acceptors on methanogenic degradation of chlorinated phenols

    SciTech Connect

    Haeggblom, M.M.; Rivera, M.D.; Young, L.Y. )

    1993-08-01

    The authors studied the degradation of chlorinated phenols under methanogenic conditions by establishing enrichment cultures on 4-chlorophenol and 2,4-dichlorophenol with or without a supplementary substrate. p-Cresol was chosen as a nonchlorinated aromatic compound structurally similar to the chlorophenols, and propionate was chosen as a readily utilizable carbon source. 2,4-Dichlorophenol was dechlorinated to 4-chlorophenol, which was degraded without further detection of metabolites. The rates of chlorophenols and supplementary substrates. The addition of p-cresol or propionate as an auxiliary carbon source enhanced the rate of 4-chlorophenol degradation. Methanogenic cultures capable of ortho dechlorination were repeatedly subcultured by dilution into fresh media and refeeding of 2,6-dichlorophenol and either p-cresol or propionate as auxiliary substrates. 2,6-Dichlorophenol was sequentially dechlorinated to 2-chlorophenol and phenol and ultimately mineralized to methane and carbon dioxide. Cultures adapted to 2,4- or 2,6-dichlorophenol also readily dechlorinated other dichlorophenols containing an ortho chlorine. The alternative electron acceptors nitrate, sulfite, and thiosulfate completely inhibited dechlorination of 2,6-dichlorophenol, whereas sulfate slowed the dechlorination rate.

  13. Polyol synthesis in Aspergillus niger: influence of oxygen availability, carbon and nitrogen sources on the metabolism.

    PubMed

    Diano, A; Bekker-Jensen, S; Dynesen, J; Nielsen, J

    2006-08-01

    Polyol production has been studied in Aspergillus niger under different conditions. Fermentations have been run using high concentration of glucose or xylose as carbon source and ammonium or nitrate as nitrogen source. The growth of biomass, as freely dispersed hyphae, led to an increase of medium viscosity and hereby a decrease in mass transfer, especially oxygen transfer. The consequence was a decrease in DOT and the occurrence of a switch between fully aerobic conditions and oxygen-limited conditions. Metabolite quantification showed that polyols were the main metabolic products formed and represented up to 22% of the carbon consumed in oxygen-limited conditions. The polyol concentration and the polyol pattern depended strongly on the environmental conditions. This is due to a complex regulation of polyol production and to the fact that each polyol can fulfill different functions. In this study, erythritol, xylitol, and arabitol were produced as carbon storage compounds when the flux through the PP pathway exceeded the need in ribulose-5-phosphate for the biomass synthesis. Glycerol, erythritol, and xylitol seem to be involved in osmoregulation. Mannitol was produced when the catabolic reduction of charge was high. Its production involves the enzyme NAD-dependent mannitol-1-phosphate dehydrogenase and seems to be the main cytosolic route for the NADH reoxidation during oxygen limitation. PMID:16718677

  14. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    SciTech Connect

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; Brooks, William A.; Onasch, Timothy B.; Jayne, John T.; Worsnop, Douglas R.; China, Swarup; Sharma, Noopur; Mazzoleni, Claudio; Xu, Lu; Ng, Nga L.; Liu, Dantong; Allan, James D.; Lee, James D.; Fleming, Zoë L.; Mohr, Claudia; Zotter, Peter; Szidat, Sönke; Prévôt, André S. H.

    2015-09-30

    We report that black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ~1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. In conclusion, we find that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.

  15. Carbon sources for the Palaeozoic giant fungus Prototaxites inferred from modern analogues

    PubMed Central

    Hobbie, Erik A.; Boyce, C. Kevin

    2010-01-01

    A wide range of carbon isotope values in the Devonian fossil Prototaxites has been interpreted to support heterotrophy and the classification of Prototaxites as a giant fungus. This inference remains controversial because of the huge size of Prototaxites relative to co-occurring terrestrial vegetation and the lack of existing fungal analogues that display equally broad isotopic ranges. Here, we show wide isotopic variability in the modern saprotrophic fungus Arrhenia obscurata collected adjacent to shallow meltwater pools of a sparsely vegetated glacial succession in the Washington Cascades, USA. Soils collected specifically around the edges of these pools were up to 5‰ higher in δ13C than adjacent soils consistent with C3 origin. Microbial sources of primary production appear to cause these high δ13C values, and the environment may be analogous to that of the Early Devonian landscapes, where Prototaxites individuals with extreme isotopic variance were found. Carbon isotopes are also compared in Prototaxites, Devonian terrestrial vascular plants, and Devonian algal-derived lake sediments. Prototaxites isotopic values show little correspondence with those of contemporaneous tracheophytes, providing further evidence that non-vascular land plants or aquatic microbes were important contributors to its carbon sources. Thus, a saprotrophic fungal identity is supported for Prototaxites, which may have relied on deposits of algal-derived organic matter in floodplain environments that were less dominated by vascular plants than a straight reading of the macrofossil record might suggest. PMID:20335209

  16. Seasonal variability of organic matter composition in an Alaskan glacier outflow: insights into glacier carbon sources

    NASA Astrophysics Data System (ADS)

    Spencer, Robert G. M.; Vermilyea, Andrew; Fellman, Jason; Raymond, Peter; Stubbins, Aron; Scott, Durelle; Hood, Eran

    2014-05-01

    Glacier ecosystems are a significant source of bioavailable, yet ancient dissolved organic carbon (DOC). Characterizing DOC in Mendenhall Glacier outflow (southeast Alaska) we document a seasonal persistence to the radiocarbon-depleted signature of DOC, highlighting ancient DOC as a ubiquitous feature of glacier outflow. We observed no systematic depletion in Δ 14C-DOC with increasing discharge during the melt season that would suggest mobilization of an aged subglacial carbon store. However, DOC concentration, δ 13C-DOC, Δ 14C-DOC and fluorescence signatures appear to have been influenced by runoff from vegetated hillslopes above the glacier during onset and senescence of melt. In the peak glacier melt period, the Δ 14C-DOC of stream samples at the outflow (-181.7 to -355.3‰) was comparable to the Δ 14C-DOC for snow samples from the accumulation zone (-207.2 to -390.9‰), suggesting that ancient DOC from the glacier surface is exported in glacier runoff. The pre-aged DOC in glacier snow and runoff is consistent with contributions from fossil fuel combustion sources similar to those documented previously in ice cores and thus provides evidence for anthropogenic perturbation of the carbon cycle. Overall, our results emphasize the need to further characterize DOC inputs to glacier ecosystems, particularly in light of predicted changes in glacier mass and runoff in the coming century.

  17. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    DOE PAGESBeta

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; et al

    2015-09-30

    We report that black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ~1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combinationmore » of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. In conclusion, we find that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.« less

  18. DIS in AdS

    NASA Astrophysics Data System (ADS)

    Albacete, Javier L.; Kovchegov, Yuri V.; Taliotis, Anastasios

    2009-03-01

    We calculate the total cross section for the scattering of a quark-anti-quark dipole on a large nucleus at high energy for a strongly coupled N = 4 super Yang-Mills theory using AdS/CFT correspondence. We model the nucleus by a metric of a shock wave in AdS5. We then calculate the expectation value of the Wilson loop (the dipole) by finding the extrema of the Nambu-Goto action for an open string attached to the quark and antiquark lines of the loop in the background of an AdS5 shock wave. We find two physically meaningful extremal string configurations. For both solutions we obtain the forward scattering amplitude N for the quark dipole-nucleus scattering. We study the onset of unitarity with increasing center-of-mass energy and transverse size of the dipole: we observe that for both solutions the saturation scale Qs is independent of energy/Bjorken-x and depends on the atomic number of the nucleus as Qs˜A1/3. Finally we observe that while one of the solutions we found corresponds to the pomeron intercept of αP = 2 found earlier in the literature, when extended to higher energy or larger dipole sizes it violates the black disk limit. The other solution we found respects the black disk limit and yields the pomeron intercept of αP = 1.5. We thus conjecture that the right pomeron intercept in gauge theories at strong coupling may be αP = 1.5.

  19. Shrimp-shell derived carbon nanodots as carbon and nitrogen sources to fabricate three-dimensional N-doped porous carbon electrocatalysts for the oxygen reduction reaction.

    PubMed

    Liu, Rongrong; Zhang, Haimin; Liu, Shengwen; Zhang, Xian; Wu, Tianxing; Ge, Xiao; Zang, Yipeng; Zhao, Huijun; Wang, Guozhong

    2016-02-01

    Development of cheap, abundant and metal-free N-doped carbon materials as high efficiency oxygen reduction electrocatalysts is crucial for their practical applications in future fuel cell devices. Here, three-dimensional (3D) N-doped porous carbon (NPC) materials have been successfully developed by a simple template-assisted (e.g., SiO2 spheres) high temperature pyrolysis approach using shrimp-shell derived N-doped carbon nanodots (N-CNs) as carbon and nitrogen sources obtained through a facile hydrothermal method. The shrimp-shell derived N-CNs with a product yield of ∼ 5% possess rich surface O- and N-containing functional groups and small nanodot sizes of 1.5-5.0 nm, which are mixed with surface acidification treated SiO2 spheres with an average diameter of ∼ 200 nm in aqueous solution to form a N-CNs@SiO2 composite subjected to a thermal evaporation treatment. The resultant N-CNs@SiO2 composite is further thermally treated in a N2 atmosphere at different pyrolysis temperatures, followed by acid etching, to obtain 3D N-doped porous carbon (NPC) materials. As electrocatalysts for oxygen reduction reaction (ORR) in alkaline media, the experimental results demonstrate that 3D NPC obtained at 800 °C (NPC-800) with a surface area of 360.2 m(2) g(-1) exhibits the best ORR catalytic activity with an onset potential of -0.06 V, a half wave potential of -0.21 V and a large limiting current density of 5.3 mA cm(-2) (at -0.4 V, vs. Ag/AgCl) among all NPC materials investigated, comparable to that of the commercial Pt/C catalyst with an onset potential of -0.03 V, a half wave potential of -0.17 V and a limiting current density of 5.5 mA cm(-2) at -0.4 V. Such a 3D porous carbon ORR electrocatalyst also displays superior durability and high methanol tolerance in alkaline media, apparently better than the commercial Pt/C catalyst. The findings of this work would be valuable for the development of low-cost and abundant N-doped carbon materials from biomass as high

  20. Lignin-Derived Advanced Carbon Materials

    SciTech Connect

    Chatterjee, Sabornie; Saito, Tomonori

    2015-01-01

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. By application specific pretreatments and manufacturing method, lignin can be converted to a variety of value added carbon materials. However, the physical and chemical heterogenitites in lignin complicate its use as a feedstock. In this review, lignin manufacturing process, effects of pretreatments and manufacturing methods on the properties of lignin, properties and applications of various lignin derived carbon materials such as carbon fibers, carbon mats, activated carbons, carbon films; are discussed.

  1. Preliminary study on preparation of BCNO phosphor particles using citric acid as carbon source

    SciTech Connect

    Nuryadin, Bebeh W.; Pratiwi, Tripuspita; Faryuni, Irfana D.; Iskandar, Ferry Abdullah, Mikrajuddin; Khairurrijal; Ogi, Takashi; Okuyama, Kikuo

    2015-04-16

    A citric acid was used as a carbon source in the preparation of boron carbon oxy-nitride (BCNO) phosphor particles by a facile process. The preparation process was conducted at relatively low temperature 750 °C and at ambient pressure. The prepared BCNO phosphors showed a high photoluminescence (PL) performance at peak emission wavelength of 470 nm under excitation by a UV light 365 nm. The effects of carbon/boron and nitrogen/boron molar ratios on the PL properties were also investigated. The result showed that the emission spectra with a wavelength peak ranging from 444 nm to 496 nm can be obtained by varying carbon/boron ratios from 0.1 to 0.9. In addition, the observations showed that the BCNO phosphor material has two excitation peaks located at the 365 nm (UV) and 420 nm (blue). Based on these observations, we believe that the citric acid derived BCNO phosphor particles can be a promising inexpensive material for phosphor conversion-based white LED.

  2. Mineralization of Calcium Carbonate on Multifunctional Peptide Assembly Acting as Mineral Source Supplier and Template.

    PubMed

    Murai, Kazuki; Kinoshita, Takatoshi; Nagata, Kenji; Higuchi, Masahiro

    2016-09-13

    Crystal phase and morphology of biominerals may be precisely regulated by controlled nucleation and selective crystal growth through biomineralization on organic templates such as a protein. We herein propose new control factors of selective crystal growth by the biomineralization process. In this study, a designed β-sheet Ac-VHVEVS-CONH2 peptide was used as a multifunctional template that acted as mineral source supplier and having crystal phase control ability of calcium carbonate (CaCO3) during a self-supplied mineralization. The peptides formed three-dimensional nanofiber networks composed of assembled bilayer β-sheets. The assembly hydrolyzed urea molecules to one carbonate anion and two ammonium cations owing to a charge relay effect between His and Ser residues under mild conditions. CaCO3 was selectively mineralized on the peptide assembly using the generated carbonate anions on the template. Morphology of the obtained CaCO3 was fiber-like structure, similar to that of the peptide template. The mineralized CaCO3 on the peptide template had aragonite phase. This implies that CaCO3 nuclei, generated using the carbonate anions produced by the hydrolysis of urea on the surface of the peptide assembly, preferentially grew into aragonite phase, the growth axis of which aligned parallel to the direction of the β-sheet fiber axis. PMID:27552287

  3. Contribution of various carbon sources toward isoprene synthesis mediated by altered atmospheric CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Trowbridge, A. M.; Asensio, D.; Eller, A. S.; Wilkinson, M. J.; Schnitzler, J.; Jackson, R. B.; Monson, R. K.

    2010-12-01

    Biogenically released isoprene is abundant in the troposphere, and has an essential function in determining atmospheric chemistry and important implications for plant metabolism. As a result, considerable effort has been made to understand the underlying mechanisms driving isoprene synthesis, particularly in the context of a rapidly changing environment. Recently, a number of studies have focused on the contribution of recently assimilated carbon as opposed to stored/alternative intracellular or extracellular carbon sources in the context of environmental stress. Results from these studies can offer clues about the importance of various carbon pools for isoprene production and elucidate the corresponding physiological changes that are responsible for these dynamic shifts in carbon allocation. We performed a 13CO2-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS) to examine the kinetics of the incorporation of recently assimilated photosynthate into isoprene emitted from poplar (Poplar x canescens) under sub-ambient, ambient, and elevated CO2 growth conditions. We also monitored the importance of pyruvate-derived carbon for isoprene biosynthesis and obtained a detailed account of where individual carbons are derived from by analyzing the ratio of the 3C subunit of isoprene (M41+) (a fragment which contains two carbons from pyruvate) to the ratio of the parent isoprene molecule (M69+). Dynamics in the M41+:M69+ ratio indicate that recently assimilated carbon is incorporated into the pyruvate carbon pool slowly across all CO2 treatments and is therefore accessible for isoprene synthesis at a slower rate when compared to substrates derived directly from photosynthesis. Analysis of the rates of change for individual masses indicated that the carbon pools in trees grown in sub-ambient CO2 (200 ppm) are labeled ~2 times faster than those of trees grown in ambient or elevated CO2. Analysis of the total isoprene emission rates between treatments

  4. Fine and ultrafine particulate organic carbon in the Los Angeles basin: Trends in sources and composition.

    PubMed

    Shirmohammadi, Farimah; Hasheminassab, Sina; Saffari, Arian; Schauer, James J; Delfino, Ralph J; Sioutas, Constantinos

    2016-01-15

    In this study, PM2.5 and PM0.18 (particles with dp<2.5 μm and dp<0.18 μm, respectively) were collected during 2012-2013 in Central Los Angeles (LA) and 2013-2014 in Anaheim. Samples were chemically analyzed for carbonaceous species (elemental and organic carbons) and individual organic compounds. Concentrations of organic compounds were reported and compared with many previous studies in Central LA to quantify the impact of emissions control measurements that have been implemented for vehicular emissions over the past decades in this area. Moreover, a novel hybrid approach of molecular marker-based chemical mass balance (MM-CMB) analysis was conducted, in which a combination of source profiles that were previously obtained from a Positive Matrix Factorization (PMF) model in Central LA, were combined with some traditional source profiles. The model estimated the relative contributions from mobile sources (including gasoline, diesel, and smoking vehicles), wood smoke, primary biogenic sources (including emissions from vegetative detritus, food cooking, and re-suspended soil dust), and anthropogenic secondary organic carbon (SOC). Mobile sources contributed to 0.65 ± 0.25 μg/m(3) and 0.32 ± 0.25 μg/m(3) of PM2.5 OC in Central LA and Anaheim, respectively. Primary biogenic and anthropogenic SOC sources were major contributors to OC concentrations in both size fractions and sites. Un-apportioned OC ("other OC") accounted for an average 8.0 and 26% of PM2.5 OC concentration in Central LA and Anaheim, respectively. A comparison with previous studies in Central LA revealed considerable reduction of EC and OC, along with tracers of mobile sources (e.g. PAHs, hopanes and steranes) as a result of implemented regulations on vehicular emissions. Given the significant reduction of the impacts of mobile sources in the past decade in the LA Basin, the impact of SOC and primary biogenic emissions have a larger relative impact and the new hybrid model allows the impact of

  5. Biomass burning sources of nitrogen oxides, carbon monoxide, and non-methane hydrocarbons

    SciTech Connect

    Atherton, C.S.

    1995-11-01

    Biomass burning is an important source of many key tropospheric species, including aerosols, carbon dioxide (CO{sub 2}), nitrogen oxides (NO{sub {times}}=NO+NO{sub 2}), carbon monoxide (CO), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), methyl bromide (CH{sub 3}Br), ammonia (NH{sub 3}), non-methane hydrocarbons (NMHCs) and other species. These emissions and their subsequent products act as pollutants and affect greenhouse warming of the atmosphere. One important by-product of biomass burning is tropospheric ozone, which is a pollutant that also absorbs infrared radiation. Ozone is formed when CO, CH{sub 4}, and NMHCs react in the presence of NO{sub {times}} and sunlight. Ozone concentrations in tropical regions (where the bulk of biomass burning occurs) may increase due to biomass burning. Additionally, biomass burning can increase the concentration of nitric acid (HNO{sub 3}), a key component of acid rain.

  6. Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime

    NASA Astrophysics Data System (ADS)

    Jeantet, A.; Chassagneux, Y.; Raynaud, C.; Roussignol, Ph.; Lauret, J. S.; Besga, B.; Estève, J.; Reichel, J.; Voisin, C.

    2016-06-01

    The narrow emission of a single carbon nanotube at low temperature is coupled to the optical mode of a fiber microcavity using the built-in spatial and spectral matching brought by this flexible geometry. A thorough cw and time-resolved investigation of the very same emitter both in free space and in cavity shows an efficient funneling of the emission into the cavity mode together with a strong emission enhancement corresponding to a Purcell factor of up to 5. At the same time, the emitted photons retain a strong sub-Poissonian statistics. By exploiting the cavity feeding effect on the phonon wings, we locked the emission of the nanotube at the cavity resonance frequency, which allowed us to tune the frequency over a 4 THz band while keeping an almost perfect antibunching. By choosing the nanotube diameter appropriately, this study paves the way to the development of carbon-based tunable single-photon sources in the telecom bands.

  7. Carbon Nanotube Bundle Array Cold Cathodes for THz Vacuum Tube Sources

    NASA Astrophysics Data System (ADS)

    Manohara, Harish M.; Toda, Risaku; Lin, Robert H.; Liao, Anna; Bronikowski, Michael J.; Siegel, Peter H.

    2009-12-01

    We present high performance cold cathodes composed of arrays of carbon nanotube bundles that routinely produce > 15 A/cm2 at applied fields of 5 to 8 V/µm without any beam focusing. They have exhibited robust operation in poor vacuums of 10-6 to 10-4 Torr- a typically achievable range inside hermetically sealed microcavities. A new double-SOI process was developed to monolithically integrate a gate and additional beam tailoring electrodes. The ability to design the electrodes for specific requirements makes carbon nanotube field emission sources extremely flexible. The lifetime of these cathodes is found to be affected by two effects: a gradual decay of emission due to anode sputtering, and catastrophic failure because of dislodging of CNT bundles at high fields ( > 10 V/µm).

  8. Sink-source characteristics of two distinctly different forest species as affected by elevated carbon dioxide

    SciTech Connect

    Pushnik, J.C.; Florv, W.B.; Demaree, R.S. ); Anderson, P.D.; Houpis J.L.J. )

    1993-05-01

    The basic physiology and biochemistry of photosynthesis is being correlated with the leaf level processes and morphology of the Sierra Nevada varieties of Taxus brevifolia and Pinus ponderosa in an attempt to identify control mechanisms of carbohydrate partitioning. We are evaluating sink/source relationships in terms of carbon assimilation (gas-exchange (A[ci] curves and temperature effects); RuBPCase activity, chloroplast structure, integrity, and distributions, stomatal densities, internal leaf organization); transport functions (sucrose-phosphate synthetase (SPS) activity); long-term sink (immunoelectron microscopic detection of taxol). The results of these investigations suggest carbon acquisition characteristics are similar among the conifers, but with distinct differences in carboxylation efficiencies, SPS activity, needle starch content/chloroplast, and vascular tissue areas. These baseline characteristics are currently being evaluated in response to elevated CO[sub 2].

  9. STABLE CARBON ISOTOPE ANALYSIS OF NUCLEIC ACIDS TO TRACE SOURCES OF DISSOLVED SUBSTRATES USED BY ESTUARINE BACTERIA

    EPA Science Inventory

    The natural abundance of stable carbon isotopes measured in bacterial nucleic acids that were extracted from estuarine bacterial concentrates were used to trace sources of organic matter for bacteria in.aquatic environments. he stable carbon isotope ratios of P. aeruginosa and nu...

  10. Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products.

    PubMed

    Zahoor, Ahmed; Lindner, Steffen N; Wendisch, Volker F

    2012-01-01

    Corynebacterium glutamicum is well known as the amino acid-producing workhorse of fermentation industry, being used for multi-million-ton scale production of glutamate and lysine for more than 60 years. However, it is only recently that extensive research has focused on engineering it beyond the scope of amino acids. Meanwhile, a variety of corynebacterial strains allows access to alternative carbon sources and/or allows production of a wide range of industrially relevant compounds. Some of these efforts set new standards in terms of titers and productivities achieved whereas others represent a proof-of-principle. These achievements manifest the position of C. glutamicum as an important industrial microorganism with capabilities far beyond the traditional amino acid production. In this review we focus on the state of the art of metabolic engineering of C. glutamicum for utilization of alternative carbon sources, (e.g. coming from wastes and unprocessed sources), and construction of C. glutamicum strains for production of new products such as diamines, organic acids and alcohols. PMID:24688664

  11. Molasses as an efficient low-cost carbon source for biological Cr(VI) removal.

    PubMed

    Michailides, Michail K; Tekerlekopoulou, Athanasia G; Akratos, Christos S; Coles, Sandra; Pavlou, Stavros; Vayenas, Dimitrios V

    2015-01-01

    In the present study, indigenous microorganisms from industrial sludge were used to reduce the activity of Cr(VI). Molasses, a by-product of sugar processing, was selected as the carbon source (instead of sugar used in a previous work) as it is a low-cost energy source for bioprocesses. Initially, experiments were carried out in suspended growth batch reactors for Cr(VI) concentrations of 1.5-110 mg/L. The time required for complete Cr(VI) reduction increased with initial Cr(VI) concentration. Initial molasses concentration was also found to influence the Cr(VI) reduction rate. The optimal concentration for all initial Cr(VI) concentrations tested was 0.8 gC/L. Experiments were also carried out in packed-bed reactors. Three different operating modes were used to investigate the optimal performance and efficiency of the filter, i.e. batch, continuous and SBR with recirculation. The latter mode with a recirculation rate of 0.5L/min lead to significantly high Cr(VI) reduction rates (up to 135 g/m(2)d). The results of this work were compared with those of a similar work using sugar as the carbon source and indicate that molasses could prove a feasible technological solution to a serious environmental problem. PMID:25160055

  12. BLACK Carbon Emissions from Diesel Sources in the Largest Arctic City: Case Study of Murmansk

    NASA Astrophysics Data System (ADS)

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2014-12-01

    Russia has very little data on its black carbon (BC) emissions. Because Russia makes up such a large share of the Arctic, understanding Russian emissions will improve our understanding of overall BC levels, BC in the Arctic and the link between BC and climate change. This paper provides a detailed, bottom-up inventory of BC emissions from diesel sources in Murmansk, Russia, along with uncertainty estimates associated with these emissions. The research team developed a detailed data collection methodology. The methodology involves assessing the vehicle fleet and activity in Murmansk using traffic, parking lot and driver surveys combined with an existing database from a vehicle inspection station and statistical data. The team also assessed the most appropriate emission factors, drawing from both Russian and international inventory methodologies. The researchers also compared fuel consumption using statistical data and bottom-up fuel calculations. They then calculated emissions for on-road transportation, off-road transportation (including mines), diesel generators, fishing and other sources. The article also provides a preliminary assessment of Russia-wide emissions of black carbon from diesel sources.

  13. Batch fermentation model of propionic acid production by Propionibacterium acidipropionici in different carbon sources.

    PubMed

    Coral, Jefferson; Karp, Susan Grace; Porto de Souza Vandenberghe, Luciana; Parada, José Luis; Pandey, Ashok; Soccol, Carlos Ricardo

    2008-12-01

    Propionic acid (PA) is widely used as additive in animal feed and also in the manufacturing of cellulose-based plastics, herbicides, and perfumes. Salts of propionic acid are used as preservative in food. PA is mainly produced by chemical synthesis. Nowadays, PA production by fermentation of low-cost industrial wastes or renewable sources has been an interesting alternative. In the present investigation, PA production by Propionibacterium acidipropionici ATCC 4965 was studied using a basal medium with sugarcane molasses (BMSM), glycerol or lactate (BML) in small batch fermentation at 30 and 36 degrees C. Bacterial growth was carried out under low dissolved oxygen concentration and without pH control. Results indicated that P. acidipropionici produced more biomass in BMSM than in other media at 30 degrees C (7.55 g l(-1)) as well as at 36 degrees C (3.71 g l(-1)). PA and biomass production were higher at 30 degrees C than at 36 degrees C in all cases studied. The best productivity was obtained by using BML (0.113 g l(-1) h(-1)), although the yielding of this metabolite was higher when using glycerol as carbon source (0.724 g g(-1)) because there was no detection of acetic acid. By the way, when using the other two carbon sources, acetic acid emerged as an undesirable by-product for further PA purification. PMID:18386184

  14. Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products

    PubMed Central

    Zahoor, Ahmed; Lindner, Steffen N.; Wendisch, Volker F.

    2012-01-01

    Corynebacterium glutamicum is well known as the amino acid-producing workhorse of fermentation industry, being used for multi-million-ton scale production of glutamate and lysine for more than 60 years. However, it is only recently that extensive research has focused on engineering it beyond the scope of amino acids. Meanwhile, a variety of corynebacterial strains allows access to alternative carbon sources and/or allows production of a wide range of industrially relevant compounds. Some of these efforts set new standards in terms of titers and productivities achieved whereas others represent a proof-of-principle. These achievements manifest the position of C. glutamicum as an important industrial microorganism with capabilities far beyond the traditional amino acid production. In this review we focus on the state of the art of metabolic engineering of C. glutamicum for utilization of alternative carbon sources, (e.g. coming from wastes and unprocessed sources), and construction of C. glutamicum strains for production of new products such as diamines, organic acids and alcohols PMID:24688664

  15. Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints

    SciTech Connect

    Campbell, J. E.; Whelan, Mary; Seibt, U.; Smith, Steven J.; Berry, J. A.; Hilton, Timothy W.

    2015-04-16

    Carbonyl sulfide (COS) has recently emerged as an atmospheric tracer of gross primary production. All modeling studies of COS air-monitoring data rely on a climatological anthropogenic inventory that does not reflect present conditions or support interpretation of ice core and firn trends. Here we develop a global anthropogenic inventory for the years 1850 to 2013 based on new emission measurements and material-specific data. By applying methods from a recent regional inventory to global data, we find that the anthropogenic source is similar in magnitude to the plant sink, confounding carbon cycle applications. However, a material-specific approach results in a current anthropogenic source that is only one third of plant uptake and is concentrated in Asia, supporting carbon cycle applications of global air-monitoring data. As a result, changes in the anthropogenic source alone cannot explain the century-scale mixing ratio growth, which suggests that ice and firn data may provide the first global history of gross primary production.

  16. Atmospheric carbonyl sulfide sources from anthropogenic activity: Implications for carbon cycle constraints

    DOE PAGESBeta

    Campbell, J. E.; Whelan, Mary; Seibt, U.; Smith, Steven J.; Berry, J. A.; Hilton, Timothy W.

    2015-04-16

    Carbonyl sulfide (COS) has recently emerged as an atmospheric tracer of gross primary production. All modeling studies of COS air-monitoring data rely on a climatological anthropogenic inventory that does not reflect present conditions or support interpretation of ice core and firn trends. Here we develop a global anthropogenic inventory for the years 1850 to 2013 based on new emission measurements and material-specific data. By applying methods from a recent regional inventory to global data, we find that the anthropogenic source is similar in magnitude to the plant sink, confounding carbon cycle applications. However, a material-specific approach results in a currentmore » anthropogenic source that is only one third of plant uptake and is concentrated in Asia, supporting carbon cycle applications of global air-monitoring data. As a result, changes in the anthropogenic source alone cannot explain the century-scale mixing ratio growth, which suggests that ice and firn data may provide the first global history of gross primary production.« less

  17. Production of bacterial cellulose using different carbon sources and culture media.

    PubMed

    Mohammadkazemi, Faranak; Azin, Mehrdad; Ashori, Alireza

    2015-03-01

    In this work, the effects of carbon sources and culture media on the production and structural properties of bacterial cellulose (BC) have been studied. BC nanofibers were synthesized using Gluconacetobacter xylinus strain PTCC 1734. Media used were Hestrin-Schramm (H), Yamanaka (Y), and Zhou (Z). Five different carbon sources, namely date syrup, glucose, mannitol, sucrose, and food-grade sucrose were used in these media. All the produced BC pellicles were characterized in terms of dry weight production, biomass yield, thermal stability, crystallinity and morphology by thermogravimetric analysis (TGA), x-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). The obtained results showed that mannitol lead to the highest yield, followed by sucrose. The highest production efficiency of mannitol might be due to the nitrogen source, which plays an important role. The maximum improvement on the thermal stability of the composites was achieved when mannitol was used in H medium. In addition, the crystallinity was higher in BC formed in H medium compared to other media. FE-SEM micrographs illustrated that the BC pellicles, synthesized in the culture media H and Z, were stable, unlike those in medium Y that were unstable. The micrographs of BC produced in media containing mannitol and sucrose provided evidence of the strong interfacial adhesion between the BC fibers without noticeable aggregates. PMID:25498666

  18. Physico-chemical characterization and source tracking of black carbon at a suburban site in Beijing.

    PubMed

    Wang, Hailin; Nie, Lei; Liu, Dan; Gao, Meiping; Wang, Minyan; Hao, Zhengping

    2015-07-01

    Particles from ambient air and combustion sources including vehicle emission, coal combustion and biomass burning were collected and chemically pretreated with the purpose of obtaining isolated BC (black carbon) samples. TEM (transmission electron microscopy) results indicate that BC from combustion sources shows various patterns, and airborne BC appears spherical and about 50 nm in diameter with a homogeneous surface and turbostratic structure. The BET (Barrett-Emmett-Teller) results suggest that the surface areas of these BC particles fall in the range of 3-23 m2/g, with a total pore volume of 0.03-0.05 cm3/g and a mean pore diameter of 7-53 nm. The nitrogen adsorption-desorption isotherms are indicative of the accumulation mode and uniform pore size. O2-TPO (temperature programmed oxidation) profiles suggest that the airborne BC oxidation could be classified as the oxidation of amorphous carbon, which falls in the range of 406-490°C with peaks at 418, 423 and 475°C, respectively. Generally, the BC characteristics and source analysis suggest that airborne BC most likely comes from diesel vehicle emission at this site. PMID:26141892

  19. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.

    2016-05-01

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon

  20. Carbon Dioxide Capture and Separation Techniques for Gasification-based Power Generation Point Sources

    SciTech Connect

    Pennline, H.W.; Luebke, D.R.; Jones, K.L.; Morsi, B.I.; Heintz, Y.J.; Ilconich, J.B.

    2007-06-01

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and reduced costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (post-combustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle or IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Pertaining to another separation technology, fabrication techniques and mechanistic studies for membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. Finally, dry, regenerable processes based on sorbents are additional techniques for CO2 capture from fuel gas. An overview of these novel techniques is presented along with a research progress status of technologies related to membranes and physical solvents.

  1. Carbon dioxide capture and separation techniques for advanced power generation point sources

    SciTech Connect

    Pennline, H.W.; Luebke, D.R.; Morsi, B.I.; Heintz, Y.J.; Jones, K.L.; Ilconich, J.B.

    2006-09-01

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (postcombustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle – IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Fabrication techniques and mechanistic studies for hybrid membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic silanes incorporated into an alumina support or ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. An overview of two novel techniques is presented along with a research progress status of each technology.

  2. Changes in the Acetylome and Succinylome of Bacillus subtilis in Response to Carbon Source

    PubMed Central

    Kosono, Saori; Tamura, Masaru; Suzuki, Shota; Kawamura, Yumi; Yoshida, Ayako; Nishiyama, Makoto; Yoshida, Minoru

    2015-01-01

    Lysine residues can be post-translationally modified by various acyl modifications in bacteria and eukarya. Here, we showed that two major acyl modifications, acetylation and succinylation, were changed in response to the carbon source in the Gram-positive model bacterium Bacillus subtilis. Acetylation was more common when the cells were grown on glucose, glycerol, or pyruvate, whereas succinylation was upregulated when the cells were grown on citrate, reflecting the metabolic states that preferentially produce acetyl-CoA and succinyl-CoA, respectively. To identify and quantify changes in acetylation and succinylation in response to the carbon source, we performed a stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomic analysis of cells grown on glucose or citrate. We identified 629 acetylated proteins with 1355 unique acetylation sites and 204 succinylated proteins with 327 unique succinylation sites. Acetylation targeted different metabolic pathways under the two growth conditions: branched-chain amino acid biosynthesis and purine metabolism in glucose and the citrate cycle in citrate. Succinylation preferentially targeted the citrate cycle in citrate. Acetylation and succinylation mostly targeted different lysine residues and showed a preference for different residues surrounding the modification sites, suggesting that the two modifications may depend on different factors such as characteristics of acyl-group donors, molecular environment of the lysine substrate, and/or the modifying enzymes. Changes in acetylation and succinylation were observed in proteins involved in central carbon metabolism and in components of the transcription and translation machineries, such as RNA polymerase and the ribosome. Mutations that modulate protein acylation affected B. subtilis growth. A mutation in acetate kinase (ackA) increased the global acetylation level, suggesting that acetyl phosphate-dependent acetylation is common in B. subtilis

  3. Stream restoration and sanitary infrastructure alter sources and fluxes of water, carbon, and nutrients in urban watersheds

    NASA Astrophysics Data System (ADS)

    Pennino, M. J.; Kaushal, S. S.; Mayer, P. M.; Utz, R. M.; Cooper, C. A.

    2015-12-01

    An improved understanding of sources and timing of water and nutrient fluxes associated with urban stream restoration is critical for guiding effective watershed management. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in stream restoration and sanitary infrastructure. We compared a restored stream with 3 unrestored streams draining urban development and stormwater management over a 3 year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower monthly peak runoff (9.4 ± 1.0 mm d-1) compared with two urban unrestored streams (ranging from 44.9 ± 4.5 to 55.4 ± 5.8 mm d-1) draining higher impervious surface cover. Peak runoff in the restored stream was more similar to a less developed stream draining extensive stormwater management (13.2 ± 1.9 mm d-1). Interestingly, the restored stream exported most carbon, nitrogen, and phosphorus loads at relatively lower streamflow than the 2 more urban streams, which exported most of their loads at higher and less frequent streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha-1 yr-1), total nitrogen (4.5 ± 0.3 kg ha-1 yr-1), and total phosphorus (161 ± 15 g ha-1 yr-1) were significantly lower in the restored stream compared to both urban unrestored streams (p < 0.05) and similar to the stream draining stormwater management. Although stream restoration appeared to potentially influence hydrology to some degree, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the restored stream was derived from leaky sanitary sewers (during baseflow), similar to the unrestored streams. Longitudinal synoptic surveys of water and nitrate isotopes along all 4 watersheds suggested the importance of urban groundwater contamination from leaky piped infrastructure. Urban groundwater

  4. Deciphering Microbial Carbon Sources in Petroleum Contaminated Sediments Using Compound Specific Radiocarbon Analysis

    NASA Astrophysics Data System (ADS)

    Morrill, P. L.; Szponar, N.; Maunder, C.; Marvin, C.; Slater, G. F.

    2008-12-01

    Microbial membrane phospholipid fatty acids (PLFAs) were analyzed to investigate microbial carbon sources and assess the impact of petroleum hydrocarbon contamination in one of North America's most contaminated harbours. Sediment cores were sampled from two locations in the harbour: a highly impacted area, Dofasco Boat Slip; and a less impacted area, Carole's Bay. Natural organic matter (NOM) and total petroleum hydrocarbons (TPHs) were two possible organic carbon sources for microbial metabolisms. While the majority of organic carbon (OC) at both Dofasco and Carole's Bay was NOM, petroleum hydrocarbons also contributed to the OC. As expected, the concentration of the TPHs was much greater at the Dofasco site (270 ug/g) compared to the TPHs concentration measured at Carole's Bay (50 ug/g). However, the % of PAHs that contributed to TPHs was very similar in the first three centimeters at both sites (9%). The PLFAs distributions at Carole's Bay and Dofasco were fairly similar indicating an overall bulk similarity between the communities notwithstanding higher contaminant concentrations at the Dofasco site. PLFA distributions changed with depth, consistent with changes in redox conditions from oxic to anoxia. The PLFAs extracted from the upper 3 cm of sediment from Carole's Bay had modern cap delta 14C values (with an average value of -66 ) compared to both the NOM (cap delta 14C -132 ) and TPH (cap delta 14C -775 ), suggesting that the carbon substrate for microbial metabolisms was a younger more labile source. The cap delta 14C isotopic values between individual PLFAs were indistinguishable (within the standard error of 20 for accuracy and reproducibility) demonstrating that if TPHs were degraded the impact on the cap delta 14C was not resolvable at Carole's Bay. Co-metabolic degradation of petroleum hydrocarbons is one possible degradation mechanism whereby biodegradation is occurring, but the contaminant carbon may not be incorporated into the microbial membrane

  5. Glucosamine as carbon source for amino acid-producing Corynebacterium glutamicum.

    PubMed

    Uhde, Andreas; Youn, Jung-Won; Maeda, Tomoya; Clermont, Lina; Matano, Christian; Krämer, Reinhard; Wendisch, Volker F; Seibold, Gerd M; Marin, Kay

    2013-02-01

    Corynebacterium glutamicum grows with a variety of carbohydrates and carbohydrate derivatives as sole carbon sources; however, growth with glucosamine has not yet been reported. We isolated a spontaneous mutant (M4) which is able to grow as fast with glucosamine as with glucose as sole carbon source. Glucosamine also served as a combined source of carbon, energy and nitrogen for the mutant strain. Characterisation of the M4 mutant revealed a significantly increased expression of the nagB gene encoding the glucosamine-6P deaminase NagB involved in degradation of glucosamine, as a consequence of a single mutation in the promoter region of the nagAB-scrB operon. Ectopic nagB overexpression verified that the activity of the NagB enzyme is in fact the growth limiting factor under these conditions. In addition, glucosamine uptake was studied, which proved to be unchanged in the wild-type and M4 mutant strains. Using specific deletion strains, we identified the PTS(Glc) transport system to be responsible for glucosamine uptake in C. glutamicum. The affinity of this uptake system for glucosamine was about 40-fold lower than that for its major substrate glucose. Because of this difference in affinity, glucosamine is efficiently taken up only if external glucose is absent or present at low concentrations. C. glutamicum was also examined for its suitability to use glucosamine as substrate for biotechnological purposes. Upon overexpression of the nagB gene in suitable C. glutamicum producer strains, efficient production of both the amino acid L-lysine and the diamine putrescine from glucosamine was demonstrated. PMID:22854894

  6. Sources and Residence Times of Exported Organic Carbon From High-standing Tropical Island

    NASA Astrophysics Data System (ADS)

    Hemingway, J. D.; Galy, V.; Hilton, R. G.; Hovius, N.

    2015-12-01

    Steep, mountainous rivers draining high standing islands within the ITCZ export a disproportionately high amount of sediment given their small area - up to 20% of global export in 3% of the total exorheic land area. Typhoons strongly influence climate in this region, leading to increased sediment discharge, hyperpycnal flow, and efficient burial of terrestrial particulate organic carbon (POC) in marine sediments. Here, we investigate the exported POC from high-resolution (~hours) sampling on the LiWu River, Taiwan, during three sequential typhoons in 2008 as well as from soil profiles taken throughout the catchment. We utilize the recently developed Ramped Pyrox technique to investigate the chemical structure and isotopic distribution (14C, δ13C) of different OC sources by separating OC components based on thermo-stability. We show that even the most labile OCbio can exhibit protracted storage in soils (up to ca. 2000 14C years), and that soil OC displays a large increase in apparent age with increasing thermal stability, likely due to contribution by microbially re-worked petrogenic carbon. Additionally, exported POCbio is too depleted and POCpetro too enriched in δ13C to be sourced from upper-catchment soil biomass. Rather, exported POC during large storm events can be best explained by a downstream source. Our results therefore offer an updated view on the mechanisms of organic carbon export from steep mountainous rivers by showing that: (i.) high erosion rates do not preclude significant pre-ageing of soil OC and (ii.) exported POC during large storm events is dominated by a local, downstream signal.

  7. Compound specific radiocarbon analyses to apportion sources of combustion products in sedimentary pyrogenic carbon deposits

    NASA Astrophysics Data System (ADS)

    Hanke, Ulrich M.; Schmidt, Michael W. I.; McIntyre, Cameron P.; Reddy, Christopher M.; Wacker, Lukas; Eglinton, Timothy I.

    2016-04-01

    Pyrogenic carbon (PyC) is a collective term for carbon-rich residues comprised of a continuum of products generated during biomass burning and fossil fuel combustion. PyC is a key component of the global carbon cycle due to its slow intrinsic decomposition rate and its ubiquity in the environment. It can originate from natural or anthropogenic vegetation fires, coal mining, energy production, industry and transport. Subsequently, PyC can be transported over long distances by wind and water and can eventually be buried in sediments. Information about the origin of PyC (biomass burning vs. fossil fuel combustion) deposited in estuarine sediments is scarce. We studied the highly anoxic estuarine sediments of the Pettaquamscutt River (Rhode Island, U.S.) in high temporal resolution over 250 years and found different combustion proxies reflect local and regional sources of PyC (Hanke et al. in review; Lima et al. 2003). The polycyclic aromatic hydrocarbons (PAH) originate from long-range atmospheric transport, whereas bulk PyC, detected as benzene polycarboxylic acids (BPCA), mainly stems from local catchment run-off. However, to unambiguously apportion PyC sources, we need additional information, such as compound specific radiocarbon (14C) measurements. We report 14C data for individual BPCA including error analysis and for combustion-related PAH. First results indicate that biomass burning is the main source of PyC deposits, with additional minor contributions from fossil fuel combustion. References Hanke U.M., T.I. Eglinton, A.L.L. Braun, C. Reddy, D.B. Wiedemeier, M.W.I. Schmidt. Decoupled sedimentary records of combustion: causes and implications. In review. Lima, A. L.; Eglinton, T. I.; Reddy, C. M., High-resolution record of pyrogenic polycyclic aromatic hydrocarbon deposition during the 20th century. ES&T, 2003, 37 (1), 53-61.

  8. Stable carbon isotope ratios in atmospheric methane and some of its sources

    NASA Technical Reports Server (NTRS)

    Tyler, Stanley C.

    1986-01-01

    Ratios of C-13/C-12 have been measured in atmospheric methane and in methane collected from sites and biota that represent potentially large sources of atmospheric methane. These include temperate marshes (about -48 percent to about -54 percent), landfills (about -51 percent to about -55 percent), and the first reported values for any species of termite (-72.8 + or - 3.1 percent for Reticulitermes tibialis and -57.3 + or - 1.6 percent for Zootermopsis angusticollis). Numbers in parentheses are delta C-13 values with respect to PDB (Peedee belemnite) carbonate. Most methane sources reported thus far are depleted in C-13 with respect to atmospheric methane (-47.0 + or - 0.3 percent). Individual sources of methane should have C-13/C-12 ratios characteristic of mechanisms of CH4 formation and consumption prior to release to the atmosphere. The mass-weighted average isotopic composition of all sources should equal the mean C-13 of atmospheric methane, corrected for a kinetic isotope effect in the OH attack of CH4. Assuming the kinetic isotope effect to be small (about -3.0 percent correction to -47.0), as in the literature, the new values given here for termite methane do not help to explain the apparent discrepancy between C-13/C-12 ratios of the known CH4 sources and that of atmospheric CH4.

  9. Upscaling carbon fluxes over the Great Plains grasslands: Sinks and sources

    USGS Publications Warehouse

    Zhang, Li; Wylie, Bruce K.; Ji, Lei; Gilmanov, Tagir G.; Tieszen, Larry L.; Howar, Daniel M.

    2011-01-01

    Previous studies suggested that the grasslands may be carbon sinks or near equilibrium, and they often shift between carbon sources in drought years and carbon sinks in other years. It is important to understand the responses of net ecosystem production (NEP) to various climatic conditions across the U.S. Great Plains grasslands. Based on 15 grassland flux towers, we developed a piecewise regression model and mapped the grassland NEP at 250 m spatial resolution over the Great Plains from 2000 to 2008. The results showed that the Great Plains was a net sink with an averaged annual NEP of 24 ± 14 g C m−2 yr−1, ranging from a low value of 0.3 g C m−2 yr−1 in 2002 to a high value of 47.7 g C m−2 yr−1 in 2005. The regional averaged NEP for the entire Great Plains grasslands was estimated to be 336 Tg C yr−1 from 2000 to 2008. In the 9 year period including 4 dry years, the annual NEP was very variable in both space and time. It appeared that the carbon gains for the Great Plains were more sensitive to droughts in the west than the east. The droughts in 2000, 2002, 2006, and 2008 resulted in increased carbon losses over drought-affected areas, and the Great Plains grasslands turned into a relatively low sink with NEP values of 15.8, 0.3, 20.1, and 10.2 g C m−2 yr−1 for the 4 years, respectively.

  10. Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source.

    PubMed

    Thaniyavarn, Jiraporn; Chongchin, Aree; Wanitsuksombut, Nopparat; Thaniyavarn, Suthep; Pinphanichakarn, Pairoh; Leepipatpiboon, Natthanant; Morikawa, Masaaki; Kanaya, Shigenori

    2006-08-01

    Biosurfactant production by Pseudomonas aeruginosa A41, a strain isolated from seawater in the gulf of Thailand, was examined when grown in defined medium containing 2% vegetable oil or fatty acid as a carbon source in the presence of vitamins, trace elements and 0.4% NH(4)NO(3), at pH 7 and 30 degrees C with 200 rpm-shaking for 7 days. The yield of biosurfactant steadily increased even after a stationary phase. Under such conditions the surface tension of the medium was lowered from 55-70 mN/m to 27.8-30 mN/m with every carbon source tested. However, types of carbon sources were found to affect biosurfactant yield. The yields of rhamnolipid biosurfactant were 6.58 g/L, 2.91 g/L and 2.93 g/L determined as rhamnose content when olive oil, palm oil and coconut oil, respectively, were used as a carbon source. Among them, biosurfactant obtained from palm oil was the best in lowering surface tension of the medium. Increase in biosurfactant activities in terms of oil displacement test and rhamnose content were observed to be higher with shorter chain fatty acids than that of the longer chains (C12>C14>C16). In addition, we found that C18:2, highly unsaturated fatty acid, showed higher oil displacement activity and rhamnose content than that of C18:1. The optimal oil displacement activity was found at pH 7-9 and in the presence of 0.5-3% NaCl. The oil displacement activity was stable to temperatures up to 100 degrees C for 15 h. Surface tension reduction activity was relatively stable at pH 2-12 and 0-5% of NaCl. Emusification activity tested with various types of hydrocarbons and vegetable oils showed similarity of up to 60% stability. The partially purified biosurfactant via TLC and silica gel column chromatography gave three main peaks on HPLC with mass spectra of 527, 272, and 661 m/z respectively, corresponding to sodium-monorhamnodecanoate, hydroxyhexadecanoic acid and an unknown compound, respectively. PMID:17116970

  11. Solid source growth of Si oxide nanowires promoted by carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lu, Congxiang; Liu, Wen-wen; Wang, Xingli; Li, Xiaocheng; Tan, Chong Wei; Tay, Beng Kang; Coquet, Philippe

    2014-09-01

    We report a method to promote solid source growth of Si oxide nanowires (SiONWs) by using an array of vertically aligned carbon nanotubes (CNTs). It starts with the fabrication of CNT array by plasma enhanced chemical vapor deposition (PECVD) on Si wafers, followed by growth of SiONWs. Herein, CNTs serve as a scaffold, which helps the dispersion of catalysts for SiONWs and also provides space for hydrogen which boosts the diffusion of Si atoms and hence formation of SiONWs. As the result, a three dimensional (3D) hybrid network of densely packed SiONWs and CNTs can be produced rapidly.

  12. Dynamic Balancing of Isoprene Carbon Sources Reflects Photosynthetic and Photorespiratory Responses to Temperature Stress1[W][OPEN

    PubMed Central

    Chambers, Jeffrey; Alves, Eliane G.; Teixeira, Andrea; Garcia, Sabrina; Holm, Jennifer; Higuchi, Niro; Manzi, Antonio; Abrell, Leif; Fuentes, Jose D.; Nielsen, Lars K.; Torn, Margaret S.; Vickers, Claudia E.

    2014-01-01

    The volatile gas isoprene is emitted in teragrams per annum quantities from the terrestrial biosphere and exerts a large effect on atmospheric chemistry. Isoprene is made primarily from recently fixed photosynthate; however, alternate carbon sources play an important role, particularly when photosynthate is limiting. We examined the relative contribution of these alternate carbon sources under changes in light and temperature, the two environmental conditions that have the strongest influence over isoprene emission. Using a novel real-time analytical approach that allowed us to examine dynamic changes in carbon sources, we observed that relative contributions do not change as a function of light intensity. We found that the classical uncoupling of isoprene emission from net photosynthesis at elevated leaf temperatures is associated with an increased contribution of alternate carbon. We also observed a rapid compensatory response where alternate carbon sources compensated for transient decreases in recently fixed carbon during thermal ramping, thereby maintaining overall increases in isoprene production rates at high temperatures. Photorespiration is known to contribute to the decline in net photosynthesis at high leaf temperatures. A reduction in the temperature at which the contribution of alternate carbon sources increased was observed under photorespiratory conditions, while photosynthetic conditions increased this temperature. Feeding [2-13C]glycine (a photorespiratory intermediate) stimulated emissions of [13C1–5]isoprene and 13CO2, supporting the possibility that photorespiration can provide an alternate source of carbon for isoprene synthesis. Our observations have important implications for establishing improved mechanistic predictions of isoprene emissions and primary carbon metabolism, particularly under the predicted increases in future global temperatures. PMID:25318937

  13. The ˜AD 1250 effusive eruption of El Metate shield volcano (Michoacán, Mexico): magma source, crustal storage, eruptive dynamics, and lava rheology

    NASA Astrophysics Data System (ADS)

    Chevrel, Magdalena Oryaëlle; Guilbaud, Marie-Noëlle; Siebe, Claus

    2016-04-01

    Medium-sized volcanoes, also known as Mexican shields due to their andesitic composition and slightly higher slope angles in comparison to Icelandic shields, occur across the Trans-Mexican Volcanic Belt and represent nearly one third of all volcanic edifices in the Michoacán-Guanajuato Volcanic Field (MGVF). Many questions about their origin and eruptive dynamics remain unanswered. Here, we focus on El Metate, the youngest (˜AD 1250) monogenetic shield volcano of the MGVF and the most voluminous (˜9.2 km3 dense rock equivalent) Holocene eruption in Mexico. Its eruptive history was reconstructed through detailed mapping, geochemical analysis (major and trace elements, Sr-Nd-Pb isotopic data), and rheological study of its thick andesitic flows. Early and late flow units have distinct morphologies, chemical and mineralogical compositions, and isotopic signatures which show that these lavas were fed by two separate magma batches that originated from a heterogeneous mantle source and followed distinct differentiation paths during their ascent. Thermobarometry calculations constraining the conditions of crystallization indicate a temporary storage of the last erupted magma batch at a depth of ˜7-10 km. Lava rheology was estimated using petrographic characteristics, geochemical data, and flow dimensions. The magma viscosity increased from 102-103 Pa s prior to eruption through 106-108 Pa s during ascent, to 109-1011 Pa s during lava emplacement. Though magma viscosity was quite high, the eruption was purely effusive. The explosive eruption of such a large magma volume was probably avoided due to efficient open system degassing (outgassing) of the magma as it ascended through the uppermost crust and erupted at the surface.

  14. Estimation of carbon dioxide flux and source partitioning over Beijing, China.

    PubMed

    Song, Tao; Wang, Yuesi; Sun, Yang

    2013-12-01

    The magnitude and partitioning of carbon dioxide emission from the urban area in Beijing, China was estimated based on a statistical approach. Results showed that the urban surface is a net source of CO2 to atmosphere. The main sources of CO2 are vehicles, which accounted for 75.5% and 38.9% of CO2 emission in summer and winter, respectively. At midday in summer, the CO2 uptake of -0.034 mg/(m2 x sec) indicated that vegetation is an important sink of CO2 in summer. Comparison between the annual emission rates of CO2 from the statistical approach and that directly measured by the eddy covariance technique implies that a bottom-up emission approach is a viable means to estimate CO2 emission in an urban area. PMID:24649674

  15. Silicon nanowire and carbon nanotube hybrid for room temperature multiwavelength light source

    PubMed Central

    Lo Faro, Maria Josè; D’Andrea, Cristiano; Messina, Elena; Fazio, Barbara; Musumeci, Paolo; Reitano, Riccardo; Franzò, Giorgia; Gucciardi, Pietro Giuseppe; Vasi, Cirino; Priolo, Francesco; Iacona, Fabio; Irrera, Alessia

    2015-01-01

    The realization of an innovative hybrid light source operating at room temperature, obtained by embedding a carbon nanotube (CNT) dispersion inside a Si nanowire (NW) array is reported. The NW/CNT system exhibits a peculiar photoluminescence spectrum, consisting of a wide peak, mainly observed in the visible range, due to quantum confined Si NWs, and of several narrower IR peaks, due to the different CNT chiralities present in the dispersion. The detailed study of the optical properties of the hybrid system evidences that the ratio between the intensity of the visible and the IR emissions can be varied within a wide range by changing the excitation wavelength or the CNT concentration; the conditions leading to the prevalence of one signal with respect to the other are identified. The multiplicity of emission spectra obtainable from this composite material opens new perspectives for Si nanostructures as active medium in light sources for Si photonics applications. PMID:26592198

  16. Production of a bioflocculant from Aspergillus niger using palm oil mill effluent as carbon source.

    PubMed

    Aljuboori, Ahmad H Rajab; Uemura, Yoshimitsu; Osman, Noridah Binti; Yusup, Suzana

    2014-11-01

    This study evaluated the potential of bioflocculant production from Aspergillus niger using palm oil mill effluent (POME) as carbon source. The bioflocculant named PM-5 produced by A. niger showed a good flocculating capability and flocculating rate of 76.8% to kaolin suspension could be achieved at 60 h of culture time. Glutamic acid was the most favorable nitrogen source for A. niger in bioflocculant production at pH 6 and temperature 35 °C. The chemical composition of purified PM-5 was mainly carbohydrate and protein with 66.8% and 31.4%, respectively. Results showed the novel bioflocculant (PM-5) had high potential to treat river water from colloids and 63% of turbidity removal with the present of Ca(2+) ion. PMID:25189510

  17. Silicon nanowire and carbon nanotube hybrid for room temperature multiwavelength light source.

    PubMed

    Lo Faro, Maria Josè; D'Andrea, Cristiano; Messina, Elena; Fazio, Barbara; Musumeci, Paolo; Reitano, Riccardo; Franzò, Giorgia; Gucciardi, Pietro Giuseppe; Vasi, Cirino; Priolo, Francesco; Iacona, Fabio; Irrera, Alessia

    2015-01-01

    The realization of an innovative hybrid light source operating at room temperature, obtained by embedding a carbon nanotube (CNT) dispersion inside a Si nanowire (NW) array is reported. The NW/CNT system exhibits a peculiar photoluminescence spectrum, consisting of a wide peak, mainly observed in the visible range, due to quantum confined Si NWs, and of several narrower IR peaks, due to the different CNT chiralities present in the dispersion. The detailed study of the optical properties of the hybrid system evidences that the ratio between the intensity of the visible and the IR emissions can be varied within a wide range by changing the excitation wavelength or the CNT concentration; the conditions leading to the prevalence of one signal with respect to the other are identified. The multiplicity of emission spectra obtainable from this composite material opens new perspectives for Si nanostructures as active medium in light sources for Si photonics applications. PMID:26592198

  18. Silicon nanowire and carbon nanotube hybrid for room temperature multiwavelength light source

    NASA Astrophysics Data System (ADS)

    Lo Faro, Maria Josè; D'Andrea, Cristiano; Messina, Elena; Fazio, Barbara; Musumeci, Paolo; Reitano, Riccardo; Franzò, Giorgia; Gucciardi, Pietro Giuseppe; Vasi, Cirino; Priolo, Francesco; Iacona, Fabio; Irrera, Alessia

    2015-11-01

    The realization of an innovative hybrid light source operating at room temperature, obtained by embedding a carbon nanotube (CNT) dispersion inside a Si nanowire (NW) array is reported. The NW/CNT system exhibits a peculiar photoluminescence spectrum, consisting of a wide peak, mainly observed in the visible range, due to quantum confined Si NWs, and of several narrower IR peaks, due to the different CNT chiralities present in the dispersion. The detailed study of the optical properties of the hybrid system evidences that the ratio between the intensity of the visible and the IR emissions can be varied within a wide range by changing the excitation wavelength or the CNT concentration; the conditions leading to the prevalence of one signal with respect to the other are identified. The multiplicity of emission spectra obtainable from this composite material opens new perspectives for Si nanostructures as active medium in light sources for Si photonics applications.

  19. A 1750-1999 AD Atmospheric Record of East Asian Black Carbon Emissions from the Prospector-Russell Col Ice Core, Mt. Logan, Yukon Territory

    NASA Astrophysics Data System (ADS)

    Menking, J. A.; Kaspari, S.; Osterberg, E. C.; Fisher, D.

    2012-12-01

    Black carbon (BC), an aerosol created from the incomplete combustion of fossil and biofuels, absorbs sunlight causing warming in the atmosphere and cooling at the surface. BC deposited on snow and ice reduces the surface albedo, accelerating seasonal snowmelt and glacier retreat and influencing the regional water cycle and climate. Estimates place East Asia as the top BC producer worldwide. Recent studies suggest that increases in East Asian BC related to industrialization have influenced Asian climate by altering temperatures and the timing and magnitude of precipitation. East Asian BC emissions have been estimated using fossil fuel inventories, but observational data is needed to constrain the timing and magnitude of recent BC emissions changes in order to better assess the role of BC in recent climate change. Here we present a time series of East Asian atmospheric BC that spans 1750-1999 AD that was developed using an ice core collected at the Prospector-Russell (PR) Col on Mt. Logan, Yukon Territory, Canada. The PR Col ice core is ideal for developing a record of East Asian BC emissions because the Mt. Logan summit has been shown to capture Asian emissions transported across the Pacific Ocean. The Mt. Logan record shows increases in BC concentration occurring in the early 1980's related to the recent industrialization of East Asian nations. We utilize the BC record from Mt. Logan (1) for comparison with estimated East Asian emissions inventories, and (2) to assess the role of BC in recent climate change with respect to the timing and magnitude of changes in East Asian BC emissions.

  20. Distinct patterns of microbial metabolism associated to riverine dissolved organic carbon of different source and quality

    NASA Astrophysics Data System (ADS)

    Berggren, Martin; Giorgio, Paul A.

    2015-06-01

    Dissolved organic carbon (DOC) in rivers contains a wide range of molecules that can be assimilated by microbes. However, there is today no integrated understanding of how the source and composition of this DOC regulate the extent to which the DOC can support microbial growth and respiration. We analyzed patterns in microbial metabolism of DOC from different streams and rivers in Québec, by combining short-term bacterial production and respiration measurements with long-term DOC loss and analyses of bacterial use of different single substrates. We show that distinct metabolic patterns indeed exist across catchments, reflecting the varying nature and sources of the DOC. For example, DOC from forest headwaters systematically supported the highest bacterial growth efficiency (BGE) that was recorded, while in contrast DOC in peat bog drainage was used with significantly lower BGE. The carbon consumption in clear mountain rivers, possibly represented by autochthonous algal DOC, supported the highest bacterial respiration rates and the highest long-term DOC losses. By using principle component analysis, we demonstrate how the major axes of variation in all of the measured metabolic responses are tightly connected to spectrofluorometrical DOC composition indicators and to isotopic indicators of DOC source. If causality is assumed, our results imply that changes in DOC supply from different sources, for example, caused by land use or climate change, should result in dramatic changes in the patterns of aquatic microbial metabolism and thus in altered aquatic ecosystem functioning, with likely consequences for food-web structures and greenhouse gas balances.

  1. An audit of the global carbon budget: identifying and reducing sources of uncertainty

    NASA Astrophysics Data System (ADS)

    Ballantyne, A. P.; Tans, P. P.; Marland, G.; Stocker, B. D.

    2012-12-01

    Uncertainties in our carbon accounting practices may limit our ability to objectively verify emission reductions on regional scales. Furthermore uncertainties in the global C budget must be reduced to benchmark Earth System Models that incorporate carbon-climate interactions. Here we present an audit of the global C budget where we try to identify sources of uncertainty for major terms in the global C budget. The atmospheric growth rate of CO2 has increased significantly over the last 50 years, while the uncertainty in calculating the global atmospheric growth rate has been reduced from 0.4 ppm/yr to 0.2 ppm/yr (95% confidence). Although we have greatly reduced global CO2 growth rate uncertainties, there remain regions, such as the Southern Hemisphere, Tropics and Arctic, where changes in regional sources/sinks will remain difficult to detect without additional observations. Increases in fossil fuel (FF) emissions are the primary factor driving the increase in global CO2 growth rate; however, our confidence in FF emission estimates has actually gone down. Based on a comparison of multiple estimates, FF emissions have increased from 2.45 ± 0.12 PgC/yr in 1959 to 9.40 ± 0.66 PgC/yr in 2010. Major sources of increasing FF emission uncertainty are increased emissions from emerging economies, such as China and India, as well as subtle differences in accounting practices. Lastly, we evaluate emission estimates from Land Use Change (LUC). Although relative errors in emission estimates from LUC are quite high (2 sigma ~ 50%), LUC emissions have remained fairly constant in recent decades. We evaluate the three commonly used approaches to estimating LUC emissions- Bookkeeping, Satellite Imagery, and Model Simulations- to identify their main sources of error and their ability to detect net emissions from LUC.; Uncertainties in Fossil Fuel Emissions over the last 50 years.

  2. DIS in AdS

    SciTech Connect

    Albacete, Javier L.; Kovchegov, Yuri V.; Taliotis, Anastasios

    2009-03-23

    We calculate the total cross section for the scattering of a quark-anti-quark dipole on a large nucleus at high energy for a strongly coupled N = 4 super Yang-Mills theory using AdS/CFT correspondence. We model the nucleus by a metric of a shock wave in AdS{sub 5}. We then calculate the expectation value of the Wilson loop (the dipole) by finding the extrema of the Nambu-Goto action for an open string attached to the quark and antiquark lines of the loop in the background of an AdS{sub 5} shock wave. We find two physically meaningful extremal string configurations. For both solutions we obtain the forward scattering amplitude N for the quark dipole-nucleus scattering. We study the onset of unitarity with increasing center-of-mass energy and transverse size of the dipole: we observe that for both solutions the saturation scale Q{sub s} is independent of energy/Bjorken-x and depends on the atomic number of the nucleus as Q{sub s}{approx}A{sup 1/3}. Finally we observe that while one of the solutions we found corresponds to the pomeron intercept of {alpha}{sub P} = 2 found earlier in the literature, when extended to higher energy or larger dipole sizes it violates the black disk limit. The other solution we found respects the black disk limit and yields the pomeron intercept of {alpha}{sub P} = 1.5. We thus conjecture that the right pomeron intercept in gauge theories at strong coupling may be {alpha}{sub P} = 1.5.

  3. Identifying dissolved organic carbon sources at a gaged headwater catchment using FDOM sensors

    NASA Astrophysics Data System (ADS)

    Malzone, J. M.; Shanley, J. B.

    2014-12-01

    The United States Geological Survey's (USGS) W-9 gage at the headwaters of Sleepers River, Vermont has been monitored for dissolved organic carbon (DOC) concentration for more than 20 years. However, the sources of this DOC during base flow and hydrologic events remain unclear. The major objectives of this research were to identify sources of DOC during storm events and to explain the observed DOC-streamflow counterclockwise hysteresis during hydrologic events. Two main hypotheses to explain hysteresis during hydrologic events were tested: (1) distant headwater wetlands are the major DOC source, which lags behind peak flow due to travel time; and (2) the entire watershed contributes to the DOC at the gage, but the response of DOC lags behind the period when groundwater contributes most to streamflow. Sources of DOC were tracked using fluorescent dissolved organic matter (FDOM) sensors in surface water and groundwater wells. Wells were installed at four depths, 0.3, 0.6, 0.9, and 1.2 m, at four sites: a peaty low-gradient riparian area near the headwaters; a mid-hillslope area on a long hillslope mid-watershed; a near-stream area on a long hillslope mid-watershed; and a low-gradient tributary confluence area just above the gage. During storm events, FDOM and hydraulic head were measured at the nested groundwater wells. Samples for DOC analysis were also taken to determine the relationship between FDOM and DOC. Results suggest that both distant sources and the greater watershed played a role in the transport of DOC to the W-9 gage. Distant peaty sources dominated during large storms and contributed the highest surface water FDOM measurements. The peak FDOM at the gage was therefore best described as a result of transport. However, export from these distant sources terminated rapidly and did not explain continued elevated FDOM at the gage. Groundwater across the watershed exhibited hysteresis analogous to that in the stream itself, with FDOM peaking as head receded

  4. Effects of adding MIN-AD to steam-flaked corn-based diets with or without wet corn distiller's grain plus solubles on performance by beef cattle during receiving and finishing phases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of wet corn distillers grain (WCDG) and MIN-AD (MIN-AD Inc., Amarillo, TX), a commercial source of calcium-magnesium carbonate, on cattle performance and carcass measurements were evaluated in a 42-d receiving phase (220 steers; initial BW = 279.3 kg) and a subsequent finishing phase (192 s...

  5. Estimating Carbon Dioxide Fluxes from Sources and Sinks in the Mid-Continent Intensive using Inventories and Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    West, T. O.; Bandaru, V.; Brandt, C. C.; Schuh, A. E.; Gurney, K. R.; Heath, L. S.; Izaurralde, R. C.; Liu, S.; Li, Z.; Ogle, S. M.

    2009-12-01

    Estimates of carbon dioxide sources and sinks have been compiled from numerous models and national inventories. Flux estimates include those for cropland, grassland, and forest biomass; cropland and grassland soils; fossil-fuel emissions; emissions from livestock and humans; and movement of carbon into and out of the region. Estimates have been scaled to coincide with entities responsible for respective carbon fluxes and for consistent estimates among flux sources. We will present methods used to scale fluxes using satellite remote sensing data and present comprehensive results of carbon fluxes within a ten-state region surrounding the State of Iowa. Results will be compared to previous carbon flux estimates produced under the Mid-Continent Intensive Interim synthesis. We will discuss significant changes in estimation methods and variability associated with components of the current estimates.

  6. Multiple Phosphatases Regulate Carbon Source-Dependent Germination and Primary Metabolism in Aspergillus nidulans

    PubMed Central

    de Assis, Leandro José; Ries, Laure Nicolas Annick; Savoldi, Marcela; Dinamarco, Taisa Magnani; Goldman, Gustavo Henrique; Brown, Neil Andrew

    2015-01-01

    Aspergillus nidulans is an important mold and a model system for the study of fungal cell biology. In addition, invasive A. nidulans pulmonary infections are common in humans with chronic granulomatous disease. The morphological and biochemical transition from dormant conidia into active, growing, filamentous hyphae requires the coordination of numerous biosynthetic, developmental, and metabolic processes. The present study exhibited the diversity of roles performed by seven phosphatases in regulating cell cycle, development, and metabolism in response to glucose and alternative carbon sources. The identified phosphatases highlighted the importance of several signaling pathways regulating filamentous growth, the action of the pyruvate dehydrogenase complex as a metabolic switch controlling carbon usage, and the identification of the key function performed by the α-ketoglutarate dehydrogenase during germination. These novel insights into the fundamental roles of numerous phosphatases in germination and carbon sensing have provided new avenues of research into the identification of inhibitors of fungal germination, with implications for the food, feed, and pharmaceutical industries. PMID:25762568

  7. Multiple Phosphatases Regulate Carbon Source-Dependent Germination and Primary Metabolism in Aspergillus nidulans.

    PubMed

    de Assis, Leandro José; Ries, Laure Nicolas Annick; Savoldi, Marcela; Dinamarco, Taisa Magnani; Goldman, Gustavo Henrique; Brown, Neil Andrew

    2015-05-01

    Aspergillus nidulans is an important mold and a model system for the study of fungal cell biology. In addition, invasive A. nidulans pulmonary infections are common in humans with chronic granulomatous disease. The morphological and biochemical transition from dormant conidia into active, growing, filamentous hyphae requires the coordination of numerous biosynthetic, developmental, and metabolic processes. The present study exhibited the diversity of roles performed by seven phosphatases in regulating cell cycle, development, and metabolism in response to glucose and alternative carbon sources. The identified phosphatases highlighted the importance of several signaling pathways regulating filamentous growth, the action of the pyruvate dehydrogenase complex as a metabolic switch controlling carbon usage, and the identification of the key function performed by the α-ketoglutarate dehydrogenase during germination. These novel insights into the fundamental roles of numerous phosphatases in germination and carbon sensing have provided new avenues of research into the identification of inhibitors of fungal germination, with implications for the food, feed, and pharmaceutical industries. PMID:25762568

  8. [Advanced nitrogen removal using innovative denitrification biofilter with sustained-release carbon source material].

    PubMed

    Tang, Lei; Li, Peng; Zuo, Jian-e; Yuan, Lin; Li, Zai-xing

    2013-09-01

    An innovative denitrification biofilter was developed with polycaprolactone (PCL) as the carbon source and biofilm carrier. The performance of nitrogen removal was investigated with biologically treated effluent from secondary clarifier, and the results indicated that a maximum TN removal efficiency of 98.9% was achieved under the following conditions: influent total nitrogen (TN) concentration 30.0 mg x L(-1), denitrification load 54.0 mg (L x h)(-1), operating temperature 20. 1-22.0 degrees C, hydraulic retention time 0. 5 h; the total organic carbon (TOC) in effluent was 6.5-8.4 mg x L(-1), which was increased by 2.0-3.0 mg x L(-1) compared with that in the influent; the suspended solids (SS) concentration was less than 4.0 mg x L(-1) during operation; nearly 84.2% of the total released organic carbon which was used as electron donor in the denitrification process, was derived in the presence of microbes. The surface of the PCL pellets was observed by scanning electron microscope (SEM), it was shown that thick biofilm was formed on the surface of pellets, and the main microbial species were Bacillus and Trichobacteria. PMID:24289000

  9. Sources of dissolved inorganic carbon to the Canada Basin halocline: A multitracer study

    NASA Astrophysics Data System (ADS)

    Brown, Kristina A.; McLaughlin, Fiona; Tortell, Philippe D.; Yamamoto-Kawai, Michiyo; Francois, Roger

    2016-05-01

    We examine the dissolved inorganic carbon maximum in the Canada Basin halocline using a suite of geochemical tracers to gain insight into the factors that contribute to the persistence of this feature. Hydrographic and geochemical samples were collected in the upper 500 m of the southwestern Canada Basin water column in the summer of 2008 and fall of 2009. These observations were used to identify conservative and nonconservative processes that contribute dissolved inorganic carbon to halocline source waters, including shelf sediment organic matter remineralization, air-sea gas exchange, and sea-ice brine export. Our results indicate that the remineralization of organic matter that occurs along the Bering and Chukchi Sea shelves is the overwhelming contributor of dissolved inorganic carbon to Pacific Winter Water that occupies the middle halocline in the southwestern Canada Basin. Nonconservative contributions from air-sea exchange and sea-ice brine are not significant. The broad salinity range associated with the DIC maximum, compared to the narrow salinity range of the nutrient maximum, is due to mixing between Pacific and Atlantic water and not abiotic addition of DIC.

  10. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.

    2016-05-01

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon

  11. Controlling single and few-layer graphene crystals growth in a solid carbon source based chemical vapor deposition

    SciTech Connect

    Papon, Remi; Sharma, Subash; Shinde, Sachin M.; Vishwakarma, Riteshkumar; Tanemura, Masaki; Kalita, Golap

    2014-09-29

    Here, we reveal the growth process of single and few-layer graphene crystals in the solid carbon source based chemical vapor deposition (CVD) technique. Nucleation and growth of graphene crystals on a polycrystalline Cu foil are significantly affected by the injection of carbon atoms with pyrolysis rate of the carbon source. We observe micron length ribbons like growth front as well as saturated growth edges of graphene crystals depending on growth conditions. Controlling the pyrolysis rate of carbon source, monolayer and few-layer crystals and corresponding continuous films are obtained. In a controlled process, we observed growth of large monolayer graphene crystals, which interconnect and merge together to form a continuous film. On the other hand, adlayer growth is observed with an increased pyrolysis rate, resulting few-layer graphene crystal structure and merged continuous film. The understanding of monolayer and few-layer crystals growth in the developed CVD process can be significant to grow graphene with controlled layer numbers.

  12. Influence of carbon and lipid sources on variation of mercury and other trace elements in polar bears (Ursus maritimus).

    PubMed

    Routti, Heli; Letcher, Robert J; Born, Erik W; Branigan, Marsha; Dietz, Rune; Evans, Thomas J; McKinney, Melissa A; Peacock, Elizabeth; Sonne, Christian

    201