Added-mass effects on a horizontal-axis tidal turbine using FAST v8
Murray, Robynne E.; Thresher, Robert; Jonkman, Jason
2018-04-09
Added mass on tidal turbine blades has the potential to alter the blade dynamic response, such as natural frequencies and vibration amplitudes, as a response to blade acceleration. Currently, most aeroelastic design tools do not consider such effects as they are complex and expensive to model, and they are not an intrinsic part of most blade-element momentum theory codes, which are commonly used in the tidal energy industry. This article outlines the addition of added-mass effects to the National Renewable Energy Laboratory's design tool FAST v8. A verification is presented for a spring-mass system with an initial displacement, and amore » case study is performed for the Reference Model 1 20-m-diameter tidal turbine. For the 20-m-diameter turbine, it was shown that the natural frequency of vibration is reduced by 65% when added mass is considered. Further, the thrust loads are increased by 2.5% when the blades are excited by a 5% step increase in inflow velocity when added mass is considered. This decrease can have a significant impact on the overall turbine design, as it is important to design the blades with a natural frequency so that they are not excited by the rotor speed and its harmonics, wherein aerodynamic excitation can lead to fatigue damage. However, it was shown that when turbulent inflow with an intensity of 20% was modeled, there was almost no impact on the loads and blade displacement with added-mass effects except for a small difference in the fatigue response of the blade to turbulent load fluctuations.« less
Added-mass effects on a horizontal-axis tidal turbine using FAST v8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Robynne E.; Thresher, Robert; Jonkman, Jason
Added mass on tidal turbine blades has the potential to alter the blade dynamic response, such as natural frequencies and vibration amplitudes, as a response to blade acceleration. Currently, most aeroelastic design tools do not consider such effects as they are complex and expensive to model, and they are not an intrinsic part of most blade-element momentum theory codes, which are commonly used in the tidal energy industry. This article outlines the addition of added-mass effects to the National Renewable Energy Laboratory's design tool FAST v8. A verification is presented for a spring-mass system with an initial displacement, and amore » case study is performed for the Reference Model 1 20-m-diameter tidal turbine. For the 20-m-diameter turbine, it was shown that the natural frequency of vibration is reduced by 65% when added mass is considered. Further, the thrust loads are increased by 2.5% when the blades are excited by a 5% step increase in inflow velocity when added mass is considered. This decrease can have a significant impact on the overall turbine design, as it is important to design the blades with a natural frequency so that they are not excited by the rotor speed and its harmonics, wherein aerodynamic excitation can lead to fatigue damage. However, it was shown that when turbulent inflow with an intensity of 20% was modeled, there was almost no impact on the loads and blade displacement with added-mass effects except for a small difference in the fatigue response of the blade to turbulent load fluctuations.« less
NASA Astrophysics Data System (ADS)
Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; Tang, Qi
2017-08-01
A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added-mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forces on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this first part of a two-part series, the properties of the AMP scheme are motivated and evaluated through the development and analysis of some model problems. The analysis shows when and why the traditional partitioned scheme becomes unstable due to either added-mass or added-damping effects. The analysis also identifies the proper form of the added-damping which depends on the discrete time-step and the grid-spacing normal to the rigid body. The results of the analysis are confirmed with numerical simulations that also demonstrate a second-order accurate implementation of the AMP scheme.
Adaptive Path Control of Surface Ships in Restricted Waters.
1980-08-01
and Fn=0.116-- Random Walk Disturbance Model 31 6. Optimal Gains for Tokyo Mazu at H/T=- and Fn=0.116-- Random Walk Disturbance Model 39 7. RMS Cost J...yaw mass moment of inertia [kgm 2 V =21 /pL nondimensional yaw mass moment of inertia zz zz J optimal control or Weighted Least-Squares cost function...J RMS cost , eq. (70) J 5yaw added mass moment of inertia [kgm 2 iz=2Jz/pL nondimensional yaw added mass moment of inertia zz zz K Kalman-Bucy state
The added mass forces in insect flapping wings.
Liu, Longgui; Sun, Mao
2018-01-21
The added mass forces of three-dimensional (3D) flapping wings of some representative insects, and the accuracy of the often used simple two-dimensional (2D) method, are studied. The added mass force of a flapping wing is calculated by both 3D and 2D methods, and the total aerodynamic force of the wing is calculated by the CFD method. Our findings are as following. The added mass force has a significant contribution to the total aerodynamic force of the flapping wings during and near the stroke reversals, and the shorter the stroke amplitude is, the larger the added mass force becomes. Thus the added mass force could not be neglected when using the simple models to estimate the aerodynamics force, especially for insects with relatively small stroke amplitudes. The accuracy of the often used simple 2D method is reasonably good: when the aspect ratio of the wing is greater than about 3.3, error in the added mass force calculation due to the 2D assumption is less than 9%; even when the aspect ratio is 2.8 (approximately the smallest for an insect), the error is no more than 13%. Copyright © 2017 Elsevier Ltd. All rights reserved.
Generalized derivation of the added-mass and circulatory forces for viscous flows
NASA Astrophysics Data System (ADS)
Limacher, Eric; Morton, Chris; Wood, David
2018-01-01
The concept of added mass arises from potential flow analysis and is associated with the acceleration of a body in an inviscid irrotational fluid. When shed vorticity is modeled as vortex singularities embedded in this irrotational flow, the associated force can be superimposed onto the added-mass force due to the linearity of the governing Laplace equation. This decomposition of force into added-mass and circulatory components remains common in modern aerodynamic models, but its applicability to viscous separated flows remains unclear. The present work addresses this knowledge gap by presenting a generalized derivation of the added-mass and circulatory force decomposition which is valid for a body of arbitrary shape in an unbounded, incompressible fluid domain, in both two and three dimensions, undergoing arbitrary motions amid continuous distributions of vorticity. From the general expression, the classical added-mass force is rederived for well-known canonical cases and is seen to be additive to the circulatory force for any flow. The formulation is shown to be equivalent to existing theoretical work under the specific conditions and assumptions of previous studies. It is also validated using a numerical simulation of a pitching plate in a steady freestream flow, conducted by Wang and Eldredge [Theor. Comput. Fluid Dyn. 27, 577 (2013), 10.1007/s00162-012-0279-5]. In response to persistent confusion in the literature, a discussion of the most appropriate physical interpretation of added mass is included, informed by inspection of the derived equations. The added-mass force is seen to account for the dynamic effect of near-body vorticity and is not (as is commonly claimed) associated with the acceleration of near-body fluid which "must" somehow move with the body. Various other consequences of the derivation are discussed, including a concept which has been labeled the conservation of image-vorticity impulse.
Meson effective mass in the isospin medium in hard-wall AdS/QCD model
NASA Astrophysics Data System (ADS)
Mamedov, Shahin
2016-02-01
We study a mass splitting of the light vector, axial-vector, and pseudoscalar mesons in the isospin medium in the framework of the hard-wall model. We write an effective mass definition for the interacting gauge fields and scalar field introduced in gauge field theory in the bulk of AdS space-time. Relying on holographic duality we obtain a formula for the effective mass of a boundary meson in terms of derivative operator over the extra bulk coordinate. The effective mass found in this way coincides with the one obtained from finding of poles of the two-point correlation function. In order to avoid introducing distinguished infrared boundaries in the quantization formula for the different mesons from the same isotriplet we introduce extra action terms at this boundary, which reduces distinguished values of this boundary to the same value. Profile function solutions and effective mass expressions were found for the in-medium ρ , a_1, and π mesons.
Davis, Melissa A.; Macko, Antoni R.; Steyn, Leah V.; Anderson, Miranda J.; Limesand, Sean W.
2015-01-01
Placental insufficiency is associated with fetal hypoglycemia, hypoxemia, and elevated plasma norepinephrine (NE) that become increasingly pronounced throughout the third trimester and contribute to intrauterine growth restriction (IUGR). This study evaluated the effect of fetal adrenal demedullation (AD) on growth and pancreatic endocrine cell mass. Placental insufficiency-induced IUGR was created by exposing pregnant ewes to elevated ambient temperatures during mid-gestation. Treatment groups consisted of control and IUGR fetuses with either surgical sham or AD at 98 days gestational age (dGA; term = 147 dGA), a time-point that precedes IUGR. Samples were collected at 134 dGA. IUGR-sham fetuses were hypoxemic, hypoglycemic, and hypoinsulinemic, and values were similar in IUGR-AD fetuses. Plasma NE concentrations were ~5-fold greater in IUGR-sham compared to control-sham, control-AD, and IUGR-AD fetuses. IUGR-sham and IUGR-AD fetuses weighed less than controls. Compared to IUGR-sham fetuses, IUGR-AD fetuses weighed more and asymmetrical organ growth was absent. Pancreatic β-cell mass and α-cell mass were lower in both IUGR-sham and IUGR-AD fetuses compared to controls, however, pancreatic endocrine cell mass relative to fetal mass was lower in IUGR-AD fetuses. These findings indicate that NE, independently of hypoxemia, hypoglycemia and hypoinsulinemia, influence growth and asymmetry of growth but not pancreatic endocrine cell mass in IUGR fetuses. PMID:25584967
ADIABATIC MASS LOSS IN BINARY STARS. II. FROM ZERO-AGE MAIN SEQUENCE TO THE BASE OF THE GIANT BRANCH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Hongwei; Chen, Xuefei; Han, Zhanwen
2015-10-10
In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z = 0.02) of mass 0.10 M{sub ⊙}–100 M{sub ⊙} from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. Formore » intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio q{sub ad} (throughout this paper, we follow the convention of defining the binary mass ratio as q ≡ M{sub donor}/M{sub accretor}) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, q{sub ad} plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with q{sub ad} declining with decreasing mass, and asymptotically approaching q{sub ad} = 2/3, appropriate to a classical isentropic n = 3/2 polytrope. Our calculated q{sub ad} values agree well with the behavior of time-dependent models by Chen and Han of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass transfer, nicely circumscribes the range in q{sub ad} as a function of the orbital period in which they are found. These results are intended to advance the verisimilitude of population synthesis models of close binary evolution.« less
da Silveira Campos, Raquel M; Landi Masquio, Deborah C; Campos Corgosinho, Flávia; de Lima Sanches, Priscila; de Piano, Aline; Carnier, June; Leão da Silva, Patrícia; Grotti Clemente, Ana P; de Castro Ferreira Vicente, Sofia E; Oyama, Lila M; da Penha Oller do Nascimento, Claudia M; Tock, Lian; Tufik, Sergio; de Mello, Marco T; Dâmaso, Ana R
2017-06-01
Homeostasis Model Assessment-Adiponectin (HOMA-AD) is suggesting a new biomarker of insulin resistance in obese population. In this way, the purpose of this study was to investigate the effects of different kinds of exercise in the sensitive index predictor of insulin resistance. A total of 148 obese adolescents were enrolled in the program. They aged 15-19 y, with Body Mass Index (BMI) ≥P95th and were submitted to 1 year of interdisciplinary weight loss therapy, randomized in two groups, aerobic training (AT) (N.=51) and aerobic plus resistance training (N.=97). Blood samples were collected to analyze adiponectin, glucose and insulin concentrations. The insulin resistance was measured by HOMA-AD and Homeostasis Model Assessment Insulin Resistance Index (HOMA-IR). Both kinds of exercise training promoted a decrease in body mass, body mass index, fat mass, visceral and subcutaneous fat. However, only aerobic plus resistance training was effective to reduce HOMA-AD, insulin and glucose concentration; and increase insulin sensibility and adiponectin concentration. The aerobic plus resistance training was more effective than AT alone to improve the HOMA-AD, suggesting clinical application on obesity, diabetes, atherosclerosis and metabolic syndrome control in the pediatric population.
Xu, Fuqing; Wang, Zhi-Wu; Tang, Li; Li, Yebo
2014-09-01
In solid-state anaerobic digestion (SS-AD) of cellulosic biomass, the volumetric methane production rate has often been found to increase with the increase in total solids (TS) content until a threshold is reached, and then to decrease. This phenomenon cannot be explained by conventional understanding derived from liquid anaerobic digestion. This study proposed that the high TS content-caused mass diffusion limitation may be responsible for the observed methane production deterioration. Based on this hypothesis, a new SS-AD model was developed by taking into account the mass diffusion limitation and hydrolysis inhibition. The good agreement between model simulation and the experimental as well as literature data verified that the observed reduction in volumetric methane production rate could be ascribed to hydrolysis inhibition as a result of the mass diffusion limitation in SS-AD. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of added mass on the interaction of bubbles in a low-Reynolds-number shear flow.
Lavrenteva, Olga; Prakash, Jai; Nir, Avinoam
2016-02-01
Equal size air bubbles that are entrapped by a Taylor vortex of the secondary flow in a Couette device, thereby defying buoyancy, slowly form a stable ordered ring with equal separation distances between all neighbors. We present two models of the process dynamics based on force balance on a bubble in the presence of other bubbles positioned on the same streamline in a simple shear flow. The forces taken into account are the viscous resistance, the added mass force, and the inertia-induced repulsing force between two bubbles in a low-Reynolds-number shear flow obtained in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)]. The first model of the process assumes that each bubble interacts solely with its nearest neighbors. The second model takes into account pairwise interactions among all the bubbles in the ring. The performed dynamic simulations were compared to the experimental results reported in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)] and to the results of quasistationary models (ignoring the added mass effect) suggested in that paper. It is demonstrated that taking into account the effect of added mass, the models describe the major effect of the bubbles' ordering, provide good estimation of the relaxation time, and also predict nonmonotonic behavior of the separation distance between the bubbles, which exhibit over- and undershooting of equilibrium separations. The latter effects were observed in experiments, but are not predicted by the quasistationary models.
New Low-mass Eclipsing Binary Systems in Praesepe Discovered by K2
NASA Astrophysics Data System (ADS)
Gillen, Edward; Hillenbrand, Lynne A.; David, Trevor J.; Aigrain, Suzanne; Rebull, Luisa; Stauffer, John; Cody, Ann Marie; Queloz, Didier
2017-11-01
We present the discovery and characterization of four low-mass (M< 0.6 {M}⊙ ) eclipsing binary (EB) systems in the sub-Gyr old Praesepe open cluster using Kepler/K2 time series photometry and Keck/HIRES spectroscopy. We present a new Gaussian process EB model, GP-EBOP, as well as a method of simultaneously determining effective temperatures and distances for EBs. Three of the reported systems (AD 3814, AD 2615 and AD 1508) are detached and double-lined, and precise solutions are presented for the first two. We determine masses and radii to 1%-3% precision for AD 3814 and to 5%-6% for AD 2615. Together with effective temperatures determined to ˜50 K precision, we test the PARSEC v1.2 and BHAC15 stellar evolution models. Our EB parameters are more consistent with the PARSEC models, primarily because the BHAC15 temperature scale is hotter than our data over the mid-M-dwarf mass range probed. Both ADs 3814 and 2615, which have orbital periods of 6.0 and 11.6 days, are circularized but not synchronized. This suggests that either synchronization proceeds more slowly in fully convective stars than the theory of equilibrium tides predicts, or magnetic braking is currently playing a more important role than tidal forces in the spin evolution of these binaries. The fourth system (AD 3116) comprises a brown dwarf transiting a mid-M-dwarf, which is the first such system discovered in a sub-Gyr open cluster. Finally, these new discoveries increase the number of characterized EBs in sub-Gyr open clusters by 20% (40%) below M< 1.5 M ⊙ (M< 0.6 M ⊙).
(2 + 1)-dimensional interacting model of two massless spin-2 fields as a bi-gravity model
NASA Astrophysics Data System (ADS)
Hoseinzadeh, S.; Rezaei-Aghdam, A.
2018-06-01
We propose a new group-theoretical (Chern-Simons) formulation for the bi-metric theory of gravity in (2 + 1)-dimensional spacetime which describe two interacting massless spin-2 fields. Our model has been formulated in terms of two dreibeins rather than two metrics. We obtain our Chern-Simons gravity model by gauging mixed AdS-AdS Lie algebra and show that it has a two dimensional conformal field theory (CFT) at the boundary of the anti de Sitter (AdS) solution. We show that the central charge of the dual CFT is proportional to the mass of the AdS solution. We also study cosmological implications of our massless bi-gravity model.
Proposed Framework for Determining Added Mass of Orion Drogue Parachutes
NASA Technical Reports Server (NTRS)
Fraire, Usbaldo, Jr.; Dearman, James; Morris, Aaron
2011-01-01
The Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS) project is executing a program to qualify a parachute system for a next generation human spacecraft. Part of the qualification process involves predicting parachute riser tension during system descent with flight simulations. Human rating the CPAS hardware requires a high degree of confidence in the simulation models used to predict parachute loads. However, uncertainty exists in the heritage added mass models used for loads predictions due to a lack of supporting documentation and data. Even though CPAS anchors flight simulation loads predictions to flight tests, extrapolation of these models outside the test regime carries the risk of producing non-bounding loads. A set of equations based on empirically derived functions of skirt radius is recommended as the simplest and most viable method to test and derive an enhanced added mass model for an inflating parachute. This will increase confidence in the capability to predict parachute loads. The selected equations are based on those published in A Simplified Dynamic Model of Parachute Inflation by Dean Wolf. An Ames 80x120 wind tunnel test campaign is recommended to acquire the reefing line tension and canopy photogrammetric data needed to quantify the terms in the Wolf equations and reduce uncertainties in parachute loads predictions. Once the campaign is completed, the Wolf equations can be used to predict loads in a typical CPAS Drogue Flight test. Comprehensive descriptions of added mass test techniques from the Apollo Era to the current CPAS project are included for reference.
Winston, Richard B.; Konikow, Leonard F.; Hornberger, George Z.
2018-02-16
In the traditional method of characteristics for groundwater solute-transport models, advective transport is represented by moving particles that track concentration. This approach can lead to global mass-balance problems because in models of aquifers having complex boundary conditions and heterogeneous properties, particles can originate in cells having different pore volumes and (or) be introduced (or removed) at cells representing fluid sources (or sinks) of varying strengths. Use of volume-weighted particles means that each particle tracks solute mass. In source or sink cells, the changes in particle weights will match the volume of water added or removed through external fluxes. This enables the new method to conserve mass in source or sink cells as well as globally. This approach also leads to potential efficiencies by allowing the number of particles per cell to vary spatially—using more particles where concentration gradients are high and fewer where gradients are low. The approach also eliminates the need for the model user to have to distinguish between “weak” and “strong” fluid source (or sink) cells. The new model determines whether solute mass added by fluid sources in a cell should be represented by (1) new particles having weights representing appropriate fractions of the volume of water added by the source, or (2) distributing the solute mass added over all particles already in the source cell. The first option is more appropriate for the condition of a strong source; the latter option is more appropriate for a weak source. At sinks, decisions whether or not to remove a particle are replaced by a reduction in particle weight in proportion to the volume of water removed. A number of test cases demonstrate that the new method works well and conserves mass. The method is incorporated into a new version of the U.S. Geological Survey’s MODFLOW–GWT solute-transport model.
Added Value of Assessing Adnexal Masses with Advanced MRI Techniques
Thomassin-Naggara, I.; Balvay, D.; Rockall, A.; Carette, M. F.; Ballester, M.; Darai, E.; Bazot, M.
2015-01-01
This review will present the added value of perfusion and diffusion MR sequences to characterize adnexal masses. These two functional MR techniques are readily available in routine clinical practice. We will describe the acquisition parameters and a method of analysis to optimize their added value compared with conventional images. We will then propose a model of interpretation that combines the anatomical and morphological information from conventional MRI sequences with the functional information provided by perfusion and diffusion weighted sequences. PMID:26413542
Massive quiver matrix models for massive charged particles in AdS
Asplund, Curtis T.; Denef, Frederik; Dzienkowski, Eric
2016-01-11
Here, we present a new class of N = 4 supersymmetric quiver matrix models and argue that it describes the stringy low-energy dynamics of internally wrapped D-branes in four-dimensional anti-de Sitter (AdS) flux compactifications. The Lagrangians of these models differ from previously studied quiver matrix models by the presence of mass terms, associated with the AdS gravitational potential, as well as additional terms dictated by supersymmetry. These give rise to dynamical phenomena typically associated with the presence of fluxes, such as fuzzy membranes, internal cyclotron motion and the appearance of confining strings. We also show how these models can bemore » obtained by dimensional reduction of four-dimensional supersymmetric quiver gauge theories on a three-sphere.« less
Asymptotical AdS space from nonlinear gravitational models with stabilized extra dimensions
NASA Astrophysics Data System (ADS)
Günther, U.; Moniz, P.; Zhuk, A.
2002-08-01
We consider nonlinear gravitational models with a multidimensional warped product geometry. Particular attention is payed to models with quadratic scalar curvature terms. It is shown that for certain parameter ranges, the extra dimensions are stabilized if the internal spaces have a negative constant curvature. In this case, the four-dimensional effective cosmological constant as well as the bulk cosmological constant become negative. As a consequence, the homogeneous and isotropic external space is asymptotically AdS4. The connection between the D-dimensional and the four-dimensional fundamental mass scales sets a restriction on the parameters of the considered nonlinear models.
Investigation of flow and transport processes at the MADE site using ensemble Kalman filter
Liu, Gaisheng; Chen, Y.; Zhang, Dongxiao
2008-01-01
In this work the ensemble Kalman filter (EnKF) is applied to investigate the flow and transport processes at the macro-dispersion experiment (MADE) site in Columbus, MS. The EnKF is a sequential data assimilation approach that adjusts the unknown model parameter values based on the observed data with time. The classic advection-dispersion (AD) and the dual-domain mass transfer (DDMT) models are employed to analyze the tritium plume during the second MADE tracer experiment. The hydraulic conductivity (K), longitudinal dispersivity in the AD model, and mass transfer rate coefficient and mobile porosity ratio in the DDMT model, are estimated in this investigation. Because of its sequential feature, the EnKF allows for the temporal scaling of transport parameters during the tritium concentration analysis. Inverse simulation results indicate that for the AD model to reproduce the extensive spatial spreading of the tritium observed in the field, the K in the downgradient area needs to be increased significantly. The estimated K in the AD model becomes an order of magnitude higher than the in situ flowmeter measurements over a large portion of media. On the other hand, the DDMT model gives an estimation of K that is much more comparable with the flowmeter values. In addition, the simulated concentrations by the DDMT model show a better agreement with the observed values. The root mean square (RMS) between the observed and simulated tritium plumes is 0.77 for the AD model and 0.45 for the DDMT model at 328 days. Unlike the AD model, which gives inconsistent K estimates at different times, the DDMT model is able to invert the K values that consistently reproduce the observed tritium concentrations through all times. ?? 2008 Elsevier Ltd. All rights reserved.
Large Black Holes in the Randall-Sundrum II Model
NASA Astrophysics Data System (ADS)
Yaghoobpour Tari, Shima
The Einstein equation with a negative cosmological constant ! in the five dimensions for the Randall-Sundrum II model, which includes a black hole, has been solved numerically. We have constructed an AdS5-CFT 4 solution numerically, using a spectral method to minimize the integral of the square of the error of the Einstein equation, with 210 parameters to be determined by optimization. This metric is conformal to the Schwarzschild metric at an AdS5 boundary with an infinite scale factor. So, we consider this solution as an infinite-mass black hole solution. We have rewritten the infinite-mass black hole in the Fefferman-Graham form and obtained the numerical components of the CFT energy-momentum tensor. Using them, we have perturbed the metric to relocate the brane from infinity and obtained a large static black hole solution for the Randall- Sundrum II model. The changes of mass, entropy, temperature and area of the large black hole from the Schwarzschild metric are studied up to the first order for the perturbation parameter 1/(-Λ5M 2). The Hawking temperature and entropy for our large black hole have the same values as the Schwarzschild metric with the same mass, but the horizon area is increased by about 4.7/(-Λ5). Figueras, Lucietti, and Wiseman found an AdS5-CFT4 solution using an independent and different method from us, called the Ricci-DeTurck-flow method. Then, Figueras and Wiseman perturbed this solution in a same way as we have done and obtained the solution for the large black hole in the Randall-Sundrum II model. These two numerical solutions are the first mathematical proofs for having a large black hole in the Randall-Sundrum II. We have compared their results with ours for the CFT energy-momentum tensor components and the perturbed metric. We have shown that the results are closely in agreement, which can be considered as evidence that the solution for the large black hole in the Randall-Sundrum II model exists.
Higgs bosons in extra dimensions
NASA Astrophysics Data System (ADS)
Quiros, Mariano
2015-05-01
In this paper, motivated by the recent discovery of a Higgs-like boson at the Large Hadron Collider (LHC) with a mass mH≃125 GeV, we review different models where the hierarchy problem is solved by means of a warped extra dimension. In the Randall-Sundrum (RS) model electroweak observables provide very strong bounds on the mass of KK modes which motivates extensions to overcome this problem. Two extensions are briefly discussed. One particular extension is based on the deformation of the metric such that it strongly departs from the AdS5 structure in the IR region while it goes asymptotically to AdS5 in the UV brane. This model has the IR brane close to a naked metric singularity (which is outside the physical interval) characteristic of soft-walls constructions. The proximity of the singularity provides a strong wave function renormalization for the Higgs field which suppresses the T and S parameters. The second class of considered extensions are based on the introduction of an extra gauge group in the bulk such that the custodial SU(2)R symmetry is gauged and protects the T parameter. By further enlarging the bulk gauge symmetry one can find models where the Higgs is identified with the fifth component of gauge fields and for which the Higgs potential along with the Higgs mass can be dynamically determined by the Coleman-Weinberg mechanism.
Adenovirus type 5 intrinsic adsorption rates measured by surface plasmon resonance.
Roper, D Keith; Nakra, Shamit
2006-01-01
Intrinsic adsorption rates of whole adenovirus type 5 (Ad5) onto a diethylaminoethyl (DEAE) anion exchange surface are measured for the first time by surface plasmon resonance (SPR). Fitting SPR sensorgrams to a two-compartment mass transport reaction model distinguishes intrinsic adsorption rates from slow diffusive Ad5 mass transport. Ad5 is a widely used viral vector for gene therapy that binds electrostatically to surfaces of cells and synthetics such as membranes, chromatographic resins, and glass. Increasing NaCl concentration from 4.8 to 14.4mM shifts binding of whole Ad5 from diffusion control to a regime where both sorption and diffusion affect binding. Intrinsic adsorption rates for Ad5-DEAE interaction are 16 times faster than intrinsic adsorption rates for Ad5 fiber knob interacting with soluble extracellular domain of coxsackievirus adenovirus receptors (s-CAR).
Lensed Type Ia supernovae as probes of cluster mass models
SAO/NASA ADS Astronomy Abstract Service Title: Lensed Type Ia supernovae as probes of cluster mass Origin: OUP Astronomy Keywords: gravitational lensing: strong, supernovae: general, galaxies: clusters
Global dynamics of asymptotically locally AdS spacetimes with negative mass
NASA Astrophysics Data System (ADS)
Dold, Dominic
2018-05-01
The Einstein vacuum equations in 5D with negative cosmological constant are studied in biaxial Bianchi IX symmetry. We show that if initial data of Eguchi–Hanson type, modelled after the 4D Riemannian Eguchi–Hanson space, have negative mass, the future maximal development does not contain horizons, i. e. the complement of the causal past of null infinity is empty. In particular, perturbations of Eguchi–Hanson–AdS spacetimes within the biaxial Bianchi IX symmetry class cannot form horizons, suggesting that such spacetimes are potential candidates for a naked singularity to form. The proof relies on an extension principle proven for this system and a priori estimates following from the monotonicity of the Hawking mass.
Nonequilibrium dynamics of the O( N ) model on dS3 and AdS crunches
NASA Astrophysics Data System (ADS)
Kumar, S. Prem; Vaganov, Vladislav
2018-03-01
We study the nonperturbative quantum evolution of the interacting O( N ) vector model at large- N , formulated on a spatial two-sphere, with time dependent couplings which diverge at finite time. This model - the so-called "E-frame" theory, is related via a conformal transformation to the interacting O( N ) model in three dimensional global de Sitter spacetime with time independent couplings. We show that with a purely quartic, relevant deformation the quantum evolution of the E-frame model is regular even when the classical theory is rendered singular at the end of time by the diverging coupling. Time evolution drives the E-frame theory to the large- N Wilson-Fisher fixed point when the classical coupling diverges. We study the quantum evolution numerically for a variety of initial conditions and demonstrate the finiteness of the energy at the classical "end of time". With an additional (time dependent) mass deformation, quantum backreaction lowers the mass, with a putative smooth time evolution only possible in the limit of infinite quartic coupling. We discuss the relevance of these results for the resolution of crunch singularities in AdS geometries dual to E-frame theories with a classical gravity dual.
Heavy-light mesons in chiral AdS/QCD
NASA Astrophysics Data System (ADS)
Liu, Yizhuang; Zahed, Ismail
2017-06-01
We discuss a minimal holographic model for the description of heavy-light and light mesons with chiral symmetry, defined in a slab of AdS space. The model consists of a pair of chiral Yang-Mills and tachyon fields with specific boundary conditions that break spontaneously chiral symmetry in the infrared. The heavy-light spectrum and decay constants are evaluated explicitly. In the heavy mass limit the model exhibits both heavy-quark and chiral symmetry and allows for the explicit derivation of the one-pion axial couplings to the heavy-light mesons.
Negative Coulomb damping, limit cycles, and self-oscillation of the vocal folds
NASA Astrophysics Data System (ADS)
Fulcher, Lewis P.; Scherer, Ronald C.; Melnykov, Artem; Gateva, Vesela; Limes, Mark E.
2006-05-01
An effective one-mass model of phonation is developed. It borrows the salient features of the classic two-mass model of human speech developed by Ishizaka, Matsudaira, and Flanagan. Their model is based on the idea that the oscillating vocal folds maintain their motion by deriving energy from the flow of air through the glottis. We argue that the essence of the action of the aerodynamic forces on the vocal folds is captured by negative Coulomb damping, which acts on the oscillator to energize it. A viscous force is added to include the effects of tissue damping. The solutions to this single oscillator model show that when it is excited by negative Coulomb damping, it will reach a limit cycle. Displacements, phase portraits, and energy histories are presented for two underdamped linear oscillators. A nonlinear force is added so that the variations of the fundamental frequency and the open quotient with lung pressure are comparable to the behavior of the two-mass model.
NGC 307 and the effects of dark-matter haloes on measuring supermassive black holes in disc galaxies
NASA Astrophysics Data System (ADS)
Erwin, Peter; Thomas, Jens; Saglia, Roberto P.; Fabricius, Maximilian; Rusli, Stephanie P.; Seitz, Stella; Bender, Ralf
2018-01-01
We present stellar-dynamical measurements of the central supermassive black hole (SMBH) in the S0 galaxy NGC 307, using adaptive-optics IFU data from VLT-SINFONI. We investigate the effects of including dark-matter haloes as well as multiple stellar components with different mass-to-light (M/L) ratios in the dynamical modelling. Models with no halo and a single stellar component yield a relatively poor fit with a low value for the SMBH mass [(7.0 ± 1.0) × 107 M⊙] and a high stellar M/L ratio (ϒK = 1.3 ± 0.1). Adding a halo produces a much better fit, with a significantly larger SMBH mass [(2.0 ± 0.5) × 108 M⊙] and a lower M/L ratio (ϒK = 1.1 ± 0.1). A model with no halo but with separate bulge and disc components produces a similarly good fit, with a slightly larger SMBH mass [(3.0 ± 0.5) × 108 M⊙] and an identical M/L ratio for the bulge component, though the disc M/L ratio is biased high (ϒK, disc = 1.9 ± 0.1). Adding a halo to the two-stellar-component model results in a much more plausible disc M/L ratio of 1.0 ± 0.1, but has only a modest effect on the SMBH mass [(2.2 ± 0.6) × 108 M⊙] and leaves the bulge M/L ratio unchanged. This suggests that measuring SMBH masses in disc galaxies using just a single stellar component and no halo has the same drawbacks as it does for elliptical galaxies, but also that reasonably accurate SMBH masses and bulge M/L ratios can be recovered (without the added computational expense of modelling haloes) by using separate bulge and disc components.
Cathala, B; Monties, B
2001-07-19
Dehydrogenation polymers (DHPs, lignin model compounds) were synthesized in the presence of increasing pectin concentrations using two different methods. The first method ('Zutropfverfahren', ZT) consists in the slow adding of monomers whereas in the second method ('Zulaufverfahren', ZL) all the reactants are added simultaneously. DHPs solubility increases with the pectin concentration in the ZT experiments and remains stable in the ZL experiments. Covalent bonds between pectin and DHP are formed during ZT polymerization resulting in lignin carbohydrate complex (LCC) which keeps the unbound DHPs in solution by the formation of aggregate or micelle-like structures. In contrast LCC are not formed during the ZL process which behave like the DHP reference. The ZT DHP molar masses increase observed is attributed to the reactivity of the high molar mass polymer solubilized by the LCC whereas ZL higher molar mass polymers are precipitated out of the solution and cannot react further.
An Adaptive Approach for Precise Underwater Vehicle Control in Combined Robot-Diver Operations
2015-03-01
addressing rigid body and added mass, Coriolis effects , damping and restoring forces. 3. System Modeling for THAUS-like Platforms Yuh [3] presents...term, ( )C is the rigid body and added mass Coriolis effects , ( )D is the damping term, and )(g is the reactionary force term. The second...operations potentially increase the efficiency, effectiveness and safety of the tasks they perfonn. The utilization of an autonomous unde1water vehicle
Wang, Jiawei; Light, Kelly; Henderson, Mélanie; O'Loughlin, Jennifer; Mathieu, Marie-Eve; Paradis, Gilles; Gray-Donald, Katherine
2014-01-01
Little is known about longitudinal associations between added sugar consumption (solid and liquid sources) and glucose-insulin homeostasis among youth. Caucasian children (8-10 y) with at least one obese biological parent were recruited in the QUébec Adipose and Lifestyle InvesTigation in Youth (QUALITY) cohort (n = 630) and followed-up 2 y later (n = 564). Added sugars were assessed by 3 24-h dietary recalls at baseline. Two-year changes were examined in multivariate linear regression models, adjusting for baseline level, age, sex, Tanner stage, energy intake, fat mass (dual-energy X-ray absorptiometry), and physical activity (7 d accelerometer). Added sugar intake in either liquid or solid sources was not related to changes in adiposity measures (fat mass, body mass index, or waist circumference). However, a higher consumption (10 g/d) of added sugars from liquid sources was associated with 0.04 mmol/L higher fasting glucose, 2.3 pmol/L higher fasting insulin, 0.1 unit higher homeostasis model assessment of insulin resistance (HOMA-IR), and 0.4 unit lower Matsuda-insulin sensitivity index (Matsuda-ISI) in all participants (P < 0.01). No associations were observed with consumption of added sugars from solid sources. Overweight/obese children at baseline had greater increases in adiposity indicators, fasting insulin, and HOMA-IR and decreases in Matsuda-ISI during those 2 y than normal-weight children. Consumption of added sugars from liquid or solid sources was not associated with changes in adiposity, but liquid added sugars were a risk factor for the development of impaired glucose homeostasis and insulin resistance over 2 y among youth at risk of obesity.
Spiral Galaxy Lensing: A Model with Twist
NASA Astrophysics Data System (ADS)
Bell, Steven R.; Ernst, Brett; Fancher, Sean; Keeton, Charles R.; Komanduru, Abi; Lundberg, Erik
2014-12-01
We propose a single galaxy gravitational lensing model with a mass density that has a spiral structure. Namely, we extend the arcsine gravitational lens (a truncated singular isothermal elliptical model), adding an additional parameter that controls the amount of spiraling in the structure of the mass density. An important feature of our model is that, even though the mass density is sophisticated, we succeed in integrating the deflection term in closed form using a Gauss hypergeometric function. When the spiraling parameter is set to zero, this reduces to the arcsine lens.
Fermion masses and mixing in general warped extra dimensional models
NASA Astrophysics Data System (ADS)
Frank, Mariana; Hamzaoui, Cherif; Pourtolami, Nima; Toharia, Manuel
2015-06-01
We analyze fermion masses and mixing in a general warped extra dimensional model, where all the Standard Model (SM) fields, including the Higgs, are allowed to propagate in the bulk. In this context, a slightly broken flavor symmetry imposed universally on all fermion fields, without distinction, can generate the full flavor structure of the SM, including quarks, charged leptons and neutrinos. For quarks and charged leptons, the exponential sensitivity of their wave functions to small flavor breaking effects yield hierarchical masses and mixing as it is usual in warped models with fermions in the bulk. In the neutrino sector, the exponential wave-function factors can be flavor blind and thus insensitive to the small flavor symmetry breaking effects, directly linking their masses and mixing angles to the flavor symmetric structure of the five-dimensional neutrino Yukawa couplings. The Higgs must be localized in the bulk and the model is more successful in generalized warped scenarios where the metric background solution is different than five-dimensional anti-de Sitter (AdS5 ). We study these features in two simple frameworks, flavor complimentarity and flavor democracy, which provide specific predictions and correlations between quarks and leptons, testable as more precise data in the neutrino sector becomes available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, J. Y.; Riley, W. J.
We present a generic flux limiter to account for mass limitations from an arbitrary number of substrates in a biogeochemical reaction network. The flux limiter is based on the observation that substrate (e.g., nitrogen, phosphorus) limitation in biogeochemical models can be represented as to ensure mass conservative and non-negative numerical solutions to the governing ordinary differential equations. Application of the flux limiter includes two steps: (1) formulation of the biogeochemical processes with a matrix of stoichiometric coefficients and (2) application of Liebig's law of the minimum using the dynamic stoichiometric relationship of the reactants. This approach contrasts with the ad hoc down-regulationmore » approaches that are implemented in many existing models (such as CLM4.5 and the ACME (Accelerated Climate Modeling for Energy) Land Model (ALM)) of carbon and nutrient interactions, which are error prone when adding new processes, even for experienced modelers. Through an example implementation with a CENTURY-like decomposition model that includes carbon, nitrogen, and phosphorus, we show that our approach (1) produced almost identical results to that from the ad hoc down-regulation approaches under non-limiting nutrient conditions, (2) properly resolved the negative solutions under substrate-limited conditions where the simple clipping approach failed, (3) successfully avoided the potential conceptual ambiguities that are implied by those ad hoc down-regulation approaches. We expect our approach will make future biogeochemical models easier to improve and more robust.« less
Obusek, J P; Holt, K G; Rosenstein, R M
1995-07-01
Human leg swinging is modeled as the harmonic motion of a hybrid mass-spring pendulum. The cycle period is determined by a gravitational component and an elastic component, which is provided by the attachment of a soft-tissue/muscular spring of variable stiffness. To confirm that the stiffness of the spring changes with alterations in the inertial properties of the oscillator and that stiffness is relevant for the control of cycle period, we conducted this study in which the simple pendulum equivalent length was experimentally manipulated by adding mass to the ankle of a comfortably swinging leg. Twenty-four young, healthy adults were videotaped as they swung their right leg under four conditions: no added mass and with masses of 2.27, 4.55, and 6.82kg added to the ankle. Strong, linear relationships between the acceleration and displacement of the swinging leg within subjects and conditions were found, confirming the motion's harmonic nature. Cycle period significantly increased with the added mass. However, the observed increases were not as large as would be predicted by the induced changes in the gravitational component alone. These differences were interpreted as being due to increases in the active muscular stiffness. Significant linear increases in the elastic component (and hence stiffness) were demonstrated with increases in the simple pendulum equivalent length in 20 of the individual subjects, with r2 values ranging between 0.89 and 0.99. Significant linear relationships were also demonstrated between the elastic and gravitational components in 22 subjects, with individual r2 values between 0.90 and 0.99.(ABSTRACT TRUNCATED AT 250 WORDS)
Spectroscopy of the Ωccb baryon in the hypercentral constituent quark model
NASA Astrophysics Data System (ADS)
Shah, Zalak; Rai, Ajay Kumar
2018-05-01
We extract the mass spectrum of the triply heavy baryon {{{Ω }}}{{ccb}} using the hypercentral constituent quark model. The first order correction is also added to the potential term of the Hamiltonian. The radial and orbital excited state masses are determined, and the Regge trajectories and magnetic moments for this baryon are also given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.
A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forcesmore » on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this second part of a two-part series, the general formulation of the AMP scheme is presented including the form of the AMP interface conditions and added-damping tensors for general geometries. A fully second-order accurate implementation of the AMP scheme is developed in two dimensions based on a fractional-step method for the incompressible Navier-Stokes equations using finite difference methods and overlapping grids to handle the moving geometry. Here, the numerical scheme is verified on a number of difficult benchmark problems.« less
Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; ...
2017-01-20
A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forcesmore » on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this second part of a two-part series, the general formulation of the AMP scheme is presented including the form of the AMP interface conditions and added-damping tensors for general geometries. A fully second-order accurate implementation of the AMP scheme is developed in two dimensions based on a fractional-step method for the incompressible Navier-Stokes equations using finite difference methods and overlapping grids to handle the moving geometry. Here, the numerical scheme is verified on a number of difficult benchmark problems.« less
NASA Astrophysics Data System (ADS)
Piñeirua, M.; Godoy-Diana, R.; Thiria, B.
2015-08-01
In this Rapid Communication, we address a crucial point regarding the description of moderate to high Reynolds numbers aquatic swimmers. For decades, swimming animals have been classified in two different families of propulsive mechanisms based on the Reynolds number: the resistive swimmers, using local friction to produce the necessary thrust force for locomotion at low Reynolds number, and the reactive swimmers, lying in the high Reynolds range, and using added mass acceleration (described by perfect fluid theory). However, inertial swimmers are also systems that dissipate energy, due to their finite size, therefore involving strong resistive contributions, even for high Reynolds numbers. Using a complete model for the hydrodynamic forces, involving both reactive and resistive contributions, we revisit here the physical mechanisms responsible for the thrust production of such swimmers. We show, for instance, that the resistive part of the force balance is as crucial as added mass effects in the modeling of the thrust force, especially for elongated species. The conclusions brought by this work may have significant contributions to the understanding of complex swimming mechanisms, especially for the future design of artificial swimmers.
Hyper-scaling relations in the conformal window from dynamic AdS/QCD
NASA Astrophysics Data System (ADS)
Evans, Nick; Scott, Marc
2014-09-01
Dynamic AdS/QCD is a holographic model of strongly coupled gauge theories with the dynamics included through the running anomalous dimension of the quark bilinear, γ. We apply it to describe the physics of massive quarks in the conformal window of SU(Nc) gauge theories with Nf fundamental flavors, assuming the perturbative two-loop running for γ. We show that to find regular, holographic renormalization group flows in the infrared, the decoupling of the quark flavors at the scale of the mass is important, and enact it through suitable boundary conditions when the flavors become on shell. We can then compute the quark condensate and the mesonic spectrum (Mρ,Mπ,Mσ) and decay constants. We compute their scaling dependence on the quark mass for a number of examples. The model matches perturbative expectations for large quark mass and naïve dimensional analysis (including the anomalous dimensions) for small quark mass. The model allows study of the intermediate regime where there is an additional scale from the running of the coupling, and we present results for the deviation of scalings from assuming only the single scale of the mass.
Three dimensional view of the SYK/AdS duality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Sumit R.; Jevicki, Antal; Suzuki, Kenta
2017-09-05
We show that the spectrum of the SYK model can be interpreted as that of a 3D scalar coupled to gravity. The scalar has a mass which is at the Breitenholer-Freedman bound of AdS 2, and subject to a delta function potential at the center of the interval along the third direction. This, through Kaluza-Klein procedure on AdS 2 × (S 1)/Z 2, generates the spectrum reproducing the bi-local propagator at strong coupling. Furthermore, the leading 1/J correction calculated in this picture reproduces the known correction to the poles of the SYK propagator, providing credence to a conjecture that themore » bulk dual of this model can be interpreted as a three dimensional theory.« less
Tang, J. Y.; Riley, W. J.
2016-02-05
We present a generic flux limiter to account for mass limitations from an arbitrary number of substrates in a biogeochemical reaction network. The flux limiter is based on the observation that substrate (e.g., nitrogen, phosphorus) limitation in biogeochemical models can be represented as to ensure mass conservative and non-negative numerical solutions to the governing ordinary differential equations. Application of the flux limiter includes two steps: (1) formulation of the biogeochemical processes with a matrix of stoichiometric coefficients and (2) application of Liebig's law of the minimum using the dynamic stoichiometric relationship of the reactants. This approach contrasts with the ad hoc down-regulationmore » approaches that are implemented in many existing models (such as CLM4.5 and the ACME (Accelerated Climate Modeling for Energy) Land Model (ALM)) of carbon and nutrient interactions, which are error prone when adding new processes, even for experienced modelers. Through an example implementation with a CENTURY-like decomposition model that includes carbon, nitrogen, and phosphorus, we show that our approach (1) produced almost identical results to that from the ad hoc down-regulation approaches under non-limiting nutrient conditions, (2) properly resolved the negative solutions under substrate-limited conditions where the simple clipping approach failed, (3) successfully avoided the potential conceptual ambiguities that are implied by those ad hoc down-regulation approaches. We expect our approach will make future biogeochemical models easier to improve and more robust.« less
Using bioprocess stoichiometry to build a plant-wide mass balance based steady-state WWTP model.
Ekama, G A
2009-05-01
Steady-state models are useful for design of wastewater treatment plants (WWTPs) because they allow reactor sizes and interconnecting flows to be simply determined from explicit equations in terms of unit operation performance criteria. Once the overall WWTP scheme is established and the main system defining parameters of the individual unit operations estimated, dynamic models can be applied to the connected unit operations to refine their design and evaluate their performance under dynamic flow and load conditions. To model anaerobic digestion (AD) within plant-wide WWTP models, not only COD and nitrogen (N) but also carbon (C) fluxes entering the AD need to be defined. Current plant-wide models, like benchmark simulation model No 2 (BSM2), impose a C flux at the AD influent. In this paper, the COD and N mass balance steady-state models of activated sludge (AS) organics degradation, nitrification and denitrification (ND) and anaerobic (AD) and aerobic (AerD) digestion of wastewater sludge are extended and linked with bioprocess transformation stoichiometry to form C, H, O, N, chemical oxygen demand (COD) and charge mass balance based models so that also C (and H and O) can be tracked through the whole WWTP. By assigning a stoichiometric composition (x, y, z and a in C(x)H(y)O(z)N(a)) to each of the five main influent wastewater organic fractions and ammonia, these, and the products generated from them via the biological processes, are tracked through the WWTP. The model is applied to two theoretical case study WWTPs treating the same raw wastewater (WW) to the same final sludge residual biodegradable COD. It is demonstrated that much useful information can be generated with the relatively simple steady-state models to aid WWTP layout design and track the different products exiting the WWTP via the solid, liquid and gas streams, such as aerobic versus anaerobic digestion of waste activated sludge, N loads in recycle streams, methane production for energy recovery and green house gas (CO(2), CH(4)) generation. To reduce trial and error usage of WWTP simulation software, it is recommended that they are extended to include pre-processors based on mass balance steady-state models to assist with WWTP layout design, unit operation selection, reactor sizing, option evaluation and comparison and wastewater characterization before dynamic simulation.
Soong, Ming Foong; Ramli, Rahizar; Saifizul, Ahmad
2017-01-01
Quarter vehicle model is the simplest representation of a vehicle that belongs to lumped-mass vehicle models. It is widely used in vehicle and suspension analyses, particularly those related to ride dynamics. However, as much as its common adoption, it is also commonly accepted without quantification that this model is not as accurate as many higher-degree-of-freedom models due to its simplicity and limited degrees of freedom. This study investigates the trade-off between simplicity and accuracy within the context of quarter vehicle model by determining the effect of adding various modeling details on model accuracy. In the study, road input detail, tire detail, suspension stiffness detail and suspension damping detail were factored in, and several enhanced models were compared to the base model to assess the significance of these details. The results clearly indicated that these details do have effect on simulated vehicle response, but to various extents. In particular, road input detail and suspension damping detail have the most significance and are worth being added to quarter vehicle model, as the inclusion of these details changed the response quite fundamentally. Overall, when it comes to lumped-mass vehicle modeling, it is reasonable to say that model accuracy depends not just on the number of degrees of freedom employed, but also on the contributions from various modeling details.
Between simplicity and accuracy: Effect of adding modeling details on quarter vehicle model accuracy
2017-01-01
Quarter vehicle model is the simplest representation of a vehicle that belongs to lumped-mass vehicle models. It is widely used in vehicle and suspension analyses, particularly those related to ride dynamics. However, as much as its common adoption, it is also commonly accepted without quantification that this model is not as accurate as many higher-degree-of-freedom models due to its simplicity and limited degrees of freedom. This study investigates the trade-off between simplicity and accuracy within the context of quarter vehicle model by determining the effect of adding various modeling details on model accuracy. In the study, road input detail, tire detail, suspension stiffness detail and suspension damping detail were factored in, and several enhanced models were compared to the base model to assess the significance of these details. The results clearly indicated that these details do have effect on simulated vehicle response, but to various extents. In particular, road input detail and suspension damping detail have the most significance and are worth being added to quarter vehicle model, as the inclusion of these details changed the response quite fundamentally. Overall, when it comes to lumped-mass vehicle modeling, it is reasonable to say that model accuracy depends not just on the number of degrees of freedom employed, but also on the contributions from various modeling details. PMID:28617819
A pendulum experiment on added mass and the principle of equivalence
NASA Astrophysics Data System (ADS)
Neill, Douglas; Livelybrooks, Dean; Donnelly, Russell J.
2007-03-01
The concept of added mass in fluid mechanics has been known for many years. A familiar example is the accelerated motion of a sphere through an ideal (inviscid and irrotational) fluid, which has an added mass equal to one-half the mass of the fluid displaced. The period of oscillation of a simple pendulum in a vacuum is independent of its mass because of the equivalence of gravitational and inertial masses. In contrast, in a fluid both buoyancy and added mass affect the period. We present experimental results on simple pendula of different materials oscillating in various fluids. The results agree fairly well with the results obtained for the added mass in an ideal fluid.
Perry, Russell W.; Plumb, John M.; Huntington, Charles
2015-01-01
To estimate the parameters that govern mass- and temperature-dependent growth, we conducted a meta-analysis of existing growth data from juvenile Chinook Salmon Oncorhynchus tshawytscha that were fed an ad libitum ration of a pelleted diet. Although the growth of juvenile Chinook Salmon has been well studied, research has focused on a single population, a narrow range of fish sizes, or a narrow range of temperatures. Therefore, we incorporated the Ratkowsky model for temperature-dependent growth into an allometric growth model; this model was then fitted to growth data from 11 data sources representing nine populations of juvenile Chinook Salmon. The model fit the growth data well, explaining 98% of the variation in final mass. The estimated allometric mass exponent (b) was 0.338 (SE = 0.025), similar to estimates reported for other salmonids. This estimate of b will be particularly useful for estimating mass-standardized growth rates of juvenile Chinook Salmon. In addition, the lower thermal limit, optimal temperature, and upper thermal limit for growth were estimated to be 1.8°C (SE = 0.63°C), 19.0°C (SE = 0.27°C), and 24.9°C (SE = 0.02°C), respectively. By taking a meta-analytical approach, we were able to provide a growth model that is applicable across populations of juvenile Chinook Salmon receiving an ad libitum ration of a pelleted diet.
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.; Adelman, Howard M.; Walsh, Joanne L.; Wilbur, Matthew L.
1992-01-01
The development and validation of an optimization procedure to systematically place tuning masses along a rotor blade span to minimize vibratory loads are described. The masses and their corresponding locations are the design variables that are manipulated to reduce the harmonics of hub shear for a four-bladed rotor system without adding a large mass penalty. The procedure incorporates a comprehensive helicopter analysis to calculate the airloads. Predicting changes in airloads due to changes in design variables is an important feature of this research. The procedure was applied to a one-sixth, Mach-scaled rotor blade model to place three masses and then again to place six masses. In both cases the added mass was able to achieve significant reductions in the hub shear. In addition, the procedure was applied to place a single mass of fixed value on a blade model to reduce the hub shear for three flight conditions. The analytical results were compared to experimental data from a wind tunnel test performed in the Langley Transonic Dynamics Tunnel. The correlation of the mass location was good and the trend of the mass location with respect to flight speed was predicted fairly well. However, it was noted that the analysis was not entirely successful at predicting the absolute magnitudes of the fixed system loads.
Psaltis, Dimitrios
2007-05-04
In braneworld gravity models with a finite anti-de Sitter space (AdS) curvature in the extra dimension, the AdS/conformal field theory correspondence leads to a prediction for the lifetime of astrophysical black holes that is significantly smaller than the Hubble time, for asymptotic curvatures that are consistent with current experiments. Using the recent measurements of the position, three-dimensional spatial velocity, and mass of the black hole XTE J1118+480, I calculate a lower limit on its kinematic age of > or =11 Myr (95% confidence). This translates into an upper limit for the asymptotic AdS curvature in the extra dimensions of <0.08 mm, which significantly improves the limit obtained by table top experiments of sub mm gravity.
Natural vibration frequencies of horizontal tubes partially filled with liquid
NASA Astrophysics Data System (ADS)
Santisteban Hidalgo, Juan Andrés; Gama, Antonio Lopes; Moreira, Roger Matsumoto
2017-11-01
This work presents an experimental and numerical study on the flexural vibration of horizontal circular tubes partially filled with liquid. The tube is configured as a free-free beam with attention being directed to the case of small amplitudes of transverse oscillation whereas the axial movements of the tube and liquid are disregarded. At first vertical and horizontal polarizations of the flexural tube are investigated experimentally for different amounts of filling liquid. In contrast with the empty and fully-filled tubes, it is observed that natural frequencies of the vertical and horizontal polarizations are different due to asymmetry induced by the liquid layer, which acts like an added mass. Less mass of liquid is added to the tube when oscillating horizontally; as a consequence, eigenfrequencies for the horizontal polarization are found to be greater than the case of the vertically polarized tube. A simple method to calculate the natural vibration frequencies using coefficients of added mass of liquid is proposed. It is shown that the added mass coefficient increases with the liquid's level and viscosity. At last a numerical investigation of the interaction between the liquid and the tube is carried out by solving in two-dimensions the full Navier-Stokes equations via a finite volume method, with the free-surface flow being modeled with a homogeneous multiphase Eulerian-Eulerian fluid approach. Vertical and horizontal polarizations are imposed to the tube with pressure and shear stresses being determined numerically to assess the liquid's forcing onto the tube's wall. The coefficient of added mass of liquid is then estimated by the ratio between the resulting force and the acceleration imposed to the wall. A good agreement is found between experimental and numerical results, especially for the horizontally oscillating tube. It is also shown that viscosity can noticeably affect the added mass coefficients, particularly at low filling levels.
A simple, approximate model of parachute inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macha, J.M.
1992-11-01
A simple, approximate model of parachute inflation is described. The model is based on the traditional, practical treatment of the fluid resistance of rigid bodies in nonsteady flow, with appropriate extensions to accommodate the change in canopy inflated shape. Correlations for the steady drag and steady radial force as functions of the inflated radius are required as input to the dynamic model. In a novel approach, the radial force is expressed in terms of easily obtainable drag and reefing fine tension measurements. A series of wind tunnel experiments provides the needed correlations. Coefficients associated with the added mass of fluidmore » are evaluated by calibrating the model against an extensive and reliable set of flight data. A parameter is introduced which appears to universally govern the strong dependence of the axial added mass coefficient on motion history. Through comparisons with flight data, the model is shown to realistically predict inflation forces for ribbon and ringslot canopies over a wide range of sizes and deployment conditions.« less
A simple, approximate model of parachute inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macha, J.M.
1992-01-01
A simple, approximate model of parachute inflation is described. The model is based on the traditional, practical treatment of the fluid resistance of rigid bodies in nonsteady flow, with appropriate extensions to accommodate the change in canopy inflated shape. Correlations for the steady drag and steady radial force as functions of the inflated radius are required as input to the dynamic model. In a novel approach, the radial force is expressed in terms of easily obtainable drag and reefing fine tension measurements. A series of wind tunnel experiments provides the needed correlations. Coefficients associated with the added mass of fluidmore » are evaluated by calibrating the model against an extensive and reliable set of flight data. A parameter is introduced which appears to universally govern the strong dependence of the axial added mass coefficient on motion history. Through comparisons with flight data, the model is shown to realistically predict inflation forces for ribbon and ringslot canopies over a wide range of sizes and deployment conditions.« less
Vibration-based monitoring to detect mass changes in satellites
NASA Astrophysics Data System (ADS)
Maji, Arup; Vernon, Breck
2012-04-01
Vibration-based structural health monitoring could be a useful form of determining the health and safety of space structures. A particular concern is the possibility of a foreign object that attaches itself to a satellite in orbit for adverse reasons. A frequency response analysis was used to determine the changes in mass and moment of inertia of the space structure based on a change in the natural frequencies of the structure or components of the structure. Feasibility studies were first conducted on a 7 in x 19 in aluminum plate with various boundary conditions. Effect of environmental conditions on the frequency response was determined. The baseline frequency response for the plate was then used as the basis for detection of the addition, and possibly the location, of added masses on the plate. The test results were compared to both analytical solutions and finite element models created in SAP2000. The testing was subsequently expanded to aluminum alloy satellite panels and a mock satellite with dummy payloads. Statistical analysis was conducted on variations of frequency due to added mass and thermal changes to determine the threshold of added mass that can be detected.
Wang, JiaWei; Shang, Lei; Light, Kelly; O'Loughlin, Jennifer; Paradis, Gilles; Gray-Donald, Katherine
2015-08-01
Little is known about the influence of different forms of added sugar intake on diet quality or their association with obesity among youth. Dietary intake was assessed by three 24-h recalls in 613 Canadian children (aged 8-10 years). Added sugars (mean of 3-day intakes) were categorized according to source (solid or liquid). Dietary intake and the Canadian Healthy Eating Index (« HEI-C ») were compared across tertiles of solid and liquid added sugars separately as were adiposity indicators (body mass index (BMI), fat mass (dual-energy X-ray absorptiometry), and waist circumference). Cross-sectional associations were examined in linear regression models adjusting for age, sex, energy intake, and physical activity (7-day accelerometer). Added sugar contributed 12% of total energy intake (204 kcal) on average, of which 78% was from solid sources. Higher consumption of added sugars from either solid or liquid source was associated with higher total energy, lower intake of micronutrients, vegetables and fruit, and lower HEI-C score. Additionally liquid sources were associated with lower intake of dairy products. A 10-g higher consumption of added sugars from liquid sources was associated with 0.4 serving/day lower of vegetables and fruit, 0.4-kg/m(2) higher BMI, a 0.5-kg higher fat mass, and a 0.9-cm higher waist circumference whereas the associations of added sugars from solid sources and adiposity indicators tended to be negative. In conclusion, higher consumption of added sugar from either solid or liquid sources was associated with lower overall diet quality. Adiposity indicators were only positively associated with added sugars from liquid sources.
String Theory Origin of Dyonic N=8 Supergravity and Its Chern-Simons Duals.
Guarino, Adolfo; Jafferis, Daniel L; Varela, Oscar
2015-08-28
We clarify the higher-dimensional origin of a class of dyonic gaugings of D=4 N=8 supergravity recently discovered, when the gauge group is chosen to be ISO(7). This dyonically gauged maximal supergravity arises from consistent truncation of massive IIA supergravity on S^6, and its magnetic coupling constant descends directly from the Romans mass. The critical points of the supergravity uplift to new four-dimensional anti-de Sitter space (AdS4) massive type IIA vacua. We identify the corresponding three-dimensional conformal field theory (CFT3) duals as super-Chern-Simons-matter theories with simple gauge group SU(N) and level k given by the Romans mass. In particular, we find a critical point that uplifts to the first explicit N=2 AdS4 massive IIA background. We compute its free energy and that of the candidate dual Chern-Simons theory by localization to a solvable matrix model, and find perfect agreement. This provides the first AdS4/CFT3 precision match in massive type IIA string theory.
Delay-dependent stability and added damping of SDOF real-time dynamic hybrid testing
NASA Astrophysics Data System (ADS)
Chi, Fudong; Wang, Jinting; Jin, Feng
2010-09-01
It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and added damping of SDOF systems in RTDHT. The exponential delay term is transferred into a rational fraction by the Padé approximation, and the delay-dependent stability conditions and instability mechanism of SDOF RTDHT systems are investigated by the root locus technique. First, the stability conditions are discussed separately for the cases of stiffness, mass, and damping experimental substructure. The use of root locus plots shows that the added damping effect and instability mechanism for mass are different from those for stiffness. For the stiffness experimental substructure case, the instability results from the inherent mode because of an obvious negative damping effect of the delay. For the mass case, the delay introduces an equivalent positive damping into the inherent mode, and instability occurs at an added high frequency mode. Then, the compound stability condition is investigated for a general case and the results show that the mass ratio may have both upper and lower limits to remain stable. Finally, a high-emulational virtual shaking table model is built to validate the stability conclusions.
Kovac, Andrej; Somikova, Zuzana; Zilka, Norbert; Novak, Michal
2014-02-01
Alzheimer's disease (AD) is still being recognized today as an unmet medical need. Currently, there is no cure and early preclinical diagnostic assay available for AD. Therefore much attention is now being directed at the development of novel methods for quantitative determination of AD biomarkers in the cerebrospinal fluid (CSF). Here, we describe the liquid chromatography-tandem mass spectrometry method for determination of 5-hydroxytryptamine (SER), 5-hydroxyindoleacetic acid (5-HIAA), homovanilic acid (HVA), noradrenaline (NADR), adrenaline (ADR), dopamine (DA), glutamic acid (Glu), γ-aminobutyric acid (GABA), 3,4-dihydroxyphenylacetic acid (DOPAC) and histamine (HIS) in cerebrospinal fluid (CSF) from the rat model for human tauopathy. The benzoyl chloride was used as pre-column derivatization reagents. Neurotransmitters and metabolites were analysed on ultra performance liquid chromatography (UPLC) on C18 column in combination with tandem mass spectrometry. The method is simple, highly sensitive and showed excellent linearity with regression coefficients higher than 0.99. The accuracy was in a range of 93-113% for all analytes. The inter-day precision (n=5 days), expressed as %RSD, was in a range 2-10% for all analytes. Using this method we detected significant changes of CSF levels of two important neurotransmitters/metabolites, ADR and 5-HIAA, which correlates with progression of neurodegeneration in our animal model. © 2013 Published by Elsevier B.V.
Symmetries, holography, and quantum phase transition in two-dimensional dilaton AdS gravity
NASA Astrophysics Data System (ADS)
Cadoni, Mariano; Ciulu, Matteo; Tuveri, Matteo
2018-05-01
We revisit the Almheiri-Polchinski dilaton gravity model from a two-dimensional (2D) bulk perspective. We describe a peculiar feature of the model, namely the pattern of conformal symmetry breaking using bulk Killing vectors, a covariant definition of mass and the flow between different vacua of the theory. We show that the effect of the symmetry breaking is both the generation of an infrared scale (a mass gap) and to make local the Goldstone modes associated with the asymptotic symmetries of the 2D spacetime. In this way a nonvanishing central charge is generated in the dual conformal theory, which accounts for the microscopic entropy of the 2D black hole. The use of covariant mass allows to compare energetically the two different vacua of the theory and to show that at zero temperature the vacuum with a constant dilaton is energetically preferred. We also translate in the bulk language several features of the dual CFT discussed by Maldacena et al. The uplifting of the 2D model to (d +2 )-dimensional theories exhibiting hyperscaling violation is briefly discussed.
Measurements of aerodynamic forces on unsteadily moving bluff parachute canopies
NASA Astrophysics Data System (ADS)
Cockrell, D. J.; Harwood, R. J.; Shen, C. Q.
1987-06-01
Equations which describe the unsteady motion of bluff bodies through fluids contain certain components, termed added mass coefficients, which can only be determined by experiment. From the solutions to such equations the ways in which the shapes of parachute canopies influence the frequency of their oscillatory motion in pitch and their corresponding damping rates are required. Although a full-scale parachute canopy descends through air, oscillating in pitch as it does, experiments necessary to determine these added mass coefficients have been performed under water, using for this purpose a large ship tank from the towing carriage of which the model parachute canopies were suspended. These experiments showed that the added mass coefficients for bluff parachute canopies differed appreciably from their corresponding potential flow values. The latter were obtained from the analysis of inviscid, fluid flow around regular shapes which were representative of those parachute canopies. The significance for the prediction of the parachute's dynamic behavior in pitch is outlined.
Throat quantization of the Schwarzschild-Tangherlini(-AdS) black hole
NASA Astrophysics Data System (ADS)
Maeda, Hideki
2018-01-01
By the throat quantization pioneered by Louko and Mäkelä, we derive the mass and area/entropy spectra for the Schwarzschild-Tangherlini-type asymptotically flat or AdS vacuum black hole in arbitrary dimensions. Using the WKB approximation for black holes with large mass, we show that area/entropy is equally spaced for asymptotically flat black holes, while mass is equally spaced for asymptotically AdS black holes. Exact spectra can be obtained for toroidal AdS black holes in arbitrary dimensions including the three-dimensional BTZ black hole.
Nuclear binding energy using semi empirical mass formula
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ankita,, E-mail: ankitagoyal@gmail.com; Suthar, B.
2016-05-06
In the present communication, semi empirical mass formula using the liquid drop model has been presented. Nuclear binding energies are calculated using semi empirical mass formula with various constants given by different researchers. We also compare these calculated values with experimental data and comparative study for finding suitable constants is added using the error plot. The study is extended to find the more suitable constant to reduce the error.
Proteomic profiling of brain cortex tissues in a Tau transgenic mouse model of Alzheimer's disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Seong-Hun; Jung, In-Soo; Han, Gi-Yeon
Highlights: Black-Right-Pointing-Pointer A transgenic mouse model expressing NSE-htau23 was used. Black-Right-Pointing-Pointer 2D-gel electrophoresis to analyze the cortex proteins of transgenic mice was used. Black-Right-Pointing-Pointer Differentially expressed spots in different stages of AD were identified. Black-Right-Pointing-Pointer GSTP1 and CAII were downregulated with the progression of AD. Black-Right-Pointing-Pointer SCRN1 and ATP6VE1 were up regulated and down regulated differentially. -- Abstract: Alzheimer's disease (AD) involves regionalized neuronal death, synaptic loss, and an accumulation of intracellular neurofibrillary tangles and extracellular senile plaques. Although there have been numerous studies on tau proteins and AD in various stages of neurodegenerative disease pathology, the relationship between taumore » and AD is not yet fully understood. A transgenic mouse model expressing neuron-specific enolase (NSE)-controlled human wild-type tau (NSE-htau23), which displays some of the typical Alzheimer-associated pathological features, was used to analyze the brain proteome associated with tau tangle deposition. Two-dimensional electrophoresis was performed to compare the cortex proteins of transgenic mice (6- and 12-month-old) with those of control mice. Differentially expressed spots in different stages of AD were identified with ESI-Q-TOF (electrospray ionization quadruple time-of-flight) mass spectrometry and liquid chromatography/tandem mass spectrometry. Among the identified proteins, glutathione S-transferase P 1 (GSTP1) and carbonic anhydrase II (CAII) were down-regulated with the progression of AD, and secerin-1 (SCRN1) and V-type proton ATPase subunit E 1 (ATP6VE1) were up-regulated only in the early stages, and down-regulated in the later stages of AD. The proteins, which were further confirmed by RT-PCR at the mRNA level and with western blotting at the protein level, are expected to be good candidates as drug targets for AD. The study of up- and down-regulation of proteins during the progression of AD helps to explain the mechanisms associated with neuronal degeneration in AD.« less
THREE-DIMENSIONAL NAPL FATE AND TRANSPORT MODEL
We have added several new and significant capabilities to UTCHEM to make it into a general-purpose NAPL simulator. The simulator is now capable of modeling transient and steady-state three-dimensional flow and mass transport in the groundwater (saturated) and vadose (unsaturated...
Mathematical model of compact type evaporator
NASA Astrophysics Data System (ADS)
Borovička, Martin; Hyhlík, Tomáš
2018-06-01
In this paper, development of the mathematical model for evaporator used in heat pump circuits is covered, with focus on air dehumidification application. Main target of this ad-hoc numerical model is to simulate heat and mass transfer in evaporator for prescribed inlet conditions and different geometrical parameters. Simplified 2D mathematical model is developed in MATLAB SW. Solvers for multiple heat and mass transfer problems - plate surface temperature, condensate film temperature, local heat and mass transfer coefficients, refrigerant temperature distribution, humid air enthalpy change are included as subprocedures of this model. An automatic procedure of data transfer is developed in order to use results of MATLAB model in more complex simulation within commercial CFD code. In the end, Proper Orthogonal Decomposition (POD) method is introduced and implemented into MATLAB model.
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.; Deur, Alexandre; de Téramond, Guy F.; Dosch, Hans Günter
2015-11-01
A primary question in hadron physics is how the mass scale for hadrons consisting of light quarks, such as the proton, emerges from the QCD Lagrangian even in the limit of zero quark mass. If one requires the effective action which underlies the QCD Lagrangian to remain conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light-front Hamiltonian theory, then a unique, color-confining potential with a mass parameter κ emerges. The actual value of the parameter κ is not set by the model - only ratios of hadron masses and other hadronic mass scales are predicted. The result is a nonperturbative, relativistic light-front quantum mechanical wave equation, the Light-Front Schrödinger Equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the identical slope in the radial quantum number n and orbital angular momentum L. The same light-front equations for mesons with spin J also can be derived from the holographic mapping to QCD (3+1) at fixed light-front time from the soft-wall model modification of AdS5 space with a specific dilaton profile. Light-front holography thus provides a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. One can also extend the analysis to baryons using superconformal algebra - 2 × 2 supersymmetric representations of the conformal group. The resulting fermionic LF bound-state equations predict striking similarities between the meson and baryon spectra. In fact, the holographic QCD light-front Hamiltonians for the states on the meson and baryon trajectories are identical if one shifts the internal angular momenta of the meson (LM) and baryon (LB) by one unit: LM = LB + 1. We also show how the mass scale κ underlying confinement and the masses of light-quark hadrons determines the scale ΛMS¯ controlling the evolution of the perturbative QCD coupling. The relation between scales is obtained by matching the nonperturbative dynamics, as described by an effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime. The data for the effective coupling defined from the Bjorken sum rule αg1(Q2) are remarkably consistent with the Gaussian form predicted by LF holographic QCD. The result is an effective coupling defined at all momenta. The predicted value ΛMS¯(NF=3)=0.440mρ=0.341±0.024GeV is in agreement with the world average 0.339±0.010GeV. We thus can connect ΛMS¯ to hadron masses. The analysis applies to any renormalization scheme.
KK parity in warped extra dimension
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Falkowski, Adam; Low, Ian; Servant, Géraldine
2008-04-01
We construct models with a Kaluza-Klein (KK) parity in a five-dimensional warped geometry, in an attempt to address the little hierarchy problem present in setups with bulk Standard Model fields. The lightest KK particle (LKP) is stable and can play the role of dark matter. We consider the possibilities of gluing two identical slices of AdS5 in either the UV (IR-UV-IR model) or the IR region (UV-IR-UV model) and discuss the model-building issues as well as phenomenological properties in both cases. In particular, we find that the UV-IR-UV model is not gravitationally stable and that additional mechanisms might be required in the IR-UV-IR model to address flavor issues. Collider signals of the warped KK parity are different from either the conventional warped extra dimension without KK parity, in which the new particles are not necessarily pair-produced, or the KK parity in flat universal extra dimensions, where each KK level is nearly degenerate in mass. Dark matter and collider properties of a TeV mass KK Z gauge boson as the LKP are discussed.
A pendulum experiment on added mass and equivalence.
NASA Astrophysics Data System (ADS)
Donnelly, Russell; Neill, Douglas; Livelybrooks, Dean
2005-11-01
The concept of added mass in fluid mechanics has been known for many years. A familiar example is the accelerated motion of a sphere through an inviscid fluid which has an added mass of one-half the mass of the fluid displaced. This result is widely used in quantum fluids; for example giving a finite mass to a trapped electron in superfluid helium-4, which is a free electron in a bubble about 36 Angstroms in diameter. A derivation of this result is contained in Landau-Lifshitz ``Fluid Mechanics'', Section 12. The period of oscillation of a simple pendulum in a vacuum is independent of the mass because of the principle of equivalence of gravitational and inertial masses. In a fluid however, both buoyancy and added mass enter the problem. We present results of experiments of simple pendulums of different materials oscillating in various fluids. The results agree closely with the results obtained for the added mass in inviscid fluids, as expected.
Vacuum degeneracy and Conformal Mass in Lovelock AdS gravity
NASA Astrophysics Data System (ADS)
Arenas-Henriquez, Gabriel; Miskovic, Olivera; Olea, Rodrigo
2017-11-01
It is shown that the notion of Conformal Mass can be defined within a given anti-de Sitter (AdS) branch of a Lovelock gravity theory as long as the corresponding vacuum is not degenerate. Indeed, conserved charges obtained by the addition of Kounterterms to the bulk action turn out to be proportional to the electric part of the Weyl tensor, when the fall-off of a generic solution in that AdS branch is considered. The factor of proportionality is the degeneracy condition for the vacua in the particular Lovelock AdS theory under study. This last feature explains the obstruction to define Conformal Mass in the degenerate case.
The Effective Mass of a Ball in the Air
ERIC Educational Resources Information Center
Messer, J.; Pantaleone, J.
2010-01-01
The air surrounding a projectile affects the projectile's motion in three very different ways: the drag force, the buoyant force, and the added mass. The added mass is an increase in the projectile's inertia from the motion of the air around it. Here we experimentally measure the added mass of a spherical projectile in air. The results agree well…
A Novel Method to Determine the Hydrodynamic Coefficients of an Eyeball ROV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yh, Eng; Ws, Lau; Low, E.
2009-01-12
A good dynamics model is essential and critical for the successful design of navigation and control system of an underwater vehicle. However, it is difficult to determine from the hydrodynamic forces, the inertial added mass terms and the drag coefficients. In this paper, a new experimental method has been used to find the hydrodynamic forces for the ROV II, a remotely operated underwater vehicle. The proposed method is based on the classical free decay test, but with the spring oscillation replaced by a pendulum motion. The experiment results determined from the free decay test of a scaled model compared wellmore » with the simulation results obtained from well‐established computational fluid dynamics (CFD) program. Thus, the proposed approach can be used to find the added mass and drag coefficients for other underwater vehicles.« less
Definition of ground test for verification of large space structure control
NASA Technical Reports Server (NTRS)
Seltzer, S. M.; Doane, G. B., III
1985-01-01
Directions regarding the analytical models were received. A counter balance arm with weights was added at the top of the ASTROMAST to offset the arm with the gimbals. In addition to this model, three more models were requested from MSFC: structure as in the revised model with the addition of lumped masses at bays 46 and 91 of the ASTROMAST; cantilevered cruciform structure with lumped masses at bays 46 and 91, and an all up cruciform structure with lumped masses at bays 46 and 91. Figures for each model and their corresponding natural frequencies and general mode shapes associated with these frequencies are included. The drawbar in use in the cruciform models must be incorporated into the antenna and ASTROMAST models. The total tensile load carrying capability of the ASTROMAST is approximately 840 pounds.
Towards a realistic model of Higgsless electroweak symmetry breaking.
Csáki, Csaba; Grojean, Christophe; Pilo, Luigi; Terning, John
2004-03-12
We present a 5D gauge theory in warped space based on a bulk SU(2)L x SU(2)R x U(1)(B-L) gauge group where the gauge symmetry is broken by boundary conditions. The symmetry breaking pattern and the mass spectrum resemble that in the standard model (SM). To leading order in the warp factor the rho parameter and the coupling of the Z (S parameter) are as in the SM, while corrections are expected at the level of a percent. From the anti-de Sitter (AdS) conformal field theory point of view the model presented here can be viewed as the AdS dual of a (walking) technicolorlike theory, in the sense that it is the presence of the IR brane itself that breaks electroweak symmetry, and not a localized Higgs on the IR brane (which should be interpreted as a composite Higgs model). This model predicts the lightest W, Z, and gamma resonances to be at around 1.2 TeV, and no fundamental (or composite) Higgs particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Stephen J.; Ni, Guangjian
The pressure distribution in each of the fluid chambers of the cochlea can be decomposed into a 1D, or plane wave, component and a near field component, which decays rapidly away from the excitation point. The transverse motion of the basilar membrane, BM, for example, generates both a 1D pressure field, which couples into the slow wave, and a local near field pressure, proportional to the BM acceleration, that generates an added mass on the BM due to the fluid motion. When the organ of Corti, OC, undergoes internal motion, due for example to outer hair cell activity, this motionmore » will not itself generate any 1D pressure if the OC is incompressible and the BM is constrained not to move volumetrically, and so will not directly couple into the slow wave. This motion will, however, generate a near field pressure, proportional to the OC acceleration, which will act on the OC and thus increases its effective mass. The near field pressure due to this OC motion will also act on the BM, generating a force on the BM proportional to the acceleration of the OC, and thus create a “coupling mass” effect. By reciprocity, this coupling mass is the same as that acting on the OC due to the motion of the BM. This near field fluid coupling is initially observed in a finite element model of a slice of the cochlea. These simulations suggest a simple analytical formulation for the fluid coupling, using higher order beam modes across the width of the cochlear partition. It is well known that the added mass due to the near field pressure dominates the overall mass of the BM, and thus significantly affects the micromechanical dynamics. This work not only quantifies the added mass of the OC due its own motion in the fluid, and shows that this is important, but also demonstrates that the coupling mass effect between the BM and OC significantly affects the dynamics of simple micromechanical models.« less
NASA Astrophysics Data System (ADS)
Hue, L. T.; Arbuzov, A. B.; Ngan, N. T. K.; Long, H. N.
2017-05-01
The neutrino and Higgs sectors in the { SU(2) }_1 × { SU(2) }_2 × { U(1) }_Y model with lepton-flavor non-universality are discussed. We show that active neutrinos can get Majorana masses from radiative corrections, after adding only new singly charged Higgs bosons. The mechanism for the generation of neutrino masses is the same as in the Zee models. This also gives a hint to solving the dark matter problem based on similar ways discussed recently in many radiative neutrino mass models with dark matter. Except the active neutrinos, the appearance of singly charged Higgs bosons and dark matter does not affect significantly the physical spectrum of all particles in the original model. We indicate this point by investigating the Higgs sector in both cases before and after singly charged scalars are added into it. Many interesting properties of physical Higgs bosons, which were not shown previously, are explored. In particular, the mass matrices of charged and CP-odd Higgs fields are proportional to the coefficient of triple Higgs coupling μ . The mass eigenstates and eigenvalues in the CP-even Higgs sector are also presented. All couplings of the SM-like Higgs boson to normal fermions and gauge bosons are different from the SM predictions by a factor c_h, which must satisfy the recent global fit of experimental data, namely 0.995<|c_h|<1. We have analyzed a more general diagonalization of gauge boson mass matrices, then we show that the ratio of the tangents of the W-W' and Z-Z' mixing angles is exactly the cosine of the Weinberg angle, implying that number of parameters is reduced by 1. Signals of new physics from decays of new heavy fermions and Higgs bosons at LHC and constraints of their masses are also discussed.
Effects of independently altering body weight and body mass on the metabolic cost of running.
Teunissen, Lennart P J; Grabowski, Alena; Kram, Rodger
2007-12-01
The metabolic cost of running is substantial, despite the savings from elastic energy storage and return. Previous studies suggest that generating vertical force to support body weight and horizontal forces to brake and propel body mass are the major determinants of the metabolic cost of running. In the present study, we investigated how independently altering body weight and body mass affects the metabolic cost of running. Based on previous studies, we hypothesized that reducing body weight would decrease metabolic rate proportionally, and adding mass and weight would increase metabolic rate proportionally. Further, because previous studies show that adding mass alone does not affect the forces generated on the ground, we hypothesized that adding mass alone would have no substantial effect on metabolic rate. We manipulated the body weight and body mass of 10 recreational human runners and measured their metabolic rates while they ran at 3 m s(-1). We reduced weight using a harness system, increased mass and weight using lead worn about the waist, and increased mass alone using a combination of weight support and added load. We found that net metabolic rate decreased in less than direct proportion to reduced body weight, increased in slightly more than direct proportion to added load (added mass and weight), and was not substantially different from normal running with added mass alone. Adding mass alone was not an effective method for determining the metabolic cost attributable to braking/propelling body mass. Runners loaded with mass alone did not generate greater vertical or horizontal impulses and their metabolic costs did not substantially differ from those of normal running. Our results show that generating force to support body weight is the primary determinant of the metabolic cost of running. Extrapolating our reduced weight data to zero weight suggests that supporting body weight comprises at most 74% of the net cost of running. However, 74% is probably an overestimate of the metabolic demand of body weight to support itself because in reduced gravity conditions decrements in horizontal impulse accompanied decrements in vertical impulse.
Particle force model effects in a shock-driven multiphase instability
NASA Astrophysics Data System (ADS)
Black, W. J.; Denissen, N.; McFarland, J. A.
2018-05-01
This work presents simulations on a shock-driven multiphase instability (SDMI) at an initial particle volume fraction of 1% with the addition of a suite of particle force models applicable in dense flows. These models include pressure-gradient, added-mass, and interparticle force terms in an effort to capture the effects neighboring particles have in non-dilute flow regimes. Two studies are presented here: the first seeks to investigate the individual contributions of the force models, while the second study focuses on examining the effect of these force models on the hydrodynamic evolution of a SDMI with various particle relaxation times (particle sizes). In the force study, it was found that the pressure gradient and interparticle forces have little effect on the instability under the conditions examined, while the added-mass force decreases the vorticity deposition and alters the morphology of the instability. The relaxation-time study likewise showed a decrease in metrics associated with the evolution of the SDMI for all sizes when the particle force models were included. The inclusion of these models showed significant morphological differences in both the particle and carrier species fields, which increased as particle relaxation times increased.
Temporal Relationships Between African Dust and Chlorophyll-a in the Eastern Caribbean Basin
NASA Astrophysics Data System (ADS)
Gomez-Andujar, N. X.; Mayol-Bracero, O. L.; Torres-Delgado, E.
2017-12-01
Seasonal African Dust (AD) transports soluble iron to oligotrophic Caribbean waters, and when bioavailable, it could increase marine primary productivity (PP). Recently, the region has experienced the proliferation of unusually high quantities of Sargassum, an iron-absorbing macroalgae inhabiting the air-sea interface, which possess ecological and economic challenges and whose driving factors are still uncertain. AD events reach Puerto Rico (PR) mostly during boreal summer months. This is also the season when chlorophyll-α (CHL) concentrations are highest, when the algae starts to bloom, and when sediment plumes from the Orinoco River (ORP) also reach nutrient discharge maxima.This study seeks to better understand the temporal relationships between increases in chlorophyll-α and the presence of african dust events in the region. Aerosol data collected at the Cabezas de San Juan Atmospheric Observatory was used to identify AD events between January 2005 and December 2015. Light scattering coefficients were measured with an integrating Nephelometer, while light absorption coefficients were obtained from either the Particle Soot/Absorption Photometer (PSAP) or the Continuous Light Absorption Photometer (CLAP). Spectral properties suggesting AD events were cross-referenced with surface dust concentration image models and source-attributed air masses corresponding to dusty periods using Hybrid Single-Particle Lagrangian Integrated Trajectories (HYSPLIT). For all years with spectral data, modeled monthly wet dust deposition was correlated (r=0.64) with mean CHL concentrations from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). Daily dust mass column densities from NASA's MERRA-2 model were also correlated (r2= 0.53) to sea surface iron concentrations from NASA's Ocean Biogeochemical Model. We present the 2010 case study, which coincides with the start of the Sargassum bloom and shows CHL peaks occurring a month before ORPs but during the AD season, suggesting the AD role in enhancing PP. Other possible influencing climatic and oceanographic variables could be associated to these observations. Further efforts include spatially linking the Floating Algae Index in satellite imagery to AD concentrations, to better predict harmful algal blooms and inform management.
Aquatic prey capture in snakes: the link between morphology, behavior and hydrodynamics
NASA Astrophysics Data System (ADS)
Segall, Marion; Herrel, Anthony; Godoy-Diana, Ramiro; Funevol Team; Pmmh Team
2017-11-01
Natural selection favors animals that are the most successful in their fitness-related behaviors, such as foraging. Secondary adaptations pose the problem of re-adapting an already 'hypothetically optimized' phenotype to new constraints. When animals forage underwater, they face strong physical constraints, particularly when capturing a prey. The capture requires the predator to be fast and to generate a high acceleration to catch the prey. This involves two main constraints due to the surrounding fluid: drag and added mass. Both of these constraints are related to the shape of the animal. We experimentally explore the relationship between shape and performance in the context of an aquatic strike. As a model, we use 3D-printed snake heads of different shapes and frontal strike kinematics based on in vivo observations. By using direct force measurements, we compare the drag and added mass generated by aquatic and non-aquatic snake models during a strike. Our results show that drag is optimized in aquatic snakes. Added mass appears less important than drag for snakes during an aquatic strike. The flow features associated to the hydrodynamic forces measured allows us to propose a mechanism rendering the shape of the head of aquatic snakes well adapted to catch prey underwater. Region Ile de France and the doctoral school Frontieres du Vivant (FdV) - Programme Bettencourt.
Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki
2015-01-01
To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency.
Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki
2015-01-01
To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency. PMID:26609436
Isolating Added Mass Load Components of CPAS Main Clusters
NASA Technical Reports Server (NTRS)
Ray, Eric S.
2017-01-01
The current simulation for the Capsule Parachute Assembly System (CPAS) lacks fidelity in representing added mass for the 116 ft Do ringsail Main parachute. The availability of 3-D models of inflating Main canopies allowed for better estimation the enclosed air volume as a function of time. This was combined with trajectory state information to estimate the components making up measured axial loads. A proof-of-concept for an alternate simulation algorithm was developed based on enclosed volume as the primary independent variable rather than drag area growth. Databases of volume growth and parachute drag area vs. volume were developed for several flight tests. Other state information was read directly from test data, rather than numerically propagated. The resulting simulated peak loads were close in timing and magnitude to the measured loads data. However, results are very sensitive to data curve fitting and may not be suitable for Monte Carlo simulations. It was assumed that apparent mass was either negligible or a small fraction of enclosed mass, with little difference in results.
A fugacity-based indoor residential pesticide fate model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Deborah H.; Furtaw, Edward J.; McKone, Thomas E.
Dermal and non-dietary pathways are potentially significant exposure pathways to pesticides used in residences. Exposure pathways include dermal contact with residues on surfaces, ingestion from hand- and object-to-mouth activities, and absorption of pesticides into food. A limited amount of data has been collected on pesticide concentrations in various residential compartments following an application. But models are needed to interpret this data and make predictions about other pesticides based on chemical properties. In this paper, we propose a mass-balance compartment model based on fugacity principles. We include air (both gas phase and aerosols), carpet, smooth flooring, and walls as model compartments.more » Pesticide concentrations on furniture and toys, and in food, are being added to the model as data becomes available. We determine the compartmental fugacity capacity and mass transfer-rate coefficient for wallboard as an example. We also present the framework and equations needed for a dynamic mass-balance model.« less
NASA Astrophysics Data System (ADS)
Peng, Yan; Wang, Bin; Liu, Yunqi
2018-03-01
We study the asymptotically flat quasi-local black hole/hairy black hole model with nonzero mass of the scalar field. We disclose effects of the scalar mass on transitions in a grand canonical ensemble with condensation behaviors of the parameter ψ 2, which is similar to approaches in holographic theories. We find that a more negative scalar mass makes the phase transition easier. We also obtain the analytical relation ψ 2∝ (Tc-T)^{1/2} around the critical phase transition points, implying a second order phase transition. Besides the parameter ψ 2, we show that metric solutions can be used to disclose properties of the transitions. In this work, we observe that phase transitions in a box are strikingly similar to holographic transitions in AdS gravity and the similarity provides insights into holographic theories.
Caliendo, Cinzia; Hamidullah, Muhammad
2016-01-01
The propagation of surface acoustic Love modes along ZnO/glass-based structures was modeled and analysed with the goal of designing a sensor able to detect changes in the environmental parameters, such as liquid viscosity changes and minute amounts of mass supported in the viscous liquid medium. Love mode propagation was modeled by numerically solving the system of coupled electro-mechanical field equations and Navier–Stokes equations. The phase and group velocities and the attenuation of the acoustic wave propagating along the 30° tilted c-axis ZnO/glass structure contacting a viscous non-conductive liquid were calculated for different ZnO guiding layer thicknesses, added mass thicknesses, and liquid viscosity and density. The three sensor responses, i.e., the wave phase and group velocity, and attenuation changes are calculated for different environmental parameters and related to the sensor velocity and attenuation sensitivities. The resulted sensitivities to liquid viscosity and added mass were optimized by adjusting the ZnO guiding layer thickness corresponding to a sensitivity peak. The present analysis is valuable for the manufacture and application of the ZnO-glass structure Love wave sensors for the detection of liquid properties, such as viscosity, density and mass anchored to the sensor surface. PMID:27918419
Mota, Bruno; Herculano-Houzel, Suzana
2014-01-01
How does the size of the glial and neuronal cells that compose brain tissue vary across brain structures and species? Our previous studies indicate that average neuronal size is highly variable, while average glial cell size is more constant. Measuring whole cell sizes in vivo, however, is a daunting task. Here we use chi-square minimization of the relationship between measured neuronal and glial cell densities in the cerebral cortex, cerebellum, and rest of brain in 27 mammalian species to model neuronal and glial cell mass, as well as the neuronal mass fraction of the tissue (the fraction of tissue mass composed by neurons). Our model shows that while average neuronal cell mass varies by over 500-fold across brain structures and species, average glial cell mass varies only 1.4-fold. Neuronal mass fraction varies typically between 0.6 and 0.8 in all structures. Remarkably, we show that two fundamental, universal relationships apply across all brain structures and species: (1) the glia/neuron ratio varies with the total neuronal mass in the tissue (which in turn depends on variations in average neuronal cell mass), and (2) the neuronal mass per glial cell, and with it the neuronal mass fraction and neuron/glia mass ratio, varies with average glial cell mass in the tissue. We propose that there is a fundamental building block of brain tissue: the glial mass that accompanies a unit of neuronal mass. We argue that the scaling of this glial mass is a consequence of a universal mechanism whereby numbers of glial cells are added to the neuronal parenchyma during development, irrespective of whether the neurons composing it are large or small, but depending on the average mass of the glial cells being added. We also show how evolutionary variations in neuronal cell mass, glial cell mass and number of neurons suffice to determine the most basic characteristics of brain structures, such as mass, glia/neuron ratio, neuron/glia mass ratio, and cell densities.
Shigematsu, Hideki; Cheung, Jason Pui Yin; Bruzzone, Mauro; Matsumori, Hiroaki; Mak, Kin-Cheung; Samartzis, Dino; Luk, Keith Dip Kei
2017-05-01
Surgery for adolescent idiopathic scoliosis (AIS) is only complete after achieving fusion to maintain the correction obtained intraoperatively. The instrumented or fused segments can be referred to as the "fusion mass". In patients with AIS, the ideal fusion mass strategy has been established based on fulcrum-bending radiographs for main thoracic curves. Ideally, the fusion mass should achieve parallel endplates of the upper and lower instrumented vertebra and correct any "shift" for truncal balance. Distal adding-on is an important element to consider in AIS surgery. This phenomenon represents a progressive increase in the number of vertebrae included distally in the primary curvature and it should be avoided as it is associated with unsatisfactory cosmesis and an increased risk of revision surgery. However, it remains unknown whether any fusion mass shift, or shift in the fusion mass or instrumented segments, affects global spinal balance and distal adding-on after curve correction surgery in patients with AIS. (1) To investigate the relationship among postoperative fusion mass shift, global balance, and distal adding-on phenomenon in patients with AIS; and (2) to identify a cutoff value of fusion mass shift that will lead to distal adding-on. This was a retrospective study of patients with AIS from a single institution. Between 2006 and 2011 we performed 69 selective thoracic fusions for patients with main thoracic AIS. All patients were evaluated preoperatively and at 2 years postoperatively. The Cobb angle between the cranial and caudal endplates of the fusion mass and the coronal shift between them, which was defined as "fusion mass shift", were measured. Patients with a fusion mass Cobb angle greater than 20° were excluded to specifically determine the effect of fusion mass shift on distal adding-on phenomenon. Fusion mass shift was empirically set as 20 mm for analysis. Therefore, of the 69 patients who underwent selective thoracic fusion, only 52 with a fusion mass Cobb angle of 20° or less were recruited for study. We defined patients with a fusion mass shift of 20 mm or less as the balanced group and those with a fusion mass shift greater than 20 mm as the unbalanced group. A receiver operating characteristic (ROC) curve was used to determine the cutoff point of fusion mass shift for adding-on. Of the 52 patients studied, fusion mass shift (> 20 mm) was noted in 11 (21%), and six of those patients had distal adding-on at final followup. Although global spinal balance did not differ significantly between patients with or without fusion mass shift, the occurrence of adding-on phenomenon was significantly higher in the unbalanced group (55% (six of 11 patients), odds ratio [OR], 8.6; 95% CI, 2-39; p < 0.002) than the balanced group (12% [five of 41 patients]). Based on the ROC curve analysis, a fusion mass shift more than 18 mm was observed as the cutoff point for distal adding-on phenomenon (area under the curve, 0.70; 95% CI, 0.5-0.9; likelihood ratio, 5.0; sensitivity, 0.64; specificity, 0.73; positive predictive value, 39% [seven of 18 patients]; negative predictive value, 88% [30 of 34 patients]; OR, 4.8; 95% CI, 1-20; p = 0.02). Our study illustrates the substantial utility of the fulcrum-bending radiograph in determining fusion levels that can avoid fusion mass shift; thereby, underlining its importance in designing personalized surgical strategies for patients with scoliosis. Preoperatively, determining fusion levels by fulcrum-bending radiographs to avoid residual fusion mass shift is imperative. Intraoperatively, any fusion mass shift should be corrected to avoid distal adding-on, reoperation, and elevated healthcare costs. Level II, prognostic study.
Lumped mass model of a 1D metastructure for vibration suppression with no additional mass
NASA Astrophysics Data System (ADS)
Reichl, Katherine K.; Inman, Daniel J.
2017-09-01
The article examines the effectiveness of metastructures for vibration suppression from a weight standpoint. Metastructures, a metamaterial inspired concept, are structures with distributed vibration absorbers. In automotive and aerospace industries, it is critical to have low levels of vibrations while also using lightweight materials. Previous work has shown that metastructures are effective at mitigating vibrations, but do not consider the effects of mass. This work takes mass into consideration by comparing a structure with vibration absorbers to a structure of equal mass with no absorbers. These structures are modeled as one-dimensional lumped mass models, chosen for simplicity. Results compare both the steady-state and the transient responses. As a quantitative performance measure, the H2 norm, which is related to the area under the frequency response function, is calculated and compared for both the metastructure and the baseline structure. These results show that it is possible to obtain a favorable vibration response without adding additional mass to the structure. Additionally, the performance measure is utilized to optimize the geometry of the structure, determine the optimal ratio of mass in the absorber to mass of the host structure, and determine the frequencies of the absorbers. The dynamic response of this model is verified using a finite element analysis.
NASA Technical Reports Server (NTRS)
Perez, Jose G.; Parks, Russel A.; Lazor, Daniel R.
2012-01-01
The slosh dynamics of propellant tanks can be represented by an equivalent pendulum-mass mechanical model. The parameters of this equivalent model, identified as slosh model parameters, are slosh mass, slosh mass center of gravity, slosh frequency, and smooth-wall damping. They can be obtained by both analysis and testing for discrete fill heights. Anti-slosh baffles are usually needed in propellant tanks to control the movement of the fluid inside the tank. Lateral slosh testing, involving both random testing and free-decay testing, are performed to validate the slosh model parameters and the damping added to the fluid by the anti-slosh baffles. Traditional modal analysis procedures are used to extract the parameters from the experimental data. Test setup of sub-scale test articles of cylindrical and spherical shapes will be described. A comparison between experimental results and analysis will be presented.
Transformations of asymptotically AdS hyperbolic initial data and associated geometric inequalities
NASA Astrophysics Data System (ADS)
Cha, Ye Sle; Khuri, Marcus
2018-01-01
We construct transformations which take asymptotically AdS hyperbolic initial data into asymptotically flat initial data, and which preserve relevant physical quantities. This is used to derive geometric inequalities in the asymptotically AdS hyperbolic setting from counterparts in the asymptotically flat realm, whenever a geometrically motivated system of elliptic equations admits a solution. The inequalities treated here relate mass, angular momentum, charge, and horizon area. Furthermore, new mass-angular momentum inequalities in this setting are conjectured and discussed.
NASA Astrophysics Data System (ADS)
Dhote, Sharvari; Yang, Zhengbao; Zu, Jean
2018-01-01
This paper presents the modeling and experimental parametric study of a nonlinear multi-frequency broad bandwidth piezoelectric vibration-based energy harvester. The proposed harvester consists of a tri-leg compliant orthoplanar spring (COPS) and multiple masses with piezoelectric plates attached at three different locations. The vibration modes, resonant frequencies, and strain distributions are studied using the finite element analysis. The prototype is manufactured and experimentally investigated to study the effect of single as well as multiple light-weight masses on the bandwidth. The dynamic behavior of the harvester with a mass at the center is modeled numerically and characterized experimentally. The simulation and experimental results are in good agreement. A wide bandwidth with three close nonlinear vibration modes is observed during the experiments when four masses are added to the proposed harvester. The current generator with four masses shows a significant performance improvement with multiple nonlinear peaks under both forward and reverse frequency sweeps.
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th S.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N.; Kim, N. G.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Luijten, E.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Milde, S.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moesta, P.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Rhoades, E.; Ricci, F.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Stebbins, J.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S. S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yang, Z.; Yoshida, S.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; Boyle, M.; Brügmann, B.; Buchman, L. T.; Campanelli, M.; Chu, T.; Etienne, Z. B.; Hannam, M.; Healy, J.; Hinder, I.; Kidder, L. E.; Laguna, P.; Liu, Y. T.; London, L.; Lousto, C. O.; Lovelace, G.; MacDonald, I.; Marronetti, P.; Mösta, P.; Müller, D.; Mundim, B. C.; Nakano, H.; Paschalidis, V.; Pekowsky, L.; Pollney, D.; Pfeiffer, H. P.; Ponce, M.; Pürrer, M.; Reifenberger, G.; Reisswig, C.; Santamaría, L.; Scheel, M. A.; Shapiro, S. L.; Shoemaker, D.; Sopuerta, C. F.; Sperhake, U.; Szilágyi, B.; Taylor, N. W.; Tichy, W.; Tsatsin, P.; Zlochower, Y.
2014-06-01
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave (GW) astrophysics communities. The purpose of NINJA is to study the ability to detect GWs emitted from merging binary black holes (BBH) and recover their parameters with next-generation GW observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete BBH hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a ‘blind injection challenge’ similar to that conducted in recent Laser Interferometer Gravitational Wave Observatory (LIGO) and Virgo science runs, we added seven hybrid waveforms to two months of data recoloured to predictions of Advanced LIGO (aLIGO) and Advanced Virgo (AdV) sensitivity curves during their first observing runs. The resulting data was analysed by GW detection algorithms and 6 of the waveforms were recovered with false alarm rates smaller than 1 in a thousand years. Parameter-estimation algorithms were run on each of these waveforms to explore the ability to constrain the masses, component angular momenta and sky position of these waveforms. We find that the strong degeneracy between the mass ratio and the BHs’ angular momenta will make it difficult to precisely estimate these parameters with aLIGO and AdV. We also perform a large-scale Monte Carlo study to assess the ability to recover each of the 60 hybrid waveforms with early aLIGO and AdV sensitivity curves. Our results predict that early aLIGO and AdV will have a volume-weighted average sensitive distance of 300 Mpc (1 Gpc) for 10M⊙ + 10M⊙ (50M⊙ + 50M⊙) BBH coalescences. We demonstrate that neglecting the component angular momenta in the waveform models used in matched-filtering will result in a reduction in sensitivity for systems with large component angular momenta. This reduction is estimated to be up to ˜15% for 50M⊙ + 50M⊙ BBH coalescences with almost maximal angular momenta aligned with the orbit when using early aLIGO and AdV sensitivity curves.
Validation of a quantitative magnetic resonance method for measuring human body composition.
Napolitano, Antonella; Miller, Sam R; Murgatroyd, Peter R; Coward, W Andrew; Wright, Antony; Finer, Nick; De Bruin, Tjerk W; Bullmore, Edward T; Nunez, Derek J
2008-01-01
To evaluate a novel quantitative magnetic resonance (QMR) methodology (EchoMRI-AH, Echo Medical Systems) for measurement of whole-body fat and lean mass in humans. We have studied (i) the in vitro accuracy and precision by measuring 18 kg Canola oil with and without 9 kg water (ii) the accuracy and precision of measures of simulated fat mass changes in human subjects (n = 10) and (iii) QMR fat and lean mass measurements compared to those obtained using the established 4-compartment (4-C) model method (n = 30). (i) QMR represented 18 kg of oil at 40 degrees C as 17.1 kg fat and 1 kg lean while at 30 degrees C 15.8 kg fat and 4.7 kg lean were reported. The s.d. of repeated estimates was 0.13 kg for fat and 0.23 kg for lean mass. Adding 9 kg of water reduced the fat estimates, increased misrepresentation of fat as lean, and degraded the precision. (ii) the simulated change in the fat mass of human volunteers was accurately represented, independently of added water. (iii) compared to the 4-C model, QMR underestimated fat and over-estimated lean mass. The extent of difference increased with body mass. The s.d. of repeated measurements increased with adiposity, from 0.25 kg (fat) and 0.51 kg (lean) with BMI <25 kg/m(2) to 0.43 kg and 0.81 kg respectively with BMI >30 kg/m(2). EchoMRI-AH prototype showed shortcomings in absolute accuracy and specificity of fat mass measures, but detected simulated body composition change accurately and with precision roughly three times better than current best measures. This methodology should reduce the study duration and cohort number needed to evaluate anti-obesity interventions.
CFD Based Added Mass Prediction in Cruise Condition of Underwater Vehicle Dynamic
NASA Astrophysics Data System (ADS)
Agoes Moelyadi, Mochammad; Bambang Riswandi, Bagus
2018-04-01
One of the unsteady flow behavior on the hydrodynamic characteristics of underwater vehicle is the presence of added mass. In cruising conditions, the underwater vehicle may require the addition of speed or experience the disturbance in the form of unsteady flow so that cause the hydrodynamic interaction between the surface of the vehicle with the surrounding fluid. This leads to the rise of local velocity of flow and the great changes of hydrodynamic forces which are very influential on the stability of the underwater vehicle. One of the result is an additional force called added mass. It is very useful parameter to control underwater vehicle dynamic.This paper reports the research on the added mass coefficient of underwater vehicles obtained through the Computational Fluid Dynmaic (CFD) simulation method using CFX software. Added mass coefficient is calculated by performing an unsteady simulation or known as transient simulation. Computational simulations are based on the Reynold Average Navier- Stokes (RANS) equation solution. The simulated vehicle moves forward and backward according to the sinus function, with a frequency of 0.25 Hz, a 2 m amplitude, a cruising depth of 10 m below sea level, and Vcruise 1.54 m / s (Re = 9.000.000). Simulation result data includes velocity contour, variation of force and acceleration to frequency, and added mass coefficient.
Robophysical study of jumping dynamics on granular media
NASA Astrophysics Data System (ADS)
Aguilar, Jeffrey; Goldman, Daniel I.
2016-03-01
Characterizing forces on deformable objects intruding into sand and soil requires understanding the solid- and fluid-like responses of such substrates and their effect on the state of the object. The most detailed studies of intrusion in dry granular media have revealed that interactions of fixed-shape objects during free impact (for example, cannonballs) and forced slow penetration can be described by hydrostatic- and hydrodynamic-like forces. Here we investigate a new class of granular interactions: rapid intrusions by objects that change shape (self-deform) through passive and active means. Systematic studies of a simple spring-mass robot jumping on dry granular media reveal that jumping performance is explained by an interplay of nonlinear frictional and hydrodynamic drag as well as induced added mass (unaccounted by traditional intrusion models) characterized by a rapidly solidified region of grains accelerated by the foot. A model incorporating these dynamics reveals that added mass degrades the performance of certain self-deformations owing to a shift in optimal timing during push-off. Our systematic robophysical experiment reveals both new soft-matter physics and principles for robotic self-deformation and control, which together provide principles of movement in deformable terrestrial environments.
Declining functional connectivity and changing hub locations in Alzheimer's disease: an EEG study.
Engels, Marjolein M A; Stam, Cornelis J; van der Flier, Wiesje M; Scheltens, Philip; de Waal, Hanneke; van Straaten, Elisabeth C W
2015-08-20
EEG studies have shown that patients with Alzheimer's disease (AD) have weaker functional connectivity than controls, especially in higher frequency bands. Furthermore, active regions seem more prone to AD pathology. How functional connectivity is affected in AD subgroups of disease severity and how network hubs (highly connected brain areas) change is not known. We compared AD patients with different disease severity and controls in terms of functional connections, hub strength and hub location. We studied routine 21-channel resting-state electroencephalography (EEG) of 318 AD patients (divided into tertiles based on disease severity: mild, moderate and severe AD) and 133 age-matched controls. Functional connectivity between EEG channels was estimated with the Phase Lag Index (PLI). From the PLI-based connectivity matrix, the minimum spanning tree (MST) was derived. For each node (EEG channel) in the MST, the betweenness centrality (BC) was computed, a measure to quantify the relative importance of a node within the network. Then we derived color-coded head plots based on BC values and calculated the center of mass (the exact middle had x and y values of 0). A shifting of the hub locations was defined as a shift of the center of mass on the y-axis across groups. Multivariate general linear models with PLI or BC values as dependent variables and the groups as continuous variables were used in the five conventional frequency bands. We found that functional connectivity decreases with increasing disease severity in the alpha band. All, except for posterior, regions showed increasing BC values with increasing disease severity. The center of mass shifted from posterior to more anterior regions with increasing disease severity in the higher frequency bands, indicating a loss of relative functional importance of the posterior brain regions. In conclusion, we observed decreasing functional connectivity in the posterior regions, together with a shifted hub location from posterior to central regions with increasing AD severity. Relative hub strength decreases in posterior regions while other regions show a relative rise with increasing AD severity, which is in accordance with the activity-dependent degeneration theory. Our results indicate that hubs are disproportionally affected in AD.
Investigating evaporation of melting ice particles within a bin melting layer model
NASA Astrophysics Data System (ADS)
Neumann, Andrea J.
Single column models have been used to help develop algorithms for remote sensing retrievals. Assumptions in the single-column models may affect the assumptions of the remote sensing retrievals. Studies of the melting layer that use single column models often assume environments that are near or at water saturation. This study investigates the effects of evaporation upon melting particles to determine whether the assumption of negligible mass loss still holds within subsaturated melting layers. A single column, melting layer model is modified to include the effects of sublimation and evaporation upon the particles. Other changes to the model include switching the order in which the model loops over particle sizes and model layers; including a particle sedimentation scheme; adding aggregation, accretion, and collision and coalescence processes; allowing environmental variables such as the water vapor diffusivity and the Schmidt number to vary with the changes in the environment; adding explicitly calculated particle temperature, changing the particle terminal velocity parameterization; and using a newly-derived effective density-dimensional relationship for use in particle mass calculations. Simulations of idealized melting layer environments show that significant mass loss due to evaporation during melting is possible within subsaturated environments. Short melting distances, accelerating particle fall speeds, and short melting times help constrain the amount of mass lost due to evaporation while melting is occurring, even in subsaturated profiles. Sublimation prior to melting can also be a significant source of mass loss. The trends shown on the particle scale also appear in the bulk distribution parameters such as rainfall rate and ice water content. Simulations incorporating observed melting layer environments show that significant mass loss due to evaporation during the melting process is possible under certain environmental conditions. A profile such as the first melting layer profile on 10 May 2011 from the Midlatitude Continental Convective Clouds Experiment (MC3E) that is neither too saturated nor too subsaturated is possible and shows considerable mass loss for all particle sizes. Most melting layer profiles sampled during MC3E were too saturated for more than a dozen or two of the smallest particle sizes to experience significant mass loss. The aggregation, accretion, and collision and coalescence processes also countered significant mass loss at the largest particles sizes because these particles are efficient at collecting smaller particles due to their relative large sweep-out area. From these results, it appears that the assumption of negligible mass loss due to evaporation while melting is occurring is not always valid. Studies that use large, low-density snowflakes and high RH environments can safely use the assumption of negligible mass loss. Studies that use small ice particles or low RH environments (RH less than about 80%) cannot use the assumption of negligible mass loss due to evaporation. Retrieval algorithms may be overestimating surface precipitation rates and intensities in subsaturated environments due to the assumptions of negligible mass loss while melting and near-saturated melting layer environments.
Monotop signature from a fermionic top partner
NASA Astrophysics Data System (ADS)
Gonçalves, Dorival; Kong, Kyoungchul; Sakurai, Kazuki; Takeuchi, Michihisa
2018-01-01
We investigate monotop signatures arising from phenomenological models of fermionic top partners, which are degenerate in mass and decay into a bosonic dark matter candidate, either spin 0 or spin 1. Such a model provides a monotop signature as a smoking gun, while conventional searches with t t ¯ + missing transverse momentum are limited. Two such scenarios, (i) a phenomenological third generation extradimensional model with excited top and electroweak sectors, and (ii) a model where only a top partner and a dark matter particle are added to the standard model, are studied in the degenerate mass regime. We find that in the case of extra dimension a number of different processes give rise to effectively the same monotop final state, and a great gain can be obtained in the sensitivity for this channel. We show that the monotop search can explore top-partner masses up to 630 and 300 GeV for the third generation extradimensional model and the minimal fermionic top-partner model, respectively, at the high luminosity LHC.
Unsteady load on an oscillating Kaplan turbine runner
NASA Astrophysics Data System (ADS)
Puolakka, O.; Keto-Tokoi, J.; Matusiak, J.
2013-02-01
A Kaplan turbine runner oscillating in turbine waterways is subjected to a varying hydrodynamic load. Numerical simulation of the related unsteady flow is time-consuming and research is very limited. In this study, a simplified method based on unsteady airfoil theory is presented for evaluation of the unsteady load for vibration analyses of the turbine shaft line. The runner is assumed to oscillate as a rigid body in spin and axial heave, and the reaction force is resolved into added masses and dampings. The method is applied on three Kaplan runners at nominal operating conditions. Estimates for added masses and dampings are considered to be of a magnitude significant for shaft line vibration. Moderate variation in the added masses and minor variation in the added dampings is found in the frequency range of interest. Reference results for added masses are derived by solving the boundary value problem for small motions of inviscid fluid using the finite element method. Good correspondence is found in the added mass estimates of the two methods. The unsteady airfoil method is considered accurate enough for design purposes. Experimental results are needed for validation of unsteady load analyses.
The Loss of Metabolic Control on Alcohol Drinking in Heavy Drinking Alcohol-Dependent Subjects
de Timary, Philippe; Cani, Patrice D.; Duchemin, Julie; Neyrinck, Audrey M.; Gihousse, Dominique; Laterre, Pierre-François; Badaoui, Abdenor; Leclercq, Sophie
2012-01-01
Background Most physiological studies interested in alcohol-dependence examined ethanol as a pharmacological agent rather than a nutrient. We conducted two studies, which assessed the metabolic and endocrine factors involved in the regulation of alcohol and nutrient intake in alcohol-dependent (AD) subjects. We also examined the potential role of a disruption in energy balance in alcohol-dependence. Methods and Results In Study-1, quantitative dietetic interviews of eating and drinking habits were conducted with 97 AD subjects. The population was split around a median alcohol intake value of 12.5 kcal/kg/day. The results showed that the “low alcohol” drinking AD subjects had high Body Mass Index (BMI) and Fat Mass (FM) and alcohol intake was compensated for by a decrease in non-alcoholic intakes. “High alcohol” drinking AD subjects, on the other hand, had low BMI and FM and the total caloric intakes were largely above norms. In Study-2, 24 AD inpatients were submitted to dietetic interviews, calorimetry and blood samplings for the measurement of biomarkers of the regulation of metabolism and satiety, on day 2, 5 and 16 of abstinence. These patients were compared with 20 controls matched for age and gender. We observed in AD patients an increase in cortisol, leptin and PYY plasma levels and a decrease in ghrelin, which might explain the observed decrease in non-alcoholic intakes. However, alcoholic and non-alcoholic intakes correlated positively with basal metabolism and negatively with leptin and leptin/BMI. Conclusion For individuals consuming below12.5 kcal/kg/day of alcohol, alcohol intake is compensated for by a decrease in non-alcoholic nutrient intakes, probably due to changes in metabolic and satiety factors. For individuals consuming above 12.5 kcal/kg/day of alcohol, alcohol accelerates metabolism and decreases fat mass and leptin levels, and the total caloric intake largely exceeds norms. A dual model for regulation of energy intake in AD subjects is proposed. PMID:22808013
Zhang, Liang; Zhang, Song; Maezawa, Izumi; Trushin, Sergey; Minhas, Paras; Pinto, Matthew; Jin, Lee-Way; Prasain, Keshar; Nguyen, Thi D.T.; Yamazaki, Yu; Kanekiyo, Takahisa; Bu, Guojun; Gateno, Benjamin; Chang, Kyeong-Ok; Nath, Karl A.; Nemutlu, Emirhan; Dzeja, Petras; Pang, Yuan-Ping; Hua, Duy H.; Trushina, Eugenia
2015-01-01
Development of therapeutic strategies to prevent Alzheimer's disease (AD) is of great importance. We show that mild inhibition of mitochondrial complex I with small molecule CP2 reduces levels of amyloid beta and phospho-Tau and averts cognitive decline in three animal models of familial AD. Low-mass molecular dynamics simulations and biochemical studies confirmed that CP2 competes with flavin mononucleotide for binding to the redox center of complex I leading to elevated AMP/ATP ratio and activation of AMP-activated protein kinase in neurons and mouse brain without inducing oxidative damage or inflammation. Furthermore, modulation of complex I activity augmented mitochondrial bioenergetics increasing coupling efficiency of respiratory chain and neuronal resistance to stress. Concomitant reduction of glycogen synthase kinase 3β activity and restoration of axonal trafficking resulted in elevated levels of neurotrophic factors and synaptic proteins in adult AD mice. Our results suggest that metabolic reprogramming induced by modulation of mitochondrial complex I activity represents promising therapeutic strategy for AD. PMID:26086035
Valence and arousal-based affective evaluations of foods.
Woodward, Halley E; Treat, Teresa A; Cameron, C Daryl; Yegorova, Vitaliya
2017-01-01
We investigated the nutrient-specific and individual-specific validity of dual-process models of valenced and arousal-based affective evaluations of foods across the disordered eating spectrum. 283 undergraduate women provided implicit and explicit valence and arousal-based evaluations of 120 food photos with known nutritional information on structurally similar indirect and direct affect misattribution procedures (AMP; Payne et al., 2005, 2008), and completed questionnaires assessing body mass index (BMI), hunger, restriction, and binge eating. Nomothetically, added fat and added sugar enhance evaluations of foods. Idiographically, hunger and binge eating enhance activation, whereas BMI and restriction enhance pleasantness. Added fat is salient for women who are heavier, hungrier, or who restrict; added sugar is influential for less hungry women. Restriction relates only to valence, whereas binge eating relates only to arousal. Findings are similar across implicit and explicit affective evaluations, albeit stronger for explicit, providing modest support for dual-process models of affective evaluation of foods. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fifteenth NASTRAN (R) Users' Colloquium
NASA Technical Reports Server (NTRS)
1987-01-01
Numerous applications of the NASA Structural Analysis (NASTRAN) computer program, a general purpose finite element code, are discussed. Additional features that can be added to NASTRAN, interactive plotting of NASTRAN data on microcomputers, mass modeling for bars, the design of wind tunnel models, the analysis of ship structures subjected to underwater explosions, and buckling analysis of radio antennas are among the topics discussed.
Position-dependent mass, finite-gap systems, and supersymmetry
NASA Astrophysics Data System (ADS)
Bravo, Rafael; Plyushchay, Mikhail S.
2016-05-01
The ordering problem in quantum systems with position-dependent mass (PDM) is treated by inclusion of the classically fictitious similarity transformation into the kinetic term. This provides a generation of supersymmetry with the first-order supercharges from the kinetic term alone, while inclusion of the potential term allows us also to generate nonlinear supersymmetry with higher-order supercharges. A broad class of finite-gap systems with PDM is obtained by different reduction procedures, and general results on supersymmetry generation are applied to them. We show that elliptic finite-gap systems of Lamé and Darboux-Treibich-Verdier types can be obtained by reduction to Seiffert's spherical spiral and Bernoulli lemniscate in the presence of Calogero-like or harmonic oscillator potentials, or by angular momentum reduction of a free motion on some AdS2 -related surfaces in the presence of Aharonov-Bohm flux. The limiting cases include the Higgs and Mathews-Lakshmanan oscillator models as well as a reflectionless model with PDM exploited recently in the discussion of cosmological inflationary scenarios.
Reddy, P. Hemachandra; Tripathy, Raghav; Troung, Quang; Thirumala, Karuna; Reddy, Tejaswini P.; Anekonda, Vishwanath; Shirendeb, Ulziibat P.; Calkins, Marcus J.; Reddy, Arubala P.; Mao, Peizhong; Manczak, Maria
2011-01-01
Synaptic pathology and mitochondrial oxidative damage are early events in Alzheimer’s disease (AD) progression. Loss of synapses and synaptic damage are the best correlate of cognitive deficits found in AD patients. Recent research on amyloid bet (Aβ) and mitochondria in AD revealed that Aβ accumulates in synapses and synaptic mitochondria, leading to abnormal mitochondrial dynamics and synaptic degeneration in AD neurons. Further, recent studies using live-cell imaging and primary neurons from amyloid beta precursor protein (AβPP) transgenic mice revealed that reduced mitochondrial mass, defective axonal transport of mitochondria and synaptic degeneration, indicating that Aβ is responsible for mitochondrial and synaptic deficiencies. Tremendous progress has been made in studying antioxidant approaches in mouse models of AD and clinical trials of AD patients. This article highlights the recent developments made in Aβ-induced abnormal mitochondrial dynamics, defective mitochondrial biogenesis, impaired axonal transport and synaptic deficiencies in AD. This article also focuses on mitochondrial approaches in treating AD, and also discusses latest research on mitochondria-targeted antioxidants in AD. PMID:22037588
A stable partitioned FSI algorithm for incompressible flow and deforming beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L., E-mail: lil19@rpi.edu; Henshaw, W.D., E-mail: henshw@rpi.edu; Banks, J.W., E-mail: banksj3@rpi.edu
2016-05-01
An added-mass partitioned (AMP) algorithm is described for solving fluid–structure interaction (FSI) problems coupling incompressible flows with thin elastic structures undergoing finite deformations. The new AMP scheme is fully second-order accurate and stable, without sub-time-step iterations, even for very light structures when added-mass effects are strong. The fluid, governed by the incompressible Navier–Stokes equations, is solved in velocity-pressure form using a fractional-step method; large deformations are treated with a mixed Eulerian-Lagrangian approach on deforming composite grids. The motion of the thin structure is governed by a generalized Euler–Bernoulli beam model, and these equations are solved in a Lagrangian frame usingmore » two approaches, one based on finite differences and the other on finite elements. The key AMP interface condition is a generalized Robin (mixed) condition on the fluid pressure. This condition, which is derived at a continuous level, has no adjustable parameters and is applied at the discrete level to couple the partitioned domain solvers. Special treatment of the AMP condition is required to couple the finite-element beam solver with the finite-difference-based fluid solver, and two coupling approaches are described. A normal-mode stability analysis is performed for a linearized model problem involving a beam separating two fluid domains, and it is shown that the AMP scheme is stable independent of the ratio of the mass of the fluid to that of the structure. A traditional partitioned (TP) scheme using a Dirichlet–Neumann coupling for the same model problem is shown to be unconditionally unstable if the added mass of the fluid is too large. A series of benchmark problems of increasing complexity are considered to illustrate the behavior of the AMP algorithm, and to compare the behavior with that of the TP scheme. The results of all these benchmark problems verify the stability and accuracy of the AMP scheme. Results for one benchmark problem modeling blood flow in a deforming artery are also compared with corresponding results available in the literature.« less
Development of diagnostics in the search of an explanation for toxic airline syndrome 1
Schopfer, Lawrence M.; Furlong, Clement E.; Lockridge, Oksana
2010-01-01
Toxic airline syndrome is assumed to be caused by exposure to tri-cresyl phosphate, an additive in engine lubricants and hydraulic fluids, which is activated to the toxic 2-(o-cresyl)-4H-1,3,2-benzodioxaphosphoran-2-one (CBDP). At present there is no laboratory evidence to support intoxication of airline crew by CBDP. Our goal was to develop methods for testing in vivo exposure by identifying and characterizing biomarkers. Mass spectrometry was used to study the reaction of CBDP with human albumin, free tyrosine, and human butyrylcholinesterase. Human albumin made a covalent bond with CBDP, adding a mass of 170 to tyrosine 411 to yield the ortho-cresyl phosphotyrosine derivative. Human butyrylcholinesterase made a covalent bond with CBDP on serine 198 to yield 5 adducts with added masses of 80, 108, 156, 170, and 186. The most abundant adduct had an added mass of 80 from phosphate (HPO3), a surprising result since no pesticide or nerve agent is known to yield phosphorylated serine with an added mass of 80. The next most abundant adduct had an added mass of 170 to form ortho-cresyl phosphoserine. It is concluded that toxic gases or oil mists in cabin air may form adducts on plasma butyrylcholinesterase and albumin, detectable by mass spectrometry. PMID:20447373
Cova, Ilaria; Pomati, Simone; Maggiore, Laura; Forcella, Marica; Cucumo, Valentina; Ghiretti, Roberta; Grande, Giulia; Muzio, Fulvio; Mariani, Claudio
2017-01-01
Analysis of nutritional status and body composition in Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI). A cross-sectional study was performed in a University-Hospital setting, recruiting 59 patients with AD, 34 subjects with MCI and 58 elderly healthy controls (HC). Nutritional status was assessed by anthropometric parameters (body mass index; calf, upper arm and waist circumferences), Mini Nutritional Assessment (MNA) and body composition by bioelectrical impedance vector analysis (BIVA). Variables were analyzed by analysis of variance and subjects were grouped by cognitive status and gender. Sociodemographic variables did not differ among the three groups (AD, MCI and HC), except for females' age, which was therefore used as covariate in a general linear multivariate model. MNA score was significantly lower in AD patients than in HC; MCI subjects achieved intermediate scores. AD patients (both sexes) had significantly (p<0.05) higher height-normalized impedance values and lower phase angles (body cell mass) compared with HC; a higher ratio of impedance to height was found in men with MCI with respect to HC. With BIVA method, MCI subjects showed a significant displacement on the RXc graph on the right side indicating lower soft tissues (Hotelling's T2 test: men = 10.6; women = 7.9;p < 0,05) just like AD patients (Hotelling's T2 test: men = 18.2; women = 16.9; p<0,001). Bioelectrical parameters significantly differ from MCI and AD to HC; MCI showed an intermediate pattern between AD and HC. Longitudinal studies are required to investigate if BIVA could reflect early AD-changes in body composition in subjects with MCI.
Senthamizhchelvan, Srinivasan; Hobbs, Robert F.; Song, Hong; Frey, Eric C.; Zhang, Zhe; Armour, Elwood; Wahl, Richard L.; Loeb, David M.; Sgouros, George
2012-01-01
153Sm-ethylenediamine tetramethylene phosphonic acid (153Sm-EDTMP) therapy for osteosarcoma is being investigated. In this study, we analyzed the influence of 153Sm-EDTMP administered activity (AA), osteosarcoma tumor density, mass, and the shape of the tumor on absorbed dose (AD). We also studied the biologic implication of the nonuniform tumor AD distribution using radio-biologic modeling and examined the relationship between tumor AD and response. Methods Nineteen tumors in 6 patients with recurrent, refractory osteosarcoma enrolled in a phase I or II clinical trial of 153Sm-EDTMP were analyzed using the 3-dimensional radiobiologic dosimetry (3D-RD) software package. Patients received a low dose of 153Sm-EDTMP (37.0–51.8 MBq/kg), followed on hematologic recovery by a second, high dose (222 MBq/kg). Treatment response was evaluated using either CT or MRI after each therapy. SPECT/CT of the tumor regions were obtained at 4 and 48 h or 72 h after 153Sm-EDTMP therapy for 3D-RD analysis. Mean tumor AD was also calculated using the OLINDA/EXM unit-density sphere model and was compared with the 3D-RD estimates. Results On average, a 5-fold increase in the AA led to a 4-fold increase in the mean tumor AD over the high- versus low-dose–treated patients. The range of mean tumor AD and equivalent uniform dose (EUD) for low-dose therapy were 1.48–14.6 and 0.98–3.90 Gy, respectively. Corresponding values for high-dose therapy were 2.93–59.3 and 1.89–12.3 Gy, respectively. Mean tumor AD estimates obtained from OLINDA/EXM were within 5% of the mean AD values obtained using 3D-RD. On an individual tumor basis, both mean AD and EUD were positively related to percentage tumor volume reduction (P = 0.031 and 0.023, respectively). Conclusion The variations in tumor density, mass, and shape seen in these tumors did not affect the mean tumor AD estimation significantly. The tumor EUD was approximately 2- and 3-fold lower than the mean AD for low-and high-dose therapy, respectively. A dose–response relationship was observed for transient tumor volume shrinkage. PMID:22251554
Chapman, Erik W.; Hofmann, Eileen E.; Patterson, Donna L.; Ribic, Christine A.; Fraser, William R.
2011-01-01
An individual-based bioenergetics model that simulates the growth of an Adélie penguin Pygoscelis adeliaechick from hatching to fledging was used to assess marine and terrestrial factors that affect chick growth and fledging mass off the western Antarctic Peninsula. Simulations considered the effects on Adélie penguin fledging mass of (1) modification of chick diet through the addition of Antarctic silverfish Pleuragramma antarcticum to an all-Antarctic krillEuphausia superba diet, (2) reduction of provisioning rate which may occur as a result of an environmental stress such as reduced prey availability, and (3) increased thermoregulatory costs due to wetting of chicks which may result from increased precipitation or snow-melt in colonies. Addition of 17% Antarctic silverfish of Age-Class 3 yr (AC3) to a penguin chick diet composed of Antarctic krill increased chick fledging mass by 5%. Environmental stress that results in >4% reduction in provisioning rate or wetting of just 10% of the chick’s surface area decreased fledging mass enough to reduce the chick’s probability of successful recruitment. The negative effects of reduced provisioning and wetting on chick growth can be compensated for by inclusion of Antarctic silverfish of AC3 and older in the chick diet. Results provide insight into climate-driven processes that influence chick growth and highlight a need for field research designed to investigate factors that determine the availability of AC3 and older Antarctic silverfish to foraging Adélie penguins and the influence of snowfall on chick wetting, thermoregulation and adult provisioning rate.
Neutrino and C P -even Higgs boson masses in a nonuniversal U (1 )' extension
NASA Astrophysics Data System (ADS)
Mantilla, S. F.; Martinez, R.; Ochoa, F.
2017-05-01
We propose a new anomaly-free and family nonuniversal U (1 )' extension of the standard model with the addition of two scalar singlets and a new scalar doublet. The quark sector is extended by adding three exotic quark singlets, while the lepton sector includes two exotic charged lepton singlets, three right-handed neutrinos, and three sterile Majorana leptons to obtain the fermionic mass spectrum of the standard model. The lepton sector also reproduces the elements of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix and the squared-mass differences data from neutrino oscillation experiments. Also, analytical relations of the PMNS matrix are derived via the inverse seesaw mechanism, and numerical predictions of the parameters in both normal and inverse order scheme for the mass of the phenomenological neutrinos are obtained. We employed a simple seesawlike method to obtain analytical mass eigenstates of the C P -even 3 ×3 mass matrix of the scalar sector.
NASA Astrophysics Data System (ADS)
Clausen, J. V.; Torres, G.; Bruntt, H.; Andersen, J.; Nordström, B.; Stefanik, R. P.; Latham, D. W.; Southworth, J.
2008-09-01
Context: Accurate mass, radius, and abundance determinations from binaries provide important information on stellar evolution, fundamental to central fields in modern astrophysics and cosmology. Aims: We aim to determine absolute dimensions and abundances for the three F-type main-sequence detached eclipsing binaries AD Boo, VZ Hya, and WZ Oph and to perform a detailed comparison with results from recent stellar evolutionary models. Methods: uvby light curves and uvbyβ standard photometry were obtained with the Strömgren Automatic Telescope at ESO, La Silla, radial velocity observations at CfA facilities, and supplementary high-resolution spectra with ESO's FEROS spectrograph. State-of-the-art methods were applied for the analyses: the EBOP and Wilson-Devinney binary models, two-dimensional cross-correlation and disentangling, and the VWA abundance analysis tool. Results: Masses and radii that are precise to 0.5-0.7% and 0.4-0.9%, respectively, have been established for the components, which span the ranges of 1.1 to 1.4 M⊙ and 1.1 to 1.6 R⊙. The [Fe/H] abundances are from -0.27 to +0.10, with uncertainties between 0.07 and 0.15 dex. We find indications of a slight α-element overabundance of [α/Fe] ˜ + 0.1 for WZ Oph. The secondary component of AD Boo and both components of WZ Oph appear to be slightly active. Yale-Yonsai and Victoria-Regina evolutionary models fit the components of AD Boo and VZ Hya almost equally well, assuming coeval formation, at ages of about 1.75/1.50 Gyr (AD Boo) and 1.25/1.00 Gyr (VZ Hya). BaSTI models, however, predict somewhat different ages for the primary and secondary components. For WZ Oph, the models from all three grids are significantly hotter than observed. A low He content, decreased envelope convection coupled with surface activity, and/or higher interstellar absorption would remove the discrepancy, but its cause has not been definitively identified. Conclusions: We have demonstrated the power of testing and comparing recent stellar evolutionary models using eclipsing binaries, provided their abundances are known. The strongest limitations and challenges are set by T_eff and interstellar absorption determinations, and by their effects on and correlation with abundance results. Based on observations carried out at the Strömgren Automatic Telescope (SAT) and the 1.5 m and 2.2 m telescopes at ESO, La Silla, Chile (62.L-0284, 63.H-0080, 71.D-0554); the 1.5 m Wyeth reflector at the Oak Ridge Observatory, Harvard, Massachusetts, USA; the 1.5-m Tillinghast reflector and the Multiple Mirror Telescope at the F. L. Whipple Observatory, Mt. Hopkins, Arizona.
Isotope Tracing of Long-Term Cadmium Fluxes in an Agricultural Soil.
Salmanzadeh, Mahdiyeh; Hartland, Adam; Stirling, Claudine H; Balks, Megan R; Schipper, Louis A; Joshi, Chaitanya; George, Ejin
2017-07-05
Globally widespread phosphate fertilizer applications have resulted in long-term increases in the concentration of cadmium (Cd) in soils. The accumulation of this biotoxic, and bioaccumulative metal presents problems for the management of soil-plant-animal systems, because the magnitude and direction of removal fluxes (e.g., crop uptake, leaching) have been difficult to estimate. Here, Cd isotopic compositions (δ 114/110 Cd) of archived fertilizer and soil samples from a 66 year-long agricultural field trial in Winchmore, New Zealand, were used to constrain the Cd soil mass balance between 1959 and 2015 AD, informing future soil Cd accumulation trajectories. The isotopic partitioning of soil Cd sources in this system was aided by a change in phosphate source rocks in 1998 AD, and a corresponding shift in fertilizer isotope composition. The dominant influence of mixing between isotopically distinct Cd end-members was confirmed by a Bayesian modeling approach. Furthermore, isotope mass balance modeling revealed that Cd removal processes most likely increased in magnitude substantially between 2000 and 2015 AD, implying an increase in Cd bioaccumulation and/or leaching over that interval. Natural-abundance stable isotopes are introduced here as a powerful tool for tracing the fate of Cd in agricultural soils, and potentially the wider environment.
Neutron stars in the braneworld within the Eddington-inspired Born-Infeld gravity
NASA Astrophysics Data System (ADS)
Prasetyo, I.; Husin, I.; Qauli, A. I.; Ramadhan, H. S.; Sulaksono, A.
2018-01-01
We propose the disappearance of "the hyperon puzzle" in neutron star (NS) by invoking two new-physics prescriptions: modified gravity theory and braneworld scenario. By assuming that NS lives on a 3-brane within a 5d empty AdS bulk, gravitationally governed by Eddington-inspired Born-Infeld (EiBI) theory, the field equations can be effectively cast into the usual Einstein's with "apparent" anisotropic energy-momentum tensor. Solving the corresponding brane-TOV equations numerically, we study its mass-radius relation. It is known that the appearance of finite brane tension λ reduces the compactness of the star. The compatibility of the braneworld results with observational constraints of NS mass and radius can be restored in our model by varying the EiBI's coupling constant, κ. We found that within the astrophysically-accepted range of parameters (0<κ<6×106m2 and λgg1 MeV4) the NS can have mass ~2.1 Msolar and radius ~10 km.
NASA Technical Reports Server (NTRS)
Kartuzova, O.; Kassemi, M.; Agui, J.; Moder, J.
2014-01-01
This paper presents a CFD (computational fluid dynamics) model for simulating the self-pressurization of a large scale liquid hydrogen storage tank. In this model, the kinetics-based Schrage equation is used to account for the evaporative and condensing interfacial mass flows. Laminar and turbulent approaches to modeling natural convection in the tank and heat and mass transfer at the interface are compared. The flow, temperature, and interfacial mass fluxes predicted by these two approaches during tank self-pressurization are compared against each other. The ullage pressure and vapor temperature evolutions are also compared against experimental data obtained from the MHTB (Multipuprpose Hydrogen Test Bed) self-pressurization experiment. A CFD model for cooling cryogenic storage tanks by spraying cold liquid in the ullage is also presented. The Euler- Lagrange approach is utilized for tracking the spray droplets and for modeling interaction between the droplets and the continuous phase (ullage). The spray model is coupled with the VOF (volume of fluid) model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. Droplet ullage heat and mass transfer are modeled. The flow, temperature, and interfacial mass flux predicted by the model are presented. The ullage pressure is compared with experimental data obtained from the MHTB spray bar mixing experiment. The results of the models with only droplet/ullage heat transfer and with heat and mass transfer between the droplets and ullage are compared.
NASA Astrophysics Data System (ADS)
de Oliveira, Helder C. R.; Moraes, Diego R.; Reche, Gustavo A.; Borges, Lucas R.; Catani, Juliana H.; de Barros, Nestor; Melo, Carlos F. E.; Gonzaga, Adilson; Vieira, Marcelo A. C.
2017-03-01
This paper presents a new local micro-pattern texture descriptor for the detection of Architectural Distortion (AD) in digital mammography images. AD is a subtle contraction of breast parenchyma that may represent an early sign of breast cancer. Due to its subtlety and variability, AD is more difficult to detect compared to microcalcifications and masses, and is commonly found in retrospective evaluations of false-negative mammograms. Several computer-based systems have been proposed for automatic detection of AD, but their performance are still unsatisfactory. The proposed descriptor, Local Mapped Pattern (LMP), is a generalization of the Local Binary Pattern (LBP), which is considered one of the most powerful feature descriptor for texture classification in digital images. Compared to LBP, the LMP descriptor captures more effectively the minor differences between the local image pixels. Moreover, LMP is a parametric model which can be optimized for the desired application. In our work, the LMP performance was compared to the LBP and four Haralick's texture descriptors for the classification of 400 regions of interest (ROIs) extracted from clinical mammograms. ROIs were selected and divided into four classes: AD, normal tissue, microcalcifications and masses. Feature vectors were used as input to a multilayer perceptron neural network, with a single hidden layer. Results showed that LMP is a good descriptor to distinguish AD from other anomalies in digital mammography. LMP performance was slightly better than the LBP and comparable to Haralick's descriptors (mean classification accuracy = 83%).
Radion stabilization in higher curvature warped spacetime
NASA Astrophysics Data System (ADS)
Das, Ashmita; Mukherjee, Hiya; Paul, Tanmoy; SenGupta, Soumitra
2018-02-01
We consider a five dimensional AdS spacetime in presence of higher curvature term like F(R) = R + α R^2 in the bulk. In this model, we examine the possibility of modulus stabilization from the scalar degrees of freedom of higher curvature gravity free of ghosts. Our result reveals that the model stabilizes itself and the mechanism of modulus stabilization can be argued from a geometric point of view. We determine the region of the parametric space for which the modulus (or radion) can to be stabilized. We also show how the mass and coupling parameters of radion field are modified due to higher curvature term leading to modifications of its phenomenological implications on the visible 3-brane.
Spontaneous breaking of scale invariance in a D = 3 U(N ) model with Chern-Simons gauge fields
Bardeen, William A.; Moshe, Moshe
2014-06-18
We study spontaneous breaking of scale invariance in the large N limit of three dimensional U(N ) κ Chern-Simons theories coupled to a scalar field in the fundamental representation. When a λ 6 ( Ø † · Ø) 3 self interaction term is added to the action we find a massive phase at a certain critical value for a combination of the λ(6) and ’t Hooft’s λ = N/κ couplings. This model attracted recent attention since at finite κ it contains a singlet sector which is conjectured to be dual to Vasiliev’s higher spin gravity on AdS 4. Our papermore » concentrates on the massive phase of the 3d boundary theory. We discuss the advantage of introducing masses in the boundary theory through spontaneous breaking of scale invariance.« less
Grau, L; Laulagnet, B
2015-05-01
An analytical approach is investigated to model ground-plate interaction based on modal decomposition and the two-dimensional Fourier transform. A finite rectangular plate subjected to flexural vibration is coupled with the ground and modeled with the Kirchhoff hypothesis. A Navier equation represents the stratified ground, assumed infinite in the x- and y-directions and free at the top surface. To obtain an analytical solution, modal decomposition is applied to the structure and a Fourier Transform is applied to the ground. The result is a new tool for analyzing ground-plate interaction to resolve this problem: ground cross-modal impedance. It allows quantifying the added-stiffness, added-mass, and added-damping from the ground to the structure. Similarity with the parallel acoustic problem is highlighted. A comparison between the theory and the experiment shows good matching. Finally, specific cases are investigated, notably the influence of layer depth on plate vibration.
Development of diagnostics in the search for an explanation of aerotoxic syndrome.
Schopfer, Lawrence M; Furlong, Clement E; Lockridge, Oksana
2010-09-01
Aerotoxic syndrome is assumed to be caused by exposure to tricresyl phosphate, an additive in engine lubricants and hydraulic fluids that is activated to the toxic 2-(ortho-cresyl)-4H-1,3,2-benzodioxaphosphoran-2-one (CBDP). Currently, there is no laboratory evidence to support intoxication of airline crew members by CBDP. Our goal was to develop methods for testing in vivo exposure by identifying and characterizing biomarkers. Mass spectrometry was used to study the reaction of CBDP with human albumin, free tyrosine, and human butyrylcholinesterase. Human albumin made a covalent bond with CBDP, adding a mass of 170amu to Tyr411 to yield the o-cresyl phosphotyrosine derivative. Human butyrylcholinesterase made a covalent bond with CBDP on Ser198 to yield five adducts with added masses of 80, 108, 156, 170, and 186amu. The most abundant adduct had an added mass of 80amu from phosphate (HPO(3)), a surprising result given that no pesticide or nerve agent is known to yield phosphorylated serine with an added mass of 80amu. The next most abundant adduct had an added mass of 170amu to form o-cresyl phosphoserine. It is concluded that toxic gases or oil mists in cabin air may form adducts on plasma butyrylcholinesterase and albumin, detectable by mass spectrometry. 2010 Elsevier Inc. All rights reserved.
Hughes, Amy; Mohanasundaram, Daisy; Kireta, Svjetlana; Jessup, Claire F; Drogemuller, Chris J; Coates, P Toby H
2013-03-15
The early loss of functional islet mass (50-70%) due to apoptosis after clinical transplantation contributes to islet allograft failure. Insulin-like growth factor (IGF)-II is an antiapoptotic protein that is highly expressed in β-cells during development but rapidly decreases in postnatal life. We used an adenoviral (Ad) vector to overexpress IGF-II in isolated rat islets and investigated its antiapoptotic action against exogenous cytokines interleukin-1β- and interferon-γ-induced islet cell death in vitro. Using an immunocompromised marginal mass islet transplant model, the ability of Ad-IGF-II-transduced rat islets to restore euglycemia in nonobese diabetic/severe combined immunodeficient diabetic recipients was assessed. Ad-IGF-II transduction did not affect islet viability or function. Ad-IGF-II cytokine-treated islets exhibited decreased cell death (40% ± 2.8%) versus Ad-GFP and untransduced control islets (63.2% ± 2.5% and 53.6% ± 2.3%, respectively). Ad-IGF-II overexpression during cytokine treatment resulted in a marked reduction in terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive apoptotic cells (8.3% ± 1.4%) versus Ad-GFP control (41% ± 4.2%) and untransduced control islets (46.5% ± 6.2%). Western blot analysis confirmed that IGF-II inhibits apoptosis via activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. Transplantation of IGF-II overexpressing islets under the kidney capsule of diabetic mice restored euglycemia in 77.8% of recipients compared with 18.2% and 47.5% of Ad-GFP and untransduced control islet recipients, respectively (P<0.05, log-rank [Mantel-Cox] test). Antiapoptotic IGF-II decreases apoptosis in vitro and significantly improved islet transplant outcomes in vivo. Antiapoptotic gene transfer is a potentially powerful tool to improve islet survival after transplantation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Qing, E-mail: hqng@163.com; Mao, Xinhua, E-mail: 30400414@qq.com; Chu, Dongliang, E-mail: 569256386@qq.com
This study proposes an optimized frequency adjustment method that uses a micro-cantilever beam-based piezoelectric vibration generator based on a combination of added mass and capacitance. The most important concept of the proposed method is that the frequency adjustment process is divided into two steps: the first is a rough adjustment step that changes the size of the mass added at the end of cantilever to adjust the frequency in a large-scale and discontinuous manner; the second step is a continuous but short-range frequency adjustment via the adjustable added capacitance. Experimental results show that when the initial natural frequency of amore » micro piezoelectric vibration generator is 69.8 Hz, then this natural frequency can be adjusted to any value in the range from 54.2 Hz to 42.1 Hz using the combination of the added mass and the capacitance. This method simply and effectively matches a piezoelectric vibration generator’s natural frequency to the vibration source frequency.« less
Analytical studies on holographic superconductor in the probe limit
NASA Astrophysics Data System (ADS)
Peng, Yan; Liu, Guohua
2017-09-01
We investigate the holographic superconductor model constructed in the (2+1)-dimensional AdS soliton background in the probe limit. With analytical methods, we obtain the formula of critical phase transition points with respect to the scalar mass. We also generalize this formula to higher-dimensional space-time. We mention that these formulas are precise compared to numerical results. In addition, we find a correspondence between the value of the charged scalar field at the tip and the scalar operator at infinity around the phase transition points.
Holograms of a dynamical top quark
NASA Astrophysics Data System (ADS)
Clemens, Will; Evans, Nick; Scott, Marc
2017-09-01
We present holographic descriptions of dynamical electroweak symmetry breaking models that incorporate the top mass generation mechanism. The models allow computation of the spectrum in the presence of large anomalous dimensions due to walking and strong Nambu-Jona-Lasinio interactions. Technicolor and QCD dynamics are described by the bottom-up Dynamic AdS/QCD model for arbitrary gauge groups and numbers of quark flavors. An assumption about the running of the anomalous dimension of the quark bilinear operator is input, and the model then predicts the spectrum and decay constants for the mesons. We add Nambu-Jona-Lasinio interactions responsible for flavor physics from extended technicolor, top-color, etc., using Witten's multitrace prescription. We show the key behaviors of a top condensation model can be reproduced. We study generation of the top mass in (walking) one doublet and one family technicolor models and with strong extended technicolor interactions. The models clearly reveal the tensions between the large top mass and precision data for δ ρ . The necessary tunings needed to generate a model compatible with precision constraints are simply demonstrated.
NASA Astrophysics Data System (ADS)
Idrisi, Kamal; Johnson, Marty E.; Toso, Alessandro; Carneal, James P.
2009-06-01
This paper is concerned with the modeling and optimization of heterogeneous (HG) blankets, which are used in this investigation to reduce the sound transmission through double panel systems. HG blankets consist of poro-elastic media with small embedded masses, which act similarly to a distributed mass-spring-damper-system. HG blankets have shown significant potential to reduce low frequency radiated sound from structures, where traditional poro-elastic materials have little effect. A mathematical model of a double panel system with an acoustic cavity and HG blanket was developed using impedance and mobility methods. The predicted responses of the source and the receiving panel due to a point force are validated with experimental measurements. The presented results indicate that proper tuning of the HG blankets can result in broadband noise reduction below 500 Hz with less than 10% added mass.
Generic Business Model Types for Enterprise Mashup Intermediaries
NASA Astrophysics Data System (ADS)
Hoyer, Volker; Stanoevska-Slabeva, Katarina
The huge demand for situational and ad-hoc applications desired by the mass of business end users led to a new kind of Web applications, well-known as Enterprise Mashups. Users with no or limited programming skills are empowered to leverage in a collaborative manner existing Mashup components by combining and reusing company internal and external resources within minutes to new value added applications. Thereby, Enterprise Mashup environments interact as intermediaries to match the supply of providers and demand of consumers. By following the design science approach, we propose an interaction phase model artefact based on market transaction phases to structure required intermediary features. By means of five case studies, we demonstrate the application of the designed model and identify three generic business model types for Enterprise Mashups intermediaries (directory, broker, and marketplace). So far, intermediaries following a real marketplace business model don’t exist in context of Enterprise Mashups and require further research for this emerging paradigm.
NASA Technical Reports Server (NTRS)
Carson, John M., III; Bayard, David S.
2006-01-01
G-SAMPLE is an in-flight dynamical method for use by sample collection missions to identify the presence and quantity of collected sample material. The G-SAMPLE method implements a maximum-likelihood estimator to identify the collected sample mass, based on onboard force sensor measurements, thruster firings, and a dynamics model of the spacecraft. With G-SAMPLE, sample mass identification becomes a computation rather than an extra hardware requirement; the added cost of cameras or other sensors for sample mass detection is avoided. Realistic simulation examples are provided for a spacecraft configuration with a sample collection device mounted on the end of an extended boom. In one representative example, a 1000 gram sample mass is estimated to within 110 grams (95% confidence) under realistic assumptions of thruster profile error, spacecraft parameter uncertainty, and sensor noise. For convenience to future mission design, an overall sample-mass estimation error budget is developed to approximate the effect of model uncertainty, sensor noise, data rate, and thrust profile error on the expected estimate of collected sample mass.
Closed Timelike Curves in (2+1)-AdS Gravity
NASA Astrophysics Data System (ADS)
Valtancoli, P.
We build the (2+1)-AdS gravity generalization of the Gott time machine using a first-order formalism for solving the scattering of point sources. The two-body dynamics is solved by two invariant masses, whose difference is simply related to the total angular momentum of the system. We show how to build a time machine when at least one of the two invariant masses is no more real but acquires an imaginary part.
Modular design attitude control system
NASA Technical Reports Server (NTRS)
Chichester, F. D.
1984-01-01
A sequence of single axismodels and a series of reduced state linear observers of minimum order are used to reconstruct inaccessible variables pertaining to the modular attitude control of a rigid body flexible suspension model of a flexible spacecraft. The single axis models consist of two, three, four, and five rigid bodies, each interconnected by a flexible shaft passing through the mass centers of the bodies. Modal damping is added to each model. Reduced state linear observers are developed for synthesizing the inaccessible modal state variables for each modal model.
Sugimoto, Taiki; Nakamura, Akinori; Kato, Takashi; Iwata, Kaori; Saji, Naoki; Arahata, Yutaka; Hattori, Hideyuki; Bundo, Masahiko; Ito, Kengo; Niida, Shumpei; Sakurai, Takashi
2017-01-01
Weight loss is frequently observed in patients with Alzheimer's disease (AD); however, the underlying mechanisms are not well understood. To clarify the associations between nutritional status and AD-related brain changes using Pittsburgh Compound-B (PiB)-PET, fluorodeoxyglucose (FDG)-PET, and structural MRI. The subjects were 34 amyloid-β (Aβ)-positive individuals with mild cognitive impairment or early AD (prodromal/early AD), and 55 Aβ-negative cognitively normal (CN) subjects who attended the Multimodal Neuroimaging for AD Diagnosis (MULNIAD) study. Nutritional status of the subjects was assessed by body mass index and waist to height ratio (waist circumference/height). The associations between nutritional status and brain changes were examined by multiple regression analysis using statistical parametric mapping. In the prodromal/early AD group, nutritional status was significantly positively correlated with regional cerebral glucose metabolism (rCGM) in the medial prefrontal cortices, while different topographical associations were seen in the CN group, suggesting these changes were AD-specific. Aβ deposition and gray matter volume were not significantly associated with nutritional status. Sub-analysis in the prodromal/early AD group demonstrated that fat mass index, but not fat-free mass index, was positively correlated with rCGM in the medial prefrontal areas. This present study provides preliminary results suggesting that hypometabolism in the medial prefrontal areas is specifically associated with AD-related weight loss, and decrease in fat mass may have a key role.
Assessing the sampling strategy in the Northwestern Mediterranean Sea
NASA Astrophysics Data System (ADS)
Margirier, Félix; Testor, Pierre; Bosse, Anthony; Heslop, Emma; L'Hévéder, Blandine; Arsouze, Thomas; Houpert, Loic; Mortier, Laurent
2017-04-01
The deployment of numerous autonomous platforms (gliders, argo floats, moorings) added to the repeated ship cruises in the Northwestern Mediterranean Sea account for a considerable data coverage of the area through the past 10 years. In this study, we analyse the in-situ observations' ability to assess for the changes in the Northwester Mediterranean basin water masses properties over time. Comparing the observed time series for the different regions and different water masses to that of a glider simulator in the NEMO-Med12 model, we estimate both the quality of the model and the skill of the in-situ observations in reproducing the evolution of the basin properties.
Changes in Gait with Anteriorly Added Mass: A Pregnancy Simulation Study
Ogamba, Maureen I.; Loverro, Kari L.; Laudicina, Natalie M.; Gill, Simone V.; Lewis, Cara L.
2016-01-01
During pregnancy, the female body experiences structural changes, such as weight gain. As pregnancy advances, most of the additional mass is concentrated anteriorly on the lower trunk. The purpose of this study is to analyze kinematic and kinetic changes when load is added anteriorly to the trunk, simulating a physical change experienced during pregnancy. Twenty healthy females walked on a treadmill while wearing a custom made pseudo-pregnancy sac (1 kg) under three load conditions: sac only, 10 pound condition (4.535 kg added anteriorly), and 20 pound condition (9.07 kg added anteriorly), used to simulate pregnancy, in the second trimester and at full term pregnancy, respectively. The increase in anterior mass resulted in kinematic changes at the knee, hip, pelvis, and trunk in the sagittal and frontal planes. Additionally, ankle, knee, and hip joint moments normalized to baseline mass increased with increased load; however, these moments decreased when normalized to total mass. These kinematic and kinetic changes may suggest that women modify gait biomechanics to reduce the effect of added load. Furthermore, the increase in joint moments increases stress on the musculoskeletal system and may contribute to musculoskeletal pain. PMID:26958743
The Black Hole Firewall and Top-Down Constructions of AdS/CFT
NASA Astrophysics Data System (ADS)
Almheiri, Ahmed Eid Khamis Thani
In the first part of this dissertation we argue that the following statements cannot be all true: (i) Black hole formation and evaporation is a unitary process as viewed by external observers, (ii) Physics outside some microscopic distance away from the event horizon is described by local effective quantum field theory, (iii) A black hole is a quantum system with a finite number of states given by the exponential of the Bekenstein Hawking entropy, and (iv) An infalling observer's experience in the vicinity of the horizon is well described by local effective quantum field theory in the infalling reference frame. We argue that the most conservative resolution is that an infalling observer will see drastic violations of effective field theory far away from the singularity, and encounter high energy quanta, a firewall, just behind the black hole event horizon. We address counter proposals to the firewall which involve, in one way or another, radical modifications of quantum mechanics or locality, and argue that they are unsatisfactory in their current formulation. We conclude this part with an investigation into the existence of firewalls in the two dimensional Einstein-dilaton gravity model of CGHS. We find that black holes in such models do not develop firewalls, but rather evaporate down to form small mass remnants. We elaborate on why this is inevitable in two dimensions and argue against a similar conclusion in higher dimensions. In the second part of this dissertation we construct AdS2 and AdS3 magnetic brane solutions within the abelian truncations of AdS4 x orbifolded S7 and AdS5 x S5 supergravity. We find a class of supersymmetric solutions of the bulk theory to assure stability. We perform a preliminary analysis demonstrating the stability of some nonsupersymmetric embeddings. We identify the dual field theory and compare the thermal entropies across the duality. We end with an investigatation into the effects of backreaction on holography in AdS2. We study a classically solvable toy model that contains an IR AdS2 throat, and find that backreaction behaves as a strongly relevant perturbation deep in the AdS2 region.
Effect of dead space on breathing stability at exercise in hypoxia.
Hermand, Eric; Lhuissier, François J; Richalet, Jean-Paul
2017-12-01
Recent studies have shown that normal subjects exhibit periodic breathing when submitted to concomitant environmental (hypoxia) and physiological (exercise) stresses. A mathematical model including mass balance equations confirmed the short period of ventilatory oscillations and pointed out an important role of dead space in the genesis of these phenomena. Ten healthy subjects performed mild exercise on a cycloergometer in different conditions: rest/exercise, normoxia/hypoxia and no added dead space/added dead space (aDS). Ventilatory oscillations (V˙E peak power) were augmented by exercise, hypoxia and aDS (P<0.001, P<0.001 and P<0.01, respectively) whereas V˙E period was only shortened by exercise (P<0.001), with an 11-s period. aDS also increased V˙E (P<0.001), tidal volume (VT, P<0.001), and slightly augmented PETCO 2 (P<0.05) and the respiratory frequency (P<0.05). These results confirmed our previous model, showing an exacerbation of breathing instability by increasing dead space. This underlines opposite effects observed in heart failure patients and normal subjects, in which added dead space drastically reduced periodic breathing and sleep apneas. It also points out that alveolar ventilation remains very close to metabolic needs and is not affected by an added dead space. Clinical Trial reg. n°: NCT02201875. Copyright © 2017 Elsevier B.V. All rights reserved.
Independent effects of adding weight and inertia on balance during quiet standing
2012-01-01
Background Human balance during quiet standing is influenced by adding mass to the body with a backpack, with symmetrically-applied loads to the trunk, or with obesity. Adding mass to the body increases both the weight and inertia of the body, which theoretically could provide counteracting effects on body dynamics and balance. Understanding the independent effects of adding weight and inertia on balance may provide additional insight into human balance that could lead to novel advancements in balance training and rehabilitation. Therefore, the purpose of this study was to investigate the independent effects of adding weight and inertia on balance during quiet standing. Methods Sixteen normal-weight young adult participants stood as still as possible on a custom-built backboard apparatus under four experimental conditions: baseline, added inertia only, added weight only, and added inertia and weight. Results Adding inertia by itself had no measurable effect on center of pressure movement or backboard movement. Adding weight by itself increased center of pressure movement (indicated greater effort by the postural control system to stand as still as possible) and backboard movement (indicating a poorer ability of the body to stand as still as possible). Adding inertia and weight at the same time increased center of pressure movement but did not increase backboard movement compared to the baseline condition. Conclusions Adding inertia and adding weight had different effects on balance. Adding inertia by itself had no effect on balance. Adding weight by itself had a negative effect on balance. When adding inertia and weight at the same time, the added inertia appeared to lessen (but did not eliminate) the negative effect of adding weight on balance. These results improve our fundamental understanding of how added mass influences human balance. PMID:22507125
Independent effects of adding weight and inertia on balance during quiet standing.
Costello, Kerry Elizabeth; Matrangola, Sara Louise; Madigan, Michael Lawrence
2012-04-16
Human balance during quiet standing is influenced by adding mass to the body with a backpack, with symmetrically-applied loads to the trunk, or with obesity. Adding mass to the body increases both the weight and inertia of the body, which theoretically could provide counteracting effects on body dynamics and balance. Understanding the independent effects of adding weight and inertia on balance may provide additional insight into human balance that could lead to novel advancements in balance training and rehabilitation. Therefore, the purpose of this study was to investigate the independent effects of adding weight and inertia on balance during quiet standing. Sixteen normal-weight young adult participants stood as still as possible on a custom-built backboard apparatus under four experimental conditions: baseline, added inertia only, added weight only, and added inertia and weight. Adding inertia by itself had no measurable effect on center of pressure movement or backboard movement. Adding weight by itself increased center of pressure movement (indicated greater effort by the postural control system to stand as still as possible) and backboard movement (indicating a poorer ability of the body to stand as still as possible). Adding inertia and weight at the same time increased center of pressure movement but did not increase backboard movement compared to the baseline condition. Adding inertia and adding weight had different effects on balance. Adding inertia by itself had no effect on balance. Adding weight by itself had a negative effect on balance. When adding inertia and weight at the same time, the added inertia appeared to lessen (but did not eliminate) the negative effect of adding weight on balance. These results improve our fundamental understanding of how added mass influences human balance.
Augmented standard model and the simplest scenario
NASA Astrophysics Data System (ADS)
Wu, Tai Tsun; Wu, Sau Lan
2015-11-01
The experimental discovery of the Higgs particle in 2012 by the ATLAS Collaboration and the CMS Collaboration at CERN ushers in a new era of particle physics. On the basis of these data, scalar quarks and scalar leptons are added to each generation of quarks and leptons. The resulting augmented standard model has fermion-boson symmetry for each of three generations, but only one Higgs doublet giving masses to all the elementary particles. A specific special case, the simplest scenario, is studied in detail. In this case, there are twenty six quadratic divergences, and all these divergences are cancelled provided that one single relation between the masses is satisfied. This mass relation contains a great deal of information, and in particular determines the masses of all the right-handed scalar quarks and scalar leptons, while gives relations for the masses of the left-handed ones. An alternative procedure is also given with a different starting point and less reliance on the experimental data. The result is of course the same.
Ash fallout scenarios at Vesuvius: Numerical simulations and implications for hazard assessment
NASA Astrophysics Data System (ADS)
Macedonio, G.; Costa, A.; Folch, A.
2008-12-01
Volcanic ash fallout subsequent to a possible renewal of the Vesuvius activity represents a serious threat to the highly urbanized area around the volcano. In order to assess the relative hazard we consider three different possible scenarios such as those following Plinian, Sub-Plinian, and violent Strombolian eruptions. Reference eruptions for each scenario are similar to the 79 AD (Pompeii), the 1631 AD (or 472 AD) and the 1944 AD Vesuvius events, respectively. Fallout deposits for the first two scenarios are modeled using HAZMAP, a model based on a semi-analytical solution of the 2D advection-diffusion-sedimentation equation. In contrast, fallout following a violent Strombolian event is modeled by means of FALL3D, a numerical model based on the solution of the full 3D advection-diffusion-sedimentation equation which is valid also within the atmospheric boundary layer. Inputs for models are total erupted mass, eruption column height, bulk grain-size, bulk component distribution, and a statistical set of wind profiles obtained by the NCEP/NCAR re-analysis. We computed ground load probability maps for different ash loadings. In the case of a Sub-Plinian scenario, the most representative tephra loading maps in 16 cardinal directions were also calculated. The probability maps obtained for the different scenarios are aimed to give support to the risk mitigation strategies.
NASA Astrophysics Data System (ADS)
Yudaniayanti, Ira Sari; Primarizky, Hardany; Nangoi, Lianny
2018-04-01
Osteoporosis is a chronic skeletal disease characterized by low bone mass and microarchitectural deterioration with a consequent increase in bone fragility and fracture risk. The aim of the study was to evaluate the effects of honey (Apis dorsata) supplements on increased bone strength in ovariectomized rat as animal models of osteoporosis. Twenty female rats at 3 months of age, weighing 150-200 g were used in the study. The rats were divided into five groups (n=4) : Sham operation group (SH); ovariectomy group no treatment(OVX); ovariectomy with treatment Apis dorsata 1g/Kg BW (AD-1); ovariectomy with treatment Apis dorsata 2g/Kg BW (AD-2); ovariectomy with treatment Apis dorsata 4g/Kg BW (AD-3). The treatment started to be given the next day after ovariectomy operation for 12 weeks. The Rats were sacrified within 12 weeks, and then the right femur were taken bone strength test. Based on the statistical analysis of the bone strength test, the greatest score belongs to the Sham operation group (SH) that have significant difference (p<0.05) with OVX group and AD-1 group, but there was no significant difference with AD-2 and AD-3 (p>0,05). In conclusion, honey (Apis dorsata) supplements has the effect of increasing bone strength in ovariectomized rat as animal models of osteoporosis, so that honey (Apis dorsata) supplements has the potential to be used as an alternative treatment for osteoporosis.
A family of triaxial modified Hubble mass models: Effects of the additional radial functions
NASA Astrophysics Data System (ADS)
Das, Mousumi; Thakur, Parijat; Ann, H. B.
2005-03-01
The projected properties of triaxial generalization of the modified Hubble mass models are studied. These models are constructed by adding the additional radial functions, each multiplied by a low-order spherical harmonic, to the models of [Chakraborty, D.K., Thakur, P., 2000. MNRAS 318, 1273]. The projected surface density of mass models can be calculated analytically which allows us to derive the analytic expressions of axial ratio and position angle of major axis of constant density elliptical contours at asymptotic radii. The models are more general than those studied earlier in the sense that the inclusions of additional terms in density distribution, allow one to produce varieties of the radial profile of axial ratio and position angle, in particular, their small scale variations at inner radii. Strong correlations are found to exist between the observed axial ratio evaluated at 0.25Re and at 4Re which occupy well-separated regions in the parameter space for different choices of the intrinsic axial ratios. These correlations can be exploited to predict the intrinsic shape of the mass model, independent of the viewing angles. Using Bayesian statistics, the result of a test case launched for an estimation of the shape of a model galaxy is found to be satisfactory.
A Unified Model of Phantom Energy and Dark Matter
NASA Astrophysics Data System (ADS)
Chaves, Max; Singleton, Douglas
2008-01-01
To explain the acceleration of the cosmological expansion researchers have considered an unusual form of mass-energy generically called dark energy. Dark energy has a ratio of pressure over mass density which obeys w = p/ρ < -1/3. This form of mass-energy leads to accelerated expansion. An extreme form of dark energy, called phantom energy, has been proposed which has w = p/ρ < -1. This possibility is favored by the observational data. The simplest model for phantom energy involves the introduction of a scalar field with a negative kinetic energy term. Here we show that theories based on graded Lie algebras naturally have such a negative kinetic energy and thus give a model for phantom energy in a less ad hoc manner. We find that the model also contains ordinary scalar fields and anti-commuting (Grassmann) vector fields which act as a form of two component dark matter. Thus from a gauge theory based o! n a graded algebra we naturally obtained both phantom energy and dark matter.
Yusof, Mohd Fahmi Mohd; Hamid, Puteri Nor Khatijah Abd; Tajuddin, Abd Aziz; Hashim, Rokiah; Bauk, Sabar; Isa, Norriza Mohd; Isa, Muhammad Jamal Md
2017-09-01
The aim of this study was to determine the suitability of tannin-added Rhizophora spp. particleboards as phantom materials in the application of low- and high-energy photons. The tannin-added Rhizophora spp. particleboards and density plug phantoms were created with a target density of 1.0 g/cm 3 . The elemental composition and effective atomic number of the particleboards were measured using energy dispersive X-ray analysis. The mass attenuation coefficient of the particleboards for low-energy photons were measured using the attenuation of X-ray fluorescence. The mass attenuation coefficients of high-energy photons were measured using the attenuation of 137 Cs and 60 Co gamma energies. The results were compared to the calculated value of water using XCOM calculations. The results showed that the effective atomic number and mass attenuation coefficients of tannin-added Rhizophora spp. particleboards were similar to those of water, indicating the suitability of tannin-added Rhizophora spp. particleboards as phantom materials for low- and high-energy photons.
NASA Astrophysics Data System (ADS)
Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; Tang, Qi
2017-08-01
A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forces on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this second part of a two-part series, the general formulation of the AMP scheme is presented including the form of the AMP interface conditions and added-damping tensors for general geometries. A fully second-order accurate implementation of the AMP scheme is developed in two dimensions based on a fractional-step method for the incompressible Navier-Stokes equations using finite difference methods and overlapping grids to handle the moving geometry. The numerical scheme is verified on a number of difficult benchmark problems.
Rossi, Stefano; Colazza, Alessandra; Petrarca, Maurizio; Castelli, Enrico; Cappa, Paolo; Krebs, Hermano Igo
2013-01-01
We are designing a pediatric exoskeletal ankle robot (pediatric Anklebot) to promote gait habilitation in children with Cerebral Palsy (CP). Few studies have evaluated how much or whether the unilateral loading of a wearable exoskeleton may have the unwanted effect of altering significantly the gait. The purpose of this study was to evaluate whether adding masses up to 2.5 kg, the estimated overall added mass of the mentioned device, at the knee level alters the gait kinematics. Ten healthy children and eight children with CP, with light or mild gait impairment, walked wearing a knee brace with several masses. Gait parameters and lower-limb joint kinematics were analyzed with an optoelectronic system under six conditions: without brace (natural gait) and with masses placed at the knee level (0.5, 1.0, 1.5, 2.0, 2.5 kg). T-tests and repeated measures ANOVA tests were conducted in order to find noteworthy differences among the trial conditions and between loaded and unloaded legs. No statistically significant differences in gait parameters for both healthy children and children with CP were observed in the five "with added mass" conditions. We found significant differences among "natural gait" and "with added masses" conditions in knee flexion and hip extension angles for healthy children and in knee flexion angle for children with CP. This result can be interpreted as an effect of the mechanical constraint induced by the knee brace rather than the effect associated with load increase. The study demonstrates that the mechanical constraint induced by the brace has a measurable effect on the gait of healthy children and children with CP and that the added mass up to 2.5 kg does not alter the lower limb kinematics. This suggests that wearable devices weighing 25 N or less will not noticeably modify the gait patterns of the population examined here.
Song, Mi; Chen, Zeng-Ping; Chen, Yao; Jin, Jing-Wen
2014-07-01
Liquid chromatography-mass spectrometry assays suffer from signal instability caused by the gradual fouling of the ion source, vacuum instability, aging of the ion multiplier, etc. To address this issue, in this contribution, an internal standard was added into the mobile phase. The internal standard was therefore ionized and detected together with the analytes of interest by the mass spectrometer to ensure that variations in measurement conditions and/or instrument have similar effects on the signal contributions of both the analytes of interest and the internal standard. Subsequently, based on the unique strategy of adding internal standard in mobile phase, a multiplicative effects model was developed for quantitative LC-MS assays and tested on a proof of concept model system: the determination of amino acids in water by LC-MS. The experimental results demonstrated that the proposed method could efficiently mitigate the detrimental effects of continuous signal variation, and achieved quantitative results with average relative predictive error values in the range of 8.0-15.0%, which were much more accurate than the corresponding results of conventional internal standard method based on the peak height ratio and partial least squares method (their average relative predictive error values were as high as 66.3% and 64.8%, respectively). Therefore, it is expected that the proposed method can be developed and extended in quantitative LC-MS analysis of more complex systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Benchmarking Brown Dwarf Models With a Non-irradiated Transiting Brown Dwarf in Praesepe
NASA Astrophysics Data System (ADS)
Beatty, Thomas; Marley, Mark; Line, Michael; Gizis, John
2018-05-01
We wish to use 9.4 hours of Spitzer time to observe two eclipses, one each at 3.6um and 4.5um, of the transiting brown dwarf AD 3116b. AD 3116b is a 54.2+/-4.3 MJ, 1.08+/-0.07 RJ object on a 1.98 day orbit about a 3200K M-dwarf. Uniquely, AD 3116 and its host star are both members of Praesepe, a 690+/-60 Myr old open cluster. AD 3116b is thus one of two transiting brown dwarfs for which we have a robust isochronal age that is not dependent upon brown dwarf evolutionary models, and the youngest brown dwarf for which this is the case. Importantly, the flux AD 3116b receives from its host star is only 0.7% of its predicted internal luminosity (Saumon & Marley 2008). This makes AD 3116b the first known transiting brown dwarf that simultaneously has a well-defined age, and that receives a negligible amount of external irradiation, and a unique laboratory to test radius and luminosity predictions from brown dwarf evolutionary models. Our goal is to measure the emission from the brown dwarf. AD 3116b should have large, 25 mmag, eclipse depths in the Spitzer bandpasses, and we expect to measure them with a precision of +/-0.50 mmag at 3.6um and +/-0.54 mmag at 4.5um. This will allow us to make measure AD 3116b?s internal effective temperature to +/-40K. We will also use the upcoming Gaia DR2 parallaxes to measure AD 3116b's absolute IRAC magnitudes and color, and hence determine the cloud properties of the atmosphere. As the only known brown dwarf with an independently measured mass, radius, and age, Spitzer measurements of AD 3116b's luminosity and clouds will provide a critical benchmark for brown dwarf observation and theory.
Effects of elastic bed on hydrodynamic forces for a submerged sphere in an ocean of finite depth
NASA Astrophysics Data System (ADS)
Mohapatra, Smrutiranjan
2017-08-01
In this paper, we consider a hydroelastic model to examine the radiation of waves by a submerged sphere for both heave and sway motions in a single-layer fluid flowing over an infinitely extended elastic bottom surface in an ocean of finite depth. The elastic bottom is modeled as a thin elastic plate and is based on the Euler-Bernoulli beam equation. The effect of the presence of surface tension at the free-surface is neglected. In such situation, there exist two modes of time-harmonic waves: the one with a lower wavenumber (surface mode) propagates along the free-surface and the other with higher wavenumber (flexural mode) propagates along the elastic bottom surface. Based on the small amplitude wave theory and by using the multipole expansion method, we find the particular solution for the problem of wave radiation by a submerged sphere of finite depth. Furthermore, this method eliminates the need to use large and cumbersome numerical packages for the solution of such problem and leads to an infinite system of linear algebraic equations which are easily solved numerically by any standard technique. The added-mass and damping coefficients for both heave and sway motions are derived and plotted for different submersion depths of the sphere and flexural rigidity of the elastic bottom surface. It is observed that, whenever the sphere nearer to the elastic bed, the added-mass move toward to a constant value of 1, which is approximately twice of the value of added-mass of a moving sphere in a single-layer fluid flowing over a rigid and flat bottom surface.
AdS-phobia, the WGC, the Standard Model and Supersymmetry
NASA Astrophysics Data System (ADS)
Gonzalo, Eduardo; Herráez, Alvaro; Ibáñez, Luis E.
2018-06-01
It has been recently argued that an embedding of the SM into a consistent theory of quantum gravity may imply important constraints on the mass of the lightest neutrino and the cosmological constant Λ4. The constraints come from imposing the absence of any non-SUSY AdS stable vacua obtained from any consistent compactification of the SM to 3 or 2 dimensions. This condition comes as a corollary of a recent extension of the Weak Gravity Conjecture (WGC) by Ooguri and Vafa. In this paper we study T 2 /Z N compactifications of the SM to two dimensions in which SM Wilson lines are projected out, leading to a considerable simplification. We analyze in detail a T 2 /Z 4 compactification of the SM in which both complex structure and Wilson line scalars are fixed and the potential is only a function of the area of the torus a 2. We find that the SM is not robust against the appearance of AdS vacua in 2D and hence would be by itself inconsistent with quantum gravity. On the contrary, if the SM is embedded at some scale M SS into a SUSY version like the MSSM, the AdS vacua present in the non-SUSY case disappear or become unstable. This means that WGC arguments favor a SUSY version of the SM, independently of the usual hierarchy problem arguments. In a T 2 /Z 4 compactification in which the orbifold action is embedded into the B - L symmetry the bounds on neutrino masses and the cosmological constant are recovered. This suggests that the MSSM should be extended with a U(1) B- L gauge group. In other families of vacua the spectrum of SUSY particles is further constrained in order to avoid the appearance of new AdS vacua or instabilities. We discuss a possible understanding of the little hierarchy problem in this context.
Reanalysis of X-ray emission from M87. 2: The multiphase medium
NASA Technical Reports Server (NTRS)
Tsai, John C.
1994-01-01
In a previous paper, we showed that a single-phase model for the gas around M87 simultaneously explained most available X-ray data. Total enclosed masses derived from the model, however, fell well below the determinations from optical measurements. In this paper, we consider possible solutions to the inconsistency, including two multiphase medium models for the gas and the consequences of systematic errors of the Einstein Focal Point Crystal Spectrometer (FPCS). First, we find that when constraints from optical mass determinations are not considered, the best-fit model to the X-ray data is always the single-phase model. Multiphase models or consideration of FPCS systematic errors are required only when optical mass constraints are included. We find that the cooling time model of White & Sarazin adequately explains the available X-ray data and predicts total masses which agree with optical measurements. An ad hoc power-law multiphase does not. This shows both that the existence of mass dropping out of the ambient phase is consistent with the data and that the cooling-time model gives a reasonable parameterization of the dropout rate. Our derived mass accretion rate is similar to previous determinations. The implications of this result for cluster mass determinations in general are discussed. We then consider 'self absorbing' models where we assume that material dropping out of the ambient medium goes completely into X-ray absorbing gas. The resulting internal absorption is small compared to Galactic absorption at most radii. The models are therefore indistinguishable from models with only Galactic absorption. We finally show that it is alternatively possible to simultaneously fit optical mass measurements and X-ray data with a single-phase model if some of the observed FPCS line fluxes are too high by the maximum systematic error. This possiblity can be checked with new data from satellites such as ASCA.
Phenomenology of U(1)F extension of inert-doublet model with exotic scalars and leptons
NASA Astrophysics Data System (ADS)
Dhargyal, Lobsang
2018-02-01
In this work we will extend the inert-doublet model (IDM) by adding a new U(1)F gauge symmetry to it, under which, a Z2 even scalar (φ 2) and Z2 odd right handed component of two exotic charged leptons (F_{eR}, F_{μ R}), are charged. We also add one Z2 even real scalar (φ 1) and one complex scalar (φ ), three neutral Majorana right handed fermions (N1, N2, N3), two left handed components of the exotic charged leptons (F_{eL}, F_{μ L}) as well as F_{τ } are all odd under the Z2, all of which are not charged under the U(1)F. With these new particles added to the IDM, we have a model which can give two scalar DM candidates, together they can explain the present DM relic density as well as the muon (g-2) anomaly simultaneously. Also in this model the neutrino masses are generated at one loop level. One of the most peculiar feature of this model is that non-trivial solution to the axial gauge anomaly free conditions lead to the prediction of a stable very heavy partner to the electron (Fe), whose present collider limit (13 TeV LHC) on its mass should be around m_{Fe} ≥ few TeV.
NASA Astrophysics Data System (ADS)
Redford, J. A.; Ghidaglia, J.-M.; Faure, S.
2018-06-01
Mitigation of blast waves in aqueous foams is a problem that has a strong dependence on multi-phase effects. Here, a simplified model is developed from the previous articles treating violent flows (D'Alesio et al. in Eur J Mech B Fluids 54:105-124, 2015; Faure and Ghidaglia in Eur J Mech B Fluids 30:341-359, 2011) to capture the essential phenomena. The key is to have two fluids with separate velocities to represent the liquid and gas phases. This allows for the interaction between the two phases, which may include terms for drag, heat transfer, mass transfer due to phase change, added mass effects, to be included explicitly in the model. A good test for the proposed model is provided by two experimental data sets that use a specially designed shock tube. The first experiment has a test section filled with spray droplets, and the second has a range of aqueous foams in the test section. A substantial attenuation of the shock wave is seen in both cases, but a large difference is observed in the sound speeds. The droplets cause no observable change from the air sound speed, while the foams have a reduced sound speed of approximately 50-75 m/s . In the model given here, an added mass term is introduced in the governing equations to capture the low sound speed. The match between simulation and experiment is found to be satisfactory for both droplets and the foam. This is especially good when considering the complexity of the physics and the effects that are unaccounted for, such as three-dimensionality and droplet atomisation. The resulting statistics illuminate the processes occurring in such flows.
Inferring Social Influence of Anti-Tobacco Mass Media Campaign.
Zhan, Qianyi; Zhang, Jiawei; Yu, Philip S; Emery, Sherry; Xie, Junyuan
2017-07-01
Anti-tobacco mass media campaigns are designed to influence tobacco users. It has been proved that campaigns will produce users' changes in awareness, knowledge, and attitudes, and also produce meaningful behavior change of audience. Anti-smoking television advertising is the most important part in the campaign. Meanwhile, nowadays, successful online social networks are creating new media environment, however, little is known about the relation between social conversations and anti-tobacco campaigns. This paper aims to infer social influence of these campaigns, and the problem is formally referred to as the Social Influence inference of anti-Tobacco mass mEdia campaigns (Site) problem. To address the Site problem, a novel influence inference framework, TV advertising social influence estimation (Asie), is proposed based on our analysis of two real anti-tobacco campaigns. Asie divides audience attitudes toward TV ads into three distinct stages: 1) cognitive; 2) affective; and 3) conative. Audience online reactions at each of these three stages are depicted by Asie with specific probabilistic models based on the synergistic influences from both online social friends and offline TV ads. Extensive experiments demonstrate the effectiveness of Asie.
Interactions in higher-spin gravity: a holographic perspective
NASA Astrophysics Data System (ADS)
Sleight, Charlotte
2017-09-01
This review is an elaboration of recent results on the holographic re-construction of metric-like interactions in higher-spin gauge theories on anti-de Sitter space (AdS), employing their conjectured duality with free conformal field theories (CFTs). After reviewing the general approach and establishing the necessary intermediate results, we extract explicit expressions for the complete cubic action on AdSd+1 and the quartic self-interaction of the scalar on AdS4 for the type A minimal bosonic higher-spin theory from the three- and four- point correlation functions of single-trace operators in the free scalar O(N) vector model. For this purpose tools were developed to evaluate tree-level three-point Witten diagrams involving totally symmetric fields of arbitrary integer spin and mass, and the conformal partial wave expansions of their tree-level four-point Witten diagrams. We also discuss the implications of the holographic duality on the locality properties of interactions in higher-spin gauge theories.
NASA Technical Reports Server (NTRS)
Li, Bailing; Toll, David; Zhan, Xiwu; Cosgrove, Brian
2011-01-01
Model simulated soil moisture fields are often biased due to errors in input parameters and deficiencies in model physics. Satellite derived soil moisture estimates, if retrieved appropriately, represent the spatial mean of soil moisture in a footprint area, and can be used to reduce model bias (at locations near the surface) through data assimilation techniques. While assimilating the retrievals can reduce model bias, it can also destroy the mass balance enforced by the model governing equation because water is removed from or added to the soil by the assimilation algorithm. In addition, studies have shown that assimilation of surface observations can adversely impact soil moisture estimates in the lower soil layers due to imperfect model physics, even though the bias near the surface is decreased. In this study, an ensemble Kalman filter (EnKF) with a mass conservation updating scheme was developed to assimilate the actual value of Advanced Microwave Scanning Radiometer (AMSR-E) soil moisture retrievals to improve the mean of simulated soil moisture fields by the Noah land surface model. Assimilation results using the conventional and the mass conservation updating scheme in the Little Washita watershed of Oklahoma showed that, while both updating schemes reduced the bias in the shallow root zone, the mass conservation scheme provided better estimates in the deeper profile. The mass conservation scheme also yielded physically consistent estimates of fluxes and maintained the water budget. Impacts of model physics on the assimilation results are discussed.
A progenitor model of SN 1987A based on the slow-merger scenario
NASA Astrophysics Data System (ADS)
Urushibata, Takaki; Takahashi, Koh; Umeda, Hideyuki; Yoshida, Takashi
2018-01-01
Even after elaborate investigations spanning 30 years, it is still not understand how the progenitor of SN 1987A has evolved. In order to explain the unusual red-to-blue evolution, previous studies have suggested that in the red giant stage an increase either in the surface helium abundance or in the envelope mass was necessary. It is usually supposed that the helium enhancement is caused by rotational mixing, and that the mass increase is the result of a binary merger. We have thus investigated these scenarios thoroughly. We found that rotating single-star models do not satisfy all the observational constraints and that the enhancement of the envelope mass alone does not explain the observations. Here, we consider a slow-merger scenario in which both the helium abundance and the envelope mass enhancements are expected to occur. We show that most of the observational constraints, such as the red-to-blue evolution, lifetime, total mass and position in the Hertzsprung-Russell diagram at collapse, and the chemical anomalies are well reproduced by a merger model with 14 and 9 M⊙ stars. We also discuss the effects of the added envelope spin in the merger scenarios.
Covariant fields on anti-de Sitter spacetimes
NASA Astrophysics Data System (ADS)
Cotăescu, Ion I.
2018-02-01
The covariant free fields of any spin on anti-de Sitter (AdS) spacetimes are studied, pointing out that these transform under isometries according to covariant representations (CRs) of the AdS isometry group, induced by those of the Lorentz group. Applying the method of ladder operators, it is shown that the CRs with unique spin are equivalent with discrete unitary irreducible representations (UIRs) of positive energy of the universal covering group of the isometry one. The action of the Casimir operators is studied finding how the weights of these representations (reps.) may depend on the mass and spin of the covariant field. The conclusion is that on AdS spacetime, one cannot formulate a universal mass condition as in special relativity.
Ad-Hoc Networks and the Mobile Application Security System (MASS)
2006-01-01
solution to this problem that addresses critical aspects of security in ad-hoc mobile application networks. This approach involves preventing unauthorized...modification of a mobile application , both by other applications and by hosts, and ensuring that mobile code is authentic and authorized. These...capabilities constitute the Mobile Application Security System (MASS). The MASS applies effective, robust security to mobile application -based systems
Source apportionment of airborne particulate matter using organic compounds as tracers
NASA Astrophysics Data System (ADS)
Schauer, James J.; Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.
A chemical mass balance receptor model based on organic compounds has been developed that relates source contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.
Source apportionment of airborne particulate matter using organic compounds as tracers
NASA Astrophysics Data System (ADS)
Schauer, James J.; Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.
A chemical mass balance receptor model based on organic compounds has been developed that relates sours; contributions to airborne fine particle mass concentrations. Source contributions to the concentrations of specific organic compounds are revealed as well. The model is applied to four air quality monitoring sites in southern California using atmospheric organic compound concentration data and source test data collected specifically for the purpose of testing this model. The contributions of up to nine primary particle source types can be separately identified in ambient samples based on this method, and approximately 85% of the organic fine aerosol is assigned to primary sources on an annual average basis. The model provides information on source contributions to fine mass concentrations, fine organic aerosol concentrations and individual organic compound concentrations. The largest primary source contributors to fine particle mass concentrations in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions from food cooking and wood smoke, with smaller contribution:; from tire dust, plant fragments, natural gas combustion aerosol, and cigarette smoke. Once these primary aerosol source contributions are added to the secondary sulfates, nitrates and organics present, virtually all of the annual average fine particle mass at Los Angeles area monitoring sites can be assigned to its source.
A model for heat and mass input control in GMAW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smartt, H.B.; Einerson, C.J.
1993-05-01
This work describes derivation of a control model for electrode melting and heat and mass transfer from the electrode to the work piece in gas metal arc welding (GMAW). Specifically, a model is developed which allows electrode speed and welding speed to be calculated for given values of voltage and torch-to-base metal distance, as a function of the desired heat and mass input to the weldment. Heat input is given on a per unit weld length basis, and mass input is given in terms of transverse cross-sectional area added to the weld bead (termed reinforcement). The relationship to prior workmore » is discussed. The model was demonstrated using a computer-controlled welding machine and a proportional-integral (PI) controller receiving input from a digital filter. The difference between model-calculated welding current and measured current is used as controller feedback. The model is calibrated for use with carbon steel welding wire and base plate with Ar-CO[sub 2] shielding gas. Although the system is intended for application during spray transfer of molten metal from the electrode to the weld pool, satisfactory performance is also achieved during globular and streaming transfer. Data are presented showing steady-state and transient performance, as well as resistance to external disturbances.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.
2011-01-10
AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equalmore » light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.« less
NASA Astrophysics Data System (ADS)
Wiener, Clinton; Weiss, Robert; White, Christopher; Vogt, Bryan
2014-03-01
Since Sauerbrey's 1959 discovery of the mass-frequency relationship in quartz, the QCM has been utilized to probe deposited mass layers. The mass to frequency (imaginary component of the impedance) relationship breaks down when the added mass is not rigidly coupled to the sensor surface and viscous dissipation of the quartz occurs. This dissipation is important in the deposition of soft materials such as polymers or biological molecules. By using a viscoelastic model for frequency and dissipation; the mass, viscosity, and shear modulus can be accurately determined. Here, we demonstrate an additional breakdown in the coupling of the imaginary component of the impedance to the mass by simultaneous QCM-D and spectroscopic ellipsometry (SE) measurements by examination of the swelling behavior of thin physically crosslinked poly-n-isopropylacrylamide films. A film swollen beyond 3 times its dry thickness shows a frequency increase (mass loss) and dissipation increases (increasing lossy film character) on cooling, but SE results show increased swelling of the film. This behavior was found to be thickness invariant for dry thicknesses of 32 nm and greater. Modeling of this QCM-D data shows non-physical results. Scaling concepts associated with this high loss limit will be discussed.
Liu, Dong; Pitta, Michael; Jiang, Haiyang; Lee, Jong-Hwan; Zhang, Guofeng; Chen, Xinzhi; Kawamoto, Elisa M.; Mattson, Mark P.
2012-01-01
Impaired brain energy metabolism and oxidative stress are implicated in cognitive decline and the pathological accumulations of amyloid β-peptide (Aβ) and hyperphosphorylated Tau (p-Tau) in Alzheimer's disease (AD). To determine whether improving brain energy metabolism will forestall disease progress in AD, the impact of the NAD+ precursor nicotinamide on brain cell mitochondrial function and macroautophagy, bioenergetics-related signaling and cognitive performance were studied in cultured neurons and in a mouse model of AD. Oxidative stress resulted in decreased mitochondrial mass, mitochondrial degeneration and autophagosome accumulation in neurons. Nicotinamide preserved mitochondrial integrity and autophagy function, and reduced neuronal vulnerability to oxidative/metabolic insults and Aβ toxicity. NAD+ biosynthesis, autophagy and PI3K signaling were required for the neuroprotective action of nicotinamide. Treatment of 3xTgAD mice with nicotinamide for 8 months resulted in improved cognitive performance, and reduced Aβ and p-Tau pathologies in hippocampus and cerebral cortex. Nicotinamide treatment preserved mitochondrial integrity, and improved autophagy-lysosome procession by enhancing lysosome/autolysosome acidification to reduce autophagosome accumulation. Treatment of 3xTgAD mice with nicotinamide resulted in elevated levels of activated neuroplasticity-related kinases (Akt and ERKs) and the transcription factor cyclic AMP response element-binding protein in the hippocampus and cerebral cortex. Thus, nicotinamide suppresses AD pathology and cognitive decline in a mouse model of AD by a mechanism involving improved brain bioenergetics with preserved functionality of mitochondria and the autophagy system. PMID:23273573
Eikonal instability of Gauss-Bonnet-(anti-)-de Sitter black holes
NASA Astrophysics Data System (ADS)
Konoplya, R. A.; Zhidenko, A.
2017-05-01
Here we have shown that asymptotically anti-de Sitter (AdS) black holes in the Einstein-Gauss-Bonnet (GB) theory are unstable under linear perturbations of space-time in some region of parameters. This (eikonal) instability develops at high multipole numbers. We found the exact parametric regions of the eikonal instability and extended this consideration to asymptotically flat and de Sitter cases. The approach to the threshold of instability is driven by purely imaginary quasinormal modes, which are similar to those found recently in Grozdanov, Kaplis, and Starinets, [J. High Energy Phys. 07 (2016) 151, 10.1007/JHEP07(2016)151] for the higher curvature corrected black hole with the planar horizon. The found instability may indicate limits of holographic applicability of the GB-AdS backgrounds. Recently, through the analysis of critical behavior in AdS space-time in the presence of the Gauss-Bonnet term, it was shown [Deppe et al, Phys. Rev. Lett. 114, 071102 (2015), 10.1103/PhysRevLett.114.071102], that, if the total energy content of the AdS space-time is small, then no black holes can be formed with mass less than some critical value. A similar mass gap was also found when considering collapse of mass shells in asymptotically flat Gauss-Bonnet theories [Frolov, Phys. Rev. Lett. 115, 051102 (2015), 10.1103/PhysRevLett.115.051102]. The found instability of all sufficiently small Einstein-Gauss-Bonnet-AdS, dS and asymptotically flat black holes may explain the existing mass gaps in their formation.
NASA Technical Reports Server (NTRS)
Perez, Jose G.; Parks, Russel, A.; Lazor, Daniel R.
2012-01-01
The slosh dynamics of propellant tanks can be represented by an equivalent mass-pendulum-dashpot mechanical model. The parameters of this equivalent model, identified as slosh mechanical model parameters, are slosh frequency, slosh mass, and pendulum hinge point location. They can be obtained by both analysis and testing for discrete fill levels. Anti-slosh baffles are usually needed in propellant tanks to control the movement of the fluid inside the tank. Lateral slosh testing, involving both random excitation testing and free-decay testing, are performed to validate the slosh mechanical model parameters and the damping added to the fluid by the anti-slosh baffles. Traditional modal analysis procedures were used to extract the parameters from the experimental data. Test setup of sub-scale tanks will be described. A comparison between experimental results and analysis will be presented.
NASA Astrophysics Data System (ADS)
Dompierre, A.; Fréchette, L. G.
2016-11-01
This paper reports on improvement of the mechanical Q-factor of resonant energy harvesters at ambient pressure via the use of tungsten proof masses by evaluating the impact of the mass size and density on the squeeze film damping. To this end, a simplified model is first proposed to evaluate cantilever beams deflection and the resulting fluid pressure build up between the mass and a near surface. The model, which accounts for simultaneous transverse and rotational motion of very long tip masses as well as for 2D fluid flow in the gap, is used to extract a scaling law for the device fluidic Q-factor Qf. This law states that Qf can be improved by either increasing the linear mass density of the tip mass or by reducing the side lengths compared to the gap height. The first approach is validated experimentally by adding a tungsten proof mass on a silicon based device and observing an improvement of the Q-factor by 103%, going from 430 to 871, while the resonance frequency drops from 457 to 127 Hz. In terms of fluidic Q-factor, this represents an increase from 562 to 1673. These results successfully demonstrate the benefits of integrating a tungsten mass to reduce the fluid losses while potentially reducing the device footprint.
Increasing the predictive accuracy of amyloid-β blood-borne biomarkers in Alzheimer's disease.
Watt, Andrew D; Perez, Keyla A; Faux, Noel G; Pike, Kerryn E; Rowe, Christopher C; Bourgeat, Pierrick; Salvado, Olivier; Masters, Colin L; Villemagne, Victor L; Barnham, Kevin J
2011-01-01
Diagnostic measures for Alzheimer's disease (AD) commonly rely on evaluating the levels of amyloid-β (Aβ) peptides within the cerebrospinal fluid (CSF) of affected individuals. These levels are often combined with levels of an additional non-Aβ marker to increase predictive accuracy. Recent efforts to overcome the invasive nature of CSF collection led to the observation of Aβ species within the blood cellular fraction, however, little is known of what additional biomarkers may be found in this membranous fraction. The current study aimed to undertake a discovery-based proteomic investigation of the blood cellular fraction from AD patients (n = 18) and healthy controls (HC; n = 15) using copper immobilized metal affinity capture and Surface Enhanced Laser Desorption/Ionisation Time-Of-Flight Mass Spectrometry. Three candidate biomarkers were observed which could differentiate AD patients from HC (ROC AUC > 0.8). Bivariate pairwise comparisons revealed significant correlations between these markers and measures of AD severity including; MMSE, composite memory, brain amyloid burden, and hippocampal volume. A partial least squares regression model was generated using the three candidate markers along with blood levels of Aβ. This model was able to distinguish AD from HC with high specificity (90%) and sensitivity (77%) and was able to separate individuals with mild cognitive impairment (MCI) who converted to AD from MCI non-converters. While requiring further characterization, these candidate biomarkers reaffirm the potential efficacy of blood-based investigations into neurodegenerative conditions. Furthermore, the findings indicate that the incorporation of non-amyloid markers into predictive models, function to increase the accuracy of the diagnostic potential of Aβ.
Higgs mechanism and the added-mass effect.
Krishnaswami, Govind S; Phatak, Sachin S
2015-04-08
In the Higgs mechanism, mediators of the weak force acquire masses by interacting with the Higgs condensate, leading to a vector boson mass matrix. On the other hand, a rigid body accelerated through an inviscid, incompressible and irrotational fluid feels an opposing force linearly related to its acceleration, via an added-mass tensor. We uncover a striking physical analogy between the two effects and propose a dictionary relating them. The correspondence turns the gauge Lie algebra into the space of directions in which the body can move, encodes the pattern of gauge symmetry breaking in the shape of an associated body and relates symmetries of the body to those of the scalar vacuum manifold. The new viewpoint is illustrated with numerous examples, and raises interesting questions, notably on the fluid analogues of the broken symmetry and Higgs particle, and the field-theoretic analogue of the added mass of a composite body.
Cui, Yu; Liu, Xiuqin; Wang, Maoqing; Liu, Liyan; Sun, Xiaohong; Ma, Lan; Xie, Wei; Wang, Chao; Tang, Sisi; Wang, Decai; Wu, Qunhong
2014-10-01
Alzheimer disease (AD) can be diagnosed by clinical and neuropsychologic tests and at autopsy, but there are no simple effective diagnostic methods for detecting biomarkers in patients at early stages of cognitive impairment. Early metabolic alterations that may facilitate AD diagnosis have not been thoroughly explored. We applied a nontargeted metabonomic approach using ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry to analyze serum and urine samples from 46 patients with AD and 36 healthy controls. Metabolite profiles were processed using multivariate analysis to identify potential metabolites, which were further confirmed using tandem mass spectrometry. Ultrahigh-performance liquid chromatography mass spectrometry methods were additionally used to quantify potentially important biomarkers. Independent samples were then selected to validate the identified biomarkers. There was a clear separation between healthy controls and AD patients; AD patient samples had disordered amino acid and phospholipid metabolism and dysregulated palmitic amide. Receiver operator characteristic curve and quantification suggested that palmitic amide, lysophosphatidylcholine (LysoPC, 18:0), LysoPC(18:2), L-glutamine, and 5-L-glutamylglycine were the optimal metabolites. In addition, areas under the curve from the palmitic amide, LysoPC(18:2), and 5-L-glutamylglycine in the validation study were 0.714, 0.996, and 0.734, respectively. These data elucidate the metabolic alterations associated with AD and suggest new biomarkers for AD diagnosis, thereby permitting early intervention designed to prevent disease progression.
Light-front holographic QCD and emerging confinement
Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter; ...
2015-05-21
In this study we explore the remarkable connections between light-front dynamics, its holographic mapping to gravity in a higher-dimensional anti-de Sitter (AdS) space, and conformal quantum mechanics. This approach provides new insights into the origin of a fundamental mass scale and the physics underlying confinement dynamics in QCD in the limit of massless quarks. The result is a relativistic light-front wave equation for arbitrary spin with an effective confinement potential derived from a conformal action and its embedding in AdS space. This equation allows for the computation of essential features of hadron spectra in terms of a single scale. Themore » light-front holographic methods described here give a precise interpretation of holographic variables and quantities in AdS space in terms of light-front variables and quantum numbers. This leads to a relation between the AdS wave functions and the boost-invariant light-front wave functions describing the internal structure of hadronic bound-states in physical spacetime. The pion is massless in the chiral limit and the excitation spectra of relativistic light-quark meson and baryon bound states lie on linear Regge trajectories with identical slopes in the radial and orbital quantum numbers. In the light-front holographic approach described here currents are expressed as an infinite sum of poles, and form factors as a product of poles. At large q 2 the form factor incorporates the correct power-law fall-off for hard scattering independent of the specific dynamics and is dictated by the twist. At low q 2 the form factor leads to vector dominance. The approach is also extended to include small quark masses. We briefly review in this report other holographic approaches to QCD, in particular top-down and bottom-up models based on chiral symmetry breaking. We also include a discussion of open problems and future applications.« less
1987-09-01
response. An estimate of the buffeting response for the two cases is presented in Figure 4, using the theory of Irwin (Reference 7). Data acquisition was...values were obtained using the log decrement method by exciting the bridge in one mode and observing the decay of the response. Classical theory would...added mass or structural damping level. The addition of inertia to the deck would tend to lower the response according to classical vibration theory
Mechanical discrete simulator of the electro-mechanical lift with n:1 roping
NASA Astrophysics Data System (ADS)
Alonso, F. J.; Herrera, I.
2016-05-01
The design process of new products in lift engineering is a difficult task due to, mainly, the complexity and slenderness of the lift system, demanding a predictive tool for the lift mechanics. A mechanical ad-hoc discrete simulator, as an alternative to ‘general purpose’ mechanical simulators is proposed. Firstly, the synthesis and experimentation process that has led to establish a suitable model capable of simulating accurately the response of the electromechanical lift is discussed. Then, the equations of motion are derived. The model comprises a discrete system of 5 vertically displaceable masses (car, counterweight, car frame, passengers/loads and lift drive), an inertial mass of the assembly tension pulley-rotor shaft which can rotate about the machine axis and 6 mechanical connectors with 1:1 suspension layout. The model is extended to any n:1 roping lift by setting 6 equivalent mechanical components (suspension systems for car and counterweight, lift drive silent blocks, tension pulley-lift drive stator and passengers/load equivalent spring-damper) by inductive inference from 1:1 and generalized 2:1 roping system. The application to simulate real elevator systems is proposed by numeric time integration of the governing equations using the Kutta-Meden algorithm and implemented in a computer program for ad-hoc elevator simulation called ElevaCAD.
NASA Astrophysics Data System (ADS)
Jejjala, Vishnumohan
2002-01-01
This Thesis explores aspects of superstring theory on orbifold spaces and applies some of the intuition gleaned from the study of the non-commutative geometry of space-time to understanding the fractional quantum Hall effect. The moduli space of vacua of marginal and relevant deformations of N = 4 super-Yang-Mills gauge theory in four dimensions is interpreted in terms of non-commutative geometry. A formalism for thinking about the algebraic geometry of the moduli space is developed. Within this framework, the representation theory of the algebras studied provides a natural exposition of D-brane fractionation. The non-commutative moduli space of deformations preserving N = 1 supersymmetry is examined in detail through various examples. In string theory, by the AdS/CFT correspondence, deformations of the N = 4 field theory are dual to the near-horizon geometries of D-branes on orbifolds of AdS5 x S 5. The physics of D-branes on the dual AdS backgrounds is explored. Quivers encapsulate the matter content of supersymmetric field theories on the worldvolumes of D-branes at orbifold singularities. New techniques for constructing quivers are presented here. When N is a normal subgroup of a finite group G, the quiver corresponding to fixed points of the orbifold M/G is computed from a G/N action on the quiver corresponding to M/G . These techniques prove useful for constructing non-Abelian quivers and for examining discrete torsion orbifolds. Quivers obtained through our constructions contain interesting low-energy phenomenology. The matter content on a brane at an isolated singularity of the Delta27 orbifold embeds the Standard Model. The symmetries of the quiver require exactly three generations of fields in the particle spectrum. Lepton masses are suppressed relative to quark masses because lepton Yukawa couplings do not appear in the superpotential. Lepton masses are generated through the Kahler potential and are related to the supersymmetry breaking scale. The model makes falsifiable predictions about TeV scale physics. Susskind has proposed that the fractional quantum Hall system can be realized through an Abelian Chern-Simons theory with a Moyal product. Susskind's Chern-Simons field is a hydrodynamical quantity. Lopez and Fradkin have an alternate Chern-Simons description couched in terms of a statistical gauge field. We show that this statistical Chern-Simons theory also possesses a non-commutative structure and develop the dictionary between the two Chern-Simons pictures.
Reduction of vibration forces transmitted from a radiator cooling fan to a vehicle body
NASA Astrophysics Data System (ADS)
Lim, Jonghyuk; Sim, Woojeong; Yun, Seen; Lee, Dongkon; Chung, Jintai
2018-04-01
This article presents methods for reducing transmitted vibration forces caused by mass unbalance of the radiator cooling fan during vehicle idling. To identify the effects of mass unbalance upon the vibration characteristics, vibration signals of the fan blades were experimentally measured both with and without an added mass. For analyzing the vibration forces transmitted to the vehicle body, a dynamic simulation model was established that reflected the vibration characteristics of the actual system. This process included a method described herein for calculating the equivalent stiffness and the equivalent damping of the shroud stators and rubber mountings. The dynamic simulation model was verified by comparing its results with experimental results of the radiator cooling fan. The dynamic simulation model was used to analyze the transmitted vibration forces at the rubber mountings. Also, a measure was established to evaluate the effects of varying the design parameters upon the transmitted vibration forces. We present design guidelines based on these analyses to reduce the transmitted vibration forces of the radiator cooling fan.
Universal extra dimensions and the graviton portal to dark matter
NASA Astrophysics Data System (ADS)
Arun, Mathew Thomas; Choudhury, Debajyoti; Sachdeva, Divya
2017-10-01
The Universal Extra Dimension (UED) paradigm is particularly attractive as it not only includes a natural candidate for the Dark Matter particle , but also addresses several issues related to particle physics. Non-observations at the Large Hadron Collider, though, has brought the paradigm into severe tension. However, a particular 5-dimensional UED model emerges from a six dimensional space-time with nested warping. The AdS6 bulk protects both the Higgs mass as well as the UED scale without invoking unnatural parameter values. The graviton excitations in the sixth direction open up new (co-)annihilation channels for the Dark Matter particle, thereby allowing for phenomenological consistency, otherwise denied to the minimal UED scenario. The model leads to unique signatures in both satellite-based experiments as well as the LHC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arun, Mathew Thomas; Choudhury, Debajyoti; Sachdeva, Divya, E-mail: thomas.mathewarun@gmail.com, E-mail: debajyoti.choudhury@gmail.com, E-mail: divyasachdeva951@gmail.com
The Universal Extra Dimension (UED) paradigm is particularly attractive as it not only includes a natural candidate for the Dark Matter particle , but also addresses several issues related to particle physics. Non-observations at the Large Hadron Collider, though, has brought the paradigm into severe tension. However, a particular 5-dimensional UED model emerges from a six dimensional space-time with nested warping. The AdS {sub 6} bulk protects both the Higgs mass as well as the UED scale without invoking unnatural parameter values. The graviton excitations in the sixth direction open up new (co-)annihilation channels for the Dark Matter particle, therebymore » allowing for phenomenological consistency, otherwise denied to the minimal UED scenario. The model leads to unique signatures in both satellite-based experiments as well as the LHC.« less
Nolte, Heinrich W; Noakes, Timothy D; van Vuuren, Bernard
2011-11-01
The extent to which humans need to replace fluid losses during exercise remains contentious despite years of focused research. The primary objective was to evaluate ad libitum drinking on hydration status to determine whether body mass loss can be used as an accurate surrogate for changes in total body water (TBW) during exercise. Data were collected during a 14.6-km route march (wet bulb globe temperature of 14.1°C ). 18 subjects with an average age of 26 ± 2.5 (SD) years participated. Their mean ad libitum total fluid intake was 2.1 ± 1.4 litres during the exercise. Predicted sweat rate was 1.289 ± 0.530 l/h. There were no significant changes (p>0.05) in TBW, urine specific gravity or urine osmolality despite an average body mass loss (p<0.05) of 1.3 ± 0.45 kg during the march. Core temperature rose as a function of marching speed and was unrelated to the % change in body mass. This suggests that changes in mass do not accurately predict changes in TBW (r=-0.16) because either the body mass loss during exercise includes losses other than water or there is an endogenous body water source that is released during exercise not requiring replacement during exercise, or both. Ad libitum water replacement between 65% and 70% of sweat losses maintained safe levels of hydration during the experiment. The finding that TBW was protected by ad libitum drinking despite approximately 2% body mass loss suggests that the concept of 'voluntary dehydration' may require revision.
Added sugars and periodontal disease in young adults: an analysis of NHANES III data.
Lula, Estevam C O; Ribeiro, Cecilia C C; Hugo, Fernando N; Alves, Cláudia M C; Silva, Antônio A M
2014-10-01
Added sugar consumption seems to trigger a hyperinflammatory state and may result in visceral adiposity, dyslipidemia, and insulin resistance. These conditions are risk factors for periodontal disease. However, the role of sugar intake in the cause of periodontal disease has not been adequately studied. We evaluated the association between the frequency of added sugar consumption and periodontal disease in young adults by using NHANES III data. Data from 2437 young adults (aged 18-25 y) who participated in NHANES III (1988-1994) were analyzed. We estimated the frequency of added sugar consumption by using food-frequency questionnaire responses. We considered periodontal disease to be present in teeth with bleeding on probing and a probing depth ≥3 mm at one or more sites. We evaluated this outcome as a discrete variable in Poisson regression models and as a categorical variable in multinomial logistic regression models adjusted for sex, age, race-ethnicity, education, poverty-income ratio, tobacco exposure, previous diagnosis of diabetes, and body mass index. A high consumption of added sugars was associated with a greater prevalence of periodontal disease in middle [prevalence ratio (PR): 1.39; 95% CI: 1.02, 1.89] and upper (PR: 1.42; 95% CI: 1.08, 1.85) tertiles of consumption in the adjusted Poisson regression model. The upper tertile of added sugar intake was associated with periodontal disease in ≥2 teeth (PR: 1.73; 95% CI: 1.19, 2.52) but not with periodontal disease in only one tooth (PR: 0.85; 95% CI: 0.54, 1.34) in the adjusted multinomial logistic regression model. A high frequency of consumption of added sugars is associated with periodontal disease, independent of traditional risk factors, suggesting that this consumption pattern may contribute to the systemic inflammation observed in periodontal disease and associated noncommunicable diseases. © 2014 American Society for Nutrition.
Effect of dietary carbohydrate source on the development of obesity in agouti transgenic mice.
Morris, Kristin L; Zemel, Michael B
2005-01-01
Our objective was to evaluate the effects of a qualitative change in dietary carbohydrate source on body weight and adiposity in a rodent model of diet-induced obesity. We evaluated the effects of high-fat diets (basal) varying in carbohydrate source in aP2-agouti transgenic mice. In the ad libitum study, animals were given free access to the basal diet or one of four test diets for 6 weeks. In two of the diets, dietary carbohydrate was derived from a single source: mung bean noodles (MUNG) or rolled oats (ROLL). The remaining diets were designed to mimic commercially available instant oatmeal with added sugar (IO-S) or flavored instant oatmeal (IO-F). In the energy-restricted study, animals were given ad libitum access to the basal diet for 6 weeks. Subsequently, animals were assigned to one of six treatment groups for 6 weeks. One group was continued on the basal diet ad libitum. The remaining groups were maintained with energy restriction (70% ad libitum) on either the basal, MUNG, ROLL, IO-S, or IO-F diet. Subcutaneous fat pad mass was significantly higher (p<0.05) in the energy-restricted basal and IO-S groups compared with the energy-restricted ROLL diet. Similarly, visceral fat pad mass was significantly lower with ROLL and MUNG diets (p<0.05 for both) compared with basal and IO-S diets, and the insulin:glucose ratio was reduced (by 23% to 34%, p<0.05) in these two diets compared with all others. In ad libitum-fed animals, liver fatty acid synthase expression was 43% to 62% lower (p<0.05) with ROLL and MUNG diets compared with all others. These data suggest that a qualitative change in dietary carbohydrate source modulates body weight and adiposity.
Chen, Mingsheng; Zhang, Ying; Yao, Xiaomei; Li, Hao; Yu, Qingsong; Wang, Yong
2012-01-01
Objective To determine the effectiveness and efficiency of non-thermal, atmospheric plasmas for inducing polymerization of model dental self-etch adhesives. Methods The monomer mixtures used were bis-[2-(methacryloyloxy)ethyl] phosphate (2MP) and 2-hydroxyethyl methacrylate (HEMA), with mass ratios of 70/30, 50/50 and 30/70. Water was added to the above formulations: 10–30 wt%. These monomer/water mixtures were treated steadily for 40 s under a non-thermal atmospheric plasma brush working at temperatures from 32° to 35°C. For comparison, photo-initiators were added to the above formulations for photo-polymerization studies, which were light-cured for 40 s. The degree of conversion (DC) of both the plasma- and light-cured samples was measured using FTIR spectroscopy with an attenuated total reflectance attachment. Results The non-thermal plasma brush was effective in inducing polymerization of the model self-etch adhesives. The presence of water did not negatively affect the DC of plasma-cured samples. Indeed, DC values slightly increased, with increasing water content in adhesives: from 58.3% to 68.7% when the water content increased from 10% to 30% in the adhesives with a 50/50 (2MP/HEMA) mass ratio. Conversion values of the plasma-cured groups were higher than those of light-cured samples with the same mass ratio and water content. Spectral differences between the plasma- and light-cured groups indicate subtle structural distinctions in the resultant polymer networks. Significance This research if the first to demonstrate that the non-thermal plasma brush induces polymerization of model adhesives under clinical settings by direct/indirect energy transfer. This device shows promise for polymerization of dental composite restorations having enhanced properties and performance. PMID:23018084
NASA Technical Reports Server (NTRS)
Song, Y. Tony; Colberg, Frank
2011-01-01
Observational surveys have shown significant oceanic bottom water warming, but they are too spatially and temporally sporadic to quantify the deep ocean contribution to the present-day sea level rise (SLR). In this study, altimetry sea surface height (SSH), Gravity Recovery and Climate Experiment (GRACE) ocean mass, and in situ upper ocean (0-700 m) steric height have been assessed for their seasonal variability and trend maps. It is shown that neither the global mean nor the regional trends of altimetry SLR can be explained by the upper ocean steric height plus the GRACE ocean mass. A non-Boussinesq ocean general circulation model (OGCM), allowing the sea level to rise as a direct response to the heat added into the ocean, is then used to diagnose the deep ocean steric height. Constrained by sea surface temperature data and the top of atmosphere (TOA) radiation measurements, the model reproduces the observed upper ocean heat content well. Combining the modeled deep ocean steric height with observational upper ocean data gives the full depth steric height. Adding a GRACE-estimated mass trend, the data-model combination explains not only the altimetry global mean SLR but also its regional trends fairly well. The deep ocean warming is mostly prevalent in the Atlantic and Indian oceans, and along the Antarctic Circumpolar Current, suggesting a strong relation to the oceanic circulation and dynamics. Its comparison with available bottom water measurements shows reasonably good agreement, indicating that deep ocean warming below 700 m might have contributed 1.1 mm/yr to the global mean SLR or one-third of the altimeter-observed rate of 3.11 +/- 0.6 mm/yr over 1993-2008.
LHC accessible second Higgs boson in the left-right model
NASA Astrophysics Data System (ADS)
Mohapatra, Rabindra N.; Zhang, Yongchao
2014-03-01
A second Higgs doublet arises naturally as a parity partner of the standard model (SM) Higgs, once the SM is extended to its left-right symmetric version (LRSM) to understand the origin of parity violation in weak interactions, as well as to accommodate small neutrino masses via the seesaw mechanism. The flavor-changing neutral Higgs (FCNH) effects in the minimal version of this model (LRSM), however, push the second Higgs mass to more than 15 TeV, making it inaccessible at the LHC. Furthermore, since the second Higgs mass is directly linked to the WR mass, discovery of a "low" mass WR (MWR≤5-6 TeV) at the LHC would require values for some Higgs self-couplings larger than 1. In this paper we present an extension of LRSM by adding a vectorlike SU(2)R quark doublet which weakens the FCNH constraints, allowing the second Higgs mass to be near or below the TeV range and a third neutral Higgs below 3 TeV for a WR mass below 5 TeV. It is then possible to search for these heavier Higgs bosons at the LHC without conflicting with FCNH constraints. A right-handed WR mass in the few TeV range is quite natural in this class of models without having to resort to large scalar coupling parameters. The CKM mixings are intimately linked to the vectorlike quark mixings with the known quarks, which is the main reason why the constraints on the second Higgs mass are relaxed. We present a detailed theoretical and phenomenological analysis of this extended left-right model and point out some tests as well as its potential for discovery of a second Higgs at the LHC. Two additional features of the model are a 5/3-charged quark and a fermionic top partner with masses in the TeV range.
Population-Based Evaluation of the "Livelighter" Healthy Weight and Lifestyle Mass Media Campaign
ERIC Educational Resources Information Center
Morley, B.; Niven, P.; Dixon, H.; Swanson, M.; Szybiak, M.; Shilton, T.; Pratt, I. S.; Slevin, T.; Hill, D.; Wakefield, M.
2016-01-01
The Western Australian (WA) "LiveLighter" (LL) mass media campaign ran during June-August and September-October 2012. The principal campaign ad graphically depicts visceral fat of an overweight individual ("why" change message), whereas supporting ads demonstrate simple changes to increase activity and eat healthier…
Adding Insult to Imagery? Art Education and Censorship
ERIC Educational Resources Information Center
Sweeny, Robert W.
2007-01-01
The "Adding Insult to Imagery? Artistic Responses to Censorship and Mass-Media" exhibition opened in January 16, 2006, Kipp Gallery on the Indiana University of Pennsylvania campus. Eleven gallery-based works, 9 videos, and 10 web-based artworks comprised the show; each dealt with the relationship between censorship and mass mediated…
Some observational tests of a minimal galaxy formation model
NASA Astrophysics Data System (ADS)
Cohn, J. D.
2017-04-01
Dark matter simulations can serve as a basis for creating galaxy histories via the galaxy-dark matter connection. Here, one such model by Becker is implemented with several variations on three different dark matter simulations. Stellar mass and star formation rates are assigned to all simulation subhaloes at all times, using subhalo mass gain to determine stellar mass gain. The observational properties of the resulting galaxy distributions are compared to each other and observations for a range of redshifts from 0 to 2. Although many of the galaxy distributions seem reasonable, there are noticeable differences as simulations, subhalo mass gain definitions or subhalo mass definitions are altered, suggesting that the model should change as these properties are varied. Agreement with observations may improve by including redshift dependence in the added-by-hand random contribution to star formation rate. There appears to be an excess of faint quiescent galaxies as well (perhaps due in part to differing definitions of quiescence). The ensemble of galaxy formation histories for these models tend to have more scatter around their average histories (for a fixed final stellar mass) than the two more predictive and elaborate semi-analytic models of Guo et al. and Henriques et al., and require more basis fluctuations (using principal component analysis) to capture 90 per cent of the scatter around their average histories. The codes to plot model predictions (in some cases alongside observational data) are publicly available to test other mock catalogues at https://github.com/jdcphysics/validation/. Information on how to use these codes is in Appendix A.
Groundwater Defluoridation in a Fixed Bed of Aluminium Infused Diatomaceous Earth
NASA Astrophysics Data System (ADS)
Oladoja, Nurudeen; Drewes, Jorg; Helmreich, Brigitte
2015-04-01
Aluminum was infused into diatomaceous earth (AD), via the sol-gel process, to produce a functional, permeable, reactive, filter material for groundwater (GW) defluoridation. The AD was characterized and packed in a column reactor for the defluoridation of simulated water contaminated with F- and GW spiked with F-. The column breakthrough profile, the operation and mass transfer parameters were determined in the AD column reactor at two process variables (i.e. AD bed heights of 6.25, 12.5 and 25 cm and influent F- concentration of 4.16, 19.12 and 35.9 mg/L), to obtain the design parameters for the GW defluoridation in the AD column reactor. The effects of the defluoridation process on pH, electrical conductivity and Al3+ concentration of the treated water was determined. Additionally, the regeneration potential of the spent AD was appraised in different solutions (deionized water, 0.1 and 0.05M of HCl, HNO3, H2SO4, NaOH, and CH3COOH) in a batch system. The breakthrough profile, the operation and mass transfer parameters of the column reactor, when used for the defluoridation of the simulated water, were influenced by the two process variables studied. The magnitude of the primary adsorption zone (PAZ) factors increased with increasing column bed height while reductions in the values of the PAZ factors were observed when the influent F- concentrations increased. The linear coefficient values (r2), obtained when the breakthrough profile parameters of the two process variables studied were analyzed with different mass transfer equations, showed that the experimental data fitted more to the Thomas, Yoon and Nelson model than the Bohart, Adams and Wolborska mass transfer equations. The maximum regeneration potential of the spent AD was achieved in solutions of HCl, HNO3, H2SO4, and NaOH while deionized water showed the least regeneration ability. The spent AD exhibited poor stability, identified by high Al3+ leaching, in the solvents that showed maximum regeneration potential. Consequently, the solution of CH3COOH, which also showed appreciable F- desorption but low Al3+ leaching was prescribed as the preferred solvent for the spent AD regeneration. The Temkin equilibrium isotherm equations gave the best description of the experimental data in the simulated aqua system while in the GW system, the Freundlich isotherm equation gave the best fit to the data derived from the batch defluoridation system. The breakthrough profile and the values of the operation parameters of the GW defluoridation system showed that the defluoridation efficiency of the column was significantly reduced, in comparison with the defluoridation of simulated water of comparable influent F- concentrations. Acknowledgement The Authors thank the Alexander von Humboldt Foundation for the award of the George Foster Fellowship for Experienced Researchers to OLADOJA N. A. to undertake this research work
NASA Astrophysics Data System (ADS)
Lugni, C.; Bardazzi, A.; Faltinsen, O. M.; Graziani, G.
2014-03-01
The evolution of a flip-through event [6] upon a vertical, deformable wall during shallow-water sloshing in a 2D tank is analyzed, with specific focus on the role of hydroelasticity. An aluminium plate, whose dimensions are Froude-scaled in order to reproduce the first wet natural frequency associated with the typical structural panel of a Mark III containment system, is used. (Mark III Containment System is a membrane-type tank used in the Liquefied Natural Gas (LNG) carrier to contain the LNG. A typical structural panel is composed by two metallic membranes and two independent thermal insulation layers. The first membrane contains the LNG, the second one ensures redundancy in case of leakage.) Such a system is clamped to a fully rigid vertical wall of the tank at the vertical ends while being kept free on its lateral sides. Hence, in a 2D flow approximation the system can be suitably modelled, as a double-clamped Euler beam, with the Euler beam theory. The hydroelastic effects are assessed by cross-analyzing the experimental data based both on the images recorded by a fast camera, and on the strain measurements along the deformable panel and on the pressure measurements on the rigid wall below the elastic plate. The same experiments are also carried out by substituting the deformable plate with a fully stiff panel. The pressure transducers are mounted at the same positions of the strain gauges used for the deformable plate. The comparison between the results of rigid and elastic case allows to better define the role of hydroelasticity. The analysis has identified three different regimes characterizing the hydroelastic evolution: a quasi-static deformation of the beam (regime I) precedes a strongly hydroelastic behavior (regime II), for which the added mass effects are relevant; finally, the free-vibration phase (regime III) occurs. A hybrid method, combining numerical modelling and experimental data from the tests with fully rigid plate is proposed to examine the hydroelastic effects. Within this approach, the measurements provide the experimental loads acting on the rigid plate, while the numerical solution enables a more detailed analysis, by giving additional information not available from the experimental tests. More in detail, an Euler beam equation is used to model numerically the plate with the added-mass contribution estimated in time. In this way the resulting hybrid method accounts for the variation of the added mass associated with the instantaneous wetted length of the beam, estimated from the experimental images. Moreover, the forcing hydrodynamic load is prescribed by using the experimental pressure distribution measured in the rigid case. The experimental data for the elastic beam are compared with the numerical results of the hybrid model and with those of the standard methods used at the design stage. The comparison against the experimental data shows an overall satisfactory prediction of the hybrid model. The maximum peak pressure predicted by the standard methods agrees with the result of the hybrid model only when the added mass effect is considered. However, the standard methods are not able to properly estimate the temporal evolution of the plate deformation.
Kulas, Anthony S.; Hortobágyi, Tibor; DeVita, Paul
2010-01-01
Abstract Context: Because anterior cruciate ligament (ACL) injuries can occur during deceleration maneuvers, biomechanics research has been focused on the lower extremity kinetic chain. Trunk mass and changes in trunk position affect lower extremity joint torques and work during gait and landing, but how the trunk affects knee joint and muscle forces is not well understood. Objective: To evaluate the effects of added trunk load and adaptations to trunk position on knee anterior shear and knee muscle forces in landing. Design: Crossover study. Setting: Controlled laboratory environment. Patients or Other Participants: Twenty-one participants (10 men: age = 20.3 ± 1.15 years, height = 1.82 ± 0.04 m, mass = 78.2 ± 7.3 kg; 11 women: age = 20.0 ± 1.10 years, height = 1.72 ± 0.06 m, mass = 62.3 ± 6.4 kg). Intervention(s): Participants performed 2 sets of 8 double-leg landings under 2 conditions: no load and trunk load (10% body mass). Participants were categorized into one of 2 groups based on the kinematic trunk adaptation to the load: trunk flexor or trunk extensor. Main Outcome Measure(s): We estimated peak and average knee anterior shear, quadriceps, hamstrings, and gastrocnemius forces with a biomechanical model. Results: We found condition-by-group interactions showing that adding a trunk load increased peak (17%) and average (35%) knee anterior shear forces in the trunk-extensor group but did not increase them in the trunk-flexor group (peak: F1,19 = 10.56, P = .004; average: F1,19 = 9.56, P = .006). We also found a main effect for condition for quadriceps and gastrocnemius forces. When trunk load was added, peak (6%; F1,19 = 5.52, P = .030) and average (8%; F1,19 = 8.83, P = .008) quadriceps forces increased and average (4%; F1,19 = 4.94, P = .039) gastrocnemius forces increased, regardless of group. We found a condition-by-group interaction for peak (F1,19 = 5.16, P = .035) and average (F1,19 = 12.35, P = .002) hamstrings forces. When trunk load was added, average hamstrings forces decreased by 16% in the trunk-extensor group but increased by 13% in the trunk-flexor group. Conclusions: Added trunk loads increased knee anterior shear and knee muscle forces, depending on trunk adaptation strategy. The trunk-extensor adaptation to the load resulted in a quadriceps-dominant strategy that increased knee anterior shear forces. Trunk-flexor adaptations may serve as a protective strategy against the added load. These findings should be interpreted with caution, as only the face validity of the biomechanical model was assessed. PMID:20064042
NASA Astrophysics Data System (ADS)
Wang, Dong; Tan, Danielle S.
2017-12-01
We use discrete element modelling to simulate a system of sand being released underwater, similar to the process of releasing sediment tailings back into the sea in nodule harvesting, in 2D. The force model includes concentration-dependent drag, buoyancy, `added mass' and Stokeslet disturbance. For a fixed number of uniform-sized particles, we vary the aspect ratio and the compression ratio of the rectangular mass of granular media pre-release. We observed that the spreading leads to a nonlinear increase with aspect ratio. On the other hand, when the compression ratio is increased, the total spreading increases; however the spread of the bulk of the sand decreases at small aspect ratios and increases at large aspect ratios. We proposed a simple theoretical model for the horizontal spreading which depends on both the aspect and compression ratios.
Orion Post-Landing Crew Thermal Control Modeling and Analysis Results
NASA Technical Reports Server (NTRS)
Cross, Cynthia D.; Bue, Grant; Rains, George E.
2009-01-01
In a vehicle constrained by mass and power, it is necessary to ensure that during the process of reducing hardware mass and power that the health and well being of the crew is not compromised in the design process. To that end, it is necessary to ensure that in the final phase of flight - recovery, that the crew core body temperature remains below the crew cognitive deficit set by the Constellation program. This paper will describe the models used to calculate the thermal environment of the spacecraft after splashdown as well as the human thermal model used to calculate core body temperature. Then the results of these models will be examined to understand the key drivers for core body temperature. Finally, the analysis results will be used to show that additional cooling capability must be added to the vehicle to ensure crew member health post landing.
Hairy black holes and the endpoint of AdS4 charged superradiance
NASA Astrophysics Data System (ADS)
Dias, Óscar J. C.; Masachs, Ramon
2017-02-01
We construct hairy black hole solutions that merge with the anti-de Sitter (AdS4) Reissner-Nordström black hole at the onset of superradiance. These hairy black holes have, for a given mass and charge, higher entropy than the corresponding AdS4-Reissner-Nordström black hole. Therefore, they are natural candidates for the endpoint of the charged superradiant instability. On the other hand, hairy black holes never dominate the canonical and grand-canonical ensembles. The zero-horizon radius of the hairy black holes is a soliton (i.e. a boson star under a gauge transformation). We construct our solutions perturbatively, for small mass and charge, so that the properties of hairy black holes can be used to testify and compare with the endpoint of initial value simulations. We further discuss the near-horizon scalar condensation instability which is also present in global AdS4-Reissner-Nordström black holes. We highlight the different nature of the near-horizon and superradiant instabilities and that hairy black holes ultimately exist because of the non-linear instability of AdS.
Minimal Left-Right Symmetric Dark Matter.
Heeck, Julian; Patra, Sudhanwa
2015-09-18
We show that left-right symmetric models can easily accommodate stable TeV-scale dark matter particles without the need for an ad hoc stabilizing symmetry. The stability of a newly introduced multiplet either arises accidentally as in the minimal dark matter framework or comes courtesy of the remaining unbroken Z_{2} subgroup of B-L. Only one new parameter is introduced: the mass of the new multiplet. As minimal examples, we study left-right fermion triplets and quintuplets and show that they can form viable two-component dark matter. This approach is, in particular, valid for SU(2)×SU(2)×U(1) models that explain the recent diboson excess at ATLAS in terms of a new charged gauge boson of mass 2 TeV.
(2+1)-Dimensional charged black holes with scalar hair in Einstein-Power-Maxwell Theory
NASA Astrophysics Data System (ADS)
Xu, Wei; Zou, De-Cheng
2017-06-01
In (2+1)-dimensional AdS spacetime, we obtain new exact black hole solutions, including two different models (power parameter k=1 and k≠1), in the Einstein-Power-Maxwell (EPM) theory with nonminimally coupled scalar field. For the charged hairy black hole with k≠1, we find that the solution contains a curvature singularity at the origin and is nonconformally flat. The horizon structures are identified, which indicates the physically acceptable lower bound of mass in according to the existence of black hole solutions. Later, the null geodesic equations for photon around this charged hairy black hole are also discussed in detail.
Squid-inspired vehicle design using coupled fluid-solid analytical modeling
NASA Astrophysics Data System (ADS)
Giorgio-Serchi, Francesco; Weymouth, Gabriel
2017-11-01
The need for enhanced automation in the marine and maritime fields is fostering research into robust and highly maneuverable autonomous underwater vehicles. To address these needs we develop design principles for a new generation of soft-bodied aquatic vehicles similar to octopi and squids. In particular, we consider the capability of pulsed-jetting bodies to boost thrust by actively modifying their external body-shape and in this way benefit of the contribution from added-mass variation. We present an analytical formulation of the coupled fluid-structure interaction between the elastic body and the ambient fluid. The model incorporates a number of new salient contributions to the soft-body dynamics. We highlight the role of added-mass variation effects of the external fluid in enhancing thrust and assess how the shape-changing actuation is impeded by a confinement-related unsteady inertial term and by an external shape-dependent fluid stiffness contribution. We show how the analysis of these combined terms has guided us to the design of a new prototype of a squid-inspired vehicle tuning of the natural frequency of the coupled fluid-solid system with the purpose of optimizing its actuation routine.
The zinc dyshomeostasis hypothesis of Alzheimer's disease.
Craddock, Travis J A; Tuszynski, Jack A; Chopra, Deepak; Casey, Noel; Goldstein, Lee E; Hameroff, Stuart R; Tanzi, Rudolph E
2012-01-01
Alzheimer's disease (AD) is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ), intracellular neurofibrillary tangles (NFTs) composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau), and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques) not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1) used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2) performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3) used metallomic imaging mass spectrometry (MIMS) to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of polymerized microtubules, their binding to MAP-tau, and molecular dynamics involved in cognition. Further, our theory supports novel AD therapeutic strategies targeting intra-neuronal zinc homeostasis and microtubule dynamics to prevent neurodegeneration and cognitive decline.
Mediterranean Diet, Alzheimer Disease, and Vascular Mediation
Scarmeas, Nikolaos; Stern, Yaakov; Mayeux, Richard; Luchsinger, Jose A.
2011-01-01
Objectives To examine the association between the Mediterranean diet (MeDi) and Alzheimer disease (AD) in a different AD population and to investigate possible mediation by vascular pathways. Design, Setting, Patients, and Main Outcome Measures A case-control study nested within a community-based cohort in New York, NY. Adherence to the MeDi (0- to 9-point scale with higher scores indicating higher adherence) was the main predictor of AD status (194 patients with AD vs 1790 nondemented subjects) in logistic regression models that were adjusted for cohort, age, sex, ethnicity, education, apolipoprotein E genotype, caloric intake, smoking, medical comorbidity index, and body mass index (calculated as weight in kilograms divided by height in meters squared). We investigated whether there was attenuation of the association between MeDi and AD when vascular variables (stroke, diabetes mellitus, hypertension, heart disease, lipid levels) were simultaneously introduced in the models (which would constitute evidence of mediation). Results Higher adherence to the MeDi was associated with lower risk for AD (odds ratio, 0.76; 95% confidence interval, 0.67–0.87; P<.001). Compared with subjects in the lowest MeDi tertile, subjects in the middle MeDi tertile had an odds ratio of 0.47 (95% confidence interval, 0.29–0.76) and those at the highest tertile an odds ratio of 0.32 (95% confidence interval, 0.17–0.59) for AD (P for trend <.001). Introduction of the vascular variables in the model did not change the magnitude of the association. Conclusions We note once more that higher adherence to the MeDi is associated with a reduced risk for AD. The association does not seem to be mediated by vascular comorbidity. This could be the result of either other biological mechanisms (oxidative or inflammatory) being implicated or measurement error of the vascular variables. PMID:17030648
Mediterranean diet and Alzheimer disease mortality
Scarmeas, Nikolaos; Luchsinger, Jose A.; Mayeux, Richard; Stern, Yaakov
2009-01-01
Background We previously reported that the Mediterranean diet (MeDi) is related to lower risk for Alzheimer disease (AD). Whether MeDi is associated with subsequent AD course and outcomes has not been investigated. Objectives To examine the association between MeDi and mortality in patients with AD. Methods A total of 192 community-based individuals in New York who were diagnosed with AD were prospectively followed every 1.5 years. Adherence to the MeDi (0- to 9-point scale with higher scores indicating higher adherence) was the main predictor of mortality in Cox models that were adjusted for period of recruitment, age, gender, ethnicity, education, APOE genotype, caloric intake, smoking, and body mass index. Results Eighty-five patients with AD (44%) died during the course of 4.4 (±3.6, 0.2 to 13.6) years of follow-up. In unadjusted models, higher adherence to MeDi was associated with lower mortality risk (for each additional MeDi point hazard ratio 0.79; 95% CI 0.69 to 0.91; p = 0.001). This result remained significant after controlling for all covariates (0.76; 0.65 to 0.89; p = 0.001). In adjusted models, as compared with AD patients at the lowest MeDi adherence fertile, those at the middle fertile had lower mortality risk (0.65; 0.38 to 1.09; 1.33 years’ longer survival), whereas subjects at the highest fertile had an even lower risk (0.27; 0.10 to 0.69; 3.91 years’ longer survival; p for trend = 0.003). Conclusion Adherence to the Mediterranean diet (MeDi) may affect not only risk for Alzheimer disease (AD) but also subsequent disease course: Higher adherence to the MeDi is associated with lower mortality in AD. The gradual reduction in mortality risk for higher MeDi adherence tertiles suggests a possible dose–response effect. PMID:17846408
The Effect of QBO on the Total Mass Density
NASA Astrophysics Data System (ADS)
Saǧır, Selçuk; Atıcı, Ramazan
2016-07-01
The relationship between Quasi-Biennial Oscillation (QBO) measured at 10 hPa altitude and total mass density (TMD) values obtained from NRLMSIS-00 model for 90 km altitude of ionosphere known as Mesosphere-Lower Thermosphere (MLT) region is statistically investigated. For this study, multiple-regression model is used. To see the effect on TMD of QBO directions, Dummy variables are also added to model. In the result of calculations, it is observed that QBO is effected on TMD. It is determined that 69% of variations at TMD can be explainable by QBO. It is determined that the explainable ratio is at the rate of 5%. Also, it is seen that an increase/a decrease of 1 meter per second at QBO give rise to an increase/a decrease of 7,2x10-4 g/cm3 at TMD.
Effect of Silicon on Desulfurization of Aluminum-killed Steels
NASA Astrophysics Data System (ADS)
Roy, Debdutta
Recent reports have suggested that silicon has a beneficial effect on the rate of desulfurization of Al-killed steel. This effect is difficult to understand looking at the overall desulfurization reaction which does not include silicon. However an explanation is proposed by taking into account the (SiO2)/[Si] equilibrium in which some Al reaching the slag-metal interface is used in reducing the SiO2 in the slag. This reaction can be suppressed to some extent if the silicon content of the metal is increased and in doing so, more Al will be available at the slag-metal interface for the desulfurization reaction and this would increase the rate of the desulfurization reaction. A model was developed, assuming the rates are controlled by mass transfer, taking into account the coupled reactions of the reduction of silica, and other unstable oxides, namely iron oxide and manganese oxide, in the slag and desulfurization reaction in the steel by aluminum. The model predicts that increasing silicon increases the rate and extent of desulfurization. Plant data was analyzed to obtain rough estimates of ladle desulfurization rates and also used to validate the model predictions. Experiments have been conducted on a kilogram scale of material in an induction furnace to test the hypothesis. The major conclusions of the study are as follows: The rate and extent of desulfurization improve with increasing initial silicon content in the steel; the effect diminishes at silicon contents higher than approximately 0.2% and with increasing slag basicity. This was confirmed with kilogram-scale laboratory experiments. The effects of the silicon content in the steel (and of initial FeO and MnO in the slag) largely arise from the dominant effects of these reactions on the equilibrium aluminum content of the steel: as far as aluminum consumption or pick-up is concerned, the Si/SiO2 reaction dominates, and desulfurization has only a minor effect on aluminum consumption. The rate is primarily controlled by mass transfer in the metal and slag phase mass transfer has a minor effect on the overall desulfurization kinetics. The model results are in agreement with the experimental data for the change in sulfur, silicon and aluminum contents with time which renders credibility to the underlying hypothesis of the kinetic model. Although the change of sulfur content with time is not very sensitive to the activity data source, the change of aluminum and silicon contents with time depend on the activity data source. The experimental results demonstrate that if the silicon content in the steel is high enough, the silicon can reduce the alumina from the slag and thus the steel melt will pick up aluminum. This can cause significant savings in aluminum consumption. For most of the slag compositions used in the experiments, the overall mass transfer is only limited by the steel phase and the slag phase mass transfer can be neglected for most practical cases. Mass balance calculations in the experiments support the basis of the model and also show that with respect to aluminum consumption, silica reduction is the main aluminum consuming (or production) reaction and the desulfurization reaction is only a secondary consumer of aluminum. Results from the plant trials conducted to test the effect of silicon on ladle desulfurization show that the rate and extent of desulfurization increase with the increase of the initial Si content, so in the ladle refining process, adding all the silicon in the beginning with the aluminum and the fluxes will be beneficial and could save considerable processing time at the ladle. The aluminum consumption for the heats with silicon added in the beginning (both in terms of the Al added to the steel and as slag deoxidants) is considerably lower compared to the cases where the silicon is added at the end. However, on a relative cost term, aluminum and silicon are similarly priced so substitution would not offer a major cost advantage.
Processing of Mass/Count Information in Alzheimer's Disease and Mild Cognitive Impairment
ERIC Educational Resources Information Center
Taler, Vanessa; Jarema, Gonia
2004-01-01
This study examines the processing of a specific linguistic distinction, the mass/count distinction, in patients suffering from Alzheimer's disease (AD) and mild cognitive impairment (MCI). Fourteen AD and 10 MCI subjects were tested using a sentence grammaticality judgement task where grammaticality violations were caused by determiner--noun…
Tetraquarks in holographic QCD
NASA Astrophysics Data System (ADS)
Gutsche, Thomas; Lyubovitskij, Valery E.; Schmidt, Ivan
2017-08-01
Using a soft-wall AdS/QCD approach we derive the Schrödinger-type equation of motion for the tetraquark wave function, which is dual to the dimension-4 AdS bulk profile. The latter coincides with the number of constituents in the leading Fock state of the tetraquark. The obtained equation of motion is solved analytically, providing predictions for both the tetraquark wave function and its mass. A low mass limit for possible tetraquark states is given by M ≥2 κ =1 GeV , where κ =0.5 GeV is the typical value of the scale parameter in soft-wall AdS/QCD. We confirm results of the COMPASS Collaboration recently reported on the discovery of the a1(1414 ) state, interpreted as a tetraquark state composed of light quarks and having JP C=1++. Our prediction for the mass of this state, Ma1=√{2 } GeV ≃1.414 GeV , is in good agreement with the COMPASS result Ma1=1.41 4-0.013+0.015 GeV . Next we included finite quark mass effects, which are essential for the tetraquark states involving heavy quarks.
Schievano, Andrea; D'Imporzano, Giuliana; Salati, Silvia; Adani, Fabrizio
2011-09-01
The mass balance (input/output mass flows) of full-scale anaerobic digestion (AD) processes should be known for a series of purposes, e.g. to understand carbon and nutrients balances, to evaluate the contribution of AD processes to elemental cycles, especially when digestates are applied to agricultural land and to measure the biodegradation yields and the process efficiency. In this paper, three alternative methods were studied, to determine the mass balance in full-scale processes, discussing their reliability and applicability. Through a 1-year survey on three full-scale AD plants and through 38 laboratory-scale batch digesters, the congruency of the considered methods was demonstrated and a linear equation was provided that allows calculating the wet weight losses (WL) from the methane produced (MP) by the plant (WL=41.949*MP+20.853, R(2)=0.950, p<0.01). Additionally, this new tool was used to calculate carbon, nitrogen, phosphorous and potassium balances of the three observed AD plants. Copyright © 2011 Elsevier Ltd. All rights reserved.
Unsteady force estimation using a Lagrangian drift-volume approach
NASA Astrophysics Data System (ADS)
McPhaden, Cameron J.; Rival, David E.
2018-04-01
A novel Lagrangian force estimation technique for unsteady fluid flows has been developed, using the concept of a Darwinian drift volume to measure unsteady forces on accelerating bodies. The construct of added mass in viscous flows, calculated from a series of drift volumes, is used to calculate the reaction force on an accelerating circular flat plate, containing highly-separated, vortical flow. The net displacement of fluid contained within the drift volumes is, through Darwin's drift-volume added-mass proposition, equal to the added mass of the plate and provides the reaction force of the fluid on the body. The resultant unsteady force estimates from the proposed technique are shown to align with the measured drag force associated with a rapid acceleration. The critical aspects of understanding unsteady flows, relating to peak and time-resolved forces, often lie within the acceleration phase of the motions, which are well-captured by the drift-volume approach. Therefore, this Lagrangian added-mass estimation technique opens the door to fluid-dynamic analyses in areas that, until now, were inaccessible by conventional means.
Radiated Sound Power from a Curved Honeycomb Panel
NASA Technical Reports Server (NTRS)
Robinson, Jay H.; Buehrle, Ralph D.; Klos, Jacob; Grosveld, Ferdinand W.
2003-01-01
The validation of finite element and boundary element model for the vibro-acoustic response of a curved honeycomb core composite aircraft panel is completed. The finite element and boundary element models were previously validated separately. This validation process was hampered significantly by the method in which the panel was installed in the test facility. The fixture used was made primarily of fiberboard and the panel was held in a groove in the fiberboard by a compression fitting made of plastic tubing. The validated model is intended to be used to evaluate noise reduction concepts from both an experimental and analytic basis simultaneously. An initial parametric study of the influence of core thickness on the radiated sound power from this panel, using this numerical model was subsequently conducted. This study was significantly influenced by the presence of strong boundary condition effects but indicated that the radiated sound power from this panel was insensitive to core thickness primarily due to the offsetting effects of added mass and added stiffness in the frequency range investigated.
Personality and diabetes mellitus incidence in a national sample.
Cukić, Iva; Weiss, Alexander
2014-09-01
To test whether personality traits were prospectively associated with type 2 diabetes incidence. The sample (n=6798) was derived from the National Health and Nutrition Examination Survey Epidemiological Follow-up Study cohort. We fit four logistic regression models to test whether neuroticism, extraversion, openness to experience, or the Type A behavior pattern predicted type 2 diabetes incidence. Model 1 included sex, age, and race/ethnicity. Model 2 added personality traits, Model 3 added depressive symptoms, and Model 4 added body mass index (BMI), hypertension, and cigarette smoking status as predictors. In Model 1 age was associated with increased risk of diabetes (2% per year); being black as opposed to white was associated with a three-fold increase in risk. In Model 2 age and being black were still significant and extraversion was associated with decreased risk (17% per standard deviation [SD]). In Model 3 age, being black, and extraversion were still significant. In addition, neuroticism was associated with decreased risk (26% per SD) and depressive symptoms were associated with increased risk (28% per SD). In Model 4 age, being black, neuroticism, and depressive symptoms were still significant. BMI was associated with increased risk (14% per SD) and extraversion was no longer significant. Higher neuroticism was associated with reduced type 2 diabetes risk even after controlling for race/ethnicity, age, depressive symptoms, and BMI. Extraversion and Type A behavior were not significant after including covariates. Copyright © 2014 Elsevier Inc. All rights reserved.
Source Term Model for Steady Micro Jets in a Navier-Stokes Computer Code
NASA Technical Reports Server (NTRS)
Waithe, Kenrick A.
2005-01-01
A source term model for steady micro jets was implemented into a non-proprietary Navier-Stokes computer code, OVERFLOW. The source term models the mass flow and momentum created by a steady blowing micro jet. The model is obtained by adding the momentum and mass flow created by the jet to the Navier-Stokes equations. The model was tested by comparing with data from numerical simulations of a single, steady micro jet on a flat plate in two and three dimensions. The source term model predicted the velocity distribution well compared to the two-dimensional plate using a steady mass flow boundary condition, which was used to simulate a steady micro jet. The model was also compared to two three-dimensional flat plate cases using a steady mass flow boundary condition to simulate a steady micro jet. The three-dimensional comparison included a case with a grid generated to capture the circular shape of the jet and a case without a grid generated for the micro jet. The case without the jet grid mimics the application of the source term. The source term model compared well with both of the three-dimensional cases. Comparisons of velocity distribution were made before and after the jet and Mach and vorticity contours were examined. The source term model allows a researcher to quickly investigate different locations of individual or several steady micro jets. The researcher is able to conduct a preliminary investigation with minimal grid generation and computational time.
Rossi, Stefano; Colazza, Alessandra; Petrarca, Maurizio; Castelli, Enrico; Cappa, Paolo; Krebs, Hermano Igo
2013-01-01
We are designing a pediatric exoskeletal ankle robot (pediatric Anklebot) to promote gait habilitation in children with Cerebral Palsy (CP). Few studies have evaluated how much or whether the unilateral loading of a wearable exoskeleton may have the unwanted effect of altering significantly the gait. The purpose of this study was to evaluate whether adding masses up to 2.5 kg, the estimated overall added mass of the mentioned device, at the knee level alters the gait kinematics. Ten healthy children and eight children with CP, with light or mild gait impairment, walked wearing a knee brace with several masses. Gait parameters and lower-limb joint kinematics were analyzed with an optoelectronic system under six conditions: without brace (natural gait) and with masses placed at the knee level (0.5, 1.0, 1.5, 2.0, 2.5 kg). T-tests and repeated measures ANOVA tests were conducted in order to find noteworthy differences among the trial conditions and between loaded and unloaded legs. No statistically significant differences in gait parameters for both healthy children and children with CP were observed in the five “with added mass” conditions. We found significant differences among “natural gait” and “with added masses” conditions in knee flexion and hip extension angles for healthy children and in knee flexion angle for children with CP. This result can be interpreted as an effect of the mechanical constraint induced by the knee brace rather than the effect associated with load increase. The study demonstrates that the mechanical constraint induced by the brace has a measurable effect on the gait of healthy children and children with CP and that the added mass up to 2.5 kg does not alter the lower limb kinematics. This suggests that wearable devices weighing 25 N or less will not noticeably modify the gait patterns of the population examined here. PMID:24023822
Tong, Ming; Leão, Raiane; Vimbela, Gina V; Yalcin, Emine B; Kay, Jared; Krotow, Alexander; de la Monte, Suzanne M
2017-07-01
White matter is an early and important yet under-evaluated target of Alzheimer's disease (AD). Metabolic impairments due to insulin and insulin-like growth factor resistance contribute to white matter degeneration because corresponding signal transduction pathways maintain oligodendrocyte function and survival. This study utilized a model of sporadic AD in which adult Long Evans rats administered intracerebral streptozotocin (i.c. STZ) developed AD-type neurodegeneration. Temporal lobe white matter lipid ion profiles were characterized by matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS). Although the lipid ion species expressed in the i.c. STZ and control groups were virtually identical, i.c. STZ mainly altered the abundances of various lipid ions. Correspondingly, the i.c. STZ group was distinguished from control by principal component analysis and data bar plots. i.c. STZ mainly reduced expression of lipid ions with low m/z's (less than 810) as well as the upper range m/z lipids (m/z 964-986), and increased expression of lipid ions with m/z's between 888 and 937. Phospholipids were mainly included among the clusters inhibited by i.c. STZ, while both sulfatides and phospholipids were increased by i.c. STZ. However, Chi-Square analysis demonstrated significant i.c. STZ-induced trend reductions in phospholipids and increases in sulfatides (P<0.00001). The i.c. STZ model of sporadic AD is associated with broad and sustained abnormalities in temporal lobe white matter lipids. The findings suggest that the i.c. STZ model could be used for pre-clinical studies to assess therapeutic measures for their ability to restore white matter integrity in AD. Copyright © 2017 Elsevier Inc. All rights reserved.
Results and Error Estimates from GRACE Forward Modeling over Antarctica
NASA Astrophysics Data System (ADS)
Bonin, Jennifer; Chambers, Don
2013-04-01
Forward modeling using a weighted least squares technique allows GRACE information to be projected onto a pre-determined collection of local basins. This decreases the impact of spatial leakage, allowing estimates of mass change to be better localized. The technique is especially valuable where models of current-day mass change are poor, such as over Antarctica. However when tested previously, the least squares technique has required constraints in the form of added process noise in order to be reliable. Poor choice of local basin layout has also adversely affected results, as has the choice of spatial smoothing used with GRACE. To develop design parameters which will result in correct high-resolution mass detection and to estimate the systematic errors of the method over Antarctica, we use a "truth" simulation of the Antarctic signal. We apply the optimal parameters found from the simulation to RL05 GRACE data across Antarctica and the surrounding ocean. We particularly focus on separating the Antarctic peninsula's mass signal from that of the rest of western Antarctica. Additionally, we characterize how well the technique works for removing land leakage signal from the nearby ocean, particularly that near the Drake Passage.
Adherence to a Mediterranean diet and Alzheimer's disease risk in an Australian population
Gardener, S; Gu, Y; Rainey-Smith, S R; Keogh, J B; Clifton, P M; Mathieson, S L; Taddei, K; Mondal, A; Ward, V K; Scarmeas, N; Barnes, M; Ellis, K A; Head, R; Masters, C L; Ames, D; Macaulay, S L; Rowe, C C; Szoeke, C; Martins, R N
2012-01-01
The Mediterranean diet (MeDi), due to its correlation with a low morbidity and mortality for many chronic diseases, has been widely recognised as a healthy eating model. We aimed to investigate, in a cross-sectional study, the association between adherence to a MeDi and risk for Alzheimer's disease (AD) and mild cognitive impairment (MCI) in a large, elderly, Australian cohort. Subjects in the Australian Imaging, Biomarkers and Lifestyle Study of Ageing cohort (723 healthy controls (HC), 98 MCI and 149 AD participants) completed the Cancer Council of Victoria Food Frequency Questionnaire. Adherence to the MeDi (0- to 9-point scale with higher scores indicating higher adherence) was the main predictor of AD and MCI status in multinominal logistic regression models that were adjusted for cohort age, sex, country of birth, education, apolipoprotein E genotype, total caloric intake, current smoking status, body mass index, history of diabetes, hypertension, angina, heart attack and stroke. There was a significant difference in adherence to the MeDi between HC and AD subjects (P<0.001), and in adherence between HC and MCI subjects (P<0.05). MeDi is associated with change in Mini-Mental State Examination score over an 18-month time period (P<0.05) in HCs. We conclude that in this Australian cohort, AD and MCI participants had a lower adherence to the MeDi than HC participants. PMID:23032941
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, Tom
2012-08-01
NHTSA recently completed a logistic regression analysis updating its 2003 and 2010 studies of the relationship between vehicle mass and US fatality risk per vehicle mile traveled (VMT). The new study updates the previous analyses in several ways: updated FARS data from 2002 to 2008 for MY00 to MY07 vehicles are used; induced exposure data from police reported crashes in several additional states are added; a new vehicle category for car-based crossover utility vehicles (CUVs) and minivans is created; crashes with other light-duty vehicles are divided into two groups based on the crash partner vehicle’s weight, and a category formore » all other fatal crashes is added; and new control variables for new safety technologies and designs, such as electronic stability controls (ESC), side airbags, and methods to meet voluntary agreement to improve light truck compatibility with cars, are included.« less
Sulfites and the wine metabolome.
Roullier-Gall, Chloé; Hemmler, Daniel; Gonsior, Michael; Li, Yan; Nikolantonaki, Maria; Aron, Alissa; Coelho, Christian; Gougeon, Régis D; Schmitt-Kopplin, Philippe
2017-12-15
In a context of societal concern about food preservation, the reduction of sulfite input plays a major role in the wine industry. To improve the understanding of the chemistry involved in the SO 2 protection, a series of bottle aged Chardonnay wines made from the same must, but with different concentrations of SO 2 added at pressing were analyzed by ultrahigh resolution mass spectrometry (FT-ICR-MS) and excitation emission matrix fluorescence (EEMF). Metabolic fingerprints from FT-ICR-MS data could discriminate wines according to the added concentration to the must but they also revealed chemistry-related differences according to the type of stopper, providing a wine metabolomics picture of the impact of distinct stopping strategies. Spearman rank correlation was applied to link the statistically modeled EEMF components (parallel factor analysis (PARAFAC)) and the exact mass information from FT-ICR-MS, and thus revealing the extent of sulfur-containing compounds which could show some correlation with fluorescence fingerprints. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, Tom
2011-09-01
NHTSA recently completed a logistic regression analysis updating its 2003 and 2010 studies of the relationship between vehicle mass and US fatality risk per vehicle mile traveled (VMT). The new study updates the previous analyses in several ways: updated FARS data from 2002 to 2008 for MY00 to MY07 vehicles are used; induced exposure data from police reported crashes in several additional states are added; a new vehicle category for car-based crossover utility vehicles (CUVs) and minivans is created; crashes with other light-duty vehicles are divided into two groups based on the crash partner vehicle’s weight, and a category formore » all other fatal crashes is added; and new control variables for new safety technologies and designs, such as electronic stability controls (ESC), side airbags, and methods to meet voluntary agreement to improve light truck compatibility with cars, are included.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, Tom
2012-08-01
NHTSA recently completed a logistic regression analysis (Kahane 2012) updating its 2003 and 2010 studies of the relationship between vehicle mass and US fatality risk per vehicle mile traveled (VMT). The new study updates the previous analyses in several ways: updated FARS data for 2002 to 2008 involving MY00 to MY07 vehicles are used; induced exposure data from police reported crashes in several additional states are added; a new vehicle category for car-based crossover utility vehicles (CUVs) and minivans is created; crashes with other light-duty vehicles are divided into two groups based on the crash partner vehicle’s weight, and amore » category for all other fatal crashes is added; and new control variables for new safety technologies and designs, such as electronic stability controls (ESC), side airbags, and methods to meet voluntary agreement to improve light truck compatibility with cars, are included.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eric M. Leonard; Mitchell A. Plummer; Paul E. Carrara
2014-04-01
Well-preserved moraines from the penultimate, or Bull Lake, glaciation of Snowmass Creek Valley in the Elk Range of Colorado present an opportunity to examine the character of the high-altitude climate in the Rocky Mountains during Marine Oxygen Isotope Stage 6. This study employs a 2-D coupled mass/energy balance and flow model to assess the magnitudes of temperature and precipitation change that could have sustained the glacier in mass-balance equilibrium at its maximum extent during the Bull Lake glaciation. Variable substrate effects on glacier flow and ice thickness make the modeling somewhat more complex than in geologically simpler settings. Model resultsmore » indicate that a temperature depression of about 6.7°C compared with the present (1971–2000 AD) would have been necessary to sustain the Snowmass Creek glacier in mass-balance equilibrium during the Bull Lake glaciation, assuming no change in precipitation amount or seasonality. A 50% increase or decrease from modern precipitation would have been coupled with 5.2°C and 9.1°C Bull Lake temperature depressions respectively. Uncertainty in these modeled temperature depressions is about 1°C.« less
Ishihara, D; Yamashita, Y; Horie, T; Yoshida, S; Niho, T
2009-12-01
We have studied the passive maintenance of high angle of attack and its lift generation during the crane fly's flapping translation using a dynamically scaled model. Since the wing and the surrounding fluid interact with each other, the dynamic similarity between the model flight and actual insect flight was measured using not only the non-dimensional numbers for the fluid (the Reynolds and Strouhal numbers) but also those for the fluid-structure interaction (the mass and Cauchy numbers). A difference was observed between the mass number of the model and that of the actual insect because of the limitation of available solid materials. However, the dynamic similarity during the flapping translation was not much affected by the mass number since the inertial force during the flapping translation is not dominant because of the small acceleration. In our model flight, a high angle of attack of the wing was maintained passively during the flapping translation and the wing generated sufficient lift force to support the insect weight. The mechanism of the maintenance is the equilibrium between the elastic reaction force resulting from the wing torsion and the fluid dynamic pressure. Our model wing rotated quickly at the stroke reversal in spite of the reduced inertial effect of the wing mass compared with that of the actual insect. This result could be explained by the added mass from the surrounding fluid. Our results suggest that the pitching motion can be passive in the crane fly's flapping flight.
NASA Astrophysics Data System (ADS)
Chrit, Mounir; Sartelet, Karine; Sciare, Jean; Pey, Jorge; Marchand, Nicolas; Couvidat, Florian; Sellegri, Karine; Beekmann, Matthias
2017-10-01
In the framework of the Chemistry-Aerosol Mediterranean Experiment, a measurement site was set up at a remote site (Ersa) on Corsica Island in the northwestern Mediterranean Sea. Measurement campaigns performed during the summers of 2012 and 2013 showed high organic aerosol concentrations, mostly from biogenic origin. This work aims to represent the organic aerosol concentrations and properties (oxidation state and hydrophilicity) using the air-quality model Polyphemus with a surrogate approach for secondary organic aerosol (SOA) formation. Biogenic precursors are isoprene, monoterpenes and sesquiterpenes. In this work, the following model oxidation products of monoterpenes are added: (i) a carboxylic acid (MBTCA) to represent multi-generation oxidation products in the low-NOx regime, (ii) organic nitrate chemistry and (iii) extremely low-volatility organic compounds (ELVOCs) formed by ozonolysis. The model shows good agreement of measurements of organic concentrations for both 2012 and 2013 summer campaigns. The modelled oxidation property and hydrophilic organic carbon properties of the organic aerosols also agree reasonably well with the measurements. The influence of the different chemical processes added to the model on the oxidation level of organics is studied. Measured and simulated water-soluble organic carbon (WSOC) concentrations show that even at a remote site next to the sea, about 64 % of the organic carbon is soluble. The concentrations of WSOC vary with the origins of the air masses and the composition of organic aerosols. The marine organic emissions only contribute to a few percent of the organic mass in PM1, with maxima above the sea.
Octopus-inspired drag cancelation by added mass pumping
NASA Astrophysics Data System (ADS)
Weymouth, Gabriel; Giorgio-Serchi, Francesco
2016-11-01
Recent work has shown that when an immersed body suddenly changes its size, such as a deflating octopus during rapid escape jetting, the body experiences large forces due to the variation of added-mass energy. We extend this line of research by investigating a spring-mass oscillator submerged in quiescent fluid subject to periodic changes in its volume. This system isolates the ability of the added-mass thrust to cancel the bluff body resistance (having no jet flow to confuse the analysis) and moves closer to studying how these effects would work in a sustained propulsion case by studying periodic shape-change instead of a "one-shot" escape maneuver. With a combination of analytical, numerical, and experimental results, we show that the recovery of added-mass kinetic energy can be used to completely cancel the drag of the fluid, driving the onset of sustained oscillations with amplitudes as large as four times the average body radius. Moreover, these results are fairly independent of the details of the shape-change kinematics as long as the Stokes number and shape-change number are large. In addition, the effective pumping frequency range based on parametric oscillator analysis is shown to predict large amplitude response region observed in the numerics and experiments.
NASA Astrophysics Data System (ADS)
Dhargyal, Lobsang
2018-07-01
In this work we propose a simple extension of the Standard Model (SM) by adding to it eleven new particles. Three heavy lepton (f e , f μ , f τ ), singlets under {SU}{(3)}c× {SU}{(2)}L carrying respective lepton numbers, charged under U{(1)}Y with Y = ‑2 and transforming under a discrete symmetry as {f}i\\to -{f}i. One scalar (ϕ 2), a singlet under all the SM gauge groups and transforms under the discrete symmetry as {φ }2\\to -{φ }2 which does not develop a non zero vacuum-expectation-value (VEV). One more scalar (ϕ 3), a singlet under all the SM gauge groups and invariant under discrete symmetry which develops a non zero VEV (v 3) and gives masses to f i s, ϕ 2 and neutrinos. Three right handed neutrinos ({ν }{iR}) and three left handed Majorana neutrinos (s iL ). With these new additional particles added to the SM we have been able to give explanations to the long standing muon (g-2) anomaly as well as the smallness of neutrino masses by the inverse seesaw mechanism. Also in this model we have a very suitable scalar dark matter (DM) candidate in ϕ 2 with allows a mass as high as 53 GeV, although due to a large Yukawa coupling required to explain the muon (g-2), its contribution to the DM relic density turn out to be too small and so it can account only for a small fraction of the DM relic density of the Universe.
Vreman, Rick A; Goodell, Alex J; Rodriguez, Luis A; Porco, Travis C; Lustig, Robert H; Kahn, James G
2017-01-01
Objectives Excessive consumption of added sugars in the human diet has been associated with obesity, type 2 diabetes (T2D), coronary heart disease (CHD) and other elements of the metabolic syndrome. Recent studies have shown that non-alcoholic fatty liver disease (NAFLD) is a critical pathway to metabolic syndrome. This model assesses the health and economic benefits of interventions aimed at reducing intake of added sugars. Methods Using data from US National Health Surveys and current literature, we simulated an open cohort, for the period 2015–2035. We constructed a microsimulation model with Markov chains for NAFLD (including steatosis, non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma (HCC)), body mass index, T2D and CHD. We assessed reductions in population disease prevalence, disease-attributable disability-adjusted life years (DALYs) and costs, with interventions that reduce added sugars consumption by either 20% or 50%. Findings The model estimated that a 20% reduction in added sugars intake will reduce prevalence of hepatic steatosis, NASH, cirrhosis, HCC, obesity, T2D and CHD. Incidence of T2D and CHD would be expected to decrease by 19.9 (95% CI 12.8 to 27.0) and 9.4 (95% CI 3.1 to 15.8) cases per 100 000 people after 20 years, respectively. A 20% reduction in consumption is also projected to annually avert 0.767 million (M) DALYs (95% CI 0.757M to 0.777M) and a total of US$10.3 billion (B) (95% CI 10.2B to 10.4B) in discounted direct medical costs by 2035. These effects increased proportionally when added sugars intake were reduced by 50%. Conclusions The decrease in incidence and prevalence of disease is similar to results in other models, but averted costs and DALYs were higher, mainly due to inclusion of NAFLD and CHD. The model suggests that efforts to reduce consumption of added sugars may result in significant public health and economic benefits. PMID:28775179
Derivation and calibration of a gas metal arc welding (GMAW) dynamic droplet model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reutzel, E.W.; Einerson, C.J.; Johnson, J.A.
1996-12-31
A rudimentary, existing dynamic model for droplet growth and detachment in gas metal arc welding (GMAW) was improved and calibrated to match experimental data. The model simulates droplets growing at the end of an imaginary spring. Mass is added to the drop as the electrode melts, the droplet grows, and the spring is displaced. Detachment occurs when one of two criteria is met, and the amount of mass that is detached is a function of the droplet velocity at the time of detachment. Improvements to the model include the addition of a second criterion for drop detachment, a more sophisticatedmore » model of the power supply and secondary electric circuit, and the incorporation of a variable electrode resistance. Relevant physical parameters in the model were adjusted during model calibration. The average current, droplet frequency, and parameter-space location of globular-to-streaming mode transition were used as criteria for tuning the model. The average current predicted by the calibrated model matched the experimental average current to within 5% over a wide range of operating conditions.« less
Mass-deformed ABJM and black holes in AdS4
NASA Astrophysics Data System (ADS)
Bobev, Nikolay; Min, Vincent S.; Pilch, Krzysztof
2018-03-01
We find a class of new supersymmetric dyonic black holes in four-dimensional maximal gauged supergravity which are asymptotic to the SU(3) × U(1) invariant AdS4 Warner vacuum. These black holes can be embedded in eleven-dimensional supergravity where they describe the backreaction of M2-branes wrapped on a Riemann surface. The holographic dual description of these supergravity backgrounds is given by a partial topological twist on a Riemann surface of a three-dimensional N=2 SCFT that is obtained by a mass-deformation of the ABJM theory. We compute explicitly the topologically twisted index of this SCFT and show that it accounts for the entropy of the black holes.
Flare-CME characteristics from Sun to Earth combining observations and modeling
NASA Astrophysics Data System (ADS)
Temmer, Manuela; Thalmann, Julia K.; Dissauer, Karin; Veronig, Astrid M.; Tschernitz, Johannes; Hinterreiter, Jürgen; Rodriguez, Luciano
2017-04-01
We analyze the well observed flare-CME event from October 1, 2011 (SOL2011-10-01T09:18) covering the complete chain of action - from Sun to Earth - for a better understanding of the dynamic evolution of the CME and its embedded magnetic field. We study in detail the solar surface and atmosphere from SDO and ground-based instruments associated to the flare-CME and also track the CME signature offlimb from combined EUV and white-light data with STEREO. By applying 3D reconstruction techniques (GCS, total mass) to stereoscopic STEREO-SoHO coronagraph data, we track the temporal and spatial evolution of the CME in interplanetary space and derive its geometry and 3D-mass. We combine the GCS and Lundquist model results to derive the axial flux and helicity of the MC from in situ measurements (Wind). This is compared to nonlinear force-free (NLFF) model results as well as to the reconnected magnetic flux derived from the flare ribbons (flare reconnection flux) and the magnetic flux encompassed by the associated dimming (dimming flux). We find that magnetic reconnection processes were already ongoing before the start of the impulsive flare phase, adding magnetic flux to the flux rope before its final eruption. The dimming flux increases by more than 25% after the end of the flare, indicating that magnetic flux is still added to the flux rope after eruption. Hence, the derived flare reconnection flux is most probably a lower limit for estimating the magnetic flux within the flux rope. We obtain that the magnetic helicity and axial magnetic flux are reduced in interplanetary space by ˜50% and 75%, respectively, possibly indicating to an erosion process. A mass increase of 10% for the CME is observed over the distance range from about 4-20 Rs. The temporal evolution of the CME associated core dimming regions supports the scenario that fast outflows might supply additional mass to the rear part of the CME.
Effects of a hyperonic many-body force on BΛ values of hypernuclei
NASA Astrophysics Data System (ADS)
Isaka, M.; Yamamoto, Y.; Rijken, Th. A.
2017-04-01
The stiff equation of state (EoS) giving the neutron-star mass of 2 M⊙ suggests the existence of strongly repulsive many-body effects (MBE) not only in nucleon channels but also in hyperonic ones. As a specific model for MBE, the repulsive multi-Pomeron exchange potential (MPP) is added to the two-body interaction together with the phenomenological three-body attraction. For various versions of the Nijmegen interaction models, the MBE parts are determined so as to reproduce the observed data of BΛ. The mass dependence of BΛ values is shown to be reproduced well by adding MBE to the strong MPP repulsion, assuring the stiff EoS of hyperon-mixed neutron-star matter, in which P -state components of the adopted interaction model lead to almost vanishing contributions. The nuclear matter Λ N G -matrix interactions are derived and used in Λ hypernuclei on the basis of the averaged-density approximation (ADA). The BΛ values of hypernuclei with 9 ≤A ≤59 are analyzed in the framework of antisymmetrized molecular dynamics with use of the two types of Λ N G -matrix interactions including strong and weak MPP repulsions. The calculated values of BΛ reproduce the experimental data well within a few hundred keV. The values of BΛ in p states also can be reproduced well, when the ADA is modified to be suitable also for weakly bound Λ states.
Tang, Bo; Han, Cheng-Tao; Zhang, Gui-Ming; Zhang, Cui-Zhu; Yang, Wei-Yi; Shen, Ying; Vidal, Adriana C; Freedland, Stephen J; Zhu, Yao; Ye, Ding-Wei
2017-03-08
To investigate whether waist-hip ratio (WHR) is a better predictor of prostate cancer (PCa) incidence than body mass index (BMI) in Chinese men. Of consecutive patients who underwent prostate biopsies in one tertiary center between 2013 and 2015, we examined data on 1018 with PSA ≤20 ng/ml. Clinical data and biopsy outcomes were collected. Logistic regression was used to evaluate the associations between BMI, WHR and PCa incidence. Area under the ROC (AUC) was used to evaluate the accuracy of different prognostic models. A total of 255 men and 103 men were diagnosed with PCa and high grade PCa (HGPCa, Gleason score ≥8). WHR was an independent risk factor for both PCa (OR = 1.07 95%Cl 1.03-1.11) and HGPCa (OR = 1.14 95%Cl 1.09-1.19) detection, while BMI had no relationship with either PCa or HGPCa detection. Adding WHR to a multivariable model increased the AUC for detecting HGPCa from 0.66 (95%Cl 0.60-0.72) to 0.71 (95%Cl 0.65-0.76). In this Chinese cohort, WHR was significantly predictive of PCa and HGPCa. Adding WHR to a multivariable model increased the diagnostic accuracy for detecting HGPCa. If confirmed, including WHR measurement may improve PCa and HGPCa detection.
Tang, Bo; Han, Cheng-Tao; Zhang, Gui-Ming; Zhang, Cui-Zhu; Yang, Wei-Yi; Shen, Ying; Vidal, Adriana C.; Freedland, Stephen J.; Zhu, Yao; Ye, Ding-Wei
2017-01-01
To investigate whether waist-hip ratio (WHR) is a better predictor of prostate cancer (PCa) incidence than body mass index (BMI) in Chinese men. Of consecutive patients who underwent prostate biopsies in one tertiary center between 2013 and 2015, we examined data on 1018 with PSA ≤20 ng/ml. Clinical data and biopsy outcomes were collected. Logistic regression was used to evaluate the associations between BMI, WHR and PCa incidence. Area under the ROC (AUC) was used to evaluate the accuracy of different prognostic models. A total of 255 men and 103 men were diagnosed with PCa and high grade PCa (HGPCa, Gleason score ≥8). WHR was an independent risk factor for both PCa (OR = 1.07 95%Cl 1.03–1.11) and HGPCa (OR = 1.14 95%Cl 1.09–1.19) detection, while BMI had no relationship with either PCa or HGPCa detection. Adding WHR to a multivariable model increased the AUC for detecting HGPCa from 0.66 (95%Cl 0.60–0.72) to 0.71 (95%Cl 0.65–0.76). In this Chinese cohort, WHR was significantly predictive of PCa and HGPCa. Adding WHR to a multivariable model increased the diagnostic accuracy for detecting HGPCa. If confirmed, including WHR measurement may improve PCa and HGPCa detection. PMID:28272469
The Transport of Plasma and Magnetic Flux in Giant Planet Magnetospheres
NASA Astrophysics Data System (ADS)
Russell, C. T.
2013-05-01
Both Jupiter and Saturn have moons that add significant quantities of neutrals and/or dust beyond geosynchronous orbit. This material becomes charged and interacts with the planetary plasma that is "orbiting" the planets at near corotational speeds, driven by the planetary ionospheres. Since this speed is greater than the keplerian orbital speed at these distances, the net force on the newly added charged mass is outward. The charged material is held in place by the magnetic field which stretches to the amount needed to balance centripetal and centrifugal forces. The currents involved in this process close in the ionosphere which is an imperfect conductor and the feet of the field lines hence slip poleward and the material near the equator moves outward. This motion allows the magnetosphere to divest itself of the added mass by transferring it to the magnetotail. The magnetotail in turn can rid itself of the newly added mass by the process of reconnection, interior to the region of added mass, freeing an island of magnetized plasma which then moves down the magnetotail no longer connected to the magnetosphere. This maintains a quasi-stationary conservation of mass in the magnetosphere with roughly constant mass and "periodic" disturbances. However, there is one other steady state the magnetosphere needs to maintain. It needs to replace the mass loaded flux tubes with emptied flux tubes. Thus the "emptied" flux tubes in the tail must move inward against the outgoing mass-loaded flux tubes. That they are buoyant is a help in this regard but it appears also to be helpful if the returning flux separates into thin flux tubes, just like air bubbles rising in a container with a leak in the bottom. In this way the magnetospheres of Jupiter and Saturn maintain their dynamic, steady-state convection patterns.
Stability of a tachyon braneworld
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germán, Gabriel; Kuerten, André Martorano; Malagón-Morejón, Dagoberto
2016-01-01
Within the braneworld paradigm the tachyonic scalar field has been used to generate models that attempt to solve some of the open problems that physics faces nowadays, both in cosmology and high energy physics as well. When these field configurations are produced by the interplay of higher dimensional warped gravity with some matter content, braneworld models must prove to be stable under the whole set of small fluctuations of the gravitational and matter fields background, among other consistency tests. Here we present a complete proof of the stability under scalar perturbations of tachyonic thick braneworlds with an embedded maximally symmetricmore » 4D space-time, revealing its physical consistency. This family of models contains a recently reported tachyonic de Sitter thick braneworld which possesses a series of appealing properties. These features encompass complete regularity, asymptotic flatness (instead of being asymptotically dS or AdS) even when it contains a negative bulk cosmological constant, a relevant 3-brane with dS metric which naturally arises from the full set of field equations of the 5D background (it is not imposed), qualitatively describing the inflationary epochs of our Universe, and a graviton spectrum with a single zero mode bound state that accounts for the 4D graviton localised on the brane and is separated from the continuum of Kaluza-Klein massive graviton excitations by a mass gap. The presence of this mass gap in the graviton spectrum makes the extra-dimensional corrections to Newton's law decay exponentially. Gauge vector fields with a single massless bound state in its mass spectrum are also localised on this braneworld model a fact that allows us to recover the Coulomb's law of our 4D world. All these properties of the above referred tachyonic braneworld together with the positive stability analysis provided in this work, constitute a firm step towards the construction of realistic cosmological models within the braneworld paradigm.« less
Stability of a tachyon braneworld
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germán, Gabriel; Herrera-Aguilar, Alfredo; Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,Ciudad Universitaria, CP 58040, Morelia, Michoacán
2016-01-26
Within the braneworld paradigm the tachyonic scalar field has been used to generate models that attempt to solve some of the open problems that physics faces nowadays, both in cosmology and high energy physics as well. When these field configurations are produced by the interplay of higher dimensional warped gravity with some matter content, braneworld models must prove to be stable under the whole set of small fluctuations of the gravitational and matter fields background, among other consistency tests. Here we present a complete proof of the stability under scalar perturbations of tachyonic thick braneworlds with an embedded maximally symmetricmore » 4D space-time, revealing its physical consistency. This family of models contains a recently reported tachyonic de Sitter thick braneworld which possesses a series of appealing properties. These features encompass complete regularity, asymptotic flatness (instead of being asymptotically dS or AdS) even when it contains a negative bulk cosmological constant, a relevant 3-brane with dS metric which naturally arises from the full set of field equations of the 5D background (it is not imposed), qualitatively describing the inflationary epochs of our Universe, and a graviton spectrum with a single zero mode bound state that accounts for the 4D graviton localised on the brane and is separated from the continuum of Kaluza-Klein massive graviton excitations by a mass gap. The presence of this mass gap in the graviton spectrum makes the extra-dimensional corrections to Newton’s law decay exponentially. Gauge vector fields with a single massless bound state in its mass spectrum are also localised on this braneworld model a fact that allows us to recover the Coulomb’s law of our 4D world. All these properties of the above referred tachyonic braneworld together with the positive stability analysis provided in this work, constitute a firm step towards the construction of realistic cosmological models within the braneworld paradigm.« less
Stability of a tachyon braneworld
NASA Astrophysics Data System (ADS)
Germán, Gabriel; Herrera-Aguilar, Alfredo; Martorano Kuerten, André; Malagón-Morejón, Dagoberto; da Rocha, Roldão
2016-01-01
Within the braneworld paradigm the tachyonic scalar field has been used to generate models that attempt to solve some of the open problems that physics faces nowadays, both in cosmology and high energy physics as well. When these field configurations are produced by the interplay of higher dimensional warped gravity with some matter content, braneworld models must prove to be stable under the whole set of small fluctuations of the gravitational and matter fields background, among other consistency tests. Here we present a complete proof of the stability under scalar perturbations of tachyonic thick braneworlds with an embedded maximally symmetric 4D space-time, revealing its physical consistency. This family of models contains a recently reported tachyonic de Sitter thick braneworld which possesses a series of appealing properties. These features encompass complete regularity, asymptotic flatness (instead of being asymptotically dS or AdS) even when it contains a negative bulk cosmological constant, a relevant 3-brane with dS metric which naturally arises from the full set of field equations of the 5D background (it is not imposed), qualitatively describing the inflationary epochs of our Universe, and a graviton spectrum with a single zero mode bound state that accounts for the 4D graviton localised on the brane and is separated from the continuum of Kaluza-Klein massive graviton excitations by a mass gap. The presence of this mass gap in the graviton spectrum makes the extra-dimensional corrections to Newton's law decay exponentially. Gauge vector fields with a single massless bound state in its mass spectrum are also localised on this braneworld model a fact that allows us to recover the Coulomb's law of our 4D world. All these properties of the above referred tachyonic braneworld together with the positive stability analysis provided in this work, constitute a firm step towards the construction of realistic cosmological models within the braneworld paradigm.
Significant gamma lines from inert Higgs dark matter.
Gustafsson, Michael; Lundström, Erik; Bergström, Lars; Edsjö, Joakim
2007-07-27
One way to unambiguously confirm the existence of particle dark matter and determine its mass would be to detect its annihilation into monochromatic gamma-rays in upcoming telescopes. One of the most minimal models for dark matter is the inert doublet model, obtained by adding another Higgs doublet with no direct coupling to fermions. For a mass between 40 and 80 GeV, the lightest of the new inert Higgs particles can give the correct cosmic abundance of cold dark matter in agreement with current observations. We show that for this scalar dark matter candidate, the annihilation signal of monochromatic gammagamma and Zgamma final states would be exceptionally strong. The energy range and rates for these gamma-ray line signals make them ideal to search for with the soon upcoming GLAST satellite.
Mukherjee, Shubhabrata; Walter, Stefan; Kauwe, John S.K.; Saykin, Andrew J.; Bennett, David A.; Larson, Eric B.; Crane, Paul K.; Glymour, M. Maria
2015-01-01
Observational research shows that higher body mass index (BMI) increases Alzheimer’s disease (AD) risk, but it is unclear whether this association is causal. We applied genetic variants that predict BMI in Mendelian Randomization analyses, an approach that is not biased by reverse causation or confounding, to evaluate whether higher BMI increases AD risk. We evaluated individual level data from the AD Genetics Consortium (ADGC: 10,079 AD cases and 9,613 controls), the Health and Retirement Study (HRS: 8,403 participants with algorithm-predicted dementia status) and published associations from the Genetic and Environmental Risk for AD consortium (GERAD1: 3,177 AD cases and 7,277 controls). No evidence from individual SNPs or polygenic scores indicated BMI increased AD risk. Mendelian Randomization effect estimates per BMI point (95% confidence intervals) were: ADGC OR=0.95 (0.90, 1.01); HRS OR=1.00 (0.75, 1.32); GERAD1 OR=0.96 (0.87, 1.07). One subscore (cellular processes not otherwise specified) unexpectedly predicted lower AD risk. PMID:26079416
Merkley, Eric D; Rysavy, Steven; Kahraman, Abdullah; Hafen, Ryan P; Daggett, Valerie; Adkins, Joshua N
2014-06-01
Integrative structural biology attempts to model the structures of protein complexes that are challenging or intractable by classical structural methods (due to size, dynamics, or heterogeneity) by combining computational structural modeling with data from experimental methods. One such experimental method is chemical crosslinking mass spectrometry (XL-MS), in which protein complexes are crosslinked and characterized using liquid chromatography-mass spectrometry to pinpoint specific amino acid residues in close structural proximity. The commonly used lysine-reactive N-hydroxysuccinimide ester reagents disuccinimidylsuberate (DSS) and bis(sulfosuccinimidyl)suberate (BS(3) ) have a linker arm that is 11.4 Å long when fully extended, allowing Cα (alpha carbon of protein backbone) atoms of crosslinked lysine residues to be up to ∼24 Å apart. However, XL-MS studies on proteins of known structure frequently report crosslinks that exceed this distance. Typically, a tolerance of ∼3 Å is added to the theoretical maximum to account for this observation, with limited justification for the chosen value. We used the Dynameomics database, a repository of high-quality molecular dynamics simulations of 807 proteins representative of diverse protein folds, to investigate the relationship between lysine-lysine distances in experimental starting structures and in simulation ensembles. We conclude that for DSS/BS(3), a distance constraint of 26-30 Å between Cα atoms is appropriate. This analysis provides a theoretical basis for the widespread practice of adding a tolerance to the crosslinker length when comparing XL-MS results to structures or in modeling. We also discuss the comparison of XL-MS results to MD simulations and known structures as a means to test and validate experimental XL-MS methods. © 2014 The Protein Society.
Merkley, Eric D; Rysavy, Steven; Kahraman, Abdullah; Hafen, Ryan P; Daggett, Valerie; Adkins, Joshua N
2014-01-01
Integrative structural biology attempts to model the structures of protein complexes that are challenging or intractable by classical structural methods (due to size, dynamics, or heterogeneity) by combining computational structural modeling with data from experimental methods. One such experimental method is chemical crosslinking mass spectrometry (XL-MS), in which protein complexes are crosslinked and characterized using liquid chromatography-mass spectrometry to pinpoint specific amino acid residues in close structural proximity. The commonly used lysine-reactive N-hydroxysuccinimide ester reagents disuccinimidylsuberate (DSS) and bis(sulfosuccinimidyl)suberate (BS3) have a linker arm that is 11.4 Å long when fully extended, allowing Cα (alpha carbon of protein backbone) atoms of crosslinked lysine residues to be up to ∼24 Å apart. However, XL-MS studies on proteins of known structure frequently report crosslinks that exceed this distance. Typically, a tolerance of ∼3 Å is added to the theoretical maximum to account for this observation, with limited justification for the chosen value. We used the Dynameomics database, a repository of high-quality molecular dynamics simulations of 807 proteins representative of diverse protein folds, to investigate the relationship between lysine–lysine distances in experimental starting structures and in simulation ensembles. We conclude that for DSS/BS3, a distance constraint of 26–30 Å between Cα atoms is appropriate. This analysis provides a theoretical basis for the widespread practice of adding a tolerance to the crosslinker length when comparing XL-MS results to structures or in modeling. We also discuss the comparison of XL-MS results to MD simulations and known structures as a means to test and validate experimental XL-MS methods. PMID:24639379
Testing modified gravity at large distances with the HI Nearby Galaxy Survey's rotation curves
NASA Astrophysics Data System (ADS)
Mastache, Jorge; Cervantes-Cota, Jorge L.; de la Macorra, Axel
2013-03-01
Recently a new—quantum motivated—theory of gravity has been proposed that modifies the standard Newtonian potential at large distances when spherical symmetry is considered. Accordingly, Newtonian gravity is altered by adding an extra Rindler acceleration term that has to be phenomenologically determined. Here we consider a standard and a power-law generalization of the Rindler modified Newtonian potential. The new terms in the gravitational potential are hypothesized to play the role of dark matter in galaxies. Our galactic model includes the mass of the integrated gas, and stars for which we consider three stellar mass functions (Kroupa, diet-Salpeter, and free mass model). We test this idea by fitting rotation curves of seventeen low surface brightness galaxies from the HI Nearby Galaxy Survey (THINGS). We find that the Rindler parameters do not perform a suitable fit to the rotation curves in comparison to standard dark matter profiles (Navarro-Frenk-White and Burkert) and, in addition, the computed parameters of the Rindler gravity show a high spread, posing the model as a nonacceptable alternative to dark matter.
Cosmological parameter estimation from CMB and X-ray cluster after Planck
NASA Astrophysics Data System (ADS)
Hu, Jian-Wei; Cai, Rong-Gen; Guo, Zong-Kuan; Hu, Bin
2014-05-01
We investigate constraints on cosmological parameters in three 8-parameter models with the summed neutrino mass as a free parameter, by a joint analysis of CCCP X-ray cluster data, the newly released Planck CMB data as well as some external data sets including baryon acoustic oscillation measurements from the 6dFGS, SDSS DR7 and BOSS DR9 surveys, and Hubble Space Telescope H0 measurement. We find that the combined data strongly favor a non-zero neutrino masses at more than 3σ confidence level in these non-vanilla models. Allowing the CMB lensing amplitude AL to vary, we find AL > 1 at 3σ confidence level. For dark energy with a constant equation of state w, we obtain w < -1 at 3σ confidence level. The estimate of the matter power spectrum amplitude σ8 is discrepant with the Planck value at 2σ confidence level, which reflects some tension between X-ray cluster data and Planck data in these non-vanilla models. The tension can be alleviated by adding a 9% systematic shift in the cluster mass function.
NASA Technical Reports Server (NTRS)
Shykoff, Barbara E.; Swanson, Harvey T.
1987-01-01
A new method for correction of mass spectrometer output signals is described. Response-time distortion is reduced independently of any model of mass spectrometer behavior. The delay of the system is found first from the cross-correlation function of a step change and its response. A two-sided time-domain digital correction filter (deconvolution filter) is generated next from the same step response data using a regression procedure. Other data are corrected using the filter and delay. The mean squared error between a step response and a step is reduced considerably more after the use of a deconvolution filter than after the application of a second-order model correction. O2 consumption and CO2 production values calculated from data corrupted by a simulated dynamic process return to near the uncorrupted values after correction. Although a clean step response or the ensemble average of several responses contaminated with noise is needed for the generation of the filter, random noise of magnitude not above 0.5 percent added to the response to be corrected does not impair the correction severely.
NASA Astrophysics Data System (ADS)
Temmer, Manuela; Thalmann, Julia K.; Dissauer, Karin; Veronig, Astrid M.; Tschernitz, Johannes; Hinterreiter, Jürgen; Rodriguez, Luciano
2017-07-01
We analyze the well-observed flare and coronal mass ejection (CME) from 1 October 2011 (SOL2011-10-01T09:18) covering the complete chain of effects - from Sun to Earth - to better understand the dynamic evolution of the CME and its embedded magnetic field. We study in detail the solar surface and atmosphere associated with the flare and CME using the Solar Dynamics Observatory (SDO) and ground-based instruments. We also track the CME signature off-limb with combined extreme ultraviolet (EUV) and white-light data from the Solar Terrestrial Relations Observatory (STEREO). By applying the graduated cylindrical shell (GCS) reconstruction method and total mass to stereoscopic STEREO-SOHO ( Solar and Heliospheric Observatory) coronagraph data, we track the temporal and spatial evolution of the CME in the interplanetary space and derive its geometry and 3D mass. We combine the GCS and Lundquist model results to derive the axial flux and helicity of the magnetic cloud (MC) from in situ measurements from Wind. This is compared to nonlinear force-free (NLFF) model results, as well as to the reconnected magnetic flux derived from the flare ribbons (flare reconnection flux) and the magnetic flux encompassed by the associated dimming (dimming flux). We find that magnetic reconnection processes were already ongoing before the start of the impulsive flare phase, adding magnetic flux to the flux rope before its final eruption. The dimming flux increases by more than 25% after the end of the flare, indicating that magnetic flux is still added to the flux rope after eruption. Hence, the derived flare reconnection flux is most probably a lower limit for estimating the magnetic flux within the flux rope. We find that the magnetic helicity and axial magnetic flux are lower in the interplanetary space by ˜ 50% and 75%, respectively, possibly indicating an erosion process. A CME mass increase of 10% is observed over a range of {˜} 4 - 20 R_{⊙}. The temporal evolution of the CME-associated core-dimming regions supports the scenario that fast outflows might supply additional mass to the rear part of the CME.
The DTIC Review: Volume 2, Number 4, Surviving Chemical and Biological Warfare
1996-12-01
CHROMATOGRAPHIC ANALYSIS, NUCLEAR MAGNETIC RESONANCE, INFRARED SPECTROSCOPY , ARMY RESEARCH, DEGRADATION, VERIFICATION, MASS SPECTROSCOPY , LIQUID... mycotoxins . Such materials are not attractive as weapons of mass destruction however, as large amounts are required to produce lethal effects. In...VERIFICATION, ATOMIC ABSORPTION SPECTROSCOPY , ATOMIC ABSORPTION. AL The DTIC Review Defense Technical Information Center AD-A285 242 AD-A283 754 EDGEWOOO
NASA Astrophysics Data System (ADS)
Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.
2017-03-01
Mass-diameter (m-D) and projected area-diameter (A-D) relations are often used to describe the shape of nonspherical ice particles. This study analytically investigates how retrieved effective radius (reff) and ice water content (IWC) from radar and lidar measurements depend on the assumption of m-D [m(D) = a Db] and A-D [A(D) = γ Dδ] relationships. We assume that unattenuated reflectivity factor (Z) and visible extinction coefficient (kext) by cloud particles are available from the radar and lidar measurements, respectively. A sensitivity test shows that reff increases with increasing a, decreasing b, decreasing γ, and increasing δ. It also shows that a 10% variation of a, b, γ, and δ induces more than a 100% change of reff. In addition, we consider both gamma and lognormal particle size distributions (PSDs) and examine the sensitivity of reff to the assumption of PSD. It is shown that reff increases by up to 10% with increasing dispersion (μ) of the gamma PSD by 2, when large ice particles are predominant. Moreover, reff decreases by up to 20% with increasing the width parameter (ω) of the lognormal PSD by 0.1. We also derive an analytic conversion equation between two effective radii when different particle shapes and PSD assumptions are used. When applying the conversion equation to nine types of m-D and A-D relationships, reff easily changes up to 30%. The proposed reff conversion method can be used to eliminate the inconsistency of assumptions that made in a cloud retrieval algorithm and a forward radiative transfer model.
Mendis, Lakshini H S; Grey, Angus C; Faull, Richard L M; Curtis, Maurice A
2016-10-01
Alzheimer's disease (AD), the leading cause of dementia, is pathologically characterized by β-amyloid plaques and tau tangles. However, there is also evidence of lipid dyshomeostasis-mediated AD pathology. Given the structural diversity of lipids, mass spectrometry is a useful tool for studying lipid changes in AD. Although there have been a few studies investigating lipid changes in the human hippocampus in particular, there are few reports on how lipids change in each hippocampal subfield (e.g., Cornu Ammonis [CA] 1-4, dentate gyrus [DG] etc.). Since each subfield has its own function, we postulated that there could be lipid changes that are unique to each. We used matrix-assisted laser desorption/ionization-imaging mass spectrometry to investigate specific lipid changes in each subfield in AD. Data from the hippocampus region of six age- and gender-matched normal and AD pairs were analyzed with SCiLS lab 2015b software (SCiLS GmbH, Germany; RRID:SCR_014426), using an analysis workflow developed in-house. Hematoxylin, eosin, and luxol fast blue staining were used to precisely delineate each anatomical hippocampal subfield. Putative lipid identities, which were consistent with published data, were assigned using MS/MS. Both positively and negatively charged lipid ion species were abundantly detected in normal and AD tissue. While the distribution pattern of lipids did not change in AD, the abundance of some lipids changed, consistent with trends that have been previously reported. However, our results indicated that the majority of these lipid changes specifically occur in the CA1 region. Additionally, there were many lipid changes that were specific to the DG. Matrix-assisted laser desorption/ionization-imaging mass spectrometry and our analysis workflow provide a novel method to investigate specific lipid changes in hippocampal subfields. Future work will focus on elucidating the role that specific lipid differences in each subfield play in AD pathogenesis.
Immirzi parameter and Noether charges in first order gravity
NASA Astrophysics Data System (ADS)
Durka, Remigiusz
2012-02-01
The framework of SO(3,2) constrained BF theory applied to gravity makes it possible to generalize formulas for gravitational diffeomorphic Noether charges (mass, angular momentum, and entropy). It extends Wald's approach to the case of first order gravity with a negative cosmological constant, the Holst modification and the topological terms (Nieh-Yan, Euler, and Pontryagin). Topological invariants play essential role contributing to the boundary terms in the regularization scheme for the asymptotically AdS spacetimes, so that the differentiability of the action is automatically secured. Intriguingly, it turns out that the black hole thermodynamics does not depend on the Immirzi parameter for the AdS-Schwarzschild, AdS-Kerr, and topological black holes, whereas a nontrivial modification appears for the AdS-Taub-NUT spacetime, where it impacts not only the entropy, but also the total mass.
Specific Triazine Herbicides Induce Amyloid-β42 Production.
Portelius, Erik; Durieu, Emilie; Bodin, Marion; Cam, Morgane; Pannee, Josef; Leuxe, Charlotte; Mabondzo, Aloϊse; Oumata, Nassima; Galons, Hervé; Lee, Jung Yeol; Chang, Young-Tae; Stϋber, Kathrin; Koch, Philipp; Fontaine, Gaëlle; Potier, Marie-Claude; Manousopoulou, Antigoni; Garbis, Spiros D; Covaci, Adrian; Van Dam, Debby; De Deyn, Peter; Karg, Frank; Flajolet, Marc; Omori, Chiori; Hata, Saori; Suzuki, Toshiharu; Blennow, Kaj; Zetterberg, Henrik; Meijer, Laurent
2016-10-18
Proteolytic cleavage of the amyloid-β protein precursor (AβPP) by secretases leads to extracellular release of amyloid-β (Aβ) peptides. Increased production of Aβ42 over Aβ40 and aggregation into oligomers and plaques constitute an Alzheimer's disease (AD) hallmark. Identifying products of the 'human chemical exposome' (HCE) able to induce Aβ42 production may be a key to understanding some of the initiating causes of AD and to generate non-genetic, chemically-induced AD animal models. A cell model was used to screen HCE libraries for Aβ42 inducers. Out of 3500+ compounds, six triazine herbicides were found that induced a β- and γ-secretases-dependent, 2-10 fold increase in the production of extracellular Aβ42 in various cell lines, primary neuronal cells, and neurons differentiated from human-induced pluripotent stem cells (iPSCs). Immunoprecipitation/mass spectrometry analyses show enhanced production of Aβ peptides cleaved at positions 42/43, and reduced production of peptides cleaved at positions 38 and lower, a characteristic of AD. Neurons derived from iPSCs obtained from a familial AD (FAD) patient (AβPP K724N) produced more Aβ42 versus Aβ40 than neurons derived from healthy controls iPSCs (AβPP WT). Triazines enhanced Aβ42 production in both control and AD iPSCs-derived neurons. Triazines also shifted the cleavage pattern of alcadeinα, another γ-secretase substrate, suggesting a direct effect of triazines on γ-secretase activity. In conclusion, several widely used triazines enhance the production of toxic, aggregation prone Aβ42/Aβ43 amyloids, suggesting the possible existence of environmental "Alzheimerogens" which may contribute to the initiation and propagation of the amyloidogenic process in late-onset AD.
NASA Astrophysics Data System (ADS)
Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.
2015-09-01
Multi-generational oxidation of volatile organic compound (VOC) oxidation products can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA) compared to calculations that consider only the first few generations of oxidation reactions. However, the most commonly used state-of-the-science schemes in 3-D regional or global models that account for multi-generational oxidation (1) consider only functionalization reactions but do not consider fragmentation reactions, (2) have not been constrained to experimental data; and (3) are added on top of existing parameterizations. The incomplete description of multi-generational oxidation in these models has the potential to bias source apportionment and control calculations for SOA. In this work, we used the Statistical Oxidation Model (SOM) of Cappa and Wilson (2012), constrained by experimental laboratory chamber data, to evaluate the regional implications of multi-generational oxidation considering both functionalization and fragmentation reactions. SOM was implemented into the regional UCD/CIT air quality model and applied to air quality episodes in California and the eastern US. The mass, composition and properties of SOA predicted using SOM are compared to SOA predictions generated by a traditional "two-product" model to fully investigate the impact of explicit and self-consistent accounting of multi-generational oxidation. Results show that SOA mass concentrations predicted by the UCD/CIT-SOM model are very similar to those predicted by a two-product model when both models use parameters that are derived from the same chamber data. Since the two-product model does not explicitly resolve multi-generational oxidation reactions, this finding suggests that the chamber data used to parameterize the models captures the majority of the SOA mass formation from multi-generational oxidation under the conditions tested. Consequently, the use of low and high NOx yields perturbs SOA concentrations by a factor of two and are probably a much stronger determinant in 3-D models than constrained multi-generational oxidation. While total predicted SOA mass is similar for the SOM and two-product models, the SOM model predicts increased SOA contributions from anthropogenic (alkane, aromatic) and sesquiterpenes and decreased SOA contributions from isoprene and monoterpene relative to the two-product model calculations. The SOA predicted by SOM has a much lower volatility than that predicted by the traditional model resulting in better qualitative agreement with volatility measurements of ambient OA. On account of its lower-volatility, the SOA mass produced by SOM does not appear to be as strongly influenced by the inclusion of oligomerization reactions, whereas the two-product model relies heavily on oligomerization to form low volatility SOA products. Finally, an unconstrained contemporary hybrid scheme to model multi-generational oxidation within the framework of a two-product model in which "ageing" reactions are added on top of the existing two-product parameterization is considered. This hybrid scheme formed at least three times more SOA than the SOM during regional simulations as a result of excessive transformation of semi-volatile vapors into lower volatility material that strongly partitions to the particle phase. This finding suggests that these "hybrid" multi-generational schemes should be used with great caution in regional models.
NASA Astrophysics Data System (ADS)
Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.
2016-02-01
Multi-generational oxidation of volatile organic compound (VOC) oxidation products can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA) compared to calculations that consider only the first few generations of oxidation reactions. However, the most commonly used state-of-the-science schemes in 3-D regional or global models that account for multi-generational oxidation (1) consider only functionalization reactions but do not consider fragmentation reactions, (2) have not been constrained to experimental data and (3) are added on top of existing parameterizations. The incomplete description of multi-generational oxidation in these models has the potential to bias source apportionment and control calculations for SOA. In this work, we used the statistical oxidation model (SOM) of Cappa and Wilson (2012), constrained by experimental laboratory chamber data, to evaluate the regional implications of multi-generational oxidation considering both functionalization and fragmentation reactions. SOM was implemented into the regional University of California at Davis / California Institute of Technology (UCD/CIT) air quality model and applied to air quality episodes in California and the eastern USA. The mass, composition and properties of SOA predicted using SOM were compared to SOA predictions generated by a traditional two-product model to fully investigate the impact of explicit and self-consistent accounting of multi-generational oxidation.Results show that SOA mass concentrations predicted by the UCD/CIT-SOM model are very similar to those predicted by a two-product model when both models use parameters that are derived from the same chamber data. Since the two-product model does not explicitly resolve multi-generational oxidation reactions, this finding suggests that the chamber data used to parameterize the models captures the majority of the SOA mass formation from multi-generational oxidation under the conditions tested. Consequently, the use of low and high NOx yields perturbs SOA concentrations by a factor of two and are probably a much stronger determinant in 3-D models than multi-generational oxidation. While total predicted SOA mass is similar for the SOM and two-product models, the SOM model predicts increased SOA contributions from anthropogenic (alkane, aromatic) and sesquiterpenes and decreased SOA contributions from isoprene and monoterpene relative to the two-product model calculations. The SOA predicted by SOM has a much lower volatility than that predicted by the traditional model, resulting in better qualitative agreement with volatility measurements of ambient OA. On account of its lower-volatility, the SOA mass produced by SOM does not appear to be as strongly influenced by the inclusion of oligomerization reactions, whereas the two-product model relies heavily on oligomerization to form low-volatility SOA products. Finally, an unconstrained contemporary hybrid scheme to model multi-generational oxidation within the framework of a two-product model in which ageing reactions are added on top of the existing two-product parameterization is considered. This hybrid scheme formed at least 3 times more SOA than the SOM during regional simulations as a result of excessive transformation of semi-volatile vapors into lower volatility material that strongly partitions to the particle phase. This finding suggests that these hybrid multi-generational schemes should be used with great caution in regional models.
Determination of coal ash content by the combined x-ray fluorescence and scattering spectrum
NASA Astrophysics Data System (ADS)
Mikhailov, I. F.; Baturin, A. A.; Mikhailov, A. I.; Borisova, S. S.; Fomina, L. P.
2018-02-01
An alternative method is proposed for the determination of the inorganic constituent mass fraction (ash) in solid fuel by the ratio of Compton and Rayleigh X-ray scattering peaks IC/IR subject to the iron fluorescence intensity. An original X-ray optical scheme with a Ti/Mo (or Sc/Cu) double-layer secondary radiator allows registration of the combined fluorescence-and-scattering spectrum at the specified scattering angle. An algorithm for linear calibration of the Compton-to-Rayleigh IC/IR ratio is proposed which uses standard samples with two certified characteristics: mass fractions of ash (Ad) and iron oxide (WFe2O3). Ash mass fractions have been determined for coals of different deposits in the wide range of Ad from 9.4% to 52.7% mass and WFe2O3 from 0.3% to 4.95% mass. Due to the high penetrability of the probing radiation with energy E > 17 keV, the sample preparation procedure is rather simplified in comparison with the traditional method of Ad determination by the sum of fluorescence intensities of all constituent elements.
Searching for brown dwarfs from submotions of binaries with speckle observations
NASA Astrophysics Data System (ADS)
Fu, Hsieh-Hai
1994-01-01
The search for brown dwarfs in binary systems is of great scientific interest and is a quest that pushes observing accuracy to its limit. The study of brown dwarfs is related to the search for dark matter, the initial mass function for stars of all masses, and theories of stellar formation. On the other hand, searching for brown dwarfs is a challenge because of their faintness and very low mass. Although many techniques have been used to detect brown dwarfs, a direct measurement of mass is the only criterion for distinguishing a brown dwarf from a star, and binary observation is still the best way for determining the accurate masses of celestial objects through Kepler's third law. Since 1976, CHARA has accumulated thousands of binary star speckle observations with high precision that can be used to find masses of possible unseen companions in binary systems through astrometrically measured submotions. A modified discrete Fourier transform was used to detect periodicity in data sets having uneven temporal distributions. This dissertation, an extension of work initiated by Dr. Ali Al-Shukri in 1991, uses the CHARA speckle measurements to evaluate their limiting accuracy and then to search for unseen companions from submotions of binary orbital motions. The successful detection of the previously known 1.83-year period sub-motion of the astrometric system ADS 8119 Aa demonstrates that this analysis can be used to find other systems in future investigations, even though no convincing evidence was found for the existence of a brown dwarf. Four possible companions were found to the binaries ADS 8197, ADS 9392, ADS 9494, and ADS 14073 with periods of 3.3, 2.6, 0.3, and 3.78 years and minimum masses in the ranges of 0.015-0.019, 0.11-0.65, 0.04-0.19, and 0.14-0.16 solar masses, respectively. The overall null result for detecting brown dwarfs may be partially explained as a real lack of massive brown dwarfs as members of multiple systems.
LHC signals for singlet neutrinos from a natural warped seesaw mechanism. I
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Du, Peizhi; Hong, Sungwoo
2018-04-01
Recently, it was shown in K. Agashe et al. [Phys. Rev. D 94, 013001 (2016), 10.1103/PhysRevD.94.013001] that a straightforward implementation of the type I seesaw mechanism in a warped extra dimensional framework is in reality a natural realization of "inverse" seesaw; i.e., the Standard Model (SM) neutrino mass is dominantly generated by exchange of pseudo-Dirac TeV-mass SM singlet neutrinos. By the AdS /CFT correspondence, this scenario is dual to these singlet particles being composites of some new strong dynamics, along with the SM Higgs boson (and possibly the top quark), with the rest of the SM particles being mostly elementary. We study signals from production of these heavy neutrinos at the Large Hadron Collider (LHC). We focus on the scenario where the strong sector has a global S U (2 )L×S U (2 )R×U (1 )X symmetry; such a left-right (LR) structure being motivated by consistency with the electroweak (EW) precision tests. The singlet neutrinos are charged under S U (2 )R×U (1 )X symmetry, thus can be produced from WR± exchange, as in four-dimensional LR symmetric models. However, the direct coupling of light quarks to WR± is negligible, due to WR± also being composite (cf. four-dimensional LR models); nonetheless, a sizable coupling can be induced by mixings among the various types of W± bosons. Furthermore, WR± decays dominantly into the singlet and composite partner of charged lepton (cf. SM lepton itself in four-dimensional LR model). This heavy charged lepton, in turn, decays into SM lepton, plus Z /Higgs , thus the latter can be used for extra identification of the signal. For a benchmark scenario with WR± of mass 2 TeV and singlet neutrino of mass 750 GeV, we find that, in both the dilepton +dijet +Higgs and trilepton +Higgs channels, significant evidence can be seen at the 14 TeV LHC for an integrated luminosity of 300 fb-1 and that even discovery is possible with slightly more luminosity.
Theoretical uncertainties on the radius of low- and very-low-mass stars
NASA Astrophysics Data System (ADS)
Tognelli, E.; Prada Moroni, P. G.; Degl'Innocenti, S.
2018-05-01
We performed an analysis of the main theoretical uncertainties that affect the radius of low- and very-low-mass stars predicted by current stellar models. We focused on stars in the mass range 0.1-1 M⊙, on both the zero-age main sequence (ZAMS) and on 1, 2, and 5 Gyr isochrones. First, we quantified the impact on the radius of the uncertainty of several quantities, namely the equation of state, radiative opacity, atmospheric models, convection efficiency, and initial chemical composition. Then, we computed the cumulative radius error stripe obtained by adding the radius variation due to all the analysed quantities. As a general trend, the radius uncertainty increases with the stellar mass. For ZAMS structures the cumulative error stripe of very-low-mass stars is about ±2 and ±3 per cent, while at larger masses it increases up to ±4 and ±5 per cent. The radius uncertainty gets larger and age dependent if isochrones are considered, reaching for M ˜ 1 M⊙ about +12(-15) per cent at an age of 5 Gyr. We also investigated the radius uncertainty at a fixed luminosity. In this case, the cumulative error stripe is the same for both ZAMS and isochrone models and it ranges from about ±4 to +7 and +9(-5) per cent. We also showed that the sole uncertainty on the chemical composition plays an important role in determining the radius error stripe, producing a radius variation that ranges between about ±1 and ±2 per cent on ZAMS models with fixed mass and about ±3 and ±5 per cent at a fixed luminosity.
Performance modeling of unmanned aerial vehicles with on-board energy harvesting
NASA Astrophysics Data System (ADS)
Anton, Steven R.; Inman, Daniel J.
2011-03-01
The concept of energy harvesting in unmanned aerial vehicles (UAVs) has received much attention in recent years. Solar powered flight of small aircraft dates back to the 1970s when the first fully solar flight of an unmanned aircraft took place. Currently, research has begun to investigate harvesting ambient vibration energy during the flight of UAVs. The authors have recently developed multifunctional piezoelectric self-charging structures in which piezoelectric devices are combined with thin-film lithium batteries and a substrate layer in order to simultaneously harvest energy, store energy, and carry structural load. When integrated into mass and volume critical applications, such as unmanned aircraft, multifunctional devices can provide great benefit over conventional harvesting systems. A critical aspect of integrating any energy harvesting system into a UAV, however, is the potential effect that the additional system has on the performance of the aircraft. Added mass and increased drag can significantly degrade the flight performance of an aircraft, therefore, it is important to ensure that the addition of an energy harvesting system does not adversely affect the efficiency of a host aircraft. In this work, a system level approach is taken to examine the effects of adding both solar and piezoelectric vibration harvesting to a UAV test platform. A formulation recently presented in the literature is applied to describe the changes to the flight endurance of a UAV based on the power available from added harvesters and the mass of the harvesters. Details of the derivation of the flight endurance model are reviewed and the formulation is applied to an EasyGlider remote control foam hobbyist airplane, which is selected as the test platform for this study. A theoretical study is performed in which the normalized change in flight endurance is calculated based on the addition of flexible thin-film solar panels to the upper surface of the wings, as well as the addition of flexible piezoelectric patches to the root of the wing spar. Experimental testing is also performed in which the wing spar of the EasyGlider aircraft is modified to include both Macro Fiber Composite and Piezoelectric Fiber Composite piezoelectric patches near the root of the wing and two thin-film solar panels are installed onto the upper wing surface to harvest vibration and solar energy during flight. Testing is performed in which the power output of the various harvesters is measured during flight. Results of the flight testing are used to update the model with accurate measures of the power available from the energy harvesting systems. Finally, the model is used to predict the potential benefits of adding multifunctional self-charging structures to the wing spar of the aircraft in order to harvest vibration energy during flight and provide a local power source for low-power sensors.
Analysis of nitrogen cycling in a forest stream during autumn using a 15N-tracer addition
Jennifer L. Tank; Judy L. Meyer; Diane M. Sanzone; Patrick J. Mulholland; Jackson R. Webster; Bruce J. Peterson; Wilfred M. Wollheim; Norman E. Leonard
2000-01-01
We added l5NH4Cl over 6 weeks to Upper Ball Creek, a second-order deciduous forest stream in the Appalachian Mountains, to follow the uptake, spiraling, and fate of nitrogen in a stream food web during autumn. A priori predictions of N flow and retention were made using a simple food web mass balance model. Values of ...
Amorphous SiC/c-ZnO-Based Quasi-Lamb Mode Sensor for Liquid Environments.
Caliendo, Cinzia; Hamidullah, Muhammad; Laidoudi, Farouk
2017-05-25
The propagation of the quasi-Lamb modes along a-SiC/ZnO thin composite plates was modeled and analysed with the aim to design a sensor able to detect the changes in parameters of a liquid environment, such as added mass and viscosity changes. The modes propagation was modeled by numerically solving the system of coupled electro-mechanical field equations in three media. The mode shape, the power flow, the phase velocity, and the electroacoustic coupling efficiency (K²) of the modes were calculated, specifically addressing the design of enhanced-coupling, microwave frequency sensors for applications in probing the solid/liquid interface. Three modes were identified that have predominant longitudinal polarization, high phase velocity, and quite good K²: the fundamental quasi symmetric mode (qS₀) and two higher order quasi-longitudinal modes (qL₁ and qL₂) with a dominantly longitudinal displacement component in one plate side. The velocity and attenuation of these modes were calculated for different liquid viscosities and added mass, and the gravimetric and viscosity sensitivities of both the phase velocity and attenuation were theoretically calculated. The present study highlights the feasibility of the a-SiC/ZnO acoustic waveguides for the development of high-frequency, integrated-circuit compatible electroacoustic devices suitable for working in a liquid environment.
A simple technique for continuous measurement of time-variable gas transfer in surface waters
Tobias, Craig R.; Bohlke, John Karl; Harvey, Judson W.; Busenberg, Eurybiades
2009-01-01
Mass balance models of dissolved gases in streams, lakes, and rivers serve as the basis for estimating wholeecosystem rates for various biogeochemical processes. Rates of gas exchange between water and the atmosphere are important and error-prone components of these models. Here we present a simple and efficient modification of the SF6 gas tracer approach that can be used concurrently while collecting other dissolved gas samples for dissolved gas mass balance studies in streams. It consists of continuously metering SF6-saturated water directly into the stream at a low rate of flow. This approach has advantages over pulse injection of aqueous solutions or bubbling large amounts of SF6 into the stream. By adding the SF6 as a saturated solution, we minimize the possibility that other dissolved gas measurements are affected by sparging and/or bubble injecta. Because the SF6 is added continuously we have a record of changing gas transfer velocity (GTV) that is contemporaneous with the sampling of other nonconservative ambient dissolved gases. Over a single diel period, a 30% variation in GTV was observed in a second-order stream (Sugar Creek, Indiana, USA). The changing GTV could be attributed in part to changes in temperature and windspeed that occurred on hourly to diel timescales.
Recirculation of the Canary Current in Fall
NASA Astrophysics Data System (ADS)
Hernandez-Guerra, A.; Espino-Falcón, E.; Vélez-Belchí, P.; Pérez-Hernández, M. D.; Martínez, A.; Cana, L.
2015-12-01
CTD and LADCP data measured in October 2014 are used to describe water masses, geostrophic circulation and mass transport in the Eastern Boundary of the North Atlantic Subtropical Gyre. Initial geostrophic velocities are adjusted to velocities from the LADCP data to estimate an initial velocity at the reference layer. Final reference velocities and consequently circulation is estimated from an inverse box model applied to an ocean divided into 12 neutral density layers. This allows us to evaluate mass fluxes consistent with the thermal wind equation and mass conservation. Ekman transport derived from the Weather Research and Forecasting (WRF) model is added to the first layer and adjusted with the inverse model. The Canary Current (CC) transports southward a net mass of 3.8±0.7 Sv (1 Sv=106 m3/s≈109 kg/s) of North Atlantic Central Water (NACW) at the thermocline layers (~0-700 m) and 1.9±0.6 Sv of a mixture of Mediterranean Water (MW) and Antarctic Intermediate Water (AAIW) at intermediate layers (~800-1400 m). The CC recirculates northward at a rate of 4.8±0.8 Sv at the thermocline layers between the Lanzarote Island and the African coast (Lanzarote Passage) on this occasion. Separately, at intermediate layers, AAIW flows northward at a rate of 2.4±0.6 Sv through the Lanzarote Passage transported by the Intermediate Poleward Undercurrent (IPUC).
Sex-Based Differences in Adélie Penguin (Pygoscelis adeliae) Chick Growth Rates and Diet.
Jennings, Scott; Varsani, Arvind; Dugger, Katie M; Ballard, Grant; Ainley, David G
2016-01-01
Sexually size-dimorphic species must show some difference between the sexes in growth rate and/or length of growing period. Such differences in growth parameters can cause the sexes to be impacted by environmental variability in different ways, and understanding these differences allows a better understanding of patterns in productivity between individuals and populations. We investigated differences in growth rate and diet between male and female Adélie Penguin (Pygoscelis adeliae) chicks during two breeding seasons at Cape Crozier, Ross Island, Antarctica. Adélie Penguins are a slightly dimorphic species, with adult males averaging larger than adult females in mass (~11%) as well as bill (~8%) and flipper length (~3%). We measured mass and length of flipper, bill, tibiotarsus, and foot at 5-day intervals for 45 male and 40 female individually-marked chicks. Chick sex was molecularly determined from feathers. We used linear mixed effects models to estimate daily growth rate as a function of chick sex, while controlling for hatching order, brood size, year, and potential variation in breeding quality between pairs of parents. Accounting for season and hatching order, male chicks gained mass an average of 15.6 g d(-1) faster than females. Similarly, growth in bill length was faster for males, and the calculated bill size difference at fledging was similar to that observed in adults. There was no evidence for sex-based differences in growth of other morphological features. Adélie diet at Ross Island is composed almost entirely of two species--one krill (Euphausia crystallorophias) and one fish (Pleuragramma antarctica), with fish having a higher caloric value. Using isotopic analyses of feather samples, we also determined that male chicks were fed a higher proportion of fish than female chicks. The related differences in provisioning and growth rates of male and female offspring provides a greater understanding of the ways in which ecological factors may impact the two sexes differently.
Sex-Based Differences in Adélie Penguin (Pygoscelis adeliae) Chick Growth Rates and Diet
Jennings, Scott; Varsani, Arvind; Dugger, Katie M.; Ballard, Grant; Ainley, David G.
2016-01-01
Sexually size-dimorphic species must show some difference between the sexes in growth rate and/or length of growing period. Such differences in growth parameters can cause the sexes to be impacted by environmental variability in different ways, and understanding these differences allows a better understanding of patterns in productivity between individuals and populations. We investigated differences in growth rate and diet between male and female Adélie Penguin (Pygoscelis adeliae) chicks during two breeding seasons at Cape Crozier, Ross Island, Antarctica. Adélie Penguins are a slightly dimorphic species, with adult males averaging larger than adult females in mass (~11%) as well as bill (~8%) and flipper length (~3%). We measured mass and length of flipper, bill, tibiotarsus, and foot at 5-day intervals for 45 male and 40 female individually-marked chicks. Chick sex was molecularly determined from feathers. We used linear mixed effects models to estimate daily growth rate as a function of chick sex, while controlling for hatching order, brood size, year, and potential variation in breeding quality between pairs of parents. Accounting for season and hatching order, male chicks gained mass an average of 15.6 g d-1 faster than females. Similarly, growth in bill length was faster for males, and the calculated bill size difference at fledging was similar to that observed in adults. There was no evidence for sex-based differences in growth of other morphological features. Adélie diet at Ross Island is composed almost entirely of two species—one krill (Euphausia crystallorophias) and one fish (Pleuragramma antarctica), with fish having a higher caloric value. Using isotopic analyses of feather samples, we also determined that male chicks were fed a higher proportion of fish than female chicks. The related differences in provisioning and growth rates of male and female offspring provides a greater understanding of the ways in which ecological factors may impact the two sexes differently. PMID:26934698
ADDING REALISM TO NUCLEAR MATERIAL DISSOLVING ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, B.
2011-08-15
Two new criticality modeling approaches have greatly increased the efficiency of dissolver operations in H-Canyon. The first new approach takes credit for the linear, physical distribution of the mass throughout the entire length of the fuel assembly. This distribution of mass is referred to as the linear density. Crediting the linear density of the fuel bundles results in using lower fissile concentrations, which allows higher masses to be charged to the dissolver. Also, this approach takes credit for the fact that only part of the fissile mass is wetted at a time. There are multiple assemblies stacked on top ofmore » each other in a bundle. On average, only 50-75% of the mass (the bottom two or three assemblies) is wetted at a time. This means that only 50-75% (depending on operating level) of the mass is moderated and is contributing to the reactivity of the system. The second new approach takes credit for the progression of the dissolving process. Previously, dissolving analysis looked at a snapshot in time where the same fissile material existed both in the wells and in the bulk solution at the same time. The second new approach models multiple consecutive phases that simulate the fissile material moving from a high concentration in the wells to a low concentration in the bulk solution. This approach is more realistic and allows higher fissile masses to be charged to the dissolver.« less
Joo, Soo Hyun; Yun, Se Hee; Kang, Dong Woo; Hahn, Chang Tae; Lim, Hyun Kook; Lee, Chang Uk
2018-01-01
Introduction: Mild cognitive impairment (MCI) is a prodromal stage of dementia. The association of body mass index (BMI) and progression to Alzheimer's disease (AD) in MCI subjects according to age, sex, and cognitive intervention remains unknown. We investigated the relationship between BMI and the risk of progression to AD in subjects with MCI, as well as the effect of BMI on progression to AD depending on age, sex, cognitive intervention, and chronic diseases. Methods: Three hundred and eighty-eight MCI subjects were followed for 36.3 ± 18.4 months, prospectively. They underwent neuropsychological testing more than twice during the follow-up period. The MCI subjects were categorized into underweight, normal weight, overweight, and obese subgroups. The associations between baseline BMI and progression to AD over the follow-up period were estimated using Cox proportional hazard regression models. Data were analyzed after stratification by age, sex, cognitive intervention, and chronic diseases. Results: After adjustment for the covariates, the underweight MCI group had a higher risk of progression to AD [hazard ratio (HR): 2.38, 95% confidence interval (CI): 1.17-4.82] relative to the normal weight group. After stratifying by age, sex, cognitive intervention, and chronic diseases, this effect remained significant among females (HR: 3.15, 95% CI: 1.40-7.10), the older elderly ≥75 years old (HR: 3.52, 95% CI: 1.42-8.72), the non-intervention group (HR: 3.06, 95%CI: 1.18-7.91), and the hypertensive group (HR: 4.71, 95% CI: 1.17-18.99). Conclusion: These data indicate that underweight could be a useful marker for identifying individuals at increased risk for AD in MCI subjects. This association is even stronger in females, older elderly subjects, the non-cognitive intervention group, and the hypertensive group.
Langseth, Brian J.; Jones, Michael L.; Riley, Stephen C.
2014-01-01
Ecopath with Ecosim (EwE) is a widely used modeling tool in fishery research and management. Ecopath requires a mass-balanced snapshot of a food web at a particular point in time, which Ecosim then uses to simulate changes in biomass over time. Initial inputs to Ecopath, including estimates for biomasses, production to biomass ratios, consumption to biomass ratios, and diets, rarely produce mass balance, and thus ad hoc changes to inputs are required to balance the model. There has been little previous research of whether ad hoc changes to achieve mass balance affect Ecosim simulations. We constructed an EwE model for the offshore community of Lake Huron, and balanced the model using four contrasting but realistic methods. The four balancing methods were based on two contrasting approaches; in the first approach, production of unbalanced groups was increased by increasing either biomass or the production to biomass ratio, while in the second approach, consumption of predators on unbalanced groups was decreased by decreasing either biomass or the consumption to biomass ratio. We compared six simulation scenarios based on three alternative assumptions about the extent to which mortality rates of prey can change in response to changes in predator biomass (i.e., vulnerabilities) under perturbations to either fishing mortality or environmental production. Changes in simulated biomass values over time were used in a principal components analysis to assess the comparative effect of balancing method, vulnerabilities, and perturbation types. Vulnerabilities explained the most variation in biomass, followed by the type of perturbation. Choice of balancing method explained little of the overall variation in biomass. Under scenarios where changes in predator biomass caused large changes in mortality rates of prey (i.e., high vulnerabilities), variation in biomass was greater than when changes in predator biomass caused only small changes in mortality rates of prey (i.e., low vulnerabilities), and was amplified when environmental production was increased. When standardized to mean changes in biomass within each scenario, scenarios when vulnerabilities were low and when fishing mortality was increased explained the most variation in biomass. Our findings suggested that approaches to balancing Ecopath models have relatively little effect on changes in biomass over time, especially when compared to assumptions about how mortality rates of prey change in response to changes in predator biomass. We concluded that when constructing food-web models using EwE, determining the effect of changes in predator biomass on mortality rates of prey should be prioritized over determining the best way to balance the model.
NASA Astrophysics Data System (ADS)
Indi Sriprisan, Sirikul; Townsend, Lawrence; Cucinotta, Francis A.; Miller, Thomas M.
Purpose: An analytical knockout-ablation-coalescence model capable of making quantitative predictions of the neutron spectra from high-energy nucleon-nucleus and nucleus-nucleus collisions is being developed for use in space radiation protection studies. The FORTRAN computer code that implements this model is called UBERNSPEC. The knockout or abrasion stage of the model is based on Glauber multiple scattering theory. The ablation part of the model uses the classical evaporation model of Weisskopf-Ewing. In earlier work, the knockout-ablation model has been extended to incorporate important coalescence effects into the formalism. Recently, alpha coalescence has been incorporated, and the ability to predict light ion spectra with the coalescence model added. The earlier versions were limited to nuclei with mass numbers less than 69. In this work, the UBERNSPEC code has been extended to make predictions of secondary neutrons and light ion production from the interactions of heavy charged particles with higher mass numbers (as large as 238). The predictions are compared with published measurements of neutron spectra and light ion energy for a variety of collision pairs. Furthermore, the predicted spectra from this work are compared with the predictions from the recently-developed heavy ion event generator incorporated in the Monte Carlo radiation transport code HETC-HEDS.
A note on physical mass and the thermodynamics of AdS-Kerr black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
McInnes, Brett; Ong, Yen Chin, E-mail: matmcinn@nus.edu.sg, E-mail: yenchin.ong@nordita.org
As with any black hole, asymptotically anti-de Sitter Kerr black holes are described by a small number of parameters, including a ''mass parameter'' M that reduces to the AdS-Schwarzschild mass in the limit of vanishing angular momentum. In sharp contrast to the asymptotically flat case, the horizon area of such a black hole increases with the angular momentum parameter a if one fixes M; this appears to mean that the Penrose process in this case would violate the Second Law of black hole thermodynamics. We show that the correct procedure is to fix not M but rather the ''physical'' massmore » E=M/(1−a{sup 2}/L{sup 2}){sup 2}; this is motivated by the First Law. For then the horizon area decreases with a. We recommend that E always be used as the mass in physical processes: for example, in attempts to ''over-spin'' AdS-Kerr black holes.« less
Vortex Dynamics of Asymmetric Heave Plates
NASA Astrophysics Data System (ADS)
Rusch, Curtis; Maurer, Benjamin; Polagye, Brian
2017-11-01
Heave plates can be used to provide reaction forces for wave energy converters, which harness the power in ocean surface waves to produce electricity. Heave plate inertia includes both the static mass of the heave plate, as well as the ``added mass'' of surrounding water accelerated with the object. Heave plate geometries may be symmetric or asymmetric, with interest in asymmetric designs driven by the resulting hydrodynamic asymmetry. Limited flow visualization has been previously conducted on symmetric heave plates, but flow visualization of asymmetric designs is needed to understand the origin of observed hydrodynamic asymmetries and their dependence on the Keulegan-Carpenter number. For example, it is hypothesized that the time-varying added mass of asymmetric heave plates is caused by vortex shedding, which is related to oscillation amplitude. Here, using direct flow visualization, we explore the relationship between vortex dynamics and time-varying added mass and drag. These results suggest potential pathways for more advanced heave plate designs that can exploit vortex formation and shedding to achieve more favorable hydrodynamic properties for wave energy converters.
Nguyen, D T; McCanless, J D; Mecwan, M M; Noblett, A P; Haggard, W O; Smith, R A; Bumgardner, J D
2013-01-01
The objective of this study was to evaluate the potential benefit of 3D composite scaffolds composed of chitosan and calcium phosphate for bone tissue engineering. Additionally, incorporation of mechanically weak lyophilized microspheres within those air-dried (AD) was considered for enhanced bioactivity. AD microsphere, alone, and air- and freeze-dried microsphere (FDAD) 3D scaffolds were evaluated in vitro using a 28-day osteogenic culture model with the Saos-2 cell line. Mechanical testing, quantitative microscopy, and lysozyme-driven enzymatic degradation of the scaffolds were also studied. FDAD scaffold showed a higher concentration (p < 0.01) in cells per scaffold mass vs. AD constructs. Collagen was ∼31% greater (p < 0.01) on FDAD compared to AD scaffolds not evident in microscopy of microsphere surfaces. Alternatively, AD scaffolds demonstrated a superior threefold increase in compressive strength over FDAD (12 vs. 4 MPa) with minimal degradation. Inclusion of FD spheres within the FDAD scaffolds allowed increased cellular activity through improved seeding, proliferation, and extracellular matrix production (as collagen), although mechanical strength was sacrificed through introduction of the less stiff, porous FD spheres.
Gravitational geons in asymptotically anti-de Sitter spacetimes
NASA Astrophysics Data System (ADS)
Martinon, Grégoire; Fodor, Gyula; Grandclément, Philippe; Forgács, Peter
2017-06-01
We report on numerical constructions of fully non-linear geons in asymptotically anti-de Sitter (AdS) spacetimes in four dimensions. Our approach is based on 3 + 1 formalism and spectral methods in a gauge combining maximal slicing and spatial harmonic coordinates. We are able to construct several families of geons seeded by different families of spherical harmonics. We can reach unprecedentedly high amplitudes, with mass of order ∼1/2 of the AdS length, and with deviations of the order of 50% compared to third order perturbative approaches. The consistency of our results with numerical resolution is carefully checked and we give extensive precision monitoring techniques. All global quantities, such as mass and angular momentum, are computed using two independent frameworks that agree with each other at the 0.1% level. We also provide strong evidence for the existence of ‘excited’ (i.e. with one radial node) geon solutions of Einstein equations in asymptotically AdS spacetimes by constructing them numerically.
Metabolic profiling of Alzheimer's disease brains
NASA Astrophysics Data System (ADS)
Inoue, Koichi; Tsutsui, Haruhito; Akatsu, Hiroyasu; Hashizume, Yoshio; Matsukawa, Noriyuki; Yamamoto, Takayuki; Toyo'Oka, Toshimasa
2013-08-01
Alzheimer's disease (AD) is an irreversible, progressive brain disease and can be definitively diagnosed after death through an examination of senile plaques and neurofibrillary tangles in several brain regions. It is to be expected that changes in the concentration and/or localization of low-molecular-weight molecules are linked to the pathological changes that occur in AD, and determining their identity would provide valuable information regarding AD processes. Here, we propose definitive brain metabolic profiling using ultra-performance liquid chromatography coupled with electrospray time-of-flight mass spectrometry analysis. The acquired data were subjected to principal components analysis to differentiate the frontal and parietal lobes of the AD/Control groups. Significant differences in the levels of spermine and spermidine were identified using S-plot, mass spectra, databases and standards. Based on the investigation of the polyamine metabolite pathway, these data establish that the downstream metabolites of ornithine are increased, potentially implicating ornithine decarboxylase activity in AD pathology.
Mo, Kai-For; Heredia-Langner, Alejandro; Fraga, Carlos G
2017-03-01
In this study, an experimental design matrix was created and executed to test the effects of various real-world factors on the ability of (1) the accelerated diffusion sampler with solid phase micro-extraction (ADS-SPME) and (2) solvent extraction to capture organic chemical attribution signatures (CAS) from dimethyl methylphosphonate (DMMP) spiked onto painted wall board (PWB) surfaces. The DMMP CAS organic impurities sampled by ADS-SPME and solvent extraction were analyzed by gas chromatography/mass spectrometry (GC/MS). The number of detected DMMP CAS impurities and their respective GC/MS peak areas were determined as a function of DMMP stock, DMMP spiked volume, exposure time, SPME sampling time, and ADS headspace pressure. Based on the statistical analysis of experimental results, several general conclusions are made: (1) the amount of CAS impurity detected using ADS-SPME and GC/MS was most influenced by spiked volume, stock, and ADS headspace pressure, (2) reduced ADS headspace pressure increased the amount of detected CAS impurity, as measured by GC/MS peak area, by up to a factor of 1.7-1.9 compared to ADS at ambient headspace pressure, (3) the ADS had no measurable effect on the number of detected DMMP impurities, that is, ADS (with and without reduced pressure) had no practical effect on the DMMP impurity profile collected from spiked PWB, and (4) solvent extraction out performed ADS-SPME in terms of consistently capturing all or most of the targeted DMMP impurities from spiked PWB. Copyright © 2016 Elsevier B.V. All rights reserved.
Knechtle, Beat; Senn, Oliver; Imoberdorf, Reinhard; Joleska, Irena; Wirth, Andrea; Knechtle, Patrizia; Rosemann, Thomas
2010-01-01
We investigated in 11 female ultra-runners during a 100 km ultra-run, the association between fluid intake and prevalence of exercise-associated hyponatremia in a cross-sectional study. Athletes drank ad libitum and recorded their fluid intake. They competed at 8.0 (1.0) km/h and finished within 762 (91) min. Fluid intake was 4.1 (1.3) L during the race, equal to 0.3 (0.1) L/h. Body mass decreased by 1.5 kg (p< 0.01); pre race body mass was related to speed in the race (r = -0.78, p< 0.05); and change (Delta) in body mass was not associated with speed in the race. Change in body mass was positively (r = 0.70; p< 0.05), and Delta urinary specific gravity negatively (r = -0.67; p< 0.05), correlated to Delta percent total body water. Changes in body mass were not related to fluid intake during the race. Fluid intake was not correlated to running speed and showed no association with either Delta percent total body water nor Delta [Na] in plasma. Fluid intake showed no relationship with both Delta haematocrit and Delta plasma volume. No exercise-associated hyponatremia occurred. Female ultra- runners consuming fluids ad libitum during the race experienced no fluid overload, and ad libitum drinking protects against exercise-associated hyponatremia. The reported higher incidence of exercise-associated hyponatremia in women is not really a gender effect but due to women being more prone to overdrink.
BONE MASS BY QUANTITATIVE ULTRASOUND OF FINGER PHALANGES IN YOUNG KARATE PRACTITIONERS
Barbeta, Camila Justino de Oliveira; Gonçalves, Ezequiel Moreira; Ribeiro, Keila Donassolo Santos; Ribeiro, Roberto; Roman, Everton Paulo; Guerra-Júnior, Gil
2017-01-01
ABSTRACT Objective: To evaluate bone mass by quantitative ultrasound of the phalanges in young karate practitioners compared to a control group. Methods: Sample composed of 162 karate practitioners (52 females) and 326 healthy controls (110 females) aged 6 to 16 years old, in Western Paraná (Southern Brazil). Weight, height, BMI, amplitude-dependent speed of sound (AD-SoS) and bone transmission time (BTT) were evaluated. BMI, AD-SoS and BTT values were converted to Z scores. Mann-Whitney, chi-square or Fisher Exact tests and multiple linear regression were applied, with significance level set at p≤0.05. Results: Both genders showed higher values of BTT as Z scores when compared to control group. Females from the control group had higher AD-SoS values (m/s and Z score) compared to female karate practitioners. When relative and absolute frequencies were assessed according to BTT Z score in both groups, male karate practitioners’ bone mass was shown to be adequate more frequently. In female practitioners, age and weight were independent predictors of AD-SoS (R2=0.42) and BTT (R2=0.45), respectively. Among male karate practitioners, age was related to 26% of AD-SoS variances and height was responsible for 36% of BTT variances. Conclusions: Children and adolescents who practice karate were shown to have more bone mass in comparison to the control group, regardless of gender. BTT was more sensitive for this evaluation. PMID:28977128
Gravity from entanglement and RG flow in a top-down approach
NASA Astrophysics Data System (ADS)
Kwon, O.-Kab; Jang, Dongmin; Kim, Yoonbai; Tolla, D. D.
2018-05-01
The duality between a d-dimensional conformal field theory with relevant deformation and a gravity theory on an asymptotically AdS d+1 geometry, has become a suitable tool in the investigation of the emergence of gravity from quantum entanglement in field theory. Recently, we have tested the duality between the mass-deformed ABJM theory and asymptotically AdS4 gravity theory, which is obtained from the KK reduction of the 11-dimensional supergravity on the LLM geometry. In this paper, we extend the KK reduction procedure beyond the linear order and establish non-trivial KK maps between 4-dimensional fields and 11-dimensional fluctuations. We rely on this gauge/gravity duality to calculate the entanglement entropy by using the Ryu-Takayanagi holographic formula and the path integral method developed by Faulkner. We show that the entanglement entropies obtained using these two methods agree when the asymptotically AdS4 metric satisfies the linearized Einstein equation with nonvanishing energy-momentum tensor for two scalar fields. These scalar fields encode the information of the relevant deformation of the ABJM theory. This confirms that the asymptotic limit of LLM geometry is the emergent gravity of the quantum entanglement in the mass-deformed ABJM theory with a small mass parameter. We also comment on the issue of the relative entropy and the Fisher information in our setup.
Altered Running Economy Directly Translates to Altered Distance-Running Performance.
Hoogkamer, Wouter; Kipp, Shalaya; Spiering, Barry A; Kram, Rodger
2016-11-01
Our goal was to quantify if small (1%-3%) changes in running economy quantitatively affect distance-running performance. Based on the linear relationship between metabolic rate and running velocity and on earlier observations that added shoe mass increases metabolic rate by ~1% per 100 g per shoe, we hypothesized that adding 100 and 300 g per shoe would slow 3000-m time-trial performance by 1% and 3%, respectively. Eighteen male sub-20-min 5-km runners completed treadmill testing, and three 3000-m time trials wearing control shoes and identical shoes with 100 and 300 g of discreetly added mass. We measured rates of oxygen consumption and carbon dioxide production and calculated metabolic rates for the treadmill tests, and we recorded overall running time for the time trials. Adding mass to the shoes significantly increased metabolic rate at 3.5 m·s by 1.11% per 100 g per shoe (95% confidence interval = 0.88%-1.35%). While wearing the control shoes, participants ran the 3000-m time trial in 626.1 ± 55.6 s. Times averaged 0.65% ± 1.36% and 2.37% ± 2.09% slower for the +100-g and +300-g shoes, respectively (P < 0.001). On the basis of a linear fit of all the data, 3000-m time increased 0.78% per added 100 g per shoe (95% confidence interval = 0.52%-1.04%). Adding shoe mass predictably degrades running economy and slows 3000-m time-trial performance proportionally. Our data demonstrate that laboratory-based running economy measurements can accurately predict changes in distance-running race performance due to shoe modifications.
Large Advanced Space Systems (LASS) computer-aided design program additions
NASA Technical Reports Server (NTRS)
Farrell, C. E.
1982-01-01
The LSS preliminary and conceptual design requires extensive iteractive analysis because of the effects of structural, thermal, and control intercoupling. A computer aided design program that will permit integrating and interfacing of required large space system (LSS) analyses is discussed. The primary objective of this program is the implementation of modeling techniques and analysis algorithms that permit interactive design and tradeoff studies of LSS concepts. Eight software modules were added to the program. The existing rigid body controls module was modified to include solar pressure effects. The new model generator modules and appendage synthesizer module are integrated (interfaced) to permit interactive definition and generation of LSS concepts. The mass properties module permits interactive specification of discrete masses and their locations. The other modules permit interactive analysis of orbital transfer requirements, antenna primary beam n, and attitude control requirements.
Transitioning of power flow in beam models with bends
NASA Technical Reports Server (NTRS)
Hambric, Stephen A.
1990-01-01
The propagation of power flow through a dynamically loaded beam model with 90 degree bends is investigated using NASTRAN and McPOW. The transitioning of power flow types (axial, torsional, and flexural) is observed throughout the structure. To get accurate calculations of the torsional response of beams using NASTRAN, torsional inertia effects had to be added to the mass matrix calculation section of the program. Also, mass effects were included in the calculation of BAR forces to improve the continuity of power flow between elements. The importance of including all types of power flow in an analysis, rather than only flexural power, is indicated by the example. Trying to interpret power flow results that only consider flexural components in even a moderately complex problem will result in incorrect conclusions concerning the total power flow field.
On the orbits that generate the X-shape in the Milky Way bulge
NASA Astrophysics Data System (ADS)
Abbott, Caleb G.; Valluri, Monica; Shen, Juntai; Debattista, Victor P.
2017-09-01
The Milky Way (MW) bulge shows a boxy/peanut or X-shaped bulge (hereafter BP/X) when viewed in infrared or microwave bands. We examine orbits in an N-body model of a barred disc galaxy that is scaled to match the kinematics of the MW bulge. We generate maps of projected stellar surface density, unsharp masked images, 3D excess-mass distributions (showing mass outside ellipsoids), line-of-sight number count distributions, and 2D line-of-sight kinematics for the simulation as well as co-added orbit families, in order to identify the orbits primarily responsible for the BP/X shape. We estimate that between 19 and 23 per cent of the mass of the bar in this model is associated with the BP/X shape and that the majority of bar orbits contribute to this shape that is clearly seen in projected surface density maps and 3D excess mass for non-resonant box orbits, 'banana' orbits, 'fish/pretzel' orbits and 'brezel' orbits. Although only the latter two families (comprising 7.5 per cent of the total mass) show a distinct X-shape in unsharp masked images, we find that nearly all bar orbit families contribute some mass to the 3D BP/X-shape. All co-added orbit families show a bifurcation in stellar number count distribution with distance that resembles the bifurcation observed in red clump stars in the MW. However, only the box orbit family shows an increasing separation of peaks with increasing galactic latitude |b|, similar to that observed. Our analysis suggests that no single orbit family fully explains all the observed features associated with the MW's BP/X-shaped bulge, but collectively the non-resonant boxes and various resonant boxlet orbits contribute at different distances from the centre to produce this feature. We propose that since box orbits (which are the dominant population in bars) have three incommensurable orbital fundamental frequencies, their 3D shapes are highly flexible and, like Lissajous figures, this family of orbits is most easily able to adapt to evolution in the shape of the underlying potential.
Dibble, Kimberly L.; Yard, Micheal D.; Ward, David L.; Yackulic, Charles B.
2017-01-01
Bioelectrical impedance analysis (BIA) is a nonlethal tool with which to estimate the physiological condition of animals that has potential value in research on endangered species. However, the effectiveness of BIA varies by species, the methodology continues to be refined, and incidental mortality rates are unknown. Under laboratory conditions we tested the value of using BIA in addition to morphological measurements such as total length and wet mass to estimate proximate composition (lipid, protein, ash, water, dry mass, energy density) in the endangered Humpback Chub Gila cypha and Bonytail G. elegans and the species of concern Roundtail Chub G. robusta and conducted separate trials to estimate the mortality rates of these sensitive species. Although Humpback and Roundtail Chub exhibited no or low mortality in response to taking BIA measurements versus handling for length and wet-mass measurements, Bonytails exhibited 14% and 47% mortality in the BIA and handling experiments, respectively, indicating that survival following stress is species specific. Derived BIA measurements were included in the best models for most proximate components; however, the added value of BIA as a predictor was marginal except in the absence of accurate wet-mass data. Bioelectrical impedance analysis improved the R2 of the best percentage-based models by no more than 4% relative to models based on morphology. Simulated field conditions indicated that BIA models became increasingly better than morphometric models at estimating proximate composition as the observation error around wet-mass measurements increased. However, since the overall proportion of variance explained by percentage-based models was low and BIA was mostly a redundant predictor, we caution against the use of BIA in field applications for these sensitive fish species.
Systematic investigation of non-Boussinesq effects in variable-density groundwater flow simulations.
Guevara Morel, Carlos R; van Reeuwijk, Maarten; Graf, Thomas
2015-12-01
The validity of three mathematical models describing variable-density groundwater flow is systematically evaluated: (i) a model which invokes the Oberbeck-Boussinesq approximation (OB approximation), (ii) a model of intermediate complexity (NOB1) and (iii) a model which solves the full set of equations (NOB2). The NOB1 and NOB2 descriptions have been added to the HydroGeoSphere (HGS) model, which originally contained an implementation of the OB description. We define the Boussinesq parameter ερ=βω Δω where βω is the solutal expansivity and Δω is the characteristic difference in solute mass fraction. The Boussinesq parameter ερ is used to systematically investigate three flow scenarios covering a range of free and mixed convection problems: 1) the low Rayleigh number Elder problem (Van Reeuwijk et al., 2009), 2) a convective fingering problem (Xie et al., 2011) and 3) a mixed convective problem (Schincariol et al., 1994). Results indicate that small density differences (ερ≤ 0.05) produce no apparent changes in the total solute mass in the system, plume penetration depth, center of mass and mass flux independent of the mathematical model used. Deviations between OB, NOB1 and NOB2 occur for large density differences (ερ>0.12), where lower description levels will underestimate the vertical plume position and overestimate mass flux. Based on the cases considered here, we suggest the following guidelines for saline convection: the OB approximation is valid for cases with ερ<0.05, and the full NOB set of equations needs to be used for cases with ερ>0.10. Whether NOB effects are important in the intermediate region differ from case to case. Copyright © 2015 Elsevier B.V. All rights reserved.
Evolving Relevance of Neuroproteomics in Alzheimer's Disease.
Lista, Simone; Zetterberg, Henrik; O'Bryant, Sid E; Blennow, Kaj; Hampel, Harald
2017-01-01
Substantial progress in the understanding of the biology of Alzheimer's disease (AD) has been achieved over the past decades. The early detection and diagnosis of AD and other age-related neurodegenerative diseases, however, remain a challenging scientific frontier. Therefore, the comprehensive discovery (relating to all individual, converging or diverging biochemical disease mechanisms), development, validation, and qualification of standardized biological markers with diagnostic and prognostic functions with a precise performance profile regarding specificity, sensitivity, and positive and negative predictive value are warranted.Methodological innovations in the area of exploratory high-throughput technologies, such as sequencing, microarrays, and mass spectrometry-based analyses of proteins/peptides, have led to the generation of large global molecular datasets from a multiplicity of biological systems, such as biological fluids, cells, tissues, and organs. Such methodological progress has shifted the attention to the execution of hypothesis-independent comprehensive exploratory analyses (opposed to the classical hypothesis-driven candidate approach), with the aim of fully understanding the biological systems in physiology and disease as a whole. The systems biology paradigm integrates experimental biology with accurate and rigorous computational modelling to describe and foresee the dynamic features of biological systems. The use of dynamically evolving technological platforms, including mass spectrometry, in the area of proteomics has enabled to rush the process of biomarker discovery and validation for refining significantly the diagnosis of AD. Currently, proteomics-which is part of the systems biology paradigm-is designated as one of the dominant matured sciences needed for the effective exploratory discovery of prospective biomarker candidates expected to play an effective role in aiding the early detection, diagnosis, prognosis, and therapy development in AD.
Yang, Yongbin; Smith, Daniel L.; Keating, Karen D.; Allison, David B.; Nagy, Tim R.
2014-01-01
Objective To investigate the variations in body weight, food intake and body composition of both male and female C57BL/6J mice during a diet-induced obesity (DIO) model with high-fat diet (HFD) feeding. Design and Methods Mice were individually housed and fed ad libitum either a low-fat diet (LFD, 10% calories from fat; n=15 male, n=15 female) or high-fat diet (HFD, 45% calories from fat; n=277 male, n=278 female) from 8 to 43 weeks of age. Body weight, food intake and body composition were routinely measured. Results Body weight was significantly increased with HFD (vs. LFD) in males from week 14 (p=0.0221) and in females from week 27 (P=0.0076). Fat mass and fat-free mass of all groups were significantly increased over time (all p<0.0001), with a large variation observed in fat mass. Baseline fat mass, fat-free mass and daily energy intake were significant predictors of future body weight for both sexes (p<0.0001). Baseline fat mass was a significant predictor of future body fat (p<0.0001). Conclusions Both males and females have large variations in fat mass, and this variability increases over time, while that of fat-free mass remains relatively stable. Sex differences exist in HFD responses and multivariate predicting models of body weight. PMID:24942674
Quantitative assessment model for gastric cancer screening
Chen, Kun; Yu, Wei-Ping; Song, Liang; Zhu, Yi-Min
2005-01-01
AIM: To set up a mathematic model for gastric cancer screening and to evaluate its function in mass screening for gastric cancer. METHODS: A case control study was carried on in 66 patients and 198 normal people, then the risk and protective factors of gastric cancer were determined, including heavy manual work, foods such as small yellow-fin tuna, dried small shrimps, squills, crabs, mothers suffering from gastric diseases, spouse alive, use of refrigerators and hot food, etc. According to some principles and methods of probability and fuzzy mathematics, a quantitative assessment model was established as follows: first, we selected some factors significant in statistics, and calculated weight coefficient for each one by two different methods; second, population space was divided into gastric cancer fuzzy subset and non gastric cancer fuzzy subset, then a mathematic model for each subset was established, we got a mathematic expression of attribute degree (AD). RESULTS: Based on the data of 63 patients and 693 normal people, AD of each subject was calculated. Considering the sensitivity and specificity, the thresholds of AD values calculated were configured with 0.20 and 0.17, respectively. According to these thresholds, the sensitivity and specificity of the quantitative model were about 69% and 63%. Moreover, statistical test showed that the identification outcomes of these two different calculation methods were identical (P>0.05). CONCLUSION: The validity of this method is satisfactory. It is convenient, feasible, economic and can be used to determine individual and population risks of gastric cancer. PMID:15655813
Holographic thermalization and generalized Vaidya-AdS solutions in massive gravity
NASA Astrophysics Data System (ADS)
Hu, Ya-Peng; Zeng, Xiao-Xiong; Zhang, Hai-Qing
2017-02-01
We investigate the effect of massive graviton on the holographic thermalization process. Before doing this, we first find out the generalized Vaidya-AdS solutions in the de Rham-Gabadadze-Tolley (dRGT) massive gravity by directly solving the gravitational equations. Then, we study the thermodynamics of these Vaidya-AdS solutions by using the Misner-Sharp energy and unified first law, which also shows that the massive gravity is in a thermodynamic equilibrium state. Moreover, we adopt the two-point correlation function at equal time to explore the thermalization process in the dual field theory, and to see how the graviton mass parameter affects this process from the viewpoint of AdS/CFT correspondence. Our results show that the graviton mass parameter will increase the holographic thermalization process.
Wang, Huifen; Zhou, Xia; Harnack, Lisa; Luepker, Russell V.
2013-01-01
Objectives. We described 27-year secular trends in added-sugar intake and body mass index (BMI) among Americans aged 25 to 74 years. Methods. The Minnesota Heart Survey (1980–1982 to 2007–2009) is a surveillance study of cardiovascular risk factors among residents of the Minneapolis–St Paul area. We used generalized linear mixed regressions to describe trends in added-sugar intake and BMI by gender and age groups and intake trends by weight status. Results. BMI increased concurrently with added-sugar intake in both genders and all age and weight groups. Percentage of energy intake from added sugar increased by 54% in women between 1980 to 1982 and 2000 to 2002, but declined somewhat in 2007 to 2009; men followed the same pattern (all P < .001). Added-sugar intake was lower among women than men and higher among younger than older adults. BMI in women paralleled added-sugar intake, but men's BMI increased through 2009. Percentage of energy intake from added sugar was similar among weight groups. Conclusions. Limiting added-sugar intake should be part of energy balance strategies in response to the obesity epidemic. PMID:22698050
Aguiar, Liliana; Santos-Rocha, Rita; Vieira, Filomena; Branco, Marco; Andrade, Carlos; Veloso, António
2015-10-01
The assessment of biomechanical loading in the musculoskeletal system of the pregnant women is particularly interesting since they are subject to morphological, physiological and hormonal changes, which may lead to adaptations in gait. The purpose of this study was to analyze the effect of the increased mass in the trunk associated to pregnancy on the lower limb and pelvis, during walking, on temporal-distance parameters, joint range of motion and moments of force, by comparing a pregnant women group to a non-pregnant group, and to this group while carrying a 5 kg additional load located in the abdomen and breasts during walking, to understand which gait adaptations may be more related with the increased trunk mass, or if may be more associated with other factors such as the girth of the thigh. The subjects performed a previous 12 min training adaption to the added load. To calculate ankle, knee and hip joint angles and moments of force, a three-dimensional biomechanical model was developed. The inverse dynamics method was used to estimate net joint moments of force. The increased mass of the anterior trunk associated with second trimester of pregnancy may influence some gait variables such as the left step time, left and right stance times, double limb support time, maximum hip extension, maximum pelvic right obliquity, pelvic obliquity range of motion, maximum transversal left rotation and peak hip flexion moments of force. Copyright © 2015 Elsevier B.V. All rights reserved.
Heidari, Amir; Yoon, Yong-Jin; Park, Woo-Tae; Su, Pei-Chen; Miao, Jianmin; Lin, Julius Tsai Ming; Park, Mi Kyoung
2014-01-01
Sensor performance of a dielectric filled silicon bulk acoustic resonator type label-free biosensor is verified with biotin-streptavidin binding interactions as a model system. The mass sensor is a micromachined silicon square plate with a dielectric filled capacitive excitation mechanism. The resonance frequency of the biotin modified resonator decreased 315 ppm when exposed to streptavidin solution for 15 min with a concentration of 10−7 M, corresponding to an added mass of 3.43 ng on the resonator surface. An additional control is added by exposing a bovine serum albumin (BSA)-covered device to streptavidin in the absence of the attached biotin. No resonance frequency shift was observed in the control experiment, which confirms the specificity of the detection. The sensor-to-sensor variability is also measured to be 4.3%. Consequently, the developed sensor can be used to observe in biotin-streptavidin interaction without the use of labelling or molecular tags. In addition, biosensor can be used in a variety of different immunoassay tests. PMID:24608003
Fermionic currents in AdS spacetime with compact dimensions
NASA Astrophysics Data System (ADS)
Bellucci, S.; Saharian, A. A.; Vardanyan, V.
2017-09-01
We derive a closed expression for the vacuum expectation value (VEV) of the fermionic current density in a (D +1 )-dimensional locally AdS spacetime with an arbitrary number of toroidally compactified Poincaré spatial dimensions and in the presence of a constant gauge field. The latter can be formally interpreted in terms of a magnetic flux treading the compact dimensions. In the compact subspace, the field operator obeys quasiperiodicity conditions with arbitrary phases. The VEV of the charge density is zero and the current density has nonzero components along the compact dimensions only. They are periodic functions of the magnetic flux with the period equal to the flux quantum and tend to zero on the AdS boundary. Near the horizon, the effect of the background gravitational field is small and the leading term in the corresponding asymptotic expansion coincides with the VEV for a massless field in the locally Minkowski bulk. Unlike the Minkowskian case, in the system consisting of an equal number of fermionic and scalar degrees of freedom, with same masses, charges and phases in the periodicity conditions, the total current density does not vanish. In these systems, the leading divergences in the scalar and fermionic contributions on the horizon are canceled and, as a consequence of that, the charge flux, integrated over the coordinate perpendicular to the AdS boundary, becomes finite. We show that in odd spacetime dimensions the fermionic fields realizing two inequivalent representations of the Clifford algebra and having equal phases in the periodicity conditions give the same contribution to the VEV of the current density. Combining the contributions from these fields, the current density in odd-dimensional C -,P - and T -symmetric models are obtained. As an application, we consider the ground state current density in curved carbon nanotubes described in terms of a (2 +1 )-dimensional effective Dirac model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cvetic, Mirjam; Papadimitriou, Ioannis
Here, we construct the holographic dictionary for both running and constant dilaton solutions of the two dimensional Einstein-Maxwell-Dilaton theory that is obtained by a circle reduction from Einstein-Hilbert gravity with negative cosmological constant in three dimensions. This specific model ensures that the dual theory has a well defined ultraviolet completion in terms of a two dimensional conformal field theory, but our results apply qualitatively to a wider class of two dimensional dilaton gravity theories. For each type of solutions we perform holographic renormalization, compute the exact renormalized one-point functions in the presence of arbitrary sources, and derive the asymptotic symmetriesmore » and the corresponding conserved charges. In both cases we find that the scalar operator dual to the dilaton plays a crucial role in the description of the dynamics. Its source gives rise to a matter conformal anomaly for the running dilaton solutions, while its expectation value is the only non trivial observable for constant dilaton solutions. The role of this operator has been largely overlooked in the literature. We further show that the only non trivial conserved charges for running dilaton solutions are the mass and the electric charge, while for constant dilaton solutions only the electric charge is non zero. However, by uplifting the solutions to three dimensions we show that constant dilaton solutions can support non trivial extended symmetry algebras, including the one found by Compère, Song and Strominger, in agreement with the results of Castro and Song. Finally, we demonstrate that any solution of this specific dilaton gravity model can be uplifted to a family of asymptotically AdS 2 × S 2 or conformally AdS 2 × S 2 solutions of the STU model in four dimensions, including non extremal black holes. As a result, the four dimensional solutions obtained by uplifting the running dilaton solutions coincide with the so called ‘subtracted geometries’, while those obtained from the uplift of the constant dilaton ones are new.« less
Cvetic, Mirjam; Papadimitriou, Ioannis
2016-12-02
Here, we construct the holographic dictionary for both running and constant dilaton solutions of the two dimensional Einstein-Maxwell-Dilaton theory that is obtained by a circle reduction from Einstein-Hilbert gravity with negative cosmological constant in three dimensions. This specific model ensures that the dual theory has a well defined ultraviolet completion in terms of a two dimensional conformal field theory, but our results apply qualitatively to a wider class of two dimensional dilaton gravity theories. For each type of solutions we perform holographic renormalization, compute the exact renormalized one-point functions in the presence of arbitrary sources, and derive the asymptotic symmetriesmore » and the corresponding conserved charges. In both cases we find that the scalar operator dual to the dilaton plays a crucial role in the description of the dynamics. Its source gives rise to a matter conformal anomaly for the running dilaton solutions, while its expectation value is the only non trivial observable for constant dilaton solutions. The role of this operator has been largely overlooked in the literature. We further show that the only non trivial conserved charges for running dilaton solutions are the mass and the electric charge, while for constant dilaton solutions only the electric charge is non zero. However, by uplifting the solutions to three dimensions we show that constant dilaton solutions can support non trivial extended symmetry algebras, including the one found by Compère, Song and Strominger, in agreement with the results of Castro and Song. Finally, we demonstrate that any solution of this specific dilaton gravity model can be uplifted to a family of asymptotically AdS 2 × S 2 or conformally AdS 2 × S 2 solutions of the STU model in four dimensions, including non extremal black holes. As a result, the four dimensional solutions obtained by uplifting the running dilaton solutions coincide with the so called ‘subtracted geometries’, while those obtained from the uplift of the constant dilaton ones are new.« less
NASA Technical Reports Server (NTRS)
Kartuzova, O.; Kassemi, M.
2016-01-01
A CFD model for simulating pressure control in cryogenic storage tanks through the injection of a subcooled liquid into the ullage is presented and applied to the 1g MHTB spray bar cooling experiments. An Eulerian-Lagrangian approach is utilized to track the spray droplets and capture the interaction between the discrete droplets and the continuous ullage phase. The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. A new model for calculating the droplet-ullage heat and mass transfer is developed. In this model, a droplet is allowed to warm up to the saturation temperature corresponding to the ullage vapor pressure, after which it evaporates while remaining at the saturation temperature. The droplet model is validated against the results of the MHTB spray-bar cooling experiments with 50% and 90% tank fill ratios. The predictions of the present T-sat based model are compared with those of a previously developed kinetic-based droplet mass transfer model. The predictions of the two models regarding the evolving tank pressure and temperature distributions, as well as the droplets' trajectories and temperatures, are examined and compared in detail. Finally, the ullage pressure and local vapor and liquid temperature evolutions are validated against the corresponding data provided by the MHTB spray bar mixing experiment.
Chromospherically active stars. 12: ADS 11060 C: A double lined K dwarf binary in a quintuple system
NASA Technical Reports Server (NTRS)
Fekel, Francis C.; Henry, Gregory W.; Hampton, Melissa L.; Fried, Robert; Morton, Mary D.
1994-01-01
ADS 11060 C is a double lined spectroscopic binary with a period of 25.7631 days and an eccentricity of 0.565. Spectral types of the two stars are estimated as K7 V and MO V with a magnitude difference of about 0.55 mag in V. The stars appear to be somewhat metal rich with respect to the Sun. Despite the relatively large masses of 0.53 and 0.51 solar mass, our photometric observations find no evidence for eclipses and we estimate an inclination of 77 deg plus or minus 11 deg. ADS 11060 C is, however, photometrically variable with a period of 9 plus or minus 1 day and an amplitude of 0.05 mag in V. Thus, it is a newly identified BY Draconis variable. The center-of-mass velocity of ADS 11060 C and an estimated parallax of 0.030 sec support its physical association with ADS 11060 AB, making this a quintuple system. The projected separation of the AB-C system is nearly 1200 AU. Although the log lithium abundances of the two components of ADS 11060 C are only upper limits, less than or equal to -0.14, lithium abundances of the AB-C components appear to be consistent with those of similar stars in the alpha Persei and Pleiades clusters, suggesting an age of about 70 Myr for ADS 11060 AB-C. The system is a possible member of the Pleiades moving group. Listed as an optical counterpart to a source in the ROSAT Wide Field Camera extreme-ultraviolet bright source catalog, both ADS 11060 AB and C may contribute to the observed flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garbarz, Alan, E-mail: alan-at@df.uba.ar; Giribet, Gaston, E-mail: gaston-at@df.uba.ar, E-mail: af.goya-at@df.uba.ar; Goya, Andrés, E-mail: gaston-at@df.uba.ar, E-mail: af.goya-at@df.uba.ar
2015-03-26
We consider critical gravity in three dimensions; that is, the New Massive Gravity theory formulated about Anti-de Sitter (AdS) space with the specific value of the graviton mass for which it results dual to a two-dimensional conformai field theory with vanishing central charge. As it happens with Kerr black holes in four-dimensional critical gravity, in three-dimensional critical gravity the Bañados-Teitelboim-Zanelli black holes have vanishing mass and vanishing angular momentum. However, provided suitable asymptotic conditions are chosen, the theory may also admit solutions carrying non-vanishing charges. Here, we give simple examples of exact solutions that exhibit falling-off conditions that are evenmore » weaker than those of the so-called Log-gravity. For such solutions, we define the quasilocal stress-tensor and use it to compute conserved charges. Despite the drastic deformation of AdS{sub 3} asymptotic, these solutions have finite mass and angular momentum, which are shown to be non-zero.« less
VizieR Online Data Catalog: Galaxy stellar mass assembly (Cousin+, 2015)
NASA Astrophysics Data System (ADS)
Cousin, M.; Lagache, G.; Bethermin, M.; Blaizot, J.; Guiderdoni, B.
2014-11-01
There are five fits files corresponding to the different models: - m0 : model without any regulation process - m1 : reference model (Okamoto et al., 2008MNRAS.390..920O, photo-ionization prescription) - m2 : The Okamoto et al. (2008MNRAS.390..920O) photo-ionization prescription is replaced by Gnedin (2000ApJ...542..535G) prescription - m3 : SN ejecta processes are based on Somerville et al. (2008MNRAS.391..481S) model - m4 : Model with no-star-forming gas ad-hoc modification For each model: - galaxy properties are listed in eGalICS_m*.readme - data are saved in eGalICS_m*.fits All data "fits" files are compatible with the TOPCAT software available on: http://www.star.bris.ac.uk/~mbt/topcat/ If you used data associated to eGalICS semi-analytic model, please cite the following papers: * Cousin et al.: "Galaxy stellar mass assembly: the difficulty to match observations and semi-analytical predictions" (2015A&A...575A..32C) * Cousin et al.: "Toward a new modelling of gas flows in a semi-analytical model of galaxy formation and evolution" (2015A&A...575A..33C) (11 data files).
Globular cluster seeding by primordial black hole population
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolgov, A.; Postnov, K., E-mail: dolgov@fe.infn.it, E-mail: kpostnov@gmail.com
Primordial black holes (PBHs) that form in the early Universe in the modified Affleck-Dine (AD) mechanism of baryogenesis should have intrinsic log-normal mass distribution of PBHs. We show that the parameters of this distribution adjusted to provide the required spatial density of massive seeds (≥ 10{sup 4} M {sub ⊙}) for early galaxy formation and not violating the dark matter density constraints, predict the existence of the population of intermediate-mass PBHs with a number density of 0∼ 100 Mpc{sup −3}. We argue that the population of intermediate-mass AD PBHs can also seed the formation of globular clusters in galaxies. Inmore » this scenario, each globular cluster should host an intermediate-mass black hole with a mass of a few thousand solar masses, and should not obligatorily be immersed in a massive dark matter halo.« less
Metabonomic Profiling of TASTPM Transgenic Alzheimer's Disease Mouse Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zeping; Browne, Edward R.; Liu, Tao
2012-12-07
Identification of molecular mechanisms underlying early stage Alzheimer’s disease (AD) is important for the development of new therapies against and diagnosis of AD. In this study, non-targeted metabotyping of TASTPM transgenic AD mice was performed. The metabolic profiles of both brain and plasma of TASTPM mice were characterized using gas chromatography-mass spectrometry and compared to those of wild type C57BL/6J mice. TASTPM mice were metabolically distinct compared to wild type mice (Q28 Y = 0.587 and 0.766 for PLS-DA models derived from brain and plasma, respectively). A number of metabolites were found to be perturbed in TASTPM mice in bothmore » brain (D11 fructose, L-valine, L-serine, L-threonine, zymosterol) and plasma (D-glucose, D12 galactose, linoleic acid, arachidonic acid, palmitic acid and D-gluconic acid). In addition, enzyme immunoassay confirmed that selected endogenous steroids were significantly perturbed in brain (androstenedione and 17-OH-progesterone) and plasma (cortisol and testosterone) of TASTPM mice. Ingenuity pathway analysis revealed that perturbations related to amino acid metabolism (brain), steroid biosynthesis (brain), linoleic acid metabolism (plasma) and energy metabolism (plasma) accounted for the differentiation of TASTPM and wild-type« less
A study on the mutual causation of suicide reporting and suicide incidences.
Yip, Paul S F; Kwok, Simon Sai Man; Chen, Feng; Xu, Xiaochen; Chen, Ying-Yeh
2013-05-15
Little research has been done on the complex relationships between the effect of news reporting on suicide incidence and vice versa (i.e., mutual causation). Furthermore, few studies have examined whether the entry of a new media outlet into a market changes the media dynamics in that market. A recursive two-way feedback model was used to test for mutual causation between suicide reporting and suicide incidence on a daily basis. We applied the model to examine the effect of the arrival of the Apple Daily (AD) newspaper in Taiwan and whether its suicide reporting affected the suicide incidence and suicide reporting of two other newspapers, the United Daily (UD) and the China Times (CT). The AD's entry into Taiwan led to a major shift in the relationship between suicide incidence and suicide reporting. The AD stimulated more suicide coverage by the UD and the CT the following day; conversely, the UD and the CT had no such impact on the AD. Before the entry of the AD, there was little correlation between daily suicide incidence and suicide reporting, but the suicide reporting of the UD and CT correlated significantly with daily suicide incidence after the entry of the AD. Media impact was assessed by number of news items; detailed content analysis of the reporting was not conducted. The vicious business competition facing new dailies in Taiwan's media market has changed the mass media ecology. Efforts to prevent suicide by regulating the media should closely monitor not only the behavior of newcomers, but also the established news media's reaction to new competitors. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fahey, Kathleen M.; Carlton, Annmarie G.; Pye, Havala O. T.; Baek, Jaemeen; Hutzell, William T.; Stanier, Charles O.; Baker, Kirk R.; Wyat Appel, K.; Jaoui, Mohammed; Offenberg, John H.
2017-04-01
This paper describes the development and implementation of an extendable aqueous-phase chemistry option (AQCHEM - KMT(I)) for the Community Multiscale Air Quality (CMAQ) modeling system, version 5.1. Here, the Kinetic PreProcessor (KPP), version 2.2.3, is used to generate a Rosenbrock solver (Rodas3) to integrate the stiff system of ordinary differential equations (ODEs) that describe the mass transfer, chemical kinetics, and scavenging processes of CMAQ clouds. CMAQ's standard cloud chemistry module (AQCHEM) is structurally limited to the treatment of a simple chemical mechanism. This work advances our ability to test and implement more sophisticated aqueous chemical mechanisms in CMAQ and further investigate the impacts of microphysical parameters on cloud chemistry. Box model cloud chemistry simulations were performed to choose efficient solver and tolerance settings, evaluate the implementation of the KPP solver, and assess the direct impacts of alternative solver and kinetic mass transfer on predicted concentrations for a range of scenarios. Month-long CMAQ simulations for winter and summer periods over the US reveal the changes in model predictions due to these cloud module updates within the full chemical transport model. While monthly average CMAQ predictions are not drastically altered between AQCHEM and AQCHEM - KMT, hourly concentration differences can be significant. With added in-cloud secondary organic aerosol (SOA) formation from biogenic epoxides (AQCHEM - KMTI), normalized mean error and bias statistics are slightly improved for 2-methyltetrols and 2-methylglyceric acid at the Research Triangle Park measurement site in North Carolina during the Southern Oxidant and Aerosol Study (SOAS) period. The added in-cloud chemistry leads to a monthly average increase of 11-18 % in cloud
SOA at the surface in the eastern United States for June 2013.
Kinetics-based phase change approach for VOF method applied to boiling flow
NASA Astrophysics Data System (ADS)
Cifani, Paolo; Geurts, Bernard; Kuerten, Hans
2014-11-01
Direct numerical simulations of boiling flows are performed to better understand the interaction of boiling phenomena with turbulence. The multiphase flow is simulated by solving a single set of equations for the whole flow field according to the one-fluid formulation, using a VOF interface capturing method. Interface terms, related to surface tension, interphase mass transfer and latent heat, are added at the phase boundary. The mass transfer rate across the interface is derived from kinetic theory and subsequently coupled with the continuum representation of the flow field. The numerical model was implemented in OpenFOAM and validated against 3 cases: evaporation of a spherical uniformly heated droplet, growth of a spherical bubble in a superheated liquid and two dimensional film boiling. The computational model will be used to investigate the change in turbulence intensity in a fully developed channel flow due to interaction with boiling heat and mass transfer. In particular, we will focus on the influence of the vapor bubble volume fraction on enhancing heat and mass transfer. Furthermore, we will investigate kinetic energy spectra in order to identify the dynamics associated with the wakes of vapor bubbles. Department of Applied Mathematics, 7500 AE Enschede, NL.
Vreman, Rick A; Goodell, Alex J; Rodriguez, Luis A; Porco, Travis C; Lustig, Robert H; Kahn, James G
2017-08-03
Excessive consumption of added sugars in the human diet has been associated with obesity, type 2 diabetes (T2D), coronary heart disease (CHD) and other elements of the metabolic syndrome. Recent studies have shown that non-alcoholic fatty liver disease (NAFLD) is a critical pathway to metabolic syndrome. This model assesses the health and economic benefits of interventions aimed at reducing intake of added sugars. Using data from US National Health Surveys and current literature, we simulated an open cohort, for the period 2015-2035. We constructed a microsimulation model with Markov chains for NAFLD (including steatosis, non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma (HCC)), body mass index, T2D and CHD. We assessed reductions in population disease prevalence, disease-attributable disability-adjusted life years (DALYs) and costs, with interventions that reduce added sugars consumption by either 20% or 50%. The model estimated that a 20% reduction in added sugars intake will reduce prevalence of hepatic steatosis, NASH, cirrhosis, HCC, obesity, T2D and CHD. Incidence of T2D and CHD would be expected to decrease by 19.9 (95% CI 12.8 to 27.0) and 9.4 (95% CI 3.1 to 15.8) cases per 100 000 people after 20 years, respectively. A 20% reduction in consumption is also projected to annually avert 0.767 million (M) DALYs (95% CI 0.757M to 0.777M) and a total of US$10.3 billion (B) (95% CI 10.2B to 10.4B) in discounted direct medical costs by 2035. These effects increased proportionally when added sugars intake were reduced by 50%. The decrease in incidence and prevalence of disease is similar to results in other models, but averted costs and DALYs were higher, mainly due to inclusion of NAFLD and CHD. The model suggests that efforts to reduce consumption of added sugars may result in significant public health and economic benefits. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Atsma, Femke; van der Schouw, Yvonne T; Grobbee, Diederick E; Hoes, Arno W; Bartelink, Marie-Louise E L
2008-11-12
The aim of the present study was to investigate the added value of age at menopause and the lifetime cumulative number of menstrual cycles in cardiovascular risk prediction in postmenopausal women. This study included 971 women. The ankle-arm index was used as a proxy for cardiovascular morbidity and mortality. The ankle-arm index was calculated for each leg by dividing the highest ankle systolic blood pressure by the highest brachial systolic blood pressure. A cut-off value of 0.95 was used to differentiate between low and high risk women. Three cardiovascular risk models were constructed. In the initial model all classical predictors for cardiovascular disease were investigated. This model was then extended by age at menopause or the lifetime cumulative number of menstrual cycles to test their added value for cardiovascular risk prediction. Differences in discriminative power between the models were investigated by comparing the area under the receiver operating characteristic (ROC) curves. The mean age was 66.0 (+/-5.6) years. The 6 independent predictors for cardiovascular disease were age, systolic blood pressure, total to HDL cholesterol ratio, current smoking, glucose level, and body mass index > or =30 kg/m(2). The ROC area was 0.69 (0.64-0.73) and did not change when age at menopause or the lifetime cumulative number of menstrual cycles was added. The findings in this study among postmenopausal women did not support the view that age at menopause or a refined estimation of lifetime endogenous estrogen exposure would improve cardiovascular risk prediction as approximated by the ankle-arm index.
Cosmological parameter estimation from CMB and X-ray cluster after Planck
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jian-Wei; Cai, Rong-Gen; Guo, Zong-Kuan
We investigate constraints on cosmological parameters in three 8-parameter models with the summed neutrino mass as a free parameter, by a joint analysis of CCCP X-ray cluster data, the newly released Planck CMB data as well as some external data sets including baryon acoustic oscillation measurements from the 6dFGS, SDSS DR7 and BOSS DR9 surveys, and Hubble Space Telescope H{sub 0} measurement. We find that the combined data strongly favor a non-zero neutrino masses at more than 3σ confidence level in these non-vanilla models. Allowing the CMB lensing amplitude A{sub L} to vary, we find A{sub L} > 1 atmore » 3σ confidence level. For dark energy with a constant equation of state w, we obtain w < −1 at 3σ confidence level. The estimate of the matter power spectrum amplitude σ{sub 8} is discrepant with the Planck value at 2σ confidence level, which reflects some tension between X-ray cluster data and Planck data in these non-vanilla models. The tension can be alleviated by adding a 9% systematic shift in the cluster mass function.« less
Spinning AdS loop diagrams: two point functions
NASA Astrophysics Data System (ADS)
Giombi, Simone; Sleight, Charlotte; Taronna, Massimo
2018-06-01
We develop a systematic approach to evaluating AdS loop amplitudes with spinning legs based on the spectral (or "split") representation of bulk-to-bulk propagators, which re-expresses loop diagrams in terms of spectral integrals and higher-point tree diagrams. In this work we focus on 2pt one-loop Witten diagrams involving totally symmetric fields of arbitrary mass and integer spin. As an application of this framework, we study the contribution to the anomalous dimension of higher-spin currents generated by bubble diagrams in higher-spin gauge theories on AdS.
Talmud, Philippa J; Hingorani, Aroon D; Cooper, Jackie A; Marmot, Michael G; Brunner, Eric J; Kumari, Meena; Kivimäki, Mika; Humphries, Steve E
2010-01-14
To assess the performance of a panel of common single nucleotide polymorphisms (genotypes) associated with type 2 diabetes in distinguishing incident cases of future type 2 diabetes (discrimination), and to examine the effect of adding genetic information to previously validated non-genetic (phenotype based) models developed to estimate the absolute risk of type 2 diabetes. Workplace based prospective cohort study with three 5 yearly medical screenings. 5535 initially healthy people (mean age 49 years; 33% women), of whom 302 developed new onset type 2 diabetes over 10 years. Non-genetic variables included in two established risk models-the Cambridge type 2 diabetes risk score (age, sex, drug treatment, family history of type 2 diabetes, body mass index, smoking status) and the Framingham offspring study type 2 diabetes risk score (age, sex, parental history of type 2 diabetes, body mass index, high density lipoprotein cholesterol, triglycerides, fasting glucose)-and 20 single nucleotide polymorphisms associated with susceptibility to type 2 diabetes. Cases of incident type 2 diabetes were defined on the basis of a standard oral glucose tolerance test, self report of a doctor's diagnosis, or the use of anti-diabetic drugs. A genetic score based on the number of risk alleles carried (range 0-40; area under receiver operating characteristics curve 0.54, 95% confidence interval 0.50 to 0.58) and a genetic risk function in which carriage of risk alleles was weighted according to the summary odds ratios of their effect from meta-analyses of genetic studies (area under receiver operating characteristics curve 0.55, 0.51 to 0.59) did not effectively discriminate cases of diabetes. The Cambridge risk score (area under curve 0.72, 0.69 to 0.76) and the Framingham offspring risk score (area under curve 0.78, 0.75 to 0.82) led to better discrimination of cases than did genotype based tests. Adding genetic information to phenotype based risk models did not improve discrimination and provided only a small improvement in model calibration and a modest net reclassification improvement of about 5% when added to the Cambridge risk score but not when added to the Framingham offspring risk score. The phenotype based risk models provided greater discrimination for type 2 diabetes than did models based on 20 common independently inherited diabetes risk alleles. The addition of genotypes to phenotype based risk models produced only minimal improvement in accuracy of risk estimation assessed by recalibration and, at best, a minor net reclassification improvement. The major translational application of the currently known common, small effect genetic variants influencing susceptibility to type 2 diabetes is likely to come from the insight they provide on causes of disease and potential therapeutic targets.
Analysis of Nitrogen Cycling in a Forest Stream During Autumn Using a 15N Tracer Addition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tank, J.L.
2000-01-01
We added {sup 15}NH{sub 4}Cl over 6 weeks to Upper Ball Creek, a second-order deciduous forest stream in the Appalachian Mountains, to follow the uptake, spiraling, and fate of nitrogen in a stream food web during autumn. A priori predictions of N flow and retention were made using a simple food web mass balance model. Values of d{sup 15}N were determined for stream water ammonium, nitrate, dissolved organic nitrogen, and various compartments of the food web over time and distance and then compared to model predictions.
Influence of unsprung weight on vehicle ride quality
NASA Astrophysics Data System (ADS)
Hrovat, D.
1988-08-01
In the first part of this paper, a simple quarter-car, two-degree-of-freedom (2 DOF) vehicle model is used to investigate potential benefits and adaptive control capabilities of active suspensions. The results of this study indicate that, with an active suspension, it is possible to trade each 1% increase in tire deflection with a circa 1% decrease in r.m.s. sprung mass acceleration. This can be used for adaptive suspension tuning based on varying road/speed conditions. The second part of this paper is concerned with the influence of unsprung mass on optimal vibration isolation for the case of a linear 2 DOF, quarter-car model. In the study, it is assumed that the tire stiffness and geometry remain the same while unsprung mass is changed. The comprehensive computer analysis shows that, for active suspensions, both ride and handling can be improved by reducing the unsprung mass. In particular, when the total vehicle mass is kept constant, every 10% reduction in unsprung mass contributes to a circa 6% reduction in r.m.s. sprung mass acceleration for the same level of wheel-hop. For active suspension vehicles, this gives an added incentive for reducing the unsprung weight through the usage of, for example, aluminum wheels and lightweight composite materials. Although used primarily in the context of automotive applications, the results of this study are generic to similar 2 DOF structures in other areas of vibration isolation, ranging from computer peripherals to off-road vehicles.
Hook, Anson; Kearney, John; Shakya, Bibhushan; ...
2015-01-13
Measurements of the Higgs boson and top quark masses indicate that the Standard Model Higgs potential becomes unstable around Λ I ~ 10 11 GeV. This instability is cosmologically relevant since quantum fluctuations during inflation can easily destabilize the electroweak vacuum if the Hubble parameter during inflation is larger than Λ I (as preferred by the recent BICEP 2 measurement). Here, we perform a careful study of the evolution of the Higgs field during inflation, obtaining different results from those currently in the literature. We consider both tunneling via a Coleman-de Luccia or Hawking-Moss instanton, valid when the scale ofmore » inflation is below the instability scale, as well as a statistical treatment via the Fokker-Planck equation appropriate in the opposite regime. We show that a better understanding of the post-inflation evolution of the unstable AdS vacuum regions is crucial for determining the eventual fate of the universe. If these AdS regions devour all of space, a universe like ours is indeed extremely unlikely without new physics to stabilize the Higgs potential; however, if these regions crunch, our universe survives, but inflation must last a few e-folds longer to compensate for the lost AdS regions. Lastly, we examine the effects of generic Planck-suppressed corrections to the Higgs potential, which can be sufficient to stabilize the electroweak vacuum during inflation.« less
NASA Astrophysics Data System (ADS)
Brodsky, S. J.
2017-07-01
A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses - such as m ρ/ m p - can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q\\overline{q} invariant mass squared. The same result, including spin terms, is obtained using light-front holography - the duality between light-front dynamics and AdS5, the space of isometries of the conformal group if one modifies the action of AdS5 by the dilaton {e}^{κ^2}{z}^2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter {Λ}_{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s ( Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes also determines a scale Q0 which sets the interface between perturbative and nonperturbative hadron dynamics.
Service Modeling for Service Engineering
NASA Astrophysics Data System (ADS)
Shimomura, Yoshiki; Tomiyama, Tetsuo
Intensification of service and knowledge contents within product life cycles is considered crucial for dematerialization, in particular, to design optimal product-service systems from the viewpoint of environmentally conscious design and manufacturing in advanced post industrial societies. In addition to the environmental limitations, we are facing social limitations which include limitations of markets to accept increasing numbers of mass-produced artifacts and such environmental and social limitations are restraining economic growth. To attack and remove these problems, we need to reconsider the current mass production paradigm and to make products have more added values largely from knowledge and service contents to compensate volume reduction under the concept of dematerialization. Namely, dematerialization of products needs to enrich service contents. However, service was mainly discussed within marketing and has been mostly neglected within traditional engineering. Therefore, we need new engineering methods to look at services, rather than just functions, called "Service Engineering." To establish service engineering, this paper proposes a modeling technique of service.
Resource Tracking Model Updates and Trade Studies
NASA Technical Reports Server (NTRS)
Chambliss, Joe; Stambaugh, Imelda; Moore, Michael
2016-01-01
The Resource tracking model has been updated to capture system manager and project manager inputs. Both the Trick/GUNNS RTM simulator and the RTM mass balance spreadsheet have been revised to address inputs from system managers and to refine the way mass balance is illustrated. The revisions to the RTM included addition of a Plasma Pyrolysis Assembly (PPA) to recover hydrogen from Sabatier reactor methane which was vented in the prior version of the RTM. The effect of the PPA on the overall balance of resources in an exploration vehicle is illustrated in the increased recycle of vehicle oxygen. Additionally simulation of EVAs conducted from the exploration module was added. Since the focus of the exploration module is to provide a habitat during deep space operations the EVA simulation approach to EVA is based on ISS EVA protocol and processes. Case studies have been run to show the relative effect of performance changes on vehicle resources.
Free Vibration Response Comparison of Composite Beams with Fluid Structure Interaction
2012-09-01
fluid damping to vibrating structures when in contact with a fluid medium such as water . The added mass effect changes the dynamic responses of the...200 words) The analysis of the dynamic response of a vibrating structure in contact with a fluid medium can be interpreted as an added mass effect...INTENTIONALLY LEFT BLANK v ABSTRACT The analysis of the dynamic response of a vibrating structure in contact with a fluid medium can be interpreted as
NASA Astrophysics Data System (ADS)
Ham, S. H.; Kato, S.; Rose, F. G.
2016-12-01
In the retrieval of ice clouds from Radar and Lidar Measurements, mass-Dimension (m-D) and Area-Dimension (A-D) relationships are often used to describe nonspherical ice particle shapes. This study analytically investigates how the assumption of m-D and A-D relationships affects retrieval of ice effective radius. We use gamma and lognormal particle distributions and integrate optical parameters over the size distribution. The effective radius is expressed as a function of radar reflectivity factor, visible extinction coefficient, and parameters describing m-D and A-D relationships. The analytic expressions are used for converting effective radius retrieved from one set of m-D and A-D relationships into that with another set of m-D and A-D, including plates, solid columns, bullets, and mixture of different habits. The conversion method can be used for consistent radiative transfer simulation with cloud retrieval algorithms. In addition, when we want to merge cloud effective radii retrieved from different m-D and A-D, the conversion method can be efficiently used to remove undesired biases caused by m-D and A-D assumptions. Furthermore, the sensitivity of the effective radius to m-D and A-D relationships can be quantified by taking the first derivative of the effective radius with respect to parameters expressing the m-D and A-D relationships.
Harnessing Youth and Young Adult Culture: Improving the Reach and Engagement of the truth® Campaign.
Hair, Elizabeth; Pitzer, Lindsay; Bennett, Morgane; Halenar, Michael; Rath, Jessica; Cantrell, Jennifer; Dorrler, Nicole; Asche, Eric; Vallone, Donna
2017-07-01
The national youth and young adult tobacco prevention mass media campaign, truth®, relaunched in 2014 with the goal of creating "the generation that ends smoking." The objective of this study was to assess whether the strategy of airing truth ads during popular, culturally relevant televised events was associated with higher ad and brand awareness and increases in social media engagement. Awareness of six truth advertisements that aired during popular television events and self-reported social media engagement were assessed via cross-sectional online surveys of youth and young adults aged 15-21 years. Social engagement was also measured using separate Twitter and YouTube metrics. Logistic regression models predicted self-reported social engagement and any ad awareness, and a negative binomial regression predicted the total social media engagement across digital platforms. The study found that viewing a popular televised event was associated with higher odds of ad awareness and social engagement. The results also indicate that levels of social media engagement for an event period are greater than for a nonevent period. The findings demonstrate that premiering advertisements during a popular, culturally relevant televised event is associated with higher awareness of truth ads and increased social engagement related to the campaign, controlling for variables that might also influence the response to campaign messages.
Introducing local property tax for fiscal decentralization and local authority autonomy
NASA Astrophysics Data System (ADS)
Dimopoulos, Thomas; Labropoulos, Tassos; Hadjimitsis, Diafantos G.
2015-06-01
Charles Tiebout (1956), in his work "A Pure Theory of Local Expenditures", provides a vision of the workings of the local public sector, acknowledging many similarities to the features of a competitive market, however omitting any references to local taxation. Contrary to other researchers' claim that the Tiebout model and the theory of fiscal decentralization are by no means synonymous, this paper aims to expand Tiebout's theory, by adding the local property tax in the context, introducing a fair, ad valorem property taxation system based on the automated assessment of the value of real estate properties within the boundaries of local authorities. Computer Assisted Mass Appraisal methodology integrated with Remote Sensing technology and GIS analysis is applied to local authorities' property registries and cadastral data, building a spatial relational database and providing data to be statistically processed through Multiple Regression Analysis modeling. The proposed scheme accomplishes economy of scale using CAMA procedures on one hand, but also succeeds in making local authorities self-sufficient through a decentralized, fair, locally calibrated property taxation model, providing rational income administration.
Plasmacytoid Dendritic Cells in the Tumor Microenvironment: Immune Targets for Glioma Therapeutics12
Candolfi, Marianela; King, Gwendalyn D; Yagiz, Kader; Curtin, James F; Mineharu, Yohei; Muhammad, AKM Ghulam; Foulad, David; Kroeger, Kurt M; Barnett, Nick; Josien, Regis; Lowenstein, Pedro R; Castro, Maria G
2012-01-01
Adenovirus-mediated delivery of the immune-stimulatory cytokine Flt3L and the conditionally cytotoxic thymidine kinase (TK) induces tumor regression and long-term survival in preclinical glioma (glioblastoma multiforme [GBM]) models. Flt3L induces expansion and recruitment of plasmacytoid dendritic cells (pDCs) into the brain. Although pDCs can present antigen and produce powerful inflammatory cytokines, that is, interferon α (IFN-α), their role in tumor immunology remains debated. Thus, we studied the role of pDCs and IFN-α in Ad.TK/GCV+ Ad.Flt3L-mediated anti-GBM therapeutic efficacy. Our data indicate that the combined gene therapy induced recruitment of plasmacytoid DCs (pDCs) into the tumor mass; which were capable of in vivo phagocytosis, IFN-α release, and T-cell priming. Thus, we next used either pDCs or an Ad vector encoding IFN-α delivered within the tumor microenvironment. When rats were treated with Ad.TK/GCV in combination with pDCs or Ad-IFN-α, they exhibited 35% and 50% survival, respectively. However, whereas intracranial administration of Ad.TK/GCV + Ad.Flt3L exhibited a high safety profile, Ad-IFN-α led to severe local inflammation, with neurologic and systemic adverse effects. To elucidate whether the efficacy of the immunotherapy was dependent on IFN-α-secreting pDCs, we administered an Ad vector encoding B18R, an IFN-α antagonist, which abrogated the antitumoral effect of Ad.TK/GCV + Ad.Flt3L. Our data suggest that IFN-α release by activated pDCs plays a critical role in the antitumor effect mediated by Ad.TK/GCV + Ad.Flt3L. In summary, taken together, our results demonstrate that pDCs mediate anti-GBM therapeutic efficacy through the production of IFN-α, thus manipulation of pDCs constitutes an attractive new therapeutic target for the treatment of GBM. PMID:22952428
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, Kai-For; Heredia-Langner, Alejandro; Fraga, Carlos G.
In this study, an experimental design matrix was created and executed in order to test the effects of various real-world factors on the ability of the (1) accelerated diffusion sampler with solid phase micro-extraction (ADS-SPME) and (2) solvent extraction to capture organic chemical attribution signatures (CAS) from dimethyl methylphosphonate (DMMP) spiked onto painted wall board (PWB) surfaces. The DMMP CAS organic impurities sampled by ADS-SPME and solvent extraction were analyzed by gas chromatography/mass spectrometry (GC/MS). The number of detected DMMP CAS impurities and their respective GC/MS peak areas were determined as a function of DMMP stock, DMMP spiked volume, exposuremore » time, SPME sampling time, and ADS headspace pressure. Based on the statistical analysis of experimental results, several general conclusions are made: (1) ADS-SPME with vacuum (i.e., reduced pressure) increased the amount of detected CAS impurity, as measured by GC/MS peak area, by a factor of 1.7 to 1.9 for PWB under certain experimental conditions, (2) the amount of detected CAS impurity was most influenced by spiked volume, stock, and ADS headspace pressure, (3) the ADS had no measurable effect on the number of detected DMMP impurities, that is, the ADS (with and without reduced pressure) had no practical effect on the DMMP impurity profile collected from spiked PWB, and (4) solvent extraction out performed ADS-SPME in terms of consistently capturing all or most of the targeted DMMP impurities from spiked PWB.« less
Remily-Wood, Elizabeth R.; Liu, Richard Z.; Xiang, Yun; Chen, Yi; Thomas, C. Eric; Rajyaguru, Neal; Kaufman, Laura M.; Ochoa, Joana E.; Hazlehurst, Lori; Pinilla-Ibarz, Javier; Lancet, Jeffrey; Zhang, Guolin; Haura, Eric; Shibata, David; Yeatman, Timothy; Smalley, Keiran S.M.; Dalton, William S.; Huang, Emina; Scott, Ed; Bloom, Gregory C.; Eschrich, Steven A.; Koomen, John M.
2012-01-01
Purpose The Quantitative Assay Database (QuAD), http://proteome.moffitt.org/QUAD/, facilitates widespread implementation of quantitative mass spectrometry in cancer biology and clinical research through sharing of methods and reagents for monitoring protein expression and modification. Experimental Design Liquid chromatography coupled to multiple reaction monitoring mass spectrometry (LC-MRM) assays are developed using SDS-PAGE fractionated lysates from cancer cell lines. Pathway maps created using GeneGO Metacore provide the biological relationships between proteins and illustrate concepts for multiplexed analysis; each protein can be selected to examine assay development at the protein and peptide level. Results The coupling of SDS-PAGE and LC-MRM screening has been used to detect 876 peptides from 218 cancer-related proteins in model systems including colon, lung, melanoma, leukemias, and myeloma, which has led to the development of 95 quantitative assays including stable-isotope labeled peptide standards. Methods are published online and peptide standards are made available to the research community. Protein expression measurements for heat shock proteins, including a comparison with ELISA and monitoring response to the HSP90 inhibitor, 17-DMAG, are used to illustrate the components of the QuAD and its potential utility. Conclusions and Clinical Relevance This resource enables quantitative assessment of protein components of signaling pathways and biological processes and holds promise for systematic investigation of treatment responses in cancer. PMID:21656910
Large Randall-Sundrum II black holes
NASA Astrophysics Data System (ADS)
Abdolrahimi, Shohreh; Cattoën, Céline; Page, Don N.; Yaghoobpour-Tari, Shima
2013-03-01
Using a novel numerical spectral method, we have constructed an AdS5-CFT4 solution to the Einstein equation with a negative cosmological constant Λ that is asymptotically conformal to the Schwarzschild metric. This method is independent of the Ricci-DeTurck-flow method used by Figueras, Lucietti, and Wiseman. We have perturbed the solution to get large static black hole solutions to the Randall-Sundrum II (RSII) braneworld model. Our solution agrees closely with that of Figueras et al. and also allows us to deduce the new results that to first order in 1 / (- ΛM2), the Hawking temperature and entropy of an RSII static black hole have the same values as the Schwarzschild metric with the same mass, but the horizon area is increased by about 4.7 / (- Λ).
On the catalysis of the electroweak vacuum decay by black holes at high temperature
NASA Astrophysics Data System (ADS)
Canko, D.; Gialamas, I.; Jelic-Cizmek, G.; Riotto, A.; Tetradis, N.
2018-04-01
We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum at high temperature. We base our analysis on the assumption that, at temperatures much higher than the Hawking temperature, the main effect of the black hole is to distort the Higgs configuration dominating the transition to the new vacuum. We estimate the barrier for the transition by the ADM mass of this configuration, computed through the temperature-corrected Higgs potential. We find that the exponential suppression of the nucleation rate can be reduced significantly, or even eliminated completely, in the black-hole background if the Standard Model Higgs is coupled to gravity through the renormalizable term ξ R h^2.
A Simplified Model of ARIS for Optimal Controller Design
NASA Technical Reports Server (NTRS)
Beech, Geoffrey S.; Hampton, R. David; Kross, Denny (Technical Monitor)
2001-01-01
Many space-science experiments require active vibration isolation. Boeing's Active Rack Isolation System (ARIS) isolates experiments at the rack (vs. experiment or sub-experiment) level, with multi e experiments per rack. An ARIS-isolated rack typically employs eight actuators and thirteen umbilicals; the umbilicals provide services such as power, data transmission, and cooling. Hampton, et al., used "Kane's method" to develop an analytical, nonlinear, rigid-body model of ARIS that includes full actuator dynamics (inertias). This model, less the umbilicals, was first implemented for simulation by Beech and Hampton; they developed and tested their model using two commercial-off-the-shelf (COTS) software packages. Rupert, et al., added umbilical-transmitted disturbances to this nonlinear model. Because the nonlinear model, even for the untethered system, is both exceedingly complex and "encapsulated" inside these COTS tools, it is largely inaccessible to ARIS controller designers. This paper shows that ISPR rattle-space constraints and small ARIS actuator masses permit considerable model simplification, without significant loss of fidelity. First, for various loading conditions, comparisons are made between the dynamic responses of the nonlinear model (untethered) and a truth model. Then comparisons are made among nonlinear, linearized, and linearized reduced-mass models. It is concluded that these three models all capture the significant system rigid-body dynamics, with the third being preferred due to its relative simplicity.
Adding Salt to Meals as a Risk Factor of Type 2 Diabetes Mellitus: A Case-Control Study.
Radzeviciene, Lina; Ostrauskas, Rytas
2017-01-13
Type 2 diabetes mellitus (T2DM) is thought to arise from the complex interplay between genetic and environmental factors. It is important to identify modifiable risk factors that may help to reduce the risk of diabetes. Data on salt intake and the risk of type 2 diabetes are limited. The aim of this study was to assess the relationship between adding salt to prepared meals and the risk of type 2 diabetes. In a case-control study, we included 234 cases, all of whom were patients aged 35-86 years with a newly confirmed diagnosis of T2DM, and 468 controls that were free of the disease. Cases and controls (ratio 1:2) were matched by gender and age (±5 years). A questionnaire was used to collect information on possible risk factors for diabetes. Adding salt to prepared meals was assessed according to: Never, when there was not enough, or almost every time without tasting. The odds ratios (OR), and 95% confidence intervals (CI) for type 2 diabetes was calculated using a conditional logistic regression. The cases had a higher body mass index and a significantly lower education level compared to the controls. Variables such as waist circumference, body mass index, eating speed, smoking, family history of diabetes, arterial hypertension, plasma triglycerides, educational level, occupational status, morning exercise, marital status, daily urine sodium excretion, and daily energy intake were retained in the models as confounders. After adjusting for possible confounders, an approximately two-fold increased risk of type 2 diabetes was determined in subjects who add salt to prepared meals when "it is not enough" or "almost every time without tasting" (1.82; 95% CI 1.19-2.78; p = 0.006) compared with never adding salt. Presented data suggest the possible relationship between additional adding of salt to prepared meals and an increased risk of type 2 diabetes.
Flow-induced oscillations of a floating moored cylinder
NASA Astrophysics Data System (ADS)
Carlson, Daniel; Modarres-Sadeghi, Yahya
2016-11-01
An experimental study of flow-induced oscillations of a floating model spar buoy was conducted. The model spar consisted of a floating uniform cylinder moored in a water tunnel test section, and free to oscillate about its mooring attachment point near the center of mass. For the bare cylinder, counter-clockwise (CCW) figure-eight trajectories approaching A* =1 in amplitude were observed at the lower part of the spar for a reduced velocity range of U* =4-11, while its upper part experienced clockwise (CW) orbits. It was hypothesized that the portion of the spar undergoing CCW figure eights is the portion within which the flow excites the structure. By adding helical strakes to the portion of the cylinder with CCW figure eights, the response amplitude was significantly reduced, while adding strakes to portions with clockwise orbital motion had a minimal influence on the amplitude of response. This work is partially supported by the NSF-sponsored IGERT: Offshore Wind Energy Engineering, Environmental Science, and Policy (Grant Number 1068864).
Novel use of geochemical models in evaluating treatment trains for aqueous radioactive waste streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abitz, R.J.
1996-12-31
Thermodynamic geochemical models have been applied to assess the relative effectiveness of a variety of reagents added to aqueous waste streams for the removal of radioactive elements. Two aqueous waste streams were examined: effluent derived from the processing of uranium ore and irradiated uranium fuel rods. Simulations of the treatment train were performed to estimate the mass of reagents needed per kilogram of solution, identify pH regions corresponding to solubility minimums, and predict the identity and quantity of precipitated solids. Results generated by the simulations include figures that chart the chemical evolution of the waste stream as reagents are addedmore » and summary tables that list mass balances for all reagents and radioactive elements of concern. Model results were used to set initial reagent levels for the treatment trains, minimizing the number of bench-scale tests required to bring the treatment train up to full-scale operation. Additionally, presentation of modeling results at public meetings helps to establish good faith between the federal government, industry, concerned citizens, and media groups. 18 refs., 3 figs., 1 tab.« less
Au, Frederick Wing-Fai; Ghai, Sandeep; Moshonov, Hadas; Kahn, Harriette; Brennan, Cressida; Dua, Hemi; Crystal, Pavel
2014-09-01
The purpose of this article is to assess the diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses and to determine the most discriminatory parameter. B-mode ultrasound and shear wave elastography were performed before core biopsy of 123 masses in 112 women. The diagnostic performance of ultrasound and quantitative shear wave elastography parameters (mean elasticity, maximum elasticity, and elasticity ratio) were compared. The added effect of shear wave elastography on the performance of ultrasound was determined. The mean elasticity, maximum elasticity, and elasticity ratio were 24.8 kPa, 30.3 kPa, and 1.90, respectively, for 79 benign masses and 130.7 kPa, 154.9 kPa, and 11.52, respectively, for 44 malignant masses (p < 0.001). The optimal cutoff value for each parameter was determined to be 42.5 kPa, 46.7 kPa, and 3.56, respectively. The AUC of each shear wave elastography parameter was higher than that of ultrasound (p < 0.001); the AUC value for the elasticity ratio (0.943) was the highest. By adding shear wave elastography parameters to the evaluation of BI-RADS category 4a masses, about 90% of masses could be downgraded to BI-RADS category 3. The numbers of downgraded masses were 40 of 44 (91%) for mean elasticity, 39 of 44 (89%) for maximum elasticity, and 42 of 44 (95%) for elasticity ratio. The numbers of correctly downgraded masses were 39 of 40 (98%) for mean elasticity, 38 of 39 (97%) for maximum elasticity, and 41 of 42 (98%) for elasticity ratio. There was improvement in the diagnostic performance of ultrasound of mass assessment with shear wave elastography parameters added to BI-RADS category 4a masses compared with ultrasound alone. Combined ultrasound and elasticity ratio had the highest improvement, from 35.44% to 87.34% for specificity, from 45.74% to 80.77% for positive predictive value, and from 57.72% to 90.24% for accuracy (p < 0.0001). The AUC of combined ultrasound and elasticity ratio (0.914) was the highest compared with the other combined parameters. There was a statistically significant difference in the values of the quantitative shear wave elastography parameters of benign and malignant solid breast masses. By adding shear wave elastography parameters to BI-RADS category 4a masses, we found that about 90% of them could be correctly downgraded to BI-RADS category 3, thereby avoiding biopsy. Elasticity ratio (cutoff, 3.56) appeared to be the most discriminatory parameter.
A mass transfer model of ammonia volatilization from anaerobic digestate.
Whelan, M J; Everitt, T; Villa, R
2010-10-01
Anaerobic digestion (AD) is becoming increasingly popular for treating organic waste. The methane produced can be burned to generate electricity and the digestate, which is high in mineral nitrogen, can be used as a fertiliser. In this paper we evaluate potential losses of ammonia via volatilization from food waste anaerobic digestate using a closed chamber system equipped with a sulphuric acid trap. Ammonia losses represent a pollution source and, over long periods could reduce the agronomic value of the digestate. Observed ammonia losses from the experimental system were linear with time. A simple non-steady-state partitioning model was developed to represent the process. After calibration, the model was able to describe the behaviour of ammonia in the digestate and in the trap very well. The average rate of volatilization was approximately 5.2 g Nm(-2)week(-1). The model was used to extrapolate the findings of the laboratory study to a number of AD storage scenarios. The simulations highlight that open storage of digestate could result in significant losses of ammonia to the atmosphere. Losses are predicted to be relatively minor from covered facilities, particularly if depth to surface area ratio is high. (c) 2009 Elsevier Ltd. All rights reserved.
High efficiency and broadband acoustic diodes
NASA Astrophysics Data System (ADS)
Fu, Congyi; Wang, Bohan; Zhao, Tianfei; Chen, C. Q.
2018-01-01
Energy transmission efficiency and working bandwidth are the two major factors limiting the application of current acoustic diodes (ADs). This letter presents a design of high efficiency and broadband acoustic diodes composed of a nonlinear frequency converter and a linear wave filter. The converter consists of two masses connected by a bilinear spring with asymmetric tension and compression stiffness. The wave filter is a linear mass-spring lattice (sonic crystal). Both numerical simulation and experiment show that the energy transmission efficiency of the acoustic diode can be improved by as much as two orders of magnitude, reaching about 61%. Moreover, the primary working band width of the AD is about two times of the cut-off frequency of the sonic crystal filter. The cut-off frequency dependent working band of the AD implies that the developed AD can be scaled up or down from macro-scale to micro- and nano-scale.
NASA Astrophysics Data System (ADS)
Tennfors, Einar
2013-02-01
The present article is a critical comment on Widom and Larsens speculations concerning low-energy nuclear reactions (LENR) based on spontaneous collective motion of protons in a room temperature metallic hydride lattice producing oscillating electric fields that renormalize the electron self-energy, adding significantly to the effective electron mass and enabling production of low-energy neutrons. The frequency and mean proton displacement estimated on the basis of neutron scattering from protons in palladium and applied to the Widom and Larsens model of the proton oscillations yield an electron mass enhancement less than one percent, far below the threshold for the proposed neutron production and even farther below the mass enhancement obtained by Widom and Larsen assuming a high charge density. Neutrons are not stopped by the Coulomb barrier, but the energy required for the neutron production is not low.
A New Low Mass for the Hercules dSph: The End of a Common Mass Scale for the Dwarfs?
NASA Astrophysics Data System (ADS)
Adén, D.; Wilkinson, M. I.; Read, J. I.; Feltzing, S.; Koch, A.; Gilmore, G. F.; Grebel, E. K.; Lundström, I.
2009-11-01
We present a new mass estimate for the Hercules dwarf spheroidal (dSph) galaxy, based on the revised velocity dispersion obtained by Adén et al. The removal of a significant foreground contamination using newly acquired Strömgren photometry has resulted in a reduced velocity dispersion. Using this new velocity dispersion of 3.72 ± 0.91 km s-1, we find a mass of M 300 = 1.9+1.1 -0.8 × 106 M sun within the central 300 pc, which is also the half-light radius, and a mass of M 433 = 3.7+2.2 -1.6 × 106 M sun within the reach of our data to 433 pc, significantly lower than previous estimates. We derive an overall mass-to-light ratio of M 433/L = 103+83 -48[M sun/L sun]. Our mass estimate calls into question recent claims of a common mass scale for dSph galaxies. Additionally, we find tentative evidence for a velocity gradient in our kinematic data of 16 ± 3 km s-1 kpc-1, and evidence of an asymmetric extension in the light distribution at ~0.5 kpc. We explore the possibility that these features are due to tidal interactions with the Milky Way. We show that there is a self-consistent model in which Hercules has an assumed tidal radius of rt = 485 pc, an orbital pericenter of rp = 18.5 ± 5 kpc, and a mass within rt of M_{tid,r_t}=5.2_{-2.7}^{+2.7} × 10^6 M_⊙. Proper motions are required to test this model. Although we cannot exclude models in which Hercules contains no dark matter, we argue that Hercules is more likely to be a dark-matter-dominated system that is currently experiencing some tidal disturbance of its outer parts.
The CMB neutrino mass/vacuum energy degeneracy: a simple derivation of the degeneracy slopes
NASA Astrophysics Data System (ADS)
Sutherland, Will
2018-06-01
It is well known that estimating cosmological parameters from cosmic microwave background (CMB) data alone results in a significant degeneracy between the total neutrino mass and several other cosmological parameters, especially the Hubble constant H0 and the matter density parameter Ωm. Adding low-redshift measurements such as baryon acoustic oscillations (BAOs) breaks this degeneracy and greatly improves the constraints on neutrino mass. The sensitivity is surprisingly high, for example, adding the ˜1 percent measurement of the BAO ratio rs/DV from the BOSS survey leads to a limit Σ mν < 0.19 eV, equivalent to Ων < 0.0045 at 95 per cent confidence. For the case of Σ mν < 0.6 eV, the CMB degeneracy with neutrino mass almost follows a track of constant sound horizon angle (Howlett et al. 2012). For a ΛCDM + mν model, we use simple but quite accurate analytic approximations to derive the slope of this track, giving dimensionless multipliers between the neutrino to matter ratio (xν ≡ ων/ωcb) and the shifts in other cosmological parameters. The resulting multipliers are substantially larger than 1: conserving the CMB sound horizon angle requires parameter shifts δln H0 ≈ -2 δxν, δln Ωm ≈ +5 δxν, δln ωΛ ≈ -6.2 δxν, and most notably δωΛ ≈ -14 δων. These multipliers give an intuitive derivation of the degeneracy direction, which agrees well with the numerical likelihood results from the Planck team.
A mutagenic analysis of the RNase mechanism of the bacterial Kid toxin by mass spectrometry.
Diago-Navarro, Elizabeth; Kamphuis, Monique B; Boelens, Rolf; Barendregt, Arjan; Heck, Albert J; van den Heuvel, Robert H; Díaz-Orejas, Ramón
2009-09-01
Kid, the toxin of the parD (kis, kid) maintenance system of plasmid R1, is an endoribonuclease that preferentially cleaves RNA at the 5' of A in the core sequence 5'-UA(A/C)-3'. A model of the Kid toxin interacting with the uncleavable mimetic 5'-AdUACA-3' is available. To evaluate this model, a significant collection of mutants in some of the key residues proposed to be involved in RNA binding (T46, A55, T69 and R85) or RNA cleavage (R73, D75 and H17) were analysed by mass spectrometry in RNA binding and cleavage assays. A pair of substrates, 5'-AUACA-3', and its uncleavable mimetic 5'-AdUACA-3', used to establish the model and structure of the Kid-RNA complex, were used in both the RNA cleavage and binding assays. A second RNA substrate, 5'-UUACU-3' efficiently cleaved by Kid both in vivo and in vitro, was also used in the cleavage assays. Compared with the wild-type protein, mutations in the residues of the catalytic site abolished RNA cleavage without substantially altering RNA binding. Mutations in residues proposed to be involved in RNA binding show reduced binding efficiency and a corresponding decrease in RNA cleavage efficiency. The cleavage profiles of the different mutants were similar with the two substrates used, but RNA cleavage required much lower protein concentrations when the 5'-UUACU-3' substrate was used. Protein synthesis and growth assays are consistent with there being a correlation between the RNase activity of Kid and its inhibitory potential. These results give important support to the available models of Kid RNase and the Kid-RNA complex.
Semi-Empirical Modeling of SLD Physics
NASA Technical Reports Server (NTRS)
Wright, William B.; Potapczuk, Mark G.
2004-01-01
The effects of supercooled large droplets (SLD) in icing have been an area of much interest in recent years. As part of this effort, the assumptions used for ice accretion software have been reviewed. A literature search was performed to determine advances from other areas of research that could be readily incorporated. Experimental data in the SLD regime was also analyzed. A semi-empirical computational model is presented which incorporates first order physical effects of large droplet phenomena into icing software. This model has been added to the LEWICE software. Comparisons are then made to SLD experimental data that has been collected to date. Results will be presented for the comparison of water collection efficiency, ice shape and ice mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Jiang-Hao
In original twin Higgs model, vacuum misalignment between electroweak and new physics scales is realized by adding explicit Z 2 breaking term. Introducing additional twin Higgs could accommodate spontaneous Z 2 breaking, which explains origin of this misalignment. We introduce a class of twin two Higgs doublet models with most general scalar potential, and discuss general conditions which trigger electroweak and Z 2 symmetry breaking. Various scenarios on realising the vacuum misalignment are systematically discussed in a natural composite two Higgs double model framework: explicit Z 2 breaking, radiative Z 2 breaking, tadpole-induced Z 2 breaking, and quartic-induced Z 2more » breaking. Finally, we investigate the Higgs mass spectra and Higgs phenomenology in these scenarios.« less
A tale of twin Higgs: natural twin two Higgs doublet models
Yu, Jiang-Hao
2016-12-28
In original twin Higgs model, vacuum misalignment between electroweak and new physics scales is realized by adding explicit Z 2 breaking term. Introducing additional twin Higgs could accommodate spontaneous Z 2 breaking, which explains origin of this misalignment. We introduce a class of twin two Higgs doublet models with most general scalar potential, and discuss general conditions which trigger electroweak and Z 2 symmetry breaking. Various scenarios on realising the vacuum misalignment are systematically discussed in a natural composite two Higgs double model framework: explicit Z 2 breaking, radiative Z 2 breaking, tadpole-induced Z 2 breaking, and quartic-induced Z 2more » breaking. Finally, we investigate the Higgs mass spectra and Higgs phenomenology in these scenarios.« less
A model of the atmospheric metal deposition by cosmic dust particles
NASA Astrophysics Data System (ADS)
McNeil, W. J.
1993-11-01
We have developed a model of the deposition of meteoric metals in Earth's atmosphere. The model takes as input the total mass influx of material to the Earth and calculates the deposition rate at all altitudes through solution of the drag and subliminal equations in a Monte Carlo-type computation. The diffusion equation is then solved to give steady state concentration of complexes of specific metal species and kinetics are added to calculate the concentration of individual complexes. Concentrating on sodium, we calculate the Na(D) nightglow predicted by the model, and by introduction of seasonal variations in lower tropospheric ozone based on experimental results, we are able to duplicate the seasonal variation of mid-latitude nightglow data.
Higgsless approach to electroweak symmetry breaking
NASA Astrophysics Data System (ADS)
Grojean, Christophe
2007-11-01
Higgsless models are an attempt to achieve a breaking of the electroweak symmetry via boundary conditions at the end-points of a fifth dimension compactified on an interval, as an alternative to the usual Higgs mechanism. There is no physical Higgs scalar in the spectrum and the perturbative unitarity violation scale is delayed via the exchange of massive spin-1 KK resonances. The correct mass spectrum is reproduced in a model in warped space, which inherits a custodial symmetry from a left-right gauge symmetry in the bulk. Phenomenological challenges as well as collider signatures are presented. From the AdS/CFT perspective, this model appears as a weakly coupled dual to walking technicolour models. To cite this article: C. Grojean, C. R. Physique 8 (2007).
NASA Technical Reports Server (NTRS)
Kartuzova, Olga; Kassemi, Mohammad
2015-01-01
A CFD model for simulating the self-pressurization of a large scale liquid hydrogen storage tank is utilized in this paper to model the MHTB self-pressurization experiment. The kinetics-based Schrage equation is used to account for the evaporative and condensi ng interfacial mass flows in this model. The effect of the accommodation coefficient for calculating the interfacial mass transfer rate on the tank pressure during tank selfpressurization is studied. The values of the accommodation coefficient which were considered in this study vary from 1.0e-3 to 1.0e-1 for the explicit VOF model and from 1.0e-4 to 1.0e-3 for the implicit VOF model. The ullage pressure evolutions are compared against experimental data. A CFD model for controlling pressure in cryogenic storage tanks by spraying cold liquid into the ullage is also presented. The Euler-Lagrange approach is utilized for tracking the spray droplets and for modeling the interaction between the droplets and the continuous phase (ullage). The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. Droplet-ullage heat and mass transfer are modeled. The flow, temperature, and interfacial mass flux, as well as droplets trajectories, size distribution and temperatures predicted by the model are presented. The ul lage pressure and vapor temperature evolutions are compared with experimental data obtained from the MHTB spray bar mixing experiment. The effect of the accommodation coefficient for calculating the interfacial and droplet mass transfer rates on the tank pressure during mixing of the vapor using spray is studied. The values used for the accommodation coefficient at the interface vary from 1.0e-5 to 1.0e-2. The droplet accommodation coefficient values vary from 2.0e-6 to 1.0e-4.
Influence of Slope-Scale Snowmelt on Catchment Response Simulated With the Alpine3D Model
NASA Astrophysics Data System (ADS)
Brauchli, Tristan; Trujillo, Ernesto; Huwald, Hendrik; Lehning, Michael
2017-12-01
Snow and hydrological modeling in alpine environments remains challenging because of the complexity of the processes affecting the mass and energy balance. This study examines the influence of snowmelt on the hydrological response of a high-alpine catchment of 43.2 km2 in the Swiss Alps during the water year 2014-2015. Based on recent advances in Alpine3D, we examine how snow distributions and liquid water transport within the snowpack influence runoff dynamics. By combining these results with multiscale observations (snow lysimeter, distributed snow depths, and streamflow), we demonstrate the added value of a more realistic snow distribution at the onset of melt season. At the site scale, snowpack runoff is well simulated when the mass balance errors are corrected (R2 = 0.95 versus R2 = 0.61). At the subbasin scale, a more heterogeneous snowpack leads to a more rapid runoff pulse originating in the shallower areas while an extended melting period (by a month) is caused by snowmelt from deeper areas. This is a marked improvement over results obtained using a traditional precipitation interpolation method. Hydrological response is also improved by the more realistic snowpack (NSE of 0.85 versus 0.74), even though calibration processes smoothen out the differences. The added value of a more complex liquid water transport scheme is obvious at the site scale but decreases at larger scales. Our results highlight not only the importance but also the difficulty of getting a realistic snowpack distribution even in a well-instrumented area and present a model validation from multiscale experimental data sets.
NASA Astrophysics Data System (ADS)
Cunha, T.; Mendes, M.; Ferreira da Silva, F.; Eden, S.; García, G.; Bacchus-Montabonel, M.-C.; Limão-Vieira, P.
2018-04-01
We report on a combined experimental and theoretical study of electron-transfer-induced decomposition of adenine (Ad) and a selection of analog molecules in collisions with potassium (K) atoms. Time-of-flight negative ion mass spectra have been obtained in a wide collision energy range (6-68 eV in the centre-of-mass frame), providing a comprehensive investigation of the fragmentation patterns of purine (Pu), adenine (Ad), 9-methyl adenine (9-mAd), 6-dimethyl adenine (6-dimAd), and 2-D adenine (2-DAd). Following our recent communication about selective hydrogen loss from the transient negative ions (TNIs) produced in these collisions [T. Cunha et al., J. Chem. Phys. 148, 021101 (2018)], this work focuses on the production of smaller fragment anions. In the low-energy part of the present range, several dissociation channels that are accessible in free electron attachment experiments are absent from the present mass spectra, notably NH2 loss from adenine and 9-methyl adenine. This can be understood in terms of a relatively long transit time of the K+ cation in the vicinity of the TNI tending to enhance the likelihood of intramolecular electron transfer. In this case, the excess energy can be redistributed through the available degrees of freedom inhibiting fragmentation pathways. Ab initio theoretical calculations were performed for 9-methyl adenine (9-mAd) and adenine (Ad) in the presence of a potassium atom and provided a strong basis for the assignment of the lowest unoccupied molecular orbitals accessed in the collision process.
Morris, Jill K; Vidoni, Eric D; Mahnken, Jonathan D; Montgomery, Robert N; Johnson, David K; Thyfault, John P; Burns, Jeffrey M
2016-03-01
Insulin resistance is a risk factor for Alzheimer's disease (AD), although its role in AD etiology is unclear. We assessed insulin resistance using fasting and insulin-stimulated measures in 51 elderly subjects with no dementia (ND; n = 37) and with cognitive impairment (CI; n = 14). CI subjects exhibited either mild CI or AD. Fasting insulin resistance was measured using the homeostatic model assessment of insulin resistance (HOMA-IR). Insulin-stimulated glucose disposal was assessed using the hyperinsulinemic-euglycemic clamp to calculate glucose disposal rate into lean mass, the primary site of insulin-stimulated glucose disposal. Because insulin crosses the blood-brain barrier, we also assessed whether insulin infusion would improve verbal episodic memory compared to baseline. Different but equivalent versions of cognitive tests were administered in counterbalanced order in the basal and insulin-stimulated state. Groups did not differ in age or body mass index. Cognitively impaired subjects exhibited greater insulin resistance as measured at fasting (HOMA-IR; ND: 1.09 [1.1] vs. CI: 2.01 [2.3], p = 0.028) and during the hyperinsulinemic clamp (glucose disposal rate into lean mass; ND: 9.9 (4.5) vs. AD 7.2 (3.2), p = 0.040). Cognitively impaired subjects also exhibited higher fasting insulin compared to ND subjects, (CI: 8.7 [7.8] vs. ND: 4.2 [3.8] μU/mL; p = 0.023) and higher fasting amylin (CI: 24.1 [39.1] vs. 8.37 [14.2]; p = 0.050) with no difference in fasting glucose. Insulin infusion elicited a detrimental effect on one test of verbal episodic memory (Free and Cued Selective Reminding Test) in both groups (p < 0.0001) and no change in performance on an additional task (delayed logical memory). In this study, although insulin resistance was observed in cognitively impaired subjects compared to ND controls, insulin infusion did not improve memory. Furthermore, a significant correlation between HOMA-IR and glucose disposal rate was present only in ND (p = 0.0002) but not in cognitively impaired (p = 0.884) subjects, indicating potentially important physiological differences between these cohorts. Copyright © 2016 Elsevier Inc. All rights reserved.
Exact microstate counting for dyonic black holes in AdS4
NASA Astrophysics Data System (ADS)
Benini, Francesco; Hristov, Kiril; Zaffaroni, Alberto
2017-08-01
We present a counting of microstates of a class of dyonic BPS black holes in AdS4 which precisely reproduces their Bekenstein-Hawking entropy. The counting is performed in the dual boundary description, that provides a non-perturbative definition of quantum gravity, in terms of a twisted and mass-deformed ABJM theory. We evaluate its twisted index and propose an extremization principle to extract the entropy, which reproduces the attractor mechanism in gauged supergravity.
Minimal type-I seesaw model with maximally restricted texture zeros
NASA Astrophysics Data System (ADS)
Barreiros, D. M.; Felipe, R. G.; Joaquim, F. R.
2018-06-01
In the context of Standard Model (SM) extensions, the seesaw mechanism provides the most natural explanation for the smallness of neutrino masses. In this work we consider the most economical type-I seesaw realization in which two right-handed neutrinos are added to the SM field content. For the sake of predictability, we impose the maximum number of texture zeros in the lepton Yukawa and mass matrices. All possible patterns are analyzed in the light of the most recent neutrino oscillation data, and predictions for leptonic C P violation are presented. We conclude that, in the charged-lepton mass basis, eight different texture combinations are compatible with neutrino data at 1 σ , all of them for an inverted-hierarchical neutrino mass spectrum. Four of these cases predict a C P -violating Dirac phase close to 3 π /2 , which is around the current best-fit value from the global analysis of neutrino oscillation data. If one further reduces the number of free parameters by considering three equal elements in the Dirac neutrino Yukawa coupling matrix, several texture combinations are still compatible with data but only at 3 σ . For all viable textures, the baryon asymmetry of the Universe is computed in the context of thermal leptogenesis, assuming (mildly) hierarchical heavy Majorana neutrino masses M1 ,2. It is shown that the flavored regime is ruled out, while the unflavored one requires M1˜1014 GeV .
NASA Astrophysics Data System (ADS)
Johnson, Traci L.; Sharon, Keren
2016-11-01
Until now, systematic errors in strong gravitational lens modeling have been acknowledged but have never been fully quantified. Here, we launch an investigation into the systematics induced by constraint selection. We model the simulated cluster Ares 362 times using random selections of image systems with and without spectroscopic redshifts and quantify the systematics using several diagnostics: image predictability, accuracy of model-predicted redshifts, enclosed mass, and magnification. We find that for models with >15 image systems, the image plane rms does not decrease significantly when more systems are added; however, the rms values quoted in the literature may be misleading as to the ability of a model to predict new multiple images. The mass is well constrained near the Einstein radius in all cases, and systematic error drops to <2% for models using >10 image systems. Magnification errors are smallest along the straight portions of the critical curve, and the value of the magnification is systematically lower near curved portions. For >15 systems, the systematic error on magnification is ∼2%. We report no trend in magnification error with the fraction of spectroscopic image systems when selecting constraints at random; however, when using the same selection of constraints, increasing this fraction up to ∼0.5 will increase model accuracy. The results suggest that the selection of constraints, rather than quantity alone, determines the accuracy of the magnification. We note that spectroscopic follow-up of at least a few image systems is crucial because models without any spectroscopic redshifts are inaccurate across all of our diagnostics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Guangxing; Qian, Yun; Yan, Huiping
One limitation of most global climate models (GCMs) is that with the horizontal resolutions they typically employ, they cannot resolve the subgrid variability (SGV) of clouds and aerosols, adding extra uncertainties to the aerosol radiative forcing estimation. To inform the development of an aerosol subgrid variability parameterization, here we analyze the aerosol SGV over the southern Pacific Ocean simulated by the high-resolution Weather Research and Forecasting model coupled to Chemistry. We find that within a typical GCM grid, the aerosol mass subgrid standard deviation is 15% of the grid-box mean mass near the surface on a 1 month mean basis.more » The fraction can increase to 50% in the free troposphere. The relationships between the sea-salt mass concentration, meteorological variables, and sea-salt emission rate are investigated in both the clear and cloudy portion. Under clear-sky conditions, marine aerosol subgrid standard deviation is highly correlated with the standard deviations of vertical velocity, cloud water mixing ratio, and sea-salt emission rates near the surface. It is also strongly connected to the grid box mean aerosol in the free troposphere (between 2 km and 4 km). In the cloudy area, interstitial sea-salt aerosol mass concentrations are smaller, but higher correlation is found between the subgrid standard deviations of aerosol mass and vertical velocity. Additionally, we find that decreasing the model grid resolution can reduce the marine aerosol SGV but strengthen the correlations between the aerosol SGV and the total water mixing ratio (sum of water vapor, cloud liquid, and cloud ice mixing ratios).« less
NASA Astrophysics Data System (ADS)
Wu, X.; Jiang, Y.; Simonsen, S.; van den Broeke, M. R.; Ligtenberg, S.; Kuipers Munneke, P.; van der Wal, W.; Vermeersen, B. L. A.
2017-12-01
Determining present-day mass transport (PDMT) is complicated by the fact that most observations contain signals from both present day ice melting and Glacial Isostatic Adjustment (GIA). Despite decades of progress in geodynamic modeling and new observations, significant uncertainties remain in both. The key to separate present-day ice mass change and signals from GIA is to include data of different physical characteristics. We designed an approach to separate PDMT and GIA signatures by estimating them simultaneously using globally distributed interdisciplinary data with distinct physical information and a dynamically constructed a priori GIA model. We conducted a high-resolution global reappraisal of present-day ice mass balance with focus on Earth's polar regions and its contribution to global sea-level rise using a combination of ICESat, GRACE gravity, surface geodetic velocity data, and an ocean bottom pressure model. Adding ice altimetry supplies critically needed dual data types over the interiors of ice covered regions to enhance separation of PDMT and GIA signatures, and achieve half an order of magnitude expected higher accuracies for GIA and consequently ice mass balance estimates. The global data based approach can adequately address issues of PDMT and GIA induced geocenter motion and long-wavelength signatures important for large areas such as Antarctica and global mean sea level. In conjunction with the dense altimetry data, we solved for PDMT coefficients up to degree and order 180 by using a higher-resolution GRACE data set, and a high-resolution a priori PDMT model that includes detailed geographic boundaries. The high-resolution approach solves the problem of multiple resolutions in various data types, greatly reduces aliased errors from a low-degree truncation, and at the same time, enhances separation of signatures from adjacent regions such as Greenland and Canadian Arctic territories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swindle, R.; Gal, R. R.; La Barbera, F.
2011-10-15
We present robust statistical estimates of the accuracy of early-type galaxy stellar masses derived from spectral energy distribution (SED) fitting as functions of various empirical and theoretical assumptions. Using large samples consisting of {approx}40,000 galaxies from the Sloan Digital Sky Survey (SDSS; ugriz), of which {approx}5000 are also in the UKIRT Infrared Deep Sky Survey (YJHK), with spectroscopic redshifts in the range 0.05 {<=} z {<=} 0.095, we test the reliability of some commonly used stellar population models and extinction laws for computing stellar masses. Spectroscopic ages (t), metallicities (Z), and extinctions (A{sub V} ) are also computed from fitsmore » to SDSS spectra using various population models. These external constraints are used in additional tests to estimate the systematic errors in the stellar masses derived from SED fitting, where t, Z, and A{sub V} are typically left as free parameters. We find reasonable agreement in mass estimates among stellar population models, with variation of the initial mass function and extinction law yielding systematic biases on the mass of nearly a factor of two, in agreement with other studies. Removing the near-infrared bands changes the statistical bias in mass by only {approx}0.06 dex, adding uncertainties of {approx}0.1 dex at the 95% CL. In contrast, we find that removing an ultraviolet band is more critical, introducing 2{sigma} uncertainties of {approx}0.15 dex. Finally, we find that the stellar masses are less affected by the absence of metallicity and/or dust extinction knowledge. However, there is a definite systematic offset in the mass estimate when the stellar population age is unknown, up to a factor of 2.5 for very old (12 Gyr) stellar populations. We present the stellar masses for our sample, corrected for the measured systematic biases due to photometrically determined ages, finding that age errors produce lower stellar masses by {approx}0.15 dex, with errors of {approx}0.02 dex at the 95% CL for the median stellar age subsample.« less
The use of body mass changes as a practical measure of dehydration in team sports.
Harvey, Gemma; Meir, Rudi; Brooks, Lyndon; Holloway, Kate
2008-11-01
Body mass changes, hematocrit, specific gravity and urine colour were recorded during two games of soccer to determine which of these methods was the most practical in a field setting for monitoring dehydration. Members (n=13) of a premiership soccer team with a mean age of 22.6 (+/-4.9) years old, height of 177.8 (+/-7.1)cm and sum of skinfolds (four sites) of 37 (+/-12.8) were invited to participate in this study with 11 participating in each game. Players had weight, hematocrit, specific gravity and urine colour recorded pre- and post-game. Players were allowed to ingest fluid ad libitum throughout the matches with the amount consumed recorded. Urine excretion was also recorded and included in the calculation of final body mass loss (kg). A mean ambient temperature of 21 degrees C and relative humidity 77% was recorded for both games. Pre- and post-game body mass, sweat loss, hematocrit, urine specific gravity and colour were significantly different (p<0.01) for both games. Linear mixed effects models were fitted to the data in order to identify an optimal prediction equation for sweat loss. The model predicting from mass change was clearly the best fitting. The results demonstrate that a change in body mass during a game of soccer is an effective method of monitoring dehydration due to sweat loss when compared to other known methods that may be invasive and inappropriate in the field.
The super-NFW model: an analytic dynamical model for cold dark matter haloes and elliptical galaxies
NASA Astrophysics Data System (ADS)
Lilley, Edward J.; Evans, N. Wyn; Sanders, Jason L.
2018-05-01
An analytic galaxy model with ρ ˜ r-1 at small radii and ρ ˜ r-3.5 at large radii is presented. The asymptotic density fall-off is slower than the Hernquist model, but faster than the Navarro-Frenk-White (NFW) profile for dark matter haloes, and so in accord with recent evidence from cosmological simulations. The model provides the zeroth-order term in a biorthornomal basis function expansion, meaning that axisymmetric, triaxial, and lopsided distortions can easily be added (much like the Hernquist model itself which is the zeroth-order term of the Hernquist-Ostriker expansion). The properties of the spherical model, including analytic distribution functions which are either isotropic, radially anisotropic, or tangentially anisotropic, are discussed in some detail. The analogue of the mass-concentration relation for cosmological haloes is provided.
The Influence of Added Mass on Optimal Step Length in Running.
Reenalda, Jasper; Maas, Maurice T F; de Koning, Jos J
2016-10-01
To examine the influence of induced changes in the morphology of the leg by adding mass on the optimal step length (OSL) in experienced runners to get more insight into parameters that influence preferred step length (PSL) and OSL. Thirteen experienced male runners (mean age 26.9 ± 6.1 y, height 183.7 ± 7.1 cm, mass 71.8 ± 5.9 kg) ran on a treadmill in 3 different conditions: unloaded (UL), loaded with 2 kg mass at the ankles (MA), and loaded with 2 kg mass at the hips (MH) at 7 different step lengths (SLs). SL deviations were expressed as deviations in relative leg length (%LL) from the individual PSL: 0%LL, ±5%LL, ±10%LL, and ±15%LL. Trials lasted 8 min, and 8 min of rest was given between trials. Oxygen uptake (V̇O 2 ) was expressed as a fraction of V̇O 2 at PSL + 0%LL in the unloaded condition (%V̇O 2 ). The %SL with the lowest value of %V̇O 2 was considered the OSL for this group of participants. OSL at the UL condition was 6% shorter than PSL. The MA condition resulted in a 7%LL larger OSL than at UL and MH (P < .05). The mass distribution of the leg is a determinant of the OSL. As a consequence of the added mass to the ankles, OSL was 7%LL longer. Morphological characteristics of the leg might therefore play an important role in determining the runner's individual optimal SL.
NASA Astrophysics Data System (ADS)
Ibáñez, Luis E.; Martín-Lozano, Víctor; Valenzuela, Irene
2017-11-01
It is known that there are AdS vacua obtained from compactifying the SM to 2 or 3 dimensions. The existence of such vacua depends on the value of neutrino masses through the Casimir effect. Using the Weak Gravity Conjecture, it has been recently argued by Ooguri and Vafa that such vacua are incompatible with the SM embedding into a consistent theory of quantum gravity. We study the limits obtained for both the cosmological constant Λ4 and neutrino masses from the absence of such dangerous 3D and 2D SM AdS vacua. One interesting implication is that Λ4 is bounded to be larger than a scale of order m ν 4 , as observed experimentally. Interestingly, this is the first argument implying a non-vanishing Λ4 only on the basis of particle physics, with no cosmological input. Conversely, the observed Λ4 implies strong constraints on neutrino masses in the SM and also for some BSM extensions including extra Weyl or Dirac spinors, gravitinos and axions. The upper bounds obtained for neutrino masses imply (for fixed neutrino Yukawa and Λ4) the existence of upper bounds on the EW scale. In the case of massive Majorana neutrinos with a see-saw mechanism associated to a large scale M ≃ 1010 - 14 GeV and Y ν1 ≃ 10-3, one obtains that the EW scale cannot exceed M EW ≲ 102 - 104 GeV. From this point of view, the delicate fine-tuning required to get a small EW scale would be a mirage, since parameters yielding higher EW scales would be in the swampland and would not count as possible consistent theories. This would bring a new perspective into the issue of the EW hierarchy.
Evasion of added isotopic mercury from a northern temperate lake
Southworth, G.; Lindberg, S.; Hintelmann, H.; Amyot, M.; Poulain, A.; Bogle, M.; Peterson, M.; Rudd, J.; Harris, R.; Sandilands, K.; Krabbenhoft, D.; Olsen, M.
2007-01-01
Isotopically enriched Hg (90% 202Hg) was added to a small lake in Ontario, Canada, at a rate equivalent to approximately threefold the annual direct atmospheric deposition rate that is typical of the northeastern United States. The Hg spike was thoroughly mixed into the epilimnion in nine separate events at two-week intervals throughout the summer growing season for three consecutive years. We measured concentrations of spike and ambient dissolved gaseous Hg (DGM) concentrations in surface water and the rate of volatilization of Hg from the lake on four separate, week-long sampling periods using floating dynamic flux chambers. The relationship between empirically measured rates of spike-Hg evasion were evaluated as functions of DGM concentration, wind velocity, and solar illumination. No individual environmental variable proved to be a strong predictor of the evasion flux. The DGM-normalized flux (expressed as the mass transfer coefficient, k) varied with wind velocity in a manner consistent with existing models of evasion of volatile solutes from natural waters but was higher than model estimates at low wind velocity. The empirical data were used to construct a description of evasion flux as a function of total dissolved Hg, wind, and solar illumination. That model was then applied to data for three summers for the experiment to generate estimates of Hg re-emission from the lake surface to the atmosphere. Based on ratios of spike Hg to ambient Hg in DGM and dissolved total Hg pools, ratios of DGM to total Hg in spike and ambient Hg pools, and flux estimates of spike and ambient Hg, we concluded that the added Hg spike was chemically indistinguishable from the ambient Hg in its behavior. Approximately 45% of Hg added to the lake over the summer was lost via volatilization. ?? 2007 SETAC.
Experimental facility for testing nuclear instruments for planetary landing missions
NASA Astrophysics Data System (ADS)
Golovin, Dmitry; Mitrofanov, Igor; Litvak, Maxim; Kozyrev, Alexander; Sanin, Anton; Vostrukhin, Andrey
2017-04-01
The experimental facility for testing and calibration of nuclear planetology instruments has been built in the frame of JINR and Space Research Institute (Moscow) cooperation. The Martian soil model from silicate glass with dimensions 3.82 x 3.21 m and total weight near 30 tons has been assembled in the facility. The glass material was chosen for imitation of dry Martian regolith. The heterogeneous model has been proposed and developed to achieve the most possible similarity with Martian soil in part of the average elemental composition by adding layers of necessary materials, such as iron, aluminum, and chlorine. The presence of subsurface water ice is simulated by adding layers of polyethylene at different depths inside glass model assembly. Neutron generator was used as a neutron source to induce characteristic gamma rays for testing active neutron and gamma spectrometers to define elements composition of the model. The instrumentation was able to detect gamma lines attributed to H, O, Na, Mg, Al, Si, Cl, K, Ca and Fe. The identified elements compose up to 95 wt % of total mass of the planetary soil model. This results will be used for designing scientific instruments to performing experiments of active neutron and gamma ray spectroscopy on the surface of the planets during Russian and international missions Luna-Glob, Luna-Resource and ExoMars-2020.
Mass Society/Culture/Media: An Eclectic Approach.
ERIC Educational Resources Information Center
Clavner, Jerry B.
Instructors of courses in mass society, culture, and communication start out facing three types of difficulties: the historical orientation of learning, the parochialism of various disciplines, and negative intellectually elitist attitudes toward mass culture/media. Added to these problems is the fact that many instructors have little or no…
CoMET: Cost and Mass Evaluation Tool for Spacecraft and Mission Design
NASA Technical Reports Server (NTRS)
Bieber, Ben S.
2005-01-01
New technology in space exploration is often developed without a complete knowledge of its impact. While the immediate benefits of a new technology are obvious, it is harder to understand its indirect consequences, which ripple through the entire system. COMET is a technology evaluation tool designed to illuminate how specific technology choices affect a mission at each system level. COMET uses simplified models for mass, power, and cost to analyze performance parameters of technologies of interest. The sensitivity analysis that CoMET provides shows whether developing a certain technology will greatly benefit the project or not. CoMET is an ongoing project approaching a web-based implementation phase. This year, development focused on the models for planetary daughter craft, such as atmospheric probes, blimps and balloons, and landers. These models are developed through research into historical data, well established rules of thumb, and engineering judgment of experts at JPL. The model is validated by corroboration with JpL advanced mission studies. Other enhancements to COMET include adding launch vehicle analysis and integrating an updated cost model. When completed, COMET will allow technological development to be focused on areas that will most drastically improve spacecraft performance.
NASA Astrophysics Data System (ADS)
EL-RAHEB, M.; WAGNER, P.
2002-02-01
Transmission of sound across 2-D truss-like periodic double panels separated by an air gap and in contact with an acoustic fluid on the external faces is analyzed. Each panel is made of repeated cells. Combining the transfer matrices of the unit cell forms a set of equations for the overall elastic frequency response. The acoustic pressure in the fluids is expressed using a source boundary element method. Adding rigid reflecting end caps confines the air in the gap between panels which influences sound transmission. Measured values of transmission loss differ from the 2-D model by the wide low-frequency dip of the mass-spring-mass or “msm” resonance also termed the “air gap resonance”. In this case, the panels act as rigid masses and the air gap acts as an adiabatic air spring. Results from the idealized 3-D and 2-D models, incorporating rigid cavities and elastic plates, reveal that the “msm” dip is absent in 2-D models radiating into a semi-infinite medium. The dip strengthens as aspect ratio approaches unity. Even when the dip disappears in 2-D, TL rises more steeply for frequencies above the “msm” frequency.
NASA Astrophysics Data System (ADS)
Danielsson, U. H.; Dibitetto, G.; Vargas, S. C.
2017-11-01
We consider known examples of non-supersymmetric AdS7 and AdS4 solutions arising from compactifications of massive type IIA supergravity and study their stability, taking into account the coupling between closed- and open-string sector excitations. Generically, open strings are found to develop modes with masses below the Breitenlohner-Freedman (BF) bound. We comment on the relation with the Weak Gravity Conjecture, and how this analysis may play an important role in examining the validity of non-supersymmetric constructions in string theory.
Broderick, M P; Hansen, C J; Irvine, M; Metzgar, D; Campbell, K; Baker, C; Russell, K L
2010-02-01
Although several studies have shown a positive association between evidence of anti-adenovirus 36 (Ad-36) antibodies (Ad-36 exposure) and (1) obesity and (2) serum cholesterol in animals, there is limited research demonstrating this association in humans. There is also limited research on transmission, presentation and demographics of Ad-36 infection. (1) Body mass (body mass index (BMI)), (2) fasting serum cholesterol and triglyceride levels and (3) demographic characteristics were compared between Ad-36 seropositive and seronegative groups. The majority of subjects were matched as cases versus controls on a number of demographic variables. A total of 150 obese and 150 lean active-duty military personnel were studied. Subjects completed a questionnaire regarding demographic and behavioral characteristics. Subject serum samples were tested by serum neutralization assay for the presence of anti-Ad-36 antibodies. In all, 34% of obese and 39% of lean subjects had Ad-36 exposure, an insignificant difference. Serum cholesterol and triglyceride levels were significantly higher among the obese subjects than among the lean, but there were no associations between serum cholesterol and triglyceride levels and Ad-36 exposure. Positive associations were found between Ad-36 exposure and age, race and gender. The study stands in contrast to previous work that has shown a positive relationship between Ad-36 exposure and (1) obesity, and (2) levels of serum cholesterol and triglycerides. In this study there was no association in either case. Unanticipated relationships between Ad-36 exposure and age, race and gender were found, and this is the first time that such a link between Ad-36 exposure and demographics has been found.
NASA Astrophysics Data System (ADS)
Charrier, Jessica G.; McFall, Alexander S.; Vu, Kennedy K.-T.; Baroi, James; Olea, Catalina; Hasson, Alam; Anastasio, Cort
2016-11-01
The dithiothreitol (DTT) assay is widely used to measure the oxidative potential of particulate matter. Results are typically presented in mass-normalized units (e.g., pmols DTT lost per minute per microgram PM) to allow for comparison among samples. Use of this unit assumes that the mass-normalized DTT response is constant and independent of the mass concentration of PM added to the DTT assay. However, based on previous work that identified non-linear DTT responses for copper and manganese, this basic assumption (that the mass-normalized DTT response is independent of the concentration of PM added to the assay) should not be true for samples where Cu and Mn contribute significantly to the DTT signal. To test this we measured the DTT response at multiple PM concentrations for eight ambient particulate samples collected at two locations in California. The results confirm that for samples with significant contributions from Cu and Mn, the mass-normalized DTT response can strongly depend on the concentration of PM added to the assay, varying by up to an order of magnitude for PM concentrations between 2 and 34 μg mL-1. This mass dependence confounds useful interpretation of DTT assay data in samples with significant contributions from Cu and Mn, requiring additional quality control steps to check for this bias. To minimize this problem, we discuss two methods to correct the mass-normalized DTT result and we apply those methods to our samples. We find that it is possible to correct the mass-normalized DTT result, although the correction methods have some drawbacks and add uncertainty to DTT analyses. More broadly, other DTT-active species might also have non-linear concentration-responses in the assay and cause a bias. In addition, the same problem of Cu- and Mn-mediated bias in mass-normalized DTT results might affect other measures of acellular redox activity in PM and needs to be addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, S. J.
A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses – such as mρ/mp – can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to themore » $$q\\bar{q}$$ invariant mass squared. The same result, including spin terms, is obtained using light-front holography – the duality between light-front dynamics and AdS 5, the space of isometries of the conformal group if one modifies the action of AdS 5 by the dilaton e $κ^2$ z$^2$ in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s(Q 2) defined at all momenta. Lastly, the matching of the high and low momentum transfer regimes also determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics.« less
Brodsky, S. J.
2017-07-11
A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses – such as mρ/mp – can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to themore » $$q\\bar{q}$$ invariant mass squared. The same result, including spin terms, is obtained using light-front holography – the duality between light-front dynamics and AdS 5, the space of isometries of the conformal group if one modifies the action of AdS 5 by the dilaton e $κ^2$ z$^2$ in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ $$\\overline{MS}$$ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s(Q 2) defined at all momenta. Lastly, the matching of the high and low momentum transfer regimes also determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics.« less
NASA Technical Reports Server (NTRS)
Reddy, K. T.; Cernansky, N. P.; Cohen, R. S.
1987-01-01
The degradation behavior of n-dodecane (singly or in combination with S- and N-containing dopants) was studied using a modified Jet Fuel Thermal Oxidation Tester facility between 200 and 400 C. The products were analyzed by gas chromatography and mass spectrometry. The soluble products consisted mainly of n-alkanes and 1-alkenes, aldehydes, tetrahydrofuran derivatives, dodecanol and dodecanone isomers, C21-C24 alkane isomers, and dodecylhydroperoxide (ROOH) decomposition products. The major products were always the same, with and without dopants, but their distributions varied considerably. The 3,4-dimercaptotoluene and dibutylsulfide dopants added individually to n-dodecane interferred with the hydrocarbon oxidation at the alkylperoxy radical and the alkylhydroperoxide link, respectively, while the 2,5-dimethylpyrrole dopant inhibited ROOH formation. Pyridine, pyrrole, and dibenzothiophene added individually showed few significant effects.
21 CFR 133.165 - Parmesan and reggiano cheese.
Code of Federal Regulations, 2010 CFR
2010-04-01
... milk to a semisolid mass. Harmless artificial coloring may be added. The mass is cut into pieces no... alum, calcium sulfate, and magnesium carbonate, singly or combined, is not more than six times the...
Rafiee, Reza; Obersky, Lizanne; Xie, Sihuang; Clarke, William P
2017-05-01
Although CH 4 oxidation in landfill soil covers is widely studied, the extent of composting and CH 4 oxidation in underlying waste layers has been speculated but not measured. The objective of this study was to develop and validate a mass balance model to estimate the simultaneous rates of anaerobic digestion (r AD ), CH 4 oxidation (r OX ) and composting (r COM ) in environments where O 2 penetration is variable and zones of aerobic and anaerobic activity are intermingled. The modelled domain could include, as an example, a soil cover and the underlying shallow waste to a nominated depth. The proposed model was demonstrated on a blend of biogas from three separate known sources of gas representing the three reaction processes: (i) a bottle of laboratory grade 50:50% CH 4 :CO 2 gas representing anaerobic digestion biogas; (ii) an aerated 250mL bottle containing food waste that represented composting activity; and (iii) an aerated 250mL bottle containing non-degradable graphite granules inoculated with methanotrophs and incubated with CH 4 and O 2 to represent methanotrophic activity. CO 2 , CH 4 , O 2 and the stable isotope 13 C-CO 2 were chosen as the components for the mass balance model. The three reaction rates, r (=r AD , r OX , r COM ) were calculated as fitting parameters to the overdetermined set of 4mass balance equations with the net flux of these components from the bottles q (= [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] ) as inputs to the model. The coefficient of determination (r 2 ) for observed versus modelled values of r were 1.00, 0.97, 0.98 when the stoichiometry of each reaction was based on gas yields measured in the individual bottles and q was calculated by summing yields from the three bottles. r 2 deteriorated to 0.95, 0.96, 0.87 when using an average stoichiometry from 11 incubations of each of the composting and methane oxidation processes. The significant deterioration in the estimation of r COM showed that this output is highly sensitive to the evaluated stoichiometry coefficients for the reactions. r 2 deteriorated further to 0.86, 0.77, 0.74 when using the average stoichiometry and experimental measurement of the composition and volume of the blended biogas to determine q. This was primarily attributed to average errors of 8%, 7%, 11% and 14% in the measurement of [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] relative to the measurement of the same quantities from the individual bottles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nonspherically Symmetric Collapse in Asymptotically AdS Spacetimes.
Bantilan, Hans; Figueras, Pau; Kunesch, Markus; Romatschke, Paul
2017-11-10
We numerically simulate gravitational collapse in asymptotically anti-de Sitter spacetimes away from spherical symmetry. Starting from initial data sourced by a massless real scalar field, we solve the Einstein equations with a negative cosmological constant in five spacetime dimensions and obtain a family of nonspherically symmetric solutions, including those that form two distinct black holes on the axis. We find that these configurations collapse faster than spherically symmetric ones of the same mass and radial compactness. Similarly, they require less mass to collapse within a fixed time.
Nonspherically Symmetric Collapse in Asymptotically AdS Spacetimes
NASA Astrophysics Data System (ADS)
Bantilan, Hans; Figueras, Pau; Kunesch, Markus; Romatschke, Paul
2017-11-01
We numerically simulate gravitational collapse in asymptotically anti-de Sitter spacetimes away from spherical symmetry. Starting from initial data sourced by a massless real scalar field, we solve the Einstein equations with a negative cosmological constant in five spacetime dimensions and obtain a family of nonspherically symmetric solutions, including those that form two distinct black holes on the axis. We find that these configurations collapse faster than spherically symmetric ones of the same mass and radial compactness. Similarly, they require less mass to collapse within a fixed time.
NASA Astrophysics Data System (ADS)
Korayem, Moharam Habibnejad; Nahavandi, Amir
2017-04-01
This paper investigates the vibration of a tapping-mode Atomic Force Microscope (AFM) cantilever covered with two whole piezoelectric layers in a liquid medium. The authors of this article have already modeled the vibration of a cantilever immersed in liquid over rough surfaces. Five new ideas have been considered for improving the results of the previous work. Mass and damping of a cantilever probe tip have been considered. Since the probe tip of an AFM cantilever has a mass, which can itself affect the natural frequency of vibration, the significance of this mass has been explored. Also, two hydrodynamic force models for analyzing the mass and damping added to a cantilever in liquid medium have been evaluated. In modeling the vibration of a cantilever in liquid, simplifications are made to the theoretical equations used in the modeling, which may make the obtained results different from those in the real case. So, two hydrodynamic force models are introduced and compared with each other. In addition to the already introduced DMT model, the JKR model has been proposed. The forces acting on a probe tip have attractive and repulsive effects. The attractive Van der Waals force can vary depending on the surface smoothness or roughness, and the repulsive contact force, which is independent of the type of surface roughness and usually varies with the hardness or softness of a surface. When the first mode is used in the vibration of an AFM cantilever, the changes of the existing physical parameters in the simulation do not usually produce a significant difference in the response. Thus, three cantilever vibration modes have been investigated. Finally, an analytical approach for obtaining the response of equations is presented which solves the resulting motion equation by the Laplace method and, thus, a time function is obtained for cantilever deflection is determined. Also, using the COMSOL software to model a cantilever in a liquid medium, the computed natural frequencies have been compared.
Quirion, François; Meilleur, Luc; Lévesque, Isabelle
2013-07-09
Pluronics are block copolymers composed of a central block of polypropylene oxide and two side chains of polyethylene oxide. They are used in water to generate aggregates and gels or added to phospholipid suspensions to prepare microparticles for drug delivery applications. The structure of these systems has been widely investigated. However, little is known about the mechanisms leading to these structures. This investigation compares the apparent molar volumes and heat capacities of Pluronics F38, F108, F127, P85, P104, and P103 at 25 °C in water and in the presence of lecithin liposomes. The changes in molar volumes, heat capacities, and enthalpies generated by a mass-action model are in good agreement with the loss of hydrophobic hydration of the polypropylene oxide central block of the Pluronics. However, the molecularity of the endothermic transitions is much smaller than the aggregation numbers reported in the literature for the same systems. It is suggested that Pluronics go through dehydration of their central block to form unimolecular or small entities having a hydrophobic polypropylene oxide core. In water, these entities would assemble athermally to form larger aggregates. In the presence of liposomes, they would be transferred into the hydrophobic lecithin bilayers of the liposomes. Light transmission experiments suggest that the liposome suspensions are significantly altered only when the added Pluronics are in the dehydrated state.
Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900.
Kjeldsen, Kristian K; Korsgaard, Niels J; Bjørk, Anders A; Khan, Shfaqat A; Box, Jason E; Funder, Svend; Larsen, Nicolaj K; Bamber, Jonathan L; Colgan, William; van den Broeke, Michiel; Siggaard-Andersen, Marie-Louise; Nuth, Christopher; Schomacker, Anders; Andresen, Camilla S; Willerslev, Eske; Kjær, Kurt H
2015-12-17
The response of the Greenland Ice Sheet (GIS) to changes in temperature during the twentieth century remains contentious, largely owing to difficulties in estimating the spatial and temporal distribution of ice mass changes before 1992, when Greenland-wide observations first became available. The only previous estimates of change during the twentieth century are based on empirical modelling and energy balance modelling. Consequently, no observation-based estimates of the contribution from the GIS to the global-mean sea level budget before 1990 are included in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Here we calculate spatial ice mass loss around the entire GIS from 1900 to the present using aerial imagery from the 1980s. This allows accurate high-resolution mapping of geomorphic features related to the maximum extent of the GIS during the Little Ice Age at the end of the nineteenth century. We estimate the total ice mass loss and its spatial distribution for three periods: 1900-1983 (75.1 ± 29.4 gigatonnes per year), 1983-2003 (73.8 ± 40.5 gigatonnes per year), and 2003-2010 (186.4 ± 18.9 gigatonnes per year). Furthermore, using two surface mass balance models we partition the mass balance into a term for surface mass balance (that is, total precipitation minus total sublimation minus runoff) and a dynamic term. We find that many areas currently undergoing change are identical to those that experienced considerable thinning throughout the twentieth century. We also reveal that the surface mass balance term shows a considerable decrease since 2003, whereas the dynamic term is constant over the past 110 years. Overall, our observation-based findings show that during the twentieth century the GIS contributed at least 25.0 ± 9.4 millimetres of global-mean sea level rise. Our result will help to close the twentieth-century sea level budget, which remains crucial for evaluating the reliability of models used to predict global sea level rise.
Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900
NASA Astrophysics Data System (ADS)
Kjeldsen, Kristian K.; Korsgaard, Niels J.; Bjørk, Anders A.; Khan, Shfaqat A.; Box, Jason E.; Funder, Svend; Larsen, Nicolaj K.; Bamber, Jonathan L.; Colgan, William; van den Broeke, Michiel; Siggaard-Andersen, Marie-Louise; Nuth, Christopher; Schomacker, Anders; Andresen, Camilla S.; Willerslev, Eske; Kjær, Kurt H.
2015-12-01
The response of the Greenland Ice Sheet (GIS) to changes in temperature during the twentieth century remains contentious, largely owing to difficulties in estimating the spatial and temporal distribution of ice mass changes before 1992, when Greenland-wide observations first became available. The only previous estimates of change during the twentieth century are based on empirical modelling and energy balance modelling. Consequently, no observation-based estimates of the contribution from the GIS to the global-mean sea level budget before 1990 are included in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Here we calculate spatial ice mass loss around the entire GIS from 1900 to the present using aerial imagery from the 1980s. This allows accurate high-resolution mapping of geomorphic features related to the maximum extent of the GIS during the Little Ice Age at the end of the nineteenth century. We estimate the total ice mass loss and its spatial distribution for three periods: 1900-1983 (75.1 ± 29.4 gigatonnes per year), 1983-2003 (73.8 ± 40.5 gigatonnes per year), and 2003-2010 (186.4 ± 18.9 gigatonnes per year). Furthermore, using two surface mass balance models we partition the mass balance into a term for surface mass balance (that is, total precipitation minus total sublimation minus runoff) and a dynamic term. We find that many areas currently undergoing change are identical to those that experienced considerable thinning throughout the twentieth century. We also reveal that the surface mass balance term shows a considerable decrease since 2003, whereas the dynamic term is constant over the past 110 years. Overall, our observation-based findings show that during the twentieth century the GIS contributed at least 25.0 ± 9.4 millimetres of global-mean sea level rise. Our result will help to close the twentieth-century sea level budget, which remains crucial for evaluating the reliability of models used to predict global sea level rise.
Khatun, Jainab; Hamlett, Eric; Giddings, Morgan C
2008-03-01
The identification of peptides by tandem mass spectrometry (MS/MS) is a central method of proteomics research, but due to the complexity of MS/MS data and the large databases searched, the accuracy of peptide identification algorithms remains limited. To improve the accuracy of identification we applied a machine-learning approach using a hidden Markov model (HMM) to capture the complex and often subtle links between a peptide sequence and its MS/MS spectrum. Our model, HMM_Score, represents ion types as HMM states and calculates the maximum joint probability for a peptide/spectrum pair using emission probabilities from three factors: the amino acids adjacent to each fragmentation site, the mass dependence of ion types and the intensity dependence of ion types. The Viterbi algorithm is used to calculate the most probable assignment between ion types in a spectrum and a peptide sequence, then a correction factor is added to account for the propensity of the model to favor longer peptides. An expectation value is calculated based on the model score to assess the significance of each peptide/spectrum match. We trained and tested HMM_Score on three data sets generated by two different mass spectrometer types. For a reference data set recently reported in the literature and validated using seven identification algorithms, HMM_Score produced 43% more positive identification results at a 1% false positive rate than the best of two other commonly used algorithms, Mascot and X!Tandem. HMM_Score is a highly accurate platform for peptide identification that works well for a variety of mass spectrometer and biological sample types. The program is freely available on ProteomeCommons via an OpenSource license. See http://bioinfo.unc.edu/downloads/ for the download link.
Life Support System Technologies for NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Ewert, Michael K.
2007-01-01
The Lunar Mars Life Support Test series successfully demonstrated integration and operation of advanced technologies for closed-loop life support systems, including physicochemical and biological subsystems. Increased closure was obtained when targeted technologies, such as brine dewatering subsystems, were added to further process life support system byproducts to recover resources. Physicochemical and biological systems can be integrated satisfactorily to achieve desired levels of closure. Imbalances between system components, such as differences in metabolic quotients between human crews and plants, must be addressed. Each subsystem or component that is added to increase closure will likely have added costs, ranging from initial launch mass, power, thermal, crew time, byproducts, etc., that must be factored into break even analysis. Achieving life support system closure while maintaining control of total mass and system complexity will be a challenge.
Dynamically avoiding fine-tuning the cosmological constant: the ``Relaxed Universe''
NASA Astrophysics Data System (ADS)
Bauer, Florian; Solà, Joan; Štefancić, Hrvoje
2010-12-01
We demonstrate that there exists a large class of Script F(R,Script G) action functionals of the scalar curvature and of the Gauß-Bonnet invariant which are able to relax dynamically a large cosmological constant (CC), whatever it be its starting value in the early universe. Hence, it is possible to understand, without fine-tuning, the very small current value Λ0 ~ H02 of the CC as compared to its theoretically expected large value in quantum field theory and string theory. In our framework, this relaxation appears as a pure gravitational effect, where no ad hoc scalar fields are needed. The action involves a positive power of a characteristic mass parameter, Script M, whose value can be, interestingly enough, of the order of a typical particle physics mass of the Standard Model of the strong and electroweak interactions or extensions thereof, including the neutrino mass. The model universe emerging from this scenario (the ``Relaxed Universe'') falls within the class of the so-called ΛXCDM models of the cosmic evolution. Therefore, there is a ``cosmon'' entity X (represented by an effective object, not a field), which in this case is generated by the effective functional Script F(R,Script G) and is responsible for the dynamical adjustment of the cosmological constant. This model universe successfully mimics the essential past epochs of the standard (or ``concordance'') cosmological model (ΛCDM). Furthermore, it provides interesting clues to the coincidence problem and it may even connect naturally with primordial inflation.
Two-component Jaffe models with a central black hole - I. The spherical case
NASA Astrophysics Data System (ADS)
Ciotti, Luca; Ziaee Lorzad, Azadeh
2018-02-01
Dynamical properties of spherically symmetric galaxy models where both the stellar and total mass density distributions are described by the Jaffe (1983) profile (with different scalelengths and masses) are presented. The orbital structure of the stellar component is described by Osipkov-Merritt anisotropy, and a black hole (BH) is added at the centre of the galaxy; the dark matter halo is isotropic. First, the conditions required to have a nowhere negative and monotonically decreasing dark matter halo density profile are derived. We then show that the phase-space distribution function can be recovered by using the Lambert-Euler W function, while in absence of the central BH only elementary functions appears in the integrand of the inversion formula. The minimum value of the anisotropy radius for consistency is derived in terms of the galaxy parameters. The Jeans equations for the stellar component are solved analytically, and the projected velocity dispersion at the centre and at large radii are also obtained analytically for generic values of the anisotropy radius. Finally, the relevant global quantities entering the Virial Theorem are computed analytically, and the fiducial anisotropy limit required to prevent the onset of Radial Orbit Instability is determined as a function of the galaxy parameters. The presented models, even though highly idealized, represent a substantial generalization of the models presented in Ciotti, and can be useful as starting point for more advanced modelling, the dynamics and the mass distribution of elliptical galaxies.
More on asymptotically anti-de Sitter spaces in topologically massive gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henneaux, Marc; Physique theorique et mathematique, Universite Libre de Bruxelles and International Solvay Institutes, ULB Campus Plaine C.P. 231, B-1050 Bruxelles; Martinez, Cristian
2010-09-15
Recently, the asymptotic behavior of three-dimensional anti-de Sitter (AdS) gravity with a topological mass term was investigated. Boundary conditions were given that were asymptotically invariant under the two dimensional conformal group and that included a falloff of the metric sufficiently slow to consistently allow pp-wave type of solutions. Now, pp waves can have two different chiralities. Above the chiral point and at the chiral point, however, only one chirality can be considered, namely, the chirality that has the milder behavior at infinity. The other chirality blows up faster than AdS and does not define an asymptotically AdS spacetime. By contrast,more » both chiralities are subdominant with respect to the asymptotic behavior of AdS spacetime below the chiral point. Nevertheless, the boundary conditions given in the earlier treatment only included one of the two chiralities (which could be either one) at a time. We investigate in this paper whether one can generalize these boundary conditions in order to consider simultaneously both chiralities below the chiral point. We show that this is not possible if one wants to keep the two-dimensional conformal group as asymptotic symmetry group. Hence, the boundary conditions given in the earlier treatment appear to be the best possible ones compatible with conformal symmetry. In the course of our investigations, we provide general formulas controlling the asymptotic charges for all values of the topological mass (not just below the chiral point).« less
Omachi, Theodore A; Gregorich, Steven E; Eisner, Mark D; Penaloza, Renee A; Tolstykh, Irina V; Yelin, Edward H; Iribarren, Carlos; Dudley, R Adams; Blanc, Paul D
2013-08-01
Adjustment for differing risks among patients is usually incorporated into newer payment approaches, and current risk models rely on age, sex, and diagnosis codes. It is unknown the extent to which controlling additionally for disease severity improves cost prediction. Failure to adjust for within-disease variation may create incentives to avoid sicker patients. We address this issue among patients with chronic obstructive pulmonary disease (COPD). Cost and clinical data were collected prospectively from 1202 COPD patients at Kaiser Permanente. Baseline analysis included age, sex, and diagnosis codes (using the Diagnostic Cost Group Relative Risk Score) in a general linear model predicting total medical costs in the following year. We determined whether adding COPD severity measures-forced expiratory volume in 1 second, 6-Minute Walk Test, dyspnea score, body mass index, and BODE Index (composite of the other 4 measures)-improved predictions. Separately, we examined household income as a cost predictor. Mean costs were $12,334/y. Controlling for Relative Risk Score, each ½ SD worsening in COPD severity factor was associated with $629 to $1135 in increased annual costs (all P<0.01). The lowest stratum of forced expiratory volume in 1 second (<30% normal) predicted $4098 (95% confidence interval, $576-$8773) additional costs. Household income predicted excess costs when added to the baseline model (P=0.038), but this became nonsignificant when also incorporating the BODE Index. Disease severity measures explain significant cost variations beyond current risk models, and adding them to such models appears important to fairly compensate organizations that accept responsibility for sicker COPD patients. Appropriately controlling for disease severity also accounts for costs otherwise associated with lower socioeconomic status.
Dynamical systems model and discrete element simulations of a tapped granular column
NASA Astrophysics Data System (ADS)
Rosato, A. D.; Blackmore, D.; Tricoche, X. M.; Urban, K.; Zuo, L.
2013-06-01
We present an approximate dynamical systems model for the mass center trajectory of a tapped column of N uniform, inelastic, spheres (diameter d), in which collisional energy loss is governed by the Walton-Braun linear loading-unloading soft interaction. Rigorous analysis of the model, akin to the equations for the motion of a single bouncing ball on a vibrating plate, reveals a parameter γ≔2aω2(1+e)/g that gauges the dynamical regimes and their transitions. In particular, we find bifurcations from periodic to chaotic dynamics that depend on frequency ω, amplitude a/d of the tap. Dynamics predicted by the model are also qualitatively observed in discrete element simulations carried out over a broad range of the tap parameters.
Using instability to reconfigure smart structures in a spring-mass model
NASA Astrophysics Data System (ADS)
Zhang, Jiaying; McInnes, Colin R.
2017-07-01
Multistable phenomenon have long been used in mechanism design. In this paper a subset of unstable configurations of a smart structure model will be used to develop energy-efficient schemes to reconfigure the structure. This new concept for reconfiguration uses heteroclinic connections to transition the structure between different unstable equal-energy states. In an ideal structure model zero net energy input is required for the reconfiguration, compared to transitions between stable equilibria across a potential barrier. A simple smart structure model is firstly used to identify sets of equal-energy unstable configurations using dynamical systems theory. Dissipation is then added to be more representative of a practical structure. A range of strategies are then used to reconfigure the smart structure using heteroclinic connections with different approaches to handle dissipation.
Bulus, Hakan; Tas, Adnan; Morkavuk, Baris; Koklu, Seyfettin; Soy, Derya; Coskun, Ali
2013-01-01
Acute appendicitis is one of the main pathological conditions requiring emergency surgical intervention. The most widely accepted scoring system is modified Alvarado scoring system (MASS). In this study we aimed to improve the efficiency of MASS by adding a new parameter and to evaluate its efficiency in the diagnosis of acute appendicitis. This study included 158 patients who underwent acute appendectomy in Keçiören Training and Research Hospital General Surgery Department. In addition to criteria of MASS, all patients were questioned about the presence of tenesmus. The validity of MASS and MASS with additional parameter was evaluated with respect to sensitivity, specificity and positive and negative predictive values. Accuracy rates of MASS, clinical findings, ultrasonography and MASS with additional parameter in the diagnosis of acute appendicitis were 64, 76, 85 and 80 %. False positivity rates for clinical findings, MASS and MASS with additional parameter in the diagnosis of acute appendicitis were 17, 26 and 10 %, respectively. Sensitivity and specificity of clinical findings in the diagnosis of acute appendicitis were 83 and 66 %, respectively. Sensitivity and specificity of MASS in the diagnosis of acute appendicitis were 74 and 39 %, respectively, and those of MASS with additional parameter were appendicitis increased to 83 and 66 %, respectively. MASS is a simple, cheap and objective scoring system and does not require expertise. When tenesmus is added to standard MASS, rates of accuracy, sensitivity and specificity become better than those in MASS in the diagnosis of acute appendicitis.
40 CFR 63.1980 - What records and reports must I keep and submit?
Code of Federal Regulations, 2010 CFR
2010-07-01
... liquids other than leachate in a controlled fashion to the waste mass and do not comply with the... of the incoming waste, mass of water added to the waste including leachate recirculation and other liquids addition and precipitation, and the mass of water removed through leachate or other water losses...
40 CFR 63.1980 - What records and reports must I keep and submit?
Code of Federal Regulations, 2011 CFR
2011-07-01
... liquids other than leachate in a controlled fashion to the waste mass and do not comply with the... of the incoming waste, mass of water added to the waste including leachate recirculation and other liquids addition and precipitation, and the mass of water removed through leachate or other water losses...
Scalar versus fermionic top partner interpretations of toverline{t}+{E}_T^{miss} searches at the LHC
NASA Astrophysics Data System (ADS)
Kraml, Sabine; Laa, Ursula; Panizzi, Luca; Prager, Hugo
2016-11-01
We assess how different ATLAS and CMS searches for supersymmetry in the toverline{t}+{E}_T^{miss} final state at Run 1 of the LHC constrain scenarios with a fermionic top partner and a dark matter candidate. We find that the efficiencies of these searches in all-hadronic, 1-lepton and 2-lepton channels are quite similar for scalar and fermionic top partners. Therefore, in general, efficiency maps for stop-neutralino simplified models can also be applied to fermionic top-partner models, provided the narrow width approximation holds in the latter. Owing to the much higher production cross-sections of heavy top quarks as compared to stops, masses up to m T ≈ 850 GeV can be excluded from the Run 1 stop searches. Since the simplified-model results published by ATLAS and CMS do not extend to such high masses, we provide our own efficiency maps obtained with C heckMATE and M adA nalysis 5 for these searches. Finally, we also discuss how generic gluino/squark searches in multi-jet final states constrain heavy top partner production.
Numerical simulation of a self-propelled copepod during escape
NASA Astrophysics Data System (ADS)
Sotiropoulos, Fotis; Borazjani, Iman; Malkiel, Edwin; Katz, Josef
2008-11-01
Obtaining the 3D flow field, forces, and power is essential for understanding the high accelerations of a copepod during the escap. We carry out numerical simulations to study a free swimming copepod using the sharp-interface immersed boundary, fluid-structure interaction (FSI) approach of Borazjani et al. (J Compu Phys, 2008, 227, p 7587-7620). We use our previous tethered copepod model with a realistic copepod-like body, including all the appendages with the appendages motion prescribed from high-resolution, cinematic dual digital holography. The simulations are performed in a frame of reference attached to the copepod whose velocity is calculated by considering the forces acting on the copepod. The self-propelled simulations are challenging due to the destabilizing effects of the large added mass resulting from the low copepod mass and fast acceleration during the escape. Strongly-coupled FSI with under-relaxation and the Aitken acceleration technique is used to obtain stable and robust FSI iterations. The computed results for the self-propelled model are analyzed and compared with our earlier results for the tethered model.
Condition on Ramond-Ramond fluxes for factorization of worldsheet scattering in anti-de Sitter space
NASA Astrophysics Data System (ADS)
Wulff, Linus
2017-11-01
Factorization of scattering is the hallmark of integrable 1 +1 dimensional quantum field theories. For factorization of scattering to be possible the set of masses and momenta must be conserved in any two-to-two scattering process. We use this fact to constrain the form of the Ramond-Ramond fluxes for integrable supergravity anti-de Sitter (AdS) backgrounds by analyzing tree-level scattering of two AdS bosons into two fermions on the worldsheet of a Berenstein-Maldacena-Nastase string. We find a condition which can be efficiently used to rule out integrability of AdS strings and therefore of the corresponding AdS/conformal field theory dualities, as we demonstrate for some simple examples.
Hashimoto, Masakazu; Bogdanovic, Nenad; Nakagawa, Hiroyuki; Volkmann, Inga; Aoki, Mikio; Winblad, Bengt; Sakai, Jun; Tjernberg, Lars O
2012-01-01
Abstract It is evident that the symptoms of Alzheimer's disease (AD) are derived from severe neuronal damage, and especially pyramidal neurons in the hippocampus are affected pathologically. Here, we analysed the proteome of hippocampal neurons, isolated from post-mortem brains by laser capture microdissection. By using 18O labelling and mass spectrometry, the relative expression levels of 150 proteins in AD and controls were estimated. Many of the identified proteins are involved in transcription and nucleotide binding, glycolysis, heat-shock response, microtubule stabilization, axonal transport or inflammation. The proteins showing the most altered expression in AD were selected for immunohistochemical analysis. These analyses confirmed the altered expression levels, and showed in many AD cases a pathological pattern. For comparison, we also analysed hippocampal sections by Western blot. The expression levels found by this method showed poor correlation with the neuron-specific analysis. Hence, we conclude that cell-specific proteome analysis reveals differences in the proteome that cannot be detected by bulk analysis. PMID:21883897
Modeling water mass formation in the Mertz Glacier Polynya and Adélie Depression, East Antarctica
NASA Astrophysics Data System (ADS)
Marsland, S. J.; Bindoff, N. L.; Williams, G. D.; Budd, W. F.
2004-11-01
High rates of sea ice growth and brine rejection in the Mertz Glacier Polynya drive the production of dense continental shelf waters in the Adélie Depression. We consider the rate of outflow of waters having sufficient density to sink into the neighboring abyssal ocean and form Adélie Land Bottom Water (ALBW). Along with Weddell and Ross Sea Bottom Waters, the ALBW is an important source of Antarctic Bottom Water. The relevant processes are modeled using a variant of the Max Planck Institute Ocean Model (MPIOM) under daily NCEP-NCAR reanalysis forcing for the period 1991-2000. The orthogonal curvilinear horizontal grid allows for the construction of a global domain with high resolution in our region of interest. The modeled Mertz Glacier Polynya is realistic in location and extent, exhibiting low ice thickness (<0.4 m) and low ice fraction (<50%). The net surface ocean to atmosphere heat flux exceeds 200 W m2 and is dominated by sensible heat exchange. In wintertime (May through September inclusive), 7.5 m of sea ice forms over the Adélie Depression at a rate of 4.9 cm d-1: this results in annual average volumetric production of 99 km3 of sea ice. The associated brine release drives dense shelf water formation. The off-shelf flow of dense water exhibits strong interannual variability in response to variability in both atmospheric forcing and ocean preconditioning. Averaged over the period 1991-2000 the off shelf flow of dense water is 0.15 Sv: for a period of strong outflow (1993-1997), this increases to 0.24 Sv. Most of the outflow occurs during July through October, at a rate of 0.40 (0.63) Sv over the period 1991-2000 (1993-1997). The peak mean monthly outflow can exceed 1 Sv.
A study of factors affecting the steady spin of an airplane
NASA Technical Reports Server (NTRS)
Scudder, Nathan F
1933-01-01
Data from wind-tunnel tests on a model of the NY-1 airplane were used in a study of the effect on the steady spin of a number of factors considered to be important. The factors were of two classes, mass distribution effects and aerodynamic effects. The study indicated that mass extended along the longitudinal axis has no detrimental effect or is even slightly beneficial, mass extended along the lateral axis is detrimental if the airplane spins with the inner wing tip far down, and mass extended along the normal axis, if of considerable magnitude, has a strong favorable effect. The aerodynamic effects considered in terms of rolling, pitching, and yawing moments added to those for a conventional airplane showed that added stable rolling moment could contribute favorable effect on the spin only in decreasing the amount of inward sideslip required for equilibrium. Negative pitching moment of moderate magnitude has unfavorable effect on a high-angle-of-attack spin, and stable yawing moment has pronounced beneficial effect on the spin. Experimental data from various sources were available to verify nearly all the deductions resulting from the study of the curves. When these results were considered for the purpose of deciding upon the best means to be developed for controlling the spin, the yawing-moment equilibrium was found to offer the most promising field for research. The wing-cellule yawing moment, of which the shape of the chord-force curve is an approximate measure, should be made as small as possible in the unstable sense and the damping yawing moment of the tail should be made as large as possible. The most serious unfavorable effect on the damping yawing moment of the tail is the blanketing of the vertical surfaces by the other parts of the tail.
Nonlinear oscillations of compact stars in the vicinity of the maximum mass configuration
NASA Astrophysics Data System (ADS)
Brillante, A.; Mishustin, I. N.
2015-07-01
We solve the dynamical GR equations for the spherically symmetric evolution of compact stars in the vicinity of the maximum mass, for which instability sets in according to linear perturbation theory. The calculations are done with the analytical Zeldovich-like EOS P=a≤ft(ρ-ρ_0\\right) and with the TM1 parametrisation of the RMF model. The initial configurations for the dynamical calculations are represented by spherical stars with equilibrium density profile, which are perturbed by either i) an artificially added inward velocity field proportional to the radial coordinate, or ii) a rarefaction corresponding to a static and expanded star. These configurations are evolved using a one-dimensional GR hydro code for ideal and barotropic fluids. Depending on the initial conditions we obtain either stable oscillations or the collapse to a black hole. The minimal amplitude of the perturbation, needed to trigger gravitational collapse is evaluated. The approximate independence of this energy on the type of perturbation is pointed out. At the threshold we find type-I critical behaviour for all stellar models considered and discuss the dependence of the time scaling exponent on the baryon mass and EOS.
Annihilation of singlet fermionic dark matter into two photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettefaghi, M.M.; Moazzemi, R., E-mail: mettefaghi@qom.ac.ir, E-mail: r.moazzemi@qom.ac.ir
2013-02-01
We consider an extension of the standard model in which a singlet fermionic particle, to serve as cold dark matter, and a singlet Higgs are added. We perform a reanalysis on the free parameters. In particular, demanding a correct relic abundance of dark matter, we derive and plot the coupling of the singlet fermion with the singlet Higgs, g{sub s}, versus the dark matter mass. We analytically compute the pair annihilation cross section of singlet fermionic dark matter into two photons. The thermally averaged of this cross section is calculated for wide range of energies and plotted versus dark mattermore » mass using g{sub s} consistent with the relic abundance condition. We also compare our results with the Fermi-Lat observations.« less
Sex-based differences in Adelie penguin (Pygoscelis adeliae) chick growth rates.
Jennings, Scott; Varsani, Arvind; Dugger, Catherine; Ballard, Grant; Ainley, David G.
2016-01-01
Sexually size-dimorphic species must show some difference between the sexes in growth rate and/or length of growing period. Such differences in growth parameters can cause the sexes to be impacted by environmental variability in different ways, and understanding these differences allows a better understanding of patterns in productivity between individuals and populations. We investigated differences in growth rate and diet between male and female Adélie Penguin (Pygoscelis adeliae) chicks during two breeding seasons at Cape Crozier, Ross Island, Antarctica. Adélie Penguins are a slightly dimorphic species, with adult males averaging larger than adult females in mass (~11%) as well as bill (~8%) and flipper length (~3%). We measured mass and length of flipper, bill, tibiotarsus, and foot at 5-day intervals for 45 male and 40 female individually-marked chicks. Chick sex was molecularly determined from feathers. We used linear mixed effects models to estimate daily growth rate as a function of chick sex, while controlling for hatching order, brood size, year, and potential variation in breeding quality between pairs of parents. Accounting for season and hatching order, male chicks gained mass an average of 15.6 g d-1 faster than females. Similarly, growth in bill length was faster for males, and the calculated bill size difference at fledging was similar to that observed in adults. There was no evidence for sex-based differences in growth of other morphological features. Adélie diet at Ross Island is composed almost entirely of two species—one krill (Euphausia crystallorophias) and one fish (Pleuragramma antarctica), with fish having a higher caloric value. Using isotopic analyses of feather samples, we also determined that male chicks were fed a higher proportion of fish than female chicks. The related differences in provisioning and growth rates of male and female offspring provides a greater understanding of the ways in which ecological factors may impact the two sexes differently.
Holographic repulsion and confinement in gauge theory
NASA Astrophysics Data System (ADS)
Husain, Viqar; Kothawala, Dawood
2013-02-01
We show that for asymptotically anti-de Sitter (AdS) backgrounds with negative energy, such as the AdS soliton and regulated negative-mass AdS-Schwarzshild metrics, the Wilson loop expectation value in the AdS/CFT conjecture exhibits a Coulomb to confinement transition. We also show that the quark-antiquark (q \\bar{q}) potential can be interpreted as affine time along null geodesics on the minimal string worldsheet and that its intrinsic curvature provides a signature of transition to confinement phase. Our results suggest a generic (holographic) relationship between confinement in gauge theory and repulsive gravity, which in turn is connected with singularity avoidance in quantum gravity. Communicated by P R L V Moniz
Adjusting particle-size distributions to account for aggregation in tephra-deposit model forecasts
Mastin, Larry G.; Van Eaton, Alexa; Durant, A.J.
2016-01-01
Volcanic ash transport and dispersion (VATD) models are used to forecast tephra deposition during volcanic eruptions. Model accuracy is limited by the fact that fine-ash aggregates (clumps into clusters), thus altering patterns of deposition. In most models this is accounted for by ad hoc changes to model input, representing fine ash as aggregates with density ρagg, and a log-normal size distribution with median μagg and standard deviation σagg. Optimal values may vary between eruptions. To test the variance, we used the Ash3d tephra model to simulate four deposits: 18 May 1980 Mount St. Helens; 16–17 September 1992 Crater Peak (Mount Spurr); 17 June 1996 Ruapehu; and 23 March 2009 Mount Redoubt. In 192 simulations, we systematically varied μagg and σagg, holding ρagg constant at 600 kg m−3. We evaluated the fit using three indices that compare modeled versus measured (1) mass load at sample locations; (2) mass load versus distance along the dispersal axis; and (3) isomass area. For all deposits, under these inputs, the best-fit value of μagg ranged narrowly between ∼ 2.3 and 2.7φ (0.20–0.15 mm), despite large variations in erupted mass (0.25–50 Tg), plume height (8.5–25 km), mass fraction of fine ( < 0.063 mm) ash (3–59 %), atmospheric temperature, and water content between these eruptions. This close agreement suggests that aggregation may be treated as a discrete process that is insensitive to eruptive style or magnitude. This result offers the potential for a simple, computationally efficient parameterization scheme for use in operational model forecasts. Further research may indicate whether this narrow range also reflects physical constraints on processes in the evolving cloud.
Energy homeostasis in leptin deficient Lepob/ob mice.
Skowronski, Alicja A; Ravussin, Yann; Leibel, Rudolph L; LeDuc, Charles A
2017-01-01
Maintenance of reduced body weight is associated both with reduced energy expenditure per unit metabolic mass and increased hunger in mice and humans. Lowered circulating leptin concentration, due to decreased fat mass, provides a primary signal for this response. However, leptin deficient (Lepob/ob) mice (and leptin receptor deficient Zucker rats) reduce energy expenditure following weight reduction by a necessarily non-leptin dependent mechanisms. To identify these mechanisms, Lepob/ob mice were fed ad libitum (AL group; n = 21) or restricted to 3 kilocalories of chow per day (CR group, n = 21). After losing 20% of initial weight (in approximately 2 weeks), the CR mice were stabilized at 80% of initial body weight for two weeks by titrated refeeding, and then released from food restriction. CR mice conserved energy (-17% below predicted based on body mass and composition during the day; -52% at night); and, when released to ad libitum feeding, CR mice regained fat and lean mass (to AL levels) within 5 weeks. CR mice did so while their ad libitum caloric intake was equal to that of the AL animals. While calorically restricted, the CR mice had a significantly lower respiratory exchange ratio (RER = 0.89) compared to AL (0.94); after release to ad libitum feeding, RER was significantly higher (1.03) than in the AL group (0.93), consistent with their anabolic state. These results confirm that, in congenitally leptin deficient animals, leptin is not required for compensatory reduction in energy expenditure accompanying weight loss, but suggest that the hyperphagia of the weight-reduced state is leptin-dependent.
Open issues in hadronic interactions for air showers
NASA Astrophysics Data System (ADS)
Pierog, Tanguy
2017-06-01
In detailed air shower simulations, the uncertainty in the prediction of shower observables for different primary particles and energies is currently dominated by differences between hadronic interaction models. With the results of the first run of the LHC, the difference between post-LHC model predictions has been reduced to the same level as experimental uncertainties of cosmic ray experiments. At the same time new types of air shower observables, like the muon production depth, have been measured, adding new constraints on hadronic models. Currently no model is able to consistently reproduce all mass composition measurements possible within the Pierre Auger Observatory for instance. Comparing the different models, and with LHC and cosmic ray data, we will show that the remaining open issues in hadronic interactions in air shower development are now in the pion-air interactions and in nuclear effects.
Relativistic N-body simulations with massive neutrinos
NASA Astrophysics Data System (ADS)
Adamek, Julian; Durrer, Ruth; Kunz, Martin
2017-11-01
Some of the dark matter in the Universe is made up of massive neutrinos. Their impact on the formation of large scale structure can be used to determine their absolute mass scale from cosmology, but to this end accurate numerical simulations have to be developed. Due to their relativistic nature, neutrinos pose additional challenges when one tries to include them in N-body simulations that are traditionally based on Newtonian physics. Here we present the first numerical study of massive neutrinos that uses a fully relativistic approach. Our N-body code, gevolution, is based on a weak-field formulation of general relativity that naturally provides a self-consistent framework for relativistic particle species. This allows us to model neutrinos from first principles, without invoking any ad-hoc recipes. Our simulation suite comprises some of the largest neutrino simulations performed to date. We study the effect of massive neutrinos on the nonlinear power spectra and the halo mass function, focusing on the interesting mass range between 0.06 eV and 0.3 eV and including a case for an inverted mass hierarchy.
Finding the Effective Mass and Spring Constant of a Force Probe from Simple Harmonic Motion
NASA Astrophysics Data System (ADS)
Greene, Nathaniel R.; Gill, Tom; Eyerly, Stephen
2016-03-01
Force probes are versatile tools in the physics lab, but their internal workings can introduce artifacts when measuring rapidly changing forces. The Dual-Range Force Sensor by Vernier (Fig. 1) uses strain gage technology to measure force, based on the bending of a beam. Strain gages along the length of the beam change resistance as the beam bends (Fig. 2). The elasticity of the beam leads to oscillations that persist after being excited by an impulsive force. How quickly the force probe freely returns to zero is thus related to the rigidity of the beam and the total mass attached to it. By varying the added mass and measuring the resulting frequency of the probe's internal free oscillations, the effective mass and spring constant of the probe's moveable parts can be found. Weighing of the probe parts and conducting a Hooke's law experiment provide static verification of these parameters. Study of the force sensor's behavior helps students to learn about damped harmonic motion, mathematical modeling, and the limitations of measuring devices.
NASA Astrophysics Data System (ADS)
Alvarez-Meraz, R.; Nagel, E.; Rendon, F.; Barragan, O.
2017-10-01
We present a set of hydrodynamical models of a planetary system embedded in a protoplanetary disk in order to extract the number of dust structures formed in the disk, their masses and sizes, within optical depth ranges τ≤0.5, 0.5<τ<2 and τ≥2. The study of the structures shows: (1) an increase in the number of planets implies an increase in the creation rate of massive structures; (2) a lower planetary mass accretion corresponds to slower time effects for optically thin structures; (3) an increase in the number of planets allows a faster evolution of the structures in the Hill radius for the different optical depth ranges of the inner planets. An ad-hoc simulation was run using the available information of the stellar system V1247 Ori, leading to a model of a planetary system which explains the SED and is consistent with interferometric observations of structures.
Effect of added mass on treadmill performance and pulmonary function.
Walker, Rachel E; Swain, David P; Ringleb, Stacie I; Colberg, Sheri R
2015-04-01
Military personnel engage in strenuous physical activity and load carriage. This study evaluated the role of body mass and of added mass on aerobic performance (uphill treadmill exercise) and pulmonary function. Performance on a traditional unloaded run test (4.8 km) was compared with performance on loaded tasks. Subjects performed an outdoor 4.8-km run and 4 maximal treadmill tests wearing loads of 0, 10, 20, and 30 kg. Subjects' pulmonary function (forced expired volume in 1 second [FEV1], forced vital capacity [FVC], and maximal voluntary ventilation [MVV]) was tested with each load, and peak values of heart rate, oxygen consumption ((Equation is included in full-text article.)), ventilation (VE), and respiratory exchange ratio (RER) were measured during each treadmill test. Performance on the 4.8-km run was correlated with treadmill performance, measured as time to exhaustion (TTE), with the strength of the correlation decreasing with load (r = 0.87 for 0 kg to 0.76 for 30 kg). Body mass was not correlated with TTE, other than among men with the 30-kg load (r = 0.48). During treadmill exercise, all peak responses other than RER decreased with load. Pulmonary function measures (FEV1, FVC, and MVV) decreased with load. Body mass was poorly correlated with treadmill performance, but added mass decreased performance. The decreased performance may be in part because of decreased pulmonary function. Unloaded 4.8-km run performance was correlated to unloaded uphill treadmill performance, but less so as load increased. Therefore, traditional run tests may not be an effective means of evaluating aerobic performance for military field operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Traci L.; Sharon, Keren, E-mail: tljohn@umich.edu
Until now, systematic errors in strong gravitational lens modeling have been acknowledged but have never been fully quantified. Here, we launch an investigation into the systematics induced by constraint selection. We model the simulated cluster Ares 362 times using random selections of image systems with and without spectroscopic redshifts and quantify the systematics using several diagnostics: image predictability, accuracy of model-predicted redshifts, enclosed mass, and magnification. We find that for models with >15 image systems, the image plane rms does not decrease significantly when more systems are added; however, the rms values quoted in the literature may be misleading asmore » to the ability of a model to predict new multiple images. The mass is well constrained near the Einstein radius in all cases, and systematic error drops to <2% for models using >10 image systems. Magnification errors are smallest along the straight portions of the critical curve, and the value of the magnification is systematically lower near curved portions. For >15 systems, the systematic error on magnification is ∼2%. We report no trend in magnification error with the fraction of spectroscopic image systems when selecting constraints at random; however, when using the same selection of constraints, increasing this fraction up to ∼0.5 will increase model accuracy. The results suggest that the selection of constraints, rather than quantity alone, determines the accuracy of the magnification. We note that spectroscopic follow-up of at least a few image systems is crucial because models without any spectroscopic redshifts are inaccurate across all of our diagnostics.« less
Large scale electromechanical transistor with application in mass sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Leisheng; Li, Lijie, E-mail: L.Li@swansea.ac.uk
Nanomechanical transistor (NMT) has evolved from the single electron transistor, a device that operates by shuttling electrons with a self-excited central conductor. The unfavoured aspects of the NMT are the complexity of the fabrication process and its signal processing unit, which could potentially be overcome by designing much larger devices. This paper reports a new design of large scale electromechanical transistor (LSEMT), still taking advantage of the principle of shuttling electrons. However, because of the large size, nonlinear electrostatic forces induced by the transistor itself are not sufficient to drive the mechanical member into vibration—an external force has to bemore » used. In this paper, a LSEMT device is modelled, and its new application in mass sensing is postulated using two coupled mechanical cantilevers, with one of them being embedded in the transistor. The sensor is capable of detecting added mass using the eigenstate shifts method by reading the change of electrical current from the transistor, which has much higher sensitivity than conventional eigenfrequency shift approach used in classical cantilever based mass sensors. Numerical simulations are conducted to investigate the performance of the mass sensor.« less
Hangai, Yoshihiko; Utsunomiya, Takao; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro
2015-10-21
Recently, to further improve the performance of aluminum foam, functionally graded (FG) aluminum foams, whose pore structure varies with their position, have been developed. In this study, three types of FG aluminum foam of aluminum alloy die casting ADC12 with combinations of two different amounts of added blowing agent titanium(II) hydride (TiH₂) powder were fabricated by a friction stir welding (FSW) route precursor foaming method. The combinations of 1.0-0 mass %, 0.4-0 mass %, and 0.2-0 mass % TiH₂ were selected as the amounts of TiH₂ relative to the mass of the volume stirred by FSW. The static compression tests of the fabricated FG aluminum foams were carried out. The deformation and fracture of FG aluminum foams fundamentally started in the high-porosity (with TiH₂ addition) layer and shifted to the low-porosity (without TiH₂ addition) layer. The first and second plateau regions in the relationship between compressive stress and strain independently appeared with the occurrence of deformations and fractures in the high- and low-porosity layers. It was shown that FG aluminum foams, whose plateau region varies in steps by the combination of amounts of added TiH₂ ( i.e. , the combination of pore structures), can be fabricated.
Mass-independent area (or entropy) and thermodynamic volume products in conformal gravity
NASA Astrophysics Data System (ADS)
Pradhan, Parthapratim
2017-06-01
In this work, we investigate the thermodynamic properties of conformal gravity in four dimensions. We compute the area (or entropy) functional relation for this black hole (BH). We consider both de Sitter (dS) and anti-de Sitter (AdS) cases. We derive the Cosmic-Censorship-Inequality which is an important relation in general relativity that relates the total mass of a spacetime to the area of all the BH horizons. Local thermodynamic stability is studied by computing the specific heat. The second-order phase transition occurs at a certain condition. Various types of second-order phase structure have been given for various values of a and the cosmological constant Λ in the Appendix. When a = 0, one obtains the result of Schwarzschild-dS and Schwarzschild-AdS cases. In the limit aM ≪ 1, one obtains the result of Grumiller spacetime, where a is nontrivial Rindler parameter or Rindler acceleration and M is the mass parameter. The thermodynamic volume functional relation is derived in the extended phase space, where the cosmological constant is treated as a thermodynamic pressure and its conjugate variable as a thermodynamic volume. The mass-independent area (or entropy) functional relation and thermodynamic volume functional relation that we have derived could turn out to be a universal quantity.
Ion-exchange equilibrium of N-acetyl-D-neuraminic acid on a strong anionic exchanger.
Wu, Jinglan; Ke, Xu; Zhang, Xudong; Zhuang, Wei; Zhou, Jingwei; Ying, Hanjie
2015-09-15
N-acetyl-D-neuraminic acid (Neu5Ac) is a high value-added product widely applied in the food industry. A suitable equilibrium model is required for purification of Neu5Ac based on ion-exchange chromatography. Hence, the equilibrium uptake of Neu5Ac on a strong anion exchanger, AD-1 was investigated experimentally and theoretically. The uptake of Neu5Ac by the hydroxyl form of the resin occurred primarily by a stoichiometric exchange of Neu5Ac(-) and OH(-). The experimental data showed that the selectivity coefficient for the exchange of Neu5Ac(-) with OH(-) was a non-constant quantity. Subsequently, the Saunders' model, which took into account the dissociation reactions of Neu5Ac and the condition of electroneutrality, was used to correlate the Neu5Ac sorption isotherms at various solution pHs and Neu5Ac concentrations. The model provided an excellent fit to the binary exchange data for Cl(-)/OH(-) and Neu5Ac(-)/OH(-), and an approximate prediction of equilibrium in the ternary system Cl(-)/Neu5Ac(-)/OH(-). This basic information combined with the general mass transfer model could lay the foundation for the prediction of dynamic behavior of fixed bed separation process afterwards. Copyright © 2015 Elsevier Ltd. All rights reserved.
Star-disc interaction in galactic nuclei: formation of a central stellar disc
NASA Astrophysics Data System (ADS)
Panamarev, Taras; Shukirgaliyev, Bekdaulet; Meiron, Yohai; Berczik, Peter; Just, Andreas; Spurzem, Rainer; Omarov, Chingis; Vilkoviskij, Emmanuil
2018-05-01
We perform high-resolution direct N-body simulations to study the effect of an accretion disc on stellar dynamics in an active galactic nucleus (AGN). We show that the interaction of the nuclear stellar cluster (NSC) with the gaseous accretion disc (AD) leads to formation of a stellar disc in the central part of the NSC. The accretion of stars from the stellar disc on to the super-massive black hole is balanced by the capture of stars from the NSC into the stellar disc, yielding a stationary density profile. We derive the migration time through the AD to be 3 per cent of the half-mass relaxation time of the NSC. The mass and size of the stellar disc are 0.7 per cent of the mass and 5 per cent of the influence radius of the super-massive black hole. An AD lifetime shorter than the migration time would result in a less massive nuclear stellar disc. The detection of such a stellar disc could point to past activity of the hosting galactic nucleus.
A glacier runoff extension to the Precipitation Runoff Modeling System
Van Beusekom, Ashley E.; Viger, Roland
2016-01-01
A module to simulate glacier runoff, PRMSglacier, was added to PRMS (Precipitation Runoff Modeling System), a distributed-parameter, physical-process hydrological simulation code. The extension does not require extensive on-glacier measurements or computational expense but still relies on physical principles over empirical relations as much as is feasible while maintaining model usability. PRMSglacier is validated on two basins in Alaska, Wolverine, and Gulkana Glacier basin, which have been studied since 1966 and have a substantial amount of data with which to test model performance over a long period of time covering a wide range of climatic and hydrologic conditions. When error in field measurements is considered, the Nash-Sutcliffe efficiencies of streamflow are 0.87 and 0.86, the absolute bias fractions of the winter mass balance simulations are 0.10 and 0.08, and the absolute bias fractions of the summer mass balances are 0.01 and 0.03, all computed over 42 years for the Wolverine and Gulkana Glacier basins, respectively. Without taking into account measurement error, the values are still within the range achieved by the more computationally expensive codes tested over shorter time periods.
Implementing Marine Organic Aerosols Into the GEOS-Chem Model
NASA Technical Reports Server (NTRS)
Johnson, Matthew S.
2015-01-01
Marine-sourced organic aerosols (MOA) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem model. The implemented emission scheme improved the large under-prediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Model predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOA observed during the summertime at an inland site near Paris, France. Our study shows that MOA have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having > 10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly-emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.
Jeong, Michelle; Tan, Andy; Brennan, Emily; Gibson, Laura; Hornik, Robert C.
2015-01-01
This study examined the role of interpersonal communication in the context of a mass media anti-smoking campaign. Specifically, it explored whether conversations about campaign ads and/or about quitting mediated campaign exposure effects on two quitting behaviors (sought help to quit and tried to quit smoking completely), as well as the relationship between ad-related and quitting-related conversations. Data were collected prior to the campaign and monthly for 16 months during the campaign through cross-sectional telephone surveys among a sample of 3277 adult Philadelphian smokers. Follow-up interviews were conducted among 877 participants three months after their first survey. Cross-sectional and longitudinal mediation models with bootstrap procedures assessed the indirect effects of campaign exposure on outcomes through conversations, and of conversations about ads on outcomes through conversations about quitting. In addition, lagged regression analyses tested the causal direction of associations between the variables of interest. The results partially support hypotheses that conversations about quitting mediate campaign effects on quitting-related behaviors, and, in line with previous research, that conversations about the ads have indirect effects on quitting-related behaviors by triggering conversations about quitting. These findings demonstrate the importance of considering interpersonal communication as a route of campaign exposure effects when evaluating and designing future public health campaigns. PMID:26147367
Green, Colin; Shearer, James; Ritchie, Craig W; Zajicek, John P
2011-01-01
To consider the methods available to model Alzheimer's disease (AD) progression over time to inform on the structure and development of model-based evaluations, and the future direction of modelling methods in AD. A systematic search of the health care literature was undertaken to identify methods to model disease progression in AD. Modelling methods are presented in a descriptive review. The literature search identified 42 studies presenting methods or applications of methods to model AD progression over time. The review identified 10 general modelling frameworks available to empirically model the progression of AD as part of a model-based evaluation. Seven of these general models are statistical models predicting progression of AD using a measure of cognitive function. The main concerns with models are on model structure, around the limited characterization of disease progression, and on the use of a limited number of health states to capture events related to disease progression over time. None of the available models have been able to present a comprehensive model of the natural history of AD. Although helpful, there are serious limitations in the methods available to model progression of AD over time. Advances are needed to better model the progression of AD and the effects of the disease on peoples' lives. Recent evidence supports the need for a multivariable approach to the modelling of AD progression, and indicates that a latent variable analytic approach to characterising AD progression is a promising avenue for advances in the statistical development of modelling methods. Copyright © 2011 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Caughlin, Sarah; Maheshwari, Shikhar; Agca, Yuksel; Agca, Cansu; Harris, Aaron J; Jurcic, Kristina; Yeung, Ken K-C; Cechetto, David F; Whitehead, Shawn N
2018-06-01
Accumulation of simple gangliosides GM2 and GM3, and gangliosides with longer long-chain bases (d20:1) have been linked to toxicity and the pathogenesis of Alzheimer's disease (AD). Conversely, complex gangliosides, such as GM1, have been shown to be neuroprotective. Recent evidence using matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) has demonstrated that a-series gangliosides are differentially altered during normal aging, yet it remains unclear how simple species are shifting relative to complex gangliosides in the prodromal stages of AD. Ganglioside profiles in wild-type (Wt) and transgenic APP21 Fischer rats were detected and quantified using MALDI-IMS at P0 (birth), 3, 12, and 20 months of age and each species quantified to allow for individual species comparisons. Tg APP21 rats were found to have a decreased level of complex gangliosides in a number of brain regions as compared to Wt rats and showed higher levels of simple gangliosides. A unique pattern of expression was observed in the white matter as compared to gray matter regions, with an age-dependent decrease in GD1 d18:1 species observed and significantly elevated levels of GM3 in Tg APP21 rats. These results are indicative of a pathological shift in ganglioside homeostasis during aging that is exacerbated in Tg APP21 rats. Ganglioside dysregulation may occur in the prodromal stages of neurodegenerative diseases like AD. Copyright © 2018 Elsevier B.V. All rights reserved.
DEBCat: A Catalog of Detached Eclipsing Binary Stars
NASA Astrophysics Data System (ADS)
Southworth, J.
2015-07-01
Detached eclipsing binary star systems are our primary source of measured physical properties of normal stars. I introduce DEBCat: a catalog of detached eclipsing binaries with mass and radius measurements to the 2% precision necessary to put useful constraints on theoretical models of stellar evolution. The catalog was begun in 2006, as an update of the compilation by Andersen (1991). It now contains over 170 systems, and new results are added on appearance in the refereed literature. DEBCat is available at: http://www.astro.keele.ac.uk/jkt/debcat/.
Cho, H. Jean; Jaffe, Peter R.; Smith, James A.
1993-01-01
This paper describes laboratory and field experiments which were conducted to study the dynamics of trichloroethylene (TCE) as it volatilized from contaminated groundwater and diffused in the presence of infiltrating water through the unsaturated soil zone to the land surface. The field experiments were conducted at the Picatinny Arsenal, which is part of the United States Geological Survey Toxic Substances Hydrology Program. In both laboratory and field settings the gas and water phase concentrations of TCE were not in equilibrium during infiltration. Gas-water mass transfer rate constants were calibrated to the experimental data using a model in which the water phase was treated as two phases: a mobile water phase and an immobile water phase. The mass transfer limitations of a volatile organic compound between the gas and liquid phases were described explicitly in the model. In the laboratory experiment the porous medium was nonsorbing, and water infiltration rates ranged from 0.076 to 0.28 cm h−1. In the field experiment the water infiltration rate was 0.34 cm h−1, and sorption onto the soil matrix was significant. The laboratory-calibrated gas-water mass transfer rate constant is 3.3×10−4 h−1 for an infiltration rate of 0.076 cm h−1 and 1.4×10−3 h−1 for an infiltration rate of 0.28 cm h−1. The overall mass transfer rate coefficients, incorporating the contribution of mass transfer between mobile and immobile water phases and the variation of interfacial area with moisture content, range from 3×10−4 h−1 to 1×10−2 h−1. A power law model relates the gas-water mass transfer rate constant to the infiltration rate and the fraction of the water phase which is mobile. It was found that the results from the laboratory experiments could not be extrapolated to the field. In order to simulate the field experiment the very slow desorption of TCE from the soil matrix was incorporated into the mathematical model. When desorption from the soil matrix was added to the model, the calibrated gas-water mass transfer rate constant is 2 orders of magnitude lower than that predicted using the power law model developed for the nonsorbing laboratory soil.
Local monitoring of post-treatment drinking water using bench-top mass spectrometers could identify target compounds in a mass spectral library. However, a terrorist might seek to incite greater hysteria by injecting or infusing a mixture of unanticipated compounds of unknown tox...
40 CFR 63.1980 - What records and reports must I keep and submit?
Code of Federal Regulations, 2014 CFR
2014-07-01
... add any liquids other than leachate in a controlled fashion to the waste mass and do not comply with..., moisture content of the incoming waste, mass of water added to the waste including leachate recirculation and other liquids addition and precipitation, and the mass of water removed through leachate or other...
40 CFR 63.1980 - What records and reports must I keep and submit?
Code of Federal Regulations, 2012 CFR
2012-07-01
... add any liquids other than leachate in a controlled fashion to the waste mass and do not comply with..., moisture content of the incoming waste, mass of water added to the waste including leachate recirculation and other liquids addition and precipitation, and the mass of water removed through leachate or other...
40 CFR 63.1980 - What records and reports must I keep and submit?
Code of Federal Regulations, 2013 CFR
2013-07-01
... add any liquids other than leachate in a controlled fashion to the waste mass and do not comply with..., moisture content of the incoming waste, mass of water added to the waste including leachate recirculation and other liquids addition and precipitation, and the mass of water removed through leachate or other...
An exactly solvable model of polymerization
NASA Astrophysics Data System (ADS)
Lushnikov, A. A.
2017-08-01
This paper considers the evolution of a polydisperse polymerizing system comprising g1,g2 … - mers carrying ϕ1,ϕ2 … functional groups reacting with one another and binding the g-mers together. In addition, the g-mers are assumed to be added at random by one at a time with a known rate depending on their mass g and functionality ϕ . Assuming that the rate of binding of two g-mers is proportional to the product of the numbers of nonreacted functional groups the kinetic equation for the distribution of clusters (g-mers) over their mass and functionalities is formulated and then solved by applying the generating function method. In contrast to existing approaches this kinetic equation operates with the efficiencies proportional to the product of the numbers of active functional groups in the clusters rather than to the product of their masses. The evolution process is shown to reveal a phase transition: the emergence of a giant linked cluster (the gel) whose mass is comparable to the total mass of the whole polymerizing system. The time dependence of the moments of the distribution of linked components over their masses and functionalities is investigated. The polymerization process terminates by forming a residual spectrum of sol particles in addition to the gel.
van Himbergen, Thomas M; Beiser, Alexa S; Ai, Masumi; Seshadri, Sudha; Otokozawa, Seiko; Au, Rhoda; Thongtang, Nuntakorn; Wolf, Philip A; Schaefer, Ernst J
2012-05-01
To investigate the contribution of biomarkers of glucose homeostasis (adiponectin, glucose, glycated albumin, and insulin levels) and inflammation (high-sensitivity C-reactive protein and lipoprotein-associated phospholipase A(2) levels) to the risk of developing Alzheimer disease (AD) and all-cause dementia. Prospective cohort study. Dementia-free Framingham Heart Study participants had sera measured for these biomarkers at the 19th biennial examination (1985-1988) and were followed up prospectively for the development of AD and all-cause dementia. Eight hundred forty (541 women, median age of 76 years) subjects participated in the study. We used sex-pooled and sex-specific multivariable Cox proportional hazards models adjusted for age, education, body mass index, recent change in weight, APOE ε4 allele status, and plasma docosahexaenoic acid levels to determine association of these biomarkers with the development of all-cause dementia and AD. Over a mean follow-up period of 13 years, 159 persons developed dementia (including 125 with AD). After adjustment for other risk factors, only adiponectin in women was associated with an increased risk of all-cause dementia (hazard ratio [HR], 1.29; 95% confidence interval [CI], 1.00-1.66; P=.054) and AD (HR, 1.33; 95% CI, 1.00-1.76; P=.050) per 1-SD increase in adiponectin level. Women with baseline adiponectin values more than the median had a higher risk of all-cause dementia (HR, 1.63; 95% CI, 1.03-2.56; P=.04) and AD (HR, 1.87; 95% CI, 1.13-3.10; P=.01) as compared with those with values less than the median. In women, increased plasma adiponectin levels are an independent risk factor for the development of both all-cause dementia and AD.
Recirculation of the Canary Current in fall 2014
NASA Astrophysics Data System (ADS)
Hernández-Guerra, Alonso; Espino-Falcón, Elisabet; Vélez-Belchí, Pedro; Dolores Pérez-Hernández, M.; Martínez-Marrero, Antonio; Cana, Luis
2017-10-01
Hydrographic measurements together with Ship mounted Acoustic Doppler Current Profilers and Lowered Acoustic Doppler Current Profilers (LADCP) obtained in October 2014 are used to describe water masses, geostrophic circulation and mass transport of the Canary Current System, as the Eastern Boundary of the North Atlantic Subtropical Gyre. Geostrophic velocities are adjusted to velocities from LADCP data to estimate an initial velocity at the reference layer. The adjustment results in a northward circulation at the thermocline layers over the African slope from an initial convergent flow. Final reference velocities and consequently absolute circulation are estimated from an inverse box model applied to an ocean divided into 13 neutral density layers. This allows us to evaluate mass fluxes consistent with the thermal wind equation and mass conservation. Ekman transport is estimated from the wind data derived from the Weather Research and Forecasting model. Ekman transport is added to the first layer and adjusted with the inverse model. The Canary Current located west of Lanzarote Island transports to the south a mass of - 1.5 ± 0.7 Sv (1 Sv = 106 m3 s- 1 ≈ 109 kg s- 1) of North Atlantic Central Water at the surface and thermocline layers ( 0-700 m). In fall 2014, hydrographic data shows that the Canary Current in the thermocline (below at about 80 m depth to 700 m) recirculates to the north over the African slope and flows through the Lanzarote Passage. At intermediate layers ( 700-1400 m), the Intermediate Poleward Undercurrent transports northward a relatively fresh Antarctic Intermediate Water in the range of 0.8 ± 0.4 Sv through the Lanzarote Passage and west of Lanzarote Island beneath the recirculation of the Canary Current.
Strom, M.A.; Fishbein, A.B.; Paller, A.S.; Silverberg, J.I.
2016-01-01
Summary Background Atopic dermatitis (AD) is associated with chronic itch, allergic disease and sleep disturbance, all of which might increase the risk of attention deficit (hyperactivity) disorder (ADD/ADHD). Previous analyses have found a consistent association between AD and ADD/ADHD, although the underlying factors contributing to such an association remain underexplored. Additionally, the relationship has been underexplored in adults. Objectives To determine if childhood and adult AD and AD severity are associated with ADD/ADHD and to delineate the factors contributing to such an association. Methods We analysed data on 354 416 children aged 2–17 years and 34 613 adults age 18+ years from 19 U.S. population-based surveys, including the National Health Interview Survey 1997–2013 and the National Survey of Children’s Health 2003/4 and 2007/8. Results In multivariate models adjusting for age, sex, sociodemographics, allergic disease and healthcare utilization, AD was associated with ADD/ADHD in both children [adjusted odds ratio (95% confidence interval), 1·14 (1·03–1·26)] and adults [1·61 (1·25–2·06)]. Children with both severe AD and only 0–3 nights of adequate sleep per week had much higher odds of ADD/ADHD [16·83 (7·02–40·33)] than those with 0–3 nights of adequate sleep per week [1·83 (1·47–2·26)] or mild–moderate AD alone [1·56 (1·22–1·99)]. AD was most strongly associated with severe ADHD. AD unaccompanied by other allergic disease was also associated with increased risk of ADD/ADHD in children. Among children with AD, history of anaemia, headaches and obesity were associated with even higher odds of ADD/ADHD. Asthma, insomnia and headaches increased the odds of ADHD in adults with AD, although underweight body mass index was protective. Conclusions Atopic dermatitis is associated with increased odds of ADD/ADHD in adults and children. Several factors increase the risk of ADHD in adults and children with AD. PMID:27105659
Efficient swimming of a plunging elastic plate in a viscous fluid
NASA Astrophysics Data System (ADS)
Yeh, Peter; Alexeev, Alexander
2014-03-01
We use three dimensional computer simulations to examine the combined hydrodynamics and structural response of a plunging elastic plate submerged in a viscous fluid with Reynolds number of 250. The plate is actuated at the root with a prescribed vertical sinusoidal displacement and a zero slope (clamped) boundary condition. We explore the steady state swimming velocity and the associated input power as a function of driving frequency, added mass, and aspect ratio. We find a universal bending pattern independent of geometry and added mass that maximizes the distance traveled per unit applied work. This bending pattern is associated with minimizing center of mass oscillations normal to the direction of travel. Subsequently, the flow around the sides of the swimmer, which does not aid in propulsion, is minimized, thereby reducing viscous losses.
Mass Distribution and Gravitational Potential of the Milky Way
NASA Astrophysics Data System (ADS)
Ninković, Slobodan
2017-04-01
Models of mass distribution in the Milky Way are discussed where those yielding the potential analytically are preferred. It is noted that there are three main contributors to the Milky Way potential: bulge, disc and dark halo. In the case of the disc the Miyamoto-Nagai formula, as simple enough, has shown as a very good solution, but it has not been able to satisfy all requirements. Therefore, improvements, such as adding new terms or combining several Miyamoto-Nagai terms, have been attempted. Unlike the disc, in studying the bulge and dark halo the flattening is usually neglected, which offers the possibility of obtaining an exact solution of the Poisson equation. It is emphasized that the Hernquist formula, used very often for the bulge potential, is a special case of another formula and the properties of that formula are analysed. In the case of the dark halo, the slopes of its cumulative mass for the inner and outer parts are explained through a new formalism presented here for the first time.
Ilag, Leopold L; Westblade, Lars F; Deshayes, Caroline; Kolb, Annie; Busby, Stephen J W; Robinson, Carol V
2004-02-01
The E. coli RNA polymerase core enzyme is a multisubunit complex of 388,981 Da. To initiate transcription at promoters, the core enzyme associates with a sigma subunit to form holo RNA polymerase. Here we have used nanoflow electrospray mass spectrometry, coupled with tandem mass spectrometry, to probe the interaction of the RNA polymerase core enzyme with the most abundant sigma factor, sigma70. The results show remarkably well-resolved spectra for both the core and holo RNA polymerases. The regulator of sigma70, Rsd protein, has previously been identified as a protein that binds to free sigma70. We show that Rsd also interacts with core enzyme. In addition, by adding increasing amounts of Rsd, we show that sigma70 is displaced from holo RNA polymerase, resulting in complexes of Rsd with core and sigma70. The results argue for a model in which Rsd not only sequesters sigma70, but is also an effector of core RNA polymerase.
Gravitational waves from non-Abelian gauge fields at a tachyonic transition
NASA Astrophysics Data System (ADS)
Tranberg, Anders; Tähtinen, Sara; Weir, David J.
2018-04-01
We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.
Kang, Suna; Moon, Na Rang; Kim, Da Sol; Kim, Sung Hoon; Park, Sunmin
2015-09-01
Ghrelin is a gastric hormone released during the fasting state that targets the hypothalamus where it induces hunger; however, emerging evidence suggests it may also affect memory function. We examined the effect of central acylated-ghrelin and DES-acetylated ghrelin (native ghrelin) on memory function and glucose metabolism in an experimentally induced Alzheimer's disease (AD) rat model. AD rats were divided into 3 groups and Non-AD rats were used as a normal-control group. Each rat in the AD groups had intracerebroventricular (ICV) infusion of β-amyloid (25-35; 16.8nmol/day) into the lateral ventricle for 3 days, and then the pumps were changed to infuse either acylated-ghrelin (0.2nmol/h; AD-G), DES-acylated ghrelin (0.2nmol/h; AD-DES-G), or saline (control; AD-C) for 3 weeks. The Non-AD group had ICV infusion of β-amyloid (35-25) which does not deposit in the hippocampus. During the next 3 weeks memory function, food intake, body weight gain, body fat composition, and glucose metabolism were measured. AD-C exhibited greater β-amyloid deposition compared to Non-AD-C, and AD-G suppressed the increased β-amyloid deposition and potentiated the phosphorylation AMPK. In addition, AD-G increased the phosphorylation GSK and decreased the phosphorylation of Tau in comparison to AD-C and AD-DES-G. Cognitive function, measured by passive avoidance and water maze tests, was much lower in AD-C than Non-AD-C whereas AD-G but not AD-DES-G prevented the decrease (p<0.021). Body weight gain was lower in AD-C group than Non-AD-C group without changing epididymal fat mass. AD-G reversed the decrease in body weight which was due to increased energy intake and decreased energy expenditure. The AD-G group exhibited a decrease in the second part of serum glucose levels during an oral glucose tolerance test (OGTT) compared to the AD-C and AD-DES-G group (p<0.009). However, area under the curve of insulin during the first part of OGTT was higher in AD-DES-G than other groups, whereas during the second part it was suppressed in AD-G as much as Non-AD. In conclusion, central acylated ghrelin in rats prevented the deterioration of memory function, and energy and glucose metabolisms were partially improved, possibly due to less β-amyloid accumulation. This research suggests that interventions such as intermittent fasting to facilitate sustained elevations of acyl-ghrelin should be investigated for cognitive and metabolic benefits, especially in person with early symptoms of memory impairment. Copyright © 2015 Elsevier Inc. All rights reserved.
Consumption of added sugars and indicators of cardiovascular disease risk among US adolescents.
Welsh, Jean A; Sharma, Andrea; Cunningham, Solveig A; Vos, Miriam B
2011-01-25
Whereas increased carbohydrate and sugar consumption has been associated with higher cardiovascular disease risk among adults, little is known about the impact of high consumption of added sugars (caloric sweeteners) among US adolescents. In a cross-sectional study of 2157 US adolescents in the National Health and Nutrition Examination Survey (NHANES) 1999 to 2004, dietary data from one 24-hour recall were merged with added sugar content data from the US Department of Agriculture MyPyramid Equivalents databases. Measures of cardiovascular disease risk were estimated by added sugar consumption level (< 10%, 10 to < 15%, 15 to < 20%, 20 to < 25%, 25 to < 30%, and ≥ 30% of total energy). Multivariable means were weighted to be representative of US adolescents and variances adjusted for the complex sampling methods. Daily consumption of added sugars averaged 21.4% of total energy. Added sugars intake was inversely correlated with mean high-density lipoprotein cholesterol levels (mmol/L) which were 1.40 (95% confidence interval [CI] 1.36 to 1.44) among the lowest consumers and 1.28 (95% CI 1.23 to 1.33) among the highest (P trend = 0.001). Added sugars were positively correlated with low-density lipoproteins (P trend =0.01) and geometric mean triglycerides (P trend = 0.05). Among the lowest and highest consumers, respectively, low-density lipoproteins (mmol/L) were 2.24 (95% CI 2.12 to 2.37) and 2.44 (95% CI 2.34 to 2.53), and triglycerides (mmol/L) were 0.81 (95% CI 0.74, 0.88) and 0.89 (95% CI 0.83 to 0.96). Among those overweight/obese (≥ 85th percentile body-mass-index), added sugars were positively correlated with the homeostasis model assessment (P linear trend = 0.004). Consumption of added sugars among US adolescents is positively associated with multiple measures known to increase cardiovascular disease risk.
NASA Astrophysics Data System (ADS)
Komorowski, J.-C.; Legendre, Y.; Caron, B.; Boudon, G.
2008-12-01
The last magmatic eruption of Soufrière of Guadeloupe dated at 1530 A.D. (Soufrière eruption) is characterized by an onset with a partial flank-collapse and emplacement of a debris-avalanche that was followed by a sub-plinian VEI 2-3 explosive short-lived eruption (Phase-1) with a column that reached a height between 9 and 12 km producing about 3.9 × 10 6 m 3 DRE (16.3 × 10 6 m 3 bulk) of juvenile products. The column recurrently collapsed generating scoriaceous pyroclastic flows in radiating valleys up to a distance of 5-6 km with a maximum interpolated bulk deposit volume of 11.7 × 10 6 m 3 (5 × 10 6 m 3 DRE). We have used HAZMAP, a numerical simple first-order model of tephra dispersal [Macedonio, G., Costa, A., Longo, A., 2005. A computer model for volcanic ash fallout and assessment of subsequent hazard. Comput. Geosci. 31, 837-845] to reconstruct to a first approximation the potential dispersal of tephra and associated tephra mass loadings generated by the sub-plinian Phase 1 of the 1530 A.D. eruption. We have tested our model on a deterministic average dry season wind profile that best-fits the available data as well as on a set of randomly selected wind profiles over a 5 year interval that allows the elaboration of probabilistic maps for the exceedance of specific tephra mass load thresholds. Results show that in the hypothesis of a future 1530 A.D. scenario, populated areas to a distance of 3-4 km west-southwest of the vent could be subjected to a static load pressure between 2 and 10 kPa in case of wet tephra, susceptible to cause variable degrees of roof damage. Our results provide volcanological input parameters for scenario and event-tree definition, for assessing volcanic risks and evaluating their impact in case of a future sub-plinian eruption which could affect up to 70 000 people in southern Basse-Terre island and the region. They also provide a framework to aid decision-making concerning land management and development. A sub-plinian eruption is the most likely magmatic scenario in case of a future eruption of this volcano which has shown, since 1992, increasing signs of low-energy seismic, thermal, and acid degassing unrest without significant deformation.
Quintessence Reissner Nordström Anti de Sitter Black Holes and Joule Thomson Effect
NASA Astrophysics Data System (ADS)
Ghaffarnejad, H.; Yaraie, E.; Farsam, M.
2018-06-01
In this work we investigate corrections of the quintessence regime of the dark energy on the Joule-Thomson (JT) effect of the Reissner Nordström anti de Sitter (RNAdS) black hole. The quintessence dark energy has equation of state as p q = ω ρ q in which -1<ω <- 1/3. Our calculations are restricted to ansatz: ω = - 1 (the cosmological constant regime) and ω =- 2/3 (quintessence dark energy). To study the JT expansion of the AdS gas under the constant black hole mass, we calculate inversion temperature T i of the quintessence RNAdS black hole where its cooling phase is changed to heating phase at a particular (inverse) pressure P i . Position of the inverse point { T i , P i } is determined by crossing the inverse curves with the corresponding Gibbons-Hawking temperature on the T-P plan. We determine position of the inverse point versus different numerical values of the mass M and the charge Q of the quintessence AdS RN black hole. The cooling-heating phase transition (JT effect) is happened for M > Q in which the causal singularity is still covered by the horizon. Our calculations show sensitivity of the inverse point { T i , P i } position on the T-P plan to existence of the quintessence dark energy just for large numerical values of the AdS RN black holes charge Q. In other words the quintessence dark energy dose not affect on position of the inverse point when the AdS RN black hole takes on small charges.
Ultra-fast Escape of a Octopus-inspired Rocket
NASA Astrophysics Data System (ADS)
Weymouth, Gabriel; Triantafyllou, Michael
2013-11-01
The octopus, squid, and other cephalopods inflate with water and then release a jet to accelerate in the opposite direction. This escape mechanism is particularly interesting in the octopus because they become initially quite bluff, yet this does not hinder them in achieving impressive bursts of speed. We examine this somewhat paradoxical maneuver using a simple deflating spheroid model in both potential and viscous flow. We demonstrate that the dynamic reduction of the width of the body completely changes the flow and forces acting on the escaping rocket in three ways. First, a body which reduces in size can generate an added mass thrust which counteracts the added mass inertia. Second, the motion of the shrinking wall acts similar to suction on a static wall, reducing separation and drag forces in a viscous fluid, but that this effects depends on the rate of size change. Third, using a combination of these two features it is possible to initially load the fluid with kinetic energy when heavy and bluff and then recover that energy when streamlined and light, enabling ultra-fast accelerations. As a notable example, these mechanisms allow a shrinking spheroid rocket in a heavy inviscid fluid to achieve speeds greater than an identical rocket in the vacuum of space. Southampton Marine and Maritime Institute.
NASA Astrophysics Data System (ADS)
Yusof, Mohd Fahmi Mohd; Hamid, Puteri Nor Khatijah Abd; Tajuddin, Abd Aziz; Abdullah, Reduan; Hashim, Rokiah; Bauk, Sabar; Isa, Norriza Mohd; Isa, Muhammad Jamal Md
2017-01-01
The effective atomic number of tannin-added Rhizophora spp. particleboards was determined based on elemental composition using Energy Dispersive X-ray Analysis (EDXA). The value of mass attenuation coefficients were measured using 137Cs and 60Co gamma energies. The attenuation properties of PDD curves and beam profile of tannin-added Rhizophora spp. particleboards were investigated using Gafchromic EBT2 film at 6 MV photon and 6 MeV electrons and compared to the value in water and solid water phantoms. The results showed that tannin-added Rhizophora spp. particleboards having effective atomic number close to the value of water. The mass attenuation coefficients were near to the value of water with χ2 values of 0.018 and 0.357 to 137Cs and 60Co gamma energies respectively. The PDD of tannin-added Rhizophora spp. particleboards at 6 MV photons showed good agreement within 3.21 and 5.91% to that in solid water phantoms and water respectively. The PDD at 6 MeV electrons showed a good agreement within 3.32 and 3.12% to that in solid water phantoms and water respectively. The depth of R50 and R90 in tannin-added Rhizophora spp. also showed a good agreement to that in water and solid water pahtoms. Lower surface dose was observed in tannin-added Rhizophora spp. particleboards at electron beams in comparison to solid water phantoms and water.
NASA Astrophysics Data System (ADS)
Rowan, Ann V.; Egholm, David L.; Quincey, Duncan J.; Glasser, Neil F.
2015-11-01
Many Himalayan glaciers are characterised in their lower reaches by a rock debris layer. This debris insulates the glacier surface from atmospheric warming and complicates the response to climate change compared to glaciers with clean-ice surfaces. Debris-covered glaciers can persist well below the altitude that would be sustainable for clean-ice glaciers, resulting in much longer timescales of mass loss and meltwater production. The properties and evolution of supraglacial debris present a considerable challenge to understanding future glacier change. Existing approaches to predicting variations in glacier volume and meltwater production rely on numerical models that represent the processes governing glaciers with clean-ice surfaces, and yield conflicting results. We developed a numerical model that couples the flow of ice and debris and includes important feedbacks between debris accumulation and glacier mass balance. To investigate the impact of debris transport on the response of a glacier to recent and future climate change, we applied this model to a large debris-covered Himalayan glacier-Khumbu Glacier in Nepal. Our results demonstrate that supraglacial debris prolongs the response of the glacier to warming and causes lowering of the glacier surface in situ, concealing the magnitude of mass loss when compared with estimates based on glacierised area. Since the Little Ice Age, Khumbu Glacier has lost 34% of its volume while its area has reduced by only 6%. We predict a decrease in glacier volume of 8-10% by AD2100, accompanied by dynamic and physical detachment of the debris-covered tongue from the active glacier within the next 150 yr. This detachment will accelerate rates of glacier decay, and similar changes are likely for other debris-covered glaciers in the Himalaya.
Parastar, Hadi; Radović, Jagoš R; Bayona, Josep M; Tauler, Roma
2013-07-01
Multivariate curve resolution-alternating least squares (MCR-ALS) analysis is proposed to solve chromatographic challenges during two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS) analysis of complex samples, such as crude oil extract. In view of the fact that the MCR-ALS method is based on the fulfillment of the bilinear model assumption, three-way and four-way GC × GC-TOFMS data are preferably arranged in a column-wise superaugmented data matrix in which mass-to-charge ratios (m/z) are in its columns and the elution times in the second and first chromatographic columns are in its rows. Since m/z values are common for all measured spectra in all second-column modulations, unavoidable chromatographic challenges such as retention time shifts within and between GC × GC-TOFMS experiments are properly handled. In addition, baseline/background contributions can be modeled by adding extra components to the MCR-ALS model. Another outstanding aspect of MCR-ALS analysis is its extreme flexibility to consider all samples (standards, unknowns, and replicates) in a single superaugmented data matrix, allowing joint analysis. In this way, resolution, identification, and quantification results can be simultaneously obtained in a very fast and reliable way. The potential of MCR-ALS analysis is demonstrated in GC × GC-TOFMS analysis of a North Sea crude oil extract sample with relative errors in estimated concentrations of target compounds below 6.0 % and relative standard deviations lower than 7.0 %. The results obtained, along with reasonable values for the lack of fit of the MCR-ALS model and high values of the reversed match factor in mass spectra similarity searches, confirm the reliability of the proposed strategy for GC × GC-TOFMS data analysis.
Brodsky, Stanley J.
2018-03-06
Here, light-front holography, together with superconformal algebra, have provided new insights into the physics of color confinement and the spectroscopy and dynamics of hadrons. As shown by de Alfaro, Fubini and Furlan, a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the procedure of de Alfaro et al. to the frame-independent light-front Hamiltonian, it leads uniquely to a confining qq¯ potential κ 4ζ 2, where ζ 2 is the light-frontmore » radial variable related in momentum space to the qq¯ invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS 5, the space of isometries of the conformal group—if one modifies the action of AdS 5 by the dilaton e κ2 z2 in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions lead to a a unified Regge spectroscopy of meson, baryon, and tetraquarks, including supersymmetric relations between their masses and their wavefunctions. One also predicts hadronic light-front wavefunctions and observables such as structure functions, transverse momentum distributions, and the distribution amplitudes. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ MS¯ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s(Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. I also discuss a number of applications of light-front phenomenology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.; de Teramond, Guy F.; Deur, Alexandre P.
2015-09-01
The valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a relativistic equation of motion with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. If one requires that the effective action which underlies the QCD Lagrangian remains conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light front Hamiltonian theory, the potential U has a unique form of a harmonic oscillator potential, and a mass gap arises. The result is a nonperturbative relativistic light-front quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic andmore » dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number n and orbital angular momentum L. Only one mass parameter κ appears. Light-front holography thus provides a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. We also show how the mass scale κ underlying confinement and hadron masses determines the scale Λ {ovr MS} controlling the evolution of the perturbative QCD coupling. The relation between scales is obtained by matching the nonperturbative dynamics, as described by an effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime computed to four-loop order. The result is an effective coupling defined at all momenta. The predicted value Λ {ovr MS}=0.328±0.034 GeV is in agreement with the world average 0.339±0.010 GeV. The analysis applies to any renormalization scheme.« less
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.
2018-05-01
Light-front holography, together with superconformal algebra, have provided new insights into the physics of color confinement and the spectroscopy and dynamics of hadrons. As shown by de Alfaro, Fubini and Furlan, a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the procedure of de Alfaro et al. to the frame-independent light-front Hamiltonian, it leads uniquely to a confining q \\bar{q} potential κ ^4 ζ ^2, where ζ ^2 is the light-front radial variable related in momentum space to the q \\bar{q} invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS_5, the space of isometries of the conformal group—if one modifies the action of AdS_5 by the dilaton e^{κ ^2 z^2} in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions lead to a a unified Regge spectroscopy of meson, baryon, and tetraquarks, including supersymmetric relations between their masses and their wavefunctions. One also predicts hadronic light-front wavefunctions and observables such as structure functions, transverse momentum distributions, and the distribution amplitudes. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ_{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α _s(Q^2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q_0 which sets the interface between perturbative and nonperturbative hadron dynamics. I also discuss a number of applications of light-front phenomenology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.
Here, light-front holography, together with superconformal algebra, have provided new insights into the physics of color confinement and the spectroscopy and dynamics of hadrons. As shown by de Alfaro, Fubini and Furlan, a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the procedure of de Alfaro et al. to the frame-independent light-front Hamiltonian, it leads uniquely to a confining qq¯ potential κ 4ζ 2, where ζ 2 is the light-frontmore » radial variable related in momentum space to the qq¯ invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS 5, the space of isometries of the conformal group—if one modifies the action of AdS 5 by the dilaton e κ2 z2 in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions lead to a a unified Regge spectroscopy of meson, baryon, and tetraquarks, including supersymmetric relations between their masses and their wavefunctions. One also predicts hadronic light-front wavefunctions and observables such as structure functions, transverse momentum distributions, and the distribution amplitudes. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ MS¯ in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α s(Q 2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. I also discuss a number of applications of light-front phenomenology.« less
Mass sensing based on deterministic and stochastic responses of elastically coupled nanocantilevers.
Gil-Santos, Eduardo; Ramos, Daniel; Jana, Anirban; Calleja, Montserrat; Raman, Arvind; Tamayo, Javier
2009-12-01
Coupled nanomechanical systems and their entangled eigenstates offer unique opportunities for the detection of ultrasmall masses. In this paper we show theoretically and experimentally that the stochastic and deterministic responses of a pair of coupled nanocantilevers provide different and complementary information about the added mass of an analyte and its location. This method allows the sensitive detection of minute quantities of mass even in the presence of large initial differences in the active masses of the two cantilevers. Finally, we show the fundamental limits in mass detection of this sensing paradigm.
Realistic anomaly-mediated supersymmetry breaking
NASA Astrophysics Data System (ADS)
Chacko, Zacharia; Luty, Markus A.; Maksymyk, Ivan; Pontón, Eduardo
2000-03-01
We consider supersymmetry breaking communicated entirely by the superconformal anomaly in supergravity. This scenario is naturally realized if supersymmetry is broken in a hidden sector whose couplings to the observable sector are suppressed by more than powers of the Planck scale, as occurs if supersymmetry is broken in a parallel universe living in extra dimensions. This scenario is extremely predictive: soft supersymmetry breaking couplings are completely determined by anomalous dimensions in the effective theory at the weak scale. Gaugino and scalar masses are naturally of the same order, and flavor-changing neutral currents are automatically suppressed. The most glaring problem with this scenario is that slepton masses are negative in the minimal supersymmetric standard model. We point out that this problem can be simply solved by coupling extra Higgs doublets to the leptons. Lepton flavor-changing neutral currents can be naturally avoided by approximate symmetries. We also describe more speculative solutions involving compositeness near the weak scale. We then turn to electroweak symmetry breaking. Adding an explicit μ term gives a value for Bμ that is too large by a factor of ~ 100. We construct a realistic model in which the μ term arises from the vacuum expectation value of a singlet field, so all weak-scale masses are directly related to m3/2. We show that fully realistic electroweak symmetry breaking can occur in this model with moderate fine-tuning.
Hamlet, C G; Sadd, P A
2005-07-01
A major precursor of 3-monochloropropanediol (3-MCPD) in leavened cereal products is glycerol, which is formed as a natural by-product of yeast fermentation. However, yeast metabolism is affected by stresses such as low osmotic pressure from, for example, the incorporation of sugar or salt in the dough recipe. Tests with model doughs have shown that glycerol production was proportional to yeast mass and limited by available sugars, but that high levels of yeast inhibited 3-MCPD formation. The yeast fraction responsible for the inhibition of 3-MCPD in model dough was shown to be the soluble cytosol proteins, and the inhibition mechanism could be explained by the known reactions of 3-MCPD and/or its precursors with ammonia/amino acids (from yeast proteins). Added glucose did not increase the production of glycerol by yeast but it did promote the generation of 3-MCPD in cooked doughs. The latter effect was attributed to the removal of 3-MCPD inhibitors such as ammonia and amino acids by their reactions with added glucose (e.g. Maillard). The thermal generation of organic acids from added glucose also reduced the pH of cooked doughs, so the effect of pH and short-chain organic acids on 3-MCPD generation in dough was measured. There was a good correlation between initial dough pH and the level of 3-MCPD generated. The effect was weaker than that predicted by simple kinetic modelling, suggesting that the involvement of H+ and/or the organic acid was catalytic. The results showed that modifications to dough recipes involving the addition of reducing sugars and/or organic acids can have a significant impact on 3-MPCD generation in bakery products.
Samouda, Hanen; de Beaufort, Carine; Stranges, Saverio; Guinhouya, Benjamin C; Gilson, Georges; Hirsch, Marco; Jacobs, Julien; Leite, Sonia; Vaillant, Michel; Dadoun, Frédéric
2015-10-24
Paediatric research analysing the relationship between the easy-to-use anthropometric measures for adiposity and cardiometabolic risk factors remains highly controversial in youth. Several studies suggest that only body mass index (BMI), a measure of relative weight, constitutes an accurate predictor, whereas others highlight the potential role of waist-to-hip ratio (WHR), waist circumference (Waist C), and waist-to-height ratio (WHtR). In this study, we examined the effectiveness of adding anthropometric measures of body fat distribution (Waist C Z Score, WHR Z Score and/or WHtR) to BMI Z Score to predict cardiometabolic risk factors in overweight and obese youth. We also examined the consistency of these associations with the "total fat mass + trunk/legs fat mass" and/or the "total fat mass + trunk fat mass" combinations, as assessed by dual energy X-ray absorptiometry (DXA), the gold standard measurement of body composition. Anthropometric and DXA measurements of total and regional adiposity, as well as a comprehensive assessment of cardiometabolic, inflammatory and adipokines profiles were performed in 203 overweight and obese 7-17 year-old youths from the Paediatrics Clinic, Centre Hospitalier de Luxembourg. Adding only one anthropometric surrogate of regional fat to BMI Z Score improved the prediction of insulin resistance (WHR Z Score, R(2): 45.9%. Waist C Z Score, R(2): 45.5%), HDL-cholesterol (WHR Z Score, R(2): 9.6%. Waist C Z Score, R(2): 10.8%. WHtR, R(2): 6.5%), triglycerides (WHR Z Score, R(2): 11.7%. Waist C Z Score, R(2): 12.2%), adiponectin (WHR Z Score, R(2): 14.3%. Waist C Z Score, R(2): 17.7%), CRP (WHR Z Score, R(2): 18.2%. WHtR, R(2): 23.3%), systolic (WHtR, R(2): 22.4%), diastolic blood pressure (WHtR, R(2): 20%) and fibrinogen (WHtR, R(2): 21.8%). Moreover, WHR Z Score, Waist C Z Score and/or WHtR showed an independent significant contribution according to these models. These results were in line with the DXA findings. Adding anthropometric measures of regional adiposity to BMI Z Score improves the prediction of cardiometabolic, inflammatory and adipokines profiles in youth.
Free-Piston Stirling Convertor Controller Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Regan, Timothy
2004-01-01
The free-piston Stirling convertor end-to-end modeling effort at NASA Glenn Research Center (GRC) has produced a software-based test bed in which free-piston Stirling convertors can be simulated and evaluated. The simulation model includes all the components of the convertor - the Stirling cycle engine, linear alternator, controller, and load. This paper is concerned with controllers. It discusses three controllers that have been studied using this model. Case motion has been added to the model recently so that effects of differences between convertor components can be simulated and ameliorative control engineering techniques can be developed. One concern when applying a system comprised of interconnected mass-spring-damper components is to prevent operation in any but the intended mode. The design mode is the only desired mode of operation, but all other modes are considered in controller design.
Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2
NASA Astrophysics Data System (ADS)
Lorenzini, E. C.; Arnold, D. A.; Cosmo, M.; Grossi, M. D.
1986-10-01
The following topics related to the dynamics of the 4-mass tethered system are addressed: (1) the development of damping algorithms for damping the out-of-plane libration of the system and the interaction of the out-of-plane control with the other degrees of freedom; and (2) the development of environmental models to be added to the dynamics simulation computer code. The environmental models are specifically a new drag routine based on the Jacchia's 1977 model, a J(2) model and an accurate thermal model of the wire. Regarding topic (1) a survey of various out-of-plane libration control laws was carried out. Consequently a yo-yo control law with amplitude of the tether length variation proportional to the amplitude of the out-of-game libration has been selected. This control law provides good damping when applied to a (theoretical) two-dimensional system. In the actual 3-dimensional 4-mass tethered system, however, energy is transferred to the least damped degrees of freedom (the out-of-plane lateral deflections are still undamped in the present simulations) in such a way as to decrease the effectiveness of the algorithm for out-of-plane libration control. The addition of damping algorithms for the out-of-plane lateral deflections is therefore necessary.
Analytical investigation of the dynamics of tethered constellations in Earth orbit, phase 2
NASA Technical Reports Server (NTRS)
Lorenzini, E. C.; Arnold, D. A.; Cosmo, M.; Grossi, M. D.
1986-01-01
The following topics related to the dynamics of the 4-mass tethered system are addressed: (1) the development of damping algorithms for damping the out-of-plane libration of the system and the interaction of the out-of-plane control with the other degrees of freedom; and (2) the development of environmental models to be added to the dynamics simulation computer code. The environmental models are specifically a new drag routine based on the Jacchia's 1977 model, a J(2) model and an accurate thermal model of the wire. Regarding topic (1) a survey of various out-of-plane libration control laws was carried out. Consequently a yo-yo control law with amplitude of the tether length variation proportional to the amplitude of the out-of-game libration has been selected. This control law provides good damping when applied to a (theoretical) two-dimensional system. In the actual 3-dimensional 4-mass tethered system, however, energy is transferred to the least damped degrees of freedom (the out-of-plane lateral deflections are still undamped in the present simulations) in such a way as to decrease the effectiveness of the algorithm for out-of-plane libration control. The addition of damping algorithms for the out-of-plane lateral deflections is therefore necessary.
Mass Medication Clinic (MMC) Patient Medical Assistant (PMA) System Training Initiative
2007-06-01
AD_________________ Award Number: W81XWH-06-2-0045 TITLE: Mass Medication Clinic (MMC) Patient ...SUBTITLE 5a. CONTRACT NUMBER Mass Medication Clinic (MMC) Patient Medical Assistant (PMA) System Training Initiative 5b. GRANT NUMBER W81XWH-06-2...sections will describe the events, results, and accomplishments of this study. With validation through this project the Patient Medical Assistant
Predictors of sexual desire disorders in women.
Brotto, Lori A; Petkau, A John; Labrie, Fernand; Basson, Rosemary
2011-03-01
A historic belief was that testosterone was the "hormone of desire." However, recent data, which show either minimal or no significant correlation between testosterone levels and women's sexual desire, suggest that nonhormonal variables may play a key role. To compare women with hypoactive sexual desire disorder (HSDD) and those with the recently proposed more symptomatic desire disorder, Sexual Desire/Interest Disorder (SDID), on the relative contribution of hormonal vs. nonhormonal variables. Women with HSDD (N = 58, mean age 52.5) or SDID (N = 52, mean age 50.9) participated in a biopsychosocial assessment in which six nonhormonal domains were evaluated for the degree of involvement in the current low desire complaints. Participants provided a serum sample of hormones analyzed by gas chromatography-mass spectrometry or liquid chromatography/mass spectrometry/mass spectrometry. Logistic regression was used to assess the ability of variables (nonhormonal: history of sexual abuse, developmental history, psychosexual history, psychiatric status, medical history, and sexual/relationship-related factors; hormonal: dehydroepiandrosterone [DHEA], 5-diol, 4-dione, testosterone, 5-α-dihydrotestosterone, androsterone glucuronide, 3α-diol-3G, 3α-diol-17G, and DHEA-S; and demographic: age, relationship length) to predict group membership. Women with SDID had significantly lower sexual desire and arousal scores, but the groups did not differ on relationship satisfaction or mood. Addition of the hormonal variables to the two demographic variables (age, relationship length) did not significantly increase predictive capability. However, the addition of the six nonhormonal variables to these two sets of predictors significantly increased ability to predict group status. Developmental history, psychiatric history, and psychosexual history added significantly to the predictive capability provided by the basic model when examined individually. Nonhormonal variables added significant predictive capability to the basic model, highlighting the importance of their assessment clinically where women commonly have SDID in addition to HSDD, and emphasizing the importance of addressing psychological factors in treatment. © 2010 International Society for Sexual Medicine.
Connecting optical and X-ray tracers of galaxy cluster relaxation
NASA Astrophysics Data System (ADS)
Roberts, Ian D.; Parker, Laura C.; Hlavacek-Larrondo, Julie
2018-04-01
Substantial effort has been devoted in determining the ideal proxy for quantifying the morphology of the hot intracluster medium in clusters of galaxies. These proxies, based on X-ray emission, typically require expensive, high-quality X-ray observations making them difficult to apply to large surveys of groups and clusters. Here, we compare optical relaxation proxies with X-ray asymmetries and centroid shifts for a sample of Sloan Digital Sky Survey clusters with high-quality, archival X-ray data from Chandra and XMM-Newton. The three optical relaxation measures considered are the shape of the member-galaxy projected velocity distribution - measured by the Anderson-Darling (AD) statistic, the stellar mass gap between the most-massive and second-most-massive cluster galaxy, and the offset between the most-massive galaxy (MMG) position and the luminosity-weighted cluster centre. The AD statistic and stellar mass gap correlate significantly with X-ray relaxation proxies, with the AD statistic being the stronger correlator. Conversely, we find no evidence for a correlation between X-ray asymmetry or centroid shift and the MMG offset. High-mass clusters (Mhalo > 1014.5 M⊙) in this sample have X-ray asymmetries, centroid shifts, and Anderson-Darling statistics which are systematically larger than for low-mass systems. Finally, considering the dichotomy of Gaussian and non-Gaussian clusters (measured by the AD test), we show that the probability of being a non-Gaussian cluster correlates significantly with X-ray asymmetry but only shows a marginal correlation with centroid shift. These results confirm the shape of the radial velocity distribution as a useful proxy for cluster relaxation, which can then be applied to large redshift surveys lacking extensive X-ray coverage.
San-Valero, Pau; Dorado, Antonio D; Quijano, Guillermo; Álvarez-Hornos, F Javier; Gabaldón, Carmen
2018-01-01
A dynamic model describing styrene abatement was developed for a two-phase partitioning bioreactor operated as a biotrickling filter (TPPB-BTF). The model was built as a coupled set of two different systems of partial differential equations depending on whether an irrigation or a non-irrigation period was simulated. The maximum growth rate was previously calibrated from a conventional BTF treating styrene (Part 1). The model was extended to simulate the TPPB-BTF based on the hypothesis that the main change associated with the non-aqueous phase is the modification of the pollutant properties in the liquid phase. The three phases considered were gas, a water-silicone liquid mixture, and biofilm. The selected calibration parameters were related to the physical properties of styrene: Henry's law constant, diffusivity, and the gas-liquid mass transfer coefficient. A sensitivity analysis revealed that Henry's law constant was the most sensitive parameter. The model was successfully calibrated with a goodness of fit of 0.94. It satisfactorily simulated the performance of the TPPB-BTF at styrene loads ranging from 13 to 77 g C m -3 h -1 and empty bed residence times of 30-15 s with the mass transfer enhanced by a factor of 1.6. The model was validated with data obtained in a TPPB-BTF removing styrene continuously. The experimental outlet emissions associated to oscillating inlet concentrations were satisfactorily predicted by using the calibrated parameters. Model simulations demonstrated the potential improvement of the mass-transfer performance of a conventional BTF degrading styrene by adding silicone oil. Copyright © 2017 Elsevier Ltd. All rights reserved.
Asymptotically spacelike warped anti-de Sitter spacetimes in generalized minimal massive gravity
NASA Astrophysics Data System (ADS)
Setare, M. R.; Adami, H.
2017-06-01
In this paper we show that warped AdS3 black hole spacetime is a solution of the generalized minimal massive gravity (GMMG) and introduce suitable boundary conditions for asymptotically warped AdS3 spacetimes. Then we find the Killing vector fields such that transformations generated by them preserve the considered boundary conditions. We calculate the conserved charges which correspond to the obtained Killing vector fields and show that the algebra of the asymptotic conserved charges is given as the semi direct product of the Virasoro algebra with U(1) current algebra. We use a particular Sugawara construction to reconstruct the conformal algebra. Thus, we are allowed to use the Cardy formula to calculate the entropy of the warped black hole. We demonstrate that the gravitational entropy of the warped black hole exactly coincides with what we obtain via Cardy’s formula. As we expect, the warped Cardy formula also gives us exactly the same result as we obtain from the usual Cardy’s formula. We calculate mass and angular momentum of the warped black hole and then check that obtained mass, angular momentum and entropy to satisfy the first law of the black hole mechanics. According to the results of this paper we believe that the dual theory of the warped AdS3 black hole solution of GMMG is a warped CFT.
Explaining the 3.5 keV X-ray line in a Lμ‑Lτ extension of the inert doublet model
NASA Astrophysics Data System (ADS)
Biswas, Anirban; Choubey, Sandhya; Covi, Laura; Khan, Sarif
2018-02-01
We explain the existence of neutrino masses and their flavour structure, dark matter relic abundance and the observed 3.5 keV X-ray line within the framework of a gauged U(1)Lμ ‑ Lτ extension of the "scotogenic" model. In the U(1)Lμ ‑ Lτ symmetric limit, two of the RH neutrinos are degenerate in mass, while the third is heavier. The U(1)Lμ ‑ Lτ symmetry is broken spontaneously. Firstly, this breaks the μ‑τ symmetry in the light neutrino sector. Secondly, this results in mild splitting of the two degenerate RH neutrinos, with their mass difference given in terms of the U(1)Lμ ‑ Lτ breaking parameter. Finally, we get a massive Zμτ gauge boson. Due to the added Z2 symmetry under which the RH neutrinos and the inert doublet are odd, the canonical Type-I seesaw is forbidden and the tiny neutrino masses are generated radiatively at one loop. The same Z2 symmetry also ensures that the lightest RH neutrino is stable and the other two can only decay into the lightest one. This makes the two nearly-degenerate lighter neutrinos a two-component dark matter, which in our model are produced by the freeze-in mechanism via the decay of the Zμτ gauge boson in the early universe. We show that the next-to-lightest RH neutrino has a very long lifetime and decays into the lightest one at the present epoch explaining the observed 3.5 keV line.
Physical activity, diet, and risk of Alzheimer disease.
Scarmeas, Nikolaos; Luchsinger, Jose A; Schupf, Nicole; Brickman, Adam M; Cosentino, Stephanie; Tang, Ming X; Stern, Yaakov
2009-08-12
Both higher adherence to a Mediterranean-type diet and more physical activity have been independently associated with lower Alzheimer disease (AD) risk but their combined association has not been investigated. To investigate the combined association of diet and physical activity with AD risk. Prospective cohort study of 2 cohorts comprising 1880 community-dwelling elders without dementia living in New York, New York, with both diet and physical activity information available. Standardized neurological and neuropsychological measures were administered approximately every 1.5 years from 1992 through 2006. Adherence to a Mediterranean-type diet (scale of 0-9; trichotomized into low, middle, or high; and dichotomized into low or high) and physical activity (sum of weekly participation in various physical activities, weighted by the type of physical activity [light, moderate, vigorous]; trichotomized into no physical activity, some, or much; and dichotomized into low or high), separately and combined, were the main predictors in Cox models. Models were adjusted for cohort, age, sex, ethnicity, education, apolipoprotein E genotype, caloric intake, body mass index, smoking status, depression, leisure activities, a comorbidity index, and baseline Clinical Dementia Rating score. Time to incident AD. A total of 282 incident AD cases occurred during a mean (SD) of 5.4 (3.3) years of follow-up. When considered simultaneously, both Mediterranean-type diet adherence (compared with low diet score, hazard ratio [HR] for middle diet score was 0.98 [95% confidence interval {CI}, 0.72-1.33]; the HR for high diet score was 0.60 [95% CI, 0.42-0.87]; P = .008 for trend) and physical activity (compared with no physical activity, the HR for some physical activity was 0.75 [95% CI, 0.54-1.04]; the HR for much physical activity was 0.67 [95% CI, 0.47-0.95]; P = .03 for trend) were associated with lower AD risk. Compared with individuals neither adhering to the diet nor participating in physical activity (low diet score and no physical activity; absolute AD risk of 19%), those both adhering to the diet and participating in physical activity (high diet score and high physical activity) had a lower risk of AD (absolute risk, 12%; HR, 0.65 [95% CI, 0.44-0.96]; P = .03 for trend). In this study, both higher Mediterranean-type diet adherence and higher physical activity were independently associated with reduced risk for AD.
Katabatic winds diminish precipitation contribution to the Antarctic ice mass balance.
Grazioli, Jacopo; Madeleine, Jean-Baptiste; Gallée, Hubert; Forbes, Richard M; Genthon, Christophe; Krinner, Gerhard; Berne, Alexis
2017-10-10
Snowfall in Antarctica is a key term of the ice sheet mass budget that influences the sea level at global scale. Over the continental margins, persistent katabatic winds blow all year long and supply the lower troposphere with unsaturated air. We show that this dry air leads to significant low-level sublimation of snowfall. We found using unprecedented data collected over 1 year on the coast of Adélie Land and simulations from different atmospheric models that low-level sublimation accounts for a 17% reduction of total snowfall over the continent and up to 35% on the margins of East Antarctica, significantly affecting satellite-based estimations close to the ground. Our findings suggest that, as climate warming progresses, this process will be enhanced and will limit expected precipitation increases at the ground level.
Katabatic winds diminish precipitation contribution to the Antarctic ice mass balance
Grazioli, Jacopo; Madeleine, Jean-Baptiste; Gallée, Hubert; Forbes, Richard M.; Genthon, Christophe; Krinner, Gerhard; Berne, Alexis
2017-01-01
Snowfall in Antarctica is a key term of the ice sheet mass budget that influences the sea level at global scale. Over the continental margins, persistent katabatic winds blow all year long and supply the lower troposphere with unsaturated air. We show that this dry air leads to significant low-level sublimation of snowfall. We found using unprecedented data collected over 1 year on the coast of Adélie Land and simulations from different atmospheric models that low-level sublimation accounts for a 17% reduction of total snowfall over the continent and up to 35% on the margins of East Antarctica, significantly affecting satellite-based estimations close to the ground. Our findings suggest that, as climate warming progresses, this process will be enhanced and will limit expected precipitation increases at the ground level. PMID:28973875
Patel, Ayush; Chan, Wenyaw; Aparasu, Rajender R; Ochoa-Perez, Melissa; Sherer, Jeff T; Medhekar, Rohan; Chen, Hua
2017-05-01
To assess the long-term effect of all treatment options for pediatric bipolar disorders on body mass index (BMI) and to explore individual characteristics associated with less BMI increase during psychotropic medication exposures. A retrospective cohort study was conducted by using the 1995 to 2010 General Electric Electronic Medical Record database. Individuals aged 18 years or younger who had a new bipolar disorder episode were identified. Treatment exposure was defined based on the medication regimens patients received, which include atypical antipsychotic (AT) monotherapy, mood stabilizer (MS) monotherapy, antidepressant (AD) monotherapy, AT+MS polytherapy, AT+AD polytherapy, MS+AD polytherapy, and no treatment. Both treatment exposure and BMI were coded as time varying, which could change from month to month. According to the duration of treatment and the availability of BMI measures, individuals were followed for up to 3, 6, 9, and 12 months since the treatment initiation. Repeated-measures mixed models were applied to compare the impact of different medication regimens and the length of drug exposure on BMI after adjusting for the baseline BMI, sociodemographic factors, comorbidities, and psychotherapy. A total of 2299 treated and 4544 untreated children and adolescents who met the inclusion criteria were identified. Analysis using repeated-measures mixed models showed that those on AT monotherapy (the reference group) had a gradually diminished, but statistically significant, monthly increase in BMI during all durations of drug exposure (3 months: 0.36 kg/m 2 , 6 months: 0.20 kg/m 2 , 9 months: 0.17 kg/m 2 , and 12 months: 0.16 kg/m 2 ). As compared with AT monotherapy, the magnitude of increase in BMI associated with MS, AD monotherapy, and no treatment was significantly less at all time points, indicating less steep slopes of BMI change over time compared with AT monotherapy, especially during the short-term exposure. The combinations of AT with other psychotropic medications (ATMS, ATAD) were associated with a similar BMI increase as AT monotherapy. Individual characteristics found to be associated with a less increase in BMI during psychotropic medication exposure were being younger and having a higher baseline BMI. The long-term use of atypical antipsychotics, both as monotherapy or in combination with other psychotropic medications in children and adolescents with bipolar disorder, was associated with a steady and cumulative increase in BMI.
The study of structure in 224-234 thorium nuclei within the framework IBM
NASA Astrophysics Data System (ADS)
Lee, Su Youn; Lee, Young Jun; Lee, J. H.
2017-09-01
An investigation has been made of the behaviour of nuclear structure as a function of an increase in neutron number from 224Th to 234Th. Thorium of mass number 234 is a typical rotor nucleus that can be explained by the SU(3) limit of the interacting boson model(IBM) in the algebraic nuclear model. Furthermore, 224-232Th lie on the path of the symmetry-breaking phase transition. Moreover, the nuclear structure of 224Th can be explained using X(5) symmetry. However, as 226-230Th nuclei are not fully symmetrical nuclei, they can be represented by adding a perturbed term to express symmetry breaking. Through the following three calculation steps, we identified the tendency of change in nuclear structure. Firstly, the structure of 232Th is described using the matrix elements of the Hamiltonian and the electric quadrupole operator between basis states of the SU(3) limit in IBM. Secondly, the low-lying energy levels and E2 transition ratios corresponding to the observable physical values are calculated by adding a perturbed term with the first-order Casimir operator of the U(5) limit to the SU(3) Hamiltonian in IBM. We compared the results with experimental data of 224-234Th. Lastly, the potential of the Bohr Hamiltonian is represented by a harmonic oscillator, as a result of which the structure of 224-234Th could be expressed in closed form by an approximate separation of variables. The results of these theoretical predictions clarify nuclear structure changes in Thorium nuclei over mass numbers of practical significance.
Fakherpour, Atousa; Ghaem, Haleh; Fattahi, Zeinabsadat; Zaree, Samaneh
2018-01-01
Although spinal anaesthesia (SA) is nowadays the preferred anaesthesia technique for caesarean section (CS), it is associated with considerable haemodynamic effects, such as maternal hypotension. This study aimed to evaluate a wide range of variables (related to parturient and anaesthesia techniques) associated with the incidence of different degrees of SA-induced hypotension during elective CS. This prospective study was conducted on 511 mother-infant pairs, in which the mother underwent elective CS under SA. The data were collected through preset proforma containing three parts related to the parturient, anaesthetic techniques and a table for recording maternal blood pressure. It was hypothesized that some maternal (such as age) and anaesthesia-related risk factors (such as block height) were associated with occurance of SA-induced hypotension during elective CS. The incidence of mild, moderate and severe hypotension was 20%, 35% and 40%, respectively. Eventually, ten risk factors were found to be associated with hypotension, including age >35 years, body mass index ≥25 kg/m 2 , 11-20 kg weight gain, gravidity ≥4, history of hypotension, baseline systolic blood pressure (SBP) <120 mmHg and baseline heart rate >100 beats/min in maternal modelling, fluid preloading ≥1000 ml, adding sufentanil to bupivacaine and sensory block height >T 4 in anaesthesia-related modelling ( P < 0.05). Age, body mass index, weight gain, gravidity, history of hypotension, baseline SBP and heart rate, fluid preloading, adding sufentanil to bupivacaine and sensory block hieght were the main risk factors identified in the study for SA-induced hypotension during CS.
Keary, Colin M; Sheskey, Paul J
2004-09-01
Spray granulation is commonly used to improve the flow of drug formulation powders by adding liquid binders. We have discovered a new granulation process whereby liquid binders are added as aqueous foam. Initial experiments indicate that foam granulations require less binder than spray granulations, less water is added to the powder mass, rates of addition of foam can be greater than rates of addition of sprayed liquids, and foam can be added in a single batch to the surface of the powder mass for incorporation at some later stage in the process. This new process appears to have no detrimental effects on granulate, tablet, or in vitro drug dissolution properties. In addition, the elimination of spray addition reduces the complexity of the process and avoids the plugging problems associated with spray nozzles. Several formulations were successfully scaled up from laboratory scale (1.5 kg) to pilot scale (15 kg). Process control was good and there was no detrimental effect on tablet and drug dissolution properties. This paper also proposes a working hypothesis of the mechanism by which foam granulation operates.
The mass distribution and gravitational potential of the Milky Way
NASA Astrophysics Data System (ADS)
McMillan, Paul J.
2017-02-01
We present mass models of the Milky Way created to fit observational constraints and to be consistent with expectations from theoretical modelling. The method used to create these models is that demonstrated in our previous study, and we improve on those models by adding gas discs to the potential, considering the effects of allowing the inner slope of the halo density profile to vary, and including new observations of maser sources in the Milky Way amongst the new constraints. We provide a best-fitting model, as well as estimates of the properties of the Milky Way. Under the assumptions in our main model, we find that the Sun is R0 = 8.20 ± 0.09 kpc from the Galactic Centre, with the circular speed at the Sun being v0 = 232.8 ± 3.0 km s-1; and that the Galaxy has a total stellar mass of (54.3 ± 5.7) × 109 M⊙, a total virial mass of (1.30 ± 0.30) × 1012 M⊙ and a local dark-matter density of 0.40 ± 0.04 GeV cm-3, where the quoted uncertainties are statistical. These values are sensitive to our choice of priors and constraints. We investigate systematic uncertainties, which in some cases may be larger. For example, if we weaken our prior on R0, we find it to be 7.97 ± 0.15 kpc and that v0 = 226.8 ± 4.2 km s-1. We find that most of these properties, including the local dark-matter density, are remarkably insensitive to the assumed power-law density slope at the centre of the dark-matter halo. We find that it is unlikely that the local standard of rest differs significantly from that found under assumptions of axisymmetry. We have made code to compute the force from our potential, and to integrate orbits within it, publicly available.
Gahete, Manuel D.; Córdoba-Chacón, José; Luque, Raúl M.
2013-01-01
In mice, GH levels rise in response to short-term fasting or starvation (food restriction to 40% of ad libitum intake), similar to that which occurs in humans in response to fasting or anorexia. Recent studies using acyl-ghrelin knockout mice have suggested that the rise in GH during food restriction is essential to support glucose levels. To directly test this hypothesis, adult-onset isolated GH deficient (AOiGHD) mice and their GH-replete littermate controls were provided 40% of ad libitum food intake for 11 d. As previously shown, food restriction increased GH levels in controls, and this response was not observed in AOiGHD mice. In both controls and AOiGHD, food restriction resulted in an initial decline in glucose, which stabilized to 82–85% of ad libitum-fed values by d 2. In addition, loss of lean mass in response to food restriction was not altered by GH status. However, the loss of fat mass and the associated rise in circulating free fatty acids and ketones was blunted in starved AOiGHD mice compared with controls. Taken together, these results suggest a rise of GH during starvation is not required to support glucose levels and muscle mass but may be important in supporting fat mobilization. PMID:23150490
Hangai, Yoshihiko; Utsunomiya, Takao; Kuwazuru, Osamu; Kitahara, Soichiro; Yoshikawa, Nobuhiro
2015-01-01
Recently, to further improve the performance of aluminum foam, functionally graded (FG) aluminum foams, whose pore structure varies with their position, have been developed. In this study, three types of FG aluminum foam of aluminum alloy die casting ADC12 with combinations of two different amounts of added blowing agent titanium(II) hydride (TiH2) powder were fabricated by a friction stir welding (FSW) route precursor foaming method. The combinations of 1.0–0 mass %, 0.4–0 mass %, and 0.2–0 mass % TiH2 were selected as the amounts of TiH2 relative to the mass of the volume stirred by FSW. The static compression tests of the fabricated FG aluminum foams were carried out. The deformation and fracture of FG aluminum foams fundamentally started in the high-porosity (with TiH2 addition) layer and shifted to the low-porosity (without TiH2 addition) layer. The first and second plateau regions in the relationship between compressive stress and strain independently appeared with the occurrence of deformations and fractures in the high- and low-porosity layers. It was shown that FG aluminum foams, whose plateau region varies in steps by the combination of amounts of added TiH2 (i.e., the combination of pore structures), can be fabricated. PMID:28793626
Kilbourne, Brandon M; Carrier, David R
2016-12-01
While the mass distribution of limbs is known to influence the metabolic energy consumed during locomotion, it remains unknown how the mass distribution of limbs may influence overall limb kinematics and whether the influence of limb mass distribution on limb kinematics differs between fore- and hindlimbs. To examine limb mass distribution's influence upon fore- and hindlimb kinematics, temporal stride parameters and swing phase joint kinematics were recorded from four dogs trotting on a treadmill with 0.5% and 1.0% body mass added to each limb, forelimbs alone, and hindlimbs alone, as well as with no added mass. Under all loading conditions, stride period did not differ between fore- and hindlimbs; however, forelimbs exhibited greater duty factors and stance durations, whereas hindlimbs exhibited greater swing durations, which may be related to the hindlimb's greater mass. Changes in forelimb joint and hip range of motion (RoM), flexion, and extension were subject to a high amount of kinematic plasticity among dogs. In contrast, for the knee and ankle, distally loading all four limbs or hindlimbs alone substantially increased joint RoM and flexion. Increased flexion of the knee and ankle has the potential to reduce the hindlimb's rotational inertia during swing phase. The differing response of fore- and hindlimbs with regard to joint kinematics is likely due to differences in their mass and mass distribution and differences in the physiological traits of fore- and hindlimb protractors and joint flexors. © 2017 Wiley Periodicals, Inc.
Solving puzzles of GW150914 by primordial black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blinnikov, S.; Dolgov, A.; Porayko, N.K.
The black hole binary properties inferred from the LIGO gravitational wave signal GW150914 posed several serious problems. The high masses and low effective spin of black hole binary can be explained if they are primordial (PBH) rather than the products of the stellar binary evolution. Such PBH properties are postulated ad hoc but not derived from fundamental theory. We show that the necessary features of PBHs naturally follow from the slightly modified Affleck-Dine (AD) mechanism of baryogenesis. The log-normal distribution of PBHs, predicted within the AD paradigm, is adjusted to provide an abundant population of low-spin stellar mass black holes.more » The same distribution gives a sufficient number of quickly growing seeds of supermassive black holes observed at high redshifts and may comprise an appreciable fraction of Dark Matter which does not contradict any existing observational limits. Testable predictions of this scenario are discussed.« less
Degenerate stars and gravitational collapse in AdS/CFT
NASA Astrophysics Data System (ADS)
Arsiwalla, Xerxes; de Boer, Jan; Papadodimas, Kyriakos; Verlinde, Erik
2011-01-01
We construct composite CFT operators from a large number of fermionic primary fields corresponding to states that are holographically dual to a zero temperature Fermi gas in AdS space. We identify a large N regime in which the fermions behave as free particles. In the hydrodynamic limit the Fermi gas forms a degenerate star with a radius determined by the Fermi level, and a mass and angular momentum that exactly matches the boundary calculations. Next we consider an interacting regime, and calculate the effect of the gravitational back-reaction on the radius and the mass of the star using the Tolman-Oppenheimer-Volkoff equations. Ignoring other interactions, we determine the "Chandrasekhar limit" beyond which the degenerate star (presumably) undergoes gravitational collapse towards a black hole. This is interpreted on the boundary as a high density phase transition from a cold baryonic phase to a hot deconfined phase.
Ksiezak-Reding, H.; Tracz, E.; Yang, L. S.; Dickson, D. W.; Simon, M.; Wall, J. S.
1996-01-01
Paired helical filaments (PHFs) accumulate in the brains of subjects affected with Alzheimer's disease (AD) and certain other neurodegenerative disorders, including corticobasal degeneration (CBD). Electron microscope studies have shown that PHFs from CBD differ from those of AD by being wider and having a longer periodicity of the helical twist. Moreover, PHFs from CBD have been shown to be primarily composed of two rather than three highly phosphorylated polypeptides of tau (PHF-tau), with these polypeptides expressing no exons 3 and 10. To further explore the relationship between the heterogeneity of PHF-tau and the appearance of abnormal filaments, the ultrastructure and physical parameters such as mass per unit length and dimensions were compared in filaments from CBD and AD using high resolution scanning transmission electron microscopy (STEM). Filament-enriched fractions were isolated as Sarcosyl-insoluble pellets and for STEM studies, samples were freeze-dried without prior fixation or staining. Ultrastructurally, PHFs from CBD were shown to be a heterogeneous population as double- and single-stranded filaments could be identified based on their width and physical mass per unit length expressed in kilodaltons (kd) per nanometer (nm). Less abundant, double-stranded filaments had a maximal width of 29 nm and a mass per unit length of 133 kd/nm, whereas three times more abundant single-stranded filaments were 15 nm wide and bad a mass per unit length of 62 kd/nm. Double-stranded filaments also displayed a distinct axial region of less dense mass, which appeared to divide the PHFs into two protofilament-like strands. Furthermore, these filaments were frequently observed to physically separate along the long axis into two single strands or to break longitudinally. In contrast, PHFs from AD were ultrastructurally stable and uniform both in their width (22 nm) and physical mass per unit length (104 kd/nm). The ultrastructural features indicate that filaments of CBD and AD differ both in stability and packing of tau and that CBD filaments, composed of two distinct protofilaments, are more labile under STEM conditions. As fixed and stained filaments from CBD have been shown to be stable and uniform in size by conventional transmission electron microscopy, STEM studies may be particularly suitable for detecting instability of unstained and unfixed filaments. The results also suggest that molecular heterogeneity and/or post-translational modifications of tau may strongly influence the morphology and stability of abnormal filaments. Images Figure 1 Figure 2 Figure 3 PMID:8702002
Krizova, Iva; Schultz, Julia; Nemec, Ivan; Cabala, Radomir; Hynek, Radovan; Kuckova, Stepanka
2018-01-01
Natural organic additives such as eggs, lard, resins, and oils have been added to mortars since ancient times, because the ancient builders knew of their positive effect on the mortar quality. The tradition of adding organic materials to mortars was commonly handed down only verbally for thousands years. However, this practice disappeared in the nineteenth century, when the usage of modern materials started. Today, one of the most recent topics in the industry of building materials is the reusing of natural organic materials and searching for the forgotten ancient recipes. The research of the old technological approaches involves currently the most advanced analytical techniques and methods. This paper is focussed on testing the possibility of identification of proteinaceous additives in historical mortars and model mortar samples containing blood, bone glue, curd, eggs and gelatine, by Fourier transform infrared (FTIR) and Raman spectroscopy, gas chromatography - mass spectrometry (GC-MS), matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS), liquid chromatography-electrospray ionisation-quadrupole-time of flight mass spectrometry (LC-ESI-Q-TOF MS) and enzyme-linked immunosorbent assay (ELISA). All these methods were applied to the mortar sample taken from the interior of the medieval (sixteenth century) castle in Namest nad Oslavou in the Czech Republic and their comparison contributed to the rough estimation of the protein additive content in the mortar. The obtained results demonstrate that only LC-ESI-Q-TOF MS, MALDI-TOF MS and ELISA have the sufficiently low detection limits that enable the reliable identification of collagens in historical mortars. Graphical abstract Proteomics analyses of historical mortars.
NASA Astrophysics Data System (ADS)
Mohd Yusof, Mohd Fahmi; Hamid, Puteri Nor Khatijah Abdul; Bauk, Sabar; Hashim, Rokiah; Tajuddin, Abdul Aziz
2015-04-01
The Rhizophora spp. particleboards were fabricated using ≤ 104 µm particle size at three different fabrication methods; binderless, steam pre-treated and tannin-added. The mass attenuation coefficient of Rhizophora spp. particleboards were measured using x-ray fluorescent (XRF) photon from niobium, molybdenum, palladium, silver and tin metal plates that provided photon energy between 16.59 to 25.26 keV. The results were compared to theoretical values for water calculated using photon cross-section database (XCOM).The results showed that all Rhizophora spp. particleboards having mass attenuation coefficient close to calculated XCOM for water. Tannin-added Rizophora spp. particleboard was nearest to calculated XCOM for water with χ2 value of 13.008 followed by binderless Rizophora spp. (25.859) and pre-treated Rizophora spp. (91.941).
Environmentally selected WIMP dark matter with high-scale supersymmetry breaking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elor, Gilly; Goh, Hock-Seng; Kumar, Piyush
2010-05-01
We explore the possibility that both the weak scale and the thermal relic dark matter abundance are environmentally selected in a multiverse. An underlying supersymmetric theory containing the states of the minimal supersymmetric standard model (MSSM) and singlets, with supersymmetry and R symmetry broken at unified scales, has just two realistic low-energy effective theories. One theory (SM+w-tilde) is the standard model augmented only by the wino, having a mass near 3 TeV, and has a Higgs boson mass in the range of (127-142) GeV. The other theory (SM+h-tilde/s-tilde) has Higgsinos and a singlino added to the standard model. The Higgsmore » boson mass depends on the single new Yukawa coupling of the theory, y, and is near 141 GeV for small y but grows to be as large as 210 GeV as this new coupling approaches strong coupling at high energies. Much of the parameter space of this theory will be probed by direct detection searches for dark matter that push 2 orders of magnitude below the present bounds; furthermore, the dark matter mass and cross section on nucleons are correlated with the Higgs boson mass. The indirect detection signal of monochromatic photons from the Galactic center is computed, and the range of parameters that may be accessible to LHC searches for trilepton events is explored. Taking a broader view, allowing the possibility of R symmetry protection to the TeV scale or axion dark matter, we find four more theories: (SM+axion), two versions of split supersymmetry, and the E-MSSM, where a little supersymmetric hierarchy is predicted. The special Higgs mass value of (141{+-}2) GeV appears in symmetry limits of three of the six theories, (SM+axion), (SM+w-tilde), and (SM+h-tilde/s-tilde), motivating a comparison of other signals of these three theories.« less
Sedimentary earthquake records in the İzmit Gulf, Sea of Marmara, Turkey
NASA Astrophysics Data System (ADS)
Çağatay, M. N.; Erel, L.; Bellucci, L. G.; Polonia, A.; Gasperini, L.; Eriş, K. K.; Sancar, Ü.; Biltekin, D.; Uçarkuş, G.; Ülgen, U. B.; Damcı, E.
2012-12-01
Sedimentary earthquake records of the last 2400 a, including that of the devastating 17 August 1999 İzmit earthquake (Mw = 7.4), were studied in cores from the 210 m-deep central Karamürsel Basin of the İzmit Gulf in the eastern Sea of Marmara, using laser grain-size, physical properties, stable O and C isotopes and XRF Core Scanner analyses, and dated by radionuclide and radiocarbon methods. The earthquake records are represented by turbidite-homogenite mass-flow units (THU) that commonly contain a basal coarse layer, a middle laminated silt layer and an overlying homogeneous mud layer. The coarse basal part has a sharp and sometimes scoured lower boundary, and includes multiple coarse (sand/silt) layers or laminae showing normal size grading. Multiple coarse layers and occasional bi-directional cross-bedding suggest deposition from a bed-load during water column oscillations, or seiche effect. The grain-size characteristics of the overlaying laminated silt and the homogeneous mud units indicate deposition from weak oscillating currents and homogeneous suspension, respectively. High Mn value just below the base of THUs suggests diagenetic enrichment at oxic/anoxic redox boundary before the mass-flow event. Sharp decrease in Mn with very low values within the THUs suggests transient redox conditions following the mass-flow. Variable geochemical compositions of the basal coarse layers indicate different sediment sources for different THUs. Eight sedimentary earthquake records observed in the last 2400 a in the İzmit Gulf can be confidently correlated with the historical earthquakes of 1999, 1509 AD (Ms = 7.2), 1296 AD (I = VII), 865 AD (I = VIII), 740 AD (I = VIII), 268 AD (I = VIII), 358 AD (I = IX), and 427 BC. This gives an earthquake recurrence time of ca. 300 a, with the interval between consecutive events ranging from 90 to 695 a.
School system evaluation by value added analysis under endogeneity.
Manzi, Jorge; San Martín, Ernesto; Van Bellegem, Sébastien
2014-01-01
Value added is a common tool in educational research on effectiveness. It is often modeled as a (prediction of a) random effect in a specific hierarchical linear model. This paper shows that this modeling strategy is not valid when endogeneity is present. Endogeneity stems, for instance, from a correlation between the random effect in the hierarchical model and some of its covariates. This paper shows that this phenomenon is far from exceptional and can even be a generic problem when the covariates contain the prior score attainments, a typical situation in value added modeling. Starting from a general, model-free definition of value added, the paper derives an explicit expression of the value added in an endogeneous hierarchical linear Gaussian model. Inference on value added is proposed using an instrumental variable approach. The impact of endogeneity on the value added and the estimated value added is calculated accurately. This is also illustrated on a large data set of individual scores of about 200,000 students in Chile.
Partition functions with spin in AdS2 via quasinormal mode methods
Keeler, Cynthia; Lisbão, Pedro; Ng, Gim Seng
2016-10-12
We extend the results of [1], computing one loop partition functions for massive fields with spin half in AdS 2 using the quasinormal mode method proposed by Denef, Hartnoll, and Sachdev [2]. We find the finite representations of SO(2,1) for spin zero and spin half, consisting of a highest weight state |hi and descendants with non-unitary values of h. These finite representations capture the poles and zeroes of the one loop determinants. Together with the asymptotic behavior of the partition functions (which can be easily computed using a large mass heat kernel expansion), these are sufficient to determine the fullmore » answer for the one loop determinants. We also discuss extensions to higher dimensional AdS 2n and higher spins.« less
Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.
2012-02-16
Light-Front Holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations it provides important physical insights into the nonperturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z inmore » AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions, and thus the fall-off as a function of the invariant mass of the constituents. The soft-wall holographic model modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics - a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions {Psi}{sub n/H} (x{sub i}, k{sub {perpendicular}i}, {lambda}{sub i}) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark and gluon level, such as elastic and transition form factors, distribution amplitudes, structure functions, generalized parton distributions and transverse momentum distributions. The effective confining potential also creates quark-antiquark pairs from the amplitude q {yields} q{bar q}q. Thus in holographic QCD higher Fock states can have any number of extra q{bar q} pairs. We discuss the relevance of higher Fock-states for describing the detailed structure of space and time-like form factors. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also obtained.« less
Restoring Redundancy to the Wilkinson Microwave Anisotrophy Probe Propulsion System
NASA Technical Reports Server (NTRS)
O'Donnell, James R., Jr.; Davis, Gary T.; Ward, David K.
2004-01-01
The Wilkinson Microwave Anisotropy Probe is a follow-on to the Differential Microwave Radiometer instrument on the Cosmic Background Explorer. Attitude control system engineers discovered sixteen months before launch that configuration changes after the critical design review had resulted in a significant migration of the spacecraft's center of mass. As a result, the spacecraft no longer had a viable backup control mode in the event of a failure of the negative pitch-axis thruster. A tiger team was formed and identified potential solutions to this problem, such as adding thruster-plume shields to redirect thruster torque, adding or removing mass from the spacecraft, adding an additional thruster, moving thrusters, bending thruster nozzles or propellant tubing, or accepting the loss of redundancy. The project considered the impacts on mass, cost, fuel budget, and schedule for each solution, and decided to bend the propellant tubing of the two roll-control thrusters to allow the pair to be used for backup control in the negative pitch axis. This paper discusses the problem and the potential solutions, and documents the hardware and software changes and verification performed. Flight data are presented to show the on-orbit performance of the propulsion system and lessons learned are described.
Mass selectivity of dipolar resonant excitation in a linear quadrupole ion trap.
Douglas, D J; Konenkov, N V
2014-03-15
For mass analysis, linear quadrupole ion traps operate with dipolar excitation of ions for either axial or radial ejection. There have been comparatively few computer simulations of this process. We introduce a new concept, the excitation contour, S(q), the fraction of the excited ions that reach the trap electrodes when trapped at q values near that corresponding to the excitation frequency. Ion trajectory calculations are used to calculate S(q). Ions are given Gaussian distributions of initial positions in x and y, and thermal initial velocity distributions. To model gas damping, a drag force is added to the equations of motion. The effects of the initial conditions, ejection Mathieu parameter q, scan speed, excitation voltage and collisional damping, are modeled. We find that, with no buffer gas, the mass resolution is mostly determined by the excitation time and is given by R~dβ/dq qn, where β(q) determines the oscillation frequency, and n is the number of cycles of the trapping radio frequency during the excitation or ejection time. The highest resolution at a given scan speed is reached with the lowest excitation amplitude that gives ejection. The addition of a buffer gas can increase the mass resolution. The simulation results are in broad agreement with experiments. The excitation contour, S(q), introduced here, is a useful tool for studying the ejection process. The excitation strength, excitation time and buffer gas pressure interact in a complex way but, when set properly, a mass resolution R0.5 of at least 10,000 can be obtained at a mass-to-charge ratio of 609. Copyright © 2014 John Wiley & Sons, Ltd.
What caused terrestrial dust loading and climate downturns between A.D. 533 and 540?
Abbott, Dallas H.; Breger, Dee; Biscaye, Pierre E.; Barron, John A.; Juhl, Robert A.; McCafferty, Patrick
2014-01-01
Sn-rich particles, Ni-rich particles, and cosmic spherules are found together at four discrete stratigraphic levels within the 362-360 m depth interval of the Greenland Ice Sheet Project 2 (GISP2) ice core (72.6°N, 38.5°W, elevation: 3203 m). Using a previously derived calendar-year time scale, these particles span a time of increased dust loading of Earth's atmosphere between A.D. 533 and 540. The Sn-rich and Ni-rich particles contain an average of 10–11 wt% C. Their high C contents coupled with local enrichments in the volatile elements I, Zn, Cu, and Xe suggest a cometary source for the dust. The late spring timing of extraterrestrial input best matches the Eta Aquarid meteor shower associated with comet 1P/Halley. An increased flux of cometary dust might explain a modest climate downturn in A.D. 533. Both cometary dust and volcanic sulfate probably contributed to the profound global dimming during A.D. 536 and 537 but may be insufficient sources of fine aerosols. We found tropical marine microfossils and aerosol-sized CaCO3 particles at the end A.D. 535–start A.D. 536 level that we attribute to a low-latitude explosion in the ocean. This additional source of dust is probably needed to explain the solar dimming during A.D. 536 and 537. Although there has been no extinction documented at A.D. 536, our results are relevant because mass extinctions may also have multiple drivers. Detailed examinations of fine particles at and near extinction horizons can help to determine the relative contributions of cosmic and volcanic drivers to mass extinctions.
Mamai, Wadaka; Bimbile-Somda, Nanwintoum S; Maiga, Hamidou; Juarez, José Guillermo; Muosa, Zaynab A I; Ali, Adel Barakat; Lees, Rosemary Susan; Gilles, Jeremie R L
2017-01-24
Anopheles arabiensis is one of the major malaria vectors that put millions of people in endemic countries at risk. Mass-rearing of this mosquito is crucial for strategies that use sterile insect technique to suppress vector populations. The sterile insect technique (SIT) package for this mosquito species is being developed by the Insect Pest Control Subprogramme of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. To improve mass-rearing outcomes for An. arabiensis, the question of whether the egg production by females would be affected by the size of the adult holding cages, the source of the blood meal and the total number of pupae that could be loaded into the cages was addressed and finally the impact of adding additional pupae to the cage daily to maintain adult numbers on egg productivity assessed. Mass production cages of two different volumes, two different sources of blood meal (bovine and porcine) and two different population densities (cages originally loaded with either 15,000 or 20,000 pupae) were tested and evaluated on the basis of eggs produced/cage or per female. Males and females pupae with a ratio of 1:1 were added to the cages at day 1 and 2 of pupation. The emerging adults had constant access to 5% sugar solution and blood fed via the Hemotek membrane feeding system. Eggs were collected either twice a week or daily. A generalized linear model was used to identify factors which gave significantly higher egg production. Neither cage volume nor blood meal source affected egg production per cage or per female. However, increasing population density to 20,000 pupae had a negative effect on eggs produced per cage and per female. Although high density negatively impacted egg production, adding 1000 daily additional pupae compensating for daily mortality resulted in a substantial increase in egg production. Moreover, in all tests the first and the third egg batches collected were significantly higher than others eggs batches. With the equipment and protocols described here and routinely used at the Insect Pest Control Laboratory (IPCL), it was possible to produce up to 120,000 eggs/cage/day. These results demonstrated that 15,000 is the optimal number of pupae to be loaded into the Anopheles Mass production cages. Under this condition, an average of 40 eggs per female was obtained for five gonotrophic cycles. However, an improvement in egg production can be achieved by daily addition, to the original 15,000 pupae, of one thousand pupae a day. Interestingly, feeding females with bovine or porcine blood using both large and small versions of the mass production cage did not affect egg productivity.
The Tetrahedral Zamolodchikov Algebra and the {AdS_5× S^5} S-matrix
NASA Astrophysics Data System (ADS)
Mitev, Vladimir; Staudacher, Matthias; Tsuboi, Zengo
2017-08-01
The S-matrix of the {AdS_5× S^5} string theory is a tensor product of two centrally extended su{(2|2)\\ltimes R^2 S-matrices, each of which is related to the R-matrix of the Hubbard model. The R-matrix of the Hubbard model was first found by Shastry, who ingeniously exploited the fact that, for zero coupling, the Hubbard model can be decomposed into two XX models. In this article, we review and clarify this construction from the AdS/CFT perspective and investigate the implications this has for the {AdS_5× S^5} S-matrix.
Assessment of noise in non-tectonic displacement derived from GRACE time-variable gravity filed
NASA Astrophysics Data System (ADS)
Li, Weiwei; Shen, Yunzhong
2017-04-01
Many studies have been focusing on estimating the noises in GNSS monitoring time series. While the noises of GNSS time series after the correction with non-tectonic displacement should be re-estimated. Knowing the noises in the non-tectonic can help to better identify the sources of re-estimated noises. However, there is a lack of knowledge of noises in the non-tectonic displacement. The objective of this work is to assess the noise in the non-tectonic displacement. GRACE time-variable gravity is used to reflect the global mass variation. The GRACE stokes coefficients of the gravity field are used to calculate the non-tectonic surface displacement at any point on the surface. The Atmosphere and Ocean AOD1B de-aliasing model to the GRACE solutions is added because the complete mass variation is requested. The monthly GRACE solutions from CSR, JPL, GFZ and Tongji span from January 2003 to September 2015 are compared. The degree-1 coefficients derived by Swenson et al (2008) are added and also the C20 terms are replaced with those obtained from Satellite Laser Ranging. The P4M6 decorrelation and Fan filter with a radius of 300 km are adopted to reduce the stripe errors. Optimal noise models for the 1054 stations in ITRF2014 are presented. It is found that white noise only take up a small proportion: less than 18% in horizontal and less than 13% in vertical. The dominant models in up and north components are ARMA and flicker, while in east the power law noise shows significance. The local distribution comparison of the optimal noise models among different products is quite similar, which shows that there is little dependence on the different strategies adopted. In addition, the reasons that caused to different distributions of the optimal noise models are also investigated. Meanwhile different filtering methods such as Gaussian filters, Han filters are applied to see whether the noise is related with filters. Keyword: optimal noise model; non-tectonic displacement;GRACE; local distribution; filters
NASA Astrophysics Data System (ADS)
Cheng, X.; Lambert, V.; Masuti, S.; Wang, R.; Barbot, S.; Moore, J. G.; Qiu, Q.; Yu, H.; Wu, S.; Dauwels, J.; Nanjundiah, P.; Bannerjee, P.; Peng, D.
2017-12-01
The April 2012 Mw 8.6 Indian Ocean earthquake is the largest strike-slip earthquake instrumentally recorded. The event ruptured multiple faults and reached great depths up to 60 km, which may have induced significant viscoelastic flow in the asthenosphere. Instead of performing the time-consuming iterative forward modeling, our previous studies used linear inversions for postseismic deformation including both afterslip on the coseismic fault and viscoelastic flow in the strain volumes, making use of three-dimensional analytical Green's functions for distributed strain in finite volumes. Constraints and smoothing were added to reduce the degree of freedom in order to obey certain physical laws. The advent of Gravity Recovery and Climate Experiment (GRACE) satellite gravity field data now allows us to measure the mass displacements associated with various Earth processes. In the case of postseismic deformation, viscoelastic flow can potentially lead to significant mass displacements in the asthenosphere, corresponding to the temporal and spatial gravity change. In this new joint model, we add GRACE gravity data to the GPS measurement of postseismic crustal displacement, so as to improve the constraint on the postseismic relaxation processes in the upper mantle.
Marinova, Polina; Lippert, Stephan; von Estorff, Otto
2017-10-01
Acoustic metamaterials appear to be of great help in the design of reliable and effective noise reduction measures in the low frequency range. The current contribution is concerned with the modeling of a low-frequency noise shield, based on a double wall arrangement, which includes membrane-type acoustic metamaterials (MAMs), considered as the most promising approach when it comes especially to the tonal noise at frequencies below 300 Hz. MAMs consist of small-sized membranes loaded with a mass. Due to their robustness and relatively simple production, MAMs have been proven to decrease the sound transmission in frequency ranges, for which poro-elastic materials have a rather negligible effect. A simulation model of a double wall panel, whose acoustic cavity is furnished with layers of metamaterials, has been developed and the sound transmission loss (STL) through the structure was calculated, using the finite element method. In order to validate the modelling approach, the STL estimation from the finite element analysis was compared to experimental measurements. The achieved results indicate a noise-decreasing possibility in tunable narrow bands as well as a broadband noise reduction for frequencies less than 300 Hz without significantly adding to the panel mass.
Predictors of Stature Concerns among Young Chinese Women and Men.
Sun, Qingqing
2017-01-01
Stature concerns are a prominent source of body dissatisfaction for Chinese teenagers and young adults, yet little is known about the psychological factors that account for it. Therefore, this study examined social cultural model and objectification theory as explanations for stature concerns in a sample of undergraduate men and women from a university in Henan, China. Given height is a salient physical attribute for Chinese adolescents and young adults, we extended past studies on objectification theory by adding separate measures for stature surveillance. Participants (231 men, 473 women) completed a questionnaire assaying measures of sociocultural model features (appearance pressure from mass media and close interpersonal networks, appearance social comparisons), objectified body consciousness (body surveillance, body shame, stature surveillance), and stature concerns. In multiple regression models for each gender, appearance pressure from the mass media and stature surveillance were robust predictors of stature concerns for both genders, independent of reported height. Body surveillance predicted stature concerns for women but not men. These findings contribute to the broader field of multicultural body image research and may help to account for specific culturally salient appearance concerns within samples of young Chinese women and men.
Huh, Jisu; Delorme, Denise E; Reid, Leonard N
2016-01-01
Given the importance of over-the-counter (OTC) drugs in the health care marketplace and lack of systematic research on OTC drug advertising (OTCA) effects, this study tested a theory-based, product category-specific OTCA effects model. Structural equation modeling analysis of data for 1 OTC drug category, analgesics, supported the proposed model, explaining the OTCA effect process from key consumer antecedents to ad involvement, from ad involvement to ad attention, from ad attention to cognitive responses, then to affective/evaluative responses, leading to the final behavioral outcome. Several noteworthy patterns also emerged: (a) Product involvement was directly linked to ad attention, rather than exerting an indirect influence through ad involvement; (b) ad attention was significantly related to both cognitive and affective/evaluative responses to different degrees, with stronger links to cognitive responses; and (c) ad-prompted actions were influenced by both ad trust and ad attitude.
Modeling the pharmacokinetics of extended release pharmaceutical systems
NASA Astrophysics Data System (ADS)
di Muria, Michela; Lamberti, Gaetano; Titomanlio, Giuseppe
2009-03-01
The pharmacokinetic (PK) models predict the hematic concentration of drugs after the administration. In compartment modeling, the body is described by a set of interconnected “vessels” or “compartments”; the modeling consisting of transient mass balances. Usually the orally administered drugs were considered as immediately available: this cannot describe the administration of extended-release systems. In this work we added to the traditional compartment models the ability to account for a delay in administration, relating this delay to in vitro data. Firstly, the method was validated, applying the model to the dosage of nicotine by chewing-gum; the model was tuned by in vitro/in vivo data of drugs (divalproex-sodium and diltiazem) with medium-rate release kinetics, then it was applied in describing in vivo evolutions due to the assumption of fast- and slow-release systems. The model reveals itself predictive, the same of a Level A in vitro/in vivo correlation, but being physically based, it is preferable to a purely statistical method.
Wang, Hualong; Lian, Kaoqi; Han, Bing; Wang, Yanyong; Kuo, Sheng-Han; Geng, Yuan; Qiang, Jing; Sun, Meiyu; Wang, Mingwei
2015-01-01
Alzheimer's disease (AD), the most common age-dependent neurodegenerative disorder, produces a progressive decline in cognitive function. The metabolic mechanism of AD has emerged in recent years. In this study, we used multivariate analyses of gas chromatography-mass spectrometry measurements to determine that learning and retention-related metabolic profiles are altered during aging in the hippocampus of the senescence-accelerated mouse prone 8 (SAMP8). Alterations in 17 metabolites were detected in mature and aged mice compared to young mice (13 decreased and 4 increased metabolites), including metabolites related to dysfunctional lipid metabolism (significantly increased cholesterol, oleic acid, and phosphoglyceride levels), decreased amino acid (alanine, serine, glycine, aspartic acid, glutamate, and gamma-aminobutyric acid), and energy-related metabolite levels (malic acid, butanedioic acid, fumaric acid, and citric acid), and other altered metabolites (increased N-acetyl-aspartic acid and decreased pyroglutamic acid, urea, and lactic acid) in the hippocampus. All of these alterations indicated that the metabolic mechanisms of age-related cognitive impairment in SAMP8 mice were related to multiple pathways and networks. Lipid metabolism, especially cholesterol metabolism, appears to play a distinct role in the hippocampus in AD. PMID:24284365
The Effect of Increasing Mass upon Locomotion
NASA Technical Reports Server (NTRS)
DeWitt, John; Hagan, Donald
2007-01-01
The purpose of this investigation was to determine if increasing body mass while maintaining bodyweight would affect ground reaction forces and joint kinetics during walking and running. It was hypothesized that performing gait with increased mass while maintaining body weight would result in greater ground reaction forces, and would affect the net joint torques and work at the ankle, knee and hip when compared to gait with normal mass and bodyweight. Vertical ground reaction force was measured for ten subjects (5M/5F) during walking (1.34 m/s) and running (3.13 m/s) on a treadmill. Subjects completed one minute of locomotion at normal mass and bodyweight and at four added mass (AM) conditions (10%, 20%, 30% and 40% of body mass) in random order. Three-dimensional joint position data were collected via videography. Walking and running were analyzed separately. The addition of mass resulted in several effects. Peak impact forces and loading rates increased during walking, but decreased during running. Peak propulsive forces decreased during walking and did not change during running. Stride time increased and hip extensor angular impulse and positive work increased as mass was added for both styles of locomotion. Work increased at a greater rate during running than walking. The adaptations to additional mass that occur during walking are different than during running. Increasing mass during exercise in microgravity may be beneficial to increasing ground reaction forces during walking and strengthening hip musculature during both walking and running. Future study in true microgravity is required to determine if the adaptations found would be similar in a weightless environment.
Probing the size of extra dimensions with gravitational wave astronomy
NASA Astrophysics Data System (ADS)
Yagi, Kent; Tanahashi, Norihiro; Tanaka, Takahiro
2011-04-01
In the Randall-Sundrum II braneworld model, it has been conjectured, according to the AdS/CFT correspondence, that a brane-localized black hole (BH) larger than the bulk AdS curvature scale ℓ cannot be static, and it is dual to a four-dimensional BH emitting Hawking radiation through some quantum fields. In this scenario, the number of the quantum field species is so large that this radiation changes the orbital evolution of a BH binary. We derived the correction to the gravitational waveform phase due to this effect and estimated the upper bounds on ℓ by performing Fisher analyses. We found that the Deci-Hertz Interferometer Gravitational Wave Observatory and the Big Bang Observatory (DECIGO/BBO) can give a stronger constraint than the current tabletop result by detecting gravitational waves from small mass BH/BH and BH/neutron star (NS) binaries. Furthermore, DECIGO/BBO is expected to detect 105 BH/NS binaries per year. Taking this advantage, we find that DECIGO/BBO can actually measure ℓ down to ℓ=0.33μm for a 5 yr observation if we know that binaries are circular a priori. This is about 40 times smaller than the upper bound obtained from the tabletop experiment. On the other hand, when we take eccentricities into binary parameters, the detection limit weakens to ℓ=1.5μm due to strong degeneracies between ℓ and eccentricities. We also derived the upper bound on ℓ from the expected detection number of extreme mass ratio inspirals with LISA and BH/NS binaries with DECIGO/BBO, extending the discussion made recently by McWilliams [Phys. Rev. Lett. 104, 141601 (2010)PRLTAO0031-900710.1103/PhysRevLett.104.141601]. We found that these less robust constraints are weaker than the ones from phase differences.
Buffa, R; Mereu, R M; Putzu, P F; Floris, G; Marini, E
2010-12-01
This paper evaluates the nutritional status in patients with mild-moderate and severe Alzheimer's disease (AD) by bioelectrical impedance vector analysis (BIVA). Cross-sectional study. Alzheimer Center, SS. Trinita Hospital, Cagliari, and "Monsignor Angioni" Nursing Home, Quartu Sant'Elena (Cagliari, Italy). 83 free-living patients with mild-moderate Alzheimer's disease (29 men, 54 women), 9 institutionalized women in the severe stage; 468 age-matched controls (202 men, 266 women). Mini Nutritional Assessment (MNA), anthropometric (height, weight, BMI), bioelectrical (R, Xc) and biochemical variables (serum albumin) were assessed. Bioelectrical characteristics were significantly different in the patients with mild-moderate AD with respect to controls, indicating low body cell mass (men, T2= 12.8; women, T2=34.9; p < 0.01). Women with severe AD showed low body cell mass and dehydration with respect to patients with mild-moderate AD (T2=17.1; p < 0.01). The phase angle, R/H and Z/H were significantly correlated (p < 0.05) with MNA (phase: r = 0.31; R/H: r =-0.37; Z/H: r =-0.37) and albumin (phase: r=0.47; R/H: r=-0.36; Z/H: r=-0.36). Alzheimer's disease is characterized by a tendency to malnutrition, present even in the mild-moderate stages, and a tendency to dehydration that appears in the severe stage. The BIVA technique is a promising tool for the screening and monitoring of nutrition and hydration status in Alzheimer's disease.
Classical defects in higher-dimensional Einstein gravity coupled to nonlinear σ -models
NASA Astrophysics Data System (ADS)
Prasetyo, Ilham; Ramadhan, Handhika S.
2017-09-01
We construct solutions of higher-dimensional Einstein gravity coupled to nonlinear σ -model with cosmological constant. The σ -model can be perceived as exterior configuration of a spontaneously-broken SO(D-1) global higher-codimensional "monopole". Here we allow the kinetic term of the σ -model to be noncanonical; in particular we specifically study a quadratic-power-law type. This is some possible higher-dimensional generalization of the Bariola-Vilenkin (BV) solutions with k-global monopole studied recently. The solutions can be perceived as the exterior solution of a black hole swallowing up noncanonical global defects. Even in the absence of comological constant its surrounding spacetime is asymptotically non-flat; it suffers from deficit solid angle. We discuss the corresponding horizons. For Λ >0 in 4 d there can exist three extremal conditions (the cold, ultracold, and Nariai black holes), while in higher-than-four dimensions the extremal black hole is only Nariai. For Λ <0 we only have black hole solutions with one horizon, save for the 4 d case where there can exist two horizons. We give constraints on the mass and the symmetry-breaking scale for the existence of all the extremal cases. In addition, we also obtain factorized solutions, whose topology is the direct product of two-dimensional spaces of constant curvature (M_2, dS_2, or AdS_2) with (D-2)-sphere. We study all possible factorized channels.
3D culture models of Alzheimer's disease: a road map to a "cure-in-a-dish".
Choi, Se Hoon; Kim, Young Hye; Quinti, Luisa; Tanzi, Rudolph E; Kim, Doo Yeon
2016-12-09
Alzheimer's disease (AD) transgenic mice have been used as a standard AD model for basic mechanistic studies and drug discovery. These mouse models showed symbolic AD pathologies including β-amyloid (Aβ) plaques, gliosis and memory deficits but failed to fully recapitulate AD pathogenic cascades including robust phospho tau (p-tau) accumulation, clear neurofibrillary tangles (NFTs) and neurodegeneration, solely driven by familial AD (FAD) mutation(s). Recent advances in human stem cell and three-dimensional (3D) culture technologies made it possible to generate novel 3D neural cell culture models that recapitulate AD pathologies including robust Aβ deposition and Aβ-driven NFT-like tau pathology. These new 3D human cell culture models of AD hold a promise for a novel platform that can be used for mechanism studies in human brain-like environment and high-throughput drug screening (HTS). In this review, we will summarize the current progress in recapitulating AD pathogenic cascades in human neural cell culture models using AD patient-derived induced pluripotent stem cells (iPSCs) or genetically modified human stem cell lines. We will also explain how new 3D culture technologies were applied to accelerate Aβ and p-tau pathologies in human neural cell cultures, as compared the standard two-dimensional (2D) culture conditions. Finally, we will discuss a potential impact of the human 3D human neural cell culture models on the AD drug-development process. These revolutionary 3D culture models of AD will contribute to accelerate the discovery of novel AD drugs.
Sebestenoids A-D, BACE1 inhibitors from Cordia sebestena.
Dai, Jingqiu; Sorribas, Analia; Yoshida, Wesley Y; Williams, Philip G
2010-12-01
Bioassay-guided fractionation of an extract prepared from the fruits of Cordia sebestena led to the isolation of sebestenoids A-D (1-4). Their structures were elucidated on the basis of extensive NMR experiments and mass spectroscopic measurements. Compounds 1-4 exhibited moderate inhibition of the aspartic protease BACE1. Copyright © 2010 Elsevier Ltd. All rights reserved.
Sebestenoids A-D, BACE1 inhibitors from Cordia sebestena
Dai, Jingqiu; Sorribas, Analia; Yoshida, Wesley Y.; Williams, Philip G.
2010-01-01
Bioassay-guided fractionation of an extract prepared from the fruits of Cordia sebestena has led to the isolation of sebestenoids A-D (1-4). The structures of these new phenylpropanoid esters were elucidated on the basis of extensive NMR experiments and mass spectroscopic measurements. Compounds 1-4 exhibited moderate inhibition of the aspartic protease BACE1. PMID:20952040
Parametric system identification of catamaran for improving controller design
NASA Astrophysics Data System (ADS)
Timpitak, Surasak; Prempraneerach, Pradya; Pengwang, Eakkachai
2018-01-01
This paper presents an estimation of simplified dynamic model for only surge- and yaw- motions of catamaran by using system identification (SI) techniques to determine associated unknown parameters. These methods will enhance the performance of designing processes for the motion control system of Unmanned Surface Vehicle (USV). The simulation results demonstrate an effective way to solve for damping forces and to determine added masses by applying least-square and AutoRegressive Exogenous (ARX) methods. Both methods are then evaluated according to estimated parametric errors from the vehicle’s dynamic model. The ARX method, which yields better estimated accuracy, can then be applied to identify unknown parameters as well as to help improving a controller design of a real unmanned catamaran.
Structureborne noise measurements on a small twin-engine aircraft
NASA Technical Reports Server (NTRS)
Cole, J. E., III; Martini, K. F.
1988-01-01
Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.
Structureborne noise measurements on a small twin-engine aircraft
NASA Astrophysics Data System (ADS)
Cole, J. E., III; Martini, K. F.
1988-06-01
Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, H.; Kim, Rokho; Korrick, S.
1996-12-31
In an earlier report based on participants in the Veterans Administration Normative Aging Study, we found a significant association between the risk of hypertension and lead levels in tibia. To examine the possible confounding effects of education and occupation, we considered in this study five levels of education and three levels of occupation as independent variables in the statistical model. Of 1,171 active subjects seen between August 1991 and December 1994, 563 provided complete data for this analysis. In the initial logistic regression model, acre and body mass index, family history of hypertension, and dietary sodium intake, but neither cumulativemore » smoking nor alcohol ingestion, conferred increased odds ratios for being hypertensive that were statistically significant. When the lead biomarkers were added separately to this initial logistic model, tibia lead and patella lead levels were associated with significantly elevated odds ratios for hypertension. In the final backward elimination logistic regression model that included categorical variables for education and occupation, the only variables retained were body mass index, family history of hypertension, and tibia lead level. We conclude that education and occupation variables were not confounding the association between the lead biomarkers and hypertension that we reported previously. 27 refs., 3 tabs.« less
The Status of Multi-Dimensional Core-Collapse Supernova Models
NASA Astrophysics Data System (ADS)
Müller, B.
2016-09-01
Models of neutrino-driven core-collapse supernova explosions have matured considerably in recent years. Explosions of low-mass progenitors can routinely be simulated in 1D, 2D, and 3D. Nucleosynthesis calculations indicate that these supernovae could be contributors of some lighter neutron-rich elements beyond iron. The explosion mechanism of more massive stars remains under investigation, although first 3D models of neutrino-driven explosions employing multi-group neutrino transport have become available. Together with earlier 2D models and more simplified 3D simulations, these have elucidated the interplay between neutrino heating and hydrodynamic instabilities in the post-shock region that is essential for shock revival. However, some physical ingredients may still need to be added/improved before simulations can robustly explain supernova explosions over a wide range of progenitors. Solutions recently suggested in the literature include uncertainties in the neutrino rates, rotation, and seed perturbations from convective shell burning. We review the implications of 3D simulations of shell burning in supernova progenitors for the `perturbations-aided neutrino-driven mechanism,' whose efficacy is illustrated by the first successful multi-group neutrino hydrodynamics simulation of an 18 solar mass progenitor with 3D initial conditions. We conclude with speculations about the impact of 3D effects on the structure of massive stars through convective boundary mixing.
Impact of plant shoot architecture on leaf cooling: a coupled heat and mass transfer model
Bridge, L. J.; Franklin, K. A.; Homer, M. E.
2013-01-01
Plants display a range of striking architectural adaptations when grown at elevated temperatures. In the model plant Arabidopsis thaliana, these include elongation of petioles, and increased petiole and leaf angles from the soil surface. The potential physiological significance of these architectural changes remains speculative. We address this issue computationally by formulating a mathematical model and performing numerical simulations, testing the hypothesis that elongated and elevated plant configurations may reflect a leaf-cooling strategy. This sets in place a new basic model of plant water use and interaction with the surrounding air, which couples heat and mass transfer within a plant to water vapour diffusion in the air, using a transpiration term that depends on saturation, temperature and vapour concentration. A two-dimensional, multi-petiole shoot geometry is considered, with added leaf-blade shape detail. Our simulations show that increased petiole length and angle generally result in enhanced transpiration rates and reduced leaf temperatures in well-watered conditions. Furthermore, our computations also reveal plant configurations for which elongation may result in decreased transpiration rate owing to decreased leaf liquid saturation. We offer further qualitative and quantitative insights into the role of architectural parameters as key determinants of leaf-cooling capacity. PMID:23720538
A framework for expanding aqueous chemistry in the ...
This paper describes the development and implementation of an extendable aqueous-phase chemistry option (AQCHEM − KMT(I)) for the Community Multiscale Air Quality (CMAQ) modeling system, version 5.1. Here, the Kinetic PreProcessor (KPP), version 2.2.3, is used to generate a Rosenbrock solver (Rodas3) to integrate the stiff system of ordinary differential equations (ODEs) that describe the mass transfer, chemical kinetics, and scavenging processes of CMAQ clouds. CMAQ's standard cloud chemistry module (AQCHEM) is structurally limited to the treatment of a simple chemical mechanism. This work advances our ability to test and implement more sophisticated aqueous chemical mechanisms in CMAQ and further investigate the impacts of microphysical parameters on cloud chemistry. Box model cloud chemistry simulations were performed to choose efficient solver and tolerance settings, evaluate the implementation of the KPP solver, and assess the direct impacts of alternative solver and kinetic mass transfer on predicted concentrations for a range of scenarios. Month-long CMAQ simulations for winter and summer periods over the US reveal the changes in model predictions due to these cloud module updates within the full chemical transport model. While monthly average CMAQ predictions are not drastically altered between AQCHEM and AQCHEM − KMT, hourly concentration differences can be significant. With added in-cloud secondary organic aerosol (SOA) formation from bio
Perchlorate has been added to the U.S. Environmental Protection Agency,s Drinking Water Contaminant Candidate List (CCL). The present work describes the analysis of perchlorate in water by liquid-liquid extraction followed by flow injection electrospray mass spectrometry (ESI/MS...
78 FR 23866 - Airworthiness Directives; the Boeing Company
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-23
... operational software in the cabin management system, and loading new software into the mass memory card. The...-200 and -300 series airplanes. The proposed AD would have required installing new operational software in the cabin management system, and loading new software into the mass memory card. Since the...
Giant wormholes in ghost-free bigravity theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sushkov, Sergey V.; Volkov, Mikhail S., E-mail: sergey_sushkov@mail.ru, E-mail: volkov@lmpt.univ-tours.fr
2015-06-01
We study Lorentzian wormholes in the ghost-free bigravity theory described by two metrics, g and f. Wormholes can exist if only the null energy condition is violated, which happens naturally in the bigravity theory since the graviton energy-momentum tensors do not apriori fulfill any energy conditions. As a result, the field equations admit solutions describing wormholes whose throat size is typically of the order of the inverse graviton mass. Hence, they are as large as the universe, so that in principle we might all live in a giant wormhole. The wormholes can be of two different types that we callmore » W1 and W2. The W1 wormholes interpolate between the AdS spaces and have Killing horizons shielding the throat. The Fierz-Pauli graviton mass for these solutions becomes imaginary in the AdS zone, hence the gravitons behave as tachyons, but since the Breitenlohner-Freedman bound is fulfilled, there should be no tachyon instability. For the W2 wormholes the g-geometry is globally regular and in the far field zone it becomes the AdS up to subleading terms, its throat can be traversed by timelike geodesics, while the f-geometry has a completely different structure and is not geodesically complete. There is no evidence of tachyons for these solutions, although a detailed stability analysis remains an open issue. It is possible that the solutions may admit a holographic interpretation.« less
Giant wormholes in ghost-free bigravity theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sushkov, Sergey V.; Volkov, Mikhail S.; Laboratoire de Mathématiques et Physique Théorique CNRS-UMR 7350, Université de Tours, Parc de Grandmont, 37200 Tours
2015-06-09
We study Lorentzian wormholes in the ghost-free bigravity theory described by two metrics, g and f. Wormholes can exist if only the null energy condition is violated, which happens naturally in the bigravity theory since the graviton energy-momentum tensors do not apriori fulfill any energy conditions. As a result, the field equations admit solutions describing wormholes whose throat size is typically of the order of the inverse graviton mass. Hence, they are as large as the universe, so that in principle we might all live in a giant wormhole. The wormholes can be of two different types that we callmore » W1 and W2. The W1 wormholes interpolate between the AdS spaces and have Killing horizons shielding the throat. The Fierz-Pauli graviton mass for these solutions becomes imaginary in the AdS zone, hence the gravitons behave as tachyons, but since the Breitenlohner-Freedman bound is fulfilled, there should be no tachyon instability. For the W2 wormholes the g-geometry is globally regular and in the far field zone it becomes the AdS up to subleading terms, its throat can be traversed by timelike geodesics, while the f-geometry has a completely different structure and is not geodesically complete. There is no evidence of tachyons for these solutions, although a detailed stability analysis remains an open issue. It is possible that the solutions may admit a holographic interpretation.« less
2012-01-01
Background Effective pretreatment is key to achieving high enzymatic saccharification efficiency in processing lignocellulosic biomass to fermentable sugars, biofuels and value-added products. Ionic liquids (ILs), still relatively new class of solvents, are attractive for biomass pretreatment because some demonstrate the rare ability to dissolve all components of lignocellulosic biomass including highly ordered (crystalline) cellulose. In the present study, three ILs, 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl), 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc) are used to dissolve/pretreat and fractionate sugarcane bagasse. In these IL-based pretreatments the biomass is completely or partially dissolved in ILs at temperatures greater than 130°C and then precipitated by the addition of an antisolvent to the IL biomass mixture. For the first time mass balances of IL-based pretreatments are reported. Such mass balances, along with kinetics data, can be used in process modelling and design. Results Lignin removals of 10% mass of lignin in bagasse with [C4mim]Cl, 50% mass with [C2mim]Cl and 60% mass with [C2mim]OAc, are achieved by limiting the amount of water added as antisolvent to 0.5 water:IL mass ratio thus minimising lignin precipitation. Enzyme saccharification (24 h, 15FPU) yields (% cellulose mass in starting bagasse) from the recovered solids rank as: [C2mim]OAc(83%) > >[C2mim]Cl(53%) = [C4mim]Cl(53%). Composition of [C2mim]OAc-treated solids such as low lignin, low acetyl group content and preservation of arabinosyl groups are characteristic of aqueous alkali pretreatments while those of chloride IL-treated solids resemble aqueous acid pretreatments. All ILs are fully recovered after use (100% mass as determined by ion chromatography). Conclusions In all three ILs regulated addition of water as an antisolvent effected a polysaccharide enriched precipitate since some of the lignin remained dissolved in the aqueous IL solution. Of the three IL studied [C2mim]OAc gave the best saccharification yield, material recovery and delignification. The effects of [C2mim]OAc pretreatment resemble those of aqueous alkali pretreatments while those of [C2mim]Cl and [C4mim]Cl resemble aqueous acid pretreatments. The use of imidazolium IL solvents with shorter alkyl chains results in accelerated dissolution, pretreatment and degradation. PMID:22920045
Astronomical Constraints on Quantum Cold Dark Matter
NASA Astrophysics Data System (ADS)
Spivey, Shane; Musielak, Z.; Fry, J.
2012-01-01
A model of quantum (`fuzzy') cold dark matter that accounts for both the halo core problem and the missing dwarf galaxies problem, which plague the usual cold dark matter paradigm, is developed. The model requires that a cold dark matter particle has a mass so small that its only allowed physical description is a quantum wave function. Each such particle in a galactic halo is bound to a gravitational potential that is created by luminous matter and by the halo itself, and the resulting wave function is described by a Schrödinger equation. To solve this equation on a galactic scale, we impose astronomical constraints that involve several density profiles used to fit data from simulations of dark matter galactic halos. The solutions to the Schrödinger equation are quantum waves which resemble the density profiles acquired from simulations, and they are used to determine the mass of the cold dark matter particle. The effects of adding certain types of baryonic matter to the halo, such as a dwarf elliptical galaxy or a supermassive black hole, are also discussed.
NASA Astrophysics Data System (ADS)
Huda, Nazmul; Naser, Jamal; Brooks, Geoffrey; Reuter, Markus A.; Matusewicz, Robert W.
2012-02-01
Slag fuming is a reductive treatment process for molten zinciferous slags for extracting zinc in the form of metal vapor by injecting or adding a reductant source such as pulverized coal or lump coal and natural gas. A computational fluid dynamic (CFD) model was developed to study the zinc slag fuming process from imperial smelting furnace (ISF) slag in a top-submerged lance furnace and to investigate the details of fluid flow, reaction kinetics, and heat transfer in the furnace. The model integrates combustion phenomena and chemical reactions with the heat, mass, and momentum interfacial interaction between the phases present in the system. A commercial CFD package AVL Fire 2009.2 (AVL, Graz, Austria) coupled with a number of user-defined subroutines in FORTRAN programming language were used to develop the model. The model is based on three-dimensional (3-D) Eulerian multiphase flow approach, and it predicts the velocity and temperature field of the molten slag bath, generated turbulence, and vortex and plume shape at the lance tip. The model also predicts the mass fractions of slag and gaseous components inside the furnace. The model predicted that the percent of ZnO in the slag bath decreases linearly with time and is consistent broadly with the experimental data. The zinc fuming rate from the slag bath predicted by the model was validated through macrostep validation process against the experimental study of Waladan et al. The model results predicted that the rate of ZnO reduction is controlled by the mass transfer of ZnO from the bulk slag to slag-gas interface and rate of gas-carbon reaction for the specified simulation time studied. Although the model is based on zinc slag fuming, the basic approach could be expanded or applied for the CFD analysis of analogous systems.
Damping measurements in flowing water
NASA Astrophysics Data System (ADS)
Coutu, A.; Seeley, C.; Monette, C.; Nennemann, B.; Marmont, H.
2012-11-01
Fluid-structure interaction (FSI), in the form of mass loading and damping, governs the dynamic response of water turbines, such as Francis turbines. Water added mass and damping are both critical quantities in evaluating the dynamic response of the turbine component. Although the effect of fluid added mass is well documented, fluid damping, a critical quantity to limit vibration amplitudes during service, and therefore to help avoiding possible failure of the turbines, has received much less attention in the literature. This paper presents an experimental investigation of damping due to FSI. The experimental setup, designed to create dynamic characteristics similar to the ones of Francis turbine blades is discussed, together with the experimental protocol and examples of measurements obtained. The paper concludes with the calculated damping values and a discussion on the impact of the observed damping behaviour on the response of hydraulic turbine blades to FSI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohd Yusof, Mohd Fahmi, E-mail: mfahmi@usm.my; Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz
2015-04-29
The Rhizophora spp. particleboards were fabricated using ≤ 104 µm particle size at three different fabrication methods; binderless, steam pre-treated and tannin-added. The mass attenuation coefficient of Rhizophora spp. particleboards were measured using x-ray fluorescent (XRF) photon from niobium, molybdenum, palladium, silver and tin metal plates that provided photon energy between 16.59 to 25.26 keV. The results were compared to theoretical values for water calculated using photon cross-section database (XCOM).The results showed that all Rhizophora spp. particleboards having mass attenuation coefficient close to calculated XCOM for water. Tannin-added Rizophora spp. particleboard was nearest to calculated XCOM for water with χ2 valuemore » of 13.008 followed by binderless Rizophora spp. (25.859) and pre-treated Rizophora spp. (91.941)« less
The dynamical origin of multiple populations in intermediate-age clusters in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Hong, Jongsuk; de Grijs, Richard; Askar, Abbas; Berczik, Peter; Li, Chengyuan; Wang, Long; Deng, Licai; Kouwenhoven, M. B. N.; Giersz, Mirek; Spurzem, Rainer
2017-11-01
Numerical simulations were carried out to study the origin of multiple stellar populations in the intermediate-age clusters NGC 411 and NGC 1806 in the Magellanic Clouds. We performed NBODY6++ simulations based on two different formation scenarios, an ad hoc formation model where second-generation (SG) stars are formed inside a cluster of first-generation (FG) stars using the gas accumulated from the external intergalactic medium and a minor merger model of unequal mass (MSG/MFG ∼ 5-10 per cent) clusters with an age difference of a few hundred million years. We compared our results such as the radial profile of the SG-to-FG number ratio with observations on the assumption that the SG stars in the observations are composed of cluster members, and confirmed that both the ad hoc formation and merger scenarios reproduce the observed radial trend of the SG-to-FG number ratio, which shows less centrally concentrated SG than FG stars. It is difficult to constrain the formation scenario for the multiple populations by only using the spatial distribution of the SG stars. SG stars originating from the merger scenario show a significant velocity anisotropy and rotational features compared to those from the ad hoc formation scenario. Thus, observations aimed at kinematic properties like velocity anisotropy or rotational velocities for SG stars should be obtained to better understand the formation of the multiple populations in these clusters. This is, however, beyond current instrumentation capabilities.
Van Wynsberge, Simon; Andréfouët, Serge; Gaertner-Mazouni, Nabila; Remoissenet, Georges
2018-02-01
Despite actions to manage sustainably tropical Pacific Ocean reef fisheries, managers have faced failures and frustrations because of unpredicted mass mortality events triggered by climate variability. The consequences of these events on the long-term population dynamics of living resources need to be better understood for better management decisions. Here, we use a giant clam (Tridacna maxima) spatially explicit population model to compare the efficiency of several management strategies under various scenarios of natural mortality, including mass mortality due to climatic anomalies. The model was parameterized by in situ estimations of growth and mortality and fishing effort, and was validated by historical and new in situ surveys of giant clam stocks in two French Polynesia lagoons. Projections on the long run (100 years) suggested that the best management strategy was a decrease of fishing pressure through quota implementation, regardless of the mortality regime considered. In contrast, increasing the minimum legal size of catch and closing areas to fishing were less efficient. When high mortality occurred due to climate variability, the efficiency of all management scenarios decreased markedly. Simulating El Niño Southern Oscillation event by adding temporal autocorrelation in natural mortality rates increased the natural variability of stocks, and also decreased the efficiency of management. These results highlight the difficulties that managers in small Pacific islands can expect in the future in the face of global warming, climate anomalies and new mass mortalities. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.
2011-01-01
Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical oceanography. The other two salinity variables provide alternative measures of the mass fraction of dissolved material in seawater. "Solution Salinity", denoted SAsoln, is the most obvious extension of Reference Salinity to allow for composition anomalies; it provides a direct estimate of the mass fraction of dissolved material in solution. "Added-Mass Salinity", denoted SAadd, is motivated by a method used to report laboratory experiments; it represents the component of dissolved material added to Standard Seawater in terms of the mass of material before it enters solution. We also discuss a constructed conservative variable referred to as "Preformed Salinity", denoted S∗, which will be useful in process-oriented numerical modelling studies. Finally, a conceptual framework for the incorporation of composition anomalies in numerical models is presented that builds from studies in which composition anomalies are simply ignored up to studies in which the influences of composition anomalies are accounted for using the results of biogeochemical models. 1TEOS-10: international Thermodynamic Equation of Seawater 2010, http://www.teos-10.org/.