Science.gov

Sample records for added electron acceptors

  1. Evidence on Anaerobic Methane Oxidation (AOM) in a boreal cultivated peatland with natural and added electron acceptors

    NASA Astrophysics Data System (ADS)

    Dorodnikov, Maxim; Silvennoinen, Hanna; Martikainen, Pertti; Dörsch, Peter

    2015-04-01

    Anaerobic oxidation of methane (AOM) is a process of methane (CH4) consumption under anoxic conditions driven by microorganisms, which oxidize CH4 with various alternate electron acceptors (AEA): sulfate, nitrate, nitrite, metals-(Fe, Mn, Cu), organic compounds. AOM is common in marine ecosystems, where microbial sulfate reduction (SR) consumes most of the CH4 produced in sediments. Despite the global significance of AOM, the exact mechanisms and relevance of the process in terrestrial ecosystems are almost unknown. In the current study the occurrence of AOM was tested for two organic soil horizons (30 and 40 cm depth) and one mineral sub-soil (sand, 50 cm depth) of a cultivated boreal peatland (Linnansuo, Eastern Finland, energy crop Phalaris arundinacea - reed canarygrass) under controlled conditions with the addition of 13C-labeled CH4 and two common AEAs - SO4-2 and Fe+3. Concentrations of CH4, CO2 and O2 were continuously measured during 10 days of incubation and CO2 was sampled periodically under anaerobic conditions for stable 13C analysis. Oxygen dynamics revealed negligible O2 contamination during incubation and its trace amounts (0.05-0.8% from the atmospheric) were accounted in the net CH4 uptake. Application of 13C-enriched CH4 (4.9 atom%) allowed to track the label in CO2 as the end-product of AOM. The highest 13CO2 enrichment (up to 60‰) was observed in mineral sub-soil, however AOM was quantitatively more pronounced in the upper 30 cm horizon (2.1 vs. 0.2 μg CO2 g soil DW-1 in the 50 cm sub-soil). The highest AOM rate of 8.9 ng CO2 g soil DW-1 h-1 was estimated for the control treatment where no AEAs were added indicating sufficient amount of naturally available AEAs, likely organic compounds. This rate was 50 times more intensive (on the C basis) than the CH4 production potential of the same soil. In contrast, external AEAs decreased AOM rates but added Fe+3 stimulated decomposition of native SOM (as seen from the most depleted 13CO2 signatures

  2. Photoionization in micelles: Addition of charged electron acceptors

    NASA Astrophysics Data System (ADS)

    Stenland, Chris; Kevan, Larry

    The relative photoyield of the electron donor N, N, N', N'-tetramethylbenzidine (TMB), solubilized in sodium and lithium dodecyl sulfate micelles with added charged electron acceptors was investigated. It was attempted to control the acceptor distance from a charged micellar interface by differently charged acceptors, cationic dimethyl viologen and anionic ferricyanide. However, back electron transfer from both cationic and anionic acceptors was found to be efficient. Thus simple electrostatic arguments for control of the photoyield do not seem applicable. Salt effects associated with the added ionic acceptors which partially neutralize the ionic micellar interface are suggested to be an important factor.

  3. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens.

    PubMed

    Nealson, K H; Moser, D P; Saffarini, D A

    1995-04-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  4. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Moser, D. P.; Saffarini, D. A.

    1995-01-01

    Shewanella putrefaciens MR-1 can grow either aerobically or anaerobically at the expense of many different electron acceptors and is often found in abundance at redox interfaces in nature. Such redox interfaces are often characterized by very strong gradients of electron acceptors resulting from rapid microbial metabolism. The coincidence of S. putrefaciens abundance with environmental gradients prompted an examination of the ability of MR-1 to sense and respond to electron acceptor gradients in the laboratory. In these experiments, taxis to the majority of the electron acceptors that S. putrefaciens utilizes for anaerobic growth was seen. All anaerobic electron acceptor taxis was eliminated by the presence of oxygen, nitrate, nitrite, elemental sulfur, or dimethyl sulfoxide, even though taxis to the latter was very weak and nitrate and nitrite respiration was normal in the presence of dimethyl sulfoxide. Studies with respiratory mutants of MR-1 revealed that several electron acceptors that could not be used for anaerobic growth nevertheless elicited normal anaerobic taxis. Mutant M56, which was unable to respire nitrite, showed normal taxis to nitrite, as well as the inhibition of taxis to other electron acceptors by nitrite. These results indicate that electron acceptor taxis in S. putrefaciens does not conform to the paradigm established for Escherichia coli and several other bacteria. Carbon chemo-taxis was also unusual in this organism: of all carbon compounds tested, the only positive response observed was to formate under anaerobic conditions.

  5. Electron Donor-Acceptor Quenching and Photoinduced Electron Transfer for Coumarin Dyes.

    DTIC Science & Technology

    1983-10-31

    Mechanism of cousarin photodegradation . Ithe behavior of eoiuma dyes is water ad In aqueous detergent media,. and the effsects of medism aud, additives on...D-i36 345 ELECTRON DONOR-ACCEPTOR UENCHING AND PHOTOINDUCED i/i Ai ELECTRON TRANSFER FOR COUMARIN DYES (U) BOSTON UNIY MR DEPT OF CHEMISTRY G JONES...TYPE OF REPORT & PEIOD COVERED Electron Donor-acceptor Quenching and Photo- Technical, 1/1/82-10/31/82 induced Electron Transfer for Coumarin Dyes S

  6. Physiological and electrochemical effects of different electron acceptors on bacterial anode respiration in bioelectrochemical systems.

    PubMed

    Yang, Yonggang; Xiang, Yinbo; Xia, Chunyu; Wu, Wei-Min; Sun, Guoping; Xu, Meiying

    2014-07-01

    To understand the interactions between bacterial electrode respiration and the other ambient bacterial electron acceptor reductions, alternative electron acceptors (nitrate, Fe2O3, fumarate, azo dye MB17) were added singly or multiply into Shewanella decolorationis microbial fuel cells (MFCs). All the added electron acceptors were reduced simultaneously with current generation. Adding nitrate or MB17 resulted in more rapid cell growth, higher flavin concentration and higher biofilm metabolic viability, but lower columbic efficiency (CE) and normalized energy recovery (NER) while the CE and NER were enhanced by Fe2O3 or fumarate. The added electron acceptors also significantly influenced the cyclic voltammetry profile of anode biofilm probably via altering the cytochrome c expression. The highest power density was observed in MFCs added with MB17 due to the electron shuttle role of the naphthols from MB17 reduction. The results provided important information for MFCs applied in practical environments where contains various electron acceptors.

  7. Electron Donor Acceptor Interactions. Final Progress Report

    SciTech Connect

    2002-08-16

    The Gordon Research Conference (GRC) on Electron Donor Acceptor Interactions was held at Salve Regina University, Newport, Rhode Island, 8/11-16/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  8. The reaction of choline dehydrogenase with some electron acceptors.

    PubMed Central

    Barrett, M C; Dawson, A P

    1975-01-01

    1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme. PMID:1218095

  9. The reaction of choline dehydrogenase with some electron acceptors.

    PubMed

    Barrett, M C; Dawson, A P

    1975-12-01

    1. The choline dehydrogenase (EC 1.1.99.1) WAS SOLUBILIZED FROM ACETONE-DRIED POWDERS OF RAT LIVER MITOCHONDRIA BY TREATMENT WITH Naja naja venom. 2. The kinetics of the reaction of enzyme with phenazine methosulphate and ubiquinone-2 as electron acceptors were investigated. 3. With both electron acceptors the reaction mechanism appears to involve a free, modified-enzyme intermediate. 4. With some electron acceptors the maximum velocity of the reaction is independent of the nature of the acceptor. With phenazine methosulphate and ubiquinone-2 as acceptors the Km value for choline is also independent of the nature of the acceptor molecule. 5. The mechanism of the Triton X-100-solubilized enzyme is apparently the smae as that for the snake venom solubilized enzyme.

  10. Efficient organic solar cells with helical perylene diimide electron acceptors.

    PubMed

    Zhong, Yu; Trinh, M Tuan; Chen, Rongsheng; Wang, Wei; Khlyabich, Petr P; Kumar, Bharat; Xu, Qizhi; Nam, Chang-Yong; Sfeir, Matthew Y; Black, Charles; Steigerwald, Michael L; Loo, Yueh-Lin; Xiao, Shengxiong; Ng, Fay; Zhu, X-Y; Nuckolls, Colin

    2014-10-29

    We report an efficiency of 6.1% for a solution-processed non-fullerene solar cell using a helical perylene diimide (PDI) dimer as the electron acceptor. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces, indicating that charge carriers are created from photogenerated excitons in both the electron donor and acceptor phases. Light-intensity-dependent current-voltage measurements suggested different recombination rates under short-circuit and open-circuit conditions.

  11. Electron acceptor taxis and blue light effect on bacterial chemotaxis.

    PubMed

    Taylor, B L; Miller, J B; Warrick, H M; Koshland, D E

    1979-11-01

    Salmonella typhimurium and Escherichia coli from anaerobic cultures displayed tactic responses to gradients of nitrate, fumarate, and oxygen when the appropriate electron transport pathway was present. Such responses were named "electron acceptor taxis" because they are elicited by terminal electron acceptors. Mutant strains of S. typhimurium and E. coli were used to establish that functioning electron transport pathways to nitrate and fumarate are required for taxis to these compounds. Aerotaxis in S. typhimurium was blocked by 1.0 mM KCN, which inhibited oxygen uptake. Similarly, a functioning electron transport pathway was shown to be essential for the tumbling response of S. typhimurium and E. coli to intense light (290 to 530 nm). Some inhibitors and uncouplers of respiration were repellents of S. typhimurium. We propose that behavioral responses to light or electron acceptors involve electron transport-mediated perturbations of the proton motive force.

  12. Enhanced natural attenuation of BTEX in the nitrate-reducing environment by different electron acceptors.

    PubMed

    Zhao, Yongsheng; Qu, Dan; Hou, Zhimin; Zhou, Rui

    2015-01-01

    Enhancing natural attenuation of benzene, toluene, ethylbenzene, and xylene (BTEX) in groundwater is a potential remediation technology. This study focused on selecting appropriate electron acceptors to promote BTEX degradation in a nitrate-reducing environment. Nitrate-reducing soil was obtained from simulated BTEX-contaminated column. Enhancing experiments were conducted in the microcosm with nitrate-reducing material and simulated BTEX-polluted groundwater to investigate the promoting feasibility of adding dissolved oxygen (DO), nitrate, chelated Fe(III), and sulphate as electron acceptors. The concentrations of BTEX, electron acceptors, and their reducing products were measured. The order of promoting BTEX degradation with four electron acceptors was nitrate>sulphate>chelated Fe(III)>DO, and the first-order decay coefficients were 0.0432, 0.0333, 0.0240, and 0.0155, respectively. Nitrate, sulphate, and chelated Fe(III) enhanced attenuation. Nitrate was the most effective electron acceptor under nitrate-reducing conditions. Selecting proper electron acceptor is significant in promoting BTEX degradation according to the biogeochemical characteristics of local underground environment.

  13. Electron acceptor-dependent respiratory and physiological stratifications in biofilms.

    PubMed

    Yang, Yonggang; Xiang, Yinbo; Sun, Guoping; Wu, Wei-Min; Xu, Meiying

    2015-01-06

    Bacterial respiration is an essential driving force in biogeochemical cycling and bioremediation processes. Electron acceptors respired by bacteria often have solid and soluble forms that typically coexist in the environment. It is important to understand how sessile bacteria attached to solid electron acceptors respond to ambient soluble alternative electron acceptors. Microbial fuel cells (MFCs) provide a useful tool to investigate this interaction. In MFCs with Shewanella decolorationis, azo dye was used as an alternative electron acceptor in the anode chamber. Different respiration patterns were observed for biofilm and planktonic cells, with planktonic cells preferred to respire with azo dye while biofilm cells respired with both the anode and azo dye. The additional azo respiration dissipated the proton accumulation within the anode biofilm. There was a large redox potential gap between the biofilms and anode surface. Changing cathodic conditions caused immediate effects on the anode potential but not on the biofilm potential. Biofilm viability showed an inverse and respiration-dependent profile when respiring with only the anode or azo dye and was enhanced when respiring with both simultaneously. These results provide new insights into the bacterial respiration strategies in environments containing multiple electron acceptors and support an electron-hopping mechanism within Shewanella electrode-respiring biofilms.

  14. On the effect of nuclear bridge modes on donor-acceptor electronic coupling in donor-bridge-acceptor molecules

    NASA Astrophysics Data System (ADS)

    Davis, Daly; Toroker, Maytal Caspary; Speiser, Shammai; Peskin, Uri

    2009-03-01

    We report a theoretical study of intra-molecular electronic coupling in a symmetric DBA (donor-bridge-acceptor) complex, in which a donor electronic site is coupled to an acceptor site by way of intervening orbitals of a molecular bridge unit. In the off-resonant (deep tunneling) regime of electronic transport, the lowest unoccupied molecular orbitals (MO's) of the DBA system are split into distinguishable donor/acceptor and bridge orbitals. The effect of geometrical changes at the bridge on the donor/acceptor electronic energy manifold is studied for local stretching and bending modes. It is demonstrated that the energy splitting in the manifold of donor/acceptor unoccupied MOs changes in response to such changes, as assumed in simple McConnell-type models. Limitations of the simple models are revealed where the electronic charging of the bridge orbitals correlates with increasing donor/acceptor orbital energy splitting only for stretching but not for bending bridge modes.

  15. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1.

    PubMed

    Wu, Chao; Cheng, Yuan-Yuan; Li, Bing-Bing; Li, Wen-Wei; Li, Dao-Bo; Yu, Han-Qing

    2013-05-01

    Shewanella oneidensis MR-1 is an extensively studied dissimilatory metal-reducing bacterium with a great potential for bioremediation and electricity generation. It secretes flavins as electron shuttles which play an important role in extracellular electron transfer. However, the influence of various environmental factors on the secretion of flavins is largely unknown. Here, the effects of electron acceptors, including fumarate, ferrihydrite, Fe(III)-nitrilotriacetic acid (NTA), nitrate and trimethylamine oxide (TMAO), on the secretion of flavins were investigated. The level of riboflavin and riboflavin-5'-phosphate (FMN) secreted by S. oneidensis MR-1 varied considerably with different electron acceptors. While nitrate and ferrihydrite suppressed the secretion of flavins in relative to fumarate, Fe(III)-NTA and TMAO promoted such a secretion and greatly enhanced ferrihydrite reduction and electricity generation. This work clearly demonstrates that electron acceptors could considerably affect the secretion of flavins and consequent microbial EET. Such impacts of electron acceptors in the environment deserve more attention.

  16. Gut inflammation provides a respiratory electron acceptor for Salmonella

    PubMed Central

    Winter, Sebastian E.; Thiennimitr, Parameth; Winter, Maria G.; Butler, Brian P.; Huseby, Douglas L.; Crawford, Robert W.; Russell, Joseph M.; Bevins, Charles L.; Adams, L. Garry; Tsolis, Renée M.; Roth, John R.; Bäumler, Andreas J.

    2010-01-01

    Salmonella enterica serotype Typhimurium (S. Typhimurium) causes acute gut inflammation by using its virulence factors to invade the intestinal epithelium and survive in mucosal macrophages. The inflammatory response enhances the transmission success of S. Typhimurium by promoting its outgrowth in the gut lumen through unknown mechanisms. Here we show that reactive oxygen species generated during inflammation reacted with endogenous, luminal sulphur compounds (thiosulfate) to form a new respiratory electron acceptor, tetrathionate. The genes conferring the ability to utilize tetrathionate as an electron acceptor produced a growth advantage for S. Typhimurium over the competing microbiota in the lumen of the inflamed gut. We conclude that S. Typhimurium virulence factors induce host-driven production of a new electron acceptor that allows the pathogen to use respiration to compete with fermenting gut microbes. Thus, the ability to trigger intestinal inflammation is crucial for the biology of this diarrhoeal pathogen. PMID:20864996

  17. Fused Nonacyclic Electron Acceptors for Efficient Polymer Solar Cells.

    PubMed

    Dai, Shuixing; Zhao, Fuwen; Zhang, Qianqian; Lau, Tsz-Ki; Li, Tengfei; Liu, Kuan; Ling, Qidan; Wang, Chunru; Lu, Xinhui; You, Wei; Zhan, Xiaowei

    2017-01-25

    We design and synthesize four fused-ring electron acceptors based on 6,6,12,12-tetrakis(4-hexylphenyl)-indacenobis(dithieno[3,2-b;2',3'-d]thiophene) as the electron-rich unit and 1,1-dicyanomethylene-3-indanones with 0-2 fluorine substituents as the electron-deficient units. These four molecules exhibit broad (550-850 nm) and strong absorption with high extinction coefficients of (2.1-2.5) × 10(5) M(-1) cm(-1). Fluorine substitution downshifts the LUMO energy level, red-shifts the absorption spectrum, and enhances electron mobility. The polymer solar cells based on the fluorinated electron acceptors exhibit power conversion efficiencies as high as 11.5%, much higher than that of their nonfluorinated counterpart (7.7%). We investigate the effects of the fluorine atom number and position on electronic properties, charge transport, film morphology, and photovoltaic properties.

  18. Anaerobic methanotrophy in tidal wetland: Effects of electron acceptors

    NASA Astrophysics Data System (ADS)

    Lin, Li-Hung; Yu, Zih-Huei; Wang, Pei-Ling

    2016-04-01

    Wetlands have been considered to represent the largest natural source of methane emission, contributing substantially to intensify greenhouse effect. Despite in situ methanogenesis fueled by organic degradation, methanotrophy also plays a vital role in controlling the exact quantity of methane release across the air-sediment interface. As wetlands constantly experience various disturbances of anthropogenic activities, biological burrowing, tidal inundation, and plant development, rapid elemental turnover would enable various electron acceptors available for anaerobic methanotrophy. The effects of electron acceptors on stimulating anaerobic methanotrophy and the population compositions involved in carbon transformation in wetland sediments are poorly explored. In this study, sediments recovered from tidally influenced, mangrove covered wetland in northern Taiwan were incubated under the static conditions to investigate whether anaerobic methanotrophy could be stimulated by the presence of individual electron acceptors. Our results demonstrated that anaerobic methanotrophy was clearly stimulated in incubations amended with no electron acceptor, sulfate, or Fe-oxyhydroxide. No apparent methane consumption was observed in incubations with nitrate, citrate, fumarate or Mn-oxides. Anaerobic methanotrophy in incubations with no exogenous electron acceptor appears to proceed at the greatest rates, being sequentially followed by incubations with sulfate and Fe-oxyhydroxide. The presence of basal salt solution stimulated methane oxidation by a factor of 2 to 3. In addition to the direct impact of electron acceptor and basal salts, incubations with sediments retrieved from low tide period yielded a lower rate of methane oxidation than from high tide period. Overall, this study demonstrates that anaerobic methanotrophy in wetland sediments could proceed under various treatments of electron acceptors. Low sulfate content is not a critical factor in inhibiting methane

  19. Mechanisms of electron acceptor utilization: Implications for simulating anaerobic biodegradation

    USGS Publications Warehouse

    Schreiber, M.E.; Carey, G.R.; Feinstein, D.T.; Bahr, J.M.

    2004-01-01

    Simulation of biodegradation reactions within a reactive transport framework requires information on mechanisms of terminal electron acceptor processes (TEAPs). In initial modeling efforts, TEAPs were approximated as occurring sequentially, with the highest energy-yielding electron acceptors (e.g. oxygen) consumed before those that yield less energy (e.g., sulfate). Within this framework in a steady state plume, sequential electron acceptor utilization would theoretically produce methane at an organic-rich source and Fe(II) further downgradient, resulting in a limited zone of Fe(II) and methane overlap. However, contaminant plumes often display much more extensive zones of overlapping Fe(II) and methane. The extensive overlap could be caused by several abiotic and biotic processes including vertical mixing of byproducts in long-screened monitoring wells, adsorption of Fe(II) onto aquifer solids, or microscale heterogeneity in Fe(III) concentrations. Alternatively, the overlap could be due to simultaneous utilization of terminal electron acceptors. Because biodegradation rates are controlled by TEAPs, evaluating the mechanisms of electron acceptor utilization is critical for improving prediction of contaminant mass losses due to biodegradation. Using BioRedox-MT3DMS, a three-dimensional, multi-species reactive transport code, we simulated the current configurations of a BTEX plume and TEAP zones at a petroleum- contaminated field site in Wisconsin. Simulation results suggest that BTEX mass loss due to biodegradation is greatest under oxygen-reducing conditions, with smaller but similar contributions to mass loss from biodegradation under Fe(III)-reducing, sulfate-reducing, and methanogenic conditions. Results of sensitivity calculations document that BTEX losses due to biodegradation are most sensitive to the age of the plume, while the shape of the BTEX plume is most sensitive to effective porosity and rate constants for biodegradation under Fe(III)-reducing and

  20. Tailored donor-acceptor polymers with an A-D1-A-D2 structure: controlling intermolecular interactions to enable enhanced polymer photovoltaic devices.

    PubMed

    Qin, Tianshi; Zajaczkowski, Wojciech; Pisula, Wojciech; Baumgarten, Martin; Chen, Ming; Gao, Mei; Wilson, Gerry; Easton, Christopher D; Müllen, Klaus; Watkins, Scott E

    2014-04-23

    Extensive efforts have been made to develop novel conjugated polymers that give improved performance in organic photovoltaic devices. The use of polymers based on alternating electron-donating and electron-accepting units not only allows the frontier molecular orbitals to be tuned to maximize the open-circuit voltage of the devices but also controls the optical band gap to increase the number of photons absorbed and thus modifies the other critical device parameter-the short circuit current. In fact, varying the nonchromophoric components of a polymer is often secondary to the efforts to adjust the intermolecular aggregates and improve the charge-carrier mobility. Here, we introduce an approach to polymer synthesis that facilitates simultaneous control over both the structural and electronic properties of the polymers. Through the use of a tailored multicomponent acceptor-donor-acceptor (A-D-A) intermediate, polymers with the unique structure A-D1-A-D2 can be prepared. This approach enables variations in the donor fragment substituents such that control over both the polymer regiochemistry and solubility is possible. This control results in improved intermolecular π-stacking interactions and therefore enhanced charge-carrier mobility. Solar cells using the A-D1-A-D2 structural polymer show short-circuit current densities that are twice that of the simple, random analogue while still maintaining an identical open-circuit voltage. The key finding of this work is that polymers with an A-D1-A-D2 structure offer significant performance benefits over both regioregular and random A-D polymers. The chemical synthesis approach that enables the preparation of A-D1-A-D2 polymers therefore represents a promising new route to materials for high-efficiency organic photovoltaic devices.

  1. Electron Acceptor-Electron Donor Interactions. XV and XVI.

    DTIC Science & Technology

    mixtures exhibit simple eutectic phase diagrams and the thermochromic effect is interpreted as a randomized structure in the liquid , whereas the solid is a...two-phase aggregate of isolated acceptor and onor crystals . The charge-transfer spectra of solutions of tungsten and molybdenum hexafluorides and iodine heptafluoride in n-hexane and cyclohexane were obtained.

  2. 2012 ELECTRON DONOR-ACCEPTOR INTERACTIONS GORDON RESEARCH CONFERENCE, AUGUST 5-10, 2012

    SciTech Connect

    McCusker, James

    2012-08-10

    The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.

  3. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    PubMed

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  4. Carbon Single Walled Nanotubes- Electron Acceptor Molecules for Improving the Efficiency of the Photoexcitation of TiO2 for Solar-Driven Technologies

    DTIC Science & Technology

    2012-10-16

    Single walled nanotubes ( SWNTs ) are shown to be electron acceptor molecules. The PL was used to observe the buildup during UV irradiation of surface...surface. Single walled nanotubes ( SWNTs ) are shown to be electron acceptor molecules. The PL was used to observe the buildup during UV irradiation of...the TiO2 bed and through the bed containing SWNT linkers. It was found that while SWNTs are good acceptors, no added conductivity from isolated TiO2

  5. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration.

    PubMed

    Richter, Katrin; Schicklberger, Marcus; Gescher, Johannes

    2012-02-01

    An extension of the respiratory chain to the cell surface is necessary to reduce extracellular electron acceptors like ferric iron or manganese oxides. In the past few years, more and more compounds were revealed to be reduced at the surface of the outer membrane of Gram-negative bacteria, and the list does not seem to have an end so far. Shewanella as well as Geobacter strains are model organisms to discover the biochemistry that enables the dissimilatory reduction of extracellular electron acceptors. In both cases, c-type cytochromes are essential electron-transferring proteins. They make the journey of respiratory electrons from the cytoplasmic membrane through periplasm and over the outer membrane possible. Outer membrane cytochromes have the ability to catalyze the last step of the respiratory chains. Still, recent discoveries provided evidence that they are accompanied by further factors that allow or at least facilitate extracellular reduction. This review gives a condensed overview of our current knowledge of extracellular respiration, highlights recent discoveries, and discusses critically the influence of different strategies for terminal electron transfer reactions.

  6. Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology

    SciTech Connect

    Loeffler, F.E.; Tiedje, J.M.; Sanford, R.A.

    1999-09-01

    Measurements of the hydrogen consumption threshold and the tracking of electrons transferred to the chlorinated electron acceptor (f{sub e}) reliably detected chlororespiratory physiology in both mixed cultures and pure cultures capable of using tetrachloroethene, cis-1,2-dichloroethene, vinyl chloride, 2-chlorophenol, 3-chlorobenzoate, 3-chloro-4-hydroxybenzoate, or 1,2-dichloropropane as an electron acceptor. Hydrogen was consumed to significantly lower threshold concentrations of less than 0.4 ppmv compared with the values obtained for the same cultures without a chlorinated compound as an electron acceptor. The f{sub e} values ranged from 0.63 to 0.7, values which are in good agreement with theoretical calculations based on the thermodynamics of reductive dechlorination as the terminal electron-accepting process. In contrast, a mixed methanogenic culture that cometabolized 3-chlorophenol exhibited a significantly lower f{sub e} value, 0.012.

  7. Three Redox States of a Diradical Acceptor-Donor-Acceptor Triad: Gating the Magnetic Coupling and the Electron Delocalization.

    PubMed

    Souto, Manuel; Lloveras, Vega; Vela, Sergi; Fumanal, Maria; Ratera, Imma; Veciana, Jaume

    2016-06-16

    The diradical acceptor-donor-acceptor triad 1(••), based on two polychlorotriphenylmethyl (PTM) radicals connected through a tetrathiafulvalene(TTF)-vinylene bridge, has been synthesized. The generation of the mixed-valence radical anion, 1(•-), and triradical cation species, 1(•••+), obtained upon electrochemical reduction and oxidation, respectively, was monitored by optical and ESR spectroscopy. Interestingly, the modification of electron delocalization and magnetic coupling was observed when the charged species were generated and the changes have been rationalized by theoretical calculations.

  8. Development of imide- and imidazole-containing electron acceptors for use in donor-acceptor conjugated compounds and polymers

    NASA Astrophysics Data System (ADS)

    Li, Duo

    Conjugated organic compounds and polymers have attracted significant attention due to their potential application in electronic devices as semiconducting materials, such as organic solar cells (OSCs). In order to tune band gaps, donor-acceptor (D-A) structure is widely used, which has been proved to be one of the most effective strategies. This thesis consists of three parts: 1) design, syntheses and characterization of new weak acceptors based on imides and the systematic study of the structure-property relationship; (2) introduction of weak and strong acceptors in one polymer to achieve a broad coverage of light absorption and improve the power conversion efficiency (PCE); (3) modification of benzothiadiazole (BT) acceptor in order to increase the electron withdrawing ability. Imide-based electron acceptors, 4-(5-bromothiophen-2-y1)-2-(2-ethylhexyl)-9- phenyl- 1H-benzo[f]isoindole-1,3(2H)-dione (BIDO-1) and 4,9-bis(5-bromothiophen-2-yl)-2-(2-ethylhexyl)-benzo[f]isoindole-1,3-dione (BIDO-2), were designed and synthesized. In this design, naphthalene is selected as its main core to maintain a planar structure, and thienyl groups are able to facilitate the bromination reaction and lower the band gap. BIDO-1 and BIDO-2 were successfully coupled with different donors by both Suzuki cross-coupling and Stille cross-coupling reactions. Based on the energy levels and band gaps of the BIDO-containing compounds and polymers, BIDO-1 and BIDO-2 are proved to be weak electron acceptors. Pyromellitic diimide (PMDI) was also studied and found to be a stronger electron acceptor than BIDO . In order to obtain broad absorption coverage, both weak acceptor ( BIDO-2) and strong acceptor diketopyrrolopyrrole (DPP) were introduced in the same polymer. The resulting polymers show two absorption bands at 400 and 600 nm and two emission peaks at 500 and 680 nm. The band gaps of the polymers are around 1.6 eV, which is ideal for OSC application. The PCE of 1.17% was achieved. Finally

  9. Solvent as electron donor: Donor/acceptor electronic coupling is a dynamical variable

    SciTech Connect

    Castner, E.W. Jr.; Kennedy, D.; Cave, R.J.

    2000-04-06

    The authors combine analysis of measurements by femtosecond optical spectroscopy, computer simulations, and the generalized Mulliken-Hush (GMH) theory in the study of electron-transfer reactions and electron donor-acceptor interactions. The study focus is on ultrafast photoinduced electron-transfer reactions from aromatic amine solvent donors to excited-state acceptors. The experimental results from femtosecond dynamical measurements fall into three categories: six coumarin acceptors reductively quenched by N,N-dimethylaniline (DMA), eight electron-donating amine solvents reductively quenching coumarin 152 (7-(dimethylamino)-4-(trifluoromethyl)-coumarin), and reductive quenching dynamics of two coumarins by DMA as a function of dilution in the nonreactive solvents toluene and chlorobenzene. Applying a combination of molecular dynamics trajectories, semiempirical quantum mechanical calculations (of the relevant adiabatic electronic states), and GMH theory to the C152/DMA photoreaction, the authors calculate the electron donor/acceptor interaction parameter H{sub DA} at various time frames, H{sub DA} is strongly modulated by both inner-sphere and outer-sphere nuclear dynamics, leading us to conclude that H{sub DA} must be considered as a dynamical variable.

  10. π-Extended rigid triptycene-trisaroylenimidazoles as electron acceptors.

    PubMed

    Menke, Elisabeth H; Lami, Vincent; Vaynzof, Yana; Mastalerz, Michael

    2016-01-18

    Two soluble isomeric acceptor molecules based on a triptycene core, which is connected to three aroylenimidazole units are described. Due to the inherent threefold axis, the molecules are soluble and thus could be fully photophysically characterized in solution and film. Additionally, the preliminary results of these acceptors in organic photovoltaic devices with two different donor materials are reported.

  11. Rates of primary electron transfer reactions in the photosystem I reaction center reconstituted with different quinones as the secondary acceptor

    SciTech Connect

    Kumazaki, Shigeichi; Kandori, Hideki; Yoshihara, Keitaro ); Iwaki, Masayo; Itoh, Shigeru ); Ikegamu, Isamu )

    1994-10-27

    Rates of sequential electron transfer reactions from the primary electron donor chlorophyll dimer (P700) to the electron acceptor chlorophyll a-686 (A[sub 0]) and to the secondary acceptor quinone (Q[sub [phi

  12. [Effects of carbon sources, temperature and electron acceptors on biological phosphorus removal].

    PubMed

    Han, Yun; Xu, Song; Dong, Tao; Wang, Bin-Fan; Wang, Xian-Yao; Peng, Dang-Cong

    2015-02-01

    Effects of carbon sources, temperature and electron acceptors on phosphorus uptake and release were investigated in a pilot-scale oxidation ditch. Phosphorus uptake and release rates were measured with different carbon sources (domestic sewage, sodium acetate, glucose) at 25 degrees C. The results showed that the minimum phosphorus uptake and release rates of glucose were 5.12 mg x (g x h)(-1) and 6.43 mg x (g x h)(-1), respectively, and those of domestic sewage are similar to those of sodium acetate. Phosphorus uptake and release rates increased with the increase of temperature (12, 16, 20 and 25 degrees C) using sodium acetate as carbon sources. Anoxic phosphorus uptake rate decreased with added COD. Electron acceptors (oxygen, nitrate, nitrite) had significant effects on phosphorus uptake rate and their order was in accordance with oxygen > nitrate > nitrite. The mass ratio of anoxic P uptake and N consumption (P(uptake)/N (consumption)) of nitrate and nitrite were 0.96 and 0.65, respectively.

  13. Analysis of Shewanella oneidensis Membrane Protein Expression in Response to Electron Acceptor Availability

    SciTech Connect

    Giometti, Carol S.; Khare, Tripti; Verberkmoes, Nathan; O'Loughlin, Ed; Lindberg, Carl; Thompson, Melissa; Hettich, Robert

    2006-04-05

    Shewanella oneidensis MR-1, a gram negative metal-reducing bacterium, can utilize a large number of electron acceptors. In the natural environment, S. oneidensis utilizes insoluble metal oxides as well as soluble terminal electron acceptors. The purpose of this ERSP project is to identify differentially expressed proteins associated with the membranes of S. oneidensis MR-1 cells grown with different electron acceptors, including insoluble metal oxides. We hypothesize that through the use of surface labeling, subcellular fractionation, and a combination of proteome analysis tools, proteins involved in the reduction of different terminal electron acceptors will be elucidated. We are comparing the protein profiles from cells grown with the soluble electron acceptors oxygen and fumarate and with those from cells grown with the insoluble iron oxides goethite, ferrihydrite and lepidocrocite. Comparison of the cell surface proteins isolated from cells grown with oxygen or anaerobically with fumarate revealed an increase in the abundance of over 25 proteins in anaerobic cells, including agglutination protein and flagellin proteins along with the several hypothetical proteins. In addition, the surface protein composition of cells grown with the insoluble iron oxides varies considerably from the protein composition observed with either soluble electron acceptor as well as between the different insoluble acceptors.

  14. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor

    NASA Technical Reports Server (NTRS)

    Myers, Charles R.; Nealson, Kenneth H.

    1988-01-01

    Microbes that couple growth to the reduction of manganese could play an important role in the biogeochemistry of certain anaerobic environments. Such a bacterium, Alteromonas putrefaciens MR-1, couples its growth to the reduction of manganese oxides only under anaerobic conditions. The characteristics of this reduction are consistent with a biological, and not an indirect chemical, reduction of manganese, which suggest that this bacterium uses manganic oxide as a terminal electron acceptor. It can also utilize a large number of other compounds as terminal electron acceptors; this versatility could provide a distinct advantage in environments where electron-acceptor concentrations may vary.

  15. [On the electron stabilization within the quinone acceptor part of Rhodobacter sphaeroides photosynthetic reaction centers].

    PubMed

    Noks, P P; Krasil'nikov, P M; Mamonov, P A; Seĭfullina, N Kh; Uchoa, A F; Baptista, M S

    2008-01-01

    The time evolution of the photoinduced differential absorption spectrum of isolated Rhodobacter sphaeroides photosynthetic reaction centers was investigated. The measurements were carried out in the spectral region of 400-500 nm on the time scale of up to 200 microseconds. The spectral changes observed can be interpreted in terms of the effects of proton shift along hydrogen bonds between the primary quinone acceptor and the protein. A theoretical analysis of the spectrum time evolution was performed, which is based on the consideration of the kinetics of proton tunneling along the hydrogen bond. It was shown that the stabilization of the primary quinone electronic state occurs within the first several tens of microseconds after quinone reduction. It slows down upon the deuteration of reaction centers as well as after adding 90% of glycerol; on the other hand, it accelerates as temperature rises up to 40 degrees C.

  16. Candidatus Accumulibacter phosphatis clades enriched under cyclic anaerobic and microaerobic conditions simultaneously use different electron acceptors

    EPA Science Inventory

    Lab- and pilot-scale simultaneous nitrification, denitrification and phosphorus removal-sequencing batch reactors were operated under cyclic anaerobic and micro-aerobic conditions. The use of oxygen, nitrite, and nitrate as electron acceptors by Candidatus Accumulibacter phosphat...

  17. Efficient Semitransparent Solar Cells with High NIR Responsiveness Enabled by a Small-Bandgap Electron Acceptor.

    PubMed

    Liu, Feng; Zhou, Zichun; Zhang, Cheng; Zhang, Jianyun; Hu, Qin; Vergote, Thomas; Liu, Feng; Russell, Thomas P; Zhu, Xiaozhang

    2017-03-21

    Inspired by the remarkable promotion of power conversion efficiency (PCE), commercial applications of organic photovoltaics (OPVs) can be foreseen in near future. One of the most promising applications is semitransparent (ST) solar cells that can be utilized in value-added applications such as energy-harvesting windows. However, the single-junction STOPVs utilizing fullerene acceptors show relatively low PCEs of 4%-6% due to the limited sunlight absorption because it is a dilemma that more photons need to be harvested in UV-vis-near-infrared (NIR) region to generate high photocurrent, which leads to the significant reduction of device transparency. This study describes the development of a new small-bandgap electron-acceptor material ATT-2, which shows a strong NIR absorption between 600 and 940 nm with an Eg(opt) of 1.32 eV. By combining with PTB7-Th, the as-cast OPVs yield PCEs of up to 9.58% with a fill factor of 0.63, an open-circuit voltage of 0.73 V, and a very high short-circuit current of 20.75 mA cm(-2) . Owing to the favorable complementary absorption of low-bangap PTB7-Th and small-bandgap ATT-2 in NIR region, the proof-of-concept STOPVs show the highest PCE of 7.7% so far reported for single-junction STOPVs with a high transparency of 37%.

  18. An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Non-Fullerene Solar Cells.

    PubMed

    Zhang, Andong; Li, Cheng; Yang, Fan; Zhang, Jianqi; Wang, Zhaohui; Wei, Zhixiang; Li, Weiwei

    2017-03-01

    A star-shaped electron acceptor based on porphyrin as a core and perylene bisimide as end groups was constructed for application in non-fullerene organic solar cells. The new conjugated molecule exhibits aligned energy levels, good electron mobility, and complementary absorption with a donor polymer. These advantages facilitate a high power conversion efficiency of 7.4 % in non-fullerene solar cells, which represents the highest photovoltaic performance based on porphyrin derivatives as the acceptor.

  19. Vacancy-Induced Electronic Structure Variation of Acceptors and Correlation with Proton Conduction in Perovskite Oxides.

    PubMed

    Kim, Hye-Sung; Jang, Ahreum; Choi, Si-Young; Jung, WooChul; Chung, Sung-Yoon

    2016-10-17

    In most proton-conducing perovskite oxides, the electrostatic attraction between negatively charged acceptor dopants and protonic defects having a positive charge is known to be a major cause of retardation of proton conduction, a phenomenon that is generally referred to as proton trapping. We experimentally show that proton trapping can be suppressed by clustering of positively charged oxygen vacancies to acceptors in BaZrO3-δ and BaCeO3-δ . In particular, to ensure the vacancy-acceptor association is effective against proton trapping, the valence electron density of acceptors should not significantly vary when the oxygen vacancies cluster, based on the weak hybridization between the valence d or p orbitals of acceptors and the 2p orbitals of oxygen.

  20. Natural organic matter as electron acceptor: experimental evidence for its important role in anaerobic respiration

    NASA Astrophysics Data System (ADS)

    Lau, Maximilian Peter; Sander, Michael; Gelbrecht, Jörg; Hupfer, Michael

    2014-05-01

    Microbial respiration is a key driver of element cycling in oxic and anoxic environments. Upon depletion of oxygen as terminal electron acceptor (TEA), a number of anaerobic bacteria can employ alternative TEA for intracellular energy generation. Redox active quinone moieties in dissolved organic matter (DOM) are well known electron acceptors for microbial respiration. However, it remains unclear whether quinones in adsorbed and particulate OM accept electrons in a same way. In our studies we aim to understand the importance of natural organic matter (NOM) as electron acceptors for microbial energy gain and its possible implications for methanogenesis. Using a novel electrochemical approach, mediated electrochemical reduction and -oxidation, we can directly quantify reduced hydroquinone and oxidized quionone moieties in dissolved and particulate NOM samples. In a mesocosm experiment, we rewetted sediment and peat soil and followed electron transfer to the inorganic and organic electron acceptors over time. We found that inorganic and organic electron acceptor pools were depleted over the same timescales. More importantly, we showed that organic, NOM-associated electron accepting moieties represent as much as 21 40% of total TEA inventories. These findings support earlier studies that propose that the reduction of quinone moieties in particulate organic matter competitively suppresses methanogenesis in wetland soils. Our results indicate that electron transfer to organic, particulate TEA in inundated ecosystems has to be accounted for when establishing carbon budgets in and projecting greenhouse gas emissions from these systems.

  1. Dissimilatory Reduction of Fe(III) and Other Electron Acceptors by a Thermus Isolate

    SciTech Connect

    Kieft, T. L.; Fredrickson, J. K.; Onstott, T. C.; Gorby, Y. A.; Kostandarithes, H. M.; Bailey, T. J.; Kennedy, D. W.; Li, S. W.; Plymale, A. E.; Spadoni, C. M.; Gray, M. S.

    1995-10-25

    A thermophilic bacterium that could use O{sub 2}, NO{sub 3}{sup -}, Fe(III), or S{sup o} as terminal electron acceptors for growth was isolated from groundwater sampled at 3.2 km depth in a South African gold mine. This organism, designated SA-01, clustered most closely with members of the genus Thermus, as determined by 16S rDNA gene sequence analysis. The 16S rDNA sequence of SA-01 was >98% similar to that of Thermus strain NMX2 A.1, which was previously isolated by other investigators from a thermal spring in New Mexico. Strain NMX2 A.1 was also able to reduce Fe(III) and other electron acceptors, whereas Thermus aquaticus (ATCC 25104) and Thermus filiformis (ATCC 43280) did not reduce NO{sub 3}{sup -} or Fe(III). Neither SA-01 nor NMX2 A.1 grew fermentatively, i.e., addition of an external electron acceptor was required for anaerobic growth. Thermus SA-01 reduced soluble Fe(III) complexed with citrate or nitrilotriacetic acid (NTA); however, it could only reduce relatively small quantities (0.5 mM) of hydrous ferric oxide (HFO) except when the humic acid analog 2,6-anthraquinone disulfonate (AQDS) was added as an electron shuttle, in which case 10 mM Fe(III) was reduced. Fe(III)-NTA was reduced quantitatively to Fe(II), was coupled to the oxidation of lactate, and could support growth through three consecutive transfers. Suspensions of Thermus SA-01 cells also reduced Mn(IV), Co(III)-EDTA, Cr(VI), and AQDS. Mn(IV)-oxide was reduced in the presence of either lactate or H{sub 2}. Both strains were also able to mineralize NTA to CO{sub 2} and to couple its oxidation to Fe(III) reduction and growth. The optimum temperature for growth and Fe(III) reduction by Thermus SA-01 and NMX2 A.1 is approximately 65 C; optimum pH is 6.5 to 7.0. This is the first report of a Thermus sp. being able to couple the oxidation of organic compounds to the reduction of Fe, Mn or S.

  2. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation

    PubMed Central

    2010-01-01

    Background Geobacter sulfurreducens is capable of coupling the complete oxidation of organic compounds to iron reduction. The metabolic response of G. sulfurreducens towards variations in electron donors (acetate, hydrogen) and acceptors (Fe(III), fumarate) was investigated via 13C-based metabolic flux analysis. We examined the 13C-labeling patterns of proteinogenic amino acids obtained from G. sulfurreducens cultured with 13C-acetate. Results Using 13C-based metabolic flux analysis, we observed that donor and acceptor variations gave rise to differences in gluconeogenetic initiation, tricarboxylic acid cycle activity, and amino acid biosynthesis pathways. Culturing G. sulfurreducens cells with Fe(III) as the electron acceptor and acetate as the electron donor resulted in pyruvate as the primary carbon source for gluconeogenesis. When fumarate was provided as the electron acceptor and acetate as the electron donor, the flux analysis suggested that fumarate served as both an electron acceptor and, in conjunction with acetate, a carbon source. Growth on fumarate and acetate resulted in the initiation of gluconeogenesis by phosphoenolpyruvate carboxykinase and a slightly elevated flux through the oxidative tricarboxylic acid cycle as compared to growth with Fe(III) as the electron acceptor. In addition, the direction of net flux between acetyl-CoA and pyruvate was reversed during growth on fumarate relative to Fe(III), while growth in the presence of Fe(III) and acetate which provided hydrogen as an electron donor, resulted in decreased flux through the tricarboxylic acid cycle. Conclusions We gained detailed insight into the metabolism of G. sulfurreducens cells under various electron donor/acceptor conditions using 13C-based metabolic flux analysis. Our results can be used for the development of G. sulfurreducens as a chassis for a variety of applications including bioremediation and renewable biofuel production. PMID:21092215

  3. Preparation and spectroscopic studies on charge-transfer complexes of 2-hydroxypyridine with electron acceptors

    NASA Astrophysics Data System (ADS)

    Gaballa, Akmal S.

    2013-07-01

    The CT-interactions of electron acceptors such as iodine (I2), chloranilic acid (H2CA) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) with 2-hydroxypyridine (HPyO) have been investigated in the defined solvent. The data indicate the formation of CT-complexes with the general formula [(HPyO)(acceptor)]. The 1:1 stoichiometry of the (HPyO)-acceptors were based on elemental analysis, IR spectra and thermogravimetric analysis of the solid CT-complexes along with the photometric titration measurements for the reactions. The formation constants (KCT) for the CT-complexes are shown to be strongly dependent on the type and structure of the electron acceptors. Factors affecting the CT-processes are discussed.

  4. Preparation and spectroscopic studies on charge-transfer complexes of famciclovir drug with different electron acceptors

    NASA Astrophysics Data System (ADS)

    Gaballa, Akmal S.; Teleb, Said M.; Nour, El-Metwally

    2012-09-01

    The CT-interaction of electron acceptors such as chloranilic acid (H2CA), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and and 7,7',8,8'-tetracyano-p-quinodimethane (TCNQ) with the antiviral drug famciclovir (FCV) have been investigated spectrophotometrically in the defined solvent. The data indicate the formation of CT-complexes with the general formula [(FCV)(acceptor)]. The 1:1 stoichiometry of the (FCV)-acceptors were based on elemental analysis, IR spectra and thermogravimetric analysis of the solid CT-complexes along with the photometric titration measurements for the reactions. The formation constants (KCT) for the CT-complexes are shown to be strongly dependent on the type and structure of the electron acceptor. Factors affecting the CT-processes such as redox potentials and steric hinderance of reactants are discussed.

  5. Effect of Electronic Acceptor Segments on Photophysical Properties of Low-Band-Gap Ambipolar Polymers

    PubMed Central

    Li, Yuanzuo; Cui, Jingang; Zhao, Jianing; Liu, Jinglin; Song, Peng; Ma, Fengcai

    2013-01-01

    Stimulated by a recent experimental report, charge transfer and photophysical properties of donor-acceptor ambipolar polymer were studied with the quantum chemistry calculation and the developed 3D charge difference density method. The effects of electronic acceptor strength on the structure, energy levels, electron density distribution, ionization potentials, and electron affinities were also obtained to estimate the transporting ability of hole and electron. With the developed 3D charge difference density, one visualizes the charge transfer process, distinguishes the role of molecular units, and finds the relationship between the role of DPP and excitation energy for the three polymers during photo-excitation. PMID:23365549

  6. Effect of electronic acceptor segments on photophysical properties of low-band-gap ambipolar polymers.

    PubMed

    Li, Yuanzuo; Cui, Jingang; Zhao, Jianing; Liu, Jinglin; Song, Peng; Ma, Fengcai

    2013-01-01

    Stimulated by a recent experimental report, charge transfer and photophysical properties of donor-acceptor ambipolar polymer were studied with the quantum chemistry calculation and the developed 3D charge difference density method. The effects of electronic acceptor strength on the structure, energy levels, electron density distribution, ionization potentials, and electron affinities were also obtained to estimate the transporting ability of hole and electron. With the developed 3D charge difference density, one visualizes the charge transfer process, distinguishes the role of molecular units, and finds the relationship between the role of DPP and excitation energy for the three polymers during photo-excitation.

  7. Conduction electrons in acceptor-doped GaAs/GaAlAs heterostructures: a review

    NASA Astrophysics Data System (ADS)

    Zawadzki, Wlodek; Raymond, Andre; Kubisa, Maciej

    2016-05-01

    We review magneto-optical and magneto-transport effects in GaAs/GaAlAs heterostructures doped in GaAlAs barriers with donors, providing two-dimensional (2D) electron gas (2DEG) in GaAs quantum wells (QWS), and additionally doped with smaller amounts of acceptors (mostly Be atoms) in the vicinity of 2DEG. One may also deal with residual acceptors (mostly C atoms). The behavior of such systems in the presence of a magnetic field differs appreciably from those doped in the vicinity of 2DEG with donors. Three subjects related to the acceptor-doped heterostructures are considered. First is the problem of bound states of conduction electrons confined to the vicinity of negatively charged acceptors by the joint effect of a QW and an external magnetic field parallel to the growth direction. A variational theory of such states is presented, demonstrating that an electron turning around a repulsive center has discrete energies above the corresponding Landau levels. Experimental evidence for the discrete electron energies comes from the work on interband photo-magneto-luminescence, intraband cyclotron resonance and quantum magneto-transport (the Quantum Hall and Shubnikov-de Haas effects). An electron rain-down effect at weak electric fields and a boil-off effect at strong electric fields are introduced. It is demonstrated, both theoretically and experimentally, that a negatively charged acceptor can localize more than one electron. The second subject describes experiment and theory of asymmetric quantized Hall and Shubnikov-de Haas plateaus in acceptor-doped GaAs/GaAlAs heterostructures. It is shown that the main features of the plateau asymmetry can be attributed to asymmetric density of Landau states in the presence of acceptors. However, at high magnetic fields, the rain-down effect is also at work. The third subject deals with the so-called disorder modes (DMs) in the cyclotron resonance of conduction electrons. The DMs originate from random distributions of negatively

  8. Geometry for the Primary Electron Donor and the Bacteriopheophytin Acceptor in Rhodopseudomonas viridis Photosynthetic Reaction Centers

    PubMed Central

    Tiede, D. M.; Choquet, Y.; Breton, J.

    1985-01-01

    The tetrapyrrole electron donors and acceptors (bacteriochlorophyll, BCh; bacteriopheophytin, BPh) within the bacterial photosynthetic reaction center (RC) are arranged with a specific geometry that permits rapid (picosecond time scale) electron tunneling to occur between them. Here we have measured the angle between the molecular planes of the bacteriochlorophyll dimer (primary donor), B2, and the acceptor bacteriopheophytin, H, by analyzing the dichroism of the absorption change associated with H reduction, formed by photoselection with RCs of Rhodopseudomonas viridis. This angle between molecular planes is found to be 60° ± 2. This means that the ultrafast electron tunneling must occur between donors and acceptors that are fixed by the protein to have a noncoplanar alignment. Nearly perpendicular alignments have been determined for other electron tunneling complexes involving RCs. These geometries can be contrasted with models proposed for heme-heme electron transfer complexes, which have emphasized that mutually parallel orientations should permit the most kinetically facile transfers. PMID:19431588

  9. Insights on the design and electron-acceptor properties of conjugated organophosphorus materials.

    PubMed

    Baumgartner, Thomas

    2014-05-20

    The development of conjugated organic materials has become a rapidly evolving field of research, particularly with a view toward practical applications in so-called organic electronics that encompass a variety of device types, such as OLEDs, OPVs, and OFETs. Almost all of these devices minimally require the presence of electron-donor and -acceptor components that act as p- and n-type semiconductors, respectively. Research over the past two decades has shown that while there is an abundant resource of organic p-type materials, suitable n-type species are few and far between. To overcome this severe bottleneck for the further development of organic electronics, researchers have identified organo-main-group avenues as valuable alternatives toward organic electron-acceptor materials that may ultimately be used as n-type components in practical devices. One particular element of interest in this context is phosphorus, which at first glance may not necessarily suggest such properties. In this Account, I provide detailed insights on the origin of the electron-acceptor properties of organophosphorus-based conjugated materials and include an overview of important molecular species that have been developed by my group and others. To this end, I explain that the electron-acceptor properties of conjugated organophosphorus materials originate from an interaction known as negative hyperconjugation. While this particular interaction creates a simply inductively withdrawing phosphoryl substituent for π-conjugated scaffolds, incorporation of a phosphorus atom as an integral part of a cyclic substructure within a π-conjugated system provides a much more complex, versatile, and consequently highly valuable tool for the tuning of the electron-acceptor properties of the materials. Notably, the degree of negative hyperconjugation can effectively be tailored in various ways via simple substitution at the phosphorus center. This is now well established for phosphole-based molecular

  10. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    DOE PAGES

    Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; ...

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealedmore » both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.« less

  11. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Zhong, Yu; Trinh, M. Tuan; Chen, Rongsheng; Purdum, Geoffrey E.; Khlyabich, Petr P.; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Nam, Chang-Yong; Sfeir, Matthew Y.; Black, Charles T.; Steigerwald, Michael L.; Loo, Yueh-Lin; Ng, Fay; Zhu, X.-Y.; Nuckolls, Colin

    2015-09-01

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.

  12. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells.

    PubMed

    Zhong, Yu; Trinh, M Tuan; Chen, Rongsheng; Purdum, Geoffrey E; Khlyabich, Petr P; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Nam, Chang-Yong; Sfeir, Matthew Y; Black, Charles T; Steigerwald, Michael L; Loo, Yueh-Lin; Ng, Fay; Zhu, X-Y; Nuckolls, Colin

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. This study describes a new motif for designing highly efficient acceptors for organic solar cells.

  13. Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

    SciTech Connect

    Yu M. Zhong; Nam, Chang -Yong; Trinh, M. Tuan; Chen, Rongsheng; Purdum, Geoffrey E.; Khlyabich, Petr P.; Sezen, Melda; Oh, Seokjoon; Zhu, Haiming; Fowler, Brandon; Zhang, Boyuan; Wang, Wei; Sfeir, Matthew Y.; Black, Charles T.; Steigerwald, Michael L.; Loo, Yueh -Lin; Ng, Fay; Zhu, X. -Y.; Nuckolls, Colin

    2015-09-18

    Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor–acceptor interfaces. Atomic force microscopy reveals a mesh-like network of acceptors with pores that are tens of nanometres in diameter for efficient exciton separation and charge transport. As a result, this study describes a new motif for designing highly efficient acceptors for organic solar cells.

  14. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    PubMed Central

    2015-01-01

    Conspectus The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted to optimize the absorbing, energetic, and transport properties of the donor material, fullerenes remain as the exclusive electron acceptor in all high performance devices. Very recently, some new non-fullerene acceptors have been demonstrated to outperform fullerenes in comparative devices. This Account describes this progress, discussing molecular design considerations and the structure–property relationships that are emerging. The motivation to replace fullerene acceptors stems from their synthetic inflexibility, leading to constraints in manipulating frontier energy levels, as well as poor absorption in the solar spectrum range, and an inherent tendency to undergo postfabrication crystallization, resulting in device instability. New acceptors have to address these limitations, providing tunable absorption with high extinction coefficients, thus contributing to device photocurrent. The ability to vary and optimize the lowest unoccupied molecular orbital (LUMO) energy level for a specific donor polymer is also an important requirement, ensuring minimal energy loss on electron transfer and as high an internal voltage as possible. Initially perylene diimide acceptors were evaluated as promising acceptor materials. These electron deficient aromatic molecules can exhibit good electron transport, facilitated by close packed herringbone crystal motifs, and their energy levels can be synthetically tuned. The principal drawback of this class of materials, their tendency to crystallize on too large a length scale for an optimal heterojunction nanostructure, has been shown to be overcome through introduction of conformation twisting through steric effects. This has been primarily achieved by coupling two units together

  15. Catalytic reaction of cytokinin dehydrogenase: preference for quinones as electron acceptors.

    PubMed Central

    Frébortová, Jitka; Fraaije, Marco W; Galuszka, Petr; Sebela, Marek; Pec, Pavel; Hrbác, Jan; Novák, Ondrej; Bilyeu, Kristin D; English, James T; Frébort, Ivo

    2004-01-01

    The catalytic reaction of cytokinin oxidase/dehydrogenase (EC 1.5.99.12) was studied in detail using the recombinant flavoenzyme from maize. Determination of the redox potential of the covalently linked flavin cofactor revealed a relatively high potential dictating the type of electron acceptor that can be used by the enzyme. Using 2,6-dichlorophenol indophenol, 2,3-dimethoxy-5-methyl-1,4-benzoquinone or 1,4-naphthoquinone as electron acceptor, turnover rates with N6-(2-isopentenyl)adenine of approx. 150 s(-1) could be obtained. This suggests that the natural electron acceptor of the enzyme is quite probably a p-quinone or similar compound. By using the stopped-flow technique, it was found that the enzyme is rapidly reduced by N6-(2-isopentenyl)adenine (k(red)=950 s(-1)). Re-oxidation of the reduced enzyme by molecular oxygen is too slow to be of physiological relevance, confirming its classification as a dehydrogenase. Furthermore, it was established for the first time that the enzyme is capable of degrading aromatic cytokinins, although at low reaction rates. As a result, the enzyme displays a dual catalytic mode for oxidative degradation of cytokinins: a low-rate and low-substrate specificity reaction with oxygen as the electron acceptor, and high activity and strict specificity for isopentenyladenine and analogous cytokinins with some specific electron acceptors. PMID:14965342

  16. Metabolic response of Alicycliphilus denitrificans strain BC toward electron acceptor variation.

    PubMed

    Oosterkamp, Margreet J; Boeren, Sjef; Plugge, Caroline M; Schaap, Peter J; Stams, Alfons J M

    2013-10-01

    Alicycliphilus denitrificans is a versatile, ubiquitous, facultative anaerobic bacterium. Alicycliphilus denitrificans strain BC can use chlorate, nitrate, and oxygen as electron acceptor for growth. Cells display a prolonged lag-phase when transferred from nitrate to chlorate and vice versa. Furthermore, cells adapted to aerobic growth do not easily use nitrate or chlorate as electron acceptor. We further investigated these responses of strain BC by differential proteomics, transcript analysis, and enzyme activity assays. In nitrate-adapted cells transferred to chlorate and vice versa, appropriate electron acceptor reduction pathways need to be activated. In oxygen-adapted cells, adaptation to the use of chlorate or nitrate is likely difficult due to the poorly active nitrate reduction pathway and low active chlorate reduction pathway. We deduce that the Nar-type nitrate reductase of strain BC also reduces chlorate, which may result in toxic levels of chlorite if cells are transferred to chlorate. Furthermore, the activities of nitrate reductase and nitrite reductase appear to be not balanced when oxygen-adapted cells are shifted to nitrate as electron acceptor, leading to the production of a toxic amount of nitrite. These data suggest that strain BC encounters metabolic challenges in environments with fluctuations in the availability of electron acceptors. All MS data have been deposited in the ProteomeXchange with identifier PXD000258.

  17. Beyond Fullerenes: Designing Alternative Molecular Electron Acceptors for Solution-Processable Bulk Heterojunction Organic Photovoltaics.

    PubMed

    Sauvé, Geneviève; Fernando, Roshan

    2015-09-17

    Organic photovoltaics (OPVs) are promising candidates for providing a low cost, widespread energy source by converting sunlight into electricity. Solution-processable active layers have predominantly consisted of a conjugated polymer donor blended with a fullerene derivative as the acceptor. Although fullerene derivatives have been the acceptor of choice, they have drawbacks such as weak visible light absorption and poor energy tuning that limit overall efficiencies. This has recently fueled new research to explore alternative acceptors that would overcome those limitations. During this exploration, one question arises: what are the important design principles for developing nonfullerene acceptors? It is generally accepted that acceptors should have high electron affinity, electron mobility, and absorption coefficient in the visible and near-IR region of the spectra. In this Perspective, we argue that alternative molecular acceptors, when blended with a conjugated polymer donor, should also have large nonplanar structures to promote nanoscale phase separation, charge separation and charge transport in blend films. Additionally, new material design should address the low dielectric constant of organic semiconductors that have so far limited their widespread application.

  18. Influence of competitive electron acceptors during reduction and effective immobilization of technetium by reduced nontronite

    NASA Astrophysics Data System (ADS)

    Jaisi, D. P.; Dong, H.; Heald, S. M.; Fredrickson, J. K.; Plymale, A. E.

    2006-12-01

    The reduction and immobilization of Tc(VII) by Fe(II) in nontronite (NAu-2) was studied in the presence of iron and manganese oxides and nitrate, the coexisting competitive terminal electron acceptors (TEAs) in several DOE subsurface contamination sites, to understand how these TEAs might inhibit Tc(VII) reduction or promote reoxidation of reduced Tc. Manganese oxides (birnessite and manganite) and iron oxides (goethite and hematite) were synthesized and their mineralogical, morphological and surface properties were characterized by XRD, SEM, and BET surface and pore area measurements, respectively. Batch Tc(VII) reduction experiments were performed at different concentrations of Tc and Fe(II) and competing electron acceptors were added at different times. Separate experiments performed with NAu-2 and a TEA only (in the absence of Tc) showed that that the electron transfer from Fe(II) in NAu-2 to manganese oxides was very fast, but the transfer from Fe(II) to nitrate was almost absent. The Tc(VII) reduction was enhanced when iron oxides (goethite and hematite) was added, irrespective of time, however the enhancement was low at later phases of Tc reduction. The addition of manganese oxides during Tc reduction stopped any additional Tc(VII) reduction, but reoxidation of already reduced Tc was not observed at low Tc concentration. In general, the extent of reoxidation of reduced Tc (by manganese oxide) in old samples was slow suggesting that the higher rate of particle aggregation in reduced NAu-2 inhibited the reoxidation of reduced Tc. However, Tc(IV) reoxidation was not observed in the presence of nitrate. The preliminary EXAFS analysis showed that a fraction of reduced Tc occurred as Tc-Fe complex in a ferrihydrite-like solid, in addition to separate TcO2.nH2O particles, which might have promoted additional NAu-2 particle aggregation and thereby incorporation of reduced Tc into NAu-2 aggregates. These results are promising for long-term in-situ immobilization of

  19. Enhanced anaerobic fermentation with azo dye as electron acceptor: simultaneous acceleration of organics decomposition and azo decolorization.

    PubMed

    Li, Yang; Zhang, Yaobin; Quan, Xie; Zhang, Jingxin; Chen, Shuo; Afzal, Shahzad

    2014-10-01

    Accumulation of hydrogen during anaerobic processes usually results in low decomposition of volatile organic acids (VFAs). On the other hand, hydrogen is a good electron donor for dye reduction, which would help the acetogenic conversion in keeping low hydrogen concentration. The main objective of the study was to accelerate VFA composition through using azo dye as electron acceptor. The results indicated that the azo dye serving as an electron acceptor could avoid H2 accumulation and accelerate anaerobic digestion of VFAs. After adding the azo dye, propionate decreased from 2400.0 to 689.5mg/L and acetate production increased from 180.0 to 519.5mg/L. It meant that the conversion of propionate into acetate was enhanced. Fluorescence in situ hybridization analysis showed that the abundance of propionate-utilizing acetogens with the presence of azo dye was greater than that in a reference without azo dye. The experiments via using glucose as the substrate further demonstrated that the VFA decomposition and the chemical oxygen demand (COD) removal increased by 319.7mg/L and 23.3% respectively after adding the azo dye. Therefore, adding moderate azo dye might be a way to recover anaerobic system from deterioration due to the accumulation of H2 or VFAs.

  20. Growth of Strain SES-3 with Arsenate and Other Diverse Electron Acceptors

    PubMed Central

    Laverman, A. M.; Blum, J. S.; Schaefer, J. K.; Phillips, E.; Lovley, D. R.; Oremland, R. S.

    1995-01-01

    The selenate-respiring bacterial strain SES-3 was able to use a variety of inorganic electron acceptors to sustain growth. SES-3 grew with the reduction of arsenate to arsenite, Fe(III) to Fe(II), or thiosulfate to sulfide. It also grew in medium in which elemental sulfur, Mn(IV), nitrite, trimethylamine N-oxide, or fumarate was provided as an electron acceptor. Growth on oxygen was microaerophilic. There was no growth with arsenite or chromate. Washed suspensions of cells grown on selenate or nitrate had a constitutive ability to reduce arsenate but were unable to reduce arsenite. These results suggest that strain SES-3 may occupy a niche as an environmental opportunist by being able to take advantage of a diversity of electron acceptors. PMID:16535143

  1. Effect of cathode electron acceptors on simultaneous anaerobic sulfide and nitrate removal in microbial fuel cell.

    PubMed

    Cai, Jing; Zheng, Ping; Mahmood, Qaisar

    2016-01-01

    The current investigation reports the effect of cathode electron acceptors on simultaneous sulfide and nitrate removal in two-chamber microbial fuel cells (MFCs). Potassium permanganate and potassium ferricyanide were common cathode electron acceptors and evaluated for substrate removal and electricity generation. The abiotic MFCs produced electricity through spontaneous electrochemical oxidation of sulfide. In comparison with abiotic MFC, the biotic MFC showed better ability for simultaneous nitrate and sulfide removal along with electricity generation. Keeping external resistance of 1,000 Ω, both MFCs showed good capacities for substrate removal where nitrogen and sulfate were the main end products. The steady voltage with potassium permanganate electrodes was nearly twice that of with potassium ferricyanide. Cyclic voltammetry curves confirmed that the potassium permanganate had higher catalytic activity than potassium ferricyanide. The potassium permanganate may be a suitable choice as cathode electron acceptor for enhanced electricity generation during simultaneous treatment of sulfide and nitrate in MFCs.

  2. Synthesis of Naphthalene-Based Push-Pull Molecules with a Heteroaromatic Electron Acceptor.

    PubMed

    Šarlah, David; Juranovič, Amadej; Kožar, Boris; Rejc, Luka; Golobič, Amalija; Petrič, Andrej

    2016-03-02

    Naphthalene derivatives bearing electron-accepting and electron-donating groups at the 2,6-positions belong to the family of D-π-A push-pull dyes. It has been found that these compounds, e.g., 2-(1-(6-((2-(fluoro)ethyl)(methyl)amino)naphthalen-2-yl)ethylidene)malononitrile (FDDNP), show not only interesting optical properties, such as solvatochromism, but they have the potential to label protein aggregates of different compositions formed in the brain of patients suffering from neurodegenerative diseases like Alzheimer's (AD). In continuation of our research we set our goal to find new FDDNP analogs, which would inherit optical and binding properties but hopefully show better specificity for tau protein aggregates, which are characteristic for neurodegeneration caused by repetitive mild trauma. In this work we report on the synthesis of new FDDNP analogs in which the acceptor group has been formally replaced with an aromatic five- or six-membered heterocycle. The heterocyclic moiety was annealed to the central naphthalene ring either by classical ring closure reactions or by modern transition metal-catalyzed coupling reactions. The chemical characterization, NMR spectra, and UV/vis properties of all new compounds are reported.

  3. Photocurrent generation through electron-exciton interaction at the organic semiconductor donor/acceptor interface.

    PubMed

    Chen, Lijia; Zhang, Qiaoming; Lei, Yanlian; Zhu, Furong; Wu, Bo; Zhang, Ting; Niu, Guoxi; Xiong, Zuhong; Song, Qunliang

    2013-10-21

    In this work, we report our effort to understand the photocurrent generation that is contributed via electron-exciton interaction at the donor/acceptor interface in organic solar cells (OSCs). Donor/acceptor bi-layer heterojunction OSCs, of the indium tin oxide/copper phthalocyanine (CuPc)/fullerene (C60)/molybdenum oxide/Al type, were employed to study the mechanism of photocurrent generation due to the electron-exciton interaction, where CuPc and C60 are the donor and the acceptor, respectively. It is shown that the electron-exciton interaction and the exciton dissociation processes co-exist at the CuPc/C60 interface in OSCs. Compared to conventional donor/acceptor bi-layer OSCs, the cells with the above configuration enable holes to be extracted at the C60 side while electrons can be collected at the CuPc side, resulting in a photocurrent in the reverse direction. The photocurrent thus observed is contributed to primarily by the charge carriers that are generated by the electron-exciton interaction at the CuPc/C60 interface, while charges derived from the exciton dissociation process also exist at the same interface. The mechanism of photocurrent generation due to electron-exciton interaction in the OSCs is further investigated, and it is manifested by the transient photovoltage characteristics and the external quantum efficiency measurements.

  4. Unexpected chemoreceptors mediate energy taxis towards electron acceptors in Shewanella oneidensis.

    PubMed

    Baraquet, Claudine; Théraulaz, Laurence; Iobbi-Nivol, Chantal; Méjean, Vincent; Jourlin-Castelli, Cécile

    2009-07-01

    Shewanella oneidensis uses a wide range of terminal electron acceptors for respiration. In this study, we show that the chemotactic response of S. oneidensis to anaerobic electron acceptors requires functional electron transport systems. Deletion of the genes encoding dimethyl sulphoxide and trimethylamine N-oxide reductases, or inactivation of these molybdoenzymes as well as nitrate reductase by addition of tungstate, abolished electron acceptor taxis. Moreover, addition of nigericin prevented taxis towards trimethylamine N-oxide, dimethyl sulphoxide, nitrite, nitrate and fumarate, showing that this process depends on the DeltapH component of the proton motive force. These data, together with those concerning response to metals (Bencharit and Ward, 2005), support the idea that, in S. oneidensis, taxis towards electron acceptors is governed by an energy taxis mechanism. Surprisingly, energy taxis in S. oneidensis is not mediated by the PAS-containing chemoreceptors but rather by a chemoreceptor (SO2240) containing a Cache domain. Four other chemoreceptors also play a minor role in this process. These results indicate that energy taxis can be mediated by new types of chemoreceptors.

  5. Electron donor-acceptor quenching and photoinduced electron transfer for coumarin dyes. Technical report, 1 January-31 October 1982

    SciTech Connect

    Jones, G. II; Griffin, S.F.; Choi, C.; Bergmark, W.R.

    1983-10-31

    The fluorescence of 7-aminocoumarins is quenched by a variety of organic electron donors or acceptors in acetonitrile. In general, donors with half-wave oxidation potentials less positive than 1.0 V vs SCE and acceptors with reduction potentials less negative than -1.5 V vs SCE are candidates for diffusion limited quenching of coumarin singlet states. Profiles of quenching rates are consistent with calculated free energies for electron transfer between excited coumarins and donors or acceptors. In flash photolysis experiments electron transfer for several dyes and quenchers (e.g., methyl viologen) is demonstrated. Relatively low yields of net electron transfer are consistently obtained due to inefficient ionic photodissociation via singlet quenching or a low yield of more photoactive coumarin triplets. Electrochemical properties of the coumarins have been investigated by cyclic voltammetry with the indications of reversible oxidation and irreversible reduction as important processes.

  6. Comparison of oxygen and hypochlorite as cathodic electron acceptor in microbial fuel cells.

    PubMed

    Jadhav, D A; Ghadge, A N; Mondal, Debika; Ghangrekar, M M

    2014-02-01

    Effect of oxygen and sodium hypochlorite (NaOCl) as cathodic electron acceptors on performance of a clayware microbial fuel cell (MFC) was evaluated in this study. Maximum power density of 6.57 W/m(3) was obtained with NaOCl as catholyte, which is about 9 times higher than oxygen being used as an electron acceptor. Voltammetry and Tafel analysis further supported the faster reduction kinetics lead to increase in power output and reduction in internal resistance of MFC operated with NaOCl as an electron acceptor. Using NaOCl as catholyte, higher exchange current density of 10.91 and 11.52 mA/m(2) and lower charge transfer resistance of 0.58 and 0.56 kΩ m(2) was observed for anode and cathode, respectively. Higher organic matter removal of about 90% with 25% Coulombic efficiency was achieved using NaOCl as catholyte. Higher internal resistance, lower cathode potential and slow reduction kinetics deteriorated performance of MFC using oxygen as cathodic electron acceptor.

  7. Charge Generation Pathways in Organic Solar Cells: Assessing the Contribution from the Electron Acceptor.

    PubMed

    Stoltzfus, Dani M; Donaghey, Jenny E; Armin, Ardalan; Shaw, Paul E; Burn, Paul L; Meredith, Paul

    2016-11-09

    Photocurrent generation in organic bulk heterojunction (BHJ) solar cells is most commonly understood as a process which predominantly involves photoexcitation of the lower ionization potential species (donor) followed by electron transfer to the higher electron affinity material (acceptor) [i.e., photoinduced electron transfer (PET), which we term Channel I]. A mirror process also occurs in which photocurrent is generated through photoexcitation of the acceptor followed by hole transfer to the nonexcited donor or photoinduced hole transfer (PHT), which we term Channel II. The role of Channel II photocurrent generation has often been neglected due to overlap of the individual absorption spectra of the donor and acceptor materials that are commonly used. More recently Channel II charge generation has been explored for several reasons. First, many of the new high-efficiency polymeric donors are used as the minority component in bulk heterojunction blends, and therefore, the acceptor absorption is a significant fraction of the total; second, nonfullerene acceptors have been prepared, which through careful design, allow for spectral separation from the donor material, facilitating fundamental studies on charge generation. In this article, we review the methodologies for investigating the two charge generation channels. We also discuss the factors that affect charge generation via Channel I and II pathways, including energy levels of the materials involved, exciton diffusion, and other considerations. Finally, we take a comprehensive look at the nonfullerene acceptor literature and discuss what information about Channel I and Channel II can be obtained from the experiments conducted and what other experiments could be undertaken to provide further information about the operational efficiencies of Channels I and II.

  8. Donor acceptor electronic couplings in π-stacks: How many states must be accounted for?

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-04-01

    Two-state model is commonly used to estimate the donor-acceptor electronic coupling Vda for electron transfer. However, in some important cases, e.g. for DNA π-stacks, this scheme fails to provide accurate values of Vda because of multistate effects. The Generalized Mulliken-Hush method enables a multistate treatment of Vda. In this Letter, we analyze the dependence of calculated electronic couplings on the number of the adiabatic states included in the model. We suggest a simple scheme to determine this number. The superexchange correction of the two-state approximation is shown to provide good estimates of the electronic coupling.

  9. Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1

    SciTech Connect

    Gerritse, J.; Drzyzga, O.; Kloetstra, G.; Keijmel, M.; Wiersum, L.P.; Hutson, R.; Collins, M.D.; Gottschal, J.C.

    1999-12-01

    Strain TCE1, a strictly anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene (PCE) and trichloroethane (TCE), was isolated by selective enrichment from a PCE-dechlorinating chemostat mixed culture. Strain TCE1 is a gram-positive, motile, curved rod-shaped organism that is 2 to 4 by 0.6 to 0.8 {micro}m and has approximately six lateral flagella. The pH and temperature optima for growth are 7.2 and 35 C, respectively. On the basis of a comparative 16S rRNA sequence analysis, this bacterium was identified as a new strain of Desulfitobacterium frappieri, because it exhibited 99.7% relatedness to the D. frappieri type strain, strain PCP-1. Growth with H{sub 2}, format, L-lactate, butyrate, crotonate, or ethanol as the electron donor depends on the availability of an external electron acceptor. Pyruvate and serine can also be used fermentatively. Electron donors (except format and H{sub 2}) are oxidized to acetate and CO{sub 2}. when L-lactate is the growth substrate, strain TCE1 can use the following electron acceptors: PCE and TCE (to produce cis-1,2-dichloroethene), sulfite and thiosulfate (to produce sulfide), nitrate (to produce nitrite), and fumarate (to produce succinate). Strain TCE1 is not able to reductively dechlorinate 3-chloro-4-hydroxyphenylacetate. The growth yields of the newly isolated bacterium when PCE is the electron acceptor are similar to those obtained for other dehalorespiring anaerobes (e.g., Desulfitobacterium sp. strain PCE1 and Desulfitobacterium hafniense) and the maximum specific reductive dechlorination rates are 4 to 16 times higher. Dechlorination of PCE and TCE is an inducible process. In PCE-limited chemostat cultures of strain TCE1, dechlorination is strongly inhibited by sulfite but not by other alternative electron acceptors, such as fumate or nitrate.

  10. Relationship between Electron Affinity and Half-Wave Reduction Potential: A Theoretical Study on Cyclic Electron-Acceptor Compounds.

    PubMed

    Calbo, Joaquín; Viruela, Rafael; Ortí, Enrique; Aragó, Juan

    2016-12-05

    A high-level ab initio protocol to compute accurate electron affinities and half-wave reduction potentials is presented and applied for a series of electron-acceptor compounds with potential interest in organic electronics and redox flow batteries. The comprehensive comparison between the theoretical and experimental electron affinities not only proves the reliability of the theoretical G3(MP2) approach employed but also calls into question certain experimental measurements, which need to be revised. By using the thermodynamic cycle for the one-electron attachment reaction A+e(-) →A(-) , theoretical estimates for the first half-wave reduction potential have been computed along the series of electron-acceptor systems investigated, with maximum deviations from experiment of only 0.2 V. The precise inspection of the terms contributing to the half-wave reduction potential shows that the difference in the free energy of solvation between the neutral and the anionic species (ΔΔGsolv ) plays a crucial role in accurately estimating the electron-acceptor properties in solution, and thus it cannot be considered constant even in a family of related compounds. This term, which can be used to explain the occasional lack of correlation between electron affinities and reduction potentials, is rationalized by the (de)localization of the additional electron involved in the reduction process along the π-conjugated chemical structure.

  11. Performance of sodium bromate as cathodic electron acceptor in microbial fuel cell.

    PubMed

    Dai, Hongyan; Yang, Huimin; Liu, Xian; Zhao, Yu; Liang, Zhenhai

    2016-02-01

    The potential of using sodium bromate as a cathodic electron acceptor in a microbial fuel cell (MFC) was determined in this study. The effects of sodium bromate concentration and initial catholyte pH on the electricity production of the MFC were investigated. The MFC performance improved with increasing sodium bromate concentration and decreasing catholyte pH. The maximum voltage output (0.538 V), power density (1.4908 W m(-3)), optimal open circuit potential (1.635 V), coulombic efficiency (11.1%), exchange current density (0.538 A m(-3)) and charge transfer resistance (4274.1 Ω) were obtained at pH 3.0 and 100 mM sodium bromate. This work is the first to confirm that sodium bromate could be used as an electron acceptor in MFCs.

  12. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Lovley, D.R.

    1998-01-01

    Anaerobic oxidation of [1,2-14C]vinyl chloride and [1,2- 14C]dichloroethene to 14CO2 under humic acid-reducing conditions was demonstrated. The results indicate that waterborne contaminants can be oxidized by using humic acid compounds as electron acceptors and suggest that natural aquatic systems have a much larger capacity for contaminant oxidation than previously thought.

  13. Electron acceptors based on alpha-position substituted PDI for OPV solar cells.

    SciTech Connect

    Zhao, Donglin; Wu, Qinghe; Cai, Zhengxu; Zheng, T; Chen, Wei; Lu, Jessica; Yu, L

    2016-02-23

    The ortho-position functionalized perylene diimide derivatives (alphaPPID, alphaPBDT) were synthesized and used as the electron acceptors in nonfullerene organic photovoltaics. Due to the good planarity of ortho-position functionalized PDI, the alphaPPID and alphaPBDT show strong tendency to form aggregate because of their enhanced intermolecular pie-pie interaction. Moreover, they maintain the pure domains and the same packing order as in the pure film if they are blended with PBT7-TH and the SCLC measurement also shows the high electron mobility. The inverted OPVs employing alphaPDI-based compounds as acceptor and PBT7-TH as the donor give the highest PCE of 4.92 % for alphaPBDT based device and 3.61 % for alphaPPID based device, which is 39 % and 4 % higher than that for their counterpart betaPBDT and betaPPID. The charge separation study shows the more efficient exciton dissociation at interfaces between PDI based compounds and PBT7-TH. The results suggest that compared to beta-substituted ones, alpha-substituted PDI derivatives are more promising electron acceptors for OPV.

  14. Solution-processable donor-acceptor polymers with modular electronic properties and very narrow bandgaps.

    PubMed

    Foster, Michael E; Zhang, Benjamin A; Murtagh, Dustin; Liu, Yi; Sfeir, Matthew Y; Wong, Bryan M; Azoulay, Jason D

    2014-09-01

    Bridgehead imine-substituted cyclopentadithiophene structural units, in combination with highly electronegative acceptors that exhibit progressively delocalized π-systems, afford donor-acceptor (DA) conjugated polymers with broad absorption profiles that span technologically relevant wavelength (λ) ranges from 0.7 < λ < 3.2 μm. A joint theoretical and experimental study demonstrates that the presence of the cross-conjugated substituent at the donor bridgehead position results in the capability to fine-tune structural and electronic properties so as to achieve very narrow optical bandgaps (Eg (opt) < 0.5 eV). This strategy affords modular DA copolymers with broad- and long-wavelength light absorption in the infrared and materials with some of the narrowest bandgaps reported to date.

  15. Short-lived electron transfer in donor-bridge-acceptor systems

    NASA Astrophysics Data System (ADS)

    Psiachos, D.

    2016-10-01

    We investigate time-dependent electron transfer (ET) in benchmark donor-bridge-acceptor systems. For the small bridge sizes studied, we obtain results far different from the perturbation theory which underlies scattering-based approaches, notably a lack of destructive interference in the ET for certain arrangements of bridge molecules. We also calculate wavepacket transmission in the non-steady-state regime, finding a featureless spectrum, while for the current we find two types of transmission: sequential and direct, where in the latter, the current transmission increases as a function of the energy of the transferred electron, a regime inaccessible by conventional scattering theory.

  16. Photoinduced electron transfer in rigidly linked dimethoxynapthalene-N-methylpyridinium donor-acceptor molecules

    NASA Astrophysics Data System (ADS)

    Clayton, Andrew H. A.; Ghiggino, Kenneth P.; Wilson, Gerard J.; Keyte, Peter J.; Paddon-Row, Michael N.

    1992-07-01

    Photoinduced electron transfer (ET) is studied in a series of novel molecules containing a dimethoxynaphthalene (DMN) donor and either a pyridine (P) or N-methylpyridinium (P-Me +) acceptor covalently linked via a rigid nonbornalogous bridge ( n sigma bonds in length). ET rates of the order of 10 10 s -1 were measured for the DMN- n-P-Me + series ( n = 4, 6), while no appreciable ET was observed for the DMN- n-P compounds. Electronic and nuclear factors are discussed and the results rationalized in terms of Marcus—Hush and non-adiabatic ET theories.

  17. Global Transcriptome Analysis of Shewanella oneidensis MR-1 Exposed to Different Terminal Electron Acceptors

    SciTech Connect

    Beliaev, Alex S.; Klingeman, Dawn M.; Klappenbach, Joel; Wu, Liyou; Romine, Margaret F.; Tiedje, James M.; Nealson, Kenneth H.; Fredrickson, Jim K.; Zhou, Jizhong

    2005-10-01

    To gain insight into the complex structure of the energy-generating networks in the dissimilatory metal reducer Shewanella oneidensis MR-1, global mRNA patterns were examined in cells exposed to a wide range of metal and non-metal electron acceptors. Gene expression patterns were similar irrespective of which metal ion was used as electron acceptor, with 60% of the differentially expressed genes showing similar induction or repression relative to fumarate- respiring conditions. Several groups of genes exhibited elevated expression levels in the presence of metals, including those encoding putative multidrug efflux transporters, detoxification proteins, extracytoplasmic sigma factors and PAS-domain regulators. Only one of the 42 predicted c-type cytochromes in MR-1, SO3300, displayed significantly elevated transcript levels across all metal-reducing conditions. Genes encoding decaheme cytochromes MtrC and MtrA that were previously linked to the reduction of different forms of Fe(III) and Mn(IV), exhibited only slight decreases in relative mRNA abundances under metal-reducing conditions. In contrast, specific transcriptome responses were displayed to individual non-metal electron acceptors resulting in the identification of unique groups of nitrate-, thiosulfate- and TMAO-induced genes including previously uncharacterized multi-cytochrome gene clusters. Collectively, the gene expression results reflect the fundamental differences between metal and non-metal respiratory pathways of S. oneidensis MR-1, where the coordinate induction of detoxification and stress response genes play a key role in adaptation of this organism under metal-reducing conditions. Moreover, the relative paucity and/or the constitutive nature of genes involved in electron transfer to metals is likely due to the low-specificity and the opportunistic nature of the metal-reducing electron transport pathways.

  18. An Inner Membrane Cytochrome Required Only for Reduction of High Redox Potential Extracellular Electron Acceptors

    PubMed Central

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.

    2014-01-01

    ABSTRACT Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤−0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to −0.1 V versus SHE triggered exponential growth. At potentials of ≤−0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. The redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found. PMID:25425235

  19. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    DOE PAGES

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; ...

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentialsmore » greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.« less

  20. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors

    SciTech Connect

    Levar, Caleb E.; Chan, Chi Ho; Mehta-Kolte, Misha G.; Bond, Daniel R.

    2014-10-28

    Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤–0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to –0.1 V versus SHE triggered exponential growth. At potentials of ≤–0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. Redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found.

  1. Biogenic hydroxysulfate green rust, a potential electron acceptor for SRB activity

    NASA Astrophysics Data System (ADS)

    Zegeye, Asfaw; Huguet, Lucie; Abdelmoula, Mustapha; Carteret, Cédric; Mullet, Martine; Jorand, Frédéric

    2007-11-01

    Microbiological reduction of a biogenic sulfated green rust (GR2(SO42-)), was examined using a sulfate reducing bacterium ( Desulfovibrio alaskensis). Experiments investigated whether GR2(SO42-) could serve as a sulfate source for D. alaskensis anaerobic respiration by analyzing mineral transformation. Batch experiments were conducted using lactate as the electron donor and biogenic GR2(SO42-) as the electron acceptor, at circumneutral pH in unbuffered medium. GR2(SO42-) transformation was monitored with time by X-ray diffraction (XRD), Transmission Mössbauer Spectroscopy (TMS), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The reduction of sulfate anions and the formation of iron sulfur mineral were clearly identified by XPS analyses. TMS showed the formation of additional mineral as green rust (GR) and vivianite. XRD analyses discriminated the type of the newly formed GR as GR1. The formed GR1 was GR1(CO32-) as indicated by DRIFTS analysis. Thus, the results presented in this study indicate that D. alaskensis cells were able to use GR2(SO42-) as an electron acceptor. GR1(CO32-), vivianite and an iron sulfur compound were formed as a result of GR2(SO42-) reduction by D. alaskensis. Hence, in environments where geochemical conditions promote biogenic GR2(SO42-) formation, this mineral could stimulate the anaerobic respiration of sulfate reducing bacteria.

  2. Flexible biological arsenite oxidation utilizing NOx and O2 as alternative electron acceptors.

    PubMed

    Wang, Jie; Wan, Junfeng; Wu, Zihao; Li, Hongli; Li, Haisong; Dagot, Christophe; Wang, Yan

    2017-03-18

    The feasibility of flexible microbial arsenite (As(III)) oxidation coupled with the reduction of different electron acceptors was investigated. The results indicated the acclimated microorganisms could oxidize As(III) with oxygen, nitrate and nitrite as the alternative electron acceptors. A series of batch tests were conducted to measure the kinetic parameters of As(III) oxidation and to evaluate the effects of environmental conditions including pH and temperature on the activity of biological As(III) oxidation dependent on different electron acceptors. Kinetic results showed that oxygen-dependent As(III) oxidation had the highest oxidation rate (0.59 mg As g(-1) VSS min(-1)), followed by nitrate- (0.40 mg As g(-1) VSS min(-1)) and nitrite-dependent As(III) oxidation (0.32 mg As g(-1) VSS min(-1)). The kinetic data of aerobic As(III) oxidation were fitted well with the Monod kinetic model, while the Haldane substrate inhibition model was better applicable to describe the inhibition of anoxic As(III) oxidation. Both aerobic and anoxic As(III) oxidation performed the optimal activity at the near neutral pH. Besides, the optimal temperature for oxygen-, nitrate- and nitrite-dependent As(III) oxidation was 30 ± 1 °C, 40 ± 1 °C and 20 ± 1 °C, respectively.

  3. Microbial arsenite oxidation with oxygen, nitrate, or an electrode as the sole electron acceptor.

    PubMed

    Nguyen, Van Khanh; Tran, Huong T; Park, Younghyun; Yu, Jaecheul; Lee, Taeho

    2017-02-09

    The purpose of this study was to identify bacteria that can perform As(III) oxidation for environmental bioremediation. Two bacterial strains, named JHS3 and JHW3, which can autotrophically oxidize As(III)-As(V) with oxygen as an electron acceptor, were isolated from soil and water samples collected in the vicinity of an arsenic-contaminated site. According to 16S ribosomal RNA sequence analysis, both strains belong to the ɤ-Proteobacteria class and share 99% sequence identity with previously described strains. JHS3 appears to be a new strain of the Acinetobacter genus, whereas JHW3 is likely to be a novel strain of the Klebsiella genus. Both strains possess the aioA gene encoding an arsenite oxidase and are capable of chemolithoautotrophic growth in the presence of As(III) up to 10 mM as a primary electron donor. Cell growth and As(III) oxidation rate of both strains were significantly enhanced during cultivation under heterotrophic conditions. Under anaerobic conditions, only strain JHW3 oxidized As(III) using nitrate or a solid-state electrode of a bioelectrochemical system as a terminal electron acceptor. Kinetic studies of As(III) oxidation under aerobic condition demonstrated a higher V max and K m from strain JHW3 than strain JHS3. This study indicated the potential application of strain JHW3 for remediation of subsurface environments contaminated with arsenic.

  4. Identifying electron transfer coordinates in donor-bridge-acceptor systems using mode projection analysis

    PubMed Central

    Yang, Xunmo; Keane, Theo; Delor, Milan; Meijer, Anthony J. H. M.; Weinstein, Julia; Bittner, Eric R.

    2017-01-01

    We report upon an analysis of the vibrational modes that couple and drive the state-to-state electronic transfer branching ratios in a model donor-bridge-acceptor system consisting of a phenothiazine-based donor linked to a naphthalene-monoimide acceptor via a platinum-acetylide bridging unit. Our analysis is based upon an iterative Lanczos search algorithm that finds superpositions of vibronic modes that optimize the electron/nuclear coupling using input from excited-state quantum chemical methods. Our results indicate that the electron transfer reaction coordinates between a triplet charge-transfer state and lower lying charge-separated and localized excitonic states are dominated by asymmetric and symmetric modes of the acetylene groups on either side of the central atom in this system. In particular, we find that while a nearly symmetric mode couples both the charge-separation and charge-recombination transitions more or less equally, the coupling along an asymmetric mode is far greater suggesting that IR excitation of the acetylene modes preferentially enhances charge-recombination transition relative to charge-separation. PMID:28233775

  5. Redox potential of the terminal quinone electron acceptor QB in photosystem II reveals the mechanism of electron transfer regulation

    PubMed Central

    Kato, Yuki; Nagao, Ryo; Noguchi, Takumi

    2016-01-01

    Photosystem II (PSII) extracts electrons from water at a Mn4CaO5 cluster using light energy and then transfers them to two plastoquinones, the primary quinone electron acceptor QA and the secondary quinone electron acceptor QB. This forward electron transfer is an essential process in light energy conversion. Meanwhile, backward electron transfer is also significant in photoprotection of PSII proteins. Modulation of the redox potential (Em) gap of QA and QB mainly regulates the forward and backward electron transfers in PSII. However, the full scheme of electron transfer regulation remains unresolved due to the unknown Em value of QB. Here, for the first time (to our knowledge), the Em value of QB reduction was measured directly using spectroelectrochemistry in combination with light-induced Fourier transform infrared difference spectroscopy. The Em(QB−/QB) was determined to be approximately +90 mV and was virtually unaffected by depletion of the Mn4CaO5 cluster. This insensitivity of Em(QB−/QB), in combination with the known large upshift of Em(QA−/QA), explains the mechanism of PSII photoprotection with an impaired Mn4CaO5 cluster, in which a large decrease in the Em gap between QA and QB promotes rapid charge recombination via QA−. PMID:26715751

  6. Non-fullerene organic solar cells based on diketopyrrolopyrrole polymers as electron donors and ITIC as an electron acceptor.

    PubMed

    Jiang, Xudong; Xu, Yunhua; Wang, Xiaohui; Wu, Yang; Feng, Guitao; Li, Cheng; Ma, Wei; Li, Weiwei

    2017-03-15

    In this work, we provide systematic studies on the non-fullerene solar cells based on diketopyrrolopyrrole (DPP) polymers as electron donors and a well-known electron acceptor ITIC. ITIC has been widely reported in non-fullerene solar cells with high power conversion efficiencies (PCEs) above 10%, when it is combined with a wide band gap conjugated polymer, while its application in small band gap DPP polymers has never been reported. Herein, we select four DPP polymers containing different thienyl linkers, resulting in distinct absorption spectra, energy levels and crystalline properties. Non-fullerene solar cells based on DPP polymers as donors and ITIC as an acceptor show PCEs of 1.9-4.1% and energy loss of 0.55-0.82 eV. The PCEs are much lower than those of cells based on fullerene derivatives due to the poor miscibility between the DPP polymers and ITIC, as confirmed by the morphology and charge transport investigation. The results indicate that it is important to tune the miscibility between the donor and acceptor in order to realize optimized micro-phase separation, which can further enhance the performance of DPP polymer based non-fullerene solar cells.

  7. Triazole bridges as versatile linkers in electron donor-acceptor conjugates

    PubMed Central

    de Miguel, Gustavo; Wielopolski, Mateusz; Schuster, David I.; Fazio, Michael A; Lee, Olivia P.; Haley, Christopher K.; Ortiz, Angy L.; Echegoyen, Luis; Clark, Timothy; Guldi, Dirk M.

    2011-01-01

    Aromatic triazoles have been frequently used as π-conjugated linkers in intramolecular electron transfer processes. To gain a deeper understanding of the electron mediating function of triazoles, we have synthesized a family of new triazole-based electron donor-acceptor conjugates. We have connected porphyrins and fullerenes through a central triazole moiety – (ZnP-Tri-C60) – each with a single change in their connection through the linker. An extensive photophysical and computational investigation reveals that the electron transfer dynamics – charge separation and charge recombination – in the different ZnP-Tri-C60 conjugates reflect a significant influence of the connectivity at the triazole linker. Except for m4m-ZnP-Tri-C60 17, the conjugates exhibit through-bond electron transfer with varying rate constants. Since the through-bond distance is nearly equal in the ZnP-Tri-C60 conjugates, the variation in charge separation and charge recombination dynamics is mainly associated with the electronic properties of the conjugates, including orbital energies, electron affinity, and the energies of the excited states. The changes of the electronic couplings are, in turn, a consequence of the different connectivity patterns at the triazole moieties. PMID:21702513

  8. Triazole bridges as versatile linkers in electron donor-acceptor conjugates.

    PubMed

    de Miguel, Gustavo; Wielopolski, Mateusz; Schuster, David I; Fazio, Michael A; Lee, Olivia P; Haley, Christopher K; Ortiz, Angy L; Echegoyen, Luis; Clark, Timothy; Guldi, Dirk M

    2011-08-24

    Aromatic triazoles have been frequently used as π-conjugated linkers in intramolecular electron transfer processes. To gain a deeper understanding of the electron-mediating function of triazoles, we have synthesized a family of new triazole-based electron donor-acceptor conjugates. We have connected zinc(II)porphyrins and fullerenes through a central triazole moiety--(ZnP-Tri-C(60))--each with a single change in their connection through the linker. An extensive photophysical and computational investigation reveals that the electron transfer dynamics--charge separation and charge recombination--in the different ZnP-Tri-C(60) conjugates reflect a significant influence of the connectivity at the triazole linker. Except for the m4m-ZnP-Tri-C(60)17, the conjugates exhibit through-bond photoinduced electron transfer with varying rate constants. Since the through-bond distance is nearly the same for all the synthesized ZnP-Tri-C(60) conjugates, the variation in charge separation and charge recombination dynamics is mainly associated with the electronic properties of the conjugates, including orbital energies, electron affinity, and the energies of the excited states. The changes of the electronic couplings are, in turn, a consequence of the different connectivity patterns at the triazole moieties.

  9. Formate Metabolism in Shewanella oneidensis Generates Proton Motive Force and Prevents Growth without an Electron Acceptor

    PubMed Central

    Kane, Aunica L.; Brutinel, Evan D.; Joo, Heena; Maysonet, Rebecca; VanDrisse, Chelsey M.; Kotloski, Nicholas J.

    2016-01-01

    ABSTRACT Shewanella oneidensis strain MR-1 is a facultative anaerobe that thrives in redox-stratified environments due to its ability to utilize a wide array of terminal electron acceptors. Conversely, the electron donors utilized by S. oneidensis are more limited and include products of primary fermentation such as lactate, pyruvate, formate, and hydrogen. Lactate, pyruvate, and hydrogen metabolisms in S. oneidensis have been described previously, but little is known about the role of formate oxidation in the ecophysiology of these bacteria. Formate is produced by S. oneidensis through pyruvate formate lyase during anaerobic growth on carbon sources that enter metabolism at or above the level of pyruvate, and the genome contains three gene clusters predicted to encode three complete formate dehydrogenase complexes. To determine the contribution of each complex to formate metabolism, strains lacking one, two, or all three annotated formate dehydrogenase gene clusters were generated and examined for growth rates and yields on a variety of carbon sources. Here, we report that formate oxidation contributes to both the growth rate and yield of S. oneidensis through the generation of proton motive force. Exogenous formate also greatly accelerated growth on N-acetylglucosamine, a carbon source normally utilized very slowly by S. oneidensis under anaerobic conditions. Surprisingly, deletion of all three formate dehydrogenase gene clusters enabled growth of S. oneidensis using pyruvate in the absence of a terminal electron acceptor, a mode of growth never before observed in these bacteria. Our results demonstrate that formate oxidation is a fundamental strategy under anaerobic conditions for energy conservation in S. oneidensis. IMPORTANCE Shewanella species have garnered interest in biotechnology applications for their ability to respire extracellular terminal electron acceptors, such as insoluble iron oxides and electrodes. While much effort has gone into studying the

  10. Probing reactivity of PQQ-dependent carbohydrate dehydrogenases using artificial electron acceptor.

    PubMed

    Tetianec, Lidija; Bratkovskaja, Irina; Kulys, Juozas; Casaite, Vida; Meskys, Rolandas

    2011-02-01

    The kinetic parameters of carbohydrate oxidation catalyzed by Acinetobacter calcoaceticus pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase (GDH) and Escherichia coli PQQ-dependent aldose sugar dehydrogenase (ASDH) were determined using various electron acceptors. The radical cations of organic compounds and 2,6-dichlorophenolindophenol are the most reactive with both enzymes in presence of glucose. The reactivity of dioxygen with ASDH is low; the bimolecular constant k (ox) = 660 M(-1) s(-1), while GDH reactivity with dioxygen is even less. The radical cation of 3-(10H-phenoxazin-10-yl)propionic acid was used as electron acceptor for reduced enzyme in the study of dehydrogenases carbohydrates specificity. Mono- and disaccharide reactivity with GDH is higher than the reactivity of oligosaccharides. For ASDH, the reactivity increased with the carbohydrate monomer number increase. The specificity of quinoproteins was compared with specificity of flavoprotein Microdochium nivale carbohydrate oxidase due to potential enzymes application for lactose oxidation.

  11. Electron acceptor redox potential globally regulates transcriptomic profiling in Shewanella decolorationis S12

    PubMed Central

    Lian, Yingli; Yang, Yonggang; Guo, Jun; Wang, Yan; Li, Xiaojing; Fang, Yun; Gan, Lixia; Xu, Meiying

    2016-01-01

    Electron acceptor redox potential (EARP) was presumed to be a determining factor for microbial metabolism in many natural and engineered processes. However, little is known about the potentially global effects of EARP on bacteria. In this study, we compared the physiological and transcriptomic properties of Shewanella decolorationis S12 respiring with different EARPs in microbial electrochemical systems to avoid the effects caused by the other physicochemical properties of real electron acceptor. Results showed that the metabolic activities of strain S12 were nonlinear responses to EARP. The tricarboxylic acid cycle for central carbon metabolism was down-regulated while glyoxylate shunt was up-regulated at 0.8 V compared to 0.2 and −0.2 V, which suggested that EARP is an important but not the only determinant for metabolic pathways of strain S12. Moreover, few cytochrome c genes were differentially expressed at different EARPs. The energy intensive flagella assembly and assimilatory sulfur metabolism pathways were significantly enriched at 0.8 V, which suggested strain S12 had stronger electrokinesis behavior and oxidative stress-response at high EARP. This study provides the first global information of EARP regulations on microbial metabolism, which will be helpful for understanding microorganism respiration. PMID:27503002

  12. Electron acceptor redox potential globally regulates transcriptomic profiling in Shewanella decolorationis S12

    NASA Astrophysics Data System (ADS)

    Lian, Yingli; Yang, Yonggang; Guo, Jun; Wang, Yan; Li, Xiaojing; Fang, Yun; Gan, Lixia; Xu, Meiying

    2016-08-01

    Electron acceptor redox potential (EARP) was presumed to be a determining factor for microbial metabolism in many natural and engineered processes. However, little is known about the potentially global effects of EARP on bacteria. In this study, we compared the physiological and transcriptomic properties of Shewanella decolorationis S12 respiring with different EARPs in microbial electrochemical systems to avoid the effects caused by the other physicochemical properties of real electron acceptor. Results showed that the metabolic activities of strain S12 were nonlinear responses to EARP. The tricarboxylic acid cycle for central carbon metabolism was down-regulated while glyoxylate shunt was up-regulated at 0.8 V compared to 0.2 and ‑0.2 V, which suggested that EARP is an important but not the only determinant for metabolic pathways of strain S12. Moreover, few cytochrome c genes were differentially expressed at different EARPs. The energy intensive flagella assembly and assimilatory sulfur metabolism pathways were significantly enriched at 0.8 V, which suggested strain S12 had stronger electrokinesis behavior and oxidative stress-response at high EARP. This study provides the first global information of EARP regulations on microbial metabolism, which will be helpful for understanding microorganism respiration.

  13. Sulfide removal from industrial wastewaters by lithotrophic denitrification using nitrate as an electron acceptor.

    PubMed

    Can-Dogan, Esra; Turker, Mustafa; Dagasan, Levent; Arslan, Ayla

    2010-01-01

    Sulfide is present in wastewaters as well as in biogas and can be removed by several physicochemical and biotechnological processes. Nitrate is a potential electron acceptor, readily available in most wastewater treatment plants and it can replace oxygen under anoxic conditions. A lab-scale reactor was operated for treatment of sulfide containing wastewater with nitrate as an electron acceptor and is used to evaluate the effects of volumetric loading rates, hydraulic retention time (HRT) and substrate concentrations on the performance of the lithotrophic denitrification process for treating industrial fermentation wastewaters. Sulfide is removed more than 90% at the loading rates between 0.055 and 2.004 kg S(-2)/m(3) d, when the influent sulfide concentration is kept around 0.163 kg/m(3) and the HRT decreased from 86.4 to 2 h. Nitrogen removal differed between 23 and 99% with different influent NO(3)(-)-N concentration and loading rates of NO(3)(-)/S(-2) ratio. The stoichiometry of sulfide oxidation with nitrate is calculated assuming different end-products based on thermodynamic approach and compared with experimental yield values. The calculated maximum volumetric and specific sulfide oxidation rates reached 0.076 kg S(-2)/m(3) h and 0.11 kg S(-2)/kg VSS h, respectively. The results are obtained at industrially relevant conditions and can be easily adapted to either biogas cleaning process or to sulfide containing effluent streams.

  14. Engaging Copper(III) Corrole as an Electron Acceptor: Photoinduced Charge Separation in Zinc Porphyrin-Copper Corrole Donor-Acceptor Conjugates.

    PubMed

    Ngo, Thien H; Zieba, David; Webre, Whitney A; Lim, Gary N; Karr, Paul A; Kord, Scheghajegh; Jin, Shangbin; Ariga, Katsuhiko; Galli, Marzia; Goldup, Steve; Hill, Jonathan P; D'Souza, Francis

    2016-01-22

    An electron-deficient copper(III) corrole was utilized for the construction of donor-acceptor conjugates with zinc(II) porphyrin (ZnP) as a singlet excited state electron donor, and the occurrence of photoinduced charge separation was demonstrated by using transient pump-probe spectroscopic techniques. In these conjugates, the number of copper corrole units was varied from 1 to 2 or 4 units while maintaining a single ZnP entity to observe the effect of corrole multiplicity in facilitating the charge-separation process. The conjugates and control compounds were electrochemically and spectroelectrochemically characterized. Computational studies revealed ground state geometries of the compounds and the electron-deficient nature of the copper(III) corrole. An energy level diagram was established to predict the photochemical events by using optical, emission, electrochemical, and computational data. The occurrence of charge separation from singlet excited zinc porphyrin and charge recombination to yield directly the ground state species were evident from the diagram. Femtosecond transient absorption spectroscopy studies provided spectral evidence of charge separation in the form of the zinc porphyrin radical cation and copper(II) corrole species as products. Rates of charge separation in the conjugates were found to be of the order of 10(10)  s(-1) and increased with increasing multiplicity of copper(III) corrole entities. The present study demonstrates the importance of copper(III) corrole as an electron acceptor in building model photosynthetic systems.

  15. Spectral Fine Tuning of Cyanine Dyes: Electron Donor-Acceptor Substituted Analogues of Thiazole Orange†

    PubMed Central

    Rastede, Elizabeth E.; Tanha, Matteus; Yaron, David; Watkins, Simon C.; Waggoner, Alan S.; Armitage, Bruce A.

    2015-01-01

    The introduction of electron donor and acceptor groups at strategic locations on a fluorogenic cyanine dye allows fine-tuning of the absorption and emission spectra while preserving the ability of the dye to bind to biomolecular hosts such as double-stranded DNA and a single-chain antibody fragment originally selected for binding to the parent unsubstituted dye, thiazole orange (TO). The observed spectral shifts are consistent with calculated HOMO-LUMO energy gaps and reflect electron density localization on the quinoline half of TO in the LUMO. A dye bearing donating methoxy and withdrawing trifluoromethyl groups on the benzothiazole and quinoline rings, respectively, shifts the absorption spectrum to sufficiently longer wavelengths to allow excitation at green wavelengths as opposed to the parent dye, which is optimally excited in the blue. PMID:26171668

  16. Donor–acceptor graphene-based hybrid materials facilitating photo-induced electron-transfer reactions

    PubMed Central

    Stergiou, Anastasios; Pagona, Georgia

    2014-01-01

    Summary Graphene research and in particular the topic of chemical functionalization of graphene has exploded in the last decade. The main aim is to increase the solubility and thereby enhance the processability of the material, which is otherwise insoluble and inapplicable for technological applications when stacked in the form of graphite. To this end, initially, graphite was oxidized under harsh conditions to yield exfoliated graphene oxide sheets that are soluble in aqueous media and amenable to chemical modifications due to the presence of carboxylic acid groups at the edges of the lattice. However, it was obvious that the high-defect framework of graphene oxide cannot be readily utilized in applications that are governed by charge-transfer processes, for example, in solar cells. Alternatively, exfoliated graphene has been applied toward the realization of some donor–acceptor hybrid materials with photo- and/or electro-active components. The main body of research regarding obtaining donor–acceptor hybrid materials based on graphene to facilitate charge-transfer phenomena, which is reviewed here, concerns the incorporation of porphyrins and phthalocyanines onto graphene sheets. Through illustrative schemes, the preparation and most importantly the photophysical properties of such graphene-based ensembles will be described. Important parameters, such as the generation of the charge-separated state upon photoexcitation of the organic electron donor, the lifetimes of the charge-separation and charge-recombination as well as the incident-photon-to-current efficiency value for some donor–acceptor graphene-based hybrids, will be discussed. PMID:25247140

  17. A novel D2-A-D1-A-D2-type donor-acceptor conjugated small molecule based on a benzo[1,2-b:4,5-b‧]dithiophene core for solution processed organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Yu, Junting; Zhu, Weiguo; Tan, Hua; Peng, Qing

    2017-01-01

    A novel D2-A-D1-A-D2-type donor-acceptor conjugated small molecule (DTPA-Q-BDT-Q-DTPA) with a benzo[1,2-b:4,5-b‧]dithiophene (BDT) core and two D2-A arms has been synthesized and employed as electron donor for organic solar cells. Solution-processed organic photovoltaic (OPV) devices were fabricated with a configuration of ITO/PEDOT:PSS/DTPA-Q-BDT-Q-DTPA:[6,6]-phenyl-C61-butyric acid methyl ester (PC61BM)/LiF/Al. A power conversion efficiency (PCE) of 1.22% with an open-circuit voltage (VOC) of 0.64 V, a short-circuit current (JSC) of 6.10 mA cm-2, and a fill factor (FF) of 31.0% was achieved. The PCE is 2.9 times higher than that in the other devices using D2-A-type small molecule TPA-Q-TPA as donor.

  18. Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens.

    PubMed

    Zacharoff, Lori; Chan, Chi Ho; Bond, Daniel R

    2016-02-01

    The respiration of metals by the bacterium Geobacter sulfurreducens requires electrons generated by metabolism to pass from the interior of the cell to electron acceptors beyond the cell membranes. The G. sulfurreducens inner membrane multiheme c-type cytochrome ImcH is required for respiration to extracellular electron acceptors with redox potentials greater than -0.1 V vs. SHE, but ImcH is not essential for electron transfer to lower potential acceptors. In contrast, deletion of cbcL, encoding an inner membrane protein consisting of b-type and multiheme c-type cytochrome domains, severely affected reduction of low potential electron acceptors such as Fe(III)-oxides and electrodes poised at -0.1 V vs. SHE. Catalytic cyclic voltammetry of a ΔcbcL strain growing on poised electrodes revealed a 50 mV positive shift in driving force required for electron transfer out of the cell. In non-catalytic conditions, low-potential peaks present in wild type biofilms were absent in ∆cbcL mutants. Expression of cbcL in trans increased growth at low redox potential and restored features to cyclic voltammetry. This evidence supports a model where CbcL is a component of a second electron transfer pathway out of the G. sulfurreducens inner membrane that dominates when redox potential is at or below -0.1 V vs. SHE.

  19. Quantification of Desulfovibrio vulgaris dissimilatory sulfite reductase gene expression during electron donor- and electron acceptor-limited growth.

    PubMed

    Villanueva, Laura; Haveman, Shelley A; Summers, Zara M; Lovley, Derek R

    2008-09-01

    Previous studies have suggested that levels of transcripts for dsrA, a gene encoding a subunit of the dissimilatory sulfite reductase, are not directly related to the rates of sulfate reduction in sediments under all conditions. This phenomenon was further investigated with chemostat-grown Desulfovibrio vulgaris. Under sulfate-limiting conditions, dsrA transcript levels increased as the bulk rates of sulfate reduction in the chemostat increased, but transcript levels were similar at all sulfate reduction rates under electron donor-limiting conditions. When both electron donor- and electron acceptor-limiting conditions were considered, there was a direct correspondence between dsrA transcript levels and the rates of sulfate reduction per cell. These results suggest that dsrA transcript levels may provide important information on the metabolic state of sulfate reducers.

  20. Pilot scale application of nanosized iron oxides as electron acceptors for bioremediation

    NASA Astrophysics Data System (ADS)

    Bosch, Julian; Fritzsche, Andreas; Frank-Fahle, Beatrice; Lüders, Tilmann; Höss, Sebastian; Eisenmann, Heinrich; Held, Thomas; Totsche, Kai U.; Meckenstock, Rainer U.

    2014-05-01

    Microbial reduction of ferric iron is a major biogeochemical process in groundwater aquifer ecosystems and often associated with the degradation of organic contaminants, as bacteria couple iron reduction to the oxidation reduced carbon like e.g. BTEX. Yet in general the low bioavailability of natural iron oxides limits microbial reduction rates. However, nanosized iron oxides have an unequally enhanced bioavailability and reactivity compared to their respective bulk, macro-sized, and more crystalline materials. At the same time, nanosized iron oxides can be produced in stable colloidal suspensions, permitting efficient injections into contaminated aquifers. We examined the reactivity of nanosized synthetic colloidal iron oxides in microbial iron reduction. Application of colloidal nanoparticles led to a strong and sustainable enhancement of microbial reaction rates in batch experiments and sediment columns. Toluene oxidation was increased five-fold as compared to bulk, non-colloidal ferrihydrite as electron acceptor. Furthermore, we developed a unique approach for custom-tailoring the subsurface mobility of these particles after being injected into a contaminant plume. In a field pilot application, we injected 18 m3 of an iron oxide nanoparticle solution into a BTEX contaminated aquifer with a maximum excess pressure as low as 0.2 bar. The applied suspension showed a superior subsurface mobility, creating a reactive zone of 4 m height (corresponding to the height of the confined aquifer) and 6 m in diameter. Subsequent monitoring of BTEX, microbial BTEX degradation metabolites, ferrous iron generation, stable isotopes fractionation, microbial populations, and methanogenesis demonstrated the strong impact of our approach. Mathematic processed X-ray diffractograms and FTIR spectra provided a semi-quantitatively estimate of the long-term fate of the iron oxide colloids in the aquifer. Potential environmental risks of the injection itself were monitored with

  1. Bioremediation of BTEX, naphthalene, and phenanthrene in aquifer material using mixed oxygen/nitrate electron acceptor conditions

    SciTech Connect

    Wilson, L.P.; D`Adamo, P.C.; Bouwer, E.J.

    1997-10-01

    The primary goal of this research is to further present understanding of the effect of mixed oxygen/nitrate electron acceptor conditions on the biodegradation of benzene, toluene, ethylbenzene, m-xylene, naphthalene, and phenanthrene. Specific objectives include: (1) identify subsurface microbial cultures with the ability to biodegrade aromatic hydrocarbons under aerobic and anaerobic denitrifying conditions; (2) quantify the stoichiometry and kinetics of biodegradation of aromatic hydrocarbons under aerobic, anaerobic denitrifying and microaerophilic conditions; and (3) simulate various field bioremediation schemes using different nutrient/electron acceptor delivery schemes.

  2. An Electron-Deficient Building Block Based on the B←N Unit: An Electron Acceptor for All-Polymer Solar Cells.

    PubMed

    Dou, Chuandong; Long, Xiaojing; Ding, Zicheng; Xie, Zhiyuan; Liu, Jun; Wang, Lixiang

    2016-01-22

    A double B←N bridged bipyridyl (BNBP) is a novel electron-deficient building block for polymer electron acceptors in all-polymer solar cells. The B←N bridging units endow BNBP with fixed planar configuration and low-lying LUMO/HOMO energy levels. As a result, the polymer based on BNBP units (P-BNBP-T) exhibits high electron mobility, low-lying LUMO/HOMO energy levels, and strong absorbance in the visible region, which is desirable for polymer electron acceptors. Preliminary all-polymer solar cell (all-PSC) devices with P-BNBP-T as the electron acceptor and PTB7 as the electron donor exhibit a power conversion efficiency (PCE) of 3.38%, which is among the highest values of all-PSCs with PTB7 as the electron donor.

  3. 2010 Electron Donor-Acceptor Interactions Gordon Research Conference, August 8 - 13, 2010.

    SciTech Connect

    Gerald Meyer

    2010-08-18

    The Gordon Research Conference on Electron Donor Acceptor Interactions (GRC EDAI) presents and advances the current frontiers in experimental and theoretical studies of Electron Transfer Processes and Energy Conversion. The fundamental concepts underpinning the field of electron transfer and charge transport phenomena are understood, but fascinating experimental discoveries and novel applications based on charge transfer processes are expanding the discipline. Simultaneously, global challenges for development of viable and economical alternative energy resources, on which many researchers in the field focus their efforts, are now the subject of daily news headlines. Enduring themes of this conference relate to photosynthesis, both natural and artificial, and solar energy conversion. More recent developments include molecular electronics, optical switches, and nanoscale charge transport structures of both natural (biological) and man-made origin. The GRC EDAI is one of the major international meetings advancing this field, and is one of the few scientific meetings where fundamental research in solar energy conversion has a leading voice. The program includes sessions on coupled electron transfers, molecular solar energy conversion, biological and biomimetic systems, spin effects, ultrafast reactions and technical frontiers as well as electron transport in single molecules and devices. In addition to disseminating the latest advances in the field of electron transfer processes, the conference is an excellent forum for scientists from different disciplines to meet and initiate new directions; for scientists from different countries to make contacts; for young scientists to network and establish personal contacts with other young scientists and with established scientists who, otherwise, might not have the time to meet young people. The EDAI GRC also features an interactive atmosphere with lively poster sessions, a few of which are selected for oral presentations.

  4. Bioavailability of Fe(III) in Loess Sediments: An Important Source of Electron Acceptors

    SciTech Connect

    Bishop, Michael E.; Jaisi, Deb P.; Dong, Hailiang; Kukkadapu, Ravi K.; Ji, Junfeng

    2010-08-01

    A quantitative study was conducted to understand if Fe (III) in loess sediments is available for microbial respiration by using a common metal reducing bacterium, Shewanella putrefaciens, CN32. The loess samples were collected from three different sites: St. Louis (Peoria), Missouri, USA; Huanxia (HX) and Yanchang (YCH), Shanxi Province of China. Wet chemical analyses indicated that the total Fe concentration for the three samples was 1.69%, 2.76%, and 3.29%, respectively, of which 0.48%, 0.67%, and 1.27% was Fe(III). All unreduced loess sediments contained iron oxides and phyllosilicates (smectite, illite, chlorite, vermiculite), in addition to common minerals such as quartz, feldspar, plagioclase, calcite, and dolomite. Bioreduction experiments were performed at a loess concentration of 20 mg/mL using lactate as the sole electron donor, Fe(III) in loess as the sole electron acceptor in the presence and absence of anthraquinone-2, 6-disulfonate (AQDS) as an electron shuttle. Experiments were performed in non-growth (bicarbonate buffer) and growth (M1) media with a cell concentration of ~2.8 x 107 and 2.1 x 107 cells/mL, respectively. The unreduced and bioreduced solids were analyzed by X-ray diffraction (XRD), Mössbauer spectroscopy, diffuse reflection spectroscopy (DRS), and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) methods. Despite many similarities among the three loess samples, the extent and rate of Fe (III) reduction varied significantly. For example, in presence of AQDS the extent of reduction in the non-growth experiment was 25% in HX, 34% in Peoria, and 38% in YCH. The extent of reduction in the growth experiment was 72% in HX, 94% in Peoria, and 56% in YCH. The extent of bioreduction was lower in absence of AQDS. Overall, AQDS and the M1 growth medium significantly enhanced the rate and extent of bioreduction. Fe(III) in iron oxides and Fe(III)-containing phyllosilicates was bioreduced. Biogenic illite, siderite, and

  5. Phenothiazine-Anthraquinone Donor-Acceptor Molecules: Synthesis, Electronic Properties and DFT-TDDFT Computational Study

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Wei; Mao, Wei-Li; Hu, Yun-Xia; Tian, Zi-Qi; Wang, Zhi-Lin; Meng, Qing-Jin

    2009-08-01

    Two donor-acceptor molecules with different π-electron conjugative units, 1-((10-methyl-10H-phenothiazin-3-yl)ethynyl)anthracene-9,10-dione (AqMp) and 1,1'-(10-methyl-10H-phenothiazine-3,7-diyl)bis(ethyne-2,1-diyl)dianthracene-9,10-dione (Aq2Mp), have been synthesized and investigated for their photochemical and electrochemical properties. Density functional theory (DFT) calculations provide insights into their molecular geometry, electronic structures, and properties. These studies satisfactorily explain the electrochemistry of the two compounds and indicate that larger conjugative effect leads to smaller HOMO-LUMO gap (Eg) in Aq2Mp. Both compounds show ICT and π → π* transitions in the UV-visible range in solution, and Aq2Mp has a bathochromic shift and shows higher oscillator strength of the absorption, which has been verified by time-dependent DFT (TDDFT) calculations. The differences between AqMp and Aq2Mp indicate that the structural and conjugative effects have great influence on the electronic properties of the molecules.

  6. Spin dynamics of photogenerated triradicals in fixed distance electron donor-chromophore-acceptor-TEMPO molecules.

    PubMed

    Mi, Qixi; Chernick, Erin T; McCamant, David W; Weiss, Emily A; Ratner, Mark A; Wasielewski, Michael R

    2006-06-15

    The stable free radical 2,2,6,6-tetramethylpiperidinoxyl (TEMPO, T*) was covalently attached to the electron acceptor in a donor-chromophore-acceptor (D-C-A) system, MeOAn-6ANI-Phn-A-T*, having well-defined distances between each component, where MeOAn = p-methoxyaniline, 6ANI = 4-(N-piperidinyl)naphthalene-l,8-dicarboximide, Ph = 2,5-dimethylphenyl (n = 0,1), and A = naphthalene-1,8:4,5-bis(dicarboximide) (NI) or pyromellitimide (PI). Using both time-resolved optical and EPR spectroscopy, we show that T* influences the spin dynamics of the photogenerated triradical states 2,4(MeOAn+*-6ANI-Phn-A-*-T*), resulting in modulation of the charge recombination rate within the triradical compared with the corresponding biradical lacking T*. The observed spin-spin exchange interaction between the photogenerated radicals MeOAn+* and A-* is not altered by the presence of T*, which interacts most strongly with A-* and accelerates radical pair intersystem crossing. Charge recombination within the triradicals results in the formation of 2,4(MeOAn-6ANI-Phn-3*NI-T*) or 2,4(MeOAn-3*6ANI-Phn-PI-T*) in which T* is strongly spin polarized in emission. Normally, the spin dynamics of correlated radical pairs do not produce a net spin polarization; however, the rate at which the net spin polarization appears on T* closely follows the photogenerated radical ion pair decay rate. This effect is attributed to antiferromagnetic coupling between T* and the local triplet state 3NI, which is populated following charge recombination. These results are explained using a switch in the spin basis set between the triradical and the three-spin charge recombination product having both T* and 3*NI or 3*6ANI present.

  7. Mobility relaxation and electron trapping in a donor/acceptor copolymer

    NASA Astrophysics Data System (ADS)

    Schubert, Marcel; Preis, Eduard; Blakesley, James C.; Pingel, Patrick; Scherf, Ullrich; Neher, Dieter

    2013-01-01

    To address the nature of charge transport and the origin of severe (intrinsic) trapping in electron-transporting polymers, transient and steady-state charge transport measurements have been conducted on the prototype donor/acceptor copolymer poly[2,7-(9,9-dialkyl-fluorene)-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PFTBTT). A charge-generation layer technique is used to selectively address transport of the desired charge carrier type, to perform time-of-flight measurements on samples with <200 nm thickness, and to combine the time-of-flight and the photocharge extraction by linearly increasing voltage (photo-CELIV) techniques to investigate charge carrier dynamics over a wide time range. Significant trapping of free electrons is observed in the bulk of dioctyl-substituted PFTBTT (alt-PF8TBTT), introducing a strong relaxation of the charge carrier mobility with time. We used Monte-Carlo simulation to simulate the measured transient data and found that all measurements can be modeled with a single parameter set, with the charge transport behavior determined by multiple trapping and detrapping of electrons in an exponential trap distribution. The influence of the concomitant mobility relaxation on the transient photocurrent characteristics in photo-CELIV experiments is discussed and shown to explain subtle features that were seen in former publications but were not yet assigned to electron trapping. Comparable studies on PFTBTT copolymers with chemical modifications of the side chains and backbone suggest that the observed electron trapping is not caused by a distinct chemical species but rather is related to interchain interactions.

  8. Effects of formate binding on the quinone-iron electron acceptor complex of photosystem II.

    PubMed

    Sedoud, Arezki; Kastner, Lisa; Cox, Nicholas; El-Alaoui, Sabah; Kirilovsky, Diana; Rutherford, A William

    2011-02-01

    EPR was used to study the influence of formate on the electron acceptor side of photosystem II (PSII) from Thermosynechococcus elongatus. Two new EPR signals were found and characterized. The first is assigned to the semiquinone form of Q(B) interacting magnetically with a high spin, non-heme-iron (Fe²(+), S=2) when the native bicarbonate/carbonate ligand is replaced by formate. This assignment is based on several experimental observations, the most important of which were: (i) its presence in the dark in a significant fraction of centers, and (ii) the period-of-two variations in the concentration expected for Q(B)(•-) when PSII underwent a series of single-electron turnovers. This signal is similar but not identical to the well-know formate-modified EPR signal observed for the Q(A)(•-)Fe²(+) complex (W.F.J. Vermaas and A.W. Rutherford, FEBS Lett. 175 (1984) 243-248). The formate-modified signals from Q(A)(•-)Fe²(+) and Q(B)(•-)Fe²(+) are also similar to native semiquinone-iron signals (Q(A)(•-)Fe²(+)/Q(B)(•-)Fe²(+)) seen in purple bacterial reaction centers where a glutamate provides the carboxylate ligand to the iron. The second new signal was formed when Q(A)(•-) was generated in formate-inhibited PSII when the secondary acceptor was reduced by two electrons. While the signal is reminiscent of the formate-modified semiquinone-iron signals, it is broader and its main turning point has a major sub-peak at higher field. This new signal is attributed to the Q(A)(•-)Fe²(+) with formate bound but which is perturbed when Q(B) is fully reduced, most likely as Q(B)H₂ (or possibly Q(B)H(•-) or Q(B)(²•-)). Flash experiments on formate-inhibited PSII monitoring these new EPR signals indicate that the outcome of charge separation on the first two flashes is not greatly modified by formate. However on the third flash and subsequent flashes, the modified Q(A)(•-)Fe²(+)Q(B)H₂ signal is trapped in the EPR experiment and there is a marked

  9. Utilization of toxic and vapors as alternate electron acceptors in biofilters

    SciTech Connect

    Lee, B.D.; Apel, W.A.; Walton, M.R.

    1997-08-01

    Conceptually, biofilters are vapor phase bioreactors that rely on microorganisms in the bed medium to oxidize contaminants in off-gases flowing through the bed to less hazardous compounds. In the most studied and utilized systems reduced compounds such as fuel hydrocarbons are enzymatically oxidized to compounds such as carbon dioxide and water. In these types of reactions the microorganisms in the bed oxidize the contaminant and transfer the electrons to oxygen which is the terminal electron acceptor in the process. In essence the contaminant is the carbon and energy source for the microorganisms in the bed medium and through this catabolic process oxygen is reduced to water. An example of this oxidation process can be seen during the degradation of benzene and similar aromatic compounds. Aromatics are initially attacked by a dioxygenase enzyme which oxidizes the compounds to a labile dihydrodiole which is spontaneously converted to a catechol. The dihydroxylated aromatic rings is then opened by oxidative {open_quotes}ortho{close_quotes} or {open_quotes}meta{close_quotes} cleavage yielding cis, cis-muconic acid or 2-hydroxy-cis, cis-muconic semialdehyde, respectively. These organic compounds are further oxidized to carbon dioxide or are assimilated for cellular material. This paper describes the conversion of carbon tetrachloride using methanol as the primary carbon and energy source.

  10. Synthesis and photophysical properties of new catenated electron donor-acceptor materials with magnesium and free base porphyrins as donors and C60 as the acceptor

    NASA Astrophysics Data System (ADS)

    Kirner, Sabrina V.; Guldi, Dirk M.; Megiatto, Jackson D., Jr.; Schuster, David I.

    2014-12-01

    A new series of nanoscale electron donor-acceptor systems with [2]catenane architectures has been synthesized, incorporating magnesium porphyrin (MgP) or free base porphyrin (H2P) as electron donor and C60 as electron acceptor, surrounding a central tetrahedral Cu(i)-1,10-phenanthroline (phen) complex. Model catenated compounds incorporating only one or none of these photoactive moieties were also prepared. The synthesis involved the use of Sauvage's metal template protocol in combination with the 1,3-dipolar cycloaddition of azides and alkynes (``click chemistry''), as in other recent reports from our laboratories. Ground state electron interactions between the individual constituents was probed using electrochemistry and UV-vis absorption spectroscopy, while events occurring following photoexcitation in tetrahydrofuran (under both aerobic and anaerobic conditions) at various wavelengths were followed by means of time-resolved transient absorption and emission spectroscopies on the femtosecond and nanosecond time scales, respectively, complemented by measurements of quantum yields for generation of singlet oxygen. From similar studies with model catenates containing one or neither of the chromophores, the events following photoexcitation could be elucidated. The results were compared with those previously reported for analogous catenates based on zinc porphyrin (ZnP). It was determined that a series of energy transfer (EnT) and electron transfer (ET) processes take place in the present catenates, ultimately generating long-distance charge separated (CS) states involving oxidized porphyrin and reduced C60 moieties, with lifetimes ranging from 400 to 1060 nanoseconds. Shorter lived short-distance CS states possessing oxidized copper complexes and reduced C60, with lifetimes ranging from 15 to 60 ns, were formed en route to the long-distance CS states. The dynamics of the ET processes were analyzed in terms of their thermodynamic driving forces. It was clear that

  11. Charge separation distance for flexible donor-bridge-acceptor systems after electron-transfer quenching.

    PubMed

    Zhou, Jinwei; Lukin, Leonid V; Braun, Charles L

    2008-08-21

    Photoinduced transient dipole experiments are used to measure the effective charge separation distance, which is equivalent to the photoinduced change in dipole moment divided by the electron charge of flexible electron-donor/acceptor systems, D-(CH2)n-A, where D is 4- N,N-dimethylaniline, A is 9-anthryl, and n = 3, 4. We find that the dipole moments increase strongly with solvent polarity. For the compound with n = 4 (DBA4), analysis of dipole signals indicates that the effective charge separation distances in toluene, 1,4-dioxane, ethyl acetate, tetrahydrofuran, dichloromethane, 1,2-dichloroethane, 2-methylpentanone-3, 3-pentanone, and benzonitrile are 2.2, 2.5, 4.5, 4.7, 5.5, 5.5, 4.8, and 6.3 A, respectively. These values can be understood as the root-mean-square charge separation distance in the solutions of different solvents. We assume that the folded contact configuration has a separation distance of 3.5 A, the extended, solvent-separated configuration has a separation distance of 8.0 A, and that they are the only two stable species after electron-transfer quenching. The formation efficiencies of contact radical ion pairs (CRIPs) and solvent-separated radical ion pairs (SSRIPs) are estimated in different solvents. The results indicate that a significant fraction of the ion pairs exist as solvent-separated ion pairs when the dielectric constant of the solvent is larger than 10. These results indicate that electron-transfer quenching can indeed happen at large separations in polar solvents. They also reveal that there is a barrier for ion pairs formed at large separations, hindering collapse to a contact separation of around 3.5 A.

  12. Remarkable Dependence of the Final Charge Separation Efficiency on the Donor-Acceptor Interaction in Photoinduced Electron Transfer.

    PubMed

    Higashino, Tomohiro; Yamada, Tomoki; Yamamoto, Masanori; Furube, Akihiro; Tkachenko, Nikolai V; Miura, Taku; Kobori, Yasuhiro; Jono, Ryota; Yamashita, Koichi; Imahori, Hiroshi

    2016-01-11

    The unprecedented dependence of final charge separation efficiency as a function of donor-acceptor interaction in covalently-linked molecules with a rectilinear rigid oligo-p-xylene bridge has been observed. Optimization of the donor-acceptor electronic coupling remarkably inhibits the undesirable rapid decay of the singlet charge-separated state to the ground state, yielding the final long-lived, triplet charge-separated state with circa 100% efficiency. This finding is extremely useful for the rational design of artificial photosynthesis and organic photovoltaic cells toward efficient solar energy conversion.

  13. Humic Substances as Electron Acceptors and Electron Shuttlers in Anaerobic Marine Sediments.

    DTIC Science & Technology

    1998-09-30

    fold after incubation with Geobacter Metallireducens. A direct positive correlation exists between the change in organic radicals and the molar...the humics with a pure culture of Geobacter metallireducens and acetate, and then adding Fe(III) and measuring the resulting Fe(II) using the...fold after incubation with Geobacter metallireducens. A direct positive correlation exists between the change in concentration of organic

  14. Fragment charge difference method for estimating donor-acceptor electronic coupling: Application to DNA π-stacks

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.; Rösch, Notker

    2002-09-01

    The purpose of this communication is two-fold. We introduce the fragment charge difference (FCD) method to estimate the electron transfer matrix element HDA between a donor D and an acceptor A, and we apply this method to several aspects of hole transfer electronic couplings in π-stacks of DNA, including systems with several donor-acceptor sites. Within the two-state model, our scheme can be simplified to recover a convenient estimate of the electron transfer matrix element HDA=(1-Δq2)1/2(E2-E1)/2 based on the vertical excitation energy E2-E1 and the charge difference Δq between donor and acceptor. For systems with strong charge separation, Δq≳0.95, one should resort to the FCD method. As favorable feature, we demonstrate the stability of the FCD approach for systems which require an approach beyond the two-state model. On the basis of ab initio calculations of various DNA related systems, we compared three approaches for estimating the electronic coupling: the minimum splitting method, the generalized Mulliken-Hush (GMH) scheme, and the FCD approach. We studied the sensitivity of FCD and GMH couplings to the donor-acceptor energy gap and found both schemes to be quite robust; they are applicable also in cases where donor and acceptor states are off resonance. In the application to π-stacks of DNA, we demonstrated for the Watson-Crick pair dimer [(GC),(GC)] how structural changes considerably affect the coupling strength of electron hole transfer. For models of three Watson-Crick pairs, we showed that the two-state model significantly overestimates the hole transfer coupling whereas simultaneous treatment of several states leads to satisfactory results.

  15. Tuning the Electronic Coupling and Electron Transfer in Mo2 Donor-Acceptor Systems by Variation of the Bridge Conformation.

    PubMed

    Kang, Mei Ting; Meng, Miao; Tan, Ying Ning; Cheng, Tao; Liu, Chun Y

    2016-02-24

    Assembling two quadruply bonded dimolybdenum units [Mo2 (DAniF)3 ](+) (DAniF=N,N'-di(p-anisyl)formamidinate) with 1,4-naphthalenedicarboxylate and its thiolated derivatives produced three complexes [{Mo2 (DAniF)3 }2 (μ-1,4-O2 CC10 H6 CO2 )], [{Mo2 (DAniF)3 }2 (μ-1,4-OSCC10 H6 COS)], and [{Mo2 (DAniF)3 }2 (μ-1,4-S2 CC10 H6 CS2 )]. In the X-ray structures, the naphthalene bridge deviates from the plane defined by the two Mo-Mo bond vectors with the torsion angle increasing as the chelating atoms of the bridging ligand vary from O to S. The mixed-valent species exhibit intervalence transition absorption bands with high energy and very low intensity. In comparison with the data for the phenylene analogues, the optically determined electronic coupling matrix elements (Hab =258-345 cm(-1) ) are lowered by a factor of two or more, and the electron-transfer rate constants (ket ≈10(11)  s(-1) ) are reduced by about one order of magnitude. These results show that, when the electron-transporting ability of the bridge and electron-donating (electron-accepting) ability of the donor (acceptor) are both variable, the former plays a dominant role in controlling the intramolecular electron transfer. DFT calculations revealed that increasing the torsion angle enlarges the HOMO-LUMO energy gap by elevating the (bridging) ligand-based LUMO energy. Therefore, our experimental results and theoretical analyses verify the superexchange mechanism for electronic coupling and electron transfer.

  16. Effects of donor-acceptor electronic interactions on the rates of gas-phase metallocene electron-exchange reactions

    SciTech Connect

    Phelps, D.K.; Gord, J.R.; Freiser, B.S.; Weaver, M.J. )

    1991-05-30

    Rate constants for electron self-exchange, k{sub ex}, of five cobaltocenium-cobaltocene and ferrocenium-ferrocene couples in the gas phase have been measured by means of Fourier transform ion cyclotron resonance mass spectrometry in order to explore the possible effects of donor-acceptor electronic coupling on gas-phase redox reactivity. The systems studied, Cp{sub 2}Co{sup +/0}, Cp{sub 2}Fe{sup +/0} (Cp = cyclopentadienyl), the decamethyl derivative Cp{prime}{sub 2}Fe{sup +/0}, carboxymethyl(cobaltocenium-cobaltocene) (Cp{sub 2}{sup e}Co{sup +/0}), and hydroxymethyl(ferrocenium-ferrocene) (HMFc{sup +/0}), were selected in view of the substantial variations in electronic coupling inferred on the basis of their solvent-dependent reactivities and theoretical grounds. The sequence of k{sub ex} values determined in the gas phase, Cp{sub 2}{sup e}Co{sup +/0} {approx} Cp{sub 2}Co{sup +/0} > Cp{prime}{sub 2}Fe{sup +/0} > HMFc{sup +/0} > Cp{sub 2}Fe{sup +/0}, is roughly similar to that observed in solution, although the magnitude (up to 5-fold) of the k{sub ex} variations is smaller in the former case. The likely origins of these differences in gas-phase reactivity are discussed in light of the known variations in the electronic coupling matrix element H{sub 12}, inner-shell reorganization energy {Delta}E*, and gas-phase ion-molecule interaction energy {Delta}E{sub w} extracted from solution-phase rates, structural data, and theoretical calculations. It is concluded that the observed variations in gas-phase k{sub ex} values, especially for Cp{sub 2}Fe{sup +/0} versus Cp{sub 2}Co{sup +/0}, arise predominantly from the presence of weaker donor-acceptor orbital overlap for the ferrocene couples, yielding inefficient electron tunneling for a substantial fraction of the gas-phase ion-molecule encounters. The anticipated differences as well as similarities of such nonadiabatic effects for gas-phase and solution electron-transfer processes are briefly outlined.

  17. Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex.

    PubMed

    Rosokha, Sergiy V; Kochi, Jay K

    2008-05-01

    Seminal insights provided by the iconic R. S. Mulliken and his "charge-transfer" theory, H. Taube and his "outer/inner-sphere" mechanisms, R. A. Marcus and his "two-state non-adiabatic" theory, and N. S. Hush and his "intervalence" theory are each separately woven into the rich panoramic tapestry constituting chemical research into electron-transfer dynamics, and its mechanistic dominance for the past half century and more. In this Account, we illustrate how the simultaneous melding of all four key concepts allows sharp focus on the charge-transfer character of the critical encounter complex to evoke the latent facet of traditional electron-transfer mechanisms. To this end, we exploit the intervalence (electronic) transition that invariably accompanies the diffusive encounter of electron-rich organic donors (D) with electron-poor acceptors (A) as the experimental harbinger of the collision complex, which is then actually isolated and X-ray crystallographically established as loosely bound pi-stacked pairs of various aromatic and olefinic donor/acceptor dyads with uniform interplanar separations of r(DA) = 3.1 +/- 0.2 A. These X-ray structures, together with the spectral measurements of their intervalence transitions, lead to the pair of important electron-transfer parameters, H(DA) (electronic coupling element) versus lambdaT (reorganization energy), the ratio of which generally defines the odd-electron mobility within such an encounter complex in terms of the resonance stabilization of the donor/acceptor assembly [D, A] as opposed to the reorganization-energy penalty required for its interconversion to the electron-transfer state [D(+*), A(-*)]. We recognize the resonance-stabilization energy relative to the intrinsic activation barrier as the mechanistic binding factor, Q = 2H(DA)/lambdaT, to represent the quantitative measure of the highly variable continuum of inner-sphere/outer-sphere interactions that are possible within various types of precursor complexes

  18. Magnetite nanoparticles facilitate methane production from ethanol via acting as electron acceptors.

    PubMed

    Yang, Zhiman; Shi, Xiaoshuang; Wang, Chuanshui; Wang, Lin; Guo, Rongbo

    2015-11-12

    Potential for interspecies hydrogen transfer within paddy soil enrichments obtained via addition of magnetite nanoparticles and ethanol (named as PEM) was investigated. To do this, PEM derived from rice field of Hangzhou (named as PEM-HZ) was employed, because it offered the best methane production performance. Methane production and Fe (III) reduction proceeded in parallel in the presence of magnetite. Inhibition experiments with 2-bromoethane sulfonate (BES) or phosphate showed that interspecies hydrogen transfer and Fe (III) reduction also occurred in methane production from ethanol. 16S rRNA-based Illumina sequencing results showed that Dechloromonas, Thauera, Desulfovibrio and Clostridium were the dominant putative Fe (III) -reducers, and that hydrogenotrophic Methanobacterium accounted for about 88% of the total archaeal community. These results indicated that magnetite nanoparticles that acted as electron acceptor could facilitate rapid oxidation of ethanol by members of the Fe (III) -reducers in PEM-HZ and establishment of the syntrophic relationship of Fe (III) -reducers with Methanobacterium via interspecies hydrogen transfer. Our results could offer a model to understand the microbial interaction with magnetite from a novel angle during methanogenesis.

  19. Magnetite nanoparticles facilitate methane production from ethanol via acting as electron acceptors

    PubMed Central

    Yang, Zhiman; Shi, Xiaoshuang; Wang, Chuanshui; Wang, Lin; Guo, Rongbo

    2015-01-01

    Potential for interspecies hydrogen transfer within paddy soil enrichments obtained via addition of magnetite nanoparticles and ethanol (named as PEM) was investigated. To do this, PEM derived from rice field of Hangzhou (named as PEM-HZ) was employed, because it offered the best methane production performance. Methane production and Fe (III) reduction proceeded in parallel in the presence of magnetite. Inhibition experiments with 2-bromoethane sulfonate (BES) or phosphate showed that interspecies hydrogen transfer and Fe (III) reduction also occurred in methane production from ethanol. 16S rRNA-based Illumina sequencing results showed that Dechloromonas, Thauera, Desulfovibrio and Clostridium were the dominant putative Fe (III) -reducers, and that hydrogenotrophic Methanobacterium accounted for about 88% of the total archaeal community. These results indicated that magnetite nanoparticles that acted as electron acceptor could facilitate rapid oxidation of ethanol by members of the Fe (III) -reducers in PEM-HZ and establishment of the syntrophic relationship of Fe (III) -reducers with Methanobacterium via interspecies hydrogen transfer. Our results could offer a model to understand the microbial interaction with magnetite from a novel angle during methanogenesis. PMID:26559132

  20. Magnetite nanoparticles facilitate methane production from ethanol via acting as electron acceptors

    NASA Astrophysics Data System (ADS)

    Yang, Zhiman; Shi, Xiaoshuang; Wang, Chuanshui; Wang, Lin; Guo, Rongbo

    2015-11-01

    Potential for interspecies hydrogen transfer within paddy soil enrichments obtained via addition of magnetite nanoparticles and ethanol (named as PEM) was investigated. To do this, PEM derived from rice field of Hangzhou (named as PEM-HZ) was employed, because it offered the best methane production performance. Methane production and Fe (III) reduction proceeded in parallel in the presence of magnetite. Inhibition experiments with 2-bromoethane sulfonate (BES) or phosphate showed that interspecies hydrogen transfer and Fe (III) reduction also occurred in methane production from ethanol. 16S rRNA-based Illumina sequencing results showed that Dechloromonas, Thauera, Desulfovibrio and Clostridium were the dominant putative Fe (III) -reducers, and that hydrogenotrophic Methanobacterium accounted for about 88% of the total archaeal community. These results indicated that magnetite nanoparticles that acted as electron acceptor could facilitate rapid oxidation of ethanol by members of the Fe (III) -reducers in PEM-HZ and establishment of the syntrophic relationship of Fe (III) -reducers with Methanobacterium via interspecies hydrogen transfer. Our results could offer a model to understand the microbial interaction with magnetite from a novel angle during methanogenesis.

  1. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules: A Benchmark of GW Methods

    NASA Astrophysics Data System (ADS)

    Marom, Noa; Knight, Joseph; Wang, Xiaopeng; Gallandi, Lukas; Dolgounitcheva, Olga; Ren, Xinguo; Ortiz, Vincent; Rinke, Patrick; Korzdorfer, Thomas

    The performance of different GW methods is assessed for a set of 24 organic acceptors. Errors are evaluated with respect to coupled cluster singles, doubles, perturbative triples [CCSD(T)] reference data for the vertical ionization potentials (IPs) and electron affinities (EAs), extrapolated to the complete basis set limit. Additional comparisons are made to experimental data, where available. We consider fully self-consistent GW (scGW), partial self-consistency in the Green's function (scGW0) , non-self-consistent G0W0 based on several mean-field starting points, and a ``beyond GW'' second order screened exchange (SOSEX) correction to G0W0. The best performers overall are G0W0 + SOSEX and G0W0 based on an IP-tuned long range corrected hybrid functional with the former being more accurate for EAs and the latter for IPs. Both provide a balanced treatment of localized vs. delocalized states and valence spectra in good agreement with photoemission spectroscopy (PES) experiments.

  2. NOx in the Atmosphere of Early Earth as Electron Acceptors for Life

    NASA Astrophysics Data System (ADS)

    Wong, M. L.; Charnay, B.; Gao, P.; Yung, Y. L.; Russell, M. J.

    2015-12-01

    We quantify the amount of NOx produced in the Hadean atmosphere and available in the Hadean ocean for the emergence of life. Atmospherically generated nitrate (NO3-) and nitrite (NO2-) are the most attractive high-potential electron acceptors for driving the highly endergonic reactions at the entry points to autotrophic metabolic pathways at submarine alkaline hydrothermal vents (Ducluzeau, 2008; Russell, 2014). The Hadean atmosphere, dominated by CO2 and N2, will produce nitric oxide (NO) when shocked by lightning and impacts (Ducluzeau, 2008; Nna Mvondo, 2001). Photochemical reactions involving NO and H2O vapor will then produce acids such as HNO3 and HNO2 that rain into the ocean and dissociate into NO3- and NO2-. Previous work suggests that 1018 g of NOx can be produced in a million years or so, satisfying the need for micromolar concentrations of NO3- and NO2- in the ocean (Ducluzeau, 2008). But because this number is controversial, we present new calculations based on a novel combination of early-Earth GCM and photochemical modeling, calculating the sources and sinks for fixed nitrogen. Finally, it is notable that lightning has been detected on Venus and Mars along with evidence of atmospheric NO; in the distant past, could NOx have been created and available for the emergence of life on numerous wet, rocky worlds?

  3. Behavioral response of dissimilatory perchlorate-reducing bacteria to different electron acceptors.

    PubMed

    Sun, Yvonne; Gustavson, Ruth L; Ali, Nadia; Weber, Karrie A; Westphal, Lacey L; Coates, John D

    2009-10-01

    The response behavior of three dissimilatory perchlorate-reducing bacteria to different electron acceptors (nitrate, chlorate, and perchlorate) was investigated with two different assays. The observed response was species-specific, dependent on the prior growth conditions, and was inhibited by oxygen. We observed attraction toward nitrate when Dechloromonas aromatica strain RCB and Azospira suillum strain PS were grown with nitrate. When D. aromatica and Dechloromonas agitata strain CKB were grown with perchlorate, both responded to nitrate, chlorate, and perchlorate. When A. suillum was grown with perchlorate, the organism responded to chlorate and perchlorate but not nitrate. A gene replacement mutant in the perchlorate reductase subunit (pcrA) of D. aromatica resulted in a loss of the attraction response toward perchlorate but had no impact on the nitrate response. Washed-cell suspension studies revealed that the perchlorate grown cells of D. aromatica reduced both perchlorate and nitrate, while A. suillum cells reduced perchlorate only. Based on these observations, energy taxis was proposed as the underlying mechanism for the responses to (per)chlorate by D. aromatica. To the best of our knowledge, this study represents the first investigation of the response behavior of perchlorate-reducing bacteria to environmental stimuli. It clearly demonstrates attraction toward chlorine oxyanions and the unique ability of these organisms to distinguish structurally analogous compounds, nitrate, chlorate, and perchlorate and respond accordingly.

  4. Anaerobic biodegradability of alkylphenols and fuel oxygenates in the presence of alternative electron acceptors.

    PubMed

    Puig-Grajales, L; Tan, N G; van der Zee, F; Razo-Flores, E; Field, J A

    2000-11-01

    Alkylphenols and fuel oxygenates are important environmental pollutants produced by the petrochemical industry. A batch biodegradability test was conducted with selected ortho-substituted alkylphenols (2-cresol, 2,6-dimethylphenol and 2-ethylphenol), fuel oxygenates (methyl tert-butyl ether, ethyl tert-butyl ether and tert-amylmethyl ether) and tert-butyl alcohol (TBA) as model compounds. The ortho-substituted alkylphenols were not biodegraded after 100 days of incubation under methanogenic, sulfate-, or nitrate-reducing conditions. However, biodegradation of 2-cresol and 2-ethylphenol (150 mg l(-1)) was observed in the presence of Mn (IV) as electron acceptor. The biodegradation of these two compounds took place in less than 15 days and more than 90% removal was observed for both compounds. Mineralization was indicated since no UV-absorbing metabolites accumulated after 23 days of incubation. These alkylphenols were also slowly chemically oxidized by Mn (IV). No biodegradation of fuel oxygenates or TBA (1 g l(-1)) was observed after 80 or more days of incubation under methanogenic, Fe (III)-, or Mn (IV)-reducing conditions, suggesting that these compounds are recalcitrant under anaerobic conditions. The fuel oxygenates caused no toxicity towards acetoclastic methanogens activity in anaerobic granular sludge.

  5. Land cover controls the export of terminal electron acceptors from boreal catchments

    NASA Astrophysics Data System (ADS)

    Palviainen, Marjo; Lehtoranta, Jouni; Ekholm, Petri; Ruoho-Airola, Tuija; Kortelainen, Pirkko

    2015-04-01

    NO3, Mn, Fe and SO4 act as terminal electron acceptors (TEAs) modifying mineralization pathways and coupling biogeochemical cycles. Although single TEA concentrations and fluxes have been intensively studied, the factors regulating the simultaneous fluxes and molar ratios of TEAs are poorly elucidated. We studied the mean concentrations, exports and molar ratios of TEAs from 27 boreal catchments differing in land cover (percentage of agricultural land, peatland, forest and built-up area) in the years 2000-2011. TEA exports and molar ratios were strongly controlled by land cover and only little by atmospheric deposition. There were a great variability of the export of TEAs from different land cover classes. Fields produced the highest export of TEAs, particularly NO3. Peatland was linked to low NO3 and SO4 but high Fe exports. NO3, Mn and Fe exports from forests were low, SO4 having proportionally the highest export. Together, the percentages of field and peatland predicted 93%, 80%, 75% and 67% of the variation in the export of NO3, Mn, Fe and SO4, respectively. Our results showed that the export and molar ratios of TEAs in northern European boreal catchments are predominantly a function of land cover and catchment processes rather than atmospheric deposition. The variable export of TEAs having different availability and physical behavior may create different premises for anaerobic mineralization in downstream systems, which adds a new dimension to the link between terrestrial system, land use and environmental problems such as eutrophication and climate change.

  6. Growth of Pseudomonas chloritidismutans AW-1(T) on n-alkanes with chlorate as electron acceptor.

    PubMed

    Mehboob, Farrakh; Junca, Howard; Schraa, Gosse; Stams, Alfons J M

    2009-06-01

    Microbial (per)chlorate reduction is a unique process in which molecular oxygen is formed during the dismutation of chlorite. The oxygen thus formed may be used to degrade hydrocarbons by means of oxygenases under seemingly anoxic conditions. Up to now, no bacterium has been described that grows on aliphatic hydrocarbons with chlorate. Here, we report that Pseudomonas chloritidismutans AW-1(T) grows on n-alkanes (ranging from C7 until C12) with chlorate as electron acceptor. Strain AW-1(T) also grows on the intermediates of the presumed n-alkane degradation pathway. The specific growth rates on n-decane and chlorate and n-decane and oxygen were 0.5 +/- 0.1 and 0.4 +/- 0.02 day(-1), respectively. The key enzymes chlorate reductase and chlorite dismutase were assayed and found to be present. The oxygen-dependent alkane oxidation was demonstrated in whole-cell suspensions. The strain degrades n-alkanes with oxygen and chlorate but not with nitrate, thus suggesting that the strain employs oxygenase-dependent pathways for the breakdown of n-alkanes.

  7. Nitrate as electron acceptor in in situ abandoned refinery site bioremediation

    SciTech Connect

    Battermann, G.; Meier-Loehr, M.

    1995-12-31

    The aquifer beneath an abandoned refinery site is highly polluted with benzene, toluene, ethylbenzene, and xylenes (BTEX). After removal of the free phase by hydraulic measures until 1986, the immobile residual concentration located 6 to 10 m beneath the surface is still present and causes hydrocarbon concentrations from 10 to 100 mg/L in the groundwater. Laboratory tests proved the biodegradability of the hydrocarbon compounds under denitrifying conditions. Based on the results of the pilot study, large-scale bioremediation covering an area of about 20 ha was initiated. About 500 m{sup 3}/h of groundwater were extracted, and 400 m{sup 3}/h were recharged. The large-scale plant has been operating since 1991. Nitrate as an electron acceptor has been used since 1992. About 300 metric tons (MT) of hydrocarbons have been removed to date. The area of groundwater pollution is diminished by a factor of about two. More than 60% of all groundwater observation wells are now free of dissolved hydrocarbons. In addition, the decrease of biological nitrate consumption gives evidence of advanced bioremediation of the soil.

  8. Monitoring electron donor metabolism under variable electron acceptor conditions using 13C-labeled lactate

    NASA Astrophysics Data System (ADS)

    Bill, M.; Conrad, M. E.; Yang, L.; Beller, H. R.; Brodie, E. L.

    2010-12-01

    Three sets of flow-through columns constructed with aquifer sediment from Hanford (WA) were used to study reduction of Cr(VI) to poorly soluble Cr(III) under denitrifying, sulfate-reducing/fermentative, and iron-reducing conditions with lactate as the electron donor. In order to understand the relationship between electron donors and biomarkers, and to determine the differences in carbon isotope fractionation resulting from different microbial metabolic processes, we monitored the variation in carbon isotopes in dissolved inorganic carbon (DIC), in total organic carbon (TOC), and in lactate, acetate and propionate. The greatest enrichment in 13C in columns was observed under denitrifying conditions. The δ13C of DIC increased by ~1750 to ~2000‰ fifteen days after supplementation of natural abundance lactate with a 13C-labeled lactate tracer (for an influent δ13C of ~2250‰ for the lactate) indicating almost complete oxidation of the electron donor. The denitrifying columns were among the most active columns and had the highest cell counts and the denitrification rate was highly correlated with Cr(VI) reduction rate. δ13C values of DIC ranged from ~540 to ~1170‰ for iron-reducing conditions. The lower enrichment in iron columns was related to the lower biological activity observed with lower yields of RNA and cell numbers in the column effluents. The carbon isotope shift in the sulfate-reducing ~198 to ~1960‰ for sulfate-reducing conditions reflecting the lower levels of the lactate in these columns. Additionally, in two of the sulfate columns, almost complete fermentation of the lactate occurred, producing acetate and propionate with the labeled carbon signature, but relatively smaller amounts of inorganic carbon. For all electron-accepting conditions, TOC yielded similar δ13C values as lactate stock solutions. Differences in C use efficiency, metabolic rate or metabolic pathway contributed to the differing TOC δ13C to DIC δ13C ratios between treatments

  9. Microbial Anaerobic Ammonium Oxidation Under Iron Reducing Conditions, Alternative Electron Acceptors

    NASA Astrophysics Data System (ADS)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2015-12-01

    Autotrophic Acidimicrobiaceae-bacterium named A6 (A6), part of the Actinobacteria phylum have been linked to anaerobic ammonium (NH4+) oxidation under iron reducing conditions. These organisms obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, the TEAs are iron oxides [Fe(III)], which are reduced to Fe(II), this process is known as Feammox. Our studies indicate that alternative forms of TEAs can be used by A6, e.g. iron rich clays (i.e. nontronite) and electrodes in bioelectrochemical systems such as Microbial Electrolysis Cells (MECs), which can sustain NH4+removal and A6 biomass production. Our results show that nontronite can support Feammox and promote bacterial cell production. A6 biomass increased from 4.7 x 104 to 3.9 x 105 cells/ml in 10 days. Incubations of A6 in nontronite resulted in up to 10 times more NH4+ removal and 3 times more biomass production than when ferrihydrite is used as the Fe(III) source. Additionally, Fe in nontronite can be reoxidized by aeration and A6 can reutilize it; however, Fe is still finite in the clay. In contrast, in MECs, A6 harvest electrons from NH4+ and use an anode as an unlimited TEA, as a result current is produced. We operated multiple MECs in parallel using a single external power source, as described by Call & Logan (2011). MECs were run with an applied voltage of 0.7V and different growing mediums always containing initial 5mM NH4+. Results show that current production is favored when anthraquinone-2,6-disulfonate (AQDS), an electron shuttled, is present in the medium as it facilitates the transfer of electrons from the bacterial cell to the anode. Additionally, A6 biomass increased from 1 x 104 to 9.77 x 105cells/ml in 14 days of operation. Due to Acidimicrobiaceae-bacterium A6's ability to use various TEAs, MECs represent an alternative, iron-free form, for optimized biomass production of A6 and its application in NH4

  10. Charge transfer complex studies between some non-steroidal anti-inflammatory drugs and π-electron acceptors

    NASA Astrophysics Data System (ADS)

    Duymus, Hulya; Arslan, Mustafa; Kucukislamoglu, Mustafa; Zengin, Mustafa

    2006-12-01

    Charge transfer (CT) complexes of some non-steroidal anti-inflammatory drugs, naproxen and etodolac which are electron donors with some π-acceptors, such as tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ), p-chloranil ( p-CHL), have been investigated spectrophotometrically in chloroform at 21 °C. The coloured products are measured spectrophotometrically at different wavelength depending on the electronic transition between donors and acceptors. Beer's law is obeyed and colours were produced in non-aqueous media. All complexes were stable at least 2 h except for etodolac with DDQ stable for 5 min. The equilibrium constants of the CT complexes were determined by the Benesi-Hildebrand equation. The thermodynamic parameters Δ H, Δ S, Δ G° were calculated by Van't Hoff equation. Stochiometries of the complexes formed between donors and acceptors were defined by the Job's method of the continuous variation and found in 1:1 complexation with donor and acceptor at the maximum absorption bands in all cases.

  11. Gallium vacancies and gallium antisites as acceptors in electron-irradiated semi-insulating GaAs

    SciTech Connect

    Corbel, C.; Pierre, F. ); Saarinen, K.; Hautojaervi, P. ); Moser, P. )

    1992-02-15

    Positron-lifetime measurements show that acceptors are produced in semi-insulating GaAs by 1.5-MeV electron irradiation at 20 K. Two types of acceptors can be separated. The first ones are negative vacancy-type defects which anneal out over a very broad range of temperature between 77 and 500 K. The second ones are negative ion-type defects which are stable still at 450 K. The data show that these two types of defects are independent and do not form close pairs. We attribute both to gallium-related defects. We identify the ion-type acceptors as isolated gallium antisites. The vacancy-type acceptors are identified as gallium vacancies which are isolated or involved in negatively charged complexes. The introduction rate of the gallium antisite is estimated to be 1.8{plus minus}0.3 cm{sup {minus}1} in the fluence range 10{sup 17}--10{sup 18} cm{sup {minus}2} for 1.5-MeV electron irradiation at 20 K.

  12. Decacyclene Trianhydride at Functional Interfaces: An Ideal Electron Acceptor Material for Organic Electronics.

    PubMed

    de Oteyza, Dimas G; Garcia-Lastra, Juan M; Toma, Francesca M; Borghetti, Patrizia; Floreano, Luca; Verdini, Alberto; Cossaro, Albano; Pho, Toan V; Wudl, Fred; Ortega, J Enrique

    2016-01-07

    We report the interface energetics of decacyclene trianhydride (DTA) monolayers on top of two distinct model surfaces, namely, Au(111) and Ag(111). On the latter, combined valence band photoemission and X-ray absorption measurements that access the occupied and unoccupied molecular orbitals, respectively, reveal that electron transfer from substrate to surface sets in. Density functional theory calculations confirm our experimental findings and provide an understanding not only of the photoemission and X-ray absorption spectral features of this promising organic semiconductor but also of the fingerprints associated with the interface charge transfer.

  13. Estimation of electronic coupling in π-stacked donor-bridge-acceptor systems: Correction of the two-state model

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-02-01

    Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽda=(E2-E1)μ12/Rda+(2E3-E1-E2)2μ13μ23/Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model.

  14. Anaerobic α-amylase production and secretion with fumarate as the final electron acceptor in Saccharomyces cerevisiae.

    PubMed

    Liu, Zihe; Österlund, Tobias; Hou, Jin; Petranovic, Dina; Nielsen, Jens

    2013-05-01

    In this study, we focus on production of heterologous α-amylase in the yeast Saccharomyces cerevisiae under anaerobic conditions. We compare the metabolic fluxes and transcriptional regulation under aerobic and anaerobic conditions, with the objective of identifying the final electron acceptor for protein folding under anaerobic conditions. We find that yeast produces more amylase under anaerobic conditions than under aerobic conditions, and we propose a model for electron transfer under anaerobic conditions. According to our model, during protein folding the electrons from the endoplasmic reticulum are transferred to fumarate as the final electron acceptor. This model is supported by findings that the addition of fumarate under anaerobic (but not aerobic) conditions improves cell growth, specifically in the α-amylase-producing strain, in which it is not used as a carbon source. Our results provide a model for the molecular mechanism of anaerobic protein secretion using fumarate as the final electron acceptor, which may allow for further engineering of yeast for improved protein secretion under anaerobic growth conditions.

  15. Charge transport in organic donor-acceptor mixed-stack crystals: the role of nonlocal electron-phonon couplings.

    PubMed

    Zhu, Lingyun; Geng, Hua; Yi, Yuanping; Wei, Zhixiang

    2017-02-08

    The charge-transport properties in C8BTBT-FnTCNQ and DMQtT-F4TCNQ mixed-stack crystals have been investigated by means of density functional theory, molecular dynamics and kinetic Monte Carlo simulations. The super-exchange nature of charge transport in these crystals is elucidated by the Larsson partition-based electronic coupling method that was developed recently by us. Compared with hole transport, in addition to the donor HOMO-acceptor LUMO interaction, the interaction between the donor HOMO-1 and the acceptor LUMO will also make an important contribution to electron transport. Moreover, this additional interaction plays an opposite role and results in electron-dominant and hole-dominant transport in the C8BTBT-FnTCNQ and DMQtT-F4TCNQ crystals, respectively. Most importantly, our calculations point out that the nonlocal electron-phonon couplings are very weak and much smaller than the electronic couplings in all the studied crystals. This implies that the nonlocal couplings have little influence on charge transport. In contrast to the experimental measurements, the external reorganization energies are thus expected to play an essential role in determining charge carrier mobilities. These findings pave the way for rational design of high performance organic donor-acceptor mixed-stack semiconductors.

  16. Effects of electron acceptors on soluble reactive phosphorus in the overlying water during algal decomposition.

    PubMed

    Wang, Jinzhi; Jiang, Xia; Zheng, Binghui; Niu, Yuan; Wang, Kun; Wang, Wenwen; Kardol, Paul

    2015-12-01

    Endogenous phosphorus (P) release from sediments is an important factor to cause eutrophication and, hence, algal bloom in lakes in China. Algal decomposition depletes dissolved oxygen (DO) and causes anaerobic conditions and therefore increases P release from sediments. As sediment P release is dependent on the iron (Fe) cycle, electron acceptors (e.g., NO3 (-), SO4 (2-), and Mn(4+)) can be utilized to suppress the reduction of Fe(3+) under anaerobic conditions and, as such, have the potential to impair the release of sediment P. Here, we used a laboratory experiment to test the effects of FeCl3, MnO2, and KNO3 on soluble reactive phosphorus (SRP) concentration and related chemical variables in the overlying water column during algal decomposition at different algal densities. Results showed that algal decomposition significantly depleted DO and thereby increased sediment Fe-bound P release. Compared with the control, addition of FeCl3 significantly decreased water SRP concentration through inhibiting sediment P release. Compared with FeCl3, addition of MnO2 has less potential to suppress sediment P release during algal decomposition. Algal decomposition has the potential for NO3 (-) removal from aquatic ecosystem through denitrification and by that alleviates the suppressing role of NO3 (-) on sediment P release. Our results indicated that FeCl3 and MnO2 could be efficient in reducing sediment P release during algal decomposition, with the strongest effect found for FeCl3; large amounts of NO3 (-) were removed from the aquatic ecosystem through denitrification during algal decomposition. Moreover, the amounts of NO3 (-) removal increased with increasing algal density.

  17. FTIR spectroscopy of the reaction center of Chloroflexus aurantiacus: photoreduction of the bacteriopheophytin electron acceptor.

    PubMed

    Zabelin, Alexej A; Shkuropatova, Valentina A; Shuvalov, Vladimir A; Shkuropatov, Anatoly Ya

    2011-09-01

    Mid-infrared spectral changes associated with the photoreduction of the bacteriopheophytin electron acceptor H(A) in reaction centers (RCs) of the filamentous anoxygenic phototrophic bacterium Chloroflexus (Cfl.) aurantiacus are examined by light-induced Fourier transform infrared (FTIR) spectroscopy. The light-induced H(A)(-)/H(A) FTIR (1800-1200cm(-1)) difference spectrum of Cfl. aurantiacus RCs is compared to that of the previously well characterized purple bacterium Rhodobacter (Rba.) sphaeroides RCs. The most notable feature is that the large negative IR band at 1674cm(-1) in Rba. sphaeroides R-26, attributable to the loss of the absorption of the 13(1)-keto carbonyl of H(A) upon the radical anion H(A)(-) formation, exhibits only a very minor upshift to 1675cm(-1) in Cfl. aurantiacus. In contrast, the absorption band of the 13¹-keto C=O of H(A)(-) is strongly upshifted in the spectrum of Cfl. aurantiacus compared to that of Rba. sphaeroides (from 1588 to 1623cm(-1)). The data are discussed in terms of: (i) replacing the glutamic acid at L104 in Rba. sphaeroides R-26 RCs by a weaker hydrogen bond donor, a glutamine, at the equivalent position L143 in Cfl. aurantiacus RCs; (ii) a strengthening of the hydrogen-bonding interaction of the 13¹-keto C=O of H(A) with Glu L104 and Gln L143 upon H(A)(-) formation and (iii) a possible influence of the protein dielectric environment on the 13¹-keto C=O stretching frequency of neutral H(A). A conformational heterogeneity of the 13³-ester C=O group of H(A) is detected for Cfl. aurantiacus RCs similar to what has been previously described for purple bacterial RCs.

  18. Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation.

    PubMed

    Ali, Muhammad Aslam; Lee, Chang Hoon; Kim, Sang Yoon; Kim, Pil Joo

    2009-10-01

    Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH(4)) emission resulting from rice cultivation. In laboratory incubations, CH(4) production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt(-1)), while observed CO(2) production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH(4) emission rates from the rice planted potted soils significantly decreased with the increasing levels (2-20 Mg ha(-1)) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha(-1) application level of the amendments, total seasonal CH(4) emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH(4) production rates as well as total seasonal CH(4) flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens' activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH(4) emissions as well as sustaining rice productivity.

  19. Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation

    SciTech Connect

    Ali, Muhammad Aslam; Lee, Chang Hoon; Kim, Sang Yoon; Kim, Pil Joo

    2009-10-15

    Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH{sub 4}) emission resulting from rice cultivation. In laboratory incubations, CH{sub 4} production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt{sup -1}), while observed CO{sub 2} production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH{sub 4} emission rates from the rice planted potted soils significantly decreased with the increasing levels (2-20 Mg ha{sup -1}) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha{sup -1} application level of the amendments, total seasonal CH{sub 4} emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH{sub 4} production rates as well as total seasonal CH{sub 4} flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens' activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH{sub 4} emissions as well as sustaining rice productivity.

  20. Charge Transfer Fluorescence and 34 nm Exciton Diffusion Length in Polymers with Electron Acceptor End Traps.

    PubMed

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; Karten, Brianne; Asaoka, Sadayuki; Wu, Qin; Cook, Andrew R; Miller, John R

    2015-06-18

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17-127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence, and DFT descriptions. Quantum yields of CT fluorescence are as large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps, the trap depths are 0.06 (p-xylene), 0.13 (THF), and 0.19 eV (CHCl3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization, and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ∼50% of the excitons, and that the exciton diffusion length is LD = 34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. The efficiency of exciton capture depends on chain length but not on trap depth, solvent polarity, or which trap group is present.

  1. Charge transfer fluorescence and 34 nm exciton diffusion length in polymers with electron acceptor end traps

    SciTech Connect

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; Karten, Brianne; Asaoka, Sadayuki; Wu, Qin; Cook, Andrew R.; Miller, John R.

    2014-12-22

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are as large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length LD =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. As a result, the efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.

  2. Charge transfer fluorescence and 34 nm exciton diffusion length in polymers with electron acceptor end traps

    DOE PAGES

    Zaikowski, Lori; Mauro, Gina; Bird, Matthew; ...

    2014-12-22

    Photoexcitation of conjugated poly-2,7-(9,9-dihexylfluorene) polyfluorenes with naphthylimide (NI) and anthraquinone (AQ) electron-acceptor end traps produces excitons that form charge transfer states at the end traps. Intramolecular singlet exciton transport to end traps was examined by steady state fluorescence for polyfluorenes of 17 to 127 repeat units in chloroform, dimethylformamide (DMF), tetrahydrofuran (THF), and p-xylene. End traps capture excitons and form charge transfer (CT) states at all polymer lengths and in all solvents. The CT nature of the end-trapped states is confirmed by their fluorescence spectra, solvent and trap group dependence and DFT descriptions. Quantum yields of CT fluorescence are asmore » large as 46%. This strong CT emission is understood in terms of intensity borrowing. Energies of the CT states from onsets of the fluorescence spectra give the depths of the traps which vary with solvent polarity. For NI end traps the trap depths are 0.06 (p-xylene), 0.13 (THF) and 0.19 eV (CHCl3). For AQ, CT fluorescence could be observed only in p-xylene where the trap depth is 0.27 eV. Quantum yields, emission energies, charge transfer energies, solvent reorganization and vibrational energies were calculated. Fluorescence measurements on chains >100 repeat units indicate that end traps capture ~50% of the excitons, and that the exciton diffusion length LD =34 nm, which is much larger than diffusion lengths reported in polymer films or than previously known for diffusion along isolated chains. As a result, the efficiency of exciton capture depends on chain length, but not on trap depth, solvent polarity or which trap group is present.« less

  3. Modeling microbial degradation of propylene glycol: electron acceptors and their related redox conditions

    NASA Astrophysics Data System (ADS)

    Dathe, Annette; Fernandez, Perrine M.; Bloem, Esther; Meeussen, Johannes C. L.; French, Helen K.

    2014-05-01

    De-icing chemicals are applied in large amounts at airports during winter conditions to keep the runways and aircrafts ice-free. The commonly used propylene glycol (PG) is easily degradable by local microbial communities, but anoxic zones develop and soluble Fe+2 and Mn+2 ions can reach the groundwater. To enhance microbial induced remediation and reduce the release of iron and manganese, it was proposed to add NO3- together with PG. However, experiments conducted in the unsaturated zone at Gardermoen airport, Norway, revealed that manganese and iron were preferred over NO3- as electron acceptor [1]. The objectives of this study are to quantify mechanisms which control the order of reduction processes in an unsaturated sandy soil, and to test whether measured redox potentials can help to determine underlying biogeochemical reactions. We are modelling the microbial degradation of PG using Monod kinetics described for the chemical equilibrium tool ORCHESTRA [2], following an approach of [1]. The model is calibrated against gas measurements of CO2, NO2 and N2 released from batch experiments performed under controlled conditions. Fe+2 and Mn+2 were measured for the start and end of the experiment, as well as bulk resistivity, pH and electrical conductivity. With the calibrated model we are working towards a tool to quantify microbial induced redox reactions under different soil water saturations to account for seasonal water fluxes especially during snowmelt. [1] Schotanus, D., Meeussen, J.C.L., Lissner, H., van der Ploeg, M.J., Wehrer, M., Totsche, K.U., van der Zee, S.E.A.T.M., 2013. Transport and degradation of propylene glycol in the vadose zone: model development and sensitivity analysis. Environ Sci Pollut Res Int. [2] Meeussen, J.C.L., 2003. ORCHESTRA: An Object-Oriented Framework for Implementing Chemical Equilibrium Models. Environ. Sci. Technol. 37, 1175-1182.

  4. Energy-Level Modulation of Small-Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells.

    PubMed

    Li, Sunsun; Ye, Long; Zhao, Wenchao; Zhang, Shaoqing; Mukherjee, Subhrangsu; Ade, Harald; Hou, Jianhui

    2016-11-01

    Fine energy-level modulations of small-molecule acceptors (SMAs) are realized via subtle chemical modifications on strong electron-withdrawing end-groups. The two new SMAs (IT-M and IT-DM) end-capped by methyl-modified dicycanovinylindan-1-one exhibit upshifted lowest unoccupied molecular orbital (LUMO) levels, and hence higher open-circuit voltages can be observed in the corresponding devices. Finally, a top power conversion efficiency of 12.05% is achieved.

  5. An N-ethylated barbituric acid end-capped bithiophene as an electron-acceptor material in fullerene-free organic photovoltaics.

    PubMed

    Sullivan, Paul; Collis, Gavin E; Rochford, Luke A; Arantes, Junior Ferreira; Kemppinen, Peter; Jones, Tim S; Winzenberg, Kevin N

    2015-04-11

    A new evaporable electron acceptor material for organic photovoltaics based on N-ethyl barbituric acid bithiophene (EBB) has been demonstrated. Bilayer devices fabricated with this non-fullerene acceptor and boron subphthalocyanine chloride (SubPc) donor produce power conversion efficiencies as high as 2.6% with an extremely large open-circuit voltage approaching 1.4 V.

  6. Modeling the Effect of External Carbon Source Addition under Different Electron Acceptor Conditions in Biological Nutrient Removal Activated Sludge Systems.

    PubMed

    Hu, Xiang; Wisniewski, Kamil; Czerwionka, Krzysztof; Zhou, Qi; Xie, Li; Makinia, Jacek

    2016-02-16

    The aim of this study was to expand the International Water Association Activated Sludge Model No. 2d (ASM2d) to predict the aerobic/anoxic behavior of polyphosphate accumulating organisms (PAOs) and "ordinary" heterotrophs in the presence of different external carbon sources and electron acceptors. The following new aspects were considered: (1) a new type of the readily biodegradable substrate, not available for the anaerobic activity of PAOs, (2) nitrite as an electron acceptor, and (3) acclimation of "ordinary" heterotrophs to the new external substrate via enzyme synthesis. The expanded model incorporated 30 new or modified process rate equations. The model was evaluated against data from several, especially designed laboratory experiments which focused on the combined effects of different types of external carbon sources (acetate, ethanol and fusel oil) and electron acceptors (dissolved oxygen, nitrate and nitrite) on the behavior of PAOs and "ordinary" heterotrophs. With the proposed expansions, it was possible to improve some deficiencies of the ASM2d in predicting the behavior of biological nutrient removal (BNR) systems with the addition of external carbon sources, including the effect of acclimation to the new carbon source.

  7. 2004 Electron Donor Acceptor Interactions Gordon Conference - August 8-13, 2004

    SciTech Connect

    GUILFORD JONES BOSTON UNIVERSITY PHOTONICS CENTER 8 ST. MARY'S ST BOSTON, MA 02215

    2005-09-14

    The 2004 Gordon Conference on Donor/Acceptor Interactions will take place at Salve Regina University in Newport, Rhode Island on August 8-13, 2004. The conference will be devoted to the consequences of charge interaction and charge motion in molecular and materials systems.

  8. Changes in Terminal Electron Acceptors During Experiment Mixing of a Dystrophic Lake

    NASA Astrophysics Data System (ADS)

    Stanley, E. H.; Lottig, N. R.; Shade, A.; Read, J. S.; Hanson, P. C.; Kratz, T. K.; Roden, E. E.; Wu, C.; McMahon, K. D.

    2009-05-01

    Changing climate conditions are associated with decreased duration of ice-on periods in lakes worldwide. This trend, coupled with likely increases in extreme weather events, is predicted to disrupt patterns of stratification and mixing in lakes and may result in unexpected, episodic mixing events. Because the mixing regime is a key component of a lake's physical template, regime changes should affect all aspects of the ecosystem. To understand the magnitude and nature of potential ecosystem changes, we experimentally mixed a small dystrophic lake during summer stratification in the Northern Highlands Lake District of Wisconsin (USA). The lake was mixed in July 2008 using a gradual entrainment lake inverter (GELI), a novel apparatus that uses alternating buoyancy stages to oscillate large volumes of water without introducing gas into the water column. Chemical conditions were monitored from spring to fall mixis (April-Sept). Here, we report on changes in the lake's thermal structure and responses of terminal electron acceptors (TEAs) as indicators of microbial activity and biogeochemical dynamics in the water column. Prior to experimental mixing, the lake was completely stratified. As expected, the surface layer (epilimnion) was well-oxygenated and had high concentrations of SO4. Deeper waters of the hypolimnion were anoxic, with detectable levels of H2S, FeII, and CH4. The GELI successfully homogenized the entire water column; the hypolimnion became oxygenated (3-4 mg DO/L), and reduced TEA concentrations declined to detection limits. After mixing ceased, the lake re- stratified but the hypolimnion was 14 degrees warmer than immediately prior to mixing. Re-establishment of chemical profiles was rapid as CH4 and H2S returned to pre-mixing concentrations within 1-2 weeks. The post-mixing stratification period was best characterized by accumulation of NH4-N in the hypolimnion; concentrations reached 1.5 mg N/L by the end of the summer, 4X greater than the pre

  9. High acceptor production rate in electron-irradiated n-type GaAs: Impact on defect models

    NASA Astrophysics Data System (ADS)

    Look, D. C.

    1987-09-01

    Defect production rates have been studied in electron-irradiated GaAs by temperature-dependent Hall-effect (TDH) measurements. The TDH results agree well with deep level transient spectroscopy (DLTS) results for the well-known electron traps E1, E2, and E3, but conclusively demonstrate a much higher production rate (4±1 cm-1) of acceptors below E3 than the total of all other DLTS traps. These findings strongly affect current defect models, and, e.g., are consistent with the existence of Ga sublattice damage, not seen before.

  10. ELECTRON DONOR ACCEPTOR DESCRIPTORS OF THE SINGLE AND DOUBLE BONDED SUBSTITUENT AND HETEROATOM INCORPORATION EFFECTS. A REVIEW.

    PubMed

    Mazurek, Andrzej

    2016-01-01

    The properties of the series of Electron Donor-Acceptor (EDA) descriptors of classical substituent effect (sEDA(I), pEDA(I)), double bonded substituent effect (sEDA(=), pEDA(=)), heteroatom incorporation effect in monocyclic systems (sEDA(II), pEDA(II)), and in ring-junction position (sEDA(III), pEDA(III)), are reviewed. The descriptors show the amount of electrons donated to or withdrawn from the σ-(sEDA) or π(pEDA) valence orbitals by the substituent or incorporant. The new descriptors are expected to enrich the potency of QSAR analyses in drug design and materials chemistry.

  11. Shewanella oneidensis MR-1 chemotaxis proteins and electron-transport chain components essential for congregation near insoluble electron acceptors.

    PubMed

    Harris, H Wayne; El-Naggar, Mohamed Y; Nealson, Kenneth H

    2012-12-01

    Shewanella oneidensis MR-1 cells utilize a behaviour response called electrokinesis to increase their speed in the vicinity of IEAs (insoluble electron acceptors), including manganese oxides, iron oxides and poised electrodes [Harris, El-Naggar, Bretschger, Ward, Romine, Obraztsova and Nealson (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 326-331]. However, it is not currently understood how bacteria remain in the vicinity of the IEA and accumulate both on the surface and in the surrounding medium. In the present paper, we provide results indicating that cells that have contacted the IEAs swim faster than those that have not recently made contact. In addition, fast-swimming cells exhibit an enhancement of swimming reversals leading to rapid non-random accumulation of cells on, and adjacent to, mineral particles. We call the observed accumulation near IEAs 'congregation'. Congregation is eliminated by the loss of a critical gene involved with EET (extracellular electron transport) (cymA, SO_4591) and is altered or eliminated in several deletion mutants of homologues of genes that are involved with chemotaxis or energy taxis in Escherichia coli. These genes include chemotactic signal transduction protein (cheA-3, SO_3207), methyl-accepting chemotaxis proteins with the Cache domain (mcp_cache, SO_2240) or the PAS (Per/Arnt/Sim) domain (mcp_pas, SO_1385). In the present paper, we report studies of S. oneidensis MR-1 that lend some insight into how microbes in this group can 'sense' the presence of a solid substrate such as a mineral surface, and maintain themselves in the vicinity of the mineral (i.e. via congregation), which may ultimately lead to attachment and biofilm formation.

  12. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation.

    PubMed

    Oon, Yoong-Sin; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Oon, Yoong-Ling; Lehl, Harvinder Kaur; Thung, Wei-Eng; Nordin, Noradiba

    2017-03-05

    Monoazo and diazo dyes [New coccine (NC), Acid orange 7 (AO7), Reactive red 120 (RR120) and Reactive green 19 (RG19)] were employed as electron acceptors in the abiotic cathode of microbial fuel cell. The electrons and protons generated from microbial organic oxidation at the anode which were utilized for electrochemical azo dye reduction at the cathodic chamber was successfully demonstrated. When NC was employed as the electron acceptor, the chemical oxygen demand (COD) removal and dye decolourisation efficiencies obtained at the anodic and cathodic chamber were 73±3% and 95.1±1.1%, respectively. This study demonstrated that the decolourisation rates of monoazo dyes were ∼50% higher than diazo dyes. The maximum power density in relation to NC decolourisation was 20.64mW/m(2), corresponding to current density of 120.24mA/m(2). The decolourisation rate and power output of different azo dyes were in the order of NC>AO7>RR120>RG19. The findings revealed that the structure of dye influenced the decolourisation and power performance of MFC. Azo dye with electron-withdrawing group at para substituent to azo bond would draw electrons from azo bond; hence the azo dye became more electrophilic and more favourable for dye reduction.

  13. Highly Soluble Benzo[ghi]perylenetriimide Derivatives: Stable and Air-Insensitive Electron Acceptors for Artificial Photosynthesis

    PubMed Central

    Chen, Hung-Cheng; Hsu, Chao-Ping; Reek, Joost N H; Williams, René M; Brouwer, Albert M

    2015-01-01

    A series of new benzo[ghi]perylenetriimide (BPTI) derivatives has been synthesized and characterized. These remarkably soluble BPTI derivatives show strong optical absorption in the range of λ=300–500 nm and have a high triplet-state energy of 1.67 eV. A cyanophenyl substituent renders BPTI such a strong electron acceptor (Ered=−0.11 V vs. the normal hydrogen electrode) that electron-trapping reactions with O2 and H2O do not occur. The BPTI radical anion on a fluorine-doped tin oxide|TiO2 electrode is persistent up to tens of seconds (t1/2=39 s) in air-saturated buffer solution. As a result of favorable packing, theoretical electron mobilities (10−2∼10−1 cm2 V−1 s−1) are high and similar to the experimental values observed for perylene diimide and C60 derivatives. Our studies show the potential of the cyanophenyl-modified BPTI compounds as electron acceptors in devices for artificial photosynthesis in water splitting that are also very promising nonfullerene electron-transport materials for organic solar cells. PMID:26395847

  14. Transcriptional analysis of Shewanella oneidensis MR-1 with an electrode compared to Fe(III)citrate or oxygen as terminal electron acceptor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background. Shewanella oneidensis is a target of extensive research efforts in the fields of bioelectrochemical systems and bioremediation because of its versatile metabolic capabilities, especially in regards to the respiration with extracellular electron acceptors. Here, we took a global approach ...

  15. Green's function calculation of through-bond electronic coupling in donor bridge acceptor model systems

    NASA Astrophysics Data System (ADS)

    de Santana, O. L.; da Gama, A. A. S.

    1999-12-01

    The Green's function formalism is applied for the calculation of the effective through-bond donor-acceptor coupling in model molecular systems. The calculation is performed at a Hartree-Fock (self-consistent) level, by using semiempirical AM1 and CNDO/S, and ab initio STO-3G methods. The results are compared with that obtained from the splitting of the appropriate levels, by using the Koopmans' theorem, within each one of the selected quantum chemical methods.

  16. Respiration and growth of Shewanella decolorationis S12 with an Azo compound as the sole electron acceptor.

    PubMed

    Hong, Yiguo; Xu, Meiying; Guo, Jun; Xu, Zhicheng; Chen, Xingjuan; Sun, Guoping

    2007-01-01

    The ability of Shewanella decolorationis S12 to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory azoreduction was investigated. This microorganism can reduce a variety of azo dyes by use of formate, lactate, pyruvate, or H(2) as the electron donor. Furthermore, strain S12 grew to a maximal density of 3.0 x 10(7) cells per ml after compete reduction of 2.0 mM amaranth in a defined medium. This was accompanied by a stoichiometric consumption of 4.0 mM formate over time when amaranth and formate were supplied as the sole electron acceptor and donor, respectively, suggesting that microbial azoreduction is an electron transport process and that this electron transport can yield energy to support growth. Purified membranous, periplasmic, and cytoplasmic fractions from S12 were analyzed, but only the membranous fraction was capable of reducing azo dyes with formate, lactate, pyruvate, or H(2) as the electron donor. The presence of 5 microM Cu(2+) ions, 200 microM dicumarol, 100 microM stigmatellin, and 100 microM metyrapone inhibited anaerobic azoreduction activity by both whole cells and the purified membrane fraction, showing that dehydrogenases, cytochromes, and menaquinone are essential electron transfer components for azoreduction. These results provide evidence that the microbial anaerobic azoreduction is linked to the electron transport chain and suggest that the dissimilatory azoreduction is a form of microbial anaerobic respiration. These findings not only expand the number of potential electron acceptors known for microbial energy conservation but also elucidate the mechanisms of microbial anaerobic azoreduction.

  17. Geothrix fermentans Secretes Two Different Redox-Active Compounds To Utilize Electron Acceptors across a Wide Range of Redox Potentials

    PubMed Central

    Mehta-Kolte, Misha G.

    2012-01-01

    The current understanding of dissimilatory metal reduction is based primarily on isolates from the proteobacterial genera Geobacter and Shewanella. However, environments undergoing active Fe(III) reduction often harbor less-well-studied phyla that are equally abundant. In this work, electrochemical techniques were used to analyze respiratory electron transfer by the only known Fe(III)-reducing representative of the Acidobacteria, Geothrix fermentans. In contrast to previously characterized metal-reducing bacteria, which typically reach maximal rates of respiration at electron acceptor potentials of 0 V versus standard hydrogen electrode (SHE), G. fermentans required potentials as high as 0.55 V to respire at its maximum rate. In addition, G. fermentans secreted two different soluble redox-active electron shuttles with separate redox potentials (−0.2 V and 0.3 V). The compound with the lower midpoint potential, responsible for 20 to 30% of electron transfer activity, was riboflavin. The behavior of the higher-potential compound was consistent with hydrophilic UV-fluorescent molecules previously found in G. fermentans supernatants. Both electron shuttles were also produced when cultures were grown with Fe(III), but not when fumarate was the electron acceptor. This study reveals that Geothrix is able to take advantage of higher-redox-potential environments, demonstrates that secretion of flavin-based shuttles is not confined to Shewanella, and points to the existence of high-potential-redox-active compounds involved in extracellular electron transfer. Based on differences between the respiratory strategies of Geothrix and Geobacter, these two groups of bacteria could exist in distinctive environmental niches defined by redox potential. PMID:22843516

  18. Electron-transfer and acid-base properties of a two-electron oxidized form of quaterpyrrole that acts as both an electron donor and an acceptor.

    PubMed

    Zhang, Min; E, Wenbo; Ohkubo, Kei; Sanchez-Garcia, David; Yoon, Dae-Wi; Sessler, Jonathan L; Fukuzumi, Shunichi; Kadish, Karl M

    2008-02-21

    Electron-transfer interconversion between the four-electron oxidized form of a quaterpyrrole (abbreviated as P4 for four pyrroles) and the two-electron oxidized form (P4H2) as well as between P4H2 and its fully reduced form (P4H4) bearing analogous substituents in the alpha- and beta-pyrrolic positions was studied by means of cyclic voltammetry and UV-visible spectroelectrochemistry combined with ESR and laser flash photolysis measurements. The two-electron oxidized form, P4H2, acts as both an electron donor and an electron acceptor. The radical cation (P4H2*+) and radical anion (P4H2*-) are both produced by photoinduced electron transfer from dimeric 1-benzyl-1,4-dihydronicotinamide to P4H2, whereas the cation radical form of the compound is also produced by electron-transfer oxidation of P4H2 with [Ru(bpy)3]3+. The ESR spectra of P4H2*+ and P4H2*- were recorded at low temperature and exhibit spin delocalization over all four pyrrole units. Thus, the two-electron oxidized form of the quaterpyrrole (P4H2) displays redox and electronic features analogous to those seen in the case of porphyrins and may be considered as a simple, open-chain model of this well-studied tetrapyrrolic macrocycle. The dynamics of deprotonation from P4H2*+ and disproportionation of P4H2 were examined by laser flash photolysis measurements of photoinduced electron-transfer oxidation and reduction of P4H2, respectively.

  19. Self-association and electron transfer in donor-acceptor dyads connected by meta-substituted oligomers.

    PubMed

    Molina-Ontoria, Agustín; Fernández, Gustavo; Wielopolski, Mateusz; Atienza, Carmen; Sánchez, Luis; Gouloumis, Andreas; Clark, Timothy; Martín, Nazario; Guldi, Dirk M

    2009-09-02

    The synthesis of a new series of electron donor-acceptor conjugates (5, 10, 13, and 16) in which the electron acceptor--C(60)--and the electron donor--pi-extended tetrathiafulvalene (exTTF)--are bridged by means of m-phenyleneethynylene spacers of variable length is reported. The unexpected self-association of these hybrids was first detected to occur in the gas phase by means of MALDI-TOF spectrometry and subsequently corroborated in solution by utilizing concentration-dependent and variable-temperature (1)H NMR experiments. Furthermore, the ability of these new conjugates to form wirelike structures upon deposition onto a mica surface has been demonstrated by AFM spectroscopy. In light of their photoactivity and redoxactivity, 5, 10, 13, and 16 were probed in concentration-dependent photophysical experiments. Importantly, absorption and fluorescence revealed subtle dissimilarities for the association constants, that is, a dependence on the length of the m-phenylene spacers. The binding strength is in 5 greatly reduced when compared with those in 10, 13, and 16. Not only that, the spacer length also plays a decisive role in governing excited-state interactions in the corresponding electron donor-acceptor conjugates (5, 10, 13, and 16). To this end, 5, in which the photo- and electroactive constituents are bridged by just one aromatic ring, displays--exclusively and independent of the concentration (10(-6) to 10(-4) M)--efficient intramolecular electron transfer events on the basis of a "through-bond" mechanism. On the contrary, the lack of conjugation throughout the bridges in 10 (two m-phenyleneethynylene rings), 13 (three m-phenyleneethynylene rings), and 16 (four m-phenyleneethynylene rings) favors at low concentration (10(-6) M) "through space" intramolecular electron transfer events. These are, however, quite ineffective and, in turn, lead to excited-state deactivations that are at high concentrations (10(-4) M) dominated by intracomplex electron transfer

  20. Electron Transfer within Self-Assembling Cyclic Tetramers Using Chlorophyll-Based Donor-Acceptor Building Blocks

    SciTech Connect

    Gunderson, Victoria L; Smeigh, Amanda L; Kim, Chul Hoon; Co, Dick T; Wasielewski, Michael R

    2012-05-09

    The synthesis and photoinduced charge transfer properties of a series of Chl-based donor-acceptor triad building blocks that self-assemble into cyclic tetramers are reported. Chlorophyll a was converted into zinc methyl 3-ethylpyrochlorophyllide a (Chl) and then further modified at its 20-position to covalently attach a pyromellitimide (PI) acceptor bearing a pyridine ligand and one or two naphthalene-1,8:4,5-bis(dicarboximide) (NDI) secondary electron acceptors to give Chl-PI-NDI and Chl-PI-NDI2. The pyridine ligand within each ambident triad enables intermolecular Chl metal-ligand coordination in dry toluene, which results in the formation of cyclic tetramers in solution, as determined using small- and wide-angle X-ray scattering at a synchrotron source. Femtosecond and nanosecond transient absorption spectroscopy of the monomers in toluene-1% pyridine and the cyclic tetramers in toluene shows that the selective photoexcitation of Chl results in intramolecular electron transfer from 1*Chl to PI to form Chl+.-PI-.-NDI and Chl+.-PI-.-NDI2. This initial charge separation is followed by a rapid charge shift from PI-. to NDI and subsequent charge recombination of Chl+.-PI-NDI-. and Chl+.-PI-(NDI)NDI-. on a 5-30 ns time scale. Charge recombination in the Chl-PI-NDI2 cyclic tetramer (τCR = 30 ± 1 ns in toluene) is slower by a factor of 3 relative to the monomeric building blocks (τCR = 10 ± 1 ns in toluene-1% pyridine). This indicates that the self-assembly of these building blocks into the cyclic tetramers alters their structures in a way that lengthens their charge separation lifetimes, which is an advantageous strategy for artificial photosynthetic systems.

  1. Influence of donor-acceptor distance variation on photoinduced electron and proton transfer in rhenium(I)-phenol dyads.

    PubMed

    Kuss-Petermann, Martin; Wolf, Hilke; Stalke, Dietmar; Wenger, Oliver S

    2012-08-01

    A homologous series of four molecules in which a phenol unit is linked covalently to a rhenium(I) tricarbonyl diimine photooxidant via a variable number of p-xylene spacers (n = 0-3) was synthesized and investigated. The species with a single p-xylene spacer was structurally characterized to get some benchmark distances. Photoexcitation of the metal complex in the shortest dyad (n = 0) triggers release of the phenolic proton to the acetonitrile/water solvent mixture; a H/D kinetic isotope effect (KIE) of 2.0 ± 0.4 is associated with this process. Thus, the shortest dyad basically acts like a photoacid. The next two longer dyads (n = 1, 2) exhibit intramolecular photoinduced phenol-to-rhenium electron transfer in the rate-determining excited-state deactivation step, and there is no significant KIE in this case. For the dyad with n = 1, transient absorption spectroscopy provided evidence for release of the phenolic proton to the solvent upon oxidation of the phenol by intramolecular photoinduced electron transfer. Subsequent thermal charge recombination is associated with a H/D KIE of 3.6 ± 0.4 and therefore is likely to involve proton motion in the rate-determining reaction step. Thus, some of the longer dyads (n = 1, 2) exhibit photoinduced proton-coupled electron transfer (PCET), albeit in a stepwise (electron transfer followed by proton transfer) rather than concerted manner. Our study demonstrates that electronically strongly coupled donor-acceptor systems may exhibit significantly different photoinduced PCET chemistry than electronically weakly coupled donor-bridge-acceptor molecules.

  2. Impact of temperature and non-Gaussian statistics on electron transfer in donor-bridge-acceptor molecules

    DOE PAGES

    Waskasi, Morteza M.; Newton, Marshall D.; Matyushov, Dmitry V.

    2017-03-06

    A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T . This kinetic law is a temperature analog of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganizationmore » energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. Furthermore, the theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.« less

  3. Impact of Temperature and Non-Gaussian Statistics on Electron Transfer in Donor–Bridge–Acceptor Molecules

    DOE PAGES

    Waskasi, Morteza M.; Newton, Marshall D.; Matyushov, Dmitry V.

    2017-03-16

    A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T . This kinetic law is a temperature analog of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganizationmore » energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. Furthermore, the theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.« less

  4. The separation distance distribution in electron-donor-acceptor systems and the wavelength dependence of free ion yields

    NASA Astrophysics Data System (ADS)

    Zhou, Jinwei; Findley, Bret R.; Braun, Charles L.; Sutin, Norman

    2001-06-01

    We recently reported that free radical ion quantum yields for electron-donor-acceptor (EDA) systems of alkylbenzenes-tetracyanoethylene (TCNE) exhibit a remarkable wavelength dependence in dichloromethane, a medium polarity solvent. We proposed that weak absorption by long-distance, unassociated or "random" D⋯A pairs is mainly responsible for the free radical ion yield. Here a model for the wavelength dependence of the free ion yield is developed for four systems in which differing degrees of EDA complex formation are present: 1,3,5-tri-tert-butylbenzene-TCNE in which only random pairs exist due to the bulky groups on the electron donor, and toluene—TCNE, 1,3,5-triethylbenzene-TCNE and 1,3,5-trimethylbenzene-TCNE. Mulliken-Hush theory is used to determine the excitation distance distribution of unassociated, random pairs at different wavelengths. For each absorption distribution, free radical ion yields at different wavelengths are then calculated using Onsager's result for the ion separation probability. Encouraging agreement between the calculated yields and our experimental results is obtained. As far as we are aware, this is the first time that photoexcitation of unassociated donor/acceptor pairs has been invoked as the source of separated radical ion pairs.

  5. Impact of Temperature and Non-Gaussian Statistics on Electron Transfer in Donor-Bridge-Acceptor Molecules.

    PubMed

    Waskasi, Morteza M; Newton, Marshall D; Matyushov, Dmitry V

    2017-03-06

    A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T. This kinetic law is a temperature analog of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganization energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. The theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.

  6. Carrier Dynamics in CsPbBr_3 Nanocrystals in Presence of Electron and Hole Acceptors: a Time Resolved Terahertz Spectroscopy Study.

    NASA Astrophysics Data System (ADS)

    Sarkar, Sohini; Banerjee, Sneha; Reddy, Yettapu Gurivi; Ravi, Vikash Kumar; Nag, Angshuman; Mandal, Pankaj

    2016-06-01

    Study of lead halide perovskites is a burgeoning field of research owing to their applications in solar cells and myriads of other light harvesting and emitting devices. In this work we have employed Terahertz time domain spectroscopy (THz-TDS) and time-resolved THz spectroscopy (TRTS) to study dielectric properties and carrier dynamics occurring within CsPbBr_3 perovskite nanocrystals (NCs) in presence of electron and hole acceptor molecules. The THz-TDS spectrum of CsPbBr_3 NCs features a strong and broad band with a peak around 3.4 THz which originates from multiple IR-active optical phonon modes of the nature of Pb-Br stretching and Br-Pb-Br bending vibrations. We observed very efficient electron and/or hole transfer in presence of either an electron or a hole acceptor, or both. Also, in presence of either an electron or hole acceptor the diffusion length reduces to half (4.1 μm) in comparison to parent NCs (9.2 μm). In presence of both, electron and hole acceptor molecules the diffusion length reduces to 0.6 μm. Considerable decrease in mobility values is also observed for the NCs in presence of electron and hole acceptor molecules. Details of the study will be discussed in the talk.

  7. Computational characterization of competing energy and electron transfer states in bimetallic donor-acceptor systems for photocatalytic conversion

    NASA Astrophysics Data System (ADS)

    Fredin, Lisa A.; Persson, Petter

    2016-09-01

    The rapidly growing interest in photocatalytic systems for direct solar fuel production such as hydrogen generation from water splitting is grounded in the unique opportunity to achieve charge separation in molecular systems provided by electron transfer processes. In general, both photoinduced and catalytic processes involve complicated dynamics that depend on both structural and electronic effects. Here the excited state landscape of metal centered light harvester-catalyst pairs is explored using density functional theory calculations. In weakly bound systems, the interplay between structural and electronic factors involved can be constructed from the various mononuclear relaxed excited states. For this study, supramolecular states of electron transfer and excitation energy transfer character have been constructed from constituent full optimizations of multiple charge/spin states for a set of three Ru-based light harvesters and nine transition metal catalysts (based on Ru, Rh, Re, Pd, and Co) in terms of energy, structure, and electronic properties. The complete set of combined charge-spin states for each donor-acceptor system provides information about the competition of excited state energy transfer states with the catalytically active electron transfer states, enabling the identification of the most promising candidates for photocatalytic applications from this perspective.

  8. Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation

    PubMed Central

    Barchinger, Sarah E.; Pirbadian, Sahand; Baker, Carol S.; Leung, Kar Man; Burroughs, Nigel J.; El-Naggar, Mohamed Y.

    2016-01-01

    ABSTRACT In limiting oxygen as an electron acceptor, the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 rapidly forms nanowires, extensions of its outer membrane containing the cytochromes MtrC and OmcA needed for extracellular electron transfer. RNA sequencing (RNA-Seq) analysis was employed to determine differential gene expression over time from triplicate chemostat cultures that were limited for oxygen. We identified 465 genes with decreased expression and 677 genes with increased expression. The coordinated increased expression of heme biosynthesis, cytochrome maturation, and transport pathways indicates that S. oneidensis MR-1 increases cytochrome production, including the transcription of genes encoding MtrA, MtrC, and OmcA, and transports these decaheme cytochromes across the cytoplasmic membrane during electron acceptor limitation and nanowire formation. In contrast, the expression of the mtrA and mtrC homologs mtrF and mtrD either remains unaffected or decreases under these conditions. The ompW gene, encoding a small outer membrane porin, has 40-fold higher expression during oxygen limitation, and it is proposed that OmpW plays a role in cation transport to maintain electrical neutrality during electron transfer. The genes encoding the anaerobic respiration regulator cyclic AMP receptor protein (CRP) and the extracytoplasmic function sigma factor RpoE are among the transcription factor genes with increased expression. RpoE might function by signaling the initial response to oxygen limitation. Our results show that RpoE activates transcription from promoters upstream of mtrC and omcA. The transcriptome and mutant analyses of S. oneidensis MR-1 nanowire production are consistent with independent regulatory mechanisms for extending the outer membrane into tubular structures and for ensuring the electron transfer function of the nanowires. IMPORTANCE Shewanella oneidensis MR-1 has the capacity to transfer electrons to its external surface

  9. 2008 Electron Donor Acceptor Interactions Gordon Research Conference-August 3-8, 2009

    SciTech Connect

    Malcolm Forbes and Nancy Ryan Gray

    2009-09-19

    The conference presents and advances the current frontiers in experimental and theoretical studies of Electron Transfer and Transport in Molecular and Nano-scale Systems. The program includes sessions on coupled electron transfers, molecular solar energy conversion, biological and biomimetic systems, spin effects, ultrafast reactions and technical frontiers as well as electron transport in single molecules and devices.

  10. Metabolism of fructophilic lactic acid bacteria isolated from Apis mellifera L. bee-gut: a focus on the phenolic acids as external electron acceptors.

    PubMed

    Filannino, Pasquale; Di Cagno, Raffaella; Addante, Rocco; Pontonio, Erica; Gobbetti, Marco

    2016-09-16

    Fructophilic lactic acid bacteria (FLAB) are strongly associated to the gastrointestinal tract (GIT) of Apis mellifera L. worker bees due to the consumption of fructose as a major carbohydrate. Seventy-seven presumptive lactic acid bacteria (LAB) were isolated from GIT of healthy A. mellifera L. adults, which were collected from 5 different geographical locations of Apulia region (Italy). Almost all the isolates showed fructophilic tendencies, which were identified as Lactobacillus kunkeei (69%) or Fructobacillus fructosus (31%). A high-throughput phenotypic microarray, targeting 190 carbon sources, was used to determine that 83 compounds were differentially consumed. Phenotyping grouped the strains into two clusters, reflecting growth performance. The utilization of phenolic acids, such as p-coumaric, caffeic, syringic or gallic acids, as electron acceptors was investigated in fructose based medium. Almost all FLAB strains showed tolerance to high phenolic acid concentrations. p-Coumaric acid and caffeic acid were consumed by all FLAB strains through reductases or decarboxylases. Syringic and gallic acids were partially metabolized. The data collected suggest that FLAB require external electron acceptors to regenerate NADH. The use of phenolic acids as external electron acceptors by 4 FLAB, showing the highest phenolic acid reductase activity, was investigated in glucose based medium supplemented with p-coumaric acid. Metabolic responses observed through phenotypic microarray suggested that FLAB may use p-coumaric acid as external electron acceptor, enhancing glucose dissimilation but less efficiently than other external acceptors such as fructose or pyruvic acid.

  11. Removal of CO from CO-contaminated hydrogen gas by carbon-supported rhodium porphyrins using water-soluble electron acceptors

    NASA Astrophysics Data System (ADS)

    Yamazaki, Shin-ichi; Siroma, Zyun; Asahi, Masafumi; Ioroi, Tsutomu

    2016-10-01

    Carbon-supported Rh porphyrins catalyze the oxidation of carbon monoxide by water-soluble electron acceptors. The rate of this reaction is plotted as a function of the redox potential of the electron acceptor. The rate increases with an increase in the redox potential until it reaches a plateau. This profile can be explained in terms of the electrocatalytic CO oxidation activity of the Rh porphyrin. The removal of CO from CO(2%)/H2 by a solution containing a carbon-supported Rh porphyrin and an electron acceptor is examined. The complete conversion of CO to CO2 is achieved with only a slight amount of Rh porphyrins. Rh porphyrin on carbon black gives higher conversion than that dissolved in solution. This reaction can be used not only to remove CO in anode gas of stationary polymer electrolyte fuel cells but also to regenerate a reductant in indirect CO fuel cell systems.

  12. Tailorable PC71 BM Isomers: Using the Most Prevalent Electron Acceptor to Obtain High-Performance Polymer Solar Cells.

    PubMed

    Zhan, Xin-Xing; Zhang, Xin; Dai, Si-Min; Li, Shu-Hui; Lu, Xu-Zhai; Deng, Lin-Long; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun

    2016-12-23

    Despite being widely used as electron acceptor in polymer solar cells, commercially available PC71 BM (phenyl-C71 -butyric acid methyl ester) usually has a "random" composition of mixed regioisomers or stereoisomers. Here PC71 BM has been isolated into three typical isomers, α-, β1 - and β2 -PC71 BM, to establish the isomer-dependent photovoltaic performance on changing the ternary composition of α-, β1 - and β2 -PC71 BM. Mixing the isomers in a ratio of α/β1 /β2 =8:1:1 resulted in the best power conversion efficiency (PCE) of 7.67 % for the polymer solar cells with PTB7:PC71 BM as photoactive layer (PTB7=poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl

  13. Intramolecular electron transfer within a covalent, fixed-distance donor-acceptor molecule in an ionic liquid.

    PubMed

    Lockard, Jenny V; Wasielewski, Michael R

    2007-10-11

    Intramolecular photoinduced charge separation and recombination within the donor-acceptor molecule 4-(N-pyrrolidino)naphthalene-1,8-imide-pyromellitimide, 5ANI-PI, are studied using ultrafast transient absorption spectroscopy in the room-temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide [EMIM][Tf2N]. The rate constants of both photoinduced charge separation and charge recombination for 5ANI-PI in [EMIM][Tf2N] are comparable to those observed in pyridine, which has a static dielectric constant similar to that of [EMIM][Tf2N] but a viscosity that is nearly 2 orders of magnitude lower than that of [EMIM][Tf2N]. The electron-transfer dynamics of 5ANI-PI in [EMIM][Tf2N] are compared to those in pyridine as a function of temperature and are discussed in the context of recently reported ionic liquid solvation studies.

  14. Competition between Methane and Alkylbenzenes for Electron Acceptors during Natural Attenuation of Crude Oil in the Subsurface

    NASA Astrophysics Data System (ADS)

    Bekins, B. A.; Amos, R. T.; Cozzarelli, I.; Voytek, M. A.

    2009-12-01

    At a crude-oil spill site near the town of Bemidji, MN, entrapped oil is present at residual saturations exceeding 10% in the vadose zone and floating at the water table at saturations of 30-60%. The degradable fraction of the light crude oil includes n-alkanes, aromatics, and alkyl-cyclohexanes. Together these compounds constitute a reduced carbon concentration at least 500 times greater than is present in the dissolved hydrocarbon groundwater plume comprised mainly of aromatics. Methanogenic degradation of the stationary oil body has been occurring for at least 20 years providing a continuous supply of methane emanating from the oil. Transport of methane away from the oil body occurs in both the vapor phase through the vadose zone and in the dissolved phase with the groundwater flow. Within the vadose zone the supply of oxygen and other electron acceptors from the surface is completely consumed by the process of methane oxidation in a zone 2-3 meters above the water table. In the groundwater, the 1 ppm contour of the methane plume extends beyond the 0.5 ppb contour for benzene, which is located at the aerobic/anaerobic boundary in the plume approximately 120 m downgradient of the oil body. Between 75 m and 120 m downgradient, methane concentrations decrease steadily from >0.6 mmol/L to <0.06 mmol/L, accompanied by increases in the δ13C-CH4 indicating that methane attenuation occurs through microbially-mediated oxidation. Anaerobic methane oxidation under iron-reducing conditions has recently been demonstrated by Beal et al. (Science, 325, 184, 2009) and is indicated at this site by several lines of evidence. In the methane oxidation zone, values of bioavailable Fe(III) extracted from the sediments averaged 8 mmol/kg (n=16), or >8 times the amount required to degrade 0.5 mmol methane, while all other electron acceptors together can account for complete oxidation of only 0.07 mmol (sulfate <0.06 mmol/L, dissolved oxygen <3 µmol/L, and nitrate <0.02 mmol

  15. Ultrafast electron transfer in all-carbon-based SWCNT-C60 donor-acceptor nanoensembles connected by poly(phenylene-ethynylene) spacers

    NASA Astrophysics Data System (ADS)

    Barrejón, Myriam; Gobeze, Habtom B.; Gómez-Escalonilla, María J.; Fierro, José Luis G.; Zhang, Minfang; Yudasaka, Masako; Iijima, Sumio; D'Souza, Francis; Langa, Fernando

    2016-08-01

    Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an electron donating or accepting photosensitizer while the second part should fulfil the role of an electron acceptor or donor. In the present work, we have successfully addressed this issue by synthesizing covalently linked all-carbon-based donor-acceptor nanoensembles using single-walled carbon nanotubes (SWCNTs) as the donor and C60 as the acceptor. The donor-acceptor entities in the nanoensembles were connected by phenylene-ethynylene spacer units to achieve better electronic communication and to vary the distance between the components. These novel SWCNT-C60 nanoensembles have been characterized by a number of techniques, including TGA, FT-IR, Raman, AFM, absorbance and electrochemical methods. The moderate number of fullerene addends present on the side-walls of the nanotubes largely preserved the electronic structure of the nanotubes. The thermodynamic feasibility of charge separation in these nanoensembles was established using spectral and electrochemical data. Finally, occurrence of ultrafast electron transfer from the excited nanotubes in these donor-acceptor nanohybrids has been established by femtosecond transient absorption studies, signifying their utility in building light energy harvesting devices.Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an

  16. Comparison of approaches for simulating reactive solute transport involving organic degradation reactions by multiple terminal electron acceptors

    USGS Publications Warehouse

    Curtis, Gary P.

    2003-01-01

    Reactive solute transport models are useful tools for analyzing complex geochemical behavior resulting from biodegradation of organic compounds by multiple terminal electron acceptors (TEAPs). The usual approach of simulating the reactions of multiple TEAPs by an irreversible Monod rate law was compared with simulations that assumed a partial local equilibrium or kinetically controlled reactions subject to the requirement that the Gibbs free energy of reaction (Δ G) was either less than zero or less than a threshold value. Simulations were performed using a single organic substrate and O2, FeOOH, SO4-2 and CO2 as the terminal electron acceptors. It was assumed that the organic substrate was slowly and completely fermented to CO2 and H2 and the H2 was oxidized by the TEAPs. Simulations using the Monod approach showed that this irreversible rate law forced the reduction of both FeOOH and CO2 to proceed even when Δ G was positive. This resulted in an over prediction in amount of FeOOH reduced to Fe(II) in parts of the domain and it resulted in large errors in pH. Simulations using mass action kinetics agreed with equilibrium simulations for the case of large rate constants. The extent of reductive dissolution of FeOOH was strongly dependent on the thermodynamic stability of the FeOOH phase. Transport simulations performed assuming that the reactions of the TEAPs stopped when Δ G exceeded a threshold value showed that only simulated H2 concentrations were affected if the threshold value was the same for each TEAP. Simulated H2 concentrations were controlled by the fastest reaction of the TEAP, but it was common for reactions to occur concomitantly rather than sequentially.

  17. Protein sequences and redox titrations indicate that the electron acceptors in reaction centers from heliobacteria are similar to Photosystem I

    NASA Technical Reports Server (NTRS)

    Trost, J. T.; Brune, D. C.; Blankenship, R. E.

    1992-01-01

    Photosynthetic reaction centers isolated from Heliobacillus mobilis exhibit a single major protein on SDS-PAGE of 47 000 Mr. Attempts to sequence the reaction center polypeptide indicated that the N-terminus is blocked. After enzymatic and chemical cleavage, four peptide fragments were sequenced from the Heliobacillus mobilis apoprotein. Only one of these sequences showed significant specific similarity to any of the protein and deduced protein sequences in the GenBank data base. This fragment is identical with 56% of the residues, including both cysteines, found in highly conserved region that is proposed to bind iron-sulfur center Fx in the Photosystem I reaction center peptide that is the psaB gene product. The similarity to the psaA gene product in this region is 48%. Redox titrations of laser-flash-induced photobleaching with millisecond decay kinetics on isolated reaction centers from Heliobacterium gestii indicate a midpoint potential of -414 mV with n = 2 titration behavior. In membranes, the behavior is intermediate between n = 1 and n = 2, and the apparent midpoint potential is -444 mV. This is compared to the behavior in Photosystem I, where the intermediate electron acceptor A1, thought to be a phylloquinone molecule, has been proposed to undergo a double reduction at low redox potentials in the presence of viologen redox mediators. These results strongly suggest that the acceptor side electron transfer system in reaction centers from heliobacteria is indeed analogous to that found in Photosystem I. The sequence similarities indicate that the divergence of the heliobacteria from the Photosystem I line occurred before the gene duplication and subsequent divergence that lead to the heterodimeric protein core of the Photosystem I reaction center.

  18. Impact of Different In Vitro Electron Donor/Acceptor Conditions on Potential Chemolithoautotrophic Communities from Marine Pelagic Redoxclines

    PubMed Central

    Labrenz, Matthias; Jost, Günter; Pohl, Christa; Beckmann, Sabrina; Martens-Habbena, Willm; Jürgens, Klaus

    2005-01-01

    Anaerobic or microaerophilic chemolithoautotrophic bacteria have been considered to be responsible for CO2 dark fixation in different pelagic redoxclines worldwide, but their involvement in redox processes is still not fully resolved. We investigated the impact of 17 different electron donor/acceptor combinations in water of pelagic redoxclines from the central Baltic Sea on the stimulation of bacterial CO2 dark fixation as well as on the development of chemolithoautotrophic populations. In situ, the highest CO2 dark fixation rates, ranging from 0.7 to 1.4 μmol liter−1 day−1, were measured directly below the redoxcline. In enrichment experiments, chemolithoautotrophic CO2 dark fixation was maximally stimulated by the addition of thiosulfate, reaching values of up to 9.7 μmol liter−1 CO2 day−1. Chemolithoautotrophic nitrate reduction proved to be an important process, with rates of up to 33.5 μmol liter−1 NO3− day−1. Reduction of Fe(III) or Mn(IV) was not detected; nevertheless, the presence of these potential electron acceptors influenced the development of stimulated microbial assemblages. Potential chemolithoautotrophic bacteria in the enrichment experiments were displayed on 16S ribosomal complementary DNA single-strand-conformation polymorphism fingerprints and identified by sequencing of excised bands. Sequences were closely related to chemolithoautotrophic Thiomicrospira psychrophila and Maorithyas hadalis gill symbiont (both Gammaproteobacteria) and to an uncultured nitrate-reducing Helicobacteraceae bacterium (Epsilonproteobacteria). Our data indicate that this Helicobacteraceae bacterium could be of general importance or even a key organism for autotrophic nitrate reduction in pelagic redoxclines. PMID:16269695

  19. Microbial Community Succession during Lactate Amendment and Electron Acceptor Limitation Reveals a Predominance of Metal-Reducing Pelosinus spp.

    PubMed Central

    Mosher, Jennifer J.; Phelps, Tommy J.; Podar, Mircea; Hurt, Richard A.; Campbell, James H.; Drake, Meghan M.; Moberly, James G.; Schadt, Christopher W.; Brown, Steven D.; Hazen, Terry C.; Arkin, Adam P.; Palumbo, Anthony V.; Faybishenko, Boris A.

    2012-01-01

    The determination of the success of in situ bioremediation strategies is complex. By using controlled laboratory conditions, the influence of individual variables, such as U(VI), Cr(VI), and electron donors and acceptors on community structure, dynamics, and the metal-reducing potential can be studied. Triplicate anaerobic, continuous-flow reactors were inoculated with Cr(VI)-contaminated groundwater from the Hanford, WA, 100-H area, amended with lactate, and incubated for 95 days to obtain stable, enriched communities. The reactors were kept anaerobic with N2 gas (9 ml/min) flushing the headspace and were fed a defined medium amended with 30 mM lactate and 0.05 mM sulfate with a 48-h generation time. The resultant diversity decreased from 63 genera within 12 phyla to 11 bacterial genera (from 3 phyla) and 2 archaeal genera (from 1 phylum). Final communities were dominated by Pelosinus spp. and to a lesser degree, Acetobacterium spp., with low levels of other organisms, including methanogens. Four new strains of Pelosinus were isolated, with 3 strains being capable of Cr(VI) reduction while one also reduced U(VI). Under limited sulfate, it appeared that the sulfate reducers, including Desulfovibrio spp., were outcompeted. These results suggest that during times of electron acceptor limitation in situ, organisms such as Pelosinus spp. may outcompete the more-well-studied organisms while maintaining overall metal reduction rates and extents. Finally, lab-scale simulations can test new strategies on a smaller scale while facilitating community member isolation, so that a deeper understanding of community metabolism can be revealed. PMID:22267668

  20. Delocalization of unpaired electrons in acceptor-bridge-donor molecular structures as monitored by CW-EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Krzyminiewski, R.; Bielewicz, A.; Kudynska, J.; Buckmaster, H. A.; Brycki, B.

    1996-02-01

    This paper reports the application of EPR spectroscopy to study the spin density distribution of unpaired electrons in acceptor-hydrogen bridge-donor molecular complexes created by irradiation of the organic molecule piperidine with different substitutional acid groups. 9 GHz CW-EPR measurements were made at 290 K onpolycrystalline samples which were γ-irradiated with a 170 kGy dose. Measurements were also made on UV-irradiated frozen methanol solutions at 77 K. It was conclded that the ionizing radiation generates the ion radical by the removal of one hydrogen atom from the piperidine ring and that significant delocalization of the unpaired electron occurs on this ring. It was found that increasing the electronegativity of the hydrogen bridge causes a significant increase in the nitrogen hyperfine interaction and the observation of an additional hyperfine splitting which implies that a significant change in the spin density distribution of the unpaired electron has occurred. Measurements were also made on irradiated stilbene to study a π-bridge molecular structure. It was found that the ionizing radiation generates the radical by the addition of one hydrogen atom to a phenyl ring and that significant delocalization of the unpaired electron occurs on the π-bridge connecting the two phenyl rings and on one of these rings.

  1. Microscopic simulations of electronic excitations in donor-acceptor heterojunctions of small-molecule based solar cells

    NASA Astrophysics Data System (ADS)

    Baumeier, Bjoern

    2015-03-01

    Fundamental processes involving electronic excitations govern the functionality of molecular materials in which the dynamics of excitons and charges is determined by an interplay of molecular electronic structure and morphological order. To understand, e.g., charge separation and recombination at donor-acceptor heterojunctions in organic solar cells, knowledge about the microscopic details influencing these dynamics in the bulk and across the interface is required. For a set of prototypical heterojunctions of small-molecule donor materials with C60, we employ a hybrid QM/MM approach linking density-functional and many-body Green's functions theory and analyze the charged and neutral electronic excitations therein. We pay special attention the spatially-resolved electron/hole transport levels, as well as the relative energies of Frenkel and charge-transfer excitations at the interface. Finally, we link the molecular architecture of the donor material, its orientation on the fullerene substrate as well as mesoscale order to the solar cell performance.

  2. Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions. A Combined EPR and DFT Study

    SciTech Connect

    Mardis, Kristy L.; Webb, J.; Holloway, Tarita; Niklas, Jens; Poluektov, Oleg G.

    2015-12-03

    Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advanced electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.

  3. Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions. A Combined EPR and DFT Study

    DOE PAGES

    Mardis, Kristy L.; Webb, J.; Holloway, Tarita; ...

    2015-12-03

    Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advancedmore » electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.« less

  4. Ultrafast static and diffusion-controlled electron transfer at Ag29 nanocluster/molecular acceptor interfaces

    NASA Astrophysics Data System (ADS)

    Aly, Shawkat M.; Abdulhalim, Lina G.; Besong, Tabot M. D.; Soldan, Giada; Bakr, Osman M.; Mohammed, Omar F.

    2016-03-01

    Efficient absorption of visible light and a long-lived excited state lifetime of silver nanoclusters (Ag29 NCs) are integral properties for these new clusters to serve as light-harvesting materials. Upon optical excitation, electron injection at Ag29 NC/methyl viologen (MV2+) interfaces is very efficient and ultrafast. Interestingly, our femto- and nanosecond time-resolved results demonstrate clearly that both dynamic and static electron transfer mechanisms are involved in photoluminescence quenching of Ag29 NCs.Efficient absorption of visible light and a long-lived excited state lifetime of silver nanoclusters (Ag29 NCs) are integral properties for these new clusters to serve as light-harvesting materials. Upon optical excitation, electron injection at Ag29 NC/methyl viologen (MV2+) interfaces is very efficient and ultrafast. Interestingly, our femto- and nanosecond time-resolved results demonstrate clearly that both dynamic and static electron transfer mechanisms are involved in photoluminescence quenching of Ag29 NCs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05328e

  5. Comparison of contact angle measurement and microbial adhesion to solvents for assaying electron donor-electron acceptor (acid-base) properties of bacterial surface.

    PubMed

    Hamadi, Fatima; Latrache, Hassan

    2008-08-01

    The electron donor-electron acceptor (acid-base properties) of cell surfaces of a series of bacteria were determined by two methods, namely, Microbial Adhesion to Solvents (MATS) and Contact Angle Measurements (CAM) combined with equation of Van Oss. The efficiency of these two methods was then compared. Pseudomonas aeruginosa ATCC 27853, Bacillus subtilis ILP 142B, Staphylococcus aureus ATCC 25923 and four Escherichia coli strains including HB101, AL52, O128B12 and ATCC 25922, acid-base properties were examined under the two different conditions mentioned above. The results showed that the correlation between acid-base properties determined by MATS and CAM was very weak. We have also found that when the microbial cell surface was electron donor by CAM method, similar result was found by MATS, but the reverse was not always true. In contrast, a good correlation between the two methods was obtained when the four E. coli strains were examined.

  6. Bimolecular Rate Constants for FAD-Dependent Glucose Dehydrogenase from Aspergillus terreus and Organic Electron Acceptors

    PubMed Central

    Tsuruoka, Nozomu; Sadakane, Takuya; Hayashi, Rika; Tsujimura, Seiya

    2017-01-01

    The flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from Aspergillus species require suitable redox mediators to transfer electrons from the enzyme to the electrode surface for the application of bioelectrical devices. Although several mediators for FAD-GDH are already in use, they are still far from optimum in view of potential, kinetics, sustainability, and cost-effectiveness. Herein, we investigated the efficiency of various phenothiazines and quinones in the electrochemical oxidation of FAD-GDH from Aspergillus terreus. At pH 7.0, the logarithm of the bimolecular oxidation rate constants appeared to depend on the redox potentials of all the mediators tested. Notably, the rate constant of each molecule for FAD-GDH was approximately 2.5 orders of magnitude higher than that for glucose oxidase from Aspergillus sp. The results suggest that the electron transfer kinetics is mainly determined by the formal potential of the mediator, the driving force of electron transfer, and the electron transfer distance between the redox active site of the mediator and the FAD, affected by the steric or chemical interactions. Higher k2 values were found for ortho-quinones than for para-quinones in the reactions with FAD-GDH and glucose oxidase, which was likely due to less steric hindrance in the active site in the case of the ortho-quinones. PMID:28287419

  7. Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions: A Combined EPR and DFT Study

    PubMed Central

    Webb, Jeremy N.; Holloway, Tarita; Niklas, Jens

    2016-01-01

    Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of the electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density Functional Theory (DFT) calculations characterize the electronic structures of the fullerene anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advanced EPR spectroscopy allows the validation of the DFT calculations. Thus, for the first time the directions of the main g-tensors axis were determined in the molecular frame. For both systems, no spin density is present on the PCBM side chain and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM. PMID:26569578

  8. Graphene and Donor-Acceptor Molecules/Nanoparticle Composites for Advanced Electronics Technologies

    DTIC Science & Technology

    2013-06-26

    induced by carbon and boron fullerenes (C60, C70, C80 and B80). Spin-polarized first-principles calculations were performed on zigzag boron− nitride ...structures and electronic properties of two-dimensional single-layer graphene in the presence of non-covalent interactions induced by carbon and boron...fullerenes (C60, C70, C80 and B80) and spin-polarized first-principles calculations performed on zigzag boron− nitride nanoribbons (z-BNNRs) with lines

  9. Indan-1,3-dione electron-acceptor small molecules for solution-processable solar cells: a structure-property correlation.

    PubMed

    Winzenberg, Kevin N; Kemppinen, Peter; Scholes, Fiona H; Collis, Gavin E; Shu, Ying; Singh, Th Birendra; Bilic, Ante; Forsyth, Craig M; Watkins, Scott E

    2013-07-18

    A structure-device performance correlation in bulk heterojunction solar cells for new indandione-derived small molecule electron acceptors, FEHIDT and F8IDT, is presented. Devices based on the former exhibit higher power conversion efficiency (2.4%) and higher open circuit voltage, a finding consistent with reduced intermolecular interactions.

  10. "Oxidative etching-aggregation" of silver nanoparticles by melamine and electron acceptors: an innovative route toward ultrasensitive and versatile functional colorimetric sensors.

    PubMed

    Wang, Guang-Li; Zhu, Xiao-Ying; Jiao, Huan-Jun; Dong, Yu-Ming; Wu, Xiu-Ming; Li, Zai-Jun

    2012-10-17

    An innovative and versatile functional colorimetric sensor for melamine (MA) and H(2)O(2) was developed with simplicity, excellent selectivity and ultrasensitivity. The detection mechanism was based on the "oxidative etching-aggregation" of silver nanoparticles (AgNPs) by the cooperation effect of MA and electron acceptors such as H(2)O(2), ozone or Fe(NO(3))(3). The detection limits of this method for MA could reach as low as 0.08 nM, 0.16 nM and 3 nM when H(2)O(2), ozone or Fe(NO(3))(3) was used as an electron acceptor, respectively. When using H(2)O(2) as a typical electron acceptor, the method enabled the detection of H(2)O(2) with a detection limit of 0.2 nM. This proposed method offered a new way to design MA and H(2)O(2) sensors and might be easily extended to detect other nucleophilic reagents and electron acceptors based on colorimetric sensors.

  11. Transition Metal Donor-Peptide-Acceptor Complexes: From Intramolecular Electron Transfer Reactions to the Study of Reactive Intermediates

    SciTech Connect

    Isied, Stephan S.

    2003-03-11

    The trans-polyproline (PII) oligomers (Figure 1) are unusually rigid peptide structures which have been extensively studied by our group for peptide mediated intramolecular electron transfer (ET) at long distances. We have previously studied ET across a series of metal ion donor (D) acceptor (A) oligoproline peptides with different distances, driving forces and reorganizational energies. The majority of these experiments involve generating the ET intermediate using pulse radiolysis methods, although more recently photochemical methods are also used. Results of these studies showed that ET across peptides can vary by more than twelve orders of magnitude. Using ruthenium bipyridine donors, ET reaction rate constants across several proline residues (n = 4 - 9) occurred in the millisecond (ms) to {micro}s timescale, thus limiting the proline peptide conformational motions to only minor changes (far smaller than the large changes that occur on the ms to sec timescale, such as trans to cis proline isomerization). The present report describes our large data base of experimental results for D-peptide-A complexes in terms of a model where the involvement of both superexchange and hopping (hole and electron) mechanisms account for the long range ET rate constants observed. Our data shows that the change from superexchange to hopping mechanisms occurs at different distances depending on the type of D and A and their interactions with the peptides. Our model is also consistent with generalized models for superexchange and hopping which have been put forward by a number of theoretical groups to account for long range ET phenomena.

  12. Magnetic field enhanced electroluminescence in organic light emitting diodes based on electron donor-acceptor exciplex blends

    NASA Astrophysics Data System (ADS)

    Baniya, Sangita; Basel, Tek; Sun, Dali; McLaughlin, Ryan; Vardeny, Zeev Valy

    2016-03-01

    A useful process for light harvesting from injected electron-hole pairs in organic light emitting diodes (OLED) is the transfer from triplet excitons (T) to singlet excitons (S) via reverse intersystem crossing (RISC). This process adds a delayed electro-luminescence (EL) emission component that is known as thermally activated delayed fluorescence (TADF). We have studied electron donor (D)/acceptor(A) blends that form an exciplex manifold in which the energy difference, ΔEST between the lowest singlet (S1) and triplet (T1) levels is relatively small (<100 meV), and thus allows RISC at ambient temperature. We found that the EL emission in OLED based on the exciplex blend is enhanced up to 40% by applying a relatively weak magnetic field of 50 mT at ambient. Moreover the MEL response is activated with activation energy similar that of the EL emission. This suggests that the large magneto-EL originates from an additional spin-mixing channel between singlet and triplet states of the generated exciplexes, which is due to TADF. We will report on the MEL dependencies on the temperature, bias voltage, and D-A materials for optimum OLED performance. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  13. Modulating the Redox Potential of the Stable Electron Acceptor, QB, in Mutagenized Photosystem II Reaction Centers.

    SciTech Connect

    Perrine, Zoee; Sayre, Richard

    2011-02-10

    One of the unique features of electron transfer processes in photosystem II (PSII) reaction centers (RC) is the exclusive transfer of electrons down only one of the two parallel cofactor branches. In contrast to the RC core polypeptides (psaA and psaB) of photosystem I (PSI), where electron transfer occurs down both parallel redox-active cofactor branches, there is greater protein-cofactor asymmetry between the PSII RC core polypeptides (D1 and D2). We have focused on the identification of protein-cofactor relationships that determine the branch along which primary charge separation occurs (P680+/pheophytin-(Pheo)). We have previously shown that mutagenesis of the strong hydrogen-bonding residue, D1-E130, to less polar residues (D1-E130Q,H,L) shifted the midpoint potential of the PheoD1/PheoD1- couple to more negative values, reducing the quantum yield of primary charge separation. We did not observe, however, electron transfer down the inactive branch in D1-E130 mutants. The protein residue corresponding to D1-E130 on the inactive branch is D2-Q129 which presumably has a reduced hydrogen-bonding interaction with PheoD2 relative to the D1-E130 residue with PheoD1. Analysis of the recent 2.9 Å cyanobacterial PSII crystal structure indicated, however, that the D2-Q129 residue was too distant from the PheoD2 headgroup to serve as a possible hydrogen bond donor and directly impact its midpoint potential as well as potentially determine the directionality of electron transfer. Our objective was to characterize the function of this highly conserved inactive branch residue by replacing it with a nonconservative leucine or a conservative histidine residue. Measurements of Chl fluorescence decay kinetics and thermoluminescence studies indicate that the mutagenesis of D2-Q129 decreases the redox gap between QA and QB due to a lowering of the redox potential of QB. The

  14. 5' modification of duplex DNA with a ruthenium electron donor-acceptor pair using solid-phase DNA synthesis

    NASA Technical Reports Server (NTRS)

    Frank, Natia L.; Meade, Thomas J.

    2003-01-01

    Incorporation of metalated nucleosides into DNA through covalent modification is crucial to measurement of thermal electron-transfer rates and the dependence of these rates with structure, distance, and position. Here, we report the first synthesis of an electron donor-acceptor pair of 5' metallonucleosides and their subsequent incorporation into oligonucleotides using solid-phase DNA synthesis techniques. Large-scale syntheses of metal-containing oligonucleotides are achieved using 5' modified phosporamidites containing [Ru(acac)(2)(IMPy)](2+) (acac is acetylacetonato; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (3) and [Ru(bpy)(2)(IMPy)](2+) (bpy is 2,2'-bipyridine; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (4). Duplexes formed with the metal-containing oligonucleotides exhibit thermal stability comparable to the corresponding unmetalated duplexes (T(m) of modified duplex = 49 degrees C vs T(m) of unmodified duplex = 47 degrees C). Electrochemical (3, E(1/2) = -0.04 V vs NHE; 4, E(1/2) = 1.12 V vs NHE), absorption (3, lambda(max) = 568, 369 nm; 4, lambda(max) = 480 nm), and emission (4, lambda(max) = 720 nm, tau = 55 ns, Phi = 1.2 x 10(-)(4)) data for the ruthenium-modified nucleosides and oligonucleotides indicate that incorporation into an oligonucleotide does not perturb the electronic properties of the ruthenium complex or the DNA significantly. In addition, the absence of any change in the emission properties upon metalated duplex formation suggests that the [Ru(bpy)(2)(IMPy)](2+)[Ru(acac)(2)(IMPy)](2+) pair will provide a valuable probe for DNA-mediated electron-transfer studies.

  15. The electronic structure and second-order nonlinear optical properties of donor-acceptor acetylenes - A detailed investigation of structure-property relationships

    NASA Technical Reports Server (NTRS)

    Stiegman, A. E.; Graham, Eva; Khundkar, Lutfur R.; Perry, Joseph W.; Cheng, L.-T.; Perry, Kelly J.

    1991-01-01

    A series of donor-acceptor acetylene compounds was synthesized in which systematic changes in both the conjugation length and the donor-acceptor strength were made. The effect of these structural changes on the spectroscopic and electronic properties of the molecules and, ultimately, on the measured second-order molecular hyperpolarizabilities (beta) was investigated. It was found that increases in the donor-acceptor strength resulted in increases in the magnitude of beta. For this class of molecules, the increase is dominated by the energy of the intramolecular charge-transfer transition, while factors such as the ground to excited-state dipole moment change and the transition-moment integral are much less important. Increasing the conjugation length from one to two acetylene linkers did not result in an increase in the value of beta; however, beta increased sharply in going from two acetylenes to three. This increase is attributed to the superposition of several nearly isoenergetic excited states.

  16. Global transcriptional start site mapping in Geobacter sulfurreducens during growth with two different electron acceptors.

    PubMed

    González, Getzabeth; Labastida, Aurora; Jímenez-Jacinto, Verónica; Vega-Alvarado, Leticia; Olvera, Maricela; Morett, Enrique; Juárez, Katy

    2016-09-01

    Geobacter sulfurreducens is an anaerobic soil bacterium that is involved in biogeochemical cycles of elements such as Fe and Mn. Although significant progress has been made in the understanding of the electron transfer processes in G. sulfurreducens, little is known about the regulatory mechanisms involved in their control. To expand the study of gene regulation in G. sulfurreducens, we carried out a genome-wide identification of transcription start sites (TSS) by 5'RACE and by deep RNA sequencing of primary mRNAs in two growth conditions. TSSs were identified along G. sulfurreducens genome and over 50% of them were located in the upstream region of the associated gene, and in some cases we detected genes with more than one TSS. Our global mapping of TSSs contributes with valuable information, which is needed for the study of transcript structure and transcription regulation signals and can ultimately contribute to the understanding of transcription initiation phenomena in G. sulfurreducens.

  17. Effect of acceptor strength on optical and electronic properties in conjugated polymers for solar applications.

    PubMed

    Adegoke, Oluwasegun O; Jung, In Hwan; Orr, Meghan; Yu, Luping; Goodson, Theodore

    2015-05-06

    Four new low-bandgap electron-accepting polymers-poly(4,10-bis(2-butyloctyl)-2-(2-(2-ethylhexyl)-1,1-dioxido-3-oxo-2,3-dihydrothieno[3,4-d]isothiazol-4-yl)thieno[2',3':5,6]pyrido[3,4-g]thieno[3,2-c]isoquinoline-5,11(4H,10H-dione) (PNSW); poly(4,10-bis(2-butyloctyl)-2-(5-(2-ethylhexyl)-4,6-dioxo-5,6-dihydro-4H-thieno[3,4-c]pyrrol-1-yl)thieno[2',3':5,6]pyrido[3,4-g]thieno[3,2-c]isoquinoline-5,11(4H,10H)-dione) (PNTPD); poly(5-(4,10-bis(2-butyloctyl)-5,11-dioxo-4,5,10,11-tetrahydrothieno[2',3':5,6]pyrido[3,4-g]thieno[3,2-c]isoquinolin-2-yl)-2,9-bis(2-decyldodecyl)anthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-1,3,8,10(2H,9H)-tetraone) (PNPDI); and poly(9,9-bis(2-butyloctyl)-9H-fluorene-bis((1,10:5,6)2-(5,6-dihydro-4H-cyclopenta[b]thiophene-4-ylidene)malonitrile)-2-(2,3-dihydrothieno[3,4-b][1,4]dioxine)) (PECN)-containing thieno[2',3':5',6']pyrido[3,4-g]thieno[3,2-c]isoquinoline-5,11(4H,10H)-dione and fluorenedicyclopentathiophene dimalononitrile, were investigated to probe their structure-function relationships for solar cell applications. PTB7 was also investigated for comparison with the new low-bandgap polymers. The steady-state, ultrafast dynamics and nonlinear optical properties of all the organic polymers were probed. All the polymers showed broad absorption in the visible region, with the absorption of PNPDI and PECN extending into the near-IR region. The polymers had HOMO levels ranging from -5.73 to -5.15 eV and low bandgaps of 1.47-2.45 eV. Fluorescence upconversion studies on the polymers showed long lifetimes of 1.6 and 2.4 ns for PNSW and PNTPD, respectively, while PNPDI and PECN showed very fast decays within 353 and 110 fs. PECN exhibited a very high two-photon absorption cross section. The electronic structure calculations of the repeating units of the polymers indicated the localization of the molecular orbitals in different co-monomers. As the difference between the electron affinities of the co-monomers in the repeating units decreases, the highest

  18. An Inexpensive Co-Intercalated Layered Double Hydroxide Composite with Electron Donor-Acceptor Character for Photoelectrochemical Water Splitting.

    PubMed

    Zheng, Shufang; Lu, Jun; Yan, Dongpeng; Qin, Yumei; Li, Hailong; Evans, David G; Duan, Xue

    2015-07-15

    In this paper, the inexpensive 4,4-diaminostilbene-2,2-disulfonate (DAS) and 4,4-dinitro-stilbene-2,2- disulfonate (DNS) anions with arbitrary molar ratios were successfully co-intercalated into Zn2Al-layered double hydroxides (LDHs). The DAS(50%)-DNS/LDHs composite exhibited the broad UV-visible light absorption and fluorescence quenching, which was a direct indication of photo-induced electron transfer (PET) process between the intercalated DAS (donor) and DNS (acceptor) anions. This was confirmed by the matched HOMO/LUMO energy levels alignment of the intercalated DAS and DNS anions, which was also compatible for water splitting. The DAS(50%)-DNS/LDHs composite was fabricated as the photoanode and Pt as the cathode. Under the UV-visible light illumination, the enhanced photo-generated current (4.67 mA/cm(2) at 0.8 V vs. SCE) was generated in the external circuit, and the photoelectrochemical water split was realized. Furthermore, this photoelectrochemical water splitting performance had excellent crystalline, electrochemical and optical stability. Therefore, this novel inorganic/organic hybrid photoanode exhibited potential application prospect in photoelectrochemical water splitting.

  19. An Inexpensive Co-Intercalated Layered Double Hydroxide Composite with Electron Donor-Acceptor Character for Photoelectrochemical Water Splitting

    PubMed Central

    Zheng, Shufang; Lu, Jun; Yan, Dongpeng; Qin, Yumei; Li, Hailong; Evans, David G.; Duan, Xue

    2015-01-01

    In this paper, the inexpensive 4,4-diaminostilbene-2,2-disulfonate (DAS) and 4,4-dinitro-stilbene-2,2- disulfonate (DNS) anions with arbitrary molar ratios were successfully co-intercalated into Zn2Al-layered double hydroxides (LDHs). The DAS(50%)-DNS/LDHs composite exhibited the broad UV-visible light absorption and fluorescence quenching, which was a direct indication of photo-induced electron transfer (PET) process between the intercalated DAS (donor) and DNS (acceptor) anions. This was confirmed by the matched HOMO/LUMO energy levels alignment of the intercalated DAS and DNS anions, which was also compatible for water splitting. The DAS(50%)-DNS/LDHs composite was fabricated as the photoanode and Pt as the cathode. Under the UV-visible light illumination, the enhanced photo-generated current (4.67 mA/cm2 at 0.8 V vs. SCE) was generated in the external circuit, and the photoelectrochemical water split was realized. Furthermore, this photoelectrochemical water splitting performance had excellent crystalline, electrochemical and optical stability. Therefore, this novel inorganic/organic hybrid photoanode exhibited potential application prospect in photoelectrochemical water splitting. PMID:26174201

  20. Influence of metronidazole and some electron acceptors on the chlorin e6 photosensitized killing of Ehrlich carcinoma cells

    NASA Astrophysics Data System (ADS)

    Chekulayev, V.; Shevchuk, Igor; Mihkelsoo, Virgo T.; Kallikorm, A. P.

    1992-06-01

    A decrease in the effectiveness of photosensitized killing of neoplasm cells was observed in the presence of chlorin-e6 at a reduced concentration of oxygen. But when metronidazole (MZ) was injected in vitro as well as in vivo, a significant increase in the photosensitized killing of Ehrlich carcinoma cells by chlorin-e6 was observed. Moreover, contrary to the hematoporphyrin derivative (HpD), MZ increases the effectiveness of photodynamic therapy (PDT) by using chlorin-e6 not only in the hypoxic but also in the aerobic conditions. The interaction between MZ and the excited photosensitizer may account for an increased phototoxicity of chlorin-e6. The formation of cytotoxic nitroimidazole radicals as a result of photochemical processes of type 1 is discussed. This property of the photosensitizer may be successfully used in working out a method of potentiating PDT in combination not only with nitroimidazoles, but also with other electron acceptor compounds (EACp), e.g., quinone antitumor antibiotics.

  1. Assembly of coupled redox fuel cells using copper as electron acceptors to generate power and its in-situ retrieval

    PubMed Central

    Zhang, Hui-Min; Xu, Wei; Li, Gang; Liu, Zhan-Meng; Wu, Zu-Cheng; Li, Bo-Geng

    2016-01-01

    Energy extraction from waste has attracted much interest nowadays. Herein, a coupled redox fuel cell (CRFC) device using heavy metals, such as copper, as an electron acceptor is assembled to testify the recoveries of both electricity and the precious metal without energy consumption. In this study, a NaBH4-Cu(II) CRFC was employed as an example to retrieve copper from a dilute solution with self-electricity production. The properties of the CRFC have been characterized, and the open circuit voltage was 1.65 V with a maximum power density of 7.2 W m−2 at an initial Cu2+ concentration of 1,600 mg L−1 in the catholyte. 99.9% of the 400 mg L−1 copper was harvested after operation for 24 h, and the product formed on the cathode was identified as elemental copper. The CRFC demonstrated that useful chemicals were recovered and the electricity contained in the chemicals was produced in a self-powered retrieval process. PMID:26877144

  2. Spectral probes of the holographic Fermi ground state: Dialing between the electron star and AdS Dirac hair

    SciTech Connect

    Cubrovic, Mihailo; Liu Yan; Schalm, Koenraad; Sun Yawen; Zaanen, Jan

    2011-10-15

    We argue that the electron star and the anti-de Sitter (AdS) Dirac hair solution are two limits of the free charged Fermi gas in AdS. Spectral functions of holographic duals to probe fermions in the background of electron stars have a free parameter that quantifies the number of constituent fermions that make up the charge and energy density characterizing the electron star solution. The strict electron star limit takes this number to be infinite. The Dirac hair solution is the limit where this number is unity. This is evident in the behavior of the distribution of holographically dual Fermi surfaces. As we decrease the number of constituents in a fixed electron star background the number of Fermi surfaces also decreases. An improved holographic Fermi ground state should be a configuration that shares the qualitative properties of both limits.

  3. Self-assembly properties of semiconducting donor-acceptor-donor bithienyl derivatives of tetrazine and thiadiazole-effect of the electron accepting central ring.

    PubMed

    Zapala, Joanna; Knor, Marek; Jaroch, Tomasz; Maranda-Niedbala, Agnieszka; Kurach, Ewa; Kotwica, Kamil; Nowakowski, Robert; Djurado, David; Pecaut, Jacques; Zagorska, Malgorzata; Pron, Adam

    2013-11-26

    Scanning tunneling microscopy was used to study the effect of the electron-accepting unit and the alkyl substituent's position on the type and extent of 2D supramolecular organization of penta-ring donor-acceptor-donor (DAD) semiconductors, consisting of either tetrazine or thiadiazole central acceptor ring symmetrically attached to two bithienyl groups. Microscopic observations of monomolecular layers on HOPG of four alkyl derivatives of the studied adsorbates indicate significant differences in their 2D organizations. Ordered monolayers of thiadiazole derivatives are relatively loose and, independent of the position of alkyl substituents, characterized by large intermolecular separation of acceptor units in the adjacent molecules located in the face-to-face configuration. The 2D supramolecular architecture in both derivatives of thiadiazole is very sensitive to the alkyl substituent's position. Significantly different behavior is observed for derivatives of tetrazine (which is a stronger electron acceptor). Stronger intermolecular DA interactions in these adsorbates generate an intermolecular shift in the monolayer, which is a dominant factor determining the 2D structural organization. As a consequence of this molecular arrangement, tetrazine groups (A segments) face thiophene rings (D segments) of the neighboring molecules. Monolayers of tetrazine derivatives are therefore much more densely packed and characterized by similar π-stacking of molecules independently of the position of alkyl substituents. Moreover, a comparative study of 3D supramolecular organization, deduced from the X-ray diffraction patterns, is also presented clearly confirming the polymorphism of the studied adsorbates.

  4. Tuning the Rectification Ratio by Changing the Electronic Nature (Open-Shell and Closed-Shell) in Donor-Acceptor Self-Assembled Monolayers.

    PubMed

    Souto, Manuel; Yuan, Li; Morales, Dayana C; Jiang, Li; Ratera, Imma; Nijhuis, Christian A; Veciana, Jaume

    2017-03-16

    This Communication describes the mechanism of charge transport across self-assembled monolayers (SAMs) of two donor-acceptor systems consisting of a polychlorotriphenylmethyl (PTM) electron-acceptor moiety linked to an electron-donor ferrocene (Fc) unit supported by ultraflat template-stripped Au and contacted by a eutectic alloy of gallium and indium top contacts. The electronic and supramolecular structures of these SAMs were well characterized. The PTM unit can be switched between the nonradical and radical forms, which influences the rectification behavior of the junction. Junctions with nonradical units rectify currents via the highest occupied molecular orbital (HOMO) with a rectification ratio R = 99, but junctions with radical units have a new accessible state, a single-unoccupied molecular orbital (SUMO), which turns rectification off and drops R to 6.

  5. Layer-by-layer assembled multilayer TiO(x) for efficient electron acceptor in polymer hybrid solar cells.

    PubMed

    Kang, Hyunbum; Lee, Chanwoo; Yoon, Sung Cheol; Cho, Chul-Hee; Cho, Jinhan; Kim, Bumjoon J

    2010-11-16

    We demonstrate that TiO(x) nanocomposite films fabricated using electrostatic layer-by-layer (LbL) assembly improve the power conversion efficiency of photovoltaic cells compared to conventional TiO(x) films fabricated via the sol-gel process. For this study, titanium precursor/poly(allylamine hydrochloride) (PAH) multilayer films were first deposited onto indium tin oxide-coated glass to produce TiO(x) nanocomposites (TiO(x)NC). The specific effect of the LbL processed TiO(x) on photovoltaic performance was investigated using the planar bilayer TiO(x)NC and highly regioregular poly(3-hexylthiophene) (P3HT) solar cells, and the P3HT/LbL TiO(x)NC solar cells showed a dramatic increase in power efficiency, particularly in terms of the short current density and fill factor. The improved efficiency of this device is mainly due to the difference in the chemical composition of the LbL TiO(x)NC films, including the much higher Ti(3+)/Ti(4+) ratio and the highly reactive facets of crystals as demonstrated by XPS and XRD measurement, thus enhancing the electron transfer between electron donors and acceptors. In addition, the grazing incidence wide-angle X-ray scattering (GIWAXS) study revealed the presence of more highly oriented P3HT stacks parallel to the substrate on the LbL TiO(x)NC film compared to those on the sol-gel TiO(x) films, possibly influencing the hole mobility of P3HT and the energy transfer near and at the interface between the P3HT and TiO(x) layers. The results of this study demonstrate that this approach is a promising one for the design of hybrid solar cells with improved efficiency.

  6. Response of Deep Subsurface Microbial Community to Different Carbon Sources and Electron Acceptors during ∼2 months Incubation in Microcosms

    PubMed Central

    Purkamo, Lotta; Bomberg, Malin; Nyyssönen, Mari; Ahonen, Lasse; Kukkonen, Ilmo; Itävaara, Merja

    2017-01-01

    Acetate plays a key role as electron donor and acceptor and serves as carbon source in oligotrophic deep subsurface environments. It can be produced from inorganic carbon by acetogenic microbes or through breakdown of more complex organic matter. Acetate is an important molecule for sulfate reducers that are substantially present in several deep bedrock environments. Aceticlastic methanogens use acetate as an electron donor and/or a carbon source. The goal of this study was to shed light on carbon cycling and competition in microbial communities in fracture fluids of Finnish crystalline bedrock groundwater system. Fracture fluid was anaerobically collected from a fracture zone at 967 m depth of the Outokumpu Deep Drill Hole and amended with acetate, acetate + sulfate, sulfate only or left unamended as a control and incubated up to 68 days. The headspace atmosphere of microcosms consisted of 80% hydrogen and 20% CO2. We studied the changes in the microbial communities with community fingerprinting technique as well as high-throughput 16S rRNA gene amplicon sequencing. The amended microcosms hosted more diverse bacterial communities compared to the intrinsic fracture zone community and the control treatment without amendments. The majority of the bacterial populations enriched with acetate belonged to clostridial hydrogenotrophic thiosulfate reducers and Alphaproteobacteria affiliating with groups earlier found from subsurface and groundwater environments. We detected a slight increase in the number of sulfate reducers after the 68 days of incubation. The microbial community changed significantly during the experiment, but increase in specifically acetate-cycling microbial groups was not observed. PMID:28265265

  7. Survival during long-term starvation: global proteomics analysis of Geobacter sulfurreducens under prolonged electron-acceptor limitation.

    PubMed

    Bansal, Reema; Helmus, Ruth A; Stanley, Bruce A; Zhu, Junjia; Liermann, Laura J; Brantley, Susan L; Tien, Ming

    2013-10-04

    The bioavailability of terminal electron acceptors (TEAs) and other substrates affects the efficiency of subsurface bioremediation. While it is often argued that microorganisms exist under "feast or famine", in the laboratory most organisms are studied under "feast" conditions, whereas they typically encounter "famine" in nature. The work described here aims to understand the survival strategies of the anaerobe Geobacter sulfurreduces under TEA-starvation conditions. Cultures were starved for TEA and at various times sampled to perform global comparative proteomic analysis using iTRAQ to obtain insight into the dynamics of change in proteins/enzymes expression associated with change in nutrient availability/environmental stress. Proteins varying in abundance with a high level of statistical significance (p < 0.05) were identified to understand how cells change from midlog to (i) stationary phase and (ii) conditions of prolonged starvation (survival phase). The most highly represented and significantly up-regulated proteins in the survival phase cells are involved in energy metabolism, cell envelope, and transport and binding functional categories. The majority of the proteins were predicted to be localized in the cell membranes. These results document that changes in the outer and cytoplasmic membranes are needed for survival of Geobacter under starvation conditions. The cell shuts down anabolic processes and becomes poised, through changes in its membrane proteins, to sense nutrients in the environment, to transport nutrients into the cell, and to detect or utilize TEAs that are encountered. Under TEA-limiting conditions, the cells turned from translucent white to red in color, indicating higher heme content. The increase in heme content supported proteomics results showing an increase in the number of cytochromes involved in membrane electron transport during the survival phase. The cell is also highly reduced with minimal change in energy charge (ATP to total

  8. Hydroxycinnamic Acids Used as External Acceptors of Electrons: an Energetic Advantage for Strictly Heterofermentative Lactic Acid Bacteria

    PubMed Central

    Filannino, Pasquale; Gobbetti, Marco; De Angelis, Maria

    2014-01-01

    The metabolism of hydroxycinnamic acids by strictly heterofermentative lactic acid bacteria (19 strains) was investigated as a potential alternative energy route. Lactobacillus curvatus PE5 was the most tolerant to hydroxycinnamic acids, followed by strains of Weissella spp., Lactobacillus brevis, Lactobacillus fermentum, and Leuconostoc mesenteroides, for which the MIC values were the same. The highest sensitivity was found for Lactobacillus rossiae strains. During growth in MRS broth, lactic acid bacteria reduced caffeic, p-coumaric, and ferulic acids into dihydrocaffeic, phloretic, and dihydroferulic acids, respectively, or decarboxylated hydroxycinnamic acids into the corresponding vinyl derivatives and then reduced the latter compounds to ethyl compounds. Reductase activities mainly emerged, and the activities of selected strains were further investigated in chemically defined basal medium (CDM) under anaerobic conditions. The end products of carbon metabolism were quantified, as were the levels of intracellular ATP and the NAD+/NADH ratio. Electron and carbon balances and theoretical ATP/glucose yields were also estimated. When CDM was supplemented with hydroxycinnamic acids, the synthesis of ethanol decreased and the concentration of acetic acid increased. The levels of these metabolites reflected on the alcohol dehydrogenase and acetate kinase activities. Overall, some biochemical traits distinguished the common metabolism of strictly heterofermentative strains: main reductase activity toward hydroxycinnamic acids, a shift from alcohol dehydrogenase to acetate kinase activities, an increase in the NAD+/NADH ratio, and the accumulation of supplementary intracellular ATP. Taken together, the above-described metabolic responses suggest that strictly heterofermentative lactic acid bacteria mainly use hydroxycinnamic acids as external acceptors of electrons. PMID:25261518

  9. Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria.

    PubMed

    Filannino, Pasquale; Gobbetti, Marco; De Angelis, Maria; Di Cagno, Raffaella

    2014-12-01

    The metabolism of hydroxycinnamic acids by strictly heterofermentative lactic acid bacteria (19 strains) was investigated as a potential alternative energy route. Lactobacillus curvatus PE5 was the most tolerant to hydroxycinnamic acids, followed by strains of Weissella spp., Lactobacillus brevis, Lactobacillus fermentum, and Leuconostoc mesenteroides, for which the MIC values were the same. The highest sensitivity was found for Lactobacillus rossiae strains. During growth in MRS broth, lactic acid bacteria reduced caffeic, p-coumaric, and ferulic acids into dihydrocaffeic, phloretic, and dihydroferulic acids, respectively, or decarboxylated hydroxycinnamic acids into the corresponding vinyl derivatives and then reduced the latter compounds to ethyl compounds. Reductase activities mainly emerged, and the activities of selected strains were further investigated in chemically defined basal medium (CDM) under anaerobic conditions. The end products of carbon metabolism were quantified, as were the levels of intracellular ATP and the NAD(+)/NADH ratio. Electron and carbon balances and theoretical ATP/glucose yields were also estimated. When CDM was supplemented with hydroxycinnamic acids, the synthesis of ethanol decreased and the concentration of acetic acid increased. The levels of these metabolites reflected on the alcohol dehydrogenase and acetate kinase activities. Overall, some biochemical traits distinguished the common metabolism of strictly heterofermentative strains: main reductase activity toward hydroxycinnamic acids, a shift from alcohol dehydrogenase to acetate kinase activities, an increase in the NAD(+)/NADH ratio, and the accumulation of supplementary intracellular ATP. Taken together, the above-described metabolic responses suggest that strictly heterofermentative lactic acid bacteria mainly use hydroxycinnamic acids as external acceptors of electrons.

  10. Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors

    USGS Publications Warehouse

    Baesman, S.M.; Bullen, T.D.; Dewald, J.; Zhang, Dongxiao; Curran, S.; Islam, F.S.; Beveridge, T.J.; Oremland, R.S.

    2007-01-01

    Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [??] = -0.4 to -1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods (???10-nm diameter by 200-nm length), which cluster together, forming larger (???1,000-nm) rosettes composed of numerous individual shards (???100-nm width by 1,000-nm length). In contrast, Sulfurospirillium barnesii forms extremely small, irregularly shaped nanospheres (diameter < 50 nm) that coalesce into larger composite aggregates. Energy-dispersive X-ray spectroscopy and selected area electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  11. Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors

    SciTech Connect

    Hartshorne, Robert S.; Jepson, Brian N.; Clarke, Thomas A.; Field, Sarah J.; Fredrickson, Jim K.; Zachara, John M.; Shi, Liang; Butt, Julea N.; Richardson, David

    2007-09-04

    Abstract MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV–vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately *500 mV (vs. the standard hydrogen electrode). Across this potential window the UV– vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled lowspin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate.

  12. Electrochemical response of a biofilm community to changes in electron-acceptor redox potential elucidated using microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Arbour, T.; Wrighton, K. C.; Mullin, S. W.; Luef, B.; Gilbert, B.; Banfield, J. F.

    2012-12-01

    Currently, we have limited insight into how mineral properties affect dissimilatory metal-reducing bacteria (DMRB) or the microbial communities that contain them. Advances in our understanding of DMRB metabolism have been achieved using microbial fuel cells (MFCs), which exploit the ability of these organisms to transfer electrons extracellularly. By replacing the mineral electron acceptor with a conductive electrode under potentiostat control, the activity of microorganisms capable of interfacial electron transfer can be quantified by the current flowing through the electrode and related to the thermodynamics of respiration. We seek to understand how communities and their individual members respond to changes in mineralogy, and expect mineral redox potential to be a primary control. The ability to precisely control the redox potential of the electron-accepting anodic electrode is our primary motivation for using MFCs. We inoculated duplicate MFCs containing 10 mM acetate in phosphate buffered media with a slurry of subsurface sediment and groundwater obtained from the Integrated Field-Scale Research Challenge Site at Rifle, CO. Electroactive biofilms were established on graphite anodes poised at a favorable potential (0.0 V vs. SHE) before poising at -0.2 V—a potential representative of natural iron reduction. The current was stable across both anodes over more than 100 days of operation, and the percentage of the electrons in acetate recovered as current ("Coulombic efficiency") was typically 70 to >90%. Current density reached 0.4 A/m2 at -0.2 V, to a max of over 1.0 A/m2 at or above ~0.0 V (based on geometric electrode surface area). Media exchanges and biofilm cyclic voltammetry (CV) experiments indicate that electrode-attached microbial communities were responsible for primary electron transfer. Cryo-electron and confocal fluorescence microscopies of the biofilm reveal numerous morphologies of viable microorganisms that are currently being characterized

  13. Controlling electron transfer dynamics in donor-bridge-acceptor molecules by increasing unpaired spin density on the bridge.

    PubMed

    Chernick, Erin T; Mi, Qixi; Vega, Amy M; Lockard, Jenny V; Ratner, Mark A; Wasielewski, Michael R

    2007-06-21

    A t-butylphenylnitroxide (BPNO*) stable radical is attached to an electron donor-bridge-acceptor (D-B-A) system having well-defined distances between the components: MeOAn-6ANI-Ph(BPNO*)-NI, where MeOAn=p-methoxyaniline, 6ANI=4-(N-piperidinyl)naphthalene-1,8-dicarboximide, Ph=phenyl, and NI=naphthalene-1,8:4,5-bis(dicarboximide). MeOAn-6ANI, BPNO*, and NI are attached to the 1, 3, and 5 positions of the Ph bridge, respectively. Time-resolved optical and EPR spectroscopy show that BPNO* influences the spin dynamics of the photogenerated triradical states 2,4(MeOAn+*-6ANI-Ph(BPNO*)-NI-*), resulting in slower charge recombination within the triradical, as compared to the corresponding biradical lacking BPNO*. The observed spin-spin exchange interaction between the photogenerated radicals MeOAn+* and NI-* is not altered by the presence of BPNO*. However, the increased spin density on the bridge greatly increases radical pair (RP) intersystem crossing from the photogenerated singlet RP to the triplet RP. Rapid formation of the triplet RP makes it possible to observe a biexponential decay of the total RP population with components of tau=740 ps (0.75) and 104 ns (0.25). Kinetic modeling shows that the faster decay rate is due to rapid establishment of an equilibrium between the triplet RP and the neutral triplet state resulting from charge recombination, whereas the slower rate monitors recombination of the singlet RP to ground state.

  14. Molecular interactions between Geobacter sulfurreducens triheme cytochromes and the electron acceptor Fe(iii) citrate studied by NMR.

    PubMed

    Ferreira, Marisa R; Dantas, Joana M; Salgueiro, Carlos A

    2017-02-14

    Proteomic and genetic studies have identified a family of five triheme cytochromes (PpcA-E) that are essential in the iron respiratory pathways of Geobacter sulfurreducens. These include the reduction of Fe(iii) soluble chelated forms or Fe(iii) oxides, which can be used as terminal acceptors by G. sulfurreducens. The relevance of these cytochromes in the respiratory pathways of soluble or insoluble forms of iron is quite distinct. In fact, while PpcD had a higher abundance in the Fe(iii) oxides supplanted G. sulfurreducens cultures, PpcA, PpcB and PpcE were important in Fe(iii) citrate supplanted cultures. Based on these observations we probed the molecular interactions between these cytochromes and Fe(iii) citrate by NMR spectroscopy. NMR spectra were recorded for natural abundance and (15)N-enriched PpcA, PpcB or PpcE samples at increasing amounts of Fe(iii) citrate. The addition of this molecule caused pronounced perturbations on the line width of the protein's NMR signals, which were used to map the interaction region between each cytochrome and the Fe(iii) citrate molecule. The perturbations on the NMR signals corresponding to the backbone NH and heme methyl substituents showed that complex interfaces consist of a well-defined patch, which surrounds the more solvent-exposed heme IV methyl groups in each cytochrome. Overall, this study provides for the first time a clear illustration of the formation of an electron transfer complex between Fe(iii) citrate and G. sulfurreducens triheme cytochromes, shown to be crucial in this respiratory pathway.

  15. Isolation and characterization of Alicycliphilus denitrificans strain BC, which grows on benzene with chlorate as the electron acceptor.

    PubMed

    Weelink, Sander A B; Tan, Nico C G; ten Broeke, Harm; van den Kieboom, Corné; van Doesburg, Wim; Langenhoff, Alette A M; Gerritse, Jan; Junca, Howard; Stams, Alfons J M

    2008-11-01

    A bacterium, strain BC, was isolated from a benzene-degrading chlorate-reducing enrichment culture. Strain BC degrades benzene in conjunction with chlorate reduction. Cells of strain BC are short rods that are 0.6 microm wide and 1 to 2 microm long, are motile, and stain gram negative. Strain BC grows on benzene and some other aromatic compounds with oxygen or in the absence of oxygen with chlorate as the electron acceptor. Strain BC is a denitrifying bacterium, but it is not able to grow on benzene with nitrate. The closest cultured relative is Alicycliphilus denitrificans type strain K601, a cyclohexanol-degrading nitrate-reducing betaproteobacterium. Chlorate reductase (0.4 U/mg protein) and chlorite dismutase (5.7 U/mg protein) activities in cell extracts of strain BC were determined. Gene sequences encoding a known chlorite dismutase (cld) were not detected in strain BC by using the PCR primers described in previous studies. As physiological and biochemical data indicated that there was oxygenation of benzene during growth with chlorate, a strategy was developed to detect genes encoding monooxygenase and dioxygenase enzymes potentially involved in benzene degradation in strain BC. Using primer sets designed to amplify members of distinct evolutionary branches in the catabolic families involved in benzene biodegradation, two oxygenase genes putatively encoding the enzymes performing the initial successive monooxygenations (BC-BMOa) and the cleavage of catechol (BC-C23O) were detected. Our findings suggest that oxygen formed by dismutation of chlorite can be used to attack organic molecules by means of oxygenases, as exemplified with benzene. Thus, aerobic pathways can be employed under conditions in which no external oxygen is supplied.

  16. Polar lipid fatty acids, LPS-hydroxy fatty acids, and respiratory quinones of three Geobacter strains, and variation with electron acceptor

    SciTech Connect

    Hedrick, David B.; Peacock, Aaron; Lovley, Derek; Woodard, Trevor L.; Nevin, Kelly P.; Long, Philip E.; White, David C.

    2009-02-01

    The polar lipid fatty acids, lipopolysaccharide hydroxy-fatty acids, and respiratory quinones of Geobacter metallireducens str. GS-15, Geobacter sulfurreducens str. PCA, and Geobacter bemidjiensis str. Bem are reported. Also, the lipids of G. metallireducens were compared when grown with Fe3+ or nitrate as electron acceptors and G. sulfurreducens with Fe3+ or fumarate. In all experiments, the most abundant polar lipid fatty acids were 14:0, i15:0, 16:1*7c, 16:1*5c, and 16:0; lipopolysaccharide hydroxyfatty acids were dominated by 3oh16:0, 3oh14:0, 9oh16:0, and 10oh16:0; and menaquinone-8 was the most abundant respiratory quinone. Some variation in lipid proWles with strain were observed, but not with electron acceptor.

  17. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation.

    PubMed

    Rose, Nicholas D; Regan, John M

    2015-12-01

    Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD(+), respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP(+), respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190 mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  18. Catalytic Friedel-Crafts C-H Borylation of Electron-Rich Arenes: Dramatic Rate Acceleration by Added Alkenes.

    PubMed

    Yin, Qin; Klare, Hendrik F T; Oestreich, Martin

    2017-03-20

    In the electrophilic C-H borylation of electron-rich aromatic compounds with catecholborane, the catalytic generation of the boron electrophile is initiated by heterolysis of the B-H bond by various Lewis and Brønsted acids, with a boronium ion formed exclusively. After ligand dissociation, the corresponding borenium ion undergoes regioselective electrophilic aromatic substitution on aniline derivatives as well as nitrogen-containing heterocycles. The catalysis is optimized using B(C6 F5 )3 as the initiator and proceeds without the addition of an external base or dihydrogen acceptor. Temperatures above 80 °C are generally required to secure efficient turnover in these Friedel-Crafts-type reactions. Mechanistic experiments reveal that regeneration of the boronium/borenium ion with dihydrogen release is rate-determining. This finding finally led to the discovery that, with added alkenes, catalytic C-H borylations can, for the first time, be carried out at room temperature.

  19. Electronic, infrared, mass, 1H NMR spectral studies of the charge-transfer complexes of sulphonamide drugs with π-acceptors in acetonitrile

    NASA Astrophysics Data System (ADS)

    Frag, Eman Y.; Mohamed, Gehad G.

    2010-08-01

    The rapid interaction between sulphonamides (sulphamethoxazole (SMZ), sulphaguanidine (SGD), sulphaquinoxaline sodium (SQX) and sulphadimidine sodium (SDD)) as n-electron donors with the 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (chloranilic acid, p-CLA) as π-acceptors resulted in the formation of 1:1 charge-transfer complexes as the final products with the formula [(drug) (acceptor)]. The final products of the reactions have been isolated and characterized using FT-IR, 1H NMR, mass spectroscopy and elemental analyses as well as photometric measurements and thermogravimetric analysis (TG). The stoichiometry and apparent formation constants of the complexes formed were determined by applying the conventional spectrophotometric molar ratio method.

  20. Achieving high performance non-fullerene organic solar cells through tuning the numbers of electron deficient building blocks of molecular acceptors

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Chen, Yusheng; Chen, Shangshang; Dong, Tao; Deng, Wei; Lv, Lei; Yang, Saina; Yan, He; Huang, Hui

    2016-08-01

    Two analogous dimer and tetramer compounds, SF-PDI2 and SF-PDI4, were designed, theoretically calculated, synthesized, and developed as electron acceptors for organic solar cells. The effects of the number of the electron deficient building blocks on the optical absorption, energy levels, charge transport, morphology, crystallinity, and photovoltaic performance of the molecules were investigated. In combination with two different donors, PTB7-Th and PffBT4T-2OD, the results showed that increasing the numbers of PDI building blocks is beneficial to photovoltaic performance and leads to efficiency over 5%.

  1. Donor-Acceptor Interaction Determines the Mechanism of Photoinduced Electron Injection from Graphene Quantum Dots into TiO2: π-Stacking Supersedes Covalent Bonding.

    PubMed

    Long, Run; Casanova, David; Fang, Wei-Hai; Prezhdo, Oleg V

    2017-02-22

    Interfacial electron transfer (ET) constitutes the key step in conversion of solar energy into electricity and fuels. Required for fast and efficient charge separation, strong donor-acceptor interaction is typically achieved through covalent chemical bonding and leads to fast, adiabatic ET. Focusing on interfaces of pyrene, coronene, and a graphene quantum dot (GQD) with TiO2, we demonstrate the opposite situation: covalent bonding leads to weak coupling and nonadiabatic (NA) ET, while through-space π-electron interaction produces adiabatic ET. Using real-time time-dependent density functional theory combined with NA molecular dynamics, we simulate photoinduced ET into TiO2 from flat and vertically placed molecules and GQD containing commonly used carboxylic acid linkers. Both arrangements can be achieved experimentally with GQDs and other two-dimensional materials, such as MoS2. The weak through-bond donor-acceptor coupling is attributed to the π-electron withdrawing properties of the carboxylic acid group. The calculated ET time scales are in excellent agreement with pump-probe optical experiments. The simulations show that the ET proceeds faster than energy relaxation. The electron couples to a broad spectrum of vibrational modes, ranging from 100 cm(-1) large-scale motions to 1600 cm(-1) C-C stretches. Compared to graphene/TiO2 heterojunctions, the molecule/TiO2 and GQD/TiO2 systems exhibit energy gaps, allowing for longer-lived excited states and hot electron injection, facilitating charge separation and higher voltage. The reported state-of-the-art simulations generate a detailed time-domain, atomistic description of the interfacial charge and energy transfer and relaxation processes, and demonstrate that the fundamental principles leading to efficient charge separation in nanoscale materials depend strongly and often unexpectedly on the type of donor-acceptor interaction. Understanding these principles is critical to the development of highly efficient

  2. The role of O2 as an electron acceptor alternative to CO2 in photosynthesis of the common marine angiosperm Zostera marina L.

    PubMed

    Buapet, Pimchanok; Björk, Mats

    2016-07-01

    This study investigates the role of O2 as an electron acceptor alternative to CO2 in photosynthesis of the common marine angiosperm Zostera marina L. Electron transport rates (ETRs) and non-photochemical quenching (NPQ) of Z. marina were measured under saturating irradiance in synthetic seawater containing 2.2 mM DIC and no DIC with different O2 levels (air-equilibrated levels, 3 % of air equilibrium and restored air-equilibrated levels). Lowering O2 did not affect ETR when DIC was provided, while it caused a decrease in ETR and an increase in NPQ in DIC-free media, indicating that O2 acted as an alternative electron acceptor under low DIC. The ETR and NPQ as a function of irradiance were subsequently assessed in synthetic seawater containing (1) 2.2 mM DIC, air-equilibrated O2; (2) saturating CO2, no O2; and (3) no DIC, air-equilibrated O2. These treatments were combined with glycolaldehyde pre-incubation. Glycolaldehyde caused a marked decrease in ETR in DIC-free medium, indicating significant electron flow supported by photorespiration. Combining glycolaldehyde with O2 depletion completely suppressed ETR suggesting the operation of the Mehler reaction, a possibility supported by the photosynthesis-dependent superoxide production. However, no notable effect of suppressing the Mehler reaction on NPQ was observed. It is concluded that during DIC-limiting conditions, such as those frequently occurring in the habitats of Z. marina, captured light energy exceeds what is utilised for the assimilation of available carbon, and photorespiration is a major alternative electron acceptor, while the contribution of the Mehler reaction is minor.

  3. The role of local environment on the electronic properties of a novel blue-emitting donor-acceptor compound

    NASA Astrophysics Data System (ADS)

    Legaspi, Christian M.; Stubbs, Regan E.; Yaron, David J.; Peteanu, Linda A.; Kemboi, Abraham; Picker, Jesse; Fossum, Eric

    2016-09-01

    With the rising popularity of organic light-emitting diodes (OLEDs) in display applications, demand for more efficient blue emitters has increased. We have recently synthesized a novel blue-emitting, donor-acceptor system employing carbazole as the donor and a benzothiazole derivative as the acceptor, BTZ-CBZ. We find that the solution-phase emission of BTZ-CBZ is highly dependent on solvent polarity, both in lineshape and emission maximum, showing a Stokes shift of 50 nm in methylcyclohexane and 150 nm in acetonitrile. This is expected behavior for donor-acceptor compounds due to the presence of a charge-transfer excited state. However, the solid state properties are more important for OLED devices. Using time-dependent density functional theory calculations employing the linear-response (LR) and state-specific (SS) polarizable continuum model (PCM), we explore the effects of solvent reorganization on the emission properties of BTZ-CBZ. SS-PCM reproduces the solvatochromism behavior of BTZ-CBZ in solution, but LR-PCM shows effectively no shift with solvent polarity. We surmise that this is because solvent reorganization is necessary for the solvatochromic effect to occur. The effect of rigid matrices on the emission of BTZ-CBZ has direct implications on its viability as a blue emitter in solid-state OLEDs and which molecular environments will be ideal for devices.

  4. The Gibbs free energy of formation of halogenated benzenes, benzoates and phenols and their potential role as electron acceptors in anaerobic environments.

    PubMed

    Dolfing, Jan; Novak, Igor

    2015-02-01

    The sequence of redox reactions in the natural environment generally follows the electron affinity of the electron acceptors present and can be rationalized by the redox potentials of the appropriate half-reactions. Answering the question how halogenated aromatics fit into this sequence requires information on their Gibbs free energy of formation values. In 1992 Gibbs free energy data for various classes of halogenated aromatic compounds were systematically explored for the first time based on Benson's group contribution method. Since then more accurate quantum chemical calculation methods have become available. Here we use these methods to estimate enthalpy and Gibbs free energy of formation values of all chlorinated and brominated phenols. These data and similar state-of-the-art datasets for halogenated benzenes and benzoates were then used to calculate two-electron redox potentials of halogenated aromatics for standard conditions and for pH 7. The results underline the need to take speciation into consideration when evaluating redox potentials at pH 7 and highlight the fact that halogenated aromatics are excellent electron acceptors in aqueous environments.

  5. (Per)Chlorate-Reducing Bacteria Can Utilize Aerobic and Anaerobic Pathways of Aromatic Degradation with (Per)Chlorate as an Electron Acceptor

    PubMed Central

    Carlström, Charlotte I.; Loutey, Dana; Bauer, Stefan; Clark, Iain C.; Rohde, Robert A.; Iavarone, Anthony T.; Lucas, Lauren

    2015-01-01

    ABSTRACT The pathways involved in aromatic compound oxidation under perchlorate and chlorate [collectively known as (per)chlorate]-reducing conditions are poorly understood. Previous studies suggest that these are oxygenase-dependent pathways involving O2 biogenically produced during (per)chlorate respiration. Recently, we described Sedimenticola selenatireducens CUZ and Dechloromarinus chlorophilus NSS, which oxidized phenylacetate and benzoate, two key intermediates in aromatic compound catabolism, coupled to the reduction of perchlorate or chlorate, respectively, and nitrate. While strain CUZ also oxidized benzoate and phenylacetate with oxygen as an electron acceptor, strain NSS oxidized only the latter, even at a very low oxygen concentration (1%, vol/vol). Strains CUZ and NSS contain similar genes for both the anaerobic and aerobic-hybrid pathways of benzoate and phenylacetate degradation; however, the key genes (paaABCD) encoding the epoxidase of the aerobic-hybrid phenylacetate pathway were not found in either genome. By using transcriptomics and proteomics, as well as by monitoring metabolic intermediates, we investigated the utilization of the anaerobic and aerobic-hybrid pathways on different electron acceptors. For strain CUZ, the results indicated utilization of the anaerobic pathways with perchlorate and nitrate as electron acceptors and of the aerobic-hybrid pathways in the presence of oxygen. In contrast, proteomic results suggest that strain NSS may use a combination of the anaerobic and aerobic-hybrid pathways when growing on phenylacetate with chlorate. Though microbial (per)chlorate reduction produces molecular oxygen through the dismutation of chlorite (ClO2−), this study demonstrates that anaerobic pathways for the degradation of aromatics can still be utilized by these novel organisms. PMID:25805732

  6. Photochemical properties of C 60. Triplet-excited C 60 quenching by electron acceptors TCNQ and TCNE in solution. Laser photolysis study

    NASA Astrophysics Data System (ADS)

    Nadtochenko, Victor A.; Denisov, Nikolai N.; Rubtsov, Igor V.; Lobach, Anatolii S.; Moravskii, Alexander P.

    1993-06-01

    The quenching of triplet-excited 3C 60 by electron acceptors TCNQ and TCNE has been established in nonpolar toluene and moderately polar benzonitrile solutions. The quenching constants kq are 5.5 × 10 9 in toluene, 2.2 × 10 9 in benzonitrile for TCNQ and 7.9 × 10 5 in toluene, 4.2 × 10 8 (M s) -1 in benzonitrile for TCNE. The 3C 60 quenching can be explained by triplet exciplex formation. The time-resolved spectra of the C 60/TCNE system exhibit a well pronounced charge-transfer excited state [C δ60 … TCNE δ-] in benzonitrile.

  7. Influence of π-conjugation structural changes on intramolecular charge transfer and photoinduced electron transfer in donor-π-acceptor dyads.

    PubMed

    Kim, So-Yoen; Cho, Yang-Jin; Lee, Ah-Rang; Son, Ho-Jin; Han, Won-Sik; Cho, Dae Won; Kang, Sang Ook

    2016-12-21

    The influence of π-conjugation structural changes on photoinduced electron transfer (PET) and intramolecular charge transfer (ICT) processes in π-conjugated donor (D)-acceptor (A) dyads (D-π-A) was investigated. Three types of D-π-A dyads were prepared through the modification of the structure of their π-conjugated linker, including D-π-A (1) and D-πtw-A (2) having a twisted π-conjugation, and D-π-Si-π-A (3) with a π-conjugation severed by a Si-atom. In these dyads, carbazole (Cz) and oxadiazole (Oz) moieties act as an electron donor and acceptor, respectively. The emission maxima of dyads 1 and 3 red-shifted with the increase in polarity, which could be attributed to the ICT process. The fluorescence lifetimes of dyads 1 and 3 were 2.64 and 4.29 ns in CH2Cl2, respectively. In contrast, dyad 2 showed dual emission at 350 and 470 nm in CH2Cl2. The emission of dyad 2 at 380 nm corresponded to the monomer fluorescence in the locally excited state. Moreover, the emission at 470 nm increased simultaneously with the diminishing of the fluorescence at 380 nm. This emission band can be assigned as the intramolecular exciplex emission, and showed a strong solvatochromic shift. The low emission quantum yield (<3%) of dyad 2 is due to the PET process. In dyad 2, the cationic and anionic radical species generated by the PET process were confirmed by femtosecond transient absorption (fs-TA) spectroscopy. Upon photoexcitation at 290 or 340 nm, the A or D moieties can be selectively excited. Upon excitation at 290 nm, the acceptor moiety can be excited to the (1)A* state, thus the photoinduced hole transfer (PHT) takes place from (1)A* to D through the HOMO levels within a few picoseconds. On the other hand, when the donor moiety is excited at 340 nm, the PET process occurs from (1)D* to A. Based on the fs-TA studies, it was found that the dynamics and mechanisms for the electron (or charge) transfer were strongly affected by the variation of the π-conjugation of the

  8. Low-frequency spectra of the hexamethylbenzene/tetracyanoethylene electron donor-acceptor complexes in solution studied by terahertz time-domain spectroscopy.

    PubMed

    Yamamoto, Kohji; Kabir, Md Humayun; Hayashi, Michitoshi; Tominaga, Keisuke

    2005-05-07

    We have measured the frequency dependent extinction coefficients and refractive indices of electron donor-acceptor (EDA) complexes consisting of hexamethylbenzene (HMB; electron donor) and tetracyanoethylene (TCNE; electron acceptor) in the low-frequency region by terahertz time-domain spectroscopy (THz-TDS). A mixture of the 1:1 (DA) and 2:1 (D2A) EDA complexes exist in carbon tetrachloride solution, and we successfully obtained the spectral components of the 1:1 and 2:1 EDA complexes separately by analyzing the concentration dependence of the THz spectra. The 1:1 and 2:1 complexes show quite different THz spectra of the extinction coefficient, reflecting unique features of dynamics, fluctuations and intermolecular interactions of these complexes. Polarization-selective THz-TDS on the crystalline DA complex shows two peaks at 53 and 70 cm(-1) in the spectral component perpendicular to the crystal axis. On the other hand, the crystalline D2A complex exhibits peaks at 42 and 50 cm(-1) in the perpendicular spectral component. We compare the obtained spectra of the crystalline complex and the results of molecular orbital calculations at the HF/6-31G(d) level of theory to discuss the intermolecular vibrational modes of the complexes.

  9. Reduction of electron accumulation at InN(0001) surfaces via saturation of surface states by potassium and oxygen as donor- or acceptor-type adsorbates

    SciTech Connect

    Eisenhardt, A.; Reiß, S.; Krischok, S. Himmerlich, M.

    2014-01-28

    The influence of selected donor- and acceptor-type adsorbates on the electronic properties of InN(0001) surfaces is investigated implementing in-situ photoelectron spectroscopy. The changes in work function, surface band alignment, and chemical bond configurations are characterized during deposition of potassium and exposure to oxygen. Although an expected opponent charge transfer characteristic is observed with potassium donating its free electron to InN, while dissociated oxygen species extract partial charge from the substrate, a reduction of the surface electron accumulation occurs in both cases. This observation can be explained by adsorbate-induced saturation of free dangling bonds at the InN resulting in the disappearance of surface states, which initially pin the Fermi level and induce downward band bending.

  10. Spectral investigations of multiple charge transfer complex of p-nitrophenol as an electron acceptor with donor p-dimethylaminobenzaldehyde

    NASA Astrophysics Data System (ADS)

    Naeem, A.; Khan, I. M.; Ahmad, A.

    2011-10-01

    The convincing evidence have been given that both the interactions π-π and π-π* (between p-nitrophenol ( p-NTP) and p-dimethylaminobenzaldehyde ( p-DAB)) are simultaneously involved. This has been established by using IR spectrometry. Association constant K evaluated by the method of Foster under the condition [A]0 = [D]0 with apply in this equation, [A]0/ A = 1/ Kɛλ[D]0 + 2/ɛλ, where [A]0 is the initial concentration of acceptor equal to [D]0, A is the absorbance of the complex at λ, K is the association constant, and ɛλ is the molar absorptivity of the complex at λ. In the IR spectral studies of several related organic compounds, one comes to the conclusion that p-NTP shows a broad band centred at 1600 cm-1 and to nitro asymmetric stretching vibrations. In the complex while the 1500 cm-1 band remains without shift, the broad band localized at 1600 cm-1 shift to 1610 cm-1. A shift of 10 cm-1 shows weak interactions. Studies on molecular complexes of organ metallic donors and acceptors are of very recent origin. Though alkyl donors have been extensively studied, very few studies have appeared on aryl donors.

  11. Electron acceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP.

    PubMed

    Pilloni, Giovanni; von Netzer, Frederick; Engel, Marion; Lueders, Tillmann

    2011-10-01

    Bioavailability of electron acceptors is probably the most limiting factor in the restoration of anoxic, contaminated environments. The oxidation of contaminants such as aromatic hydrocarbons, particularly in aquifers, often depends on the reduction of ferric iron or sulphate. We have previously detected a highly active fringe zone beneath a toluene plume at a tar-oil-contaminated aquifer in Germany, where a specialized community of contaminant degraders codominated by Desulfobulbaceae and Geobacteraceae had established. Although on-site geochemistry links degradation to sulphidogenic processes, dominating catabolic (benzylsuccinate synthase α-subunit, bssA) genes detected in situ appeared to be more related to those of Geobacter spp. Therefore, a stable isotope probing (SIP) incubation of sediment samples with (13)C(7)-toluene and comparative electron acceptor amendment was performed. We introduce pyrosequencing of templates from SIP microcosms as a powerful new strategy in SIP gradient interpretation (Pyro-SIP). Our results reveal the central role of Desulfobulbaceae in sulphidogenic toluene degradation in situ, and affiliate the detected bssA genes to this lineage. This and the absence of (13)C-labelled DNA of Geobacter spp. in SIP gradients preclude their relevance as toluene degraders in situ. In contrast, Betaproteobacteria related to Georgfuchsia spp. became labelled under iron-reducing conditions. Furthermore, secondary toluene degraders belonging to the Peptococcaceae detected in both treatments suggest the possibility of functional redundancy among anaerobic toluene degraders on site.

  12. Structure and properties of nitrogen-rich 1,4-dicyanotetrazine, C4N6: a comparative study with related tetracyano electron acceptors.

    PubMed

    Vo, Hoa-Lan; Arthur, Jordan L; Capdevila-Cortada, Marçal; Lapidus, Saul H; Stephens, Peter W; Novoa, Juan J; Arif, Atta M; Nagi, Ramneet K; Bartl, Michael H; Miller, Joel S

    2014-09-05

    The crystal structure, redox electrochemical stability, and reaction chemistry of 1,4-dicyanotetrazine (DCNT) has been experimentally characterized. These experimental results were rationalized by the results of theoretical calculations of the electronic structure, spin and charge distributions, electronic absorption spectra, and electron affinity and compared with the results for related the tetracyano electron acceptors tetracyanoethylene (TCNE), 7,7,8,8-tetracyano-p-quinodimethane (TCNQ), and 2,3,5,6-tetracyanopyrazine (TCNP). DCNT is made from the dehydration of 1,2,4,5-tetrazine-3,6-dicarboxamide, and because of the unusual deep-magenta color of the dicarboxamide in the solid state, its hydrogen-bonded layered structure, electronic structure, and electronic absorption spectra were determined. The magenta color is attributed to its absorptions at 532 nm (18 800 cm(-1)), and this corresponds to normalized chromaticity coordinates of x = 0.42 and y = 0.31 in the pink/red/orange part of the 1931 CIE chromaticity diagram. In contrast with previous reports, DCNT exhibits an irreversible one-electron reduction at -0.09 V vs SCE (MeCN), and reduced forms of DCNT have yet to be isolated and characterized. In addition, the reactions of DCNT with V(CO)6, Fe(II)(C5Me5)2, and I(-) are discussed.

  13. C20H4(C4F8)3: A Fluorine-Containing Annulated Corannulene that Is a Better Electron Acceptor Than C60

    SciTech Connect

    Kuvychko, Igor V.; Dubceac, Cristina; Deng, Shihu; Wang, Xue B.; Granovsky, Alexander A.; Popov, Alexey A.; Petrukhina, Marina A.; Strauss, Steven H.; Boltalina, Olga V.

    2013-07-15

    There has been increased interest in the design and applications of small polyaromatic molecules for energy conversion and storage, organic transistors and OLEDs, and other emerging areas of modern technology.[1] In particular, functionalized polycyclic aromatic hydrocarbons (PAHs) were shown to demonstrate excellent electrical mobilities, in organic thin-film transistors, in some cases even under ambient conditions.[2] It has been suggested that air stability of such organic materials is correlated with their electronic properties, and more specifically, with a high electron affinity.[3] Until recently, geodesic PAHs, such as corannulene[4] or sumanene[5] and their numerous derivatives have not been seriously considered for optoelectronic applications because (i) they typically possess very low electron affinities (e.g., EA(C20H10) = 0.5(1) eV),[6] and (ii) laborious multistep syntheses with moderate-to-low yields made them practically unavailable for such studies.[7] Although the low availability of sumanene remains unchanged, significant progress has been made lately in the large-scale synthesis of corannulene.[8] Furthermore, our recent work demonstrated that functionalization of corannulene molecule with electron withdrawing groups (EWGs) results in drastic enhancement of its electron acceptor properties.[9] In particular, for trifluoromethylated derivative C20H5(CF3)5, a 950 mV positive shift in the reduction potential relative to the parent C20H10 was measured. We also predicted that other EWGs, including halogen atoms or cyanide group, could be used to enhance electron affinity of corannulene. Nearly linear correlation between the number of EWGs and the electron affinity (reduction potential) of the corresponding EWG-substituted corannulene molecules that was demonstrated by our DFT calculations, and, more recently, confirmed for C20H10-x(CF3)x=2,3,[10] provides a good tool for design of the molecules with desired electronic properties. Here, we report the

  14. Observation of proton-coupled electron transfer by transient absorption spectroscopy in a hydrogen-bonded, porphyrin donor-acceptor assembly.

    PubMed

    Damrauer, Niels H; Hodgkiss, Justin M; Rosenthal, Joel; Nocera, Daniel G

    2004-05-20

    Proton-coupled electron transfer (PCET) kinetics of a Zn(II) porphyrin donor noncovalently bound to a naphthalene-diimide acceptor through an amidinium-carboxylate interface have been investigated by time-resolved spectroscopy. The S1 singlet excited-state of a Zn(II) 2-amidinium-5,10,15,20-tetramesitylporphyrin chloride (ZnP-beta-AmH+) donor is sufficiently energetic (2.04 eV) to reduce a carboxylate-diimide acceptor (DeltaG degrees = -460 mV, THF). Static quenching of the porphyrin fluorescence is observed and time-resolved measurements reveal more than a 3-fold reduction in the S1 lifetime of the porphyrin upon amidinium-carboxylate formation (THF, 298 K). Picosecond transient absorption spectra of the free ZnP-beta-AmH+ in THF reveal the existence of an excited-state isosbestic point between the S1 and T1 states at lambdaprobe = 650 nm, providing an effective 'zero-kinetics' background on which to observe the formation of PCET photoproducts. Distinct rise and decay kinetics are attributed to the build-up and subsequent loss of intermediates resulting from a forward and reverse PCET reaction, respectively (kPCET(fwd) = 9 x 108 s-1 and kPCET(rev) = 14 x 108 s-1). The forward rate constant is nearly 2 orders of magnitude slower than that measured for covalently linked Zn(II) porphyrin-acceptor dyads of comparable driving force and D-A distance, establishing the importance of a proximal proton network in controlling charge transport.

  15. Rational design of aggregation-induced emission luminogen with weak electron donor-acceptor interaction to achieve highly efficient undoped bilayer OLEDs.

    PubMed

    Chen, Long; Jiang, Yibin; Nie, Han; Hu, Rongrong; Kwok, Hoi Sing; Huang, Fei; Qin, Anjun; Zhao, Zujin; Tang, Ben Zhong

    2014-10-08

    In this work, two tailored luminogens (TPE-NB and TPE-PNPB) consisting of tetraphenylethene (TPE), diphenylamino, and dimesitylboryl as a π-conjugated linkage, electron donor, and electron acceptor, respectively, are synthesized and characterized. Their thermal stabilities, photophysical properties, solvachromism, fluorescence decays, electronic structures, electrochemical behaviors, and electroluminescence (EL) properties are investigated systematically, and the impacts of electron donor-acceptor (D-A) interaction on optoelectronic properties are discussed. Due to the presence of a TPE unit, both luminogens show aggregation-induced emission, but strong D-A interaction causes a decrease in emission efficiency and red-shifts in photoluminescence and EL emissions. The luminogen, TPE-PNPB, with a weak D-A interaction fluoresces strongly in solid film with a high fluorescence quantum yield of 94%. The trilayer OLED [ITO/NPB (60 nm)/TPE-PNPB (20 nm)/TPBi (40 nm)/LiF (1 nm)/Al (100 nm)] utilizing TPE-PNPB as a light emitter shows a peak luminance of 49 993 cd m(-2) and high EL efficiencies up to 15.7 cd A(-1), 12.9 lm W(-1), and 5.12%. The bilayer OLED [ITO/TPE-PNPB (80 nm)/TPBi (40 nm)/LiF (1 nm)/Al (100 nm)] adopting TPE-PNPB as a light emitter and hole transporter simultaneously affords even better EL efficiencies of 16.2 cd A(-1), 14.4 lm W(-1), and 5.35% in ambient air, revealing that TPE-PNPB is an eximious p-type light emitter.

  16. Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov.

    PubMed

    Kashefi, Kazem; Holmes, Dawn E; Reysenbach, Anna-Louise; Lovley, Derek R

    2002-04-01

    It has recently been recognized that the ability to use Fe(III) as a terminal electron acceptor is a highly conserved characteristic in hyperthermophilic microorganisms. This suggests that it may be possible to recover as-yet-uncultured hyperthermophiles in pure culture if Fe(III) is used as an electron acceptor. As part of a study of the microbial diversity of the Obsidian Pool area in Yellowstone National Park, Wyo., hot sediment samples were used as the inoculum for enrichment cultures in media containing hydrogen as the sole electron donor and poorly crystalline Fe(III) oxide as the electron acceptor. A pure culture was recovered on solidified, Fe(III) oxide medium. The isolate, designated FW-1a, is a hyperthermophilic anaerobe that grows exclusively by coupling hydrogen oxidation to the reduction of poorly crystalline Fe(III) oxide. Organic carbon is not required for growth. Magnetite is the end product of Fe(III) oxide reduction under the culture conditions evaluated. The cells are rod shaped, about 0.5 microm by 1.0 to 1.2 microm, and motile and have a single flagellum. Strain FW-1a grows at circumneutral pH, at freshwater salinities, and at temperatures of between 65 and 100 degrees C with an optimum of 85 to 90 degrees C. To our knowledge this is the highest temperature optimum of any organism in the Bacteria. Analysis of the 16S ribosomal DNA (rDNA) sequence of strain FW-1a places it within the Bacteria, most closely related to abundant but uncultured microorganisms whose 16S rDNA sequences have been previously recovered from Obsidian Pool and a terrestrial hot spring in Iceland. While previous studies inferred that the uncultured microorganisms with these 16S rDNA sequences were sulfate-reducing organisms, the physiology of the strain FW-1a, which does not reduce sulfate, indicates that these organisms are just as likely to be Fe(III) reducers. These results further demonstrate that Fe(III) may be helpful for recovering as-yet-uncultured microorganisms

  17. Redox potentials of primary electron acceptor quinone molecule (QA)- and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d.

    PubMed

    Allakhverdiev, Suleyman I; Tsuchiya, Tohru; Watabe, Kazuyuki; Kojima, Akane; Los, Dmitry A; Tomo, Tatsuya; Klimov, Vyacheslav V; Mimuro, Mamoru

    2011-05-10

    In a previous study, we measured the redox potential of the primary electron acceptor pheophytin (Phe) a of photosystem (PS) II in the chlorophyll d-dominated cyanobacterium Acaryochloris marina and a chlorophyll a-containing cyanobacterium, Synechocystis. We obtained the midpoint redox potential (E(m)) values of -478 mV for A. marina and -536 mV for Synechocystis. In this study, we measured the redox potentials of the primary electron acceptor quinone molecule (Q(A)), i.e., E(m)(Q(A)/Q(A)(-)), of PS II and the energy difference between [P680·Phe a(-)·Q(A)] and [P680·Phe a·Q(A)(-)], i.e., ΔG(PhQ). The E(m)(Q(A)/Q(A)(-)) of A. marina was determined to be +64 mV without the Mn cluster and was estimated to be -66 to -86 mV with a Mn-depletion shift (130-150 mV), as observed with other organisms. The E(m)(Phe a/Phe a(-)) in Synechocystis was measured to be -525 mV with the Mn cluster, which is consistent with our previous report. The Mn-depleted downshift of the potential was measured to be approximately -77 mV in Synechocystis, and this value was applied to A. marina (-478 mV); the E(m)(Phe a/Phe a(-)) was estimated to be approximately -401 mV. These values gave rise to a ΔG(PhQ) of -325 mV for A. marina and -383 mV for Synechocystis. In the two cyanobacteria, the energetics in PS II were conserved, even though the potentials of Q(A)(-) and Phe a(-) were relatively shifted depending on the special pair, indicating a common strategy for electron transfer in oxygenic photosynthetic organisms.

  18. Increased Efficiency in Small Molecule Organic Solar Cells Through the Use of a 56-π Electron Acceptor - Methano Indene Fullerene

    NASA Astrophysics Data System (ADS)

    Ryan, James W.; Matsuo, Yutaka

    2015-02-01

    Organic solar cells (OSCs) offer the possibility of harnessing the sun's ubiquitous energy in a low-cost, environmentally friendly and renewable manner. OSCs based on small molecule semiconductors (SMOSCs) - have made a substantial improvement in recent years and are now achieving power conversion efficiencies (PCEs) that match those achieved for polymer:fullerene OSCs. To date, all efficient SMOSCs have relied on the same fullerene acceptor, PCBM, in order to achieve high performance. The use of PCBM however, is unfavourable due to its low lying LUMO level, which limits the open-circuit voltage (VOC). Alternative fullerene derivatives with higher lying LUMOs are thus required to improve the VOC. The challenge, however, is to prevent the typical concomitant decrease in the short circuit current density (JSC) when using a higher LUMO fullerene. In this communication, we address the issue by applying methano indene fullerene, MIF, a bis-functionalised C60 fullerene that has a LUMO level 140 mV higher than PCBM, in solution processed SMOSCs with a well known small molecule donor, DPP(TBFu)2. MIF-based devices show an improved VOC of 140 mV over PC61BM and only a small decrease in the JSC, with the PCE increasing to 5.1% (vs. 4.5% for PC61BM).

  19. (Dibenzoylmethanato)boron difluoride derivatives containing triphenylamine moieties: a new type of electron-donor/π-acceptor system for dye-sensitized solar cells.

    PubMed

    Mizuno, Yosuke; Yisilamu, Yilihamu; Yamaguchi, Tomoya; Tomura, Masaaki; Funaki, Takashi; Sugihara, Hideki; Ono, Katsuhiko

    2014-10-06

    (Dibenzoylmethanato)boron difluoride derivatives containing triphenylamine moieties were synthesized as a new type of electron-donor/π-acceptor system. These new compounds exhibited long-wavelength absorptions in the UV/Vis spectra, and reversible oxidation and reduction waves in cyclic voltammetry experiments. Their amphoteric redox properties are based on their resonance hybrid forms, in which a positive charge is delocalized on the triphenylamine moieties and a negative charge is localized on the boron atoms. Molecular orbital (MO) calculations indicate that their HOMO and LUMO energies vary with the number of phenylene rings connected to the difluoroboron-chelating ring. This is useful for optimizing the HOMO and LUMO levels to an iodine redox (I(-)/I3(-)) potential and a titanium dioxide conduction band, respectively. Dye-sensitized solar cells fabricated by using these compounds as dye sensitizers exhibited solar-to-electric power conversion efficiencies of 2.7-4.4 % under AM 1.5 solar light.

  20. Effects of acceptor-donor complexes on electronic structure properties in co-doped TiO2: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Cai, L. L.; Yuan, X. B.; Hu, G. C.; Ren, J. F.

    2016-07-01

    We theoretically investigate the doping effects induced by impurity complexes on the electronic structures of anatase TiO2 based on the density functional theory. Mono-doping and co-doping effects are discussed separately. The results show that the impurity doping can make the band-edges shift. The induced defect levels in the band gaps by impurity doping reduce the band gap predominantly. The compensated acceptor-donor pairs in the co-doped TiO2 will improve the photoelectrochemical activity. From the calculations, it is also found that (S+Zr)-co-doped TiO2 has the ideal band gap and band edge, at the same time, the binding energy is higher than other systems, so (S+Zr)-co-doping in TiO2 is more promise in photoelectrochemical experiments.

  1. Photoinduced intercomponent excited-state decays in a molecular dyad made of a dinuclear rhenium(I) chromophore and a fullerene electron acceptor unit.

    PubMed

    Nastasi, Francesco; Puntoriero, Fausto; Natali, Mirco; Mba, Miriam; Maggini, Michele; Mussini, Patrizia; Panigati, Monica; Campagna, Sebastiano

    2015-05-01

    A novel molecular dyad, 1, made of a dinuclear {[Re2(μ-X)2(CO)6(μ-pyridazine)]} component covalently-linked to a fullerene unit by a carbocyclic molecular bridge has been prepared and its redox, spectroscopic, and photophysical properties - including pump-probe transient absorption spectroscopy in the visible and near-infrared region - have been investigated, along with those of its model species. Photoinduced, intercomponent electron transfer occurs in 1 from the thermally-equilibrated, triplet metal/ligand-to-ligand charge-transfer ((3)MLLCT) state of the dinuclear rhenium(I) subunit to the fullerene acceptor, with a time constant of about 100 ps. The so-formed triplet charge-separated state recombines in a few nanoseconds by a spin-selective process yielding, rather than the ground state, the locally-excited, triplet fullerene state, which finally decays to the ground state by intersystem crossing in about 290 ns.

  2. Production and Identification of N-Glucosylrubropunctamine and N-Glucosylmonascorubramine from Monascus ruber and Occurrence of Electron Donor-Acceptor Complexes in These Red Pigments

    PubMed Central

    Hajjaj, H.; Klaebe, A.; Loret, M. O.; Tzedakis, T.; Goma, G.; Blanc, P. J.

    1997-01-01

    The filamentous fungus Monascus ruber produces water-soluble red pigments in a submerged culture when grown in a chemically defined medium containing glucose as a carbon source and monosodium glutamate as a nitrogen source. Two new molecules with polyketide structures, N-glucosylrubropunctamine and N-glucosylmonascorubramine, constituting under some conditions 10% of the total extracellular coloring matter when glucose as a carbon source was in excess (20 g/liter), were isolated and structurally characterized by high-pressure liquid chromatography, Dionex methods, (sup1)H and (sup13)C nuclear magnetic resonance spectroscopy, and mass spectrometry. The occurrence of the electron donor-acceptor complex effect was demonstrated by UV spectroscopy, polarography, and thin-layer voltammetry. The use of n-butanol as an extraction solvent stabilized the pigments against the effects of daylight for several months, promoting the stability of this type of complex. PMID:16535644

  3. Electron spin polarization transfer to the charge-separated state from locally excited triplet configuration: theory and its application to characterization of geometry and electronic coupling in the electron donor-acceptor system.

    PubMed

    Kobori, Yasuhiro; Fuki, Masaaki; Murai, Hisao

    2010-11-18

    We present a theoretical model of analysis of the time-resolved electron paramagnetic resonance (TREPR) spectrum of the charge-separated (CS) state generated by the photoinduced electron transfer (ET) reaction via the locally excited triplet state in an electron donor-acceptor (D-A) system with a fixed molecular orientation. We show, by the stochastic-Liouville equation, that chemically induced dynamic electron polarization (CIDEP) of the triplet mechanism is explained by lack of transfer of quantum coherence terms in the primary triplet spin state, resulting in net emissive or absorptive electron spin polarization (ESP) which is dependent on anisotropy of the singlet-triplet intersystem crossing in the precursor excited state. This disappearance of the coherence is clearly shown to occur when the photoinduced ET rate is smaller than the angular frequency of the Zeeman splitting: the transferred coherence terms are averaged to be zero due to effective quantum oscillations during the time that the chemical reaction proceeds. The above theory has been applied to elucidate the molecular geometries and spin-spin exchange interactions (2J) of the CS states for both folded and extended conformers by computer simulations of TREPR spectra of the zinc porphyrin-fullerene dyad (ZnP-C(60)) bridged by diphenyldisilane. On the extended conformation, the electronic coupling is estimated from the 2J value. It has been revealed that the coupling term is smaller than the reported electronic interactions of the porphyrin-C(60) systems bridged by diphenylamide spacers. The difference in the electronic couplings has been explained by the difference in the LUMO levels of the bridge moieties that mediate the superexchange coupling for the long-range ET reaction.

  4. Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers

    PubMed Central

    Nakanotani, Hajime; Furukawa, Taro; Morimoto, Kei; Adachi, Chihaya

    2016-01-01

    Understanding exciton behavior in organic semiconductor molecules is crucial for the development of organic semiconductor-based excitonic devices such as organic light-emitting diodes and organic solar cells, and the tightly bound electron-hole pair forming an exciton is normally assumed to be localized on an organic semiconducting molecule. We report the observation of long-range coupling of electron-hole pairs in spatially separated electron-donating and electron-accepting molecules across a 10-nanometers-thick spacer layer. We found that the exciton energy can be tuned over 100 megaelectron volts and the fraction of delayed fluorescence can be increased by adjusting the spacer-layer thickness. Furthermore, increasing the spacer-layer thickness produced an organic light-emitting diode with an electroluminescence efficiency nearly eight times higher than that of a device without a spacer layer. Our results demonstrate the first example of a long-range coupled charge-transfer state between electron-donating and electron-accepting molecules in a working device. PMID:26933691

  5. Theoretical characterization of photoinduced electron transfer in rigidly linked donor-acceptor molecules: the fragment charge difference and the generalized Mulliken-Hush schemes

    NASA Astrophysics Data System (ADS)

    Lee, Sheng-Jui; Chen, Hung-Cheng; You, Zhi-Qiang; Liu, Kuan-Lin; Chow, Tahsin J.; Chen, I.-Chia; Hsu, Chao-Ping

    2010-10-01

    We calculate the electron transfer (ET) rates for a series of heptacyclo[6.6.0.02,6.03,13.014,11.05,9.010,14]-tetradecane (HCTD) linked donor-acceptor molecules. The electronic coupling factor was calculated by the fragment charge difference (FCD) [19] and the generalized Mulliken-Hush (GMH) schemes [20]. We found that the FCD is less prone to problems commonly seen in the GMH scheme, especially when the coupling values are small. For a 3-state case where the charge transfer (CT) state is coupled with two different locally excited (LE) states, we tested with the 3-state approach for the GMH scheme [30], and found that it works well with the FCD scheme. A simplified direct diagonalization based on Rust's 3-state scheme was also proposed and tested. This simplified scheme does not require a manual assignment of the states, and it yields coupling values that are largely similar to those from the full Rust's approach. The overall electron transfer (ET) coupling rates were also calculated.

  6. Effects of donor-acceptor groups on the structural and electronic properties of 4-(methoxymethyl)-6-methyl-5-nitro-2-oxo-1,2-dihydropyridine-3-carbonitrile

    NASA Astrophysics Data System (ADS)

    Gümüş, Hacer Pir; Tamer, Ömer; Avcı, Davut; Atalay, Yusuf

    2014-11-01

    Quantum chemical calculations on the geometric parameters, harmonic vibrational wavenumbers and 1H and 13C nuclear magnetic resonance (NMR) chemical shifts values of 4-(methoxymethyl)-6-methyl-5-nitro-2-oxo-1,2-dihydropyridine-3-carbonitrile [C9H9N3O4] molecule in ground state were performed using the ab initio HF and density functional theory (DFT/B3LYP) methods with 6-311++G(d,p) basis set. The results of optimized molecular structure were presented and compared with X-ray diffraction results. The theoretical vibrational frequencies and 1H and 13C NMR chemical shifts values were compared with experimental values of the investigated molecule. The observed and calculated values were found to be in good agreement. Since the title compound contains different electron-donor and -acceptor groups as well as lone pair electrons, and multiple bonds, the effects of these groups on the structural and electronic properties are found out. In addition, conformational, natural bond orbital (NBO), nonlinear optical (NLO) analysis, frontier molecular orbital energies, molecular surfaces, Mulliken charges and atomic polar tensor based charges were investigated using HF and DFT methods.

  7. Photoinduced electron donor/acceptor processes in colloidal II-VI semiconductor quantum dots and nitroxide free radicals

    NASA Astrophysics Data System (ADS)

    Dutta, Poulami

    Electron transfer (ET) processes are one of the most researched topics for applications ranging from energy conversion to catalysis. An exciting variation is utilizing colloidal semiconductor nanostructures to explore such processes. Semiconductor quantum dots (QDs) are emerging as a novel class of light harvesting, emitting and charge-separation materials for applications such as solar energy conversion. Detailed knowledge of the quantitative dissociation of the photogenerated excitons and the interfacial charge- (electron/hole) transfer is essential for optimization of the overall efficiency of many such applications. Organic free radicals are the attractive counterparts for studying ET to/from QDs because these undergo single-electron transfer steps in reversible fashion. Nitroxides are an exciting class of stable organic free radicals, which have recently been demonstrated to be efficient as redox mediators in dye-sensitized solar cells, making them even more interesting for the aforementioned studies. This dissertation investigates the interaction between nitroxide free radicals TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl), 4-amino-TEMPO (4-amino- 2,2,6,6-tetramethylpiperidine-1-oxyl) and II-VI semiconductor (CdSe and CdTe) QDs. The nature of interaction in these hybrids has been examined through ground-state UV-Vis absorbance, steady state and time-resolved photoluminescence (PL) spectroscopy, transient absorbance, upconversion photoluminescence spectroscopy and electron paramagnetic resonance (EPR). The detailed analysis of the PL quenching indicates that the intrinsic charge transfer is ultrafast however, the overall quenching is still limited by the lower binding capacities and slower diffusion related kinetics. Careful analysis of the time resolved PL decay kinetics reveal that the decay rate constants are distributed and that the trap states are involved in the overall quenching process. The ultrafast hole transfer from CdSe QDs to 4-Amino TEMPO observed

  8. Possibility of the existence of donor-acceptor interactions in bis(azole)amines: an electronic structure analysis.

    PubMed

    Bhatia, Sonam; Bharatam, Prasad V

    2014-06-06

    Donor-stabilized divalent N(I) systems have recently gained attention in the field of organic chemistry. Existence of low-valent nitrogen(I) species with moderate nucleophilicities in several pharmacophoric functionalities is prompting extensive exploration in this field. Quantum chemical analysis on the imidazole, oxazole, and thiazole derivatives of thiazole-2-amine indicated that these species preferably exist in the iminic state. Electronic structure analysis of these systems suggested the existence of hidden divalent N(I) character in a neutral state (L → N-R) and the explicit divalent N(I) character (L → N ← L)(+) in the protonated state. The strength of L → N interaction in these systems was analyzed, and the variations in the nucleophilicity trend at the coordinating nitrogen center were rationalized by estimating the electronic (TEP (Tolman electronic parameter) and MESP minimum (V(min))) as well as steric parameters (r-repulsiveness and ΔH elimination of CO group, in L → Ni(CO)3) of the coordinating ligands L. The importance of energetically preferred ionic and tautomeric representations of thiazol-2-amine derivatives in iminic and aminic forms was also demonstrated by carrying out comparative docking analysis with the enzyme lymphocyte-specific kinase (Lck).

  9. On chirality transfer in electron donor-acceptor complexes. A prediction for the sulfinimine···BF3 system.

    PubMed

    Rode, Joanna E; Dobrowolski, Jan Cz

    2012-01-01

    Stabilization energies of the electron donor-acceptor sulfinimine···BF(3) complexes calculated at either the B3LYP/aug-cc-pVTZ or the MP2/aug-cc-pVTZ level do not allow to judge, whether the N- or O-atom in sulfinimine is stronger electron-donor to BF(3) . The problem seems to be solvable because chirality transfer phenomenon between chiral sulfinimine and achiral BF(3) is expected to be vibrational circular dichroism (VCD) active. Moreover, the bands associated with the achiral BF(3) molecule are predicted to be the most intense in the entire spectrum. However, the VCD band robustness analyses show that most of the chirality transfer modes of BF(3) are unreliable. Conversely, variation of VCD intensity with change of intermolecular distance, angle, and selected dihedrals between the complex partners shows that to establish the robustness of chirality transfer mode. It is also necessary to determine the influence of the potential energy surface (PES) shape on the VCD intensity. At the moment, there is still no universal criterion for the chirality transfer mode robustness and the conclusions formulated based on one system cannot be directly transferred even to a quite similar one. However, it is certain that more attention should be focused on relation of PES shape and the VCD mode robustness problem.

  10. Functional Inactivation of Putative Photosynthetic Electron Acceptor Ferredoxin C2 (FdC2) Induces Delayed Heading Date and Decreased Photosynthetic Rate in Rice.

    PubMed

    Zhao, Juan; Qiu, Zhennan; Ruan, Banpu; Kang, Shujing; He, Lei; Zhang, Sen; Dong, Guojun; Hu, Jiang; Zeng, Dali; Zhang, Guangheng; Gao, Zhenyu; Ren, Deyong; Hu, Xingming; Chen, Guang; Guo, Longbiao; Qian, Qian; Zhu, Li

    2015-01-01

    Ferredoxin (Fd) protein as unique electron acceptor, involved in a variety of fundamental metabolic and signaling processes, which is indispensable for plant growth. The molecular mechanisms of Fd such as regulation of electron partitioning, impact of photosynthetic rate and involvement in the carbon fixing remain elusive in rice. Here we reported a heading date delay and yellowish leaf 1 (hdy1) mutant derived from Japonica rice cultivar "Nipponbare" subjected to EMS treatment. In the paddy field, the hdy1 mutant appeared at a significantly late heading date and had yellow-green leaves during the whole growth stage. Further investigation indicated that the abnormal phenotype of hdy1 was connected with depressed pigment content and photosynthetic rate. Genetic analysis results showed that the hdy1 mutant phenotype was caused by a single recessive nuclear gene mutation. Map-based cloning revealed that OsHDY1 is located on chromosome 3 and encodes an ortholog of the AtFdC2 gene. Complementation and overexpression, transgenic plants exhibited the mutant phenotype including head date, leaf color and the transcription levels of the FdC2 were completely rescued by transformation with OsHDY1. Real-time PCR revealed that the expression product of OsHDY1 was detected in almost all of the organs except root, whereas highest expression levels were observed in seeding new leaves. The lower expression levels of HDY1 and content of iron were detected in hdy1 than WT's. The FdC2::GFP was detected in the chloroplasts of rice. Real-time PCR results showed that the expression of many photosynthetic electron transfer related genes in hdy1 were higher than WT. Our results suggest that OsFdC2 plays an important role in photosynthetic rate and development of heading date by regulating electron transfer and chlorophyll content in rice.

  11. Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3

    DOE PAGES

    Ming, Wenmei; Shi, Hongliang; Du, Mao-Hua

    2016-01-01

    Here we report that many metal halides that contain cations with the ns2 electronic configuration have recently been discovered as high-performance optoelectronic materials. In particular, solar cells based on lead halide perovskites have shown great promise as evidenced by the rapid increase of the power conversion efficiency. In this paper, we show density functional theory calculations of electronic structure and dielectric and defect properties of CsGeI3 (a lead-free halide perovskite material). The potential of CsGeI3 as a solar cell material is assessed based on its intrinsic properties. We find anomalously large Born effective charges and a large static dielectric constantmore » dominated by lattice polarization, which should reduce carrier scattering, trapping, and recombination by screening charged defects and impurities. Defect calculations show that CsGeI3 is a p-type semiconductor and its hole density can be modified by varying the chemical potentials of the constituent elements. Despite the reduction of long-range Coulomb attraction by strong screening, the iodine vacancy in CsGeI3 is found to be a deep electron trap due to the short-range potential, i.e., strong Ge–Ge covalent bonding, which should limit electron transport efficiency in p-type CsGeI3. This is in contrast to the shallow iodine vacancies found in several Pb and Sn halide perovskites (e.g., CH3NH3PbI3, CH3NH3SnI3, and CsSnI3). The low-hole-density CsGeI3 may be a useful solar absorber material but the presence of the low-energy deep iodine vacancy may significantly reduce the open circuit voltage of the solar cell. Still, on the other hand, CsGeI3 may be used as an efficient hole transport material in solar cells due to its small hole effective mass, the absence of low-energy deep hole traps, and the favorable band offset with solar absorber materials such as dye molecules and CH3NH3PbI3.« less

  12. Photoluminescence quenching of inorganic cesium lead halides perovskite quantum dots (CsPbX3) by electron/hole acceptor.

    PubMed

    Zhang, Yan-Xia; Wang, Hai-Yu; Zhang, Zhen-Yu; Zhang, Yu; Sun, Chun; Yue, Yuan-Yuan; Wang, Lei; Chen, Qi-Dai; Sun, Hong-Bo

    2017-01-18

    Recently, all-inorganic cesium lead halide perovskites (CsPbX3) quantum dots (QDs) have attracted great attention due to their halogen composition and size tunable band gap engineering, the same physical mechanism that is responsible for excellent performance in light-emitting devices. However, little is known about the time-resolved fluorescence quenching dynamics process of these CsPbX3 QDs. In this article, we present comprehensive contrastive spectral studies on the electron and hole extraction dynamics of CsPbX3 colloidal QDs with and without quencher by time-resolved femtosecond transient absorption (TA) and time-correlated single-photon counting (TCSPC) spectroscopy methods. We have identified that the partial electrons of the conduction band and holes of the valence band of CsPbX3 QDs can be directly extracted by tetracyanoethylene (TCNE) and phenothiazine (PTZ), respectively. Moreover, compared with the CsPbBr3 QDs, the CsPbI3 QDs showed relatively slower charge extraction rates. We also found that the CsPbBr3 QDs with smaller size showed faster carrier recombination rates and photoluminescence (PL) decay lifetime due to the relatively stronger quantum confinement effects. We believe that this study may be useful for realising optimal applications in photovoltaic and light emission devices.

  13. Determination of thermodynamic affinities of various polar olefins as hydride, hydrogen atom, and electron acceptors in acetonitrile.

    PubMed

    Cao, Ying; Zhang, Song-Chen; Zhang, Min; Shen, Guang-Bin; Zhu, Xiao-Qing

    2013-07-19

    A series of 69 polar olefins with various typical structures (X) were synthesized and the thermodynamic affinities (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the polar olefins obtaining hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the polar olefins (X(•-)) obtaining protons and hydrogen atoms, and the thermodynamic affinities of the hydrogen adducts of the polar olefins (XH(•)) obtaining electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The pure C═C π-bond heterolytic and homolytic dissociation energies of the polar olefins (X) in acetonitrile and the pure C═C π-bond homolytic dissociation energies of the radical anions of the polar olefins (X(•-)) in acetonitrile were estimated. The remote substituent effects on the six thermodynamic affinities of the polar olefins and their related reaction intermediates were examined using the Hammett linear free-energy relationships; the results show that the Hammett linear free-energy relationships all hold in the six chemical and electrochemical processes. The information disclosed in this work could not only supply a gap of the chemical thermodynamics of olefins as one class of very important organic unsaturated compounds but also strongly promote the fast development of the chemistry and applications of olefins.

  14. Calculations of One- and Two-Photon Absorption Spectra for Molecular Metal Chalcogenide Clusters with Electron-Acceptor Ligands.

    PubMed

    Nguyen, Kiet A; Pachter, Ruth; Day, Paul N

    2017-03-02

    We present calculated one- and two-photon absorption (OPA, TPA) spectra for molecular neutral, cation, and anion cadmium chalcogenide nonstoichiometric clusters [CdnE'm'(ER)m, E = S and Se, R = hydrogen, methyl, phenyl, para-nitrophenyl, para-cyanophenyl], ranging from less than 1 nm to more than 2 nm in size with well-defined structures. A systematic treatment of the clusters is carried out to assess the effects of size and ligand on their linear and nonlinear optical properties. Ligands and cluster size were found to have a large influence on the color and intensity of the electronic absorption spectra. TPA cross sections were found to increase linearly with cluster size. Electron-accepting ligands were also found to induce linear enhancement in TPA cross sections. Blue shifts of TPA maxima were observed for the first band with reduced molecular size. The effects of phenyl, para-nitrophenyl, and para-cyanophenyl substitutions, as well as changes in the chalcogenide atom, have been analyzed in detail.

  15. Preferential Use of an Anode as an Electron Acceptor by an Acidophilic Bacterium in the Presence of Oxygen▿

    PubMed Central

    Malki, Moustafa; De Lacey, Antonio L.; Rodríguez, Nuria; Amils, Ricardo; Fernandez, Victor M.

    2008-01-01

    Several anaerobic metal-reducing bacteria have been shown to be able to donate electrons directly to an electrode. This property is of great interest for microbial fuel cell development. To date, microbial fuel cell design requires avoiding O2 diffusion from the cathodic compartment to the sensitive anodic compartment. Here, we show that Acidiphilium sp. strain 3.2 Sup 5 cells that were isolated from an extreme acidic environment are able to colonize graphite felt electrodes. These bacterial electrodes were able to produce high-density electrocatalytic currents, up to 3 A/m2 at a poised potential of +0.15 V (compared to the value for the reference standard calomel electrode) in the absence of redox mediators, by oxidizing glucose even at saturating air concentrations and very low pHs. PMID:18487393

  16. Light acclimation maintains the redox state of the PS II electron acceptor Q(A) within a narrow range over a broad range of light intensities.

    PubMed

    Rosenqvist, E

    2001-01-01

    Chrysanthemum inducum-hybrid 'Coral Charm', Hibiscus rosa-sinensis L. 'Cairo Red' and Spathiphyllum wallisii Regel 'Petit' were grown in natural light in a greenhouse at three levels of irradiance using permanent shade screens. Light acclimation of photosynthesis was characterized using modulated chlorophyll a fluorescence of intact leaves. A close correlation was found between the degree of reduction of the primary electron acceptor Q(A) of Photosystem II (PS II) approximated as the fluorescence parameter 1-q(P), and light acclimation. The action range of 1-q(P) was 0-0.4 from darkness to full irradiance around noon, within the respective light treatments in the greenhouse, indicating that most PS II reaction centres were kept open. In general, the index for electron transport (ETR) measured by chlorophyll fluorescence was higher for high-light (HL) than intermediate-(IL) and low-light (LL) grown plants. However, HL Chrysanthemum showed 40% higher ETR than HL Hibiscus at light saturation, despite identical redox states of Q(A). The light acclimation of the non-radiative dissipation of excess energy in the antenna, NPQ, varied considerably between the species. However, when normalized against q(P), a strong negative correlation was found between thermal dissipation and ETR measured by chlorophyll fluorescence. To be able to accommodate a high flux of electrons through PS II, the plants with the highest light-saturated ETR had the lowest NPQ/q(P). The possibility of using chlorophyll fluorescence for quantification of the energy balance between energy input and utilization in PS II in intact leaves is discussed.

  17. Acceptors in ZnO

    SciTech Connect

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. G.; Harrison, Kale W.; Ha, Su Y.

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.

  18. Acceptors in ZnO

    SciTech Connect

    McCluskey, Matthew D. Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. Grant; Harrison, Kale W.; Ha, Su

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  19. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment.

    PubMed

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near

  20. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: Comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment

    SciTech Connect

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M.

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working

  1. Spectroscopic studies of molecular interactions involving 2,6-diethylaniline and N-ethylaniline donors and iodine as an electron acceptor in different solvents

    NASA Astrophysics Data System (ADS)

    El-Gogary, Tarek M.; Diab, Mostafa A.; El-Tantawy, Shreen F.

    2007-01-01

    The charge-transfer complexes of 2,6-diethylaniline (DEA) and N-ethylaniline (NEA) with iodine, as a typical σ-acceptor were studied spectrophotometrically in chloroform, dichloromethane and carbontetrachloride solutions. Spectral data, formation constants and effect of solvent have been determined. Spectral characteristics and formation constants are discussed in the terms of donor molecular structure and solvent polarity. The stoichiometry of the complexes was established to be 1:1. For this purpose, optical data were subjected to the form of the Rose-Drago equation for 1:1 equilibria. The formation constant ( KAD) and molar absorptivities ( ɛλ) of complexes were determined by least square method. Electronic absorption spectra of the anilines were measured in different solvents. Spectral data were reported and band maxima were assigned to the appropriate molecular orbital transitions. Quantum chemical calculations were performed with the aid of the Gaussian 98 set of programs. The structure were fully optimized at MP2 level using 6-31 + G** basis set. The computations show that DEA is not planner with the amino group having a somewhat sp 3 hybridization-like character.

  2. Electronic and optical properties of novel carbazole-based donor-acceptor compounds for applications in blue-emitting organic light-emitting diodes

    DOE PAGES

    Legaspi, Christian M.; Stubbs, Regan E.; Yaron, David J.; ...

    2015-08-20

    We report that organic light-emitting diodes (OLEDs) have received a significant attention over the past decade due to their energy-saving potential. We have recently synthesized two novel carbazole-based donor-acceptor compounds and analyzed their optical properties to determine their suitability for use as blue emitters in OLEDs. These compounds show remarkable photo-stability and high quantum yields in the blue region of the spectrum. In addition, they have highly solvatochromic emission. In non-polar solvents, bright, blue-shifted (λmax ≈ 398 nm), and highly structured emission is seen. With increasing solvent dielectric constant, the emission becomes weaker, red-shifted (λmax ≈ 507 nm), and broad.more » We aim to determine the underlying cause of these changes. Electronic structure calculations indicate the presence of multiple excited states with comparable oscillator strength. These states are of interest because there are several with charge-transfer (CT) character, and others centered on the donor moiety. We theorize that CT states play a role in the observed changes in emission lineshape and may promote charge mobility for electrofluorescence in OLEDs. In the future, we plan to use Stark spectroscopy to analyze the polarity of excited states and transient absorption spectroscopy to observe the dynamics in the excited state.« less

  3. Electronic and optical properties of novel carbazole-based donor-acceptor compounds for applications in blue-emitting organic light-emitting diodes

    SciTech Connect

    Legaspi, Christian M.; Stubbs, Regan E.; Yaron, David J.; Peteanu, Linda A.; Sfeir, Matthew Y.; Kemboi, Abraham; Picker, Jesse; Fossum, Eric

    2015-08-20

    We report that organic light-emitting diodes (OLEDs) have received a significant attention over the past decade due to their energy-saving potential. We have recently synthesized two novel carbazole-based donor-acceptor compounds and analyzed their optical properties to determine their suitability for use as blue emitters in OLEDs. These compounds show remarkable photo-stability and high quantum yields in the blue region of the spectrum. In addition, they have highly solvatochromic emission. In non-polar solvents, bright, blue-shifted (λmax ≈ 398 nm), and highly structured emission is seen. With increasing solvent dielectric constant, the emission becomes weaker, red-shifted (λmax ≈ 507 nm), and broad. We aim to determine the underlying cause of these changes. Electronic structure calculations indicate the presence of multiple excited states with comparable oscillator strength. These states are of interest because there are several with charge-transfer (CT) character, and others centered on the donor moiety. We theorize that CT states play a role in the observed changes in emission lineshape and may promote charge mobility for electrofluorescence in OLEDs. In the future, we plan to use Stark spectroscopy to analyze the polarity of excited states and transient absorption spectroscopy to observe the dynamics in the excited state.

  4. Expression of chlorite dismutase and chlorate reductase in the presence of oxygen and/or chlorate as the terminal electron acceptor in Ideonella dechloratans.

    PubMed

    Lindqvist, Miriam Hellberg; Johansson, Nicklas; Nilsson, Thomas; Rova, Maria

    2012-06-01

    The ability of microorganisms to perform dissimilatory (per)chlorate reduction is, for most species, known to be oxygen sensitive. Consequently, bioremediation processes for the removal of oxochlorates will be disturbed if oxygen is present. We measured the expression of chlorite dismutase and chlorate reductase in the presence of different terminal electron acceptors in the chlorate reducer Ideonella dechloratans. Enzyme activity assays and mRNA analyses by real-time quantitative reverse transcription (qRT)-PCR were performed on cell extracts from cells grown aerobically with and without chlorate and on cells grown anaerobically in the presence of chlorate. Our results showed that both chlorite dismutase and chlorate reductase are expressed during aerobic growth. However, transfer to anaerobic conditions with chlorate resulted in significantly enhanced enzyme activities and mRNA levels for both enzymes. Absence of oxygen was necessary for the induction to occur, since chlorate addition under aerobic conditions produced neither increased enzyme activities nor higher relative levels of mRNA. For chlorite dismutase, the observed increase in activity was on the same order of magnitude as the increase in the relative mRNA level, indicating gene regulation at the transcriptional level. However, chlorate reductase showed about 200 times higher enzyme activity in anaerobically induced cells, whereas the increase in mRNA was only about 10-fold, suggesting additional mechanisms influence the enzyme activity.

  5. The lead acceptor in p-type natural 2H-polytype MoS2 crystals evidenced by electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Iacovo, S.; Stesmans, A.; Houssa, M.; Afanas'ev, V. V.

    2017-03-01

    A low-temperature (T  =  1.5-8 K) electron paramagnetic resonance study of p-type 2H-polytype natural MoS2 crystals reveals a previously unreported anisotropic signal of corresponding defect density (spin S  =  ½) ~5  ×  1014 cm-3. For the applied magnetic field B//c-axis, the response is comprised of a single central asymmetric Zeeman peak at zero-crossing g  =  2.102(1), amid a symmetrically positioned hyperfine doublet of splitting 6.6(2) G. Field angular observations reveal a two-branch g pattern, indicative of a defect of lower than axial symmetry, likely orthorhombic (C 2v). Based on the signal specifics, it is ascribed to a system of decoupled Pb impurities substituting for Mo, the defect operating as an acceptor, with estimated thermal activation energy  >10 meV. Supporting theoretical anticipation, the results pinpoint the conduct of the Pb impurity in layered MoS2.

  6. Copolymer semiconductors comprising thiazolothiazole or benzobisthiazole, or benzobisoxazole electron acceptor subunits, and electron donor subunits, and their uses in transistors and solar cells

    DOEpatents

    Jenekhe, Samson A; Subramaniyan, Selvam; Ahmed, Eilaf; Xin, Hao; Kim, Felix Sunjoo

    2014-10-28

    The inventions disclosed, described, and/or claimed herein relate to copolymers comprising copolymers comprising electron accepting A subunits that comprise thiazolothiazole, benzobisthiazole, or benzobisoxazoles rings, and electron donating subunits that comprise certain heterocyclic groups. The copolymers are useful for manufacturing organic electronic devices, including transistors and solar cells. The invention also relates to certain synthetic precursors of the copolymers. Methods for making the copolymers and the derivative electronic devices are also described.

  7. An electronic spectroscopic study of micellisation of surfactants and solvation of homomicelles formed by cationic or anionic surfactants using a solvatochromic electron donor acceptor dye.

    PubMed

    Kedia, Niraja; Sarkar, Amrita; Purkayastha, Pradipta; Bagchi, Sanjib

    2014-10-15

    Solvatochromic absorption and fluorescence bands of a donor-acceptor dye have been utilised for following the micellisation and for probing the polarity of the aqueous homomicellar phase provided separately by cationic (cetyltrimethylammonimum bromide, CTAB and dodecyltrimethylammonimum bromide, DTAB) and anionic (sodium dodecyl sulphate, SDS) surfactant. Results indicate that for a low concentration of surfactant (below cmc) the dye forms a dimer in aqueous solution. In a micellar media, however, the dye exists as monomers. A strong dye-micelle interaction, as indicated by the shift of the solvatochromic intramolecular charge transfer band of the dye, has also been indicated. The absorption and fluorescence parameters of the dye have been utilised for studying the onset of aggregation of the surfactants. An iterative procedure has been developed for the estimation of cmc and the distribution coefficient (KD) of the dye between the aqueous and the micellar phase. All the parameters provide convergent values of cmc. A high value of KD indicates that the dye exists predominantly in the micellar phase. The solvatochromic parameters characterising the dipolarity-polarisability (π(*)) and H-bond donation ability (α) of modes of solvation interaction in different micellar media have been estimated. The dye is found to distribute itself between two regions in a catanionic vesicle formed by surfactants SDS and DTAB, one being relatively polar than other. The distribution coefficients have been found out using the fluorescence data.

  8. Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum.

    PubMed

    Menes, Rodolfo Javier; Muxí, Lucía

    2002-01-01

    A novel anaerobic, moderately thermophilic, peptide-fermenting bacterium, strain NGA(T), was isolated from an anaerobic wool-scouring wastewater treatment lagoon. The cells were gram-negative, straight rods of 0.5-1.0 x 2.0-4.0 microm, motile by means of a single flagellum. The DNA G+C content was 51.5 mol%. The optimum pH and temperature range for growth were 6.6-7.3 and 55-60 degrees C, respectively. The optimum NaCl concentration was 0.08 g l(-1). The bacterium fermented organic acids (malate, tartrate, pyruvate, glycerol and fumarate), a few carbohydrates (starch, glucose, fructose and gluconate), Casamino acids, tryptone and yeast extract. Carbohydrates and organic acids were converted to acetate, hydrogen and CO2. The bacterium oxidized leucine to isovalerate with crotonate as an electron acceptor, but not in co-culture with Methanothermobacter thermoautotrophicus DSM 3720T. Thiosulfate, sulfur and cystine were reduced to sulfide and crotonate was reduced to butyrate with glucose and tryptone-yeast extract as electron donors. Phylogenetic analysis of the 16S rRNA gene indicated that strain NGA(T) was related to Anaerobaculum thermoterrenum (98% similarity), the only described species of the genus. The DNA-DNA hybridization value for strain NGA(T) and A. thermoterrenum ACM 5076T was 40.8%. On the basis of these results, strain NGA(T) is proposed as a novel species of the genus Anaerobaculum, namely Anaerobaculum mobile sp. nov. The type strain is NGA(T) (= DSM 13181T =ATCC BAA-54T).

  9. Superexchange contributions to distance dependence of electron transfer/transport: exchange and electronic coupling in oligo(para-phenylene)- and oligo(2,5-thiophene)-bridged donor-bridge-acceptor biradical complexes.

    PubMed

    Kirk, Martin L; Shultz, David A; Stasiw, Daniel E; Lewis, Geoffrey F; Wang, Guangbin; Brannen, Candice L; Sommer, Roger D; Boyle, Paul D

    2013-11-13

    The preparation and characterization of three new donor-bridge-acceptor biradical complexes are described. Using variable-temperature magnetic susceptibility, EPR hyperfine coupling constants, and the results of X-ray crystal structures, we evaluate both exchange and electronic couplings as a function of bridge length for two quintessential molecular bridges: oligo(para-phenylene), β = 0.39 Å(-1) and oligo(2,5-thiophene), β = 0.22 Å(-1). This report represents the first direct comparison of exchange/electronic couplings and distance attenuation parameters (β) for these bridges. The work provides a direct measurement of superexchange contributions to β, with no contribution from incoherent hopping. The different β values determined for oligo(para-phenylene) and oligo(2,5-thiophene) are due primarily to the D-B energy gap, Δ, rather than bridge-bridge electronic couplings, H(BB). This is supported by the fact that the H(BB) values extracted from the experimental data for oligo(para-phenylene) (H(BB) = 11,400 cm(-1)) and oligo(2,5-thiophene) (12,300 cm(-1)) differ by <10%. The results presented here offer unique insight into the intrinsic molecular factors that govern H(DA) and β, which are important for understanding the electronic origin of electron transfer and electron transport mediated by molecular bridges.

  10. A biphenyl containing two electron-donating and two electron-accepting moieties: a rigid and small donor-acceptor-donor ladder system.

    PubMed

    Greulich, Tobias W; Suzuki, Naoya; Daniliuc, Constantin G; Fukazawa, Aiko; Yamaguchi, Eriko; Studer, Armido; Yamaguchi, Shigehiro

    2016-02-07

    Ladder π-conjugated materials and also push-pull systems belong to important classes of compounds for the development of organic electronic devices. In this communication, a novel π-conjugated material that unifies the properties of both of these classes is presented. The material comprises a rigid biphenyl framework, which bears two bridging electron-accepting phosphine oxide moieties as well as two electron-donating amino groups. The structure and photophysical properties of this compound are discussed and compared with those of a related system lacking the second P-moiety.

  11. Developing an Accelerator Driven System (ADS) based on electron accelerators and heavy water

    NASA Astrophysics Data System (ADS)

    Feizi, H.; Ranjbar, A. H.

    2016-02-01

    An ADS based on electron accelerators has been developed specifically for energy generation and medical applications. Monte Carlo simulations have been performed using FLUKA code to design a hybrid electron target and the core components. The composition, geometry of conversion targets and the coolant system have been optimized for electron beam energies of 20 to 100 MeV . Furthermore, the photon and photoneutron energy spectra, distribution and energy deposition for various incoming electron beam powers have been studied. Light-heavy water of various mixtures have been used as heat removal for the targets, as γ-n converters and as neutron moderators. We have shown that an electron LINAC, as a neutron production driver for ADSs, is capable of producing a neutron output of > 3.5 × 1014 (n/s/mA). Accordingly, the feasibility of an electron-based ADS employing the designed features is promising for energy generation and high intense neutron production which have various applications such as medical therapies.

  12. EPR and optical spectroscopic properties of the electron carrier intermediate between the reaction center bacteriochlorophylls and the primary acceptor in Chromatium vinosum.

    PubMed

    Tiede, D M; Prince, R C; Dutton, P L

    1976-12-06

    1. A reaction center-cytochrome c complex has been isolated from Chromatium vinosum which is capable of normal photochemistry and light-activated rapid cytochrome c553 and c555 oxidation, but which has no antenna bacteriochlorophyll. As is found in whole cells, ferrocytochrome c553 is oxidized irreversibly in milliseconds by light at 7 K. 2. Room temperature redox potentiometry in combination with EPR analysis at 7 K, of cytochrome c553 and the reaction center bacteriochlorophyll dimer (BChl)2 absorbing at 883 nm yields identical results to those previously reported using optical analytical techniques at 77 K. It shows directly that two cytochrome c553 hemes are equivalent with respect to the light induced (BChl)2+. At 7 K, only one heme can be rapidly oxidized in the light, commensurate with the electron capacity of the primary acceptor (quinone-iron) being unity. 3. Prior chemical reduction of the quinone-iron followed by illumination at 200K, however, leads to the slow (t1/2 approximately equal to 30 s) oxidation of one cytochrome c553 heme, with what appears to be concommitant reduction of one of the two bacteriophytins (BPh) of the reaction center as shown by bleaching of the 760 nm band, a broad absorbance increase at approx. 650 nm and a bleaching at 543 nm. The 800 nm absorbing bacteriochlorophyll is also involved since there is also bleaching at 595 and 800 nm; at the latter wave-length the remaining unbleached band appears to shift significantly to the blue. No redox changes in the 883 absorbing bacteriochlorophyll dimer are seen during or after illumination under these conditions. The reduced part of the state represents what is considered to be the reduced form of the electron carrier (I) which acts as an intermediate between the bacteriochlorophyll dimer and quinone-iron. The state (oxidized c553/reduced I) relaxes in the dark at 200K in t1/2 approx. 20 min but below 77 K it is trapped on a days time scale. 4. EPR analysis of the state trapped as

  13. The Nature of the Donor Motif in Acceptor-Bridge-Donor Dyes as an Influence in the Electron Photo-Injection Mechanism in DSSCs.

    PubMed

    Zarate, Ximena; Schott-Verdugo, Stephan; Rodriguez-Serrano, Angela; Schott, Eduardo

    2016-03-10

    The combination and balance of acceptor(A)-bridge-donor(D) architecture of molecules confer suitable attributes and/or properties to act as efficient light-harvesting and sensitizers in dye sensitized solar cells (DSSCs). An important process in a DSSC performance is the electron photoinjection (PI) mechanism which can take place either via type I (indirect), that consists in injecting from the excited state of the dye to the semiconductor, or type II (direct), where the PI is from the ground state of the dye to the semiconductor upon photoexcitation. Here, we present a computational study about the role of the donor motif in the PI mechanisms displayed from a family of 11 A-bridge-D structured dyes to a (TiO2)15 anatase cluster. To this end, different donor motifs (D1-D11) were evaluated while the A and bridge motifs remained the same. All the computations were carried out within the DFT framework, using the B3LYP, PW91, PBE, M06L and CAM-B3LYP functionals. The 6-31G(d) basis set was employed for nonmetallic atoms and the LANL2DZ pseudopotential for Ti atoms. The solvation effects were incorporated using the polarized continuum model (PCM) for acetonitrile. As benchmark systems, alizarin and naphthalenediol dyes were analyzed, as they are known to undergo Type I and Type II PI pathways in DSSCs, respectively. Donors in the studied family of dyes could influence to drive Type I or II PI since it was found that D2 could show some Type II PI route, showing a new absorption band, although with CAM-B3LYP this shows a very low oscillator strength, while the remaining dyes behave according to Type I photoinjectors. Finally, the photovoltaic parameters that govern the light absorption process were evaluated, as the use of these criteria could be applied to predict the efficiency of the studied dyes in DSSCs devices.

  14. Identification and characterization of PshB, the dicluster ferredoxin that harbors the terminal electron acceptors F(A) and F(B) in Heliobacterium modesticaldum.

    PubMed

    Heinnickel, Mark; Shen, Gaozhong; Golbeck, John H

    2007-03-06

    The Type I homodimeric photosynthetic reaction center found in anaerobic gram-positive bacteria of the genus Heliobacteriaceae incorporates FA- and FB-like iron-sulfur clusters similar to those found in Photosystem I as terminal electron acceptors. We recently isolated the PshB protein that harbors the iron-sulfur clusters from the reaction centers of Heliobacterium modesticaldum. Here, we report the cloning of a candidate gene and the properties of its product. Genuine PshB was dissociated from the reaction center with 1 M NaCl and purified using an affinity strategy. After acquiring its N-terminal amino acid sequence, an fd2-like gene encoding a 5.5-kDa dicluster ferredoxin was identified as a candidate for PshB. The Fd2-like apoprotein was expressed in Escherichia coli with a His tag, and the Fe/S clusters were inserted using inorganic reagents. The optical absorbance and EPR spectra of the Fd2-like holoprotein were similar to those of genuine PshB. The Fd2-like holoprotein was coeluted with P798-FX cores on both G-75 gel filtration and Ni affinity columns. Consistent with binding, the EPR resonances at g = 2.067, 1.933, and 1.890 from [FA/FB]- were restored after illumination at 15 K, and the long-lived, room-temperature charge recombination kinetics between P798+ and [FA/FB]- reappeared on a laser flash. These characteristics indicate that the long-sought gene and polypeptide harboring the FA- and FB-like clusters in heliobacteria have been identified. The amino acid sequence of PshB indicates an entirely different mode of binding with the reaction center core than PsaC, its counterpart in Photosystem I.

  15. Modulation of primary radical pair kinetics and energetics in photosystem II by the redox state of the quinone electron acceptor Q(A).

    PubMed Central

    Gibasiewicz, K; Dobek, A; Breton, J; Leibl, W

    2001-01-01

    Time-resolved photovoltage measurements on destacked photosystem II membranes from spinach with the primary quinone electron acceptor Q(A) either singly or doubly reduced have been performed to monitor the time evolution of the primary radical pair P680(+)Pheo(-). The maximum transient concentration of the primary radical pair is about five times larger and its decay is about seven times slower with doubly reduced compared with singly reduced Q(A). The possible biological significance of these differences is discussed. On the basis of a simple reversible reaction scheme, the measured apparent rate constants and relative amplitudes allow determination of sets of molecular rate constants and energetic parameters for primary reactions in the reaction centers with doubly reduced Q(A) as well as with oxidized or singly reduced Q(A). The standard free energy difference DeltaG degrees between the charge-separated state P680(+)Pheo(-) and the equilibrated excited state (Chl(N)P680)* was found to be similar when Q(A) was oxidized or doubly reduced before the flash (approximately -50 meV). In contrast, single reduction of Q(A) led to a large change in DeltaG degrees (approximately +40 meV), demonstrating the importance of electrostatic interaction between the charge on Q(A) and the primary radical pair, and providing direct evidence that the doubly reduced Q(A) is an electrically neutral species, i.e., is doubly protonated. A comparison of the molecular rate constants shows that the rate of charge recombination is much more sensitive to the change in DeltaG degrees than the rate of primary charge separation. PMID:11259277

  16. Kinetics and Thermodynamics of Reversible Thiol Additions to Mono- and Diactivated Michael Acceptors: Implications for the Design of Drugs That Bind Covalently to Cysteines.

    PubMed

    Krenske, Elizabeth H; Petter, Russell C; Houk, K N

    2016-12-02

    Additions of cysteine thiols to Michael acceptors underpin the mechanism of action of several covalent drugs (e.g., afatinib, osimertinib, ibrutinib, neratinib, and CC-292). Reversible Michael acceptors have been reported in which an additional electron-withdrawing group was added at the α-carbon of a Michael acceptor. We have performed density functional theory calculations to determine why thiol additions to these Michael acceptors are reversible. The α-EWG group stabilizes the anionic transition state and intermediate of the Michael addition, but less intuitively, it destabilizes the neutral adduct. This makes the reverse reaction (elimination) both faster and more thermodynamically favorable. For thiol addition to be reversible, the Michael acceptor must also contain a suitable substituent on the β-carbon, such as an aryl or branched alkyl group. Computations explain how these structural elements contribute to reversibility and the ability to tune the binding affinities and the residence times of covalent inhibitors.

  17. BPM ANALOG FRONT-END ELECTRONICS BASED ON THE AD8307 LOG AMPLIFIER

    SciTech Connect

    R. SHURTER; ET AL

    2000-06-01

    Beam position monitor (BPM) signal-processing electronics utilizing the Analog Devices AD8307 logarithmic amplifier has been developed for the Low Energy Demonstration Accelerator (LEDA), part of the Accelerator Production of Tritium (APT) project at Los Alamos. The low-pass filtered 350 MHz fundamental signal from each of the four microstrip electrodes in a BPM is ''detected'' by an AD8307 log amp, amplified and scaled to accommodate the 0 to +5V input of an analog-to-digital (A/D) converter. The resultant four digitized signals represent a linear power relationship to the electrode signals, which are in turn related to beam current and position. As the AD8307 has a potential dynamic range of approximately 92 dB, much attention must be given to noise reduction, sources of which can be digital signals on the same board, power supplies, inter-channel coupling, stray RF and others. This paper will describe the operational experience of this particular analog front-end electronic circuit design.

  18. Photovoltaic properties of Au-merocyanine-TiO2 sandwich cells. II. Properties of illuminated cells and effects of doping with electron acceptors

    NASA Astrophysics Data System (ADS)

    Skotheim, T.; Yang, J.-M.; Otvos, J.; Klein, M. P.

    1982-12-01

    Photocurrent generation in thin films of a merocyanine photosensitizing dye sandwiched between a TiO2 single crystal doped n type and an Au overlayer has been studied using photovoltaic techniques. A theoretical model was developed to explain the observed photovoltaic properties. The model assumes that the principal route for the formation of charge carriers is via singlet excitons diffusing to the merocyanine-TiO2 interface followed by dissociation of the excitons into electron-hole pairs, the electrons being injected into the TiO2 conduction band and the holes into the merocyanine. The model also incorporates field dependence of the quantum efficiency for charge generation. An exciton diffusion length of 79 Å was determined by analyzing the short circuit action spectra using the theoretical model developed. The low fill factor of 0.35 for these cells was attributed to the field dependence of the quantum efficiency and the high series resistance of the undoped merocyanine films. Doping the merocyanine films with iodine was found to increase both the dark conductivity and the steady state photoconductivity, the latter by as much as a factor of 5. This resulted in a quantum yield of 12% for a 500 Å thick film and an increase in the fill factor to 0.44 giving a monochromatic power conversion efficiency of 0.4% at 520 nm. The carrier generation in iodine doped films is shown to result from a bulk process, possibly involving collisions between singlet excitons and acceptor-hole complexes resulting in activation out of the bound states formed by the charge-transfer complex. The quenching of excitons in the immediate vicinity of the metal surface was studied by monitoring the photoconductive response of a 200 Å merocyanine film with varying thickness of perylene sandwiched between the metal and the merocyanine. Perylene was shown to be able to transport the photoexcited holes from the merocyanine to the Au electrode. The quantum efficiency for photocarrier production

  19. PHOTOVOLTAIC PROPERTIES OF AU-MEROCYANINE-TiO2 SANDWICH CELLS. II. PROPERTIES OF ILLUMINATED CELLS AND EFFECTS OF DOPING WITH ELECTRON ACCEPTORS

    SciTech Connect

    Skotheim, T.; Yang, J.-M.; Otvos, J.; Klein, M.P.

    1980-07-01

    Photocurrent generation in thin films of a merocyanine photosensitizing dye sandwiched between a TiO{sub 2} single crystal doped n type and an Au overlayer has been studied using photovoltaic techniques. A theoretical model was developed to explain the observed photovoltaic properties. The model assumes that the principal route for the formation of charge carriers is via singlet excitons diffusing to the merocyanine - TiO{sub 2} interface followed by dissociation of the excitons into electron-hole pairs, the electrons being injected into the TiO{sub 2} conduction band and the holes into the merocyanine. The model also incorporates field dependence of the quantum efficiency for charge generation. An exciton diffusion length of 79 {angstrom} was determined by analyzing the short circuit action spectra using the theoretical model developed. The low fill factor of 0.35 for these cells was attributed to the field dependence of the quantum efficiency and the high series resistance of the undoped merocyanine films. Doping the merocyanine films with iodine was found to increase both the dark conductivity and the steady state photoconductivity, the latter by as much as a factor of 5. This resulted in a quantum yield of 12% for a 500 {angstrom} thick film and an increase in the fill factor to 0.44 giving a monochromatic power conversion efficiency of 0.4% at 520 nm. The carrier generation in iodine doped films is shown to result from a bulk process, possibly involving collisions between singlet excitons and acceptor-hole complexes resulting in activation out of the bound states formed by the charge-transfer complex. The quenching of excitons in the immediate vicinity of the metal surface was studied by monitoring the photoconductive response of a 200 {angstrom} merocyanine film with varying thickness of perylene sandwiched between the metal and the merocyanine. Perylene was shown to be able to transport the photoexcited holes from the merocyanine to the Au electrode. The

  20. Modulation of photosynthetic electron transport in the absence of terminal electron acceptors: characterization of the rbcL deletion mutant of tobacco.

    PubMed

    Allahverdiyeva, Yagut; Mamedov, Fikret; Mäenpää, Pirkko; Vass, Imre; Aro, Eva-Mari

    2005-08-15

    Tobacco rbcL deletion mutant, which lacks the key enzyme Rubisco for photosynthetic carbon assimilation, was characterized with respect to thylakoid functional properties and protein composition. The Delta rbcL plants showed an enhanced capacity for dissipation of light energy by non-photochemical quenching which was accompanied by low photochemical quenching and low overall photosynthetic electron transport rate. Flash-induced fluorescence relaxation and thermoluminescence measurements revealed a slow electron transfer and decreased redox gap between Q(A) and Q(B), whereas the donor side function of the Photosystem II (PSII) complex was not affected. The 77 K fluorescence emission spectrum of Delta rbcL plant thylakoids implied a presence of free light harvesting complexes. Mutant plants also had a low amount of photooxidisible P700 and an increased ratio of PSII to Photosystem I (PSI). On the other hand, an elevated level of plastid terminal oxidase and the lack of F0 'dark rise' in fluorescence measurements suggest an enhanced plastid terminal oxidase-mediated electron flow to O2 in Delta rbcL thylakoids. Modified electron transfer routes together with flexible dissipation of excitation energy through PSII probably have a crucial role in protection of PSI from irreversible protein damage in the Delta rbcL mutant under growth conditions. This protective capacity was rapidly exceeded in Delta rbcL mutant when the light level was elevated resulting in severe degradation of PSI complexes.

  1. Electronic structure of donor-spacer-acceptor molecules of potential interest for molecular electronics. IV. Geometry and device properties of P3CNQ and Q3CNQ

    NASA Astrophysics Data System (ADS)

    Broo, Anders; Zerner, Michael C.

    1995-07-01

    Z-β-(1-hexadecyl-4-quinolinium)-α-cyano-4-styryldicyanomethanide (C 16H 33-Q3CNQ) and the pyridinium analogue Z-β-(1-hexadecyl-4-pyridinium)-α-cyano-4-styryldicyanomethanide (C 16H 33-P3NCQ) are two very promising candidates for molecular device design. We obtain the geometry of the ground and excited state of these systems using the PM3 quantum mechanical model. The absorption spectra in vacuum and in solution are calculated using the INDO/Cl model, and compared to experimental spectra. The solvatochromic shift of the absorption spectra was calculated using a self-consistent reaction field approach. The observed bleaching of Langmuir-Blodgett films and solutions of C 16H 33-Q3CNQ and C 16H 33-P3CNQ is explained as resulting from a twisted configuration formed without barrier upon absorption into a twisted intramolecular charge transfer state. The observed rectification is explained from a ground state potential energy surface with two minima, one of which is characterized by a very large dipole moment. The relative energy of these minima is easily shifted by an electric field. The overall electron transport rate is found to be very small due to the small electronic coupling between the mono-layers of the L-B film. Thus, the electron transport through the sample is likely through defects of the L-B film. A way to increase the electronic coupling between the mono-layers is also discussed.

  2. The effect of permodified cyclodextrins encapsulation on the photophysical properties of a polyfluorene with randomly distributed electron-donor and rotaxane electron-acceptor units.

    PubMed

    Farcas, Aurica; Resmerita, Ana-Maria; Aubert, Pierre-Henri; Farcas, Flavian; Stoica, Iuliana; Airinei, Anton

    2014-01-01

    We report on the synthesis as well as the optical, electrochemical and morphological properties of two polyrotaxanes (4a and 4b), which consist of electron-accepting 9,9-dicyanomethylenefluorene 1 as an inclusion complex in persilylated β- or γ-cyclodextrin (TMS-β-CD, TMS-γ-CD) (1a, 1b) and methyltriphenylamine as an electron-donating molecule. They are statistically distributed into the conjugated chains of 9,9-dioctylfluorene 3 and compared with those of the corresponding non-rotaxane 4 counterpart. Rotaxane formation results in improvements of the solubility, the thermal stability, and the photophysical properties. Polyrotaxanes 4a and 4b exhibited slightly red-shifted absorption bands with respect to the non-rotaxane 4 counterpart. The fluorescence lifetimes of polyrotaxanes follow a mono-exponential decay with a value of τ = 1.14 ns compared with the non-rotaxane, where a bi-exponential decay composed of a main component with a relative short time of τ1 = 0.88 (57.08%) and a minor component with a longer lifetime of τ2 = 1.56 ns (42.92%) were determined. The optical and electrochemical band gaps (ΔE g) as well as the ionization potential and electronic affinity characterized by smaller values compared to the values of any of the constituents. AFM reveals that the film surface of 4a and 4b displays a granular morphology with a lower dispersity supported by a smaller roughness exponent compared with the non-rotaxane counterpart.

  3. Phosphorus as a simultaneous electron-pair acceptor in intermolecular P···N pnicogen bonds and electron-pair donor to Lewis acids.

    PubMed

    Del Bene, Janet E; Alkorta, Ibon; Sánchez-Sanz, Goar; Elguero, José

    2013-04-11

    Ab initio MP2/aug'-cc-pVTZ calculations have been performed to investigate the structures and energies of binary complexes LA:PH2F and LA:PH3 and of ternary complexes LA:H2FP:NFH2 and LA:H3P:NH3 in which the pnicogen-bonded P atom also acts as an electron-pair donor to a Lewis acid (LA), for LA = BH3, NCH, ClH, FH, FCl, and HLi. Hydrogen bonds, halogen bonds, and dative covalent bonds are found at P in some cases, depending on the nature of the Lewis acid. HLi forms a lithium bond with P only in the binary complex HLi:PH3. The binding energies of ternary complexes exhibit a classical synergistic effect, although the computed cooperativity may be overestimated due to neglect of the interaction of the Lewis acid with NH2F or NH3 in some cases. The hydrogen-bonding Lewis acids appear to have little effect on the strength of the P···N bond, while the remaining Lewis acids strengthen the pnicogen bond. (31)P absolute chemical shieldings increase in LA:H2FP:NFH2 complexes relative to the corresponding LA:PH2F complexes as the positive charge on P decreases, while chemical shieldings decrease in LA:H3P:NH3 relative to the corresponding LA:PH3 complexes as the positive charge increases. Absolute values of (1p)J(P-N) spin-spin coupling constants in complexes LA:H2FP:NFH2 decrease as the P-N distance decreases. It appears that this behavior is associated with the presence of a second intermolecular interaction, whether electron-donation by P or hydrogen bond formation at P-F.

  4. The role of amino acid electron-donor/acceptor atoms in host-cell binding peptides is associated with their 3D structure and HLA-binding capacity in sterile malarial immunity induction

    SciTech Connect

    Patarroyo, Manuel E.; Almonacid, Hannia; Moreno-Vranich, Armando

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Fundamental residues located in some HABPs are associated with their 3D structure. Black-Right-Pointing-Pointer Electron-donor atoms present in {beta}-turn, random, distorted {alpha}-helix structures. Black-Right-Pointing-Pointer Electron-donor atoms bound to HLA-DR53. Black-Right-Pointing-Pointer Electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. -- Abstract: Plasmodium falciparum malaria continues being one of the parasitic diseases causing the highest worldwide mortality due to the parasite's multiple evasion mechanisms, such as immunological silence. Membrane and organelle proteins are used during invasion for interactions mediated by high binding ability peptides (HABPs); these have amino acids which establish hydrogen bonds between them in some of their critical binding residues. Immunisation assays in the Aotus model using HABPs whose critical residues had been modified have revealed a conformational change thereby enabling a protection-inducing response. This has improved fitting within HLA-DR{beta}1{sup Asterisk-Operator} molecules where amino acid electron-donor atoms present in {beta}-turn, random or distorted {alpha}-helix structures preferentially bound to HLA-DR53 molecules, whilst HABPs having amino acid electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. This data has great implications for vaccine development.

  5. Effects of inorganic electron acceptors on methanogenesis and methanotrophy and on the community structure of bacteria and archaea in sediments of a boreal lake

    NASA Astrophysics Data System (ADS)

    Rissanen, Antti J.; Karvinen, Anu; Nykänen, Hannu; Peura, Sari; Tiirola, Marja; Mäki, Anita; Kankaala, Paula

    2016-04-01

    Lake sediments are globally significant sources of CH4 to the atmosphere, but the factors controlling the production and consumption of CH4 in these systems are understudied. Increasing availability of electron acceptors (EA) (other than CO2) in sediments can decrease or even suppress CH4 production by diverting the electron flow (from H2 and organic substances) from methanogenic to other anaerobic respiration pathways. However, whether these changes in microbial function extend down to changes in the structure of microbial communities is not known. Also anaerobic oxidation of methane (AOM) could be enhanced by increased availability of EAs (SO42-, NO3-, Fe3+ and Mn4+), but information on the role of this process in lake sediments is scarce. We studied the effects of inorganic EAs on the potential for CH4 production and consumption and on the structure of microbial communities in sediments of a boreal lake. Anoxic slurries of sediment samples collected from two depths (0 - 10 cm; 10 - 30 cm) of the profundal zone of a boreal, mesotrophic Lake Ätäskö, were amended with 1) CH4 or with CH4 and either 2) 10 mM Mn4+, 3) 10 mM Fe3+, 4) O2 or 5) CH2F2 (inhibitor of aerobic methane oxidation) and incubated at +10° C for up to 4 months. Furthermore, slurries from the 10 - 30 cm layer were amended with CH4 and either 6) 2 mM NO3- or 7) 2 mM SO42- and incubated at +4 ° C for up to 14 months. The processes were measured using 13C-labelling and by concentration measurements of CH4 and CO2. Effects of treatments 1-3 on microbial communities were also analysed by next-generation sequencing of 16S rRNA, as well as methyl coenzyme-M reductase gene amplicons and mRNA transcripts. CH4 production (max. 83 nmol gdw-1d-1) took place in the anaerobic treatments but was generally decreased by the addition of NO3-, SO42-, Fe3+ and Mn4+. Although the structure of sediment archaeal community was resistant to Fe3+/Mn4+ - additions, slight changes in the structure of bacterial community

  6. Alternansucrase acceptor products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The regioselectivity of alternansucrase (EC 2.4.1.140) differs from dextransucrase (EC 2.4.1.5) in ways that can be useful for the synthesis of novel oligosaccharide structures. For example, it has been recently shown that the major oligosaccharides produced when maltose is the acceptor include one...

  7. The Ala95-to-Gly substitution in Aerococcus viridans l-lactate oxidase revisited - structural consequences at the catalytic site and effect on reactivity with O2 and other electron acceptors.

    PubMed

    Stoisser, Thomas; Rainer, Daniela; Leitgeb, Stefan; Wilson, David K; Nidetzky, Bernd

    2015-02-01

    Aerococcus viridansl-lactate oxidase (avLOX) is a biotechnologically important flavoenzyme that catalyzes the conversion of L-lactate and O₂ into pyruvate and H₂O₂. The enzymatic reaction underlies different biosensor applications of avLOX for blood L-lactate determination. The ability of avLOX to replace O₂ with other electron acceptors such as 2,6-dichlorophenol-indophenol (DCIP) allows the possiblity of analytical and practical applications. The A95G variant of avLOX was previously shown to exhibit lowered reactivity with O₂ compared to wild-type enzyme and therefore was employed in a detailed investigation with respect to the specificity for different electron acceptor substrates. From stopped-flow experiments performed at 20 °C (pH 6.5), we determined that the A95G variant (fully reduced by L-lactate) was approximately three-fold more reactive towards DCIP (1.0 ± 0.1 × 10(6) M(-1) ·s(-1) ) than O₂, whereas avLOX wild-type under the same conditions was 14-fold more reactive towards O₂(1.8 ± 0.1 × 10(6) m(-1) ·s(-1)) than DCIP. Substituted 1,4-benzoquinones were up to five-fold better electron acceptors for reaction with L-lactate-reduced A95G variant than wild-type. A 1.65-Å crystal structure of oxidized A95G variant bound with pyruvate was determined and revealed that the steric volume created by removal of the methyl side chain of Ala95 and a slight additional shift in the main chain at position Gly95 together enable the accomodation of a new active-site water molecule within hydrogen-bond distance to the N5 of the FMN cofactor. The increased steric volume available in the active site allows the A95G variant to exhibit a similar trend with the related glycolate oxidase in electron acceptor substrate specificities, despite the latter containing an alanine at the analogous position.

  8. Charge-transfer (CT) orbitals for the one-electron description of CT excitations in a wide range of donor-acceptor separations

    NASA Astrophysics Data System (ADS)

    Gritsenko, O. V.

    2017-01-01

    A transformation of the virtual Kohn-Sham orbitals is proposed to a set of charge-transfer orbitals (CTOs) adapted to description of CT excitations. The CTO scheme offers a simple estimate of the CT excitation energy with an orbital energy difference. This estimate reproduces well the reference values of the configuration interaction (CI) method in a wide range of donor-acceptor separations in the paradigmatic He -Be complex. CTO-based orbital energy and shape indices are proposed to assess the suitability of the CT description with virtual orbitals of a given basis set. Both indices yield correct trends for the Kohn-Sham and Hartree-Fock orbitals.

  9. Application of the Stopped Flow Technique to the TiO₂-Heterogeneous Photocatalysis of Hexavalent Chromium in Aqueous Suspensions: Comparison with O₂ and H₂O₂ as Electron Acceptors.

    PubMed

    Meichtry, Jorge M; Dillert, Ralf; Bahnemann, Detlef W; Litter, Marta I

    2015-06-09

    The dynamics of the transfer of electrons stored in TiO2 nanoparticles to Cr(VI) in aqueous solution have been investigated using the stopped flow technique. TiO2 nanoparticles were previously irradiated under UV light in the presence of formic acid, and trapped electrons (e(trap)(-)) were made to react with Cr(VI) as acceptor species; other common acceptor species such as O2 and H2O2 were also tested. The temporal evolution of the number of trapped electrons was followed by the decrease in the absorbance at 600 nm, and the kinetics of the electron-transfer reaction was modeled. Additionally, the rate of formation of the surface complex between Cr(VI) and TiO2 was determined with the stopped flow technique by following the evolution of the absorbance at 400 nm of suspensions of nonirradiated TiO2 nanoparticles and Cr(VI) at different concentrations. An approximately quadratic relationship was observed between the maximum absorbance of the surface complex and the concentration of Cr(VI), suggesting that Cr(VI) adsorbs onto the TiO2 surface as dichromate. The kinetic analyses indicate that the electron transfer from TiO2 to Cr(VI) does not require the previous formation of the Cr(VI)-TiO2 surface complex, at least the complex detected here through the stopped flow experiments. When previously irradiated TiO2 was used to follow the evolution of the Cr(VI)-TiO2 complex, an inhibition of the formation of the complex was observed, which can be related to the TiO2 deactivation caused by Cr(III) deposition.

  10. Production of no carrier added 80mBr for investigation of Auger electron toxicity.

    PubMed

    Mease, R C; DeJesus, O T; Gatley, S J; Harper, P V; Desombre, E R; Friedman, A M

    1991-01-01

    80mBr (half-life = 4.43 h) is an Auger electron emitting nuclide with convenient properties for investigating Auger electron cytotoxicity and with potential for labeling in vivo radiotherapeutic agents. We have investigated three cyclotron target systems capable of generating 80mBr of sufficiently high specific radioactivity (no carrier added) for biomedical experiments. A 83Kr gas target irradiated with 21.5 MeV deuterons made 80mBr at a production yield of 1.6 +/- 0.2 mCi/muAh at saturation. A five-fold increase in 80mBr yield was obtained from 15 MeV proton irradiation of thin elemental Se enriched in 80Se targets although technical improvements are expected to further raise this production yield. This route is therefore superior for current medical cyclotrons. Irradiation of a reusable 80Se copper selenide target also yielded multi-millicurie amounts of 80mBr, and recovery of radiobromine by dry distillation is faster and more convenient than in the elemental Se target, but an optimum copper selenide target for 80mBr production has not yet been built.

  11. The influence of impurity profiles on mobility of two-dimensional electron gas in AlGaAs/InGaAs/GaAs heterostructures modulation-doped by donors and acceptors

    NASA Astrophysics Data System (ADS)

    Protasov, D. Yu.; Zhuravlev, K. S.

    2017-03-01

    The low-temperature mobility of two-dimensional electron gas (2DEG) limited scattering by ionized impurities, alloy disorder, acoustic and optical phonons, and interface roughness was calculated for novel pseudomorphic modulation-doped by donors and acceptors InGaAs/AlGaAs quantum well structures promising for high power microwave transistors. Due to the high 2DEG density in the quantum well intersubband transitions were taken into account. Scattering by the ionized donors from δ-layer located in AlGaAs barriers dominates, whereas scattering by the ionized acceptors occupying the most part of AlGaAs barriers is negligibly weak. The width of donor doping profile is a key parameter to control 2DEG mobility, thus, increasing of the profile width from 0.25 nm to 4 nm due to segregation and diffusion of donor atoms halves the mobility. We have proposed a few approaches for the weakening of Coulomb scattering and the increase in 2DEG mobility in the novel heterostructures. The predicted mobility enhancement due to δ-layer splitting into two δ-sublayers was verified experimentally.

  12. Acceptor impurity activation in III-nitride light emitting diodes

    SciTech Connect

    Römer, Friedhard Witzigmann, Bernd

    2015-01-12

    In this work, the role of the acceptor doping and the acceptor activation and its impact on the internal quantum efficiency (IQE) of a Gallium Nitride (GaN) based multi-quantum well light emitting diode is studied by microscopic simulation. Acceptor impurities in GaN are subject to a high activation energy which depends on the presence of proximate dopant atoms and the electric field. A combined model for the dopant ionization and activation barrier reduction has been developed and implemented in a semiconductor carrier transport simulator. By model calculations, we demonstrate the impact of the acceptor activation mechanisms on the decay of the IQE at high current densities, which is known as the efficiency droop. A major contributor to the droop is the electron leakage which is largely affected by the acceptor doping.

  13. Cross-conjugated chromophores: synthesis of iso-polydiacetylenes with Donor/Acceptor substitution

    PubMed

    Ciulei; Tykwinski

    2000-11-16

    The iterative construction of cross-conjugated donor (D), acceptor (A), and donor-acceptor (D-A) substituted iso-polydiacetylene (iso-PDA) oligomers has been achieved utilizing palladium-catalyzed cross-coupling techniques. Structure-property relationships for these compounds have been analyzed for cross-conjugated pi-electronic communication as a result of contributions from donor, acceptor, or donor-acceptor functionalization.

  14. Recycling of mixed plastic waste from electrical and electronic equipment. Added value by compatibilization.

    PubMed

    Vazquez, Yamila V; Barbosa, Silvia E

    2016-07-01

    Plastic waste from electrical and electronic equipment (WEEE) grows up exponentially fast in the last two decades. Either consumption increase of technological products, like cellphones or computers, or the short lifetime of this products contributes to this rise generating an accumulation of specific plastic materials such ABS (Acrylonitrile-Butadiene-Styrene), HIPS (High impact Polystyrene), PC (Polycarbonate), among others. All of they can be recycled by themselves. However, to separate them by type is neither easy nor economically viable, then an alternative is recycling them together as a blend. Taking into account that could be a deterioration in final properties, to enhance phase adhesion and add value to a new plastic WEEE blend a compatibilization is needed. In this work, a systematical study of different compatibilizers for blends of HIPS and ABS from WEEE was performed. A screening analysis was carried out by adding two different compatibilizer concentration (2wt% and 20wt%) on a HIPS/ABS physical blend 80/20 proportion from plastic e-waste. Three copolymers were selected as possible compatibilizers by their possible affinity with initial plastic WEEE. A complete characterization of each WEEE was performed and compatibilization efficiency was evaluated by comparing either mechanical or morphological blends aspects. Considering blends analyzed in this work, the best performance was achieved by using 2% of styrene-acrylonitrile rubber, obtaining a compatibilized blend with double ultimate strength and modulus respect to the physical blend, and also improve mechanical properties of initial WEEE plastics. The proposed way is a promise route to improve benefit of e-scrap with sustainable, low costs and easy handling process. Consequently, social recycling interest will be encouraged by both ecological and economical points of view.

  15. Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioelectrochemical systems (BESs) employing mixed microbial communities as biocatalysts are gaining importance as potential renewable energy, bioremediation, or biosensing devices. While we are beginning to understand how individual microbial species interact with an electrode as electron donor, li...

  16. Quantifying the Electron Donor and Acceptor Abilities of the Ketimide Ligands in M(N═C(t)Bu2)4 (M = V, Nb, Ta).

    PubMed

    Damon, Peter L; Liss, Cameron J; Lewis, Richard A; Morochnik, Simona; Szpunar, David E; Telser, Joshua; Hayton, Trevor W

    2015-10-19

    Addition of 4 equiv of Li(N═C(t)Bu2) to VCl3 in THF, followed by addition of 0.5 equiv of I2, generates the homoleptic V(IV) ketimide complex, V(N═C(t)Bu2)4 (1), in 42% yield. Similarly, reaction of 4 equiv of Li(N═C(t)Bu2) with NbCl4(THF)2 in THF affords the homoleptic Nb(IV) ketimide complex, Nb(N═C(t)Bu2)4 (2), in 55% yield. Seeking to extend the series to the tantalum congener, a new Ta(IV) starting material, TaCl4(TMEDA) (3), was prepared via reduction of TaCl5 with Et3SiH, followed by addition of TMEDA. Reaction of 3 with 4 equiv of Li(N═C(t)Bu2) in THF results in the isolation of a Ta(V) ketimide complex, Ta(Cl)(N═C(t)Bu2)4 (5), which can be isolated in 32% yield. Reaction of 5 with Tl(OTf) yields Ta(OTf)(N═C(t)Bu2)4 (6) in 44% yield. Subsequent reduction of 6 with Cp*2Co in toluene generates the homoleptic Ta(IV) congener Ta(N═C(t)Bu2)4 (7), although the yields are poor. All three homoleptic group 5 ketimide complexes exhibit squashed tetrahedral geometries in the solid state, as determined by X-ray crystallography. This geometry leads to a d(x(2)-y(2))(1) ((2)B1 in D(2d)) ground state, as supported by DFT calculations. EPR spectroscopic analysis of 1 and 2, performed at X- and Q-band frequencies (∼9 and 35 GHz, respectively), further supports the (2)B1 ground-state assignment, whereas comparison of 1, 2, and 7 with related group 5 tetra(aryl), tetra(amido), and tetra(alkoxo) complexes shows a higher M-L covalency in the ketimide-metal interaction. In addition, a ligand field analysis of 1 and 2 demonstrates that the ketimide ligand is both a strong π-donor and strong π-acceptor, an unusual combination found in very few organometallic ligands.

  17. Quantifying the electron donor and acceptor ability of the ketimide ligands in M(N=CtBu2)4 (M = V, Nb, Ta)

    PubMed Central

    Damon, Peter L.; Liss, Cameron J.; Lewis, Richard A.; Morochnik, Simona; Szpunar, David E.; Telser, Joshua; Hayton, Trevor W.

    2015-01-01

    Addition of 4 equiv of Li(N=CtBu2) to VCl3 in THF, followed by addition of 0.5 equiv I2, generates the homoleptic V(IV) ketimide complex, V(N=CtBu2)4 (1), in 42% yield. Similarly, reaction of 4 equiv of Li(N=CtBu2) with NbCl4(THF)2 in THF affords the homoleptic Nb(IV) ketimide complex, Nb(N=CtBu2)4 (2), in 55% yield. Seeking to extend the series to the tantalum congener, a new Ta(IV) starting material, TaCl4(TMEDA) (3), was prepared via reduction of TaCl5 with Et3SiH, followed by addition of TMEDA. Reaction of 3 with 4 equiv of Li(N=CtBu2) in THF results in a isolation of a Ta(V) ketimide complex, Ta(Cl)(N=CtBu2)4 (5), which can be isolated in 32% yield. Reaction of 5 with Tl(OTf) yields Ta(OTf)(N=CtBu2)4 (6) in 44% yield. Subsequent reduction of 6 with Cp*2Co in toluene generates the homoleptic Ta(IV) congener Ta(N=CtBu2)4 (7), although the yields are poor. All three homoleptic Group 5 ketimide complexes exhibit squashed tetrahedral geometries in the solid state, as determined by X-ray crystallography. This geometry leads to a dx2−y21 (2B1 in D2d) ground state, as supported by DFT calculations. EPR spectroscopic analysis of 1 and 2, performed at X- and Q-band frequencies (~9 and 35 GHz, respectively), further supports the 2B1 ground state assignment, while comparison of 1, 2, and 7 with related Group 5 tetra(aryl), tetra(amido) and tetra(alkoxo) complexes shows a higher M-L covalency in the ketimide-metal interaction. In addition, a ligand field analysis of 1 and 2 demonstrates that the ketimide ligand is both a strong π-donor and strong π-acceptor, an unusual combination found in very few organometallic ligands. PMID:26419513

  18. Bi-anchoring organic sensitizers of type D-(π-A)₂ comprising thiophene-2-acetonitrile as π-spacer and malonic acid as electron acceptor for dye sensitized solar cell applications.

    PubMed

    Reddy, Gachumale Saritha; Ramkumar, Sekar; Asiri, Abdullah M; Anandan, Sambandam

    2015-06-15

    Two new bi-anchoring organic sensitizers of type D-(π-A)2 comprising the identical π-spacer (thiophene-2-acetonitrile) and electron acceptor (malonic acid) but different aryl amine as electron donors (diphenylamine and carbazole) were synthesized, characterized and fabricated metal free dye-sensitized solar cell devices. The intra molecular charge transfer property and electrochemical property of these dyes were investigated by molecular absorption, emission, cyclic voltammetric experiments and in addition, quantum chemical calculation studies were performed to provide sufficient driving force for the electron injection into the conduction band of TiO2 which leads to efficient charge collection. Among the fabricated devices, carbazole based device exhibits high current conversion efficiency (η=4.7%) with a short circuit current density (JSC) 15.3 mA/cm(2), an open circuit photo voltage (VOC) of 0.59 V and a fill factor of 0.44 under AM 1.5 illumination (85 mW/cm(2)) compared to diphenylamine based device.

  19. The Determination of Molecular Quantities from Measurements on Macroscopic Systems.V. Existence and Properties of 1:1 and 2:1-Electron-Donor-Acceptor Complexes of Hexamethylbenzene with Tetracyanoethylene

    NASA Astrophysics Data System (ADS)

    Liptay, Wolfgang; Rehm, Torsten; Wehning, Detlev; Schanne, Lothar; Baumann, Wolfram; Lang, Werner

    1982-12-01

    The formation of electron-donor-acceptor complexes of hexamethylbenzene (HMB) with tetracyanoethylene (TCNE) was investigated by measurements of the optical absorptions, the densities, the permittivities and the electro-optical absorptions of solutions in CCl4. The careful evaluation of data based on some previously reported models, has shown that the assumption of the formation of the 1: 1 and the 2 : 1 complex agrees with all experimental data, but that the assumption of the formation of only the 1: 1 complex is contradictory to experimental facts even if the activity effects on the equilibrium constant and of the solvent dependences of observed molar quantities are taken into account. The evaluation leads to the molar optical absorption coefficients and the molar volumes of both complexes and to their electric dipole moments in the electronic ground state and the considered excited state. According to these results the complexes are of the sandwich type HMB-TCNE and HMB-TCNE-HMB. In spite of the fact that the 2: 1 complex owns a center of symmetry, at least approximately, there is a rather large electric dipole moment in its excited state. Furthermore, values for the equilibrium constants and for the standard reaction enthalpies of both complex formation reactions are estimated from experimental data.

  20. No-carrier-added (NCA) aryl ([sup 18]F) fluorides via the nucleophilic aromatic substitution of electron rich aromatic rings

    DOEpatents

    Yushin Ding; Fowler, J.S.; Wolf, A.P.

    1993-10-19

    A method for synthesizing no-carrier-added (NCA) aryl [.sup.18 F] fluoride substituted aromatic aldehyde compositions bearing an electron donating group is described. The method of the present invention includes the step of reacting aromatic nitro aldehydes having a suitably protected hydroxyl substitutent on an electron rich ring. The reaction is The U.S. Government has rights in this invention pursuant to Contract Number DE-AC02-76CH00016, between the U.S. Department of Energy and Associated Universities Inc.

  1. No-carrier-added (NCA) aryl (18E) fluorides via the nucleophilic aromatic substitution of electron rich aromatic rings

    DOEpatents

    Ding, Yu-Shin; Fowler, Joanna S.; Wolf, Alfred P.

    1993-01-01

    A method for synthesizing no-carrier-added (NCA) aryl [.sup.18 F] fluoride substituted aromatic aldehyde compositions bearing an electron donating group is described. The method of the present invention includes the step of reacting aromatic nitro aldehydes having a suitably protected hydroxyl substitutent on an electron rich ring. The reaction is The U.S. Government has rights in this invention pursuant to Contract Number DE-AC02-76CH00016, between the U.S. Department of Energy and Associated Universities Inc.

  2. Dynamics of iron-acceptor-pair formation in co-doped silicon

    SciTech Connect

    Bartel, T.; Gibaja, F.; Graf, O.; Gross, D.; Kaes, M.; Heuer, M.; Kirscht, F.; Möller, C.; Lauer, K.

    2013-11-11

    The pairing dynamics of interstitial iron and dopants in silicon co-doped with phosphorous and several acceptor types are presented. The classical picture of iron-acceptor pairing dynamics is expanded to include the thermalization of iron between different dopants. The thermalization is quantitatively described using Boltzmann statistics and different iron-acceptor binding energies. The proper understanding of the pairing dynamics of iron in co-doped silicon will provide additional information on the electronic properties of iron-acceptor pairs and may become an analytical method to quantify and differentiate acceptors in co-doped silicon.

  3. Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3

    SciTech Connect

    Ming, Wenmei; Shi, Hongliang; Du, Mao-Hua

    2016-01-01

    Here we report that many metal halides that contain cations with the ns2 electronic configuration have recently been discovered as high-performance optoelectronic materials. In particular, solar cells based on lead halide perovskites have shown great promise as evidenced by the rapid increase of the power conversion efficiency. In this paper, we show density functional theory calculations of electronic structure and dielectric and defect properties of CsGeI3 (a lead-free halide perovskite material). The potential of CsGeI3 as a solar cell material is assessed based on its intrinsic properties. We find anomalously large Born effective charges and a large static dielectric constant dominated by lattice polarization, which should reduce carrier scattering, trapping, and recombination by screening charged defects and impurities. Defect calculations show that CsGeI3 is a p-type semiconductor and its hole density can be modified by varying the chemical potentials of the constituent elements. Despite the reduction of long-range Coulomb attraction by strong screening, the iodine vacancy in CsGeI3 is found to be a deep electron trap due to the short-range potential, i.e., strong Ge–Ge covalent bonding, which should limit electron transport efficiency in p-type CsGeI3. This is in contrast to the shallow iodine vacancies found in several Pb and Sn halide perovskites (e.g., CH3NH3PbI3, CH3NH3SnI3, and CsSnI3). The low-hole-density CsGeI3 may be a useful solar absorber material but the presence of the low-energy deep iodine vacancy may significantly reduce the open circuit voltage of the solar cell. Still, on the other hand, CsGeI3 may be used as an efficient hole transport material in solar cells due to its small hole effective mass, the absence of low-energy deep hole traps, and the favorable band offset with solar

  4. Metabolite-enabled mutualistic interaction between Shewanella oneidensis and Escherichia coli in a co-culture using an electrode as electron acceptor

    PubMed Central

    Wang, Victor Bochuan; Sivakumar, Krishnakumar; Yang, Liang; Zhang, Qichun; Kjelleberg, Staffan; Loo, Say Chye Joachim; Cao, Bin

    2015-01-01

    Mutualistic interactions in planktonic microbial communities have been extensively studied. However, our understanding on mutualistic communities consisting of co-existing planktonic cells and biofilms is limited. Here, we report a planktonic cells-biofilm mutualistic system established by the fermentative bacterium Escherichia coli and the dissimilatory metal-reducing bacterium Shewanella oneidensis in a bioelectrochemical device, where planktonic cells in the anode media interact with the biofilms on the electrode. Our results show that the transfer of formate is the key mechanism in this mutualistic system. More importantly, we demonstrate that the relative distribution of E. coli and S. oneidensis in the liquid media and biofilm is likely driven by their metabolic functions towards an optimum communal metabolism in the bioelectrochemical device. RNA sequencing-based transcriptomic analyses of the interacting organisms in the mutualistic system potentially reveal differential expression of genes involved in extracellular electron transfer pathways in both species in the planktonic cultures and biofilms. PMID:26061569

  5. Electron-beam-induced current measurements with applied bias provide insight to locally resolved acceptor concentrations at p-n junctions

    SciTech Connect

    Abou-Ras, D. Schäfer, N.; Baldaz, N.; Brunken, S.; Boit, C.

    2015-07-15

    Electron-beam-induced current (EBIC) measurements have been employed for the investigation of the local electrical properties existing at various types of electrical junctions during the past decades. In the standard configuration, the device under investigation is analyzed under short-circuit conditions. Further insight into the function of the electrical junction can be obtained when applying a bias voltage. The present work gives insight into how EBIC measurements at applied bias can be conducted at the submicrometer level, at the example of CuInSe{sub 2} solar cells. From the EBIC profiles acquired across ZnO/CdS/CuInSe{sub 2}/Mo stacks exhibiting p-n junctions with different net doping densities in the CuInSe{sub 2} layers, values for the width of the space-charge region, w, were extracted. For all net doping densities, these values decreased with increasing applied voltage. Assuming a linear relationship between w{sup 2} and the applied voltage, the resulting net doping densities agreed well with the ones obtained by means of capacitance-voltage measurements.

  6. Efficient organic dye-sensitized solar cells: molecular engineering of donor-acceptor-acceptor cationic dyes.

    PubMed

    Cheng, Ming; Yang, Xichuan; Zhao, Jianghua; Chen, Cheng; Tan, Qin; Zhang, Fuguo; Sun, Licheng

    2013-12-01

    Three metal-free donor-acceptor-acceptor sensitizers with ionized pyridine and a reference dye were synthesized, and a detailed investigation of the relationship between the dye structure and the photophysical and photoelectrochemical properties and the performance of dye-sensitized solar cells (DSSCs) is described. The ionization of pyridine results in a red shift of the absorption spectrum in comparison to that of the reference dye. This is mainly attributable to the ionization of pyridine increasing the electron-withdrawing ability of the total acceptor part. Incorporation of the strong electron-withdrawing units of pyridinium and cyano acrylic acid gives rise to optimized energy levels, resulting in a large response range of wavelengths. When attached to TiO2 film, the conduction band of TiO2 is negatively shifted to a different extent depending on the dye. This is attributed to the electron recombination rate between the TiO2 film and the electrolyte being efficiently suppressed by the introduction of long alkyl chains and thiophene units. DSSCs assembled using these dyes show efficiencies as high as 8.8 %.

  7. Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor

    USGS Publications Warehouse

    Hoeft, S.E.; Blum, J.S.; Stolz, J.F.; Tabita, F.R.; Witte, B.; King, G.M.; Santini, J.M.; Oremland, R.S.

    2007-01-01

    A facultative chemoautotrophic bacterium, strain MLHE-1T, was isolated from Mono Lake, an alkaline hypersaline soda lake in California, USA. Cells of strain MLHE-1T were Gram-negative, short motile rods that grew with inorganic electron donors (arsenite, hydrogen, sulfide or thiosulfate) coupled with the reduction of nitrate to nitrite. No aerobic growth was attained with arsenite or sulfide, but hydrogen sustained both aerobic and anaerobic growth. No growth occurred when nitrite or nitrous oxide was substituted for nitrate. Heterotrophic growth was observed under aerobic and anaerobic (nitrate) conditions. Cells of strain MLHE-1T could oxidize but not grow on CO, while CH4 neither supported growth nor was it oxidized. When grown chemoautotrophically, strain MLHE-1T assimilated inorganic carbon via the Calvin-Benson-Bassham reductive pentose phosphate pathway, with the activity of ribulose 1,5-bisphosphate carboxylase (RuBisCO) functioning optimally at 0.1 M NaCl and at pH 7.3. Strain MLHE-1T grew over broad ranges of pH (7.3-10.0; optimum, 9.3), salinity (115-190 g l-1; optimum 30 g l-1) and temperature (113-40 ??C; optimum, 30 ??C). Phylogenetic analysis of 16S rRNA gene sequences placed strain MLHE-1T in the class Gammaproteobacteria (family Ectothiorhodospiraceae) and most closely related to Alkalispirillum mobile (98.5%) and Alkalilimnicola halodurans (98.6%), although none of these three haloalkaliphilic micro-organisms were capable of photoautotrophic growth and only strain MLHE-1T was able to oxidize As(III). On the basis of physiological characteristics and DNA-DNA hybridization data, it is suggested that strain MLHE-1T represents a novel species within the genus Alkalilimnicola for which the name Alkalilimnicola ehrlichii is proposed. The type strain is MLHE-1T (=DSM 17681T =ATCC BAA-1101T). Aspects of the annotated full genome of Alkalilimnicola ehrlichii are discussed in the light of its physiology. ?? 2007 IUMS.

  8. Ad lib smoking in post-traumatic stress disorder: an electronic diary study.

    PubMed

    Beckham, Jean C; Wiley, Matthew T; Miller, Susannah C; Dennis, Michelle F; Wilson, Sarah M; McClernon, F Joseph; Calhoun, Patrick S

    2008-07-01

    Using ambulatory methods for 1 week of monitoring, this study investigated the association between smoking and situational cues in 22 smokers with post-traumatic stress disorder (PTSD) and 23 smokers without PTSD. Generalized estimating equations contrasted 1,759 smoking and 1,088 nonsmoking situations by group status controlling for multiple covariates. PTSD smokers reported higher stress and PTSD symptoms across daily activities. For all smokers, higher nicotine dependence, craving, food and caffeine consumption, and being outside were related to smoking. PTSD smokers were more likely to smoke when experiencing PTSD symptoms, anxiety, and stress. Following smoking, smokers with PTSD reported a significant reduction in negative affect. These results are consistent with previous ambulatory findings regarding mood in smokers, and underscore that in smokers with PTSD, PTSD symptom variables as well as stress and anxiety are significantly associated with ad lib smoking.

  9. The structure and bonding of iron-acceptor pairs in silicon

    SciTech Connect

    Zhao, S.; Assali, L.V.C.; Kimerling, L.C.

    1995-08-01

    The highly mobile interstitial iron and Group III impurities (B, Al, Ga, In) form iron-acceptor pairs in silicon. Based on the migration kinetics and taking host silicon as a dielectric medium, we have simulated the pairing process in a static silicon lattice. Different from the conventional point charge ionic model, our phenomenological calculations include (1) a correction that takes into account valence electron cloud polarization which adds a short range, attractive interaction in the iron-acceptor pair bonding; and (2) silicon lattice relaxation due to the atomic size difference which causes a local strain field. Our model explains qualitatively (1) trends among the iron-acceptor pairs revealing an increase of the electronic state hole emission energy with increasing principal quantum number of acceptor and decreasing pair separation distance; and (2) the stable and metastable sites and configurational symmetries of the iron-acceptor pairs. The iron-acceptor pairing and bonding mechanism is also discussed.

  10. Solution-Processable Organic Molecule for High-Performance Organic Solar Cells with Low Acceptor Content.

    PubMed

    Wang, Kun; Guo, Bing; Xu, Zhuo; Guo, Xia; Zhang, Maojie; Li, Yongfang

    2015-11-11

    A new planar D2-A-D1-A-D2 structured organic molecule with bithienyl benzodithiophene (BDT) as central donor unit D1 and fluorine-substituted benzothiadiazole (BTF) as acceptor unit and alkyl-dithiophene as end group and donor unit D2, BDT-BTF, was designed and synthesized for the application as donor material in organic solar cells (OSCs). BDT-BTF shows a broad absorption in visible region, suitable highest occupied molecular orbital energy level of -5.20 eV, and high hole mobility of 1.07 × 10(-2) cm(2)/(V s), benefitted from its high coplanarity and strong crystallinity. The OSCs based on BDT-BTF as donor (D) and PC71BM as acceptor (A) at a D/A weight ratio of 3:1 without any extra treatment exhibit high photovoltaic performance with Voc of 0.85 V, Jsc of 10.48 mA/cm(2), FF of 0.66, and PCE of 5.88%. The morphological study by transmission electron microscopy reveals that the blend of BDT-BTF and PC71BM (3:1, w/w) possesses an appropriate interpenetrating D/A network for the exciton separation and charge carrier transport, which agrees well with the good device performance. The optimized D/A weight ratio of 3:1 is the lowest acceptor content in the active layer reported so far for the high-performance OSCs, and the organic molecules with the molecular structure like BDT-BTF could be promising high-performance donor materials in solution-processable OSCs.

  11. Characterization of the manganese O2-evolving complex and the iron-quinone acceptor complex in photosystem II from a thermophilic cyanobacterium by electron paramagnetic resonance and X-ray absorption spectroscopy.

    PubMed

    McDermott, A E; Yachandra, V K; Guiles, R D; Cole, J L; Dexheimer, S L; Britt, R D; Sauer, K; Klein, M P

    1988-05-31

    The Mn donor complex in the S1 and S2 states and the iron-quinone acceptor complex (Fe2+-Q) in O2-evolving photosystem II (PS II) preparations from a thermophilic cyanobacterium, Synechococcus sp., have been studied with X-ray absorption spectroscopy and electron paramagnetic resonance (EPR). Illumination of these preparations at 220-240 K results in formation of a multiline EPR signal very similar to that assigned to a Mn S2 species observed in spinach PS II, together with g = 1.8 and 1.9 EPR signals similar to the Fe2+-QA- acceptor signals seen in spinach PS II. Illumination at 110-160 K does not produce the g = 1.8 or 1.9 EPR signals, nor the multiline or g = 4.1 EPR signals associated with the S2 state of PS II in spinach; however, a signal which peaks at g = 1.6 appears. The most probable assignment of this signal is an altered configuration of the Fe2+-QA- complex. In addition, no donor signal was seen upon warming the 140 K illuminated sample to 215 K. Following continuous illumination at temperatures between 140 and 215 K, the average X-ray absorption Mn K-edge inflection energy changes from 6550 eV for a dark-adapted (S1) sample to 6551 eV for the illuminated (S2) sample. The shift in edge inflection energy indicates an oxidation of Mn, and the absolute edge inflection energies indicate an average Mn oxidation state higher than Mn(II). Upon illumination a significant change was observed in the shape of the features associated with 1s to 3d transitions. The S1 spectrum resembles those of Mn(III) complexes, and the S2 spectrum resembles those of Mn(IV) complexes. The extended X-ray absorption fine structure (EXAFS) spectrum of the Mn complex is similar in the S1 and S2 states. Simulations indicate O or N ligands at 1.75 +/- 0.05 A, transition metal neighbor(s) at 2.73 +/- 0.05 A, which are assumed to be Mn, and terminal ligands which are probably N and O at a range of distances around 2.2 A. The Mn-O bond length of 1.75 A and the transition metal at 2.7 A

  12. Poly(trifluoromethyl)azulenes: structures and acceptor properties.

    PubMed

    Clikeman, Tyler T; Bukovsky, Eric V; Kuvychko, Igor V; San, Long K; Deng, Shihu H M; Wang, Xue-Bin; Chen, Yu-Sheng; Strauss, Steven H; Boltalina, Olga V

    2014-06-14

    Six new poly(trifluoromethyl)azulenes prepared in a single high-temperature reaction exhibit strong electron accepting properties in the gas phase and in solution and demonstrate the propensity to form regular π-stacked columns in donor-acceptor crystals when mixed with pyrene as a donor.

  13. New acceptor-donor-acceptor (A-D-A) type copolymers for efficient organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Ghomrasni, S.; Ayachi, S.; Alimi, K.

    2015-01-01

    Three new conjugated systems alternating acceptor-donor-acceptor (A-D-A) type copolymers have been investigated by means of Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) at the 6-31g (d) level of theory. 4,4‧-Dimethoxy-chalcone, also called the 1,3-bis(4-methoxyphenyl)prop-2-en-1-one (BMP), has been used as a common acceptor moiety. It forced intra-molecular S⋯O interactions through alternating oligo-thiophene derivatives: 4-AlkylThiophenes (4-ATP), 4-AlkylBithiophenes (4-ABTP) and 4-Thienylene Vinylene (4-TEV) as donor moieties. The band gap, HOMO and LUMO electron distributions as well as optical properties were analyzed for each molecule. The fully optimized resulting copolymers showed low band gaps (2.2-2.8 eV) and deep HOMO energy levels ranging from -4.66 to -4.86 eV. A broad absorption [300-900 nm] covering the solar spectrum and absorption maxima ranges from 486 to 604 nm. In addition, organic photovoltaic cells (OPCs) based on alternating copolymers in bulk heterojunction (BHJ) composites with the 1-(3-methoxycarbonyl) propyl-1-phenyl-[6,6]-C61 (PCBM), as an acceptor, have been optimized. Thus, the band gap decreased to 1.62 eV, the power conversion efficiencies (PCEs) were about 3-5% and the open circuit voltage Voc of the resulting molecules decreased from 1.50 to 1.27 eV.

  14. Designer Metallic Acceptor-Containing Halogen Bonding: General Strategies.

    PubMed

    Zhang, Xinxing; Bowen, Kit H

    2017-03-13

    Being electrostatic interactions in nature, hydrogen bonding (HB) and halogen bonding (XB) are considered to be two parallel worlds. In principle, all the applications that HB has could also be applied to XB. However, there has been no report on a metallic XB acceptor but metal anions have been observed to be good HB acceptors. This missing mosaic piece of XB is because common metal anions are reactive for XB donors. In view of this, we propose two strategies for designing metallic acceptor-containing XB using ab initio calculations. The first one is to utilize a metal cluster anion with a high electron detachment energy, such as the superatom, Al13- as the XB acceptor. The second strategy is to design a ligand passivated/protected metal core while it still can maintain the negative charge; several exotic clusters, such as PtH5-, PtZnH5- and PtMgH5-, are utilized as examples. Based on these two strategies, we anticipate that more metallic acceptor-containing XB will be discovered.

  15. Electronic absorption spectroscopic studies on charge-transfer interactions in a biologically important molecule: N, N'-dimethyl-4,4'-bipyridylium chloride (paraquat or methyl viologen) as an electron acceptor

    NASA Astrophysics Data System (ADS)

    Murthy, A. S. N.; Bhardwaj, A. P.

    The charge-transfer spectra of N, N'-dimethyl-4,4'-bipyridylium chloride (paraquat, PQ 2+) with a wide range of electron donors has been investigated and the thermodynamic data determined. An estimate of the empirical energy parameters has been made using the spectroscopic and thermodynamic data, using Mulliken's theory.

  16. ABAB Phthalocyanines: Scaffolds for Building Unprecedented Donor-π-Acceptor Chromophores.

    PubMed

    Fazio, Ettore; Jaramillo-García, Javier; Medel, María; Urbani, Maxence; Grätzel, Michael; Nazeerudin, Mohammad K; de la Torre, Gema; Torres, Tomas

    2017-02-01

    Unique donor-π-acceptor phthalocyanines have been synthesized through the asymmetric functionalization of an ABAB phthalocyanine, crosswise functionalized with two iodine atoms through Pd-catalyzed cross-coupling reactions with adequate electron-donor and electron-acceptor moieties. These push-pull molecules have been optically and electrochemically characterized, and their ability to perform as chromophores for dye-sensitized solar cells has been tested.

  17. Threshold-like complexation of conjugated polymers with small molecule acceptors in solution within the neighbor-effect model.

    PubMed

    Sosorev, Andrey Yu; Parashchuk, Olga D; Zapunidi, Sergey A; Kashtanov, Grigoriy S; Golovnin, Ilya V; Kommanaboyina, Srikanth; Perepichka, Igor F; Paraschuk, Dmitry Yu

    2016-02-14

    In some donor-acceptor blends based on conjugated polymers, a pronounced charge-transfer complex (CTC) forms in the electronic ground state. In contrast to small-molecule donor-acceptor blends, the CTC concentration in polymer:acceptor solution can increase with the acceptor content in a threshold-like way. This threshold-like behavior was earlier attributed to the neighbor effect (NE) in the polymer complexation, i.e., next CTCs are preferentially formed near the existing ones; however, the NE origin is unknown. To address the factors affecting the NE, we record the optical absorption data for blends of the most studied conjugated polymers, poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and poly(3-hexylthiophene) (P3HT), with electron acceptors of fluorene series, 1,8-dinitro-9,10-antraquinone (), and 7,7,8,8-tetracyanoquinodimethane () in different solvents, and then analyze the data within the NE model. We have found that the NE depends on the polymer and acceptor molecular skeletons and solvent, while it does not depend on the acceptor electron affinity and polymer concentration. We conclude that the NE operates within a single macromolecule and stems from planarization of the polymer chain involved in the CTC with an acceptor molecule; as a result, the probability of further complexation with the next acceptor molecules at the adjacent repeat units increases. The steric and electronic microscopic mechanisms of NE are discussed.

  18. An organic donor/acceptor lateral superlattice at the nanoscale.

    PubMed

    Otero, Roberto; Ecija, David; Fernandez, Gustavo; Gallego, José María; Sanchez, Luis; Martín, Nazario; Miranda, Rodolfo

    2007-09-01

    A precise control of the nanometer-scale morphology in systems containing mixtures of donor/acceptor molecules is a key factor to improve the efficiency of organic photovoltaic devices. Here we report on a scanning tunneling microscopy study of the first stages of growth of 2-[9-(1,3-dithiol-2-ylidene)anthracen-10(9H)-ylidene]-1,3-dithiole, as electron donor, and phenyl-C61-butyric acid methyl ester, as electron acceptor, on a Au(111) substrate under ultrahigh vacuum conditions. Due to differences in bonding strength with the substrate and different interactions with the Au(111) herringbone surface reconstruction, mixed thin films spontaneously segregate into a lateral superlattice of interdigitated nanoscale stripes with a characteristic width of about 10-20 nm, a morphology that has been predicted to optimize the efficiency of organic solar cells.

  19. Design directed self-assembly of donor-acceptor polymers.

    PubMed

    Marszalek, Tomasz; Li, Mengmeng; Pisula, Wojciech

    2016-09-21

    Donor-acceptor polymers with an alternating array of donor and acceptor moieties have gained particular attention during recent years as active components of organic electronics. By implementation of suitable subunits within the conjugated backbone, these polymers can be made either electron-deficient or -rich. Additionally, their band gap and light absorption can be precisely tuned for improved light-harvesting in solar cells. On the other hand, the polymer design can also be modified to encode the desired supramolecular self-assembly in the solid-state that is essential for an unhindered transport of charge carriers. This review focuses on three major factors playing a role in the assembly of donor-acceptor polymers on surfaces which are (1) nature, geometry and substitution position of solubilizing alkyl side chains, (2) shape of the conjugated polymer defined by the backbone curvature, and (3) molecular weight which determines the conjugation length of the polymer. These factors adjust the fine balance between attractive and repulsive forces and ensure a close polymer packing important for an efficient charge hopping between neighboring chains. On the microscopic scale, an appropriate domain formation with a low density of structural defects in the solution deposited thin film is crucial for the charge transport. The charge carrier transport through such thin films is characterized by field-effect transistors as basic electronic elements.

  20. Synthesis and characterization of fluorinated azadipyrromethene complexes as acceptors for organic photovoltaics

    PubMed Central

    Etheridge, Forrest S; Fernando, Roshan J; Pejić, Sandra; Zeller, Matthias

    2016-01-01

    Summary Homoleptic zinc(II) complexes of di(phenylacetylene)azadipyrromethene (e.g., Zn(WS3)2) are potential non-fullerene electron acceptors for organic photovoltaics. To tune their properties, fluorination of Zn(WS3)2 at various positions was investigated. Three fluorinated azadipyrromethene-based ligands were synthesized with fluorine at the para-position of the proximal and distal phenyl groups, and at the pyrrolic phenylacetylene moieties. Additionally, a CF3 moiety was added to the pyrrolic phenyl positions to study the effects of a stronger electron withdrawing unit at that position. The four ligands were chelated with zinc(II) and BF2 + and the optical and electrochemical properties were studied. Fluorination had little effect on the optical properties of both the zinc(II) and BF2 + complexes, with λmax in solution around 755 nm and 785 nm, and high molar absorptivities of 100 × 103 M−1cm−1 and 50 × 103 M−1cm−1, respectively. Fluorination of Zn(WS3)2 raised the oxidation potentials by 0.04 V to 0.10 V, and the reduction potentials by 0.01 V to 0.10 V, depending on the position and type of substitution. The largest change was observed for fluorine substitution at the proximal phenyl groups and CF3 substitution at the pyrrolic phenylacetylene moieties. The later complexes are expected to be stronger electron acceptors than Zn(WS3)2, and may enable charge transfer from other conjugated polymer donors that have lower energy levels than poly(3-hexylthiophene) (P3HT). PMID:27829899

  1. Synthesis and characterization of fluorinated azadipyrromethene complexes as acceptors for organic photovoltaics.

    PubMed

    Etheridge, Forrest S; Fernando, Roshan J; Pejić, Sandra; Zeller, Matthias; Sauvé, Geneviève

    2016-01-01

    Homoleptic zinc(II) complexes of di(phenylacetylene)azadipyrromethene (e.g., Zn(WS3)2) are potential non-fullerene electron acceptors for organic photovoltaics. To tune their properties, fluorination of Zn(WS3)2 at various positions was investigated. Three fluorinated azadipyrromethene-based ligands were synthesized with fluorine at the para-position of the proximal and distal phenyl groups, and at the pyrrolic phenylacetylene moieties. Additionally, a CF3 moiety was added to the pyrrolic phenyl positions to study the effects of a stronger electron withdrawing unit at that position. The four ligands were chelated with zinc(II) and BF2(+) and the optical and electrochemical properties were studied. Fluorination had little effect on the optical properties of both the zinc(II) and BF2(+) complexes, with λmax in solution around 755 nm and 785 nm, and high molar absorptivities of 100 × 10(3) M(-1)cm(-1) and 50 × 10(3) M(-1)cm(-1), respectively. Fluorination of Zn(WS3)2 raised the oxidation potentials by 0.04 V to 0.10 V, and the reduction potentials by 0.01 V to 0.10 V, depending on the position and type of substitution. The largest change was observed for fluorine substitution at the proximal phenyl groups and CF3 substitution at the pyrrolic phenylacetylene moieties. The later complexes are expected to be stronger electron acceptors than Zn(WS3)2, and may enable charge transfer from other conjugated polymer donors that have lower energy levels than poly(3-hexylthiophene) (P3HT).

  2. Free Carrier Generation in Organic Photovoltaic Bulk Heterojunctions of Conjugated Polymers with Molecular Acceptors: Planar versus Spherical Acceptors

    SciTech Connect

    Nardes, Alexandre M.; Ferguson, Andrew J.; Wolfer, Pascal; Gui, Kurt; Burn, Paul L.; Meredith, Paul; Kopidakis, Nikos

    2014-03-05

    We present a comparative study of the photophysical performance of the prototypical fullerene derivative PC61BM with a planar small-molecule acceptor in an organic photovoltaic device. The small-molecule planar acceptor is 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile, termed K12. We discuss photoinduced free charge-carrier generation and transport in blends of PC61BM or K12 with poly(3-n-hexylthiophene) (P3HT), surveying literature results for P3HT:PC61BM and presenting new results on P3HT:K12. For both systems we also review previous work on film structure and correlate the structural and photophysical results. In both cases, a disordered mixed phase is formed between P3HT and the acceptor, although the photophysical properties of this mixed phase differ markedly for PC61BM and K12. In the case of PC61BM the mixed phase acts as a free carrier generation region that can efficiently shuttle carriers to the pure polymer and fullerene domains. As a result, the vast majority of excitons quenched in P3HT:PC61BM blends yield free carriers detected by the contactless time-resolved microwave conductivity (TRMC) method. In contrast, approximately 85 % of the excitons quenched in P3HT:K12 do not result in free carriers over the nanosecond timescale of the TRMC experiment. We attribute this to poor electron-transport properties in the mixed P3HT:K12 phase. Here, we propose that the observed differences can be traced to the respective shapes of PC61BM and K12: the three-dimensional nature of the fullerene cage facilitates coupling between PC61BM molecules irrespective of their relative orientation, whereas for K12 strong electronic coupling is only expected for molecules oriented with their π systems parallel to each other. Comparison between the eutectic compositions of the P3HT:PC61BM and P3HT:K12 shows that the former contains enough fullerene to form a percolation pathway for electrons, whereas the latter contains a sub

  3. Bright Solid-State Emission of Disilane-Bridged Donor-Acceptor-Donor and Acceptor-Donor-Acceptor Chromophores.

    PubMed

    Shimada, Masaki; Tsuchiya, Mizuho; Sakamoto, Ryota; Yamanoi, Yoshinori; Nishibori, Eiji; Sugimoto, Kunihisa; Nishihara, Hiroshi

    2016-02-24

    The development of disilane-bridged donor-acceptor-donor (D-Si-Si-A-Si-Si-D) and acceptor-donor-acceptor (A-Si-Si-D-Si-Si-A) compounds is described. Both types of compound showed strong emission (λem =ca. 500 and ca. 400 nm, respectively) in the solid state with high quantum yields (Φ: up to 0.85). Compound 4 exhibited aggregation-induced emission enhancement in solution. X-ray diffraction revealed that the crystal structures of 2, 4, and 12 had no intermolecular π-π interactions to suppress the nonradiative transition in the solid state.

  4. Acceptor conductivity in bulk zinc oxide (0001) crystals

    NASA Astrophysics Data System (ADS)

    Adekore, Bababunmi Tolu

    ZnO is a promising wide bandgap semiconductor. Its renowned and prominent properties as its bandgap of 3.37eV at 4.2K; its very high excitonic binding energy, 60meV; its high melting temperature, 2248K constitute the basis for the recently renewed and sustained scientific interests in the material. In addition to the foregoing, the availability of bulk substrates of industrially relevant sizes provides important opportunities such as homoepitaxial deposition of the material which is a technological asset in the production of efficient optoelectronic and electronic devices. The nemesis of wide bandgap materials cannot be more exemplified than in ZnO. The notorious limitation of asymmetric doping and the haunting plague of electrically active point defects dim the bright future of the material. In this case, the search for reliable and consistent acceptor conductivity in bulk substrates has been hitherto, unsuccessful. In the dissertation that now follows, our efforts have been concerted in the search for a reliable acceptor. We have carefully investigated the science of point defects in the material, especially those responsible for the high donor conductivity. We also investigated and herein report variety of techniques of introducing acceptors into the material. We employ the most relevant and informative characterization techniques in verifying both the intended conductivity and the response of intrinsic crystals to variation in temperature and strain. And finally we explain deviations, where they exist, from ideal acceptor characteristics. Our work on reliable acceptor has been articulated in four papers. The first establishing capacitance based methods of monitoring electrically active donor defects. The second investigates the nature of anion acceptors on the oxygen sublattice. A study similar to the preceding study was conducted for cation acceptors on the zinc sublattice and reported in the third paper. Finally, an analysis of the response of the crystal to

  5. A new classification of the amino acid side chains based on doublet acceptor energy levels.

    PubMed Central

    Sneddon, S F; Morgan, R S; Brooks, C L

    1988-01-01

    We describe a new classification of the amino acid side chains based on the potential energy level at which each will accept an extra (doublet) electron. The doublet acceptor energy level, and the doublet acceptor orbital were calculated using semiempirical INDO/2-UHF molecular orbital theory. The results of these calculations show that the side chains fall into four groups. We have termed these groups repulsive, insulating, semiconducting, and attractive in accordance with where each lies on the relative energy scale. We use this classification to examine the role of residues between the donor and acceptor in modulating the rate and mechanism of electron transfer in proteins. With the calculated acceptor levels, we construct a potential barrier for those residues between the donor and acceptor. It is the area beneath this barrier that determines the decay of electronic coupling between donor and acceptor, and thus the transfer rate. We have used this schematic approach to characterize the four electron transfer pathways in myoglobin recently studied by Mayo et al. (Mayo, S.L., W.R. Ellis, R.J. Crutchley, and H.B. Gray. 1986. Science [Wash. DC]. 233:948-952). PMID:3342271

  6. Optical spectroscopy of single beryllium acceptors in GaAs/AlGaAs quantum well

    NASA Astrophysics Data System (ADS)

    Petrov, P. V.; Kokurin, I. A.; Klimko, G. V.; Ivanov, S. V.; Ivánov, Yu. L.; Koenraad, P. M.; Silov, A. Yu.; Averkiev, N. S.

    2016-09-01

    We carry out microphotoluminescence measurements of an acceptor-bound exciton (A0X ) recombination in the applied magnetic field with a single impurity resolution. In order to describe the obtained spectra we develop a theoretical model taking into account a quantum well (QW) confinement, an electron-hole and hole-hole exchange interaction. By means of fitting the measured data with the model we are able to study the fine structure of individual acceptors inside the QW. The good agreement between our experiments and the model indicates that we observe single acceptors in a pure two-dimensional environment whose states are unstrained in the QW plain.

  7. Donor–Acceptor Oligorotaxanes Made to Order

    SciTech Connect

    Basu, Subhadeep; Coskun, Ali; Friedman, Douglas C.; Olson, Mark A.; Benitez, Diego; Tkatchouk, Ekaterina; Barin, Gokhan; Yang, Jeffrey; Fahrenbach, Albert C.; Goddard, William A.; Stoddart, J. Fraser

    2011-01-01

    Five donor–acceptor oligorotaxanes made up of dumbbells composed of tetraethylene glycol chains, interspersed with three and five 1,5-dioxynaphthalene units, and terminated by 2,6-diisopropylphenoxy stoppers, have been prepared by the threading of discrete numbers of cyclobis(paraquat-p-phenylene) rings, followed by a kinetically controlled stoppering protocol that relies on click chemistry. The well-known copper(I)-catalyzed alkyne–azide cycloaddition between azide functions placed at the ends of the polyether chains and alkyne-bearing stopper precursors was employed during the final kinetically controlled template-directed synthesis of the five oligorotaxanes, which were characterized subsequently by ¹H NMR spectroscopy at low temperature (233 K) in deuterated acetonitrile. The secondary structures, as well as the conformations, of the five oligorotaxanes were unraveled by spectroscopic comparison with the dumbbell and ring components. By focusing attention on the changes in chemical shifts of some key probe protons, obtained from a wide range of low-temperature spectra, a picture emerges of a high degree of folding within the thread protons of the dumbbells of four of the five oligorotaxanes—the fifth oligorotaxane represents a control compound in effect—brought about by a combination of C[BOND]H···O and π–π stacking interactions between the π-electron-deficient bipyridinium units in the rings and the π-electron-rich 1,5-dioxynaphthalene units and polyether chains in the dumbbells. The secondary structures of a foldamer-like nature have received further support from a solid-state superstructure of a related [3]pseudorotaxane and density functional calculations performed thereon.

  8. Synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S.; Curran, George P.

    1981-08-18

    A synthetic CO.sub.2 acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca.sub.5 (SiO.sub.4).sub.2 CO.sub.3. A method for producing the synthetic CO.sub.2 acceptor is also disclosed.

  9. Contrasting performance of donor-acceptor copolymer pairs in ternary blend solar cells and two-acceptor copolymers in binary blend solar cells.

    PubMed

    Khlyabich, Petr P; Rudenko, Andrey E; Burkhart, Beate; Thompson, Barry C

    2015-02-04

    Here two contrasting approaches to polymer-fullerene solar cells are compared. In the first approach, two distinct semi-random donor-acceptor copolymers are blended with phenyl-C61-butyric acid methyl ester (PC61BM) to form ternary blend solar cells. The two poly(3-hexylthiophene)-based polymers contain either the acceptor thienopyrroledione (TPD) or diketopyrrolopyrrole (DPP). In the second approach, semi-random donor-acceptor copolymers containing both TPD and DPP acceptors in the same polymer backbone, termed two-acceptor polymers, are blended with PC61BM to give binary blend solar cells. The two approaches result in bulk heterojunction solar cells that have the same molecular active-layer components but differ in the manner in which these molecular components are mixed, either by physical mixing (ternary blend) or chemical "mixing" in the two-acceptor (binary blend) case. Optical properties and photon-to-electron conversion efficiencies of the binary and ternary blends were found to have similar features and were described as a linear combination of the individual components. At the same time, significant differences were observed in the open-circuit voltage (Voc) behaviors of binary and ternary blend solar cells. While in case of two-acceptor polymers, the Voc was found to be in the range of 0.495-0.552 V, ternary blend solar cells showed behavior inherent to organic alloy formation, displaying an intermediate, composition-dependent and tunable Voc in the range from 0.582 to 0.684 V, significantly exceeding the values achieved in the two-acceptor containing binary blend solar cells. Despite the differences between the physical and chemical mixing approaches, both pathways provided solar cells with similar power conversion efficiencies, highlighting the advantages of both pathways toward highly efficient organic solar cells.

  10. Donator acceptor map of psittacofulvins and anthocyanins: are they good antioxidant substances?

    PubMed

    Martínez, Ana

    2009-04-09

    Psittacofulvins represent an unusual class of pigments (noncarotenoid lipochromes), which are found only in the red, orange, and yellow plumage of parrots. Anthocyanins are flavonoids, and they are one of the primary types of colorants found in plants. Blue butterflies acquire blue and UV hues on their wings, owing to the presence of flavonoids. It is assumed that these natural pigments are valuable antioxidants because they are able to scavenge free radicals. The aim of this investigation is to rationalize the scavenging activity of psittacofulvins and anthocyanins, in terms of the one electron transfer mechanism, taking into account that to prevent oxidative stress, substances must either donate or accept electrons. Density functional approximation calculations are used to obtain ionization potentials, electron affinities, electrodonating, and electroaccepting power indexes. Taking these values, a donator acceptor map (DAM) was constructed, indicating that anthocyanins are good electron donors, whereas psittacofulvins are good electron acceptors. Anthocyanins and vitamins are antioxidants, whereas psittacofulvins and carotenoids are antireductants (oxidants). In terms of solvent effects, animal pigments (carotenoids, psittacofulvins, and anthocyanins) are much better electron acceptors in water than in either the gas phase or benzene. Solvent effects do not alter the electron donor capacity of vitamins, but anthocyanins become effective electron acceptors in water, rather than effective electron donors. The information presented here may also be valuable for the design and analysis of further experiments.

  11. Panchromatic donor-acceptor-donor conjugated oligomers for dye-sensitized solar cell applications.

    PubMed

    Stalder, Romain; Xie, Dongping; Islam, Ashraful; Han, Liyuan; Reynolds, John R; Schanze, Kirk S

    2014-06-11

    We report on a sexithienyl and two donor-acceptor-donor oligothiophenes, employing benzothiadiazole and isoindigo as electron-acceptors, each functionalized with a phosphonic acid group for anchoring onto TiO2 substrates as light-harvesting molecules for dye sensitized solar cells (DSSCs). These dyes absorb light to wavelengths as long as 700 nm, as their optical HOMO/LUMO energy gaps are reduced from 2.40 to 1.77 eV with increasing acceptor strength. The oligomers were adsorbed onto mesoporous TiO2 films on fluorine doped tin oxide (FTO)/glass substrates and incorporated into DSSCs, which show AM1.5 power conversion efficiencies (PCEs) ranging between 2.6% and 6.4%. This work demonstrates that the donor-acceptor-donor (D-A-D) molecular structures coupled to phosphonic acid anchoring groups, which have not been used in DSSCs, can lead to high PCEs.

  12. Spectroscopy of donor-pi-acceptor complexes for solar cells

    NASA Astrophysics Data System (ADS)

    Himpsel, F. J.; Zegkinoglou, I.; Johnson, P. S.; Pemmaraju, C. D.; Prendergast, D.; Ragoussi, M.-E.; de la Torre, G.; Pickup, D. F.; Ortega, J. E.

    2014-03-01

    A recent improvement in the design of dye sensitized solar cells has been the combination of light absorbing, electron-donating, and electron-withdrawing groups within the same sensitizer molecule. This dye architecture has contributed to increase the energy conversion efficiency, leading to record efficiency values. Here we investigate a zinc(II)-porphyrin-based complex with triphenylamine donor groups and carboxyl linkers for the attachment to an oxide acceptor. The unoccupied orbitals of these three moieties are probed by element-selective X-ray absorption spectroscopy at the N 1s, C 1s, and Zn 2p edges, complemented by time-dependent density functional theory. The attachment of electron-donating groups to the porphyrin ring significantly delocalizes the highest occupied molecular orbital (HOMO) of the molecule. This leads to a spatial separation between the HOMO and the lowest unoccupied molecular orbital (LUMO), reducing the recombination rate of photoinduced electrons and holes.

  13. No-carrier-added (NCA) aryl [{sup 18}F]fluorides via the nucleophilic aromatic substitution of electron rich aromatic rings

    SciTech Connect

    Ding, Yu-Shin; Fowler, J.S.; Wolf, A.P.

    1991-12-31

    A method for synthesizing no-carrier-added (NCA) aryl [{sup 18}F] fluoride substituted aromatic aldehyde compositions bearing an electron donating group is described. The method includes the step of reacting aromatic nitro aldehydes having a suitably protected hydroxyl substituent on an electron rich ring. The reaction is carried out by nucleophilic aromatic substitution with a no-carrier-added (NCA) [{sup 18}F]fluoride ion. The method can be used to synthesize various no-carrier-added aryl [{sup 18}F]fluoride compositions, including 6-[{sup 18}F]fluoro-L-DOPA, 2-[{sup 18}F]fluorotyrosine, 6-[{sup 18}F]fluoronorepinephrine, and 6-[{sup 18}F]fluorodopamine. In those instances when a racemic mixture of enantiomers is produced by the present invention, such as in the synthesis of 6-[{sup 18}F]fluoronorepinephrine, a preferred method also includes resolution of the racemic mixture on a chiral HPLC column. This procedure results in a high yield of enantiomerically pure [{sup 18}F] labeled isomers, for example [-]-6-[{sup 18}F]fluoronorepinephrine and [+]-6-[{sup 18}F]fluoronorepinephrine.

  14. Cooperative effects of solvent and polymer acceptor co-additives in P3HT:PDI solar cells: simultaneous optimization in lateral and vertical phase separation.

    PubMed

    Li, Mingguang; Wang, Lei; Liu, Jiangang; Zhou, Ke; Yu, Xinhong; Xing, Rubo; Geng, Yanhou; Han, Yanchun

    2014-03-14

    In this work, solvent chloronaphthalene (CN) and polymer acceptor an alternating copolymer of perylene diimide and carbazole (PCPDI) were utilized as co-additives to optimize the nanoscale phase-separated morphology and photovoltaic properties of bulk-heterojunction (BHJ) polymer solar cells based on the poly(3-hexyl thiophene) (P3HT)/N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (EP-PDI) system. The domain size of EP-PDI molecules together with that of P3HT distinctly decreased by adding a 0.75 vol% CN additive. The optimized lateral phase separation increased the donor-acceptor interfacial area and facilitated the exciton dissociation process, leading to 5-fold enhancement of short-circuit current (JSC). Furthermore, when PCPDI was employed as a co-additive, acceptor materials (including PCPDI and EP-PDI) were prone to aggregation towards the top surface of blend films, improving vertical phase separation of active layers. PCPDI incorporation, which improved the percolation pathways for electron carriers, suppressed the crystallinity of P3HT distinctly. Thus, much more balanced charge transport was achieved by PCPDI addition, which resulted in almost 1-fold enhancement of open-circuit voltage (VOC) by reducing nongeminate recombination. As a consequence, cooperative effects of CN and PCPDI additives improved the nanoscale phase-separated morphology in lateral and vertical directions simultaneously, achieving the enhancement in both VOC and JSC.

  15. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices.

    PubMed

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-11-16

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm(2)·V(-1)·s(-1)), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution.

  16. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices

    PubMed Central

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-01-01

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm2·V−1·s−1), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution. PMID:26567845

  17. Efficiency enhancement of planar perovskite solar cells by adding zwitterion/LiF double interlayers for electron collection.

    PubMed

    Sun, Kuan; Chang, Jingjing; Isikgor, Furkan Halis; Li, Pengcheng; Ouyang, Jianyong

    2015-01-21

    Double interlayers consisting of a zwitterionic small molecule layer and a LiF layer were introduced between the electron transport layer and the cathode of perovskite solar cells. The double interlayers improve the photovoltaic efficiency to 13.2%, which is higher than that of control devices without the double interlayer (9.2%) or with LiF (11.0%) or rhodamine 101 zwitterion (12.1%) alone.

  18. Adding the Third Dimension to Virus Life Cycles: Three-Dimensional Reconstruction of Icosahedral Viruses from Cryo-Electron Micrographs

    PubMed Central

    Baker, T. S.; Olson, N. H.; Fuller, S. D.

    1999-01-01

    Viruses are cellular parasites. The linkage between viral and host functions makes the study of a viral life cycle an important key to cellular functions. A deeper understanding of many aspects of viral life cycles has emerged from coordinated molecular and structural studies carried out with a wide range of viral pathogens. Structural studies of viruses by means of cryo-electron microscopy and three-dimensional image reconstruction methods have grown explosively in the last decade. Here we review the use of cryo-electron microscopy for the determination of the structures of a number of icosahedral viruses. These studies span more than 20 virus families. Representative examples illustrate the use of moderate- to low-resolution (7- to 35-Å) structural analyses to illuminate functional aspects of viral life cycles including host recognition, viral attachment, entry, genome release, viral transcription, translation, proassembly, maturation, release, and transmission, as well as mechanisms of host defense. The success of cryo-electron microscopy in combination with three-dimensional image reconstruction for icosahedral viruses provides a firm foundation for future explorations of more-complex viral pathogens, including the vast number that are nonspherical or nonsymmetrical. PMID:10585969

  19. Synthesis and Characterization of Organic Dyes Containing Various Donors and Acceptors

    PubMed Central

    Wu, Tzi-Yi; Tsao, Ming-Hsiu; Chen, Fu-Lin; Su, Shyh-Gang; Chang, Cheng-Wen; Wang, Hong-Paul; Lin, Yuan-Chung; Ou-Yang, Wen-Chung; Sun, I-Wen

    2010-01-01

    New organic dyes comprising carbazole, iminodibenzyl, or phenothiazine moieties, respectively, as the electron donors, and cyanoacetic acid or acrylic acid moieties as the electron acceptors/anchoring groups were synthesized and characterized. The influence of heteroatoms on carbazole, iminodibenzyl and phenothiazine donors, and cyano-substitution on the acid acceptor is evidenced by spectral, electrochemical, photovoltaic experiments, and density functional theory calculations. The phenothiazine dyes show solar-energy-to-electricity conversion efficiency (η) of 3.46–5.53%, whereas carbazole and iminodibenzyl dyes show η of 2.43% and 3.49%, respectively. PMID:20162019

  20. Conductivity of a Weyl semimetal with donor and acceptor impurities

    NASA Astrophysics Data System (ADS)

    Rodionov, Ya. I.; Syzranov, S. V.

    2015-05-01

    We study transport in a Weyl semimetal with donor and acceptor impurities. At sufficiently high temperatures transport is dominated by electron-electron interactions, while the low-temperature resistivity comes from the scattering of quasiparticles on screened impurities. Using the diagrammatic technique, we calculate the conductivity σ (T ,ω ,nA,nD) in the impurities-dominated regime as a function of temperature T , frequency ω , and the concentrations nA and nD of acceptors and donors and discuss the crossover behavior between the regimes of low and high temperatures and impurity concentrations. In a sufficiently compensated material [| nA-nD|≪ (nA+nD) ] with a small effective fine structure constant α ,σ (ω ,T ) ∝T2/(T-2-i ω .const) in a wide interval of temperatures. For very low temperatures, or in the case of an uncompensated material, the transport is effectively metallic. We discuss experimental conditions necessary for realizing each regime.

  1. Hairy AdS solitons

    NASA Astrophysics Data System (ADS)

    Anabalón, Andrés; Astefanesei, Dumitru; Choque, David

    2016-11-01

    We construct exact hairy AdS soliton solutions in Einstein-dilaton gravity theory. We examine their thermodynamic properties and discuss the role of these solutions for the existence of first order phase transitions for hairy black holes. The negative energy density associated to hairy AdS solitons can be interpreted as the Casimir energy that is generated in the dual filed theory when the fermions are antiperiodic on the compact coordinate.

  2. Ultrafast Non-Förster Intramolecular Donor-Acceptor Excitation Energy Transfer.

    PubMed

    Athanasopoulos, Stavros; Alfonso Hernandez, Laura; Beljonne, David; Fernandez-Alberti, Sebastian; Tretiak, Sergei

    2017-04-06

    Ultrafast intramolecular electronic energy transfer in a conjugated donor-acceptor system is simulated using nonadiabatic excited-state molecular dynamics. After initial site-selective photoexcitation of the donor, transition density localization is monitored throughout the S2 → S1 internal conversion process, revealing an efficient unidirectional donor → acceptor energy-transfer process. Detailed analysis of the excited-state trajectories uncovers several salient features of the energy-transfer dynamics. While a weak temperature dependence is observed during the entire electronic energy relaxation, an ultrafast initially temperature-independent process allows the molecular system to approach the S2-S1 potential energy crossing seam within the first ten femtoseconds. Efficient energy transfer occurs in the absence of spectral overlap between the donor and acceptor units and is assisted by a transient delocalization phenomenon of the excited-state wave function acquiring Frenkel-exciton character at the moment of quantum transition.

  3. Local Intermolecular Order Controls Photoinduced Charge Separation at Donor/Acceptor Interfaces in Organic Semiconductors

    SciTech Connect

    Feier, Hilary M.; Reid, Obadiah G.; Pace, Natalie A.; Park, Jaehong; Bergkamp, Jesse J.; Sellinger, Alan; Gust, Devens; Rumbles, Garry

    2016-03-23

    How free charge is generated at organic donor-acceptor interfaces is an important question, as the binding energy of the lowest energy (localized) charge transfer states should be too high for the electron and hole to escape each other. Recently, it has been proposed that delocalization of the electronic states participating in charge transfer is crucial, and aggregated or otherwise locally ordered structures of the donor or the acceptor are the precondition for this electronic characteristic. The effect of intermolecular aggregation of both the polymer donor and fullerene acceptor on charge separation is studied. In the first case, the dilute electron acceptor triethylsilylhydroxy-1,4,8,11,15,18,22,25-octabutoxyphthalocyaninatosilicon(IV) (SiPc) is used to eliminate the influence of acceptor aggregation, and control polymer order through side-chain regioregularity, comparing charge generation in 96% regioregular (RR-) poly(3-hexylthiophene) (P3HT) with its regiorandom (RRa-) counterpart. In the second case, ordered phases in the polymer are eliminated by using RRa-P3HT, and phenyl-C61-butyric acid methyl ester (PC61BM) is used as the acceptor, varying its concentration to control aggregation. Time-resolved microwave conductivity, time-resolved photoluminescence, and transient absorption spectroscopy measurements show that while ultrafast charge transfer occurs in all samples, long-lived charge carriers are only produced in films with intermolecular aggregates of either RR-P3HT or PC61BM, and that polymer aggregates are just as effective in this regard as those of fullerenes.

  4. Nature of the attractive interaction between proton acceptors and organic ring systems.

    PubMed

    Arras, Emmanuel; Seitsonen, Ari Paavo; Klappenberger, Florian; Barth, Johannes V

    2012-12-14

    Systematic ab initio calculations are combined with a deconvolution of electrostatic contributions to analyze the interplay between potential hydrogen bond acceptors and organic rings with C(sp(2))-H groups (benzene, pyridine and cyclopentadiene). A distinct anisotropic interaction between the ring systems and the electron lone pairs of cyanide, water and other acceptor species is revealed that favors the in-plane orientation of the proton acceptor group. In the attractive regime this interaction carries a pronounced electrostatic signature. By decomposing the electrostatic contribution into parts attributed to different subunits of the ring systems we demonstrate that a major proportion of the interaction energy gain is originating from the non-adjacent moieties, that are not in close contact with. This behavior holds equally for homocyclic, heterocyclic and non-aromatic rings but contrasts that of the ethyne molecule, taken as reference for a weak hydrogen bond donor clearly exhibiting the expected localized character. The ring interaction requires the presence of π-electron clouds and typically results in an interaction energy gain of 40 to 80 meV. Our findings suggest the proton acceptor-ring interaction as a new category of intermolecular non-covalent interactions.

  5. Added Sugars

    MedlinePlus

    ... need sugar to function properly. Added sugars contribute zero nutrients but many added calories that can lead to extra pounds or even obesity, thereby reducing heart health. If you think of your daily calorie needs as a budget, you want to “spend” ...

  6. Value Added?

    ERIC Educational Resources Information Center

    UCLA IDEA, 2012

    2012-01-01

    Value added measures (VAM) uses changes in student test scores to determine how much "value" an individual teacher has "added" to student growth during the school year. Some policymakers, school districts, and educational advocates have applauded VAM as a straightforward measure of teacher effectiveness: the better a teacher,…

  7. Organic Materials in the Undergraduate Laboratory: Microscale Synthesis and Investigation of a Donor-Acceptor Molecule

    ERIC Educational Resources Information Center

    Pappenfus, Ted M.; Schliep, Karl B.; Dissanayake, Anudaththa; Ludden, Trevor; Nieto-Ortega, Belen; Lopez Navarrete, Juan T.; Ruiz Delgado, M. Carmen; Casado, Juan

    2012-01-01

    A series of experiments for undergraduate courses (e.g., organic, physical) have been developed in the area of small molecule organic materials. These experiments focus on understanding the electronic and redox properties of a donor-acceptor molecule that is prepared in a convenient one-step microscale reaction. The resulting intensely colored…

  8. High Performance Magazine Acceptor Threshold Criteria

    DTIC Science & Technology

    1994-08-01

    detonation transition (DDT). To account for unknown mechanisms the term XDT is also used. Development of a design procedure to prevent SD requires...propagation walls are used to prevent sympathetic detonation between munitions stored in adjacent cells. Design of the walls, and their mitigation...effects, requires sympathetic detonation threshold criteria for acceptor munitions. This paper outlines the procedures being used to develop SD threshold

  9. Role of functionalized acceptors in heteroleptic bipyridyl Cu(I) complexes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoqing; Shao, Yang; Li, Ke; Zhao, Zigang; Wei, Shuxian; Guo, Wenyue

    2016-09-01

    The intrinsic optoelectronic properties of heteroleptic bipyridyl Cu(I) complexes bearing functionalized acceptor subunits have been investigated by density functional theory and time-dependent DFT. The Cu(I) complexes exhibit distorted trigonal-pyramidal geometries and typical metal-to-ligand electron transfer characteristics at the long wavelength region. Replacing carboxylic acid with cyanoacrylic acid in acceptor subunits stabilizes the LUMO levels, thus lowering the HOMOLUMO energy gaps and facilitating favorable donor-to-acceptor intramolecular electron transfer and charge separation. Introduction of heteroaromatic groups and cyanoacrylic acid significantly improves the light-harvesting capability of the complexes. Our results highlight the effect of functionalized acceptors on the optoelectronic properties of bipyridyl Cu(I) complexes and provide a fresh perspective on screening of efficient sensitizers for dye-sensitized solar cells.

  10. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.

    PubMed

    Osad'ko, I S; Shchukina, A L

    2012-06-01

    The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=I_{A}/(I_{A}+I_{D}), where I_{D} and I_{A} are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FT_{D}/(1+FT_{D}). Here F is the rate of energy transfer, and T_{D} is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FT_{D}≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F[over ¯](F)T_{D}/[1+F[over ¯](F)T_{D}]. Here F[over ¯](F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F[over ¯](F) are derived. In this case the energy transfer efficiency will be far from 100% even at FT_{D}≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities w_{N}^{D}(t) and w_{N}^{A}(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy

  11. Donor-Acceptor Conjugated Linear Polyenes: A Study of Excited State Intramolecular Charge Transfer, Photoisomerization and Fluorescence Probe Properties.

    PubMed

    Hota, Prasanta Kumar; Singh, Anil Kumar

    2014-07-27

    Numerous studies of donor-acceptor conjugated linear polyenes have been carried out with the goal to understand the exact nature of the excited state electronic structure and dynamics. In this article we discuss our endeavours with regard to the excited state intramolecular charge transfer, photoisomerization and fluorescence probe properties of various donor-acceptor substituted compounds of diphenylpolyene [Ar(CH = CH) n Ar] series and ethenylindoles.

  12. Pronounced Effects of a Triazine Core on Photovoltaic Performance-Efficient Organic Solar Cells Enabled by a PDI Trimer-Based Small Molecular Acceptor.

    PubMed

    Duan, Yuwei; Xu, Xiaopeng; Yan, He; Wu, Wenlin; Li, Zuojia; Peng, Qiang

    2017-02-01

    A novel-small molecular acceptor with electron-deficient 1,3,5-triazine as the core and perylene diimides as the arms is developed as the acceptor material for efficient bulk heterojunction organic solar cells with an efficiency of 9.15%.

  13. Spectroscopic studies of charge transfer complexes between colchicine and some π acceptors

    NASA Astrophysics Data System (ADS)

    Arslan, Mustafa; Duymus, Hulya

    2007-07-01

    Charge transfer complexes between colchicine as donor and π acceptors such as tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ), p-chloranil ( p-CHL) have been studied spectrophotometrically in dichloromethane at 21 °C. The stoichiometry of the complexes was found to be 1:1 ratio by the Job method between donor and acceptors with the maximum absorption band at a wavelength of 535, 585 and 515 nm. The equilibrium constant and thermodynamic parameters of the complexes were determined by Benesi-Hildebrand and van't Hoff equations. Colchicine in pure form and in dosage form was applied in this study. The formation constants for the complexes were shown to be dependent on the structure of the electron acceptors used.

  14. ADS pilot program Plan

    NASA Technical Reports Server (NTRS)

    Clauson, J.; Heuser, J.

    1981-01-01

    The Applications Data Service (ADS) is a system based on an electronic data communications network which will permit scientists to share the data stored in data bases at universities and at government and private installations. It is designed to allow users to readily locate and access high quality, timely data from multiple sources. The ADS Pilot program objectives and the current plans for accomplishing those objectives are described.

  15. Proficiency of acceptor-donor-acceptor organic dye with spiro-MeOTAD HTM on the photovoltaic performance of dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Ramavenkateswari, K.; Venkatachalam, P.

    2016-09-01

    This work investigates the proficiency of acceptor-donor-acceptor (A-D-A) organic dye Diisopropyl azodicarboxylate (DIAC) as photosensitizer on the photovoltaic parameters of silver (Ag) doped TiO2 photoanode dye-sensitized solar cells (DSSCs) with quasi-solid state electrolyte/hole transport material (HTM) spiro-MeOTAD. TNSs (TiO2 nanosticks) photoanodes are prepared through sol-gel method and hydrothermal technique. X-ray powder diffraction (XRD), transmission electron microscope (TEM), scanning electron microscopy (SEM) and BET measurement were used to characterize the structure and morphology of TiO2 nanostructures. The Diisopropyl azodicarboxylate organic dye with TNPs-Ag@TNSs composite photoanode structure and spiro-MeOTAD HTM exhibited better power conversion efficiency (PCE).

  16. Binomial distribution-based quantitative measurement of multiple-acceptors fluorescence resonance energy transfer by partially photobleaching acceptor

    NASA Astrophysics Data System (ADS)

    Zhang, Lili; Yu, Huaina; Zhang, Jianwei; Chen, Tongsheng

    2014-06-01

    We report that binomial distribution depending on acceptor photobleaching degree can be used to characterize the proportions of various kinds of FRET (Fluorescence Resonance Energy Transfer) constructs resulted from partial acceptor photobleaching of multiple-acceptors FRET system. On this basis, we set up a rigorous quantitation theory for multiple-acceptors FRET construct named as Mb-PbFRET which is not affected by the imaging conditions and fluorophore properties. We experimentally validate Mb-PbFRET with FRET constructs consisted of one donor and two or three acceptors inside living cells on confocal and wide-field microscopes.

  17. Pigment-acceptor-catalyst triads for photochemical hydrogen evolution.

    PubMed

    Kitamoto, Kyoji; Sakai, Ken

    2014-04-25

    In order to solve the problems of global warming and shortage of fossil fuels, researchers have been endeavoring to achieve artificial photosynthesis: splitting water into H2 and O2 under solar light illumination. Our group has recently invented a unique system that drives photoinduced water reduction through "Z-scheme" photosynthetic pathways. Nevertheless, that system still suffered from a low turnover number (TON) of the photocatalytic cycle (TON=4.1). We have now found and describe herein a new methodology to make significant improvements in the TON, up to around TON=14-27. For the new model systems reported herein, the quantum efficiency of the second photoinduced step in the Z-scheme photosynthesis is dramatically improved by introducing multiviologen tethers to temporarily collect the high-energy electron generated in the first photoinduced step. These are unique examples of "pigment-acceptor-catalyst triads", which demonstrate a new effective type of artificial photosynthesis.

  18. Donor-acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells.

    PubMed

    Wu, Jhong-Sian; Cheng, Sheng-Wen; Cheng, Yen-Ju; Hsu, Chain-Shu

    2015-03-07

    Harvesting solar energy from sunlight to generate electricity is considered as one of the most important technologies to address the future sustainability of humans. Polymer solar cells (PSCs) have attracted tremendous interest and attention over the past two decades due to their potential advantage to be fabricated onto large area and light-weight flexible substrates by solution processing at a lower cost. PSCs based on the concept of bulk heterojunction (BHJ) configuration where an active layer comprises a composite of a p-type (donor) and an n-type (acceptor) material represents the most useful strategy to maximize the internal donor-acceptor interfacial area allowing for efficient charge separation. Fullerene derivatives such as [6,6]-phenyl-C61 or 71-butyric acid methyl ester (PCBM) are the ideal n-type materials ubiquitously used for BHJ solar cells. The major effort to develop photoactive materials is numerously focused on the p-type conjugated polymers which are generally synthesized by polymerization of electron-rich donor and electron-deficient acceptor monomers. Compared to the development of electron-deficient comonomers (acceptor segments), the development of electron-rich donor materials is considerably flourishing. Forced planarization by covalently fastening adjacent aromatic and heteroaromatic subunits leads to the formation of ladder-type conjugated structures which are capable of elongating effective conjugation, reducing the optical bandgap, promoting intermolecular π-π interactions and enhancing intrinsic charge mobility. In this review, we will summarize the recent progress on the development of various well-defined new ladder-type conjugated materials. These materials serve as the superb donor monomers to prepare a range of donor-acceptor semi-ladder copolymers with sufficient solution-processability for solar cell applications.

  19. Alkyl Chlorides as Hydrogen Bond Acceptors

    SciTech Connect

    Nadas, Janos I; Vukovic, Sinisa; Hay, Benjamin

    2012-01-01

    To gain an understanding of the role of an alkyl chloride as a hydrogen bond acceptor, geometries and interaction energies were calculated at the MP2/aug-cc-pVDZ level of theory for complexes between ethyl chloride and representative hydrogen donor groups. The results establish that these donors, which include hydrogen cyanide, methanol, nitrobenzene, pyrrole, acetamide, and N-methylurea, form X-H {hor_ellipsis} Cl hydrogen bonds (X = C, N, O) of weak to moderate strength, with {Delta}E values ranging from -2.8 to -5.3 kcal/mol.

  20. Synthesis and Characterization of Ru(II) Tris(1,1O-phenanthroline)-Electron Acceptor Dyads Incorporating the 4-benzoyl-N-methylpyridinium Cation or N-Benzyl-N'-methyl-viologen. Improving the Dynamic Range, Sensitivity and Response Time of Sol-Gel Based Optical Oxygen Sensors

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Rawashdeh, Abdel-Monen M.; Elder, Ian A.; Yang, Jinhua; Dass, Amala; Sotiriou-Leventis, Chariklia

    2004-01-01

    The title compounds (1 and 2, above) were synthesized by Sonogashira coupling reactions of appropriate Ru(1I) complexes with the electron a cceptors. Characterization was conducted in solution and in frozen ma trices. Finally, the title compounds were evaluated as dopants of sol-gel materials. It was found that the intramolecular quenching efficie ncy of 4-benzoyl-Nmethylpyridinium cation in solution depends on the solvent: photoluminescence is quenched completely in CH,CN, but not i n methanol or ethanol. On the other hand, intramolecular emission que nching by 4-benzyl-N-methyl viologen is complete in all solvents. The difference between the two quenchers is traced electrochemically to t he solvation of the 4-benzoyl-Nmethylpyridiniums by alcohol. In froze n matrices or adsorbed on the surfaces of silica aerogel, both Ru(I1) complex/electron acceptor dyads of this study are photoluminescent, and the absence of quenching has been traced to the environmental rigi dity. When doped aerogels are cooled at 77 K, the emission intensity increases by approximately 4x, and the spectra shift to the blue, analogous to what is observed with Ru(I1) complexes in solutions undergoi ng fluid-to-rigid transition. However, in contrast to frozen solution s, the luminescent moieties in the bulk of aerogels kept at low tempe ratures are still accessible to gas-phase quenchers diffusing through the mesopores, leading to more sensitive platforms for sensors than o ther room-temperature configurations. Thus the photoluminescence of o ur Ru(I1) complex dyads adsorbed on aerogel is quenchable by O2 both at room temperature and at 77 K. Furthermore, it was also found that O 2 modulates the photoluminescence of aerogels doped with 4-benzoyl -N -methylpyridinium-based dyads over a wider dynamic range compared wi th aerogels doped with either our vislogen-based dyads or with Ru(I1) tris(1,lO-phenanthroline) itself.

  1. Decarboxylative 1,4-Addition of α-Oxocarboxylic Acids with Michael Acceptors Enabled by Photoredox Catalysis.

    PubMed

    Wang, Guang-Zu; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-10-02

    Enabled by iridium photoredox catalysis, 2-oxo-2-(hetero)arylacetic acids were decarboxylatively added to various Michael acceptors including α,β-unsaturated ester, ketone, amide, aldehyde, nitrile, and sulfone at room temperature. The reaction presents a new type of acyl Michael addition using stable and easily accessible carboxylic acid to formally generate acyl anion through photoredox-catalyzed radical decarboxylation.

  2. Adding Value.

    ERIC Educational Resources Information Center

    Orsini, Larry L.; Hudack, Lawrence R.; Zekan, Donald L.

    1999-01-01

    The value-added statement (VAS), relatively unknown in the United States, is used in financial reports by many European companies. Saint Bonaventure University (New York) has adapted a VAS to make it appropriate for not-for-profit universities by identifying stakeholder groups (students, faculty, administrators/support personnel, creditors, the…

  3. Prediction of the Intrinsic Hydrogen Bond Acceptor Strength of Chemical Substances from Molecular Structure

    NASA Astrophysics Data System (ADS)

    Schwöbel, Johannes; Ebert, Ralf-Uwe; Kühne, Ralph; Schüürmann, Gerrit

    2009-08-01

    Hydrogen bonding affects the partitioning of organic compounds between environmental and biological compartments as well as the three-dimensional shape of macromolecules. Using the semiempirical quantum chemical AM1 level of calculation, we have developed a model to predict the site-specific hydrogen bond (HB) acceptor strength from ground-state properties of the individual compounds. At present, the model parametrization is confined to compounds with one HB acceptor site of the following atom types: N, O, S, F, Cl, and Br that act as lone-pair HB acceptors, and π-electron (aromatic or conjugated) systems with the associated C atoms as particularly weak HB acceptors. The HB acceptor strength is expressed in terms of the Abraham parameter B and calculated from local molecular parameters, taking into account electrostatic, polarizability, and charge transfer contributions according to the Morokuma concept. For a data set of 383 compounds, the squared correlation coefficient r2 is 0.97 when electrostatic potential (ESP) derived net atomic charges are employed, and the root-mean-square (rms) error is 0.04 that is in the range of experimental uncertainty. The model is validated using an extended leave-50%-out approach, and its performance is comparatively analyzed with the ones of earlier introduced ab initio (HF/6-31G**) and density functional theory (B3LYP/6-31G**) models as well as of two increment methods with respect to the total compound set as well as HB acceptor type subsets. The discussion includes an explorative model application to amides and organophosphates that demonstrates the robustness of the approach, and further opportunities for model extensions.

  4. Simulation study on the effects of chemical structure and molecular size on the acceptor strength in poly(3-hexylthiophene)-based copolymer with alternating donor and acceptor for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Rassamesard, Areefen; Pengpan, Teparksorn

    2017-02-01

    This research assessed the effects of various chemical structures and molecular sizes on the simulated geometric parameters, electron structures, and spectroscopic properties of single-chain complex alternating donor-acceptor (D-A) monomers and copolymers that are intended for use as photoactive layer in a polymer solar cell by using Kohn-Sham density functional theory with B3LYP exchange-correlation functional. The 3-hexylthiophene (3HT) was selected for electron donor, while eight chemicals, namely thiazole (Z), thiadiazole (D), thienopyrazine (TP), thienothiadiazole (TD), benzothiadiazole (BT), thiadiazolothieno-pyrazine (TPD), oxadiazole (OXD) and 5-diphenyl-1,2,4-triazole (TAZ), were employed as electron acceptor functional groups. The torsional angle, bridge bond length, intramolecular charge transfer, energy levels, and molecular orbitals were analyzed. The simulation results reveal that the geometry and electron structure of donor-acceptor monomer and copolymer are significantly impacted by heterocyclic rings, heteroatoms, fused rings, degree of steric hindrance and coplanarity of the acceptor molecular structure. Planar conformation was obtained from the D copolymer, and a pseudo-planar structure with the TD copolymer. The TAZ acceptor exhibited strong steric hindrance due to its bulky structure and non-planarity of its structure. An analysis of the electron structures indicated that the degree of intramolecular electron-withdrawing capability had the rank order TAZ  <  Z  <  D  <  TPD  <  OXD  <  TP  <  BT  <  TD. The TD is indicated as the most effective acceptor among those that were simulated. However, the small energy gaps of TD as well as TPD copolymer indicate that these two copolymers can be used in transparent conducting materials. The copolymer based on BT acceptor exhibited good intramolecular charge transfer and absorbed at 656 nm wavelength which is close to the maximum flux of solar

  5. [Relations between the retinoic acid acceptor and teratogenesis of retinoids].

    PubMed

    Li, Zeng-Gang; Sun, Kai-Lai

    2004-09-01

    Retinoic acid can induce teratogenesis of the fetus of many animals including human, and its biological activities are induced by a serious of different retinoic acid accepters and their ligands. The retinoic acid acceptor RAR plays key roles in the teratogenesis, and the ligands of RAR are strong teratogens. The intensity sequence of the relative teratogenesis is ligandalpha, ligandbeta and ligandgamma. The ligands of the retinoic acid acceptor RXR cannot induce teratogenesis, but they can enhance the teratogenesis of the RAR stimulus. The retinoic acid acceptors can also affect the development of the fetus by adjusting the expression of the other genes. The relations between the gene mutation of the retinoic acid acceptor, various retinoic acid acceptors and their ligands and teratogenesis of retinoic acid are summarized in this article. In addition, the regulations of the retinoic acid acceptors to the other genes are also discussed.

  6. Hole-transfer induced energy transfer in perylene diimide dyads with a donor-spacer-acceptor motif.

    PubMed

    Kölle, Patrick; Pugliesi, Igor; Langhals, Heinz; Wilcken, Roland; Esterbauer, Andreas J; de Vivie-Riedle, Regina; Riedle, Eberhard

    2015-10-14

    We investigate the photoinduced dynamics of perylene diimide dyads based on a donor-spacer-acceptor motif with polyyne spacers of varying length by pump-probe spectroscopy, time resolved fluorescence, chemical variation and quantum chemistry. While the dyads with pyridine based polyyne spacers undergo energy transfer with near-unity quantum efficiency, in the dyads with phenyl based polyyne spacers the energy transfer efficiency drops below 50%. This suggests the presence of a competing electron transfer process from the spacer to the energy donor as the excitation sink. Transient absorption spectra, however, reveal that the spacer actually mediates the energy transfer dynamics. The ground state bleach features of the polyyne spacers appear due to the electron transfer decay with the same time constant present in the rise of the ground state bleach and stimulated emission of the perylene energy acceptor. Although the electron transfer process initially quenches the fluorescence of the donor it does not inhibit energy transfer to the perylene energy acceptor. The transient signatures reveal that electron and energy transfer processes are sequential and indicate that the donor-spacer electron transfer state itself is responsible for the energy transfer. Through the introduction of a Dexter blocker unit into the spacer we can clearly exclude any through bond Dexter-type energy transfer. Ab initio calculations on the donor-spacer and the donor-spacer-acceptor systems reveal the existence of a bright charge transfer state that is close in energy to the locally excited state of the acceptor. Multipole-multipole interactions between the bright charge transfer state and the acceptor state enable the energy transfer. We term this mechanism coupled hole-transfer FRET. These dyads represent a first example that shows how electron transfer can be connected to energy transfer for use in novel photovoltaic and optoelectronic devices.

  7. Quantum computing with acceptor spins in silicon

    NASA Astrophysics Data System (ADS)

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-01

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time {T}2* as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  8. Quantum computing with acceptor spins in silicon.

    PubMed

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-17

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  9. Electrokinesis is a microbial behavior that requires extracellular electron transport

    SciTech Connect

    Harris, Howard W.; El-Naggar, Mohamed Y.; Bretschger, Orianna; Ward, Melissa J.; Romine, Margaret F.; Obraztsova, Anna; Nealson, Kenneth H.

    2010-01-05

    swimming speed of cells in a population is considerably lower (14). Research has also shown that S. oneidensis MR-1 also displays chemotactic responses to several soluble electron acceptors, including Fe(III) citrate (15, 16) and that the CheA-3 histidine protein kinase is required for this chemotactic behavior to be observed (14). Strain MR-1 has 4 also been shown to be very sensitive to the presence of electron acceptors. For example, strain MR-1 ceases motility after a short time in the absence of an electron acceptor; however motility can be restored upon the re-addition of an electron acceptor. Here we present data that suggest that the shewanellae exhibit a motility response not previously reported: we call it electrokinesis. This response occurs intermittently with the cells in proximity to a solid electron acceptor, such as a manganese oxide particle or the working electrode of an electrochemical cell, and motility is observed to increase after contact. In addition to increased swimming velocities, cells occasionally pause on the solid acceptor surface, then after brief contact (up to 1 second) the cells typically swim away in the opposite direction from which they approached. Electrokinesis is not a uniform response that can be observed in all cells, although if an electron shuttle is added, all cells rapidly become motile.

  10. Microwave assisted synthesis of bithiophene based donor-acceptor-donor oligomers and their optoelectronic performances

    NASA Astrophysics Data System (ADS)

    Bathula, Chinna; Buruga, Kezia; Lee, Sang Kyu; Khazi, Imtiyaz Ahmed M.; Kang, Youngjong

    2017-07-01

    In this article we present the synthesis of two novel bithiophene based symmetrical π conjugated oligomers with donor-acceptor-donor (D-A-D) structures by microwave assisted PdCl2(dppf) catalyzed Suzuki coupling reaction. These molecules contain electron rich bithiophene as a donor, dithienothiadiazole[3,4-c]pyridine and phthalic anhydride units as acceptors. The shorter reaction time, excellent yields and easy product isolation are the advantages of this method. The photophysical prerequisites for electronic application such as strong and broad optical absorption, thermal stability, and compatible energy levels were determined for synthesized oligomers. Optical band gap for the oligomers is found to be 1.72-1.90 eV. The results demonstrated the novel oligomers to be promising candidates in organic optoelectronic applications.

  11. Ultrafast exciton dissociation at donor/acceptor interfaces

    NASA Astrophysics Data System (ADS)

    Grancini, G.; Fazzi, D.; Binda, M.; Maiuri, M.; Petrozza, A.; Criante, L.; Perissinotto, S.; Egelhaaf, H.-J.; Brida, D.; Cerullo, G.; Lanzani, G.

    2013-09-01

    Charge generation at donor/acceptor interface is a highly debated topic in the organic photovoltaics (OPV) community. The primary photoexcited state evolution happens in few femtosecond timescale, thus making very intriguing their full understanding. In particular charge generation is believed to occur in < 200 fs, but no clear picture emerged so far. In this work we reveal for the first time the actual charge generation mechanism following in real time the exciton dissociation mechanism by means of sub-22 fs pump-probe spectroscopy. We study a low-band-gap polymer: fullerene interface as an ideal system for OPV. We demonstrate that excitons dissociation leads, on a timescale of 20-50 fs, to two byproducts: bound interfacial charge transfer states (CTS) and free charges. The branching ratio of their formation depends on the excess photon energy provided. When high energy singlet polymer states are excited, well above the optical band gap, an ultrafast hot electron transfer happens between the polymer singlet state and the interfacial hot CTS* due to the high electronic coupling between them. Hot exciton dissociation prevails then on internal energy dissipation that occurs within few hundreds of fs. By measuring the internal quantum efficiency of a prototypical device a rising trend with energy is observed, thus indicating that hot exciton dissociation effectively leads to a higher fraction of free charges.

  12. Poly(trifluoromethyl)azulenes: structures and acceptor properties

    SciTech Connect

    Clikeman, Tyler T.; Bukovsky, Eric V.; Kuvychko, Igor V.; San, Long K.; Deng, Shihu; Wang, Xue B.; Chen, Yu-Sheng; Strauss, Steven H.; Boltalina, Olga V.

    2014-07-10

    Azulene is a non-alternant, non-benzenoid aromatic hydrocarbon with an intense blue colour, a dipole moment of 1.0 D,1 positive electron affinity, and an “anomalous” emission from the second excited state in violation of Kasha’s rule.2,3 Azulene’s unique properties have potential uses in molecular switches,4,5 molecular diodes,6 organic photovoltaics,7 and charge transfer complexes.8-12 Introduction of electron-withdrawing groups to the azulenic core, such as CN,8,13,14 halogens,15-19 and CF3,20,21 can enhance certain electrical and photophysical properties. In this work, we report six new trifluoromethyl derivatives of azulene (AZUL), three isomers of AZUL(CF3)3 and three isomers of AZUL(CF3)4, and the first X-ray structure of a π-stacked donor-acceptor complex of a trifluoromethyl azulene with donor pyrene.

  13. Donor-Acceptor Interface Stabilizer Based on Fullerene Derivatives toward Efficient and Thermal Stable Organic Photovoltaics.

    PubMed

    Li, Junli; Zhu, Xiaoguang; Yuan, Tao; Shen, Jiulin; Liu, Jikang; Zhang, Jian; Tu, Guoli

    2017-02-22

    An interface stabilizer based on alkylation-functionalized fullerene derivatives, [6, 6]-Phenyl-C61-butyric acid (3,5-bis(octyloxy)phenyl)methyl ester (PCB-C8oc), was successfully synthesized and applied for the active layer of Organic Photovoltaics (OPVs). The PCB-C8oc can replace part of the phenyl-C61-buty-ric acid methyl ester (PCBM) and be distributed on the interface of poly(3-hexylthiophene) (P3HT) and PCBM to form P3HT/PCBM/PCB-C8oc ternary blends, leading to thermally stable and efficient organic photovoltaics. The octyl groups of PCB-C8oc exhibit intermolecular interaction with the hexyl groups of P3HT, and the fullerene unit of PCB-C8oc are in tight contact with PCBM. The dual functions of PCB-C8oc will inhibit the phase separation between electron donor and acceptor, thereby improving the stability of devices under long-time thermal annealing at high temperature. When doped with 10 wt % PCB-C8oc, the power conversion efficiency (PCE) of the P3HT system decreased from 3.54% to 2.88% after 48 h of thermal treatment at 150 °C, whereas the PCE of the reference device without PCB-C8oc dramatically dropped from 3.53% to 0.73%. When doping 10 or 20 wt % PCB-C8oc, the unannealed P3HT/PCBM/PCB-C8oc device achieved a higher PCE than the P3HT/PCBM device without any annealing following the same fabricating condition. For the PTB7/PCBM-based devices, after adding only 5 wt % PCB-C8oc, the OPVs also exhibited thermally stable morphology and better device performances. All these results demonstrate that the utilization of alkyl interchain interactions is an effective and practical strategy to control morphological evolution.

  14. Naphthalene diimide-difluorobenzene-based polymer acceptors for all-polymer solar cells.

    PubMed

    Deng, Ping; Ho, Carr Hoi Yi; Lu, Yong; Li, Ho-Wa; Tsang, Sai-Wing; So, Shu Kong; Ong, Beng S

    2017-03-18

    Regio-random (P1) and -regular (P2) difluorobenzene-naphthalene-containing polymer acceptors were developed for bulk-heterojunction all-polymer solar cells (all-PSCs). P2 exhibited significantly higher crystallinity in thin films, providing high spectral absorptivity and electron mobility than P1. When used in all-PSC devices, P2 afforded a respectably higher power conversion efficiency of over 5%.

  15. The role of deep acceptor centers in the oxidation of acceptor-doped wide-band-gap perovskites ABO3

    NASA Astrophysics Data System (ADS)

    Putilov, L. P.; Tsidilkovski, V. I.

    2017-03-01

    The impact of deep acceptor centers on defect thermodynamics and oxidation of wide-band-gap acceptor-doped perovskites without mixed-valence cations is studied. These deep centers are formed by the acceptor-bound small hole polarons whose stabilization energy can be high enough (significantly higher than the hole-acceptor Coulomb interaction energy). It is shown that the oxidation enthalpy ΔHox of oxide is determined by the energy εA of acceptor-bound states along with the formation energy EV of oxygen vacancies. The oxidation reaction is demonstrated to be either endothermic or exothermic, and the regions of εA and EV values corresponding to the positive or negative ΔHox are determined. The contribution of acceptor-bound holes to the defect thermodynamics strongly depends on the acceptor states depth εA: it becomes negligible at εA less than a certain value (at which the acceptor levels are still deep). With increasing εA, the concentration of acceptor-bound small hole polarons can reach the values comparable to the dopant content. The results are illustrated with the acceptor-doped BaZrO3 as an example. It is shown that the experimental data on the bulk hole conductivity of barium zirconate can be described both in the band transport model and in the model of hopping small polarons localized on oxygen ions away from the acceptor centers. Depending on the εA magnitude, the oxidation reaction can be either endothermic or exothermic for both mobility mechanisms.

  16. Inhibition of the water oxidizing complex of photosystem II and the reoxidation of the quinone acceptor QA- by Pb2+.

    PubMed

    Belatik, Ahmed; Hotchandani, Surat; Carpentier, Robert

    2013-01-01

    The action of the environmental toxic Pb(2+) on photosynthetic electron transport was studied in thylakoid membranes isolated from spinach leaves. Fluorescence and thermoluminescence techniques were performed in order to determine the mode of Pb(2+) action in photosystem II (PSII). The invariance of fluorescence characteristics of chlorophyll a (Chl a) and magnesium tetraphenylporphyrin (MgTPP), a molecule structurally analogous to Chl a, in the presence of Pb(2+) confirms that Pb cation does not interact directly with chlorophyll molecules in PSII. The results show that Pb interacts with the water oxidation complex thus perturbing charge recombination between the quinone acceptors of PSII and the S2 state of the Mn4Ca cluster. Electron transfer between the quinone acceptors QA and QB is also greatly retarded in the presence of Pb(2+). This is proposed to be owing to a transmembrane modification of the acceptor side of the photosystem.

  17. Theoretical Study of Donor - Spacer - Acceptor Structure Molecule for Molecular Rectifier

    NASA Astrophysics Data System (ADS)

    Mizuseki, Hiroshi; Kenji, Niimura; Belosludov, Rodion; Farajian, Amir; Kawazoe, Yoshiyuki

    2003-03-01

    Recently, the molecular electronics has attracted strong attention as a ``post-silicone technology'' to establish a future nanoscale electronic devices. To realize this molecular device, unimolecular rectifiering function is one of the most important constituents in nanotechnology [C. Majumder, H. Mizuseki, and Y. Kawazoe, Molecular Scale Rectifier: Theoretical Study, J. Phys. Chem. A, 105 (2001) 9454-9459.]. In the present study, the geometric and electronic structure of alkyl derivative C37H50N4O4 (PNX) molecule, (donor - spacer - acceptor), a leading candidate of molecular rectifying device, has been investigated theoretically using ab initio quantum mechanical calculation. The results suggest that in such donor-acceptor molecular complexes, while the lowest unoccupied orbital concentrates on the acceptor subunit, the highest occupied molecular orbital is localized on the donor subunit. The approximate potential differences for optimized PNX molecule have been estimated at the B3PW91/6-311g++(d,p) level of theory, which achieves quite good agreement with experimentally reported results. This study was performed through Special Coordination Funds for Promoting Science and Technology of the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government.

  18. Acceptor and Excitation Density Dependence of the Ultrafast Polaron Absorption Signal in Donor-Acceptor Organic Solar Cell Blends.

    PubMed

    Zarrabi, Nasim; Burn, Paul L; Meredith, Paul; Shaw, Paul E

    2016-07-21

    Transient absorption spectroscopy on organic semiconductor blends for solar cells typically shows efficient charge generation within ∼100 fs, accounting for the majority of the charge carriers. In this Letter, we show using transient absorption spectroscopy on blends containing a broad range of acceptor content (0.01-50% by weight) that the rise of the polaron signal is dependent on the acceptor concentration. For low acceptor content (<10% by weight), the polaron signal rises gradually over ∼1 ps with most polarons generated after 200 fs, while for higher acceptor concentrations (>10%) most polarons are generated within 200 fs. The rise time in blends with low acceptor content was also found to be sensitive to the pump fluence, decreasing with increasing excitation density. These results indicate that the sub-100 fs rise of the polaron signal is a natural consequence of both the high acceptor concentrations in many donor-acceptor blends and the high excitation densities needed for transient absorption spectroscopy, which results in a short average distance between the exciton and the donor-acceptor interface.

  19. Small-Molecule Acceptor Based on the Heptacyclic Benzodi(cyclopentadithiophene) Unit for Highly Efficient Nonfullerene Organic Solar Cells.

    PubMed

    Kan, Bin; Feng, Huanran; Wan, Xiangjian; Liu, Feng; Ke, Xin; Wang, Yanbo; Wang, Yunchuang; Zhang, Hongtao; Li, Chenxi; Hou, Jianhui; Chen, Yongsheng

    2017-03-24

    A new nonfullerene small molecule with acceptor-donor-acceptor (A-D-A) structure, namely, NFBDT, based on a heptacyclic benzodi(cyclopentadithiophene) (FBDT) unit using benzo[1,2-b:4,5-b']dithiophene as the core unit, was designed and synthesized. Its absorption ability, energy levels, thermal stability, as well as photovoltaic performances were fully investigated. NFBDT exhibits a low optical bandgap of 1.56 eV resulting in wide and efficient absorption that covered the range from 600 to 800 nm, and suitable energy levels as an electron acceptor. With the widely used and successful wide bandgap polymer PBDB-T selected as the electron donor material, an optimized PCE of 10.42% was obtained for the PBDB-T:NFBDT-based device with an outstanding short-circuit current density of 17.85 mA cm(-2) under AM 1.5G irradiation (100 mW cm(-2)), which is so far among the highest performance of NF-OSC devices. These results demonstrate that the BDT unit could also be applied for designing NF-acceptors, and the fused-ring benzodi(cyclopentadithiophene) unit is a prospective block for designing new NF-acceptors with excellent performance.

  20. Identification of photoluminescence bands in AlGaAs/InGaAs/GaAs PHEMT heterostructures with donor-acceptor-doped barriers

    SciTech Connect

    Gulyaev, D. V. Zhuravlev, K. S.; Bakarov, A. K.; Toropov, A. I.

    2015-02-15

    The photoluminescence of AlGaAs/InGaAs/GaAs pseudomorphic high-electron mobility transistor heterostructures with donor-acceptor-doped AlGaAs barriers is studied. It is found that the introduction of additional p{sup +}-doped AlGaAs layers into the design brings about the appearance of new bands in the photoluminescence spectra. These bands are identified as resulting from transitions (i) in donor-acceptor pairs in doped AlGaAs layers and (ii) between the conduction subband and acceptor levels in the undoped InGaAs quantum well.

  1. Intramolecular charge transfer in donor-acceptor molecules

    SciTech Connect

    Slama-Schwok, A.; Blanchard-Desce, M.; Lehn, J.M. )

    1990-05-17

    The photophysical properties of donor-acceptor molecules, push-pull polyenes and carotenoids, have been studied by absorption and fluorescence spectroscopy. The compounds bear various acceptor and donor groups, linked together by chains of different length and structure. The position of the absorption and fluorescence maxima and their variation in solvents of increasing polarity are in agreement with long-distance intramolecular charge-transfer processes, the linker acting as a molecular wire. The effects of the linker length and structure and of the nature of acceptor and donor are presented.

  2. Alteration of cartilage glycosaminoglycan protein acceptor by somatomedin and cortisol.

    PubMed

    Kilgore, B S; McNatt, M L; Meador, S; Lee, J A; Hughes, E R; Elders, M J

    1979-02-01

    The effect of somatomedin and cortisol on embryonic chick cartilage in vitro indicates that somatomedin stimulates 35SO4 uptake while cortisol decreases it with no effect on glycosaminoglycan turnover. Xylosyltransferase activity is increased in crude fractions of somatomedin-treated cartilage but decreased in cortisol-treated cartilage. By using a Smith-degraded proteoglycan as an exogenous acceptor, xylosyltransferase activities from both treatments were equivalent, suggesting that the enzyme was not rate limiting. The results of xylosyltransferase assays conducted by mixing enzyme and endogenous acceptor from control, cortisol-treated and somatomedin-treated cartilage, suggest both effects to be at the level of the acceptor protein.

  3. Three holes bound to a double acceptor - Be(+) in germanium

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Mcmurray, R. E., Jr.; Falicov, L. M.; Haegel, N. M.; Hansen, W. L.

    1983-01-01

    A double acceptor binding three holes has been observed for the first time with photoconductive far-infrared spectroscopy in beryllium-doped germanium single crystals. This new center, Be(+), has a hole binding energy of about 5 meV and is only present when free holes are generated by ionization of either neutral shallow acceptors or neutral Be double acceptors. The Be(+) center thermally ionizes above 4 K. It disappears at a uniaxial stress higher than about a billion dyn/sq cm parallel to (111) as a result of the lifting of the valence-band degeneracy.

  4. Examining Forster Energy Transfer for Semiconductor Nanocrystaline Quantum Dot Donors and Acceptors

    SciTech Connect

    Curutchet, C.; Franceschetti, A.; Zunger, A.; Scholes, G. D.

    2008-01-01

    Excitation energy transfer involving semiconductor quantum dots (QDs) has received increased attention in recent years because their properties, such as high photostability and size-tunable optical properties, have made QDs attractive as Forster resonant energy transfer (FRET) probes or sensors. An intriguing question in FRET studies involving QDs has been whether the dipole approximation, commonly used to predict the electronic coupling, is sufficiently accurate. Accurate estimates of electronic couplings between two 3.9 nm CdSe QDs and between a QD and a chlorophyll molecule are reported. These calculations are based on transition densities obtained from atomistic semiempirical calculations and time-dependent density functional theory for the QD and the chlorophyll, respectively. In contrast to the case of donor-acceptor molecules, where the dipole approximation breaks down at length scales comparable to the molecular dimensions, we find that the dipole approximation works surprisingly well when donor and/or acceptor is a spherical QD, even at contact donor-acceptor separations. Our conclusions provide support for the use of QDs as FRET probes for accurate distance measurements.

  5. Molecular Donor-Bridge-Acceptor Strategies for High-Capacitance Organic Dielectric Materials.

    PubMed

    Heitzer, Henry M; Marks, Tobin J; Ratner, Mark A

    2015-06-10

    Donor-bridge-acceptor (DBA) systems occupy a rich history in molecular electronics and photonics. A key property of DBA materials is their typically large and tunable (hyper)polarizabilities. While traditionally, classical descriptions such as the Clausius-Mossotti formalism have been used to relate molecular polarizabilities to bulk dielectric response, recent work has shown that these classical equations are inadequate for numerous materials classes. Creating high-dielectric organic materials is critically important for utilizing unconventional semiconductors in electronic circuitry. Employing a plane-wave density functional theory formalism, we investigate the dielectric response of highly polarizable DBA molecule-based thin films. Such films are found to have large dielectric response arising from cooperative effects between donor and acceptor units when mediated by a conjugated bridge. Moreover, the dielectric response can be systematically tuned by altering the building block donor, acceptor, or bridge structures and is found to be nonlinearly dependent on electric field strength. The computed dielectric constants are largely independent of the density functional employed, and qualitative trends are readily evident. Remarkably large computed dielectric constants >15.0 and capacitances >6.0 μF/cm(2) are achieved for squaraine monolayers, significantly higher than in traditional organic dielectrics. Such calculations should provide a guide for designing high-capacitance organic dielectrics that should greatly enhance transistor performance.

  6. Intramolecular Charge-Transfer Interaction of Donor-Acceptor-Donor Arrays Based on Anthracene Bisimide.

    PubMed

    Iwanaga, Tetsuo; Ogawa, Marina; Yamauchi, Tomokazu; Toyota, Shinji

    2016-05-20

    We designed anthracene bisimide (ABI) derivatives having two triphenylamine (TPA) groups as donor units at the 9,10-positions to form a novel π-conjugated donor-acceptor system. These compounds and their analogues with ethynylene linkers were synthesized by Suzuki-Miyaura and Sonogashira coupling reactions, respectively. In UV-vis spectra, the linker-free derivatives showed broad absorption bands arising from intramolecular charge-transfer interactions. Introducing ethynylene linkers resulted in a considerable red shift of the absorption bands. In fluorescence spectra, the ethynylene derivatives showed intense emission bands at 600-650 nm. Their photophysical and electrochemical properties were compared with those of the corresponding mono TPA derivatives on the basis of theoretical calculations and cyclic voltammetry to evaluate the intramolecular electronic interactions between the donor and acceptor units.

  7. Donor-acceptor pair recombination in AgIn5S8 single crystals

    NASA Astrophysics Data System (ADS)

    Gasanly, N. M.; Serpengüzel, A.; Aydinli, A.; Gürlü, O.; Yilmaz, I.

    1999-03-01

    Photoluminescence (PL) spectra of AgIn5S8 single crystals were investigated in the 1.44-1.91 eV energy region and in the 10-170 K temperature range. The PL band was observed to be centered at 1.65 eV at 10 K and an excitation intensity of 0.97 W cm-2. The redshift of this band with increasing temperature and with decreasing excitation intensity was observed. To explain the observed PL behavior, we propose that the emission is due to radiative recombination of a donor-acceptor pair, with an electron occupying a donor level located at 0.06 eV below the conduction band, and a hole occupying an acceptor level located at 0.32 eV above the valence band.

  8. Donor/Acceptor Mixed Self-Assembled Monolayers for Realising a Multi-Redox-State Surface.

    PubMed

    Casado-Montenegro, Javier; Marchante, Elena; Crivillers, Núria; Rovira, Concepció; Mas-Torrent, Marta

    2016-06-17

    Mixed molecular self-assembled monolayers (SAMs) on gold, based on two types of electroactive molecules, that is, electron-donor (ferrocene) and electron-acceptor (anthraquinone) molecules, are prepared as an approach to realise surfaces exhibiting multiple accessible redox states. The SAMs are investigated in different electrolyte media. The nature of these media has a strong impact on the types of redox processes that take place and on the redox potentials. Under optimised conditions, surfaces with three redox states are achieved. Such states are accessible in a relatively narrow potential window in which the SAMs on gold are stable. This communication elucidates the key challenges in fabricating bicomponent SAMs as electrochemical switches.

  9. A compact planar low-energy-gap molecule with a donor-acceptor-donor nature based on a bimetal dithiolene complex.

    PubMed

    Hayashi, Mikihiro; Otsubo, Kazuya; Kato, Tatsuhisa; Sugimoto, Kunihisa; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2015-11-11

    We present the first report of a compact, planar and low-energy-gap molecule based on a π-conjugated bimetal system comprising a tetrathiooxalate (tto) skeleton. The observed low HOMO-LUMO energy gap (1.19 eV) is attributed to its donor-acceptor-donor (D-A-D) nature because the skeleton acts as an electron acceptor as well as a tiny and noninnocent bridging moiety.

  10. Theoretical characterization on photoelectric properties of benzothiadiazole- and fluorene-based small molecule acceptor materials for the organic photovoltaics.

    PubMed

    Sui, Mingyue; Li, Shuangbao; Pan, Qingqing; Sun, Guangyan; Geng, Yun

    2017-01-01

    The upper efficiency of heterojunction organic photovoltaics depends on the increased open-circuit voltage (V oc) and short-circuit current (J sc). So, a higher lowest unoccupied molecular orbital (LUMO) level is necessary for organic acceptor material to possess higher V oc and more photons absorbsorption in the solar spectrum is needed for larger J sc. In this article, we theoretically designed some small molecule acceptors (2∼5) based on fluorene (F), benzothiadiazole, and cyano group (CN) referring to the reported acceptor material 2-[{7-(9,9-di-n-propyl-9H-fluoren-2-yl)benzo[c][1,2,5]thiadiazol-4-yl}methylene]malononitrile (1), the crucial parameters affecting photoelectrical properties of compounds 2∼5 were evaluated by the density functional theory (DFT) and time dependent density functional theory (TDDFT) methods. The results reveal that compared with 1, 3 and 4 could have the better complementary absorption spectra with P3HT, the increased LUMO level, the improved V oc, and the decreased electronic organization energy (λ e). From the simulation of transition density matrix, it is very clear that the excitons of molecules 3 and 4 are easier to separate in the material surface. Therefore, 3 and 4 may become potential acceptor candidates for organic photovoltaic cells. In addition, with the increased number of CN, the optoelectronic properties of the molecules show a regular change, mainly improve the LUMO level, energy gap, V oc, and absorption intensity. In summary, reasonably adjusting CN can effectively improve the photovoltaic properties of small molecule acceptors. Graphical Abstract Structure-property relationship of small molecule acceptors could be rationally evaluated in the article. The changes of conjugate length and CN are important strategies to alter the photovoltaic properties of small molecule acceptors. Therefore, taking the K12/1 as a reference, we have theoretically designed a series of small molecule acceptors (2-4). The calculated

  11. ADS in a Nutshell

    NASA Astrophysics Data System (ADS)

    Demleitner, M.; Eichhorn, G.; Grant, C. S.; Accomazzi, A.; Murray, S. S.; Kurtz, M. J.

    1999-05-01

    The bibliographic databases maintained by the NASA Astrophysics Data System are updated approximately biweekly with records gathered from over 125 sources all over the world. Data are either sent to us electronically, retrieved by our staff via semi-automated procedures, or entered in our databases through supervised OCR procedures. PERL scripts are run on the data to convert them from their incoming format to our standard format so that they can be added to the master database at SAO. Once new data has been added, separate index files are created for authors, objects, title words, and text word, allowing these fields to be searched for individually or in combination with each other. During the indexing procedure, discipline-specific knowledge is taken into account through the use of rule-based procedures performing string normalization, context-sensitive word translation, and synonym and stop word replacement. Once the master text and index files have been updated at SAO, an automated procedure mirrors the changes in the database to the ADS mirror site via a secure network connection. The use of a public domain software tool called rsync allows incremental updating of the database files, with significant savings in the amount of data being transferred. In the past year, the ADS Abstract Service databases have grown by approximately 30%, including 50% growth in Physics, 25% growth in Astronomy and 10% growth in the Instrumentation datasets. The ADS Abstract Service now contains over 1.4 million abstracts (475K in Astronomy, 430K in Physics, 510K in Instrumentation, and 3K in Preprints), 175,000 journal abstracts, and 115,000 full text articles. In addition, we provide links to over 40,000 electronic HTML articles at other sites, 20,000 PDF articles, and 10,000 postscript articles, as well as many links to other external data sources.

  12. Free-Standing Undoped ZnO Microtubes with Rich and Stable Shallow Acceptors

    PubMed Central

    Wang, Qiang; Yan, Yinzhou; Zeng, Yong; Lu, Yue; Chen, Liang; Jiang, Yijian

    2016-01-01

    Fabrication of reliable large-sized p-ZnO is a major challenge to realise ZnO-based electronic device applications. Here we report a novel technique to grow high-quality free-standing undoped acceptor-rich ZnO (A-ZnO) microtubes with dimensions of ~100 μm (in diameter) × 5 mm (in length) by optical vapour supersaturated precipitation. The A-ZnO exhibits long lifetimes (>1 year) against compensation/lattice-relaxation and the stable shallow acceptors with binding energy of ~127 meV are confirmed from Zn vacancies. The A-ZnO provides a possibility for a mimetic p-n homojunction diode with n+-ZnO:Sn. The high concentrations of holes in A-ZnO and electrons in n+-ZnO make the dual diffusion possible to form a depletion layer. The diode threshold voltage, turn-on voltage, reverse saturated current and reverse breakdown voltage are 0.72 V, 1.90 V, <10 μA and >15 V, respectively. The A-ZnO also demonstrates quenching-free donor-acceptor-pairs (DAP) emission located in 390–414 nm with temperature of 270–470 K. Combining the temperature-dependent DAP violet emission with native green emission, the visible luminescence of A-ZnO microtube can be modulated in a wide region of colour space across white light. The present work opens up new opportunities to achieve ZnO with rich and stable acceptors instead of p-ZnO for a variety of potential applications. PMID:27263856

  13. Free-Standing Undoped ZnO Microtubes with Rich and Stable Shallow Acceptors

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Yan, Yinzhou; Zeng, Yong; Lu, Yue; Chen, Liang; Jiang, Yijian

    2016-06-01

    Fabrication of reliable large-sized p-ZnO is a major challenge to realise ZnO-based electronic device applications. Here we report a novel technique to grow high-quality free-standing undoped acceptor-rich ZnO (A-ZnO) microtubes with dimensions of ~100 μm (in diameter) × 5 mm (in length) by optical vapour supersaturated precipitation. The A-ZnO exhibits long lifetimes (>1 year) against compensation/lattice-relaxation and the stable shallow acceptors with binding energy of ~127 meV are confirmed from Zn vacancies. The A-ZnO provides a possibility for a mimetic p-n homojunction diode with n+-ZnO:Sn. The high concentrations of holes in A-ZnO and electrons in n+-ZnO make the dual diffusion possible to form a depletion layer. The diode threshold voltage, turn-on voltage, reverse saturated current and reverse breakdown voltage are 0.72 V, 1.90 V, <10 μA and >15 V, respectively. The A-ZnO also demonstrates quenching-free donor-acceptor-pairs (DAP) emission located in 390–414 nm with temperature of 270–470 K. Combining the temperature-dependent DAP violet emission with native green emission, the visible luminescence of A-ZnO microtube can be modulated in a wide region of colour space across white light. The present work opens up new opportunities to achieve ZnO with rich and stable acceptors instead of p-ZnO for a variety of potential applications.

  14. Nitrogen is a deep acceptor in ZnO

    SciTech Connect

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence band relative to the vacuum level.

  15. Nitrogen is a deep acceptor in ZnO

    DOE PAGES

    Tarun, M. C.; Iqbal, M. Zafar; McCluskey, M. D.

    2011-04-14

    Zinc oxide is a promising material for blue and UV solid-state lighting devices, among other applications. Nitrogen has been regarded as a potential p-type dopant for ZnO. However, recent calculations indicate that nitrogen is a deep acceptor. This paper presents experimental evidence that nitrogen is, in fact, a deep acceptor and therefore cannot produce p-type ZnO. A broad photoluminescence (PL) emission band near 1.7 eV, with an excitation onset of ~2.2 eV, was observed, in agreement with the deep-acceptor model of the nitrogen defect. Thus the deep-acceptor behavior can be explained by the low energy of the ZnO valence bandmore » relative to the vacuum level.« less

  16. Incremental Tuning Up of Fluorous Phenazine Acceptors.

    PubMed

    Castro, Karlee P; Clikeman, Tyler T; DeWeerd, Nicholas J; Bukovsky, Eric V; Rippy, Kerry C; Kuvychko, Igor V; Hou, Gao-Lei; Chen, Yu-Sheng; Wang, Xue-Bin; Strauss, Steven H; Boltalina, Olga V

    2016-03-14

    In a simple, one-step direct trifluoromethylation of phenazine with CF3 I we prepared and characterized nine (poly)trifluoromethyl derivatives with up to six CF3 groups. The electrochemical reduction potentials and gas-phase electron affinities show a direct, strict linear relation to the number of CF3 groups, with phenazine(CF3)6 reaching a record-high electron affinity of 3.24 eV among perfluoroalkylated polyaromatics.

  17. Incremental Tuning Up of Fluorous Phenazine Acceptors

    SciTech Connect

    Castro, Karlee P.; Clikeman, Tyler T.; DeWeerd, Nicholas J.; Bukovsky, Eric V.; Rippy, Kerry C.; Kuvychko, Igor V.; Hou, Gao-Lei; Chen, Yu-Sheng; Wang, Xue-Bin; Strauss, Steven H.; Boltalina, Olga V.

    2016-01-12

    In a simple, one-step direct trifluoromethylation of phenazine with CF3I we prepared and characterized nine (poly)trifluoromethyl derivatives with up to six CF3 groups. The electrochemical reduction potentials and gas-phase electron affinities show a direct, strict linear relation to the number of CF3 groups, with phenazine(CF3)6 reaching a record-high electron affinity of 3.24 eV among perfluoroalkylated polyaromatics.

  18. Fullerene-bisadduct acceptors for polymer solar cells.

    PubMed

    Li, Yongfang

    2013-10-01

    Polymer solar cells (PSCs) have drawn great attention in recent years for their simple device structure, light weight, and low-cost fabrication in comparison with inorganic semiconductor solar cells. However, the power-conversion efficiency (PCE) of PSCs needs to be increased for their future application. The key issue for improving the PCE of PSCs is the design and synthesis of high-efficiency conjugated polymer donors and fullerene acceptors for the photovoltaic materials. For the acceptor materials, several fullerene-bisadduct acceptors with high LUMO energy levels have demonstrated excellent photovoltaic performance in PSCs with P3HT as a donor. In this Focus Review, recent progress in high-efficiency fullerene-bisadduct acceptors is discussed, including the bisadduct of PCBM, indene-C60 bisadduct (ICBA), indene-C70 bisadduct (IC70BA), DMPCBA, NCBA, and bisTOQC. The LUMO levels and photovoltaic performance of these bisadduct acceptors with P3HT as a donor are summarized and compared. In addition, the applications of an ICBA acceptor in new device structures and with other conjugated polymer donors than P3HT are also introduced and discussed.

  19. Orientifolded locally AdS3 geometries

    NASA Astrophysics Data System (ADS)

    Loran, F.; Sheikh-Jabbari, M. M.

    2011-01-01

    Continuing the analysis of [Loran F and Sheikh-Jabbari M M 2010 Phys. Lett. B 693 184-7], we classify all locally AdS3 stationary axi-symmetric unorientable solutions to AdS3 Einstein gravity and show that they are obtained by applying certain orientifold projection on AdS3, BTZ or AdS3 self-dual orbifold, respectively, O-AdS3, O-BTZ and O-SDO geometries. Depending on the orientifold fixed surface, the O-surface, which is either a space-like 2D plane or a cylinder, or a light-like 2D plane or a cylinder, one can distinguish four distinct cases. For the space-like orientifold plane or cylinder cases, these geometries solve AdS3 Einstein equations and are hence locally AdS3 everywhere except at the O-surface, where there is a delta-function source. For the light-like cases, the geometry is a solution to Einstein equations even at the O-surface. We discuss the causal structure for static, extremal and general rotating O-BTZ and O-SDO cases as well as the geodesic motion on these geometries. We also discuss orientifolding Poincaré patch AdS3 and AdS2 geometries as a way to geodesic completion of these spaces and comment on the 2D CFT dual to the O-geometries.

  20. Design, synthesis and study of supramolecular donor-acceptor systems mimicking natural photosynthesis processes

    NASA Astrophysics Data System (ADS)

    Bikram, Chandra

    This dissertation investigates the chemical ingenuity into the development of various photoactive supramolecular donor -- acceptor systems to produce clean and carbon free energy for the next generation. The process is inspired by the principles learned from nature's approach where the solar energy is converted into the chemical energy through the natural photosynthesis process. Owing to the importance and complexity of natural photosynthesis process, we have designed ideal donor-acceptor systems to investigate their light energy harvesting properties. This process involves two major steps: the first step is the absorption of light energy by antenna or donor systems to promote them to an excited electronic state. The second step involves, the transfer of excitation energy to the reaction center, which triggers an electron transfer process within the system. Based on this principle, the research is focused into the development of artificial photosynthesis systems to investigate dynamics of photo induced energy and electron transfer events. The derivatives of Porphyrins, Phthalocyanines, BODIPY, and SubPhthalocyanines etc have been widely used as the primary building blocks for designing photoactive and electroactive ensembles in this area because of their excellent and unique photophysical and photochemical properties. Meanwhile, the fullerene, mainly its readily available version C60 is typically used as an electron acceptor component because of its unique redox potential, symmetrical shape and low reorganization energy appropriate for improved charge separation behavior. The primary research motivation of the study is to achieve fast charge separation and slow charge recombination of the system by stabilizing the radical ion pairs which are formed from photo excitation, for maximum utility of solar energy. Besides Fullerene C60, this dissertation has also investigated the potential application of carbon nanomaterials (Carbon nanotubes and graphene) as primary

  1. The Impact of Heterogeneity and Dark Acceptor States on FRET: Implications for Using Fluorescent Protein Donors and Acceptors

    PubMed Central

    Vogel, Steven S.; Nguyen, Tuan A.; van der Meer, B. Wieb; Blank, Paul S.

    2012-01-01

    Förster resonance energy transfer (FRET) microscopy is widely used to study protein interactions in living cells. Typically, spectral variants of the Green Fluorescent Protein (FPs) are incorporated into proteins expressed in cells, and FRET between donor and acceptor FPs is assayed. As appreciable FRET occurs only when donors and acceptors are within 10 nm of each other, the presence of FRET can be indicative of aggregation that may denote association of interacting species. By monitoring the excited-state (fluorescence) decay of the donor in the presence and absence of acceptors, dual-component decay analysis has been used to reveal the fraction of donors that are FRET positive (i.e., in aggregates)._However, control experiments using constructs containing both a donor and an acceptor FP on the same protein repeatedly indicate that a large fraction of these donors are FRET negative, thus rendering the interpretation of dual-component analysis for aggregates between separately donor-containing and acceptor-containing proteins problematic. Using Monte-Carlo simulations and analytical expressions, two possible sources for such anomalous behavior are explored: 1) conformational heterogeneity of the proteins, such that variations in the distance separating donor and acceptor FPs and/or their relative orientations persist on time-scales long in comparison with the excited-state lifetime, and 2) FP dark states. PMID:23152925

  2. Donor-Acceptor-Donor Modular Small Organic Molecules Based on the Naphthalene Diimide Acceptor Unit for Solution-Processable Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Patil, Hemlata; Gupta, Akhil; Bilic, Ante; Jackson, Sam Leslie; Latham, Kay; Bhosale, Sheshanath V.

    2014-09-01

    Two novel solution-processable small organic molecules, 4,9-bis(4-(diphenylamino)phenyl)-2,7-dioctylbenzo[3,8]phenanthroline-1,3,6,8(2 H,7 H)-tetraone ( S6) and 4,9-bis(benzo[ b]thiophen-2-yl)-2,7-dioctylbenzo[3,8]phenanthroline-1,3,6,8 (2 H,7 H)-tetraone ( S7), have been successfully designed, synthesized, characterized, and applied in solution-processable photovoltaic devices. S6 and S7 contain a common electron-accepting moiety, naphthalene diimide (NDI), with different electron-donating moieties, triphenylamine ( S6) and benzothiophene ( S7), and are based on a donor-acceptor-donor structure. S7 was isolated as black, rod-shaped crystals. Its triclinic structure was determined by single crystal x-ray diffraction (XRD): space group , Z = 2, a = 9.434(5) Å, b = 14.460(7) Å, c = 15.359(8) Å, α = 67.256(9) degrees, β = 80.356(11) degrees, γ = 76.618(10) degrees, at 150 Kelvin (K), R = 0.073. Ultraviolet-visible absorption spectra revealed that use of triphenylamine donor functionality with the NDI acceptor unit resulted in an enhanced intramolecular charge transfer (ICT) transition and reduction of the optical band gap compared with the benzothiophene analogue. Solution-processable inverted bulk heterojunction devices with the structure indium tin oxide/zinc oxide (30 nm)/active layer/molybdenum trioxide (10 nm)/silver (100 nm) were fabricated with S6 and S7 as donors and (6,6)-phenyl C70-butyric acid methyl ester (PC70BM) as acceptor. Power conversion efficiencies of 0.22% for S6/PC70BM and 0.10% for S7/PC70BM were achieved for the preliminary photovoltaic devices under simulated AM 1.5 illumination (100 mW cm-2). This paper reports donor-acceptor-donor modular small organic molecules, with NDI as central accepting unit, that have been screened for use in solution-processable inverted photovoltaic devices.

  3. Neutral nitrogen acceptors in ZnO: The {sup 67}Zn hyperfine interactions

    SciTech Connect

    Golden, E. M.; Giles, N. C.; Evans, S. M.; Halliburton, L. E.

    2014-03-14

    Electron paramagnetic resonance (EPR) is used to characterize the {sup 67}Zn hyperfine interactions associated with neutral nitrogen acceptors in zinc oxide. Data are obtained from an n-type bulk crystal grown by the seeded chemical vapor transport method. Singly ionized nitrogen acceptors (N{sup −}) initially present in the crystal are converted to their paramagnetic neutral charge state (N{sup 0}) during exposure at low temperature to 442 or 633 nm laser light. The EPR signals from these N{sup 0} acceptors are best observed near 5 K. Nitrogen substitutes for oxygen ions and has four nearest-neighbor cations. The zinc ion along the [0001] direction is referred to as an axial neighbor and the three equivalent zinc ions in the basal plane are referred to as nonaxial neighbors. For axial neighbors, the {sup 67}Zn hyperfine parameters are A{sub ‖} = 37.0 MHz and A{sub ⊥} = 8.4 MHz with the unique direction being [0001]. For nonaxial neighbors, the {sup 67}Zn parameters are A{sub 1} = 14.5 MHz, A{sub 2} = 18.3 MHz, and A{sub 3} = 20.5 MHz with A{sub 3} along a [101{sup ¯}0] direction (i.e., in the basal plane toward the nitrogen) and A{sub 2} along the [0001] direction. These {sup 67}Zn results and the related {sup 14}N hyperfine parameters provide information about the distribution of unpaired spin density at substitutional neutral nitrogen acceptors in ZnO.

  4. Tuning the donor-acceptor strength of low-bandgap platinum-acetylide polymers for near-infrared photovoltaic applications.

    PubMed

    Qin, Chuanjiang; Fu, Yingying; Chui, Chung-Hin; Kan, Chi-Wai; Xie, Zhiyuan; Wang, Lixiang; Wong, Wai-Yeung

    2011-09-15

    Two near-infrared (NIR) absorbing metallopolyynes of platinum (P1 and P2) functionalized with a weakly electron-donating fluorene unit and two strong electron acceptors (viz. benzo[1,2-c:4,5-c']bis([1,2,5]thiadiazole) and [1,2,5]thiadiazolo[3,4-i]dibenzo[a,c]phenazine) were synthesized and applied for NIR photovoltaic applications. With these designed weak donor-strong acceptor electronic traits, these metallopolymers possess narrow bandgaps of 1.54 and 1.65 eV and a low HOMO level of about 5.50 eV, thus inducing a power conversion efficiency up to 1% for bulk heterojunction solar cells at the NIR wavelength.

  5. Warped AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; Li, Wei; Padi, Megha; Song, Wei; Strominger, Andrew

    2009-03-01

    Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -l-2 and positive Newton constant G admits an AdS3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μl = 1. However we show herein that for every value of μl ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,Bbb R) × U(1)-invariant warped AdS3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μl = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μl > 3, there are known warped black hole solutions which are asymptotic to warped AdS3. We show that these black holes are discrete quotients of warped AdS3 just as BTZ black holes are discrete quotients of ordinary AdS3. Moreover new solutions of this type, relevant to any theory with warped AdS3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μl > 3, the warped AdS3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c_R-formula and c_L-formula.

  6. Warped AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Song, Wei; Anninos, Dionysios; Li, Wei; Padi, Megha; Strominger, Andrew

    2009-03-01

    Three dimensional topologically massive gravity (TMG) with a negative cosmological constant -ell-2 and positive Newton constant G admits an AdS3 vacuum solution for any value of the graviton mass μ. These are all known to be perturbatively unstable except at the recently explored chiral point μell = 1. However we show herein that for every value of μell ≠ 3 there are two other (potentially stable) vacuum solutions given by SL(2,Bbb R) × U(1)-invariant warped AdS3 geometries, with a timelike or spacelike U(1) isometry. Critical behavior occurs at μell = 3, where the warping transitions from a stretching to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For μell > 3, there are known warped black hole solutions which are asymptotic to warped AdS3. We show that these black holes are discrete quotients of warped AdS3 just as BTZ black holes are discrete quotients of ordinary AdS3. Moreover new solutions of this type, relevant to any theory with warped AdS3 solutions, are exhibited. Finally we note that the black hole thermodynamics is consistent with the hypothesis that, for μell > 3, the warped AdS3 ground state of TMG is holographically dual to a 2D boundary CFT with central charges c_R-formula and c_L-formula.

  7. Chlorophyll-quinone photochemical electron transfer in liposomes

    SciTech Connect

    Hurley, J.K.; Castelli, F.; Tollin, G.

    1981-09-01

    A study is described which involves the reduction of electron acceptors (quinones) by photoexcited chlorophyll (Chl). The experimental samples consisted of Chl a (from spinach) incorporated into phosphatidylcholine (either synthetic or from hen egg yolks) liposomes suspended in 10 mM phosphate buffer (pH 7.0). The quinones were either present during liposome formation or added later, depending on their water solubility. The measurement technique employed was laser flash photolysis. Results have provided considerable insight into the ways in which membranes may modify the photochemical properties of Chl by allowing molecular compartmentalization and by permitting cooperative interactions.

  8. A theoretical probe on the non-covalent interactions of sulfadoxine drug with pi-acceptors

    NASA Astrophysics Data System (ADS)

    Sandhiya, L.; Senthilkumar, K.

    2014-09-01

    A detailed analysis of the interaction between an antimalarial drug sulfadoxine and four pi-acceptors, tetrachloro-catechol, picric acid, chloranil, and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone is presented in this study. The interaction of the amine, amide, methoxy, Csbnd H groups and π electron density of the drug molecule with the acceptors are studied using DFT method at M06-2X level of theory with 6-31G(d,p) basis set. The interaction energy of the complexes is calculated using M06-2X, M06-HF, B3LYP-D and MP2 methods with 6-31G(d,p) basis set. The role of weak interactions on the formation and stability of the complexes is discussed in detail. The two aromatic platforms of sulfadoxine play a major role in determining the stability of the complexes. The electron density difference maps have been plotted for the most stable drug interacting complexes to understand the changes in electron density delocalization upon the complex formation. The nature of the non-covalent interaction has been addressed from NCI plot. The infrared spectra calculated at M06-2X/6-31G(d,p) level of theory is used to characterize the most stable complexes. The SDOX-pi acceptor complexation leads to characteristic changes in the NMR spectra. The 13C, 1H, 17O and 15N NMR chemical shifts have been calculated using GIAO method at M06-2X/6-311+G(d,p)//M06-2X/6-31G(d,p) level of theory. The results obtained from this study confirm the role of non-covalent interactions on the function of the sulfadoxine drug.

  9. The Advantages of Using Electronic Processes for Commenting on and Exchanging the Written Work of Students with Learning Disabilities and/or AD/HD

    ERIC Educational Resources Information Center

    Carmichael, Stephen; Alden, Peg

    2006-01-01

    Researchers have explored the impact of computer-assisted feedback and electronic mail on students' writing, but most of the work to date seems to have focused on second language writers, peer response, or response as part of an online composition course. Although research has documented the importance of certain generic features of word…

  10. Partial least squares prediction of the first hyperpolarizabilities of donor-acceptor polyenic derivatives

    NASA Astrophysics Data System (ADS)

    Machado, A. E. de A.; da Gama, A. A. de S.; de Barros Neto, B.

    2011-09-01

    A partial least squares regression analysis of a large set of donor-acceptor organic molecules was performed to predict the magnitude of their static first hyperpolarizabilities ( β's). Polyenes, phenylpolyenes and biphenylpolyenes with augmented chain lengths displayed large β values, in agreement with the available experimental data. The regressors used were the HOMO-LUMO energy gap, the ground-state dipole moment, the HOMO energy AM1 values and the number of π-electrons. The regression equation predicts quite well the static β values for the molecules investigated and can be used to model new organic-based materials with enhanced nonlinear responses.

  11. Solvent-tuned intramolecular charge-recombination rates in a conjugated donor-acceptor molecule

    NASA Technical Reports Server (NTRS)

    Khundkar, Lutfur R.; Stiegman, A. E.; Perry, Joseph W.

    1990-01-01

    The nonradiative charge-recombination rates from the charge-transfer state of a new conjugated donor-acceptor molecule (p-cyano-p-prime-methylthiodiphenylacetylene) can be tuned over almost an order of magnitude by varying the polarity of the solvent. These measurements of intramolecular recombination show a turnover of rates as a function of emission energy, consistent with the 'normal' and 'inverted' behavior of Marcus theory. Steady-state spectra and time-resolved measurements make it possible to quantitatively compare thermal and optical electron-transfer rates as a function of driving force and demonstrate their correspondence.

  12. Improving Photoconductance of Fluorinated Donors with Fluorinated Acceptors

    SciTech Connect

    Garner, Logan E.; Larson, Bryon; Oosterhout, Stefan; Owczarczyk, Zbyslaw; Olson, Dana C.; Kopidakis, Nikos; Boltalina, Olga V.; Strauss, Steven H.; Braunecker, Wade A.

    2016-11-21

    This work investigates the influence of fluorination of both donor and acceptor materials on the generation of free charge carriers in small molecule donor/fullerene acceptor BHJ OPV active layers. A fluorinated and non-fluorinated small molecule analogue were synthesized and their optoelectronic properties characterized. The intrinsic photoconductance of blends of these small molecule donors was investigated using time-resolved microwave conductivity. Blends of the two donor molecules with a traditional non-fluorinated fullerene (PC70BM) as well as a fluorinated fullerene (C60(CF3)2-1) were investigated using 5% and 50% fullerene loading. We demonstrate for the first time that photoconductance in a 50:50 donor:acceptor BHJ blend using a fluorinated fullerene can actually be improved relative to a traditional non-fluorinated fullerene by fluorinating the donor molecule as well.

  13. An overview of molecular acceptors for organic solar cells

    NASA Astrophysics Data System (ADS)

    Hudhomme, Piétrick

    2013-07-01

    Organic solar cells (OSCs) have gained serious attention during the last decade and are now considered as one of the future photovoltaic technologies for low-cost power production. The first dream of attaining 10% of power coefficient efficiency has now become a reality thanks to the development of new materials and an impressive work achieved to understand, control and optimize structure and morphology of the device. But most of the effort devoted to the development of new materials concerned the optimization of the donor material, with less attention for acceptors which to date remain dominated by fullerenes and their derivatives. This short review presents the progress in the use of non-fullerene small molecules and fullerene-based acceptors with the aim of evaluating the challenge for the next generation of acceptors in organic photovoltaics.

  14. Donor-acceptor substituted phenylethynyltriphenylenes – excited state intramolecular charge transfer, solvatochromic absorption and fluorescence emission

    PubMed Central

    Nandy, Ritesh

    2010-01-01

    Summary Several 2-(phenylethynyl)triphenylene derivatives bearing electron donor and acceptor substituents on the phenyl rings have been synthesized. The absorption and fluorescence emission properties of these molecules have been studied in solvents of different polarity. For a given derivative, solvent polarity had minimal effect on the absorption maxima. However, for a given solvent the absorption maxima red shifted with increasing conjugation of the substituent. The fluorescence emission of these derivatives was very sensitive to solvent polarity. In the presence of strongly electron withdrawing (–CN) and strongly electron donating (–NMe2) substituents large Stokes shifts (up to 130 nm, 7828 cm−1) were observed in DMSO. In the presence of carbonyl substituents (–COMe and –COPh), the largest Stokes shift (140 nm, 8163 cm−1) was observed in ethanol. Linear correlation was observed for the Stokes shifts in a Lippert–Mataga plot. Linear correlation of Stokes shift was also observed with E T(30) scale for protic and aprotic solvents but with different slopes. These results indicate that the fluorescence emission arises from excited state intramolecular charge transfer in these molecules where the triphenylene chromophore acts either as a donor or as an acceptor depending upon the nature of the substituent on the phenyl ring. HOMO–LUMO energy gaps have been estimated from the electrochemical and spectral data for these derivatives. The HOMO and LUMO surfaces were obtained from DFT calculations. PMID:21085512

  15. Segmented strings in AdS 3

    NASA Astrophysics Data System (ADS)

    Callebaut, Nele; Gubser, Steven S.; Samberg, Andreas; Toldo, Chiara

    2015-11-01

    We study segmented strings in flat space and in AdS 3. In flat space, these well known classical motions describe strings which at any instant of time are piecewise linear. In AdS 3, the worldsheet is composed of faces each of which is a region bounded by null geodesics in an AdS 2 subspace of AdS 3. The time evolution can be described by specifying the null geodesic motion of kinks in the string at which two segments are joined. The outcome of collisions of kinks on the worldsheet can be worked out essentially using considerations of causality. We study several examples of closed segmented strings in AdS 3 and find an unexpected quasi-periodic behavior. We also work out a WKB analysis of quantum states of yo-yo strings in AdS 5 and find a logarithmic term reminiscent of the logarithmic twist of string states on the leading Regge trajectory.

  16. Acceptor specificity in the transglycosylation reaction using Endo-M.

    PubMed

    Tomabechi, Yusuke; Odate, Yuki; Izumi, Ryuko; Haneda, Katsuji; Inazu, Toshiyuki

    2010-11-22

    To determine the structural specificity of the glycosyl acceptor of the transglycosylation reaction using endo-β-N-acetylglucosaminidase (ENGase) (EC 3.2.1.96) from Mucor hiemalis (Endo-M), several acceptor derivatives were designed and synthesized. The narrow regions of the 1,3-diol structure from the 4- to 6-hydroxy functions of GlcNAc were found to be essential for the transglycosylation reaction using Endo-M. Furthermore, it was determined that Endo-M strictly recognizes a 1,3-diol structure consisting of primary and secondary hydroxyl groups.

  17. Donor-acceptor chemistry in the main group.

    PubMed

    Rivard, Eric

    2014-06-21

    This Perspective article summarizes recent progress from our laboratory in the isolation of reactive main group species using a general donor-acceptor protocol. A highlight of this program is the use of carbon-based donors in combination with suitable Lewis acidic acceptors to yield stable complexes of parent Group 14 element hydrides (e.g. GeH2 and H2SiGeH2). It is anticipated that this strategy could be extended to include new synthetic targets from throughout the Periodic Table with possible applications in bottom-up materials synthesis and main group element catalysis envisioned.

  18. Coordinating Electron Transport Chains to an Electron Donor.

    PubMed

    Villegas, Carmen; Wolf, Maximilian; Joly, Damien; Delgado, Juan Luis; Guldi, Dirk M; Martín, Nazario

    2015-10-16

    Two electron transport chains (2 and 3) featuring two fullerenes with different electron acceptor strengths have been synthesized, characterized, and coordinated to a light harvesting/electron donating zinc porphyrin. Electrochemical assays corroborate the redox gradients along the designed electron transport chains, and complementary absorption and fluorescence titrations prove the assembly of ZnP-2 and ZnP-3 hybrids.

  19. Photoinduced charge transfer in donor-acceptor (DA) copolymer: fullerene bis-adduct polymer solar cells.

    PubMed

    Kang, Tae Eui; Cho, Han-Hee; Cho, Chul-Hee; Kim, Ki-Hyun; Kang, Hyunbum; Lee, Myounghee; Lee, Sunae; Kim, Bongsoo; Im, Chan; Kim, Bumjoon J

    2013-02-01

    Polymer solar cells (PSCs) consisting of fullerene bis-adduct and poly(3-hexylthiophene) (P3HT) blends have shown higher efficiencies than P3HT:phenyl C(61)-butyric acid methyl ester (PCBM) devices, because of the high-lying lowest unoccupied molecular orbital (LUMO) level of the fullerene bis-adducts. In contrast, the use of fullerene bis-adducts in donor-acceptor (DA) copolymer systems typically causes a decrease in the device's performance due to the decreased short-circuit current (J(SC)) and the fill factor (FF). However, the reason for such poor performance in DA copolymer:fullerene bis-adduct blends is not fully understood. In this work, bulk-heterojunction (BHJ)-type PSCs composed of three different electron donors with four different electron acceptors were chosen and compared. The three electron donors were (1) poly[(4,8-bis-(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(5-octylthieno[3,4-c]pyrrole-4,6-dione)-1,3-diyl] (PBDTTPD), (2) poly[(4,8-bis-(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2,6-diyl] (PBDTTT-C), and (3) P3HT polymers. The four electron acceptors were (1) PCBM, (2) indene-C(60) monoadduct (ICMA), (3) indene-C(60) bis-adduct (ICBA), and (4) indene-C(60) tris-adduct (ICTA). To understand the difference in the performance of BHJ-type PSCs for the three different polymers in terms of the choice of fullerene acceptor, the structural, optical, and electrical properties of the blends were measured by the external quantum efficiency (EQE), photoluminescence, grazing incidence X-ray scattering, and transient absorption spectroscopy. We observed that while the molecular packing and optical properties cannot be the main reasons for the dramatic decrease in the PCE of the DA copolymers and ICBA, the value of the driving force for charge transfer (ΔG(CT)) is a key parameter for determining the change in J(SC) and device efficiency in the DA copolymer- and P3HT-based PSCs in

  20. Slip-stacked perylenediimides as an alternative strategy for high efficiency nonfullerene acceptors in organic photovoltaics.

    PubMed

    Hartnett, Patrick E; Timalsina, Amod; Matte, H S S Ramakrishna; Zhou, Nanjia; Guo, Xugang; Zhao, Wei; Facchetti, Antonio; Chang, Robert P H; Hersam, Mark C; Wasielewski, Michael R; Marks, Tobin J

    2014-11-19

    Perylenediimide (PDI)-based acceptors offer a potential replacement for fullerenes in bulk-heterojunction (BHJ) organic photovoltaic cells (OPVs). The most promising efforts have focused on creating twisted PDI dimers to disrupt aggregation and thereby suppress excimer formation. Here, we present an alternative strategy for developing high-performance OPVs based on PDI acceptors that promote slip-stacking in the solid state, thus preventing the coupling necessary for rapid excimer formation. This packing structure is accomplished by substitution at the PDI 2,5,8,11-positions ("headland positions"). Using this design principle, three PDI acceptors, N,N-bis(n-octyl)-2,5,8,11-tetra(n-hexyl)-PDI (Hexyl-PDI), N,N-bis(n-octyl)-2,5,8,11-tetraphenethyl-PDI (Phenethyl-PDI), and N,N-bis(n-octyl)-2,5,8,11-tetraphenyl-PDI (Phenyl-PDI), were synthesized, and their molecular and electronic structures were characterized. They were then blended with the donor polymer PBTI3T, and inverted OPVs of the structure ITO/ZnO/Active Layer/MoO3/Ag were fabricated and characterized. Of these, 1:1 PBTI3T:Phenyl-PDI proved to have the best performance with Jsc = 6.56 mA/cm(2), Voc = 1.024 V, FF = 54.59%, and power conversion efficiency (PCE) = 3.67%. Devices fabricated with Phenethyl-PDI and Hexyl-PDI have significantly lower performance. The thin film morphology and the electronic and photophysical properties of the three materials are examined, and although all three materials undergo efficient charge separation, PBTI3T:Phenyl-PDI is found to have the deepest LUMO, intermediate crystallinity, and the most well-mixed domains. This minimizes geminate recombination in Phenyl-PDI OPVs and affords the highest PCE. Thus, slip-stacked PDI strategies represent a promising approach to fullerene replacements in BHJ OPVs.

  1. Fullerene-based materials for solar cell applications: design of novel acceptors for efficient polymer solar cells--a DFT study.

    PubMed

    Mohajeri, Afshan; Omidvar, Akbar

    2015-09-14

    Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Polymer solar cells (PSCs) hold promise for their potential to be used as low-cost and efficient solar energy converters. PSCs have been commonly made from bicontinuous polymer:fullerene composites or so-called bulk heterojunctions. The conjugated polymer donors and the fullerene derivative acceptors are the key materials for high performance PSCs. In the present study, we have performed density functional theory calculations to investigate the electronic structures and magnetic properties of several representative C60 fullerene derivatives, seeking ways to improve their efficiency as acceptors of photovoltaic devices. In our survey, we have successfully correlated the LUMO energy level as well as chemical hardness, hyper-hardness, nucleus-independent chemical shift, and static dipole polarizability of PC60BM-like fullerene derivative acceptors with the experimental open circuit voltage of the photovoltaic device based on the P3HT:fullerene blend. The obtained structure-property correlations allow finding the best fullerene acceptor match for the P3HT donor. For this purpose, four new fullerene derivatives are proposed and the output parameters for the corresponding P3HT-based devices are predicted. It is found that the proposed fullerene derivatives exhibit better photovoltaic properties than the traditional PC60BM acceptor. The present study opens the way for manipulating fullerene derivatives and developing promising acceptors for solar cell applications.

  2. Interaction of /sup 125/I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis

    SciTech Connect

    Black, J.D.; Dolly, J.O.

    1986-01-01

    Using pharmacological and autoradiographic techniques it has been shown that botulinum neurotoxin (BoNT) is translocated across the motor nerve terminal membrane to reach a postulated intraterminal target. In the present study, the nature of this uptake process was investigated using electron microscopic autoradiography. It was found that internalization is acceptor-mediated and that binding to specific cell surface acceptors involves the heavier chain of the toxin. In addition, uptake was shown to be energy and temperature-dependent and to be accelerated by nerve stimulation, a treatment which also shortens the time course of the toxin-induced neuroparalysis. These results, together with the observation that silver grains were often associated with endocytic structures within the nerve terminal, suggested that acceptor-mediated endocytosis is responsible for toxin uptake. Possible recycling of BoNT acceptors (an important aspect of acceptor-mediated endocytosis of toxins) at motor nerve terminals was indicated by comparing the extent of labeling in the presence and absence of metabolic inhibitors. On the basis of these collective results, it is concluded that BoNT is internalized by acceptor-mediated endocytosis and, hence, the data support the proposal that this toxin inhibits release of acetylcholine by interaction with an intracellular target.

  3. Fluorinated arene, imide and unsaturated pyrrolidinone based donor acceptor conjugated polymers: Synthesis, structure-property and device studies

    NASA Astrophysics Data System (ADS)

    Liyanage, Arawwawala Don Thilanga

    After the discovery of doped polyacetylene, organic semiconductor materials are widely studied as high impending active components in consumer electronics. They have received substantial consideration due to their potential for structural tailoring, low cost, large area and mechanically flexible alternatives to common inorganic semiconductors. To acquire maximum use of these materials, it is essential to get a strong idea about their chemical and physical nature. Material chemist has an enormous role to play in this novel area, including development of efficient synthetic methodologies and control the molecular self-assembly and (opto)-electronic properties. The body of this thesis mainly focuses on the substituent effects: how different substituents affect the (opto)-electronic properties of the donor-acceptor (D-A) conjugated polymers. The main priority goes to understand, how different alkyl substituent effect to the polymer solubility, crystallinity, thermal properties (e.g.: glass transition temperature) and morphological order. Three classes of D-A systems were extensively studied in this work. The second chapter mainly focuses on the synthesis and structure-property study of fluorinated arene (TFB) base polymers. Here we used commercially available 1,4-dibromo-2,3,5,6-tetrafluorobenzene (TFB) as the acceptor material and prepare several polymers using 3,3'-dialkyl(3,3'-R2T2) or 3,3'-dialkoxy bithiophene (3,3'-RO2T2) units as electron donors. A detail study was done using 3,3'-bithiophene donor units incorporating branched alkoxy-functionalities by systematic variation of branching position and chain length. The study allowed disentangling the branching effects on (i) aggregation tendency, intermolecular arrangement, (iii) solid state optical energy gaps, and (iv) electronic properties in an overall consistent picture, which might guide future polymer synthesis towards optimized materials for opto-electronic applications. The third chapter mainly focused on

  4. Direct view at colossal permittivity in donor-acceptor (Nb, In) co-doped rutile TiO2

    NASA Astrophysics Data System (ADS)

    Mandal, Suman; Pal, Somnath; Kundu, Asish K.; Menon, Krishnakumar S. R.; Hazarika, Abhijit; Rioult, Maxime; Belkhou, Rachid

    2016-08-01

    Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO2 have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitably influencing the dielectric loss while invariably upholding the CP value.

  5. Spectrophotometric study of the charge-transfer and ion-pair complexation of methamphetamine with some acceptors.

    PubMed

    Shahdousti, Parvin; Aghamohammadi, Mohammad; Alizadeh, Naader

    2008-04-01

    The charge-transfer (CT) complexes of methamphetamine (MPA) as a n-donor with several acceptors including bromocresolgreen (BCG), bromocresolpurple (BCP), chlorophenolred (CPR), picric acid (PIC), and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) have been studied spectrophotometrically in chloroform solutions in order to obtain some information about their stoichiometry and stability of complexation. The oscillator strengths, transition dipole moments and resonance energy of the complex in the ground state for all complexes have been calculated. Vertical ionization potential of MPA and electron affinity of acceptors were determined by ab initio calculation. The acceptors were also used to utilize a simple and sensitive extraction-spectrophotometric method for the determination of MPA. The method is based on the formation of 1:1 ion-pair association complexes of MPA with BCG, BCP and PIC in chloroform medium. Beer's plots were obeyed in a general concentration range of 0.24-22 microg ml(-1) for the investigated drug with different acceptors. The proposed methods were applied successfully for the determination of MAP in pure and abuse drug with good accuracy and precision.

  6. Spectrophotometric study of the charge-transfer and ion-pair complexation of methamphetamine with some acceptors

    NASA Astrophysics Data System (ADS)

    Shahdousti, Parvin; Aghamohammadi, Mohammad; Alizadeh, Naader

    2008-04-01

    The charge-transfer (CT) complexes of methamphetamine (MPA) as a n-donor with several acceptors including bromocresolgreen (BCG), bromocresolpurple (BCP), chlorophenolred (CPR), picric acid (PIC), and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) have been studied spectrophotometrically in chloroform solutions in order to obtain some information about their stoichiometry and stability of complexation. The oscillator strengths, transition dipole moments and resonance energy of the complex in the ground state for all complexes have been calculated. Vertical ionization potential of MPA and electron affinity of acceptors were determined by ab initio calculation. The acceptors were also used to utilize a simple and sensitive extraction-spectrophotometric method for the determination of MPA. The method is based on the formation of 1:1 ion-pair association complexes of MPA with BCG, BCP and PIC in chloroform medium. Beer's plots were obeyed in a general concentration range of 0.24-22 μg ml -1 for the investigated drug with different acceptors. The proposed methods were applied successfully for the determination of MAP in pure and abuse drug with good accuracy and precision.

  7. High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor-acceptor dyads.

    PubMed

    Grévin, Benjamin; Schwartz, Pierre-Olivier; Biniek, Laure; Brinkmann, Martin; Leclerc, Nicolas; Zaborova, Elena; Méry, Stéphane

    2016-01-01

    Self-assembled donor-acceptor dyads are used as model nanostructured heterojunctions for local investigations by noncontact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM). With the aim to probe the photo-induced charge carrier generation, thin films deposited on transparent indium tin oxide substrates are investigated in dark conditions and upon illumination. The topographic and contact potential difference (CPD) images taken under dark conditions are analysed in view of the results of complementary transmission electron microscopy (TEM) experiments. After in situ annealing, it is shown that the dyads with longer donor blocks essentially lead to standing acceptor-donor lamellae, where the acceptor and donor groups are π-stacked in an edge-on configuration. The existence of strong CPD and surface photo-voltage (SPV) contrasts shows that structural variations occur within the bulk of the edge-on stacks. SPV images with a very high lateral resolution are achieved, which allows for the resolution of local photo-charging contrasts at the scale of single edge-on lamella. This work paves the way for local investigations of the optoelectronic properties of donor-acceptor supramolecular architectures down to the elementary building block level.

  8. Tracking molecular resonance forms of donor–acceptor push–pull molecules by single-molecule conductance experiments

    PubMed Central

    Lissau, Henriette; Frisenda, Riccardo; Olsen, Stine T.; Jevric, Martyn; Parker, Christian R.; Kadziola, Anders; Hansen, Thorsten; van der Zant, Herre S. J.; Brøndsted Nielsen, Mogens; Mikkelsen, Kurt V.

    2015-01-01

    The ability of molecules to change colour on account of changes in solvent polarity is known as solvatochromism and used spectroscopically to characterize charge-transfer transitions in donor–acceptor molecules. Here we report that donor–acceptor-substituted molecular wires also exhibit distinct properties in single-molecule electronics under the influence of a bias voltage, but in absence of solvent. Two oligo(phenyleneethynylene) wires with donor–acceptor substitution on the central ring (cruciform-like) exhibit remarkably broad conductance peaks measured by the mechanically controlled break-junction technique with gold contacts, in contrast to the sharp peak of simpler molecules. From a theoretical analysis, we explain this by different degrees of charge delocalization and hence cross-conjugation at the central ring. Thus, small variations in the local environment promote the quinoid resonance form (off), the linearly conjugated (on) or any form in between. This shows how the conductance of donor–acceptor cruciforms is tuned by small changes in the environment. PMID:26667583

  9. Cholesterol acceptor capacity is preserved by different mechanisms in preterm and term fetuses.

    PubMed

    Pecks, Ulrich; Mohaupt, Markus G; Hütten, Matthias C; Maass, Nicolai; Rath, Werner; Escher, Geneviève

    2014-02-01

    Fetal serum cholesterol and lipoprotein concentrations differ between preterm and term born neonates. An imbalance of the flow of cholesterol from the sites of synthesis or efflux from cells of peripheral organs to the liver, the reverse cholesterol transport (RCT), is linked to atherosclerosis and cardiovascular disease (CVD). Preterm delivery is a risk factor for the development of CVD. Thus, we hypothesized that RCT is affected by a diminished cholesterol acceptor capacity in preterm as compared to term fetuses. Cholesterol efflux assays were performed in RAW264.7, HepG2, and HUVEC cell lines. In the presence and absence of ABC transporter overexpression by TO-901317, umbilical cord sera of preterm and term born neonates (n = 28 in both groups) were added. Lipid components including high density lipoprotein (HDL), low density lipoprotein (LDL), apolipoprotein A1, and apolipoprotein E were measured and related to fractional cholesterol efflux values. We found overall, fractional cholesterol efflux to remain constant between the study groups, and over gestational ages at delivery, respectively. However, correlation analysis revealed cholesterol efflux values to be predominantly related to HDL concentration at term, while in preterm neonates, cholesterol efflux was mainly associated with LDL In conclusion cholesterol acceptor capacity during fetal development is kept in a steady state with different mechanisms and lipid fractions involved at distinct stages during the second half of fetal development. However, RCT mechanisms in preterm neonates seem not to be involved in the development of CVD later in life suggesting rather changes in the lipoprotein pattern causative.

  10. Spectrophotometric and electrical studies of charge-transfer complexes of sodium flucloxacillin with π-acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Didamony, Akram M.

    2006-11-01

    The present study is interested to develop a simple, rapid and accurate spectrophotometric method for determination of sodium flucloxacillin (fluc) in pure form and pharmaceutical formulations. The charge-transfer (CT) interactions between sodium flucloxacillin as electron donor and chloranilic acid (CLA), dichloroquinone 4-chloroimide (DCQ), 2,3-dichloro-5,6-dicyano- p-benzoquinone (DDQ) and 7,7,8,8 tetracyano- p-quinodimethane (TCNQ), as π-electron acceptors have been investigated spectrophotometrically. Different variables affecting the reaction were studied and optimized. Under the optimum conditions, linear relationships with good correlation coefficients (0.9979-0.9995) were found between the absorbance and the concentration of the drug in the range 16-880 μg ml -1. The proposed methods were applied successfully to the determination of the examined drug either in pure or pharmaceutical dosage forms with good accuracy and precision. The formation of the CT-complexes and the sites of interaction were confirmed by elemental analysis CHN, UV-vis, IR, 1H NMR and mass spectra techniques. Based on Job's method of continuous variation plots, the obtained results indicate the formation of 1:1 charge-transfer complexes with the general formula [(fluc)(acceptor)]. Statistical analysis of the obtained results showed no significant difference between the proposed method and official method.

  11. Synthesis and characterization of donor-acceptor copolymers carrying triphenylamine units for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Neumann, Katharina; Thelakkat, Mukundan

    2012-09-01

    The synthesis and analysis of solution processable polymers for organic solar cells is crucial for innovative solar cell technologies such as printing processes. In the field of donor materials for photovoltaic applications, polymers based on tetraphenylamine (TPA) are well known hole conducting materials. Here, we synthesized two conjugated TPA containing copolymers via Suzuki polycondensation. We investigated the tuning of the energy levels of the TPA based polymers by two different concepts. Firstly, we introduced an acceptor unit in the side chain. The main-chain of this copolymer was built from TPA units. The resulting copolymer 2-(4-((4'-((4-(2-ethylhexyloxy)phenyl)(paratolyl) amino)biphenyl-4-yl)(para-tolyl)amino)benzylidene) malononitrile P1 showed a broader absorption up to 550 nm. Secondly, we used a donor-acceptor concept by synthesizing a copolymer with alternating electron donating TPA and electron withdrawing Thieno[3,4-b]thiophene ester units. Consequently, the absorption maximum in the copolymer octyl-6-(4-((4-(2-ethylhexyloxy)phenyl)(p-tolyl)amino)phenyl)-4-methylthieno[3,4-b]thiophene-2-carboxylate P2 was red shifted to 580 nm. All three polymers showed high thermal stability. By UV-vis and Cyclic voltammetry measurements the optical and electrochemical properties of the polymers were analyzed.

  12. Synthesis, spectroscopic and thermal studies of the reactions of the donors piperazine and N,N‧-dimethylpiperazine with σ- and π-acceptors

    NASA Astrophysics Data System (ADS)

    Bazzi, Hassan S.; AlQaradawi, Siham Y.; Mostafa, Adel; Nour, El-Metwally

    2008-05-01

    The interactions of the electron donors piperazine (PIP) and N, N'-dimethylpiperazine (DMPIP) with the σ-acceptor iodine and the π-acceptors tetracyanoethylene (TCNE) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) were studied spectrophotometrically in chloroform at 25 °C. The electronic and infrared spectra of the resulting charge-transfer complexes were recorded, in addition to thermal analysis. The results obtained showed that the stoichiometries of the reactions are not fixed and depend on the nature of both the donor and the acceptor. The formed CT-complexes have the formulas of [(PIP)2I]+I3-, [(PIP)(TCNE) 2], [(PIP)(DDQ) 2], [(DMPIP)4I]+I3-, [(DMPIP)(TCNE) 2] and [(DMPIP)(DDQ) 2]. A general mechanism explaining the formation of triiodide complexes was suggested.

  13. Powering microbes with electricity: direct electron transfer from electrodes to microbes

    SciTech Connect

    Lovley, DR

    2010-09-16

    P>The discovery of electrotrophs, microorganisms that can directly accept electrons from electrodes for the reduction of terminal electron acceptors, has spurred the investigation of a wide range of potential applications. To date, only a handful of pure cultures have been shown to be capable of electrotrophy, but this process has also been inferred in many studies with undefined consortia. Potential electron acceptors include: carbon dioxide, nitrate, metals, chlorinated compounds, organic acids, protons and oxygen. Direct electron transfer from electrodes to cells has many advantages over indirect electrical stimulation of microbial metabolism via electron shuttles or hydrogen production. Supplying electrons with electrodes for the bioremediation of chlorinated compounds, nitrate or toxic metals may be preferable to adding organic electron donors or hydrogen to the subsurface or bioreactors. The most transformative application of electrotrophy may be microbial electrosynthesis in which carbon dioxide and water are converted to multi-carbon organic compounds that are released extracellularly. Coupling photovoltaic technology with microbial electrosynthesis represents a novel photosynthesis strategy that avoids many of the drawbacks of biomass-based strategies for the production of transportation fuels and other organic chemicals. The mechanisms for direct electron transfer from electrodes to microorganisms warrant further investigation in order to optimize envisioned applications.

  14. Efficiency improvement of new Tetrathienoacene-based dyes by enhancing donor, acceptor and bridge units, a theoretical study.

    PubMed

    Tavangar, Zahra; Zareie, Nazanin

    2016-10-05

    A series of metal free Tetrathienoacene-based (TTA-based) organic dyes are designed and investigated as sensitizers for application in dye sensitized solar cells (DSSCs). Density function theory and time dependent density function theory calculations were performed on these dyes at vacuum and orthodichlorobenzene as the solvent. Effects of changing π-conjugation bridges and different functional groups in acceptor and donor units were investigated. UV-Vis absorption spectra were simulated to show the wavelength shifting and absorption properties. Inserting nitro and acyl chloride functional groups in acceptor and NH2 in donor units leads to the reduction of HOMO-LUMO gap by lowering the lowest unoccupied molecular orbital (LUMO) energy level and raising the highest occupied molecular orbital (HOMO) energy level and the increase in effective parameters in DSSC' efficiency. The results show that changing spacer units from thiophene to furan has a great effect on electronic structure and absorption spectra. Investigation of the electron distributions of frontier orbitals shows the HOMO and LUMO localization in donor and acceptor, respectively. Some key parameters that were studied here include light harvesting efficiency, free energy of electron injection and open circuit photo-voltage.

  15. Efficiency improvement of new Tetrathienoacene-based dyes by enhancing donor, acceptor and bridge units, a theoretical study

    NASA Astrophysics Data System (ADS)

    Tavangar, Zahra; Zareie, Nazanin

    2016-10-01

    A series of metal free Tetrathienoacene-based (TTA-based) organic dyes are designed and investigated as sensitizers for application in dye sensitized solar cells (DSSCs). Density function theory and time dependent density function theory calculations were performed on these dyes at vacuum and orthodichlorobenzene as the solvent. Effects of changing π-conjugation bridges and different functional groups in acceptor and donor units were investigated. UV-Vis absorption spectra were simulated to show the wavelength shifting and absorption properties. Inserting nitro and acyl chloride functional groups in acceptor and NH2 in donor units leads to the reduction of HOMO-LUMO gap by lowering the lowest unoccupied molecular orbital (LUMO) energy level and raising the highest occupied molecular orbital (HOMO) energy level and the increase in effective parameters in DSSC' efficiency. The results show that changing spacer units from thiophene to furan has a great effect on electronic structure and absorption spectra. Investigation of the electron distributions of frontier orbitals shows the HOMO and LUMO localization in donor and acceptor, respectively. Some key parameters that were studied here include light harvesting efficiency, free energy of electron injection and open circuit photo-voltage.

  16. Donors contribute more than acceptors to increase the two-photon activity--a case study with cyclopenta[b]naphthalene based molecules.

    PubMed

    Alam, Md Mehboob

    2014-12-21

    In the present work, we address the question -"which among the electron donors and the electron acceptors contribute more to the two-photon (TP) activity of a donor-π-acceptor type of molecule?" For this purpose we have performed ab initio calculations to calculate the TP transition probability (δTP) of a recently synthesized (Benedetti et al., J. Am. Chem. Soc., 2012, 134(30), 12418-12421) cyclopenta[b]naphthalene based chemo-sensor and its derivatives containing different electron donor and acceptor groups. Our study revealed that both under vacuum and in solvent phases, an increase in electron donor strength (-OMe, -NH2, -NMe2) increases the δTP value up to five times, whereas, an increase in the acceptor group strength (-COCH3, -NO2, -CN) increases it by a factor of two only. The highest δTP value is obtained for the molecule having the strongest donor-acceptor pair (-CN, -NMe2) considered in this work. We have also noted that, the removal of the cyclopentane ring from the original system increases the δTP value by ∼20% and the replacement of the naphthyl group by the benzene ring decreases it by ∼70%. All these results are explained by inspecting different TP tensor elements and different transition moment vectors involved in a two-state model approach. A close scrutiny of different parameters in 2SM clearly reveals that upon increasing the strength of either the donor or the acceptor group the parameters change in favour of increasing the overall δTP values but in the case of donors this effect is much larger.

  17. Naphthalenediimide-alt-Fused Thiophene D-A Copolymers for the Application as Acceptor in All-Polymer Solar Cells.

    PubMed

    Xue, Lingwei; Yang, Yankang; Zhang, Zhi-Guo; Zhang, Jing; Gao, Liang; Bin, Haijun; Yang, YunXu; Li, Yongfang

    2016-10-06

    Three n-type alternating D-A copolymers based on a naphthalenediimide (NDI) acceptor (A) unit and three different donor (D) units with varied electron-donating strength including thiophene (P(NDI-T)), thieno[3,2-b]thiophene (P(NDI-TT)), and thieno[3,2-b;4,5-b]dithiophene (P(NDI-TDT)), were synthesized, for the application as acceptor materials in all-polymer solar cells (all-PSCs). The effect of the donor units of thiophene, thienothiophene (TT) and thienodithiophene (TDT) on the physicochemical and photovoltaic properties of the n-type D-A copolymers was systematically investigated. It was found that the absorption spectrum is red-shifted and the energy band gap (Eg ) is reduced for the NDI-based D-A copolymers with increasing number of thiophene rings in the thiophene or fused thiophene donor units. All-PSCs were fabricated with the medium band gap conjugated polymer J51 (Eg of ca 1.9 eV) as polymer donor and the n-type D-A copolymers as acceptor. The power conversion efficiency reached 2.59 %, 3.70 % and 5.10 % for the all-PSCs with P(NDI-T), P(NDI-TT), and P(NDI-TDT) as acceptor, respectively. The results indicate that a larger conjugated fused molecular plane with more thiophene rings as donor units in the NDI-based D-A copolymers is beneficial to reduce the band gap, broaden the absorption and enhance the photovoltaic performance of n-type D-A copolymer acceptors.

  18. Vibrational properties of organic donor-acceptor molecular crystals: Anthracene-pyromellitic-dianhydride (PMDA) as a case study.

    PubMed

    Fonari, A; Corbin, N S; Vermeulen, D; Goetz, K P; Jurchescu, O D; McNeil, L E; Bredas, J L; Coropceanu, V

    2015-12-14

    We establish a reliable quantum-mechanical approach to evaluate the vibrational properties of donor-acceptor molecular crystals. The anthracene-PMDA (PMDA = pyromellitic dianhydride) crystal, where anthracene acts as the electron donor and PMDA as the electron acceptor, is taken as a representative system for which experimental non-resonance Raman spectra are also reported. We first investigate the impact that the amount of nonlocal Hartree-Fock exchange (HFE) included in a hybrid density functional has on the geometry, normal vibrational modes, electronic coupling, and electron-vibrational (phonon) couplings. The comparison between experimental and theoretical Raman spectra indicates that the results based on the αPBE functional with 25%-35% HFE are in better agreement with the experimental results compared to those obtained with the pure PBE functional. Then, taking αPBE with 25% HFE, we assign the vibrational modes and examine their contributions to the relaxation energy related to the nonlocal electron-vibration interactions. The results show that the largest contribution (about 90%) is due to electron interactions with low-frequency vibrational modes. The relaxation energy in anthracene-PMDA is found to be about five times smaller than the electronic coupling.

  19. Vibrational properties of organic donor-acceptor molecular crystals: Anthracene-pyromellitic-dianhydride (PMDA) as a case study

    SciTech Connect

    Fonari, A.; Corbin, N. S.; Coropceanu, V. E-mail: coropceanu@gatech.edu; Vermeulen, D.; McNeil, L. E.; Goetz, K. P.; Jurchescu, O. D.; Bredas, J. L. E-mail: coropceanu@gatech.edu

    2015-12-14

    We establish a reliable quantum-mechanical approach to evaluate the vibrational properties of donor-acceptor molecular crystals. The anthracene-PMDA (PMDA = pyromellitic dianhydride) crystal, where anthracene acts as the electron donor and PMDA as the electron acceptor, is taken as a representative system for which experimental non-resonance Raman spectra are also reported. We first investigate the impact that the amount of nonlocal Hartree-Fock exchange (HFE) included in a hybrid density functional has on the geometry, normal vibrational modes, electronic coupling, and electron-vibrational (phonon) couplings. The comparison between experimental and theoretical Raman spectra indicates that the results based on the αPBE functional with 25%-35% HFE are in better agreement with the experimental results compared to those obtained with the pure PBE functional. Then, taking αPBE with 25% HFE, we assign the vibrational modes and examine their contributions to the relaxation energy related to the nonlocal electron-vibration interactions. The results show that the largest contribution (about 90%) is due to electron interactions with low-frequency vibrational modes. The relaxation energy in anthracene-PMDA is found to be about five times smaller than the electronic coupling.

  20. AdS duals of matrix strings

    NASA Astrophysics Data System (ADS)

    Morales, Jose F.; Samtleben, Henning

    2003-06-01

    We review recent work on the holographic duals of type II and heterotic matrix string theories described by warped AdS3 supergravities. In particular, we compute the spectra of Kaluza-Klein primaries for type I, II supergravities on warped AdS3 × S7 and match them with the primary operators in the dual two-dimensional gauge theories. The presence of non-trivial warp factors and dilaton profiles requires a modification of the familiar dictionary between masses and 'scaling' dimensions of fields and operators. We present these modifications for the general case of domain wall/QFT correspondences between supergravities on warped AdSd+1 × Sq geometries and super Yang-Mills theories with 16 supercharges.

  1. Spin-selective charge transport pathways through p-oligophenylene-linked donor-bridge-acceptor molecules.

    PubMed

    Scott, Amy M; Miura, Tomoaki; Ricks, Annie Butler; Dance, Zachary E X; Giacobbe, Emilie M; Colvin, Michael T; Wasielewski, Michael R

    2009-12-09

    A series of donor-bridge-acceptor (D-B-A) triads have been synthesized in which the donor, 3,5-dimethyl-4-(9-anthracenyl)julolidine (DMJ-An), and the acceptor, naphthalene-1,8:4,5-bis(dicarboximide) (NI), are linked by p-oligophenylene (Ph(n)) bridging units (n = 1-5). Photoexcitation of DMJ-An produces DMJ(+*)-An(-*) quantitatively, so that An(-*) acts as a high potential electron donor, which rapidly transfers an electron to NI yielding a long-lived spin-coherent radical ion pair (DMJ(+*)-An-Ph(n)-NI(-*)). The charge transfer properties of 1-5 have been studied using transient absorption spectroscopy, magnetic field effects (MFEs) on radical pair and triplet yields, and time-resolved electron paramagnetic resonance (TREPR) spectroscopy. The charge separation (CS) and recombination (CR) reactions exhibit exponential distance dependencies with damping coefficients of beta = 0.35 A(-1) and 0.34 A(-1), respectively. Based on these data, a change in mechanism from superexchange to hopping was not observed for either process in this system. However, the CR reaction is spin-selective and produces the singlet ground state and both (3*)An and (3*)NI. A kinetic analysis of the MFE data shows that superexchange dominates both pathways with beta = 0.48 A(-1) for the singlet CR pathway and beta = 0.35 A(-1) for the triplet CR pathway. MFEs and TREPR experiments were used to measure the spin-spin exchange interaction, 2J, which is directly related to the electronic coupling matrix element for CR, V(CR)(2). The magnitude of 2J also shows an exponential distance dependence with a damping coefficient alpha = 0.36 A(-1), which agrees with the beta values obtained from the distance dependence for triplet CR. These results were analyzed in terms of the bridge molecular orbitals that participate in the charge transport mechanism.

  2. Evolution of the acceptor side of photosystem I: ferredoxin, flavodoxin, and ferredoxin-NADP(+) oxidoreductase.

    PubMed

    Pierella Karlusich, Juan José; Carrillo, Néstor

    2017-02-01

    The development of oxygenic photosynthesis by primordial cyanobacteria ~2.7 billion years ago led to major changes in the components and organization of photosynthetic electron transport to cope with the challenges of an oxygen-enriched atmosphere. We review herein, following the seminal contributions as reported by Jaganathan et al. (Functional genomics and evolution of photosynthetic systems, vol 33, advances in photosynthesis and respiration, Springer, Dordrecht, 2012), how these changes affected carriers and enzymes at the acceptor side of photosystem I (PSI): the electron shuttle ferredoxin (Fd), its isofunctional counterpart flavodoxin (Fld), their redox partner ferredoxin-NADP(+) reductase (FNR), and the primary PSI acceptors F x and F A/F B. Protection of the [4Fe-4S] centers of these proteins from oxidative damage was achieved by strengthening binding between the F A/F B polypeptide and the reaction center core containing F x, therefore impairing O2 access to the clusters. Immobilization of F A/F B in the PSI complex led in turn to the recruitment of new soluble electron shuttles. This function was fulfilled by oxygen-insensitive [2Fe-2S] Fd, in which the reactive sulfide atoms of the cluster are shielded from solvent by the polypeptide backbone, and in some algae and cyanobacteria by Fld, which employs a flavin as prosthetic group and is tolerant to oxidants and iron limitation. Tight membrane binding of FNR allowed solid-state electron transfer from PSI bridged by Fd/Fld. Fine tuning of FNR catalytic mechanism led to formidable increases in turnover rates compared with FNRs acting in heterotrophic pathways, favoring Fd/Fld reduction instead of oxygen reduction.

  3. News from the Periodic Table: An Introduction to "Periodicity Symbols, Tables, and Models for Higher-Order Valency and Donor-Acceptor Kinships"

    ERIC Educational Resources Information Center

    Bent, Henry A.; Weinhold, Frank

    2007-01-01

    The study presents and explains the various periodicity symbols, tables and models for the higher-order valency and donor-acceptor kinships used in chemistry. The described alternative tables are expected to improve the pedagogical consistency of the chemical periodicity patterns with better electronic behavior.

  4. Engineered oligosaccharyltransferases with greatly relaxed acceptor site specificity

    PubMed Central

    Ollis, Anne A.; Zhang, Sheng; Fisher, Adam C.; DeLisa, Matthew P.

    2015-01-01

    The Campylobacter jejuni protein glycosylation locus (pgl) encodes machinery for asparagine-linked (N-linked) glycosylation and serves as the archetype for bacterial N-glycosylation. This machinery has been functionally transferred into Escherichia coli, thereby enabling convenient mechanistic dissection of the N-glycosylation process in this genetically tractable host. Here, we sought to identify sequence determinants in the oligosaccharyltransferase PglB that restrict its specificity to only those glycan acceptor sites containing a negatively charged residue at the −2 position relative to asparagine. This involved creation of a genetic assay named glycoSNAP (glycosylation of secreted N-linked acceptor proteins) that facilitates high-throughput screening of glycophenotypes in E. coli. Using this assay, we isolated several C. jejuni PglB variants that were capable of glycosylating an array of noncanonical acceptor sequences including one in a eukaryotic N-glycoprotein. Collectively, these results underscore the utility of glycoSNAP for shedding light on poorly understood aspects of N-glycosylation and for engineering designer N-glycosylation biocatalysts. PMID:25129029

  5. Income-generating activities for family planning acceptors.

    PubMed

    1989-07-01

    The Income Generating Activities program for Family Planning Acceptors was introduced in Indonesia in 1979. Capital input by the Indonesian National Family Planning Coordination Board and the UN Fund for Population Activities was used to set up small businesses by family planning acceptors. In 2 years, when the businesses become self-sufficient, the loans are repaid, and the money is used to set up new family planning acceptors in business. The program strengthens family planning acceptance, improves the status of women, and enhances community self-reliance. The increase in household income generated by the program raises the standards of child nutrition, encourages reliance on the survival of children, and decreases the value of large families. Approximately 18,000 Family Planning-Income Generating Activities groups are now functioning all over Indonesia, with financial assistance from the central and local governments, the World Bank, the US Agency for International Development, the UN Population Fund, the Government of the Netherlands, and the Government of Australia through the Association of South East Asian Nations.

  6. Quantum dots as FRET acceptors for highly sensitive multiplexing immunoassays

    NASA Astrophysics Data System (ADS)

    Geissler, Daniel; Hildebrandt, Niko; Charbonnière, Loïc J.; Ziessel, Raymond F.; Löhmannsröben, Hans-Gerd

    2009-02-01

    Homogeneous immunoassays have the benefit that they do not require any time-consuming separation steps. FRET is one of the most sensitive homogeneous methods used for immunoassays. Due to their extremely strong absorption over a broad wavelength range the use of quantum dots as FRET acceptors allows for large Foerster radii, an important advantage for assays in the 5 to 10 nm distance range. Moreover, because of their size-tunable emission, quantum dots of different sizes can be used with a single donor for the detection of different analytes (multiplexing). As the use of organic dyes with short fluorescence decay times as donors is known to be inefficient with quantum dot acceptors, lanthanide complexes with long luminescence decays are very efficient alternatives. In this contribution we present the application of commercially available biocompatible CdSe/ZnS core/shell quantum dots as multiplexing FRET acceptors together with a single terbium complex as donor in a homogeneous immunoassay system. Foerster radii of 10 nm and FRET efficiencies of 75 % are demonstrated. The high sensitivity of the terbium-toquantum dot FRET assay is shown by sub-100-femtomolar detection limits for two different quantum dots (emitting at 605 and 655 nm) within the same biotin-streptavidin assay. Direct comparison to the FRET immunoassay "gold standard" (FRET from Eu-TBP to APC) yields a three orders of magnitude sensitivity improvement, demonstrating the big advantages of quantum dots not only for multiplexing but also for highly sensitive nanoscale analysis.

  7. Excited State Dynamics Can Be Used to Probe Donor-Acceptor Distances for H-Tunneling Reactions Catalyzed by Flavoproteins

    PubMed Central

    Hardman, Samantha J.O.; Pudney, Christopher R.; Hay, Sam; Scrutton, Nigel S.

    2013-01-01

    In enzyme systems where fast motions are thought to contribute to H-transfer efficiency, the distance between hydrogen donor and acceptor is a very important factor. Sub-ångstrom changes in donor-acceptor distance can have a large effect on the rate of reaction, so a sensitive probe of these changes is a vital tool in our understanding of enzyme function. In this study we use ultrafast transient absorption spectroscopy to investigate the photoinduced electron transfer rates, which are also very sensitive to small changes in distance, between coenzyme analog, NAD(P)H4, and the isoalloxazine center in the model flavoenzymes morphinone reductase (wild-type and selected variants) and pentaerythritol tetranitrate reductase (wild-type). It is shown that upon addition of coenzyme to the protein the rate of photoinduced electron transfer is increased. By comparing the magnitude of this increase with existing values for NAD(P)H4-FMN distances, based on charge-transfer complex absorbance and experimental kinetic isotope effect reaction data, we show that this method can be used as a sensitive probe of donor-acceptor distance in a range of enzyme systems. PMID:24314085

  8. All-polymer solar cells with 3.3% efficiency based on naphthalene diimide-selenophene copolymer acceptor.

    PubMed

    Earmme, Taeshik; Hwang, Ye-Jin; Murari, Nishit M; Subramaniyan, Selvam; Jenekhe, Samson A

    2013-10-09

    The lack of suitable acceptor (n-type) polymers has limited the photocurrent and efficiency of polymer/polymer bulk heterojunction (BHJ) solar cells. Here, we report an evaluation of three naphthalene diimide (NDI) copolymers as electron acceptors in BHJ solar cells which finds that all-polymer solar cells based on an NDI-selenophene copolymer (PNDIS-HD) acceptor and a thiazolothiazole copolymer (PSEHTT) donor exhibit a record 3.3% power conversion efficiency. The observed short circuit current density of 7.78 mA/cm(2) and external quantum efficiency of 47% are also the best such photovoltaic parameters seen in all-polymer solar cells so far. This efficiency is comparable to the performance of similarly evaluated [6,6]-Phenyl-C61-butyric acid methyl ester (PC60BM)/PSEHTT devices. The lamellar crystalline morphology of PNDIS-HD, leading to balanced electron and hole transport in the polymer/polymer blend solar cells accounts for its good photovoltaic properties.

  9. Optically tunable spin-exchange energy at donor:acceptor interfaces in organic solar cells

    SciTech Connect

    Li, Mingxing; Wang, Hongfeng; He, Lei; Zang, Huidong; Xu, Hengxing; Hu, Bin

    2014-07-14

    Spin-exchange energy is a critical parameter in controlling spin-dependent optic, electronic, and magnetic properties in organic materials. This article reports optically tunable spin-exchange energy by studying the line-shape characteristics in magnetic field effect of photocurrent developed from intermolecular charge-transfer states based on donor:acceptor (P3HT:PCBM) system. Specifically, we divide magnetic field effect of photocurrent into hyperfine (at low field < 10 mT) and spin-exchange (at high field > 10 mT) regimes. We observe that increasing photoexcitation intensity can lead to a significant line-shape narrowing in magnetic field effect of photocurrent occurring at the spin-exchange regime. We analyze that the line-shape characteristics is essentially determined by the changing rate of magnetic field-dependent singlet/triplet ratio when a magnetic field perturbs the singlet-triplet transition through spin mixing. Based on our analysis, the line-shape narrowing results indicate that the spin-exchange energy at D:A interfaces can be optically changed by changing photoexcitation intensity through the interactions between intermolecular charge-transfer states. Therefore, our experimental results demonstrate an optical approach to change the spin-exchange energy through the interactions between intermolecular charge-transfer states at donor:acceptor interface in organic materials.

  10. Construction of a bicontinuous donor-acceptor hybrid material at the molecular level by inserting inorganic nanowires into porous MOFs.

    PubMed

    Liu, Jian-Jun; Guan, Ying-Fang; Li, Ling; Chen, Yong; Dai, Wen-Xin; Huang, Chang-Cang; Lin, Mei-Jin

    2017-04-06

    Herein, we report an unprecedented hybrid structure of electron-rich iodoplumbate nanowires precisely inserted into the periodic pores of electron-deficient pyridinium metal-organic frameworks (MOFs). To the best of our knowledge, this is the first example of semiconductive MOFs in situ loaded with inorganic semiconductive nanowires via a simple self-assembly method. Due to the dissimilar semiconductivities between the host and guest components, this hybrid also represents the first bicontinuous donor-acceptor hybrid at the molecular level based on host-guest interactions.

  11. Spectral, thermal and kinetic studies of charge-transfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors.

    PubMed

    Refat, Moamen S; Saad, Hosam A; Adam, Abdel Majid A

    2015-04-15

    Understanding the interaction between drugs and small inorganic or organic molecules is critical in being able to interpret the drug-receptor interactions and acting mechanism of these drugs. A combined solution and solid state study was performed to describe the complexation chemistry of drug metronidazole (MZ) which has a broad-spectrum antibacterial activity with two types of acceptors. The acceptors include, σ-acceptor (i.e., iodine) and π-acceptors (i.e., dichlorodicyanobenzoquinone (DDQ), chloranil (CHL) and picric acid (PA)). The molecular structure, spectroscopic characteristics, the binding modes as well as the thermal stability were deduced from IR, UV-vis, (1)H NMR and thermal studies. The binding ratio of complexation (MZ: acceptor) was determined to be 1:2 for the iodine acceptor and 1:1 for the DDQ, CHL or PA acceptor, according to the CHN elemental analyses and spectrophotometric titrations. It has been found that the complexation with CHL and PA acceptors increases the values of enthalpy and entropy, while the complexation with DDQ and iodine acceptors decreases the values of these parameters compared with the free MZ donor.

  12. Spectral, thermal and kinetic studies of charge-transfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.

    2015-04-01

    Understanding the interaction between drugs and small inorganic or organic molecules is critical in being able to interpret the drug-receptor interactions and acting mechanism of these drugs. A combined solution and solid state study was performed to describe the complexation chemistry of drug metronidazole (MZ) which has a broad-spectrum antibacterial activity with two types of acceptors. The acceptors include, σ-acceptor (i.e., iodine) and π-acceptors (i.e., dichlorodicyanobenzoquinone (DDQ), chloranil (CHL) and picric acid (PA)). The molecular structure, spectroscopic characteristics, the binding modes as well as the thermal stability were deduced from IR, UV-vis, 1H NMR and thermal studies. The binding ratio of complexation (MZ: acceptor) was determined to be 1:2 for the iodine acceptor and 1:1 for the DDQ, CHL or PA acceptor, according to the CHN elemental analyses and spectrophotometric titrations. It has been found that the complexation with CHL and PA acceptors increases the values of enthalpy and entropy, while the complexation with DDQ and iodine acceptors decreases the values of these parameters compared with the free MZ donor.

  13. Identification of rhenium donors and sulfur vacancy acceptors in layered MoS2 bulk samples

    NASA Astrophysics Data System (ADS)

    Brandão, F. D.; Ribeiro, G. M.; Vaz, P. H.; González, J. C.; Krambrock, K.

    2016-06-01

    MoS2 monolayers, a two-dimensional (2D) direct semiconductor material with an energy gap of 1.9 eV, offer many opportunities to be explored in different electronic devices. Defects often play dominant roles in the electronic and optical properties of semiconductor devices. However, little experimental information about intrinsic and extrinsic defects or impurities is available for this 2D system, and even for macroscopic 3D samples for which MoS2 shows an indirect bandgap of 1.3 eV. In this work, we evaluate the nature of impurities with unpaired spins using electron paramagnetic resonance (EPR) in different geological macroscopic samples. Regarding the fact that monolayers are mostly obtained from natural crystals, we expect that the majority of impurities found in macroscopic samples are also randomly present in MoS2 monolayers. By EPR at low temperatures, rhenium donors and sulfur vacancy acceptors are identified as the main impurities in bulk MoS2 with a corresponding donor concentration of about 108-12 defects/cm2 for MoS2 monolayer. Electrical transport experiments as a function of temperature are in good agreement with the EPR results, revealing a shallow donor state with an ionization energy of 89 meV and a concentration of 7 × 1015 cm-3, which we attribute to rhenium, as well as a second deeper donor state with ionization energy of 241 meV with high concentration of 2 × 1019 cm-3 and net acceptor concentration of 5 × 1018 cm-3 related to sulfur vacancies.

  14. Assessment of structural, optical and conduction properties of ZnO thin films in the presence of acceptor impurities

    NASA Astrophysics Data System (ADS)

    Plugaru, R.; Plugaru, N.

    2016-06-01

    The structural, optical and electrical conduction properties of (Li/Cu,N):ZnO codoped thin films synthesized by the sol-gel method were investigated by field emission scanning electron microscopy (FESEM), x-ray diffraction (XRD), transmission and absorption, photoluminescence (PL) and I-V measurements in order to bring evidence of the formation of acceptor centers by dual-acceptor codoping processes. The (Li 3%,N 5%):ZnO films consist of crystallites with average size of 15 nm, show 95% transmission in the visible region, and an optical band gap of 3.22 eV. The PL spectra show emission maxima at 3.21 and 2.96 eV which are related to the emission of acceptor centers and the presence of defects, respectively. Li occupies interstitial sites and may form Lii-N(O) defect complexes that act as acceptor centers. The (Cu 3%,N 5%):ZnO films consist of crystallites with average size of 12 nm, and exhibit 90% transmission in the visible region. The PL spectra reveal band edge emission at 3.23 eV and defect related emission at 2.74 eV. In the (Cu,N) codoped films, copper substitutes zinc and adopts mainly the Cu1+ state. A possible defect complex involving Cu and N determines the transition from n- to p-type conductivity. These findings are in agreement with results of electronic structure calculations at the GGA-PBE level.

  15. Spectrophotometric studies on the charge-transfer interaction between p-nitroaniline with chloranilic acid as π-acceptor in different polar solvents

    NASA Astrophysics Data System (ADS)

    Singh, Neeti; Ahmad, Afaq

    2017-01-01

    The charge transfer interaction between the donor p-nitroaniline with the acceptor chloranilic acid has been studied spectrophotometrically in various solvents such as chloroform, ethanol, and methanol at room temperature. The results indicate that formation of CTC in non-polar solvent is high. The stoichiometry of the complex was found to be 1:1 ratio by straight-line method between donor and acceptor with maximum absorption bands. The data are discussed in terms of formation constant (KCT), molar extinction coefficient (εCT), standard free energy (ΔG), oscillator strength (f), transition dipole moment (μN), resonance energy (RN) and ionization potential (ID). The results indicate that the formation constant (KCT) for the complex was shown to be dependent upon the nature of electron acceptor, donor and polarity of solvents that were used. The formation of the complex has been confirmed by UV-visible, FT-IR, and 1H NMR techniques.

  16. Method for producing and regenerating a synthetic CO[sub 2] acceptor

    DOEpatents

    Lancet, M. S.; Curran, G. P.; Gorin, E.

    1982-05-18

    A method is described for producing a synthetic CO[sub 2] acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO[sub 2] acceptor and recovering the pellets of synthetic CO[sub 2] acceptor from the fluidized bed. Optionally, spent synthetic CO[sub 2] acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO[sub 2] acceptor. 1 fig.

  17. Method for producing and regenerating a synthetic CO.sub.2 acceptor

    DOEpatents

    Lancet, Michael S [Pittsburgh, PA; Curran, George P [Pittsburgh, PA; Gorin, Everett [San Rafael, CA

    1982-01-01

    A method for producing a synthetic CO.sub.2 acceptor by feeding a mixture of finely divided silica and at least one finely divided calcium compound selected from the group consisting of calcium oxide and calcium carbonate to a fluidized bed; operating the fluidized bed at suitable conditions to produce pellets of synthetic CO.sub.2 acceptor and recovering the pellets of synthetic CO.sub.2 acceptor from the fluidized bed. Optionally, spent synthetic CO.sub.2 acceptor can be charged to the fluidized bed to produce regenerated pellets of synthetic CO.sub.2 acceptor.

  18. An AdS Crunch in Supergravity

    NASA Astrophysics Data System (ADS)

    Hertog, Thomas

    2004-12-01

    We review some properties of N=8 gauged supergravity in four dimensions with modified, but AdS invariant boundary conditions on the m2 = -2 scalars. There is a one-parameter class of asymptotic conditions on these fields and the metric components, for which the full AdS symmetry group is preserved. The generators of the asymptotic symmetries are finite, but acquire a contribution from the scalar fields. For a large class of such boundary conditions, we find there exist black holes with scalar hair that are specified by a single conserved charge. Since Schwarschild-AdS is a solution too for all boundary conditions, this provides an example of black hole non-uniqueness. We also show there exist solutions where smooth initial data evolve to a big crunch singularity. This opens up the possibility of using the dual conformal field theory to obtain a fully quantum description of the cosmological singularity, and we report on a preliminary study of this.

  19. A New Acceptor (N-type) Polyphenylenevinylene Building Block: SF-PPV-I

    NASA Technical Reports Server (NTRS)

    Wang, Yiqing; Fan, Zhen; Taft, Charles; Sun, Sam-Shajing

    2002-01-01

    A new sulfone derivatized acceptor (n-type) polyphenylenevinylene "SF-PPV" with nano meter sizes and functional terminals has been synthesized and characterized. The SF-PPV-I that contains hydrocarbon alkyl-sulfone moieties has a strong photoluminescence in both solution and in solid thin film states. In dichloromethane, the 5-10 nm sized SF-PPV has a maximum emission at about 530 nm with excitation maximum at about 490 nm. UV-VIS shows a absorption peak onsite at about 500 nm. Optical spectroscopy and electrochemical studies revealed that the SF-PPV-I has an LUMO level at about -3.6 eV (relative to vacuum), and an HOMO level at about -6.1 eV. The average size (length) of SF-PPV-I can be controlled on the nano meter scale via synthetic means. The SF-PPV has the potential in developing polymer based supramolecular opto-electronic semiconductor devices.

  20. Impact of the Crystallite Orientation Distribution on Exciton Transport in Donor-Acceptor Conjugated Polymers.

    PubMed

    Ayzner, Alexander L; Mei, Jianguo; Appleton, Anthony; DeLongchamp, Dean; Nardes, Alexandre; Benight, Stephanie; Kopidakis, Nikos; Toney, Michael F; Bao, Zhenan

    2015-12-30

    Conjugated polymers are widely used materials in organic photovoltaic devices. Owing to their extended electronic wave functions, they often form semicrystalline thin films. In this work, we aim to understand whether distribution of crystallographic orientations affects exciton diffusion using a low-band-gap polymer backbone motif that is representative of the donor/acceptor copolymer class. Using the fact that the polymer side chain can tune the dominant crystallographic orientation in the thin film, we have measured the quenching of polymer photoluminescence, and thus the extent of exciton dissociation, as a function of crystal orientation with respect to a quenching substrate. We find that the crystallite orientation distribution has little effect on the average exciton diffusion length. We suggest several possibilities for the lack of correlation between crystallographic texture and exciton transport in semicrystalline conjugated polymer films.

  1. Chemopreventive Agents from Physalis minima Function as Michael Reaction Acceptors

    PubMed Central

    Men, Ruizhi; Li, Ning; Ding, Chihong; Tang, Yingzhan; Xing, Yachao; Ding, Wanjing; Ma, Zhongjun

    2016-01-01

    Background: The fruits of some varieties of genus Physalis have been used as delicious fruits and functional food in the Northeast of China. Materials and Methods: To reveal the functional material basis, we performed bioactivity-guided phytochemical research and chemopreventive effect assay of the constituents from Physalis minima. Results: It was demonstrated that the ethyl acetate extract of P. minima L. (EEPM) had potential quinone reductase (QR) inducing activity with induction ratio (IR, QR induction activity) value of 1.47 ± 0.24, and glutathione binding property as potential Michael reaction acceptors (with an α, β-unsaturated ketone moiety). Furthermore, bioactivity-guided phytochemical research led eight compounds (1–8), which were elucidated as 3-isopropyl-5-acetoxycyclohexene-2-one-1 (1), isophysalin B (2), physalin G (3), physalin D (4), physalin I (5), physordinose B (6), stigmasterol-3-O-β-D-glucopyranoside (7) and 5α-6β-dihydroxyphysalin R (8) on the basis of nuclear magnetic resonance spectroscopy analyses and HRESIMS. Then, isophysalin B (2) and physordinose B (6) showed significant QR inducing activity with IR value of 2.80 ± 0.19 and 2.38 ± 0.46, respectively. SUMMARY An ultra-performance liquid chromatographic method with glutathione as the substrate was used to detect the Michael reaction acceptors in extracts of Physalis minima (EPM)We investigated the chemical constituents of EPM guided by biological activity methodIsophysalin B (1) and physordinose B (6) showed strong quinone reductase inducing activity with induction ratio values of 2.80 ± 0.19 and 2.38 ± 0.46This study generated useful information for consumers and many encourage researchers to utilize edible fruits from Physalis as a source of phytochemicals Abbreviations used: EPM: Extracts of Physalis minima, EEPM: Ethyl acetate extract of Physalis minima L., GSH: Glutathione, MRAs: Michael reaction acceptors, QR: Quinone reductase. PMID:27279713

  2. High Resolution Stark Spectroscopy of Model Donor-Acceptor Aminobenzonitriles in the Gas Phase.

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Clements, Casey L.; Bird, Ryan G.; Pratt, David W.; Alvarez-Valtierra, Leonardo

    2011-06-01

    Electronic communication between donor-acceptor systems is prevalent in many chemical processes. Unfortunately, an accurate description of the changes in molecular geometry responsible for intramolecular charge transfer (ICT) is difficult to ascertain. Reported here are the S0, LA, and LB electronic state structures and dipole moments of two model ICT systems, 4-(1H-pyrrol-l-yl)benzonitrile (PBN) and 4-(1-pyrrolidinyl)benzonitrile (PDBN), as measured by rotationally resolved electronic spectroscopy. As was observed for phenylpyrrole, the unsaturted rings of PBN become collectively more planar following excitation with UV light, in support of the planar ICT model. However, in PDBN the twist/inversion angle between rings is nearly zero in both the ground and excited electronic states. The unperturbed dipole moments measured here, taken in conjunction with available solvatochromism data, provide an estimate for the polarization, dispersion, and charge transfer contributions to solvent-mediated excited state stabilization. J.A. Thomas, J.W. Young, A.J. Fleisher, L. Álvarez-Valtierra, and D.W. Pratt, J. Phys. Chem. Lett. 1, 2017 (2010).

  3. High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor–acceptor dyads

    PubMed Central

    Schwartz, Pierre-Olivier; Biniek, Laure; Brinkmann, Martin; Leclerc, Nicolas; Zaborova, Elena

    2016-01-01

    Summary Self-assembled donor–acceptor dyads are used as model nanostructured heterojunctions for local investigations by noncontact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM). With the aim to probe the photo-induced charge carrier generation, thin films deposited on transparent indium tin oxide substrates are investigated in dark conditions and upon illumination. The topographic and contact potential difference (CPD) images taken under dark conditions are analysed in view of the results of complementary transmission electron microscopy (TEM) experiments. After in situ annealing, it is shown that the dyads with longer donor blocks essentially lead to standing acceptor–donor lamellae, where the acceptor and donor groups are π-stacked in an edge-on configuration. The existence of strong CPD and surface photo-voltage (SPV) contrasts shows that structural variations occur within the bulk of the edge-on stacks. SPV images with a very high lateral resolution are achieved, which allows for the resolution of local photo-charging contrasts at the scale of single edge-on lamella. This work paves the way for local investigations of the optoelectronic properties of donor–acceptor supramolecular architectures down to the elementary building block level. PMID:27335768

  4. Nonradiative inter- and intramolecular energy transfer from the aromatic donor anisole to a synthesized photoswitchable acceptor system

    NASA Astrophysics Data System (ADS)

    Bardhan, Munmun; Bhattacharya, Sudeshna; Misra, Tapas; Mukhopadhyay, Rupa; De, Asish; Chowdhury, Joydeep; Ganguly, Tapan

    2010-02-01

    We report steady state and time resolved fluorescence measurements on acetonitrile ( ACN) solutions of the model compounds, energy donor anisole ( A) and a photoswitchable acceptor N,N'-1,2-phenylene di-p-tosylamide ( B) and the multichromophore ( M) where A and B are connected by a spacer containing both rigid triple (acetylenic) and flexible methylene bonds. Both steady state and time correlated single photon counting measurements demonstrate that though intermolecular energy transfer, of Forster type, between the donor and acceptor moieties occurs with rate 10 8 s -1 but when these two reacting components are linked by a spacer (multichromophore, M) the observed transfer rate (˜10 11 s -1) enhances. This seemingly indicates that the imposition of the spacer by inserting a triple bond may facilitate in the propagation of electronic excitation energy through bond. The time resolved fluorescence measurements along with the theoretical predictions using Configuration interaction singles (CIS) method by using 6-31G (d,p) basis set, implemented in the Gaussian package indicate the formations of the two excited conformers of B. The experimental findings made from the steady state and time resolved fluorescence measurements demonstrate that, though two different isomeric species of the acceptor B are formed in the excited singlet states, the prevailing singlet-singlet nonradiative energy transfer route was found from the donor A to the relatively longer-lived isomeric species of B.

  5. Magnetic resonance studies of the Mg acceptor in thick free-standing and thin-film GaN

    NASA Astrophysics Data System (ADS)

    Zvanut, Mary Ellen

    Mg, the only effective p-type dopant for the nitrides, substitutes for Ga and forms an acceptor with a defect level of about 0.16 eV. The magnetic resonance of such a center should be highly anisotropic, yet early work employing both optically detected magnetic resonance (ODMR) and electron paramagnetic resonance (EPR) spectroscopies revealed a defect with a nearly isotropic g-tensor. The results were attributed to crystal fields caused by compensation and/or strain typical of the heteroepitaxially grown films. The theory was supported by observation of the expected highly anisotropic ODMR signature in homoepitaxially grown films in which dislocation-induced non-uniform strain and compensation are reduced. The talk will review EPR measurements of thin films and describe new work which takes advantage of the recently available thick free-standing GaN:Mg substrates grown by hydride vapor phase epitaxy (HVPE) and high nitrogen pressure solution growth (HNPS). Interestingly, the films and HVPE substrates exhibit characteristically different types of EPR signals, and no EPR response could be induced in the HNPS substrates, with or without illumination. In the heteroepitaxial films, a curious angular dependent line-shape is observed in addition to the nearly isotropic g-tensor characteristic of the Mg-related acceptor. On the other hand, the free-standing HVPE crystals reveal a clear signature of a highly anisotropic shallow acceptor center. Comparison with SIMS measurements implies a direct relation to the Mg impurity, and frequency-dependent EPR studies demonstrate the influence of the anisotropic crystal fields. Overall, the measurements of the thick free-standing crystals show that the Mg acceptor is strongly affected by the local environment. The ODMR was performed by Evan Glaser, NRL and the free-standing Mg-doped HVPE crystals were grown by Jacob Leach, Kyma Tech. The work at UAB is supported by NSF Grant No. DMR-1308446.

  6. Donor-acceptor complexation and dehydrogenation chemistry of aminoboranes.

    PubMed

    Malcolm, Adam C; Sabourin, Kyle J; McDonald, Robert; Ferguson, Michael J; Rivard, Eric

    2012-12-03

    A series of formal donor-acceptor adducts of aminoborane (H(2)BNH(2)) and its N-substituted analogues (H(2)BNRR') were prepared: LB-H(2)BNRR'(2)-BH(3) (LB = DMAP, IPr, IPrCH(2) and PCy(3); R and R' = H, Me or tBu; IPr = [(HCNDipp)(2)C:] and Dipp = 2,6-iPr(2)C(6)H(3)). To potentially access complexes of molecular boron nitride, LB-BN-LA (LA = Lewis acid), preliminary dehydrogenation chemistry involving the parent aminoborane adducts LB-H(2)BNH(2)-BH(3) was investigated using [Rh(COD)Cl](2), CuBr, and NiBr(2) as dehydrogenation catalysts. In place of isolating the intended dehydrogenated BN donor-acceptor complexes, the formation of borazine was noted as a major product. Attempts to prepare the fluoroarylborane-capped aminoborane complexes, LB-H(2)BNH(2)-B(C(6)F(5))(3), are also described.

  7. Glutathione Adduct Patterns of Michael-Acceptor Carbonyls.

    PubMed

    Slawik, Christian; Rickmeyer, Christiane; Brehm, Martin; Böhme, Alexander; Schüürmann, Gerrit

    2017-02-22

    Glutathione (GSH) has so far been considered to facilitate detoxification of soft organic electrophiles through covalent binding at its cysteine (Cys) thiol group, followed by stepwise catalyzed degradation and eventual elimination along the mercapturic acid pathway. Here we show that in contrast to expectation from HSAB theory, Michael-acceptor ketones, aldehydes and esters may form also single, double and triple adducts with GSH involving β-carbon attack at the much harder N-terminus of the γ-glutamyl (Glu) unit of GSH. In particular, formation of the GSH-N single adduct contradicts the traditional view that S alkylation always forms the initial reaction of GSH with Michael-acceptor carbonyls. To this end, chemoassay analyses of the adduct formation of GSH with nine α,β-unsaturated carbonyls employing high performance liquid chromatography and tandem mass spectrometry have been performed. Besides enriching the GSH adductome and potential biomarker applications, electrophilic N-terminus functio-nalization is likely to impair GSH homeostasis substantially through blocking the γ-glutamyl transferase catalysis of the first breakdown step of modified GSH, and thus its timely reconstitution. The discussion includes a comparison with cyclic adducts of GSH and furan metabolites as reported in literature, and quantum chemically calculated thermodynamics of hard-hard, hard-soft and soft-soft adducts.

  8. AdS3: the NHEK generation

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; Heurtier, Lucien; Puhm, Andrea

    2016-05-01

    It was argued in [1] that the five-dimensional near-horizon extremal Kerr (NHEK) geometry can be embedded in String Theory as the infrared region of an infinite family of non-supersymmetric geometries that have D1, D5, momentum and KK monopole charges. We show that there exists a method to embed these geometries into asymptotically- {AdS}_3× {S}^3/{{Z}}_N solutions, and hence to obtain infinite families of flows whose infrared is NHEK. This indicates that the CFT dual to the NHEK geometry is the IR fixed point of a Renormalization Group flow from a known local UV CFT and opens the door to its explicit construction.

  9. AdS2 holographic dictionary

    NASA Astrophysics Data System (ADS)

    Cvetič, Mirjam; Papadimitriou, Ioannis

    2016-12-01

    We construct the holographic dictionary for both running and constant dilaton solutions of the two dimensional Einstein-Maxwell-Dilaton theory that is obtained by a circle reduction from Einstein-Hilbert gravity with negative cosmological constant in three dimensions. This specific model ensures that the dual theory has a well defined ultraviolet completion in terms of a two dimensional conformal field theory, but our results apply qualitatively to a wider class of two dimensional dilaton gravity theories. For each type of solutions we perform holographic renormalization, compute the exact renormalized one-point functions in the presence of arbitrary sources, and derive the asymptotic symmetries and the corresponding conserved charges. In both cases we find that the scalar operator dual to the dilaton plays a crucial role in the description of the dynamics. Its source gives rise to a matter conformal anomaly for the running dilaton solutions, while its expectation value is the only non trivial observable for constant dilaton solutions. The role of this operator has been largely overlooked in the literature. We further show that the only non trivial conserved charges for running dilaton solutions are the mass and the electric charge, while for constant dilaton solutions only the electric charge is non zero. However, by uplifting the solutions to three dimensions we show that constant dilaton solutions can support non trivial extended symmetry algebras, including the one found by Compère, Song and Strominger [1], in agreement with the results of Castro and Song [2]. Finally, we demonstrate that any solution of this specific dilaton gravity model can be uplifted to a family of asymptotically AdS2 × S 2 or conformally AdS2 × S 2 solutions of the STU model in four dimensions, including non extremal black holes. The four dimensional solutions obtained by uplifting the running dilaton solutions coincide with the so called `subtracted geometries', while those obtained

  10. Binding characteristics of homogeneous molecularly imprinted polymers for acyclovir using an (acceptor-donor-donor)-(donor-acceptor-acceptor) hydrogen-bond strategy, and analytical applications for serum samples.

    PubMed

    Wu, Suqin; Tan, Lei; Wang, Ganquan; Peng, Guiming; Kang, Chengcheng; Tang, Youwen

    2013-04-12

    This paper demonstrates a novel approach to assembling homogeneous molecularly imprinted polymers (MIPs) based on mimicking multiple hydrogen bonds between nucleotide bases by preparing acyclovir (ACV) as a template and using coatings grafted on silica supports. (1)H NMR studies confirmed the AAD-DDA (A for acceptor, D for donor) hydrogen-bond array between template and functional monomer, while the resultant monodisperse molecularly imprinted microspheres (MIMs) were evaluated using a binding experiment, high performance liquid chromatography (HPLC), and solid phase extraction. The Langmuir isothermal model and the Langmuir-Freundlich isothermal model suggest that ACV-MIMs have more homogeneous binding sites than MIPs prepared through normal imprinting. In contrast to previous MIP-HPLC columns, there were no apparent tailings for the ACV peaks, and ACV-MIMs had excellent specific binding properties with a Ka peak of 3.44 × 10(5)M(-1). A complete baseline separation is obtained for ACV and structurally similar compounds. This work also successfully used MIMs as a specific sorbent for capturing ACV from serum samples. The detection limit and mean recovery of ACV was 1.8 ng/mL(-1) and 95.6%, respectively, for molecularly imprinted solid phase extraction coupled with HPLC. To our knowledge, this was the first example of MIPs using AAD-DDA hydrogen bonds.

  11. Two-Electron Transfer Pathways.

    PubMed

    Lin, Jiaxing; Balamurugan, D; Zhang, Peng; Skourtis, Spiros S; Beratan, David N

    2015-06-18

    The frontiers of electron-transfer chemistry demand that we develop theoretical frameworks to describe the delivery of multiple electrons, atoms, and ions in molecular systems. When electrons move over long distances through high barriers, where the probability for thermal population of oxidized or reduced bridge-localized states is very small, the electrons will tunnel from the donor (D) to acceptor (A), facilitated by bridge-mediated superexchange interactions. If the stable donor and acceptor redox states on D and A differ by two electrons, it is possible that the electrons will propagate coherently from D to A. While structure-function relations for single-electron superexchange in molecules are well established, strategies to manipulate the coherent flow of multiple electrons are largely unknown. In contrast to one-electron superexchange, two-electron superexchange involves both one- and two-electron virtual intermediate states, the number of virtual intermediates increases very rapidly with system size, and multiple classes of pathways interfere with one another. In the study described here, we developed simple superexchange models for two-electron transfer. We explored how the bridge structure and energetics influence multielectron superexchange, and we compared two-electron superexchange interactions to single-electron superexchange. Multielectron superexchange introduces interference between singly and doubly oxidized (or reduced) bridge virtual states, so that even simple linear donor-bridge-acceptor systems have pathway topologies that resemble those seen for one-electron superexchange through bridges with multiple parallel pathways. The simple model systems studied here exhibit a richness that is amenable to experimental exploration by manipulating the multiple pathways, pathway crosstalk, and changes in the number of donor and acceptor species. The features that emerge from these studies may assist in developing new strategies to deliver multiple

  12. Conductance of a single flexible molecular wire composed of alternating donor and acceptor units

    PubMed Central

    Nacci, Christophe; Ample, Francisco; Bleger, David; Hecht, Stefan; Joachim, Christian; Grill, Leonhard

    2015-01-01

    Molecular-scale electronics is mainly concerned by understanding charge transport through individual molecules. A key issue here is the charge transport capability through a single—typically linear—molecule, characterized by the current decay with increasing length. To improve the conductance of individual polymers, molecular design often either involves the use of rigid ribbon/ladder-type structures, thereby sacrificing for flexibility of the molecular wire, or a zero band gap, typically associated with chemical instability. Here we show that a conjugated polymer composed of alternating donor and acceptor repeat units, synthesized directly by an on-surface polymerization, exhibits a very high conductance while maintaining both its flexible structure and a finite band gap. Importantly, electronic delocalization along the wire does not seem to be necessary as proven by spatial mapping of the electronic states along individual molecular wires. Our approach should facilitate the realization of flexible ‘soft' molecular-scale circuitry, for example, on bendable substrates. PMID:26145188

  13. Ultrafast charge transfer dynamics in supramolecular Pt(II) donor-bridge-acceptor assemblies: the effect of vibronic coupling.

    PubMed

    Scattergood, Paul A; Delor, Milan; Sazanovich, Igor V; Towrie, Michael; Weinstein, Julia A

    2015-01-01

    Thanks to major advances in laser technologies, recent investigations of the ultrafast coupling of nuclear and electronic degrees of freedom (vibronic coupling) have revealed that such coupling plays a crucial role in a wide range of photoinduced reactions in condensed phase supramolecular systems. This paper investigates several new donor-bridge-acceptor charge-transfer molecular assemblies built on a trans-Pt(II) acetylide core. We also investigate how targeted vibrational excitation with low-energy IR light post electronic excitation can perturb vibronic coupling and affect the efficiency of electron transfer (ET) in solution phase. We compare and contrast properties of a range of donor-bridge-acceptor Pt(II) trans-acetylide assemblies, where IR excitation of bridge vibrations during UV-initiated charge separation in some cases alters the yields of light-induced product states. We show that branching to multiple product states from a transition state with appropriate energetics is the most rigid condition for the type of vibronic control we demonstrate in our study.

  14. Taming hot CF3 radicals: incrementally tuned families of polyarene acceptors for air-stable molecular optoelectronics

    SciTech Connect

    Kuvychko, Igor V.; Castro, Karlee P.; Deng, Shihu; Wang, Xue B.; Strauss, Steven H.; Boltalina, Olga V.

    2013-04-26

    Breakthroughs in molecular optoelectronics await the availability of new families of air-stable polyaromatic hydrocarbon (PAH) acceptors with incrementally- and predictably-tunable electron affinities and structures capable of inducing desirable solid-state morphologies in hybrid materials. Although the addition of electron withdrawing groups to PAHs has been studied for decades, producing new compounds from time to time, a generic one-step synthetic methodology applicable to potentially all PAH substrates has been, until now, an impossible dream. We herein report that at least seventeen common PAHs and polyheterocyclics can be trifluoromethylated by a new procedure to yield families of PAH(CF3)n acceptors with (i) n = 4-8, (ii) multiple isomers for particular n values, (iii) gas-phase experimental electron affinities as high as 3.32 eV and shifted from the respective PAH precursor as a linear function of n, and (iv) various solid-state morphologies, including the ability to form alternating π stacked hybrid crystals with aromatic donors.

  15. Polaronic contributions to oxidation and hole conductivity in acceptor-doped BaZrO3

    NASA Astrophysics Data System (ADS)

    Lindman, Anders; Erhart, Paul; Wahnström, Göran

    2016-08-01

    Acceptor-doped perovskite oxides like BaZrO3 are showing great potential as materials for renewable energy technologies where hydrogen acts an energy carrier, such as solid oxide fuel cells and hydrogen separation membranes. While ionic transport in these materials has been investigated intensively, the electronic counterpart has received much less attention and further exploration in this field is required. Here, we use density functional theory (DFT) to study hole polarons and their impact on hole conductivity in Y-doped BaZrO3. Three different approaches have been used to remedy the self-interaction error of local and semilocal exchange-correlation functionals: DFT +U , pSIC-DFT, and hybrid functionals. Self-trapped holes are found to be energetically favorable by about -0.1 eV and the presence of yttrium results in further stabilization. Polaron migration is predicted to occur through intraoctahedral transfer and polaron rotational processes, which are associated with adiabatic barriers of about 0.1 eV. However, the rather small energies associated with polaron formation and migration suggest that the hole becomes delocalized and bandlike at elevated temperatures. These results together with an endothermic oxidation reaction [A. Lindman, P. Erhart, and G. Wahnström, Phys. Rev. B 91, 245114 (2015), 10.1103/PhysRevB.91.245114] yield a picture that is consistent with experimental data for the hole conductivity. The results we present here provide new insight into hole transport in acceptor-doped BaZrO3 and similar materials, which will be of value in the future development of sustainable technologies.

  16. Two acceptor levels and hopping conduction in Mn-doped GaAs

    NASA Astrophysics Data System (ADS)

    Kajikawa, Yasutomo

    2017-01-01

    By analysing the experimental data of the temperature-dependent Hall-effect measurements, an additional acceptor level has been confirmed to exist in Mn-doped p-GaAs besides the isolated substitutional Mn acceptor level. It is found that, in most of the investigated samples, the room-temperature hole concentration is governed by the additional acceptor level rather than the isolated substitutional Mn acceptor level. The concentration of the additional acceptor level is found to increase almost in proportion to the square of the concentration of the isolated substitutional Mn acceptors, suggesting that the additional acceptor level is related to Mn dimers. This suggests that the ferromagnetism observed in more heavily Mn-doped GaAs may be attributed to Mn clusters. For some of the samples in which the characteristic of nearest-neighbour hopping conduction in the substitutional Mn acceptor impurity band is evident, the hopping activation energy is deduced and is proved to increase in proportion to the cube root of the concentration of the substitutional Mn acceptors.

  17. Protected sphingosine from phytosphingosine as an efficient acceptor in glycosylation reaction.

    PubMed

    Di Benedetto, Roberta; Zanetti, Luca; Varese, Monica; Rajabi, Mehdi; Di Brisco, Riccardo; Panza, Luigi

    2014-02-07

    A convenient, simple, and high-yielding five-step synthesis of a sphingosine acceptor from phytosphingosine is reported, and its behavior in glycosylation reactions is described. Different synthetic paths to sphingosine acceptors using tetrachlorophthalimide as a protecting group for the sphingosine amino function and different glycosylation methods have been explored. Among the acceptors tested, the easiest accessible acceptor, unprotected on the two hydroxyl groups in positions 1 and 3, was regioselectively glycosylated on the primary position, the regioselectivity depending on the donor used.

  18. Process for gasification using a synthetic CO/sub 2/ acceptor

    SciTech Connect

    Lancet, M.S.; Curran, G.P.

    1980-11-04

    Conoco's gasification process uses a synthetic CO/sub 2/ acceptor consisting essentially of at least one calcium compound (either calcium oxide or calcium carbonate) supported in a refractory carrier matrix having the general formula Ca/sub 5/(SiO/sub 4/)/sub 2/CO/sub 3/. The synthetic acceptor is more effective than a natural calcium oxide acceptor during the gasification process because the thermally stable matrix causes the calcium compounds to remain in discrete particles that tend to reactivate with each passage through the process. This eliminates the need for large quantities of fresh makeup acceptor materials.

  19. Chlorophyll-quinone photochemical electron transfer in liposomes

    SciTech Connect

    Hurley, J.K.; Castelli, F.; Tollin, G.

    1981-09-01

    The study described involves the reduction of electron acceptors (quinones) by photoexcited Chloroplasts (Chl). Chl a (from spinach) is incorporated into phosphatidylcholine (either synthetic or from hen egg yolks) liposomes suspended in 10 mM phosphate buffer (pH 7.0). The quinones are either present during liposome formation or added later, depending upon their water solubility. The measurement technique employed is laser flash photolysis. A pulsed nitrogen laser pumps a dye laser, which delivers a short light flash (10 ns) to the sample at a wavelength (655-660 nm) within an absorption band of Chl. This raises Chl to an excited singlet level, which can rapidly cross to the lowest excited triple level (/sup 3/Chl). From this state Chl can transfer an electron to acceptors such as quinones,