Science.gov

Sample records for added electron donor

  1. Mathematical modeling of autotrophic denitrification (AD) process with sulphide as electron donor.

    PubMed

    Xu, Guihua; Yin, Fengjun; Chen, Shaohua; Xu, Yuanjian; Yu, Han-Qing

    2016-03-15

    Autotrophic denitrification (AD) plays a critical role in nitrate removal from organic carbon-deficient wastewaters with a high level of nitrogen oxides. However, the AD process is not included in the current denitrification models, which limits the application of AD technology for wastewater treatment. In this work, a kinetic model for AD process involved 4 processes and 5 components with 9 parameters is established to describe the sulphide biooxidation and nitrite removal process. In this model, 4 oxidation-reduction reactions using sulphide as electronic donor in the AD process are taken into account. The model parameters are optimized by fitting data from the experiments with different combinations of sulphide, sulphur, sulphate, nitrate and nitrite at various concentrations. Model calibration and validation results demonstrate that the developed model is able to reasonably describe the removal rates of nitrate, nitrite, sulphide and sulphur in the AD process. The model simulation results also show that the sulphur term (η(S)) in the kinetic equations of nitrate, nitrite, sulphur and sulphate remains constant, rather than being controlled by its own concentration. Furthermore, with this model the products of sulphide biooxidation in the AD process, sulphur and sulphate, and their concentrations can be accurately predicted. Therefore, this model provides a strategy to control the sulphate concentration below the discharge limits or recover sulphur as the main end product from sulphide biooxidation. PMID:26799712

  2. Electron Donor Acceptor Interactions. Final Progress Report

    SciTech Connect

    2002-08-16

    The Gordon Research Conference (GRC) on Electron Donor Acceptor Interactions was held at Salve Regina University, Newport, Rhode Island, 8/11-16/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  3. Few electron quantum dot coupling to donor implanted electron spins

    NASA Astrophysics Data System (ADS)

    Rudolph, Martin; Harvey-Collard, Patrick; Neilson, Erik; Gamble, John; Muller, Richard; Jacobson, Toby; Ten-Eyck, Greg; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carroll, Malcolm

    2015-03-01

    Donor-based Si qubits are receiving increased interest because of recent demonstrations of high fidelity electron or nuclear spin qubits and their coupling. Quantum dot (QD) mediated interactions between donors are of interest for future coupling of two donors. We present experiment and modeling of a polysilicon/Si MOS QD, charge-sensed by a neighboring many electron QD, capable of coupling to one or two donor implanted electron spins (D) while tuned to the few electron regime. The unique design employs two neighboring gated wire FETs and self-aligned implants, which supports many configurations of implanted donors. We can access the (0,1) ⇔(1,0) transition between the D and QD, as well as the resonance condition between the few electron QD and two donors ((0,N,1) ⇔(0,N +1,0) ⇔(1,N,0)). We characterize capacitances and tunnel rate behavior combined with semi-classical and full configuration interaction simulations to study the energy landscape and kinetics of D-QD transitions. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. The work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  4. Electron shuttling in phosphorus donor qubit systems

    NASA Astrophysics Data System (ADS)

    Jacobson, N. Tobias; Gamble, John King; Nielsen, Erik; Muller, Richard P.; Witzel, Wayne M.; Montano, Ines; Carroll, Malcolm S.

    2014-03-01

    Phosphorus donors in silicon are a promising qubit architecture, due in large part to their long nuclear coherence times and the recent development of atomically precise fabrication methods. Here, we investigate issues related to implementing qubits with phosphorus donors in silicon, employing an effective mass theory that non-phenomenologically takes into account inter-valley coupling. We estimate the significant sources of decoherence and control errors in this system to compute the fidelity of primitive gates and gate timescales. We include the effects of valley repopulation during the process of shuttling an electron between a donor and nearby interface or between neighboring donors, evaluating the control requirements for ensuring adiabaticity with respect to the valley sector. This work was supported in part by the LDRD program at Sandia National Labs, a multi-program laboratory managed and operated by Sandia Corp, a wholly owned subsidiary of Lockheed Martin Corp, for the U.S. DOE NNSA under contract DE-AC04-94AL85000.

  5. Polymerization Initiated by Organic Electron Donors.

    PubMed

    Broggi, Julie; Rollet, Marion; Clément, Jean-Louis; Canard, Gabriel; Terme, Thierry; Gigmes, Didier; Vanelle, Patrice

    2016-05-10

    Polymerization reactions with organic electron donors (OED) as initiators are presented herein. The metal-free polymerization of various activated alkene and cyclic ester monomers was performed in short reaction times, under mild conditions, with small amounts of organic reducing agents, and without the need for co-initiators or activation by photochemical, electrochemical, or other methods. Hence, OED initiators enabled the development of an efficient, rapid, room-temperature process that meets the technical standards expected for industrial processes, such as energy savings, cost-effectiveness and safety. Mechanistic investigations support an electron-transfer initiation pathway that leads to the reduction of the monomer. PMID:27061743

  6. The role of electron donors generated from UV photolysis for accelerating pyridine biodegradation.

    PubMed

    Tang, Yingxia; Zhang, Yongming; Yan, Ning; Liu, Rui; Rittmann, Bruce E

    2015-09-01

    Employing an internal circulation baffled biofilm reactor (ICBBR), we evaluated the mechanisms by which photolysis accelerated the biodegradation and mineralization of pyridine (C5 H5 N), a nitrogen-containing heterocyclic compound. We tested the hypothesis that pyridine oxidation is accelerated because a key photolysis intermediate, succinate, is as electron donor that promotes the initial mono-oxygenation of pyridine. Experimentally, longer photolysis time generated more electron-donor products (succinate), which stimulated faster pyridine biodegradation. This pattern was confirmed by directly adding succinate, and the stimulation effect occurred similarly with addition of the same equivalents of acetate and formate. Succinate, whether generated by UV photolysis or added directly, also accelerated mono-oxygenation of the first biodegradation intermediate, 2-hydroxyl pyridine (2HP). 2HP and pyridine were mutually inhibitory in that their mono-oxygenations competed for internal electron donor; thus, the addition of any readily biodegradable donor accelerated both mono-oxygenation steps, as well as mineralization. PMID:25854706

  7. Donor-acceptor electron transport mediated by solitons.

    PubMed

    Brizhik, L S; Piette, B M A G; Zakrzewski, W J

    2014-11-01

    We study the long-range electron and energy transfer mediated by solitons in a quasi-one-dimensional molecular chain (conjugated polymer, alpha-helical macromolecule, etc.) weakly bound to a donor and an acceptor. We show that for certain sets of parameter values in such systems an electron, initially located at the donor molecule, can tunnel to the molecular chain, where it becomes self-trapped in a soliton state, and propagates to the opposite end of the chain practically without energy dissipation. Upon reaching the end, the electron can either bounce back and move in the opposite direction or, for suitable parameter values of the system, tunnel to the acceptor. We estimate the energy efficiency of the donor-acceptor electron transport depending on the parameter values. Our calculations show that the soliton mechanism works for the parameter values of polypeptide macromolecules and conjugated polymers. We also investigate the donor-acceptor electron transport in thermalized molecular chains. PMID:25493866

  8. Donor-acceptor electron transport mediated by solitons

    NASA Astrophysics Data System (ADS)

    Brizhik, L. S.; Piette, B. M. A. G.; Zakrzewski, W. J.

    2014-11-01

    We study the long-range electron and energy transfer mediated by solitons in a quasi-one-dimensional molecular chain (conjugated polymer, alpha-helical macromolecule, etc.) weakly bound to a donor and an acceptor. We show that for certain sets of parameter values in such systems an electron, initially located at the donor molecule, can tunnel to the molecular chain, where it becomes self-trapped in a soliton state, and propagates to the opposite end of the chain practically without energy dissipation. Upon reaching the end, the electron can either bounce back and move in the opposite direction or, for suitable parameter values of the system, tunnel to the acceptor. We estimate the energy efficiency of the donor-acceptor electron transport depending on the parameter values. Our calculations show that the soliton mechanism works for the parameter values of polypeptide macromolecules and conjugated polymers. We also investigate the donor-acceptor electron transport in thermalized molecular chains.

  9. The role of exogenous electron donors for accelerating 2,4,6-trichlorophenol biotransformation and mineralization.

    PubMed

    Yan, Ning; Li, Rongjie; Xu, Hua; Li, Ling; Yang, Lihui; Zhang, Yongming; Liu, Rui; Rittmann, Bruce E

    2016-06-01

    2,4,6-Trichlorophenol (TCP) is a biologically recalcitrant compound, but its biodegradation via reductive dechlorination can be accelerated by adding an exogenous electron donor. In this work, acetate and formate were evaluated for their ability to accelerate TCP reductive dechlorination, as well to accelerate mono-oxygenation of TCP's reduction product, phenol. Acetate and formate accelerated TCP reductive dechlorination, and the impact was proportional to the number of electron equivalents released by oxidation of the donor: 8 e(-) equivalents per mol for acetate, compared to 2 e(-) eq per mol for formate. The acceleration phenomenon was similar for phenol mono-oxygenation, and this increased the rate of TCP mineralization. Compared to endogenous electron equivalents generated by phenol mineralization, the impact of exogenous electron donor was stronger on a per-equivalent basis. PMID:27084768

  10. Stark Tuning of Donor Electron Spins of Silicon

    SciTech Connect

    Bradbury, Forrest R.; Tyryshkin, Alexei M.; Sabouret, Guillaume; Bokor, Jeff; Schenkel, Thomas; Lyon, Stephen A.

    2006-03-23

    We report Stark shift measurements for {sup 121}Sb donor electron spins in silicon using pulsed electron spin resonance. Interdigitated metal gates on top of a Sb-implanted {sup 28}Si epi-layer are used to apply electric fields. Two Stark effects are resolved: a decrease of the hyperfine coupling between electron and nuclear spins of the donor and a decrease in electron Zeeman g-factor. The hyperfine term prevails at X-band magnetic fields of 0.35T, while the g-factor term is expected to dominate at higher magnetic fields. A significant linear Stark effect is also resolved presumably arising from strain.

  11. The roles of methanogens and acetogens in dechlorination of trichloroethene using different electron donors.

    PubMed

    Wen, Li-Lian; Zhang, Yin; Pan, Ya-Wei; Wu, Wen-Qi; Meng, Shao-Hua; Zhou, Chen; Tang, Youneng; Zheng, Ping; Zhao, He-Ping

    2015-12-01

    We evaluated the effects of methanogens and acetogens on the function and structure of microbial communities doing reductive dechlorination of trichloroethene (TCE) by adding four distinct electron donors: lactate, a fermentable organic; acetate, a non-fermentable organic; methanol, a fermentable 1-C (carbon) organic; and hydrogen gas (H2), the direct electron donor for reductive dechlorination by Dehalococcoides. The fermentable electron donors had faster dechlorination rates, more complete dechlorination, and higher bacterial abundances than the non-fermentable electron donors during short-term tests. Phylotypes of Dehalococcoides were relatively abundant (≥9%) for the cultures fed with fermentable electron donors but accounted for only ~1-2% of the reads for the cultures fed by the non-fermentable electron donors. Routing electrons to methanogenesis and a low ratio of Dehalococcoides/methanogenesis (Dhc/mcrA) were associated with slow and incomplete reductive dechlorination with methanol and H2. When fermentable substrates were applied as electron donors, a Dhc/mcrA ratio ≥6.4 was essential to achieve fast and complete dechlorination of TCE to ethene. When methanogenesis was suppressed using 2-bromoethanesulfonate (BES), achieving complete dechlorination of TCE to ethane required a minimum abundance of the mcrA gene. Methanobacterium appeared to be important for maintaining a high dechlorination rate, probably by providing Dehalococcoides with cofactors other than vitamin B12. Furthermore, the presence of homoacetogens also was important to maintain a high dechlorination rate, because they provided acetate as Dehalococcoides's obligatory carbon source and possibly cofactors. PMID:26233753

  12. Quantum Computing in Silicon with Donor Electron Spins

    NASA Astrophysics Data System (ADS)

    Simmons, Michelle

    2014-03-01

    Extremely long electron and nuclear spin coherence times have recently been demonstrated in isotopically pure Si-28 making silicon one of the most promising semiconductor materials for spin based quantum information. The two level spin state of single electrons bound to shallow phosphorus donors in silicon in particular provide well defined, reproducible qubits and represent a promising system for a scalable quantum computer in silicon. An important challenge in these systems is the realisation of an architecture, where we can position donors within a crystalline environment with approx. 20-50nm separation, individually address each donor, manipulate the electron spins using ESR techniques and read-out their spin states. We have developed a unique fabrication strategy for a scalable quantum computer in silicon using scanning tunneling microscope hydrogen lithography to precisely position individual P donors in a Si crystal aligned with nanoscale precision to local control gates necessary to initialize, manipulate, and read-out the spin states. During this talk I will focus on demonstrating electronic transport characteristics and single-shot spin read-out of precisely-positioned P donors in Si. Additionally I will report on our recent progress in performing single spin rotations by locally applying oscillating magnetic fields and initial characterization of transport devices with two and three single donors. The challenges of scaling up to practical 2D architectures will also be discussed.

  13. Stark tuning of donor electron spins in silicon

    SciTech Connect

    Bradbury, F.R.; Tyryshkin, A.M.; Sabouret, G.; Bokor, J.; Schenkel, T.; Lyon, S.A.

    2006-03-12

    We report Stark shift measurements for 121Sb donor electronspins in silicon using pulsed electron spin resonance. Interdigitatedmetal gates on top of a Sb-implanted 28Si epi-layer are used to applyelectric fields. Two Stark effects are resolved: a decrease of thehyperfine coupling between electron and nuclear spins of the donor and adecrease in electron Zeeman g-factor. The hyperfine term prevails atX-band magnetic fields of 0.35T, while the g-factor term is expected todominate at higher magnetic fields. A significant linear Stark effect isalso resolved presumably arising from strain.

  14. Electron paramagnetic resonance of a donor in aluminum nitride crystals

    NASA Astrophysics Data System (ADS)

    Evans, S. M.; Giles, N. C.; Halliburton, L. E.; Slack, G. A.; Schujman, S. B.; Schowalter, L. J.

    2006-02-01

    Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectra are obtained from a donor in aluminum nitride (AlN) crystals. Although observed in as-grown crystals, exposure to x rays significantly increases the concentration of this center. ENDOR identifies a strong hyperfine interaction with one aluminum neighbor along the c axis and weaker equivalent hyperfine interactions with three additional aluminum neighbors in the basal plane. These aluminum interactions indicate that the responsible center is a deep donor at a nitrogen site. The observed paramagnetic defect is either a neutral oxygen substituting for nitrogen (ON0) or a neutral nitrogen vacancy (VN0).

  15. Ultrafast electron transfer via a bridge-extended donor orbital

    NASA Astrophysics Data System (ADS)

    Ernstorfer, R.; Gundlach, L.; Felber, S.; Storck, W.; Eichberger, R.; Zimmermann, C.; Willig, F.

    Electron transfer from the excited aromatic donor perylene to TiO2 occurred with 10 fs time constant via the conjugated -CH=CH- bridge unit compared to 57 fs in the presence of the saturated -CH2-CH2- bridge unit.

  16. Electron donor preference of a reductive dechlorinating consortium

    USGS Publications Warehouse

    Lorah, M.M.; Majcher, E.; Jones, E.; Driedger, G.; Dworatzek, S.; Graves, D.

    2005-01-01

    A wetland sediment-derived microbial consortium was developed by the USGS and propagated in vitro to large quantities by SiREM Laboratory for use in bioaugmentation applications. The consortium had the capacity to completely dechlorinate 1,1,2,2-tetrachloroethene, tetrachloroethylene, trichloroethylene, 1,1,2-trichloroethane, cis- and trans-1,2-dichoroethylene, 1.1-dichloroethylene, 1,2-dichloroethane, vinyl chloride, carbon tetrachloride and chloroform. A suite of electron donors with characteristics useful for bioaugmentation applications was tested. The electron donors included lactate (the donor used during WBC-2 development), ethanol, chitin (Chitorem???), hydrogen releasing compound (HRC???), emulsified vegetable oil (Newman Zone???), and hydrogen gas. Ethanol, lactate, and chitin were particularly effective with respect to stimulating, supporting, and sustaining reductive dechlorination of the broad suite of chemicals that WBC-2 biodegraded. Chitorem??? was the most effective "slow release" electron donor tested. This is an abstract of a paper presented at the Proceedings of the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).

  17. Spin relaxation via exchange with donor impurity-bound electrons

    NASA Astrophysics Data System (ADS)

    Qing, Lan; Li, Jing; Appelbaum, Ian; Dery, Hanan

    2015-06-01

    At low temperatures, electrons in semiconductors are bound to shallow donor impurity ions, neutralizing their charge in equilibrium. Inelastic scattering of other externally injected conduction electrons accelerated by electric fields can excite transitions within the manifold of these localized states. Promotion of the bound electron into highly spin-orbit-mixed excited states drives a strong spin relaxation of the conduction electrons via exchange interactions, reminiscent of the Bir-Aronov-Pikus process where exchange occurs with valence band hole states. Through low-temperature experiments with silicon spin transport devices and complementary theory, we reveal the consequences of this spin depolarization mechanism both below and above the impact ionization threshold.

  18. Fullerene derivatives as electron donor for organic photovoltaic cells

    SciTech Connect

    Zhuang, Taojun; Wang, Xiao-Feng E-mail: ziruo@yz.yamagata-u.ac.jp; Sano, Takeshi; Kido, Junji; Hong, Ziruo E-mail: ziruo@yz.yamagata-u.ac.jp; Yang, Yang

    2013-11-11

    We demonstrated the performance of unconventional, all-fullerene-based, planar heterojunction (PHJ) organic photovoltaic (OPV) cells using fullerene derivatives indene-C{sub 60} bisadduct (ICBA) and phenyl C{sub 61}-butyric acid methyl ester as the electron donors with fullerene C{sub 70} as the electron acceptor. Two different charge generation processes, including charge generation in the fullerene bulk and exciton dissociation at the donor-acceptor interface, have been found to exist in such all-fullerene-based PHJ cells and the contribution to the total photocurrent from each process is strongly dependent on the thickness of fullerene donor. The optimized 5 nm ICBA/40 nm C{sub 70} PHJ cell gives clear external quantum efficiency responses for the long-wavelength photons corresponding to the dissociation of strongly bound Frenkel excitons, which is hardly observed in fullerene-based single layer reference devices. This approach using fullerene as a donor material provides further possibilities for developing high performance OPV cells.

  19. Electronic structure of the primary electron donor of Blastochloris viridis heterodimer mutants : high field EPR study.

    SciTech Connect

    Ponomarenko, N. S.; Poluektov, O. G.; Bylina, E. J.; Norris, J. R.; Chemical Sciences and Engineering Division; Univ. of Chicago

    2010-09-01

    High-field electron paramagnetic resonance (HF EPR) has been employed to investigate the primary electron donor electronic structure of Blastochloris viridis heterodimer mutant reaction centers (RCs). In these mutants the amino acid substitution His(M200)Leu or His(L173)Leu eliminates a ligand to the primary electron donor, resulting in the loss of a magnesium in one of the constituent bacteriochlorophylls (BChl). Thus, the native BChl/BChl homodimer primary donor is converted into a BChl/bacteriopheophytin (BPhe) heterodimer. The heterodimer primary donor radical in chemically oxidized RCs exhibits a broadened EPR line indicating a highly asymmetric distribution of the unpaired electron over both dimer constituents. Observed triplet state EPR signals confirm localization of the excitation on the BChl half of the heterodimer primary donor. Theoretical simulation of the triplet EPR lineshapes clearly shows that, in the case of mutants, triplet states are formed by an intersystem crossing mechanism in contrast to the radical pair mechanism in wild type RCs. Photooxidation of the mutant RCs results in formation of a BPhe anion radical within the heterodimer pair. The accumulation of an intradimer BPhe anion is caused by the substantial loss of interaction between constituents of the heterodimer primary donor along with an increase in the reduction potential of the heterodimer primary donor D/D{sup +} couple. This allows oxidation of the cytochrome even at cryogenic temperatures and reduction of each constituent of the heterodimer primary donor individually. Despite a low yield of primary donor radicals, the enhancement of the semiquinone-iron pair EPR signals in these mutants indicates the presence of kinetically viable electron donors.

  20. 2012 ELECTRON DONOR-ACCEPTOR INTERACTIONS GORDON RESEARCH CONFERENCE, AUGUST 5-10, 2012

    SciTech Connect

    McCusker, James

    2012-08-10

    The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.

  1. Discovery and Development of Organic Super-Electron-Donors

    PubMed Central

    2014-01-01

    Based on simple ideas of electron-rich alkenes, exemplified by tetrakis(dimethylamino)ethene, TDAE, and on additional driving force associated with aromatization, families of very powerful neutral organic super-electron-donors (SEDs) have been developed. In the ground state, they carry out metal-free reductions of a range of functional groups. Iodoarenes are reduced either to aryl radicals or, with stronger donors, to aryl anions. Reduction to aryl radicals allows the initiation of very efficient transition-metal-free coupling of haloarenes to arenes. The donors also reduce alkyl halides, arenesulfonamides, triflates, and triflamdes, Weinreb amides, and acyloin derivatives. Under photoactivation at 365 nm, they are even more powerful and reductively cleave aryl chlorides. They reduce unactivated benzenes to the corresponding radical anions and display original selectivities in preferentially reducing benzenes over malonates or cyanoacetates. Additionally, they reductively cleave ArC–X, ArX–C (X = N or O) and ArC–C bonds, provided that the two resulting fragments are somewhat stabilized. PMID:24605904

  2. Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture.

    PubMed Central

    DiStefano, T D; Gossett, J M; Zinder, S H

    1992-01-01

    Hydrogen served as an electron donor in the reductive dechlorination of tetrachloroethene to vinyl chloride and ethene over periods of 14 to 40 days in anaerobic enrichment cultures; however, sustained dechlorination for more extended periods required the addition of filtered supernatant from a methanol-fed culture. This result suggests a nutritional dependency of hydrogen-utilizing dechlorinators on the metabolic products of other organisms in the more diverse, methanol-fed system. Vancomycin, an inhibitor of cell wall synthesis in eubacteria, was found to inhibit acetogenesis when added at 100 mg/liter to both methanol-fed and hydrogen-fed cultures. The effect of vancomycin on dechlorination was more complex. Methanol could not sustain dechlorination when vancomycin inhibited acetogenesis, while hydrogen could. These results are consistent with a model in which hydrogen is the electron donor directly used for dechlorination by organisms resistant to vancomycin and with the hypothesis that the role of acetogens in methanol-fed cultures is to metabolize a portion of the methanol to hydrogen. Methanol and other substrates shown to support dechlorination in pure and mixed cultures may merely serve as precursors for the formation of an intermediate hydrogen pool. This hypothesis suggests that, for bioremediation of high levels of tetrachloroethene, electron donors that cause the production of a large hydrogen pool should be selected or methods that directly use H2 should be devised. PMID:1482184

  3. Electron paramagnetic resonance of a donor in aluminum nitride crystals.

    NASA Astrophysics Data System (ADS)

    Evans, Sean; Giles, Nancy; Halliburton, Larry; Slack, Glen; Schujman, Sandra; Schowalter, Leo

    2006-03-01

    Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) have been used to characterize a dominant donor in single crystals of aluminum nitride (AlN). A broad EPR signal, with g (parallel) = 2.002 and g (perpendicular) = 2.006, is observed in the as-grown crystals. Exposure to x-rays (i.e., ionizing radiation) increases the concentration of this center by a factor of five to ten (depending on sample), thus indicating that most of these centers are initially present in the crystals in a nonparamagnetic charge state. ENDOR identifies a strong hyperfine interaction with one aluminum neighbor along the c axis (described by A (parallel) = 111.30 MHz, A (perpendicular) = 54.19 MHz, and P = 0.289 MHz) and weaker equivalent hyperfine interactions with three additional aluminum neighbors in the basal plane. These aluminum interactions indicate that the responsible center is a deep donor at a nitrogen site. The observed paramagnetic defect is either a neutral oxygen substituting for nitrogen or a neutral nitrogen vacancy. This work was supported at West Virginia University by the National Science Foundation (Grant DMR-0508140). One of the authors (SME) received support from the WV EPSCoR STEM fellowship program.

  4. Evaluation of sustainable electron donors for nitrate removal in different water media.

    PubMed

    Fowdar, Harsha S; Hatt, Belinda E; Breen, Peter; Cook, Perran L M; Deletic, Ana

    2015-11-15

    An external electron donor is usually included in wastewater and groundwater treatment systems to enhance nitrate removal through denitrification. The choice of electron donor is critical for both satisfactory denitrification rates and sustainable long-term performance. Electron donors that are waste products are preferred to pure organic chemicals. Different electron donors have been used to treat different water types and little is known as to whether there are any electron donors that are suitable for multiple applications. Seven different carbon rich waste products, including liquid and solid electron donors, were studied in comparison to pure acetate. Batch-scale tests were used to measure their ability to reduce nitrate concentrations in a pure nutrient solution, light greywater, secondary-treated wastewater and tertiary-treated wastewater. The tested electron donors removed oxidised nitrogen (NOx) at varying rates, ranging from 48 mg N/L/d (acetate) to 0.3 mg N/L/d (hardwood). The concentrations of transient nitrite accumulation also varied across the electron donors. The different water types had an influence on NOx removal rates, the extent of which was dependent on the type of electron donor. Overall, the highest rates were recorded in light greywater, followed by the pure nutrient solution and the two partially treated wastewaters. Cotton wool and rice hulls were found to be promising electron donors with good NOx removal rates, lower leachable nutrients and had the least variation in performance across water types. PMID:26379204

  5. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria.

    PubMed

    Turrens, J F; Alexandre, A; Lehninger, A L

    1985-03-01

    Much evidence indicates that superoxide is generated from O2 in a cyanide-sensitive reaction involving a reduced component of complex III of the mitochondrial respiratory chain, particularly when antimycin A is present. Although it is generally believed that ubisemiquinone is the electron donor to O2, little experimental evidence supporting this view has been reported. Experiments with succinate as electron donor in the presence of antimycin A in intact rat heart mitochondria, which contain much superoxide dismutase but little catalase, showed that myxothiazol, which inhibits reduction of the Rieske iron-sulfur center, prevented formation of hydrogen peroxide, determined spectrophotometrically as the H2O2-peroxidase complex. Similarly, depletion of the mitochondria of their cytochrome c also inhibited formation of H2O2, which was restored by addition of cytochrome c. These observations indicate that factors preventing the formation of ubisemiquinone also prevent H2O2 formation. They also exclude ubiquinol, which remains reduced under these conditions, as the reductant of O2. Since cytochrome b also remains fully reduced when myxothiazol is added to succinate- and antimycin A-supplemented mitochondria, reduced cytochrome b may also be excluded as the reductant of O2. These observations, which are consistent with the Q-cycle reactions, by exclusion of other possibilities leave ubisemiquinone as the only reduced electron carrier in complex III capable of reducing O2 to O2-. PMID:2983613

  6. Hybrid optical-electrical detection of donor electron spins with bound excitons in silicon.

    PubMed

    Lo, C C; Urdampilleta, M; Ross, P; Gonzalez-Zalba, M F; Mansir, J; Lyon, S A; Thewalt, M L W; Morton, J J L

    2015-05-01

    Electrical detection of spins is an essential tool for understanding the dynamics of spins, with applications ranging from optoelectronics and spintronics, to quantum information processing. For electron spins bound to donors in silicon, bulk electrically detected magnetic resonance has relied on coupling to spin readout partners such as paramagnetic defects or conduction electrons, which fundamentally limits spin coherence times. Here we demonstrate electrical detection of donor electron spin resonance in an ensemble by transport through a silicon device, using optically driven donor-bound exciton transitions. We measure electron spin Rabi oscillations, and obtain long electron spin coherence times, limited only by the donor concentration. We also experimentally address critical issues such as non-resonant excitation, strain, and electric fields, laying the foundations for realizing a single-spin readout method with relaxed magnetic field and temperature requirements compared with spin-dependent tunnelling, enabling donor-based technologies such as quantum sensing. PMID:25799326

  7. Hybrid optical-electrical detection of donor electron spins with bound excitons in silicon

    NASA Astrophysics Data System (ADS)

    Lo, C. C.; Urdampilleta, M.; Ross, P.; Gonzalez-Zalba, M. F.; Mansir, J.; Lyon, S. A.; Thewalt, M. L. W.; Morton, J. J. L.

    2015-05-01

    Electrical detection of spins is an essential tool for understanding the dynamics of spins, with applications ranging from optoelectronics and spintronics, to quantum information processing. For electron spins bound to donors in silicon, bulk electrically detected magnetic resonance has relied on coupling to spin readout partners such as paramagnetic defects or conduction electrons, which fundamentally limits spin coherence times. Here we demonstrate electrical detection of donor electron spin resonance in an ensemble by transport through a silicon device, using optically driven donor-bound exciton transitions. We measure electron spin Rabi oscillations, and obtain long electron spin coherence times, limited only by the donor concentration. We also experimentally address critical issues such as non-resonant excitation, strain, and electric fields, laying the foundations for realizing a single-spin readout method with relaxed magnetic field and temperature requirements compared with spin-dependent tunnelling, enabling donor-based technologies such as quantum sensing.

  8. Remote Electronic Effects by Ether Protecting Groups Fine-Tune Glycosyl Donor Reactivity.

    PubMed

    Heuckendorff, Mads; Poulsen, Lulu Teressa; Jensen, Henrik H

    2016-06-17

    It was established that para-substituted benzyl ether protecting groups affect the reactivity of glycosyl donors of the thioglycoside type with the N-iodosuccinimide/triflic acid promoter system. Having electron donating p-methoxybenzyl ether (PMB) groups increased the reactivity of the donor in comparison to having electron withdrawing p-chloro (PClB) or p-cyanobenzyl ether (PCNB) protecting groups, which decreased the reactivity of the glycosyl donor relative to the parent benzyl ether (Bn) protected glycosyl donor. These findings were used to perform the first armed-disarmed coupling between two benzylated glucosyl donors by tuning their reactivity. In addition, the present work describes a highly efficient palladium catalyzed multiple cyanation and methoxylation of p-chlorobenzyl protected thioglycosides. The results of this paper regarding both the different electron withdrawing properties of various benzyl ethers and the efficient and multiple protecting group transformations are applicable in general organic chemistry and not restricted to carbohydrate chemistry. PMID:27224456

  9. Photoinduced electron tunneling between randomly dispersed donors and acceptors in frozen glasses and other rigid matrices.

    PubMed

    Wenger, Oliver S

    2013-07-14

    In fluid solution un-tethered donors and acceptors can diffuse freely, and consequently the donor-acceptor distance is usually not fixed on the timescale of an electron transfer event. When attempting to investigate the influence of driving-force changes or donor-acceptor distance variations on electron transfer rates this can be a problem. In rigid matrices diffusion is suppressed, and it becomes possible to investigate fixed-distance electron transfer. This method represents an attractive alternative to investigate rigid rod-like donor-bridge-acceptor molecules which have to be made in elaborate syntheses. This perspective focuses specifically on the distance dependence of photoinduced electron transfer which occurs via tunneling of charge carriers through rigid matrices over distances between 1 and 33 Å. Some key aspects of the theoretical models commonly used for analyzing kinetic data of electron tunneling through rigid matrices are recapitulated. New findings from this rather mature field of research are emphasized. PMID:23722299

  10. Coherent spin dynamics of donor bound electrons in GaAs

    NASA Astrophysics Data System (ADS)

    Phelps, Carey; O'Leary, Shannon; Prineas, John; Wang, Hailin

    2011-08-01

    We report experimental studies of coherent spin dynamics of donor-bound electrons in high-purity GaAs by using transient differential transmission. The donor-bound exciton transitions, which are not visible in the linear absorption spectrum, are spectrally resolved in the nonlinear differential transmission spectra. The spin beats in the transient differential transmission response, arising from electron spin precession in an external magnetic field, are investigated with the pump and probe coupling to various donor-bound exciton transitions. The spectral dependence of the spin beats provides important information on the polarization selection rule for the underlying donor-bound exciton transitions. The polarization selection rules deduced from these experiments indicate that contributions from higher-energy donor-bound exciton transitions can severely limit the effectiveness of optical spin control using mechanisms such as polarization-dependent optical Stark shifts.

  11. Carotenoid Excited State Kinetics in Bacterial RCs with the Primary Electron Donor Oxidized

    NASA Astrophysics Data System (ADS)

    Lin, Su; Katilius, Evaldas; Woodbury, Neal W.

    Carotenoid singlet excited state kinetics in wild type reaction centers from Rhodobacter sphaeroides was investigated using ultrafast laser spectroscopy under conditions where the primary electron donor is either neutral or oxidized.

  12. Monitoring electron donor metabolism under variable electron acceptor conditions using 13C-labeled lactate

    NASA Astrophysics Data System (ADS)

    Bill, M.; Conrad, M. E.; Yang, L.; Beller, H. R.; Brodie, E. L.

    2010-12-01

    Three sets of flow-through columns constructed with aquifer sediment from Hanford (WA) were used to study reduction of Cr(VI) to poorly soluble Cr(III) under denitrifying, sulfate-reducing/fermentative, and iron-reducing conditions with lactate as the electron donor. In order to understand the relationship between electron donors and biomarkers, and to determine the differences in carbon isotope fractionation resulting from different microbial metabolic processes, we monitored the variation in carbon isotopes in dissolved inorganic carbon (DIC), in total organic carbon (TOC), and in lactate, acetate and propionate. The greatest enrichment in 13C in columns was observed under denitrifying conditions. The δ13C of DIC increased by ~1750 to ~2000‰ fifteen days after supplementation of natural abundance lactate with a 13C-labeled lactate tracer (for an influent δ13C of ~2250‰ for the lactate) indicating almost complete oxidation of the electron donor. The denitrifying columns were among the most active columns and had the highest cell counts and the denitrification rate was highly correlated with Cr(VI) reduction rate. δ13C values of DIC ranged from ~540 to ~1170‰ for iron-reducing conditions. The lower enrichment in iron columns was related to the lower biological activity observed with lower yields of RNA and cell numbers in the column effluents. The carbon isotope shift in the sulfate-reducing ~198 to ~1960‰ for sulfate-reducing conditions reflecting the lower levels of the lactate in these columns. Additionally, in two of the sulfate columns, almost complete fermentation of the lactate occurred, producing acetate and propionate with the labeled carbon signature, but relatively smaller amounts of inorganic carbon. For all electron-accepting conditions, TOC yielded similar δ13C values as lactate stock solutions. Differences in C use efficiency, metabolic rate or metabolic pathway contributed to the differing TOC δ13C to DIC δ13C ratios between treatments

  13. Electronic structure of oxygen thermal donors in silicon

    NASA Astrophysics Data System (ADS)

    Robertson, J.; Ourmazd, A.

    1985-03-01

    The electrical activity of oxygen-related thermal donors in the model of Ourmazd, Bourret, and Schröter is shown to derive from the shallow, doubly occupied pπ state of a divalent silicon at the center of a cluster of five or more oxygens.

  14. Temperature and donor concentration dependence of the conduction electron Lande g-factor in silicon

    NASA Astrophysics Data System (ADS)

    Konakov, Anton A.; Ezhevskii, Alexander A.; Soukhorukov, Andrey V.; Guseinov, Davud V.; Popkov, Sergey A.; Burdov, Vladimir A.

    2013-12-01

    Temperature and donor concentration dependence of the conduction electron g-factor in silicon has been investigated both experimentally and theoretically. We performed electron spin resonance experiments on Si samples doped with different densities of phosphorus and lithium. Theoretical consideration is based on the renormalization of the electron energy in a weak magnetic field by the interaction with possible perturbing agents, such as phonons and impurity centers. In the second-order perturbation theory interaction of the electron subsystem with the lattice vibrations as well as ionized donors results in decreasing the conduction electron g-factor, which becomes almost linear function both of temperature and impurity concentration.

  15. Tuning the Electron Acceptor in Phthalocyanine-Based Electron Donor-Acceptor Conjugates.

    PubMed

    Sekita, Michael; Jiménez, Ángel J; Marcos, M Luisa; Caballero, Esmeralda; Rodríguez-Morgade, M Salomé; Guldi, Dirk M; Torres, Tomás

    2015-12-21

    Zinc phthalocyanines (ZnPc) have been attached to the peri-position of a perylenemonoimide (PMI) and a perylenemonoanhydride (PMA), affording electron donor-acceptor conjugates 1 and 2, respectively. In addition, a perylene-monoimide-monoanhydride (PMIMA) has been connected to a ZnPc through its imido position to yield the ZnPc-PMIMA conjugate 10. The three conjugates have been studied for photoinduced electron transfer. For ZnPc-PMIMA 10, electron transfer occurs upon both ZnPc and PMIMA excitation, giving rise to a long-lived (340 ps) charge-separated state. For ZnPc-PMI 1 and ZnPc-PMA 2, stabilization of the radical ion pair states by using polar media is necessary. In THF, photoexcitation of either ZnPc or PMI/PMA produces charge-separated states with lifetimes of 375 and 163 ps, respectively. PMID:26593778

  16. The electron transfer complex between nitrous oxide reductase and its electron donors.

    PubMed

    Dell'acqua, Simone; Moura, Isabel; Moura, José J G; Pauleta, Sofia R

    2011-12-01

    Identifying redox partners and the interaction surfaces is crucial for fully understanding electron flow in a respiratory chain. In this study, we focused on the interaction of nitrous oxide reductase (N(2)OR), which catalyzes the final step in bacterial denitrification, with its physiological electron donor, either a c-type cytochrome or a type 1 copper protein. The comparison between the interaction of N(2)OR from three different microorganisms, Pseudomonas nautica, Paracoccus denitrificans, and Achromobacter cycloclastes, with their physiological electron donors was performed through the analysis of the primary sequence alignment, electrostatic surface, and molecular docking simulations, using the bimolecular complex generation with global evaluation and ranking algorithm. The docking results were analyzed taking into account the experimental data, since the interaction is suggested to have either a hydrophobic nature, in the case of P. nautica N(2)OR, or an electrostatic nature, in the case of P. denitrificans N(2)OR and A. cycloclastes N(2)OR. A set of well-conserved residues on the N(2)OR surface were identified as being part of the electron transfer pathway from the redox partner to N(2)OR (Ala495, Asp519, Val524, His566 and Leu568 numbered according to the P. nautica N(2)OR sequence). Moreover, we built a model for Wolinella succinogenes N(2)OR, an enzyme that has an additional c-type-heme-containing domain. The structures of the N(2)OR domain and the c-type-heme-containing domain were modeled and the full-length structure was obtained by molecular docking simulation of these two domains. The orientation of the c-type-heme-containing domain relative to the N(2)OR domain is similar to that found in the other electron transfer complexes. PMID:21739254

  17. The impacts of electronic state hybridization on the binding energy of single phosphorus donor electrons in extremely downscaled silicon nanostructures

    SciTech Connect

    The Anh, Le Manoharan, Muruganathan; Moraru, Daniel; Tabe, Michiharu; Mizuta, Hiroshi

    2014-08-14

    We present the density functional theory calculations of the binding energy of the Phosphorus (P) donor electrons in extremely downscaled single P-doped Silicon (Si) nanorods. In past studies, the binding energy of donor electrons was evaluated for the Si nanostructures as the difference between the ionization energy for the single P-doped Si nanostructures and the electron affinity for the un-doped Si nanostructures. This definition does not take into account the strong interaction of donor electron states and Si electron states explicitly at the conductive states and results in a monotonous increase in the binding energy by reducing the nanostructure's dimensions. In this paper, we introduce a new approach to evaluate the binding energy of donor electrons by combining the projected density of states (PDOS) analysis and three-dimensional analysis of associated electron wavefunctions. This enables us to clarify a gradual change of the spatial distribution of the 3D electron wavefunctions (3DWFs) from the donor electron ground state, which is fully localized around the P donor site to the first conductive state, which spreads over the outer Si nanorods contributing to current conduction. We found that the energy of the first conductive state is capped near the top of the atomistic effective potential at the donor site with respect to the surrounding Si atoms in nanorods smaller than about 27 a{sub 0}. This results in the binding energy of approximately 1.5 eV, which is virtually independent on the nanorod's dimensions. This fact signifies a good tolerance of the binding energy, which governs the operating temperature of the single dopant-based transistors in practice. We also conducted the computationally heavy transmission calculations of the single P-doped Si nanorods connected to the source and drain electrodes. The calculated transmission spectra are discussed in comparison with the atomistic effective potential distributions and the PDOS-3DWFs method.

  18. The impacts of electronic state hybridization on the binding energy of single phosphorus donor electrons in extremely downscaled silicon nanostructures

    NASA Astrophysics Data System (ADS)

    The Anh, Le; Moraru, Daniel; Manoharan, Muruganathan; Tabe, Michiharu; Mizuta, Hiroshi

    2014-08-01

    We present the density functional theory calculations of the binding energy of the Phosphorus (P) donor electrons in extremely downscaled single P-doped Silicon (Si) nanorods. In past studies, the binding energy of donor electrons was evaluated for the Si nanostructures as the difference between the ionization energy for the single P-doped Si nanostructures and the electron affinity for the un-doped Si nanostructures. This definition does not take into account the strong interaction of donor electron states and Si electron states explicitly at the conductive states and results in a monotonous increase in the binding energy by reducing the nanostructure's dimensions. In this paper, we introduce a new approach to evaluate the binding energy of donor electrons by combining the projected density of states (PDOS) analysis and three-dimensional analysis of associated electron wavefunctions. This enables us to clarify a gradual change of the spatial distribution of the 3D electron wavefunctions (3DWFs) from the donor electron ground state, which is fully localized around the P donor site to the first conductive state, which spreads over the outer Si nanorods contributing to current conduction. We found that the energy of the first conductive state is capped near the top of the atomistic effective potential at the donor site with respect to the surrounding Si atoms in nanorods smaller than about 27 a0. This results in the binding energy of approximately 1.5 eV, which is virtually independent on the nanorod's dimensions. This fact signifies a good tolerance of the binding energy, which governs the operating temperature of the single dopant-based transistors in practice. We also conducted the computationally heavy transmission calculations of the single P-doped Si nanorods connected to the source and drain electrodes. The calculated transmission spectra are discussed in comparison with the atomistic effective potential distributions and the PDOS-3DWFs method.

  19. Femtosecond electron injection from optically populated donor states into the conduction band of semiconductors

    NASA Astrophysics Data System (ADS)

    Ernstorfer, Ralph; Toeben, Lars; Gundlach, Lars; Felber, Silke; Galoppini, Elena; Wei, Qian; Eichberger, Rainer; Storck, Winfried; Zimmermann, Carsten; Willig, Frank

    2003-12-01

    Unoccupied donor states can be populated via light absorption at the surface of semiconductor in the range of the conduction band levels. Hot electrons are injected from such donor states into the conduction band of a semiconductor on a femtosecond time scale. Such donor states can have rather different physical properties, e.g. unoccupied surface bands formed via reconstruction of the clean surface of a semiconductor in contact with ultra high vacuum or chromophores in molecules that are anchored at the surface of the semiconductor. The energy levels of the donor states with respect to the bands in the semiconductor can be determined with UPS and fs-2PPE. Experimental data on the energetics and dynamics of electron injection are presented for the two different cases of donor states mentioned above. The influence of vibrational wavepackets on electron injection is discussed for the case of a molecular donor state. Energy loss of the hot electrons injected into the semiconductor is measured with energy and time resolution employing femtosecond two-photon-photoemission.

  20. Phonon induced two-electron relaxation in two donor qubits in silicon

    NASA Astrophysics Data System (ADS)

    Hsueh, Yuling; Tankasala, Archana; Wang, Yu; Klimeck, Gerhard; Simmons, Michelle; Rahman, Rajib

    An atomistic method of calculating two-electron spin-lattice relaxation times (T1) is presented for two donor qubits in silicon. The singlet-triplet two-electron states are calculated from full-configuration interaction (FCI) method with one-electron basis states obtained from the tight-binding Hamiltonian including spin-orbit interaction. The FCI solution enables the investigation of various regimes of donor separations, including very closely separated donor pairs in which rearrangement of excited bonding and anti-bonding states change the wavefunction symmetries. Hyperfine mixing from the nuclear spins is included perturbatively into the two-electron states. To calculate the T1 times, the electron-phonon Hamiltonian is evaluated from the strain-dependent tight-binding Hamiltonian. The results show how the T1 times in donor qubits vary with magnetic field and donor separation for each of the three triplets. Moreover, the variation of T1 with the electric field controlled exchange coupling is also investigated.

  1. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon

    NASA Astrophysics Data System (ADS)

    Tracy, Lisa; Luhman, Dwight; Carr, Stephen; Borchardt, John; Bishop, Nathaniel; Ten Eyck, Gregory; Pluym, Tammy; Wendt, Joel; Witzel, Wayne; Blume-Kohout, Robin; Nielsen, Erik; Lilly, Michael; Carroll, Malcolm

    In this talk we will discuss electron spin resonance experiments in single donor silicon qubit devices fabricated at Sandia National Labs. A self-aligned device structure consisting of a polysilicon gate SET located adjacent to the donor is used for donor electron spin readout. Using a cryogenic HEMT amplifier next to the silicon device, we demonstrate spin readout at 100 kHz bandwidth and Rabi oscillations with 0.96 visibility. Electron spin resonance measurements on these devices show a linewidth of 30 kHz and coherence times T2* = 10 us and T2 = 0.3 ms. We also discuss estimates of the fidelity of our donor electron spin qubit measurements using gate set tomography. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. ESR Experiments on a Single Donor Electron in Isotopically Enriched Silicon.

  2. Low aqueous solubility electron donors for the reduction of nitroaromatics in anaerobic sediments

    NASA Astrophysics Data System (ADS)

    Gerlach, Robin; Steiof, Martin; Zhang, Chunlong; Hughes, Joseph B.

    1999-02-01

    Studies are presented investigating the ability to enhance aryl nitro-reduction processes in sediments through electron donor addition. In particular, high molecular weight (starch and guar gum) and/or low aqueous solubility electron donors (oleic acid) were studied, since they should be less prone to diffusive loss to the water column after addition to contaminated areas. For comparison, complimentary studies were conducted with water-soluble electron donors (acetate and dextrose). The ability to enhance activity was measured by methane production and reduction of either nitrobenzene or 1,3,5-trinitrobenzene to aniline or dinitroaniline. The results demonstrate that all electron donors resulted in increased methane production after a lag phase. The highest level of methane production and the shortest lag phase in uncontaminated sediment microcosms was observed in acetate-fed systems. Sorption studies of all electron donors showed that starch was partitioning the least into the water phase. In microcosms containing nitrobenzene, trinitrobenzene and acetate, methane production did not occur and nitro-reduction was not observed. Conversely, the addition of dextrose or starch yielded methane production and aryl nitro-reduction with each contaminant tested. Neither nitrobenzene nor trinitrobenzene was significantly reduced in HgCl 2-killed controls. From these studies, it appears that starch may be well suited for applications of in-place, anaerobic sediment bioremediation.

  3. On the cascade capture of electrons at donors in GaAs quantum wells

    SciTech Connect

    Aleshkin, V. Ya.

    2015-09-15

    The impact parameter for the cascade capture of electrons at a charged donor in a GaAs quantum well is calculated. A simple approximate analytical expression for the impact parameter is suggested. The temperature dependence of the impact parameter for the case of electron scattering by the piezoelectric potential of acoustic phonons is determined.

  4. Carbon Monoxide as an Electron Donor for the Biological Reduction of Sulphate

    PubMed Central

    Parshina, Sofiya N.; Sipma, Jan; Henstra, Anne Meint; Stams, Alfons J. M.

    2010-01-01

    Several strains of Gram-negative and Gram-positive sulphate-reducing bacteria (SRB) are able to use carbon monoxide (CO) as a carbon source and electron donor for biological sulphate reduction. These strains exhibit variable resistance to CO toxicity. The most resistant SRB can grow and use CO as an electron donor at concentrations up to 100%, whereas others are already severely inhibited at CO concentrations as low as 1-2%. Here, the utilization, inhibition characteristics, and enzymology of CO metabolism as well as the current state of genomics of CO-oxidizing SRB are reviewed. Carboxydotrophic sulphate-reducing bacteria can be applied for biological sulphate reduction with synthesis gas (a mixture of hydrogen and carbon monoxide) as an electron donor. PMID:20628586

  5. Modulation of electronic and self-assembly properties of a donor-acceptor-donor-based molecular materials via atomistic approach.

    PubMed

    Dhar, Joydeep; Swathi, K; Karothu, Durga Prasad; Narayan, K S; Patil, Satish

    2015-01-14

    The performance of molecular materials in optoelectronic devices critically depends upon their electronic properties and solid-state structure. In this report, we have synthesized sulfur and selenium based (T4BT and T4BSe) donor-acceptor-donor (D-A-D) organic derivatives in order to understand the structure-property correlation in organic semiconductors by selectively tuning the chalcogen atom. The photophysical properties exhibit a significant alteration upon varying a single atom in the molecular structure. A joint theoretical and experimental investigation suggests that replacing sulfur with selenium significantly reduces the band gap and molar absorption coefficient because of lower electronegativity and ionization potential of selenium. Single-crystal X-ray diffraction analysis showed differences in their solid-state packing and intermolecular interactions. Subsequently, difference in the solid-state packing results variation in self-assembly. Micorstructural changes within these materials are correlated to their electrical resistance variation, investigated by conducting probe atomic force microscopy (CP-AFM) measurements. These results provide useful guidelines to understand the fundamental properties of D-A-D materials prepared by atomistic modulation. PMID:25532139

  6. Pushing the Limits of Neutral Organic Electron Donors: A Tetra(iminophosphorano)-Substituted Bispyridinylidene

    PubMed Central

    Hanson, Samuel S; Doni, Eswararao; Traboulsee, Kyle T; Coulthard, Graeme; Murphy, John A; Dyker, C Adam

    2015-01-01

    A new ground-state organic electron donor has been prepared that features four strongly π-donating iminophosphorano substituents on a bispyridinylidene skeleton. Cyclic voltammetry reveals a record redox potential of −1.70 V vs. saturated calomel electrode (SCE) for the couple involving the neutral organic donor and its dication. This highly reducing organic compound can be isolated (44 %) or more conveniently generated in situ by a deprotonation reaction involving its readily prepared pyridinium ion precursor. This donor is able to reduce a variety of aryl halides, and, owing to its redox potential, was found to be the first organic donor to be effective in the thermally induced reductive S–N bond cleavage of N,N-dialkylsulfonamides, and reductive hydrodecyanation of malonitriles. PMID:26213345

  7. Stereochemical Properties of Multidentate Nitrogen Donor Ligands and Their Copper Complexes by Electronic CD and DFT.

    PubMed

    Poopari, Mohammad Reza; Dezhahang, Zahra; Xu, Yunjie

    2016-07-01

    UV-Vis and electronic circular dichroism (ECD) spectroscopy, complemented with Density Functional Theory (DFT) calculations, were used to elucidate the structural diversities of three multidentate nitrogen donor ligands and two associated copper complexes in solution directly. The three chiral salen ligands all consist of trans-cyclohexane-1,2-diamine as a chiral scaffold and also of pyridine rings as chromophores, differing only in the linking groups between the two functional groups mentioned above. Very different ECD intensities and somewhat different ECD patterns were observed for these ligands and satisfactorily interpreted theoretically. For the geometry optimization and spectral simulation of the open-shell metal complexes, the LANL2DZ basis set with effective core potential for the Cu and Cl atoms and pure cc-pVTZ for the rest of the atoms was utilized. The performance of the same calculations with the polarization functions (f,g) from the cc-pVTZ basis added to the LANL2DZ basis was compared. While the three ligands exhibit different conformational flexibility, the associated copper complexes show great rigidity imposed by the metal-ligand coordination, taking on a single structure in each case. In addition, dispersion interactions were shown to change the conformational stability ordering of the ligands noticeably and to exert considerable influence on the simulated UV-Vis and ECD spectra. Chirality 28:545-555, 2016. © 2016 Wiley Periodicals, Inc. PMID:27349956

  8. Cage electron-hydroxyl complex state as electron donor in mayenite

    NASA Astrophysics Data System (ADS)

    Hiraishi, M.; Kojima, K. M.; Miyazaki, M.; Yamauchi, I.; Okabe, H.; Koda, A.; Kadono, R.; Matsuishi, S.; Hosono, H.

    2016-03-01

    It is inferred from the chemical shift of muon spin rotation (μ SR ) spectra that muons implanted in pristine (fully oxidized) mayenite, [Ca12Al14O32] 2 +[□5O2 -] (C12A7, with □ referring to the vacant cage), are bound to O2 - at the cage center to form OMu- (where Mu represents muonium, a muonic analog of the H atom). However, an isolated negatively charged state (Mu-, an analog of H-) becomes dominant when the compound approaches the state of electride [Ca12Al14O32] 2 +[□42 e-] as a result of the reduction process. Moreover, the OMu- state in the pristine specimen exhibits depolarization of paramagnetic origin at low temperatures (below ˜30 K), indicating that OMu- accompanies a loosely bound electron in the cage that can be thermally activated. This suggests that interstitial muons (and hence H) forming a "cage electron-hydroxyl" complex can serve as electron donors in C12A7.

  9. Single donor electronics and quantum functionalities with advanced CMOS technology.

    PubMed

    Jehl, Xavier; Niquet, Yann-Michel; Sanquer, Marc

    2016-03-16

    Recent progresses in quantum dots technology allow fundamental studies of single donors in various semiconductor nanostructures. For the prospect of applications figures of merits such as scalability, tunability, and operation at relatively large temperature are of prime importance. Beyond the case of actual dopant atoms in a host crystal, similar arguments hold for small enough quantum dots which behave as artificial atoms, for instance for single spin control and manipulation. In this context, this experimental review focuses on the silicon-on-insulator devices produced within microelectronics facilities with only very minor modifications to the current industrial CMOS process and tools. This is required for scalability and enabled by shallow trench or mesa isolation. It also paves the way for real integration with conventional circuits, as illustrated by a nanoscale device coupled to a CMOS circuit producing a radio-frequency drive on-chip. At the device level we emphasize the central role of electrostatics in etched silicon nanowire transistors, which allows to understand the characteristics in the full range from zero to room temperature. PMID:26871255

  10. Single donor electronics and quantum functionalities with advanced CMOS technology

    NASA Astrophysics Data System (ADS)

    Jehl, Xavier; Niquet, Yann-Michel; Sanquer, Marc

    2016-03-01

    Recent progresses in quantum dots technology allow fundamental studies of single donors in various semiconductor nanostructures. For the prospect of applications figures of merits such as scalability, tunability, and operation at relatively large temperature are of prime importance. Beyond the case of actual dopant atoms in a host crystal, similar arguments hold for small enough quantum dots which behave as artificial atoms, for instance for single spin control and manipulation. In this context, this experimental review focuses on the silicon-on-insulator devices produced within microelectronics facilities with only very minor modifications to the current industrial CMOS process and tools. This is required for scalability and enabled by shallow trench or mesa isolation. It also paves the way for real integration with conventional circuits, as illustrated by a nanoscale device coupled to a CMOS circuit producing a radio-frequency drive on-chip. At the device level we emphasize the central role of electrostatics in etched silicon nanowire transistors, which allows to understand the characteristics in the full range from zero to room temperature.

  11. Photocurrent generation through electron-exciton interaction at the organic semiconductor donor/acceptor interface.

    PubMed

    Chen, Lijia; Zhang, Qiaoming; Lei, Yanlian; Zhu, Furong; Wu, Bo; Zhang, Ting; Niu, Guoxi; Xiong, Zuhong; Song, Qunliang

    2013-10-21

    In this work, we report our effort to understand the photocurrent generation that is contributed via electron-exciton interaction at the donor/acceptor interface in organic solar cells (OSCs). Donor/acceptor bi-layer heterojunction OSCs, of the indium tin oxide/copper phthalocyanine (CuPc)/fullerene (C60)/molybdenum oxide/Al type, were employed to study the mechanism of photocurrent generation due to the electron-exciton interaction, where CuPc and C60 are the donor and the acceptor, respectively. It is shown that the electron-exciton interaction and the exciton dissociation processes co-exist at the CuPc/C60 interface in OSCs. Compared to conventional donor/acceptor bi-layer OSCs, the cells with the above configuration enable holes to be extracted at the C60 side while electrons can be collected at the CuPc side, resulting in a photocurrent in the reverse direction. The photocurrent thus observed is contributed to primarily by the charge carriers that are generated by the electron-exciton interaction at the CuPc/C60 interface, while charges derived from the exciton dissociation process also exist at the same interface. The mechanism of photocurrent generation due to electron-exciton interaction in the OSCs is further investigated, and it is manifested by the transient photovoltage characteristics and the external quantum efficiency measurements. PMID:24002235

  12. Enhanced microscopic nonlinear optical properties of novel Y-type chromophores with dual electron donor groups

    NASA Astrophysics Data System (ADS)

    Tang, Xiang; Pan, Lin; Jia, Kun; Tang, Xianzhong

    2016-03-01

    In this Letter, novel Y-type chromophores with dual electron donor groups, containing either styryl or azobenzene based π-conjugated bridge structures, were synthesized and their chemical structures, molecular configuration, microscopic optical properties as well as thermal properties were systematically characterized. The experimental results indicated that eight times increasing of second-order molecular hyperpolarizability as well as 50-100 nm blue shift of maximum absorption band for azobenzene based chromophore were observed by introducing Y-type dual electron donor groups, which was derived from the highly efficient 'total charge transfer' in this kind of chromophore as confirmed by the density functional theory calculation.

  13. Electron spin coherence of phosphorus donors in silicon: Effect of environmental nuclei

    SciTech Connect

    Abe, Eisuke; Tyryshkin, Alexei M.; Lyon, Stephen A.; Tojo, Shinichi; Fujimoto, Akira; Itoh, Kohei M.; Morton, John J. L.; Witzel, Wayne M.; Ager, Joel W.; Haller, Eugene E.; Isoya, Junichi; Thewalt, Mike L. W.

    2010-09-15

    We report electron paramagnetic resonance (EPR) experiments of phosphorus donors in isotopically controlled silicon single crystals. By varying the concentration of the {sup 29}Si isotope, f, from 0.075% to 99.2%, we systematically study the effect of the environmental nuclear spins on the donor-electron spin. We find excellent agreement between experiment and theory for decoherence times due to nuclear-induced spectral diffusion, clarifying that the nuclear-induced decoherence is dominant in the range of f studied. We also observe that the EPR linewidth shows a transition from the square-root dependence to the linear dependence on f, in agreement with theoretical predictions.

  14. Spin relaxation via exchange with donor impurity-bound electrons

    NASA Astrophysics Data System (ADS)

    Appelbaum, Ian

    In the Bir-Aronov-Pikus depolarization process affecting conduction electrons in p-type cubic semiconductors, spin relaxation is driven by exchange with short-lived valence band hole states. We have identified an analogous spin relaxation mechanism in nominally undoped silicon at low temperatures, when many electrons are bound to dilute dopant ion potentials. Inelastic scattering with externally injected conduction electrons accelerated by electric fields can excite transitions into highly spin-orbit-mixed bound excited states, driving strong spin relaxation of the conduction electrons via exchange interaction. We reveal the consequences of this spin depolarization mechanism both below and above the impact ionization threshold, where conventional charge and spin transport are restored. Based upon: Lan Qing, Jing Li, Ian Appelbaum, and Hanan Dery, Phys Rev. B 91, 241405(R) (2015). We acknowledge support from NSF, DTRA, and ONR.

  15. Autotrophic antimonate bio-reduction using hydrogen as the electron donor.

    PubMed

    Lai, Chun-Yu; Wen, Li-Lian; Zhang, Yin; Luo, Shan-Shan; Wang, Qing-Ying; Luo, Yi-Hao; Chen, Ran; Yang, Xiaoe; Rittmann, Bruce E; Zhao, He-Ping

    2016-01-01

    Antimony (Sb), a toxic metalloid, is soluble as antimonate (Sb(V)). While bio-reduction of Sb(V) is an effective Sb-removal approach, its bio-reduction has been coupled to oxidation of only organic electron donors. In this study, we demonstrate, for the first time, the feasibility of autotrophic microbial Sb(V) reduction using hydrogen gas (H2) as the electron donor without extra organic carbon source. SEM and EDS analysis confirmed the production of the mineral precipitate Sb2O3. When H2 was utilized as the electron donor, the consortium was able to fully reduce 650 μM of Sb(V) to Sb(III) in 10 days, a rate comparable to the culture using lactate as the electron donor. The H2-fed culture directed a much larger fraction of it donor electrons to Sb(V) reduction than did the lactate-fed culture. While 98% of the electrons from H2 were used to reduce Sb(V) by the H2-fed culture, only 12% of the electrons from lactate was used to reduce Sb(V) by the lactate-fed culture. The rest of the electrons from lactate went to acetate and propionate through fermentation, to methane through methanogenesis, and to biomass synthesis. High-throughput sequencing confirmed that the microbial community for the lactate-fed culture was much more diverse than that for the H2-fed culture, which was dominated by a short rod-shaped phylotype of Rhizobium (α-Protobacteria) that may have been active in Sb(V) reduction. PMID:26519630

  16. Electronic and Chemical Properties of Donor, Acceptor Centers in Graphene.

    PubMed

    Telychko, Mykola; Mutombo, Pingo; Merino, Pablo; Hapala, Prokop; Ondráček, Martin; Bocquet, François C; Sforzini, Jessica; Stetsovych, Oleksandr; Vondráček, Martin; Jelínek, Pavel; Švec, Martin

    2015-09-22

    Chemical doping is one of the most suitable ways of tuning the electronic properties of graphene and a promising candidate for a band gap opening. In this work we report a reliable and tunable method for preparation of high-quality boron and nitrogen co-doped graphene on silicon carbide substrate. We combine experimental (dAFM, STM, XPS, NEXAFS) and theoretical (total energy DFT and simulated STM) studies to analyze the structural, chemical, and electronic properties of the single-atom substitutional dopants in graphene. We show that chemical identification of boron and nitrogen substitutional defects can be achieved in the STM channel due to the quantum interference effect, arising due to the specific electronic structure of nitrogen dopant sites. Chemical reactivity of single boron and nitrogen dopants is analyzed using force-distance spectroscopy by means of dAFM. PMID:26256407

  17. Spectral probes of the holographic Fermi ground state: Dialing between the electron star and AdS Dirac hair

    SciTech Connect

    Cubrovic, Mihailo; Liu Yan; Schalm, Koenraad; Sun Yawen; Zaanen, Jan

    2011-10-15

    We argue that the electron star and the anti-de Sitter (AdS) Dirac hair solution are two limits of the free charged Fermi gas in AdS. Spectral functions of holographic duals to probe fermions in the background of electron stars have a free parameter that quantifies the number of constituent fermions that make up the charge and energy density characterizing the electron star solution. The strict electron star limit takes this number to be infinite. The Dirac hair solution is the limit where this number is unity. This is evident in the behavior of the distribution of holographically dual Fermi surfaces. As we decrease the number of constituents in a fixed electron star background the number of Fermi surfaces also decreases. An improved holographic Fermi ground state should be a configuration that shares the qualitative properties of both limits.

  18. Computational design of co-polymer electron donors for bulk heterojunction photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Shin, Yongwoo; Liu, Jiakai; Lin, Xi

    2014-03-01

    In this work, our recently developed adapted Su-Schrieffer-Heeger Hamiltonian is used to systematically explore the optoelectronic properties of thousands of pi-conjugated structures. New physical insights on the structure-property relationship are extracted and transformed into practical guiding rules in the donor materials design. For the power-efficient copolymer structures, we find that the energy variation of frontier orbitals can be controlled either independently or collectively, depending on their specific donor or acceptor structures. In particular, we find that having five-membered conjugated carbon rings in the acceptor units is essential to break the electron-hole charge conjugation symmetry, so that the LUMO levels of the copolymer can be reduced dramatically while holding the HOMO energy levels in the donor units constant. On the other hand, by incorporating heteroatoms into the donors units, we can vary the HOMO levels of the copolymers independently. Effects of introducing various side groups (-R, -O, -CO, -COO, and thiophene) on the primitive donor and acceptor structures are investigated and their results are discussed in details. Finally, unexpected localized states are found, for the first time, in our calculations for a few special co-polymer structures. These localized states, with electrons localized on one end of the copolymer chain and holes on the other end, contain large dipole moments and therefore may be treated as a new design dimension when these copolymers are placed in polar and non-polar solvent environments.

  19. Influence of electron donor on the minimum sulfate concentration required for sulfate reduction in a petroleum hydrocarbon-contaminated aquifer

    USGS Publications Warehouse

    Vroblesky, D.A.; Bradley, P.M.; Chapelle, F.H.

    1996-01-01

    Fluctuations in the availability of electron donor (petroleum hydrocarbons) affected the competition between sulfate-reducing bacteria (SRB) and methanogenic bacteria (MB) for control of electron flow in a petroleum hydrocarbon-contaminated aquifer. The data suggest that abundant electron donor availability allowed MB to sequester a portion of the electron flow even when sulfate was present in sufficient concentrations to support sulfate reduction. For example, in an area of abundant electron-donor availability, SRB appeared to be unable to sequester the electron flow from MB in the presence of 1.4 mg/L sulfate. The data also suggest that when electron-donor availability was limited, SRB outcompeted MB for available substrate at a lower concentration of sulfate than when electron donor was plentiful. For example, in an area of limited electron-donor availability, SRB appeared to maintain dominance of electron flow at sulfate concentrations less than 1 mg/L. The presence of abundant electron donor and a limited amount of sulfate reduced competition for available substrate, allowing both SRB and MB to metabolize available substrates concurrently.

  20. Expanding the Diet for DIET: Electron Donors Supporting Direct Interspecies Electron Transfer (DIET) in Defined Co-Cultures

    PubMed Central

    Wang, Li-Ying; Nevin, Kelly P.; Woodard, Trevor L.; Mu, Bo-Zhong; Lovley, Derek R.

    2016-01-01

    Direct interspecies electron transfer (DIET) has been recognized as an alternative to interspecies H2 transfer as a mechanism for syntrophic growth, but previous studies on DIET with defined co-cultures have only documented DIET with ethanol as the electron donor in the absence of conductive materials. Co-cultures of Geobacter metallireducens and Geobacter sulfurreducens metabolized propanol, butanol, propionate, and butyrate with the reduction of fumarate to succinate. G. metallireducens utilized each of these substrates whereas only electrons available from DIET supported G. sulfurreducens respiration. A co-culture of G. metallireducens and a strain of G. sulfurreducens that could not metabolize acetate oxidized acetate with fumarate as the electron acceptor, demonstrating that acetate can also be syntrophically metabolized via DIET. A co-culture of G. metallireducens and Methanosaeta harundinacea previously shown to syntrophically convert ethanol to methane via DIET metabolized propanol or butanol as the sole electron donor, but not propionate or butyrate. The stoichiometric accumulation of propionate or butyrate in the propanol- or butanol-fed cultures demonstrated that M. harundinaceae could conserve energy to support growth solely from electrons derived from DIET. Co-cultures of G. metallireducens and Methanosarcina barkeri could also incompletely metabolize propanol and butanol and did not metabolize propionate or butyrate as sole electron donors. These results expand the range of substrates that are known to be syntrophically metabolized through DIET, but suggest that claims of propionate and butyrate metabolism via DIET in mixed microbial communities warrant further validation. PMID:26973614

  1. Photoinduced electron transfer across fixed distances in chlorophyll donor-acceptor molecules

    SciTech Connect

    Wasielewski, M.R.; Johnson, D.G.; Svec, W.A.

    1987-06-01

    The primary events of photosynthesis are a series of rapid, unidirectional electron transfer events between donors and acceptors that are positioned in the reaction center protein at precise spatial orientations and distances relative to one another. Recent work suggests that electron transfer rates depend on distance and free energy of reaction in porphyrin-quinone models in which the distance and orientation of the donor relative to the acceptor is highly restricted. Spacer molecules were developed which were used to link chlorophyll donors with either chlorophyll or quinone acceptors to produce models in which the donor-acceptor distance is well-defined. Recent theoretical studies and photochemical hole-burning experiments have suggested that the actual primary event of photosynthesis is the production of an intramolecular charge transfer state involving the two bacteriochlorophyll molecules of the special pair dimer. This possibility was explored with symmetric, fixed distance chlorophyll dimer. The chlorophyll macrocycles share a common vinyl group at the 2-position. This linkage serves to increase the degree of electronic coupling between the macrocycles. This dimer exhibits a remarkable decrease in fluorescence quantum yield as the dielectric constant of the medium in which it is dissolved increases. This decrease is accompanied by a proportional decrease in the lowest excited singlet state lifetime as measured by picosecond fluorescence and absorption. 11 refs., 2 figs.

  2. Biocatalytic photosynthesis with water as an electron donor.

    PubMed

    Ryu, Jungki; Nam, Dong Heon; Lee, Sahng Ha; Park, Chan Beum

    2014-09-15

    Efficient harvesting of unlimited solar energy and its conversion into valuable chemicals is one of the ultimate goals of scientists. With the ever-increasing concerns about sustainable growth and environmental issues, numerous efforts have been made to develop artificial photosynthetic process for the production of fuels and fine chemicals, thus mimicking natural photosynthesis. Despite the research progress made over the decades, the technology is still in its infancy because of the difficulties in kinetic coupling of whole photocatalytic cycles. Herein, we report a new type of artificial photosynthesis system that can avoid such problems by integrally coupling biocatalytic redox reactions with photocatalytic water splitting. We found that photocatalytic water splitting can be efficiently coupled with biocatalytic redox reactions by using tetracobalt polyoxometalate and Rh-based organometallic compound as hole and electron scavengers, respectively, for photoexcited [Ru(bpy)3](2+). Based on these results, we could successfully photosynthesize a model chiral compound (L-glutamate) using a model redox enzyme (glutamate dehydrogenase) upon in situ photoregeneration of cofactors. PMID:25088448

  3. Nuclear-driven electron spin rotations in a coupled silicon quantum dot and single donor system

    NASA Astrophysics Data System (ADS)

    Harvey-Collard, Patrick; Jacobson, Noah Tobias; Rudolph, Martin; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Pioro-Ladrière, Michel; Carroll, Malcolm S.

    Single donors in silicon are very good qubits. However, a central challenge is to couple them to one another. To achieve this, many proposals rely on using a nearby quantum dot (QD) to mediate an interaction. In this work, we demonstrate the coherent coupling of electron spins between a single 31P donor and an enriched 28Si metal-oxide-semiconductor few-electron QD. We show that the electron-nuclear spin interaction can drive coherent rotations between singlet and triplet electron spin states. Moreover, we are able to tune electrically the exchange interaction between the QD and donor electrons. The combination of single-nucleus-driven rotations and voltage-tunable exchange provides all elements for future all-electrical control of a spin qubit, and requires only a single dot and no additional magnetic field gradients. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  4. Rationally designed donor-acceptor scheme based molecules for applications in opto-electronic devices.

    PubMed

    Subash Sundar, T; Sen, R; Johari, P

    2016-04-01

    Several donor (D)-acceptor (A) based molecules are rationally designed by adopting three different schemes in which the conjugation length, strength of the donor and acceptor moieties, and planarity of the molecules are varied. These variations are made by introducing a π-conjugated linkage unit, terminating the ends of the moieties by different electron donating and accepting functional groups, and fusing the donor and acceptor moieties, respectively. Our DFT and TDDFT based calculations reveal that using the above-mentioned design schemes, the electronic and optical properties of the D-A based molecules can be largely tuned. While introduction of a linkage and fusing of moieties enhance the π-π interaction, addition of electron donating groups (-CH3, -OH, and -NH2) and electron accepting groups (-CF3, -CN, -NO2, and -NH3(+)) varies the strength of the donor and acceptor moieties. These factors lead to modulation of the HOMO and LUMO energy levels and facilitate the engineering of the HOMO-LUMO gap and the optical gap over a wide range of ∼0.7-3.7 eV. Moreover, on the basis of calculated ionization potential and reorganization energy, most of the investigated molecules are predicted to be air stable and to exhibit high electron mobility, with the possibility of the presence of ambipolar characteristics in a few of them. The results of our calculations not only demonstrate the examined molecules to be the potential materials for organic opto-electronic devices, but also establish an understanding of the composition-structure-property correlation, which will provide guidelines for designing and synthesizing new materials of choice. PMID:26972386

  5. New artificial electron donors for in vitro assay of nitrate reductase isolated from cultured tobacco cells and other organisms.

    PubMed

    Hoarau, J; Hirel, B; Nato, A

    1986-04-01

    The capacity of bromphenol blue and its analogs to act as electron donors for measurement of in vitro nitrate reductase activity from tobacco cells (Nicotiana tabacum var Techné SP 25 strain) was determined. Competitive inhibition was demonstrated to occur between NADH, the natural electron donor, and bromphenol blue, the artificial electron donor, suggesting that both donors bind to a similar active site on the enzyme. NADH-dependent or bromphenol blue-dependent nitrate reductase activity was carried out by a similar molecular weight protein exhibiting similar antigenic sites. Following ammonium sulfate precipitation, sucrose density gradient and two chromatographic steps, nitrate reductase activity from tobacco cells was purified near homogeneity using bromphenol blue as an electron donor in the absence of measurable NADH-dependent activity. The enzyme is composed of two identical subunits of 83 kilodaltons < Momega < 94 kilodaltons. PMID:16664746

  6. Electron transport in DNA initiated by diaminonaphthalene donors alternatively bound by non-covalent and covalent association.

    PubMed

    Campbell, Neil P; Rokita, Steven E

    2014-02-21

    Covalent conjugation is typically used to fix a potential charge donor to a chosen site for studying either hole or excess electron transport in duplex DNA. A model system based on oligonucleotides containing an abasic site and (Br)dU was previously developed to provide a rapid method of screening new donors without the need of synthetic chemistry. While this strategy is effective for discovering important lead compounds, it is not appropriate for establishing extensive correlations between molecular structure and donor efficiency as demonstrated with a series of closely related electron donors based on diaminonaphthalene. The non-covalent system accurately identified the ability of the donors to reduce a distal (Br)dU in DNA, but their varying efficiencies were not recapitulated when attached covalently to an equivalent sequence of DNA. Reduction within the covalent system was not sensitive to the strong donor potentials as consistent with charge recombination dominating the net migration of charge. PMID:24398596

  7. Gradient ascent pulse engineering approach to CNOT gates in donor electron spin quantum computing

    SciTech Connect

    Tsai, D.-B.; Goan, H.-S.

    2008-11-07

    In this paper, we demonstrate how gradient ascent pulse engineering (GRAPE) optimal control methods can be implemented on donor electron spin qubits in semiconductors with an architecture complementary to the original Kane's proposal. We focus on the high fidelity controlled-NOT (CNOT) gate and we explicitly find the digitized control sequences for a controlled-NOT gate by optimizing its fidelity using the effective, reduced donor electron spin Hamiltonian with external controls over the hyperfine A and exchange J interactions. We then simulate the CNOT-gate sequence with the full spin Hamiltonian and find that it has an error of 10{sup -6} that is below the error threshold of 10{sup -4} required for fault-tolerant quantum computation. Also the CNOT gate operation time of 100 ns is 3 times faster than 297 ns of the proposed global control scheme.

  8. Implanted bismuth donors in 28-Si: Process development and electron spin resonance measurements

    NASA Astrophysics Data System (ADS)

    Weis, C. D.; Lo, C. C.; Lang, V.; George, R. E.; Tyryshkin, A. M.; Bokor, J.; Lyon, S. A.; Morton, J. J. L.; Schenkel, T.

    2012-02-01

    Spins of donor atoms in silicon are excellent qubit candidates. Isotope engineered substrates provide a nuclear spin free host environment, resulting in long spin coherence times [1,2]. The capability of swapping quantum information between electron and nuclear spins can enable quantum communication and gate operation via the electron spin and quantum memory via the nuclear spin [2]. Spin properties of donor qubit candidates in silicon have been studied mostly for phosphorous and antimony [1-3]. Bismuth donors in silicon exhibit a zero field splitting of 7.4 GHz and have attracted attention as potential nuclear spin memory and spin qubit candidates [4,5] that could be coupled to superconducting resonators [4,6]. We report on progress in the formation of bismuth doped 28-Si epi layers by ion implantation, electrical dopant activation and their study via pulsed electron spin resonance measurements showing narrow linewidths and good coherence times. [4pt] [1] A. M. Tyryshkin, et al. arXiv: 1105.3772 [2] J. J. L. Morton, et al. Nature (2008) [3] T. Schenkel, et al APL 2006; F. R. Bradbury, et al. PRL (2006) [4] R. E. George, et al. PRL (2010) [5] G. W. Morley, et al. Nat Mat (2010) [6] M. Hatridge, et al. PRB (2011), R. Vijay, et al. APL (2010) This work was supported by NSA (100000080295) and DOE (DE-AC02-05CH11231).

  9. Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor.

    PubMed

    Chung, Jinwook; Amin, Khurram; Kim, Seungjin; Yoon, Seungjoon; Kwon, Kiwook; Bae, Wookeun

    2014-07-01

    This study was carried out to determine the possibility of autotrophic denitritation using thiosulfate as an electron donor, compare the kinetics of autotrophic denitrification and denitritation, and to study the effects of pH and sulfur/nitrogen (S/N) ratio on the denitrification rate of nitrite. Both nitrate and nitrite were removed by autotrophic denitrification using thiosulfate as an electron donor at concentrations up to 800 mg-N/L. Denitrification required a S/N ratio of 5.1 for complete denitrification, but denitritation was complete at a S/N ratio of 2.5, which indicated an electron donor cost savings of 50%. Also, pH during denitrification decreased but increased with nitrite, implying additional alkalinity savings. Finally, the highest specific substrate utilization rate of nitrite was slightly higher than that of nitrate reduction, and biomass yield for denitrification was relatively higher than that of denitritation, showing less sludge production and resulting in lower sludge handling costs. PMID:24755301

  10. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage.

    PubMed

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, Jim A

    2016-11-01

    This study assessed bioremediation of acid rock drainage in simulated permeable reactive barriers (PRB) using algae, Chlorella sorokiniana, as the sole electron donor for sulfate-reducing bacteria. Lipid extracted algae (LEA), the residues of biodiesel production, were compared with whole cell algae (WCA) as an electron donor to promote sulfate-reducing activity. Inoculated columns containing anaerobic granular sludge were fed a synthetic medium containing H2SO4 and Cu(2+). Sulfate, sulfide, Cu(2+) and pH were monitored throughout the experiment of 123d. Cu recovered in the column packing at the end of the experiment was evaluated using sequential extraction. Both WCA and LEA promoted 80% of sulfate removal (12.7mg SO4(2-) d(-1)) enabling near complete Cu removal (>99.5%) and alkalinity generation raising the effluent pH to 6.5. No noteworthy sulfate reduction, alkalinity formation and Cu(2+) removal were observed in the endogenous control. In algae amended-columns, Cu(2+) was precipitated with biogenic H2S produced by sulfate reduction. Formation of CuS was evidenced by sequential extraction and X-ray diffraction. LEA and WCA provided similar levels of electron donor based on the COD balance. The results demonstrate an innovative passive remediation system using residual algae biomass from the biodiesel industry. PMID:27318730

  11. Solid phase electron donors control denitrification in groundwater at agricultural sites

    NASA Astrophysics Data System (ADS)

    Green, C. T.; Liao, L.; Bekins, B. A.; Bohlke, J. K.

    2011-12-01

    Increased concentrations of nitrate in groundwater caused by agricultural use of chemical and organic fertilizers are a concern because of possible risks to environmental and human health. At many sites, these problems are mitigated by natural attenuation of nitrate as a result of microbially mediated denitrification of nitrate to nitrogen gas. Recent studies have clarified the factors affecting the rates and extents of denitrification in groundwater in agricultural areas. Intensive studies were conducted by the US Geological Survey to study agricultural chemicals in California, Nebraska, Washington, and Maryland using laboratory analyses, field measurements, and flow and transport modeling for monitoring well transects (0.5 to 2.5 km in length) and vertical profiles (0 to 50 m in depth). Groundwater analyses included major ion chemistry, dissolved gases, nitrogen and oxygen stable isotopes, and atmospheric age-tracers. Sediments were analyzed for concentrations of potential electron donors for denitrification, including reduced iron and sulfur, and organic carbon. Geochemical data and mass balance calculations indicated that solid-phase electron donors were an important factor controlling denitrification at these sites. To examine the generality of this result, a mathematical model of vertical flux of water, oxygen, and nitrate was developed and applied at these study sites along with 2 new study sites in Iowa and Mississippi and 8 additional sites from previous studies in Nebraska, Texas, Minnesota, Wisconsin, North Carolina, Maryland (2 sites), and New York. Model results confirmed the importance of solid phase electron donors. The normalized reaction rates on an electron flux basis tended to increase with depth from the shallow oxygen reduction zone to the underlying nitrate reduction zone. The pattern of higher rates at depth is consistent with a reaction rate controlled by solid phase donors that are depleted under oxidizing conditions near the surface and in

  12. Impact of Electron Donor selection on In-situ Biosequestration of Uranium

    NASA Astrophysics Data System (ADS)

    Tabatabaei, S.; Zhong, H.; Abel, E. J.; Field, J.; Brusseau, M. L. L.

    2015-12-01

    In-situ biosequestration, wherein electron-donating substrates are injected to promote microbial-associated sequestration of contaminants, is one promising enhanced-attenuation technique for remediation of groundwater containing arsenic, uranium, selenium, and similar constituents. A pilot-scale test of in-situ biosequestration for uranium in groundwater is in process at a former uranium mining site in Monument Valley, Arizona. Complementary bench experiments were conducted to examine the impact of different electron donors on the effectiveness of biosequestration. Aqueous and sediment samples were collected before and after the injection for monitoring changes in sediment properties, mineral geochemical composition, microbial community composition, and microbial activity.

  13. New extended {pi}-electron donors. Tetrathiafulvalene systems with heterocyclic spacer groups

    SciTech Connect

    Hansen, T.K.; Jensen, F.; Becher, J.

    1992-06-17

    Nine new heterocyclic {pi}-electron donors 10a-c, 11a-c, and 12a-c based upon the well-known TTF (tetrathiafulvalene) system, but incorporating a pyrrole, thiophene, or furan ring between the 1,3-thiole rings, have been synthesized. The compounds show two single-electron reversible oxidation waves in cyclic voltammetry. Some TCNQ complexes and conductivity measurements are reported, indicating the new compounds to be good candidates for {open_quotes}organic metals{close_quotes}. The influence of the central conjugated system on redox properties is discussed using MNDO-PM3 calculations. 17 refs., 5 figs., 1 tab.

  14. Ab initio calculations of the electronic structure of silicon nanocrystals doped with shallow donors (Li, P)

    SciTech Connect

    Kurova, N. V. Burdov, V. A.

    2013-12-15

    The results of ab initio calculations of the electronic structure of Si nanocrystals doped with shallow donors (Li, P) are reported. It is shown that phosphorus introduces much more significant distortions into the electronic structure of the nanocrystal than lithium, which is due to the stronger central cell potential of the phosphorus ion. It is found that the Li-induced splitting of the ground state in the conduction band of the nanocrystal into the singlet, doublet, and triplet retains its inverse structure typical for bulk silicon.

  15. Effect of donor orientation on ultrafast intermolecular electron transfer in coumarin-amine systems.

    PubMed

    Singh, P K; Nath, S; Bhasikuttan, A C; Kumbhakar, M; Mohanty, J; Sarkar, S K; Mukherjee, T; Pal, H

    2008-09-21

    Effect of donor amine orientation on nondiffusive ultrafast intermolecular electron transfer (ET) reactions in coumarin-amine systems has been investigated using femtosecond fluorescence upconversion measurements. Intermolecular ET from different aromatic and aliphatic amines used as donor solvents to the excited coumarin-151 (C151) acceptor occurs with ultrafast rates such that the shortest fluorescence lifetime component (tau(1)) is the measure of the fastest ET rate (tau(1)=tau(ET) (fast)=(k(ET) (fast))(-1)), assigned to the C151-amine contact pairs in which amine donors are properly oriented with respect to C151 to maximize the acceptor-donor electronic coupling (V(el)). It is interestingly observed that as the amine solvents are diluted by suitable diluents (either keeping solvent dielectric constant similar or with increasing dielectric constant), the tau(1) remains almost in the similar range as long as the amine dilution does not cross a certain critical limit, which in terms of the amine mole fraction (x(A)) is found to be approximately 0.4 for aromatic amines and approximately 0.8 for aliphatic amines. Beyond these dilutions in the two respective cases of the amine systems, the tau(1) values are seen to increase very sharply. The large difference in the critical x(A) values involving aromatic and aliphatic amine donors has been rationalized in terms of the largely different orientational restrictions for the ET reactions as imposed by the aliphatic (n-type) and aromatic (pi-type) nature of the amine donors [A. K. Satpati et al., J. Mol. Struct. 878, 84 (2008)]. Since the highest occupied molecular orbital (HOMO) of the n-type aliphatic amines is mostly centralized at the amino nitrogen, only some specific orientations of these amines with respect to the close-contact acceptor dye [also of pi-character; A. K. Satpati et al., J. Mol. Struct. 878, 84 (2008) and E. W. Castner et al., J. Phys. Chem. A 104, 2869 (2000)] can give suitable V(el) and thus

  16. Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated

    DOEpatents

    Liepins, Raimond; Aldissi, Mahmoud

    1988-01-01

    Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.

  17. Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated

    DOEpatents

    Liepins, R.; Aldissi, M.

    1984-07-27

    Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.

  18. Dissimilatory arsenate reduction with sulfide as electron donor: Experiments with Mono Lake water and isolation of strain MLMS-1, a chemoautotrophic arsenate respirer

    USGS Publications Warehouse

    Hoeft, S.E.; Kulp, T.R.; Stolz, J.F.; Hollibaugh, J.T.; Oremland, R.S.

    2004-01-01

    Anoxic bottom water from Mono Lake, California, can biologically reduce added arsenate without any addition of electron donors. Of the possible in situ inorganic electron donors present, only sulfide was sufficiently abundant to drive this reaction. We tested the ability of sulfide to serve as an electron donor for arsenate reduction in experiments with lake water. Reduction of arsenate to arsenite occurred simultaneously with the removal of sulfide. No loss of sulfide occurred in controls without arsenate or in sterilized samples containing both arsenate and sulfide. The rate of arsenate reduction in lake water was dependent on the amount of available arsenate. We enriched for a bacterium that could achieve growth with sulfide and arsenate in a defined, mineral medium and purified it by serial dilution. The isolate, strain MLMS-1, is a gram-negative, motile curved rod that grows by oxidizing sulfide to sulfate while reducing arsenate to arsenite. Chemoautotrophy was confirmed by the incorporation of H14CO3- into dark-incubated cells, but preliminary gene probing tests with primers for ribulose-1,5-biphosphate carboxylase/oxygenase did not yield PCR-amplified products. Alignment of 16S rRNA sequences indicated that strain MLMS-1 was in the ??-Proteobacteria, located near sulfate reducers like Desulfobulbus sp. (88 to 90% similarity) but more closely related (97%) to unidentified sequences amplified previously from Mono Lake. However, strain MLMS-1 does not grow with sulfate as its electron acceptor.

  19. The Tetrathiafulvalene-based Donor-acceptor Diads for Molecular Electronics

    NASA Astrophysics Data System (ADS)

    Perepichka, Dmitrii F.; Bryce, Martin R.; Ho, Gregory; Heath, James R.; Pearson, Christopher; Petty, Michael C.

    2004-03-01

    The challenge of covalent linking a strong electron donor (as tetrathiafulvalene, TTF) to a strong acceptor (as tetracyanoquinodimethane, TCNQ) was laid down by Aviram and Ratner, who proposed that a single donor-sigma-acceptor molecule could rectify an electric current. Although numerous organic compounds have been tested in metal-molecule-metal junctions, they had substantially higher HOMO-LUMO gap (Eg >0.5 eV) and, in most cases, high dipole moment due to conjugated character of the linker. Those molecules re-orient in the electric field limiting the device stability. Recently, we have pioneered the synthesis of DsigmaA molecules with the HOMO-LUMO gap 0.17-0.3 eV, including the original TTF-TCNQ.* We will present the intriguing electronic properties of these compounds, including the conformational control of the Eg and the thermoexcited electron transfer. The compounds form high-quality LB films, suitable for molecular electronics applications. In Si-molecule-Ti junctions, the rectification ratio increases as molecules align perpendicularly to the surface, and the device stability override significantly the related system based on D-pi-A molecules. * Perepichka, et al., Angew. Chem. Int. Ed. 2003, 42, 4635.

  20. Collapse of electrons to a donor cluster in SrTiO3

    NASA Astrophysics Data System (ADS)

    Fu, Han; Reich, Konstantin; Shklovskii, Boris

    It is known that when a nucleus has charge Ze where Z > 137 , electrons collapse onto the nucleus resulting in a net charge Zn < Z . This effect is due to the relativistic dispersion law. Here a similar effect is found for a donor cluster in SrTiO3 (STO), but with a different origin (see Phys. Rev. B 92, 035204 (2015)). At low temperatures, STO has an enormously large dielectric constant and the nonlinear dielectric response becomes dominant when the electric field is still small. This leads to the collapse of electrons into a charged spherical donor cluster with radius R when its total charge number Z exceeds a critical value Zc ~= R / a where a is the lattice constant. The net charge Zn e grows with Z until Z exceeds Z* ~=(R / a) 9 / 7 . After this point, the charge of the compact core Zn remains ~=Z* , while the rest Z* electrons form a sparse Thomas-Fermi electron atmosphere around it. We show that the thermal ionization of such two-scale atoms easily strips the outer atmosphere while the inner core remains preserved. We extend our results to the case of long cylindrical clusters. We discuss how our predictions can be tested by measuring conductivity of chain of discs of charge on the STO surface.

  1. Easy Access to NO2 -Containing Donor-Acceptor-Acceptor Electron Donors for High Efficiency Small-Molecule Organic Solar Cells.

    PubMed

    Ting, Hao-Chun; Yang, Ya-Ting; Chen, Chia-Hsun; Lee, Jiun-Haw; Chang, Jung-Hung; Wu, Chih-I; Chiu, Tien-Lung; Lin, Chi-Feng; Chung, Chin-Lung; Wong, Ken-Tsung

    2016-06-22

    Two donor-acceptor-acceptor (D-A-A)-type molecules incorporating nitrobenzoxadiazole (NBO) as the A-A block and ditolylamine as the D block bridged through a phenylene (PNBO) and a thiophene (TNBO) spacer were synthesized in a one-step coupling reaction. Their electronic, photophysical, and thermal properties; crystallographic analysis; and theoretical calculations were studied to establish a clear structure-property relationship. The results indicate that the quinoidal character of the thiophene bridge strongly governs the structural features and crystal packings (herringbone vs. brickwork) and thus the physical properties of the compounds. PNBO and TNBO were utilized as electron donors combined with C70 as the electron acceptor in the active layer of vacuum-processed bulk heterojunction small-molecule organic solar cells (SMOSCs). The power conversion efficiency of both PNBO- and TNBO-based OSCs exceeded 5 %. The ease of accessibility of PNBO and TNBO demonstrates the potential for simple and economical synthesis of electron donors in vacuum-processed SMOSCs. PMID:27213296

  2. The coordination chemistry of organo-hydride donors: new prospects for efficient multi-electron reduction.

    PubMed

    McSkimming, Alex; Colbran, Stephen B

    2013-06-21

    In biological reduction processes the dihydronicotinamides NAD(P)H often transfer hydride to an unsaturated substrate bound within an enzyme active site. In many cases, metal ions in the active site bind, polarize and thereby activate the substrate to direct attack by hydride from NAD(P)H cofactor. This review looks more widely at the metal coordination chemistry of organic donors of hydride ion--organo-hydrides--such as dihydronicotinamides, other dihydropyridines including Hantzsch's ester and dihydroacridine derivatives, those derived from five-membered heterocycles including the benzimidazolines and benzoxazolines, and all-aliphatic hydride donors such as hexadiene and hexadienyl anion derivatives. The hydride donor properties--hydricities--of organo-hydrides and how these are affected by metal ions are discussed. The coordination chemistry of organo-hydrides is critically surveyed and the use of metal-organo-hydride systems in electrochemically-, photochemically- and chemically-driven reductions of unsaturated organic and inorganic (e.g. carbon dioxide) substrates is highlighted. The sustainable electrocatalytic, photochemical or chemical regeneration of organo-hydrides such as NAD(P)H, including for driving enzyme-catalysed reactions, is summarised and opportunities for development are indicated. Finally, new prospects are identified for metal-organo-hydride systems as catalysts for organic transformations involving 'hydride-borrowing' and for sustainable multi-electron reductions of unsaturated organic and inorganic substrates directly driven by electricity or light or by renewable reductants such as formate/formic acid. PMID:23507957

  3. Electron donors and co-contaminants affect microbial community composition and activity in perchlorate degradation.

    PubMed

    Guan, Xiangyu; Xie, Yuxuan; Wang, Jinfeng; Wang, Jing; Liu, Fei

    2015-04-01

    Although microbial reduction of perchlorate (ClO4(-)) is a promising and effective method, our knowledge on the changes in microbial communities during ClO4(-) degradation is limited, especially when different electron donors are supplied and/or other contaminants are present. Here, we examined the effects of acetate and hydrogen as electron donors and nitrate and ammonium as co-contaminants on ClO4(-) degradation by anaerobic microcosms using six treatments. The process of degradation was divided into the lag stage (SI) and the accelerated stage (SII). Quantitative PCR was used to quantify four genes: pcrA (encoding perchlorate reductase), cld (encoding chlorite dismutase), nirS (encoding copper and cytochrome cd1 nitrite reductase), and 16S rRNA. While the degradation of ClO4(-) with acetate, nitrate, and ammonia system (PNA) was the fastest with the highest abundance of the four genes, it was the slowest in the autotrophic system (HYP). The pcrA gene accumulated in SI and played a key role in initiating the accelerated degradation of ClO4(-) when its abundance reached a peak. Degradation in SII was primarily maintained by the cld gene. Acetate inhibited the growth of perchlorate-reducing bacteria (PRB), but its effect was weakened by nitrate (NO3(-)), which promoted the growth of PRB in SI, and therefore, accelerated the ClO4(-) degradation rate. In addition, ammonia (NH4(+)), as nitrogen sources, accelerated the growth of PRB. The bacterial communities' structure and diversity were significantly affected by electron donors and co-contaminants. Under heterotrophic conditions, both ammonia and nitrate promoted Azospira as the most dominant genera, a fact that might significantly influence the rate of ClO4(-) natural attenuation by degradation. PMID:25382499

  4. Triazole bridges as versatile linkers in electron donor-acceptor conjugates

    PubMed Central

    de Miguel, Gustavo; Wielopolski, Mateusz; Schuster, David I.; Fazio, Michael A; Lee, Olivia P.; Haley, Christopher K.; Ortiz, Angy L.; Echegoyen, Luis; Clark, Timothy; Guldi, Dirk M.

    2011-01-01

    Aromatic triazoles have been frequently used as π-conjugated linkers in intramolecular electron transfer processes. To gain a deeper understanding of the electron mediating function of triazoles, we have synthesized a family of new triazole-based electron donor-acceptor conjugates. We have connected porphyrins and fullerenes through a central triazole moiety – (ZnP-Tri-C60) – each with a single change in their connection through the linker. An extensive photophysical and computational investigation reveals that the electron transfer dynamics – charge separation and charge recombination – in the different ZnP-Tri-C60 conjugates reflect a significant influence of the connectivity at the triazole linker. Except for m4m-ZnP-Tri-C60 17, the conjugates exhibit through-bond electron transfer with varying rate constants. Since the through-bond distance is nearly equal in the ZnP-Tri-C60 conjugates, the variation in charge separation and charge recombination dynamics is mainly associated with the electronic properties of the conjugates, including orbital energies, electron affinity, and the energies of the excited states. The changes of the electronic couplings are, in turn, a consequence of the different connectivity patterns at the triazole moieties. PMID:21702513

  5. Spin relaxation of conduction electrons by inelastic scattering with neutral donors

    NASA Astrophysics Data System (ADS)

    Qing, Lan; Dery, Hanan; Li, Jing; Appelbaum, Ian

    2015-03-01

    At low temperatures in n-doped semiconductors, a significant fraction of shallow donor sites are occupied by electrons, neutralizing the impurity core charge in equilibrium. Inelastic scattering by externally-injected conduction electrons accelerated by electric fields can excite transitions within the manifold of these localized states. Promotion into highly spin-mixed excited states results in spin relaxation that couples strongly to the conduction electrons by exchange interaction. Through experiments with silicon spin transport devices and complementary theory, we reveal the consequences of this previously unknown depolarization mechanism both below and above the impact ionization threshold and into the ``deep inelastic'' regime. This work is supported by NSF under Contracts ECCS-1231570 and ECCS-1231855, by DTRA under Contract HDTRA1-13-1-0013, and by ONR under Contract N000141410317.

  6. Donor-acceptor graphene-based hybrid materials facilitating photo-induced electron-transfer reactions.

    PubMed

    Stergiou, Anastasios; Pagona, Georgia; Tagmatarchis, Nikos

    2014-01-01

    Graphene research and in particular the topic of chemical functionalization of graphene has exploded in the last decade. The main aim is to increase the solubility and thereby enhance the processability of the material, which is otherwise insoluble and inapplicable for technological applications when stacked in the form of graphite. To this end, initially, graphite was oxidized under harsh conditions to yield exfoliated graphene oxide sheets that are soluble in aqueous media and amenable to chemical modifications due to the presence of carboxylic acid groups at the edges of the lattice. However, it was obvious that the high-defect framework of graphene oxide cannot be readily utilized in applications that are governed by charge-transfer processes, for example, in solar cells. Alternatively, exfoliated graphene has been applied toward the realization of some donor-acceptor hybrid materials with photo- and/or electro-active components. The main body of research regarding obtaining donor-acceptor hybrid materials based on graphene to facilitate charge-transfer phenomena, which is reviewed here, concerns the incorporation of porphyrins and phthalocyanines onto graphene sheets. Through illustrative schemes, the preparation and most importantly the photophysical properties of such graphene-based ensembles will be described. Important parameters, such as the generation of the charge-separated state upon photoexcitation of the organic electron donor, the lifetimes of the charge-separation and charge-recombination as well as the incident-photon-to-current efficiency value for some donor-acceptor graphene-based hybrids, will be discussed. PMID:25247140

  7. Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1

    SciTech Connect

    Gerritse, J.; Drzyzga, O.; Kloetstra, G.; Keijmel, M.; Wiersum, L.P.; Hutson, R.; Collins, M.D.; Gottschal, J.C.

    1999-12-01

    Strain TCE1, a strictly anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene (PCE) and trichloroethane (TCE), was isolated by selective enrichment from a PCE-dechlorinating chemostat mixed culture. Strain TCE1 is a gram-positive, motile, curved rod-shaped organism that is 2 to 4 by 0.6 to 0.8 {micro}m and has approximately six lateral flagella. The pH and temperature optima for growth are 7.2 and 35 C, respectively. On the basis of a comparative 16S rRNA sequence analysis, this bacterium was identified as a new strain of Desulfitobacterium frappieri, because it exhibited 99.7% relatedness to the D. frappieri type strain, strain PCP-1. Growth with H{sub 2}, format, L-lactate, butyrate, crotonate, or ethanol as the electron donor depends on the availability of an external electron acceptor. Pyruvate and serine can also be used fermentatively. Electron donors (except format and H{sub 2}) are oxidized to acetate and CO{sub 2}. when L-lactate is the growth substrate, strain TCE1 can use the following electron acceptors: PCE and TCE (to produce cis-1,2-dichloroethene), sulfite and thiosulfate (to produce sulfide), nitrate (to produce nitrite), and fumarate (to produce succinate). Strain TCE1 is not able to reductively dechlorinate 3-chloro-4-hydroxyphenylacetate. The growth yields of the newly isolated bacterium when PCE is the electron acceptor are similar to those obtained for other dehalorespiring anaerobes (e.g., Desulfitobacterium sp. strain PCE1 and Desulfitobacterium hafniense) and the maximum specific reductive dechlorination rates are 4 to 16 times higher. Dechlorination of PCE and TCE is an inducible process. In PCE-limited chemostat cultures of strain TCE1, dechlorination is strongly inhibited by sulfite but not by other alternative electron acceptors, such as fumate or nitrate.

  8. Aquifer denitrification and in situ mesocosms: Modeling electron donor contributions and measuring rates

    NASA Astrophysics Data System (ADS)

    Korom, Scott F.; Schuh, William M.; Tesfay, Tedros; Spencer, Eben J.

    2012-04-01

    SummaryIn situ denitrification rates were measured in a shallow unconfined glaciofluvial aquifer that had undergone large-scale nitrate contamination. Denitrification rates and isotopic enrichment factors, ɛ, were measured using three tracer tests in two aquifer in situ mesocosms (ISMs). Denitrification rates were also measured using a mass balance method using water samples from multiport samplers. First-order kinetic rates (k) best described the denitrification rates measured. ISM kinetic rates ranged from 0.00049/d to 0.0031/d and ɛ values ranged from -4.86‰ to -9.34‰; a linear relationship between k and ɛ values showed greater fractionation (more negative ɛ values) associated with higher rates. For the mass balance method, k values ranged from 0.0028/d to 0.0041/d. Combined mineralogical analysis, water quality data from the ISMs, and geochemical models using PHREEQC indicated that contributions of major electron donors to denitrification were 43-92% by organic carbon, 4-18% by pyrite, and 2-43% by non-pyritic ferrous iron, depending on the sample date and the type of amphibole used as the electron donor for ferrous iron. ISMs show promise as a tool for hydrogeochemical investigations. They are large enough to allow long-term sampling of aquifer denitrification tracer tests (>2 years), they may be used, with the modeling methodology shown herein, to estimate relative e- donor contributions, and they limit the influence of advection and mechanical dispersion on the amended water within the chamber.

  9. Field Evidence for Co-Metabolism of Trichloroethene Stimulated by Addition of Electron Donor to Groundwater

    SciTech Connect

    Conrad, Mark E.; Brodie, Eoin L.; Radtke, Corey W.; Bill, Markus; Delwiche, Mark E.; Lee, M. Hope; Swift, Dana L.; Colwell, Frederick S.

    2010-05-17

    For more than 10 years, electron donor has been injected into the Snake River aquifer beneath the Test Area North site of the Idaho National Laboratory for the purpose of stimulating microbial reductive dechlorination of trichloroethene (TCE) in groundwater. This has resulted in significant TCE removal from the source area of the contaminant plume and elevated dissolved CH4 in the groundwater extending 250 m from the injection well. The delta13C of the CH4 increases from 56o/oo in the source area to -13 o/oo with distance from the injection well, whereas the delta13C of dissolved inorganic carbon decreases from 8 o/oo to -13 o/oo, indicating a shift from methanogenesis to methane oxidation. This change in microbial activity along the plume axis is confirmed by PhyloChip microarray analyses of 16S rRNA genes obtained from groundwater microbial communities, which indicate decreasing abundances of reductive dechlorinating microorganisms (e.g., Dehalococcoides ethenogenes) and increasing CH4-oxidizing microorganisms capable of aerobic co-metabolism of TCE (e.g., Methylosinus trichosporium). Incubation experiments with 13C-labeled TCE introduced into microcosms containing basalt and groundwater from the aquifer confirm that TCE co-metabolism is possible. The results of these studies indicate that electron donor amendment designed to stimulate reductive dechlorination of TCE may also stimulate co-metabolism of TCE.

  10. Field evidence for co-metabolism of trichloroethene stimulated by addition of electron donor to groundwater.

    PubMed

    Conrad, Mark E; Brodie, Eoin L; Radtke, Corey W; Bill, Markus; Delwiche, Mark E; Lee, M Hope; Swift, Dana L; Colwell, Frederick S

    2010-06-15

    For more than 10 years, electron donor has been injected into the Snake River aquifer beneath the Test Area North site of the Idaho National Laboratory for the purpose of stimulating microbial reductive dechlorination of trichloroethene (TCE) in groundwater. This has resulted in significant TCE removal from the source area of the contaminant plume and elevated dissolved CH(4) in the groundwater extending 250 m from the injection well. The delta(13)C of the CH(4) increases from -56 per thousand in the source area to -13 per thousand with distance from the injection well, whereas the delta(13)C of dissolved inorganic carbon decreases from 8 per thousand to -13 per thousand, indicating a shift from methanogenesis to methane oxidation. This change in microbial activity along the plume axis is confirmed by PhyloChip microarray analyses of 16S rRNA genes obtained from groundwater microbial communities, which indicate decreasing abundances of reductive dechlorinating microorganisms (e.g., Dehalococcoides ethenogenes) and increasing CH(4)-oxidizing microorganisms capable of aerobic co-metabolism of TCE (e.g., Methylosinus trichosporium). Incubation experiments with (13)C-labeled TCE introduced into microcosms containing basalt and groundwater from the aquifer confirm that TCE co-metabolism is possible. The results of these studies indicate that electron donor amendment designed to stimulate reductive dechlorination of TCE may also stimulate co-metabolism of TCE. PMID:20476753

  11. Evaluation of sustained release polylactate electron donors for removal of hexavalent chromium from contaminated groundwater

    SciTech Connect

    Brodie, E.L.; Joyner, D. C.; Faybishenko, B.; Conrad, M. E.; Rios-Velazquez, C.; Mork, B.; Willet, A.; Koenigsberg, S.; Herman, D.; Firestone, M. K.; Hazen, T. C.; Malave, Josue; Martinez, Ramon

    2011-02-15

    To evaluate the efficacy of bioimmobilization of Cr(VI) in groundwater at the Department of Energy Hanford site, we conducted a series of microcosm experiments using a range of commercial electron donors with varying degrees of lactate polymerization (polylactate). These experiments were conducted using Hanford Formation sediments (coarse sand and gravel) immersed in Hanford groundwater, which were amended with Cr(VI) and several types of lactate-based electron donors (Hydrogen Release Compound, HRC; primer-HRC, pHRC; extended release HRC) and the polylactate-cysteine form (Metal Remediation Compound, MRC). The results showed that polylactate compounds stimulated an increase in bacterial biomass and activity to a greater extent than sodium lactate when applied at equivalent carbon concentrations. At the same time, concentrations of headspace hydrogen and methane increased and correlated with changes in the microbial community structure. Enrichment of Pseudomonas spp. occurred with all lactate additions, and enrichment of sulfate-reducing Desulfosporosinus spp. occurred with almost complete sulfate reduction. The results of these experiments demonstrate that amendment with the pHRC and MRC forms result in effective removal of Cr(VI) from solution most likely by both direct (enzymatic) and indirect (microbially generated reductant) mechanisms.

  12. Enhanced photoproduction of hydrogen peroxide by humic substances in the presence of phenol electron donors.

    PubMed

    Zhang, Yi; Simon, Kelli A; Andrew, Andrea A; Del Vecchio, Rossana; Blough, Neil V

    2014-11-01

    Addition of a series of phenol electron donors to solutions of humic substances (HS) enhanced substantially the initial rates of hydrogen peroxide (H2O2) photoproduction (RH2O2), with enhancement factors (EF) ranging from a low of ∼3 for 2,4,6-trimethylphenol (TMP) to a high of ∼15 for 3,4-dimethoxyphenol (DMOP). The substantial inhibition of the enhanced RH2O2 following borohydride reduction of the HS, as well as the dependence of RH2O2 on phenol and dioxygen concentrations are consistent with a mechanism in which the phenols react with the triplet excited states of (aromatic) ketones within the HS to form initially a phenoxy and ketyl radical. The ketyl radical then reacts rapidly with dioxygen to regenerate the ketone and form superoxide (O2-), which subsequently dismutates to H2O2. However, as was previously noted for the photosensitized loss of TMP, the incomplete inhibition of the enhanced RH2O2 following borohydride reduction suggests that there may remain another pool of oxidizing triplets. The results demonstrate that H2O2 can be generated through an additional pathway in the presence of sufficiently high concentrations of appropriate electron donors through reaction with the excited triplet states of aromatic ketones and possibly of other species such as quinones. However, in some cases, the much lower ratio of H2O2 produced to phenol consumed suggests that secondary reactions could alter this ratio significantly. PMID:25288017

  13. Efficient photoinduced orthogonal energy and electron transfer reactions via phospholipid membrane-bound donors and acceptors

    SciTech Connect

    Clapp, P.J.; Armitage, B.; Roosa, P.; O'Brien, D.F. )

    1994-10-05

    A three component, liposome-bound photochemical molecular device (PMD) consisting of energy and electron transfer reactions is described. Bilayer membrane surface-associated dyes, 5,10,15,20-tetrakis[4-(trimethylammonio)-phenyl]-21H,2 3H-porphine tetra-p-tosylate salt and N,N[prime]-bis[(3-trimethylammonio)propyl]thiadicarbocya nine tribromide, are the energy donor and acceptor, respectively, in a blue light stimulated energy transfer reaction along the vesicle surface. The electronically excited cyanine is quenched by electron transfer from the phospholipid membrane bound triphenylbenzyl borate anion, which is located in the lipid bilayer interior. The PMD exhibits sequential reactions following electronic excitation with the novel feature that the steps proceed with orthogonal orientation: energy transfer occurs parallel to the membrane surface, and electron transfer occurs perpendicular to the surface. Photobleaching and fluorescence quenching experiments verify the transfer reactions, and Stern-Volmer analysis was used to estimate the reaction rate constants. At the highest concentrations examined of energy and electron acceptor ca. 60% of the photoexcited porphyrins were quenched by energy transfer to the cyanine. 56 refs., 6 figs., 3 tabs.

  14. Characterization of U(VI) reduction in contaminated sediments with slow-degrading electron donor source

    NASA Astrophysics Data System (ADS)

    Wu, W.; Watson, D. B.; Zhang, G.; Mehlhorn, T.; Lowe, K.; Earles, J.; Phillips, J.; Kelly, S. D.; Boyanov, M.; Kemner, K. M.; Schadt, C.; Criddle, C. S.; Jardine, P. M.; Brooks, S. C.

    2011-12-01

    In order to select sustainable, high efficiency and cost effective electron donor source, oleate and emulsified vegetable oil (EVO) were tested uranium (VI) reduction in comparison with ethanol in microcosms using uranium contaminated sediments and groundwater from the US DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) site. The effect of initial sulfate concentration on U(VI) reduction was also tested. Both oleate and EVO were effective electron donor sources for U(VI) reduction. Accumulation of acetate as a major product and the removal of aqueous U(VI) were observed and were associated with sulfate reduction. Both oleate and EVO supported U(VI) reduction but at slower rates with a comparable but slightly lower extent of reduction than ethanol. X-ray absorption near-edge spectroscopy (XANES) analysis confirmed reduction of U(VI) to U(IV). The extent of U(VI) reduction in solid phase was negatively influenced by aqueous calcium concentration. The majority of electrons of the three substrates were consumed by sulfate reduction, Fe(III) reduction, and methanogenesis. Initial U(VI) concentration in the aqueous phase increased with increased sulfate concentration (1 versus 5 mM), likely due to U(VI) desorption from the solid phase. At the higher initial sulfate concentration more U(VI) was reduced and fewer electrons were used in methanogenesis. Analysis of bacterial and archeal populations using 16S rRNA gene libraries showed a significant increase in Deltaproteobacteria after biostimulation. The microbial community structures developed with oleate and EVO were significantly distinct from those developed with ethanol. Bacteria similar to Desulforegula spp. was predominant for oleate and EVO degradation but were not observed in ethanol-amended microcosms. Known U(VI)-reducing bacteria in the microcosms amended with the three electron donor sources included iron(III) reducing Geobacter spp. but in lower abundances than sulfate-reducing Desulfovibrio spp. The

  15. Spectral Fine Tuning of Cyanine Dyes: Electron Donor-Acceptor Substituted Analogues of Thiazole Orange†

    PubMed Central

    Rastede, Elizabeth E.; Tanha, Matteus; Yaron, David; Watkins, Simon C.; Waggoner, Alan S.; Armitage, Bruce A.

    2015-01-01

    The introduction of electron donor and acceptor groups at strategic locations on a fluorogenic cyanine dye allows fine-tuning of the absorption and emission spectra while preserving the ability of the dye to bind to biomolecular hosts such as double-stranded DNA and a single-chain antibody fragment originally selected for binding to the parent unsubstituted dye, thiazole orange (TO). The observed spectral shifts are consistent with calculated HOMO-LUMO energy gaps and reflect electron density localization on the quinoline half of TO in the LUMO. A dye bearing donating methoxy and withdrawing trifluoromethyl groups on the benzothiazole and quinoline rings, respectively, shifts the absorption spectrum to sufficiently longer wavelengths to allow excitation at green wavelengths as opposed to the parent dye, which is optimally excited in the blue. PMID:26171668

  16. Spectral fine tuning of cyanine dyes: electron donor-acceptor substituted analogues of thiazole orange.

    PubMed

    Rastede, Elizabeth E; Tanha, Matteus; Yaron, David; Watkins, Simon C; Waggoner, Alan S; Armitage, Bruce A

    2015-09-26

    The introduction of electron donor and acceptor groups at strategic locations on a fluorogenic cyanine dye allows fine-tuning of the absorption and emission spectra while preserving the ability of the dye to bind to biomolecular hosts such as double-stranded DNA and a single-chain antibody fragment originally selected for binding to the parent unsubstituted dye, thiazole orange (TO). The observed spectral shifts are consistent with calculated HOMO-LUMO energy gaps and reflect electron density localization on the quinoline half of TO in the LUMO. A dye bearing donating methoxy and withdrawing trifluoromethyl groups on the benzothiazole and quinoline rings, respectively, shifts the absorption spectrum to sufficiently longer wavelengths to allow excitation at green wavelengths as opposed to the parent dye, which is optimally excited in the blue. PMID:26171668

  17. Microbial perchlorate reduction with elemental sulfur and other inorganic electron donors.

    PubMed

    Ju, Xiumin; Sierra-Alvarez, Reyes; Field, Jim A; Byrnes, David J; Bentley, Harold; Bentley, Richard

    2008-03-01

    ClO(4)(-) has recently been recognized as a widespread contaminant of surface and ground water. This research investigated chemolithotrophic perchlorate reduction by bacteria in soils and sludges utilizing inorganic electron-donating substrates such as hydrogen, elemental iron, and elemental sulfur. The bioassays were performed in anaerobic serum bottles with various inocula from anaerobic or aerobic environments. All the tested sludge inocula were capable of reducing perchlorate with H2 as electron donor. Aerobic activated sludge was evaluated further and it supported perchlorate reduction with Fe(0) and S(0) additions under anaerobic conditions. Heat-killed sludge did not convert ClO(4)(-), confirming the reactions were biologically catalyzed. ClO(4)(-) (3mM) was almost completely removed by the first sampling time on d 8 with H2 (> or = 0.37mMd(-1)), after 22d with S(0) (0.18mM d(-1)) and 84% removed after 37d with Fe(0) additions (0.085mMd(-1)). Perchlorate-reduction occurred at a much faster rate (1.12mMd(-1)), when using an enrichment culture developed from the activated sludge with S(0) as an electron donor. The enrichment culture also utilized S(2-) and S(2)O(3)(2-) as electron-donating substrates to support ClO(4)(-) reduction. The mixed cultures also catalyzed the disproportionation of S(0) to S(2-) and SO(4)(2-). Evidence is presented demonstrating that S(0) was directly utilized by microorganisms to support perchlorate-reduction. In all the experiments, ClO(4)(-) was stoichiometrically converted to chloride. The study demonstrates that microorganisms present in wastewater sludges can readily use a variety of inorganic compounds to support perchlorate reduction. PMID:17988714

  18. Isolation of Acetogenic Bacteria That Induce Biocorrosion by Utilizing Metallic Iron as the Sole Electron Donor

    PubMed Central

    Yumoto, Isao; Kamagata, Yoichi

    2014-01-01

    Corrosion of iron occurring under anoxic conditions, which is termed microbiologically influenced corrosion (MIC) or biocorrosion, is mostly caused by microbial activities. Microbial activity that enhances corrosion via uptake of electrons from metallic iron [Fe(0)] has been regarded as one of the major causative factors. In addition to sulfate-reducing bacteria and methanogenic archaea in marine environments, acetogenic bacteria in freshwater environments have recently been suggested to cause MIC under anoxic conditions. However, no microorganisms that perform acetogenesis-dependent MIC have been isolated or had their MIC-inducing mechanisms characterized. Here, we enriched and isolated acetogenic bacteria that induce iron corrosion by utilizing Fe(0) as the sole electron donor under freshwater, sulfate-free, and anoxic conditions. The enriched communities produced significantly larger amounts of Fe(II) than the abiotic controls and produced acetate coupled with Fe(0) oxidation prior to CH4 production. Microbial community analysis revealed that Sporomusa sp. and Desulfovibrio sp. dominated in the enrichments. Strain GT1, which is closely related to the acetogen Sporomusa sphaeroides, was eventually isolated from the enrichment. Strain GT1 grew acetogenetically with Fe(0) as the sole electron donor and enhanced iron corrosion, which is the first demonstration of MIC mediated by a pure culture of an acetogen. Other well-known acetogenic bacteria, including Sporomusa ovata and Acetobacterium spp., did not grow well on Fe(0). These results indicate that very few species of acetogens have specific mechanisms to efficiently utilize cathodic electrons derived from Fe(0) oxidation and induce iron corrosion. PMID:25304512

  19. Understanding the charge-transfer phenomena between prototypical electron-donors and acceptors: TTF-TCNQ as an example

    NASA Astrophysics Data System (ADS)

    Park, Changwon; Atalla, Viktor; Smith, Sean; Yoon, Mina

    2014-03-01

    It is widely accepted that the charge transfer between the conventional electron donor and acceptor molecules is independent of their relative configurations and electrons are always transferred from the molecule with the lower ionization potential, the electron-donor, to the high electron affinity molecule, the electron-acceptor. Conventional first-principles density functional theory (DFT) supports this conclusion. However, the computational results are dominated by a term in the DFT exchange-correlation functional, which often results in qualitatively and quantitatively wrong conclusion due to an artifact. In our study of prototypical electron donor-acceptor molecules, TTF-TCNQ, we show that the conventional electronic picture is not valid and the relative orientation between TTF and TCNQ is equally important as the electronic structure of the individual molecules. Our results show that the current understanding of the donor-acceptor interaction and charge transfer mechanism has to be modified. This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy.

  20. A hybrid electron donor comprising cyclopentadithiophene and dithiafulvenyl for dye-sensitized solar cells

    PubMed Central

    Sorohhov, Gleb; Yi, Chenyi; Grätzel, Michael; Decurtins, Silvio

    2015-01-01

    Summary Two new photosensitizers featured with a cyanoacrylic acid electron acceptor (A) and a hybrid electron donor (D) of cyclopentadithiophene and dithiafulvenyl, either directly linked or separated by a phenyl ring, were synthesized and characterized. Both of them undergo two reversible oxidations and strongly absorb in the visible spectral region due to a photo-induced intramolecular charge-transfer (ICT) transition. To a great extent, the electronic interaction between the D and A units is affected by the presence of a phenyl spacer. Without a phenyl ring, the D unit appears more difficult to oxidize due to a strong electron-withdrawing effect of the A moiety. In sharp contrast, the insertion of the phenyl ring between the D and A units leads to a broken π-conjugation and therefore, the oxidation potentials remain almost unchanged compared to those of an analogue without the A group, suggesting that the electronic coupling between D and A units is relatively weak. As a consequence, the lowest-energy absorption band shows a slight hypsochromic shift upon the addition of the phenyl spacer, indicative of an increased HOMO–LUMO gap. In turn, the direct linkage of D and A units leads to an effective π-conjugation, thus substantially lowering the HOMO–LUMO gap. Moreover, the application in dye-sensitized solar cells was investigated, showing that the power conversion efficiency increases by the insertion of the phenyl unit. PMID:26199660

  1. Chemostat Studies of TCE-Dehalogenating Anaerobic Consortia under Excess and Limited Electron Donor Addition

    NASA Astrophysics Data System (ADS)

    Semprini, L.; Azizian, M.; Green, J.; Mayer-Blackwell, K.; Spormann, A. M.

    2015-12-01

    Two cultures - the Victoria Strain (VS) and the Evanite Strain (EV), enriched with the organohalide respiring bacteria Dehalococcoides mccartyi - were grown in chemostats for more than 4 years at a mean cell residence time of 50 days. The slow doubling rate represents growth likely experienced in the subsurface. The chemostats were fed formate as an electron donor and trichloroethene (TCE) as the terminal electron acceptor. Under excess formate conditions, stable operation was observed with respect to TCE transformation, steady-state hydrogen (H2) concentrations (40 nM), and the structure of the dehalogenating community. Both cultures completely transformed TCE to ethene, with minor amounts of vinyl chloride (VC) observed, along with acetate formation. When formate was limited, TCE was transformed incompletely to ethene (40-60%) and VC (60- 40%), and H2 concentrations ranged from 1 to 3 nM. The acetate concentration dropped below detection. Batch kinetic studies of TCE transformation with chemostat harvested cells found transformation rates of c-DCE and VC were greatly reduced when the cells were grown with limited formate. Upon increasing formate addition to the chemostats, from limited to excess, essentially complete transformation of TCE to ethene was achieved. The increase in formate was associated with an increase in H2 concentration and the production of acetate. Results of batch kinetic tests showed increases in transformation rates for TCE and c-DCE by factors of 3.5 and 2.5, respectively, while VC rates increased by factors of 33 to 500, over a six month period. Molecular analysis of chemostat samples is being performed to quantify the changes in copy numbers of reductase genes and to determine whether shifts in the strains of Dehalococcoides mccartyi where responsible for the observed rate increases. The results demonstrate the importance of electron donor supply for successful in-situ remediation.

  2. Application of acetate, lactate, and fumarate as electron donors in microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Vasyliv, Oresta M.; Bilyy, Oleksandr I.; Ferensovych, Yaroslav P.; Hnatush, Svitlana O.

    2013-09-01

    Microbial fuel cells (MFCs) are devices that use bacteria as the catalysts to oxidize organic and inorganic matter and generate current. Up to now, several classes of extracellular electron transfer mechanisms have been elucidated for various microorganisms. Shewanellaceae and Geobacteraceae families include the most of model exoelectrogenic microorganisms. Desulfuromonas acetoxidans bacterium inhabits aquatic sedimental sulfur-containing environments and is philogenetically close to representatives of Geobacteraceae family. Two chamber microbial fuel cell (0.3 l volume) was constructed with application of D. acetoxidans IMV B-7384 as anode biocatalyst. Acetic, lactic and fumaric acids were separately applied as organic electron donors for bacterial growth in constructed MFC. Bacterial cultivation in MFC was held during twenty days. Lactate oxidation caused electric power production with the highest value up to 0.071 mW on 64 hour of D. acetoxidans IMV B-7384 growth. Addition of acetic and fumaric acids into bacterial growth medium caused maximal power production up to 0.075 and 0.074 mW respectively on the 40 hour of their growth. Increasing of incubation time up to twentieth day caused decrease of generated electric power till 0.018 mW, 0.042 mW and 0.047 mW under usage of lactic, acetic and fumaric acids respectively by investigated bacteria. Power generation by D. acetoxidans IMV B-7384 was more stabile and durable under application of acetic and fumaric acids as electron donors in constructed MFC, than under addition of lactic acid in the same concentration into the growth medium.

  3. Tuning Optical and Electron Donor Properties by Peripheral Thio-Aryl Substitution of Subphthalocyanine: A New Series of Donor-Acceptor Hybrids for Photoinduced Charge Separation.

    PubMed

    Kc, Chandra B; Lim, Gary N; D'Souza, Francis

    2016-09-01

    Subphthalocyanine (SubPc), a unique ring-reduced member of the common phthalocyanines family, although known for its higher absorptivity, reveals narrow absorption with peak maxima around 570 nm thus limiting its utility in light-energy-harvesting applications. In the present study, by peripheral thio-aryl substitution of SubPc macrocycle, the spectral properties have been modulated to extend the absorption and emission well into the visible/near-IR region. Additionally, for α-ring-substituted derivatives, facile oxidation of SubPc was witnessed, thus making these derivatives better electron donors. Next, the preparation of donor-acceptor dyads containing the well-known electron acceptor C60 connected to the central boron atom of SubPc was accomplished by making use of the 1,3-dipolar cycloaddition reaction. Control experiments and free-energy calculations using the redox and spectral data suggested that the observed fluorescence quenching of SubPc in these dyads is due to electron transfer. Accordingly, transient spectral studies performed both in polar and nonpolar solvents conclusively proved electron transfer to be the quenching mechanism in these dyads. The measured rate constants by fitting kinetic data revealed efficient charge separation and charge recombination processes, suggesting that these dyads could be useful materials for the construction of light-to-electricity or light-to-fuel production devices. PMID:27515576

  4. Influence of Electron Donor Type and Concentration on Microbial Population Structure During Uranium Reduction and Remobilization

    NASA Astrophysics Data System (ADS)

    Daly, R. A.; Brodie, E. L.; Kim, Y.; Wan, J.; Tokunaga, T.; Desantis, T. Z.; Andersen, G. L.; Hazen, T. C.; Firestone, M. K.

    2007-12-01

    Enhanced reductive precipitation of U(VI) through stimulation of indigenous microorganisms is an attractive, low- cost strategy for in-situ remediation of contaminated groundwaters and sediments. The rate of organic carbon (OC) supply determines not only the amount of electron donor available for bioreduction of U(VI), but also affects the resulting concentration of aqueous (bi)carbonate generated by microbial respiration. Increased (bi)carbonate concentrations drive aqueous U(VI) concentrations to higher levels and make U(IV) oxidation under reducing conditions favorable. We designed a long-term column study to investigate the effects of different OC forms and supply rates on the stability of bioreduced U and on the structure and dynamics of the microbial communities. OC was supplied as acetate or lactate at four different concentrations and columns were sampled at three time points. In the columns receiving high OC supply the time points correspond to a phases of net U-reduction, U(IV) reoxidation and U(VI) remobilization, and stable levels of U mobilization. DNA was extracted from column sediments, 16S rRNA genes were amplified and the communities analyzed using a high-density phylogenetic microarray (PhyloChip). Lactate and acetate supplied at equivalent rates had a similar impact on uranium mobility with higher OC resulting in re-oxidation of U(IV) after an initial period of U(VI) reduction. Similarly, organic carbon (OC) supply rate, not OC form, had the largest impact on microbial community structure. The diversity (richness) of bacterial and archaeal communities increased over time with those receiving lactate having higher initial richness. Known U-reducing bacteria were present in all columns and time points, however the dynamics of these organisms varied with both organic carbon supply rate and form. This data demonstrates that the initial rate of electron donor supply during heavy metal remediation strongly impacts microbial community development

  5. 2010 Electron Donor-Acceptor Interactions Gordon Research Conference, August 8 - 13, 2010.

    SciTech Connect

    Gerald Meyer

    2010-08-18

    The Gordon Research Conference on Electron Donor Acceptor Interactions (GRC EDAI) presents and advances the current frontiers in experimental and theoretical studies of Electron Transfer Processes and Energy Conversion. The fundamental concepts underpinning the field of electron transfer and charge transport phenomena are understood, but fascinating experimental discoveries and novel applications based on charge transfer processes are expanding the discipline. Simultaneously, global challenges for development of viable and economical alternative energy resources, on which many researchers in the field focus their efforts, are now the subject of daily news headlines. Enduring themes of this conference relate to photosynthesis, both natural and artificial, and solar energy conversion. More recent developments include molecular electronics, optical switches, and nanoscale charge transport structures of both natural (biological) and man-made origin. The GRC EDAI is one of the major international meetings advancing this field, and is one of the few scientific meetings where fundamental research in solar energy conversion has a leading voice. The program includes sessions on coupled electron transfers, molecular solar energy conversion, biological and biomimetic systems, spin effects, ultrafast reactions and technical frontiers as well as electron transport in single molecules and devices. In addition to disseminating the latest advances in the field of electron transfer processes, the conference is an excellent forum for scientists from different disciplines to meet and initiate new directions; for scientists from different countries to make contacts; for young scientists to network and establish personal contacts with other young scientists and with established scientists who, otherwise, might not have the time to meet young people. The EDAI GRC also features an interactive atmosphere with lively poster sessions, a few of which are selected for oral presentations.

  6. Tuning the Electronic Coupling and Electron Transfer in Mo2 Donor-Acceptor Systems by Variation of the Bridge Conformation.

    PubMed

    Kang, Mei Ting; Meng, Miao; Tan, Ying Ning; Cheng, Tao; Liu, Chun Y

    2016-02-24

    Assembling two quadruply bonded dimolybdenum units [Mo2 (DAniF)3 ](+) (DAniF=N,N'-di(p-anisyl)formamidinate) with 1,4-naphthalenedicarboxylate and its thiolated derivatives produced three complexes [{Mo2 (DAniF)3 }2 (μ-1,4-O2 CC10 H6 CO2 )], [{Mo2 (DAniF)3 }2 (μ-1,4-OSCC10 H6 COS)], and [{Mo2 (DAniF)3 }2 (μ-1,4-S2 CC10 H6 CS2 )]. In the X-ray structures, the naphthalene bridge deviates from the plane defined by the two Mo-Mo bond vectors with the torsion angle increasing as the chelating atoms of the bridging ligand vary from O to S. The mixed-valent species exhibit intervalence transition absorption bands with high energy and very low intensity. In comparison with the data for the phenylene analogues, the optically determined electronic coupling matrix elements (Hab =258-345 cm(-1) ) are lowered by a factor of two or more, and the electron-transfer rate constants (ket ≈10(11)  s(-1) ) are reduced by about one order of magnitude. These results show that, when the electron-transporting ability of the bridge and electron-donating (electron-accepting) ability of the donor (acceptor) are both variable, the former plays a dominant role in controlling the intramolecular electron transfer. DFT calculations revealed that increasing the torsion angle enlarges the HOMO-LUMO energy gap by elevating the (bridging) ligand-based LUMO energy. Therefore, our experimental results and theoretical analyses verify the superexchange mechanism for electronic coupling and electron transfer. PMID:26807909

  7. Stibinidene and Bismuthinidene as Two-Electron Donors for Transition Metals (Co and Mn).

    PubMed

    Vránová, Iva; Alonso, Mercedes; Jambor, Roman; Růžička, Aleš; Erben, Milan; Dostál, Libor

    2016-05-23

    The reaction of stibinidene and bismuthinidene ArM [where Ar=C6 H3 -2,6-(CH=NtBu)2 ; M=Sb (1), Bi (2)] with transition metal (TM) carbonyls Co2 (CO)8 and Mn2 (CO)10 produced unprecedented ionic complexes [(ArM)2 Co(CO)3 ](+) [Co(CO)4 ](-) and [(ArM)2 Mn(CO)4 ](+) [Mn(CO)5 ](-) [where M=Sb (3, 5), Bi (4, 6)]. The pnictinidenes 1 and 2 behaved as two-electron donors in this set of compounds. Besides the M→TM bonds, the topological analysis also revealed a number of secondary interactions contributing to the stabilization of cationic parts of titled complexes. PMID:26994732

  8. An unconventional halogen bond with carbene as an electron donor: An ab initio study

    NASA Astrophysics Data System (ADS)

    Li, Qingzhong; Wang, Yilei; Liu, Zhenbo; Li, Wenzuo; Cheng, Jianbo; Gong, Baoan; Sun, Jiazhong

    2009-02-01

    An unconventional halogen bond has been proved to exist in H2C-BrH complex. The halogen bond energy of H2C-BrH complex is calculated at four levels of theory [MP2, MP4, CCSD, and CCSD(T)]. The result shows that the carbene is a better electron donor. The substitution effect is prominent in this interaction. For example, the interaction energy in H2C-BrCN complex is increased by more than 300% relative to H2C-BrH complex. The analyses of NBO, AIM, and energy components were used to unveil the nature of the interaction. The results show that this novel halogen bond has similar characteristics to hydrogen bonds.

  9. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration.

    PubMed

    Coates, John D; Cole, Kimberly A; Chakraborty, Romy; O'Connor, Susan M; Achenbach, Laurie A

    2002-05-01

    Previous studies have demonstrated that reduced humic substances (HS) can be reoxidized by anaerobic bacteria such as Geobacter, Geothrix, and Wolinella species with a suitable electron acceptor; however, little is known of the importance of this metabolism in the environment. Recently we investigated this metabolism in a diversity of environments including marine and aquatic sediments, forest soils, and drainage ditch soils. Most-probable-number enumeration studies were performed using 2,6-anthrahydroquinone disulfonate (AHDS), an analog for reduced HS, as the electron donor with nitrate as the electron acceptor. Anaerobic organisms capable of utilizing reduced HS as an electron donor were found in all environments tested and ranged from a low of 2.31 x 10(1) in aquifer sediments to a high of 9.33 x 10(6) in lake sediments. As part of this study we isolated six novel organisms capable of anaerobic AHDS oxidation. All of the isolates coupled the oxidation of AHDS to the reduction of nitrate with acetate (0.1 mM) as the carbon source. In the absence of cells, no AHDS oxidation was apparent, and in the absence of AHDS, no cell density increase was observed. Generally, nitrate was reduced to N(2). Analysis of the AHDS and its oxidized form, 2,6-anthraquinone disulfonate (AQDS), in the medium during growth revealed that the anthraquinone was not being biodegraded as a carbon source and was simply being oxidized as an energy source. Determination of the AHDS oxidized and nitrate reduced accounted for 109% of the theoretical electron transfer. In addition to AHDS, all of these isolates could also couple the oxidation of reduced humic substances to the reduction of nitrate. No HS oxidation occurred in the absence of cells and in the absence of a suitable electron acceptor, demonstrating that these organisms were capable of utilizing natural HS as an energy source and that AHDS serves as a suitable analog for studying this metabolism. Alternative electron donors included

  10. Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp.

    NASA Astrophysics Data System (ADS)

    Sim, Min Sub; Ono, Shuhei; Donovan, Katie; Templer, Stefanie P.; Bosak, Tanja

    2011-08-01

    Sulfur isotope effects produced by microbial dissimilatory sulfate reduction are used to reconstruct the coupled cycling of carbon and sulfur through geologic time, to constrain the evolution of sulfur-based metabolisms, and to track the oxygenation of Earth's surface. In this study, we investigate how the coupling of carbon and sulfur metabolisms in batch and continuous cultures of a recently isolated marine sulfate reducing bacterium DMSS-1, a Desulfovibrio sp ., influences the fractionation of sulfur isotopes. DMSS-1 grown in batch culture on seven different electron donors (ethanol, glycerol, fructose, glucose, lactate, malate and pyruvate) fractionates 34S/ 32S ratio from 6‰ to 44‰, demonstrating that the fractionations by an actively growing culture of a single incomplete oxidizing sulfate reducing microbe can span almost the entire range of previously reported values in defined cultures. The magnitude of isotope effect correlates well with cell specific sulfate reduction rates (from 0.7 to 26.1 fmol/cell/day). DMSS-1 grown on lactate in continuous culture produces a larger isotope effect (21-37‰) than the lactate-grown batch culture (6‰), indicating that the isotope effect also depends on the supply rate of the electron donor and microbial growth rate. The largest isotope effect in continuous culture is accompanied by measurable changes in cell length and cellular yield that suggest starvation. The use of multiple sulfur isotopes in the model of metabolic fluxes of sulfur shows that the loss of sulfate from the cell and the intracellular reoxidation of reduced sulfur species contribute to the increase in isotope effects in a correlated manner. Isotope fractionations produced during sulfate reduction in the pure culture of DMSS-1 expand the previously reported range of triple sulfur isotope effects ( 32S, 33S, and 34S) by marine sulfate reducing bacteria, implying that microbial sulfur disproportionation may have a smaller 33S isotopic fingerprint

  11. Complete perchlorate reduction using methane as the sole electron donor and carbon source.

    PubMed

    Luo, Yi-Hao; Chen, Ran; Wen, Li-Lian; Meng, Fan; Zhang, Yin; Lai, Chun-Yu; Rittmann, Bruce E; Zhao, He-Ping; Zheng, Ping

    2015-02-17

    Using a CH4-based membrane biofilm reactor (MBfR), we studied perchlorate (ClO4(-)) reduction by a biofilm performing anaerobic methane oxidation coupled to denitrification (ANMO-D). We focused on the effects of nitrate (NO3(-)) and nitrite (NO2(-)) surface loadings on ClO4(-) reduction and on the biofilm community's mechanism for ClO4(-) reduction. The ANMO-D biofilm reduced up to 5 mg/L of ClO4(-) to a nondetectable level using CH4 as the only electron donor and carbon source when CH4 delivery was not limiting; NO3(-) was completely reduced as well when its surface loading was ≤ 0.32 g N/m(2)-d. When CH4 delivery was limiting, NO3(-) inhibited ClO4(-) reduction by competing for the scarce electron donor. NO2(-) inhibited ClO4(-) reduction when its surface loading was ≥ 0.10 g N/m(2)-d, probably because of cellular toxicity. Although Archaea were present through all stages, Bacteria dominated the ClO4(-)-reducing ANMO-D biofilm, and gene copies of the particulate methane mono-oxygenase (pMMO) correlated to the increase of respiratory gene copies. These pieces of evidence support that ClO4(-) reduction by the MBfR biofilm involved chlorite (ClO2(-)) dismutation to generate the O2 needed as a cosubstrate for the mono-oxygenation of CH4. PMID:25594559

  12. Donor ionization in size controlled silicon nanocrystals: The transition from defect passivation to free electron generation

    NASA Astrophysics Data System (ADS)

    Crowe, I. F.; Papachristodoulou, N.; Halsall, M. P.; Hylton, N. P.; Hulko, O.; Knights, A. P.; Yang, P.; Gwilliam, R. M.; Shah, M.; Kenyon, A. J.

    2013-01-01

    We studied the photoluminescence spectra of silicon and phosphorus co-implanted silica thin films on (100) silicon substrates as a function of isothermal annealing time. The rapid phase segregation, formation, and growth dynamics of intrinsic silicon nanocrystals are observed, in the first 600 s of rapid thermal processing, using dark field mode X-TEM. For short annealing times, when the nanocrystal size distribution exhibits a relatively small mean diameter, formation in the presence of phosphorus yields an increase in the luminescence intensity and a blue shift in the emission peak compared with intrinsic nanocrystals. As the mean size increases with annealing time, this enhancement rapidly diminishes and the peak energy shifts further to the red than the intrinsic nanocrystals. These results indicate the existence of competing pathways for the donor electron, which depends strongly on the nanocrystal size. In samples containing a large density of relatively small nanocrystals, the tendency of phosphorus to accumulate at the nanocrystal-oxide interface means that ionization results in a passivation of dangling bond (Pb-centre) type defects, through a charge compensation mechanism. As the size distribution evolves with isothermal annealing, the density of large nanocrystals increases at the expense of smaller nanocrystals, through an Ostwald ripening mechanism, and the majority of phosphorus atoms occupy substitutional lattice sites within the nanocrystals. As a consequence of the smaller band-gap, ionization of phosphorus donors at these sites increases the free carrier concentration and opens up an efficient, non-radiative de-excitation route for photo-generated electrons via Auger recombination. This effect is exacerbated by an enhanced diffusion in phosphorus doped glasses, which accelerates silicon nanocrystal growth.

  13. Denitrification potential in stream sediments impacted by acid mine drainage: effects of pH, various electron donors, and iron.

    PubMed

    Baeseman, J L; Smith, R L; Silverstein, J

    2006-02-01

    Acid mine drainage (AMD) contaminates thousands of kilometers of stream in the western United States. At the same time, nitrogen loading to many mountain watersheds is increasing because of atmospheric deposition of nitrate and increased human use. Relatively little is known about nitrogen cycling in acidic, heavy-metal-laden streams; however, it has been reported that one key process, denitrification, is inhibited under low pH conditions. The objective of this research was to investigate the capacity for denitrification in acidified streams. Denitrification potential was assessed in sediments from several Colorado AMD-impacted streams, ranging from pH 2.60 to 4.54, using microcosm incubations with fresh sediment. Added nitrate was immediately reduced to nitrogen gas without a lag period, indicating that denitrification enzymes were expressed and functional in these systems. First-order denitrification potential rate constants varied from 0.046 to 2.964 day(-1). The pH of the microcosm water increased between 0.23 and 1.49 pH units during denitrification. Additional microcosm studies were conducted to examine the effects of initial pH, various electron donors, and iron (added as ferrous and ferric iron). Decreasing initial pH decreased denitrification; however, increasing pH had little effect on denitrification rates. The addition of ferric and ferrous iron decreased observed denitrification potential rate constants. The addition of glucose and natural organic matter stimulated denitrification potential. The addition of hydrogen had little effect, however, and denitrification activity in the microcosms decreased after acetate addition. These results suggest that denitrification can occur in AMD streams, and if stimulated within the environment, denitrification might reduce acidity. PMID:16463131

  14. Denitrification potential in stream sediments impacted by acid mine drainage: Effects of pH, various electron donors, and iron

    USGS Publications Warehouse

    Baeseman, J.L.; Smith, R.L.; Silverstein, J.

    2006-01-01

    Acid mine drainage (AMD) contaminates thousands of kilometers of stream in the western United States. At the same time, nitrogen loading to many mountain watersheds is increasing because of atmospheric deposition of nitrate and increased human use. Relatively little is known about nitrogen cycling in acidic, heavy-metal-laden streams; however, it has been reported that one key process, denitrification, is inhibited under low pH conditions. The objective of this research was to investigate the capacity for denitrification in acidified streams. Denitrification potential was assessed in sediments from several Colorado AMD-impacted streams, ranging from pH 2.60 to 4.54, using microcosm incubations with fresh sediment. Added nitrate was immediately reduced to nitrogen gas without a lag period, indicating that denitrification enzymes were expressed and functional in these systems. First-order denitrification potential rate constants varied from 0.046 to 2.964 day-1. The pH of the microcosm water increased between 0.23 and 1.49 pH units during denitrification. Additional microcosm studies were conducted to examine the effects of initial pH, various electron donors, and iron (added as ferrous and ferric iron). Decreasing initial pH decreased denitrification; however, increasing pH had little effect on denitrification rates. The addition of ferric and ferrous iron decreased observed denitrification potential rate constants. The addition of glucose and natural organic matter stimulated denitrification potential. The addition of hydrogen had little effect, however, and denitrification activity in the microcosms decreased after acetate addition. These results suggest that denitrification can occur in AMD streams, and if stimulated within the environment, denitrification might reduce acidity. ?? Springer Science+Business Media, Inc. 2006.

  15. The Nature of the Donor Motif in Acceptor-Bridge-Donor Dyes as an Influence in the Electron Photo-Injection Mechanism in DSSCs.

    PubMed

    Zarate, Ximena; Schott-Verdugo, Stephan; Rodriguez-Serrano, Angela; Schott, Eduardo

    2016-03-10

    The combination and balance of acceptor(A)-bridge-donor(D) architecture of molecules confer suitable attributes and/or properties to act as efficient light-harvesting and sensitizers in dye sensitized solar cells (DSSCs). An important process in a DSSC performance is the electron photoinjection (PI) mechanism which can take place either via type I (indirect), that consists in injecting from the excited state of the dye to the semiconductor, or type II (direct), where the PI is from the ground state of the dye to the semiconductor upon photoexcitation. Here, we present a computational study about the role of the donor motif in the PI mechanisms displayed from a family of 11 A-bridge-D structured dyes to a (TiO2)15 anatase cluster. To this end, different donor motifs (D1-D11) were evaluated while the A and bridge motifs remained the same. All the computations were carried out within the DFT framework, using the B3LYP, PW91, PBE, M06L and CAM-B3LYP functionals. The 6-31G(d) basis set was employed for nonmetallic atoms and the LANL2DZ pseudopotential for Ti atoms. The solvation effects were incorporated using the polarized continuum model (PCM) for acetonitrile. As benchmark systems, alizarin and naphthalenediol dyes were analyzed, as they are known to undergo Type I and Type II PI pathways in DSSCs, respectively. Donors in the studied family of dyes could influence to drive Type I or II PI since it was found that D2 could show some Type II PI route, showing a new absorption band, although with CAM-B3LYP this shows a very low oscillator strength, while the remaining dyes behave according to Type I photoinjectors. Finally, the photovoltaic parameters that govern the light absorption process were evaluated, as the use of these criteria could be applied to predict the efficiency of the studied dyes in DSSCs devices. PMID:26900717

  16. Theory and computational modeling: Medium reorganization and donor/acceptor coupling in electron transfer processes

    SciTech Connect

    Newton, M.D.; Feldberg, S.W.; Smalley, J.F.

    1998-03-01

    The continuing goal is to convert the rapidly accumulating mechanistic information about electron transfer (et) kinetics (often representable in terms of simple rate constants) into precise tools for fine-tuned control of the kinetics and for design of molecular-based systems which meet specified et characteristics. The present treatment will be limited to the kinetic framework defined by the assumption of transition state theory (TST). The primary objective of this paper is to report recent advances in the theoretical formulation, calculation, and analysis of energetics and electronic coupling pertinent to et in complex molecular aggregates. The control of et kinetics (i.e., enhancing desired processes, while inhibiting others) involves, of course, both system energetics (especially reorganization energies (E{sub r}) and free energy changes ({Delta}G{sup 0})) and electronic coupling of local D and A sites, which for thermal processes is most directly relevant only after the system has reached the appropriate point (or region) along the reaction coordinate (i.e., the transition state). The authors first discuss TST rate constant models, emphasizing genetic features, but also noting some special features arising when metal electrodes are involved. They then turn to a consideration of detailed aspects of medium reorganization and donor/acceptor coupling. With these theoretical tools in hand, they examine the results of recent applications to complex molecular systems using the techniques of computational quantum chemistry and electrostatics, together with detailed analysis of the numerical results and comparison with recent electrochemical kinetic data.

  17. An artificial electron donor supported catalytic cycle of Pseudomonas putida cytochrome P450{sub cam}

    SciTech Connect

    Prasad, Swati . E-mail: swati@scripps.edu; Murugan, Rajamanickam; Mitra, Samaresh

    2005-09-23

    Putidaredoxin (PdX), the physiological effector of cytochrome P450{sub cam} (P450{sub cam}), serves to gate electron transfer into oxy-P450{sub cam} during the catalytic cycle of the enzyme. Redox-linked structural changes in PdX are necessary for the effective P450{sub cam} turnover reaction. PdX is believed to be difficult to be replaced by an artificial electron donor in the reaction pathway of P450{sub cam}. We demonstrate that the catalytic cycle of wild-type P450{sub cam} can be supported in the presence of an artificial reductant, potassium ferrocyanide. Upon rapid mixing of ferrocyanide ion with P450{sub cam}, we observed an intermediate with spectral features characteristic of compound I. The rate constant for the formation of compound I in the presence of ferrocyanide supported reaction cycle was found to be comparable to the ones observed for H{sub 2}O{sub 2} supported compound I formation in wild-type P450{sub cam}, but was much lower than those observed for classical peroxidases. The results presented in this paper form the first kinetic analysis of this intermediate for an artificial electron-driven P450{sub cam} catalytic pathway in solution.

  18. Self-assembly properties of semiconducting donor-acceptor-donor bithienyl derivatives of tetrazine and thiadiazole-effect of the electron accepting central ring.

    PubMed

    Zapala, Joanna; Knor, Marek; Jaroch, Tomasz; Maranda-Niedbala, Agnieszka; Kurach, Ewa; Kotwica, Kamil; Nowakowski, Robert; Djurado, David; Pecaut, Jacques; Zagorska, Malgorzata; Pron, Adam

    2013-11-26

    Scanning tunneling microscopy was used to study the effect of the electron-accepting unit and the alkyl substituent's position on the type and extent of 2D supramolecular organization of penta-ring donor-acceptor-donor (DAD) semiconductors, consisting of either tetrazine or thiadiazole central acceptor ring symmetrically attached to two bithienyl groups. Microscopic observations of monomolecular layers on HOPG of four alkyl derivatives of the studied adsorbates indicate significant differences in their 2D organizations. Ordered monolayers of thiadiazole derivatives are relatively loose and, independent of the position of alkyl substituents, characterized by large intermolecular separation of acceptor units in the adjacent molecules located in the face-to-face configuration. The 2D supramolecular architecture in both derivatives of thiadiazole is very sensitive to the alkyl substituent's position. Significantly different behavior is observed for derivatives of tetrazine (which is a stronger electron acceptor). Stronger intermolecular DA interactions in these adsorbates generate an intermolecular shift in the monolayer, which is a dominant factor determining the 2D structural organization. As a consequence of this molecular arrangement, tetrazine groups (A segments) face thiophene rings (D segments) of the neighboring molecules. Monolayers of tetrazine derivatives are therefore much more densely packed and characterized by similar π-stacking of molecules independently of the position of alkyl substituents. Moreover, a comparative study of 3D supramolecular organization, deduced from the X-ray diffraction patterns, is also presented clearly confirming the polymorphism of the studied adsorbates. PMID:24228736

  19. Analysis of electron donors in photosystems in oxygenic photosynthesis by photo-CIDNP MAS NMR.

    PubMed

    Najdanova, M; Janssen, G J; de Groot, H J M; Matysik, J; Alia, A

    2015-11-01

    Both photosystem I and photosystem II are considerably similar in molecular architecture but they operate at very different electrochemical potentials. The origin of the different redox properties of these RCs is not yet clear. In recent years, insight was gained into the electronic structure of photosynthetic cofactors through the application of photochemically induced dynamic nuclear polarization (photo-CIDNP) with magic-angle spinning NMR (MAS NMR). Non-Boltzmann populated nuclear spin states of the radical pair lead to strongly enhanced signal intensities that allow one to observe the solid-state photo-CIDNP effect from both photosystem I and II from isolated reaction center of spinach (Spinacia oleracea) and duckweed (Spirodela oligorrhiza) and from the intact cells of the cyanobacterium Synechocystis by (13)C and (15)N MAS NMR. This review provides an overview on the photo-CIDNP MAS NMR studies performed on PSI and PSII that provide important ingredients toward reconstruction of the electronic structures of the donors in PSI and PSII. PMID:26282679

  20. Electronic Structure of Hydrogen Donors in Semiconductors and Insulators Probed by Muon Spin Rotation

    NASA Astrophysics Data System (ADS)

    Shimomura, Koichiro; Ito, Takashi U.

    2016-09-01

    Hydrogen in semiconductors and insulators plays a crucial role in their electric conductivity. Substantial experimental and theoretical efforts have been made to establish this hypothesis in the last decade, and the muon spin rotation technique has played a pioneering role. Positive muons implanted into such low-carrier systems often form a muonium (an analogue of hydrogen, the bound state of a positive muon and an electron). Although its dynamical aspect may be different from the heavier hydrogen, the electronic structure of the muonium is expected to be identical to that of hydrogen after a small correction of the reduced mass (˜0.4%). Since the discovery of a shallow muonium in CdS, its properties have been intensively studied in many semiconductors and insulators, and then it was interpreted as a possible origin of n-type conductivity under the context of a classical shallow donor model. In this article, we will describe the principle of muonium experiments and survey recent achievements in this field.

  1. Theoretical study of the interaction of electron donor and acceptor molecules with monolayer WS2

    NASA Astrophysics Data System (ADS)

    Zhou, C. J.; Yang, W. H.; Wu, Y. P.; Lin, W.; Zhu, H. L.

    2015-07-01

    With the aim of understanding recent experimental data concerning molecular doping in WS2-based FET gas sensors, we have investigated the interaction of NH3 and H2O molecules with monolayer WS2, by means of first-principles calculations. The structural relaxations and total energy calculations are performed to determine the preferential binding configurations and it is found that both NH3 and H2O molecules are physisorbed on monolayer WS2. The Bader analysis combined with the plane-averaged differential charge density results indicate that NH3 acts as the electron donor, while H2O acts as the electron acceptor, leading to n- and p-type doping of WS2, respectively. The charge transfer mechanism is discussed in light of the mixing of the molecular highest occupied molecular orbital and lowest unoccupied molecular orbital with the underlying WS2 orbitals. In addition, the modification of the work function is found to be almost linearly dependent on the total charge transfer. The modification of the work function and the carrier concentration can be obtained by tuning the molecule coverages, without destroying the band structure of monolayer WS2. The electrical sensitivities to the gas adsorption make WS2 a gas sensor that promises wide-ranging applications.

  2. Reductive dechlorination of trichloroethene DNAPL source zones: source zone architecture versus electron donor availability

    NASA Astrophysics Data System (ADS)

    Krol, M.; Kokkinaki, A.; Sleep, B.

    2014-12-01

    The persistence of dense-non-aqueous-phase liquids (DNAPLs) in the subsurface has led practitioners and regulatory agencies to turn towards low-maintenance, low-cost remediation methods. Biological degradation has been suggested as a possible solution, based on the well-proven ability of certain microbial species to break down dissolved chlorinated ethenes under favorable conditions. However, the biodegradation of pure phase chlorinated ethenes is subject to additional constraints: the continuous release of electron acceptor at a rate governed by mass transfer kinetics, and the temporal and spatial heterogeneity of DNAPL source zones which leads to spatially and temporally variable availability of the reactants for reductive dechlorination. In this work, we investigate the relationship between various DNAPL source zone characteristics and reaction kinetics using COMPSIM, a multiphase groundwater model that considers non-equilibrium mass transfer and Monod-type kinetics for reductive dechlorination. Numerical simulations are performed for simple, homogeneous trichloroethene DNAPL source zones to demonstrate the effect of single source zone characteristics, as well as for larger, more realistic heterogeneous source zones. It is shown that source zone size, and mass transfer kinetics may have a decisive effect on the predicted bio-enhancement. Finally, we evaluate the performance of DNAPL bioremediation for realistic, thermodynamically constrained, concentrations of electron donor. Our results indicate that the latter may be the most important limitation for the success of DNAPL bioremediation, leading to reduced bio-enhancement and, in many cases, comparable performance with water flooding.

  3. Single-molecule interfacial electron transfer in donor-bridge-nanoparticle acceptor complexes.

    PubMed

    Jin, Shengye; Snoeberger, Robert C; Issac, Abey; Stockwell, David; Batista, Victor S; Lian, Tianquan

    2010-11-18

    Photoinduced interfacial electron transfer (IET) in sulforhodamine B (SRhB)-aminosilane-Tin oxide (SnO(2)) nanoparticle donor-bridge-acceptor complexes has been studied on a single molecule and ensemble average level. On both SnO(2) and ZrO(2), the sum of single molecule fluorescence decays agree with the ensemble average results, suggesting complete sampling of molecules under single molecule conditions. Shorter fluorescence lifetime on SnO(2) than on ZrO(2) is observed and attributed to IET from SRhB to SnO(2). Single molecule lifetimes fluctuate with time and vary among different molecules, suggesting both static and dynamic IET heterogeneity in this system. Computational modeling of the complexes shows a distribution of molecular conformation, leading to a distribution of electronic coupling strengths and ET rates. It is likely that the conversion between these conformations led to the fluctuation of ET rate and fluorescence lifetime on the single molecule level. PMID:20225886

  4. FdhTU-modulated formate dehydrogenase expression and electron donor availability enhance recovery of Campylobacter jejuni following host cell infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analysis of Campylobacter jejuni fdhTU reveals a role in formate dehydrogenase activity and implications for electron donor requirements during the pathogen-host cell interaction. Campylobacter jejuni is a foodborne bacterial pathogen which colonizes the intestinal tract and causes severe gastroent...

  5. Tuning the electronic coupling in a low-bandgap donor-acceptor copolymer via the placement of side-chains

    SciTech Connect

    Oberhumer, Philipp M.; Huang, Ya-Shih; Massip, Sylvain; Albert-Seifried, Sebastian; Greenham, Neil C.; Hodgkiss, Justin M.; Friend, Richard H.; James, David T.; Kim, Ji-Seon; Tu Guoli; Huck, Wilhelm T. S.; Beljonne, David; Cornil, Jerome

    2011-03-21

    We present a spectroscopic and theoretical investigation of the effect of the presence and position of hexyl side-chains in the novel low-bandgap alternating donor-acceptor copolymer poly[bis-N,N-(4-octylphenyl)-bis-N,N-phenyl-1, 4-phenylenediamine-alt-5,5'-4',7',-di-2-thienyl-2',1',3'-benzothiadiazole] (T8TBT). We use electronic absorption and Raman spectroscopic measurements supported by calculations of chain conformation, electronic transitions, and Raman modes. Using these tools, we find that sterically demanding side-chain configurations induce twisting in the electronic acceptor unit and reduce the electronic interaction with the donor. This leads to a blue-shifted and weakened (partial) charge-transfer absorption band together with a higher photoluminescence efficiency. On the other hand, sterically relaxed side-chain configurations promote coupling between donor and acceptor units and exhibit enhanced absorption at the expense of luminescence efficiency. The possibility of tuning the donor-acceptor character of conjugated polymers by varying the placement of side-chains has very important ramifications for light emitting diode, Laser, display, and photovoltaic device optimization.

  6. Listeria monocytogenes Scott A: Cell Surface Charge, Hydrophobicity, and Electron Donor and Acceptor Characteristics under Different Environmental Growth Conditions

    PubMed Central

    Briandet, Romain; Meylheuc, Thierry; Maher, Catherine; Bellon-Fontaine, Marie Noëlle

    1999-01-01

    We determined the variations in the surface physicochemical properties of Listeria monocytogenes Scott A cells that occurred under various environmental conditions. The surface charges, the hydrophobicities, and the electron donor and acceptor characteristics of L. monocytogenes Scott A cells were compared after the organism was grown in different growth media and at different temperatures; to do this, we used microelectrophoresis and the microbial adhesion to solvents method. Supplementing the growth media with glucose or lactic acid affected the electrical, hydrophobic, and electron donor and acceptor properties of the cells, whereas the growth temperature (37, 20, 15, or 8°C) primarily affected the electrical and electron donor and acceptor properties. The nonlinear effects of the growth temperature on the physicochemical properties of the cells were similar for cells cultivated in two different growth media, but bacteria cultivated in Trypticase soy broth supplemented with 6 g of yeast extract per liter (TSYE) were slightly more hydrophobic than cells cultivated in brain heart infusion medium (P < 0.05). Adhesion experiments conducted with L. monocytogenes Scott A cells cultivated in TSYE at 37, 20, 15, and 8°C and then suspended in a sodium chloride solution (1.5 × 10−1 or 1.5 × 10−3 M NaCl) confirmed that the cell surface charge and the electron donor and acceptor properties of the cells had an influence on their attachment to stainless steel. PMID:10583984

  7. The spin relaxation of nitrogen donors in 6H SiC crystals as studied by the electron spin echo method

    NASA Astrophysics Data System (ADS)

    Savchenko, D.; Shanina, B.; Kalabukhova, E.; Pöppl, A.; Lančok, J.; Mokhov, E.

    2016-04-01

    We present the detailed study of the spin kinetics of the nitrogen (N) donor electrons in 6H SiC wafers grown by the Lely method and by the sublimation "sandwich method" (SSM) with a donor concentration of about 1017 cm-3 at T = 10-40 K. The donor electrons of the N donors substituting quasi-cubic "k1" and "k2" sites (Nk1,k2) in both types of the samples revealed the similar temperature dependence of the spin-lattice relaxation rate (T1-1), which was described by the direct one-phonon and two-phonon processes induced by the acoustic phonons proportional to T and to T9, respectively. The character of the temperature dependence of the T1-1 for the donor electrons of N substituting hexagonal ("h") site (Nh) in both types of 6H SiC samples indicates that the donor electrons relax through the fast-relaxing centers by means of the cross-relaxation process. The observed enhancement of the phase memory relaxation rate (Tm-1) with the temperature increase for the Nh donors in both types of the samples, as well as for the Nk1,k2 donors in Lely grown 6H SiC, was explained by the growth of the free electron concentration with the temperature increase and their exchange scattering at the N donor centers. The observed significant shortening of the phase memory relaxation time Tm for the Nk1,k2 donors in the SSM grown sample with the temperature lowering is caused by hopping motion of the electrons between the occupied and unoccupied states of the N donors at Nh and Nk1,k2 sites. The impact of the N donor pairs, triads, distant donor pairs formed in n-type 6H SiC wafers on the spin relaxation times was discussed.

  8. High-Fidelity Rapid Initialization and Read-Out of an Electron Spin via the Single Donor D- Charge State

    NASA Astrophysics Data System (ADS)

    Watson, T. F.; Weber, B.; House, M. G.; Büch, H.; Simmons, M. Y.

    2015-10-01

    We demonstrate high-fidelity electron spin read-out of a precision placed single donor in silicon via spin selective tunneling to either the D+ or D- charge state of the donor. By performing read-out at the stable two electron D0↔D- charge transition we can increase the tunnel rates to a nearby single electron transistor charge sensor by nearly 2 orders of magnitude, allowing faster qubit read-out (1 ms) with minimum loss in read-out fidelity (98.4%) compared to read-out at the D+↔D0 transition (99.6%). Furthermore, we show that read-out via the D- charge state can be used to rapidly initialize the electron spin qubit in its ground state with a fidelity of FI=99.8 %.

  9. Remarkable Dependence of the Final Charge Separation Efficiency on the Donor-Acceptor Interaction in Photoinduced Electron Transfer.

    PubMed

    Higashino, Tomohiro; Yamada, Tomoki; Yamamoto, Masanori; Furube, Akihiro; Tkachenko, Nikolai V; Miura, Taku; Kobori, Yasuhiro; Jono, Ryota; Yamashita, Koichi; Imahori, Hiroshi

    2016-01-11

    The unprecedented dependence of final charge separation efficiency as a function of donor-acceptor interaction in covalently-linked molecules with a rectilinear rigid oligo-p-xylene bridge has been observed. Optimization of the donor-acceptor electronic coupling remarkably inhibits the undesirable rapid decay of the singlet charge-separated state to the ground state, yielding the final long-lived, triplet charge-separated state with circa 100% efficiency. This finding is extremely useful for the rational design of artificial photosynthesis and organic photovoltaic cells toward efficient solar energy conversion. PMID:26610285

  10. Tailorable acceptor C(60-n)B(n) and donor C(60-m)N(m) pairs for molecular electronics.

    PubMed

    Xie, Rui-Hua; Bryant, Garnett W; Zhao, Jijun; Smith, Vedene H; Di Carlo, Aldo; Pecchia, Alessandro

    2003-05-23

    Our first-principles calculations demonstrate that C(60-n)B(n) and C(60-m)N(m) can be engineered as the acceptors and donors, respectively, needed for molecular electronics by properly controlling the dopant number n and m in C60. We show that acceptor C48B12 and donor C48N12 are promising components for molecular rectifiers, carbon nanotube-based n-p-n (p-n-p) transistors, and p-n junctions. PMID:12785911

  11. Probing the donor side of photosystem II in spinach chloroplasts and algae using electron paramagnetic resonance

    SciTech Connect

    Boska, M.D.

    1985-11-01

    this work concerns electron transfer reactions in photosystem II (PS II). Investigations carried out in this work examine the redox reaction rates in PS II using EPR. In Tris-washed PS II preparations from spinach, it is observed that the oxidation kinetics of S II/sub f/, the EPR signal formed by Z/sup +/ after deactivation of oxygen evolution, mirror the reduction kinetics of P680/sup +/ seen by EPR in samples poised at a variety of pH's. These data agree with previous data on the optically measured reduction kinetics of P680/sup +/. The oxidation kinetics of S II/sub vf/, the EPR transient seen from Z/sup +/ in samples active in O/sub 2/ evolving samples, were instrument limited (t/sub 1/2/ less than 4 ..mu..s) and thus could not be directly measured. These results taken together support a model where Z donates electrons directly to P680/sup +/. The examination of the oxidation and reduction kinetics of S II in monovalent and divalent salt-washed PS II preparations from spinach correlated most of the change of Z oxidation and re-reduction kinetics seen upon Tris-treatment with the loss of a 33 kDa polypeptide associated with the donor side of PS II. These data coupled with observations of stead-state light-induced amplitude changes in S II give evidence for the existance of an electron carrier between the water-splitting enzyme and Z. Observation of S II amplitude and kinetics in highly resolved PS II protein complexes from Synechoccus sp., consisting of either a 5 polypeptide PS II core complex (E-1) or a 4 polypeptide PS II core complex (CP2b), localize Z and P680 within the 4 polypeptide complex. 187 refs., 17 figs., 7 tabs.

  12. Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex.

    PubMed

    Rosokha, Sergiy V; Kochi, Jay K

    2008-05-01

    Seminal insights provided by the iconic R. S. Mulliken and his "charge-transfer" theory, H. Taube and his "outer/inner-sphere" mechanisms, R. A. Marcus and his "two-state non-adiabatic" theory, and N. S. Hush and his "intervalence" theory are each separately woven into the rich panoramic tapestry constituting chemical research into electron-transfer dynamics, and its mechanistic dominance for the past half century and more. In this Account, we illustrate how the simultaneous melding of all four key concepts allows sharp focus on the charge-transfer character of the critical encounter complex to evoke the latent facet of traditional electron-transfer mechanisms. To this end, we exploit the intervalence (electronic) transition that invariably accompanies the diffusive encounter of electron-rich organic donors (D) with electron-poor acceptors (A) as the experimental harbinger of the collision complex, which is then actually isolated and X-ray crystallographically established as loosely bound pi-stacked pairs of various aromatic and olefinic donor/acceptor dyads with uniform interplanar separations of r(DA) = 3.1 +/- 0.2 A. These X-ray structures, together with the spectral measurements of their intervalence transitions, lead to the pair of important electron-transfer parameters, H(DA) (electronic coupling element) versus lambdaT (reorganization energy), the ratio of which generally defines the odd-electron mobility within such an encounter complex in terms of the resonance stabilization of the donor/acceptor assembly [D, A] as opposed to the reorganization-energy penalty required for its interconversion to the electron-transfer state [D(+*), A(-*)]. We recognize the resonance-stabilization energy relative to the intrinsic activation barrier as the mechanistic binding factor, Q = 2H(DA)/lambdaT, to represent the quantitative measure of the highly variable continuum of inner-sphere/outer-sphere interactions that are possible within various types of precursor complexes

  13. An Effort to Increase Organ Donor Registration Through Intergroup Competition and Electronic Word of Mouth.

    PubMed

    Smith, Sandi W; Hitt, Rose; Park, Hee Sun; Walther, Joseph; Liang, Yuhua Jake; Hsieh, Gary

    2016-01-01

    The effort to increase Web organ donation registrations in Michigan by enhancing 2 types of university campaigns with social media strategies informed by social identity theory is the focus of this research. The two campaigns focused on either ingroup or rivalry outgroup social identification, and each was enhanced with individually focused social media in the first year of the campaign and with electronic word of mouth in Year 2 of the campaign. Results indicated that individually focused social media such as Facebook ads worked well in rivalry campaigns (in which registrations increased two times over baseline) but not in ingroup identification campaigns (in which registrations decreased significantly over baseline when ads were introduced in the first year of each type of campaign). Electronic word-of-mouth strategies worked well in both ingroup identification campaigns (in which registrations increased two times over baseline) and rivalry campaigns (in which registrations rose almost eight times over baseline, when strategies were introduced in the second year of each type of campaign). PMID:26735448

  14. Synthesis and photophysical properties of new catenated electron donor-acceptor materials with magnesium and free base porphyrins as donors and C60 as the acceptor

    NASA Astrophysics Data System (ADS)

    Kirner, Sabrina V.; Guldi, Dirk M.; Megiatto, Jackson D., Jr.; Schuster, David I.

    2014-12-01

    A new series of nanoscale electron donor-acceptor systems with [2]catenane architectures has been synthesized, incorporating magnesium porphyrin (MgP) or free base porphyrin (H2P) as electron donor and C60 as electron acceptor, surrounding a central tetrahedral Cu(i)-1,10-phenanthroline (phen) complex. Model catenated compounds incorporating only one or none of these photoactive moieties were also prepared. The synthesis involved the use of Sauvage's metal template protocol in combination with the 1,3-dipolar cycloaddition of azides and alkynes (``click chemistry''), as in other recent reports from our laboratories. Ground state electron interactions between the individual constituents was probed using electrochemistry and UV-vis absorption spectroscopy, while events occurring following photoexcitation in tetrahydrofuran (under both aerobic and anaerobic conditions) at various wavelengths were followed by means of time-resolved transient absorption and emission spectroscopies on the femtosecond and nanosecond time scales, respectively, complemented by measurements of quantum yields for generation of singlet oxygen. From similar studies with model catenates containing one or neither of the chromophores, the events following photoexcitation could be elucidated. The results were compared with those previously reported for analogous catenates based on zinc porphyrin (ZnP). It was determined that a series of energy transfer (EnT) and electron transfer (ET) processes take place in the present catenates, ultimately generating long-distance charge separated (CS) states involving oxidized porphyrin and reduced C60 moieties, with lifetimes ranging from 400 to 1060 nanoseconds. Shorter lived short-distance CS states possessing oxidized copper complexes and reduced C60, with lifetimes ranging from 15 to 60 ns, were formed en route to the long-distance CS states. The dynamics of the ET processes were analyzed in terms of their thermodynamic driving forces. It was clear that

  15. Optical modeling of bulk-heterojunction organic solar cells based on squarine dye as electron donor

    NASA Astrophysics Data System (ADS)

    Kitova, S.; Stoyanova, D.; Dikova, J.; Kandinska, M.; Vasilev, A.; Angelova, S.

    2014-12-01

    The potentiality of a squarine dye (Sq1) for using as electron donor component in bulk heterojunction organic solar cells (BHJ) has been studied from the optical point of view. The soluble n-type fullerene, (6,6)-phenyl C61 butyric acid methyl ester (PC61MB) was chosen as acceptor. Optical modelling based on transfer matrix method was carried out to predict and improve photovoltaic performance of a BHJ device with blended Sq1/PC61MB active layer. The dependence of the absorption and the calculated maximum short circuit photocurrent (Jscmax) on the thickness of the active layer (dact), was investigated for two weight ratios of Sq1 and PC61MB. Thus, the optimal dact was calculated to be about 100 nm, which provides an efficient overlapping of the total absorption with solar spectrum in the range between 580 and 900 nm. Besides, it is found that the insertion of ZnO or C60 spacer layer shifts Jscmax peak to lower dact and significantly enhances Jscmax for active layers with dact < 50 nm, which is mainly due to improved light absorption by a factor of 5 to 10. Simultaneously, for dact <100 nm the optical effect of inserted PEDOT:PSS hole transporting layer is negligible.

  16. Influence of electron donors and copper concentration on geochemical and mineralogical processes under conditions of biological sulphate reduction

    NASA Astrophysics Data System (ADS)

    Wolicka, Dorota; Borkowski, Andrzej

    2014-03-01

    Sulphidogenous microorganism communities were isolated from soil polluted by crude oil. The study was focused on determining the influence of 1) copper (II) concentration on the activity of selected microorganism communities and 2) the applied electron donor on the course and evolution of mineral-forming processes under conditions favouring growth of sulphate-reducing bacteria (SRB). The influence of copper concentration on the activity of selected microorganism communities and the type of mineral phases formed was determined during experiments in which copper (II) chloride at concentrations of 0.1, 0.2, 0.5 and 0.7 g/L was added to SRB cultures. The experiments were performed in two variants: with ethanol (4 g/L) or lactate (4 g/L) as the sole carbon source. In order to determine the taxonomic composition of the selected microorganism communities, the 16S rRNA method was used. Results of this analysis confirmed the presence of Desulfovibrio, Desulfohalobium, Desulfotalea, Thermotoga, Solibacter, Gramella, Anaeromyxobacter and Myxococcus sp. in the stationary cultures. The post-culture sediments contained covelline (CuS) and digenite (Cu9S5 ). Based on the results, it can be stated that the type of carbon source applied during incubation plays a crucial role in determining the mineral composition of the post-culture sediments. Thus, regardless of the amount of copper ion introduced to a culture with lactate as the sole carbon source, no copper sulphide was observed in the post-culture sediments. Cultures with ethanol as the sole carbon source, on the other hand, yielded covelline or digenite in all post-culture sediments.

  17. Denitrification in Streams Impacted by Acid Mine Drainage: Effects of Iron, pH, and Potential Electron Donors

    NASA Astrophysics Data System (ADS)

    Baeseman, J. L.; Smith, R. L.; Silverstein, J.

    2003-12-01

    Acid mine drainage (AMD) contaminates between 8,000 and 16,000 km of streams on U.S. Forest Service land in the Western United States and more than 7,000 km of stream in the Eastern U.S. Relatively little is known about nitrogen cycling in these acidic, heavy metal laden streams, however, denitrification can be inhibited under low pH conditions. The objective of this research was to examine AMD sediments for bacteria capable of denitrification. The process of denitrification is known to increase pH, which may be particularly important in acidic environments. Denitrification potential was assessed in AMD sediments from several Colorado AMD impacted streams ranging from pH 2.6 to 4.91, using microcosm incubations with fresh sediments. Added nitrate was immediately reduced to nitrogen gas without any lag period, indicating that denitrification was actively occurring in these environments. Rates varied from 0.33 to 2.52 umoles NO3-N/ g-sediment/ day depending on the site. The pH of the microcosms increased between 0.23 to 1.49 pH units in 5 days, depending on the site. Additional microcosm studies were conducted to examine the effects of iron concentrations (Fe2+ and Fe3+), initial pH conditions, and several potential electron donors. Addition of iron above ambient concentrations seemed to have little effect on denitrification rates, whereas rates increased with increasing initial pH. The addition of carbon and hydrogen stimulated denitrification rates, which in turn increased the rise in pH. These results suggest that not only is denitrification possible in AMD streams, it may also be a useful remediation option, if suitable methods can be found to stimulate activity.

  18. Microbial selenite reduction with organic carbon and electrode as sole electron donor by a bacterium isolated from domestic wastewater.

    PubMed

    Nguyen, Van Khanh; Park, Younghyun; Yu, Jaecheul; Lee, Taeho

    2016-07-01

    Selenium is said to be multifaceted element because it is essential at a low concentration but very toxic at an elevated level. For the purpose of screening a potential microorganism for selenite bioremediation, we isolated a bacterium, named strain THL1, which could perform both heterotrophic selenite reduction, using organic carbons such as acetate, lactate, propionate, and butyrate as electron donors under microaerobic condition, and electrotrophic selenite reduction, using an electrode polarized at -0.3V (vs. standard hydrogen electrode) as the sole electron donor under anaerobic condition. This bacterium determined to be a new strain of the genus Cronobacter, could remove selenite with an efficiency of up to 100%. This study is the first demonstration on a pure culture could take up electrons from an electrode to perform selenite reduction. The selenium nanoparticles produced by microbial selenite reduction might be considered for recovery and use in the nanotechnology industry. PMID:27099943

  19. Effect of electron-donor ancillary ligands on the heteroleptic ruthenium complexes: synthesis, characterization, and application in high-performance dye-sensitized solar cells.

    PubMed

    Chen, Wang-Chao; Kong, Fan-Tai; Liu, Xue-Peng; Guo, Fu-Ling; Zhou, Li; Ding, Yong; Li, Zhao-Qian; Dai, Song-Yuan

    2016-04-20

    Three heteroleptic ruthenium complexes, , and , with sulfur- or oxygen-containing electron-donor, phenylpyridine-based ancillary ligands, are synthesized. The influence of the different electron donors-the acyclic electron donors methylthio and methoxyl, and the cyclic electron donor methylenedioxy-on the photophysical and electrochemical behavior in dye sensitizers and photovoltaic performance in DSSCs are investigated. Compared to the conventional dye , all the dyes demonstrate superior performance in the form of molar absorptivity, photocurrent density (JSC) and conversion efficiency (η). The DSSCs based on and , with only a two-atom change in the acyclic electron donor, exhibit analogous photovoltaic performance (9.28% for and 9.32% for ). The highest photocurrent density (19.06 mA cm(-2)) and conversion efficiency (9.74%) are recorded for , which contains the cyclic electron donor. Transient absorption (TAS) and time-resolved photoluminescence (TRPL) measurements are carried out to investigate the sensitizers' regeneration and the behavior of excited electron decay kinetics. Furthermore, electrochemical impedance spectroscopy (EIS) is operated to explain the charge recombination and the electron lifetime. These consequences reveal substantial dependences on the different configurations of the electron-donor ancillary ligands. PMID:27053153

  20. Estimation of electronic coupling in π-stacked donor-bridge-acceptor systems: Correction of the two-state model

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.

    2006-02-01

    Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽda=(E2-E1)μ12/Rda+(2E3-E1-E2)2μ13μ23/Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model.

  1. Microscopic simulations of electronic excitations in donor-acceptor heterojunctions of small-molecule based solar cells

    NASA Astrophysics Data System (ADS)

    Baumeier, Bjoern

    2015-03-01

    Fundamental processes involving electronic excitations govern the functionality of molecular materials in which the dynamics of excitons and charges is determined by an interplay of molecular electronic structure and morphological order. To understand, e.g., charge separation and recombination at donor-acceptor heterojunctions in organic solar cells, knowledge about the microscopic details influencing these dynamics in the bulk and across the interface is required. For a set of prototypical heterojunctions of small-molecule donor materials with C60, we employ a hybrid QM/MM approach linking density-functional and many-body Green's functions theory and analyze the charged and neutral electronic excitations therein. We pay special attention the spatially-resolved electron/hole transport levels, as well as the relative energies of Frenkel and charge-transfer excitations at the interface. Finally, we link the molecular architecture of the donor material, its orientation on the fullerene substrate as well as mesoscale order to the solar cell performance.

  2. High-Affinity Proton Donors Promote Proton-Coupled Electron Transfer by Samarium Diiodide.

    PubMed

    Chciuk, Tesia V; Anderson, William R; Flowers, Robert A

    2016-05-10

    The relationship between proton-donor affinity for Sm(II) ions and the reduction of two substrates (anthracene and benzyl chloride) was examined. A combination of spectroscopic, thermochemical, and kinetic studies show that only those proton donors that coordinate or chelate strongly to Sm(II) promote anthracene reduction through a PCET process. These studies demonstrate that the combination of Sm(II) ions and water does not provide a unique reagent system for formal hydrogen atom transfer to substrates. PMID:27061351

  3. Enhanced reduction of an azo dye using henna plant biomass as a solid-phase electron donor, carbon source, and redox mediator.

    PubMed

    Huang, Jingang; Chu, Shushan; Chen, Jianjun; Chen, Yi; Xie, Zhengmiao

    2014-06-01

    The multiple effects of henna plant biomass as a source of carbon, electron donor, and redox mediator (RM) on the enhanced bio-reduction of Orange II (AO7) were investigated. The results indicated that the maximum AO7 reduction rate in the culture with henna powder was ∼6-fold that in the sludge control culture lacking henna. On the one hand, AO7 reduction can be advantageously enhanced by the release of available electron donors; on the other hand, the associated lawsone can act as a fixed RM and play a potential role in shuttling electrons from the released electron donors to the final electron acceptor, AO7. The soluble chemical oxygen demand (SCOD) during each experiment and the FTIR spectra suggested that the weakened AO7 reduction along with the retention of henna powder might not be attributed to the lack of fixed lawsone but rather to the insufficiency of electron donors. PMID:24759768

  4. Electron transport behaviors through donor-induced quantum dot array in heavily n-doped junctionless nanowire transistors

    SciTech Connect

    Ma, Liuhong; Han, Weihua Wang, Hao; Hong, Wenting; Lyu, Qifeng; Yang, Xiang; Yang, Fuhua

    2015-01-21

    We investigated single electron tunneling through a phosphorus donor-induced quantum dot array in heavily n-doped junctionless nanowire transistor. Seven subpeaks splitting in current oscillations are clearly observed due to the coupling of quantum dot array under the bias voltage below 1.0 mV at the temperature of 6 K. The conduction system can be well described by a two-band Hubbard model. The activation energy of phosphorus donors is tuned by the gate voltage to be 7.0 meV for the lower Hubbard band and 4.4 meV for the upper Hubbard band due to the localization effects below threshold voltage. The evolution of electron behaviors in the quantum dots is identified by adjusting the gate voltage from quantum-dot regime to one-dimensional regime.

  5. Electron transport behaviors through donor-induced quantum dot array in heavily n-doped junctionless nanowire transistors

    NASA Astrophysics Data System (ADS)

    Ma, Liuhong; Han, Weihua; Wang, Hao; Hong, Wenting; Lyu, Qifeng; Yang, Xiang; Yang, Fuhua

    2015-01-01

    We investigated single electron tunneling through a phosphorus donor-induced quantum dot array in heavily n-doped junctionless nanowire transistor. Seven subpeaks splitting in current oscillations are clearly observed due to the coupling of quantum dot array under the bias voltage below 1.0 mV at the temperature of 6 K. The conduction system can be well described by a two-band Hubbard model. The activation energy of phosphorus donors is tuned by the gate voltage to be 7.0 meV for the lower Hubbard band and 4.4 meV for the upper Hubbard band due to the localization effects below threshold voltage. The evolution of electron behaviors in the quantum dots is identified by adjusting the gate voltage from quantum-dot regime to one-dimensional regime.

  6. Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage.

    PubMed

    Kijjanapanich, P; Pakdeerattanamint, K; Lens, P N L; Annachhatre, A P

    2012-12-01

    This research was conducted to select suitable natural organic substrates as potential carbon sources for use as electron donors for biological sulphate reduction in a permeable reactive barrier (PRB). A number of organic substrates were assessed through batch and continuous column experiments under anaerobic conditions with acid mine drainage (AMD) obtained from an abandoned lignite coal mine. To keep the heavy metal concentration at a constant level, the AMD was supplemented with heavy metals whenever necessary. Under anaerobic conditions, sulphate-reducing bacteria (SRB) converted sulphate into sulphide using the organic substrates as electron donors. The sulphide that was generated precipitated heavy metals as metal sulphides. Organic substrates, which yielded the highest sulphate reduction in batch tests, were selected for continuous column experiments which lasted over 200 days. A mixture of pig-farm wastewater treatment sludge, rice husk and coconut husk chips yielded the best heavy metal (Fe, Cu, Zn and Mn) removal efficiencies of over 90%. PMID:23437664

  7. Enhanced Alcaligenes faecalis Denitrification Rate with Electrodes as the Electron Donor

    PubMed Central

    Wang, Xin; Yu, Ping; Zeng, Cuiping; Ding, Hongrui; Wang, Changqiu

    2015-01-01

    The utilization by Alcaligenes faecalis of electrodes as the electron donor for denitrification was investigated in this study. The denitrification rate of A. faecalis with a poised potential was greatly enhanced compared with that of the controls without poised potentials. For nitrate reduction, although A. faecalis could not reduce nitrate, at three poised potentials of +0.06, −0.06, and −0.15 V (versus normal hydrogen electrode [NHE]), the nitrate was partially reduced with −0.15- and −0.06-V potentials at rates of 17.3 and 28.5 mg/liter/day, respectively. The percentages of reduction for −0.15 and −0.06 V were 52.4 and 30.4%, respectively. Meanwhile, for nitrite reduction, the poised potentials greatly enhanced the nitrite reduction. The nitrite reduction rates for three poised potentials (−0.06, −0.15, and −0.30 V) were 1.98, 4.37, and 3.91 mg/liter/h, respectively. When the potentials were cut off, the nitrite reduction rate was maintained for 1.5 h (from 2.3 to 2.25 mg/liter/h) and then greatly decreased, and the reduction rate (0.38 mg/liter/h) was about 1/6 compared with the rate (2.3 mg/liter/h) when potential was on. Then the potentials resumed, but the reduction rate did not resume and was only 2 times higher than the rate when the potential was off. PMID:26048940

  8. Enhanced Alcaligenes faecalis Denitrification Rate with Electrodes as the Electron Donor.

    PubMed

    Wang, Xin; Yu, Ping; Zeng, Cuiping; Ding, Hongrui; Li, Yan; Wang, Changqiu; Lu, Anhuai

    2015-08-15

    The utilization by Alcaligenes faecalis of electrodes as the electron donor for denitrification was investigated in this study. The denitrification rate of A. faecalis with a poised potential was greatly enhanced compared with that of the controls without poised potentials. For nitrate reduction, although A. faecalis could not reduce nitrate, at three poised potentials of +0.06, -0.06, and -0.15 V (versus normal hydrogen electrode [NHE]), the nitrate was partially reduced with -0.15- and -0.06-V potentials at rates of 17.3 and 28.5 mg/liter/day, respectively. The percentages of reduction for -0.15 and -0.06 V were 52.4 and 30.4%, respectively. Meanwhile, for nitrite reduction, the poised potentials greatly enhanced the nitrite reduction. The nitrite reduction rates for three poised potentials (-0.06, -0.15, and -0.30 V) were 1.98, 4.37, and 3.91 mg/liter/h, respectively. When the potentials were cut off, the nitrite reduction rate was maintained for 1.5 h (from 2.3 to 2.25 mg/liter/h) and then greatly decreased, and the reduction rate (0.38 mg/liter/h) was about 1/6 compared with the rate (2.3 mg/liter/h) when potential was on. Then the potentials resumed, but the reduction rate did not resume and was only 2 times higher than the rate when the potential was off. PMID:26048940

  9. 9-fluorenemethanol: an internal electron donor to fine tune olefin polymerization activity.

    PubMed

    Gnanakumar, Edwin S; Rao Chokkapu, Eswara; Kunjir, Shrikant; Ajithkumar, T G; Rajamohanan, P R; Chakraborty, Debashis; Gopinath, Chinnakonda S

    2014-06-28

    A new MgCl2 based molecular adduct has been synthesized with 9-fluorenemethanol (9FM) as a novel internal electron donor (IED), along with ethanol (EtOH) (MgCl2·n9FM·xEtOH). The above molecular adduct has been subjected to a variety of structural, spectroscopic and morphological characterization techniques. The results of the solid state (13)C CPMAS NMR technique suggests the coordination of 9FM to MgCl2. Observation of a low angle diffraction peak at 2θ = 5.7° (d = 15.5 Å) underscores the coordination of 9FM along the z-axis, and ethanol in the molecular adduct. Active Ziegler-Natta catalysts were prepared by two different synthesis methods; the conventional method to obtain a high surface area active catalyst, and other one with 9FM as an integral part of the active catalyst in order to study the influence of 9FM as an IED over the active sites. The active catalysts were also characterized thoroughly with different analytical tools. The XRD results show (003) facets of δ-MgCl2 (α-MgCl2) for the conventional (non-conventional) titanated catalyst. Results of the ethylene polymerization activity study reveals that the conventionally prepared highly porous active catalyst shows 1.7-2.5 times higher activity than the non-conventional prepared catalyst; however, the latter shows a low molecular weight distribution and confirms the role of the Lewis base as an IED. PMID:24810354

  10. Comparative study of donor-induced quantum dots in Si nano-channels by single-electron transport characterization and Kelvin probe force microscopy

    SciTech Connect

    Tyszka, K.; Moraru, D.; Samanta, A.; Mizuno, T.; Tabe, M.; Jabłoński, R.

    2015-06-28

    We comparatively study donor-induced quantum dots in Si nanoscale-channel transistors for a wide range of doping concentration by analysis of single-electron tunneling transport and surface potential measured by Kelvin probe force microscopy (KPFM). By correlating KPFM observations of donor-induced potential landscapes with simulations based on Thomas-Fermi approximation, it is demonstrated that single-electron tunneling transport at lowest gate voltages (for smallest coverage of screening electrons) is governed most frequently by only one dominant quantum dot, regardless of doping concentration. Doping concentration, however, primarily affects the internal structure of the quantum dot. At low concentrations, individual donors form most of the quantum dots, i.e., “donor-atom” quantum dots. In contrast, at high concentrations above metal-insulator transition, closely placed donors instead of individual donors form more complex quantum dots, i.e., “donor-cluster” quantum dots. The potential depth of these “donor-cluster” quantum dots is significantly reduced by increasing gate voltage (increasing coverage of screening electrons), leading to the occurrence of multiple competing quantum dots.

  11. A combined FTIR and infrared emission spectroscopy investigation of layered double hydroxide as an effective electron donor.

    PubMed

    Zhang, Jia; Wei, Feng; Liang, Ying; Zhou, Jizhi; Xi, Yunfei; Qian, Guangren; Frost, Ray

    2016-02-01

    A novel method has been presented to characterize electron transfer in layered double hydroxides (LDHs) utilizing an investigation combing FTIR and infrared emission spectroscopy. At room temperature, electron could transfer to interlayer Fe(3+) through monodentate ligand cyanide, and resulted in a reduction of 40% Fe(3+) to Fe(2+). When the environmental temperature increased from 25 to 300°C, reduction of Fe(3+) and Ni(2+) increased to 94% and 42%. Furthermore, electron also transferred to interlayer cation through multidentate ligand EDTA. As a result, LDHs has been proven to be an effective electron donor, and FTIR was a feasible tool in characterizing this property by monitoring the valence state of cations. It was also concluded that octahedral units with OH(-) groups in LDH layer functioned as electron donor centers. Driving force for electron transfer is attributed to the charge density difference between cation layer and probe anion. These results could help to explain the mechanism of various applications of LDHs in catalysis and photocatalysis. PMID:26490800

  12. A combined FTIR and infrared emission spectroscopy investigation of layered double hydroxide as an effective electron donor

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Wei, Feng; Liang, Ying; Zhou, Jizhi; Xi, Yunfei; Qian, Guangren; Frost, Ray

    2016-02-01

    A novel method has been presented to characterize electron transfer in layered double hydroxides (LDHs) utilizing an investigation combing FTIR and infrared emission spectroscopy. At room temperature, electron could transfer to interlayer Fe3 + through monodentate ligand cyanide, and resulted in a reduction of 40% Fe3 + to Fe2 +. When the environmental temperature increased from 25 to 300 °C, reduction of Fe3 + and Ni2 + increased to 94% and 42%. Furthermore, electron also transferred to interlayer cation through multidentate ligand EDTA. As a result, LDHs has been proven to be an effective electron donor, and FTIR was a feasible tool in characterizing this property by monitoring the valence state of cations. It was also concluded that octahedral units with OH- groups in LDH layer functioned as electron donor centers. Driving force for electron transfer is attributed to the charge density difference between cation layer and probe anion. These results could help to explain the mechanism of various applications of LDHs in catalysis and photocatalysis.

  13. Assembly of an Axially Chiral Dynamic Redox System with a Perfluorobiphenyl Skeleton into Dumbbell- or Tripod-type Electron Donors.

    PubMed

    Tamaoki, Hitomi; Katoono, Ryo; Fujiwara, Kenshu; Suzuki, Takanori

    2016-02-12

    The incorporation of F atoms endows a diethenylbiphenyl-based electron donor with configurational stability and SN Ar reactivity. The former enables the dynamic redox pair of (Rax)-1/(Rax ,R,R)-1(2+) to exhibit drastic UV/Vis and CD spectral changes upon electrolysis, whereas the latter makes it possible for (Rax)-1 to serve as a useful chiral synthon for the production of larger assemblies [(Rax ,Rax)-2 d,p,m and (Rax ,Rax ,Rax)-3] containing two or three dyrex units. These dyads and triad also exhibit a clean electrochiroptical response with isosbestic points owing to one-wave multi-electron transfer. PMID:26748461

  14. Effects of different electron donor feeding patterns on TCE reductive dechlorination performance.

    PubMed

    Panagiotakis, I; Antoniou, K; Mamais, D; Pantazidou, M

    2015-03-01

    This study investigates how the feeding pattern of e(-) donors might affect the efficiency of enhanced in situ bioremediation in TCE-contaminated aquifers. A series of lab-scale batch experiments were conducted using butyrate or hydrogen gas (H2) as e(-) donor and a TCE-dechlorinating microbial consortium dominated by Dehalococcoides spp. The results of these experiments demonstrate that butyrate is similarly efficient for TCE dechlorination whether it is injected once or in doses. Moreover, the present work indicates that the addition of butyrate in great excess cannot be avoided, since it most likely provide, even indirectly, significant part of the H2 required. Furthermore, methanogenesis appears to be the major ultimate e(-) accepting process in all experiments, regardless the e(-) donor used and the feeding pattern. Finally, the timing of injection of H2 seems to significantly affect dechlorination performance, since the injection during the early stages improves VC-to-ETH dechlorination and reduce methanogenic activity. PMID:25613854

  15. Donor-Acceptor-Type Semiconducting Polymers Consisting of Benzothiadiazole Derivatives as Electron-Acceptor Units for Organic Photovoltaic Cells.

    PubMed

    Kim, Hee Su; Park, Jong Baek; Kim, Ji-Hoon; Hwang, Do-Hoon

    2015-11-01

    We synthesized two fused pentacyclic donor-acceptor structures, where the two different outer electron rich thiophene (DTPBT) and electron poor benzene (ICTh) moieties are covalently bonded to the central electron-deficient benzothiadiazole core by two nitrogen bridges. These new electron-acceptor DTPBT and ICTh building blocks were copolymerized with fluorene, as the electron donor group, via Suzuki coupling polymerization, to produce two new alternating copolymers, PFDTPBT and PFICTh, respectively. The average molecular weights of the synthesized polymers were determined by GPC. The number-average molecular weights of PFDTPBT and PFICTh were 19,000 (PDI = 2.5) and 20,000 (PDI = 4.0), respectively. The optical bandgap energies of the polymers were measured from their absorption onsets to be 2.15 and 2.55 eV, depending on the polymer structure. The HOMO energy levels of the polymers were determined, by measuring the oxidation onsets of the polymer films by cyclic voltammetry. The measured HOMO energy levels of PFDTPBT and PFICTh were -5.10 and -5.57 eV, respectively. When the polymers were blended with PC71BM, as the active layer for bulk-heterojunction photovoltaic devices, power conversion efficiencies were 2.08% and 0.34%, respectively, under AM 1.5 G (100 mW cm(-2)) conditions. PMID:26726610

  16. Color- and morphology-controlled self-assembly of new electron-donor-substituted aggregation-induced emission compounds.

    PubMed

    Niu, Caixia; Zhao, Liu; Fang, Tao; Deng, Xuebin; Ma, Hui; Zhang, Jiaxin; Na, Na; Han, Jingsa; Ouyang, Jin

    2014-03-11

    Four electron-donor-substituted aggregation-induced emission (AIE) compounds, N,N'-bis(4-methoxylsalicylidene)-p-phenylenediamine (BSPD-OMe), N,N'-bis(4-methylsalicylidene)-p-phenylenediamine (BSPD-Me), N,N'-bis(salicylidene)-p-phenylenediamine (BSPD), and N,N'-bis(4-hydroxylsalicylidene)-p-phenylenediamine (BSPD-OH), are designed and synthesized. They are all found to exhibit controlled self-assembly behaviors and good thermal properties. By changing the terminal electron-donor groups, they are controlled to self-assemble into three emission colors (green, yellow, and orange) and four morphologies (microblocks, microparticles, microrods, and nanowires) in THF/water mixtures. Their self-assembled structures were investigated with scanning electron microscopy (SEM), fluorescent microscopy images, transmission electron microscopy (TEM), and powder X-ray diffraction (PXRD) techniques. In addition, the emission colors of BSPD-OH can be successfully controlled to three colors (green → yellow → orange) through simply changing the water fraction (fw). Their thermal gravimetric analysis (TGA) results indicate that their thermal decomposition temperatures (Td, corresponding to 5% weight loss) range from 282 to 319 °C. Their differential scanning calorimetry (DSC) data show that BSPD-OH bears a glass-transition temperature (Tg) of 118 °C. The good Td and Tg values will ensure them to be luminogens for organic light-emitting diodes (OLEDs). The theoretical calculations and single-crystal X-ray diffraction (XRD) analysis of BSPD-OMe and BSPD suggest that the stronger electron donor substituent can twist the molecular conformation, decrease the degree of π conjugation, increase the energy gap, and then induce the emission colors' blue shift and morphology variation. The results are meaningful in controlling the emission colors and self-assembly shapes of these derivatives, and they also provide a novel but facile way to get color-tunable AIE luminogens for OLEDs. PMID

  17. Developing an Accelerator Driven System (ADS) based on electron accelerators and heavy water

    NASA Astrophysics Data System (ADS)

    Feizi, H.; Ranjbar, A. H.

    2016-02-01

    An ADS based on electron accelerators has been developed specifically for energy generation and medical applications. Monte Carlo simulations have been performed using FLUKA code to design a hybrid electron target and the core components. The composition, geometry of conversion targets and the coolant system have been optimized for electron beam energies of 20 to 100 MeV . Furthermore, the photon and photoneutron energy spectra, distribution and energy deposition for various incoming electron beam powers have been studied. Light-heavy water of various mixtures have been used as heat removal for the targets, as γ-n converters and as neutron moderators. We have shown that an electron LINAC, as a neutron production driver for ADSs, is capable of producing a neutron output of > 3.5 × 1014 (n/s/mA). Accordingly, the feasibility of an electron-based ADS employing the designed features is promising for energy generation and high intense neutron production which have various applications such as medical therapies.

  18. 2004 Electron Donor Acceptor Interactions Gordon Conference - August 8-13, 2004

    SciTech Connect

    GUILFORD JONES BOSTON UNIVERSITY PHOTONICS CENTER 8 ST. MARY'S ST BOSTON, MA 02215

    2005-09-14

    The 2004 Gordon Conference on Donor/Acceptor Interactions will take place at Salve Regina University in Newport, Rhode Island on August 8-13, 2004. The conference will be devoted to the consequences of charge interaction and charge motion in molecular and materials systems.

  19. Photo-induced alternating copolymerization of N-substituted maleimides and electron donor olefins

    NASA Astrophysics Data System (ADS)

    Jönsson, S.; Sundell, P. E.; Shimose, M.; Clark, S.; Miller, C.; Morel, F.; Decker, C.; Hoyle, C. E.

    1997-08-01

    Photo-initiated free radical polymerization of donor/acceptor type monomers have gained considerable interest due to the possibility of formulating UV curable non-acrylate systems. Recently, we described a photoinitiator free system based on donor/acceptor combinations [1-7]. Photoinitiator free nonacrylate based compositions will of course attain an enhanced interest and importance because of a broader selection of raw materials and combinations thereof, potential outdoor use, lower costs of formulations, improved odour, no formation of benzaldehyde, less extractables and so on. Recent developments of the direct photolysis of these acceptors and complexes, and their potential use in practical "UV curing" will be outlined. By a selective combination of A and D type monomers, a direct photolysis of the ground state complex (CTC) or the excitation of the acceptor, followed by the formation of an exciplex, will initiate a free radical copolymerization. A second route of direct initiation is based on inter- or intra-molecular H-abstraction from an excited state acceptor or exciplex. This paper will focus on the photochemistry as it relates to initiation of polymerization depending on acceptor and donor strength of the monomer system. Inherently different reactivities in air and nitrogen of donors and acceptors are compared to photoinitiator containing acrylates. Furthermore, the ratio of homo and alternating copolymerization as well as the 2 + 2 cycloaddition will be discussed.

  20. BPM ANALOG FRONT-END ELECTRONICS BASED ON THE AD8307 LOG AMPLIFIER

    SciTech Connect

    R. SHURTER; ET AL

    2000-06-01

    Beam position monitor (BPM) signal-processing electronics utilizing the Analog Devices AD8307 logarithmic amplifier has been developed for the Low Energy Demonstration Accelerator (LEDA), part of the Accelerator Production of Tritium (APT) project at Los Alamos. The low-pass filtered 350 MHz fundamental signal from each of the four microstrip electrodes in a BPM is ''detected'' by an AD8307 log amp, amplified and scaled to accommodate the 0 to +5V input of an analog-to-digital (A/D) converter. The resultant four digitized signals represent a linear power relationship to the electrode signals, which are in turn related to beam current and position. As the AD8307 has a potential dynamic range of approximately 92 dB, much attention must be given to noise reduction, sources of which can be digital signals on the same board, power supplies, inter-channel coupling, stray RF and others. This paper will describe the operational experience of this particular analog front-end electronic circuit design.

  1. Effect of Electron Donor and Solution Chemistry on Products of Dissimilatory Reduction of Technetium by Shewanella putrefaciens

    PubMed Central

    Wildung, R. E.; Gorby, Y. A.; Krupka, K. M.; Hess, N. J.; Li, S. W.; Plymale, A. E.; McKinley, J. P.; Fredrickson, J. K.

    2000-01-01

    To help provide a fundamental basis for use of microbial dissimilatory reduction processes in separating or immobilizing 99Tc in waste or groundwaters, the effects of electron donor and the presence of the bicarbonate ion on the rate and extent of pertechnetate ion [Tc(VII)O4−] enzymatic reduction by the subsurface metal-reducing bacterium Shewanella putrefaciens CN32 were determined, and the forms of aqueous and solid-phase reduction products were evaluated through a combination of high-resolution transmission electron microscopy, X-ray absorption spectroscopy, and thermodynamic calculations. When H2 served as the electron donor, dissolved Tc(VII) was rapidly reduced to amorphous Tc(IV) hydrous oxide, which was largely associated with the cell in unbuffered 0.85% NaCl and with extracellular particulates (0.2 to 0.001 μm) in bicarbonate buffer. Cell-associated Tc was present principally in the periplasm and outside the outer membrane. The reduction rate was much lower when lactate was the electron donor, with extracellular Tc(IV) hydrous oxide the dominant solid-phase reduction product, but in bicarbonate systems much less Tc(IV) was associated directly with the cell and solid-phase Tc(IV) carbonate may have been present. In the presence of carbonate, soluble (<0.001 μm) electronegative, Tc(IV) carbonate complexes were also formed that exceeded Tc(VII)O4− in electrophoretic mobility. Thermodynamic calculations indicate that the dominant reduced Tc species identified in the experiments would be stable over a range of Eh and pH conditions typical of natural waters. Thus, carbonate complexes may represent an important pathway for Tc transport in anaerobic subsurface environments, where it has generally been assumed that Tc mobility is controlled by low-solubility Tc(IV) hydrous oxide and adsorptive, aqueous Tc(IV) hydrolysis products. PMID:10831424

  2. Syntheses of D-A-A Type Small Molecular Donor Materials Having Various Electron Accepting Moiety for Organic Photovoltaic Application.

    PubMed

    Kim, Nahyeon; Park, Sangman; Lee, Myong-Hoon; Lee, Jaemin; Lee, Changjin; Yoon, Sung Cheol

    2016-03-01

    Small molecular donor, DTDCTB achieved a high power conversion efficiency (PCE) value of 6.6 ± 0.2% in vacuum-deposited planar mixed heterojunction (PMHJ) structure. However, the same material just recorded PCE of 0.34% in solution processed small molecule based bulk heterjunction (BHJ) organic photovoltaic cells. For the improvement of organic photovoltaic cells (OPVs), In this study, we designed and synthesized several D-A-A (donor-acceptor-acceptor) type molecular electron donating materials. Ditolylaminothienyl moiety as an electron donating group connected to 1,2,5-benzothiadiazole as a conjugated electron accepting unit, simultaneously with an electron accepting terminal group such as cyano alkyl acetate and N-alkyl rhodanine. The thermal, photophysical, and electrochemical properties of prepared small molecules were investigated by DSC, UV/Vis spectroscopy and Cyclic Voltametry, respectively. As a result, 0.89% of PCE can be obtained from OPV using a mixture of DTATBTER and PCBM as an active layer with a Voc of 0.87 V, a Jsc of 3.20 mA/cm2, and a fill factor of 31.9%. PMID:27455734

  3. Bimolecular electron transfer reactions in coumarin amine systems: Donor acceptor orientational effect on diffusion-controlled reaction rates

    NASA Astrophysics Data System (ADS)

    Satpati, A. K.; Nath, S.; Kumbhakar, M.; Maity, D. K.; Senthilkumar, S.; Pal, H.

    2008-04-01

    Electron transfer (ET) reactions between excited coumarin dyes and different aliphatic amine (AlA) and aromatic amine (ArA) donors have been investigated in acetonitrile solution using steady-state (SS) and time-resolved (TR) fluorescence quenching measurements. No ground state complex or emissive exciplex formation has been indicated in these systems. SS and TR measurements give similar quenching constants ( kq) for each of the coumarin-amine pairs, suggesting dynamic nature of interaction in these systems. On correlating kq values with the free energy changes (Δ G0) of the ET reactions show the typical Rehm-Weller type of behavior as expected for bimolecular ET reactions under diffusive condition, where kq increases with -Δ G0 at the lower exergonicity (-Δ G0) region but ultimately saturate to a diffusion-limited value (kqDC) at the higher exergonicity region. It is, however, interestingly observed that the kqDC values vary largely depending on the type of the amines used. Thus, kqDC is much higher with ArAs than AlAs. Similarly, the kqDC for cyclic monoamine 1-azabicyclo-[2,2,2]-octane (ABCO) is distinctly lower and that for cyclic diamine 1,4-diazabicyclo-[2,2,2]-octane (DABCO) is distinctly higher than the kqDC value obtained for other noncyclic AlAs. These differences in the kqDC values have been rationalized on the basis of the differences in the orientational restrictions involved in the ET reactions with different types of amines. As understood, n-type donors (AlAs) introduce large orientational restriction and thus significantly reduces the ET efficiency in comparison to the π-type donors (ArAs). Structural constrains are inferred to be the reason for the differences in the kqDC values involving ABCO, DABCO donors in comparison to other noncyclic AlAs. Supportive evidence for the orientational restrictions involving different types of amines donors has also been obtained from DFT based quantum chemical calculations on the molecular orbitals of

  4. Comparison of the electronic structure of a thermoelectric skutterudite before and after adding rattlers: an electron energy loss study.

    PubMed

    Prytz, O; Saeterli, R; Løvvik, O M; Taftø, J

    2008-08-01

    Skutterudites, with rattler atoms introduced in voids in the crystal unit cell, are promising thermoelectric materials. We modify the binary skutterudite with atomic content Co(8)P(24) in the cubic crystal unit cell by adding La as rattlers in all available voids and replacing Co by Fe to maintain charge balance, resulting in La(2)Fe(8)P(24). The intention is to leave the electronic structure unaltered while decreasing the thermal conductivity due to the presence of the rattlers. We compare the electronic structure of these two compounds by studying the L-edges of P and of the transition elements Co and Fe using electron energy loss spectroscopy (EELS). Our studies of the transition metal white lines show that the 3d electron count is similar for Co and Fe in these compounds. As elemental Fe has one electron less than Co, this supports the notion that each La atom donates three electrons. The L-edges of P in these two skutterudites are quite similar, signalling only minor differences in electronic structure. This is in reasonable agreement with density functional theory (DFT) calculations, and with our multiple scattering FEFF calculations of the near edge structure. However, our experimental plasmon energies and dielectric functions deviate considerably from predictions based on DFT calculations. PMID:18042390

  5. Ultrafast electron transfer in all-carbon-based SWCNT-C60 donor-acceptor nanoensembles connected by poly(phenylene-ethynylene) spacers.

    PubMed

    Barrejón, Myriam; Gobeze, Habtom B; Gómez-Escalonilla, María J; Fierro, José Luis G; Zhang, Minfang; Yudasaka, Masako; Iijima, Sumio; D'Souza, Francis; Langa, Fernando

    2016-08-21

    Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an electron donating or accepting photosensitizer while the second part should fulfil the role of an electron acceptor or donor. In the present work, we have successfully addressed this issue by synthesizing covalently linked all-carbon-based donor-acceptor nanoensembles using single-walled carbon nanotubes (SWCNTs) as the donor and C60 as the acceptor. The donor-acceptor entities in the nanoensembles were connected by phenylene-ethynylene spacer units to achieve better electronic communication and to vary the distance between the components. These novel SWCNT-C60 nanoensembles have been characterized by a number of techniques, including TGA, FT-IR, Raman, AFM, absorbance and electrochemical methods. The moderate number of fullerene addends present on the side-walls of the nanotubes largely preserved the electronic structure of the nanotubes. The thermodynamic feasibility of charge separation in these nanoensembles was established using spectral and electrochemical data. Finally, occurrence of ultrafast electron transfer from the excited nanotubes in these donor-acceptor nanohybrids has been established by femtosecond transient absorption studies, signifying their utility in building light energy harvesting devices. PMID:27305145

  6. Treatability study for Hill AFB`s Operable Unit-1: Enhanced microaerobic dechlorination using various electron donors. MasMajor report

    SciTech Connect

    Breed, P.G.

    1999-05-13

    A treatability study of the microaerobic biodegradation of cis-dichloroethene (c-DCE) was completed using a series of eight continuously operated columns filled with contaminated soils from Hill Air Force Base`s Operable Unit 1. Columns were supplied groundwater from the site, vitamins and yeast, and an electron donor solution containing one of the following donors: n-butyric acid, benzoic acid, lactic acid, propionic acid, n-propanol, or toluene. Concentrations of c-DCE varied over six months and ranged from 2736 micrograms/L to 30 micrograms/L. Though attempted as an anaerobic study, the ability to continuously eliminate oxygen from an active system proved difficult and columns operated as microaerobic systems. In all columns the degradation of c-DCE was observed, however, the removal efficiencies determined by comparing the influent and effluent concentrations were highly inconsistent throughout the experiment. By comparing the background columns to the columns supplied electron donors, it does not appear the addition of vitamins or electron donors enhance the indigenous microorganism`s ability to remove c-DCE. While c-DCE removal within the background column averaged 17%, the vitamin amended control column averaged only 7% c-DCE removal within the column and the electron donor supplied columns averaged between 7% removal and 5% apparent production. Of the electron donors supporting c-DCE removal, benzoic acid demonstrated 7% removal followed closely by propionic acid and n-propanol, both showing 5% c-DCE removal.

  7. Three Redox States of a Diradical Acceptor-Donor-Acceptor Triad: Gating the Magnetic Coupling and the Electron Delocalization.

    PubMed

    Souto, Manuel; Lloveras, Vega; Vela, Sergi; Fumanal, Maria; Ratera, Imma; Veciana, Jaume

    2016-06-16

    The diradical acceptor-donor-acceptor triad 1(••), based on two polychlorotriphenylmethyl (PTM) radicals connected through a tetrathiafulvalene(TTF)-vinylene bridge, has been synthesized. The generation of the mixed-valence radical anion, 1(•-), and triradical cation species, 1(•••+), obtained upon electrochemical reduction and oxidation, respectively, was monitored by optical and ESR spectroscopy. Interestingly, the modification of electron delocalization and magnetic coupling was observed when the charged species were generated and the changes have been rationalized by theoretical calculations. PMID:27231856

  8. Electrically detected double electron-electron resonance: exchange interaction of ?P donors and P? defects at the Si/SiO? interface

    NASA Astrophysics Data System (ADS)

    Suckert, Max; Hoehne, Felix; Dreher, Lukas; Kuenzl, Markus; Huebl, Hans; Stutzmann, Martin; Brandt, Martin S.

    2013-10-01

    We study the coupling of P? dangling bond defects at the Si/SiO2 interface and 31P donors in an epitaxial layer directly underneath using electrically detected double electron-electron resonance (EDDEER). An exponential decay of the EDDEER signal is observed, which is attributed to a broad distribution of exchange coupling strengths J/2π from 25 kHz to 3 MHz. Comparison of the experimental data with a numerical simulation of the exchange coupling shows that this range of coupling strengths corresponds to 31P-P? distances ranging from 14 nm to 20 nm.

  9. Investigation of the low-affinity oxidation site for exogenous electron donors in the Mn-depleted photosystem II complexes.

    PubMed

    Kurashov, V N; Lovyagina, E R; Shkolnikov, D Yu; Solntsev, M K; Mamedov, M D; Semin, B K

    2009-12-01

    In the manganese-depleted photosystem II (PSII[-Mn]) preparations, oxidation of exogenous electron donors is carried out through the high-affinity (HA) and the low-affinity (LA) sites. This paper investigates the LA oxidation site in the PSII(-Mn) preparations where the HA, Mn-binding site was blocked with ferric cations [[11] B.K. Semin, M.L. Ghirardi, M. Seibert, Blocking of electron donation by Mn(II) to Y(Z)(*) following incubation of Mn-depleted photosystem II membranes with Fe(II) in the light, Biochemistry 41 (2002) 5854-5864.]. In blocked (PSII[-Mn,+Fe]) preparations electron donation by Mn(II) cations to Y(Z)(*) was not detected at Mn(II) concentration 10 microM (corresponds to K(m) for Mn(II) oxidation at the HA site), but detected at Mn concentration 100 microM (corresponds to K(m) for the LA site) by fluorescence measurements. Comparison of pH-dependencies of electron donation by Mn(II) through the HA and the LA sites revealed the similar pK(a) equal to 6.8. Comparison of K(m) for diphenylcarbazide (DPC) oxidation at the LA site and K(d) for A(T) thermoluminescence band suppression by DPC in PSII(-Mn,+Fe) samples suggests that there is relationship between the LA site and A(T) band formation. The role of D1-His190 as an oxidant of exogenous electron donors at the LA site is discussed. In contrast to electrogenic electron transfer from Mn(II) at the HA site to Y(Z)(*), photovoltage due to Mn(II) oxidation in iron-blocked PSII(-Mn) core particles was not detected. PMID:19616503

  10. Thermally activated delayed fluorescence evidence in non-bonding transition electron donor-acceptor molecules

    NASA Astrophysics Data System (ADS)

    Marghad, Ikbal; Clochard, M. C.; Ollier, N.; Wade, Travis L.; Aymes-Chodur, C.; Renaud, C.; Zissis, G.

    2015-09-01

    The exhibition of thermally activated delayed fluorescence on triazine derivative by the introduction of a nonbonding part is demonstrated. Two molecules containing triazine core as acceptor and carbazole part as donor has been synthesized and characterized. One of these molecules bears an additional nonbonding part by the means of a phenoxy group. The results indicated that the molecule bearing the nonbonding molecular part (phenoxy) exhibit thermally activated delayed fluorescence while not on molecule free of non-bonding group. The results are supported by, photoluminescence, spectral analysis time-resolved fluorescence and time-dependent density functional estimation

  11. Transition Metal Donor-Peptide-Acceptor Complexes: From Intramolecular Electron Transfer Reactions to the Study of Reactive Intermediates

    SciTech Connect

    Isied, Stephan S.

    2003-03-11

    The trans-polyproline (PII) oligomers (Figure 1) are unusually rigid peptide structures which have been extensively studied by our group for peptide mediated intramolecular electron transfer (ET) at long distances. We have previously studied ET across a series of metal ion donor (D) acceptor (A) oligoproline peptides with different distances, driving forces and reorganizational energies. The majority of these experiments involve generating the ET intermediate using pulse radiolysis methods, although more recently photochemical methods are also used. Results of these studies showed that ET across peptides can vary by more than twelve orders of magnitude. Using ruthenium bipyridine donors, ET reaction rate constants across several proline residues (n = 4 - 9) occurred in the millisecond (ms) to {micro}s timescale, thus limiting the proline peptide conformational motions to only minor changes (far smaller than the large changes that occur on the ms to sec timescale, such as trans to cis proline isomerization). The present report describes our large data base of experimental results for D-peptide-A complexes in terms of a model where the involvement of both superexchange and hopping (hole and electron) mechanisms account for the long range ET rate constants observed. Our data shows that the change from superexchange to hopping mechanisms occurs at different distances depending on the type of D and A and their interactions with the peptides. Our model is also consistent with generalized models for superexchange and hopping which have been put forward by a number of theoretical groups to account for long range ET phenomena.

  12. Donor-linked di(perylene bisimide)s: arrays exhibiting fast electron transfer for photosynthesis mimics.

    PubMed

    Wu, Yishi; Zhen, Yonggang; Wang, Zhaohui; Fu, Hongbing

    2013-02-28

    The first example of donor-linked di(perylene bisimide)s is reported. UV-vis absorption spectra of these newly synthesized dyads showed intense absorption across the entire visible region, demonstrating their excellent light-harvesting activities. The severe fluorescence quenching event probed by steady-state fluorescence spectroscopy and the free-energy calculations suggested the possibility of electron transfer (ET) in these arrays upon photoexcitation. Further femtosecond transient absorption spectra clarified that the fluorescence quenching was due to fast intramolecular ET. The rate of the charge separation (CS) was found to be as high as 10(12) s(-1) in CH(2)Cl(2). It was suggested that the large ET driving forces, strong donor-acceptor electronic coupling, and relatively small reorganization energy of diPBI accounted for the rapid ET process in a synergic manner. The fate of the generated radical ion pair depended on the solvent used. Rapid charge recombination to ground state occurred for the dyads in polar CH(2)Cl(2) and for diPBI-TPA in nonpolar toluene. However, sufficient (3)diPBI* population was attained via efficient spin-orbit coupled intersystem crossing from the charge-separated state for diPBI-PdTPP in toluene. These photophysical properties are interpreted as the cooperation between thermodynamic feasibility and kinetic manipulation. PMID:23391220

  13. Effect of Spacer Connecting the Secondary Electron Donor Phenothiazine in Subphthalocyanine-Fullerene Conjugates in Promoting Electron Transfer Followed by Hole Shift Process.

    PubMed

    Kc, Chandra B; Lim, Gary N; D'Souza, Francis

    2016-04-20

    Sequential electron/hole transfer between energetically well-positioned entities of photosynthetic reaction center models is one of the commonly employed mechanisms to generate long-lived charge-separated states. A wealth of information, applicable towards light energy harvesting and building optoelectronic devices, has been acquired from such studies. In the present study, we report on the effect of spacer (direct or via phenoxy linkage) connecting the hole shifting agent, phenothiazine (PTZ), on photoinduced charge stabilization in subphthalocyanine-fullerene donor-acceptor conjugates. In these conjugates, the subphthalocyanine (SubPc) and fullerene (C60 ) served as primary electron donor and acceptor, respectively, while the phenothiazine entities act as hole shifting agents. The newly synthesized compounds were characterized by optical absorption and emission, computational, and electrochemical methods. The redox potentials measured using differential pulse voltammetry were used to estimate free-energy changes for charge separation, hole migration, and charge recombination processes. Using femto- and nanosecond transient absorption techniques, evidence for charge separation, and kinetics of charge separation and recombination were obtained in polar benzonitrile and nonpolar toluene solvents. In the conjugate where the phenothiazine entities are directly linked to SubPc, evidence for sequential electron transfer followed by hole shift leading to long-lived charge separated state was weak, primarily due to the delocalization of HOMO on both SubPc and PTZ entities. However, in case of the conjugate where the PTZ and SubPc are linked via phenoxy spacers, sequential electron transfer/hole shift was observed leading to the formation of long-lived charge-separated states. The present study brings out the importance of the spacer group connecting the hole shifting agent in model donor-acceptor conjugates to generate long-lived charge-separated states. PMID:27037628

  14. Intramolecular electron transfer in fullerene/ferrocene based donor-bridge-acceptor dyads

    SciTech Connect

    Guldi, D.M.; Maggini, M.; Scorrano, G.; Prato, M.

    1997-02-05

    A systematic steady-state fluorescence and time-resolved flash photolytic investigation of a series of covalently linked fullerene/ferrocene based donor-bridge-acceptor dyads is reported as a function of the nature of the spacer between the donor site (ferrocene) and acceptor site (fullerene) and the dielectric constant of the medium. The fluorescence of the investigated dyads 2, 3, 4, 5, and 6 in methylcyclohexane at 77 K were substantially quenched, relative to N-methylfulleropyrrolidine 1, indicating intramolecular quenching of the fullerene excited singlet state. Excitation of N-methylfulleropyrrolidine revealed the immediate formation of the excited singlet state, with {lambda}{sub max} around 886 nm. A rapid intersystem crossing ({tau}{sub 1/2} = 1.2 ps ) to the excited triplet state was observed with characteristic absorption around 705 nm. Picosecond resolved photolysis of dyads 2-6 in toluene showed light-induced formation of the excited singlet state which undergoes rapid intramolecular quenching. Nanosecond-resolved photolysis of dyads 3 and 4 in degassed benzonitrile revealed long-lived charge separated states with characteristic fullerene radical-anion bands at {lambda}{sub max} = 1055 nm. 30 refs., 5 figs., 3 tabs.

  15. Mechanistic basis of electron transfer to cytochromes p450 by natural redox partners and artificial donor constructs.

    PubMed

    Hlavica, Peter

    2015-01-01

    Cytochromes P450 (P450s) are hemoproteins catalyzing oxidative biotransformation of a vast array of natural and xenobiotic compounds. Reducing equivalents required for dioxygen cleavage and substrate hydroxylation originate from different redox partners including diflavin reductases, flavodoxins, ferredoxins and phthalate dioxygenase reductase (PDR)-type proteins. Accordingly, circumstantial analysis of structural and physicochemical features governing donor-acceptor recognition and electron transfer poses an intriguing challenge. Thus, conformational flexibility reflected by togging between closed and open states of solvent exposed patches on the redox components was shown to be instrumental to steered electron transmission. Here, the membrane-interactive tails of the P450 enzymes and donor proteins were recognized to be crucial to proper orientation toward each other of surface sites on the redox modules steering functional coupling. Also, mobile electron shuttling may come into play. While charge-pairing mechanisms are of primary importance in attraction and complexation of the redox partners, hydrophobic and van der Waals cohesion forces play a minor role in docking events. Due to catalytic plasticity of P450 enzymes, there is considerable promise in biotechnological applications. Here, deeper insight into the mechanistic basis of the redox machinery will permit optimization of redox processes via directed evolution and DNA shuffling. Thus, creation of hybrid systems by fusion of the modified heme domain of P450s with proteinaceous electron carriers helps obviate the tedious reconstitution procedure and induces novel activities. Also, P450-based amperometric biosensors may open new vistas in pharmaceutical and clinical implementation and environmental monitoring. PMID:26002739

  16. 2008 Electron Donor Acceptor Interactions Gordon Research Conference-August 3-8, 2009

    SciTech Connect

    Malcolm Forbes and Nancy Ryan Gray

    2009-09-19

    The conference presents and advances the current frontiers in experimental and theoretical studies of Electron Transfer and Transport in Molecular and Nano-scale Systems. The program includes sessions on coupled electron transfers, molecular solar energy conversion, biological and biomimetic systems, spin effects, ultrafast reactions and technical frontiers as well as electron transport in single molecules and devices.

  17. Quantum dynamics of charge carriers in donor-bridge-acceptor molecular segments with applications to molecular electronics

    NASA Astrophysics Data System (ADS)

    Gayen, Taposh Kumar

    1998-11-01

    The theory of electron transfer (ET) is important toward understanding the physics and process technology of electronic devices at the atomic and molecular scale. Computer simulation of ID model Hamiltonians has proven to be an effective method to study the ET processes in molecular electronic devices. In this thesis, we present our findings on electron transfer rate (ETR) in model molecular quantum wire (MQW) and donor-bridge-acceptor (DBA) molecular chain systems as our ID electron systems. In this thesis, we show that our trigonometric imaging method (TIM) is an excellent approach to calculating ETR both in MQW and DBA chain systems. First, we report the results on ETR using exact formulas for MQW and DBA chain systems without any nonlinear interactions and find that these results are the same as those obtained by TIM. We introduce a graphical approach to get time derivatives as necessary data for TIM to study the nonlinear effects, electron-phonon (e-p) and electron-electron (e-e) interactions, on ETR in a MQW. We show that time derivatives obtained by the graphical approach are the same as those obtained exactly in the case of e-p interactions. We conclusively report using both the exact and TIM results that e-p interactions enhance ETR in a MQW. Our research on nonlinear interactions also shows that temperature enhances ETR in a model MQW. Using TIM, we report that e-e interactions have virtually no effect on ETR in a MQW, where the data for TIM are obtained by the graphical approach.

  18. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions.

    PubMed

    Kwon, Man Jae; O'Loughlin, Edward J; Boyanov, Maxim I; Brulc, Jennifer M; Johnston, Eric R; Kemner, Kenneth M; Antonopoulos, Dionysios A

    2016-01-01

    Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over time revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. These data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments

  19. Electron Donor Substances and Iron Oxides Stimulate Anaerobic Dechlorination of DDT in a Slurry System with Hydragric Acrisols.

    PubMed

    Liu, Cui-Ying; Cade-Menun, Barbara J; Xu, Xiang-Hua; Fan, Jian-Ling

    2016-01-01

    The interactive effects between electron donor substances and iron (Fe) oxides have significant influence on electron transfer and the growth of Fe-reducing bacteria, which may affect the reductive dechlorination of 1,1,1-trichoro-2,2-bis(p-chlorophenyl)ethane (DDT) in soils. To evaluate the roles of volatile fatty acids and Fe(III) oxide in accelerating the reductive dechlorination of DDT in Hydragric Acrisols, a batch anaerobic incubation experiment was conducted in a slurry system with the following seven treatments: sterile soil, control (DDT-contaminated soil), lactic acid, propionic acid, goethite, lactic acid + goethite, and propionic acid + goethite. Results showed that after 20 d of incubation, DDT residues for these treatments decreased by 34, 65, 77, 81, 77, 90, and 92% of the initial quantities, respectively, with 1,1-dichloro-2,2-bis(4-chlorophenyl)-ethane as the dominant metabolite. The application of lactic acid had no significant effect on DDT dechlorination in the first 8 d while the methanogenesis rate increased quickly but accelerated DDT dechlorination after Day 8 while the methanogenesis rate decreased and Fe(II) contents increased. The application of propionic acid enhanced DDT dechlorination rates throughout the incubation. The amendment by goethite stimulated microbial reduction of Fe(III) oxides to generate Fe(II), which was an efficient electron donor, thus accelerating DDT dechlorination significantly in the early incubation period. A synergetic interaction that accelerated DDT dechlorination, either between lactic acid and goethite or between propionic acid and goethite, was obtained. The results will be of great significance to develop efficient in situ remediation technology of DDT-contaminated soil. PMID:26828189

  20. Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions

    PubMed Central

    Kwon, Man Jae; O’Loughlin, Edward J.; Boyanov, Maxim I.; Brulc, Jennifer M.; Johnston, Eric R.; Kemner, Kenneth M.; Antonopoulos, Dionysios A.

    2016-01-01

    Although iron- and sulfate-reducing bacteria in subsurface environments have crucial roles in biogeochemical cycling of C, Fe, and S, how specific electron donors impact the compositional structure and activity of native iron- and/or sulfate-reducing communities is largely unknown. To understand this better, we created bicarbonate-buffered batch systems in duplicate with three different electron donors (acetate, lactate, or glucose) paired with ferrihydrite and sulfate as the electron acceptors and inoculated them with subsurface sediment as the microbial inoculum. Sulfate and ferrihydrite reduction occurred simultaneously and were faster with lactate than with acetate. 16S rRNA-based sequence analysis of the communities over time revealed that Desulfotomaculum was the major driver for sulfate reduction coupled with propionate oxidation in lactate-amended incubations. The reduction of sulfate resulted in sulfide production and subsequent abiotic reduction of ferrihydrite. In contrast, glucose promoted faster reduction of ferrihydrite, but without reduction of sulfate. Interestingly, the glucose-amended incubations led to two different biogeochemical trajectories among replicate bottles that resulted in distinct coloration (white and brown). The two outcomes in geochemical evolution might be due to the stochastic evolution of the microbial communities or subtle differences in the initial composition of the fermenting microbial community and its development via the use of different glucose fermentation pathways available within the community. Synchrotron-based x-ray analysis indicated that siderite and amorphous Fe(II) were formed in the replicate bottles with glucose, while ferrous sulfide and vivianite were formed with lactate or acetate. These data sets reveal that use of different C utilization pathways projects significant changes in microbial community composition over time that uniquely impact both the geochemistry and mineralogy of subsurface environments

  1. Complete bromate and nitrate reduction using hydrogen as the sole electron donor in a rotating biofilm-electrode reactor.

    PubMed

    Zhong, Yu; Li, Xin; Yang, Qi; Wang, Dongbo; Yao, Fubing; Li, Xiaoming; Zhao, Jianwei; Xu, Qiuxiang; Zhang, Chang; Zeng, Guangming

    2016-04-15

    Simultaneous reduction of bromate and nitrate was investigated using a rotating biofilm-electrode reactor (RBER) with graphite carbon (GC) rods as anode and activated carbon fiber (ACF) bonded with steel ring as cathode. In RBER, the community of denitrifying bacteria immobilized on the cathode surface could completely utilize hydrogen (H2) as the electron donor, which was internally produced by the electrolysis of water. The short-term test confirmed that the RBER system could reduce 150-800μg/L bromate to below 10μg/L under autotrophic conditions. The reduced bromate was considered to be roughly equivalent to the amount of bromide in effluent, indicating that bromate was completely reduced to bromide without accumulation of by-products. The long-term test (over 120 days) showed that the removal fluxes of bromate and nitrate could be improved by increasing the electric current and decreasing the hydraulic retention time (HRT). But nitrite in effluent was significantly accumulated when the electric current was beyond 10mA and the HRT was less than 6h. The maximum bromate reduction rate estimated by the Monod equation was 109.12μg/Lh when the electric current was 10mA and HRT was 12h. It was proposed that the electron transfer process in RBER produced H2 on the surface of the ACF cathode, and the microbial cultures attached closely on the cathode which could completely utilize H2 as electron donors for reduction of bromate and nitrate. PMID:26775102

  2. In situ Bioreduction of Uranium (VI) in Groundwater and Sediments with Edible Oil as the Electron Donor

    NASA Astrophysics Data System (ADS)

    Wu, W.; Watson, D. B.; Mehlhorn, T.; Zhang, G.; Earles, J.; Lowe, K.; Phillips, J.; Boyanov, M.; Kemner, K. M.; Schadt, C. W.; Brooks, S. C.; Criddle, C.; Jardine, P.

    2009-12-01

    In situ bioremediation of a uranium-contaminated aquifer was conducted at the US DOE Environmental Remediation Sciences Program (ERSP) Integrated Field Research Challenge (IFRC) site, in Oak Ridge, TN. Edible oil was tested as a slow-release electron donor for microbially mediated U (VI) reduction. Uranium contaminated sediments from the site were used in laboratory microcosm tests to study the feasibility of using this electron donor under anaerobic, ambient temperature conditions. Parallel microcosms were established using ethanol as electron donor for comparison. The tests also examined the impact of sulfate concentrations on U (VI) reduction. The oil was degraded by indigenous microorganisms with acetate as a major product but at a much slower rate than ethanol. The rapid removal of U (VI) from the aqueous phase occurred concurrently with acetate production and sulfate reduction. Initial U(VI) concentration in the aqueous phase increased with increased sulfate concentration (1 vs. 5 mM), likely due to U(VI) desorption from the solid phase, but more U(VI) was reduced with higher initial sulfate level. Finally, the bioreaction in microcosms progressed to methanogenesis. Subsequently, a field test with the edible oil was conducted in a highly permeable gravelly layer (hydraulic conductivity 0.076 cm/sec). Groundwater at the site contained 5-6 μM U; 1.0-1.2 mM sulfate; 3-4 mM Ca; pH 6.8. Diluted emulsified oil (20% solution) was injected into three injection wells within 2 hrs. Geochemical analysis of site groundwater demonstrated the sequential reduction of nitrate, Mn, Fe(III) and sulfate. Transient accumulation of acetate was observed as an intermediate in the oil degradation. Reduction and removal of uranium from groundwater was observed in all wells connected to the injection wells after 2-4 weeks. Uranium concentrations in groundwater were reduced to below 0.126 μM (EPA drinking water standard), at some well locations. Rebound of U in groundwater was

  3. The impact of active layer nanomorphology on the efficiency of organic solar cells based on a squaraine dye electron donor

    NASA Astrophysics Data System (ADS)

    Stoyanova, D.; Kitova, S.; Dikova, J.; Kandinska, M.; Vasilev, A.; Zhivkov, I.; Kovalenko, A.

    2016-03-01

    The possibilities were studied of improving the photovoltaic performance of solution processed BHJ solar cells by solvent vapor annealing (SVA) of the active layers, based on a squaraine dye Sq1 as a donor and the fullerene derivative PCBM as an acceptor. For this purpose, the optical properties were determined of as-deposited and of annealed with tetrahydrofuran (THF) vapors for different duration Sq1/PCMB layers, as well as the efficiency of cells built on their basis. A considerable change was established in the absorption spectra of treated for only a few seconds films and a twofold increase of the power conversion efficiency after 6 sec SVA. The results obtained are explained in terms of solvent vapor induced phase separation and formation of squaraine dye small aggregates in the blend nanostructure. The assumption made was confirmed by morphological investigation of as-deposited and of annealed Sq1/PCBM blended layers. On this basis, the impact of the active layer nanomorphology on the efficiency of solar cells based on squariane dye as electron donor is discussed.

  4. Theoretical studies on two-dimensional nonlinear optical chromophores with pyrazinyl cores and organic or ruthenium(II) ammine electron donors.

    PubMed

    Coe, Benjamin J; Pilkington, Rachel A

    2014-03-27

    Density functional theory calculations have been carried out on twelve cationic, 2D nonlinear optical chromophores with pyrazinylbis(pyridinium) electron acceptors. These species contain either 4-(methoxy/dimethylamino)phenyl or pyridyl-coordinated {Ru(II)(NH3)5}(2+)/trans-{Ru(II)(NH3)4(py)}(2+) (py = pyridine) electron donor groups. The results are compared with data obtained by using experimental techniques including hyper-Rayleigh scattering and Stark (electroabsorption) spectroscopy previously (Coe, B. J.; et al. Inorg. Chem. 2010, 49, 10718; J. Org. Chem. 2010, 75, 8550). The B3LYP/6-311G(d) level of theory models the visible absorption spectra in MeCN for the -NMe2 derivatives relatively well, whereas CAM-B3LYP/6-311G(d) gives better results for the -OMe-substituted species. These spectra are dominated by intramolecular charge-transfer (ICT) bands. Static first hyperpolarizabilities β0 are computed also at the B3LYP/6-311G(d) level. The overall extent of prediction of trends in the ICT bands and β0 responses is partial, with the main discrepancies relating to the progression from one to two electron donor groups. The experimental data show that this structural change red-shifts the ICT bands and increases β0 significantly, but only the second trend is reproduced to some extent by the calculations. The UV-vis absorption spectra of the Ru complexes in MeCN are modeled relatively well with B3LYP and the LANL2DZ/6-311G(d) mixed basis set, including 100 excited states. However, again, some degree of disagreement between theory and experiment is evident, even when a larger basis set like def2-TZVP is used for Ru. In particular, substantial red shifts are predicted on adding a third metal center, whereas the measured spectra show corresponding small blue shifts. The experimental trend of the total β0 value increasing on moving from one to two Ru centers is predicted in the gas phase, but not in MeCN. For both classes of chromophore, the β(xxx) tensor component

  5. Electron and hole polaron accumulation in low-bandgap ambipolar donor-acceptor polymer transistors imaged by infrared microscopy

    NASA Astrophysics Data System (ADS)

    Khatib, O.; Mueller, A. S.; Stinson, H. T.; Yuen, J. D.; Heeger, A. J.; Basov, D. N.

    2014-12-01

    A resurgence in the use of the donor-acceptor approach in synthesizing conjugated polymers has resulted in a family of high-mobility ambipolar systems with exceptionally narrow energy bandgaps below 1 eV. The ability to transport both electrons and holes is critical for device applications such as organic light-emitting diodes and transistors. Infrared spectroscopy offers direct access to the low-energy excitations associated with injected charge carriers. Here we use a diffraction-limited IR microscope to probe the spectroscopic signatures of electron and hole injection in the conduction channel of an organic field-effect transistor based on an ambipolar DA polymer polydiketopyrrolopyrrole-benzobisthiadiazole. We observe distinct polaronic absorptions for both electrons and holes and spatially map the carrier distribution from the source to drain electrodes for both unipolar and ambipolar biasing regimes. For ambipolar device configurations, we observe the spatial evolution of hole-induced to electron-induced polaron absorptions throughout the transport path. Our work provides a platform for combined transport and infrared studies of organic semiconductors on micron length scales relevant to functional devices.

  6. Synthesis, Structure, and Reactivities of Iminosulfane- and Phosphane-Stabilized Carbones Exhibiting Four-Electron Donor Ability.

    PubMed

    Morosaki, Tomohito; Wang, Wei-Wei; Nagase, Shigeru; Fujii, Takayoshi

    2015-10-19

    Iminosulfane(phosphane)carbon(0) derivatives (iSPCs; Ar3 P→C←SPh2 (NMe); Ar=Ph (1), 4-MeOC6 H4 (2), 4-(Me2 N)C6 H4 (3)) have been successfully synthesized and the molecular structure of 3 characterized. Carbone 3 is the first thermally and hydrolytically stable carbone stabilized by phosphorus and sulfur ligands. DFT calculations reveal the electronic structures of 1-3, which have two lone pairs of electrons at the carbon center. First and second proton affinity values are theoretically calculated to be in the range of 286.8-301.1 and 189.6-208.3 kcal mol(-1) , respectively. Cyclic voltammetry measurements reveal that the HOMO energy levels follow the order of 3>2>1 and the HOMO of 3 is at a higher energy than those of bis(chalcogenane)carbon(0) (BChCs). The reactivities of these lone pairs of electrons are demonstrated by the C-diaurated and C-proton-aurated complexes. These results are the first experimental evidence of phosphorus- and sulfur-stabilized carbones behaving as four-electron donors. In addition, the reaction of hydrochloric salts of the carbones with Ag2 O gives the corresponding Ag(I) complexes. The resulting silver(I) carbone complexes can be used as carbone transfer agents. This synthetic protocol can also be used for moisture-sensitive carbone species. PMID:26471447

  7. U(VI) bioreduction with emulsified vegetable oil as the electron donor-Model application to a field test

    SciTech Connect

    Tang, Guoping; Watson, David B; Wu, Wei-min; Schadt, Christopher Warren; Parker, Jack C; Brooks, Scott C

    2013-01-01

    A one-time 2-hour emulsified vegetable oil (EVO) injection in a fast flowing aquifer decreased U discharge to a stream for over a year. Using a comprehensive biogeochemical model developed in the companion article based on microcosm tests, we approximately matched the observed acetate, nitrate, Fe, U, and sulfate concentrations, and described the major evolution trends of multiple microbial functional groups in the field test. While the lab-determined parameters were generally applicable in the field-scale simulation, the EVO hydrolysis rate constant was estimated to be an order of magnitude greater in the field than in the microcosms. The model predicted substantial biomass (sulfate reducers) and U(IV) accumulation near the injection wells and along the side boundaries of the treatment zone where electron donors (long-chain fatty acids) from the injection wells met electron acceptors (sulfate) from the surrounding environment. While EVO retention and hydrolysis characteristics were expected to control treatment longevity, modeling results indicated that electron acceptors such as sulfate may not only compete for electrons but also play a conducive role in degrading complex substrates and enhancing U(VI) reduction and immobilization. As a result, the spacing of the injection wells could be optimized for effective sustainable bioremediation.

  8. Ultrafast Photoinduced Electron Transfer and Charge Stabilization in Donor-Acceptor Dyads Capable of Harvesting Near-Infrared Light.

    PubMed

    Bandi, Venugopal; Gobeze, Habtom B; D'Souza, Francis

    2015-08-01

    To harvest energy from the near-infrared (near-IR) and infrared (IR) regions of the electromagnetic spectrum, which constitutes nearly 70 % of the solar radiation, there is a great demand for near-IR and IR light-absorbing sensitizers that are capable of undergoing ultrafast photoinduced electron transfer when connected to a suitable electron acceptor. Towards achieving this goal, in the present study, we report multistep syntheses of dyads derived from structurally modified BF2-chelated azadipyrromethene (ADP; to extend absorption and emission into the near-IR region) and fullerene as electron-donor and electron-acceptor entities, respectively. The newly synthesized dyads were fully characterized based on optical absorbance, fluorescence, geometry optimization, and electrochemical studies. The established energy level diagram revealed the possibility of electron transfer either from the singlet excited near-IR sensitizer or singlet excited fullerene. Femtosecond and nanosecond transient absorption studies were performed to gather evidence of excited state electron transfer and to evaluate the kinetics of charge separation and charge recombination processes. These studies revealed the occurrence of ultrafast photoinduced electron transfer leading to charge stabilization in the dyads, and populating the triplet states of ADP, benzanulated-ADP and benzanulated thiophene-ADP in the respective dyads, and triplet state of C60 in the case of BF2 -chelated dipyrromethene derived dyad during charge recombination. The present findings reveal that these sensitizers are suitable for harvesting light energy from the near-IR region of the solar spectrum and for building fast-responding optoelectronic devices operating under near-IR radiation input. PMID:26130432

  9. Ultrafast electron transfer in all-carbon-based SWCNT-C60 donor-acceptor nanoensembles connected by poly(phenylene-ethynylene) spacers

    NASA Astrophysics Data System (ADS)

    Barrejón, Myriam; Gobeze, Habtom B.; Gómez-Escalonilla, María J.; Fierro, José Luis G.; Zhang, Minfang; Yudasaka, Masako; Iijima, Sumio; D'Souza, Francis; Langa, Fernando

    2016-08-01

    Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an electron donating or accepting photosensitizer while the second part should fulfil the role of an electron acceptor or donor. In the present work, we have successfully addressed this issue by synthesizing covalently linked all-carbon-based donor-acceptor nanoensembles using single-walled carbon nanotubes (SWCNTs) as the donor and C60 as the acceptor. The donor-acceptor entities in the nanoensembles were connected by phenylene-ethynylene spacer units to achieve better electronic communication and to vary the distance between the components. These novel SWCNT-C60 nanoensembles have been characterized by a number of techniques, including TGA, FT-IR, Raman, AFM, absorbance and electrochemical methods. The moderate number of fullerene addends present on the side-walls of the nanotubes largely preserved the electronic structure of the nanotubes. The thermodynamic feasibility of charge separation in these nanoensembles was established using spectral and electrochemical data. Finally, occurrence of ultrafast electron transfer from the excited nanotubes in these donor-acceptor nanohybrids has been established by femtosecond transient absorption studies, signifying their utility in building light energy harvesting devices.Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an

  10. Temperature dependent electron spin echo studies of polarons in donor- and acceptor-doped poly(p-phenylene): Structural studies

    SciTech Connect

    Kispert, L.D.; Joseph, J.; Tang, J.; Bowman, M.K.; Van Brakel, G.H.; Norris, J.R.

    1986-06-06

    Electron spin echo (ESE) measurements of donor-doped (Li, Na, K and Cs) and acceptor-doped (AsF/sub 5/) poly(p-phenylene), PPP, and fully deuterated PPP samples predict a temperature independent EPR linewidth equal to less than 0.65 gauss that decreases with increasing conductivity. In contrast, EPR linewidths either decrease or increase with decreasing temperature, are dependent on dopant and always exhibit a linewidth either equal to or larger than that predicted from ESE measurements. Deuteration studies indicate that rapid spin exchange is present. Analysis of these results suggest that an exchange exists between isolated radicals in equilibrium with polarons and bipolarons with the equilibrium in favor of bipolarons at 4 K.

  11. Hyperfine Stark effect of shallow donors in silicon

    NASA Astrophysics Data System (ADS)

    Pica, Giuseppe; Wolfowicz, Gary; Urdampilleta, Matias; Thewalt, Mike L. W.; Riemann, Helge; Abrosimov, Nikolai V.; Becker, Peter; Pohl, Hans-Joachim; Morton, John J. L.; Bhatt, R. N.; Lyon, S. A.; Lovett, Brendon W.

    2014-11-01

    We present a complete theoretical treatment of Stark effects in bulk doped silicon, whose predictions are supported by experimental measurements. A multivalley effective mass theory, dealing nonperturbatively with valley-orbit interactions induced by a donor-dependent central cell potential, allows us to obtain a very reliable picture of the donor wave function within a relatively simple framework. Variational optimization of the 1 s donor binding energies calculated with a new trial wave function, in a pseudopotential with two fitting parameters, allows an accurate match of the experimentally determined donor energy levels, while the correct limiting behavior for the electronic density, both close to and far from each impurity nucleus, is captured by fitting the measured contact hyperfine coupling between the donor nuclear and electron spin. We go on to include an external uniform electric field in order to model Stark physics: with no extra ad hoc parameters, variational minimization of the complete donor ground energy allows a quantitative description of the field-induced reduction of electronic density at each impurity nucleus. Detailed comparisons with experimental values for the shifts of the contact hyperfine coupling reveal very close agreement for all the donors measured (P, As, Sb, and Bi). Finally, we estimate field ionization thresholds for the donor ground states, thus setting upper limits to the gate manipulation times for single qubit operations in Kane-like architectures: the Si:Bi system is shown to allow for A gates as fast as ≈10 MHz.

  12. An ultrafast spectroscopic and quantum mechanical investigation of multiple emissions in push-pull pyridinium derivatives bearing different electron donors.

    PubMed

    Carlotti, B; Benassi, E; Cesaretti, A; Fortuna, C G; Spalletti, A; Barone, V; Elisei, F

    2015-08-28

    A joint experimental and theoretical approach, involving state-of-the-art femtosecond fluorescence up-conversion measurements and quantum mechanical computations including vibronic effects, was employed to get a deep insight into the excited state dynamics of two cationic dipolar chromophores (Donor-π-Acceptor(+)) where the electron deficient portion is a N-methyl pyridinium and the electron donor a trimethoxyphenyl or a pyrene, respectively. The ultrafast spectroscopic investigation, and the time resolved area normalised emission spectra in particular, revealed a peculiar multiple emissive behaviour and allowed the distinct emitting states to be remarkably distinguished from solvation dynamics, occurring in water in a similar timescale. The two and three emissions experimentally detected for the trimethoxyphenyl and pyrene derivatives, respectively, were associated with specific local emissive minima in the potential energy surface of S1 on the ground of quantum-mechanical calculations. A low polar and planar Locally Excited (LE) state together with a highly polar and Twisted Intramolecular Charge Transfer (TICT) state is identified to be responsible for the dual emission of the trimethoxyphenyl compound. Interestingly, the more complex photobehaviour of the pyrenyl derivative was explained considering the contribution to the fluorescence coming not only from the LE and TICT states but also from a nearly Planar Intramolecular Charge Transfer (PICT) state, with both the TICT and the PICT generated from LE by progressive torsion around the quasi-single bond between the methylpyridinium and the ethene bridge. These findings point to an interconversion between rotamers for the pyrene compound taking place in its excited state against the Non-equilibrated Excited Rotamers (NEER) principle. PMID:26213993

  13. Tuning the Electronic Structure of Fe(II) Polypyridines via Donor Atom and Ligand Scaffold Modifications: A Computational Study.

    PubMed

    Bowman, David N; Bondarev, Alexey; Mukherjee, Sriparna; Jakubikova, Elena

    2015-09-01

    Fe(II) polypyridines are an important class of pseudo-octahedral metal complexes known for their potential applications in molecular electronic switches, data storage and display devices, sensors, and dye-sensitized solar cells. Fe(II) polypyridines have a d(6) electronic configuration and pseudo-octahedral geometry and can therefore possess either a high-spin (quintet) or a low-spin (singlet) ground state. In this study, we investigate a series of complexes based on [Fe(tpy)2](2+) (tpy = 2,2';6',2″-terpyridine) and [Fe(dcpp)2](2+) (dcpp = 2,6-bis(2-carboxypyridyl)pyridine). The ligand field strength in these complexes is systematically tuned by replacing the central pyridine with five-membered (N-heterocyclic carbene, pyrrole, furan) or six-membered (aryl, thiazine-1,1-dioxide, 4-pyrone) moieties. To determine the impact of ligand substitutions on the relative energies of metal-centered states, the singlet, triplet, and quintet states of the Fe(II) complexes were optimized in water (PCM) using density functional theory at the B3LYP+D2 level with 6-311G* (nonmetals) and SDD (Fe) basis sets. It was found that the dcpp ligand scaffold allows for a more ideal octahedral coordination environment in comparison to the tpy ligand scaffold. The presence of six-membered central rings also allows for a more ideally octahedral coordination environment relative to five-membered central rings, regardless of the ligand scaffold. We find that the ligand field strength in the Fe(II) polypyridines can be tuned by altering the donor atom identity, with C donor atoms providing the strongest ligand field. PMID:26295275

  14. Added-value from a multi-criteria selection of donor catchments in the prediction of continuous streamflow series at ungauged pollution control-sites

    NASA Astrophysics Data System (ADS)

    Drogue, Gilles; Ben Khediri, Wiem; Conan, Céline

    2016-05-01

    We explore the potential of a multi-criteria selection of donor catchments in the prediction of continuous streamflow series by the spatial proximity method. Three criteria have been used: (1) spatial proximity; (2) physical similarity; (3) stream gauging network topology. An extensive assessment of our spatial proximity method variant is made on a 149 catchment-data set located in the Rhine-Meuse catchment. The competitiveness of the method is evaluated against spatial interpolation of catchment model parameters with ordinary kriging. We found that the spatial proximity approach is more efficient than ordinary kriging. When distance to upstream/downstream stream gauge stations is considered as a second order criterion in the selection of donor catchments, an unprecedented level of efficiency is reached for nested catchments. Nevertheless, the spatial proximity method does not take advantage from physical similarity between donor catchments and receiver catchments because catchments that are the most hydrologically similar to each catchment poorly match with the catchments that are the most physically similar to each catchment.

  15. Synthesis, electronic structure and catalytic activity of ruthenium-iodo-carbonyl complexes with thioether containing NNS donor ligand

    NASA Astrophysics Data System (ADS)

    Jana, Subrata; Jana, Mahendra Sekhar; Biswas, Sujan; Sinha, Chittaranjan; Mondal, Tapan Kumar

    2014-05-01

    The ruthenium carbonyl complexes 1 and 2 with redox noninnocent NNS donor ligand, 1-methyl-2-{(o-thiomethyl)phenylazo}imidazole (L) have been synthesized and characterized by various analytical and spectroscopic (IR, UV-Vis and 1H NMR) techniques. The complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 1.11 V for 1 and 0.76 V for 2 along with two successive one electron ligand reductions. Catalytic activity of the compounds has been investigated to the oxidation of PhCH2OH to PhCHO, 2-butanol (C4H9OH) to 2-butanone, 1-phenylethanol (PhC2H4OH) to acetophenone, cyclopentanol (C5H9OH) to cyclopentanone, cyclohexanol to cyclohexanone, cycloheptanol to cycloheptanone and cycloctanol to cycloctanone using N-methylmorpholine-N-oxide (NMO) as oxidant. The catalytic efficiency of 2 is greater than complex 1 and well correlate with the metal oxidation potential. DFT, NBO and TDDFT calculations in DFT/B3LYP/6-31G(d)/lanL2TZ(f) method are employed to interpret the structural and electronic features of the complexes.

  16. Dependence on membrane components of methanogenesis from methyl-CoM with formaldehyde or molecular hydrogen as electron donors.

    PubMed

    Deppenmeier, U; Blaut, M; Gottschalk, G

    1989-12-01

    Methane formation from 2-(methylthio)-ethanesulfonate (methyl-CoM) and H2 by the soluble fraction from the methanogenic bacterium strain Gö1 was stimulated up to tenfold by the addition of the membrane fraction. This stimulation was observed with membranes from various methanogenic species belonging to different phylogenetic families, but not with membranes from Escherichia coli or Acetobacterium woodii. Treatment of the membranes with strong oxidants, i.e. O2 and K3[Fe(CN)6], or with SH reagents, i.e. Ag+, p-chloromercuribenzoate or iodoacetamide, caused an irreversible decrease or loss in stimulatory activity, as did heat treatment at temperatures above 78 degrees C. Methanogenesis from methyl-CoM with formaldehyde instead of H2 as electron donor depended similarly on the membrane fraction. With membranes, 1 mol HCHO was oxidized to 1 mol CO2 and allowed the formation of 2 mol CH4 from 2 mol CH3-CoM. Without membranes, per mol of HCHO oxidized 1 mol H2 was formed and 1 mol CH4 was produced from CH3-CoM; the rate was 10-20% of that in the presence of membranes. When methyl-CoM was replaced by an artificial electron acceptor system consisting of methylviologen and metronidazole, the formaldehyde-oxidizing activity was no longer stimulated by the membrane fraction. These results demonstrate for the first time an essential function of membrane components in methanogenic electron transfer. PMID:2513188

  17. Charge separation in Rhodobacter sphaeroides mutant reaction centers with increased midpoint potential of the primary electron donor.

    PubMed

    Khmelnitskiy, A Yu; Khatypov, R A; Khristin, A M; Leonova, M M; Vasilieva, L G; Shuvalov, V A

    2013-01-01

    Primary charge separation dynamics in four mutant reaction centers (RCs) of the purple bacterium Rhodobacter sphaeroides with increased midpoint potential of the primary electron donor P (M160LH, L131LH, M197FH, and M160LH + L131LH + M197FH) have been studied by femtosecond transient absorption spectroscopy at room temperature. The decay of the excited singlet state in the wild-type and mutant RCs is complex and has two main exponential components, which indicates heterogeneity of electron transfer rates or the presence of reverse electron transfer reactions. The radical anion band of monomeric bacteriochlorophyll B(A) at 1020 nm was first observed in transient absorbance difference spectra of single mutants. This band remains visible, although with somewhat reduced amplitude, even at delays up to tens of picoseconds when stimulated emission is absent and the reaction centers are in the P(+)H(A)(-) state. The presence of this band in this time period indicates the existence of thermodynamic equilibrium between the P(+)B(A)(-)H(A) and P(+)B(A)H(A)(-) states. The data give grounds for assuming that the value of the energy difference between the states P*, P(+)B(A)(-)H(A), and P(+)B(A)H(A)(-) at early times is of the same order of magnitude as the energy kT at room temperature. Besides, monomeric bacteriochlorophyll B(A) is found to be an immediate electron acceptor in the single mutant RCs, where electron transfer is hampered due to increased energy of the P(+)B(A)(-) state with respect to P*. PMID:23379560

  18. Photo-initiated multi-step electron transfer in donor-acceptor systems using a novel bi-functionalized perylene chromophore

    NASA Astrophysics Data System (ADS)

    Dyar, Scott M.; Smeigh, Amanda L.; Karlen, Steven D.; Young, Ryan M.; Wasielewski, Michael R.

    2015-06-01

    The excited state and redox properties of a new bi-functional perylene redox chromophore, 2,3-dihydro-1-azabenzo[cd]perylene (DABP), are described. Perylene has been widely used in electron donor-acceptor molecules in fields ranging from artificial photosynthesis to molecular spintronics. However, attaching multiple redox components to perylene to carry out multi-step electron transfer reactions often produces hard to separate regioisomers, which complicate data analysis. The use of DABP provides a strategy to retain the electronic properties of perylene, yet eliminate regioisomers. Ultrafast photo-initiated single- and two-step electron transfer reactions in three linear electron donor-acceptor systems incorporating DABP are described to illustrate its utility.

  19. Halogen bonding. The role of the polarizability of the electron-pair donor.

    PubMed

    Duarte, Darío J R; Sosa, Gladis L; Peruchena, Nélida M; Alkorta, Ibon

    2016-03-14

    The nature of F-BrX-R interactions (with X = F, Cl, Br, I and R = -H, -F) has been investigated through theoretical calculation of molecular potential electrostatic (MEP), molecular polarizability, atoms in molecules (AIM) analysis and energetic decomposition analysis (EDA). A detailed analysis of the MEPs reveals that considering only the static electrostatic interactions is not sufficient to explain the nature of these interactions. The molecular polarizabilities of X-R molecules suggest that the deformation capacity of the electronic cloud of the lone pairs of the X atom plays an important role in the stability of these complexes. The topological analysis of the L(r) = -¼∇(2)ρ(r) function and the detailed analysis of the atomic quadrupole moments reveal that the BrX interactions are electrostatic in nature. The electron acceptor Br atom causes a polarization of the electronic cloud (electronic induction) on the valence shell of the X atom. Finally, the electrostatic forces and charge transfer play an important role not only in the stabilization of the complex, but also in the determination of the molecular geometry of equilibrium. The dispersive and polarization forces do not influence the equilibrium molecular geometry. PMID:26900007

  20. An economic analysis of microbial reduction of sulfur dioxide with anaerobically digested sewage biosolids as electron donor

    SciTech Connect

    Selvaraj, P.T.; Sublette, K.L.

    1996-12-31

    A concentrated stream of sulfur dioxide (SO{sub 2}) is produced by regeneration of the sorbent in certain new regenerable processes for the desulfurization of flue gas. It has been previously proposed that this SO{sub 2} can be converted to elemental sulfur for disposal or byproduct recovery using a microbial/Claus process. In this process, two-thirds of the SO{sub 2}-containing gas stream would be contacted with a mixed culture containing sulfate-reducing bacteria (SRB) where SO{sub 2} would act as an electron acceptor with reduction to hydrogen sulfide (H{sub 2}S). This H{sub 2}S could then be recombined with the remaining SO{sub 2} and sent to a Claus unit to produce elemental sulfur. The Claus process is well known in the natural gas industry. Glucose and heat/alkali pretreated municipal sewage sludge have been shown to act as ultimate electron donors and carbon sources for SO{sub 2}-reducing cultures of Desulfovibrio desulfuricans. Sublette and Gwozdz performed an economic analysis of this microbial SO{sub 2} reduction process comparing the microbial process with conventional catalytic SO{sub 2} hydrogenation with H{sub 2} generation from methane. The design basis was a regenerator off-gas from a copper oxide, flue gas desulfurization process applied to a 1000 MW{sub e} coal-fired power plant burning 3.5 wt% sulfur coal. All economics were based on an ultimate product gas of H{sub 2}S and SO{sub 2} in a 2:1 ratio appropriate for feed to a Claus reactor. The fixed capital investments for the two processes were essentially equivalent. However, the annual operating costs for the microbial process were much higher than the conventional process primarily because of the high cost of raw materials, namely DE95 corn hydrolysate, which served as the electron donor and carbon source for the SO{sub 2}-reducing culture. 7 refs., 3 figs., 8 tabs.

  1. Photon-gated persistent spectral hole burning by electron transfer from a doped donor to an acceptor branched to a host polymer matrix

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Nishi, T.; Shimada, T.; Hiratsuka, H.

    1993-01-01

    Two-color photon-gated persistent spectral hole burning (PSHB) via donor-acceptor electron transfer is reported in systems where the acceptor, 10-chloroanthracene, was intentionally branched to a side chain of the poly(methylmethacrylate) (PMMA) host polymer while the donor, metal-free tetraphenylporphine, was dispersed in the polymer. The systems, which had an acceptor concentration of up to 10-1 M, were prepared without aggregation of the acceptor. Spectral holes were burnt in the Qx(0,0) absorption band of the donor when the systems were simultaneously irradiated with a frequency-selective excitation (duration: 500 ps; energy: 200 nJ/cm2) and a gating excitation (wavelength: 514.5 nm; duration: 33 ms; energy: 14 μJ/cm2). The difference absorption spectrum between the unburned absorption spectrum and one recorded after photon-gated PSHB has confirmed that the hole formation mechanism is donor-acceptor electron transfer from a photoexcited donor to a ground-state branched acceptor. The thermal stability of burnt holes measured with a temperature cycling experiment increased when the acceptor was branched into PMMA. The effect of acceptor branching on the PSHB characteristics is discussed with reference to those for an acceptor-doped system.

  2. 5' modification of duplex DNA with a ruthenium electron donor-acceptor pair using solid-phase DNA synthesis

    NASA Technical Reports Server (NTRS)

    Frank, Natia L.; Meade, Thomas J.

    2003-01-01

    Incorporation of metalated nucleosides into DNA through covalent modification is crucial to measurement of thermal electron-transfer rates and the dependence of these rates with structure, distance, and position. Here, we report the first synthesis of an electron donor-acceptor pair of 5' metallonucleosides and their subsequent incorporation into oligonucleotides using solid-phase DNA synthesis techniques. Large-scale syntheses of metal-containing oligonucleotides are achieved using 5' modified phosporamidites containing [Ru(acac)(2)(IMPy)](2+) (acac is acetylacetonato; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (3) and [Ru(bpy)(2)(IMPy)](2+) (bpy is 2,2'-bipyridine; IMPy is 2'-iminomethylpyridyl-2'-deoxyuridine) (4). Duplexes formed with the metal-containing oligonucleotides exhibit thermal stability comparable to the corresponding unmetalated duplexes (T(m) of modified duplex = 49 degrees C vs T(m) of unmodified duplex = 47 degrees C). Electrochemical (3, E(1/2) = -0.04 V vs NHE; 4, E(1/2) = 1.12 V vs NHE), absorption (3, lambda(max) = 568, 369 nm; 4, lambda(max) = 480 nm), and emission (4, lambda(max) = 720 nm, tau = 55 ns, Phi = 1.2 x 10(-)(4)) data for the ruthenium-modified nucleosides and oligonucleotides indicate that incorporation into an oligonucleotide does not perturb the electronic properties of the ruthenium complex or the DNA significantly. In addition, the absence of any change in the emission properties upon metalated duplex formation suggests that the [Ru(bpy)(2)(IMPy)](2+)[Ru(acac)(2)(IMPy)](2+) pair will provide a valuable probe for DNA-mediated electron-transfer studies.

  3. Excitation and electron transfer from selectively excited primary donor chlorophyll (P700) in a photosystem I reaction center

    SciTech Connect

    Kumazaki, Shigeichi; Yoshihara, Keitaro; Ikegami, Isamu

    1997-01-23

    The primary processes in a photosystem I reaction center were studied by fluorescence up-conversion with a subpicosecond time resolution at room temperature. The samples were P700(primary donor chlorophyll)-enriched particles which retained {approx}14 chlorophylls per P700. Upon selective excitation of P700 at 701 nm at {approx}5{degree}C, anisotropy of the fluorescence at 749 nm decayed from {approx}0.3 to {approx}0.15 with a time constant of 1 ps. The dynamic depolarization is attributed to electronic excitation equilibration between P700 and the surrounding chlorophylls. In the isotropic fluorescence kinetics, at least two decaying components of 2.2 ps ({approx}35%) and 15 ps ({approx}55%) were found. The fast and slow components indicate the charge separation before and after full equilibration of excitation energy, respectively. A kinetic model calculation based on the above results suggests that the intrinsic rate constant of the primary electron transfer from P700{sup *} is > 0.25 ps{sup -1}. 51 refs., 4 figs., 1 tab.

  4. Sulfur-based mixotrophic denitrification corresponding to different electron donors and microbial profiling in anoxic fluidized-bed membrane bioreactors.

    PubMed

    Zhang, Lili; Zhang, Chao; Hu, Chengzhi; Liu, Huijuan; Bai, Yaohui; Qu, Jiuhui

    2015-11-15

    Sulfur-based mixotrophic denitrifying anoxic fluidized bed membrane bioreactors (AnFB-MBR) were developed for the treatment of nitrate-contaminated groundwater with minimized sulfate production. The nitrate removal rates obtained in the methanol- and ethanol-fed mixotrophic denitrifying AnFB-MBRs reached 1.44-3.84 g NO3 -N/L reactor d at a hydraulic retention time of 0.5 h, which were significantly superior to those reported in packed bed reactors. Compared to methanol, ethanol was found to be a more effective external carbon source for sulfur-based mixotrophic denitrification due to lower sulfate and total organic carbon concentrations in the effluent. Using pyrosequencing, the phylotypes of primary microbial groups in the reactor, including sulfur-oxidizing autotrophic denitrifiers, methanol- or ethanol-supported heterotrophic denitrifiers, were investigated in response to changes in electron donors. Principal component and heatmap analyses indicated that selection of electron donating substrates largely determined the microbial community structure. The abundance of Thiobacillus decreased from 45.1% in the sulfur-oxidizing autotrophic denitrifying reactor to 12.0% and 14.2% in sulfur-based methanol- and ethanol-fed mixotrophic denitrifying bioreactors, respectively. Heterotrophic Methyloversatilis and Thauera bacteria became more dominant in the mixotrophic denitrifying bioreactors, which were possibly responsible for the observed methanol- and ethanol-associated denitrification. PMID:26364226

  5. Magnetic field enhanced electroluminescence in organic light emitting diodes based on electron donor-acceptor exciplex blends

    NASA Astrophysics Data System (ADS)

    Baniya, Sangita; Basel, Tek; Sun, Dali; McLaughlin, Ryan; Vardeny, Zeev Valy

    2016-03-01

    A useful process for light harvesting from injected electron-hole pairs in organic light emitting diodes (OLED) is the transfer from triplet excitons (T) to singlet excitons (S) via reverse intersystem crossing (RISC). This process adds a delayed electro-luminescence (EL) emission component that is known as thermally activated delayed fluorescence (TADF). We have studied electron donor (D)/acceptor(A) blends that form an exciplex manifold in which the energy difference, ΔEST between the lowest singlet (S1) and triplet (T1) levels is relatively small (<100 meV), and thus allows RISC at ambient temperature. We found that the EL emission in OLED based on the exciplex blend is enhanced up to 40% by applying a relatively weak magnetic field of 50 mT at ambient. Moreover the MEL response is activated with activation energy similar that of the EL emission. This suggests that the large magneto-EL originates from an additional spin-mixing channel between singlet and triplet states of the generated exciplexes, which is due to TADF. We will report on the MEL dependencies on the temperature, bias voltage, and D-A materials for optimum OLED performance. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  6. Monomeric chlorophyll a enol: evidence for its possible role as the primary electron donor in photosystem I of plant photosynthesis

    SciTech Connect

    Wasielewski, M.R.; Norris, J.R.; Shipman, L.L.; Lin, C.P.; Svec, W.A.

    1981-05-01

    The chlorophyll a (Chl a) special-pair model of the primary donor of photosystem I (P700) does not account in a completely adequate fashion for the magnetic resonance properties observed for P700/sup +/. Enolization of the Chl a ring V ..beta..-keto ester results in a very different ..pi.. electronic structure. The ESR spectrum of the cation radical consists of a single 6.1-G gaussian line that is line narrowed relative to that of Chl a/sup +/ in a manner similar to P700/sup +/. Electron-nuclear double resonance (ENDOR) spectroscopy resolves only a 3.5-MHz hyperfine splitting for the 3-methyl group. The remaining splittings are all less than 3.5 MHz. Application of the special-pair model to the (/sup 13/C)P700/sup +/ second-moment data yields a 100% error. Ab initio molecular orbital calculations on ethyl chlorophyllide a enol cation bear out the ESR and ENDOR data. We conclude that a monomeric Chl a enol model provides a better description of the magnetic resonance parameters and oxidation potential of P700 than a Chl-a special-pair model.

  7. Charge transfer in the electron donor-acceptor complexes of a meso-phenol BODIPY dye with chloranils and fullerenes

    NASA Astrophysics Data System (ADS)

    Karmakar, Animesh; Chaudhuri, Tandrima; Mula, Soumyaditya; Chattopadhyay, Subrata

    2015-02-01

    UV-Vis spectral investigations of electron donor-acceptor complexes of laser dye 2,6-Diethyl-4,4-difluoro-1,3,5,7-tetramethyl-8-(4‧-hydroxyphenyl)-4-bora-3a,4a-diaza-s-indecene (1c) with chloranils and fullerenes are reported in toluene medium. Well defined charge transfer (CT) absorption bands have been located in the visible region. Oscillator strengths, transition dipole and resonance energies of the CT complexes have been estimated. Vertical ionization potential of 1c has been determined utilizing Mulliken's equation. A possible mechanism for the interaction between electronic subsystems of chloranils, [60]- and [70]fullerenes with three different BODIPY dyes (1a, 1b and 1c shown in Fig. 1) have been discussed in comparing the parameters like degree of charge transfer and binding constant in nonpolar toluene. Comparison of 1c complexes is done with DFT/B3LYP/6-31G optimized gas phase geometries.

  8. Electron donor concentrations in sediments and sediment properties at the agricultural chemicals team research site near New Providence, Iowa, 2006-07

    USGS Publications Warehouse

    Maharjan, Bijesh; Korom, Scott F.; Smith, Erik A.

    2013-01-01

    The concentrations of electron donors in aquifer sediments are important to the understanding of the fate and transport of redox-sensitive constituents in groundwater, such as nitrate. For a study by the U.S. Geological Survey National Water-Quality Assessment Program, 50 sediment samples were collected from below the water table from 11 boreholes at the U.S. Geological Survey Agricultural Chemicals Team research site near New Providence, Iowa, during 2006-07. All samples were analyzed for gravel, sand (coarse, medium, and fine), silt, clay, Munsell soil color, inorganic carbon content, and for the following electron donors: organic carbon, ferrous iron, and inorganic sulfide. A subset of 14 sediment samples also was analyzed for organic sulfur, but all of these samples had concentrations less than the method detection limit; therefore, the presence of this potential electron donor was not considered further. X-ray diffraction analyses provided important semi-quantitative information of well-crystallized dominant minerals within the sediments that might be contributing electron donors.

  9. Electron-Donor-Acceptor (EDA) Complexes Of Aromatic Hydrocarbons With Organic Acceptors In Solution And In The Solid State. A Quantitative FT-IR Investigation.

    NASA Astrophysics Data System (ADS)

    Bruni, Paolo; Giorgini, Elisabetta; Tosi, Giorgio; Zampini, Angela

    1989-12-01

    Liquid phase FT-IR investigation on π-π Electron-Donor-Acceptor (EDA) complexes between arenes and organic acceptors leads to values of formation constants that are in good agreement with the ones from other techniques (UV-Vis and NMR). In addition solid state FT-IR and UV-Vis determinations on the complexes are also reported and discussed.

  10. Development of imide- and imidazole-containing electron acceptors for use in donor-acceptor conjugated compounds and polymers

    NASA Astrophysics Data System (ADS)

    Li, Duo

    Conjugated organic compounds and polymers have attracted significant attention due to their potential application in electronic devices as semiconducting materials, such as organic solar cells (OSCs). In order to tune band gaps, donor-acceptor (D-A) structure is widely used, which has been proved to be one of the most effective strategies. This thesis consists of three parts: 1) design, syntheses and characterization of new weak acceptors based on imides and the systematic study of the structure-property relationship; (2) introduction of weak and strong acceptors in one polymer to achieve a broad coverage of light absorption and improve the power conversion efficiency (PCE); (3) modification of benzothiadiazole (BT) acceptor in order to increase the electron withdrawing ability. Imide-based electron acceptors, 4-(5-bromothiophen-2-y1)-2-(2-ethylhexyl)-9- phenyl- 1H-benzo[f]isoindole-1,3(2H)-dione (BIDO-1) and 4,9-bis(5-bromothiophen-2-yl)-2-(2-ethylhexyl)-benzo[f]isoindole-1,3-dione (BIDO-2), were designed and synthesized. In this design, naphthalene is selected as its main core to maintain a planar structure, and thienyl groups are able to facilitate the bromination reaction and lower the band gap. BIDO-1 and BIDO-2 were successfully coupled with different donors by both Suzuki cross-coupling and Stille cross-coupling reactions. Based on the energy levels and band gaps of the BIDO-containing compounds and polymers, BIDO-1 and BIDO-2 are proved to be weak electron acceptors. Pyromellitic diimide (PMDI) was also studied and found to be a stronger electron acceptor than BIDO . In order to obtain broad absorption coverage, both weak acceptor ( BIDO-2) and strong acceptor diketopyrrolopyrrole (DPP) were introduced in the same polymer. The resulting polymers show two absorption bands at 400 and 600 nm and two emission peaks at 500 and 680 nm. The band gaps of the polymers are around 1.6 eV, which is ideal for OSC application. The PCE of 1.17% was achieved. Finally

  11. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store

    NASA Astrophysics Data System (ADS)

    Kitano, Masaaki; Inoue, Yasunori; Yamazaki, Youhei; Hayashi, Fumitaka; Kanbara, Shinji; Matsuishi, Satoru; Yokoyama, Toshiharu; Kim, Sung-Wng; Hara, Michikazu; Hosono, Hideo

    2012-11-01

    Industrially, the artificial fixation of atmospheric nitrogen to ammonia is carried out using the Haber-Bosch process, but this process requires high temperatures and pressures, and consumes more than 1% of the world's power production. Therefore the search is on for a more environmentally benign process that occurs under milder conditions. Here, we report that a Ru-loaded electride [Ca24Al28O64]4+(e-)4 (Ru/C12A7:e-), which has high electron-donating power and chemical stability, works as an efficient catalyst for ammonia synthesis. Highly efficient ammonia synthesis is achieved with a catalytic activity that is an order of magnitude greater than those of other previously reported Ru-loaded catalysts and with almost half the reaction activation energy. Kinetic analysis with infrared spectroscopy reveals that C12A7:e- markedly enhances N2 dissociation on Ru by the back donation of electrons and that the poisoning of ruthenium surfaces by hydrogen adatoms can be suppressed effectively because of the ability of C12A7:e- to store hydrogen reversibly.

  12. Noninnocence of Indigo: Dehydroindigo Anions as Bridging Electron-Donor Ligands in Diruthenium Complexes.

    PubMed

    Mondal, Prasenjit; Chatterjee, Madhumita; Paretzki, Alexa; Beyer, Katharina; Kaim, Wolfgang; Lahiri, Goutam Kumar

    2016-03-21

    Complexes of singly or doubly deprotonated indigo (H2Ind) with one or two [Ru(pap)2](2+) fragments (pap = 2-phenylazopyridine) have been characterized experimentally [molecular structure, voltammetry, electron paramagnetic resonance (EPR), and UV-vis-near-IR spectroelectrochemistry] and by time-dependent density functional theory calculations. The compound [Ru(pap)2(HInd(-))]ClO4 ([1]ClO4) was found to contain an intramolecular NH---O hydrogen bond, whereas [{Ru(pap)2}2(μ-Ind(2-))](ClO4)2 ([2](ClO4)2), isolated as the meso diastereoisomer with near-IR absorptions at 1162 and 991 nm, contains two metals bridged at 6.354 Å distance by the bischelating indigo dianion. The spectroelectrochemical study of multiple reversible reduction and oxidation processes of 2(n) (n = 4+, 3+, 2+, 1+, 0, 1-, 2-, 3-, 4-) reveals the stepwise addition of electrons to the terminal π-accepting pap ligands, whereas the oxidations occur predominantly at the anionic indigo ligand, producing an EPR-identified indigo radical intermediate and revealing the suitability of deprotonated indigo as a σ- and π-donating bischelating bridge. PMID:26931407

  13. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store.

    PubMed

    Kitano, Masaaki; Inoue, Yasunori; Yamazaki, Youhei; Hayashi, Fumitaka; Kanbara, Shinji; Matsuishi, Satoru; Yokoyama, Toshiharu; Kim, Sung-Wng; Hara, Michikazu; Hosono, Hideo

    2012-11-01

    Industrially, the artificial fixation of atmospheric nitrogen to ammonia is carried out using the Haber-Bosch process, but this process requires high temperatures and pressures, and consumes more than 1% of the world's power production. Therefore the search is on for a more environmentally benign process that occurs under milder conditions. Here, we report that a Ru-loaded electride [Ca(24)Al(28)O(64)](4+)(e(-))(4) (Ru/C12A7:e(-)), which has high electron-donating power and chemical stability, works as an efficient catalyst for ammonia synthesis. Highly efficient ammonia synthesis is achieved with a catalytic activity that is an order of magnitude greater than those of other previously reported Ru-loaded catalysts and with almost half the reaction activation energy. Kinetic analysis with infrared spectroscopy reveals that C12A7:e(-) markedly enhances N(2) dissociation on Ru by the back donation of electrons and that the poisoning of ruthenium surfaces by hydrogen adatoms can be suppressed effectively because of the ability of C12A7:e(-) to store hydrogen reversibly. PMID:23089869

  14. Photoreduction of indigo dyes by electron donors. One- and two-electron-transfer reactions as a consequence of excited-state quenching

    SciTech Connect

    Schanze, K.S.; Lee, L.Y.C.; Giannotti, C.; Whitten, D.G.

    1986-05-14

    The indigoid dyes, thioindigo (TI), N,N'-diacetylindigo, (NDI) and oxalylindigo (OI), all undergo reduction upon irradiation of the dyes in the presence of electron donors such as triethylamine (TEA) or N-benzyl-1,4-dihydronicotinamide (BNAH). Product analysis by NMR and high-resolution mass spectrometry has shown that the products for TI and NDI are the formal H/sub 2/ adducts TIH/sub 2/ and NDIH/sub 2/; the product for OI has been shown to be the semireduced radical OIH which is readily detected by its characteristic ESR spectrum. Mechanistic studies have been carried out for the visible-light-induced reduction of the three dyes.

  15. Design and parameter optimization of a small-scale electron-based ADS for radioactive waste transmutation

    NASA Astrophysics Data System (ADS)

    Feizi, H.; Ranjbar, A. H.

    2015-05-01

    This paper presents the design and feasibility of an electron-LINAC-based small-scale system (ADS) for nuclear waste transmutation. FLUKA simulations have been performed to evaluate the photoneutron yield in high- Z metallic targets such as silver, tungsten, lead, tantalum and uranium irradiated by electron beams of 20-200MeV. The parameters involved in the photoneutron production mechanism including electron beam energy, target material and target shape have been investigated in order to obtain maximum photoneutron production. The neutron reflectors of the ADS, in particular, beryllium, lead and beryllium oxide (BeO) with various thicknesses have been studied. The results show that a combination of an internal reflector of Pb with a thickness of 3cm and an external reflector of BeO with a thickness of 10cm improves the fluence rate. The photoneutron energy spectrum, photoneutron fluence distribution and heat deposition in the electron target have also been presented. At incident electron beam energy of 155MeV, a neutron source of ˜ 4.6 × 1010 (n/cm2/s/mA) has been achieved, which is highly applicable for using in nuclear waste transmutation. The designed ADS has the ability to transmute ˜ 1.5 × 1022 (atoms/y/mA). The obtained results are promising and could lead to the development of a small-scale ADS based on electron LINAC for radioactive waste transmutation and for numerous applications when employed as a photoneutron source.

  16. Correlation of Hydrogen-Atom Abstraction Reaction Efficiencies for Aryl Radicals with their Vertical Electron Affinities and the Vertical Ionization Energies of the Hydrogen Atom Donors

    PubMed Central

    Jing, Linhong; Nash, John J.

    2009-01-01

    The factors that control the reactivities of aryl radicals toward hydrogen-atom donors were studied by using a dual-cell Fourier-transform ion cyclotron resonance mass spectrometer (FT – ICR). Hydrogen-atom abstraction reaction efficiencies for two substrates, cyclohexane and isopropanol, were measured for twenty-three structurally different, positively-charged aryl radicals, which included dehydrobenzenes, dehydronaphthalenes, dehydropyridines, and dehydro(iso)quinolines. A logarithmic correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) vertical electron affinities (EA) of the aryl radicals. Transition state energies calculated for three of the aryl radicals with isopropanol were found to correlate linearly with their (calculated) EAs. No correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) enthalpy changes for the reactions. Measurement of the reaction efficiencies for the reactions of several different hydrogen-atom donors with a few selected aryl radicals revealed a logarithmic correlation between the hydrogen-atom abstraction reaction efficiencies and the vertical ionization energies (IE) of the hydrogen-atom donors, but not the lowest homolytic X – H (X = heavy atom) bond dissociation energies of the hydrogen-atom donors. Examination of the hydrogen-atom abstraction reactions of twenty-nine different aryl radicals and eighteen different hydrogen-atom donors showed that the reaction efficiency increases (logarithmically) as the difference between the IE of the hydrogen-atom donor and the EA of the aryl radical decreases. This dependence is likely to result from the increasing polarization, and concomitant stabilization, of the transition state as the energy difference between the neutral and ionic reactants decreases. Thus, the hydrogen-atom abstraction reaction efficiency for an aryl radical can be “tuned” by structural changes that influence either

  17. The electronic structure and second-order nonlinear optical properties of donor-acceptor acetylenes - A detailed investigation of structure-property relationships

    NASA Technical Reports Server (NTRS)

    Stiegman, A. E.; Graham, Eva; Khundkar, Lutfur R.; Perry, Joseph W.; Cheng, L.-T.; Perry, Kelly J.

    1991-01-01

    A series of donor-acceptor acetylene compounds was synthesized in which systematic changes in both the conjugation length and the donor-acceptor strength were made. The effect of these structural changes on the spectroscopic and electronic properties of the molecules and, ultimately, on the measured second-order molecular hyperpolarizabilities (beta) was investigated. It was found that increases in the donor-acceptor strength resulted in increases in the magnitude of beta. For this class of molecules, the increase is dominated by the energy of the intramolecular charge-transfer transition, while factors such as the ground to excited-state dipole moment change and the transition-moment integral are much less important. Increasing the conjugation length from one to two acetylene linkers did not result in an increase in the value of beta; however, beta increased sharply in going from two acetylenes to three. This increase is attributed to the superposition of several nearly isoenergetic excited states.

  18. Reduction of hexavalent chromium by Pannonibacter phragmitetus LSSE-09 stimulated with external electron donors under alkaline conditions.

    PubMed

    Xu, Lin; Luo, Mingfang; Li, Wangliang; Wei, Xuetuan; Xie, Keng; Liu, Lijun; Jiang, Chengying; Liu, Huizhou

    2011-01-30

    A novel Cr (VI) resistant bacterial strain LSSE-09, identified as Pannonibacter phragmitetus, was isolated from industrial sludge. It has strong aerobic and anaerobic Cr (VI)-reduction potential under alkaline conditions. At 37 °C and pH 9.0, growing cells of strain LSSE-09 could completely reduce 100 and 1000 mg L(-1) Cr (VI)-Cr (III) within 9 and 24h, respectively under aerobic condition. Resting cells showed higher anaerobic reduction potential with the rate of 1.46 mg g(-1)((dry weight))min(-1), comparing with their aerobic reduction rate, 0.21 mg g(-1)min(-1). External electron donors, such as lactate, acetate, formate, pyruvate, citrate and glucose could highly increase the reduction rate, especially for aerobic reduction. The presence of 3000 mg L(-1) acetate enhanced anaerobic and aerobic Cr (VI)-reduction rates up to 9.47 mg g(-1)min(-1) and 4.42 mg g(-1)min(-1), respectively, which were 5 and 20 times faster than those without it. Strain LSSE-09 retained high activities over six batch cycles and NO(3)(-) and SO(4)(2-) had slightly negative effects on Cr (VI)-reduction rates. The results suggest that strain LSSE-09 has potential application for Cr (VI) detoxification in alkaline wastewater. PMID:21041020

  19. U(VI) bioreduction with emulsified vegetable oil as the electron donor-- Microcosm tests and model development

    SciTech Connect

    Tang, Guoping; Wu, Wei-min; Watson, David B; Parker, Jack C.; Schadt, Christopher Warren; Brooks, Scott C; Shi, Xiaoqing

    2013-01-01

    Microcosm tests were conducted to study U(VI) bioreduction in contaminated sediments with emulsified vegetable oil (EVO) as the electron donor. In the microcosms, EVO was degraded by indigenous microorganisms and stimulated Fe, U, and sulfate bioreduction, and methanogenesis. Removal of aqueous U occurred concurrently with sulfate reduction, with more reduction of total U in the case of higher initial sulfate concentrations. X-ray absorption near-edge spectroscopy (XANES) analysis confirmed U(VI) reduction to U(IV). As the acetate concentration peaked in 10~20 days in oleate microcosms, the maximum was reached in 100~120 days in the EVO microcosms, indicating that EVO hydrolysis was rate-limiting. The acetate accumulation was sustained over 50 days longer in the oleate and EVO than in the ethanol microcosms, suggesting that acetate-utilizing methanogenesis was slower in the cases of oleate and EVO. Both slow hydrolysis and methanogenesis could contribute to potential sustained bioreduction in field application. Biogeochemical models were developed to couple degradation of EVO, production and oxidation of long-chain fatty acids, glycerol, acetate, and hydrogen, reduction of Fe(III), U(VI) and sulfate, and methanogenesis with growth and decay of microbial functional groups. The models were used to simulate the coupled processes in a field test in a companion article.

  20. An ESEEM study of the oxidized electron donor of plant photosystem II: Evidence that D ? is a neutral tyrosine radical

    NASA Astrophysics Data System (ADS)

    Evelo, R. G.; Hoff, A. J.; Dikanov, S. A.; Tyryshkin, A. M.

    1989-09-01

    Electron spin-echo envelope modulation (ESEEM) has been performed on the tyrosyl radical D ? in photosystem II of plants and algae. This radical was investigated in PS II-enriched subchloroplast particles, and in perdeuterated and 15N-substituted Chlorella vulgaris algae. From the ESEEM analysis in the time and frequency domain, two proton hyperfine interactions were determined. One of these protons has hyperfine parameters aiso=27.2 MHz, T11=-3.1 MHz and T22/ T11=0.5. The second proton, which is easily exchangeable by deuterium, has parameters aiso=±1.6 MHz, T11=∓8.4 MHz and T22/ T11=1. The hyperfine parameters of the first proton are characteristic of a β-methylene proton, whereas those of the second indicate that it is a proton hydrogen bonded to the tyrosyl oxygen. We conclude that the oxidized tyrosyl donor is a neutral hydrogen-bonded radical.

  1. Electron and donor-impurity-related Raman scattering and Raman gain in triangular quantum dots under an applied electric field

    NASA Astrophysics Data System (ADS)

    Tiutiunnyk, Anton; Akimov, Volodymyr; Tulupenko, Viktor; Mora-Ramos, Miguel E.; Kasapoglu, Esin; Morales, Alvaro L.; Duque, Carlos Alberto

    2016-04-01

    The differential cross-section of electron Raman scattering and the Raman gain are calculated and analysed in the case of prismatic quantum dots with equilateral triangle base shape. The study takes into account their dependencies on the size of the triangle, the influence of externally applied electric field as well as the presence of an ionized donor center located at the triangle's orthocenter. The calculations are made within the effective mass and parabolic band approximations, with a diagonalization scheme being applied to obtain the eigenfunctions and eigenvalues of the x- y Hamiltonian. The incident and secondary (scattered) radiation have been considered linearly-polarized along the y-direction, coinciding with the direction of the applied electric field. For the case with an impurity center, Raman scattering with the intermediate state energy below the initial state one has been found to show maximum differential cross-section more than by an order of magnitude bigger than that resulting from the scheme with lower intermediate state energy. The Raman gain has maximum magnitude around 35 nm dot size and electric field of 40 kV/cm for the case without impurity and at maximum considered values of the input parameters for the case with impurity. Values of Raman gain of the order of up to 104cm-1 are predicted in both cases.

  2. An Inexpensive Co-Intercalated Layered Double Hydroxide Composite with Electron Donor-Acceptor Character for Photoelectrochemical Water Splitting

    NASA Astrophysics Data System (ADS)

    Zheng, Shufang; Lu, Jun; Yan, Dongpeng; Qin, Yumei; Li, Hailong; Evans, David G.; Duan, Xue

    2015-07-01

    In this paper, the inexpensive 4,4-diaminostilbene-2,2-disulfonate (DAS) and 4,4-dinitro-stilbene-2,2- disulfonate (DNS) anions with arbitrary molar ratios were successfully co-intercalated into Zn2Al-layered double hydroxides (LDHs). The DAS(50%)-DNS/LDHs composite exhibited the broad UV-visible light absorption and fluorescence quenching, which was a direct indication of photo-induced electron transfer (PET) process between the intercalated DAS (donor) and DNS (acceptor) anions. This was confirmed by the matched HOMO/LUMO energy levels alignment of the intercalated DAS and DNS anions, which was also compatible for water splitting. The DAS(50%)-DNS/LDHs composite was fabricated as the photoanode and Pt as the cathode. Under the UV-visible light illumination, the enhanced photo-generated current (4.67 mA/cm2 at 0.8 V vs. SCE) was generated in the external circuit, and the photoelectrochemical water split was realized. Furthermore, this photoelectrochemical water splitting performance had excellent crystalline, electrochemical and optical stability. Therefore, this novel inorganic/organic hybrid photoanode exhibited potential application prospect in photoelectrochemical water splitting.

  3. An Inexpensive Co-Intercalated Layered Double Hydroxide Composite with Electron Donor-Acceptor Character for Photoelectrochemical Water Splitting

    PubMed Central

    Zheng, Shufang; Lu, Jun; Yan, Dongpeng; Qin, Yumei; Li, Hailong; Evans, David G.; Duan, Xue

    2015-01-01

    In this paper, the inexpensive 4,4-diaminostilbene-2,2-disulfonate (DAS) and 4,4-dinitro-stilbene-2,2- disulfonate (DNS) anions with arbitrary molar ratios were successfully co-intercalated into Zn2Al-layered double hydroxides (LDHs). The DAS(50%)-DNS/LDHs composite exhibited the broad UV-visible light absorption and fluorescence quenching, which was a direct indication of photo-induced electron transfer (PET) process between the intercalated DAS (donor) and DNS (acceptor) anions. This was confirmed by the matched HOMO/LUMO energy levels alignment of the intercalated DAS and DNS anions, which was also compatible for water splitting. The DAS(50%)-DNS/LDHs composite was fabricated as the photoanode and Pt as the cathode. Under the UV-visible light illumination, the enhanced photo-generated current (4.67 mA/cm2 at 0.8 V vs. SCE) was generated in the external circuit, and the photoelectrochemical water split was realized. Furthermore, this photoelectrochemical water splitting performance had excellent crystalline, electrochemical and optical stability. Therefore, this novel inorganic/organic hybrid photoanode exhibited potential application prospect in photoelectrochemical water splitting. PMID:26174201

  4. Electron donor-acceptor interaction of 3,4-dimethylaniline with 2,3-dicyano-1,4-naphthoquinone

    NASA Astrophysics Data System (ADS)

    Neelgund, Gururaj M.; Magadum, Subash R.; Budni, M. L.

    2011-01-01

    The electron donor-acceptor (EDA) interaction between 2,3-dicyano-1,4-naphthoquinone (DCNQ) and 3,4-dimethylaniline (3,4-DMA) is studied in chloroform, dichloromethane and 1:1 (v/v) mixture of chloroform and dichloromethane. The rate of formation of the product was measured as a function of time using UV-vis spectrophotometer. The formation constant ( K) and molar extinction coefficient ( ɛ) values for the formation of EDA complex were evaluated in the temperature range of 20-35 °C. The pseudo-first-order rate constant ( k1) and the second-order rate constant ( k2) for the disappearance of EDA complex and for the formation of product were evaluated. The activation parameters (Δ H#, Δ S# and Δ G#) of the reaction were determined by temperature dependence of rate constants using the Arrhenius plots. The effect of relative permittivity of the medium on the reaction is discussed. The observed results indicate that formation of final product proceeds through initial formation of EDA complex as an intermediate. The product of the reaction was purified by column chromatography method and identified as 3-( N-3,4-dimethyl-phenylamino)-2-cyano-1,4-naphthoquinone by elemental analysis, IR and NMR spectroscopy. On the basis of kinetic, analytical and spectroscopic results, a plausible mechanism for the formation of EDA complex and its transformation into product is proposed.

  5. Density functional study of the electronic structure of dye-functionalized fullerenes and their model donor-acceptor complexes containing P3HT.

    PubMed

    Baruah, Tunna; Garnica, Amanda; Paggen, Marina; Basurto, Luis; Zope, Rajendra R

    2016-04-14

    We study the electronic structure of C60 fullerenes functionalized with a thiophene-diketo-pyrrolopyrrole-thiophene based chromophore using density functional theory combined with large polarized basis sets. As the attached chromophore has electron donor character, the functionalization of the fullerene leads to a donor-acceptor (DA) system. We examine in detail the effect of the linker and the addition site on the electronic structure of the functionalized fullerenes. We further study the electronic structure of these DA complexes with a focus on the charge transfer excitations. Finally, we examine the interface of the functionalized fullerenes with the widely used poly(3-hexylthiophene-2,5-diyl) (P3HT) donor. Our results show that all functionalized fullerenes with an exception of the C60-pyrrolidine [6,6], where the pyrrolidine is attached at a [6,6] site, have larger electron affinities relative to the pristine C60 fullerene. We also estimate the quasi-particle gap, lowest charge transfer excitation energy, and the exciton binding energies of the functionalized fullerene-P3MT model systems. Results show that the exciton binding energies in these model complexes are slightly smaller compared to a similarly prepared phenyl-C61-butyric acid methyl ester (PCBM)-P3MT complex. PMID:27083718

  6. Density functional study of the electronic structure of dye-functionalized fullerenes and their model donor-acceptor complexes containing P3HT

    NASA Astrophysics Data System (ADS)

    Baruah, Tunna; Garnica, Amanda; Paggen, Marina; Basurto, Luis; Zope, Rajendra R.

    2016-04-01

    We study the electronic structure of C60 fullerenes functionalized with a thiophene-diketo-pyrrolopyrrole-thiophene based chromophore using density functional theory combined with large polarized basis sets. As the attached chromophore has electron donor character, the functionalization of the fullerene leads to a donor-acceptor (DA) system. We examine in detail the effect of the linker and the addition site on the electronic structure of the functionalized fullerenes. We further study the electronic structure of these DA complexes with a focus on the charge transfer excitations. Finally, we examine the interface of the functionalized fullerenes with the widely used poly(3-hexylthiophene-2,5-diyl) (P3HT) donor. Our results show that all functionalized fullerenes with an exception of the C60-pyrrolidine [6,6], where the pyrrolidine is attached at a [6,6] site, have larger electron affinities relative to the pristine C60 fullerene. We also estimate the quasi-particle gap, lowest charge transfer excitation energy, and the exciton binding energies of the functionalized fullerene-P3MT model systems. Results show that the exciton binding energies in these model complexes are slightly smaller compared to a similarly prepared phenyl-C61-butyric acid methyl ester (PCBM)-P3MT complex.

  7. Electron Transfer within Self-Assembling Cyclic Tetramers Using Chlorophyll-Based Donor-Acceptor Building Blocks

    SciTech Connect

    Gunderson, Victoria L; Smeigh, Amanda L; Kim, Chul Hoon; Co, Dick T; Wasielewski, Michael R

    2012-05-09

    The synthesis and photoinduced charge transfer properties of a series of Chl-based donor-acceptor triad building blocks that self-assemble into cyclic tetramers are reported. Chlorophyll a was converted into zinc methyl 3-ethylpyrochlorophyllide a (Chl) and then further modified at its 20-position to covalently attach a pyromellitimide (PI) acceptor bearing a pyridine ligand and one or two naphthalene-1,8:4,5-bis(dicarboximide) (NDI) secondary electron acceptors to give Chl-PI-NDI and Chl-PI-NDI2. The pyridine ligand within each ambident triad enables intermolecular Chl metal-ligand coordination in dry toluene, which results in the formation of cyclic tetramers in solution, as determined using small- and wide-angle X-ray scattering at a synchrotron source. Femtosecond and nanosecond transient absorption spectroscopy of the monomers in toluene-1% pyridine and the cyclic tetramers in toluene shows that the selective photoexcitation of Chl results in intramolecular electron transfer from 1*Chl to PI to form Chl+.-PI-.-NDI and Chl+.-PI-.-NDI2. This initial charge separation is followed by a rapid charge shift from PI-. to NDI and subsequent charge recombination of Chl+.-PI-NDI-. and Chl+.-PI-(NDI)NDI-. on a 5-30 ns time scale. Charge recombination in the Chl-PI-NDI2 cyclic tetramer (τCR = 30 ± 1 ns in toluene) is slower by a factor of 3 relative to the monomeric building blocks (τCR = 10 ± 1 ns in toluene-1% pyridine). This indicates that the self-assembly of these building blocks into the cyclic tetramers alters their structures in a way that lengthens their charge separation lifetimes, which is an advantageous strategy for artificial photosynthetic systems.

  8. Potential benefits of triethylamine as n-electron donor in the estimation of forskolin by electronic absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Raju, Gajula; Ram Reddy, A.

    2016-02-01

    Diterpenoid forskolin was isolated from Coleus forskolii. The electronic absorption and emission studies of forskolin were investigated in various solvents with an aim to improve its detection limits. The two chromophores present in the diterpenoid are not conjugated leading to the poor absorption and emission of UV light. The absorption and fluorescence spectra were solvent specific. In the presence of a monodentate ligand, triethylamine the detection of forskolin is improved by 3.63 times in ethanol with the fluorescence method and 3.36 times in DMSO by the absorption spectral method. The longer wavelength absorption maximum is blue shifted while the lower energy fluorescence maximum is red shifted in the presence of triethylamine. From the wavelength of fluorescence maxima of the exciplex formed between excited forskolin and triethylamine it is concluded that the order of reactivity of hydroxyl groups in the excited state forskolin is in the reverse order to that of the order of the reactivity of hydroxyl groups in its ground state.

  9. Syntheses of new imidazole ligand series and evaluation of 1-, 2- and 4,5-imidazole substituent electronic and steric effects on N-donor strengths

    NASA Astrophysics Data System (ADS)

    Eseola, Abiodun O.; Sun, Wen-Hua; Li, Wen; Woods, Joseph A. O.

    2010-12-01

    A series of new imidazole based heterocycles (5-(4,5-diphenyl-1H-imidazol-2-yl)furan-2-yl)methyl acetate ( Him-dp), (5-(1H-phenanthro[9,10-d]imidazol-2-yl)furan-2-yl)methyl acetate ( HIm-pt), (5-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)furan-2-yl)methyl acetate ( HIm-phen), 2-(2-nitrophenyl)-4,5-diphenyl-1H-imidazole ( HIm-n), 1-methyl-2-(2-nitrophenyl)-4,5-diphenyl-1H-imidazole ( MeIm-n), N-(2-(1-ethyl-4,5-diphenyl-1H-imidazol-2-yl)phenyl)benzamide ( EtIm-ba) and 2,4-di-tert-butyl-6-(8-(1-ethyl-4,5-diphenyl-1H-imidazol-2-yl)-1,4-dihydroquinolin-2-yl)phenol ( EtIm-q) were synthesized and studied for the dependence of their azole donor characteristics on substituent factors by means of experimentally determined ionization constant data (derived as p Kas), spectroscopic analyses and calculated properties of their DFT optimized molecular geometries performed at the B3LYP/6-311 + G * level. Results showed that the lowest donor strength recorded for HIm-pt (p Ka = 2.67 ± 0.07) could be traced to the extensive electronic conjugation of the azole π-electrons with 4,5- and 2-substituents. On the other hand, the strongest imidazole donor strength in the series was obtained from EtIm-q (p Ka = 4.61 ± 0.04) for which the substituents possessed negligible π-overlap with the azole ring. The experimental results and theoretical calculations lead to conclusions that effective conjugation between the imidazole ring and substituent aromatic groups is accountable for significant withdrawal of charge densities on the imidazole N-donor atom and vice versa. Furthermore, observed donor strengths in the series suggest that electronic inductive effects of the substituents provided lesser impact on donor strength modification of imidazole base and that alkylation of 1-imidazole position did not yield the anticipated push of electron density in favour of the N-donor atom. It is anticipated that the results should promote the understanding of azole-containing bio-macromolecular species

  10. Recycling of mixed plastic waste from electrical and electronic equipment. Added value by compatibilization.

    PubMed

    Vazquez, Yamila V; Barbosa, Silvia E

    2016-07-01

    Plastic waste from electrical and electronic equipment (WEEE) grows up exponentially fast in the last two decades. Either consumption increase of technological products, like cellphones or computers, or the short lifetime of this products contributes to this rise generating an accumulation of specific plastic materials such ABS (Acrylonitrile-Butadiene-Styrene), HIPS (High impact Polystyrene), PC (Polycarbonate), among others. All of they can be recycled by themselves. However, to separate them by type is neither easy nor economically viable, then an alternative is recycling them together as a blend. Taking into account that could be a deterioration in final properties, to enhance phase adhesion and add value to a new plastic WEEE blend a compatibilization is needed. In this work, a systematical study of different compatibilizers for blends of HIPS and ABS from WEEE was performed. A screening analysis was carried out by adding two different compatibilizer concentration (2wt% and 20wt%) on a HIPS/ABS physical blend 80/20 proportion from plastic e-waste. Three copolymers were selected as possible compatibilizers by their possible affinity with initial plastic WEEE. A complete characterization of each WEEE was performed and compatibilization efficiency was evaluated by comparing either mechanical or morphological blends aspects. Considering blends analyzed in this work, the best performance was achieved by using 2% of styrene-acrylonitrile rubber, obtaining a compatibilized blend with double ultimate strength and modulus respect to the physical blend, and also improve mechanical properties of initial WEEE plastics. The proposed way is a promise route to improve benefit of e-scrap with sustainable, low costs and easy handling process. Consequently, social recycling interest will be encouraged by both ecological and economical points of view. PMID:27140655

  11. A Proposed Integration Environment for Enhanced User Interaction and Value-Adding of Electronic Documents: An Empirical Evaluation.

    ERIC Educational Resources Information Center

    Liew, Chern Li; Chennupati, K. R.; Foo, Schubert

    2001-01-01

    Explores the potential and impact of an innovative information environment in enhancing user activities in using electronic documents for various tasks, and to support the value-adding of these e-documents. Discusses the conceptual design and prototyping of a proposed environment, PROPIE. Presents an empirical and formative evaluation of the…

  12. A Value-Added Framework for Analyzing Electronic and Print Publishing.

    ERIC Educational Resources Information Center

    Perritt, Henry H., Jr.

    1991-01-01

    Discusses changes in the publishing industry resulting from digital electronic networks and optical storage technologies, and explains attributes of information products as types of value for both print and electronic contexts. Electronic products necessary for a shift from paper to electronic formats are identified, and legal issues are…

  13. Motivations for Giving of Alumni Donors, Lapsed Donors and Non-Donors: Implications for Christian Higher Education

    ERIC Educational Resources Information Center

    Rugano, Emilio Kariuki

    2011-01-01

    This descriptive and causal comparative study sought to identify motivations for alumni donor acquisition and retention in Christian institutions of higher learning. To meet this objective, motivations for alumni donors, lapsed donors, and non-donors were analyzed and compared. Data was collected through an electronic survey of a stratified sample…

  14. Synthesis, spectrophotometric, structural and thermal studies of the charge transfer complex of p-phenylenediamine, as an electron donor with π acceptor 3,5-dinitrobenzoic acid

    NASA Astrophysics Data System (ADS)

    Khan, Ishaat M.; Ahmad, Afaq

    2010-08-01

    The interaction between p-phenylenediamine (PPD) as a donor with the π acceptor 3,5-dinitrobenzoic acid (DNB) has been investigated spectrophotometrically in methanol at room temperature. CT complex formed as a result of transfer of lone pair of electrons and exhibits well resolved charge transfer bands in the regions where neither donor nor acceptor have any absorption. The stoichiometry of the charge transfer complex (CTC) was found to be 1:1. The solid state CTC has also been synthesized, and has been characterized by elemental analysis, FTIR spectra, 1H NMR spectroscopy and electronic absorption. The thermal stability of CT complex was studies using TGA and DTA analyses techniques. On the basis of the studies, the structure of CT complex is [(PPD)(DNB)], and a general mechanism for its formation is proposed. The formation constant and other physical parameters of the CT complex were determined by the Benesi-Hildebrand equation.

  15. High performance weak donor-acceptor polymers in thin film transistors: effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability.

    PubMed

    Yuen, Jonathan D; Fan, Jian; Seifter, Jason; Lim, Bogyu; Hufschmid, Ryan; Heeger, Alan J; Wudl, Fred

    2011-12-28

    We have studied the electronic, physical, and transistor properties of a family of donor-acceptor polymers consisting of diketopyrrolopyrrole (DPP) coupled with different accepting companion units in order to determine the effects of donor-acceptor interaction. Using the electronically neutral benzene (B), the weakly accepting benzothiadiazole (BT), and the strongly accepting benzobisthiadiazole (BBT), the accepting strength of the companion unit was systematically modulated. All polymers exhibited excellent transistor performance, with mobilities above 0.1 cm(2)V(-1)s(-1), even exceeding 1 cm(2)V(-1)s(-1) for one of the BBT-containing polymers. We find that the BBT is the strongest acceptor, enabling the BBT-containing polymers to be strongly ambipolar. The BBT moiety also strengthens interchain interactions, which provides higher thermal stability and performance for transistors with BBT-containing polymers as the active layer. PMID:22043809

  16. Field-scale application of spent sulfidic caustic as a source of alternative electron donor for autotrophic denitrification.

    PubMed

    Lee, Jae-Ho; Park, Jeung-Jin; Choi, Gi-Choong; Byun, Im-Gyu; Park, Tae-Joo; Lee, Tae-Ho

    2013-01-01

    Biological reuse of spent sulfidic caustic (SSC) originating from oil refineries is a promising method for the petrochemical industry because of low handling cost. SSC typically contains high concentrations of sulfur, with the most dominant sulfur compounds being sulfide (S(2-)). SSC is also characterized by a high pH and elevated alkalinity up to 5-15% by weight. Because of these characteristics, SSC can be used for denitrification of NO3(-)-N in the biological nitrogen removal process as both the electron donor and buffering agent in sulfur-utilizing autotrophic denitrification. In this study, two kinds of SSC (SSC I, SSC II) produced from two petrochemical companies were used for autotrophic denitrification in a field-scale wastewater treatment plant (WWTP). The effluent total nitrogen (TN) concentration in this process was about 10.5 mg/L without any external carbon sources and the nitrification efficiency was low, about 93.0%, because of alkalinity deficiency in the influent. The injection of SSC I, but not SSC II, promoted nitrification efficiency, which was attributed to the difference in the NaOH/S ratio between SSC I and II. SSC was injected based on sulfide concentration of SSC required to denitrify NO3(-)-N in the WWTP. SSC I had higher NaOH/S than SSC II and thus could supply more alkalinity for nitrification than SSC II. On the other hand, additional TN removal of about 9.0% was achieved with the injection of both SSCs. However, denitrification efficiency was not proportionally increased with increasing SSC injection because of NO3(-)-N deficiency in the anoxic tank due to the limited capacity of the recycling pump. For the same reason, sulfate concentration, which is the end product of sulfur-utilizing autotrophic denitrificaiton in the effluent, was also not increased with increasing SSC injection. PMID:23863444

  17. Metal-Free Reductive Cleavage of C–N and S–N Bonds by Photoactivated Electron Transfer from a Neutral Organic Donor**

    PubMed Central

    O'Sullivan, Steven; Doni, Eswararao; Tuttle, Tell; Murphy, John A

    2014-01-01

    A photoactivated neutral organic super electron donor cleaves challenging arenesulfonamides derived from dialkylamines at room temperature. It also cleaves a) ArC–NR and b) ArN–C bonds. This study also highlights the assistance given to these cleavage reactions by the groups attached to N in (a) and to C in (b), by lowering LUMO energies and by stabilizing the products of fragmentation. PMID:24311295

  18. Factoring the contribution of through-space and through-bond interactions to rates of photoinduced electron transfer in donor- spacer-acceptor molecules using ultrafast transient absorption spectroscopy

    SciTech Connect

    Gosztola, D.; Wang, Bing; Wasielewski, M.R. |

    1996-06-01

    Contributions from through-space and through-bond interactions to the electronic coupling matrix elements for photoinduced charge separation and recombination in linked donor-spacer-acceptor molecules were studied. The molecules consisted of a 4-piperidinyl-naphthalene-1,8-dicarboximide electron donor and a N-(n-octyl)pyromellitimide electron acceptor attached to the 1,5- and 1,8-positions of either anthracene or dibenzobicyclo(2.2.2)octatriene spacers.

  19. Effective treatment of alkaline Cr(VI) contaminated leachate using a novel Pd-bionanocatalyst: Impact of electron donor and aqueous geochemistry

    PubMed Central

    Watts, Mathew P.; Coker, Victoria S.; Parry, Stephen A.; Thomas, Russell A.P.; Kalin, Robert; Lloyd, Jonathan R.

    2015-01-01

    Palladium catalysts offer the potential for the effective treatment of a variety of priority reducible pollutants in natural waters. In this study, microbially synthesized magnetite nanoparticles were functionalized with Pd(0), creating a highly reactive, magnetically recoverable, nano-scale catalyst (Pd-BnM). This was then investigated for the treatment of model Cr(VI) contaminated solutions at a range of pH values, and also alkaline Cr(VI) contaminated leachates from chromite ore processing residue (COPR); a contaminant issue of global concern. The sample of COPR used in this study was obtained from a site in Glasgow, UK, where extensive Cr(VI) contamination has been reported. In initial experiments Pd-BnM was supplied with H2 gas or formate as electron donors, and Cr(VI) removal from model synthetic solutions was quantified at various pH values (2–12). Effective removal was noted at neutral to environmentally relevant alkaline (pH 12) pH values, while the use of formate as an electron donor resulted in loss of performance under acidic conditions (pH 2). Reaction kinetics were then assessed with increasing Pd-BnM loading in both model pH 12 Cr(VI) solutions and the COPR leachate. When formate was used as the electron donor for Pd-BnM, to treat COPR leachate, there was significant inhibition of Cr(VI) removal. In contrast, a promotion of reaction rate, was observed when H2 was employed. Upon sustained reaction with model Cr(VI) solutions, in the presence of excess electron donor (formate or H2), appreciable quantities of Cr(VI) were removed before eventual inactivation of the catalyst. Faster onset of inactivation was reported in the COPR leachates, removing 4% and 64% of Cr(VI) observed from model Cr(VI) solutions, when formate and H2 were used as electron donors, respectively. XAS, TEM-EDX and XPS analysis of the catalysts that had been inactivated in the model solution, showed that the surface had an extensive covering of reduced Cr(III), most likely as a Cr

  20. No-carrier-added (NCA) aryl ([sup 18]F) fluorides via the nucleophilic aromatic substitution of electron rich aromatic rings

    DOEpatents

    Yushin Ding; Fowler, J.S.; Wolf, A.P.

    1993-10-19

    A method for synthesizing no-carrier-added (NCA) aryl [.sup.18 F] fluoride substituted aromatic aldehyde compositions bearing an electron donating group is described. The method of the present invention includes the step of reacting aromatic nitro aldehydes having a suitably protected hydroxyl substitutent on an electron rich ring. The reaction is The U.S. Government has rights in this invention pursuant to Contract Number DE-AC02-76CH00016, between the U.S. Department of Energy and Associated Universities Inc.

  1. No-carrier-added (NCA) aryl (18E) fluorides via the nucleophilic aromatic substitution of electron rich aromatic rings

    DOEpatents

    Ding, Yu-Shin; Fowler, Joanna S.; Wolf, Alfred P.

    1993-01-01

    A method for synthesizing no-carrier-added (NCA) aryl [.sup.18 F] fluoride substituted aromatic aldehyde compositions bearing an electron donating group is described. The method of the present invention includes the step of reacting aromatic nitro aldehydes having a suitably protected hydroxyl substitutent on an electron rich ring. The reaction is The U.S. Government has rights in this invention pursuant to Contract Number DE-AC02-76CH00016, between the U.S. Department of Energy and Associated Universities Inc.

  2. An alternate photosynthetic electron donor system for PSI supports light dependent nitrogen fixation in a non-heterocystous cyanobacterium, Plectonema boryanum.

    PubMed

    Misra, Hari S; Khairnar, Nivedita P; Mahajan, Suresh K

    2003-01-01

    Plectonema boryanum exhibits temporal separation of photosynthesis and nitrogen fixation under diazotrophic conditions. During nitrogen fixation, the photosynthetic electron transport chain becomes impaired, which leads to the uncoupling of the PSII and PSI activities. A 30-40% increase in PSI activity and continuous generation of ATP through light-dependent processes seem to support the nitrogen fixation. The use of an artificial electron carrier that shuttles electrons between the plastoquinone pool and plastocyanin, bypassing cytochrome b/f complex, enhanced the photosynthetic electron transport activity five to six fold during nitrogen fixation. Measuring of full photosynthetic electron transport activity using methyl voilogen as a terminal acceptor revealed that the photosynthetic electron transport components beyond plastocyanin might be functional. Further, glycolate can act as a source of electrons for PSI for the nitrogen fixing cells, which have residual PSII activity. Under conditions when PSI becomes largely independent of PSII and glycolate provides electrons for PSI activity, the light-dependent nitrogen fixation also was stimulated by glycolate. These results suggest that during nitrogen fixation, when the photosynthetic electron transport from PSII is inhibited at the level of cytochrome b/f complex, an alternate electron donor system for PSI may be required for the cells to carry out light dependent nitrogen fixation. PMID:12685043

  3. Vinylogous tetrathiafulvalene (TTF) {pi}-electron donors and derived radical cations: ESR spectroscopic, magnetic, and X-ray structural studies

    SciTech Connect

    Bryce, M.R.; Moore, A.J.; Tanner, B.K.

    1996-06-01

    The properties of new 2,2`-ethanediylidene(1,3-diethile) derivatives 5, 6 and 8-11 are reported. Cyclic voltammetric studies establish that they are efficient donor molecules, with the extended conjugation resulting in stabilization of dications, relative to tetrathiafulvalene TTF (1). Radical cations are generated by oxidation of the neutral compounds with trifluoroacetic acid or anhydrous silver perchlorate in dichloromethane, and their ESR and proton ENDOR spectra are reported. The bulk of the spin population resides in the central S{sub 2} {double_bond}C-C{double_bond}CS{sub 2} part of the {pi}-system. The X-ray crystal structure of donor 6 reveals that the 2,2`-ethanediylidene(1,3-dithiole) framework is planar. Donor 6 forms a crystalline 1:1 charge-transfer complex with TCNQ, the X-ray crystal structure of which shows a mixed stack structure. A solution of this complex in acetonitrile exhibits ESR spectra of both radical ions, 6{sup {lg_bullet}}{sup +} and TCNQ{sup {lg_bullet}}{sup +}. Static susceptibility data are reported for TCNQ complexes of some of these donors. 20 refs., 9 figs., 7 tabs.

  4. Ligand structure, conformational dynamics, and excited-state electron delocalization for control of photoinduced electron transfer rates in synthetic donor-bridge-acceptor systems.

    PubMed

    Meylemans, Heather A; Lei, Chi-Fong; Damrauer, Niels H

    2008-05-19

    Synthesis, ground-, and excited-state properties are reported for two new electron donor-bridge-acceptor (D-B-A) molecules and two new photophysical model complexes. The D-B-A molecules are [Ru(bpy)2(bpy-phi-MV)](PF6)4 (3) and [Ru(tmb)2(bpy-phi-MV)](PF6)4 (4), where bpy is 2,2'-bipyridine, tmb is 4,4',5,5'-tetramethyl-2,2'-bipyridine, MV is methyl viologen, and phi is a phenylene spacer. Their model complexes are [Ru(bpy)2(p-tol-bpy)](PF6)2 (1) and [Ru(tmb)2(p-tol-bpy)](PF6)2 (2), where p-tolyl-bpy is 4-(p-tolyl)-2,2'-bipyridine. Photophysical characterization of 1 and 2 indicates that 2.17 eV and 2.12 eV are stored in their respective (3)MLCT (metal-to-ligand charge transfer) excited state. These values along with electrochemical measurements show that photoinduced electron transfer (D*-B-A-->D (+)-B-A(-)) is favorable in 3 and 4 with DeltaG degrees(ET)=-0.52 eV and -0.62 eV, respectively. The driving force for the reverse process (D(+)-B-A(-) --> D-B-A) is also reported: DeltaG degrees(BET)=-1.7 eV for 3 and -1.5 eV for 4. Transient absorption (TA) spectra for 3 and 4 in 298 K acetonitrile provide evidence that reduced methyl viologen is observable at 50 ps following excitation. Detailed TA kinetics confirm this, and the data are fit to a model to determine both forward (k(ET)) and back (k(BET)) electron transfer rate constants: k(ET)=2.6 x 10(10) s(-1) for 3 and 2.8 x 10(10) s(-1) for 4; k(BET)=0.62 x 10(10) s(-1) for 3 and 1.37 x 10(10) s(-1) for 4. The similar rate constants k ET for 3 and 4 despite a 100 meV driving force (DeltaG degrees(ET)) increase suggests that forward electron transfer in these molecules in room temperature acetonitrile is nearly barrierless as predicted by the Marcus theory. The reduction in electron transfer reorganization energy necessary for this barrierless reactivity is attributed to excited-state electron delocalization in the (3)MLCT excited states of 3 and 4, an effect that is made possible by excited-state conformational

  5. Prospects for three-electron donor boronyl (BO) ligands and dioxodiborene (B2O2) ligands as bridging groups in binuclear iron carbonyl derivatives.

    PubMed

    Chang, Yu; Li, Qian-Shu; Xie, Yaoming; King, R Bruce

    2012-08-20

    Recent experimental work (2010) on (Cy(3)P)(2)Pt(BO)Br indicates that the oxygen atom of the boronyl (BO) ligand is more basic than that in the ubiquitous CO ligand. This suggests that bridging BO ligands in unsaturated binuclear metal carbonyl derivatives should readily function as three-electron donor bridging ligands involving both the oxygen and the boron atoms. In this connection, density functional theory shows that three of the four lowest energy singlet Fe(2)(BO)(2)(CO)(7) structures have such a bridging η(2)-μ-BO group as well as a formal Fe-Fe single bond. In addition, all four of the lowest energy singlet Fe(2)(BO)(2)(CO)(6) structures have two bridging η(2)-μ-BO groups and formal Fe-Fe single bonds. Other Fe(2)(BO)(2)(CO)(n) (n = 7, 6) structures are found in which the two BO groups have coupled to form a bridging dioxodiborene (B(2)O(2)) ligand with B-B bonding distances of ~1.84 Å. All of these Fe(2)(μ-B(2)O(2))(CO)(n) structures have long Fe···Fe distances indicating a lack of direct iron-iron bonding. One of the singlet Fe(2)(BO)(2)(CO)(7) structures has such a bridging dioxodiborene ligand with cis stereochemistry functioning as a six-electron donor to the pair of iron atoms. In addition, the lowest energy triplet structures for both Fe(2)(BO)(2)(CO)(7) and Fe(2)(BO)(2)(CO)(6) have bridging dioxodiborene ligands with trans stereochemistry functioning as a four-electron donor to the pair of iron atoms. PMID:22862812

  6. Spectral investigations of multiple charge transfer complex of p-nitrophenol as an electron acceptor with donor p-dimethylaminobenzaldehyde

    NASA Astrophysics Data System (ADS)

    Naeem, A.; Khan, I. M.; Ahmad, A.

    2011-10-01

    The convincing evidence have been given that both the interactions π-π and π-π* (between p-nitrophenol ( p-NTP) and p-dimethylaminobenzaldehyde ( p-DAB)) are simultaneously involved. This has been established by using IR spectrometry. Association constant K evaluated by the method of Foster under the condition [A]0 = [D]0 with apply in this equation, [A]0/ A = 1/ Kɛλ[D]0 + 2/ɛλ, where [A]0 is the initial concentration of acceptor equal to [D]0, A is the absorbance of the complex at λ, K is the association constant, and ɛλ is the molar absorptivity of the complex at λ. In the IR spectral studies of several related organic compounds, one comes to the conclusion that p-NTP shows a broad band centred at 1600 cm-1 and to nitro asymmetric stretching vibrations. In the complex while the 1500 cm-1 band remains without shift, the broad band localized at 1600 cm-1 shift to 1610 cm-1. A shift of 10 cm-1 shows weak interactions. Studies on molecular complexes of organ metallic donors and acceptors are of very recent origin. Though alkyl donors have been extensively studied, very few studies have appeared on aryl donors.

  7. Reduction of electron accumulation at InN(0001) surfaces via saturation of surface states by potassium and oxygen as donor- or acceptor-type adsorbates

    SciTech Connect

    Eisenhardt, A.; Reiß, S.; Krischok, S. Himmerlich, M.

    2014-01-28

    The influence of selected donor- and acceptor-type adsorbates on the electronic properties of InN(0001) surfaces is investigated implementing in-situ photoelectron spectroscopy. The changes in work function, surface band alignment, and chemical bond configurations are characterized during deposition of potassium and exposure to oxygen. Although an expected opponent charge transfer characteristic is observed with potassium donating its free electron to InN, while dissociated oxygen species extract partial charge from the substrate, a reduction of the surface electron accumulation occurs in both cases. This observation can be explained by adsorbate-induced saturation of free dangling bonds at the InN resulting in the disappearance of surface states, which initially pin the Fermi level and induce downward band bending.

  8. Catchment topography and distribution of electron donors for denitrification control stream NO3- concentration in the Lake Hachiro watershed, Akita, Japan

    NASA Astrophysics Data System (ADS)

    Hayakawa, A.; Funaki, Y.; Sudo, T.; Watanabe, S.; Ishikawa, Y.; Hidaka, S.

    2012-12-01

    Topography and distribution of electron donors for denitrification in a catchment can control stream NO3- concentration. We examined the linkages between topography, distribution of electron donors and the importance of denitrification as a nitrate removal mechanism in headwater streams in the Lake Hachiro watershed (LHW) at Akita prefecture, Japan. Study sites are 35 headwater streams (0.07-16.9 km2) in the LHW. Streamwater in each catchment was sampled nine times for two years. Stream sediments which can represent a surface soil and geology in a catchment were collected from a top 5 cm of a streambed for a measurement of denitrification potential (DP) and electron donors (water soluble organic carbon, WESOC; easily oxidizable sulfide, EOS). Dissolved nitrous oxide (dN2O) concentration in streamwater was also measured. Topographic index (TI) in each catchment was calculated using 10 m-grid digital elevation model using GIS. Stream NO3- concentrations among catchments had a large spatial variability ranging from 0.06 to 0.52 mg N L-1 and were negatively correlated with TI significantly (r = 0.56, p < 0.01, n = 35), indicated NO3- was removed in a gentle-slope catchment. Sediment DP and dN2O concentration were positively correlated with TI, supporting that denitrification was a dominant mechanism of NO3- removal in such catchments. The WSOC content in the sediment, the primary predictor of denitrification rates, increased with TI and affected sediment DP, significantly. Stream NO3- concentrations tended to decrease with increasing of stream SO42- concentrations and log(EOS) contents in the sediments, indicating sulfur denitrification could occur in the catchments, although the distribution of log(EOS) was independent of TI. Multiple regression analysis showed TI, sediment DP, and log(EOS) content in the sediment affected concentration of stream NO3- significantly. This study demonstrated that catchment's topography and distribution of electron donors evaluated from

  9. Metal-enhanced luminescence of silicon quantum dots: effects of nanoparticles and molecular electron donors and acceptors on the photofading kinetics

    NASA Astrophysics Data System (ADS)

    Abualnaja, Khamael M.; Šiller, Lidija; Horrocks, Benjamin R.

    2015-04-01

    Alkyl-capped silicon quantum dots (SiQDs) show enhanced luminescence when drop cast as films on glass slides in mixtures with Ag or Au nanoparticles or the electron donor ferrocene (Fc). Metal enhancement of quantum dot photoluminescence (PL) is known to arise from a combination of the intense near-field associated with the surface plasmon of the metal on the rate of absorption and the decrease in the lifetime of the excited state. Here we present evidence that an additional factor is also involved: electron transfer from the metal to the quantum dot. Under CW irradiation with an argon ion laser at 488 nm, SiQDs undergo a reversible photofading of the PL as the particles photoionize. A steady-state condition is established by the competition between photoionization and electron-hole recombination. The fading of the initial PL I0 to the steady-state value {{I}∞ } can be modelled by a simple first order decay with a lognormal distribution of rates, which reflects the heterogeneity of the sample. In the presence of Ag and Au nanoparticles, the modal rate constants of photofading increase by factors of up to 4-fold and the ratio {{I}0}/{{I}∞ } decreases by factors up to 5-fold; this is consistent with an increase in the rate of electron-hole recombination facilitated by the metal nanoparticles acting as sources of electrons. Further support for this interpretation comes from the enhancement in PL observed in photofading experiments with films of SiQDs mixed with Fc; this compound is a well-known one-electron donor, but shows no plasmon band which complicates the estimation of PL enhancement with Ag NPs.

  10. Electronic energy and electron transfer processes in photoexcited donor-acceptor dyad and triad molecular systems based on triphenylene and perylene diimide units.

    PubMed

    Lee, K J; Woo, J H; Kim, E; Xiao, Y; Su, X; Mazur, L M; Attias, A-J; Fages, F; Cregut, O; Barsella, A; Mathevet, F; Mager, L; Wu, J W; D'Aléo, A; Ribierre, J-C

    2016-03-01

    We investigate the photophysical properties of organic donor-acceptor dyad and triad molecular systems based on triphenylene and perylene diimide units linked by a non-conjugated flexible bridge in solution using complementary optical spectroscopy techniques. When these molecules are diluted in dichloromethane solution, energy transfer from the triphenylene to the perylene diimide excited moieties is evidenced by time-resolved fluorescence measurements resulting in a quenching of the emission from the triphenylene moieties. Simultaneously, another quenching process that affects the emission from both donor and acceptor units is observed. Solution ultrafast transient absorption measurements provide evidence of photo-induced charge transfer from either the donor or the acceptor depending upon the excitation. Overall, the analysis of the detailed time-resolved spectroscopic measurements carried out in the dyad and triad systems as well as in the triphenylene and perylene diimide units alone provides useful information both to better understand the relations between energy and charge transfer processes with molecular structures, and for the design of future functional dyad and triad architectures based on donor and acceptor moieties for organic optoelectronic applications. PMID:26911420

  11. Boron Doped diamond films as electron donors in photovoltaics: An X-ray absorption and hard X-ray photoemission study

    SciTech Connect

    Kapilashrami, M.; Zegkinoglou, I.; Conti, G.; Nemšák, S.; Conlon, C. S.; Fadley, C. S.; Törndahl, T.; Fjällström, V.; Lischner, J.; Louie, Steven G.; Hamers, R. J.; Zhang, L.; Guo, J.-H.; Himpsel, F. J.

    2014-10-14

    Highly boron-doped diamond films are investigated for their potential as transparent electron donors in solar cells. Specifically, the valence band offset between a diamond film (as electron donor) and Cu(In,Ga)Se₂ (CIGS) as light absorber is determined by a combination of soft X-ray absorption spectroscopy and hard X-ray photoelectron spectroscopy, which is more depth-penetrating than standard soft X-ray photoelectron spectroscopy. In addition, a theoretical analysis of the valence band is performed, based on GW quasiparticle band calculations. The valence band offset is found to be small: VBO=VBM{sub CIGS} – VBM{sub diamond}=0.3 eV±0.1 eV at the CIGS/Diamond interface and 0.0 eV±0.1 eV from CIGS to bulk diamond. These results provide a promising starting point for optimizing the band offset by choosing absorber materials with a slightly lower valence band maximum.

  12. Boron Doped diamond films as electron donors in photovoltaics: An X-ray absorption and hard X-ray photoemission study

    NASA Astrophysics Data System (ADS)

    Kapilashrami, M.; Conti, G.; Zegkinoglou, I.; Nemšák, S.; Conlon, C. S.; Törndahl, T.; Fjällström, V.; Lischner, J.; Louie, Steven G.; Hamers, R. J.; Zhang, L.; Guo, J.-H.; Fadley, C. S.; Himpsel, F. J.

    2014-10-01

    Highly boron-doped diamond films are investigated for their potential as transparent electron donors in solar cells. Specifically, the valence band offset between a diamond film (as electron donor) and Cu(In,Ga)Se2 (CIGS) as light absorber is determined by a combination of soft X-ray absorption spectroscopy and hard X-ray photoelectron spectroscopy, which is more depth-penetrating than standard soft X-ray photoelectron spectroscopy. In addition, a theoretical analysis of the valence band is performed, based on GW quasiparticle band calculations. The valence band offset is found to be small: VBO = VBMCIGS - VBMdiamond = 0.3 eV ± 0.1 eV at the CIGS/Diamond interface and 0.0 eV ± 0.1 eV from CIGS to bulk diamond. These results provide a promising starting point for optimizing the band offset by choosing absorber materials with a slightly lower valence band maximum.

  13. Electronic Structure, Donor and Acceptor Transitions, and Magnetism of 3d Impurities in In2O3 and ZnO

    SciTech Connect

    Raebiger, H.; Lany, S,; Zunger, A.

    2009-01-01

    3d transition impurities in wide-gap oxides may function as donor/acceptor defects to modify carrier concentrations, and as magnetic elements to induce collective magnetism. Previous first-principles calculations have been crippled by the LDA error, where the occupation of the 3d-induced levels is incorrect due to spurious charge spilling into the misrepresented host conduction band, and have only considered magnetism and carrier doping separately. We employ a band-structure-corrected theory, and present simultaneously the chemical trends for electronic properties, carrier doping, and magnetism along the series of 3d{sup 1}-3d{sup 8} transition-metal impurities in the representative wide-gap oxide hosts In{sub 2}O{sub 3} and ZnO. We find that most 3d impurities in In{sub 2}O{sub 3} are amphoteric, whereas in ZnO, the early 3d's (Sc, Ti, and V) are shallow donors, and only the late 3d's (Co and Ni) have acceptor transitions. Long-range ferromagnetic interactions emerge due to partial filling of 3d resonances inside the conduction band and, in general, require electron doping from additional sources.

  14. Self-Assembly of Electron Donor-Acceptor-Based Carbazole Derivatives: Novel Fluorescent Organic Nanoprobes for Both One- and Two-Photon Cellular Imaging.

    PubMed

    Zhang, Jinfeng; Chen, Wencheng; Kalytchuk, Sergii; Li, King Fai; Chen, Rui; Adachi, Chihaya; Chen, Zhan; Rogach, Andrey L; Zhu, Guangyu; Yu, Peter K N; Zhang, Wenjun; Cheah, Kok Wai; Zhang, Xiaohong; Lee, Chun-Sing

    2016-05-11

    In this study, we report fluorescent organic nanoprobes with intense blue, green, and orange-red emissions prepared by self-assembling three carbazole derivatives into nanorods/nanoparticles. The three compounds consist of two or four electron-donating carbazole groups linked to a central dicyanobenzene electron acceptor. Steric hindrance from the carbazole groups leads to noncoplanar 3D molecular structures favorable to fluorescence in the solid state, while the donor-acceptor structures endow the molecules with good two-photon excited emission properties. The fluorescent organic nanoprobes exhibit good water dispersibility, low cytotoxicity, superior resistance against photodegradation and photobleaching. Both one- and two-photon fluorescent imaging were shown in the A549 cell line. Two-photon fluorescence imaging with the fluorescent probes was demonstrated to be more effective in visualizing and distinguishing cellular details compared to conventional one-photon fluorescence imaging. PMID:27097920

  15. 15N electron nuclear double resonance of the primary donor cation radical P+.865 in reaction centers of Rhodopseudomonas sphaeroides: additional evidence for the dimer model.

    PubMed Central

    Lubitz, W; Isaacson, R A; Abresch, E C; Feher, G

    1984-01-01

    Four 15N hyperfine coupling constants, including signs, have been measured by electron nuclear double resonance (ENDOR) and electron nuclear nuclear triple resonance (TRIPLE) for the bacteriochlorophyll a radical cation, BChla+., in vitro and for the light-induced primary donor radical cation, P+.865, in reaction centers of Rhodopseudomonas sphaeroides R-26. A comparison of the data shows that the hyperfine coupling constants have the same sign in both radicals and are, on the average, smaller by a factor of 2 in P+.865. These results provide additional evidence that P+.865 is a bacteriochlorophyll dimer and are in contradiction with the monomer structure of P+.865 recently proposed by O'Malley and Babcock. The reduction factors of the individual 15N couplings, together with the evidence from proton ENDOR data and molecular orbital calculations, indicate a dimer structure in which only two rings (either I and I or III and III) of the bacteriochlorophyll macrocycles overlap. PMID:6096857

  16. Rational design of aggregation-induced emission luminogen with weak electron donor-acceptor interaction to achieve highly efficient undoped bilayer OLEDs.

    PubMed

    Chen, Long; Jiang, Yibin; Nie, Han; Hu, Rongrong; Kwok, Hoi Sing; Huang, Fei; Qin, Anjun; Zhao, Zujin; Tang, Ben Zhong

    2014-10-01

    In this work, two tailored luminogens (TPE-NB and TPE-PNPB) consisting of tetraphenylethene (TPE), diphenylamino, and dimesitylboryl as a π-conjugated linkage, electron donor, and electron acceptor, respectively, are synthesized and characterized. Their thermal stabilities, photophysical properties, solvachromism, fluorescence decays, electronic structures, electrochemical behaviors, and electroluminescence (EL) properties are investigated systematically, and the impacts of electron donor-acceptor (D-A) interaction on optoelectronic properties are discussed. Due to the presence of a TPE unit, both luminogens show aggregation-induced emission, but strong D-A interaction causes a decrease in emission efficiency and red-shifts in photoluminescence and EL emissions. The luminogen, TPE-PNPB, with a weak D-A interaction fluoresces strongly in solid film with a high fluorescence quantum yield of 94%. The trilayer OLED [ITO/NPB (60 nm)/TPE-PNPB (20 nm)/TPBi (40 nm)/LiF (1 nm)/Al (100 nm)] utilizing TPE-PNPB as a light emitter shows a peak luminance of 49 993 cd m(-2) and high EL efficiencies up to 15.7 cd A(-1), 12.9 lm W(-1), and 5.12%. The bilayer OLED [ITO/TPE-PNPB (80 nm)/TPBi (40 nm)/LiF (1 nm)/Al (100 nm)] adopting TPE-PNPB as a light emitter and hole transporter simultaneously affords even better EL efficiencies of 16.2 cd A(-1), 14.4 lm W(-1), and 5.35% in ambient air, revealing that TPE-PNPB is an eximious p-type light emitter. PMID:25254940

  17. A Continuous Flow Column Study of the Anaerobic Transformation of a CAH Mixture of Tetrachloroethene and Carbon Tetrachloride Using Formate as an Electron Donor

    NASA Astrophysics Data System (ADS)

    Semprini, L.; Azizian, M. F.; Kim, Y.

    2011-12-01

    Many groundwater sites are contaminated with mixtures of chlorinated aliphatic hydrocarbons (CAHs) that represent a challenge when biological remediation processes are being considered. This is especially challenging when high concentrations of CAHs are present.Trichloromethane (CF), for example, has been observed to inhibit and potentially exert toxicity on reductive dehalogenation of tetrachloroethene (PCE) and trichloroethene (TCE). Results will be presented from a continuous flow column study where the simultaneous transformation of PCE and carbon tetrachloride (CT) was achieved. The column was packed with a quartz sand and bioaugmented with the Evanite Culture (EV) that is capable of transforming PCE to ethene. The column was fed a synthetic groundwater that was amended with PCE to achieve an influent concentration near its solubility limit (0.10 mM) and formate (1.5 mM) that reacts to produce hydrogen as the ultimate electron donor. The column was operated for over 1600 days prior to the addition of CT. During this period PCE was transformed mainly to vinyl chloride (VC) and ethene (ETH) and minor amounts of cis-dichloroethene (cis-DCE) and TCE. The transformation extent achieved based on the column effluent concentrations ranged from about 50% ETH, 30% VC, and 20 cis-DCE up to 80% ETH and 20% VC. When the column was fed sulfate, it was completely transformed via sulfate reduction. Ferrous iron production from ferric iron reduction was observed early in the study. Acetate was also formed as a result of homoacetogenesis from hydrogen utilization. CT addition (0.015 mM) was started at 1600 days while PCE addition was continued. During the first 25 days of CT addition, CT concentrations gradually increased to 50% of the injection concentration and chloromethane (CM) and CF were observed as transformation products. CT concentrations then decreased with over 98% transformation achieved.CM was removed to below the detection limit and CF concentration decreases to

  18. Mechanism of inner-sphere electron transfer via charge-transfer (precursor) complexes. Redox energetics of aromatic donors with the nitrosonium acceptor.

    PubMed

    Rosokha, S V; Kochi, J K

    2001-09-19

    Spontaneous formation of colored (1:1) complexes of various aromatic donors (ArH) with the nitrosonium acceptor (NO+) is accompanied by the appearance of two new (charge-transfer) absorption bands in the UV-vis spectrum. IR spectral and X-ray crystallographic analyses of the [ArH,NO+] complexes reveal their inner-sphere character by the ArH/NO+ separation that is substantially less than the van der Waals contact and by the significant enlargement of the aromatic chromophore. The reversible interchange between such an inner-sphere complex [ArH,NO+] and the redox product (ArH+.+ NO.) is quantitatively assessed for the first time to establish it as the critical intermediate in the overall electron-transfer process. Theoretical formulation of the NO+ binding to ArH is examined by LCAO-MO methodology sufficient to allow the unambiguous assignment of the pair of diagnostic (UV-vis) spectral bands. The MO treatment also provides quantitative insight into the high degree of charge-transfer extant in these inner-sphere complexes as a function of the HOMO-LUMO gap for the donor/acceptor pair. The relative stabilization of [ArH,NO+] is traced directly to the variation in the electronic coupling element H(AB), which is found to be substantially larger than the reorganization energy (lambda/2). In Sutin's development of Marcus-Hush theory, this inequality characterizes a completely delocalized Class III complex (which occupies a single potential well) according to the Robin-Day classification. The mechanistic relevance of such an unusual (precursor) complex to the inner-sphere mechanism for organic electron transfer is discussed. PMID:11552806

  19. Electronic and optical properties of novel carbazole-based donor-acceptor compounds for applications in blue-emitting organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Legaspi, Christian M.; Stubbs, Regan E.; Yaron, David J.; Peteanu, Linda A.; Sfeir, Matthew Y.; Kemboi, Abraham; Picker, Jesse; Fossum, Eric

    2015-08-01

    Organic light-emitting diodes (OLEDs) have received a significant attention over the past decade due to their energy-saving potential. We have recently synthesized two novel carbazole-based donor-acceptor compounds and analyzed their optical properties to determine their suitability for use as blue emitters in OLEDs. These compounds show remarkable photo-stability and high quantum yields in the blue region of the spectrum. In addition, they have highly solvatochromic emission. In non-polar solvents, bright, blue-shifted (λmax ≈ 398 nm), and highly structured emission is seen. With increasing solvent dielectric constant, the emission becomes weaker, red-shifted (λmax ≈ 507 nm), and broad. We aim to determine the underlying cause of these changes. Electronic structure calculations indicate the presence of multiple excited states with comparable oscillator strength. These states are of interest because there are several with charge-transfer (CT) character, and others centered on the donor moiety. We theorize that CT states play a role in the observed changes in emission lineshape and may promote charge mobility for electrofluorescence in OLEDs. In the future, we plan to use Stark spectroscopy to analyze the polarity of excited states and transient absorption spectroscopy to observe the dynamics in the excited state.

  20. Electronic and Spatial Structures of Water-Soluble Dinitrosyl Iron Complexes with Thiol-Containing Ligands Underlying Their Ability to Act as Nitric Oxide and Nitrosonium Ion Donors

    PubMed Central

    Vanin, Anatoly F.; Burbaev, Dosymzhan Sh.

    2011-01-01

    The ability of mononuclear dinitrosyl iron commplexes (M-DNICs) with thiolate ligands to act as NO donors and to trigger S-nitrosation of thiols can be explain only in the paradigm of the model of the [Fe+(NO+)2] core ({Fe(NO)2}7 according to the Enemark-Feltham classification). Similarly, the {(RS−)2Fe+(NO+)2}+ structure describing the distribution of unpaired electron density in M-DNIC corresponds to the low-spin (S = 1/2) state with a d7 electron configuration of the iron atom and predominant localization of the unpaired electron on MO(dz2) and the square planar structure of M-DNIC. On the other side, the formation of molecular orbitals of M-DNIC including orbitals of the iron atom, thiolate and nitrosyl ligands results in a transfer of electron density from sulfur atoms to the iron atom and nitrosyl ligands. Under these conditions, the positive charge on the nitrosyl ligands diminishes appreciably, the interaction of the ligands with hydroxyl ions or with thiols slows down and the hydrolysis of nitrosyl ligands and the S-nitrosating effect of the latter are not manifested. Most probably, the S-nitrosating effect of nitrosyl ligands is a result of weak binding of thiolate ligands to the iron atom under conditions favoring destabilization of M-DNIC. PMID:22505886

  1. Syntheses and spectroscopic and quadratic nonlinear optical properties of extended dipolar complexes with ruthenium(II) ammine electron donor and N-methylpyridinium acceptor groups.

    PubMed

    Coe, Benjamin J; Jones, Lathe A; Harris, James A; Brunschwig, Bruce S; Asselberghs, Inge; Clays, Koen; Persoons, André; Garín, Javier; Orduna, Jesús

    2004-03-31

    In this paper, we describe the extremely unusual optical properties of Ru(II)-based electron donor-acceptor (D-A) polyene and some closely related chromophores. For three different polyene series, the intense, visible d-->pi* metal-to-ligand charge-transfer bands unexpectedly blue-shift as the number of E-ethylene units (n) increases from 1 to 3, and the static first hyperpolarizabilities beta(0) determined via hyper-Rayleigh scattering and Stark spectroscopy maximize at n = 2, in marked contrast to other known D-A polyenes in which beta(0) increases steadily with n. Time-dependent density-functional theory and finite field calculations verify these empirical trends, which arise from the orbital structures of the complexes. This study illustrates that transition metal-based nonlinear optical chromophores can show very different behavior when compared with their more thoroughly studied purely organic counterparts. PMID:15038742

  2. Infrared and Raman analyses of the halogen-bonded non-covalent adducts formed by α,ω-diiodoperfluoroalkanes with DABCO and other electron donors

    NASA Astrophysics Data System (ADS)

    Messina, M. T.; Metrangolo, P.; Navarrini, W.; Radice, S.; Resnati, G.; Zerbi, G.

    2000-06-01

    An attractive intermolecular interaction which has been called "halogen bonding" exists between the nitrogen, sulfur, or oxygen atoms present in HC motifs and the iodine atom of PFC residues. The "halogen bonding" is strong enough to overcome the low affinity existing between PFC and HC compounds, driving their self-assembly into supramolecular architectures. The non-covalent co-polymer formed by 1,2-diiodotetrafluoroethane with diazabicyclooctane has been prepared and characterised by FT-IR and -Raman spectroscopies. We propose the changes shown by the vibrational spectra of single PFC and HC components when involved in halogen bonded co-polymers as diagnostic probes of the interaction and as tools to rank the electron-donor ability of differently heteroatom substituted hydrocarbons.

  3. Ab initio MO based lattice energy for molecular crystals: packing structure of electron donor-acceptor (EDA) complex H 3N-BF 3

    NASA Astrophysics Data System (ADS)

    Ikeda, Tohru; Nagayoshi, Kanade; Kitaura, Kazuo

    2003-03-01

    A computational procedure is proposed for calculating the lattice energy of molecular crystals using the ab initio MO method. Our method does not require any adjustable parameters and provides a general description for various molecular crystals including electron donor-acceptor (EDA) complexes. Using the method, the packing structure of H 3N-BF 3 crystal was optimized at the HF/3-21 + G level and the lattice energy was calculated at the MP2/6-311 + G * level. The calculation reproduced the experimental lattice constants with reasonable accuracy. Moreover, the structural feature of the H 3N-BF 3 crystal was discussed based on the molecular interactions in the crystal.

  4. Effects of acceptor-donor complexes on electronic structure properties in co-doped TiO2: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Cai, L. L.; Yuan, X. B.; Hu, G. C.; Ren, J. F.

    2016-07-01

    We theoretically investigate the doping effects induced by impurity complexes on the electronic structures of anatase TiO2 based on the density functional theory. Mono-doping and co-doping effects are discussed separately. The results show that the impurity doping can make the band-edges shift. The induced defect levels in the band gaps by impurity doping reduce the band gap predominantly. The compensated acceptor-donor pairs in the co-doped TiO2 will improve the photoelectrochemical activity. From the calculations, it is also found that (S+Zr)-co-doped TiO2 has the ideal band gap and band edge, at the same time, the binding energy is higher than other systems, so (S+Zr)-co-doping in TiO2 is more promise in photoelectrochemical experiments.

  5. Use of poly-beta-hydroxy-butyrate as a slow-release electron donor for the microbial reductive dechlorination of TCE.

    PubMed

    Aulenta, F; Fuoco, M; Canosa, A; Petrangeli Papini, M; Majone, M

    2008-01-01

    In situ anaerobic reductive dechlorination, using slow-release electron donors, is emerging as an effective and sustainable (low-cost and low-maintenance) technology to remediate aquifers contaminated by chloroethenes. In the present study, we investigated the use of poly-beta-hydroxy-butyrate (PHB), a fully biodegradable polymer, as a slow-release source of hydrogen and acetate for the reductive dechlorination of trichloroethene (TCE). Results of this study indicated that TCE dechlorination in PHB-amended microcosms was 2.3-times higher than in non-amended controls. This higher activity was explained by a higher H(2) level in PHB-amended microcosms. As usual, acetate was the major sink (approximately 90%) of reducing equivalents available from PHB degradation, whereas no acetotrophic dechlorination was observed. PMID:18413954

  6. A User Study of the Design Issues of PROPIE: A Novel Environment for Enhanced Interaction and Value-Adding of Electronic Documents.

    ERIC Educational Resources Information Center

    Liew, Chern Li; Foo, Schubert; Chennupati, K. R.

    2001-01-01

    Presents a proposed information environment (PROPIE) for enhanced interaction and value-adding of electronic documents that allows users multiple ways to query intuitively and navigate information in an electronic document. Highlights include user interface technologies; visualization and interactive techniques; query and browsing processes; and…

  7. Biogeochemical Modeling of In Situ U(VI) Reduction and Immobilization with Emulsified Vegetable Oil as the Electron Donor at a Field Site in Oak Ridge, Tennessee

    NASA Astrophysics Data System (ADS)

    Tang, G.; Parker, J.; Wu, W.; Schadt, C. W.; Watson, D. B.; Brooks, S. C.; Orifrc Team

    2011-12-01

    A comprehensive biogeochemical model was developed to quantitatively describe the coupled hydrologic, geochemical and microbiological processes that occurred following injection of emulsified vegetable oil (EVO) as the electron donor to immobilize U(VI) at the Oak Ridge Integrated Field Research Challenge site (ORIFRC) in Tennessee. The model couples the degradation of EVO, production and oxidation of long-chain fatty acids (LCFA), glycerol, hydrogen and acetate, reduction of nitrate, manganese, ferrous iron, sulfate and uranium, and methanoganesis with growth of multiple microbial groups. The model describes the evolution of geochemistry and microbial populations not only in the aqueous phase as typically observed, but also in the mineral phase and therefore enables us to evaluate the applicability of rates from the literature for field scale assessment, estimate the retention and degradation rates of EVO and LCFA, and assess the influence of the coupled processes on fate and transport of U(VI). Our results suggested that syntrophic bacteria or metal reducers might catalyze LCFA oxidation in the downstream locations when sulfate was consumed, and competition between methanogens and others for electron donors and slow growth of methanogen might contribute to the sustained reducing condition. Among the large amount of hydrologic, geochemical and microbiological parameter values, the initial biomass, and the interactions (e.g., inhibition) of the microbial functional groups, and the rate and extent of Mn and Fe oxide reduction appear as the major sources of uncertainty. Our model provides a platform to conduct numerical experiments to study these interactions, and could be useful for further iterative experimental and modeling investigations into the bioreductive immobiliztion of radionuclide and metal contaminants in the subsurface.

  8. Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers

    PubMed Central

    Nakanotani, Hajime; Furukawa, Taro; Morimoto, Kei; Adachi, Chihaya

    2016-01-01

    Understanding exciton behavior in organic semiconductor molecules is crucial for the development of organic semiconductor-based excitonic devices such as organic light-emitting diodes and organic solar cells, and the tightly bound electron-hole pair forming an exciton is normally assumed to be localized on an organic semiconducting molecule. We report the observation of long-range coupling of electron-hole pairs in spatially separated electron-donating and electron-accepting molecules across a 10-nanometers-thick spacer layer. We found that the exciton energy can be tuned over 100 megaelectron volts and the fraction of delayed fluorescence can be increased by adjusting the spacer-layer thickness. Furthermore, increasing the spacer-layer thickness produced an organic light-emitting diode with an electroluminescence efficiency nearly eight times higher than that of a device without a spacer layer. Our results demonstrate the first example of a long-range coupled charge-transfer state between electron-donating and electron-accepting molecules in a working device. PMID:26933691

  9. N Photo-CIDNP MAS NMR To Reveal Functional Heterogeneity in Electron Donor of Different Plant Organisms.

    PubMed

    Janssen, Geertje J; Roy, Esha; Matysik, Jörg; Alia, A

    2012-02-01

    In plants and cyanobacteria, two light-driven electron pumps, photosystems I and II (PSI, PSII), facilitate electron transfer from water to carbon dioxide with quantum efficiency close to unity. While similar in structure and function, the reaction centers of PSI and PSII operate at widely different potentials with PSI being the strongest reducing agent known in living nature. Photochemically induced dynamic nuclear polarization (photo-CIDNP) in magic-angle spinning (MAS) nuclear magnetic resonance (NMR) measurements provides direct excess to the heart of large photosynthetic complexes (A. Diller, Alia, E. Roy, P. Gast, H.J. van Gorkom, J. Zaanen, H.J.M. de Groot, C. Glaubitz, J. Matysik, Photosynth. Res. 84, 303-308, 2005; Alia, E. Roy, P. Gast, H.J. van Gorkom, H.J.M. de Groot, G. Jeschke, J. Matysik, J. Am. Chem. Soc. 126, 12819-12826, 2004). By combining the dramatic signal increase obtained from the solid-state photo-CIDNP effect with (15)N isotope labeling of PSI, we were able to map the electron spin density in the active cofactors of PSI and study primary charge separation at atomic level. We compare data obtained from two different PSI proteins, one from spinach (Spinacia oleracea) and other from the aquatic plant duckweed (Spirodella oligorrhiza). Results demonstrate a large flexibility of the PSI in terms of its electronic architecture while their electronic ground states are strictly conserved. PMID:22303078

  10. Copolymer semiconductors comprising thiazolothiazole or benzobisthiazole, or benzobisoxazole electron acceptor subunits, and electron donor subunits, and their uses in transistors and solar cells

    DOEpatents

    Jenekhe, Samson A; Subramaniyan, Selvam; Ahmed, Eilaf; Xin, Hao; Kim, Felix Sunjoo

    2014-10-28

    The inventions disclosed, described, and/or claimed herein relate to copolymers comprising copolymers comprising electron accepting A subunits that comprise thiazolothiazole, benzobisthiazole, or benzobisoxazoles rings, and electron donating subunits that comprise certain heterocyclic groups. The copolymers are useful for manufacturing organic electronic devices, including transistors and solar cells. The invention also relates to certain synthetic precursors of the copolymers. Methods for making the copolymers and the derivative electronic devices are also described.

  11. Donor states in inverse opals

    NASA Astrophysics Data System (ADS)

    Mahan, G. D.

    2014-09-01

    We calculate the binding energy of an electron bound to a donor in a semiconductor inverse opal. Inverse opals have two kinds of cavities, which we call octahedral and tetrahedral, according to their group symmetry. We put the donor in the center of each of these two cavities and obtain the binding energy. The binding energies become very large when the inverse opal is made from templates with small spheres. For spheres less than 50 nm in diameter, the donor binding can increase to several times its unconfined value. Then electrons become tightly bound to the donor and are unlikely to be thermally activated to the semiconductor conduction band. This conclusion suggests that inverse opals will be poor conductors.

  12. Donor states in inverse opals

    SciTech Connect

    Mahan, G. D.

    2014-09-21

    We calculate the binding energy of an electron bound to a donor in a semiconductor inverse opal. Inverse opals have two kinds of cavities, which we call octahedral and tetrahedral, according to their group symmetry. We put the donor in the center of each of these two cavities and obtain the binding energy. The binding energies become very large when the inverse opal is made from templates with small spheres. For spheres less than 50 nm in diameter, the donor binding can increase to several times its unconfined value. Then electrons become tightly bound to the donor and are unlikely to be thermally activated to the semiconductor conduction band. This conclusion suggests that inverse opals will be poor conductors.

  13. Evidence on Anaerobic Methane Oxidation (AOM) in a boreal cultivated peatland with natural and added electron acceptors

    NASA Astrophysics Data System (ADS)

    Dorodnikov, Maxim; Silvennoinen, Hanna; Martikainen, Pertti; Dörsch, Peter

    2015-04-01

    Anaerobic oxidation of methane (AOM) is a process of methane (CH4) consumption under anoxic conditions driven by microorganisms, which oxidize CH4 with various alternate electron acceptors (AEA): sulfate, nitrate, nitrite, metals-(Fe, Mn, Cu), organic compounds. AOM is common in marine ecosystems, where microbial sulfate reduction (SR) consumes most of the CH4 produced in sediments. Despite the global significance of AOM, the exact mechanisms and relevance of the process in terrestrial ecosystems are almost unknown. In the current study the occurrence of AOM was tested for two organic soil horizons (30 and 40 cm depth) and one mineral sub-soil (sand, 50 cm depth) of a cultivated boreal peatland (Linnansuo, Eastern Finland, energy crop Phalaris arundinacea - reed canarygrass) under controlled conditions with the addition of 13C-labeled CH4 and two common AEAs - SO4-2 and Fe+3. Concentrations of CH4, CO2 and O2 were continuously measured during 10 days of incubation and CO2 was sampled periodically under anaerobic conditions for stable 13C analysis. Oxygen dynamics revealed negligible O2 contamination during incubation and its trace amounts (0.05-0.8% from the atmospheric) were accounted in the net CH4 uptake. Application of 13C-enriched CH4 (4.9 atom%) allowed to track the label in CO2 as the end-product of AOM. The highest 13CO2 enrichment (up to 60‰) was observed in mineral sub-soil, however AOM was quantitatively more pronounced in the upper 30 cm horizon (2.1 vs. 0.2 μg CO2 g soil DW-1 in the 50 cm sub-soil). The highest AOM rate of 8.9 ng CO2 g soil DW-1 h-1 was estimated for the control treatment where no AEAs were added indicating sufficient amount of naturally available AEAs, likely organic compounds. This rate was 50 times more intensive (on the C basis) than the CH4 production potential of the same soil. In contrast, external AEAs decreased AOM rates but added Fe+3 stimulated decomposition of native SOM (as seen from the most depleted 13CO2 signatures

  14. Synthesis, and spectroscopic studies of charge transfer complex of 1,2-dimethylimidazole as an electron donor with π-acceptor 2,4-dinitro-1-naphthol in different polar solvents

    NASA Astrophysics Data System (ADS)

    Miyan, Lal; Khan, Ishaat M.; Ahmad, Afaq

    2015-07-01

    The charge transfer (CT) complex of 1,2-dimethylimidazole (DMI) as an electron donor with π acceptor 2,4-dinitro-1-naphthol (DNN) has been studied spectrophotometrically in different solvents like chloroform, acetonitrile, methanol, methylene chloride, etc. at room temperature. The CT complex which is formed through the transfer of lone pair electrons from DMI to DNN exhibits well resolved CT bands and the regions of these bands were remarkably different from those of the donor and acceptor. The stoichiometry of the CT complex was found to be 1:1 by a straight-line method between donor and acceptor with maximum absorption bands. The novel CT complex has been characterized by FTIR, TGA-DTA, powder XRD, 1H NMR and 13C NMR spectroscopic techniques. The Benesi-Hildebrand equation has been used to determine the formation constant (KCT), molar extinction coefficient (εCT), standard gibbs free energy (ΔG°) and other physical parameters of the CT complex. The formation constant recorded higher values and molar extinction coefficient recorded lower values in chloroform compared with methylene chloride, methanol and acetonitrile, confirming the strong interaction between the molecular orbital's of donor and acceptor in the ground state in less polar solvent. This CT complex has been studied by absorption spectra of donor 1,2-dimethylimidazole (DMI) and acceptor 2,4-dinitro-1-naphthol (DNN) by using the spectrophotometric technique in various solvents at room temperature.

  15. Spectrophotometric and thermal studies on the charge - Transfer complexes of 4-(aminomethyl) piperidine as donor with σ- and π-electron acceptors

    NASA Astrophysics Data System (ADS)

    Mostafa, Adel; El-Ghossein, Nada; AlQaradawi, Siham Y.

    2014-01-01

    The spectroscopic characteristics of the solid charge-transfer molecular complexes (CT) formed in the reaction of the electron donor 4-(aminomethyl) piperidine (4AMP) with the σ-acceptor iodine and the π-acceptors 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), 2,4,4,6-tetrabromo-2,5-cyclohexadienone (TBCHD) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) have been studied in chloroform at 25 °C. These were investigated through electronic, infrared spectra and thermal analysis as well as elemental analysis. The results show that the formed solid CT-complexes have the formulas [I3-, [(4AMP)(DDQ)2] and [(4AMP)(TBCHD)] while in the case of 4AMP-TCNQ reaction, a short-lived CT complex is formed followed by rapid N-substitution by TCNQ forming the final reaction product 7,7,8-tricyano-8-aminomethylpiperidinylquinodimethane [TCAMPQDM] in full agreement with the known reaction stoichiometries in solution as well as the elemental measurements and the thermal analysis confirmed the structure of the obtained compounds. The formation constant kCT, molar extinction coefficient εCT, free energy change ΔG0 and CT energy ECT have been calculated for the CT-complexes [I3-, [(4AMP)(DDQ)2] and [(4AMP)(TBCHD)].

  16. Electron donor properties of claus catalysts--1. Influence of NaOH on the catalytic activity of silica gel

    SciTech Connect

    Dudzik, Z.; George, Z.M.

    1980-05-01

    ESR spectroscopy showed that SO/sub 2/ adsorbed on silica gel impregnated with NaOH formed the SO/sub 2//sup -/ anion radical. With increasing NaOH concentration, the SO/sub 2/ adsorption and the activity for the reaction of H/sub 2/S with SO/sub 2/ (Claus reaction) went through a maximum at 1.0-1.4% NaOH. The SO/sub 2/ anion radical apparently formed by electron transfer from the catalyst surface and was a reaction intermediate which reacted rapidly with H/sub 2/S. The NaOH catalyst had similar stability and activity as commercial alumina catalyst in five-day tests under Claus conditions.

  17. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: Comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment

    SciTech Connect

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M.

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working

  18. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment.

    PubMed

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near

  19. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: Comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment

    NASA Astrophysics Data System (ADS)

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M.

    2015-03-01

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near

  20. Electronic structure, molecular orientation, charge transfer dynamics and solar cells performance in donor/acceptor copolymers and fullerene: Experimental and theoretical approaches

    SciTech Connect

    Garcia-Basabe, Y.; Borges, B. G. A. L.; Rocco, M. L. M. E-mail: luiza@iq.ufrj.br; Marchiori, C. F. N.; Yamamoto, N. A. D.; Koehler, M.; Roman, L. S. E-mail: luiza@iq.ufrj.br; Macedo, A. G.

    2014-04-07

    By combining experimental and theoretical approaches, the electronic structure, molecular orientation, charge transfer dynamics and solar cell performance in donor/acceptor copolymer poly[2,7-(9,9-bis(2-ethylhexyl)-dibenzosilole)-alt-4,7-bis(thiophen-2-yl) benzo-2,1,3-thiadiazole] (PSiF-DBT) films and blended with 6,6.-phenyl-C 61-butyric acid methyl ester (PSiF-DBT:PCBM) were investigated. Good agreement between experimental and theoretical PSiF-DBT UV-Vis absorption spectrum is observed and the main molecular orbitals contributing to the spectrum were determined using DFT single point calculations. Non-coplanar configuration was determined by geometric optimization calculation in isolated PSiF-DBT pentamer and corroborated by angular variation of the sulphur 1s near-edge X-ray absorption fine structure (NEXAFS) spectra. Edge-on and plane-on molecular orientations were obtained for thiophene and benzothiadiazole units, respectively. A power conversion efficiency up to 1.58%, open circuit voltage of 0.51 V, short circuit current of 8.71 mA/cm{sup 2} and a fill factor of 35% was obtained using blended PSiF-DBT:PCBM as active layer in a bulk heterojunction solar cell. Ultrafast electron dynamics in the low-femtosecond regime was evaluated by resonant Auger spectroscopy using the core-hole clock methodology around sulphur 1s absorption edge. Electron delocalization times for PSiF-DBT and PSiF-DBT:PCBM polymeric films were derived for selected excitation energies corresponding to the main transitions in the sulphur 1s NEXAFS spectra. The mixture of PSiF-DBT with PCBM improves the charge transfer process involving the π* molecular orbital of the thiophene units.

  1. Ab initio and density functional theoretical design and screening of model crown ether based ligand (host) for extraction of lithium metal ion (guest): effect of donor and electronic induction.

    PubMed

    Boda, Anil; Ali, Sk Musharaf; Rao, Hanmanth; Ghosh, Sandip K

    2012-08-01

    The structures, energetic and thermodynamic parameters of model crown ethers with different donor, cavity and electron donating/ withdrawing functional group have been determined with ab initio MP2 and density functional theory in gas and solvent phase. The calculated values of binding energy/ enthalpy for lithium ion complexation are marginally higher for hard donor based aza and oxa crown compared to soft donor based thia and phospha crown. The calculated values of binding enthalpy for lithium metal ion with 12C4 at MP2 level of theory is in good agreement with the available experimental result. The binding energy is altered due to the inductive effect imparted by the electron donating/ withdrawing group in crown ether, which is well correlated with the values of electron transfer. The role of entropy for extraction of hydrated lithium metal ion by different donor and functional group based ligand has been demonstrated. The HOMO-LUMO gap is decreased and dipole moment of the ligand is increased from gas phase to organic phase because of the dielectric constant of the solvent. The gas phase binding energy is reduced in solvent phase as the solvent molecules weaken the metal-ligand binding. The theoretical values of extraction energy for LiCl salt from aqueous solution in different organic solvent is validated by the experimental trend. The study presented here should contribute to the design of model host ligand and screening of solvent for metal ion recognition and thus can contribute in planning the experiments. PMID:22318713

  2. Photodynamic therapy with decacationic [60]fullerene monoadducts: effect of a light absorbing electron-donor antenna and micellar formulation

    PubMed Central

    Yin, Rui; Wang, Min; Huang, Ying-Ying; Huang, Huang-Chiao; Avci, Pinar; Chiang, Long Y; Hamblin, Michael R

    2014-01-01

    We report the synthesis and anticancer photodynamic properties of two new decacationic fullerene (LC14) and red light-harvesting antenna-fullerene conjugated monoadduct (LC15) derivatives. The antenna of LC15 was attached covalently to C60> with distance of only <3.0 Ǻ to facilitate ultrafast intramolecular photoinduced-electron-transfer (for type-I photochemistry) and photon absorption at longer wavelengths. Because LC15 was hydrophobic we compared formulation in CremophorEL micelles with direct dilution from dimethylacetamide. LC14 produced more 1O2 than LC15, while LC15 produced much more HO· than LC14 as measured by specific fluorescent probes. When delivered by DMA, LC14 killed more HeLa cells than LC15 when excited by UVA light, while LC15 killed more cells when excited by white light consistent with the antenna effect. However LC15 was more effective than LC14 when delivered by micelles regardless of the excitation light. Micellar delivery produced earlier apoptosis and damage to the endoplasmic reticulum as well as to lysosomes and mitochondria. PMID:24333585

  3. Enhancement of p-Type Dye-Sensitized Solar Cell Performance by Supramolecular Assembly of Electron Donor and Acceptor

    PubMed Central

    Tian, Haining; Oscarsson, Johan; Gabrielsson, Erik; Eriksson, Susanna K.; Lindblad, Rebecka; Xu, Bo; Hao, Yan; Boschloo, Gerrit; Johansson, Erik M. J.; Gardner, James M.; Hagfeldt, Anders; Rensmo, Håkan; Sun, Licheng

    2014-01-01

    Supramolecular interactions based on porphyrin and fullerene derivatives were successfully adopted to improve the photovoltaic performance of p-type dye-sensitized solar cells (DSCs). Photoelectron spectroscopy (PES) measurements suggest a change in binding configuration of ZnTCPP after co-sensitization with C60PPy, which could be ascribed to supramolecular interaction between ZnTCPP and C60PPy. The performance of the ZnTCPP/C60PPy-based p-type DSC has been increased by a factor of 4 in comparison with the DSC with the ZnTCPP alone. At 560 nm, the IPCE value of DSCs based on ZnTCPP/C60PPy was a factor of 10 greater than that generated by ZnTCPP-based DSCs. The influence of different electrolytes on charge extraction and electron lifetime was investigated and showed that the enhanced Voc from the Co2+/3+(dtbp)3-based device is due to the positive EF shift of NiO. PMID:24603319

  4. Photobehavior of the geometrical isomers of two 1,4-distyrylbenzene analogues with side groups of different electron donor/acceptor character.

    PubMed

    Ciorba, S; Galiazzo, G; Mazzucato, U; Spalletti, A

    2010-10-14

    The photobehavior of two 1,4-distyrylbenzene analogues where the central benzene ring is asymmetrically substituted with a pyrid-4-ylethenyl group at one side and thien-2-ylethenyl or a p-nitrostyryl group at the other side, has been studied in two solvents at room temperature. The four geometrical isomers (EE, ZE, EZ, and ZZ) of each compound were separated by the combined use of HPLC and spectrophotometric techniques. The radiative/reactive competition in their excited state relaxation was particularly examined: the diabatic/adiabatic contributions were estimated and a reasonable interpretation of the photoisomerization mechanism was proposed. The role of the conformational isomers was also investigated by measured and computed spectral data. Since the different electron donor/acceptor character of the side groups of these molecules can induce charge transfer phenomena that can affect the relaxation pathways of their excited states, the photobehavior was compared in inert and polar solvents to clarify the role of the intramolecular charge transfer. The latter was found to affect markedly the relaxation properties and to induce interesting fluorosolvatochromic effects, particularly in the p-nitro derivative. The participation of the triplet state in the reaction mechanism of the latter was also investigated by flash photolysis and sensitized experiments. PMID:20857985

  5. Photoelectrochemical biosensing platform for microRNA detection based on in situ producing electron donor from apoferritin-encapsulated ascorbic acid.

    PubMed

    Yin, Huanshun; Wang, Mo; Zhou, Yunlei; Zhang, Xiaoyan; Sun, Bing; Wang, Guihua; Ai, Shiyun

    2014-03-15

    A novel signal "on" type of photoelectrochemical biosensor for microRNA-21 hybridization detection was fabricated, where Bi2S3 nanorods were used as photoactive material with a maximum adsorption at 450 nm visible light, hairpin-structure DNA as detecting probe, streptavidin as signal capturing unit and biotin functionalized ascorbic acid loaded apoferritin as signal amplification unit. Hybridization between the probe and the target microRNA-21 was confirmed by the increased photocurrent of the biosensor after electron donor of ascorbic acid was introduced into the detection buffer by digesting the apoferritin by trypsase, indicating that this method could be used fProd. Type: FTPor quantitative measurements, and the discrimination of the complementary from mismatched microRNA-21. Under the optimal detection conditions, the photoelectrochemical biosensor displayed a linear range of 1-5000 fM and a low detection limit of 0.35 fM for microRNA-21 determination. Moreover, the down-regulated expression of microRNA-21 in poultry cells and tissues infecting with avian leukosis viruses was confirmed by directly detecting microRNA-21 in extracted total RNA. This proposed strategy may open a new avenue for the applications of photoelectrochemical biosensor for oligonucleotides detection using visible light irradiation, which could largely reduce the destructive effect of UV light on biomolecules. PMID:24140833

  6. Denitrification by Pseudomonas stutzeri coupled with CO2 reduction by Sporomusa ovata with hydrogen as an electron donor assisted by solid-phase humin.

    PubMed

    Xiao, Zhixing; Awata, Takanori; Zhang, Dongdong; Katayama, Arata

    2016-09-01

    A co-culture system comprising an acetogenic bacterium, Sporomusa ovata DSMZ2662, and a denitrifying bacterium, Pseudomonas stutzeri JCM20778, enabled denitrification using H2 as the sole external electron donor and CO2 as the sole external carbon source. Acetate produced by S. ovata supported the heterotrophic denitrification of P. stutzeri. A nitrogen balance study showed the reduction of nitrate to nitrogen gas without the accumulation of nitrite and nitrous oxide in the co-culture system. S. ovata did not show nitrate reduction to ammonium in the co-culture system. Significant proportions of the consumed H2 were utilized for denitrification: 79.9 ± 4.6% in the co-culture system containing solid-phase humin and 62.9±11.1% in the humin-free co-culture system. The higher utilization efficiency of hydrogen in the humin-containing system was attributed to the higher denitrification activity of P. stutzeri under the acetate deficient conditions. The nitrogen removal rate of the humin-containing co-culture system reached 0.19 kg NO3(-)-N·m(-3)·d(-1). Stable denitrification activity for 61 days of successive sub-culturing suggested the robustness of this co-culture system. This study provides a novel strategy for the in situ enhancement of microbial denitrification. PMID:26975755

  7. The solution structure of the soluble form of the lipid-modified azurin from Neisseria gonorrhoeae, the electron donor of cytochrome c peroxidase.

    PubMed

    Nóbrega, Cláudia S; Saraiva, Ivo H; Carreira, Cíntia; Devreese, Bart; Matzapetakis, Manolis; Pauleta, Sofia R

    2016-02-01

    Neisseria gonorrhoeae colonizes the genitourinary track, and in these environments, especially in the female host, the bacteria are subjected to low levels of oxygen, and reactive oxygen and nitrosyl species. Here, the biochemical characterization of N. gonorrhoeae Laz is presented, as well as, the solution structure of its soluble domain determined by NMR. N. gonorrhoeae Laz is a type 1 copper protein of the azurin-family based on its spectroscopic properties and structure, with a redox potential of 277±5 mV, at pH7.0, that behaves as a monomer in solution. The globular Laz soluble domain adopts the Greek-key motif, with the copper center located at one end of the β-barrel coordinated by Gly48, His49, Cys113, His118 and Met122, in a distorted trigonal geometry. The edge of the His118 imidazole ring is water exposed, in a surface that is proposed to be involved in the interaction with its redox partners. The heterologously expressed Laz was shown to be a competent electron donor to N. gonorrhoeae cytochrome c peroxidase. This is an evidence for its involvement in the mechanism of protection against hydrogen peroxide generated by neighboring lactobacilli in the host environment. PMID:26589091

  8. (Dibenzoylmethanato)boron difluoride derivatives containing triphenylamine moieties: a new type of electron-donor/π-acceptor system for dye-sensitized solar cells.

    PubMed

    Mizuno, Yosuke; Yisilamu, Yilihamu; Yamaguchi, Tomoya; Tomura, Masaaki; Funaki, Takashi; Sugihara, Hideki; Ono, Katsuhiko

    2014-10-01

    (Dibenzoylmethanato)boron difluoride derivatives containing triphenylamine moieties were synthesized as a new type of electron-donor/π-acceptor system. These new compounds exhibited long-wavelength absorptions in the UV/Vis spectra, and reversible oxidation and reduction waves in cyclic voltammetry experiments. Their amphoteric redox properties are based on their resonance hybrid forms, in which a positive charge is delocalized on the triphenylamine moieties and a negative charge is localized on the boron atoms. Molecular orbital (MO) calculations indicate that their HOMO and LUMO energies vary with the number of phenylene rings connected to the difluoroboron-chelating ring. This is useful for optimizing the HOMO and LUMO levels to an iodine redox (I(-)/I3(-)) potential and a titanium dioxide conduction band, respectively. Dye-sensitized solar cells fabricated by using these compounds as dye sensitizers exhibited solar-to-electric power conversion efficiencies of 2.7-4.4 % under AM 1.5 solar light. PMID:25170797

  9. Photocatalytic reduction of CO2 and protons using water as an electron donor over potassium tantalate nanoflakes

    NASA Astrophysics Data System (ADS)

    Li, Kimfung; Handoko, Albertus D.; Khraisheh, Majeda; Tang, Junwang

    2014-07-01

    amounts of CH4 is produced from CO2 photoreduction. Upon addition of a silver cocatalyst on KTO, the reduction selectivity has been controlled to favour CO2 photoreduction, and the CO2 to CO yield has been doubled compared to bare KTaO3. Electronic supplementary information (ESI) available: Borosilicate glass transmittance spectrum and whole XRD pattern fitting (LeBail) results. See DOI: 10.1039/c4nr01490a

  10. The role of amino acid electron-donor/acceptor atoms in host-cell binding peptides is associated with their 3D structure and HLA-binding capacity in sterile malarial immunity induction

    SciTech Connect

    Patarroyo, Manuel E.; Almonacid, Hannia; Moreno-Vranich, Armando

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Fundamental residues located in some HABPs are associated with their 3D structure. Black-Right-Pointing-Pointer Electron-donor atoms present in {beta}-turn, random, distorted {alpha}-helix structures. Black-Right-Pointing-Pointer Electron-donor atoms bound to HLA-DR53. Black-Right-Pointing-Pointer Electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. -- Abstract: Plasmodium falciparum malaria continues being one of the parasitic diseases causing the highest worldwide mortality due to the parasite's multiple evasion mechanisms, such as immunological silence. Membrane and organelle proteins are used during invasion for interactions mediated by high binding ability peptides (HABPs); these have amino acids which establish hydrogen bonds between them in some of their critical binding residues. Immunisation assays in the Aotus model using HABPs whose critical residues had been modified have revealed a conformational change thereby enabling a protection-inducing response. This has improved fitting within HLA-DR{beta}1{sup Asterisk-Operator} molecules where amino acid electron-donor atoms present in {beta}-turn, random or distorted {alpha}-helix structures preferentially bound to HLA-DR53 molecules, whilst HABPs having amino acid electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. This data has great implications for vaccine development.

  11. A Second [2Fe-2S] Ferredoxin from Sphingomonas sp. Strain RW1 Can Function as an Electron Donor for the Dioxin Dioxygenase

    PubMed Central

    Armengaud, Jean; Gaillard, Jacques; Timmis, Kenneth N.

    2000-01-01

    The first step in the degradation of dibenzofuran and dibenzo-p-dioxin by Sphingomonas sp. strain RW1 is carried out by dioxin dioxygenase (DxnA1A2), a ring-dihydroxylating enzyme. An open reading frame (fdx3) that could potentially specify a new ferredoxin has been identified downstream of dxnA1A2, a two-cistron gene (J. Armengaud, B. Happe, and K. N. Timmis, J. Bacteriol. 180:3954–3966, 1998). In the present study, we report a biochemical analysis of Fdx3 produced in Escherichia coli. This third ferredoxin thus far identified in Sphingomonas sp. strain RW1 contained a putidaredoxin-type [2Fe-2S] cluster which was characterized by UV-visible absorption spectrophotometry and electron paramagnetic resonance spectroscopy. The midpoint redox potential of this ferredoxin (E′0 = −247 ± 10 mV versus normal hydrogen electrode at pH 8.0) is similar to that exhibited by Fdx1 (−245 mV), a homologous ferredoxin previously characterized in Sphingomonas sp. strain RW1. In in vitro assays, Fdx3 can be reduced by RedA2 (a reductase similar to class I cytochrome P-450 reductases), previously isolated from Sphingomonas sp. strain RW1. RedA2 exhibits a Km value of 3.2 ± 0.3 μM for Fdx3. In vivo coexpression of fdx3 and redA2 with dxnA1A2 confirmed that Fdx3 can serve as an electron donor for the dioxin dioxygenase. PMID:10735867

  12. Effects of the acceptor unit in dyes with acceptor-bridge-donor architecture on the electron photo-injection mechanism and aggregation in DSSCs.

    PubMed

    Zarate, Ximena; Claveria-Cadiz, Francisca; Arias-Olivares, David; Rodriguez-Serrano, Angela; Inostroza, Natalia; Schott, Eduardo

    2016-09-21

    Dye-sensitized solar cells (DSSCs) are devices that convert light to electrical energy. Nowadays, researchers have focused on the understanding of the performance of dyes in solar cells. In this way, new efficient dyes have been obtained which can act as efficient light-harvesting compounds where the combination and the balance of acceptor(A)-bridge-donor(D) architectures confer suitable attributes and properties to the dye. Herein, we have carried out a DFT study on the optical and electronic properties of eight different A motifs and their influence on the electron photo-injection (PI) mechanisms through type I (indirect) or type II (direct) pathways in A-bridge-D dyes in DSSCs. The models consisted of thiophene as a bridge and triphenylamine as a D anchored to a TiO2 anatase cluster. All geometry optimizations were calculated using the B3LYP, CAM-B3LYP and BHandHLYP functionals combined with the 6-31G(d,p) basis set for C, H, N, O and S and the LANL2DZ pseudopotential for Ti atoms. Most of the A dyes display optoelectronic properties consistent with a type-I (indirect) mechanism except for the A5 dye where the results suggest a type-II (direct) PI pathway. In addition, molecular dynamics (MD) simulations have been carried out in order to describe the formation of dye dimers and analyze the stability of the aggregates due to intermolecular interactions. The observed trends indicate that dyes with A2 and A5 anchoring groups have less tendency to dimerize due to weaker intermolecular interactions resulting in less stable dimer complexes. Specifically, we found that the A motif influences the PI by a dye and the dimerization profiles. PMID:27530076

  13. [Influence of the interaction between iron oxide and electron donor substances on 1,1,1-trichloro- 2, 2-bis (p-chlorophenyl) ethane ( DDT) reductive dechlorination in hydragric acrisols].

    PubMed

    Liu, Cui-Ying; Xu, Xiang-Hua; Wang, Zhuang; Yao, Tong-Yan

    2014-11-01

    The interaction between iron oxide and electron donor substance have significant influences on electron transfer and the growth of iron-reducing bacteria, which may affect the reductive dechlorination of polychlorinated organic compounds in soil. Anaerobic soil incubation experiment was conducted to study the effect and its mechanism of iron oxide (goethite), electron donor substances (butyrate and ethanol), and their interaction on DDT reductive dechlorination in Hydragric Acrisols. Results showed that after 6 weeks of anaerobic incubation, the extractable residues of DDT were between 1.29% and 2.01% of initial DDT amounts in soils, which was attributed to the dechlorinated degradation of DDT and formation of bound residues of DDT and its dechlorinated products. The main product of DDT anaerobic dechlorination was 1,1-dichloro-2,2-bis (p-chloro-phenyl) ethane (DDD). During the prophase of incubation, the application of butyrate or ethanol led to the decreased pH and increased Eh for reaction system, thus inhibited DDT dechlorination. The applications of only goethite or goethite and electron donor substances resulted in the increased soil pH, decreased soil Eh and increased Fe( II ) contents, thus accelerated DDT dechlorination. There was no significant interaction between butyrate and iron oxide on DDT dechlorination, whereas there was antagonistic action between ethanol and iron oxide on DDT dechlorination. The results will be of great significance for developing efficient and in-situ remediation technology of DDT contaminated soil. PMID:25639109

  14. The effect of permodified cyclodextrins encapsulation on the photophysical properties of a polyfluorene with randomly distributed electron-donor and rotaxane electron-acceptor units

    PubMed Central

    Resmerita, Ana-Maria; Aubert, Pierre-Henri; Farcas, Flavian; Stoica, Iuliana; Airinei, Anton

    2014-01-01

    Summary We report on the synthesis as well as the optical, electrochemical and morphological properties of two polyrotaxanes (4a and 4b), which consist of electron-accepting 9,9-dicyanomethylenefluorene 1 as an inclusion complex in persilylated β- or γ-cyclodextrin (TMS-β-CD, TMS-γ-CD) (1a, 1b) and methyltriphenylamine as an electron-donating molecule. They are statistically distributed into the conjugated chains of 9,9-dioctylfluorene 3 and compared with those of the corresponding non-rotaxane 4 counterpart. Rotaxane formation results in improvements of the solubility, the thermal stability, and the photophysical properties. Polyrotaxanes 4a and 4b exhibited slightly red-shifted absorption bands with respect to the non-rotaxane 4 counterpart. The fluorescence lifetimes of polyrotaxanes follow a mono-exponential decay with a value of τ = 1.14 ns compared with the non-rotaxane, where a bi-exponential decay composed of a main component with a relative short time of τ1 = 0.88 (57.08%) and a minor component with a longer lifetime of τ2 = 1.56 ns (42.92%) were determined. The optical and electrochemical band gaps (ΔE g) as well as the ionization potential and electronic affinity characterized by smaller values compared to the values of any of the constituents. AFM reveals that the film surface of 4a and 4b displays a granular morphology with a lower dispersity supported by a smaller roughness exponent compared with the non-rotaxane counterpart. PMID:25246973

  15. B4H4 and B4(CH3)4 as Unique Electron Donors in Hydrogen-Bonded and Halogen-Bonded Complexes.

    PubMed

    Del Bene, Janet E; Alkorta, Ibon; Elguero, José

    2016-07-21

    Ab initio MP2/aug'-cc-pVTZ calculations have been carried out on B4H4 and B4(CH3)4 to investigate the base properties of these molecules with Td symmetry. Each face of the tetrahedral structure of B4H4 and B4(CH3)4 is stabilized by a two-electron, three-center B-B-B bond. The face uses these two electrons to act uniquely as an electron-pair donor for the formation of stable hydrogen-bonded and halogen-bonded complexes with C3v symmetry. The hydrogen-bonded complexes are B4H4:HY and B4(CH3)4:HY, with HY = HNC, HF, HCl, HCN, and HCCH; the halogen-bonded complexes are B4H4:ClY and B4(CH3)4:ClY, with ClY = ClF, ClCl, ClNC, ClCN, ClCCH, and ClH. The absolute values of the binding energies of the hydrogen-bonded complexes B4(CH3)4:HY and of the halogen-bonded complexes B4(CH3)4:ClY are significantly greater than the binding energies of the corresponding complexes with B4H4. The binding energies of each series correlate with the distance from the hydrogen-bonded H atom or halogen-bonded Cl atom to the centroid of the interacting face. Charge transfer stabilizes all complexes and occurs from the B2-B3-B4 orbital of the face to the antibonding H-X orbital of HY in hydrogen-bonded complexes and to the antibonding Cl-X orbital of ClY in halogen-bonded complexes, with X being the atom of Y that is directly bonded to either H or Cl. For fixed HY, EOM-CCSD spin-spin coupling constants J(X-B1) are greater than J(X-Bn) for complexes B4H4:HY, even though the X-B1 distances are longer. B1 and Bn are the atoms at the apex and in the interacting face, respectively. Similarly, for complexes B4H4:ClY, J(Cl-B1) is greater than J(Cl-Bn). In the halogen-bonded complexes, both coupling constants correlate with the corresponding distances. PMID:27399838

  16. In Situ Generation of Electron Donor to Assist Signal Amplification on Porphyrin-Sensitized Titanium Dioxide Nanostructures for Ultrasensitive Photoelectrochemical Immunoassay.

    PubMed

    Shu, Jian; Qiu, Zhenli; Zhuang, Junyang; Xu, Mingdi; Tang, Dianping

    2015-10-28

    An ultrasensitive photoelectrochemical (PEC) immunoassay protocol for quantitative detection of low-abundant proteins at a low potential was designed by utilizing porphyrin-sensitized titanium dioxide (TiO2) nanostructures. Experimental results demonstrated that the water-soluble 5,10,15,20-tetra(4-sulfophenyl)-21H,23H-porphyrin (TSPP) could be bound onto titanium dioxide via the sulfonic group. TSPP-sensitized TiO2 nanostructures exhibited better photoelectrochemical responses and stability in comparison with TiO2 nanoparticles alone under continuous illumination. Using carcinoembryonic antigen (CEA) as a model analyte, a typical PEC immunosensor by using TSPP-TiO2 as the affinity support of anti-CEA capture antibody (Ab1) to facilitate the improvement of photocurrent response was developed. Bioconjugates of secondary antibody and glucose oxidase with gold nanoparticles (Ab2/GOx-AuNPs) was introduced by an antigen-antibody immunoreaction. AuNP acted as a powerful scaffold to bind with bioactive molecules, while GOx catalyzed glucose to in situ generate hydrogen peroxide (H2O2). The generated H2O2 as a sacrificial electron donor could be oxidized by the photogenerated holes to assist the signal amplification at a low potential under light excitation, thus eliminating interference from other species coexisting in the samples. Under optimal conditions, the PEC immunosensor showed a good linear relationship ranging from 0.02 to 40 ng mL(-1) with a low detection limit of 6 pg mL(-1) CEA. The precision, reproducibility, and specificity were acceptable. In addition, the method accuracy was also evaluated for quantitatively monitoring human serum samples, giving results matching with the referenced CEA ELISA kit. PMID:26451956

  17. Near-interfacial thermal donor generation during processing of (100)Si/low-κ Si-oxycarbide insulator structures revealed by electron spin resonance

    NASA Astrophysics Data System (ADS)

    Stesmans, A.; Iacovo, S.; Nguyen, S.; Afanas'ev, V. V.; Baklanov, M. R.; Urbanowicz, A. M.

    2014-09-01

    A low-temperature multifrequency electron spin resonance (ESR) study has been carried out on Cz-(110)Si/insulator structures with organosilicate films of low dielectric constant κ grown at 300 °C using the plasma-enhanced chemical vapor deposition method (PECVD). After subjection to a short-term UV-irradiation-assisted thermal curing treatment at 430 °C to remove the organic component from the low-κ film and obtain optimal porosity, the NL8 ESR spectrum of C2v symmetry is observed, characterized by g1 (//[100] = 1.999 83(8), g2(//[011] = 1.992 74(8), g3 = (//[1\\bar{1}0]) = 2.001 15(8). Based on previous insight, this reveals the generation in the c-Si substrate of singly ionized thermal double donor (TDD) defects with a core containing oxygen atoms. Remarkably, the generation is found to be highly nonuniform, and the defect density depth profile shows an exponential-like decay (decay length ˜3.8 μm) from the oxide/Si interface inward the Si substrate, thus exposing the defect formation as an interface-administered effect. Upon analysis, the strain induced by interfacial stress in the c-Si beneath the interface is suggested as the major driving component in the enhancement of TDD formation during thermal treatment, suggesting that substantial stress is involved with PECVD organosilicate low-κ glasses. The result represents a different and affirmative illustration of the influence of strain on TDD formation. Based on the principal g values, the observed TDD is closest to the NL81 type, the one formed first in bulk c-Si through oxygen agglomeration during short-term thermal treatment.

  18. Solicited kidney donors: Are they coerced?

    PubMed

    Serur, David; Bretzlaff, Gretchen; Christos, Paul; Desrosiers, Farrah; Charlton, Marian

    2015-12-01

    Most non-directed donors (NDDs) decide to donate on their own and contact the transplant centre directly. Some NDDs decide to donate in response to community solicitation such as newspaper ads or donor drives. We wished to explore whether subtle coercion might be occurring in such NDDs who are part of a larger community. One successful organization in a community in Brooklyn, NY, provides about 50 NDDs per year for recipients within that community. The donors answer ads in local papers and attend donor drives. Herein, we evaluated the physical and emotional outcomes of community-solicited NDDs in comparison to traditional NDDs who come from varied communities and are not responding to a specific call for donation. An assessment of coercion was used as well. PMID:26511772

  19. Triplet energy transfer between the primary donor and carotenoids in Rhodobacter sphaeroides R-26.1 reaction centers incorporated with spheroidene analogs having different extents of pi-electron conjugation.

    PubMed

    Farhoosh, R; Chynwat, V; Gebhard, R; Lugtenburg, J; Frank, H A

    1997-07-01

    Three carotenoids, spheroidene, 3,4-dihydrospheroidene and 3,4,5,6-tetrahydrospheroidene, having 8, 9 and 10 conjugated carbon-carbon double bonds, respectively, were incorporated into Rhodobacter (Rb.) sphaeroides R-26.1 reaction centers. The extents of binding were found to be 95 +/- 5% for spheroidene, 65 +/- 5% for 3,4-dihydrospheroidene and 60 +/- 10% for 3,4,5,6-tetrahydrospheroidene. The dynamics of the triplet states of the primary donor and carotenoid were measured at room temperature by flash absorption spectroscopy. The carotenoid, spheroidene, was observed to quench the primary donor triplet state. The triplet state of spheroidene that was formed subsequently decayed to the ground state with a lifetime of 7.0 +/- 0.5 microseconds. The primary donor triplet lifetime in the Rb. sphaeroides R-26.1 reaction centers lacking carotenoids was 60 +/- 5 microseconds. Quenching of the primary donor triplet state by the carotenoid was not observed in the Rb. sphaeroides R-26.1 reaction centers containing 3,4-dihydrospheroidene nor in the R-26.1 reaction centers containing 3,4,5,6-tetrahydrospheroidene. Triplet-state electron paramagnetic resonance was also carried out on the samples. The experiments revealed carotenoid triple-state signals in the Rb. sphaeroides R-26.1 reaction centers incorporated with spheroidene, indicating that the primary donor triplet is quenched by the carotenoid. No carotenoid signals were observed from Rb. sphaeroides R-26.1 reaction centers incorporating 3,4-dihydrospheroidene nor in reaction centers incorporating 3,4,5,6-tetrahydrospheroidene. Circular dichroism, steady-state absorbance band shifts accompanying the primary photochemistry in the reaction center and singlet energy transfer from the carotenoid to the primary donor confirm that the carotenoids are bound in the reaction centers and interacting with the primary donor. These studies provide a systematic approach to exploring the effects of carotenoid structure and excited

  20. Spectroscopic properties and electronic structure of five- and six-coordinate iron(II) porphyrin NO complexes: Effect of the axial N-donor ligand.

    PubMed

    Praneeth, V K K; Näther, Christian; Peters, Gerhard; Lehnert, Nicolai

    2006-04-01

    In this paper, the differences in the spectroscopic properties and electronic structures of five- and six-coordinate iron(II) porphyrin NO complexes are explored using [Fe(TPP)(NO)] (1; TPP = tetraphenylporphyrin) and [Fe(TPP)(MI)(NO)] (2; MI = 1-methylimidazole) type systems. Binding of N-donor ligands in axial position trans to NO to five-coordinate complexes of type 1 is investigated using UV-vis absorption and 1H NMR spectroscopies. This way, the corresponding binding constants Keq are determined and the 1H NMR spectra of 1 and 2 are assigned for the first time. In addition, 1H NMR allows for the determination of the degree of denitrosylation in solutions of 1 with excess base. The influence of the axial ligand on the properties of the coordinated NO is then investigated. Vibrational spectra (IR and Raman) of 1 and 2 are presented and assigned using isotope substitution and normal-coordinate analysis. Obtained force constants are 12.53 (N-O) and 2.98 mdyn/A (Fe-NO) for 1 compared to 11.55 (N-O) and 2.55 mdyn/A (Fe-NO) for 2. Together with the NMR results, this provides experimental evidence that binding of the trans ligand weakens the Fe-NO bond. The principal bonding schemes of 1 and 2 are very similar. In both cases, the Fe-N-O subunit is strongly bent. Donation from the singly occupied pi* orbital of NO into d(z2) of iron(II) leads to the formation of an Fe-NO sigma bond. In addition, a medium-strong pi back-bond is present in these complexes. The most important difference in the electronic structures of 1 and 2 occurs for the Fe-NO sigma bond, which is distinctively stronger for 1 in agreement with the experimental force constants. The increased sigma donation from NO in 1 also leads to a significant transfer of spin density from NO to iron, as has been shown by magnetic circular dichroism (MCD) spectroscopy in a preceding Communication (Praneeth, V. K. K.; Neese, F.; Lehnert, N. Inorg. Chem. 2005, 44, 2570-2572). This is confirmed by the 1H NMR results

  1. Donor Tag Game

    MedlinePlus

    ... Cross chapter closest to you. Can't Donate Blood? A financial donation can also help save lives. Donate Now Find ... Donation Student Donors Donation Process Eligibility Blood FAQs Blood Donor Community Learn About Blood Blood Facts and Statistics ...

  2. Significant Influences of Elaborately Modulating Electron Donors on Light Absorption and Multichannel Charge-Transfer Dynamics for 4-(Benzo[c][1,2,5]thiadiazol-4-ylethynyl)benzoic Acid Dyes.

    PubMed

    Wang, Erfeng; Yao, Zhaoyang; Zhang, Yiqiang; Shao, Guosheng; Zhang, Min; Wang, Peng

    2016-07-20

    4-(Benzo[c][1,2,5]thiadiazol-4-ylethynyl)benzoic acid (BTEBA) as a promising electron acceptor has been used in the highly efficient organic dye-sensitized solar cells (DSCs) recently. Because of its strong electron-deficient character, BTEBA could bring forth a remarkable decline in the energy level of the lowest unoccupied molecular orbital (LUMO) and further reduce the energy gap of dye molecules significantly. In this contribution, two metal-free organic dyes WEF1 and WEF2 were synthesized by simply combining BTEBA with two slightly tailored electron-releasing moieties: 4-hexylphenyl substituted indaceno[1,2-b:5,6-b']dithiophene (IDT) and cyclopenta[1,2-b:5,4-b']dithiophene[2',1':4,5]thieno[2,3-d]thiophene (CPDTDT), which were screened rationally from an electron-donor pool via computational simulation. With respect to those of WEF1, WEF2-sensitized solar cells demonstrate a far better short-circuit photocurrent density (JSC) and open-circuit photovoltage (VOC), resulting in a ∼50% improved power conversion efficiency of 10.0% under irradiance of 100 mW cm(-2) AM1.5G sunlight. We resorted to theoretical calculations, electrical measurements, steady-state, and time-resolved spectroscopic methods to shed light on the fatal influences of elaborately modulating electron donors on light absorption, interfacial energetics, and multichannel charge-transfer dynamics. PMID:27331621

  3. UV-B-induced inhibition of photosystem II electron transport studied by EPR and chlorophyll fluorescence. Impairment of donor and acceptor side components.

    PubMed

    Vass, I; Sass, L; Spetea, C; Bakou, A; Ghanotakis, D F; Petrouleas, V

    1996-07-01

    Inhibition of photosystem II electron transport by UV-B radiation has been studied in isolated spinach photosystem II membrane particles using low-temperature EPR spectroscopy and chlorophyll fluorescence measurements. UV-B irradiation results in the rapid inhibition of oxygen evolution and the decline of variable chlorophyll fluorescence. These effects are accompanied by the loss of the multiline EPR signal arising from the S2 state of the water-oxidizing complex and the induction of Signal IIfast originating from stabilized Try-Z+. The EPR signals from the QA-Fe2+ acceptor complex, Tyr-D+, and the oxidized non-heme iron (Fe3+) are also decreased during the course of UV-B irradiation, but at a significantly slower rate than oxygen evolution and the multiline signal. The decrease of the Fe3+ signal at high g values (g = 8.06, g = 5.6) is accompanied by the induction of another EPR signal at g = 4.26 that arises most likely from the same Fe3+ ion in a modified ligand environment. UV-B irradiation also affects cytochrome b-559. The g = 2.94 EPR signal that arises from the dark- oxidized form is enhanced, whereas the light inducible g = 3.04 signal that arises from the photo-oxidizable population of cytochrome b-559 is diminished. UV-B irradiation also induces the degradation of the D1 reaction center protein. The rate of the D1 protein loss is slower than the inhibition of oxygen evolution and of the multiline signal but follows closely the loss of Signal IIslow, the QA-Fe2+ and the Fe3+ EPR signals, as well as the release of protein-bound manganese. It is concluded from the results that UV-B radiation affects photosystem II redox components at both the donor and acceptor side. The primary damage occurs at the water-oxidizing complex. Modification and/or inactivation of tyrosine-D, cytochrome b-559, and the QAFe2+ acceptor complex are subsequent events that coincide more closely with the UV-B-induced damage to the protein structure of the photosystem II reaction

  4. Modeling Groundwater-Quality Data from In-Situ Mesocosms Using PHREEQC to Provide Insights into the Electron Donors Involved in Denitrification in the Karlsruhe Aquifer, ND

    NASA Astrophysics Data System (ADS)

    Korom, S. F.; Tesfay, T.

    2009-12-01

    Groundwater nitrate concentrations in the Karlsruhe aquifer in north-central North Dakota increased in the mid-1990s. In response, state regulators developed a remediation plan that included research into the natural denitrifying capabilities of the aquifer, including the analysis of aquifer sediment samples and the installation of a pair of in-situ mesocosms (ISMs) below the water table to study denitrification reactions. Sediment analysis showed concentrations of the potential electron donors ferrous iron, inorganic sulfide, and organic carbon (OC). X-ray diffraction showed the dominant minerals are quartz, plagioclase feldspar, alkali feldspar, calcite, and dolomite, with lesser amounts of ferrous-iron silicates (chlorite, hornblende, biotite) and pyrite. In the ISMs tracer tests were initiated by pumping groundwater from them, amending it with sodium nitrate and sodium bromide (Br was used as a tracer for nitrate), and pumping the amended water back into the ISMs. The large size of the ISMs (> 180 L of aquifer sediments) allowed large samples (> 1 L) to be taken from the ISMs about every two months for over two years. Samples were analyzed for major ions and saturation indices [SI = log (ion activity product/equilibrium constant)] computed. Any loss of nitrate beyond that attributable to dilution, based on the Br tracer, was considered denitrified. Major sulfate minerals were undersaturated in the ISMs; therefore, any increase in sulfate was attributed to the oxidation of pyrite. PHREEQC was used to determine if the remaining nitate lost to denitrification could be explained best by a reaction with ferrous-iron silicate (as grunerite), organic carbon (as CH2O), or a 50/50 stoichiometric mix of both. After each simulation, the modeled groundwater was “equilibrated” with quartz, albite, anorthite, calcite, dolomite, chlorite, and magnesite, such that the modeled groundwater and the actual groundwater had the same SI values for these minerals. Simulated

  5. Becoming a Donor

    MedlinePlus

    ... by Organ and Gender. > U.S. Waiting List Candidate Data HOW TO BECOME A DONOR The most important thing to do is to sign up as an organ and tissue donor in your state's donor registry. To cover all bases, it's also helpful to: Designate your decision on ...

  6. No-carrier-added (NCA) aryl [{sup 18}F]fluorides via the nucleophilic aromatic substitution of electron rich aromatic rings

    SciTech Connect

    Ding, Yu-Shin; Fowler, J.S.; Wolf, A.P.

    1991-12-31

    A method for synthesizing no-carrier-added (NCA) aryl [{sup 18}F] fluoride substituted aromatic aldehyde compositions bearing an electron donating group is described. The method includes the step of reacting aromatic nitro aldehydes having a suitably protected hydroxyl substituent on an electron rich ring. The reaction is carried out by nucleophilic aromatic substitution with a no-carrier-added (NCA) [{sup 18}F]fluoride ion. The method can be used to synthesize various no-carrier-added aryl [{sup 18}F]fluoride compositions, including 6-[{sup 18}F]fluoro-L-DOPA, 2-[{sup 18}F]fluorotyrosine, 6-[{sup 18}F]fluoronorepinephrine, and 6-[{sup 18}F]fluorodopamine. In those instances when a racemic mixture of enantiomers is produced by the present invention, such as in the synthesis of 6-[{sup 18}F]fluoronorepinephrine, a preferred method also includes resolution of the racemic mixture on a chiral HPLC column. This procedure results in a high yield of enantiomerically pure [{sup 18}F] labeled isomers, for example [-]-6-[{sup 18}F]fluoronorepinephrine and [+]-6-[{sup 18}F]fluoronorepinephrine.

  7. One-step versus stepwise mechanism in protonated amino acid-promoted electron-transfer reduction of a quinone by electron donors and two-electron reduction by a dihydronicotinamide adenine dinucleotide analogue. Interplay between electron transfer and hydrogen bonding.

    PubMed

    Yuasa, Junpei; Yamada, Shunsuke; Fukuzumi, Shunichi

    2008-04-30

    Semiquinone radical anion of 1-(p-tolylsulfinyl)-2,5-benzoquinone (TolSQ(*-)) forms a strong hydrogen bond with protonated histidine (TolSQ(*-)/His x 2 H(+)), which was successfully detected by electron spin resonance. Strong hydrogen bonding between TolSQ(*-) and His x 2 H(+) results in acceleration of electron transfer (ET) from ferrocenes [R2Fc, R = C5H5, C5H4(n-Bu), C5H4Me] to TolSQ, when the one-electron reduction potential of TolSQ is largely shifted to the positive direction in the presence of His x 2 H(+). The rates of His x 2 H(+)-promoted ET from R2Fc to TolSQ exhibit deuterium kinetic isotope effects due to partial dissociation of the N-H bond in His x 2 H(+) at the transition state, when His x 2 H(+) is replaced by the deuterated compound (His x 2 D(+)-d6). The observed deuterium kinetic isotope effect (kH/kD) decreases continuously with increasing the driving force of ET to approach kH/kD = 1.0. On the other hand, His x 2 H(+) also promotes a hydride reduction of TolSQ by an NADH analogue, 9,10-dihydro-10-methylacridine (AcrH2). The hydride reduction proceeds via the one-step hydride-transfer pathway. In such a case, a large deuterium kinetic isotope effect is observed in the rate of the hydride transfer, when AcrH2 is replaced by the dideuterated compound (AcrD2). In sharp contrast to this, no deuterium kinetic isotope effect is observed, when His x 2 H(+) is replaced by His x 2 D(+)-d6. On the other hand, direct protonation of TolSQ and 9,10-phenanthrenequinone (PQ) also results in efficient reductions of TolSQH(+) and PQH(+) by AcrH2, respectively. In this case, however, the hydride-transfer reactions occur via the ET pathway, that is, ET from AcrH2 to TolSQH(+) and PQH(+) occurs in preference to direct hydride transfer from AcrH2 to TolSQH(+) and PQH(+), respectively. The AcrH2(*+) produced by the ET oxidation of AcrH2 by TolSQH(+) and PQH(+) was directly detected by using a stopped-flow technique. PMID:18386924

  8. Efficiency enhancement of planar perovskite solar cells by adding zwitterion/LiF double interlayers for electron collection

    NASA Astrophysics Data System (ADS)

    Sun, Kuan; Chang, Jingjing; Isikgor, Furkan Halis; Li, Pengcheng; Ouyang, Jianyong

    2014-12-01

    Double interlayers consisting of a zwitterionic small molecule layer and a LiF layer were introduced between the electron transport layer and the cathode of perovskite solar cells. The double interlayers improve the photovoltaic efficiency to 13.2%, which is higher than that of control devices without the double interlayer (9.2%) or with LiF (11.0%) or rhodamine 101 zwitterion (12.1%) alone.Double interlayers consisting of a zwitterionic small molecule layer and a LiF layer were introduced between the electron transport layer and the cathode of perovskite solar cells. The double interlayers improve the photovoltaic efficiency to 13.2%, which is higher than that of control devices without the double interlayer (9.2%) or with LiF (11.0%) or rhodamine 101 zwitterion (12.1%) alone. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05975a

  9. Donor corneal tissue evaluation.

    PubMed

    Saini, J S; Reddy, M K; Sharma, S; Wagh, S

    1996-03-01

    Proper evaluation of donor cornea is critical to the success of corneal transplantation. Attention must be paid to the cause of death and ocular condition as several general and ocular diseases constitute contraindications for donor corneal usage. Death to enucleation time should be noted. Gross examination and slit lamp biomicroscopy are mandatory for the evaluation of the donor eye while specular microscopy adds another useful dimension to information regarding donor cornea. This article provides a comprehensive review of all the aspects of donor corneal evaluation as practised today worldwide. PMID:8828299

  10. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices.

    PubMed

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-01-01

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm(2)·V(-1)·s(-1)), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution. PMID:26567845

  11. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices

    PubMed Central

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-01-01

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm2·V−1·s−1), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution. PMID:26567845

  12. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices

    NASA Astrophysics Data System (ADS)

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-11-01

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm2·V-1·s-1), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution.

  13. Ultrafast transient absorption studies on photosystem I reaction centers from Chlamydomonas reinhardtii. 2: mutations near the P700 reaction center chlorophylls provide new insight into the nature of the primary electron donor.

    PubMed

    Holzwarth, Alfred R; Müller, Marc G; Niklas, Jens; Lubitz, Wolfgang

    2006-01-15

    donor P700", are not oxidized in the first electron transfer process, but rather only in the secondary electron transfer step. We thus propose a new electron transfer mechanism for Photosystem I where the accessory Chl(s) function as the primary electron donor(s) and the A0 Chl(s) are the primary electron acceptor(s). This new mechanism also resolves in a straightforward manner the difficulty with the previous mechanism, where an electron would have to overcome a distance of approximately 14 A in <1 ps in a single step. If interpreted within a scheme of single-sided electron transfer, our data suggest that the B-branch is the active branch, although parallel A-branch activity cannot be excluded. All the mutations do affect to a varying extent the energy difference between the reaction center excited state RC* and the first radical pair and thus affect the rate constant of charge recombination. It is interesting to note that the new mechanism proposed is in fact analogous to the electron transfer mechanism in Photosystem II, where the accessory Chl also plays the role of the primary electron donor, rather than the special Chl pair P680 (Prokhorenko, V. and A. R. Holzwarth. 2000. J. Phys. Chem. B. 104:11563-11578). PMID:16258055

  14. Adding the Third Dimension to Virus Life Cycles: Three-Dimensional Reconstruction of Icosahedral Viruses from Cryo-Electron Micrographs

    PubMed Central

    Baker, T. S.; Olson, N. H.; Fuller, S. D.

    1999-01-01

    Viruses are cellular parasites. The linkage between viral and host functions makes the study of a viral life cycle an important key to cellular functions. A deeper understanding of many aspects of viral life cycles has emerged from coordinated molecular and structural studies carried out with a wide range of viral pathogens. Structural studies of viruses by means of cryo-electron microscopy and three-dimensional image reconstruction methods have grown explosively in the last decade. Here we review the use of cryo-electron microscopy for the determination of the structures of a number of icosahedral viruses. These studies span more than 20 virus families. Representative examples illustrate the use of moderate- to low-resolution (7- to 35-Å) structural analyses to illuminate functional aspects of viral life cycles including host recognition, viral attachment, entry, genome release, viral transcription, translation, proassembly, maturation, release, and transmission, as well as mechanisms of host defense. The success of cryo-electron microscopy in combination with three-dimensional image reconstruction for icosahedral viruses provides a firm foundation for future explorations of more-complex viral pathogens, including the vast number that are nonspherical or nonsymmetrical. PMID:10585969

  15. [Altruism and the donor].

    PubMed

    Langlois, A

    1991-08-01

    On December 20, 1988, the government of France passed a law to protect people who voluntarily participate in biomedical research. This article makes extensive reference to a major study, titled From Biology to Ethics, by Jean Bernard, a well-respected authority in the field of bioethics. The author looks at models proposed by Bernard, as examples for health volunteers, in particular, the blood donor and the self-experimenter. To set the tone of the article, she recalls the concept of altruism, as first proposed by Auguste Comte, then makes a linkage between his philosophy and Bernard's point of view. By trial and error, in their discussions, various ethics committees and the French State Council have agreed upon what constitutes fair compensation under the law. Unlike their Canadian counterparts, medical researchers in France have free access to volunteers who are not in perfect health--e.g., the elderly, people suffering from kidney deficiency, cirrhosis of the liver, etc.--but these "experimental subjects" receive no monetary compensation. Thus, healthy and less-than-healthy volunteers do not receive equal treatment under the law. This inequity, added to the fear of what amounts to a tax on the human body and the difficulty of ensuring just compensation, is giving rise to a great deal of uncertainty. PMID:1878857

  16. The Effect of Donor Group Rigidification on the Electronic and Optical Properties of Arylamine-Based Metal-Free Dyes for Dye-Sensitized Solar Cells: A Computational Study.

    PubMed

    Estrella, Liezel L; Balanay, Mannix P; Kim, Dong Hee

    2016-07-28

    One of the most significant aspects in the development of dye-sensitized solar cells is the exploration and design of high-efficiency and low-cost dyes. This paper reports the theoretical design of various triphenylamine analogues, wherein the central nitrogen moiety establishes an sp(2)-hybridization, which endows a significant participation in the charge-transfer properties. Density functional theory (DFT) and time-dependent DFT methodologies were utilized to investigate the geometry, electronic structure, photochemical properties, and electrochemical properties of these dyes. Different exchange-correlation functionals were initially evaluated to establish a proper methodology for calculating the excited-state energy of the reference dye, known as DIA3. Consequently, TD-LC-ωPBE with a damping parameter of 0.175 Bohr(-1) best correlates with the experimental value. Four new dyes, namely, Dhk1, Dhk2, Dhk3, and Dhk4, were designed by modifying the rigidity of the donor moiety. According to the results, altering the type and position of binding in the donor group leads to distinct planarity of the dyes, which significantly affects their properties. The designed Dhk4 dye showed more red-shifted and broadened absorption spectra owing to the enhanced coplanarity between its donor and π-bridge moiety, which brings an advantage for its potential use as sensitizer for photovoltaic applications. PMID:27388927

  17. Laparoscopic live donor nephrectomy.

    PubMed

    Hasan, Waleed A; Al-Akraa, Mahmoud M

    2005-07-01

    With the number of patients presently awaiting renal transplantation exceeding the number of cadaveric organs available, there is an increasing reliance on live renal donation. Of the 11,869 renal transplants performed in 2002 in the US, 52.6% were living donors from the United Network for Organ Sharing Registry. Renal allografts from living donors provide: superior immediate long-term function; require less waiting time and are more cost-effective than those from cadaveric donors. However, anticipation of postoperative pain and temporary occupational disability may dissuade many potential donors. Additionally, some recipients hesitate to accept a living donor kidney due to suffering that would be endured by the donor. It is a unique medical situation when a young, completely healthy donor undergoes a major surgical procedure to provide an organ for transplantation. It is mandatory to offer a surgical technique, which is safe and with minimal complications. It is also obvious for any organ transplantation, that the integrity of the organ remain intact, thus, enabling its successful transplantation into the recipient. An acceptably short ischemia time and adequate lengths of ureter and renal vasculature are favored. Many centers are performing laparoscopic live donor nephrectomy in an effort to ease convalescence of renal donors. This may encourage the consideration of live donation by recipients and potential donors. PMID:16047050

  18. Lung donor selection criteria

    PubMed Central

    Chaney, John; Suzuki, Yoshikazu; Cantu, Edward

    2014-01-01

    The criteria that define acceptable physiologic and social parameters for lung donation have remained constant since their empiric determination in the 1980s. These criteria include a donor age between 25-40, a arterial partial pressure of oxygen (PaO2)/FiO2 ratio greater than 350, no smoking history, a clear chest X-ray, clean bronchoscopy, and a minimal ischemic time. Due to the paucity of organ donors, and the increasing number of patients requiring lung transplant, finding a donor that meets all of these criteria is quite rare. As such, many transplants have been performed where the donor does not meet these stringent criteria. Over the last decade, numerous reports have been published examining the effects of individual acceptance criteria on lung transplant survival and graft function. These studies suggest that there is little impact of the historical criteria on either short or long term outcomes. For age, donors should be within 18 to 64 years old. Gender may relay benefit to all female recipients especially in male to female transplants, although results are mixed in these studies. Race matched donor/recipients have improved outcomes and African American donors convey worse prognosis. Smoking donors may decrease recipient survival post transplant, but provide a life saving opportunity for recipients that may otherwise remain on the transplant waiting list. No specific gram stain or bronchoscopic findings are reflected in recipient outcomes. Chest radiographs are a poor indicator of lung donor function and should not adversely affect organ usage aside for concerns over malignancy. Ischemic time greater than six hours has no documented adverse effects on recipient mortality and should not limit donor retrieval distances. Brain dead donors and deceased donors have equivalent prognosis. Initial PaO2/FiO2 ratios less than 300 should not dissuade donor organ usage, although recruitment techniques should be implemented with intent to transplant. PMID:25132970

  19. Lung donor selection criteria.

    PubMed

    Chaney, John; Suzuki, Yoshikazu; Cantu, Edward; van Berkel, Victor

    2014-08-01

    The criteria that define acceptable physiologic and social parameters for lung donation have remained constant since their empiric determination in the 1980s. These criteria include a donor age between 25-40, a arterial partial pressure of oxygen (PaO2)/FiO2 ratio greater than 350, no smoking history, a clear chest X-ray, clean bronchoscopy, and a minimal ischemic time. Due to the paucity of organ donors, and the increasing number of patients requiring lung transplant, finding a donor that meets all of these criteria is quite rare. As such, many transplants have been performed where the donor does not meet these stringent criteria. Over the last decade, numerous reports have been published examining the effects of individual acceptance criteria on lung transplant survival and graft function. These studies suggest that there is little impact of the historical criteria on either short or long term outcomes. For age, donors should be within 18 to 64 years old. Gender may relay benefit to all female recipients especially in male to female transplants, although results are mixed in these studies. Race matched donor/recipients have improved outcomes and African American donors convey worse prognosis. Smoking donors may decrease recipient survival post transplant, but provide a life saving opportunity for recipients that may otherwise remain on the transplant waiting list. No specific gram stain or bronchoscopic findings are reflected in recipient outcomes. Chest radiographs are a poor indicator of lung donor function and should not adversely affect organ usage aside for concerns over malignancy. Ischemic time greater than six hours has no documented adverse effects on recipient mortality and should not limit donor retrieval distances. Brain dead donors and deceased donors have equivalent prognosis. Initial PaO2/FiO2 ratios less than 300 should not dissuade donor organ usage, although recruitment techniques should be implemented with intent to transplant. PMID:25132970

  20. Value Added?

    ERIC Educational Resources Information Center

    UCLA IDEA, 2012

    2012-01-01

    Value added measures (VAM) uses changes in student test scores to determine how much "value" an individual teacher has "added" to student growth during the school year. Some policymakers, school districts, and educational advocates have applauded VAM as a straightforward measure of teacher effectiveness: the better a teacher, the better students…

  1. Donor-dependent Extent of Uranium Reduction for Bioremediation of Contaminated Sediment Microcosms

    SciTech Connect

    Palumbo, Anthony Vito; Ravel, Bruce; Phelps, Tommy Joe; Schadt, Christopher Warren; Brandt, Craig C

    2009-01-01

    Bioremediation of uranium was investigated in microcosm experiments containing contaminated sediments from Oak Ridge, Tennessee to explore the importance of electron donor selection for uranium reduction rate and extent. In these experiments, all of the electron donors, including ethanol, glucose, methanol, and methanol with added humic acids, stimulated the reduction and immobilization of aqueous uranium by the indigenous microbial community. Uranium loss from solution began after the completion of nitrate reduction but essentially concurrent with sulfate reduction. When electron donor concentrations were normalized for their equivalent electron donor potential yield, the rates of uranium reduction were nearly equivalent for all treatments (0.55-0.95 {micro}mol L{sup -1} d{sup -1}). Uranium reduction with methanol proceeded after a 15-d longer lag time relative to that of ethanol or glucose. Significant differences were not found with the inclusion of humic acids. The extent of U reduction in sediment slurries measured by XANES at various time periods after the start of the experiment increased in the order of ethanol (5-7% reduced at 77 and 153 d), glucose (49% reduced at 53 d), and methanol (93% reduced at 90 d). The microbial diversity of ethanol- and methanol-amended microcosms in their late stage of U reduction was analyzed with 16S rRNA gene amplification. Members of the Geobacteraceae were found in all microcosms as well as other potential uranium-reducing organisms, such as Clostridium and Desulfosporosinus. The effectiveness of methanol relative to ethanol at reducing aqueous and sediment-hosted uranium suggests that bioremediation strategies that encourage fermentative poising of the subsurface to a lower redox potential may be more effective for long-term uranium immobilization as compared with selecting an electron donor that is efficiently metabolized by known uranium-reducing microorganisms.

  2. Donor-dependent Extent of Uranium Reduction for Bioremediation of Contaminated Sediment Microcosms

    SciTech Connect

    Madden, Andrew S.; Palumbo, Anthony V.; Ravel, Bruce; Vishnivetskaya, Tatiana A.; Phelps, Tommy J.; Schadt, Christopher W.; Brandt, Craig C.

    2009-03-16

    Bioremediation of uranium was investigated in microcosm experiments containing contaminated sediments from Oak Ridge, Tennessee to explore the importance of electron donor selection for uranium reduction rate and extent. In these experiments, all of the electron donors, including ethanol, glucose, methanol, and methanol with added humic acids, stimulated the reduction and immobilization of aqueous uranium by the indigenous microbial community. Uranium loss from solution began after the completion of nitrate reduction but essentially concurrent with sulfate reduction. When electron donor concentrations were normalized for their equivalent electron donor potential yield, the rates of uranium reduction were nearly equivalent for all treatments (0.55-0.95 {micro}mol L{sup -1} d{sup -1}). Uranium reduction with methanol proceeded after a 15-d longer lag time relative to that of ethanol or glucose. Significant differences were not found with the inclusion of humic acids. The extent of U reduction in sediment slurries measured by XANES at various time periods after the start of the experiment increased in the order of ethanol (5-7% reduced at 77 and 153 d), glucose (49% reduced at 53 d), and methanol (93% reduced at 90 d). The microbial diversity of ethanol- and methanol-amended microcosms in their late stage of U reduction was analyzed with 16S rRNA gene amplification. Members of the Geobacteraceae were found in all microcosms as well as other potential uranium-reducing organisms, such as Clostridium and Desulfosporosinus. The effectiveness of methanol relative to ethanol at reducing aqueous and sediment-hosted uranium suggests that bioremediation strategies that encourage fermentative poising of the subsurface to a lower redox potential may be more effective for long-term uranium immobilization as compared with selecting an electron donor that is efficiently metabolized by known uranium-reducing microorganisms.

  3. Critical gaps in the world's largest electronic medical record: Ad Hoc nursing narratives and invisible adverse drug events.

    PubMed

    Hurdle, John F; Weir, Charlene R; Roth, Beverly; Hoffman, Jennifer; Nebeker, Jonathan R

    2003-01-01

    The Veterans Health Administration (VHA), of the U.S. Department of Veteran Affairs, operates one of the largest healthcare networks in the world. Its electronic medical record (EMR) is fully integrated into clinical practice, having evolved over several decades of design, testing, trial, and error. It is unarguably the world's largest EMR, and as such it makes an important case study for a host of timely informatics issues. The VHA consistently has been at the vanguard of patient safety, especially in its provider-oriented EMR. We describe here a study of a large set of adverse drug events (ADEs) that eluded a rigorous ADE survey based on prospective EMR chart review. These numerous ADEs were undetected (and hence invisible) in the EMR, missed by an otherwise sophisticated ADE detection scheme. We speculate how these invisible nursing ADE narratives persist and what they portend for safety re-engineering. PMID:14728184

  4. Rich Donors, Poor Countries

    ERIC Educational Resources Information Center

    Thomas, M. A.

    2012-01-01

    The shifting ideological winds of foreign aid donors have driven their policy towards governments in poor countries. Donors supported state-led development policies in poor countries from the 1940s to the 1970s; market and private-sector driven reforms during the 1980s and 1990s; and returned their attention to the state with an emphasis on…

  5. Donor Telomere Length SAA

    Cancer.gov

    A new NCI study has found that, among patients with severe aplastic anemia who received a hematopoietic cell transplant from an unrelated donor, those whose donor white blood cells had longer telomeres had higher survival rates five-years after transplant

  6. Donor selection and management.

    PubMed

    Snell, Gregory I; Paraskeva, Miranda; Westall, Glen P

    2013-06-01

    This article reviews recent developments in the selection, assessment, and management of the potential lung donor, which aim to increase donor organ use. The scarcity of suitable donor organs continues to limit lung transplantation, but the situation is changing. An expanded donor pool, including the now widespread use of donation after cardiac death (DCD) lungs; the use of extended donor lungs; and the ability of ex vivo lung perfusion (EVLP) to evaluate and improve donor lungs are key initiatives. These strategies have substantially lifted donor lung utilization rates from historically low levels of less than 15% to rates greater than 50%. Indeed, since 2004 there has been an accelerated year-on-year increase in the number of lungs transplanted globally. Intermediate-term studies are now confirming that long-term outcomes are not being significantly compromised and that more individuals with terminal, symptomatic lung disease are being transplanted. It is now quite clear that many of the historical factors used to define a lung as "extended" do not actually produce significantly inferior outcomes. There has been a dramatic increase in research and clinical interest in donor lung assessment, management, and novel therapeutic strategies. The lessons learned are now being applied widely beyond the lung as researchers aim to increase availability and optimize other solid organs for transplantation. PMID:23821510

  7. ADS pilot program Plan

    NASA Technical Reports Server (NTRS)

    Clauson, J.; Heuser, J.

    1981-01-01

    The Applications Data Service (ADS) is a system based on an electronic data communications network which will permit scientists to share the data stored in data bases at universities and at government and private installations. It is designed to allow users to readily locate and access high quality, timely data from multiple sources. The ADS Pilot program objectives and the current plans for accomplishing those objectives are described.

  8. First principle study of magnetic and electronic properties of single X (X = Al, Si) atom added to small carbon clusters (C n X, n = 2-10)

    NASA Astrophysics Data System (ADS)

    Afshar, M.; Hoseini, S. S.; Sargolzaei, M.

    2016-07-01

    In this paper, the magnetic and electronic properties of single aluminum and silicon atom added to small carbon clusters (C n X; X = Al, Si; n = 2-10) are studied in the framework of generalized-gradient approximation using density functional theory. The calculations were performed for linear, two dimensional and three dimensional clusters based on full-potential local-orbital (FPLO) method. The total energies, HOMO-LUMO energy gap and total magnetic moments of the most stable structures are presented in this work. The calculations show that C n Si clusters have more stability compared to C n Al clusters. In addition, our magnetic calculations were shown that the C n Al isomers are magnetic objects whereas C n Si clusters are nonmagnetic objects.

  9. Efficient Organic Light-Emitting Diode through Triplet Exciton Reharvesting by Employing Blended Electron Donor and Acceptor as the Emissive Layer.

    PubMed

    Zhang, Lu; Cai, Chao; Li, King Fai; Tam, Hoi Lam; Chan, Kin Long; Cheah, Kok Wai

    2015-11-18

    A blended bimolecular exciplex formation was demonstrated between two individual donor and acceptor molecules, which are tris(4-carbazoyl-9-ylphenyl)amine (TCTA) and 2,4,6-tris(3'-(pyridin-3-yl)biphenyl-3-yl)-1,3,5-triazine (Tm3PyBPZ). The photoluminescence spectrum of the exciplex in the solid state showed an emission with a peak around 514 nm (∼2.49 eV). By applying this exciplex as an emitting layer, a highly efficient all-fluorescent organic lighting emitting diode with maximum efficiencies of 13.1% and 53.4 lm/W can be realized under an extremely low turn-on voltage of only 2.4 V. The thermally activated delayed fluorescence (TADF) process is believed to be responsible for the excellent device performance. PMID:26529382

  10. Adding Value.

    ERIC Educational Resources Information Center

    Orsini, Larry L.; Hudack, Lawrence R.; Zekan, Donald L.

    1999-01-01

    The value-added statement (VAS), relatively unknown in the United States, is used in financial reports by many European companies. Saint Bonaventure University (New York) has adapted a VAS to make it appropriate for not-for-profit universities by identifying stakeholder groups (students, faculty, administrators/support personnel, creditors, the…

  11. The willed body donor interview project: medical student and donor expectations.

    PubMed

    Bohl, Michael; Holman, Alexis; Mueller, Dean A; Gruppen, Larry D; Hildebrandt, Sabine

    2013-01-01

    The Anatomical Donations Program at the University of Michigan Medical School (UMMS) has begun a multiphase project wherein interviews of donors will be recorded and later shown to medical students who participate in the anatomical dissection course. The first phase of this project included surveys of both current UMMS medical students and donors concerning their perceptions of such a program. A five-question survey administered via Qualtrics software was electronically mailed to all current medical students at UMMS, and a survey was mailed to registered and potential donors requesting information from the UMMS on anatomical donations. A total of 224 medical student responses (response rate 33%) and 54 donor responses (response rate 27%) were received. Seventy-four percent of students and 81% of donors reported they would participate in this program if it existed. Students and donors supported the implementation of this program for varying reasons, though many felt strongly they would not want to participate in a donor interview program. These qualitative results support those of previous studies that show a majority of students desire a closer personal relationship with the donor, and these are the first results to be reported on donor perceptions of a donor interview program. Although many students and donors are in favor of instituting this program, others feel strongly that such an experience could be traumatic. The causes of these differing reactions need to be further explored, and the opinions of those who object to this study will be respected by maintaining voluntary participation in future phases of this study. PMID:23109299

  12. Living Donor Liver Transplantation

    MedlinePlus

    ... around the scar. The bulges can usually be fixed with surgery. During your medical exam, ask the ... to find out if the donor's blood type matches the recipient’s blood type. Next, the transplant team ...

  13. D-A-D-π-D-A-D type diketopyrrolopyrrole based small molecule electron donors for bulk heterojunction organic solar cells.

    PubMed

    Patil, Yuvraj; Misra, Rajneesh; Sharma, Abhishek; Sharma, Ganesh D

    2016-06-22

    Two organic small molecules based on diketopyrrolopyrrole (DPP) units having a D-A-D-π-D-A-D structure denoted as and were synthesized. Their optical and electrochemical properties relevant to organic solar cells were investigated. The wider optical absorption coverage from 450-800 nm, the highest occupied molecular orbital (HOMO) (-5.23 eV and -5.34 eV for and , respectively) and the lowest unoccupied molecular orbital (LUMO) (-3.47 and -3.45 eV for and , respectively) make these small molecules suitable as donors for bulk heterojunction organic solar cells. The bulk heterojunction (BHJ) organic solar cells based on an active layer consists of a blend of these small molecules as donors and PC71BM as an acceptor with an optimized weight ratio of 1 : 2 cast from chloroform (CF) showed overall power conversion efficiencies (PCEs) of 1.98% (with Jsc = 5.38 mA cm(-2), Voc = 0.84 V and FF = 0.42) and 1.85% (with Jsc = 4.56 mA cm(-2), Voc = 0.96 V and FF = 0.42) for and respectively. The relatively high Voc value based on the based device has been attributed to the deeper HOMO of compared to . The optimized  : PC71BM (1 : 2) and  : PC71BM (1 : 2) active layers were subjected to two step annealing (TSA), i.e. thermal annealing and subsequent solvent vapor annealing and the corresponding BHJ organic solar cells showed a PCE of 5.28% (Jsc = 11.53 mA cm(-2), Voc = 0.79 V and FF = 0.58) and 5.52% (Jsc = 10.84 mA cm(-2), Voc = 0.91 V and FF = 0.56), respectively. The enhancement in PCE is mainly due to the improvement in Jsc and FF, related to light absorption in an active layer, a better nanoscale morphology, and an increase in the crystalline nature of the active layer and balanced charge transport, induced by the TSA treatment. PMID:27292157

  14. Benzofurocarbazole and benzothienocarbazole as donors for improved quantum efficiency in blue thermally activated delayed fluorescent devices.

    PubMed

    Lee, Dong Ryun; Hwang, Seok-Ho; Jeon, Sang Kyu; Lee, Chil Won; Lee, Jun Yeob

    2015-05-11

    Benzofurocarbazole and benzothienocarbazole were used as electron donors of thermally activated delayed fluorescence (TADF) emitters and the performances of the TADF devices were examined. The benzofurocarbazole and benzothienocarbazole donor moieties were better than carbazole as the electron donors of the TADF emitters. PMID:25869643

  15. DIS in AdS

    NASA Astrophysics Data System (ADS)

    Albacete, Javier L.; Kovchegov, Yuri V.; Taliotis, Anastasios

    2009-03-01

    We calculate the total cross section for the scattering of a quark-anti-quark dipole on a large nucleus at high energy for a strongly coupled N = 4 super Yang-Mills theory using AdS/CFT correspondence. We model the nucleus by a metric of a shock wave in AdS5. We then calculate the expectation value of the Wilson loop (the dipole) by finding the extrema of the Nambu-Goto action for an open string attached to the quark and antiquark lines of the loop in the background of an AdS5 shock wave. We find two physically meaningful extremal string configurations. For both solutions we obtain the forward scattering amplitude N for the quark dipole-nucleus scattering. We study the onset of unitarity with increasing center-of-mass energy and transverse size of the dipole: we observe that for both solutions the saturation scale Qs is independent of energy/Bjorken-x and depends on the atomic number of the nucleus as Qs˜A1/3. Finally we observe that while one of the solutions we found corresponds to the pomeron intercept of αP = 2 found earlier in the literature, when extended to higher energy or larger dipole sizes it violates the black disk limit. The other solution we found respects the black disk limit and yields the pomeron intercept of αP = 1.5. We thus conjecture that the right pomeron intercept in gauge theories at strong coupling may be αP = 1.5.

  16. Laparoscopic donor nephrectomy.

    PubMed

    Deger, S; Giessing, M; Roigas, J; Wille, A H; Lein, M; Schönberger, B; Loening, S A

    2005-01-01

    Laparoscopic live donor nephrectomy (LDN) has removed disincentives of potential donors and may bear the potential to increase kidney donation. Multiple modifications have been made to abbreviate the learning curve while at the same time guarantee the highest possible level of medical quality for donor and recipient. We reviewed the literature for the evolution of the different LDN techniques and their impact on donor, graft and operating surgeon, including the subtleties of different surgical accesses, vessel handling and organ extraction. We performed a literature search (PubMed, DIMDI, medline) to evaluate the development of the LDN techniques from 1995 to 2003. Today more than 200 centres worldwide perform LDN. Hand-assistance has led to a spread of LDN. Studies comparing open and hand-assisted LDN show a reduction of operating and warm ischaemia times for the hand-assisted LDN. Different surgical access sites (trans- or retroperitoneal), different vessel dissection approaches, donor organ delivery techniques, delivery sites and variations of hand-assistance techniques reflect the evolution of LDN. Proper techniques and their combination for the consecutive surgical steps minimize both warm ischaemia time and operating time while offering the donor a safe minimally invasive laparoscopic procedure. LDN has breathed new life into the moribund field of living kidney donation. Within a few years LDN could become the standard approach in living kidney donation. Surgeons working in this field must be trained thoroughly and well acquainted with the subtleties of the different LDN techniques and their respective advantages and disadvantages. PMID:16754618

  17. Live-donor nephrectomy.

    PubMed

    Rocca, Juan P; Davis, Eric; Edye, Michael

    2012-01-01

    Six decades after its first implementation, kidney transplantation remains the optimal therapy for end-stage renal disease requiring dialysis. Despite the incontrovertible mortality reduction and cost-effectiveness of kidney transplantation, the greatest remaining barrier to treatment of end-stage renal disease is organ availability. Although the waiting list of patients who stand to benefit from kidney transplantation grows at a rate proportional to the overall population and proliferation of diabetes and hypertension, the pool of deceased-donor organs available for transplantation experiences minimal to no growth. Because the kidney is uniquely suited as a paired organ, the transplant community's answer to this shortage is living donation of a healthy volunteer's kidney to a recipient with end-stage renal disease. This review details the history and evolution of living-donor kidney transplantation in the United States as well as advances the next decade promises. Laparoscopic donor nephrectomy has overcome many of the obstacles to living donation in terms of donor morbidity and volunteerism. Known donor risks in terms of surgical and medical morbidity are reviewed, as well as the ongoing efforts to delineate and mitigate donor risk in the context of accumulating recipient morbidity while on the waiting list. PMID:22678857

  18. Photoinduced intramolecular electron transfer in a bridged C{sub 60}. (Acceptor)-Aniline (donor) system. Photophysical properties of the first `active` fullerene diad

    SciTech Connect

    Williams, R.M.; Zwier, J.M.; Verhoeven, J.W.

    1995-04-12

    A covalently functionalized fullerene comprising an electron donating aniline group coupled to the fullerene unit by a saturated heterocyclic bridge is shown to undergo a photoinduced intramolecular electron transfer process that causes quenching of the fluorescence of the adduct and strong decrease triplet population in polar solvents. VIS-absorption, fluorescence and phosphorescence at 77 K, triplet-triplet absorption, time resolved fluorescence and redox potentials of the fullerene adduct are presented. Analysis of the solvent dependence of the energetics of the intramolecular electron transfer is given and is in good agreement with the experimental results. 17 refs., 6 figs., 3 tabs.

  19. On the origin of the substantial stabilisation of the electron-donor 1,3-dithiole-2-thione-4-carboxyclic acid···I2 and DABCO···I2 complexes.

    PubMed

    Deepa, Palanisamy; Sedlak, Robert; Hobza, Pavel

    2014-04-14

    The stabilisation energies of the crystal structures of 1,3-dithiole-2-thione-4-carboxyclic acid···I2 and DABCO···I2 complexes determined by the CCSD(T)/CBS method are very large and exceed 8 and 15 kcal mol(-1), respectively. The DFT-D method (B97-D3/def2-QZVP) strongly overestimates these stabilisation energies, which support the well-known fact that the DFT-D method is not very applicable to the study of charge-transfer complexes. On the other hand, the M06-2X/def2-QZVP method provides surprisingly reliable energies. A DFT-SAPT analysis has shown that a substantial stabilisation of these complexes arises from the charge-transfer energy included in the induction energy and that the respective induction energy is much larger than that of other non-covalently bound complexes. The total stabilisation energies of the complexes mentioned as well as of those where iodine has been replaced by lighter halogens (Br2 and Cl2) or by hetero systems (IF, ICH3, N2) correlate well with the magnitude of the σ-hole (Vs,max value) as well as with the LUMO energy. The nature of the stabilisation of all complexes between both electron donors and X2 (X = I, Br, Cl, N) systems is explained by the magnitude of the σ-hole but surprisingly also by the values of the electric quadrupole moment of these systems. Evidently, the nature of the stabilisation of halogen-bonded complexes between electron donors and systems where the first non-zero electric multipole moment is the quadrupole moment can be explained not only by the recently introduced concept of the σ-hole but also by the classical concept of electric quadrupole moments. PMID:24584418

  20. Structure–Property Relationship Study of Substitution Effects on Isoindigo-Based Model Compounds as Electron Donors in Organic Solar Cells

    PubMed Central

    2015-01-01

    We designed and synthesized a series of isoindigo-based derivatives to investigate how chemical structure modification at both the 6,6′- and 5,5′-positions of the core with electron-rich and electron-poor moieties affect photophysical and redox properties as well as their solid-state organization. Our studies reveal that 6,6′-substitution on the isoindigo core results in a stronger intramolecular charge transfer band due to strong electronic coupling between the 6,6′-substituent and the core, whereas 5,5′-substitution induces a weaker CT band that is more sensitive to the electronic nature of the substituents. In the solid state, 6,6′-derivatives generally form J-aggregates, whereas 5,5′-derivatives form H-aggregates. With only two branched ethylhexyl side chains, the 6,6′-derivatives form organized lamellar structures in the solid state. The incorporation of electron-rich benzothiophene, BT, substituents further enhances ordering, likely because of strong intermolecular donor–acceptor interactions between the BT substituent and the electron-poor isoindigo core on neighboring compounds. Collectively, the enhanced photophysical properties and solid-state organization of the 6,6′-benzothiophene substituted isoindigo derivative compared to the other isoindigo derivatives examined in this study resulted in solar cells with higher power conversion efficiencies when blended with a fullerene derivative. PMID:25089728

  1. Absence of beta-amyloid in cortical cataracts of donors with and without Alzheimer's disease.

    PubMed

    Michael, Ralph; Rosandić, Jurja; Montenegro, Gustavo A; Lobato, Elvira; Tresserra, Francisco; Barraquer, Rafael I; Vrensen, Gijs F J M

    2013-01-01

    Eye lenses from human donors with and without Alzheimer's disease (AD) were studied to evaluate the presence of amyloid in cortical cataract. We obtained 39 lenses from 21 postmortem donors with AD and 15 lenses from age-matched controls provided by the Banco de Ojos para Tratamientos de la Ceguera (Barcelona, Spain). For 17 donors, AD was clinically diagnosed by general physicians and for 4 donors the AD diagnosis was neuropathologically confirmed. Of the 21 donors with AD, 6 had pronounced bilateral cortical lens opacities and 15 only minor or no cortical opacities. As controls, 7 donors with pronounced cortical opacities and 8 donors with almost transparent lenses were selected. All lenses were photographed in a dark field stereomicroscope. Histological sections were analyzed using a standard and a more sensitive Congo red protocol, thioflavin staining and beta-amyloid immunohistochemistry. Brain tissue from two donors, one with cerebral amyloid angiopathy and another with advanced AD-related changes and one cornea with lattice dystrophy were used as positive controls for the staining techniques. Thioflavin, standard and modified Congo red staining were positive in the control brain tissues and in the dystrophic cornea. Beta-amyloid immunohistochemistry was positive in the brain tissues but not in the cornea sample. Lenses from control and AD donors were, without exception, negative after Congo red, thioflavin, and beta-amyloid immunohistochemical staining. The results of the positive control tissues correspond well with known observations in AD, amyloid angiopathy and corneas with lattice dystrophy. The absence of staining in AD and control lenses with the techniques employed lead us to conclude that there is no beta-amyloid in lenses from donors with AD or in control cortical cataracts. The inconsistency with previous studies of Goldstein et al. (2003) and Moncaster et al. (2010), both of which demonstrated positive Congo red, thioflavin, and beta

  2. Distinctive Characteristics of Educational Donors

    ERIC Educational Resources Information Center

    James, Russell N., III.

    2008-01-01

    Examining the charitable behavior of 56,663 US households, this paper evaluates the distinctive characteristics of educational donors as compared with donors to noneducational charitable organizations and with nondonors. In general, educational donors had significantly greater income, wealth, and education than other donors. Educational donors…

  3. Systems of donor transfer.

    PubMed

    de Charro, F T; Akveld, H E; Hessing, D J

    1993-10-01

    The development of medical knowledge has resulted in a demand in society for donor organs, but the recruitment of donor organs for transplantation is difficult. This paper aims to provide some general insights into the complex interaction processes involved. A laissez-faire policy, in which market forces are relied on, is not acceptable from an ethical and legal point of view in most western European countries. Especially at the demand side of the exchange of donor organs, commercialism is to be opposed. We judge the use of commercial incentives at the supply side less unacceptable in theory but not feasible in western European countries. Since market forces are deemed unacceptable as instruments for coordinating demand and supply of donor organs, donor procurement has to be considered as a collective good, and therefore governments are faced with the responsibility of making sure that alternative interaction and distribution mechanisms function. The role of organ procurement agencies (OPAs) in societal interaction concerning postmortem organ donation is described using a two-dimensional conceptualisation scheme. Medical aspects of living organ donation are described. An international comparative description of legal systems to regulate living organ donation in western European countries completes this survey. PMID:10129766

  4. DONOR-ACCEPTOR INTERACTIONS OF NITROGEN*

    PubMed Central

    Kimura, J. E.; Szent-Györgyi, A.

    1969-01-01

    The nitrogen atoms of organic molecules readily enter into donor-acceptor interactions, giving off an electron from their lone pair. Under favorable conditions the acceptor can form free radicals. S and O atoms behave likewise but less intensely. PMID:4306047

  5. Independent donor ethical assessment: aiming to standardize donor advocacy.

    PubMed

    Choudhury, Devasmita; Jotterand, Fabrice; Casenave, Gerald; Smith-Morris, Carolyn

    2014-06-01

    Living organ donation has become more common across the world. To ensure an informed consent process, given the complex issues involved with organ donation, independent donor advocacy is required. The choice of how donor advocacy is administered is left up to each transplant center. This article presents the experience and process of donor advocacy at University of Texas Southwestern Medical Center administered by a multidisciplinary team consisting of physicians, surgeons, psychologists, medical ethicists and anthropologists, lawyers, a chaplain, a living kidney donor, and a kidney transplant recipient. To ensure that advocacy remains fair and consistent for all donors being considered, the donor advocacy team at University of Texas Southwestern Medical Center developed the Independent Donor Ethical Assessment, a tool that may be useful to others in rendering donor advocacy. In addition, the tool may be modified as circumstances arise to improve donor advocacy and maintain uniformity in decision making. PMID:24919733

  6. Managing finances of shipping living donor kidneys for donor exchanges.

    PubMed

    Mast, D A; Vaughan, W; Busque, S; Veale, J L; Roberts, J P; Straube, B M; Flores, N; Canari, C; Levy, E; Tietjen, A; Hil, G; Melcher, M L

    2011-09-01

    Kidney donor exchanges enable recipients with immunologically incompatible donors to receive compatible living donor grafts; however, the financial management of these exchanges, especially when an organ is shipped, is complex and thus has the potential to impede the broader implementation of donor exchange programs. Representatives from transplant centers that utilize the National Kidney Registry database to facilitate donor exchange transplants developed a financial model applicable to paired donor exchanges and donor chain transplants. The first tenet of the model is to eliminate financial liability to the donor. Thereafter, it accounts for the donor evaluation, donor nephrectomy hospital costs, donor nephrectomy physician fees, organ transport, donor complications and recipient inpatient services. Billing between hospitals is based on Medicare cost report defined costs rather than charges. We believe that this model complies with current federal regulations and effectively captures costs of the donor and recipient services. It could be considered as a financial paradigm for the United Network for Organ Sharing managed donor exchange program. PMID:21831153

  7. DIS in AdS

    SciTech Connect

    Albacete, Javier L.; Kovchegov, Yuri V.; Taliotis, Anastasios

    2009-03-23

    We calculate the total cross section for the scattering of a quark-anti-quark dipole on a large nucleus at high energy for a strongly coupled N = 4 super Yang-Mills theory using AdS/CFT correspondence. We model the nucleus by a metric of a shock wave in AdS{sub 5}. We then calculate the expectation value of the Wilson loop (the dipole) by finding the extrema of the Nambu-Goto action for an open string attached to the quark and antiquark lines of the loop in the background of an AdS{sub 5} shock wave. We find two physically meaningful extremal string configurations. For both solutions we obtain the forward scattering amplitude N for the quark dipole-nucleus scattering. We study the onset of unitarity with increasing center-of-mass energy and transverse size of the dipole: we observe that for both solutions the saturation scale Q{sub s} is independent of energy/Bjorken-x and depends on the atomic number of the nucleus as Q{sub s}{approx}A{sup 1/3}. Finally we observe that while one of the solutions we found corresponds to the pomeron intercept of {alpha}{sub P} = 2 found earlier in the literature, when extended to higher energy or larger dipole sizes it violates the black disk limit. The other solution we found respects the black disk limit and yields the pomeron intercept of {alpha}{sub P} = 1.5. We thus conjecture that the right pomeron intercept in gauge theories at strong coupling may be {alpha}{sub P} = 1.5.

  8. Quantifying the Electron Donor and Acceptor Abilities of the Ketimide Ligands in M(N═C(t)Bu2)4 (M = V, Nb, Ta).

    PubMed

    Damon, Peter L; Liss, Cameron J; Lewis, Richard A; Morochnik, Simona; Szpunar, David E; Telser, Joshua; Hayton, Trevor W

    2015-10-19

    Addition of 4 equiv of Li(N═C(t)Bu2) to VCl3 in THF, followed by addition of 0.5 equiv of I2, generates the homoleptic V(IV) ketimide complex, V(N═C(t)Bu2)4 (1), in 42% yield. Similarly, reaction of 4 equiv of Li(N═C(t)Bu2) with NbCl4(THF)2 in THF affords the homoleptic Nb(IV) ketimide complex, Nb(N═C(t)Bu2)4 (2), in 55% yield. Seeking to extend the series to the tantalum congener, a new Ta(IV) starting material, TaCl4(TMEDA) (3), was prepared via reduction of TaCl5 with Et3SiH, followed by addition of TMEDA. Reaction of 3 with 4 equiv of Li(N═C(t)Bu2) in THF results in the isolation of a Ta(V) ketimide complex, Ta(Cl)(N═C(t)Bu2)4 (5), which can be isolated in 32% yield. Reaction of 5 with Tl(OTf) yields Ta(OTf)(N═C(t)Bu2)4 (6) in 44% yield. Subsequent reduction of 6 with Cp*2Co in toluene generates the homoleptic Ta(IV) congener Ta(N═C(t)Bu2)4 (7), although the yields are poor. All three homoleptic group 5 ketimide complexes exhibit squashed tetrahedral geometries in the solid state, as determined by X-ray crystallography. This geometry leads to a d(x(2)-y(2))(1) ((2)B1 in D(2d)) ground state, as supported by DFT calculations. EPR spectroscopic analysis of 1 and 2, performed at X- and Q-band frequencies (∼9 and 35 GHz, respectively), further supports the (2)B1 ground-state assignment, whereas comparison of 1, 2, and 7 with related group 5 tetra(aryl), tetra(amido), and tetra(alkoxo) complexes shows a higher M-L covalency in the ketimide-metal interaction. In addition, a ligand field analysis of 1 and 2 demonstrates that the ketimide ligand is both a strong π-donor and strong π-acceptor, an unusual combination found in very few organometallic ligands. PMID:26419513

  9. Quantifying the electron donor and acceptor ability of the ketimide ligands in M(N=CtBu2)4 (M = V, Nb, Ta)

    PubMed Central

    Damon, Peter L.; Liss, Cameron J.; Lewis, Richard A.; Morochnik, Simona; Szpunar, David E.; Telser, Joshua; Hayton, Trevor W.

    2015-01-01

    Addition of 4 equiv of Li(N=CtBu2) to VCl3 in THF, followed by addition of 0.5 equiv I2, generates the homoleptic V(IV) ketimide complex, V(N=CtBu2)4 (1), in 42% yield. Similarly, reaction of 4 equiv of Li(N=CtBu2) with NbCl4(THF)2 in THF affords the homoleptic Nb(IV) ketimide complex, Nb(N=CtBu2)4 (2), in 55% yield. Seeking to extend the series to the tantalum congener, a new Ta(IV) starting material, TaCl4(TMEDA) (3), was prepared via reduction of TaCl5 with Et3SiH, followed by addition of TMEDA. Reaction of 3 with 4 equiv of Li(N=CtBu2) in THF results in a isolation of a Ta(V) ketimide complex, Ta(Cl)(N=CtBu2)4 (5), which can be isolated in 32% yield. Reaction of 5 with Tl(OTf) yields Ta(OTf)(N=CtBu2)4 (6) in 44% yield. Subsequent reduction of 6 with Cp*2Co in toluene generates the homoleptic Ta(IV) congener Ta(N=CtBu2)4 (7), although the yields are poor. All three homoleptic Group 5 ketimide complexes exhibit squashed tetrahedral geometries in the solid state, as determined by X-ray crystallography. This geometry leads to a dx2−y21 (2B1 in D2d) ground state, as supported by DFT calculations. EPR spectroscopic analysis of 1 and 2, performed at X- and Q-band frequencies (~9 and 35 GHz, respectively), further supports the 2B1 ground state assignment, while comparison of 1, 2, and 7 with related Group 5 tetra(aryl), tetra(amido) and tetra(alkoxo) complexes shows a higher M-L covalency in the ketimide-metal interaction. In addition, a ligand field analysis of 1 and 2 demonstrates that the ketimide ligand is both a strong π-donor and strong π-acceptor, an unusual combination found in very few organometallic ligands. PMID:26419513

  10. Bubbling AdS3

    NASA Astrophysics Data System (ADS)

    Martelli, Dario; Morales, Jose F.

    2005-02-01

    In the light of the recent Lin, Lunin, Maldacena (LLM) results, we investigate 1/2-BPS geometries in minimal (and next to minimal) supergravity in D = 6 dimensions. In the case of minimal supergravity, solutions are given by fibrations of a two-torus T2 specified by two harmonic functions. For a rectangular torus the two functions are related by a non-linear equation with rare solutions: AdS3 × S3, the pp-wave and the multi-center string. ``Bubbling'', i.e. superpositions of droplets, is accommodated by allowing the complex structure of the T2 to vary over the base. The analysis is repeated in the presence of a tensor multiplet and similar conclusions are reached, with generic solutions describing D1D5 (or their dual fundamental string-momentum) systems. In this framework, the profile of the dual fundamental string-momentum system is identified with the boundaries of the droplets in a two-dimensional plane.

  11. Involvement of histidine 190 on the D1 protein in electron/proton transfer reactions on the donor side of photosystem II.

    PubMed

    Mamedov, F; Sayre, R T; Styring, S

    1998-10-01

    Flash-induced chlorophyll fluorescence kinetics from photosystem II in thylakoids from the dark-grown wild type and two site-directed mutants of the D1 protein His190 residue (D1-H190) in Chlamydomonas reinhardtii have been characterized. Induction of the chlorophyll fluorescence on the first flash, reflecting electron transport from YZ to P680(+), exhibited a strong pH dependence with a pK of 7.6 in the dark-grown wild type which lacks the Mn cluster. The chlorophyll fluorescence decay, measured in the presence of DCMU, which reflects recombination between QA- and YZox, was also pH-dependent with a similar pK of 7.5. These results indicate participation by the same base, which is suggested to be D1-H190, in oxidation and reduction of YZ in forward electron transfer and recombination pathways, respectively. This hypothesis was tested in the D1-H190 mutants. Induction of chlorophyll fluorescence in these H190 mutants has been observed to be inefficient due to slow electron transfer from YZ to P680(+) [Roffey, R. A., et al. (1994) Biochim. Biophys. Acta 1185, 257-270]. We show that this reaction is pH-dependent, with a pK of 8. 1, and at pH >/=9, the fluorescence induction is efficient in the H190 mutants, suggesting direct titration of YZ. The efficient oxidation of YZ ( approximately 70% at pH 9.0) at high pH was confirmed by kinetic EPR measurements. In contrast to the wild type, the H190 mutants show little or no observable fluorescence decay. Our data suggest that H190 is an essential component in the electron transfer reactions in photosystem II and acts as a proton acceptor upon YZ oxidation. In the H190 mutants, this reaction is inefficient and YZ oxidation only occurs at elevated pHs when YZ itself probably is deprotonated. We also propose that H190 is able to return a proton to YZox during electron recombination from QA- in a reaction which does not take place in the D1-H190 mutants. PMID:9760263

  12. Dialing for Donors

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2012-01-01

    When times get tough, grown children often turn to their parents for help--for some extra cash, even somewhere to stay. For colleges and universities, that role is filled by alumni donors. In 2011, with education budgets slashed across the country, giving accounted for 6.5 percent of college expenditures, according to the Council for Aid to…

  13. Tuning the Rainbow: Systematic Modulation of Donor-Acceptor Systems through Donor Substituents and Solvent.

    PubMed

    Larsen, Christopher B; van der Salm, Holly; Shillito, Georgina E; Lucas, Nigel T; Gordon, Keith C

    2016-09-01

    A series of donor-acceptor compounds is reported in which the energy of the triarylamine donor is systematically tuned through para substitution with electron-donating methoxy and electron-withdrawing cyano groups. The acceptor units investigated are benzothiadiazole (btd), dipyridophenazine (dppz), and its [ReCl(CO)3(dppz)] complex. The effect of modulating donor energy on the electronic and photophysical properties is investigated using (1)H NMR spectroscopy, DFT calculations, electrochemistry, electronic absorption and emission spectroscopies, ground state and resonance Raman spectroscopy, and transient absorption spectroscopy. Qualitative correlations between the donor energy and the properties of interest are obtained using Hammett σ(+) constants. Methoxy and cyano groups are shown to destabilize and stabilize, respectively, the frontier molecular orbitals, with the HOMO affected more significantly than the LUMO, narrowing the HOMO-LUMO band gap as the substituent becomes more electron-donating-observable as a bathochromic shift in low-energy charge-transfer absorption bands. Charge-transfer emission bands are also dependent on the electron-donating/withdrawing nature of the substituent, and in combination with the highly solvatochromic nature of charge-transfer states, emission can be tuned to span the entire visible region. PMID:27500590

  14. Understanding donors' motivations: a study of unrelated bone marrow donors.

    PubMed

    Switzer, G E; Dew, M A; Butterworth, V A; Simmons, R G; Schimmel, M

    1997-07-01

    Medical advances in bone marrow transplantation techniques and immunosuppressive medications have dramatically increased the number of such transplants performed each year, and consequently, the demand for bone marrow from unrelated donors. Although physiological aspects of bone marrow donation have been thoroughly investigated, very few studies have examined psychosocial factors that may impact individuals' donation decisions and outcomes. To examine one particular set of donor psychosocial issues, this study investigated motives for bone marrow donation among 343 unrelated bone marrow donors who donated through the National Marrow Donor Program. Six distinct types of donor motives were identified from open-ended questionnaire responses. Donors most frequently reported motives reflecting some awareness of both the costs (to themselves) and potential benefits (to themselves and the recipient) of donation. A desire to act in accordance with social or religious precepts, expected positive feelings about donating, empathy for the recipient, and the simple desire to help another person were also commonly cited reasons for donating. Among a series of donor background characteristics, donors' gender was the variable most strongly associated with motive type; women were most likely to cite expected positive feelings, empathy, and the desire to help someone. Central study findings indicated that donor motives predicted donors reactions to donation even after the effects of donor background characteristics (including gender) were controlled. Donors who reported exchange motives (weighing costs and benefits) and donors who reported simple (or idealized) helping motives experienced the donation as less positive in terms of higher predonation ambivalence and negative postdonation psychological reactions than did remaining donors. Donors who reported positive feeling and empathy motives had the most positive donation reactions in terms of lower ambivalence, and feeling like

  15. NADH:Cytochrome b5 Reductase and Cytochrome b5 Can Act as Sole Electron Donors to Human Cytochrome P450 1A1-Mediated Oxidation and DNA Adduct Formation by Benzo[a]pyrene

    PubMed Central

    2016-01-01

    Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after activation by cytochrome P450 (P450). Here, we investigated whether NADH:cytochrome b5 reductase (CBR) in the presence of cytochrome b5 can act as sole electron donor to human P450 1A1 during BaP oxidation and replace the canonical NADPH:cytochrome P450 reductase (POR) system. We also studied the efficiencies of the coenzymes of these reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of CBR, to mediate BaP oxidation. Two systems containing human P450 1A1 were utilized: human recombinant P450 1A1 expressed with POR, CBR, epoxide hydrolase, and cytochrome b5 in Supersomes and human recombinant P450 1A1 reconstituted with POR and/or with CBR and cytochrome b5 in liposomes. BaP-9,10-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione, BaP-9-ol, BaP-3-ol, a metabolite of unknown structure, and two BaP-DNA adducts were generated by the P450 1A1-Supersomes system, both in the presence of NADPH and in the presence of NADH. The major BaP-DNA adduct detected by 32P-postlabeling was characterized as 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP (assigned adduct 1), while the minor adduct is probably a guanine adduct derived from 9-hydroxy-BaP-4,5-epoxide (assigned adduct 2). BaP-3-ol as the major metabolite, BaP-9-ol, BaP-1,6-dione, BaP-3,6-dione, an unknown metabolite, and adduct 2 were observed in the system using P450 1A1 reconstituted with POR plus NADPH. When P450 1A1 was reconstituted with CBR and cytochrome b5 plus NADH, BaP-3-ol was the predominant metabolite too, and an adduct 2 was also generated. Our results demonstrate that the NADH/cytochrome b5/CBR system can act as the sole electron donor both for the first and second reduction of P450 1A1 during the oxidation of BaP in vitro. They suggest that NADH-dependent CBR can replace NADPH-dependent POR in the P450 1A1-catalyzed metabolism of BaP. PMID:27404282

  16. Photoinduced electron transfer double fragmentation. An oxygen-mediated radical chain process in the cofragmentation of aminopinacol donors with organic halides

    SciTech Connect

    Chen, L.; Farahat, M.S.; Gan, H.; Whitten, D.G.; Farid, S. |

    1995-06-14

    We reprot an investigation in which excited states of amino pinacols 1-3 are reacted with the halides CCl{sub 4}, benzyl bromide, and p-cyanobenzyl bromide. Interesting results from this study include the finding that low-to-moderate quantum efficiencies for reaction are observed when the reactions are carried out under degassed conditions, indicating that the halide radical anions must survive long enough within the initial ion pair formed in the quenching step to undergo considerable return electron transfer. More strikingly we find that for certain pinacol-halide combinations reaction in aerared solutions leads to much higher efficiencies, which can be attributed to a chain reaction involving oxygen capture of a primary radical product. 25 refs., 1 fig., 1 tab.

  17. Electronic structure of p-type perylene monoimide-based donor-acceptor dyes on the nickel oxide (100) surface: a DFT approach.

    PubMed

    Kontkanen, O V; Niskanen, M; Hukka, T I; Rantala, T T

    2016-05-25

    A p-type dye-sensitized solar cell, where the dye injects a hole into the semiconductor, could be combined with a typical Grätzel cell to create an efficient tandem device. However, the current p-type devices suffer from low efficiency. Here, geometries and electronic structures of four perylenemonoimide-based dyes () both as free and adsorbed on the NiO(100) semiconductor surface have been investigated to gain a better understanding of the p-type devices. In particular, the electronic transitions relevant to charge transfer between the dye and the surface have been identified. Excitations have been evaluated using the time-dependent DFT calculations, and the roles of frontier orbitals and band edges in transitions have been assessed. The adsorbed dyes can adopt either upright or slightly tilted geometries depending on the structure of the anchoring group and the binding mode of the dye. The adsorption slightly lowers the NiO band gap, from 4.06 eV to 3.90-3.96 eV, depending on the surface-adsorbate system and the band gaps of the dye molecules by 0.1-0.2 eV. Additionally, the adsorption mode of dye moves the LUMO+1 level down by 0.5 eV. The effective mass of charge carrier holes is significantly smaller at the NiO surface than in the bulk indicating the importance of surface conductivity. We also found that the potential drop, i.e. the driving force for charge transfer from NiO to the dye molecule, depends on the adsorption mode of . PMID:27224900

  18. Being a Living Donor: Risks

    MedlinePlus

    ... surgical risks and long term complications: Long-Term Organ Specific Donor Complications Kidney Hypertension Kidney failure Proteinuria Lung Intra- ... Vancouver Forum on the care of the live organ donor: lung, liver, pancreas, and intestine data and medical ...

  19. Donor commitment and patient needs.

    PubMed

    Bakken, R; van Walraven, A-M; Egeland, T

    2004-01-01

    The article discusses views and recommendations of the World Marrow Donor Association concerning ethical issues related to the donation of hematopoietic stem cell products with respect to recruitment, evaluation, workup, and follow-up of unrelated donors. Particular emphasis is placed upon commitment of individual donors, in particular, with respect to the needs of patients to find HLA-matched donors, who may be asked to donate stem cell and other cell products more than once for given patients. PMID:14628078

  20. Why Minority Donors Are Needed

    MedlinePlus

    ... Español Search Register with your state as an Organ Donor Home Why Donate Becoming a Donor About Donation & ... Why Donate RELATED INFORMATION Minority Focused Grantee Publications Organ Donation Process Enrolling as a Donor Trying to Save a Life Testing for Brain ...

  1. Characteristics and nature of the intermolecular interactions in boron-bonded complexes with carbene as electron donor: an ab initio, SAPT and QTAIM study.

    PubMed

    Esrafili, Mehdi D

    2012-05-01

    We report geometries, stabilization energies, symmetry adapted perturbation theory (SAPT) and quantum theory of atoms in molecules (QTAIM) analyses of a series of carbene-BX(3) complexes, where X = H, OH, NH(2), CH(3), CN, NC, F, Cl, and Br. The stabilization energies were calculated at HF, B3LYP, MP2, MP4 and CCSD(T)/aug-cc-pVDZ levels of theory using optimized geometries of all the complexes obtained from B3LYP/aug-cc-pVTZ. Quantitatively, all the complexes indicate the presence of B-C(carbene) interaction due to the short B-C(carbene) distances. Inspection of stabilization energies reveals that the interaction energies increase in the order NH(2) > OH > CH(3) > F > H > Cl > Br > NC > CN, which is the opposite trend shown in the binding distances. Considering the SAPT results, it is found that electrostatic effects account for about 50% of the overall attraction of the studied complexes. By comparison, the induction components of these interactions represent about 40% of the total attractive forces. Despite falling in a region of charge depletion with nabla(2)ρ(BCP) >0, the B-C(carbene) bond critical points (BCPs) are characterized by a reasonably large value of the electron density (ρ(BCP)) and H(BCP) <0, indicating that the potential energy overcomes the kinetic energy density at BCP and the B-C(carbene) bond is a polar covalent bond. PMID:21877151

  2. Influence of coagulation factor x on in vitro and in vivo gene delivery by adenovirus (Ad) 5, Ad35, and chimeric Ad5/Ad35 vectors.

    PubMed

    Greig, Jenny A; Buckley, Suzanne Mk; Waddington, Simon N; Parker, Alan L; Bhella, David; Pink, Rebecca; Rahim, Ahad A; Morita, Takashi; Nicklin, Stuart A; McVey, John H; Baker, Andrew H

    2009-10-01

    The binding of coagulation factor X (FX) to the hexon of adenovirus (Ad) 5 is pivotal for hepatocyte transduction. However, vectors based on Ad35, a subspecies B Ad, are in development for cancer gene therapy, as Ad35 utilizes CD46 (which is upregulated in many cancers) for transduction. We investigated whether interaction of Ad35 with FX influenced vector tropism using Ad5, Ad35, and Ad5/Ad35 chimeras: Ad5/fiber(f)35, Ad5/penton(p)35/f35, and Ad35/f5. Surface plasmon resonance (SPR) revealed that Ad35 and Ad35/f5 bound FX with approximately tenfold lower affinities than Ad5 hexon-containing viruses, and electron cryomicroscopy (cryo-EM) demonstrated a direct Ad35 hexon:FX interaction. The presence of physiological levels of FX significantly inhibited transduction of vectors containing Ad35 fibers (Ad5/f35, Ad5/p35/f35, and Ad35) in CD46-positive cells. Vectors were intravenously administered to CD46 transgenic mice in the presence and absence of FX-binding protein (X-bp), resulting in reduced liver accumulation for all vectors. Moreover, Ad5/f35 and Ad5/p35/f35 efficiently accumulated in the lung, whereas Ad5 demonstrated poor lung targeting. Additionally, X-bp significantly reduced lung genome accumulation for Ad5/f35 and Ad5/p35/f35, whereas Ad35 was significantly enhanced. In summary, vectors based on the full Ad35 serotype will be useful vectors for selective gene transfer via CD46 due to a weaker FX interaction compared to Ad5. PMID:19603000

  3. Feasibility of a two-step culture method to improve the CO2-fixing efficiency of nonphotosynthetic microbial community and simultaneously decrease the spontaneous oxidative precipitates from mixed electron donors.

    PubMed

    Hu, Jiajun; Wang, Lei; Zhang, Shiping; Le, Yiquan; Fu, Xiaohua

    2014-08-01

    When compared with H2, mixed electron donors (MED), comprising S(2-), S2O3 (2-), and NO2 (-), could generally improve the CO2-fixing efficiency of nonphotosynthetic microbial communities (NPMCs). However, a large amount of abiotic precipitates combined with bacteria produced during culture may be unfavorable for the recycling and reuse of bacteria. The main component of the abiotic precipitates is S(0), which influences the enrichment and reuse of bacteria but is not conducive for CO2 fixation in the subsequent step. In this study, a two-step culture method (TSCM), employing H2 and MED, respectively, was verified to be feasible for improving the CO2-fixing efficiency of NPMCs in the second step. In the TSCM, the net-fixed CO2 increased to 854 mg/L and abiotic precipitates were not produced in the medium. Sequence analysis of 16 s rDNA from NPMC indicated the presence of microbial symbioses in the NPMC, supporting the possible applications of TSCM. PMID:24980751

  4. Optimum Compromise Between Optical Absorption and Electrical Property of the Planar Multi-Heterojunction Organic Solar Cells Based with New Thiazol Derivative, the (2-THIOXO-3-N-(2-METHOXYPHENYL) THIAZOLIDIN-4-ONE), as Electron Donor

    NASA Astrophysics Data System (ADS)

    Toumi, A. Lakhdar; Khelil, A.; Bernède, J. C.; Mouchaal, Y.; Djafri, A.; Toubal, K.; Hellal, N.; Cattin, L.

    2015-03-01

    The synthesis of a new thiazol derivative, the (2-thioxo-3-N-(2-methoxyphenyl) thiazolidin-4-one) (called TH-2) is described. After characterization of the TH-2, the cyclic voltammetry study coupled with optical absorbance measurements show that its LUMO and HOMO are -3.5 and -5.5 respectively. Then the TH-2 is used as electron donor (ED) in organic solar cells (OSCs). The anode buffer layer being CuI the devices are based on the planar heterojunction TH-2/fullerene. Homogeneous amorphous films of TH-2 are obtained when it is deposited onto CuI. For an optimum TH-2 thickness of 20 nm, a power conversion efficiency of 0.42% is obtained. Then, in order to broaden the absorption range of the OSCs, it is coupled with the tetraphenyl-dibenzoperiflanthene, whose band structure matches the band structure of TH-2. Such new multilayer structure allows achieving a power conversion efficiency of 0.49%.

  5. Synthesis, spectral investigations, antimicrobial activity and DNA-binding studies of novel charge transfer complex of 1,10-phenanthroline as an electron donor with π-acceptor p-Nitrophenol

    NASA Astrophysics Data System (ADS)

    Khan, Ishaat M.; Ahmad, Afaq

    2010-08-01

    Proton or charge transfer (CT) complex of donor, 1,10-phenanthroline (Phen) with π-acceptor, p-Nitrophenol (PNP) has been studied spectrophotometrically in methanol at room temperature. The binding of the CT complex with calf thymus (ct) DNA has been investigated by fluorescence spectrum, to establish the ability of the CT complex of its interaction with DNA. Stern-Volmer quenching constant ( Ksv) has also been calculated. The formation constant ( KCT), molar extinction coefficient ( ɛCT), free energy (Δ Go) and stoichiometric ratio of the CT complex have been determined by Benesi-Hildebrand equation. The stoichiometry was found to be 1:1. The CT complex was screened for its pharmacology as antibacterial and antifungal activity against various bacterial and fungal strains, showing excellent antibacterial and antifungal activity. The newly synthesized CT complex has been characterized by FTIR spectra, elemental analysis, 1H NMR, electronic absorption spectra. TGA-DTA studies were also carried out to check the stability of CT complex.

  6. Confidentiality and American semen donors.

    PubMed

    Karow, A M

    1993-01-01

    Most American donor insemination programs include a policy of complete confidentiality concerning the donor of the semen. This is the result of a long legal tradition of American constitutional law. However, some slight abridgement of this body of legal decisions might be very much in the best interests of children arising from donor insemination, and even--in most cases, in fact--the donors themselves. With regard to the children, the factors involved are both those of genetic counseling, should the need arise, and psychological development. Of course, as at present, the donor must be relieved of all responsibility, both legal and financial. PMID:8348162

  7. Pressure dependence of donor excitation spectra in AlSb

    SciTech Connect

    Hsu, L.; McCluskey, M.D.; Haller, E.E.

    2002-01-16

    We have investigated the behavior of ground to bound excited-state electronic transitions of Se and Te donors in AlSb as a function of hydrostatic pressure. Using broadband far-infrared Fourier transform spectroscopy, we observe qualitatively different behaviors of the electronic transition energies of the two donors. While the pressure derivative of the Te transition energy is small and constant, as might be expected for a shallow donor, the pressure derivatives of the Se transition energies are quadratic and large at low pressures, indicating that Se is actually a deep donor. In addition, at pressures between 30 and 50 kbar, we observe evidence of an anti-crossing between one of the selenium electronic transitions and a two-phonon mode.

  8. Blood Donor Management in China

    PubMed Central

    Shi, Ling; Wang, Jingxing; Liu, Zhong; Stevens, Lori; Sadler, Andrew; Ness, Paul; Shan, Hua

    2014-01-01

    Summary Despite a steady increase in total blood collections and voluntary non-remunerated blood donors, China continues to have many challenges with its blood donation system. The country's donation rate remains low at 9%o, with over 60% of donors being first-time donors. Generally there is a lack of adequate public awareness about blood donation. The conservative donor selection criteria, the relatively long donation interval, and the small donation volume have further limited blood supply. To ensure a sufficient and safe blood supply that meets the increasing clinical need for blood products, there is an urgent need to strengthen the country's blood donor management. This comprehensive effort should include educating and motivating more individuals especially from the rural areas to be involved in blood donation, developing rational and evidence-based selection criteria for donor eligibility, designing a donor follow-up mechanism to encourage more future donations, assessing the current donor testing strategy, improving donor service and care, building regional and national shared donor deferral database, and enhancing the transparency of the blood donation system to gain more trust from the general public. The purpose of the review is to provide an overview of the key process of and challenges with the blood donor management system in China. PMID:25254023

  9. Blood donor management in china.

    PubMed

    Shi, Ling; Wang, Jingxing; Liu, Zhong; Stevens, Lori; Sadler, Andrew; Ness, Paul; Shan, Hua

    2014-07-01

    Despite a steady increase in total blood collections and voluntary non-remunerated blood donors, China continues to have many challenges with its blood donation system. The country's donation rate remains low at 9%o, with over 60% of donors being first-time donors. Generally there is a lack of adequate public awareness about blood donation. The conservative donor selection criteria, the relatively long donation interval, and the small donation volume have further limited blood supply. To ensure a sufficient and safe blood supply that meets the increasing clinical need for blood products, there is an urgent need to strengthen the country's blood donor management. This comprehensive effort should include educating and motivating more individuals especially from the rural areas to be involved in blood donation, developing rational and evidence-based selection criteria for donor eligibility, designing a donor follow-up mechanism to encourage more future donations, assessing the current donor testing strategy, improving donor service and care, building regional and national shared donor deferral database, and enhancing the transparency of the blood donation system to gain more trust from the general public. The purpose of the review is to provide an overview of the key process of and challenges with the blood donor management system in China. PMID:25254023

  10. Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column

    NASA Astrophysics Data System (ADS)

    Azizian, Mohammad F.; Marshall, Ian P. G.; Behrens, Sebastian; Spormann, Alfred M.; Semprini, Lewis

    2010-04-01

    A continuous-flow column study was conducted to analyze the reductive dehalogenation of trichloroethene (TCE) with aquifer material with high content of iron oxides. The column was bioaugmented with the Point Mugu (PM) culture, which is a mixed microbial enrichment culture capable of completely transforming TCE to ethene (ETH). We determined whether lactate, formate, or propionate fermentation resulted in more effective dehalogenation. Reductive dehalogenation, fermentation, and sulfate, Fe(III), and Mn(IV) reduction were all exhibited within the column. Different steady-states of dehalogenation were achieved based on the concentration of substrates added, with effective transformation to ETH obtained when ample electron donor equivalents were provided. Most of the metabolic reducing equivalents were channeled to sulfate, Fe(III), and Mn(IV) reduction. When similar electron reducing equivalents were added, the most effective dehalogenation was achieved with formate, with 14% of the electron equivalents going towards dehalogenation reactions, compared to 6.5% for lactate and 9.6% for propionate. Effective dehalogenation was maintained over 1000 days of column operation. Over 90% of electron equivalents added could be accounted for by the different electron accepting processes in the column, with 50% associated with soluble and precipitated Fe(II) and Mn(II). Bulk Fe(III) and Mn(IV) reduction was rather associated with lactate and propionate addition than formate addition. Sulfate reduction was a competing electron acceptor reaction with all three electron donors. DNA was extracted from solid coupon samples obtained during the course of the experiment and analyzed using 16S rRNA gene clone libraries and quantitative PCR. Lactate and propionate addition resulted in a significant increase in Geobacter, Spirochaetes, and Desulfitobacterium phylotypes relative to " Dehalococcoides" when compared to formate addition. Results from the molecular biological analyses support

  11. Defect Donor and Acceptor in GaN

    SciTech Connect

    Look, D.C.; Reynolds, D.C.; Hemsky, J.W.; Sizelove, J.R.; Jones, R.L.

    1997-09-01

    High-energy (0.7{endash}1MeV) electron irradiation in GaN grown on sapphire produces shallow donors and deep or shallow acceptors at equal rates, 1{plus_minus}0.2 cm{sup {minus}1}. The data, in conjunction with theory, are consistent only with the shallow donor being the N vacancy, and the acceptor the N interstitial. The N-vacancy donor energy is 64{plus_minus}10 meV, much larger than the value of 18meV found for the residual donor (probably Si) in this material. The Hall-effect measurements also reveal a degenerate n -type layer at the GaN/sapphire interface which must be accounted for to get the proper donor activation energy. {copyright} {ital 1997} {ital The American Physical Society}

  12. Donor deactivation in silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Björk, Mikael T.; Schmid, Heinz; Knoch, Joachim; Riel, Heike; Riess, Walter

    2009-02-01

    The operation of electronic devices relies on the density of free charge carriers available in the semiconductor; in most semiconductor devices this density is controlled by the addition of doping atoms. As dimensions are scaled down to achieve economic and performance benefits, the presence of interfaces and materials adjacent to the semiconductor will become more important and will eventually completely determine the electronic properties of the device. To sustain further improvements in performance, novel field-effect transistor architectures, such as FinFETs and nanowire field-effect transistors, have been proposed as replacements for the planar devices used today, and also for applications in biosensing and power generation. The successful operation of such devices will depend on our ability to precisely control the location and number of active impurity atoms in the host semiconductor during the fabrication process. Here, we demonstrate that the free carrier density in semiconductor nanowires is dependent on the size of the nanowires. By measuring the electrical conduction of doped silicon nanowires as a function of nanowire radius, temperature and dielectric surrounding, we show that the donor ionization energy increases with decreasing nanowire radius, and that it profoundly modifies the attainable free carrier density at values of the radius much larger than those at which quantum and dopant surface segregation effects set in. At a nanowire radius of 15 nm the carrier density is already 50% lower than in bulk silicon due to the dielectric mismatch between the conducting channel and its surroundings.

  13. Effects of the lack of phosphatidylglycerol on the donor side of photosystem II.

    PubMed

    Sakurai, Isamu; Mizusawa, Naoki; Ohashi, Shunsuke; Kobayashi, Masami; Wada, Hajime

    2007-07-01

    Our previous studies with the pgsA mutant of the cyanobacterium Synechocystis sp. PCC6803 (hereafter termed pgsA mutant), which is defective for the biosynthesis of phosphatidylglycerol (PG), revealed an important role for PG in the electron acceptor side of photosystem II (PSII), especially in the electron transport between plastoquinones Q(A) and Q(B). This study now shows that PG also plays an important role in the electron donor side of PSII, namely, the oxygen-evolving system. Analyses of purified PSII complexes indicated that PSII from PG-depleted pgsA mutant cells sustained only approximately 50% of the oxygen-evolving activity compared to wild-type cells. Dissociation of the extrinsic proteins PsbO, PsbV, and PsbU, which are required for stabilization of the manganese (Mn) cluster, followed by the release of a Mn atom, was observed in PSII of the PG-depleted mutant cells. The released PsbO rebound to PSII when PG was added back to the PG-depleted mutant cells, even when de novo protein synthesis was inhibited. Changes in photosynthetic activity of the PG-depleted pgsA mutant cells induced by heat treatment or dark incubation resembled those of DeltapsbO, DeltapsbV, and DeltapsbU mutant cells. These results suggest that PG plays an important role in binding extrinsic proteins required for sustaining a functional Mn cluster on the donor side of PSII. PMID:17513482

  14. Production of native donors in ZnO by annealing at high temperature in Zn vapor

    NASA Astrophysics Data System (ADS)

    Halliburton, L. E.; Giles, N. C.; Garces, N. Y.; Luo, Ming; Xu, Chunchuan; Bai, Lihai; Boatner, L. A.

    2005-10-01

    Zinc oxide crystals grown by the seeded chemical vapor transport method have been annealed in zinc vapor at 1100 °C for 30 min. These thermochemical reduction treatments produce a deep red coloration in the crystals and increase their n-type electrical conductivity. Electron paramagnetic resonance (EPR), optical absorption, and Hall measurements were used to monitor changes in the crystals. After an anneal, an intense optical absorption band is present that extends from the band edge out to approximately 550 nm, and the EPR signal near g =1.96 (due to shallow donors and/or conduction-band electrons), the free-carrier absorption, and the Hall electron concentration are all larger. Hydrogen was not present during these anneals, thus leaving oxygen vacancies and zinc interstitials as candidates for the added donors. Neutral oxygen vacancies are produced at high temperature by the additive-coloration mechanism, and are responsible for the broad near-edge absorption band. The observed increase in the number of free carriers is a result of either (1) the formation of zinc interstitials or (2) having the ground state of the neutral oxygen vacancy near the conduction band.

  15. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    DOEpatents

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  16. Mapping of Streptococcus faecalis plasmids pAD1 and pAD2 and studies relating to transposition of Tn917.

    PubMed Central

    Clewell, D B; Tomich, P K; Gawron-Burke, M C; Franke, A E; Yagi, Y; An, F Y

    1982-01-01

    Plasmids pAD1 (37.8 megadaltons) and pAD2 (17.1 megadaltons) of Streptococcus faecalis strain DS16 have been mapped with restriction enzymes. The location of a hemolysin-bacteriocin determinant on the conjugative pAD1 plasmid was derived from analyses of transposon insertions. Electron microscope and hybridization analyses located Tn917(Em) and the streptomycin (Sm) and kanamycin (Km) resistance determinants on the nonconjugative pAD2 plasmid. It was shown previously that the erythromycin (Em) resistance associated with Tn917 is inducible and that transposition from pAD2 to pAD1 is also stimulated by exposure of cells to low concentrations of Em. Here we show that inducing concentrations of Em also increase the conjugative transfer potential of pAD1; this is possibly related to a mild and short-lived inhibitory stress placed on the cells before full induction of resistance. Selection of Em-resistant transconjugants arising from matings between DS16 and a plasmid-free recipient gave rise to transconjugants which primarily harbor stable pAD1::pAD2 cointegrates. A 30-min exposure of donors to Em (0.5 microgram/ml) before mating resulted in a severalfold increase in the number of such transconjugants. However, a small fraction (e.g., 3 of 40) of these Emr Smr Kmr transconjugants harbored pAD1::Tn917 and pAD2 molecules. Since we believe pAD2 is incapable of being mobilized by pAD1 without being covalently linked, it is likely that transfer in these cases involved cointegrates representing structural intermediates in the transposition of Tn917 from pAD2 to pAD1. It follows that such intermediates probably had two copies of Tn917 and readily resolved after transfer. (These cointegrates are different from the stable cointegrates which were shown to have only a single copy of Tn917; the latter are assumed not to be related to transposition.) Two variants with altered Tn917 transposition properties were derived. One of them transposed at an elevated frequency, whereas the

  17. Organ Donor FAQ's: Who Can Be a Donor

    MedlinePlus

    ... citizens have been organ donors. Can non-resident aliens donate and receive organs? Non-resident aliens can both donate and receive organs in the ... the 12,375 organ donors were non-resident aliens. In this same year, 259 (1%) of the ...

  18. Polarised black holes in AdS

    NASA Astrophysics Data System (ADS)

    Costa, Miguel S.; Greenspan, Lauren; Oliveira, Miguel; Penedones, João; Santos, Jorge E.

    2016-06-01

    We consider solutions in Einstein-Maxwell theory with a negative cosmological constant that asymptote to global AdS 4 with conformal boundary {S}2× {{{R}}}t. At the sphere at infinity we turn on a space-dependent electrostatic potential, which does not destroy the asymptotic AdS behaviour. For simplicity we focus on the case of a dipolar electrostatic potential. We find two new geometries: (i) an AdS soliton that includes the full backreaction of the electric field on the AdS geometry; (ii) a polarised neutral black hole that is deformed by the electric field, accumulating opposite charges in each hemisphere. For both geometries we study boundary data such as the charge density and the stress tensor. For the black hole we also study the horizon charge density and area, and further verify a Smarr formula. Then we consider this system at finite temperature and compute the Gibbs free energy for both AdS soliton and black hole phases. The corresponding phase diagram generalizes the Hawking-Page phase transition. The AdS soliton dominates the low temperature phase and the black hole the high temperature phase, with a critical temperature that decreases as the external electric field increases. Finally, we consider the simple case of a free charged scalar field on {S}2× {{{R}}}t with conformal coupling. For a field in the SU(N ) adjoint representation we compare the phase diagram with the above gravitational system.

  19. Dynamics of Homology Searching During Gene Conversion in Saccharomyces cerevisiae Revealed by Donor Competition

    PubMed Central

    Coïc, Eric; Martin, Joshua; Ryu, Taehyun; Tay, Sue Yen; Kondev, Jané; Haber, James E.

    2011-01-01

    One of the least understood aspects of homologous recombination is the process by which the ends of a double-strand break (DSB) search the entire genome for homologous templates that can be used to repair the break. We took advantage of the natural competition between the alternative donors HML and HMR employed during HO endonuclease-induced switching of the budding yeast MAT locus. The strong mating-type-dependent bias in the choice of the donors is enforced by the recombination enhancer (RE), which lies 17 kb proximal to HML. We investigated factors that improve the use of the disfavored donor. We show that the normal heterochromatic state of the donors does not impair donor usage, as donor choice is not affected by removing this epigenetic silencing. In contrast, increasing the length of homology shared by the disfavored donor increases its use. This result shows that donor choice is not irrevocable and implies that there are several encounters between the DSB ends and even the favored donor before recombination is accomplished. The increase by adding more homology is not linear; these results can be explained by a thermodynamic model that determines the energy cost of using one donor over the other. An important inference from this analysis is that when HML is favored as the donor, RE causes a reduction in its effective genomic distance from MAT from 200 kb to ∼20 kb, which we hypothesize occurs after the DSB is created, by epigenetic chromatin modifications around MAT. PMID:21954161

  20. Donor Preferences and Charitable Giving

    ERIC Educational Resources Information Center

    Williams, Stephanie Roderick

    2007-01-01

    This study aimed to learn more of the differences that may exist between the two most powerful groups of donors today, baby boomers (40-58 years old) and mature donors (59 and older), in an effort to help organizations improve fundraising efforts. Questions about the importance of organizational efficiency, program outcomes, and the desire for…

  1. Transport Measurements on Si Nanostructures with Counted Sb Donors

    NASA Astrophysics Data System (ADS)

    Singh, Meenakshi; Bielejec, Edward; Garratt, Elias; Ten Eyck, Gregory; Bishop, Nathaniel; Wendt, Joel; Luhman, Dwight; Carroll, Malcolm; Lilly, Michael

    2014-03-01

    Donor based spin qubits are a promising platform for quantum computing. Single qubits using timed implant of donors have been demonstrated.1 Extending this to multiple qubits requires precise control over the placement and number of donors. Such control can be achieved by using a combination of low-energy heavy-ion implants (to reduce depth straggle), electron-beam lithography (to define position), focused ion beam (to localize implants to one lithographic site) and counting the number of implants with a single ion detector.2 We report transport measurements on MOS quantum dots implanted with 5, 10 and 20 Sb donors using the approach described above. A donor charge transition is identified by a charge offset in the transport characteristics. Correlation between the number of donors and the charge offsets is studied. These results are necessary first steps towards fabricating donor nanostructures for two qubit interactions. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. 1J. J. Pla et al., Nature 496, 334 (2013) 2J. A. Seamons et al., APL 93, 043124 (2008).

  2. The Advantages of Using Electronic Processes for Commenting on and Exchanging the Written Work of Students with Learning Disabilities and/or AD/HD

    ERIC Educational Resources Information Center

    Carmichael, Stephen; Alden, Peg

    2006-01-01

    Researchers have explored the impact of computer-assisted feedback and electronic mail on students' writing, but most of the work to date seems to have focused on second language writers, peer response, or response as part of an online composition course. Although research has documented the importance of certain generic features of word…

  3. The Lombardy Rare Donor Programme

    PubMed Central

    Revelli, Nicoletta; Villa, Maria Antonietta; Paccapelo, Cinzia; Manera, Maria Cristina; Rebulla, Paolo; Migliaccio, Anna Rita; Marconi, Maurizio

    2014-01-01

    Background In 2005, the government of Lombardy, an Italian region with an ethnically varied population of approximately 9.8 million inhabitants including 250,000 blood donors, founded the Lombardy Rare Donor Programme, a regional network of 15 blood transfusion departments coordinated by the Immunohaematology Reference Laboratory of the Ca’ Granda Ospedale Maggiore Policlinico in Milan. During 2005 to 2012, Lombardy funded LORD-P with 14.1 million euros. Materials and methods During 2005–2012 the Lombardy Rare Donor Programme members developed a registry of blood donors and a bank of red blood cell units with either rare blood group phenotypes or IgA deficiency. To do this, the Immunohaematology Reference Laboratory performed extensive serological and molecular red blood cell typing in 59,738 group O or A, Rh CCDee, ccdee, ccDEE, ccDee, K− or k− donors aged 18–55 with a record of two or more blood donations, including both Caucasians and ethnic minorities. In parallel, the Immunohaematology Reference Laboratory implemented a 24/7 service of consultation, testing and distribution of rare units for anticipated or emergent transfusion needs in patients developing complex red blood cell alloimmunisation and lacking local compatible red blood cell or showing IgA deficiency. Results Red blood cell typing identified 8,747, 538 and 33 donors rare for a combination of common antigens, negative for high-frequency antigens and with a rare Rh phenotype, respectively. In June 2012, the Lombardy Rare Donor Programme frozen inventory included 1,157 red blood cell units. From March 2010 to June 2012 one IgA-deficient donor was detected among 1,941 screened donors and IgA deficiency was confirmed in four previously identified donors. From 2005 to June 2012, the Immunohaematology Reference Laboratory provided 281 complex red blood cell alloimmunisation consultations and distributed 8,008 Lombardy Rare Donor Programme red blood cell units within and outside the region

  4. Spatially resolving valley quantum interference of a donor in silicon

    NASA Astrophysics Data System (ADS)

    Salfi, J.; Mol, J. A.; Rahman, R.; Klimeck, G.; Simmons, M. Y.; Hollenberg, L. C. L.; Rogge, S.

    2014-06-01

    Electron and nuclear spins of donor ensembles in isotopically pure silicon experience a vacuum-like environment, giving them extraordinary coherence. However, in contrast to a real vacuum, electrons in silicon occupy quantum superpositions of valleys in momentum space. Addressable single-qubit and two-qubit operations in silicon require that qubits are placed near interfaces, modifying the valley degrees of freedom associated with these quantum superpositions and strongly influencing qubit relaxation and exchange processes. Yet to date, spectroscopic measurements have only probed wavefunctions indirectly, preventing direct experimental access to valley population, donor position and environment. Here we directly probe the probability density of single quantum states of individual subsurface donors, in real space and reciprocal space, using scanning tunnelling spectroscopy. We directly observe quantum mechanical valley interference patterns associated with linear superpositions of valleys in the donor ground state. The valley population is found to be within 5% of a bulk donor when 2.85 ± 0.45 nm from the interface, indicating that valley-perturbation-induced enhancement of spin relaxation will be negligible for depths greater than 3 nm. The observed valley interference will render two-qubit exchange gates sensitive to atomic-scale variations in positions of subsurface donors. Moreover, these results will also be of interest for emerging schemes proposing to encode information directly in valley polarization.

  5. Successful use of the "unacceptable" heart donor.

    PubMed

    Menkis, A H; Novick, R J; Kostuk, W J; Pflugfelder, P W; Powell, A M; Thomson, D; McKenzie, F N

    1991-01-01

    Chronic shortage of donor organs has heightened interest in new strategies for increasing donor availability. Unacceptable hearts for transplant have previously been characterized by donor age greater than 40 years, more than 20% donor/recipient weight mismatch, ischemic time more than 4 hours, and the presence of coronary artery disease. A series of 185 consecutive orthotopic heart transplants were retrospectively examined. A significant number of donor hearts used were unacceptable by one or more of the above criteria. Our current approach is to match donors to recipients using a wide range of criteria. Donors are now accepted from any location in North America. We have accepted donors more than 55 years of age and donors weighing less than 50% of the recipient's body weight. Because of the chronic shortage of donor organs, donor criteria have been effectively liberalized, thereby increasing the donor pool without compromising the overall results of heart transplantation. PMID:2007168

  6. Thermal cracking with hydrogen donor diluent

    SciTech Connect

    Derbyshire, F.; Varghese, P.; Whitehurst, D.D.

    1983-07-26

    An improved hydrogen donor for hydrogen donor diluent cracking is provided by extraction with naphtha from the cracked product and hydrogenation by hydrogen transfer from a lower boiling hydrogen donor such as tetralin.

  7. Adult living donor liver imaging

    PubMed Central

    Cai, Larry; Yeh, Benjamin M.; Westphalen, Antonio C.; Roberts, John P.; Wang, Zhen J.

    2016-01-01

    Adult living donor liver transplantation (LDLT) is increasingly used for the treatment of end-stage liver disease. The three most commonly harvested grafts for LDLT are left lateral segment, left lobe, and right lobe grafts. The left lateral segment graft, which includes Couinaud’s segments II and III, is usually used for pediatric recipients or small size recipients. Most of the adult recipients need either a left or a right lobe graft. Whether a left or right lobe graft should be harvested from the donors depends on estimated graft and donor remnant liver volume, as well as biliary and vascular anatomy. Detailed preoperative assessment of the potential donor liver volumetrics, biliary and vascular anatomy, and liver parenchyma is vital to minimize risks to the donors and maximize benefits to the recipients. Computed tomography (CT) and magnetic resonance imaging (MRI) are currently the imaging modalities of choice in the preoperative evaluation of potential donors. This review provides an overview of key surgical considerations in LDLT that the radiologists must be aware of, and imaging findings on CT and MRI that the radiologists must convey to the surgeons when evaluating potential donors for LDLT. PMID:26912106

  8. Adult living donor liver imaging.

    PubMed

    Cai, Larry; Yeh, Benjamin M; Westphalen, Antonio C; Roberts, John P; Wang, Zhen J

    2016-01-01

    Adult living donor liver transplantation (LDLT) is increasingly used for the treatment of end-stage liver disease. The three most commonly harvested grafts for LDLT are left lateral segment, left lobe, and right lobe grafts. The left lateral segment graft, which includes Couinaud's segments II and III, is usually used for pediatric recipients or small size recipients. Most of the adult recipients need either a left or a right lobe graft. Whether a left or right lobe graft should be harvested from the donors depends on estimated graft and donor remnant liver volume, as well as biliary and vascular anatomy. Detailed preoperative assessment of the potential donor liver volumetrics, biliary and vascular anatomy, and liver parenchyma is vital to minimize risks to the donors and maximize benefits to the recipients. Computed tomography (CT) and magnetic resonance imaging (MRI) are currently the imaging modalities of choice in the preoperative evaluation of potential donors. This review provides an overview of key surgical considerations in LDLT that the radiologists must be aware of, and imaging findings on CT and MRI that the radiologists must convey to the surgeons when evaluating potential donors for LDLT. PMID:26912106

  9. Living kidney donors and ESRD.

    PubMed

    Ross, Lainie Friedman

    2015-07-01

    There are more than 325 living kidney donors who have developed end-stage renal disease and have been listed on the Organ Procurement and Transplantation Network (OPTN)/United Network for Organ Sharing (UNOS) deceased donor kidney wait list. The OPTN/UNOS database records where these kidney donors are listed and, if they donated after April 1994, where that donation occurred. These 2 locations are often not the same. In this commentary, I examine whether a national living donor registry should be created and whether transplantation centers should be notified when one of their living kidney donors develops end-stage renal disease. I consider and refute 5 potential objections to center notification. I explain that transplantation centers should look back at these cases and input data into a registry to attempt to identify patterns that could improve donor evaluation protocols. Creating a registry and mining the information it contains is, in my view, our moral and professional responsibility to future patients and the transplantation endeavor. As individuals and as a community, we need to acknowledge the many unknown risks of living kidney donation and take responsibility for identifying these risks. We then must share information about these risks, educate prospective donors about them, and attempt to minimize them. PMID:25936672

  10. How to Motivate Whole Blood Donors to Become Plasma Donors

    PubMed Central

    2014-01-01

    This study tested the efficacy of interventions to recruit new plasma donors among whole blood donors. A sample of 924 donors was randomized to one of three conditions: control; information only by nurse; and information plus self-positive image message by nurse (SPI). Participants in the control condition only received a leaflet describing the plasma donation procedure. In the two experimental conditions the leaflet was explained face-to-face by a nurse. The dependent variables were the proportion of new plasma donors and the number of donations at six months. Overall, 141 (15.3%) new plasma donors were recruited at six months. There were higher proportions of new plasma donors in the two experimental conditions compared to the control condition (P < .001); the two experimental conditions did not differ. Also, compared to the control condition, those in the experimental conditions (all Ps < .001) gave plasma more often (information only by nurse:  d = .26; SPI: d = .32); the SPI intervention significantly outperformed (P < .05) the information only by nurse condition. The results suggest that references to feelings of SPI such as feeling good and being proud and that giving plasma is a rewarding personal experience favor a higher frequency of plasma donation. PMID:25530909

  11. Smeared antibranes polarise in AdS

    NASA Astrophysics Data System (ADS)

    Gautason, Fridrik Freyr; Truijen, Brecht; Van Riet, Thomas

    2015-07-01

    In the recent literature it has been questioned whether the local backreaction of antibranes in flux throats can induce a perturbative brane-flux decay. Most evidence for this can be gathered for D6 branes and D p branes smeared over 6 - p compact directions, in line with the absence of finite temperature solutions for these cases. The solutions in the literature have flat worldvolume geometries and non-compact transversal spaces. In this paper we consider what happens when the worldvolume is AdS and the transversal space is compact. We show that in these circumstances brane polarisation smoothens out the flux singularity, which is an indication that brane-flux decay is prevented. This is consistent with the fact that the cosmological constant would be less negative after brane-flux decay. Our results extend recent results on AdS7 solutions from D6 branes to AdS p+1 solutions from D p branes. We show that supersymmetry of the AdS solutions depend on p non-trivially.

  12. AdS orbifolds and Penrose limits

    SciTech Connect

    Alishahiha, Mohsen; Sheikh-Jabbari, Mohammad M.; Tatar, Radu

    2002-12-09

    In this paper we study the Penrose limit of AdS{sub 5} orbifolds. The orbifold can be either in the pure spatial directions or space and time directions. For the AdS{sub 5}/{Lambda} x S{sup 5} spatial orbifold we observe that after the Penrose limit we obtain the same result as the Penrose limit of AdS{sub 5} x S{sup 5}/{Lambda}. We identify the corresponding BMN operators in terms of operators of the gauge theory on R x S{sup 3}/{Lambda}. The semi-classical description of rotating strings in these backgrounds have also been studied. For the spatial AdS orbifold we show that in the quadratic order the obtained action for the fluctuations is the same as that in S{sup 5} orbifold, however, the higher loop correction can distinguish between two cases.

  13. Being a Living Donor: Risks

    MedlinePlus

    ... for blood transfusions side effects associated with allergic reactions to the anesthesia death The best source of information about risks and expected donor outcomes is your transplant team. In addition, it’s important to take an active role in ...

  14. A model of willingness to become a potential organ donor.

    PubMed

    Horton, R L; Horton, P J

    1991-01-01

    This article presents two models of the decision to become a potential organ donor. In the first model the act of carrying or requesting an organ donor card is related to values and factual knowledge regarding organ donation, through intervening attitude and willingness constructs. A sample of 286 students is used to test this model via the LISREL computer program for modeling latent variables. All hypothesized relationships had the predicted sign and were significant. This model is extended by adding the variables attitude towards death, prior blood donation, and age of subject to the model. A second sample of 365 adults from the local community is used to test the second model via LISREL. With two exceptions in the adult sample, all hypothesized relationships had the predicted sign and were significant. Where the two models overlap the results are generally similar. Implications of the models for marketing the act of becoming a potential organ donor are discussed. PMID:1771431

  15. Electric field control of donor pair diatomic molecules in silicon

    NASA Astrophysics Data System (ADS)

    Baena, Alejandra; Saraiva, Andre; Calderón, María J.; Koiller, Belita

    2015-03-01

    Single donors are well-established building blocks for engineering electronic properties of semiconductors, acting effectively as giant hydrogen atoms. Donor pairs, analogous to effective hydrogen molecules, were recently investigated in the strongly interacting regime in silicon. In this regime, electric field control renders timid results. Pairs that are more distant are more susceptible to external fields, and may harbour single electron charge control. Theoretically, the molecular quantum mechanics analogy between a donor pair and the H2 molecule in vacuum is not as straightforward as it may seem. A detailed understanding of the electronic structure of these molecular systems is a current challenge. We analyze the lowest energy states within effective mass theory, including central cell corrected donor potential effects and the conduction band multiplicity in Si. The spectrum of ionized donor pairs and its response to an external electric field will be presented. We contemplate possible advantages of heteropolar diatomic molecules, e.g, Sb -As pairs, as more efficient elements for such devices and applications.

  16. Singlet-triplet donor-quantum-dot qubit in silicon

    NASA Astrophysics Data System (ADS)

    Harvey-Collard, Patrick; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Carroll, Malcolm S.; Pioro-Ladrière, Michel

    2015-03-01

    Electron spins bound to phosphorus (P) donors in silicon (Si) are promising qubits due to their high fidelities, but donor-donor coupling is challenging. We propose an alternative two-electron singlet-triplet quantum-dot (QD) and donor (D) hybrid qubit. A QD is formed at a MOS 28-Si interface and is tunnel-coupled to implanted P. The proposed two-axis system is defined by the exchange and contact hyperfine interactions. We demonstrate that a few electron QD can be formed and tuned to interact with a donor. We investigate the spin filling of the QD-D system through charge-sensed (CS) magnetospectroscopy and identify spin-up loading consistent with a singlet-triplet splitting of ~100 μeV near a QD-D anti-crossing. We also demonstrate an enhanced CS readout contrast and time window due to the restricted relaxation path of the D through the QD. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. [Non-heart-beating donors are ineligible].

    PubMed

    Heide, W

    2016-02-01

    The death of the donor is a mandatory prerequisite for organ transplantation (dead donor rule) worldwide. It is a medical, legal and ethical consensus to accept the concept of brain death, as first proposed in 1968 by the ad hoc committee of the Harvard Medical School, as a certain criterion of death. In isolated cases where the diagnosis of brain death was claimed to be wrong, it could be demonstrated that the diagnostic procedure for brain death had not been correctly performed. In March 2014 a joint statement by the German neuromedical societies emphasized that 1) the diagnosis of brain death is one of the safest diagnoses in medicine if performed according to accepted medical standards and criteria and 2) the concept of non-heart-beating donors (NHBD, i. e. organ donation after an arbitrarily defined duration of circulatory and cardiac arrest) practiced in some European countries must be absolutely rejected because it implicates a high risk of diagnostic error. According to the current literature it is unclear at what time cardiac and circulatory arrest is irreversible and leads to irreversible cessation of all functions of the entire brain including the brainstem, even though clinical signs of cessation of brain functions are always found after 10 min. Furthermore, is it often an arbitrary decision to exactly define the duration of cardiac arrest if continuous echocardiographic monitoring has not been carried out from the very beginning. Last but not least there are ethical concerns against the concept of NHBD because it might influence therapeutic efforts to resuscitate a patient with cardiac arrest. Therefore, the German Medical Council (BÄK) has repeatedly rejected the concept of NHBD for organ transplantation since 1995. PMID:26830897

  18. A theoretical study on tuning the electronic structures and photophysical properties of newly designed platinum(II) complexes by adding substituents on functionalized ligands as highly efficient OLED emitters.

    PubMed

    Zhang, Luqiong; Tian, Li; Li, Ming; He, Rongxing; Shen, Wei

    2014-05-01

    By imitating FIrpic, seven new platinum(II) complexes with pic (pic = picolinate) ligand have been designed to be guest materials by means of adding different substituents to functionalized ligands (ppy and fpy, ppy = phenylpyridyl-N,C and fpy = 2-(9',9'-diethyl-9H-fluorenyl)pyridyl-N,C). In order to reveal their molecular structures, photophysical properties and structure-property relationships with typical host materials, an in-depth theoretical investigation was performed via quantum chemical calculations. The electronic structures and photophysical properties of these complexes were investigated by density functional theory (DFT) and time-dependent density functional theory (TDDFT) using the B3LYP functional with LANL2DZ and 6-31G* basis sets. It turns out that electronic structures and photophysical properties can be tuned by substituent modifications on functionalized ligands. This work highlights that the match between guest materials and host materials in typical OLED structures can be weighed by the energy levels of the HOMO and LUMO and the adiabatic triplet energy of each complex. Also, a combined analysis of electronic structures, host-guest match, reorganization energies (λ) and triplet exciton generation fraction (χ(T)) is helpful in exploring triplet emitters with high phosphorescence efficiency in OLEDs, which is an interesting and creative aspect of this work. Thereinto, λ reveals the capability of carrier transport and the balance between holes and electrons, whilst structural parameters and d-orbital splittings show that those complexes that have strong electron-withdrawing and electron-donating groups are nonemissive. Consequently, complexes 3-7 can be better triplet emitters than FIrpic. Moreover, the emission colors could be predicted by the 0-0 transition energy (E(0-0)) instead of the triplet vertical transition energy (E(vert)). Accordingly, complexes 3, 4 and 6 would be efficient phosphorescent materials with different predicted

  19. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers

    NASA Astrophysics Data System (ADS)

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N. V.; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-12-01

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affinities of the donor and the acceptor, the triplet-triplet state can have a stronger oscillator strength than the charge-transfer exciton. We discuss the possibility of intramolecular singlet fission from the triplet-triplet state, and how such fission can be detected experimentally.

  20. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers.

    PubMed

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N V; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-12-31

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affinities of the donor and the acceptor, the triplet-triplet state can have a stronger oscillator strength than the charge-transfer exciton. We discuss the possibility of intramolecular singlet fission from the triplet-triplet state, and how such fission can be detected experimentally. PMID:26765027

  1. Carbon as a Shallow Donor in Transparent Conducting Oxides

    NASA Astrophysics Data System (ADS)

    Lyons, J. L.; Steiauf, D.; Janotti, A.; Van de Walle, C. G.

    2014-12-01

    Carbon is a common unintentional impurity in oxide semiconductors. We use hybrid density functional theory to calculate the electronic and structural properties of carbon impurities in ZnO, In2O3 , and Ga2O3 —materials that are used as transparent conductors. In each of these semiconducting oxides, we find that carbon is most likely to occupy the cation site under most electronic and chemical potential conditions. In ZnO, CZn acts as a shallow double donor and exhibits large local breathing-mode relaxations. In In2O3 and Ga2O3 , C acts as a shallow donor and moves off the cation site to become threefold oxygen coordinated. In all three oxides, Ccation exhibits modest formation energies, indicating that these species will be likely to incorporate. Our results indicate that C impurities are suitable donor dopants in these oxides and will contribute to background n -type conductivity if unintentionally present.

  2. Analysis of Donor Motivations in Living Donor Liver Transplantation

    PubMed Central

    Abdeldayem, Hesham; Kashkoush, Samy; Hegab, Bassem Soliman; Aziz, Amr; Shoreem, Hany; Saleh, Shereef

    2014-01-01

    Objectives: The introduction of the living donor liver transplantation (LDLT) in Egypt as in elsewhere, has raised important psychological conflicts and ethical questions. The objective of this study was to get better understanding of the potential donors’ motives toward LDLT. Methods: This study was conducted on consecutive 193 living-liver donors who underwent partial hepatectomy as donors for LDLT during the period between April 2003 and January 2013, at the National Liver Institute Menoufeyia University, Egypt. Potential donors were thoroughly evaluated preoperatively through a screening questionnaire and interviews as regard their demographic data, relationship to the potential recipient, and motives toward proceeding to surgery. They were assured that the information shared between them and the transplant center is confidential. Results: The donors’ mean age was 25.53 ± 6.39 years with a range of 18–45 years. Males represented 64.7% and females were 35.3%. The most common donors (32.1%, n = 62) were sons and daughters to their parents (sons: n = 43, daughters: n = 19) while parents to their offsprings represent 15% (mothers: n = 21, fathers: n = 8). Brothers and sisters represent 16.5% (brothers: n = 22, sisters: n = 10). Nephews and nieces giving their uncles or aunts were 14%. The number of wives donating to their husbands was 11 (5.7%). Interestingly, there was no single husband who donated his wife. Among the remaining donors, there were 11 cousins and 1 uncle. Unrelated donors were 20 (10.4%). Several factors seemed to contribute to motivation for donation: the seriousness of the potential recipient condition, the relationship and personal history of the donor to the potential recipient, the religious beliefs, the trust in the health care system, and family dynamics and obligations. Conclusion: Absolute absence of coercion on the living-liver donor’s motives may not be realistic because of the serious

  3. Blood Donation by Elderly Repeat Blood Donors

    PubMed Central

    Zeiler, Thomas; Lander-Kox, Jutta; Alt, Timo

    2014-01-01

    Summary Background Upper age limits for blood donors are intended to protect elderly blood donors from donor reactions. However, due to a lack of data about adverse reactions in elderly blood donors, upper age limits are arbitrary and vary considerably between different countries. Methods Here we present data from 171,231 voluntary repeat whole blood donors beyond the age of 68 years. Results Blood donations from repeat blood donors beyond the age of 68 years increased from 2,114 in 2005 to 38,432 in 2012 (from 0,2% to 4.2% of all whole blood donations). Adverse donor reactions in repeat donors decreased with age and were lower than in the whole group (0.26%), even in donors older than 71 years (0.16%). However, from the age of 68 years, the time to complete recovery after donor reactions increased. Donor deferrals were highest in young blood donors (21.4%), but increased again in elderly blood donors beyond 71 years (12.6%). Conclusion Blood donation by regular repeat blood donors older than 71 years may be safely continued. However, due to a lack of data for donors older than 75 years, blood donation in these donors should be handled with great caution. PMID:25254019

  4. Design and synthesis of molecular donors for solution-processed high-efficiency organic solar cells.

    PubMed

    Coughlin, Jessica E; Henson, Zachary B; Welch, Gregory C; Bazan, Guillermo C

    2014-01-21

    efficient molecular donors that achieve power conversion efficiencies greater than 7%. The molecules are based on a modular D(1)-A-D(2)-A-D(1) architecture, where A is an asymmetric electron deficient heterocycle, which allowed us to quickly access a library of compounds and develop structure-property-performance relationships. Modifications to the D1 and D2 units enable spectral coverage throughout the entire visible region and control of HOMO energy levels, while adjustments to the pendant alkyl substituents dictate molecular solubility, thermal transition temperatures, and solid-state organizational tendencies. Additionally, we discuss regiochemical considerations that highlight how individual atom placements can significantly influence molecular and subsequently device characteristics. Our results demonstrate the utility of this architecture for generating promising materials to be integrated into organic photovoltaic devices, call attention to areas for improvement, and provide guiding principles to sustain the steady increases necessary to move this technology forward. PMID:23984626

  5. Alcohols as hydrogen-donor solvents for treatment of coal

    DOEpatents

    Ross, David S.; Blessing, James E.

    1981-01-01

    A method for the hydroconversion of coal by solvent treatment at elevated temperatures and pressure wherein an alcohol having an .alpha.-hydrogen atom, particularly a secondary alcohol such as isopropanol, is utilized as a hydrogen donor solvent. In a particular embodiment, a base capable of providing a catalytically effective amount of the corresponding alcoholate anion under the solvent treatment conditions is added to catalyze the alcohol-coal reaction.

  6. Donor Hemovigilance with Blood Donation

    PubMed Central

    Diekamp, Ulrich; Gneißl, Johannes; Rabe, Angela; Kießig, Stephan T.

    2015-01-01

    Background Reports on unexpected events (UEs) during blood donation (BD) inadequately consider the role of technical UEs. Methods Defined local and systemic UEs were graded by severity; technical UEs were not graded. On January 1, 2008, E.B.P.S.-Logistics (EBPS) installed the UE module for plasma management software (PMS). Donor room physicians entered UEs daily into PMS. Medical directors reviewed entries quarterly. EBPS compiled data on donors, donations, and UEs from January 1, 2008 to June 30, 2011. Results 6,605 UEs were observed during 166,650 BDs from 57,622 donors for a corrected incidence of 4.30% (0.66% local, 1.59% systemic, 2.04% technical UEs). 2.96% of BDs were accompanied by one UE and 0.45% by >1 UE (2-4). 6.3% of donors donating blood for their first time, 3.5% of those giving blood for their second time, and 1.9% of donors giving their third or more BD experienced UEs. Most common UEs were: discontinued collections due to venous access problems, repeated venipuncture, and small hematomas. Severe circulatory UEs occurred at a rate of 16 per 100,000 BDs. Conclusions Technical UEs were common during BD. UEs accompanied first and second donations significantly more often than subsequent donations. PMID:26195932

  7. Quadrupolar effects on nuclear spins of neutral arsenic donors in silicon

    NASA Astrophysics Data System (ADS)

    Franke, David P.; Pflüger, Moritz P. D.; Mortemousque, Pierre-André; Itoh, Kohei M.; Brandt, Martin S.

    2016-04-01

    We present electrically detected electron nuclear double resonance measurements of the nuclear spins of ionized and neutral arsenic donors in strained silicon. In addition to a reduction of the hyperfine coupling, we find significant quadrupole interactions of the nuclear spin of the neutral donors of the order of 10 kHz. By comparing these to the quadrupole shifts due to crystal fields measured for the ionized donors, we identify the effect of the additional electron on the electric field gradient at the nucleus. This extra component is expected to be caused by the coupling to electric field gradients created due to changes in the electron wave function under strain.

  8. [Living donor transplantation. Surgical complications].

    PubMed

    Karam, Georges

    2008-02-01

    Although nephrectomy by open surgery is the most used technique for the extraction of kidney transplants in the living donor, nephrectomy under laparaoscopy is increasingly practiced. Laparoscopic nephrectomy is less invasive and performed under videoscopy control, after insufflation of the peritoneal cavity. Three to four incisions are done in order to enter the surgical instruments. The kidney is extracted through a horizontal sus-pubic incision. The exposition is either exclusively transperitoneal, retroperitoneal or hand assisted. The advantages of laparoscopy are esthetical, financial due to a shorter hospitalisation and a quicker recovery, as well a confort for the donor. The disadvantages are a longer warm ischemia time and possibly a higher risk of delayed graft function. Randomised studies having compared laparoscopy and open surgery in the living donor have not find any significant difference regarding the per- and perioperative in the complications. PMID:18160357

  9. The AdS particle [rapid communication

    NASA Astrophysics Data System (ADS)

    Ghosh, Subir

    2005-09-01

    In this Letter we have considered a relativistic Nambu-Goto model for a particle in AdS metric. With appropriate gauge choice to fix the reparameterization invariance, we recover the previously discussed [S. Ghosh, P. Pal, Phys. Lett. B 618 (2005) 243, arxiv:hep-th/0502192] "exotic oscillator". The Snyder algebra and subsequently the κ-Minkowski spacetime are also derived. Lastly we comment on the impossibility of constructing a non-commutative spacetime in the context of open string where only a curved target space is introduced.

  10. Utilization of Deceased Donor Kidneys to Initiate Living Donor Chains.

    PubMed

    Melcher, M L; Roberts, J P; Leichtman, A B; Roth, A E; Rees, M A

    2016-05-01

    We propose that some deceased donor (DD) kidneys be allocated to initiate nonsimultaneous extended altruistic donor chains of living donor (LD) kidney transplants to address, in part, the huge disparity between patients on the DD kidney waitlist and available donors. The use of DD kidneys for this purpose would benefit waitlisted candidates in that most patients enrolled in kidney paired donation (KPD) systems are also waitlisted for a DD kidney transplant, and receiving a kidney through the mechanism of KPD will decrease pressure on the DD pool. In addition, a LD kidney usually provides survival potential equal or superior to that of DD kidneys. If KPD chains that are initiated by a DD can end in a donation of an LD kidney to a candidate on the DD waitlist, the quality of the kidney allocated to a waitlisted patient is likely to be improved. We hypothesize that a pilot program would show a positive impact on patients of all ethnicities and blood types. PMID:26833680

  11. Valley-enhanced fast relaxation of gate-controlled donor qubits in silicon.

    PubMed

    Boross, Péter; Széchenyi, Gábor; Pályi, András

    2016-08-01

    Gate control of donor electrons near interfaces is a generic ingredient of donor-based quantum computing. Here, we address the question: how is the phonon-assisted qubit relaxation time T 1 affected as the electron is shuttled between the donor and the interface? We focus on the example of the 'flip-flop qubit' (Tosi et al arXiv:1509.08538v1), defined as a combination of the nuclear and electronic states of a phosphorus donor in silicon, promising fast electrical control and long dephasing times when the electron is halfway between the donor and the interface. We theoretically describe orbital relaxation, flip-flop relaxation, and electron spin relaxation. We estimate that the flip-flop qubit relaxation time can be of the order of 100 μs, 8 orders of magnitude shorter than the value for an on-donor electron in bulk silicon, and a few orders of magnitude shorter (longer) than the predicted inhomogeneous dephasing time (gate times). All three relaxation processes are boosted by (i) the nontrivial valley structure of the electron-phonon interaction, and (ii) the different valley compositions of the involved electronic states. PMID:27334425

  12. Probing crunching AdS cosmologies

    NASA Astrophysics Data System (ADS)

    Kumar, S. Prem; Vaganov, Vladislav

    2016-02-01

    Holographic gravity duals of deformations of CFTs formulated on de Sitter spacetime contain FRW geometries behind a horizon, with cosmological big crunch singularities. Using a specific analytically tractable solution within a particular single scalar truncation of {N}=8 supergravity on AdS4, we first probe such crunching cosmologies with spacelike radial geodesics that compute spatially antipodal correlators of large dimension boundary operators. At late times, the geodesics lie on the FRW slice of maximal expansion behind the horizon. The late time two-point functions factorise, and when transformed to the Einstein static universe, they exhibit a temporal non-analyticity determined by the maximal value of the scale factor ã max. Radial geodesics connecting antipodal points necessarily have de Sitter energy Ɛ ≲ ã max, while geodesics with Ɛ > ã max terminate at the crunch, the two categories of geodesics being separated by the maximal expansion slice. The spacelike crunch singularity is curved "outward" in the Penrose diagram for the deformed AdS backgrounds, and thus geodesic limits of the antipodal correlators do not directly probe the crunch. Beyond the geodesic limit, we point out that the scalar wave equation, analytically continued into the FRW patch, has a potential which is singular at the crunch along with complex WKB turning points in the vicinity of the FRW crunch. We then argue that the frequency space Green's function has a branch point determined by ã max which corresponds to the lowest quasinormal frequency.

  13. Donor-Appended N,C-Chelate Organoboron Compounds: Influence of Donor Strength on Photochromic Behaviour.

    PubMed

    Mellerup, Soren K; Yuan, Kang; Nguyen, Carmen; Lu, Zheng-Hong; Wang, Suning

    2016-08-22

    Recently, four-coordinated N,C-chelate organoboron compounds have been found to show many interesting photochemical transformations depending on the nature of their chelating framework. As such, the effect of substitution on the chelate ligand has been well-established and understood, but the impact of the aryl groups attached to the boron atom remains less clear. To investigate the effect of enhanced charge-transfer character, a series of new N,C-chelate organoboron compounds with donor-functionalized aryl groups have been synthesized and characterized using NMR, UV/Vis, and electrochemical methods. These compounds were found to possess bright and tunable charge-transfer luminescence which is dependent on the donor strength of the amino substituent. In addition, some of these compounds undergo photochromic switching, producing dark isomers of various colors. This work establishes that donor-functionalization of the aryl groups in N,C-chelate boron compounds is an effective strategy for tuning both the photophysical and photochemical properties of such systems. The new findings also help elucidate the influence of electronic structure on the photoreactivity of N,C-chelate organoboron compounds which appears to be as important as steric crowding around the boron atom. PMID:27460971

  14. Documented deaths of hepatic lobe donors for living donor liver transplantation.

    PubMed

    Trotter, James F; Adam, Rene; Lo, Chung Mau; Kenison, Jeremy

    2006-10-01

    The actual risk of death in hepatic lobe donors for living donor liver transplantation (LDLT) is unknown because of the lack of a comprehensive database. In the absence of a definitive estimate of the risk of donor death, the medical literature has become replete with anecdotal reports of donor deaths, many of which cannot be substantiated. Because donor death is one of the most important outcomes of LDLT, we performed a comprehensive survey of the medical and lay literature to provide a referenced source of worldwide donor deaths. We reviewed all published articles from the medical literature on LDLT and searched the lay literature for donor deaths from 1989 to February 2006. We classified each death as "definitely," "possibly," or "unlikely" related to donor surgery. We identified 19 donor deaths (and one additional donor in a chronic vegetative state). Thirteen deaths and the vegetative donor were "definitely," 2 were "possibly," and 4 were "unlikely" related to donor surgery. The estimated rate of donor death "definitely" related to donor surgery is 0.15%. The rate of donor death which is "definitely" or "possibly" related to the donor surgery is 0.20%. This analysis provides a source document of all identifiable living liver donor deaths, provides a better estimate of donor death rate, and may provide an impetus for centers with unreported deaths to submit these outcomes to the liver transplantation community. PMID:16952175

  15. Single-Donor Leukophoretic Technique

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.

    1977-01-01

    Leukocyte separation-and-retrieval device utilizes granulocyte and monocyte property of leukoadhesion to glass surfaces as basis of their separation from whole blood. Device is used with single donor technique and has application in biological and chemical processing, veterinary research and clinical care.

  16. Physician Migration: Donor Country Impact

    ERIC Educational Resources Information Center

    Aluwihare, A. P. R.

    2005-01-01

    Physician migration from the developing to developed region of a country or the world occurs for reasons of financial, social, and job satisfaction. It is an old phenomenon that produces many disadvantages for the donor region or nation. The difficulties include inequities with the provision of health services, financial loss, loss of educated…

  17. Donor Properties of a New Class of Guanidinate Ligands Possessing Ketimine Backbones: A Comparative Study Using Iron.

    PubMed

    Maity, Arnab K; Metta-Magaña, Alejandro J; Fortier, Skye

    2015-10-19

    Addition of 1 equiv of LiN═C(t)Bu2 or LiN═Ad (Ad = 2-adamantyl) to the aryl carbodiimide C(NDipp)2 (Dipp = 2,6-diisopropylphenyl) readily generates the lithium ketimine-guanidinates Li(THF)2[(X)C(NDipp)2] (X = N═C(t)Bu2 (1-(t)Bu), N═Ad (1-Ad)) in excellent yields. These new ligands can be readily metalated with iron to give the N,N'-bidentate chelates [{(X)C(NDipp)2}FeBr]2 (X = N═C(t)Bu2 (5-(t)Bu), N═Ad (5-Ad)), in which the ketimines behave as noncoordinating backbone substituents. In an effort to understand the potential electronic contributions of the ketimine group to the ligand architecture, a thorough structural and electronic study was conducted comparing the features and properties of 5-(t)Bu and 5-Ad to their guanidinate and amidinate analogues [{(X)C(NDipp)2}FeBr]2 (X = (i)Pr2N (6), (t)Bu (7)). Solid-state structural analyses indicate little electronic contribution from the N-ketimine nitrogen atom, while solution-phase electronic absorption spectra of 5-(t)Bu and 5-Ad are qualitatively similar to the amidinate complex 7. Yet, electrochemical measurements do show the donor properties of the ketimine-guanidinate in 5-(t)Bu to be intermediate between its guanidinate and amidinate counterparts in 6 and 7. Preliminary reactivity studies also show that the reduction chemistry of 5-(t)Bu diverges significantly from that of 6 and 7. Treatment of 5-(t)Bu with excess magnesium or 1 equiv of KC8 leads to the formation of the Fe(I)-Fe(I) complex [{μ-((t)Bu2C═N)C(NDipp)2}2Fe2] (11), which possesses an exceedingly short Fe═Fe bond (2.1516(5) Å), while neither 6 nor 7 forms dinuclear complexes upon reduction. This result demonstrates that ketimine-guanidinates do not simply behave as amidinate variants but can contribute to distinctive metal chemistry of their own. PMID:26419613

  18. Radio frequency reflectometry and charge sensing of a precision placed donor in silicon

    NASA Astrophysics Data System (ADS)

    Hile, Samuel J.; House, Matthew G.; Peretz, Eldad; Verduijn, Jan; Widmann, Daniel; Kobayashi, Takashi; Rogge, Sven; Simmons, Michelle Y.

    2015-08-01

    We compare charge transitions on a deterministic single P donor in silicon using radio frequency reflectometry measurements with a tunnel coupled reservoir and DC charge sensing using a capacitively coupled single electron transistor (SET). By measuring the conductance through the SET and comparing this with the phase shift of the reflected radio frequency (RF) excitation from the reservoir, we can discriminate between charge transfer within the SET channel and tunneling between the donor and reservoir. The RF measurement allows observation of donor electron transitions at every charge degeneracy point in contrast to the SET conductance signal where charge transitions are only observed at triple points. The tunnel coupled reservoir has the advantage of a large effective lever arm (˜35%), allowing us to independently extract a neutral donor charging energy ˜62 ± 17 meV. These results demonstrate that we can replace three terminal transistors by a single terminal dispersive reservoir, promising for high bandwidth scalable donor control and readout.

  19. Surface code architecture for donors and dots in silicon with imprecise and nonuniform qubit couplings

    NASA Astrophysics Data System (ADS)

    Pica, G.; Lovett, B. W.; Bhatt, R. N.; Schenkel, T.; Lyon, S. A.

    2016-01-01

    A scaled quantum computer with donor spins in silicon would benefit from a viable semiconductor framework and a strong inherent decoupling of the qubits from the noisy environment. Coupling neighboring spins via the natural exchange interaction according to current designs requires gate control structures with extremely small length scales. We present a silicon architecture where bismuth donors with long coherence times are coupled to electrons that can shuttle between adjacent quantum dots, thus relaxing the pitch requirements and allowing space between donors for classical control devices. An adiabatic SWAP operation within each donor/dot pair solves the scalability issues intrinsic to exchange-based two-qubit gates, as it does not rely on subnanometer precision in donor placement and is robust against noise in the control fields. We use this SWAP together with well established global microwave Rabi pulses and parallel electron shuttling to construct a surface code that needs minimal, feasible local control.

  20. Valley-enhanced fast relaxation of gate-controlled donor qubits in silicon

    NASA Astrophysics Data System (ADS)

    Boross, Péter; Széchenyi, Gábor; Pályi, András

    2016-08-01

    Gate control of donor electrons near interfaces is a generic ingredient of donor-based quantum computing. Here, we address the question: how is the phonon-assisted qubit relaxation time T 1 affected as the electron is shuttled between the donor and the interface? We focus on the example of the ‘flip-flop qubit’ (Tosi et al arXiv:1509.08538v1), defined as a combination of the nuclear and electronic states of a phosphorus donor in silicon, promising fast electrical control and long dephasing times when the electron is halfway between the donor and the interface. We theoretically describe orbital relaxation, flip-flop relaxation, and electron spin relaxation. We estimate that the flip-flop qubit relaxation time can be of the order of 100 μs, 8 orders of magnitude shorter than the value for an on-donor electron in bulk silicon, and a few orders of magnitude shorter (longer) than the predicted inhomogeneous dephasing time (gate times). All three relaxation processes are boosted by (i) the nontrivial valley structure of the electron–phonon interaction, and (ii) the different valley compositions of the involved electronic states.

  1. AdS3: the NHEK generation

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; Heurtier, Lucien; Puhm, Andrea

    2016-05-01

    It was argued in [1] that the five-dimensional near-horizon extremal Kerr (NHEK) geometry can be embedded in String Theory as the infrared region of an infinite family of non-supersymmetric geometries that have D1, D5, momentum and KK monopole charges. We show that there exists a method to embed these geometries into asymptotically- {AdS}_3× {S}^3/{{Z}}_N solutions, and hence to obtain infinite families of flows whose infrared is NHEK. This indicates that the CFT dual to the NHEK geometry is the IR fixed point of a Renormalization Group flow from a known local UV CFT and opens the door to its explicit construction.

  2. Shadows, currents, and AdS fields

    SciTech Connect

    Metsaev, R. R.

    2008-11-15

    Conformal totally symmetric arbitrary spin currents and shadow fields in flat space-time of dimension greater than or equal to four are studied. A gauge invariant formulation for such currents and shadow fields is developed. Gauge symmetries are realized by involving the Stueckelberg fields. A realization of global conformal boost symmetries is obtained. Gauge invariant differential constraints for currents and shadow fields are obtained. AdS/CFT correspondence for currents and shadow fields and the respective normalizable and non-normalizable solutions of massless totally symmetric arbitrary spin AdS fields are studied. The bulk fields are considered in a modified de Donder gauge that leads to decoupled equations of motion. We demonstrate that leftover on shell gauge symmetries of bulk fields correspond to gauge symmetries of boundary currents and shadow fields, while the modified de Donder gauge conditions for bulk fields correspond to differential constraints for boundary conformal currents and shadow fields. Breaking conformal symmetries, we find interrelations between the gauge invariant formulation of the currents and shadow fields, and the gauge invariant formulation of massive fields.

  3. Enantioselective Intramolecular C-H Insertion of Donor and Donor/Donor Carbenes by a Nondiazo Approach.

    PubMed

    Zhu, Dong; Ma, Jun; Luo, Kui; Fu, Hongguang; Zhang, Li; Zhu, Shifa

    2016-07-11

    The first enantioselective intramolecular C-H insertion and cyclopropanation reactions of donor- and donor/donor-carbenes by a nondiazo approach are reported. The reactions were conducted in a one-pot manner without slow addition and provided the desired dihydroindole, dihydrobenzofuran, tetrahydrofuran, and tetrahydropyrrole derivatives with up to 99 % ee and 100 % atom efficiency. PMID:27265896

  4. Theory of one and two donors in silicon.

    PubMed

    Saraiva, A L; Baena, A; Calderón, M J; Koiller, Belita

    2015-04-22

    We provide here a roadmap for modeling silicon nano-devices with one or two group V donors (D). We discuss systems containing one or two electrons, that is, D(0), D(-), D(+)(2) and D(0)(2) centers. The impact of different levels of approximation is discussed. The most accurate instances--for which we provide quantitative results--are within multivalley effective mass including the central cell correction and a configuration interaction account of the electron-electron correlations. We also derive insightful, yet less accurate, analytical approximations and discuss their validity and limitations--in particular, for a donor pair, we discuss the single orbital LCAO method, the Hückel approximation and the Hubbard model. Finally, we connect these results with recent experiments on devices with few dopants. PMID:25783857

  5. Theory of one and two donors in silicon

    NASA Astrophysics Data System (ADS)

    Saraiva, A. L.; Baena, A.; Calderón, M. J.; Koiller, Belita

    2015-04-01

    We provide here a roadmap for modeling silicon nano-devices with one or two group V donors (D). We discuss systems containing one or two electrons, that is, D0, D-, D_2+ and D_20 centers. The impact of different levels of approximation is discussed. The most accurate instances—for which we provide quantitative results—are within multivalley effective mass including the central cell correction and a configuration interaction account of the electron-electron correlations. We also derive insightful, yet less accurate, analytical approximations and discuss their validity and limitations—in particular, for a donor pair, we discuss the single orbital LCAO method, the Hückel approximation and the Hubbard model. Finally, we connect these results with recent experiments on devices with few dopants.

  6. Charge transport and exciton dissociation in organic solar cells consisting of dipolar donors mixed with C70

    NASA Astrophysics Data System (ADS)

    Griffith, Olga L.; Liu, Xiao; Amonoo, Jojo A.; Djurovich, Peter I.; Thompson, Mark E.; Green, Peter F.; Forrest, Stephen R.

    2015-08-01

    We investigate dipolar donor materials mixed with a C70 acceptor in an organic photovoltaic (OPV) cell. Dipolar donors that have donor-acceptor-acceptor (d-a-a') structure result in high conductivity pathways due to close coupling between neighboring molecules in the mixed films. We analyze the charge transfer properties of the dipolar donor:C70 mixtures and corresponding neat donors using a combination of time-resolved electroluminescence from intermolecular polaron pair states and conductive tip atomic force microscopy, from which we infer that dimers of the d-a-a' donors tend to form a continuous network of nanocrystalline clusters within the blends. Additional insights are provided by quantum-mechanical calculations of hole transfer coupling and hopping rates between donor molecules using nearest-neighbor donor packing motifs taken from crystal structural data. The approximation using only nearest-neighbor interactions leads to good agreement between donor hole hopping rates and the conductive properties of the donor:C70 blends. This represents a significant simplification from requiring details of the nano- and mesoscale morphologies of thin films to estimate their electronic characteristics. Using these dipolar donors, we obtain a maximum power conversion efficiency of 9.6 ±0.5 % under 1 sun, AM1.5G simulated illumination for an OPV comprised of an active layer containing a dipolar donor mixed with C70.

  7. New biologically active hydrogen sulfide donors.

    PubMed

    Roger, Thomas; Raynaud, Francoise; Bouillaud, Frédéric; Ransy, Céline; Simonet, Serge; Crespo, Christine; Bourguignon, Marie-Pierre; Villeneuve, Nicole; Vilaine, Jean-Paul; Artaud, Isabelle; Galardon, Erwan

    2013-11-25

    Generous donors: The dithioperoxyanhydrides (CH3 COS)2 , (PhCOS)2 , CH3 COSSCO2 Me and PhCOSSCO2 Me act as thiol-activated hydrogen sulfide donors in aqueous buffer solution. The most efficient donor (CH3 COS)2 can induce a biological response in cells, and advantageously replace hydrogen sulfide in ex vivo vascular studies. PMID:24115650

  8. 21 CFR 630.6 - Donor notification.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... GENERAL REQUIREMENTS FOR BLOOD, BLOOD COMPONENTS, AND BLOOD DERIVATIVES § 630.6 Donor notification. (a) Notification of donors. You, an establishment that collects blood or blood components, must make reasonable... of donation of blood or blood components that the donor should not donate in the future; (3)...

  9. The nature of excited states in dipolar donor/fullerene complexes for organic solar cells: evolution with the donor stack size.

    PubMed

    Shen, Xingxing; Han, Guangchao; Yi, Yuanping

    2016-06-21

    Electronic delocalization at donor/acceptor (D/A) interfaces can play an important role in photocurrent generation for organic solar cells. Here, we have investigated the nature of local excited and interfacial charge transfer (CT) states in model complexes including one to four anti-parallel stacking dipolar donor (DTDCTB) molecules and one fullerene (C60) molecule by means of density functional theory (DFT) and time-dependent DFT (TDDFT). For all the donor-to-acceptor CT states, despite the number of DTDCTB molecules in the complexes, the hole is mainly localized on a single DTDCTB, and moves farther away from C60 for the energy higher level. However, the highest occupied molecular orbitals (HOMOs) and the excitonic states (EX) including the bright and dark EX are delocalized over the whole donor stacks in the complexes. This implies that the formation of ordered DTDCTB arrangements can substantially shorten the exciton diffusion process and facilitate ultrafast charge generation. Interestingly, owing to strong intermolecular Coulomb attraction, the donor-to-donor CT states are situated below the local excited states, but can approach the donor-to-acceptor CT states, indicating a weak role as charge traps. Our work would be helpful for understanding the electronic delocalization effects in organic solar cells. PMID:27241621

  10. Fluorescence of Dendrons based on Donors and Accepter with Different Linkages

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Wu, Y.; Modarelli, D. A.; Parquette, J. R.; Epstein, A. J.

    2007-03-01

    Earlier indirect studies utilizing wavelength and bias spectra of photocurrent in simple photovoltaic cells demonstrated charge transfer (CT) in 1st generation dendritic macromolecules prepared using two different donor (tetraphenylporphyrin) groups bound to an accepter (naphthalenediimide) group. We report here fluorescence for solid-state films and solutions of these donor and dendrons. Using 460nm excitation, fluorescence (660nm, 715nm) in solution samples can be observed for both donor and dendron but fluorescence in the solid state can be observable only in donor sample due to fluorescence quenching within the dendron. This demonstrates intermolecular CT from donor to accepter. Fluorescence lifetime measurements (460nm 1.5nsec FWHM pulse excitation) of donor and dendron solutions show that it depends on length of the linkage between donor and accepter. This shows a direct relaxation path from donor to accepter (intramolecular CT). The separation of the exciton to separate electron and on the donor and acceptor portions of the dendron would open the potential for its use in photovoltaic application. Supported in part by DOE #DE-FG02-01ER45931

  11. Hyperbilirubinemia in normal healthy donors

    PubMed Central

    Arora, Veena; Kulkarni, R. K.; Cherian, Susan; Pillai, Raji; Shivali, M.

    2009-01-01

    The present study was carried out in B.A.R.C. Hospital Blood Bank over a span of five years, and includes 2734 donors. All the bags were screened for HIV, HBsAg, HCV and VDRL and the plasma in the pilot tubes of the blood bags was observed to detect any abnormality in color. In 27 cases plasma was found to be icteric and liver function tests were carried out on these samples. Two donors showed higher SGPT level, and were excluded. No significant increases in liver enzymes were recorded in the others. Causes of icteric plasma in these apparently healthy donors are discussed. Differential diagnosis includes Gilbert’s disease, hemolytic anemia, drug-induced anemia and other hepatic causes of hyperbilirubinemia, of which Gilbert’s disease is most probable cause with a prevalence of 0.91% in our population. As there are no studies to document the safety of the recipients receiving such abnormal colored plasma as well as to document the hazards in its transfusion, the question arises whether to transfuse such units or not. This study highlights this dilemma. A reassessment of existing policies and regulations is merited. PMID:20808649

  12. Changing Pattern of Donor Selection Criteria in Deceased Donor Liver Transplant: A Review of Literature

    PubMed Central

    Routh, Dronacharya; Naidu, Sudeep; Sharma, Sanjay; Ranjan, Priya; Godara, Rajesh

    2013-01-01

    During the last couple of decades, with standardization and progress in surgical techniques, immunosuppression and post liver transplantation patient care, the outcome of liver transplantation has been optimized. However, the principal limitation of transplantation remains access to an allograft. The number of patients who could derive benefit from liver transplantation markedly exceeds the number of available deceased donors. The large gap between the growing list of patients waiting for liver transplantation and the scarcity of donor organs has fueled efforts to maximize existing donor pool and identify new avenues. This article reviews the changing pattern of donor for liver transplantation using grafts from extended criteria donors (elderly donors, steatotic donors, donors with malignancies, donors with viral hepatitis), donation after cardiac death, use of partial grafts (split liver grafts) and other suboptimal donors (hypernatremia, infections, hypotension and inotropic support). PMID:25755521

  13. Electrical current through individual pairs of phosphorus donor atoms and silicon dangling bonds

    PubMed Central

    Ambal, K.; Rahe, P.; Payne, A.; Slinkman, J.; Williams, C. C.; Boehme, C.

    2016-01-01

    Nuclear spins of phosphorus [P] donor atoms in crystalline silicon are among the most coherent qubits found in nature. For their utilization in scalable quantum computers, distinct donor electron wavefunctions must be controlled and probed through electrical coupling by application of either highly localized electric fields or spin-selective currents. Due to the strong modulation of the P-donor wavefunction by the silicon lattice, such electrical coupling requires atomic spatial accuracy. Here, the spatially controlled application of electrical current through individual pairs of phosphorus donor electron states in crystalline silicon and silicon dangling bond states at the crystalline silicon (100) surface is demonstrated using a high‐resolution scanning probe microscope operated under ultra‐high vacuum and at a temperature of 4.3K. The observed pairs of electron states display qualitatively reproducible current-voltage characteristics with a monotonous increase and intermediate current plateaus. PMID:26758087

  14. Donor wave functions delocalization in silicon nanowires: the peculiar [011] orientation.

    PubMed

    Petretto, Guido; Debernardi, Alberto; Fanciulli, Marco

    2013-10-01

    The localization of the donor electron wave function can be of key importance in various silicon applications, since for example it determines the interactions between neighboring donors. Interestingly, the physical confinement of the electrons in quasi-one-dimensional nanostructures, like silicon nanowires, noticeably affects this property. Using fully ab initio calculations, we show that the delocalization of the donor electron wave function along the axis of a nanowire is much greater in [011] oriented nanowires for phosphorus and selenium donors. We also demonstrate that its value can be controlled by applying a compressive or tensile uniaxial strain. Finally, we discuss the implications of these features from both an experimental and a theoretical point of view. PMID:23984940

  15. Photoelectric covalent organic frameworks: converting open lattices into ordered donor-acceptor heterojunctions.

    PubMed

    Chen, Long; Furukawa, Ko; Gao, Jia; Nagai, Atsushi; Nakamura, Toshikazu; Dong, Yuping; Jiang, Donglin

    2014-07-16

    Ordered one-dimensional open channels represent the typical porous structure of two-dimensional covalent organic frameworks (COFs). Here we report a general synthetic strategy for converting these open lattice structures into ordered donor-acceptor heterojunctions. A three-component topological design scheme was explored to prepare electron-donating intermediate COFs, which upon click reaction were transformed to photoelectric COFs with segregated donor-acceptor alignments, whereas electron-accepting buckyballs were spatially confined within the nanochannels via covalent anchoring on the channel walls. The donor-acceptor heterojunctions trigger photoinduced electron transfer and allow charge separation with radical species delocalized in the π-arrays, whereas the charge separation efficiency was dependent on the buckyball content. This new donor-acceptor strategy explores both skeletons and pores of COFs for charge separation and photoenergy conversion. PMID:24963896

  16. Low temperature pulsed EPR study at 34 GHz of the triplet states of the primary electron donor P865 and the carotenoid in native and mutant bacterial reaction centers of Rhodobacter sphaeroides†

    PubMed Central

    Marchanka, Aliaksandr; Paddock, Mark; Lubitz, Wolfgang; van Gastel, Maurice

    2008-01-01

    The photosynthetic charge separation in bacterial reaction centers occurs predominantly along one of two nearly symmetric branches of cofactors. Low temperature EPR spectra of the triplet states of the chlorophyll and carotenoid pigments in the reaction center of Rb. sphaeroides R-26.1, 2.4.1 and two double mutants GD(M203)/AW(M260) and LH(M214)/AW(M260) have been recorded at 34 GHz to investigate the relative activities of the ‘A’ and ‘B’ branches. The triplet states are found to derive from radical pair and intersystem crossing mechanisms and the rates of formation are anisotropic. The former mechanism is operative for Rb. sphaeroides R-26.1, 2.4.1 and mutant GD(M203)/AW(M260) and indicates that A-branch charge separation proceeds at temperatures down to 10 K. The latter mechanism, derived from the spin polarization and operative for mutant LH(M214)/AW(M260) indicates that no long-lived radical pairs are formed upon direct excitation of the primary donor and that virtually no charge separation at the B-branch occurs at low temperatures. When the temperature is raised above 30 K, B-branch charge separation is observed, which is at most 1% of A-branch charge separation. B-branch radical pair formation can be induced at 10 K with low yield by direct excitation of the bacteriopheophytin of the B-branch at 590 nm. The formation of a carotenoid triplet state is observed. The rate of formation depends on the orientation of the reaction center in the magnetic field and is caused by a magnetic field dependence of the oscillation frequency by which the singlet and triplet radical pair precursor states interchange. Combination of these findings with literature data provides strong evidence that the thermally activated transfer step on the B-branch occurs between the primary donor, P865, and the accessory bacteriochlorophyll, whereas this step is barrierless down to 10 K along the A-branch. PMID:18052205

  17. Low-temperature pulsed EPR study at 34 GHz of the triplet states of the primary electron Donor P865 and the carotenoid in native and mutant bacterial reaction centers of Rhodobacter sphaeroides.

    PubMed

    Marchanka, Aliaksandr; Paddock, Mark; Lubitz, Wolfgang; van Gastel, Maurice

    2007-12-25

    The photosynthetic charge separation in bacterial reaction centers occurs predominantly along one of two nearly symmetric branches of cofactors. Low-temperature EPR spectra of the triplet states of the chlorophyll and carotenoid pigments in the reaction center of Rhodobacter sphaeroides R-26.1, 2.4.1 and two double-mutants GD(M203)/AW(M260) and LH(M214)/AW(M260) have been recorded at 34 GHz to investigate the relative activities of the "A" and "B" branches. The triplet states are found to derive from radical pair and intersystem crossing mechanisms, and the rates of formation are anisotropic. The former mechanism is operative for Rb. sphaeroides R-26.1, 2.4.1, and mutant GD(M203)/AW(M260) and indicates that A-branch charge separation proceeds at temperatures down to 10 K. The latter mechanism, derived from the spin polarization and operative for mutant LH(M214)/AW(M260), indicates that no long-lived radical pairs are formed upon direct excitation of the primary donor and that virtually no charge separation at the B-branch occurs at low temperatures. When the temperature is raised above 30 K, B-branch charge separation is observed, which is at most 1% of A-branch charge separation. B-branch radical pair formation can be induced at 10 K with low yield by direct excitation of the bacteriopheophytin of the B-branch at 590 nm. The formation of a carotenoid triplet state is observed. The rate of formation depends on the orientation of the reaction center in the magnetic field and is caused by a magnetic field dependence of the oscillation frequency by which the singlet and triplet radical pair precursor states interchange. Combination of these findings with literature data provides strong evidence that the thermally activated transfer step on the B-branch occurs between the primary donor, P865, and the accessory bacteriochlorophyll, whereas this step is barrierless down to 10 K along the A-branch. PMID:18052205

  18. Artificial corneas versus donor corneas for repeat corneal transplants

    PubMed Central

    Akpek, Esen K; Alkharashi, Majed; Hwang, Frank S; Ng, Sueko M; Lindsley, Kristina

    2014-01-01

    Background Individuals who have failed one or more full thickness penetrating keratoplasties (PKs) may be offered repeat corneal surgery using an artificial or donor cornea. An artificial or prosthetic cornea is known as a keratoprosthesis. Both donor and artificial corneal transplantations involve removal of the diseased and opaque recipient cornea (or the previously failed cornea) and replacement with another donor or prosthetic cornea. Objectives To assess the effectiveness of artificial versus donor corneas in individuals who have had one or more failed donor corneal transplantations. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2013, Issue 10), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to November 2013), EMBASE (January 1980 to November 2013), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to November 2013), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 27 November 2013. Selection criteria Two review authors independently assessed reports from the electronic searches to identify randomized controlled trials (RCTs) or controlled clinical trials (CCTs). We resolved discrepancies by discussion or consultation with a third review author. Data collection and analysis For discussion purposes, we assessed findings from observational cohort studies and non-comparative case series. No data synthesis was performed. Main results We did not identify any RCTs or CCTs comparing artificial corneas with donor corneas for repeat corneal transplantations. Authors

  19. Photon assisted tunneling in pairs of silicon donors

    NASA Astrophysics Data System (ADS)

    Litvinenko, K. L.; Pavlov, S. G.; Hübers, H.-W.; Abrosimov, N. V.; Pidgeon, C. R.; Murdin, B. N.

    2014-06-01

    Shallow donors in silicon are favorable candidates for the implementation of solid-state quantum computer architectures because of the promising combination of atomiclike coherence properties and scalability from the semiconductor manufacturing industry. Quantum processing schemes require (among other things) controlled information transfer for readout. Here we demonstrate controlled electron tunneling at 10 K from P to Sb impurities and vice versa with the assistance of resonant terahertz photons.

  20. Critical Factors Associated With Missing Follow-Up Data for Living Kidney Donors in the United States.

    PubMed

    Schold, J D; Buccini, L D; Rodrigue, J R; Mandelbrot, D; Goldfarb, D A; Flechner, S M; Kayler, L K; Poggio, E D

    2015-09-01

    Follow-up care for living kidney donors is an important responsibility of the transplant community. Prior reports indicate incomplete donor follow-up information, which may reflect both donor and transplant center factors. New UNOS regulations require reporting of donor follow-up information by centers for 2 years. We utilized national SRTR data to evaluate donor and center-level factors associated with completed follow-up for donors 2008-2012 (n = 30 026) using multivariable hierarchical logistic models. We compared center follow-up compliance based on current UNOS standards using adjusted and unadjusted models. Complete follow-up at 6, 12, and 24 months was 67%, 60%, and 50% for clinical and 51%, 40%, and 30% for laboratory data, respectively, but have improved over time. Donor risk factors for missing laboratory data included younger age 18-34 (adjusted odds ratio [AOR] = 2.03, 1.58-2.60), black race (AOR = 1.17, 1.05-1.30), lack of insurance (AOR = 1.25, 1.15-1.36), lower educational attainment (AOR = 1.19, 1.06-1.34), >500 miles to center (AOR = 1.78, 1.60-1.98), and centers performing >40 living donor transplants/year (AOR = 2.20, 1.21-3.98). Risk-adjustment moderately shifted classification of center compliance with UNOS standards. There is substantial missing donor follow-up with marked variation by donor characteristics and centers. Although follow-up has improved over time, targeted efforts are needed for donors with selected characteristics and at centers with higher living donor volume. Adding adjustment for donor factors to policies regulating follow-up may function to provide more balanced evaluation of center efforts. PMID:25902877

  1. Donor free radical explosive composition

    DOEpatents

    Walker, Franklin E. [15 Way Points Rd., Danville, CA 94526; Wasley, Richard J. [4290 Colgate Way, Livermore, CA 94550

    1980-04-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising an organic compound or mixture of organic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and which is not an explosive, or an inorganic compound or mixture of inorganic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and selected from ammonium or alkali metal persulfates.

  2. Spectral and intramolecular charge transfer properties in terminal donor/acceptor-substituted all-trans-α,ω-diphenylpolyenes and α,ω-diphenylpolyynes.

    PubMed

    Ma, Xiaonan; Yan, Linyin; Wang, Xuefei; Guo, Qianjin; Xia, Andong

    2011-10-14

    The absorption spectra and intramolecular charge transfer (CT) properties of terminal donor/acceptor-substituted all-trans-α,ω-diphenylpolyenes (DPE) and α,ω-diphenylpolyynes (DPY) molecules with different conjugated bridge length and substitution modes were investigated by using quantum chemical calculations. We calculated the ground state structures and energy of two series of terminal donor/acceptor DPE and DPY by DFT method. The dependence of conjugation length and substitution modes of the electronic absorption spectra was obtained by TDDFT calculation. The hybrid-GGA XC-functional PBE0 employed in this work was selected from several functionals by comparing the calculated electronic spectral data with experimental value. The CIS-based generalized Mulliken-Hush (GMH) approach was further used to calculate coupling values H(AD) of the CT process. The calculation shows that both the HOMO-LUMO energy gaps and average bond length alternations between unsaturated multiple (C≡C and C=C) and saturated single bonds (C-C) decrease regularly with the extension of conjugation. The effective conjugated length (ECL) of DPE and DPY with the same order MM > MP/PM > PP is found together with the regular red shift of the electronic absorption spectra with the extension of conjugation, resulting from the different π-electron delocalization and conjugation efficiency. The GMH analysis further suggests that the CT process in both DPE and DPY is predominated by the through-bond mechanism. The remarkable difference of the conjugated length dependence of squared CT coupling between substituted DPE and DPY is the result of the energetic matching degree of the frontier molecular orbitals between donor/acceptor and the conjugated bridge. PMID:21879052

  3. Design directed self-assembly of donor-acceptor polymers.

    PubMed

    Marszalek, Tomasz; Li, Mengmeng; Pisula, Wojciech

    2016-09-21

    Donor-acceptor polymers with an alternating array of donor and acceptor moieties have gained particular attention during recent years as active components of organic electronics. By implementation of suitable subunits within the conjugated backbone, these polymers can be made either electron-deficient or -rich. Additionally, their band gap and light absorption can be precisely tuned for improved light-harvesting in solar cells. On the other hand, the polymer design can also be modified to encode the desired supramolecular self-assembly in the solid-state that is essential for an unhindered transport of charge carriers. This review focuses on three major factors playing a role in the assembly of donor-acceptor polymers on surfaces which are (1) nature, geometry and substitution position of solubilizing alkyl side chains, (2) shape of the conjugated polymer defined by the backbone curvature, and (3) molecular weight which determines the conjugation length of the polymer. These factors adjust the fine balance between attractive and repulsive forces and ensure a close polymer packing important for an efficient charge hopping between neighboring chains. On the microscopic scale, an appropriate domain formation with a low density of structural defects in the solution deposited thin film is crucial for the charge transport. The charge carrier transport through such thin films is characterized by field-effect transistors as basic electronic elements. PMID:27440174

  4. Gamete donors' expectations and experiences of contact with their donor offspring

    PubMed Central

    Kirkman, Maggie; Bourne, Kate; Fisher, Jane; Johnson, Louise; Hammarberg, Karin

    2014-01-01

    STUDY QUESTION What are the expectations and experiences of anonymous gamete donors about contact with their donor offspring? SUMMARY ANSWER Rather than consistently wanting to remain distant from their donor offspring, donors' expectations and experiences of contact with donor offspring ranged from none to a close personal relationship. WHAT IS KNOWN ALREADY Donor conception is part of assisted reproduction in many countries, but little is known about its continuing influence on gamete donors' lives. STUDY DESIGN, SIZE, DURATION A qualitative research model appropriate for understanding participants' views was employed; semi-structured interviews were conducted during January–March 2013. PARTICIPANTS/MATERIALS, SETTING, METHODS Before 1998, gamete donors in Victoria, Australia, were subject to evolving legislation that allowed them to remain anonymous or (from 1988) to consent to the release of identifying information. An opportunity to increase knowledge of donors' expectations and experiences of contact with their donor offspring recently arose in Victoria when a recommendation was made to introduce mandatory identification of donors on request from their donor offspring, with retrospective effect. Pre-1998 donors were invited through an advertising campaign to be interviewed about their views, experiences and expectations; 36 sperm donors and 6 egg donors participated. MAIN RESULTS AND THE ROLE OF CHANCE This research is unusual in achieving participation by donors who would not normally identify themselves to researchers or government inquiries. Qualitative thematic analysis revealed that most donors did not characterize themselves as parents of their donor offspring. Donors' expectations and experiences of contact with donor offspring ranged from none to a close personal relationship. LIMITATIONS, REASONS FOR CAUTION It is not possible to establish whether participants were representative of all pre-1998 donors. WIDER IMPLICATIONS OF THE FINDINGS Anonymous

  5. Aromatic fumaronitrile core-based donor-linker-acceptor-linker-donor (D-pi-A-pi-D) compounds: synthesis and photophysical properties.

    PubMed

    Panthi, Krishna; Adhikari, Ravi M; Kinstle, Thomas H

    2010-04-01

    A new class of aromatic fumaronitrile core-based compounds with different donors and linkers has been synthesized and well characterized. Compounds 1 and 2 have indole and 2-phenylindole groups as electron donors, respectively. Compounds 3 and 4 have a diphenylamino group as the electron donor, and compound 5 has a 3,6-di-tert-butylcarbazole group as an electron donor. These compounds absorb in the blue-to-green region and emit in the blue-to-red region depending on the electron donor, linker, and solvents. The quantum yields of fluorescence of these compounds in solution are measured and found to be moderate, but in solid states, they are high. These compounds display strong emission solvatochromism that is reflected by a large shift in their fluorescence emission maxima on changing the solvents. This change is accompanied by a successive decrease in fluorescence intensity. The fluorescence lifetimes of these compounds are measured in different solvent and found to vary from <1 to 7 ns. Optical switching of these compounds with solvents, concentration, and excitation energy have been studied. The correlation between the functional group and optical properties has been established to some extent. The ability of these compounds to function as colorimetric and luminescence pH sensors is demonstrated with color changes and luminescence switching upon the addition of trifluoroacetic acid. The potentiality of these compounds for application in optoelectronics has been optically assessed. PMID:20235549

  6. Enhancement in Organic Photovoltaic Efficiency through the Synergistic Interplay of Molecular Donor Hydrogen Bonding and -Stacking

    DOE PAGESBeta

    Shewmon, Nathan; Watkins, Davita; Galindo, Johan; Zerdan, Raghida; Chen, Jihua; Keum, Jong Kahk; Roitberg, Adrian; Xue, Jiangeng; Castellano, Ronald

    2015-07-20

    For organic photovoltaic (OPV) cells based on the bulk heterojunction (BHJ) structure, it remains challenging to rationally control the degree of phase separation and percolation within blends of donors and acceptors to secure optimal charge separation and transport. Reported is a bottom-up, supramolecular approach to BHJ OPVs wherein tailored hydrogen bonding (H-bonding) interactions between π-conjugated electron donor molecules encourage formation of vertically aligned donor π-stacks while simultaneously suppressing lateral aggregation; the programmed arrangement facilitates fine mixing with fullerene acceptors and efficient charge transport. The approach is illustrated using conventional linear or branched quaterthiophene donor chromophores outfitted with terminal functional groupsmore » that are either capable or incapable of self-complementary H-bonding. When applied to OPVs, the H-bond capable donors yield a twofold enhancement in power conversion efficiency relative to the comparator systems, with a maximum external quantum efficiency of 64%. H-bond promoted assembly results in redshifted absorption (in neat films and donor:C 60 blends) and enhanced charge collection efficiency despite disparate donor chromophore structure. Both features positively impact photocurrent and fill factor in OPV devices. Film structural characterization by atomic force microscopy, transmission electron microscopy, and grazing incidence wide angle X-ray scattering reveals a synergistic interplay of lateral H-bonding interactions and vertical π-stacking for directing the favorable morphology of the BHJ.« less

  7. Enhancement in Organic Photovoltaic Efficiency through the Synergistic Interplay of Molecular Donor Hydrogen Bonding and -Stacking

    SciTech Connect

    Shewmon, Nathan; Watkins, Davita; Galindo, Johan; Zerdan, Raghida; Chen, Jihua; Keum, Jong Kahk; Roitberg, Adrian; Xue, Jiangeng; Castellano, Ronald

    2015-07-20

    For organic photovoltaic (OPV) cells based on the bulk heterojunction (BHJ) structure, it remains challenging to rationally control the degree of phase separation and percolation within blends of donors and acceptors to secure optimal charge separation and transport. Reported is a bottom-up, supramolecular approach to BHJ OPVs wherein tailored hydrogen bonding (H-bonding) interactions between π-conjugated electron donor molecules encourage formation of vertically aligned donor π-stacks while simultaneously suppressing lateral aggregation; the programmed arrangement facilitates fine mixing with fullerene acceptors and efficient charge transport. The approach is illustrated using conventional linear or branched quaterthiophene donor chromophores outfitted with terminal functional groups that are either capable or incapable of self-complementary H-bonding. When applied to OPVs, the H-bond capable donors yield a twofold enhancement in power conversion efficiency relative to the comparator systems, with a maximum external quantum efficiency of 64%. H-bond promoted assembly results in redshifted absorption (in neat films and donor:C 60 blends) and enhanced charge collection efficiency despite disparate donor chromophore structure. Both features positively impact photocurrent and fill factor in OPV devices. Film structural characterization by atomic force microscopy, transmission electron microscopy, and grazing incidence wide angle X-ray scattering reveals a synergistic interplay of lateral H-bonding interactions and vertical π-stacking for directing the favorable morphology of the BHJ.

  8. Microscopic control of 29Si nuclear spins near phosphorus donors in silicon

    NASA Astrophysics Data System (ADS)

    Järvinen, J.; Zvezdov, D.; Ahokas, J.; Sheludyakov, S.; Vainio, O.; Lehtonen, L.; Vasiliev, S.; Fujii, Y.; Mitsudo, S.; Mizusaki, T.; Gwak, M.; Lee, SangGap; Lee, Soonchil; Vlasenko, L.

    2015-09-01

    We demonstrate an efficient control of 29Si nuclear spins for specific lattice sites near 31P donors in silicon at temperatures below 1 K and in a high magnetic field of 4.6 T. Excitation of the forbidden electron-nuclear transitions leads to a pattern of well-resolved holes and peaks in the electron spin resonance (ESR) lines of 31P . The pattern originates from dynamic polarization (DNP) of the 29Si nuclear spins near the donors via the solid effect. DNP of 29Si is demonstrated also with the Overhauser effect where the allowed ESR transitions are excited. In this case mostly the remote 29Si nuclei having weak interaction with the donors are polarized, which results in a single hole and a sharp peak pair in the ESR spectrum. Our work shows that the solid effect can be used for initialization of 29Si nuclear spin qubits near the donors.

  9. Quality improvement in the care of live liver donors: implementation of the Designated Donor Nurse Program.

    PubMed

    LaPointe Rudow, Dianne; Cabello, Charlotte C; Rivellini, Denise

    2010-12-01

    Publications on living donor liver transplant have focused on the medical aspects of donor selection, postoperative management, surgical procedures, and outcomes, but little attention has been given to the nursing implications for care of live liver donors during their inpatient stay. Donor advocates from various disciplines are involved during the initial education and evaluation, but most care after surgery is delivered by an inpatient medical team and bedside nursing staff who are not as familiar with the donor and concepts related to donor advocacy. In an effort to improve the overall donor experience and provide safe, high-quality care to patients undergoing elective partial hepatectomy, our academic medical center began a quality improvement project focused on improving the inpatient stay. Inpatient nursing standards and policies and procedures were developed to ensure that consistent care is delivered. However, the infrequency of living donor liver transplantation makes it nearly impossible to have all transplant program staff on a nursing unit be "experts" on donor care. Therefore, our center determined that, similar to the Independent Donor Advocacy Team, a transplant program needs live donor champions on the nursing unit to mirror the goals of the team. To that end, we developed the concept of the Designated Donor Nurse to care for and advocate for live liver donors during the inpatient stay and also to serve as a resource to their colleagues. PMID:21265291

  10. The living donor advocate: a team approach to educate, evaluate, and manage donors across the continuum.

    PubMed

    Rudow, Dianne LaPointe

    2009-03-01

    Living donor transplant has developed as a direct result of the critical shortage of deceased donors. Federal regulations require transplant programs to appoint an independent donor advocate to ensure safe evaluation and care of live donors. Ethical and pragmatic issues surround the donor advocate. These issues include the composition of a team versus an individual advocate, who appoints them, and the role that the advocate(s) play in the process. A team approach to donor advocacy is recommended. Common goals of the independent donor advocacy team should be protocol development, education, medical and psychosocial evaluation, advocacy, support, and documentation throughout the donation process. The team's involvement should not end with consent and donation but should continue through short- and long-term follow-up and management. Ultimately it is the goal of the independent donor advocacy team to assist donors to advocate for themselves. Once deemed medically and psychologically suitable, donors must determine for themselves what they wish to do and must be free to vocalize this to their team. The decision to donate or not affects the donor first. Optimal outcomes begin with prepared, educated, uncoerced, and motivated donors, and it is the team's goal to help donors reach this point. PMID:19341065

  11. Management of the inpatient canine blood donor.

    PubMed

    Hohenhaus, A E

    1992-12-01

    The availability of inpatient blood donors as a source for transfusion allows flexibility that is lacking in an outpatient program. Choosing the appropriate dog as a donor is essential to the success of a hospital blood bank. Once a dog becomes a blood donor, routine physical and clinicopathologic examinations are necessary to monitor the animal's health and to ensure the quality of blood products. PMID:1472767

  12. Innovations Without Added Costs

    ERIC Educational Resources Information Center

    Cereghino, Edward

    1974-01-01

    There is no question that we are in a tight money market, and schools are among the first institutions to feel the squeeze. Therefore, when a plan is offered that provides for innovations without added costs, its something worth noting. (Editor)

  13. What Value "Value Added"?

    ERIC Educational Resources Information Center

    Richards, Andrew

    2015-01-01

    Two quantitative measures of school performance are currently used, the average points score (APS) at Key Stage 2 and value-added (VA), which measures the rate of academic improvement between Key Stage 1 and 2. These figures are used by parents and the Office for Standards in Education to make judgements and comparisons. However, simple…

  14. Living-donor liver transplantation: current perspective.

    PubMed

    Lobritto, Steven; Kato, Tomoaki; Emond, Jean

    2012-11-01

    The disparity between the number of available deceased liver donors and the number of patients awaiting transplantation continues to be an ongoing issue predisposing to death on the liver transplant waiting list. Deceased donor shortage strategies including the use of extended donor-criteria deceased donor grafts, split liver transplants, and organs harvested after cardiac death have fallen short of organ demand. Efforts to raise donor awareness are ongoing, but the course has been arduous to date. Living donor transplantation is a means to access an unlimited donor organ supply and offers potential advantages to deceased donation. Donor safety remains paramount demanding improvements and innovations in both the donor and recipient operations to ensure superior outcomes. The specialty operation is best preformed at centers with specific expertise and shuttling of select patients to these centers supported by third party payers is critical. Training future surgeons at centers with this specific experience can help disseminate this technology to improve local availability. Ongoing research in immunosuppression minimization, withdrawal and tolerance induction may make living donation a desired first-line operation rather than a necessary albeit less-desirable option. This chapter summarizes the progress of living liver donation and its potential applications. PMID:23397534

  15. Living kidney donor experiences: implications for counselling.

    PubMed

    Walsh, A

    2004-01-01

    This study adds to previous, mostly quantitative, investigation into the experiences of living related kidney donors. Such investigation is important so that potential donors are supported effectively and donation programmes remain relevant and specific to need. Exploration takes place into donor decision-making processes and the most effective forms of professional support. A non-probability sampling technique highlighted eight living related kidney donors who were interviewed using a semi-structured interview format. Raw data was analysed through the qualitative technique of Interpretative Phenomenological Analysis. The decision to donate is made rapidly, decisively and rationally. Professional support provides reassurance to donors, particularly when experiencing acute psychological reaction. The need to provide support to the parents of living donors is specifically highlighted. A comprehensive range of Master Themes are generated through Interpretative Phenomenological Analysis and these reflect the complexity of the donation experience. This suggests donors are concerned with the management of psychological experience rather than with reviewing the appropriateness of an original decision to donate. Evidence indicates that concepts of attitude and self-efficacy belief can develop understanding of the psychological experience of being a living kidney donor. A counselling perspective, with Social Cognitive Theory at its core, is highlighted as a valid method for providing professional support to donors before and after surgery. PMID:15835410

  16. [Kidney transplant from living donors in children?].

    PubMed

    Ginevri, Fabrizio; Dello Strologo, Luca; Guzzo, Isabella; Belingheri, Mirco; Ghio, Luciana

    2011-01-01

    A living-donor kidney transplant offers a child at the terminal stages of renal disease better functional recovery and quality of life than an organ from a deceased donor. Before starting the procedure for a living-donor transplant, however, it is necessary to establish if it is really safe. There are diseases, such as focal segmental glomerulosclerosis, atypical HUS and membranoproliferative glomerulonephritis with dense deposits, for which living donation is not recommended given the high incidence of recurrence of the disease but also the frequent loss of the graft. Regarding the selection of the donor, an increased risk of acute rejection has been reported for donors older than 60-65 years and a worsening of the renal outcome if the donor's weight is equal to or less than the recipient's. Finally, it is necessary to take into consideration that complications may arise in the donor both in the perioperative period and in the long term. In conclusion, kidney transplant from a living donor is a natural choice within the pediatric setting. The parents, usually young and highly motivated to donate, are the ideal donors. However, although the risks associated with donation are minimal, they are not totally absent, and consequently it is mandatory to follow standardized procedures according to the guidelines issued by the Centro Nazionale Trapianti. PMID:21341241

  17. Organic electronic devices with multiple solution-processed layers

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.

    2015-08-04

    A method of fabricating a tandem organic photosensitive device involves depositing a first layer of an organic electron donor type material film by solution-processing of the organic electron donor type material dissolved in a first solvent; depositing a first layer of an organic electron acceptor type material over the first layer of the organic electron donor type material film by a dry deposition process; depositing a conductive layer over the interim stack by a dry deposition process; depositing a second layer of the organic electron donor type material over the conductive layer by solution-processing of the organic electron donor type material dissolved in a second solvent, wherein the organic electron acceptor type material and the conductive layer are insoluble in the second solvent; depositing a second layer of an organic electron acceptor type material over the second layer of the organic electron donor type material film by a dry deposition process, resulting in a stack.

  18. Introducing ADS Labs

    NASA Astrophysics Data System (ADS)

    Accomazzi, Alberto; Henneken, E.; Grant, C. S.; Kurtz, M. J.; Di Milia, G.; Luker, J.; Thompson, D. M.; Bohlen, E.; Murray, S. S.

    2011-05-01

    ADS Labs is a platform that ADS is introducing in order to test and receive feedback from the community on new technologies and prototype services. Currently, ADS Labs features a new interface for abstract searches, faceted filtering of results, visualization of co-authorship networks, article-level recommendations, and a full-text search service. The streamlined abstract search interface provides a simple, one-box search with options for ranking results based on a paper relevancy, freshness, number of citations, and downloads. In addition, it provides advanced rankings based on collaborative filtering techniques. The faceted filtering interface allows users to narrow search results based on a particular property or set of properties ("facets"), allowing users to manage large lists and explore the relationship between them. For any set or sub-set of records, the co-authorship network can be visualized in an interactive way, offering a view of the distribution of contributors and their inter-relationships. This provides an immediate way to detect groups and collaborations involved in a particular research field. For a majority of papers in Astronomy, our new interface will provide a list of related articles of potential interest. The recommendations are based on a number of factors, including text similarity, citations, and co-readership information. The new full-text search interface allows users to find all instances of particular words or phrases in the body of the articles in our full-text archive. This includes all of the scanned literature in ADS as well as a select portion of the current astronomical literature, including ApJ, ApJS, AJ, MNRAS, PASP, A&A, and soon additional content from Springer journals. Fulltext search results include a list of the matching papers as well as a list of "snippets" of text highlighting the context in which the search terms were found. ADS Labs is available at http://adslabs.org

  19. Spectroscopic and dynamical differences between exciplex and electronically excited EDA complex

    NASA Astrophysics Data System (ADS)

    Lim, B. T.; Okajima, S.; Lim, E. C.

    1986-02-01

    We demonstrate here that the electronically excited electron donor-acceptor (EDA) complex can be different from the corresponding exciplex even in the absence of viscosity constraints that prevent the attainment of preferred donor-acceptor orientation.

  20. Effect of a metallic gate on the energy levels of a shallow donor

    SciTech Connect

    Slachmuylders, A. F.; Partoens, B.; Peeters, F. M.; Magnus, W.

    2008-02-25

    We have investigated the effect of a metallic gate on the bound states of a shallow donor located near the gate. We calculate the energy spectrum as a function of the distance between the metallic gate and the donor and find an anticrossing behavior in the energy levels for certain distances. We show how a transverse electric field can tune the average position of the electron with respect to the metallic gate and the impurity.

  1. The interaction among donor characteristics, severity of liver disease and the cost of liver transplantation

    PubMed Central

    Salvalaggio, Paolo R.; Dzebisashvili, Nino; MacLeod, Kara E.; Lentine, Krista L.; Gheorghian, Adrian; Schnitzler, Mark A.; Hohmann, Samuel; Segev, Dorry L.; Gentry, Sommer E.; Axelrod, David A.

    2010-01-01

    Introduction Accurate assessment of the impact of donor quality on liver transplant (LT) costs has been limited by the lack of a large, multicenter study of detailed clinical and economic data. Methods A novel, retrospective database linking information from the University HealthSystem Consortium and the OPTN registry was analyzed using multivariate regression to determine the relationship between donor quality (assessed through the Donor Risk Index (DRI)), recipient illness severity, and total inpatient costs (transplant and all readmissions) for 1 year following LT. Results Cost data were available for 9,059 LT recipients. Increasing MELD score, higher DRI, simultaneous liver kidney transplant, female gender and prior liver transplant were associated with increasing cost of LT (P<0.05). MELD and DRI interact to synergistically increase the cost of LT (P<0.05). Donors in the highest DRI quartile added close to $12,000 to the cost of transplantation and nearly $22,000 to post-transplant costs in comparison to the lowest risk donors. Among the individual components of the DRI, donation after cardiac death (increased $20,769 vs. brain dead donors) had the greatest impact on transplant costs. Overall one year costs were increased in older donors, minority donors, nationally shared organs, and those with cold ischemic times 7–13 hours (p<0.05 for all) Conclusion Donor quality, as measured by the DRI, is an independent predictor of LT costs in the perioperative and post-operative periods. Centers in highly competitive regions who transplant higher MELD patients with high DRI livers may be particularly affected by the synergistic impact of these factors. PMID:21384505

  2. The end of donor anonymity: how genetic testing is likely to drive anonymous gamete donation out of business.

    PubMed

    Harper, Joyce C; Kennett, Debbie; Reisel, Dan

    2016-06-01

    Thousands of people worldwide have been conceived using donor gametes, but not all parents tell their children of their origin. Several countries now allow donor-conceived offspring to potentially know their genetic parent if they are informed of their donor-conceived status. At the same time, personal genetic testing is a rapidly expanding field. Over 3 million people have already used direct-to-consumer genetic testing to find information about their ancestry, and many are participating in international genetic genealogy databases that will match them with relatives. The increased prevalence of these technologies poses numerous challenges to the current practice of gamete donation. (i) Whether they are donating in a country that practices anonymous donation or not, donors should be informed that their anonymity is not guaranteed, as they may be traced if their DNA, or that of a relative, is added to a database. (ii) Donor-conceived adults who have not been informed of their status may find out that they are donor-conceived. (iii) Parents using donor conception need to be fully informed that their children's DNA will identify that they are not the biological parents and they should be encouraged to disclose the use of donor gametes to their children. Together, these concerns make urgent a wide-ranging societal conversation about how to best safeguard and promote the interests of donor-conceived offspring and protect the rights of donors. Specifically, there is a need to ensure that new genetic information is communicated in a way that promotes both the safety and the privacy rights of offspring and donors alike. All parties concerned must be aware that, in 2016, donor anonymity does not exist. PMID:27073260

  3. Can the positive aromatic ring be as π-electron donor in π-halogen bond? A MP2 theoretical investigation on the unusual π-halogen bond interaction between three-membered ring (BNN)₃⁺ and X1X2 (X1, X2 = F, Cl, Br).

    PubMed

    Qi, Hai-Tao; Ren, Fu-de; Zhang, Jing-Lin; Wang, Jing-Yu

    2011-05-01

    The unusual π-halogen bond interactions are investigated between (BNN)₃⁺ and X1X2 (X1, X2 = F, Cl, Br) employing MP2 at 6-311 + G(2d) and aug-cc-pVDZ levels according to the "CP (counterpoise) corrected potential energy surface (PES)" method. The order of the π-halogen bond interactions and stabilities of the complexes are obtained to be (BNN)₃⁺... F₂ < (BNN)₃⁺... ClF < (BNN)₃⁺... Cl₂ < (BNN)₃⁺... BrCl < (BNN)₃⁺... Br₂ < (BNN)₃⁺ ... BrF. at MP2/aug-cc-pVDZ level. The analyses of the Mulliken charge transfer, natural bond orbital (NBO), atoms in molecules (AIM) theory and electron density shifts reveal that the nature of the π-halogen bond interaction in the complexes of ClF, BrF and BrCl might partly be charge transfer from the delocalized π-HOMO orbital of (BNN)₃⁺ to X1X2. This result suggests that the positive aromatic ring (BNN)₃⁺ might act as a π-electron donor to form the π-halogen bond. PMID:20607330

  4. DGTI Register of Rare Donors

    PubMed Central

    Hustinx, Hein

    2014-01-01

    Summary For patients with antibodies against the most common blood groups a rapid and efficient supply of compatible erythrocyte concentrates is self-evident. But typically we have to make the greatest effort providing blood for these patients, which have made antibodies against common blood groups. There are however patients with antibodies against rare blood group antigens that need special blood. The supply of such blood can be very difficult and mostly time-consuming. For this reason we set up a database of blood donors with rare blood groups. Since 2005 the BTS SRC Berne Ltd. has run this database on behalf of the Swiss BTS SRC. After a reorganization and extension of the database, conducted during 2011/2012, the data file was renamed ‘DGTI Register of Rare Donors’ and is now run under the patronage of the German Society for Transfusion Medicine and Immunohematology (DGTI). PMID:25538534

  5. [Liver transplants from living donors].

    PubMed

    Rogiers, X; Danninger, F; Malagó, M; Knoefel, W T; Gundlach, M; Bassas, A; Burdelski, M; Broelsch, C E

    1996-03-01

    In this article the authors discuss the advantages of Living Related Liver Transplantation (LRLT), criteria for the selection of donors and the standard operation technique. Among a total of 241 liver transplantation (LTx), 42 LRLT were performed at the University of Hamburg between October 1, 1991 and December 19, 1994. The body weight of recipients for LRLT ranged from 4,6 to 39 kg, with 64,2% having less than 10 kg. The volume of the donor left lateral liver lobe ranged from 100 cc to 350 cc. The average one year survival rate among electively operated patients-status 3-4 (UNOS 1995 classification) was 86.7%, two year survival rate 83.3%. The main advantages of LRLT are consired the following: 1. Absence of mortality on the waiting list, 2. Optimal timing of the transplantation (elective procedure, patient in a good condition), 3. Excellent organ (no primary non function), 4. A possible immunologic advantage, 5. Relief of the waiting list for cadaveric organs, 6. Psychological benefit for the family, 7. Cost effectiveness. Potential candidates for living donation with more than one cardiovascular risk factors were excluded. Social and psychological reasons leading to rejection of candidates were as follows: unstable family structure, expected professional or financial difficulties after living donation or withdrawal from consent. LRLT gives parents of a child with TLD a chance to avoid the risk of death on the waiting list or primary non function of the graft. LRLT has therefore established an important place in pediatric liver transplantation. PMID:8768973

  6. Polarization of human donor corneas.

    PubMed

    Parekh, Mohit; Ruzza, Alessandro; Ferrari, Stefano; Salvalaio, Gianni; Elbadawy, Hossein; Ponzin, Diego; Lipari, Eugenio

    2016-06-01

    To investigate the de-orientation effect of DSAEK grafts by observing the cross patterns and polarization power of human donor corneas using a polarizing device (Lumaxis(®)). Forty human donor corneas were placed in small petri-plates with epithelial side facing up. Polarizing power (arbitrary unit) and crosses were monitored and recorded by the software. The tissue was marked at 'Superior' position to ensure that the base and the polarizer are in alignment with each other after the cut. The anterior lamellar cut was performed using microkeratome. The lenticule was placed back in the same position as marked to mimic the alignment. The tissue was further rotated by 45° ensuring that the base of the cornea and the polarizer were in alignment. The polarization power and 'crosses' were identified at each step. The average of forty corneas from pre-cut to post-45° angular change showed statistically significant difference (p < 0.05) in terms of polarizing power. The cross-shaped pattern deformed and lost the sharpness towards 45° angle. However, multiple variances in terms of 'cross-patterns' were observed throughout the study. Lumaxis(®) was able to determine the worst quality tissue in terms of polarization (no black zone and crosses). Despite the quality of cross pattern which can be used as an additional objective parameter to evaluate the optical properties of the corneal tissue, this preliminary study needs to be further justified in terms of clinical relevance whether polarization changes with oriented or de-oriented grafts have any effects and consequences on the visual acuity. PMID:26920874

  7. Quantum dot spectroscopy using a single phosphorus donor

    NASA Astrophysics Data System (ADS)

    Büch, Holger; Fuechsle, Martin; Baker, William; House, Matthew G.; Simmons, Michelle Y.

    2015-12-01

    Using a deterministic single P donor placed with atomic precision accuracy next to a nanoscale silicon quantum dot, we present a way to analyze the energy spectrum of small quantum dots in silicon by tunnel-coupled transport measurements. The energy-level structure of the quantum dot is observed as resonance features within the transport bias triangles when the donor chemical potential is aligned with states within the quantum dot as confirmed by a numeric rate equation solver SIMON. This technique allows us to independently extract the quantum dot level structure irrespective of the density of states in the leads. Such a method is useful for the investigation of silicon quantum dots in the few-electron regime where the level structure is governed by an intricate interplay between the spin- and the valley-orbit degrees of freedom.

  8. The Experience of Living Kidney Donors

    ERIC Educational Resources Information Center

    Brown, Judith Belle; Karley, Mary Lou; Boudville, Neil; Bullas, Ruth; Garg, Amit X.; Muirhead, Norman

    2008-01-01

    This article describes the experiences, feelings, and ideas of living kidney donors. Using a phenomenological, qualitative research approach, the authors interviewed 12 purposefully selected living kidney donors (eight men and four women), who were between four and 29 years since donation. Interviews were audiotaped, and transcribed verbatim, and…

  9. The value of living donor liver transplantation.

    PubMed

    Yang, Xiaoli; Gong, Junhua; Gong, JianPing

    2012-12-31

    Living donor liver transplantation (LDLT) is a very successful procedure that develops liver resources in case of worldwide shortages. As the technology has developed so much in the past 2 decades, LDLT has the same good prognosis as DDLT. However, LDLT still has lots of ethical & technical problems. It causes great psychiatric, physical and psychosocial harm to donors. Also, it has some negative effects on society by providing a platform for organ trade. Therefore, there is much controversy about the social value of LDLT. After review of recent papers, we find much progress can be made in inspiring the public to become organ donors and creating donation model new to improve the consent rate for solid organ donation from deceased donors. That is the key strategy for increasing the liver supply. With this serious shortage of organs, liver donor transplantation still has its advantages, but we should not place all our hopes on LDLT to increase the liver supply. We all need to try our best to increase donor awareness and promote organ donor registration--when cadaver organs could meet the needs for liver transplantation, living donor liver transplants would not be necessary. PMID:23274332

  10. Payment for donor kidneys: pros and cons.

    PubMed

    Friedman, E A; Friedman, A L

    2006-03-01

    Continuous growth of the end stage renal disease population treated by dialysis, outpaces deceased donor kidneys available, lengthens the waiting time for a deceased donor transplant. As estimated by the United States Department of Health & Human Services: '17 people die each day waiting for transplants that can't take place because of the shortage of donated organs.' Strategies to expand the donor pool--public relations campaigns and Drivers' license designation--have been mainly unsuccessful. Although illegal in most nations, and viewed as unethical by professional medical organizations, the voluntary sale of purchased donor kidneys now accounts for thousands of black market transplants. The case for legalizing kidney purchase hinges on the key premise that individuals are entitled to control of their body parts even to the point of inducing risk of life. One approach to expanding the pool of kidney donors is to legalize payment of a fair market price of about 40,000 dollars to donors. Establishing a federal agency to manage marketing and purchase of donor kidneys in collaboration with the United Network for Organ Sharing might be financially self-sustaining as reduction in costs of dialysis balances the expense of payment to donors. PMID:16482095

  11. 42 CFR 35.64 - Donors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Donors. 35.64 Section 35.64 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICAL CARE AND EXAMINATIONS HOSPITAL AND STATION MANAGEMENT Contributions for the Benefit of Patients § 35.64 Donors. Authorized contributions...

  12. 42 CFR 35.64 - Donors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Donors. 35.64 Section 35.64 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICAL CARE AND EXAMINATIONS HOSPITAL AND STATION MANAGEMENT Contributions for the Benefit of Patients § 35.64 Donors. Authorized contributions...

  13. 42 CFR 35.64 - Donors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Donors. 35.64 Section 35.64 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICAL CARE AND EXAMINATIONS HOSPITAL AND STATION MANAGEMENT Contributions for the Benefit of Patients § 35.64 Donors. Authorized contributions...

  14. Recipients' views on payment of sperm donors.

    PubMed

    Ravelingien, An; Provoost, Veerle; Wyverkens, Elia; Buysse, Ann; De Sutter, Petra; Pennings, Guido

    2015-08-01

    The aim of this qualitative study was to explore how recipients viewed payment of sperm donors. The study was conducted in Belgium, where, as in many countries, sperm donors receive recompense for their time and expenses. Face-to-face semi-structured interviews were conducted with 34 heterosexual and lesbian couples who, at the time of data collection, had at least one donor-conceived child aged 7-10 years or who were undergoing donor conception treatment. Although participants commonly described the issue of financial compensation as something that did not really concern them, all supported the idea that some level of payment was acceptable or even necessary. The participants also identified several ways in which donor payment offered advantages to their own position as (future) parents. Although the idea is commonly rehearsed that sperm donation is a gift and that monetary transaction for conception is demeaning, the participants of this study did not generally share this view. To them, a small financial return served as a symbolic acknowledgement of the donor's contribution and helped secure the type of relationship they expected from their donor. There was clearly concern, however, over high payments and the risk of attracting the wrong kind of donor. PMID:26099446

  15. Negotiating boundaries: Accessing donor gametes in India

    PubMed Central

    Widge, A.; Cleland, J.

    2011-01-01

    Background: This paper documents how couples and providers access donor materials for conception in the Indian context and perceptions about using them. The objective is to facilitate understanding of critical issues and relevant concerns. Methods: A postal survey was conducted with a sample of 6000 gynaecologists and in-depth interviews were conducted with 39 gynaecologists in four cities. Results: Donor gametes are relatively more acceptable than a few years ago, especially if confidentiality can be maintained, though lack of availability of donor materials is sometimes an impediment to infertility treatment. Donor sperms are usually accessed from in-house or commercial sperm banks, pathology laboratories, IVF centres, professional donors, relatives or friends. There is scepticism about screening procedures of sperm banks. Donor eggs are usually accessed from voluntary donors, friends, relatives, egg sharing programmes, donation from other patients, advertising and commercial donors. There are several concerns regarding informed consent for using donated gametes, using relatives and friends gametes, the unregulated use of gametes and embryos, record keeping and documentation, unethical and corrupt practices and commercialisation. Conclusion: These issues need to be addressed by patients, providers and regulatory authorities by providing information, counselling, ensuring informed consent, addressing exploitation and commercialisation, ensuring monitoring, proper documentation and transparency. PMID:24753849

  16. Adding calcium improves lithium ferrite core

    NASA Technical Reports Server (NTRS)

    Lessoff, H.

    1969-01-01

    Adding calcium increases uniformity of grain growth over a wide range of sintering temperatures and reduces porosity within the grain. Ferrite cores containing calcium have square hysteresis loops and high curie temperatures, making them useful in coincident current memories of digital electronic computers.

  17. Two Virasoro symmetries in stringy warped AdS3

    NASA Astrophysics Data System (ADS)

    Compère, Geoffrey; Guica, Monica; Rodriguez, Maria J.

    2014-12-01

    We study three-dimensional consistent truncations of type IIB supergravity which admit warped AdS3 solutions. These theories contain subsectors that have no bulk dynamics. We show that the symplectic form for these theories, when restricted to the non-dynamical subsectors, equals the symplectic form for pure Einstein gravity in AdS3. Consequently, for each consistent choice of boundary conditions in AdS3, we can define a consistent phase space in warped AdS3 with identical conserved charges. This way, we easily obtain a Virasoro × Virasoro asymptotic symmetry algebra in warped AdS3; two different types of Virasoro × Kač-Moody symmetries are also consistent alternatives.

  18. Chylous ascites secondary to laparoscopic donor nephrectomy.

    PubMed

    Shafizadeh, Stephen F; Daily, Patrick P; Baliga, Prabhakar; Rogers, Jeffrey; Baillie, G Mark; Rajagopolan, P R; Chavin, Kenneth D

    2002-08-01

    Live donor renal transplantation offers many significant advantages over cadaveric donor transplantation. Yet living donation continues to be underused, accounting for less than 30% of all donor renal transplants. In an attempt to remove the disincentives to live donation, Ratner et al. developed laparoscopic donor nephrectomy (LDN). LDN is gaining acceptance in the transplant community. The overriding concern must always be the safety and welfare of the donor. To this end, potential complications of LDN must be identified and discussed. We present a patient who developed the complication of chylous ascites from LDN. To improve the laparoscopic technique further, a discussion of its successes and complications needs to be encouraged. To this end, we present chylous ascites as a potential complication after LDN. We also offer suggestions to minimize the likelihood of this complication. PMID:12137847

  19. Non Heart-Beating Donors in England

    PubMed Central

    Chaib, Eleazar

    2008-01-01

    When transplantation started all organs were retrieved from patients immediately after cardio-respiratory arrest, i.e. from non-heart-beating donors. After the recognition that death resulted from irreversible damage to the brainstem, organ retrieval rapidly switched to patients certified dead after brainstem testing. These heart-beating-donors have become the principal source of organs for transplantation for the last 30 years. The number of heart-beating-donors are declining and this is likely to continue, therefore cadaveric organs from non-heart-beating donor offers a large potential of resources for organ transplantation. The aim of this study is to examine clinical outcomes of non-heart-beating donors in the past 10 years in the UK as an way of decreasing pressure in the huge waiting list for organs transplantation. PMID:18297216

  20. Kinetics of thermal donor generation in silicon

    NASA Technical Reports Server (NTRS)

    Mao, B.-Y.; Lagowski, J.; Gatos, H. C.

    1984-01-01

    The generation kinetics of thermal donors at 450 C in Czochralski-grown silicon was found to be altered by high-temperature preannealing (e.g., 1100 C for 30 min). Thus, when compared with as-grown Si, high-temperature preannealed material exhibits a smaller concentration of generated thermal donors and a faster thermal donor saturation. A unified mechanism of nucleation and oxygen diffusion-controlled growth (based on solid-state plate transformation theory) is proposed to account for generation kinetics of thermal donors at 450 C, in as-grown and high-temperature preannealed Czochralski silicon crystals. This mechanism is consistent with the main features of the models which have been proposed to explain the formation of oxygen thermal donors in silicon.

  1. Effects of Cu deficiency on photosynthetic electron transport

    SciTech Connect

    Droppa, M.; Terry, N.; Horvath, G.

    1984-04-01

    The role of copper (Cu) in photosynthetic electron transport was explored by using Cu deficiency in sugar beet as an experimental approach. Copper influenced electron transport at two sites in addition to plastocyanin. Under mild deficiency (0.84 nmol of Cu per cm/sup 2/ of leaf area), electron transport between the two photosystems (PS) is inhibited but not electron transport within PS I or PS II measured separately. The chlorophyll/plastoquinone ratio was normal in Cu-deficient plants. However, the breakpoint in the Arrhenius plot of electron transport was shifted towards a higher temperature. It is concluded that Cu is necessary to maintain the appropriate membrane fluidity to ensure the mobility of plastoquinone molecules to transfer electrons between the two photosystems. Under severe deficiency (0.22 nmol of Cu per cm/sup 2/ of leaf area) both PS II and PS I electron transports were inhibited and to the same extent. PS II electron transport activity could not be restored by adding artifical electron donors. Polypeptides with M/sub r/s of 28,000 and 13,500 were missing in Cu-deficient chloroplast membranes. In PS II particles prepared from normal chloroplasts of spinach, 2 atoms of Cu per reaction center are present. We conclude that Cu influences PS II electron transport either directly, by participation in electron transfer as a constituent of an electron carrier, or indirectly, via the polypeptide composition of the membrane in the PS II complex.

  2. Electron Transfer Pathways in Cholesterol Synthesis.

    PubMed

    Porter, Todd D

    2015-10-01

    Cholesterol synthesis in the endoplasmic reticulum requires electron input at multiple steps and utilizes both NADH and NADPH as the electron source. Four enzymes catalyzing five steps in the pathway require electron input: squalene monooxygenase, lanosterol demethylase, sterol 4α-methyl oxidase, and sterol C5-desaturase. The electron-donor proteins for these enzymes include cytochrome P450 reductase and the cytochrome b5 pathway. Here I review the evidence for electron donor protein requirements with these enzymes, the evidence for additional electron donor pathways, and the effect of deletion of these redox enzymes on cholesterol and lipid metabolism. PMID:26344922

  3. Preferential inhibition of the plasma membrane NADH oxidase (NOX) activity by diphenyleneiodonium chloride with NADPH as donor

    NASA Technical Reports Server (NTRS)

    Morre, D. James

    2002-01-01

    The cell-surface NADH oxidase (NOX) protein of plant and animal cells will utilize both NADH and NADPH as reduced electron donors for activity. The two activities are distinguished by a differential inhibition by the redox inhibitor diphenyleneiodonium chloride (DPI). Using both plasma membranes and cells, activity with NADPH as donor was markedly inhibited by DPI at submicromolar concentrations, whereas with NADH as donor, DPI was much less effective or had no effect on the activity. The possibility of the inhibition being the result of two different enzymes was eliminated by the use of a recombinant NOX protein. The findings support the concept that NOX proteins serve as terminal oxidases for plasma membrane electron transport involving cytosolic reduced pyridine nucleotides as the natural electron donors and with molecular oxygen as the electron acceptor.

  4. The impact of the donors' and recipients' medical complications on living kidney donors' mental health.

    PubMed

    Timmerman, Lotte; Laging, Mirjam; Timman, Reinier; Zuidema, Willij C; Beck, Denise K; IJzermans, Jan N M; Betjes, Michiel G H; Busschbach, Jan J V; Weimar, Willem; Massey, Emma K

    2016-05-01

    A minority of living kidney donors (between 5-25%) have poor psychological outcomes after donation. There is mixed evidence on the influence of medical complications on these outcomes. We examined whether medical complications among donors and recipients predicted changes in donors' mental health (psychological symptoms and well-being) between predonation and 1 year postdonation. One-hundred and forty-five donors completed questionnaires on mental health predonation and 3 and 12 months postdonation. Number of recipient rehospitalizations and donor complications (none; minor; or severe) were obtained from medical records at 3 and 12 months after surgery. Multilevel regression analyses were used to examine the association between medical complications and changes in donors' mental health over time after controlling for sociodemographic characteristics. We found that donor complications (P = 0.003) and recipient rehospitalizations (P = 0.001) predicted an increase in donors' psychological symptoms over time. Recipient rehospitalizations also predicted a decrease in well-being (P = 0.005) over time; however, this relationship became weaker over time. We conclude that medical complications experienced by either the donor or recipient is a risk factor for deterioration in donors' mental health after living kidney donation. Professionals should monitor donors who experience medical complications and offer additional psychological support when needed. PMID:26895841

  5. Leading Change, Adding Value.

    PubMed

    Evans, Nick

    2016-09-12

    Essential facts Leading Change, Adding Value is NHS England's new nursing and midwifery framework. It is designed to build on Compassion in Practice (CiP), which was published 3 years ago and set out the 6Cs: compassion, care, commitment, courage, competence and communication. CiP established the values at the heart of nursing and midwifery, while the new framework sets out how staff can help transform the health and care sectors to meet the aims of the NHS England's Five Year Forward View. PMID:27615573

  6. [MODERN APPROACHES TO TREATMENT OF A DONOR'S WOUNDS IN THE INJURED PERSONS WITH THE BURNS].

    PubMed

    Pertsov, V I; Odnosteblytsya, O L; Ponomarenko, O V

    2016-03-01

    The impact of the treatment method proposed, using antioxidant therapy in patients, suffering the burns, on the speed and efficacy of the donor's wounds healing in their extremities was studied. In a control group of patients a standard treatment of the donor's wounds in extremities was conducted, while in the main group of patients the treatment was added with lymphotropic injection of antioxidant preparation Mexidol. Due to application of the method proposed, the wounds healing in the main group of the injured persons have had occurred significantly faster, than in the patients of a control group, and the complications of the wounds healing were absent. PMID:27514095

  7. Oocyte cryopreservation for donor egg banking.

    PubMed

    Cobo, Ana; Remohí, José; Chang, Ching-Chien; Nagy, Zsolt Peter

    2011-09-01

    Oocyte donation is an efficient alternative to using own oocytes in IVF treatment for different indications. Unfortunately, 'traditional' (fresh) egg donations are challenged with inefficiency, difficulties of synchronization, very long waiting periods and lack of quarantine measures. Given the recent improvements in the efficiency of oocyte cryopreservation, it is reasonable to examine if egg donation through oocyte cryopreservation has merits. The objective of the current manuscript is to review existing literature on this topic and to report on the most recent outcomes from two established donor cryobank centres. Reports on egg donation using slow freezing are scarce and though results are encouraging, outcomes are not yet comparable to a fresh egg donation treatment. Vitrification on the other hand appears to provide high survival rates (90%) of donor oocytes and comparable fertilization, embryo development, implantation and pregnancy rates to traditional (fresh) egg donation. Besides the excellent outcomes, the ease of use for both donors and recipients, higher efficiency, lower cost and avoiding the problem of synchronization are all features associated with the benefit of a donor egg cryobank and makes it likely that this approach becomes the future standard of care. Oocyte donation is one of the last resorts in IVF treatment for couples challenged with infertility problems. However, traditional (fresh) egg donation, as it is performed today, is not very efficient, as typically all eggs from one donor are given to only one recipient, it is arduous as it requires an excellent synchronization between the donor and recipient and there are months or years of waiting time. Because of the development of an efficient oocyte cryopreservation technique, it is now possible to cryo-store donor (as well as non-donor) eggs, maintaining their viability and allowing their use whenever there is demand. Therefore, creating a donor oocyte cryobank would carry many advantages

  8. Liver regeneration after living donor transplant

    PubMed Central

    Olthoff, Kim M.; Emond, Jean C.; Shearon, Tempie H.; Everson, Greg; Baker, Talia B.; Fisher, Robert A.; Freise, Chris E.; Gillespie, Brenda W.; Everhart, James E.

    2014-01-01

    Background & Aims Adult-to-adult living donors and recipients were studied to characterize patterns of liver growth and identify associated factors in a multicenter study. Methods 350 donors and 353 recipients in A2ALL (Adult to Adult Living Donor Liver Transplantation Cohort Study) transplanted between March 2003 and February 2010 were included. Potential predictors of 3-month liver volume included total and standard liver volumes (TLV, SLV), the model for end-stage liver disease (MELD) score (in recipients), remnant and graft size, remnant to donor and graft to recipient weight ratio (RDWR, GRWR), remnant/TLV, and graft/SLV. Results Among donors, 3-month absolute growth was 676±251g (mean± SD) and percent reconstitution was 80%±13%. Among recipients, GRWR was 1.3%±0.4% (8<0.8%). Graft weight was 60%±13% of SLV. Three-month absolute growth was 549±267g and percent reconstitution was 93%±18%. Predictors of greater 3-month liver volume included larger patient size (donors, recipients), larger graft volume (recipients), and larger TLV (donors). Donors with the smallest remnant/TLV ratios had larger than expected growth, but also had higher postoperative bilirubin and international normalized ratio at 7 and 30 days. In a combined donor-recipient analysis, donors had smaller 3-month liver volumes than recipients adjusted for patient size, remnant or graft volume, and TLV or SLV (p=0.004). Recipient graft failure in the first 90 days was predicted by poor graft function at day 7 (HR=4.50, p=0.001), but not by GRWR or graft fraction (p>0.90 for each). Conclusions Both donors and recipients had rapid yet incomplete restoration of tissue mass in the first 3 months, confirming previous reports. Recipients achieved a greater percentage of expected total volume. Patient size and recipient graft volume significantly influenced 3 month volumes. Importantly, donor liver volume is a critical predictor of the rate of regeneration, and donor remnant fraction impacts post

  9. Bright Solid-State Emission of Disilane-Bridged Donor-Acceptor-Donor and Acceptor-Donor-Acceptor Chromophores.

    PubMed

    Shimada, Masaki; Tsuchiya, Mizuho; Sakamoto, Ryota; Yamanoi, Yoshinori; Nishibori, Eiji; Sugimoto, Kunihisa; Nishihara, Hiroshi

    2016-02-01

    The development of disilane-bridged donor-acceptor-donor (D-Si-Si-A-Si-Si-D) and acceptor-donor-acceptor (A-Si-Si-D-Si-Si-A) compounds is described. Both types of compound showed strong emission (λem =ca. 500 and ca. 400 nm, respectively) in the solid state with high quantum yields (Φ: up to 0.85). Compound 4 exhibited aggregation-induced emission enhancement in solution. X-ray diffraction revealed that the crystal structures of 2, 4, and 12 had no intermolecular π-π interactions to suppress the nonradiative transition in the solid state. PMID:26822564

  10. Nuclear spin decoherence of neutral 31P donors in silicon: Effect of environmental 29Si nuclei

    NASA Astrophysics Data System (ADS)

    Petersen, Evan S.; Tyryshkin, A. M.; Morton, J. J. L.; Abe, E.; Tojo, S.; Itoh, K. M.; Thewalt, M. L. W.; Lyon, S. A.

    2016-04-01

    Spectral diffusion arising from 29Si nuclear spin flip-flops, known to be a primary source of electron spin decoherence in silicon, is also predicted to limit the coherence times of neutral donor nuclear spins in silicon. Here, the impact of this mechanism on 31P nuclear spin coherence is measured as a function of 29Si concentration using X -band pulsed electron nuclear double resonance. The 31P nuclear spin echo decays show that decoherence is controlled by 29Si flip-flops resulting in both fast (exponential) and slow (nonexponential) spectral diffusion processes. The decay times span a range from 100 ms in crystals containing 50% 29Si to 3 s in crystals containing 1% 29Si. These nuclear spin echo decay times for neutral donors are orders of magnitude longer than those reported for ionized donors in natural silicon. The electron spin of the neutral donors "protects" the donor nuclear spins by suppressing 29Si flip-flops within a "frozen core," as a result of the detuning of the 29Si spins caused by their hyperfine coupling to the electron spin.

  11. Donor defects and small polarons on the TiO2(110) surface

    NASA Astrophysics Data System (ADS)

    Moses, P. G.; Janotti, A.; Franchini, C.; Kresse, G.; Van de Walle, C. G.

    2016-05-01

    The role of defects in the chemical activity of the rutile TiO2(110) surface remains a rich topic of research, despite the rutile (110) being one of the most studied surfaces of transition-metal oxides. Here, we present results from hybrid functional calculations that reconcile apparently disparate views on the impact of donor defects, such as oxygen vacancies and hydrogen impurities, on the electronic structure of the (110) rutile surface. We find that the bridging oxygen vacancy and adsorbed or substitutional hydrogen are actually shallow donors, which do not induce gap states. The excess electrons from these donor centers tend to localize in the form of small polarons, which are the factual cause of the deep states ˜1 eV below the conduction band, often observed in photoelectron spectroscopy measurements. Our results offer a new framework for understanding the surface electronic structure of TiO2 and related oxides.

  12. Negative polarity of phenyl-C61 butyric acid methyl ester adjacent to donor macromolecule domains

    NASA Astrophysics Data System (ADS)

    Alley, Olivia J.; Wu, Meng-Yin; Johns, Gary L.; Dawidczyk, Thomas J.; Hardigree, Josué F. Martínez; Markovic, Nina; Arnold, Michael S.; Katz, Howard E.

    2015-01-01

    Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (Voc) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the Voc, which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor and acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C61 butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased Voc, but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions.

  13. The Relationship Between Verified Organ Donor Designation and Patient Demographic and Medical Characteristics.

    PubMed

    Sehgal, N K R; Scallan, C; Sullivan, C; Cedeño, M; Pencak, J; Kirkland, J; Scott, K; Thornton, J D

    2016-04-01

    Previous studies on the correlates of organ donation consent have focused on self-reported willingness to donate and on self-reported medical suitability to donate. However, these may be subject to social desirability bias and inaccurate assessments of medical suitability. The authors sought to overcome these limitations by directly verifying donor designation on driver's licenses and by abstracting comorbid conditions from electronic health records. Using a cross-sectional study design, they reviewed the health records of 2070 randomly selected primary care patients at a large urban safety-net medical system to obtain demographic and medical characteristics. They also examined driver's licenses that were scanned into electronic health records as part of the patient registration process for donor designation. Overall, 943 (46%) patients were designated as a donor on their driver's license. On multivariate analysis, donor designation was positively associated with age 35-54 years, female sex, nonblack race, speaking English or Spanish, being employed, having private insurance, having an income >$45 000, and having fewer comorbid conditions. These demographic and medical characteristics resulted in patient subgroups with donor designation rates ranging from 21% to 75%. In conclusion, patient characteristics are strongly related to verified donor designation. Further work should tailor organ donation efforts to specific subgroups. PMID:26603147

  14. Donor research in australia: challenges and promise.

    PubMed

    Masser, Barbara; Smith, Geoff; Williams, Lisa A

    2014-07-01

    Donors are the key to the core business of Blood Collection Agencies (BCAs). However, historically, they have not been a focus of research undertaken by these organizations. This model is now changing, with significant donor research groups established in a number of countries, including Australia. Donor research in the Australian Red Cross Blood Service (Blood Service) is concentrated in the Donor and Community Research (DCR) team. Cognizant of the complex and ever-changing landscape with regard to optimal donor management, the DCR team collaborates with academics located at universities around Australia to coordinate a broad program of research that addresses both short- and-long term challenges to the blood supply. This type of collaboration is not, however, without challenges. Two major collaborative programs of the Blood Service's research, focusing on i) the recruitment and retention of plasmapheresis donors and ii) the role of the emotion pride in donor motivation and return, are showcased to elucidate how the challenges of conducting collaborative BCA research can be met. In so doing, these and the other research programs described herein demonstrate how the Blood Service supports and contributes to research that not only revises operational procedures but also contributes to advances in basic science. PMID:25254025

  15. Donor Research in Australia: Challenges and Promise

    PubMed Central

    Masser, Barbara; Smith, Geoff; Williams, Lisa A.

    2014-01-01

    Summary Donors are the key to the core business of Blood Collection Agencies (BCAs). However, historically, they have not been a focus of research undertaken by these organizations. This model is now changing, with significant donor research groups established in a number of countries, including Australia. Donor research in the Australian Red Cross Blood Service (Blood Service) is concentrated in the Donor and Community Research (DCR) team. Cognizant of the complex and ever-changing landscape with regard to optimal donor management, the DCR team collaborates with academics located at universities around Australia to coordinate a broad program of research that addresses both short- and-long term challenges to the blood supply. This type of collaboration is not, however, without challenges. Two major collaborative programs of the Blood Service's research, focusing on i) the recruitment and retention of plasmapheresis donors and ii) the role of the emotion pride in donor motivation and return, are showcased to elucidate how the challenges of conducting collaborative BCA research can be met. In so doing, these and the other research programs described herein demonstrate how the Blood Service supports and contributes to research that not only revises operational procedures but also contributes to advances in basic science. PMID:25254025

  16. Dirac operator on fuzzy AdS2

    NASA Astrophysics Data System (ADS)

    Fakhri, Hossein; Imaanpur, Ali

    2003-03-01

    In this article we construct the chirality and Dirac operators on noncommutative AdS2. We also derive the discrete spectrum of the Dirac operator which is important in the study of the spectral triple associated to AdS2. It is shown that the degeneracy of the spectrum present in the commutative AdS2 is lifted in the noncommutative case. The way we construct the chirality operator is suggestive of how to introduce the projector operators of the corresponding projective modules on this space.

  17. An xp model on AdS2 spacetime

    NASA Astrophysics Data System (ADS)

    Molina-Vilaplana, Javier; Sierra, Germán

    2013-12-01

    In this paper we formulate the xp model on the AdS2 spacetime. We find that the spectrum of the Hamiltonian has positive and negative eigenvalues, whose absolute values are given by a harmonic oscillator spectrum, which in turn coincides with that of a massive Dirac fermion in AdS2. We extend this result to generic xp models which are shown to be equivalent to a massive Dirac fermion on spacetimes whose metric depend of the xp Hamiltonian. Finally, we construct the generators of the isometry group SO(2,1) of the AdS2 spacetime, and discuss the relation with conformal quantum mechanics.

  18. Computational design of donor-bridge-acceptor systems exhibiting pronounced quantum interference effects.

    PubMed

    Gorczak, Natalie; Renaud, Nicolas; Galan, Elena; Eelkema, Rienk; Siebbeles, Laurens D A; Grozema, Ferdinand C

    2016-03-01

    Quantum interference is a well-known phenomenon that dictates charge transport properties of single molecule junctions. However, reports on quantum interference in donor-bridge-acceptor molecules are scarce. This might be due to the difficulties in meeting the conditions for the presence of quantum interference in a donor-bridge-acceptor system. The electronic coupling between the donor, bridge, and acceptor moieties must be weak in order to ensure localised initial and final states for charge transfer. Yet, it must be strong enough to allow all bridge orbitals to mediate charge transfer. We present the computational route to the design of a donor-bridge-acceptor molecule that features the right balance between these contradicting requirements and exhibits pronounced interference effects. PMID:26878200

  19. Living donor liver transplantation in Egypt

    PubMed Central

    Marwan, Ibrahim

    2016-01-01

    In Egypt there is no doubt that chronic liver diseases are a major health concern. Hepatitis C virus (HCV) prevalence among the 15−59 years age group is estimated to be 14.7%. The high prevalence of chronic liver diseases has led to increasing numbers of Egyptian patients suffering from end stage liver disease (ESLD), necessitating liver transplantation (LT). We reviewed the evolution of LT in Egypt and the current status. A single center was chosen as an example to review the survival and mortality rates. To date, deceased donor liver transplantation (DDLT) has not been implemented in any program though Egyptian Parliament approved the law in 2010. Living donor liver transplantation (LDLT) seemed to be the only logical choice to save many patients who are in desperate need for LT. By that time, there was increase in number of centers doing LDLT (13 centers) and increase in number of LDLT cases [2,400] with improvement of the results. Donor mortality rate is 1.66 per 1,000 donors; this comprised four donors in the Egyptian series. The exact recipient survival is not accurately known however, and the one-year, three-year and five-year survival were 73.17%, 70.83% and 64.16% respectively in the International Medical Center (IMC) in a series of 145 adult to adult living donor liver transplantation (AALDLT) cases. There was no donor mortality in this series. LDLT are now routinely and successfully performed in Egypt with reasonable donor and recipient outcomes. Organ shortage remains the biggest hurdle facing the increasing need for LT. Although LDLT had reasonable outcomes, it carries considerable risks to healthy donors. For example, it lacks cadaveric back up, and is not feasible for all patients. The initial success in LDLT should drive efforts to increase the people awareness about deceased organ donation in Egypt. PMID:27115003

  20. Living donor liver transplantation in Egypt.

    PubMed

    Amer, Khaled E; Marwan, Ibrahim

    2016-04-01

    In Egypt there is no doubt that chronic liver diseases are a major health concern. Hepatitis C virus (HCV) prevalence among the 15-59 years age group is estimated to be 14.7%. The high prevalence of chronic liver diseases has led to increasing numbers of Egyptian patients suffering from end stage liver disease (ESLD), necessitating liver transplantation (LT). We reviewed the evolution of LT in Egypt and the current status. A single center was chosen as an example to review the survival and mortality rates. To date, deceased donor liver transplantation (DDLT) has not been implemented in any program though Egyptian Parliament approved the law in 2010. Living donor liver transplantation (LDLT) seemed to be the only logical choice to save many patients who are in desperate need for LT. By that time, there was increase in number of centers doing LDLT (13 centers) and increase in number of LDLT cases [2,400] with improvement of the results. Donor mortality rate is 1.66 per 1,000 donors; this comprised four donors in the Egyptian series. The exact recipient survival is not accurately known however, and the one-year, three-year and five-year survival were 73.17%, 70.83% and 64.16% respectively in the International Medical Center (IMC) in a series of 145 adult to adult living donor liver transplantation (AALDLT) cases. There was no donor mortality in this series. LDLT are now routinely and successfully performed in Egypt with reasonable donor and recipient outcomes. Organ shortage remains the biggest hurdle facing the increasing need for LT. Although LDLT had reasonable outcomes, it carries considerable risks to healthy donors. For example, it lacks cadaveric back up, and is not feasible for all patients. The initial success in LDLT should drive efforts to increase the people awareness about deceased organ donation in Egypt. PMID:27115003