Science.gov

Sample records for adding engine oil

  1. Oil Biotechnology: Value-Added Products and Bioactive Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During my 40+ years research career, I have been working on "biocatalysis" of hydrophobic organic compounds, both petroleum oil and vegetable oil, to convert them to value-added products. "Biocatalysis" is defined as the use of a biocatalyst such as whole microbial cells or enzymes, in an aqueous o...

  2. Engine wear and lubricating oil contamination from plant oil fuels

    SciTech Connect

    Darcey, C.L.; LePori, W.A.; Yarbrough, C.M.

    1982-12-01

    Engine disassembly with wear measurements, and lubricating oil analysis were used to determine wear rates on a one cylinder diesel engine. Results are reported from short duration tests on the wear rates of various levels of processed sunflower oil, a 25% blend with diesel fuel, and processed cottonseed oil.

  3. Designing added functions in engineered cementitious composites

    NASA Astrophysics Data System (ADS)

    Yang, En-Hua

    In this dissertation, a new and systematic material design approach is developed for ECC with added functions through material microstructures linkage to composite macroscopic behavior. The thesis research embodies theoretical development by building on previous ECC micromechanical models, and experimental investigations into three specific new versions of ECC with added functions aimed at addressing societal demands of our built infrastructure. Specifically, the theoretical study includes three important ECC modeling elements: Steady-state crack propagation analyses and simulation, predictive accuracy of the fiber bridging constitutive model, and development of the rate-dependent strain-hardening criteria. The first element establishes the steady-state cracking criterion as a fundamental requirement for multiple cracking behavior in brittle matrix composites. The second element improves the accuracy of crack-width prediction in ECC. The third element establishes the micromechanics basis for impact-resistant ECC design. Three new ECCs with added functions were developed and experimentally verified in this thesis research through the enhanced theoretical framework. A green ECC incorporating a large volume of industrial waste was demonstrated to possess reduced crack width and drying shrinkage. The self-healing ECC designed with tight crack width was demonstrated to recover transport and mechanical properties after microcrack damage when exposed to wet and dry cycles. The impact-resistant ECC was demonstrated to retain tensile ductility with increased strength under moderately high strain-rate loading. These new versions of ECC with added functions are expected to contribute greatly to enhancing the sustainability, durability, and safety of civil infrastructure built with ECC. This research establishes the effectiveness of micromechanics-based design and material ingredient tailoring for ECC with added new attributes but without losing its basic tensile ductile

  4. Two stroke engine oil scenario in India

    SciTech Connect

    Koganti, R.B.; Sharma, G.K.; Sarkar, D.; Raje, N.R.

    1995-12-31

    India is having a large population of two stroke cycle engines. Before the advent of two stroke engine oils in India, motor oils were used to be mixed along with gasoline for two stroke engine lubrication for those vehicles having premixed type of lubrication system. The motor oils due to the high ash containing additives give rise to problems like pre-ignition, spark plug whiskering and combustion chamber deposits thereby leading to frequent breakdown of engines for maintenance. During the `80s the development of two stroke engine oils was taken up and the two stroke oils, confirming to ASTM/CEC standards, were introduced in the market. Due to the diversified designs of the two stroke engines owing their origin to both European and Japanese engine builders, it was felt necessary to have the Indian standards for two stroke engine oils comprising tests that incorporate both these types of engines. The paper discusses the trends in two stroke engine vehicles population, the development of two stroke oils and the Indian standards.

  5. Engineering microbial factories for synthesis of value-added products

    PubMed Central

    Du, Jing; Shao, Zengyi; Zhao, Huimin

    2011-01-01

    Microorganisms have become an increasingly important platform for the production of drugs, chemicals, and biofuels from renewable resources. Advances in protein engineering, metabolic engineering, and synthetic biology enable redesigning microbial cellular networks and fine-tuning physiological capabilities, thus generating industrially viable strains for the production of natural and unnatural value-added compounds. In this review, we describe the recent progress on engineering microbial factories for synthesis of valued-added products including alkaloids, terpenoids, flavonoids, polyketides, non-ribosomal peptides, biofuels, and chemicals. Related topics on lignocellulose degradation, sugar utilization, and microbial tolerance improvement will also be discussed. PMID:21526386

  6. Clerget 100 hp heavy-oil engine

    NASA Technical Reports Server (NTRS)

    Leglise, Pierre

    1931-01-01

    A complete technical description of the Clerget heavy-oil engine is presented along with the general characteristics. The general characteristics are: 9 cylinders, bore 120 mm, stroke 130 mm, four-stroke cycle engine, rated power limited to 100 hp at 1800 rpm; weight 228 kg; propeller with direct drive and air cooling. Moving parts, engine block, and lubrication are all presented.

  7. Oleaginous yeast: a value-added platform for renewable oils.

    PubMed

    Probst, Kyle V; Schulte, Leslie R; Durrett, Timothy P; Rezac, Mary E; Vadlani, Praveen V

    2016-10-01

    Yeast single cell oil (SCO) is a non-crop-based, renewable oil source that can be used for the production of bio-based oleochemicals. Stand-alone production of SCO for oleochemicals is currently not cost-competitive because lower-cost alternatives from petroleum and crop-based resources are available. Utilizing low-valued nutrient sources, implementing cost-efficient downstream processes and adopting biotechnological advancements such as systems biology and metabolic engineering could prove valuable in making an SCO platform a reality in the emerging bio-based economy. This review aims to consider key biochemical pathways for storage lipid synthesis, possible pathways for SCO yield improvement, previously used bioprocessing techniques for SCO production, challenges in SCO commercialization and advantages of adopting a renewable SCO platform. PMID:26180999

  8. 7 CFR 2902.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false 2-Cycle engine oils. 2902.25 Section 2902.25... Items § 2902.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to... procurement preference for qualifying biobased 2-cycle engine oils. By that date, Federal agencies that...

  9. Some engineering properties of heavy concrete added silica fume

    SciTech Connect

    Akkaş, Ayşe; Başyiğit, Celalettin; Esen, Serap

    2013-12-16

    Many different types of building materials have been used in building construction for years. Heavy concretes can be used as a building material for critical building as it can contain a mixture of many heavy elements. The barite itself for radiation shielding can be used and also in concrete to produce the workable concrete with a maximum density and adequate structural strength. In this study, some engineering properties like compressive strength, elasticity modules and flexure strength of heavy concretes’ added Silica fume have been investigated.

  10. 7 CFR 3201.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false 2-Cycle engine oils. 3201.25 Section 3201.25... Designated Items § 3201.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle..., will give a procurement preference for qualifying biobased 2-cycle engine oils. By that date,...

  11. 7 CFR 3201.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false 2-Cycle engine oils. 3201.25 Section 3201.25... Designated Items § 3201.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle..., will give a procurement preference for qualifying biobased 2-cycle engine oils. By that date,...

  12. 7 CFR 3201.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false 2-Cycle engine oils. 3201.25 Section 3201.25... Designated Items § 3201.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle..., will give a procurement preference for qualifying biobased 2-cycle engine oils. By that date,...

  13. Model of the world oil market with an OPEC cartel. [1980 AD to 2040 AD

    SciTech Connect

    Alsmiller, R.G. Jr.; Horwedel, J.E.; Marshalla, R.A.; Nesbitt, D.M.; Haas, S.M.

    1984-08-01

    A world oil market model (WOM) with OPEC treated as a Stackelberg cartel has been developed within the framework of the Generalized Equilibrium Modeling System (GEMS) that is available from Decision Focus, Inc. The US sector of the model is represented by a Liquid Fuels Supply model that was presented previously. The WOM model is described and results obtained with the model for the period 1980 to 2040 are presented. For comparative purposes, results obtained with the model when OPEC is treated as a competitive producer are also presented. By comparing the world oil price as a function of time from the two calculations, the influence that OPEC may have on the oil market by exploiting all of its market power is quantified. The world oil price as obtained with the WOM model is also compared with world oil price projections from a variety of sources. 22 references, 9 figures, 2 tables.

  14. Real-time measurement of engine oil economy

    SciTech Connect

    Butler, J.W.; Korniski, T.; Calvin, A.D.; Jary, E.H.

    1987-01-01

    A coulometric SO/sub 2/ monitor has been developed to measure SO/sub 2/ generated from combustion of S in oil to determine engine oil consumption. Sulfur-free fuel is used to eliminate background levels of SO/sub 2/. Addition of an SO/sub 2/ standard gas to the engine during test insures accurate normalization of sampling system flows and quantitative measurement of engine oil economy. Precision of the SO/sub 2/ microcoulometer technique was better than +-8%. The SO/sub 2/ microcoulometer is used during steady state engine operation, and may be used in determining oil consumption from individual cylinders. Existence of engine oil consumption via an aerosol mechanism is investigated and measured. Effects of engine operating temperature and positive crankcase ventilation (PCV) on engine oil economy are given.

  15. 7 CFR 2902.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false 2-Cycle engine oils. 2902.25 Section 2902.25... Items § 2902.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to... least 34 percent, which shall be based on the amount of qualifying biobased carbon in the product as...

  16. Oil recovery system for two cycle diesel engines

    SciTech Connect

    Mast, S. C.; Altman, F. D.

    1985-04-23

    A reservoir is provided with a mounting flange arrangement for reservoir attachment to an engine block to receive engine oil accumulating in an engine air box. A pump on the reservoir is intermittently activated by the vehicle electrical system to pump reservoir contents back to the engine oil sump. A reservoir outlet conduit terminates coupled to an engine dipstick opening to utilize existing block openings.

  17. Adding a visualization feature to web search engines: it's time.

    PubMed

    Wong, Pak Chung

    2008-01-01

    It's widely recognized that all Web search engines today are almost identical in presentation layout and behavior. In fact, the same presentation approach has been applied to depicting search engine results pages (SERPs) since the first Web search engine launched in 1993. In this Visualization Viewpoints article, I propose to add a visualization feature to Web search engines and suggest that the new addition can improve search engines' performance and capabilities, which in turn lead to better Web search technology. PMID:19004680

  18. ADS genes for reducing saturated fatty acid levels in seed oils

    DOEpatents

    Heilmann, Ingo H.; Shanklin, John

    2010-02-02

    The present invention relates to enzymes involved in lipid metabolism. In particular, the present invention provides coding sequences for Arabidopsis Desaturases (ADS), the encoded ADS polypeptides, and methods for using the sequences and encoded polypeptides, where such methods include decreasing and increasing saturated fatty acid content in plant seed oils.

  19. ADS genes for reducing saturated fatty acid levels in seed oils

    DOEpatents

    Heilmann, Ingo H; Shanklin, John

    2014-03-18

    The present invention relates to enzymes involved in lipid metabolism. In particular, the present invention provides coding sequences for Arabidopsis Desaturases (ADS), the encoded ADS polypeptides, and methods for using the sequences and encoded polypeptides, where such methods include decreasing and increasing saturated fatty acid content in plant seed oils.

  20. Terahertz spectroscopy properties of the selected engine oils

    NASA Astrophysics Data System (ADS)

    Zhu, Shouming; Zhao, Kun; Lu, Tian; Zhao, Songqing; Zhou, Qingli; Shi, Yulei; Zhao, Dongmei; Zhang, Cunlin

    2010-11-01

    Engine oil, most of which is extracted from petroleum, consist of complex mixtures of hydrocarbons of molecular weights in the range of 250-1000. Variable amounts of different additives are put into them to inhibit oxidation, improve the viscosity index, decrease the fluidity point and avoid foaming or settling of solid particles among others. Terahertz (THz) spectroscopy contains rich physical, chemical, and structural information of the materials. Most low-frequency vibrational and rotational spectra of many petrochemicals lie in this frequency range. In recent years, much attention has been paid to the THz spectroscopic studies of petroleum products. In this paper, the optical properties and spectroscopy of selected kinds of engine oil consisting of shell HELIX 10W-40, Mobilube GX 80W-90, GEELY ENGINE OIL SG 10W-30, SMA engine oil SG 5W-30, SMA engine oil SG 10W-30, SMA engine oil SG 75W-90 have been studied by the terahertz time-domain spectroscopy (THz-TDS) in the spectral range of 0.6-2.5 THz. Engine oil with different viscosities in the terahertz spectrum has certain regularity. In the THz-TDS, with the increase of viscosity, time delay is greater and with the increase of viscosity, refractive indexes also grow and their rank is extremely regular. The specific kinds of engine oil can be identified according to their different spectral features in the THz range. The THz-TDS technology has potentially significant impact on the engine oil analysis.

  1. U. S. Army evaluation of NATO multigraded engine oils

    SciTech Connect

    Bowen, T.C.; Frame, E.A.

    1987-01-01

    This paper discusses the United States effort in a cooperative NATO program investigating the performance characteristics of multigraded engine oils. Seven lubricants (one Grade 10W-30 oil, five Grade 15W 40 oils and a 20W-40 oil) were evaluated using the diesel engine performance tests required for qualification of MIL-L-2104D engine oils. Two test oils (one Grade 15W-40 oil and the Grade 20W-40 oil) met the 1G2 four-cycle diesel performance established for MIL-L-2104D specification. Three products (two Grade 15W-40 oils and the Grade 20W-40 oil) demonstrated acceptable 6V-53T, two-cycle, diesel performance. However, only the Grade 20W-40 oil showed acceptable performance in both tests. Based on the results of the program, one conclusion is that multigrated 15W-40 and 20W-40 oils have the capability to demonstrate acceptable diesel engine performance as defined by the MIL-L-2104D engine specification.

  2. Ruthenium oxide ion selective thin-film electrodes for engine oil acidity monitoring

    NASA Astrophysics Data System (ADS)

    Maurya, D. K.; Sardarinejad, A.; Alameh, K.

    2015-06-01

    We demonstrate the concept of a low-cost, rugged, miniaturized ion selective electrode (ISE) comprising a thin film RuO2 on platinum sensing electrode deposited using RF magnetron sputtered in conjunction with an integrated Ag/AgCl and Ag reference electrodes for engine oil acidity monitoring. Model oil samples are produced by adding nitric acid into fresh fully synthetic engine oil and used for sensor evaluation. Experimental results show a linear potential-versus-acid-concentration response for nitric acid concentration between 0 (fresh oil) to 400 ppm, which demonstrate the accuracy of the RuO2 sensor in real-time operation, making it attractive for use in cars and industrial engines.

  3. Plastic oil rings for diesel engines: A preliminary evaluation

    SciTech Connect

    Cullen, J.A.; Dixon, R.F.; Ma, J.

    1996-09-01

    The ability of a piston oil ring to conform to liner distortions during engine operation is directly related to its radial stiffness. The ability to conform is also very important for controlling lubricant oil consumption and emissions. This paper describes the procedure utilized to investigate the technical feasibility of using flexible high performance engineering plastics to replace metal as base material for oil rings. Bench tests and engines were used to select and evaluate different types of plastics for wear resistance and structural integrity.Engine test results indicated no structural failures but wear levels were found to be unacceptably high for use in durable heavy duty diesel engines.

  4. 7 CFR 3201.102 - Engine crankcase oils.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... The designation can be found in the Comprehensive Procurement Guideline, 40 CFR 247.17. ... 7 Agriculture 15 2014-01-01 2014-01-01 false Engine crankcase oils. 3201.102 Section 3201.102... Designated Items § 3201.102 Engine crankcase oils. (a) Definition. Lubricating products formulated to...

  5. Plant oils as applied to spark ignition engines

    SciTech Connect

    Hoki, M.; Liljedahl, J.B.; Takeda, S.

    1983-12-01

    Eucalyptus and orange oil blended with gasoline were used to find their burning characteristics and the effect upon engine performance. The appropriate ignition timing for the eucalyptus oil blend fuel for optimum engine performance was investigated as well as the antiknock quality of the fuel.

  6. Born–Infeld AdS black holes as heat engines

    NASA Astrophysics Data System (ADS)

    Johnson, Clifford V.

    2016-07-01

    We study the efficiency of heat engines that perform mechanical work via the pdV terms present in the first law in extended gravitational thermodynamics. We use charged black holes as the working substance, for a particular choice of engine cycle. The context is Einstein gravity with negative cosmological constant and a Born–Infeld nonlinear electrodynamics sector. We compare the results for these ‘holographic’ heat engines to previous results obtained for Einstein–Maxwell black holes, and for the case where there is a Gauss–Bonnet sector.

  7. Fish oil as an alternative fuel for internal combustion engines

    SciTech Connect

    Blythe, N.X.

    1996-12-31

    This paper presents the results of combustion studies performed with fish oil and fish oil/diesel fuel blends in a medium speed, two cycle, opposed piston engine. Performance and emissions results with blends from 10% to 100% fish oil in diesel fuel are presented. Combustion cycle analysis data comparisons are made between fish oil and diesel fuel operation. Component inspection results and analysis of deposits found in the engine after the tests are also presented. Finally, comparisons between fish oil and other biodiesel fuels are made.

  8. Hydraulic systems performance of Army engine oils

    SciTech Connect

    Marbach, H.W.; Lestz, S.J.

    1984-01-01

    A technical evaluation of qualified military specification lubricants was started by the U.S. Army Belvoir Research and Development Center and was performed at the U.S. Army Fuels and Lubricants Research Laboratory (AFLRL) located at Southwest Research Institute. This work was conducted to determine if such lubricants can be used as hydraulic fluids in Army Commercial Construction Equipment (CCE) and Selected Material Handling Equipment (SMHE). Sixteen military specification lubricants were extensively evaluated using twelve selected tests required by equipment manufacturers and one test developed by AFLRL in conjunction with John Deere. From the data developed, lubricants meeting Army specifications passed 88 percent of all the tests. It appears that the Army engine oils are good potential candidates for use as hydraulic and power transmission lubricants within the Army CCE/SMHE systems. Areas of concern include copper corrosion, wet brake/clutch frictional performance, and final drive gear wear.

  9. Orange oil and its application to spark ignition engine

    SciTech Connect

    Takeda, S.

    1982-12-01

    Orange oil can be extracted from the peel of citrus. In Japan the production of orange oil is about 2000 tons per year. No orange oil has been however used for any specific purpose. The main ingredient of orange oil consists of d-limonen. About 0.6-1.0% oil can be extracted from the peel of ''Unshu orange'', which is a kind of typical Japanese tangerine. Orange oil has 106-140 research octane number which is good for running the CFR engine. The flash point of orange oil measured by Pensky-Martens method was at 56/sup 0/C. For the use of orange oil only as fuel without blending, there was found to be some difficulty in engine startability under cold conditions.

  10. Release properties on gelatin-gum arabic microcapsules containing camphor oil with added polystyrene.

    PubMed

    Chang, Chih-Pong; Leung, Ting-Kai; Lin, Shang-Ming; Hsu, Che-Chang

    2006-07-01

    In this study, gelatin blended with arabic gum microcapsules containing camphor oil with added polystyrene were fabricated by a compound coacervation method. The parameters of oil/wall volume ratio, emulsification stirring speed, concentration of cross-linking agent, treated time and oil release properties were investigated. In order to improve the constant release effect of camphor oil, oil-soluble polystyrene (PS) was used as a sustained release agent. The camphor oil release curves were expressed by the exponential equation: psi(t)=C(eq)(1-e(-t/tau)), where psi(t) represent the variant of camphor oil concentration in the operation environment, C(eq) as the equilibrium state, t as the release time and tau as time constant. C(eq) and tau are significant factors pertaining to the camphor oil release properties. The results indicated that, for the microcapsules, the optimal oil/wall volume ratio was 0.75 to achieve the encapsulation efficiency of 99.6 wt.%. The average particle size were 294.7+/-14.2 microm, 167.2+/-11.2 microm, 85.7+/-8.7 microm at the homogenization stirring speed of 500, 1000, and 2000 rpm, respectively. The effect of sustained oil release will increase whereas the stirring speed decreases and the concentration of glutaraldehyde (GA) and treated time increases. Along with the increasing of quantity of polystyrene added, C(eq) decreased and tau increased, indicating that the sustained oil release amount and the release rate depend on the quantity of PS considerably. PMID:16797942

  11. Evaluation of preservative engine oil containing vapor-phase corrosion inhibitor and a simplified engine-preservation technique. Interim report, Jul 85-Sep 90

    SciTech Connect

    Frame, E.A.

    1990-12-01

    The objectives of this project were: (1) to determine the feasibility of adding a vapor-phase corrosion inhibitor (VCI) component to improve the preservation performance of MIL-L-21260 and (2) to evaluate a less complicated engine preservation procedure. A simultaneous two-phase approach was conducted. Phase 1 involved the formulation and evaluation of experimental VCI oils, while Phase 2 was the evaluation of a simplified engine preservation procedure. VCI oil formulation was conducted by Ronco Laboratory under subcontract. Compatibility of the experimental VCI oils with metal coupons, elastomers, and fuel filters was determined. Effectiveness of the experimental VCI oil was evaluated in a 3-year outdoor engine storage test. The engines were preserved using an experimental, simplified preservation procedure. The simplified engine preservation procedure proved to be acceptable as engines stored for 3 years in a very severe environment were judged to have been adequately preserved. Engine oil meeting specification MIL-L-21260 provided satisfactory protection during the 3-year storage test. The experimental VCI oil also provided satisfactory storage protection during this test; however, there was no observable advantage for the VCI oil. The VCI oil had acceptable compatibility with an elastomeric flex ring, metal coupons (except lead), and fuel filters.

  12. Quality improvement of pyrolysis oil from waste rubber by adding sawdust

    SciTech Connect

    Wang, Wen-liang; Chang, Jian-min; Cai, Li-ping; Shi, Sheldon Q.

    2014-12-15

    Highlights: • Rubber-pyrolysis oil is difficult to be fuel due to high proportion of PAHs. • The efficiency of pyrolysis was increased as the percentage of sawdust increased. • The adding of sawdust improved pyrolysis oil quality by reducing the PAHs content. • Adding sawdust reduced nitrogen/sulfur in oil and was easier to convert to diesel. - Abstract: This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during the pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG–FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis–gas chromatography (GC)–mass spectrometry (Py–GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2 s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil.

  13. Performance of Diesel Engine Using Blended Crude Jatropha Oil

    NASA Astrophysics Data System (ADS)

    Kamarudin, Kamarul Azhar; Mohd Sazali, Nor Shahida Akma; Mohd Ali, Mas Fauzi; Alimin, Ahmad Jais; Khir, Saffiah Abdullah

    2010-06-01

    Vegetable oil presents a very promising alternative to diesel oil since it is renewable and has similar properties to the diesel. In view of this, crude jatropha oil is selected and its viscosity is reduced by blending it with diesel. Since jatropha oil has properties which are similar to mineral diesel, it can be used in compression ignition engines without any engine modification. This paper presents the results of investigation carried out on a four-cylinder, four strokes and indirect-injection diesel engine. The engine, operated using composition blends of crude jatropha oil and diesel, were compared with mineral diesel. An experimental investigation has been carried out to analyze the performance characteristics of a compression ignition engine from the blended fuel (5%, 10%, 20% and 30%). A naturally aspirated four-stroke indirect injection diesel engine was tested at full load conditions, speeds between 1000 and 3500 rpm with intervals of 500 rpm. Results obtained from the measures of torque, power, specific fuel consumptions, thermal efficiency and brake mean effective pressure are nearly the same between blended and diesel fuel. An overall graph shows that the performance of relevant parameters from blended fuel is most likely similar to the performance produced from diesel. The experimental results proved that the use of crude jatropha oil in compression ignition engines is a viable alternative to diesel.

  14. Final engineering test for AdOpt@TNG

    NASA Astrophysics Data System (ADS)

    Ragazzoni, Roberto; Baruffolo, Andrea; Farinato, Jacopo; Ghedina, Adriano; Mallucci, Sergio; Marchetti, Enrico; Niero, Tiziano

    1998-09-01

    The adaptive optics modules for the Italian Telescopio Nazionale Galileo, namely AdOptTNG, is ready to be mounted at the telescope. First light will take place with the tip- tilt loop working, about which further laboratory test has been made during the last month. Also, the speckle camera with the real time autocorrelation feature has been completely finished and tested. The tracking system which allow to use moving references has been completed. For what regards the higher order loop the contracts about the DM and the CCD controller have been successfully concluded. Moreover, the wavefront sensing unit has been in large part built and tested in the laboratory. Details of the integration in the Nasmith Interface carrying the CCD scientific camera and the IR Imager are given together with a thorough description of the internal acceptance test of the optomechanical module comprising more than 20 motorized axes and several functioning modes.

  15. 21. Power plant engine fuel oil piping diagrams, sheet 83 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Power plant engine fuel oil piping diagrams, sheet 83 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  16. Oil cooling system for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.; Kast, H. B. (Inventor)

    1977-01-01

    A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess of fuel control requirements back to aircraft fuel tank, thereby increasing the fuel pump heat sink and decreasing the pump temperature rise without the addition of valving other than that normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. Fluid circuitry is provided to route hot engine oil through a plurality of heat exchangers disposed within the system to provide for selective cooling of the oil.

  17. Long term testing of peanut oil in engines

    SciTech Connect

    Goodrum, J.W.

    1985-01-01

    Durability tests of engines using crude peanut oil blended with no. 2 diesel were conducted, using the E.M.A. screening procedure. Direct and indirect injection designs were operated on 20:80 and 80:28 fuel blends. Time-dependent exhaust temperature changes, mechanical wear, and crank-case oil viscosity changes were evaluated.

  18. Improving peppermint essential oil yield and composition by metabolic engineering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peppermint (Mentha x piperita L.) was transformed with various gene constructs to evaluate the utility of metabolic engineering for improving essential oil yield and composition. Oil yield increases were achieved by overexpressing genes involved in the supply of precursors through the 2C-methyl-D-er...

  19. Spacecraft Testing Programs: Adding Value to the Systems Engineering Process

    NASA Technical Reports Server (NTRS)

    Britton, Keith J.; Schaible, Dawn M.

    2011-01-01

    Testing has long been recognized as a critical component of spacecraft development activities - yet many major systems failures may have been prevented with more rigorous testing programs. The question is why is more testing not being conducted? Given unlimited resources, more testing would likely be included in a spacecraft development program. Striking the right balance between too much testing and not enough has been a long-term challenge for many industries. The objective of this paper is to discuss some of the barriers, enablers, and best practices for developing and sustaining a strong test program and testing team. This paper will also explore the testing decision factors used by managers; the varying attitudes toward testing; methods to develop strong test engineers; and the influence of behavior, culture and processes on testing programs. KEY WORDS: Risk, Integration and Test, Validation, Verification, Test Program Development

  20. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    NASA Astrophysics Data System (ADS)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  1. Improving peppermint essential oil yield and composition by metabolic engineering

    PubMed Central

    Lange, Bernd Markus; Mahmoud, Soheil Seyed; Wildung, Mark R.; Turner, Glenn W.; Davis, Edward M.; Lange, Iris; Baker, Raymond C.; Boydston, Rick A.; Croteau, Rodney B.

    2011-01-01

    Peppermint (Mentha × piperita L.) was transformed with various gene constructs to evaluate the utility of metabolic engineering for improving essential oil yield and composition. Oil yield increases were achieved by overexpressing genes involved in the supply of precursors through the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. Two-gene combinations to enhance both oil yield and composition in a single transgenic line were assessed as well. The most promising results were obtained by transforming plants expressing an antisense version of (+)-menthofuran synthase, which is critical for adjusting the levels of specific undesirable oil constituents, with a construct for the overexpression of the MEP pathway gene 1-deoxy-D-xylulose 5-phosphate reductoisomerase (up to 61% oil yield increase over wild-type controls with low levels of the undesirable side-product (+)-menthofuran and its intermediate (+)-pulegone). Elite transgenic lines were advanced to multiyear field trials, which demonstrated consistent oil yield increases of up to 78% over wild-type controls and desirable effects on oil composition under commercial growth conditions. The transgenic expression of a gene encoding (+)-limonene synthase was used to accumulate elevated levels of (+)-limonene, which allows oil derived from transgenic plants to be recognized during the processing of commercial formulations containing peppermint oil. Our study illustrates the utility of metabolic engineering for the sustainable agricultural production of high quality essential oils at a competitive cost. PMID:21963983

  2. Improving peppermint essential oil yield and composition by metabolic engineering.

    PubMed

    Lange, Bernd Markus; Mahmoud, Soheil Seyed; Wildung, Mark R; Turner, Glenn W; Davis, Edward M; Lange, Iris; Baker, Raymond C; Boydston, Rick A; Croteau, Rodney B

    2011-10-11

    Peppermint (Mentha × piperita L.) was transformed with various gene constructs to evaluate the utility of metabolic engineering for improving essential oil yield and composition. Oil yield increases were achieved by overexpressing genes involved in the supply of precursors through the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. Two-gene combinations to enhance both oil yield and composition in a single transgenic line were assessed as well. The most promising results were obtained by transforming plants expressing an antisense version of (+)-menthofuran synthase, which is critical for adjusting the levels of specific undesirable oil constituents, with a construct for the overexpression of the MEP pathway gene 1-deoxy-D-xylulose 5-phosphate reductoisomerase (up to 61% oil yield increase over wild-type controls with low levels of the undesirable side-product (+)-menthofuran and its intermediate (+)-pulegone). Elite transgenic lines were advanced to multiyear field trials, which demonstrated consistent oil yield increases of up to 78% over wild-type controls and desirable effects on oil composition under commercial growth conditions. The transgenic expression of a gene encoding (+)-limonene synthase was used to accumulate elevated levels of (+)-limonene, which allows oil derived from transgenic plants to be recognized during the processing of commercial formulations containing peppermint oil. Our study illustrates the utility of metabolic engineering for the sustainable agricultural production of high quality essential oils at a competitive cost. PMID:21963983

  3. Storage stability of sunflower oil with added natural antioxidant concentrate from sesame seed oil.

    PubMed

    Nasirullah; Latha, R Baby

    2009-01-01

    Demand for use of natural additives such as nutraceuticals, antioxidants, coloring and flavoring matter is continuously increasing world over. It is due to nutritional awareness among the masses and belief that most of the natural products are safe for human consumption. Interest has been shown recently on the use of natural antioxidants from oil seeds. Hence, oils obtained from sesame (Sesamum indicum) had been utilized for this purpose. Oils were thermally treated (T) to enhance the sesamol content from 4,900 to 9,500 ppm. A portion of resultant oil had been extracted with ethanol in a controlled conditions to yield a concentrate (ESSO-T) with sesamol content of 28,500 ppm. Whereas another portion after silica gel column separation yielded a concentrate (SSO-TFII) with sesamol content of 27,100 ppm. Refined sunflower oil without antioxidant was mixed with ESSO-T and SSO-TFII separately at the level of 2,000, 1,000, 500 and 200 ppm and its storage stability assessed was at ambient (22-28 degrees C) and elevated (37 degrees C) temperatures. Peroxide value (PV) and Free Fatty Acid content (FFA) of samples were estimated at intervals of 2 weeks for a total storage period of 12 weeks. Results indicated that ESSO-T at the level of 500 ppm had maximum protective effect on refined sunflower oil, where PV and FFA were found ranging between 2.1 to 5.9 and 0.10 to 0.15%; and 4.1 to 9.8 and 0.11 to 0.21% for samples stored at ambient and elevated conditions respectively. The storage stability of this sample was very close to the storage stability of sunflower oil containing TBHQ at 200 ppm. Comparatively in sunflower oil without antioxidant PV and FFA had gone up from 2.0 to 45.4 and 0.11 to 1.3% at ambient and 2.0 to 56.4 and 0.11 to 2.8% at elevated temperatures. PMID:19654454

  4. [Application of PCA to diesel engine oil spectrometric analysis].

    PubMed

    Liu, Tao; Tian, Hong-Xiang; Guo, Wen-Yong

    2010-03-01

    In order to study wear characteristics of a 6-cylinder diesel engine, six different working statuses were arranged by altering the clearance between cylinder and piston. Sixty-nine oil samples were taken from engine at different loads under 6 working statuses and analyzed by Spectroil M Instrument made in US. Principal component analysis (PCA) was applied to analyzing spectrometric data of sixty-nine oil samples and clustering those data according to elements and oil samples separately based on the weighted coefficient and principal component scores. All 21 elements were used in element clustering and only 6 wear-related elements, namely iron, chromium, aluminum, copper, plumbum and silicon, were used in sample clustering. It is shown that PCA effectively clustered oil spectrometric data into three different principal components according to elements. The projection of two different principal components exhibited five types of elements combinations, namely wear elements (Fe, Cr, Cu, Al and Pb), high concentration additives elements (Na, Zn, P, Ca and Mg), low concentration additives elements (Ba and B), base constituent of lubricating oils (C and H) and interferential elements (Ni, Ti, Mo, V, Ag and Sn). Furthermore, PCA clearly clustered oil samples according to different clearance between cylinder and piston in the diesel engine. The study suggests that analyzing oil spectrographic data by PCA could find the sources of different elements, monitor engine conditions and diagnose wear faults. PMID:20496708

  5. Magnetorheology of suspensions based on graphene oxide coated or added carbonyl iron microspheres and sunflower oil

    NASA Astrophysics Data System (ADS)

    Chen, Kaikai; Zhang, Wen Ling; Shan, Lei; Zhang, Xiangjun; Meng, Yonggang; Choi, Hyoung Jin; Tian, Yu

    2014-10-01

    Magnetorheological (MR) fluids based on carbonyl iron (CI) particles coated with graphene oxide (GO) and sunflower oils were studied and compared with MR fluids (MRFs) prepared with CI particles added with GO sheets. Adding GO sheets into CI had a negligible effect on the rheological properties of the MRF. Coating the spheres with GO markedly decreased the shear strength at high shear rates due to the remarkable lubricating function of the GO surface. Different behaviors were observed in the shear thickening phenomenon when the GO surface changed the mechanical interaction between particles. The results demonstrated the importance of the role of interparticle friction for MRF in shear mode and discussed the weak shear thickening phenomenon with fine lubricating coating layers and oils.

  6. Engineered microbes and methods for microbial oil production

    DOEpatents

    Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar

    2015-02-10

    Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis and storage properties.

  7. Short-term performance of diesel oil and sunflower oil mixtures in diesel engines

    SciTech Connect

    Kaufman, K.R.; Ziejewski, M.; Marohl, M.; Kucera, H.L.

    1982-05-01

    A series of short tests were run on two different makes of diesel tractor. The fuel used in addition to the No. 2 diesel fuel were refined sunflower oil, crude sunflower oil and five blends of each of these fuels with No. 2 diesel fuel. Engine performance parameters measured include: engine power, volumetric fuel efficiency, thermal efficiency, exhaust temperature, Bosch smoke number and fuel flow. (Refs. 3).

  8. Cholesterol Lowering Effect of Plant Stanol Ester Yoghurt Drinks with Added Camelina Oil

    PubMed Central

    Salo, Pia; Kuusisto, Päivi

    2016-01-01

    The aim of this study was to investigate the effects of yoghurt minidrinks containing two doses of plant stanol ester either with or without added camelina oil on the serum cholesterol levels in moderately hypercholesterolemic subjects. In this randomised, double-blind, parallel group study, 143 subjects consumed a 65 mL minidrink together with a meal daily for four weeks. The minidrink contained 1.6 or 2.0 grams of plant stanols with or without 2 grams of alpha-linolenic acid-rich camelina oil. The placebo minidrink did not contain plant stanols or camelina oil. All plant stanol treated groups showed statistically significant total, LDL, and non-HDL cholesterol lowering relative to baseline and relative to placebo. Compared to placebo, LDL cholesterol was lowered by 9.4% (p < 0.01) and 8.1% (p < 0.01) with 1.6 g and 2 g plant stanols, respectively. With addition of Camelina oil, 1.6 g plant stanols resulted in 11.0% (p < 0.01) and 2 g plant stanols in 8.4% (p < 0.01) reduction in LDL cholesterol compared to placebo. In conclusion, yoghurt minidrinks with plant stanol ester reduced serum LDL cholesterol significantly and addition of a small amount of camelina oil did not significantly enhance the cholesterol lowering effect. This trial was registered with ClinicalTrials.gov NCT02628990. PMID:26998355

  9. Cholesterol Lowering Effect of Plant Stanol Ester Yoghurt Drinks with Added Camelina Oil.

    PubMed

    Salo, Pia; Kuusisto, Päivi

    2016-01-01

    The aim of this study was to investigate the effects of yoghurt minidrinks containing two doses of plant stanol ester either with or without added camelina oil on the serum cholesterol levels in moderately hypercholesterolemic subjects. In this randomised, double-blind, parallel group study, 143 subjects consumed a 65 mL minidrink together with a meal daily for four weeks. The minidrink contained 1.6 or 2.0 grams of plant stanols with or without 2 grams of alpha-linolenic acid-rich camelina oil. The placebo minidrink did not contain plant stanols or camelina oil. All plant stanol treated groups showed statistically significant total, LDL, and non-HDL cholesterol lowering relative to baseline and relative to placebo. Compared to placebo, LDL cholesterol was lowered by 9.4% (p < 0.01) and 8.1% (p < 0.01) with 1.6 g and 2 g plant stanols, respectively. With addition of Camelina oil, 1.6 g plant stanols resulted in 11.0% (p < 0.01) and 2 g plant stanols in 8.4% (p < 0.01) reduction in LDL cholesterol compared to placebo. In conclusion, yoghurt minidrinks with plant stanol ester reduced serum LDL cholesterol significantly and addition of a small amount of camelina oil did not significantly enhance the cholesterol lowering effect. This trial was registered with ClinicalTrials.gov NCT02628990. PMID:26998355

  10. Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films.

    PubMed

    Avila-Sosa, Raúl; Palou, Enrique; Jiménez Munguía, María Teresa; Nevárez-Moorillón, Guadalupe Virginia; Navarro Cruz, Addí Rhode; López-Malo, Aurelio

    2012-02-01

    Antimicrobial agents can be incorporated into edible films to provide microbiological stability, since films can be used as carriers of a variety of additives to extend product shelf life and reduce the risk of microbial growth on food surfaces. Addition of antimicrobial agents to edible films offers advantages such as the use of small antimicrobial concentrations and low diffusion rates. The aim of this study was to evaluate inhibition by vapor contact of Aspergillus niger and Penicillium digitatum by selected concentrations of Mexican oregano (Lippia berlandieri Schauer), cinnamon (Cinnamomum verum) or lemongrass (Cymbopogon citratus) essential oils (EOs) added to amaranth, chitosan, or starch edible films. Essential oils were characterized by gas chromatography-mass spectrometry (GC/MS) analysis. Amaranth, chitosan and starch edible films were formulated with essential oil concentrations of 0.00, 0.25, 0.50, 0.75, 1.00, 2.00, or 4.00%. Antifungal activity was evaluated by determining the mold radial growth on agar media inoculated with A. niger and P. digitatum after exposure to vapors arising from essential oils added to amaranth, chitosan or starch films using the inverted lid technique. The modified Gompertz model adequately described mold growth curves (mean coefficient of determination 0.991 ± 0.05). Chitosan films exhibited better antifungal effectiveness (inhibition of A. niger with 0.25% of Mexican oregano and cinnamon EO; inhibition of P. digitatum with 0.50% EOs) than amaranth films (2.00 and 4.00% of cinnamon and Mexican oregano EO were needed to inhibit the studied molds, respectively). For chitosan and amaranth films a significant increase (p<0.05) of lag phase was observed among film concentrations while a significant decrease (p<0.05) of maximum specific growth was determined. Chitosan edible films incorporating Mexican oregano or cinnamon essential oil could improve the quality of foods by the action of the volatile compounds on surface growth

  11. FTIR analysis and monitoring of synthetic aviation engine oils.

    PubMed

    Adams, Mike J; Romeo, Melissa J; Rawson, Paul

    2007-10-15

    Synthetic turbine oils from military aircraft engines were analysed for antioxidant content and total acid number using infrared (IR) spectroscopy. Two-dimensional IR correlation analysis was employed to investigate and interpret observed trends in the spectra, as acid was formed and antioxidant species were depleted in the oils, as a function of aging and engine wear. Principal components and partial least squares algorithms were used and compared for the development of calibration and prediction models. Transmission IR spectrometry is demonstrated to be effective for the analysis and monitoring of synthetic aviation turbine engine oils and shown to provide rapid and accurate information as compared with traditional analytical techniques and methods. PMID:19073081

  12. Quality improvement of pyrolysis oil from waste rubber by adding sawdust.

    PubMed

    Wang, Wen-liang; Chang, Jian-min; Cai, Li-ping; Shi, Sheldon Q

    2014-12-01

    This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during the pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG-FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis-gas chromatography (GC)-mass spectrometry (Py-GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil. PMID:25223439

  13. Single-cylinder diesel engine study of four vegetable oils

    SciTech Connect

    Jacobus, M.J.; Geyer, S.M.; Lestz, S.S.; Risby, T.M.; Taylor, W.D.

    1983-10-01

    A single-cylinder, 0.36l, D.I. Diesel engine was operated on Diesel fuel, sunflowerseed oil, cottonseed oil, soybean oil, and peanut oil. The purpose of this study was to provide a detailed comparison of performance and emissions data and to characterize the biological activity of the particulate soluble organic fraction for each fuel using the Ames Salmonella typhimurium test. In addition, exhaust gas aldehyde samples were collected using the DNPH method. These samples were analyzed gravimetrically and separated into components from formaldehyde to heptaldehyde with a gas chromatograph. Results comparing the vegetable oils to Diesel fuel generally show slight improvements in thermal efficiency and indicated specific energy consumption; equal or higher gas-phase emissions; lower indicated specific revertant emissions; and significantly higher aldehyde emissions, including an increased percentage of formaldehyde.

  14. Conductometric sensors for monitoring degradation of automotive engine oil.

    PubMed

    Latif, Usman; Dickert, Franz L

    2011-01-01

    Conductometric sensors have been fabricated by applying imprinted polymers as receptors for monitoring engine oil quality. Titania and silica layers are synthesized via the sol-gel technique and used as recognition materials for acidic components present in used lubricating oil. Thin-film gold electrodes forming an interdigitated structure are used as transducers to measure the conductance of polymer coatings. Optimization of layer composition is carried out by varying the precursors, e.g., dimethylaminopropyltrimethoxysilane (DMAPTMS), and aminopropyl-triethoxysilane (APTES). Characterization of these sensitive materials is performed by testing against oil oxidation products, e.g., carbonic acids. The results depict that imprinted aminopropyltriethoxysilane (APTES) polymer is a promising candidate for detecting the age of used lubricating oil. In the next strategy, polyurethane-nanotubes composite as sensitive material is synthesized, producing appreciable differentiation pattern between fresh and used oils at elevated temperature with enhanced sensitivity. PMID:22164094

  15. ADS support for Hardy Oil`s subsea projects: Simple and cost effective

    SciTech Connect

    Gorman, N.; McCullough, G.; Subik, D.

    1996-12-31

    The use of Atmospheric Diving Systems in support of the Shasta and Mustique Subsea Field Developments for Hardy Oil and Gas and Texaco is reviewed as a simple and cost-effective solution to the subsea intervention requirements of underwater completion tiebacks. The design and installation of the pull-tube system for dual flowlines and a control umbilical on Texaco`s Green Canyon 6A Platform is reviewed as an example of how Atmospheric Diving Systems can be utilized to perform the difficult subsea construction of a pull-tube system on an existing deepwater platform. The design and installation of the flexible flowline jumpers and umbilical flying leads connecting the three subsea trees to the flowline termination skids and the umbilical termination assemblies is reviewed as an example of how Atmospheric Diving Systems can be utilized to connect flowlines and control umbilicals to subsea trees with standard bolted flanged connections and flying leads using the well completion drill rig as a work platform.

  16. FRYING STABILITY OF PURIFIED MID-OLEIC SUNFLOWER OIL TRIACYLGLYCEROLS WITH ADDED PURE TOCOPHEROLS AND TOCOPHEROL MIXTURES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the effects of the addition of pure tocopherols to triacylglycerols, alpha, gamma, and delta tocopherols were added singly and in various combinations to stripped mid-oleic sunflower oil (SMOSUN). Tortilla chips were fried in the treated oils and then aged at ambient temperature to det...

  17. Oil layer as source of hydrocarbon emissions in SI engines

    SciTech Connect

    Min, K.; Cheng, W.K.

    1998-07-01

    The role of lubrication oil film on the cylinder liner as a source of hydrocarbon emissions in spark-ignition engines is assessed. First, the source strength is examined via an analytical model of the gasoline vapor absorption/desorption process. The solution shows that depending on engine operating conditions, there are three regimes. The process could be (1) limited by the gas side diffusion process, (2) limited by the liquid phase diffusion process, with the absorbed fuel fully penetrating the oil layer thickness (thin oil film regime), and (3) again limited by the liquid phase diffusion process, but with the absorbed fuel penetration depth small compared to the oil layer thickness (thick oil film regime). In regime (1), the source strength (the integrated absorption or desorption flux over one cycle) is proportional to the inverse of the square root of the rpm, but independent of oil layer parameters. In regimes (2), the strength is proportional to the oil film thickness divided by the Henry`s constant. In regime (3), the strength is independent of the oil film thickness, but is proportional to the fuel penetration depth divided by the Henry`s constant. Then, the oxidation of the desorbed fuel (using iso-octane as fuel) is examined with a one-dimensional reaction/diffusion model. The novel feature of the model is that the desorbed fuel is being exposed to the piston crevice hydrocarbon, which is laid along the liner as the piston descends. At stoichiometric conditions, the oxidation of the crevice HC is reduced by the presence of the desorbed HC from the oil layer.

  18. Oil layer as source of hydrocarbon emissions in SI engine

    SciTech Connect

    Min, K.; Cheng, W.K.

    1996-12-31

    The role of lubrication oil film on the cylinder liner as a source of hydrogen emissions in spark ignition engines is assessed. First, the source strength is examined via an analytical model of the gasoline vapor absorption/desorption process. The solution shows that depending on engine operating conditions, there are three regimes. The process could be (i) limited by the gas side diffusion process; (ii) limited by the liquid phase diffusion process, with the absorbed fuel fully penetrating the oil layer thickness (thin oil film regime); and (iii) again limited by the liquid phase diffusion process, but with the absorbed fuel penetration depth small compared to the oil layer thickness (thick oil film regime). In regime (i), the source strength (the integrated absorption or desorption flux over one cycle) is proportional to the square root of the rpm but independent of oil layer parameters. In regime (ii), the strength is proportional to the oil film thickness divided by the Henry`s constant. In regime (iii), the strength is independent of the oil film thickness, but is proportional to the fuel penetration depth divided by the Henry`s constant. Then the oxidation of the desorbed fuel (using iso-octane as fuel) is examined with a one dimensional reaction/diffusion model. The novel feature of the model is that the desorbed fuel is being exposed to the piston crevice hydrogen which is laid along the liner as the piston descends. At stoichiometric condition, the oxidation of the crevice HC is reduced by the presence of the desorbed HC from the oil layer.

  19. Viscosity of diesel engine fuel oil under pressure

    NASA Technical Reports Server (NTRS)

    Hersey, Mayo D

    1929-01-01

    In the development of Diesel engine fuel injection systems it is necessary to have an approximate knowledge of the absolute viscosity of the fuel oil under high hydrostatic pressures. This report presents the results of experimental tests conducted by Mr. Jackson Newton Shore, utilizing the A.S.M.E. high pressure equipment.

  20. Engineering Lesquerella for Safe Castor Oil Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a part of genetic approach to engineering ricinoleate synthesis, we investigated the seed development in L. fendleri. The morphological, physiological and biochemical changes during seed development of Lesquerella fendleri were characterized from 7 days after pollination (DAP) to desiccation. The...

  1. 7 Processes that Enable NASA Software Engineering Technologies: Value-Added Process Engineering

    NASA Technical Reports Server (NTRS)

    Housch, Helen; Godfrey, Sally

    2011-01-01

    The presentation reviews Agency process requirements and the purpose, benefits, and experiences or seven software engineering processes. The processes include: product integration, configuration management, verification, software assurance, measurement and analysis, requirements management, and planning and monitoring.

  2. Oil cooling system for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.; Kast, H. B. (Inventor)

    1977-01-01

    A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess fuel control requirements back to the aircraft fuel tank. This increases the fuel pump heat sink and decreases the pump temperature rise without the addition of valving other than normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. In one embodiment, a divider valve is provided to take all excess fuel from either upstream or downstream of the fuel filter and route it back to the tanks, the ratio of upstream to downstream extraction being a function of fuel pump discharge pressure.

  3. Location and Influence of Added Block Copolymers on the Droplet Size in Oil-in-Oil Emulsions.

    PubMed

    Asano, Itaru; So, Soonyong; Lodge, Timothy P

    2015-07-14

    We have investigated the effect of added polystyrene-b-poly(ethylene oxide) (SO) copolymer on the stability of oil-in-oil (O/O) emulsions containing polystyrene (PS) and poly(ethylene glycol) (PEG) in chloroform (CHCl3) and directly visualized the location of SO in the emulsions by using dye-labeled SO (SO*) with confocal laser scanning microscopy (CLSM). The emulsion formed by PS/PEG/CHCl3 = 14/6/80 (wt %) consisted of a droplet phase of PS in CHCl3 and a continuous phase containing PEG in CHCl3. SO*s with various molecular weights (Mn,SO) and volume fractions of the PS block in SO (fPS) were prepared via living anionic polymerization and subsequent end-esterification. The effect of SO on the droplet size in the emulsions was investigated as a function of both Mn,SO and fPS. Increasing Mn,SO and decreasing fPS were effective at reducing the droplet size down to less than 1 μm, which is 100 times smaller than in the absence of SO. The location of SO*s in the O/O emulsions was further investigated by CLSM. We found that the location of SO*s changed from the droplet interior to the liquid-liquid interface and then to the continuous phase with decreasing fPS. We discuss the possible mechanism in terms of the relation of SO* location to the droplet size. PMID:26134549

  4. Esterified sago waste for engine oil removal in aqueous environment.

    PubMed

    Ngaini, Zainab; Noh, Farid; Wahi, Rafeah

    2014-01-01

    Agro-waste from the bark of Metroxylon sagu (sago) was studied as a low cost and effective oil sorbent in dry and aqueous environments. Sorption study was conducted using untreated sago bark (SB) and esterified sago bark (ESB) in used engine oil. Characterization study showed that esterification has successfully improved the hydrophobicity, buoyancy, surface roughness and oil sorption capacity of ESB. Sorption study revealed that water uptake of SB is higher (30 min static: 2.46 g/g, dynamic: 2.67 g/g) compared with ESB (30 min static: 0.18 g/g, dynamic: 0.14 g/g). ESB, however, showed higher oil sorption capacity in aqueous environment (30 min static: 2.30 g/g, dynamic: 2.14) compared with SB (30 min static: 0 g/g, dynamic: 0 g/g). ESB has shown great poTENTial as effective oil sorbent in aqueous environment due to its high oil sorption capacity, low water uptake and high buoyancy. PMID:25176478

  5. Gas Turbine Engine Carbon Oil Seals Computerized Assembly

    NASA Technical Reports Server (NTRS)

    Lee, Robert

    2006-01-01

    In a bearing compartment there are a series of parts when assembled determine the location of the bearing and seal as related to the centerline of rotation. We see part datums that do not establish A coincident path from the bearing to the seal. High engine vibration can cause severe oil leakage. The inability of the seal to respond fast enough to the rotating element Radial Seal: Sensitive to housing air pressure Sensitive to seal runout ? Axial Seal: Very sensitive to seal perpendicularity to shaft. Goals include: 1) Repeatable assembly process; 2) Accurate assembly process; 3) Minimize seal runout; 4) Design to engine centerline of rotation, i.e. bearings.

  6. Biodegradation of engine oil by fungi from mangrove habitat.

    PubMed

    Ameen, Fuad; Hadi, Sarfaraz; Moslem, Mohamed; Al-Sabri, Ahmed; Yassin, Mohamed A

    2015-01-01

    The pollution of land and water by petroleum compounds is a matter of growing concern necessitating the development of methodologies, including microbial biodegradation, to minimize the impending impacts. It has been extensively reported that fungi from polluted habitats have the potential to degrade pollutants, including petroleum compounds. The Red Sea is used extensively for the transport of oil and is substantially polluted, due to leaks, spills, and occasional accidents. Tidal water, floating debris, and soil sediment were collected from mangrove stands on three polluted sites along the Red Sea coast of Saudi Arabia and forty-five fungal isolates belonging to 13 genera were recovered from these samples. The isolates were identified on the basis of a sequence analysis of the 18S rRNA gene fragment. Nine of these isolates were found to be able to grow in association with engine oil, as the sole carbon source, under in vitro conditions. These selected isolates and their consortium accumulated greater biomass, liberated more CO2, and produced higher levels of extracellular enzymes, during cultivation with engine oil as compared with the controls. These observations were authenticated by gas chromatography-mass spectrophotometry (GC-MS) analysis, which indicated that many high mass compounds present in the oil before treatment either disappeared or showed diminished levels. PMID:26582288

  7. Inverse gas chromatography and other chromatographic techniques in the examination of engine oils.

    PubMed

    Fall, Jacek; Voelkel, Adam

    2002-09-01

    The emerging market of engine oils consists of a number of products from different viscosity and quality classes. Determination of the base oil used in manufacturing of the final product (engine oil) as well as estimation of mutual miscibility of oils and their solubility could be crucial problems. Inverse gas chromatography and other chromatographic techniques are presented as an interesting and fruitful extension of normalised standard analytical methods used in the oil industry. PMID:12385390

  8. Performance and emissions characteristics of a naturally aspirated diesel engine with vegetable oil fuels - 2

    SciTech Connect

    Humke, A.L.; Barsic, N.J.

    1981-01-01

    A naturally aspirated, direct injected diesel engine was used to evaluate the performance and emissions characteristics of a crude soybean oil, a 50 percent (by volume) mixture of crude soybean oil and no. 2 diesel fuel, and a degummed soybean oil. The data were compared with previous tests conducted on the same engine using diesel fuel, crude sunflower oil and a 50 percent mixture of crude sunflower oil and diesel fuel. 18 refs.

  9. MHD generator performance comparisons between coal + ash firing. [Coal versus fuel oil with ashes added

    SciTech Connect

    Petty, S.; Enos, G.; Kessler, R.; Swallom, D.

    1983-08-01

    A two-stage slagging coal combustor developed by TRW Corporation, was successfully integrated with an MHD generator developed by the Avco Corporation, when the two companies cooperated in an operational demonstration of a coal fired MHD power train under the sponsorship of DOE. The experimental components, rated at a nominal 20 MW thermal input, are the engineering prototypes of 50 MW /SUB th/ hardware to be supplied by the contractors to the recently commissioned Component Development and Integration Facility (CDIF), a federal MHD test site in Butte, Montana. A second series of tests was conducted in which the same channel and operating parameters were employed with an oil-fired ash-injected combustor (AIC) to provide performance comparisons. The only significant performance variation uncovered in the comparison tests was attributable to a non-optimum method and location for seed injection in the coal-fired combustor. The corrective measures are deemed to be relatively straightforward.

  10. Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages

    DOEpatents

    Boggs, D.L.; Baraszu, D.J.; Foulkes, D.M.; Gomes, E.G.

    1998-12-29

    An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine`s crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages. 4 figs.

  11. Application of microwave irradiation for the removal of polychlorinated biphenyls from siloxane transformer and hydrocarbon engine oils.

    PubMed

    Antonetti, Claudia; Licursi, Domenico; Raspolli Galletti, Anna Maria; Martinelli, Marco; Tellini, Filippo; Valentini, Giorgio; Gambineri, Francesca

    2016-09-01

    The removal of polychlorinated biphenyls (PCBs) both from siloxane transformer oil and hydrocarbon engine oil was investigated through the application of microwave (MW) irradiation and a reaction system based on polyethyleneglycol (PEG) and potassium hydroxide. The influence of the main reaction parameters (MW irradiation time, molecular weight of PEG, amount of added reactants and temperature) on the dechlorination behavior was studied. Promising performances were reached, allowing about 50% of dechlorination under the best experimental conditions, together time and energy saving compared to conventional heating systems. Moreover, an interesting dechlorination degree (up to 32%) was achieved for siloxane transformer oil when MW irradiation was employed as the unique driving force. To the best of our knowledge, this is the first time in which MW irradiation is tested as the single driving force for the dechlorination of these two types of PCB-contaminated oils. PMID:27281539

  12. The use of tyre pyrolysis oil in diesel engines.

    PubMed

    Murugan, S; Ramaswamy, M C; Nagarajan, G

    2008-12-01

    Tests have been carried out to evaluate the performance, emission, and combustion characteristics of a single cylinder direct injection diesel engine fueled with 10%, 30%, and 50% of tyre pyrolysis oil (TPO) blended with diesel fuel (DF). The TPO was derived from waste automobile tyres through vacuum pyrolysis. The combustion parameters such as heat release rate, cylinder peak pressure, and maximum rate of pressure rise also analysed. Results showed that the brake thermal efficiency of the engine fueled with TPO-DF blends increased with an increase in blend concentration and reduction of DF concentration. NO(x), HC, CO, and smoke emissions were found to be higher at higher loads due to the high aromatic content and longer ignition delay. The cylinder peak pressure increased from 71 bars to 74 bars. The ignition delays were longer than with DF. It is concluded that it is possible to use tyre pyrolysis oil in diesel engines as an alternate fuel in the future. PMID:18499428

  13. Performance of industrial-type engines in military equipment using synthetic crankcase oils. Final report

    SciTech Connect

    Austin, G.H.; Bowen, T.; Cheek, L.; Zanedis, B.

    1981-06-01

    The investigation was to determine the possibility of eliminating crankcase oil changes in engines used in military equipment. Based on the results, it appears that an extended oil change interval can be used which would result in significant savings.

  14. Physisporinus vitreus: a versatile white rot fungus for engineering value-added wood products.

    PubMed

    Schwarze, Francis W M R; Schubert, Mark

    2011-11-01

    The credo of every scientist working in the field of applied science is to transfer knowledge "from science to market," a process that combines (1) science (fundamental discoveries and basic research) with (2) technology development (performance assessment and optimization) and (3) technology transfer (industrial application). Over the past 7 years, we have intensively investigated the potential of the white rot fungus, Physisporinus vitreus, for engineering value-added wood products. Because of its exceptional wood degradation pattern, i.e., selective lignification without significant wood strength losses and a preferential degradation of bordered pit membranes, it is possible to use this fungus under controlled conditions to improve the acoustic properties of tonewood (i.e., "mycowood") as well as to enhance the uptake of preservatives and wood modification substances in refractory wood species (e.g., Norway spruce), a process known as "bioincising." This minireview summarizes the research that we have performed with P. vitreus and critically discusses the challenges encountered during the development of two distinct processes for engineering value-added wood products. Finally, we peep into the future potential of the bioincising and mycowood processes for additional applications in the forest and wood industry. PMID:21901405

  15. The MYRRHA ADS Project in Belgium Enters the Front End Engineering Phase

    NASA Astrophysics Data System (ADS)

    De Bruyn, Didier; Abderrahim, Hamid Aït; Baeten, Peter; Leysen, Paul

    The MYRRHA project started in 1998 by SCK•CEN. MYRRHA is a MTR, based on the ADS concept, for material and fuel research, for studying the feasibility of transmutation of Minor Actinides and Long-Lived Fission Products arising from radioactive waste reprocessing and finally for demonstrating at a reasonable power scale the principle of the ADS. The MYRRHA design has progressed through various framework programmes of the European Commission in the context of Partitioning and Transmutation. The design has now entered into the Front End Engineering Phase (FEED) covering the period 2012-2015. The engineering company, which will handle this phase, has been selected and the works have begun in the late 2013. In the mean time we have made some refinements in both primary systems and plant layout, including reactor building design. In this paper, we present the most recent developments of the MYRRHA design in terms of reactor building and plant layout as existing today as well as a preliminary study concerning the spent fuel building of the facility. During the oral presentation we add some preliminary results of the interaction with the FEED contractor and the most recent version of the primary systems.

  16. Low-temperature pumpability of US Army diesel engine oils. Interim report, July 1982-December 1987

    SciTech Connect

    Frame, E.A.; Montemayor, A.F.; Owens, E.C.

    1987-12-01

    Borderline oil-pumpability temperatures (BPT's) were determined for U.S. Army diesel engines by cranking experiments conducted in a cold box. The variables investigated included: four different diesel-engine types; four different oil-viscosity grades; and three different viscosity index improver chemical types. In general, for a given oil, the decreasing order of engine severity (i.e., highest BPT) was: the Continental LDT-465-1C and the Cummins VTA-903T were the most severe, and were approximately equivalent. The GM 6.2L engine was the next least severe with the DDC 6V-53T engine being the overall least severe. The different viscosity index improver chemistries of specially blended test oils included: olefin copolymer (OCP), styrene-isoprene polymer (SI), and polymethacrylate (PMA). The PMA-containing 15W-40 oils had superior low-temperature oil-pumpability performance in each engine in which they were evaluated.

  17. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    SciTech Connect

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  18. Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages

    DOEpatents

    Boggs, David Lee; Baraszu, Daniel James; Foulkes, David Mark; Gomes, Enio Goyannes

    1998-01-01

    An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine's crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages.

  19. Assessing the Value-Added by the Environmental Testing Process with the Aide of Physics/Engineering of Failure Evaluations

    NASA Technical Reports Server (NTRS)

    Cornford, S.; Gibbel, M.

    1997-01-01

    NASA's Code QT Test Effectiveness Program is funding a series of applied research activities focused on utilizing the principles of physics and engineering of failure and those of engineering economics to assess and improve the value-added by the various validation and verification activities to organizations.

  20. Effect of molybdenum-containing, oil-soluble friction modifiers on engine fuel economy and gear oil efficiency

    SciTech Connect

    Greene, A.B.; Risdon, T.J.

    1981-01-01

    A selection of molybdenum-containing, oil-soluble friction modifier additives was tested comparatively in engine dynamometer tests on gasoline and diesel engines; the tests measured variations in brake specific fuel consumption with speed. A similar selection of molybdenum-containing additives was evaluated in terms of transmission efficiency in a hypoid-gear, rear-axle test rig; the baseline oil was a formulated SAE-75W gear oil. Bench-scale friction tests utilizing the Press-Fit, Timken and Four-Ball test devices were employed to establish a correlation between small-scale rigs and full-scale engine tests. 13 refs.

  1. Engineered silica nanoparticles as additives in lubricant oils

    NASA Astrophysics Data System (ADS)

    Díaz-Faes López, Teresa; Fernández González, Alfonso; Del Reguero, Ángel; Matos, María; Díaz-García, Marta E.; Badía-Laíño, Rosana

    2015-10-01

    Silica nanoparticles (SiO2 NPs) synthesized by the sol-gel approach were engineered for size and surface properties by grafting hydrophobic chains to prevent their aggregation and facilitate their contact with the phase boundary, thus improving their dispersibility in lubricant base oils. The surface modification was performed by covalent binding of long chain alkyl functionalities using lauric acid and decanoyl chloride to the SiO2 NP surface. The hybrid SiO2 NPs were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, simultaneous differential thermal analysis, nuclear magnetic resonance and dynamic light scattering, while their dispersion in two base oils was studied by static multiple light scattering at low (0.01% w/v) and high (0.50%w/v) concentrations. The nature of the functional layer and the functionalization degree seemed to be directly involved in the stability of the suspensions. The potential use of the functional SiO2 NPs as lubricant additives in base oils, specially designed for being used in hydraulic circuits, has been outlined by analyzing the tribological properties of the dispersions. The dendritic structure of the external layer played a key role in the tribological characteristics of the material by reducing the friction coefficient and wear. These nanoparticles reduce drastically the waste of energy in friction processes and are more environmentally friendly than other additives.

  2. Fungal inactivation by Mexican oregano (Lippia berlandieri Schauer) essential oil added to amaranth, chitosan, or starch edible films.

    PubMed

    Avila-Sosa, Raúl; Hernández-Zamoran, Erika; López-Mendoza, Ingrid; Palou, Enrique; Jiménez Munguía, María Teresa; Nevárez-Moorillón, Guadalupe Virginia; López-Malo, Aurelio

    2010-04-01

    Edible films can incorporate antimicrobial agents to provide microbiological stability, since they can be used as carriers of a wide number of additives that can extend product shelf life and reduce the risk of pathogenic bacteria growth on food surfaces. Addition of antimicrobial agents to edible films offers advantages such as the use of low antimicrobial concentrations and low diffusion rates. The aim of this study was to evaluate inhibition of Aspergillus niger and Penicillium spp. by selected concentrations of Mexican oregano (Lippia berlandieri Schauer) essential oil added to amaranth, chitosan, or starch edible films. Oregano essential oil was characterized by gas chromatography-mass spectrometry (GC/MS) analysis. Amaranth, chitosan, and starch edible films were formulated with essential oil concentrations of 0%, 0.25%, 0.50%, 0.75%, 1%, 2%, and 4%. Mold radial growth was evaluated inoculating spores in 2 ways: edible films were placed over inoculated agar, Film/Inoculum mode (F/I), or the edible films were first placed in the agar and then films were inoculated, Inoculum/Film mode (I/F). The modified Gompertz model adequately described growth curves. There was no significant difference (P > 0.05) in growth parameters between the 2 modes of inoculation. Antifungal effectiveness of edible films was starch > chitosan > amaranth. In starch edible films, both studied molds were inhibited with 0.50% of essential oil. Edible films added with Mexican oregano essential oil could improve the quality of foods by controlling surface growth of molds. PMID:20492301

  3. Physical and nutritional properties of baby food containing added red salmon oil (Oncorhynchus nerka) and microencapsulated red salmon oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unpurified red salmon oil (UPSO) was purified (PSO) using chitosan. Both unpurified and purified oils were evaluated for peroxide value (PV), free fatty acids (FFA), fatty acid methyl esters (FAME), moisture, and color. An emulsion system containing PSO (EPSO) was prepared: system was analyzed for c...

  4. Oil-Free Turbomachinery Team Passed Milestone on Path to the First Oil-Free Turbine Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Bream, Bruce L.

    2002-01-01

    The Oil-Free Turbine Engine Technology Project team successfully demonstrated a foil-air bearing designed for the core rotor shaft of a turbine engine. The bearings were subjected to test conditions representative of the engine core environment through a combination of high speeds, sustained loads, and elevated temperatures. The operational test envelope was defined during conceptual design studies completed earlier this year by bearing manufacturer Mohawk Innovative Technologies and the turbine engine company Williams International. The prototype journal foil-air bearings were tested at the NASA Glenn Research Center. Glenn is working with Williams and Mohawk to create a revolution in turbomachinery by developing the world's first Oil-Free turbine aircraft engine. NASA's General Aviation Propulsion project and Williams International recently developed the FJX-2 turbofan engine that is being commercialized as the EJ-22. This core bearing milestone is a first step toward a future version of the EJ-22 that will take advantage of recent advances in foil-air bearings by eliminating the need for oil lubrication systems and rolling element bearings. Oil-Free technology can reduce engine weight by 15 percent and let engines operate at very high speeds, yielding power density improvements of 20 percent, and reducing engine maintenance costs. In addition, with NASA coating technology, engines can operate at temperatures up to 1200 F. Although the project is still a couple of years from a full engine test of the bearings, this milestone shows that the bearing design exceeds the expected environment, thus providing confidence that an Oil-Free turbine aircraft engine will be attained. The Oil-Free Turbomachinery Project is supported through the Aeropropulsion Base Research Program.

  5. Tribological bench and engine dynamometer tests of a low viscosity SAE 0W-16 engine oil using a combination of ionic liquid and ZDDP as anti-wear additives

    SciTech Connect

    Barnhill, William C.; Gao, Hong; Kheireddin, Bassem; Papke, Brian L.; Luo, Huimin; West, Brian H.; Qu, Jun

    2015-01-01

    We have previously reported an oil-miscible phosphonium-organophosphate ionic liquid (IL) with an effective anti-wear (AW) functionality when added to a base oil by itself or combined with a conventional zinc dialkyldithiophosphate (ZDDP) for a synergistic effect. In this research, we investigated whether this synergy manifests in formulated engine oils. An experimental SAE 0W-16 engine oil was generated containing a combination of IL and ZDDP with equal phosphorus contribution. The prototype engine oil was first evaluated using tribological bench tests: AW performance in boundary lubrication (BL) and friction behavior (Stribeck curves) in elastohydrodynamic, mixed, and BL. In addition, the forthcoming standard Sequence VIE engine dynamometer test was then conducted to demonstrate improved fuel economy. Results were benchmarked against those of another experimental engine oil with almost the same formulation except using ZDDP only without the IL (similar total phosphorus content). The IL-ZDDP formulation consistently outperforms the ZDDP-only formulation in friction reduction and wear protection, and results from the bench and engine tests are well correlated.

  6. Tribological bench and engine dynamometer tests of a low viscosity SAE 0W-16 engine oil using a combination of ionic liquid and ZDDP as anti-wear additives

    DOE PAGESBeta

    Barnhill, William C.; Gao, Hong; Kheireddin, Bassem; Papke, Brian L.; Luo, Huimin; West, Brian H.; Qu, Jun

    2015-09-29

    We have previously reported an oil-miscible phosphonium-organophosphate ionic liquid (IL) with an effective anti-wear (AW) functionality when added to a base oil by itself or combined with a conventional zinc dialkyldithiophosphate (ZDDP) for a synergistic effect. In this research, we investigated whether this synergy manifests in formulated engine oils. An experimental SAE 0W-16 engine oil was generated containing a combination of IL and ZDDP with equal phosphorus contribution. The prototype engine oil was first evaluated using tribological bench tests: AW performance in boundary lubrication (BL) and friction behavior (Stribeck curves) in elastohydrodynamic, mixed, and BL. In addition, the forthcoming standardmore » Sequence VIE engine dynamometer test was then conducted to demonstrate improved fuel economy. Results were benchmarked against those of another experimental engine oil with almost the same formulation except using ZDDP only without the IL (similar total phosphorus content). The IL-ZDDP formulation consistently outperforms the ZDDP-only formulation in friction reduction and wear protection, and results from the bench and engine tests are well correlated.« less

  7. Tribological bench and engine dynamometer tests of a low viscosity SAE 0W-16 engine oil using a combination of ionic liquid and ZDDP as anti-wear additives

    SciTech Connect

    Barnhill, William C.; Gao, Hong; Kheireddin, Bassem; Papke, Brian L.; Luo, Huimin; West, Brian H.; Qu, Jun

    2015-09-29

    We have previously reported an oil-miscible phosphonium-organophosphate ionic liquid (IL) with an effective anti-wear (AW) functionality when added to a base oil by itself or combined with a conventional zinc dialkyldithiophosphate (ZDDP) for a synergistic effect. In this research, we investigated whether this synergy manifests in formulated engine oils. An experimental SAE 0W-16 engine oil was generated containing a combination of IL and ZDDP with equal phosphorus contribution. The prototype engine oil was first evaluated using tribological bench tests: AW performance in boundary lubrication (BL) and friction behavior (Stribeck curves) in elastohydrodynamic, mixed, and BL. In addition, the forthcoming standard Sequence VIE engine dynamometer test was then conducted to demonstrate improved fuel economy. Results were benchmarked against those of another experimental engine oil with almost the same formulation except using ZDDP only without the IL (similar total phosphorus content). The IL-ZDDP formulation consistently outperforms the ZDDP-only formulation in friction reduction and wear protection, and results from the bench and engine tests are well correlated.

  8. Performance of Several Combustion Chambers Designed for Aircraft Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, William F; Kemper, Carlton

    1928-01-01

    Several investigations have been made on single-cylinder test engines to determine the performance characteristics of four types of combustion chambers designed for aircraft oil engines. Two of the combustion chambers studied were bulb-type precombustion chambers, the connecting orifice of one having been designed to produce high turbulence by tangential air flow in both the precombustion chamber and the cylinder. The other two were integral combustion chambers, one being dome-shaped and the other pent-roof shaped. The injection systems used included cam and eccentric driven fuel pumps, and diaphragm and spring-loaded fuel-injection valves. A diaphragm type maximum cylinder pressure indicator was used in part of these investigations with which the cylinder pressures were controlled to definite valves. The performance of the engines when equipped with each of the combustion chambers is discussed. The best performance for the tests reported was obtained with a bulb-type combustion chamber designed to give a high degree of turbulence within the bulb and cylinder. (author)

  9. [Progress in engineering Escherichia coli for production of high-value added organic acids and alcohols].

    PubMed

    Wang, Jiming; Liu, Wei; Xu, Xin; Zhang, Haibo; Xian, Mo

    2013-10-01

    Confronted with the gradual exhaustion of the earth's fossil energy resources and the grimmer environmental deterioration, the bio-based process to produce high-value added platform chemicals from renewable biomass is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to various advantages, such as clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. This review focuses on recent progresses in metabolic engineering of E. coli that lead to efficient recombinant biocatalysts for production of high-value organic acids such as succinic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like glycerol and xylitol. Besides, this review also discusses several other platform chemicals, including 2,5-furan dicarboxylic acid, aspartic acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxy-gamma-butyrolactone and sorbitol, which have not been produced by E. coli until now. PMID:24432652

  10. Effect of adding palm oil mill decanter cake slurry with regular turning operation on the composting process and quality of compost from oil palm empty fruit bunches.

    PubMed

    Yahya, Azmi; Sye, Chong Puay; Ishola, Tajudeen Abiodun; Suryanto, Hadi

    2010-11-01

    Formation of compost from oil palm empty fruit bunches (EFB) and decanter cake slurry by adding palm oil mill effluent (POME) with regular turning operation was investigated. The experiment was conducted in a commercial composting plant under the normal production process. The addition of decanter cake slurry has hastened the composting process of the EFB. The C/N ratio after 51 days for the mature compost with the decanter cake slurry was 18.65 while that of the matured compost without the decanter cake slurry remained high at 28.96. The compost formed from the addition of decanter cake to EFB and POME had 46.4% nitrogen, 17.9% phosphorus, 17.7% potassium and 23.1% calcium more than that without decanter cake. The use of compost produced from EFB, POME and decanter cake slurry could solve more environmental problems and enhance economic benefits in the oil palm industry. PMID:20609579

  11. Catalytic modification of fats and oils to value-added biobased products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biobased materials derived from fats and oils can be relatively benign to the environment because they tend to have good biodegradability. Oils are used in a myriad of applications, including foods, cosmetics, paints, biodegradable lubricants and polymers, biodiesel, and more. For many of these ap...

  12. A novel concept of dielectrophoretic engine oil filter.

    PubMed

    Shen, Yueyang; Elele, Ezinwa; Khusid, Boris

    2011-09-01

    A novel concept of an alternating current (AC) dielectrophoretic filter with a three-dimensional electrode array is presented. A filter is constructed by winding into layers around the core tube two sheets of woven metal wire-mesh with several sheets of woven insulating wire-mesh sandwiched in between. Contrary to conventional dielectrophoretic devices, the proposed design of electrodes generates a high-gradient field over a large working volume by applying several hundred volts at a standard frequency of 60 Hz. The operating principle of filtration is based on our recently developed method of AC dielectrophoretic gating for microfluidics. The filtration efficiency is expressed in terms of two non-dimensional parameters, which describe the combined influence of the particle polarizability and size, the oil viscosity and flow rate, and the field gradient on the particle captivity. The proof-of-concept is tested by measuring the single-pass performance of two filters on positively polarized particles dispersed in engine oil: spherical glass beads, fused aluminum oxide powder, and silicon metal powder, all smaller than the mesh opening. The results obtained are used to consider the potential of using AC dielectrophoretic filtration and provide critical design guidelines for the development of a filter based on the retention capability of challenge particles. PMID:21853447

  13. A novel concept of dielectrophoretic engine oil filter

    NASA Astrophysics Data System (ADS)

    Khusid, Boris; Shen, Yueyang; Elele, Ezinwa

    2011-11-01

    A novel concept of an alternating current (AC) dielectrophoretic filter with a three-dimensional electrode array is presented. A filter is constructed by winding into layers around the core tube two sheets of woven metal wire-mesh with several sheets of woven insulating wire-mesh sandwiched in between. Contrary to conventional dielectrophoretic devices, the proposed design of electrodes generates a high-gradient field over a large working volume by applying several hundred volts at a standard frequency of 60 Hz. The operating principle of filtration is based on our recently developed method of AC dielectrophoretic gating for microfluidics. The filtration efficiency is expressed in terms of two non-dimensional parameters which describe the combined influence of the particle polarizability and size, the oil viscosity and flow rate, and the field gradient on the particle captivity. The proof-of-concept is tested by measuring the single-pass performance of two filters on positively polarized particles dispersed in engine oil: spherical glass beads, fused aluminum oxide powder, and silicon metal powder, all smaller than the mesh opening. The results obtained provide critical design guidelines for the development of a filter based on the retention capability of challenge particles. The work was supported in part by ONR and NSF.

  14. Comparison of diesel engine performance and emissions from neat and transesterified vegetable oils

    SciTech Connect

    Geyer, S.M.; Jacobus, M.J.; Lestz, S.S.

    1984-01-01

    A single-cylinder, 0.36 L, D1 diesel engine was operated on a certified No. 2 diesel fuel, cottonseed oil, sunflowerseed oil, methyl ester of cottonseed oil, and methyl ester of sunflowerseed oil. The purpose of this study was to provide a comparison of performance and emission data when operating on net vegetable oils, transesterified vegetable oils, and diesel fuel. Results comparing the various vegetable oil fuels with No. 2 diesel fuel generally show slight improvements in thermal efficiency and higher exhaust gas temperatures when operating on vegetable oils; equal or higher gas-phase emissions with vegetable oils; lower indicated specific revertant emissions with vegetable oils; and significantly higher aldehyde emissions, including an increased percentage of formaldehyde. (Refs. 14).

  15. Remedial processing of oil shale fly ash (OSFA) and its value-added conversion into glass-ceramics.

    PubMed

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-12-01

    Recently, various solid wastes such as sewage sludge, coal fly ash and slag have been recycled into various products such as sintered bricks, ceramics and cement concrete. Application of these recycling approaches is much better and greener than conventional landfills since it can solve the problems of storage of industrial wastes and reduce exploration of natural resources for construction materials to protect the environment. Therefore, in this study, an attempt was made to recycle oil shale fly ash (OSFA), a by-product obtained from the extracting of shale oil in the oil shale industry, into a value-added glass-ceramic material via melting and sintering method. The influence of basicity (CaO/SiO2 ratio) by adding calcium oxide on the performance of glass-ceramics was studied in terms of phase transformation, mechanical properties, chemical resistances and heavy metals leaching tests. Crystallization kinetics results showed that the increase of basicity reduced the activation energies of crystallization but did not change the crystallization mechanism. When increasing the basicity from 0.2 to 0.5, the densification of sintering body was enhanced due to the promotion of viscous flow of glass powders, and therefore the compression strength and bending strength of glass-ceramics were increased. Heavy metals leaching results indicated that the produced OSFA-based glass-ceramics could be taken as non-hazardous materials. The maximum mechanical properties of compression strength of 186 ± 3 MPa, bending strength of 78 ± 6 MPa, good chemical resistances and low heavy metals leaching concentrations showed that it could be used as a substitute material for construction applications. The proposed approach will be one of the potential sustainable solutions in reducing the storage of oil shale fly ash as well as converting it into a value-added product. PMID:26387050

  16. Manufacturing vegetable oil based biodiesel: An engineering management perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    According to the USDA, 6.45 million tons of cottonseed was produced in 2007. Each ton will yield approximately 44 to 46 gallons unrefined oil. Cottonseed oil bio-diesel could have the potential to create a more competitive oil market for oil mills. The proposed cost model is based on an existing cot...

  17. Lubrication System 1. Check and Change the Engine Oil. Student Manual. Small Engine Repair Series. First Edition.

    ERIC Educational Resources Information Center

    Hill, Pamela

    This student manual on checking and changing the engine oil is the second of three in an instructional package on the lubrication system in the Small Engine Repair Series for handicapped students. The stated purpose for the booklet is to help students learn what tools and equipment to use and all the steps of the job. Informative material and…

  18. Compression-ignition engine performance with undoped and doped fuel oils and alcohol mixtures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Foster, Hampton H

    1939-01-01

    Several fuel oils, doped fuel oils, and mixtures of alcohol and fuel oil were tested in a high-speed, single-cylinder, compression-ignition engine to determine power output, fuel consumption, and ignition and combustion characteristics. Fuel oils or doped fuel oils of high octane number had shorter ignition lags, lower rates of pressure rise, and gave smoother engine operation than fuel oils or doped fuel oils of low octane number. Higher engine rotative speeds and boost pressures resulted in smoother engine operation and permitted the use of fuel oils of relatively low octane number. Although the addition of a dope to a fuel oil decreased the ignition lag and the rate of pressure rise, the ensuing rate of combustion was somewhat slower than for the undoped fuel oil so that the effectiveness of combustion was practically unchanged. Alcohol used as an auxiliary fuel, either as a mixture or by separate injection, increased the rates of pressure rise and induced roughness. In general, the power output decreased as the proportion of alcohol increased and, below maximum power, varied with the heating value of the total fuel charge.

  19. Failure Analysis and Regeneration Performances Evaluation on Engine Lubricating Oil

    NASA Astrophysics Data System (ADS)

    Wang, X. L.; Zhang, G. N.; Zhang, J. Y.; Yin, Y. L.; Xu, Y.

    To investigate the behavior of failure and recycling of lubricating oils, three sorts of typical 10w-40 lubricating oils used in heavy-load vehicle including the new oil, waste oil and regeneration oil regenerated by self-researched green regeneration technology were selected. The tribology properties were tested by four-ball friction wear tester as well. The results indicated that the performance of anti-extreme pressure of regeneration oil increase by 34.1% compared with the waste one and its load- carrying ability is close to the new oil; the feature of wear spot are better than those of the waste oil and frictional coefficient almost reach the level of the new oil's. As a result, the performance of anti-wear and friction reducing are getting better obviously.

  20. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion

    PubMed Central

    Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao

    2016-01-01

    Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification. PMID:27087362

  1. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion

    NASA Astrophysics Data System (ADS)

    Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao

    2016-04-01

    Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification.

  2. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion.

    PubMed

    Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao

    2016-01-01

    Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification. PMID:27087362

  3. Value-added utilization of oil palm ash: a superior recycling of the industrial agricultural waste.

    PubMed

    Foo, K Y; Hameed, B H

    2009-12-30

    Concern about environmental protection has increased over the years from a global viewpoint. To date, the infiltration of oil palm ash into the groundwater tables and aquifer systems which poses a potential risk and significant hazards towards the public health and ecosystems, remain an intricate challenge for the 21st century. With the revolution of biomass reutilization strategy, there has been a steadily growing interest in this research field. Confirming the assertion, this paper presents a state of art review of oil palm ash industry, its fundamental characteristics and environmental implications. Moreover, the key advance of its implementations, major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of oil palm ash in numerous field of application represents a plausible and powerful circumstance, for accruing the worldwide environmental benefit and shaping the national economy. PMID:19695771

  4. Improving magnetic properties of MgB2 bulk superconductors by synthetic engine oil treatment

    NASA Astrophysics Data System (ADS)

    Taylan Koparan, E.; Savaskan, B.; Yanmaz, E.

    2016-08-01

    The present study focuses on the effects of standby time of the MgB2 samples immersed in synthetic engine oil on the critical current density (Jc(H)), magnetic field dependence of the pinning force density fp(b) and Tc performances of MgB2 bulk superconductors. Synthetic engine oil was used as a product which is cheap and a rich carbon source. Manufactured MgB2 pellet samples were immersed at different standby time of 30 min, 120 min, 300 min and 1440 min in synthetic engine oil after the first heating process. Finally, MgB2 samples immersed in synthetic engine oil were sintered at 1000 °C and kept for 15 min in Ar atmosphere. The critical current density of all of MgB2 samples immersed at different standby time in engine oil in whole field range was better than that of the pure MgB2 sample because of the number of the pinning centers. The MgB2 sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. The Jc value for the pure sample is 2.0 × 103 A/cm2, whereas for the MgB2 sample immersed at 300 min standby time in engine oil the Jc is enhanced to 4.8 × 103A/cm2 at 5 K and 3 T. The superconducting transition temperature (Tc) did not change with the increasing standby time of the samples in synthetic engine oil at all. The best diamagnetic property was obtained from the sample which kept in synthetic engine oil for 300 min. Synthetic engine oil treatment results in remarkable improvement of the critical current density and pinning force performances of MgB2 superconductors. It was found that all MgB2 samples have a different pinning property at different measuring temperatures. Using synthetic engine oil as a product which is cheap and a rich carbon source in MgB2 bulk superconductors makes MgB2 samples immersed in synthetic engine oil a good candidate for industrial applications.

  5. Influence of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission.

    PubMed

    Keskin, Ali; Gürü, Metin; Altiparmak, Duran

    2008-09-01

    The purpose of this study is to investigate influences of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission. Tall oil resinic acids were reacted with MgO and MoO(2) stoichiometrically for the production of metal-based fuel additives (combustion catalysts). The metal-based additives were added into tall oil biodiesel (B60) at the rate of 4 micromol/l, 8 micromol/l and 12 micromol/l for preparing test fuels. In general, both of the metal-based additives improved flash point, pour point and viscosity of the biodiesel fuel, depending on the rate of additives. A single cylinder DI diesel engine was used in the tests. Engine performance values did not change significantly with biodiesel fuels, but exhaust emission profile was improved. CO emissions and smoke opacity decreased by 56.42% and by 30.43%, respectively. In general, low NO(x) and CO(2) emissions were measured with the biodiesel fuels. PMID:18164614

  6. An added dimension: GC atmospheric pressure chemical ionization FTICR MS and the Athabasca oil sands.

    PubMed

    Barrow, Mark P; Peru, Kerry M; Headley, John V

    2014-08-19

    The Athabasca oil sands industry, an alternative source of petroleum, uses large quantities of water during processing of the oil sands. In keeping with Canadian environmental policy, the processed water cannot be released to natural waters and is thus retained on-site in large tailings ponds. There is an increasing need for further development of analytical methods for environmental monitoring. The following details the first example of the application of gas chromatography atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry (GC-APCI-FTICR MS) for the study of environmental samples from the Athabasca region of Canada. APCI offers the advantages of reduced fragmentation compared to other ionization methods and is also more amenable to compounds that are inaccessible by electrospray ionization. The combination of GC with ultrahigh resolution mass spectrometry can improve the characterization of complex mixtures where components cannot be resolved by GC alone. This, in turn, affords the ability to monitor extracted ion chromatograms for components of the same nominal mass and isomers in the complex mixtures. The proof of concept work described here is based upon the characterization of one oil sands process water sample and two groundwater samples in the area of oil sands activity. Using the new method, the Ox and OxS compound classes predominated, with OxS classes being particularly relevant to the oil sands industry. The potential to resolve retention times for individual components within the complex mixture, highlighting contributions from isomers, and to characterize retention time profiles for homologous series is shown, in addition to the ability to follow profiles of double bond equivalents and carbon number for a compound class as a function of retention time. The method is shown to be well-suited for environmental forensics. PMID:25036898

  7. First results with Mercedes-Benz DI diesel engines running on monoesters of vegetable oils

    SciTech Connect

    Ventura, L.M.; Nascimento, A.C.; Bandel, W.

    1982-01-01

    In their pure form the vegetable oils are not suitable for the use in modern DI diesel engines, due to the excessive carbon deposit on the injection nozzles and in the combustion chamber. Nevertheless, these oils are promising candidates as raw materials for alternative diesel fuels. Processes are being developed to transform the long vegetable oil molecules into smaller molecules in order to fulfill the fuel requirements of DI diesel engines. Methyl and ethyl esters of fatty acids e.g. obtained by transesterification of vegetable oils through their catalytic reaction with methanol and ethanol, have shown a typical diesel fuel behaviour in conventional DI engines without excessive deposit formation. Problems concerning lubricating oil contamiation, and possibile remedial measures to avoid it, are being examined. There are also problems to be solved in relation to white smoke formation and the odor of exhaust gases. 10 figures.

  8. Headspace analysis of engine oil by gas chromatography/mass spectrometry.

    PubMed

    Levermore, D M; Josowicz, M; Rees, W S; Janata, J

    2001-03-15

    This study establishes the rationale necessary for determining the time to change engine oil. This is based on identifying gaseous components in new and used automobile lubricants. Key compounds, so-called "signature", are separated and identified qualitatively by coupled gas chromatography/mass spectrometry. Volatile antioxidants at zero miles and fuel contaminants at low mileage are observed in the headspace of engine oil. Several oxidative degradation components have been positively identified in the used oil, which include the following: acetaldehyde, acetone, butanal, 2-propanol, acetic acid, 2-hexanol, benzoic acid, benzaldehyde, and 1-pentanol. This study strongly suggests that the status of lubricating oil can be determined by the analysis of the gas phase above the oil. Most importantly, it opens the possibility of performing conditional maintenance of the combustion engine based on information obtained from gas sensors. PMID:11305675

  9. Experimental investigation of the physical properties of medium and heavy oils, their vaporization and use in explosion engines. Part I

    NASA Technical Reports Server (NTRS)

    Heinlein, Fritz

    1926-01-01

    While little has been accomplished in obtaining an abundant supply of light oils from coal and heavy oils, progress has been made on engine design to make use of the heavier oils. Progress has been made in two different directions which are outlined in this paper: the group of engines with medium and high-pressure carburetion in the cylinder; and the group of engines with low-pressure carburetion of the heavy oils before reaching the cylinder.

  10. Engineering evaluation of plant oils as diesel fuel. Final report. Vol. I

    SciTech Connect

    Engler, C.R.; Johnson, L.A.; Lepori, W.A.; Yarbrough, C.M.

    1983-09-13

    This project includes evaluations of cottonseed oils and sunflower oil ethyl esters in both direct injection and precombustion chamber design diesel engines. It is one part of a major research program at Texas A and M University to study the technical feasibility of using plant oils or animal fats as alternative diesel fuels. Goals for the overall program are to define physical and chemical characteristics and optimum processing methods required for high quality alternative diesel fuels from plant or animal oils and to investigate effects of engine design on alternative fuel performance. This report describes work done under the current contract which includes evaluations of cottonseed oils and sunflower oil interesterified with ethanol as alternative diesel fuels. 15 figures, 18 tables.

  11. Requirements of diesel engine oil as it relates to low temperature operation

    SciTech Connect

    Roth, R.J.G. )

    1989-01-01

    The performance requirements of heavy duty engine oils designed for equipment operating at ambient temperatures of less than -25{degrees}C are discussed. Experience has shown that the use of properly formulated, partially synthetic SAE 5W20 arctic oils can lead to improved startability and actually increase equipment life and engine durability. A further benefit may be realized through an increase in fuel economy over that of heavier oils. Better performance may be obtained through the use of partially synthetic SAE OW30 arctic oils which are useful over a wider temperature range and allow operation of equipment at ambient temperature consistently below -40{degrees}C. Recommendations by various engine manufacturers and the US military regarding low temperature operation of diesel engines are reviewed.

  12. Utilization of sunflower seed oil as a renewable fuel for diesel engines

    SciTech Connect

    Bruwer, J.J.; van der Boshoff, B.; Hugo, F.J.C.; Fuls, J.; Hawkins, C.; van der Walt, A.N.; Engelbrecht, A.; du Plessis, L.M.

    1981-01-01

    Research, using several makes of diesel engine, showed that sunflower seed oil, and particularly an ethyl ester mixture, has the potential to extend diesel fuel provided solutions are found for injector coking problems. (MHR)

  13. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  14. Fuel properties and engine performance of biodiesel from waste cooking oil collected in Dhaka city

    NASA Astrophysics Data System (ADS)

    Islam, R. B.; Islam, R.; Uddin, M. N.; Ehsan, Md.

    2016-07-01

    Waste cooking oil can be a potential source of biodiesel that has least effect on the edible oil consumption. Increasing number of hotel-restaurants and more active monitoring by health authorities have increased the generation of waste cooking oil significantly in densely populated cities like Dhaka. If not used or disposed properly, waste cooking oil itself may generate lot of environmental issues. In this work, waste cooking oils from different restaurants within Dhaka City were collected and some relevant properties of these waste oils were measured. Based on the samples studied one with the highest potential as biodiesel feed was identified and processed for engine performance. Standard trans-esterification process was used to produce biodiesel from the selected waste cooking oil. Biodiesel blends of B20 and B40 category were made and tested on a single cylinder direct injection diesel engine. Engine performance parameters included - bhp, bsfc and exhaust emission for rated and part load conditions. Results give a quantitative assessment of the potential of using biodiesel from waste cooking oil as fuel for diesel engines in Bangladesh.

  15. Ferrographic and spectrographic analysis of oil sampled before and after failure of a jet engine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1980-01-01

    An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph as well as plasma, atomic absorption, and emission spectrometers. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism, nor a high level of wear debris was detected in the oil sample from the engine just prior to the test in which the failure occurred. However, low concentrations of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure.

  16. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels. PMID:22519083

  17. Two-phase air/oil flow in aero engine bearing chambers: Characterization of oil film flows

    SciTech Connect

    Glahn, A.; Wittig, S.

    1996-07-01

    For the design of secondary air and lubrication oil systems, a sufficient knowledge of two-phase flow and heat transfer phenomena under bearing chamber flow conditions is required. The characterization of oil film flows at the bearing chamber walls is one of the major tasks for a better understanding of these processes and, therefore, a necessity for improvements of the efficiency of aero engines. The present paper gives a contribution to this subject. Utilizing a fiber-optic LDV setup, measurements of oil film velocity profiles have been performed in the high-speed bearing chamber rig simulating real engine conditions. All data have been compared with different theoretical approaches, which have been derived from a force balance at a liquid film element, including geometric conditions and temperature dependent fluid properties, and by approaches for the eddy viscosity available in the literature.

  18. Performance of an IDI Engine Fueled with Fatty Acid Methyl Esters Formulated from Cotton Seeds Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluates the performance of an indirect injection (IDI) diesel engine fueled with cottonseed biodiesel while assessing the IDI engine multi-fuel capability. Millions of tons of cotton seeds are available in the southeast of the USA every year and they contain oils that can be transesteri...

  19. A severe single cylinder diesel engine test for European SHPD oils

    SciTech Connect

    Dowling, M.; Pritchard, J.R.; Crawley, B.W.

    1987-01-01

    This paper describes the development of a severe diesel engine test and its use as a tool for the evaluation of high performance lubricants. The test has been designed to screen oils prior to submission for expensive multi-cylinder evaluation and uses a tight top land piston. The paper continues earlier work reported during 1985 and describes the influence of liner finish and other hardware effects on test repeatability. The resulting ABINGDON 1-J engine test has been used in the development of diesel oils superior in performance to CCMC D2. Traditionally, European Super High Performance diesel oils have been of 15W40 viscosity grade, but engine manufacturers are showing increasing interest in lower viscosities. The ABINGDON 1-J test has been used to evaluate both 5W30 and 10W40 oils of Super High Performance diesel quality. Performance of both mineral and synthetic basestocks are considered.

  20. Metabolic engineering of cottonseed oil biosynthesis pathway via RNA interference.

    PubMed

    Xu, Zhongping; Li, Jingwen; Guo, Xiaoping; Jin, Shuangxia; Zhang, Xianlong

    2016-01-01

    Cottonseed oil is recognized as an important oil in food industry for its unique characters: low flavor reversion and the high level of antioxidants (VitaminE) as well as unsaturated fatty acid. However, the cottonseed oil content of cultivated cotton (Gossypium hirsutum) is only around 20%. In this study, we modified the accumulation of oils by the down-regulation of phosphoenolpyruvate carboxylase 1 (GhPEPC1) via RNA interference in transgenic cotton plants. The qRT-PCR and enzyme activity assay revealed that the transcription and expression of GhPEPC1 was dramatically down-regulated in transgenic lines. Consequently, the cottonseed oil content in several transgenic lines showed a significant (P < 0.01) increase (up to 16.7%) without obvious phenotypic changes under filed condition when compared to the control plants. In order to elucidate the molecular mechanism of GhPEPC1 in the regulation of seed oil content, we quantified the expression of the carbon metabolism related genes of transgenic GhPEPC1 RNAi lines by transcriptome analysis. This analysis revealed the decrease of GhPEPC1 expression led to the increase expression of triacylglycerol biosynthesis-related genes, which eventually contributed to the lipid biosynthesis in cotton. This result provides a valuable information for cottonseed oil biosynthesis pathway and shows the potential of creating high cottonseed oil germplasm by RNAi strategy for cotton breeding. PMID:27620452

  1. Compression ignition engine fuel properties of a used sunflower oil-diesel fuel blend

    SciTech Connect

    Oezaktas, T.

    2000-05-01

    Vegetable oils may be used with dilution modification technique as an alternative diesel fuel. In this study, a used sunflower oil-diesel fuel blend (20:80 {nu}/{nu}%) was investigated in a Pancar Motor E-108-type diesel engine to observe engine characteristics and exhaust emission. The effect of the compression ratio on ignition delay characteristics and smoke emissions of blend fuel was determined in this CFR engine. The results of fuel blends were compared with the reference grade No. 2-D diesel fuel.

  2. Beneficiation-hydroretort processing of US oil shales, engineering study

    SciTech Connect

    Johnson, L.R.; Riley, R.H.

    1988-12-01

    This report describes a beneficiation facility designed to process 1620 tons per day of run-of-mine Alabama oil shale containing 12.7 gallons of kerogen per ton of ore (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay) suitable for feed to a hydroretort oil extraction facility of nominally 20,000 barrels per day capacity. The beneficiation plant design prepared includes the operations of crushing, grinding, flotation, thickening, filtering, drying, briquetting, conveying and tailings empoundment. A complete oil shale beneficiation plant is described including all anticipated ancillary facilities. For purposes of determining capital and operating costs, the beneficiation facility is assumed to be located on a generic site in the state of Alabama. The facility is described in terms of the individual unit operations with the capital costs being itemized in a similar manner. Additionally, the beneficiation facility estimated operating costs are presented to show operating costs per ton of concentrate produced, cost per barrel of oil contained in concentrate and beneficiation cost per barrel of oil extracted from concentrate by hydroretorting. All costs are presented in fourth quarter of 1988 dollars.

  3. Ferrographic and spectrometer oil analysis from a failed gas turbine engine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1982-01-01

    An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, a plasma, an atomic absorption, and an emission spectrometer to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations ( 2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure.

  4. Ferrographic and spectrometer oil analysis from a failed gas turbine engine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1983-01-01

    An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor parts that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, and with plasma, atomic absorption, and emission spectrometers to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations (2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure. Previously announced in STAR as N83-12433

  5. Experimental study on the performance characteristics and emission analysis of a diesel engine using vegetable oils

    NASA Astrophysics Data System (ADS)

    Saha, Anup; Ehite, Ekramul Haque; Alam, M. M.

    2016-07-01

    In this research, Vegetable oils derived from Sesame Seed and Rice Bran were used and experimented upon. Using Kerosene as the solvent in varying proportions (30%, 50%, 70% by volume) with the vegetables oils, different blends of Sesame and Rice Bran Oils were produced. The important characteristic properties were found by experimentation and compared with those of Straight Run Diesel. Subsequently, Straight Run Diesel, vegetable oils and their blends were used to run a diesel engine one-by-one and the performance analysis was conducted, followed by an investigation of the exhaust emissions. From the comparative performance analysis, it was found that Rice Bran oil showed better performance as a fuel than Sesame with regards to power production and specific fuel consumption and also resulted in less Carbon Monoxide (CO) emission than Sesame oil blends.

  6. Effects of adding bulking agent, inorganic nutrient and microbial inocula on biopile treatment for oil-field drilling waste.

    PubMed

    Ma, Jie; Yang, Yongqi; Dai, Xiaoli; Chen, Yetong; Deng, Hanmei; Zhou, Huijun; Guo, Shaohui; Yan, Guangxu

    2016-05-01

    Contamination from oil-field drilling waste is a worldwide environmental problem. This study investigated the performance of four bench-scale biopiles in treating drilling waste: 1) direct biopile (DW), 2) biopile plus oil-degrading microbial consortium (DW + M), 3) biopile plus microbial consortium and bulking agents (saw dust) (DW + M + BA), 4) biopile plus microbial consortium, bulking agents, and inorganic nutrients (Urea and K2HPO4) (DW + M + BA + N). Ninety days of biopiling removed 41.0%, 44.0%, 55.7% and 87.4% of total petroleum hydrocarbon (TPH) in the pile "DW", "DW + M", "DW + M + BA", and "DW + M + BA + N" respectively. Addition of inorganic nutrient and bulking agents resulted in a 56.9% and 26.6% increase in TPH removal efficiency respectively. In contrast, inoculation of hydrocarbon-degrading microorganisms only slightly enhanced the contaminant removal (increased 7.3%). The biopile with stronger contaminant removal also had higher pile temperature and lower pile pH (e.g., in "DW + M + BA + N"). GC-MS analysis shows that biopiling significantly reduced the total number of detected contaminants and changed the chemical composition. Overall, this study shows that biopiling is an effective remediation technology for drilling waste. Adding inorganic nutrients and bulking agents can significantly improve biopile performance while addition of microbial inocula had minimal positive impacts on contaminant removal. PMID:26891352

  7. Dietary supplementation of pyrroloquinoline quinone disodium protects against oxidative stress and liver damage in laying hens fed an oxidized sunflower oil-added diet.

    PubMed

    Wang, J; Zhang, H J; Xu, L; Long, C; Samuel, K G; Yue, H Y; Sun, L L; Wu, S G; Qi, G H

    2016-07-01

    The protective effects of dietary pyrroloquinoline quinone disodium (PQQ.Na2) supplementation against oxidized sunflower oil-induced oxidative stress and liver injury in laying hens were examined. Three hundred and sixty 53-week-old Hy-Line Gray laying hens were randomly allocated into one of the five dietary treatments. The treatments included: (1) a diet containing 2% fresh sunflower oil; (2) a diet containing 2% thermally oxidized sunflower oil; (3) an oxidized sunflower oil diet with 100 mg/kg of added vitamin E; (4) an oxidized sunflower oil diet with 0.08 mg/kg of PQQ.Na2; and (5) an oxidized sunflower oil diet with 0.12 mg/kg of PQQ.Na2. Birds fed the oxidized sunflower oil diet showed a lower feed intake compared to birds fed the fresh oil diet or oxidized oil diet supplemented with vitamin E (P=0.009). Exposure to oxidized sunflower oil increased plasma malondialdehyde (P<0.001), hepatic reactive oxygen species (P<0.05) and carbonyl group levels (P<0.001), but decreased plasma glutathione levels (P=0.006) in laying hens. These unfavorable changes induced by the oxidized sunflower oil diet were modulated by dietary vitamin E or PQQ.Na2 supplementation to levels comparable to the fresh oil group. Dietary supplementation with PQQ.Na2 or vitamin E increased the activities of total superoxide dismutase and glutathione peroxidase in plasma and the liver, when compared with the oxidized sunflower oil group (P<0.05). PQQ.Na2 or vitamin E diminished the oxidized sunflower oil diet induced elevation of liver weight (P=0.026), liver to BW ratio (P=0.001) and plasma activities of alanine aminotransferase (P=0.001) and aspartate aminotransferase (P<0.001) and maintained these indices at the similar levels to the fresh oil diet. Furthermore, oxidized sunflower oil increased hepatic DNA tail length (P<0.05) and tail moment (P<0.05) compared with the fresh oil group. Dietary supplementation of PQQ.Na2 or vitamin E decreased the oxidized oil diet induced DNA tail length

  8. Phosphatidic acid phosphatase and diacylglycerol acyltransferase: potential targets for metabolic engineering of microorganism oil.

    PubMed

    Jin, Hong-Hao; Jiang, Jian-Guo

    2015-04-01

    Oleaginous microorganism is becoming one of the most promising oil feedstocks for biodiesel production due to its great advantages in triglyceride (TAG) accumulation. Previous studies have shown that de novo TAG biosynthesis can be divided into two parts: the fatty acid biosynthesis pathway (the upstream part which generates acyl-CoAs) and the glycerol-3-phosphate acylation pathway (the downstream part in which three acyl groups are sequentially added onto a glycerol backbone). This review mainly focuses on two enzymes in the G3P pathway, phosphatidic acid phosphatase (PAP) and diacylglycerol acyltransferase (DGAT). The former catalyzes a dephosphorylation reaction, and the latter catalyzes a subsequent acylation reaction. Genes, functional motifs, transmembrane domains, action mechanism, and new studies of the two enzymes are discussed in detail. Furthermore, this review also covers diacylglycerol kinase, an enzyme that catalyzes the reverse reaction of diacylglycerol formation. In addition, PAP and DGAT are the conjunction points of the G3P pathway, the Kennedy pathway, and the CDP-diacylglycerol pathway (CDP-DAG pathway), and the mutual transformation between TAGs and phospholipids is discussed as well. Given that both the Kennedy and CDP-diacylglycerol pathways are in metabolic interlock (MI) with the G3P pathway, it is suggested that, via metabolic engineering, TAG accumulation can be improved by the two pathways based on the pivotal function of PAP and DGAT. PMID:25672855

  9. Classification and individualization of used engine oils using elemental composition and discriminant analysis.

    PubMed

    Kim, Yuna; Kim, Nam Yee; Park, Seh Youn; Lee, Dong-Kye; Lee, Jin Hoon

    2013-07-10

    The six most common commercial automotive gasoline and diesel engine oils in the Republic of Korea, ZIC A, ZIC XQ RV/SUV, Kixx G1, Kixx RV, and the brand name products HD Premium gasoline and HD Premium diesel, were randomly used in nineteen different vehicles. Samples of seventy-six used engine oils, which were withdrawn from the sumps of those vehicles at different intervals, were analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES), and statistically compared. Two data analysis strategies were used to interpret and understand the elemental profiles in the multi-dimensional data. Macro (additive elements of Ca, Zn and P) and trace (wear metal elements of Ag, Al, Ba, Cd, Cr, Cu, Fe, Mg, Mo, Na, Ni, Pb and Sn) elements were used as potential markers to determine the brand of oil used and the engine type in which the oil was used, and to trace the individual vehicle for forensic purposes. The discriminant analysis statistical technique was applied, and its prediction ability was assessed. In this study, 92.1%, 82.9% and 92.1% of the cross-validated grouped cases correctly predicted the brand of oil, the engine type and the vehicle that was the source of the oil, respectively. PMID:23806831

  10. Diesel engine endurance tests using JP-8 fuel blended with used engine oil. Interim report November 1996--December 1997

    SciTech Connect

    Frame, E.A.; Yost, D.M.; Palacios, C.F.

    1998-07-01

    Tests were done to examine the feasibility of disposing of used engine oil from military vehicles by blending it with JP-8 engine fuel to be used in diesel vehicles. Two Army diesel engines were evaluated in cyclic endurance dynamometer test procedures using JP-8 fuel blended with 7.5% vol used oil. Results were compared to baseline performance using neat JP-8 fuel. The following major differences were observed when using blended fuel: Significant ashy deposits were found in the pre-combustion chamber of the 4-cycle diesel engine; indications of imminent exhaust valve burning (streaking) were found on the exhaust valves in the 2-cycle diesel engine. For both engines, condition was such that continuous use of 7.5 %vol blend would not be recommended. Considering it would take between 19--68 years for an Army engine to reach the end of endurance test condition, use of blended fuel 1 or 2 times per year is judged acceptable from an endurance standpoint.

  11. University of Idaho tests engines with biodiesel from waste oil

    SciTech Connect

    Peterson, C.; Fleischman, G.

    1995-12-31

    This article reports on preliminary work at the University of Idaho that investigates the possibilities of capitalizing on Idaho`s large volumes of waste oil and potatoes-generated ethanol to produce biodiesel fuel. This fuel would be hydrogenated soy ethyl ester, MySEE for short, made through a reaction between waste oil and ethanol made from potato waste. Address for full report is given.

  12. Value-added conversion of waste cooking oil and post-consumer PET bottles into biodiesel and polyurethane foams.

    PubMed

    Dang, Yu; Luo, Xiaolan; Wang, Feng; Li, Yebo

    2016-06-01

    A sustainable process of value-added utilization of wastes including waste cooking oil (WCO) and post-consumer PET bottles for the production of biodiesel and polyurethane (PU) foams was developed. WCO collected from campus cafeteria was firstly converted into biodiesel, which can be used as vehicle fuel. Then crude glycerol (CG), a byproduct of the above biodiesel process, was incorporated into the glycolysis process of post-consumer PET bottles collected from campus to produce polyols. Thirdly, PU foams were synthesized through the reaction of the above produced polyols with isocyanate in the presence of catalysts and other additives. The characterization of the produced biodiesel demonstrated that its properties meet the specification of biodiesel standard. The effect of crude glycerol loading on the properties of polyols and PU foams were investigated. All the polyols showed satisfactory properties for the production of rigid PU foams which had performance comparable to those of some petroleum-based analogs. A mass balance and a cost analysis for the conversion of WCO and waste PET into biodiesel and PU foams were also discussed. This study demonstrated the potential of WCO and PET waste for the production of value-added products. PMID:27055365

  13. Dynamic Oil Consumption Measurement of Internal Combustion Engines using Laser Spectroscopy.

    PubMed

    Sellmeier, Stefan; Alonso, Eduardo; Boesl, Ulrich

    2014-01-01

    A new approach has been developed to measure dynamic consumption of lubricant oil in an internal combustion engine. It is based on the already known technique where sulfur is used as a natural tracer of the engine oil. Since ejection of motor oil in gaseous form into the exhaust is by far the main source of engine oil consumption, detection of sulfur in the exhaust emission is a valuable way to measure engine oil consumption in a dynamic way. In earlier approaches, this is done by converting all sulfur containing chemical components into SO2 by thermal pyrolysis in a high temperature furnace at atmospheric pressure. The so-formed SO2 then is detected by broadband-UV-induced fluorescence or mass spectrometric methods. The challenge is to reach the necessary detection limit of 50 ppb. The new approach presented here includes sulfur conversion in a low-pressure discharge cell and laser-induced fluorescence with wavelength and fluorescence lifetime selection. A limit of detection down to 10 ppb at a temporal resolution in the time scale of few seconds is reached. Extensive, promising studies have been performed at a real engine test bench. Future developments of a compact, mobile device based on these improvements are discussed. PMID:24279690

  14. Field test of re-refined automotive engine oil in RCMP vehicles

    SciTech Connect

    Armstrong, J.

    1980-11-01

    A field test has been designed to isolate the performance characteristics of the virgin and re-refined base oils being studied. The conditions selected for the test are those normally experienced by Royal Canadian Mounted Police vehicles in similar service. All test and reference vehicles have been subjected to as equal treatment as possible, in both driving conditions and maintenance schedules. The primary conclusion that can be made with the data obtained to date is that there are statistically significant differences occurring in certain measured properties of used crankcase oil from the two test groups of vehicles. These differences are no doubt attributable, at least in part, to performance differences between the two finished oils, but other factors such as the observed differences in length of oil change interval and top-up requirements are also contributing to the responses being measured. Given the methods by which the test and reference oils were defined and chosen, it might be expected that differences in performance characteristics would be observed, and also that the reference oil might exhibit better performance characteristics than the test oil. However, the final magnitudes of any differences between the oils will not be known until the field test period is completed, and the real significance of these differences, in terms of their effect on the engines, cannot be determined until the engine examinations have been completed.

  15. Soil stabilization using oil shale solid wastes: Laboratory evaluation of engineering properties

    SciTech Connect

    Turner, J.P.

    1991-01-01

    Oil shale solid wastes were evaluated for possible use as soil stabilizers. A laboratory study was conducted and consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in strength, durability, and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern shale can be used for soil stabilization if limestone is added during combustion. Without limestone, eastern oil shale waste exhibits little or no cementation. The testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented. 11 refs., 3 figs., 10 tabs.

  16. Some Adverse Effects of Used Engine Oil (Common Waste Pollutant) On Reproduction of Male Sprague Dawley Rats

    PubMed Central

    Akintunde, Wasiu Olalekan; Olugbenga, Ojo A.; Olufemi, Ogundipe O.

    2015-01-01

    AIM: Used oil is contaminated not only with heavy metals but also with polycyclic aromatic hydrocarbons (PAHs) that are insignificant in the unused oil. In our study we determined possible reproductive effects of used engine oil on male rats. MATERIAL AND METHODS: Twenty eight male Wistar rats were used for the study. The rats had average weight of 181.5 ± 10 g, animal feeds and portable water was provided ad-libitum. The rats were assigned to 4 groups (n = 7) including control. The treated groups orally received 0.1 ml/rat, 0.2 ml/rat and 0.4 ml/rat of the used engine oil every other day for 28 days using oral canulla. The spermatozoa were collected from epididymis for sperm analysis and testes were removed and preserved in Bouin’s fluid for routine histological analysis. RESULTS: Our results showed that there was progressive weight increase among the control group of rats that received distilled water. Meanwhile, rats that received 0.4 ml/rat of the used engine oil showed significant (P < 0.05) weight loss in second and third week of administration while rats that received 0.2 ml/rat and 0.1 ml/rat of the used engine oil showed non-significant (P > 0.05) weight reduction. The spermatozoa number was decreased with significance (P < 0.05) at 0.2 ml/rat (2.38 ± 0.29) and 0.4 ml/rat (1.98 ± 0.08) when compared with the control (5.00 ± 0.89). However, the percentage of motile sperms was reduced significantly (P <0.05) at 0.2 ml/rat (52.86 ± 3.59) and 0.4 ml/rat (45.71 ± 2.94) except at 0.1 ml/rat where the reduction (64.00 ± 7.5) was not significant (P> 0.05). The percentage of head deformity been 41.43 ± 2.61 and 42.00 ± 3.74 at 0.2 ml/rat and 0.4 ml/rat respectively, also significant increase of middle piece deformity was observed only at 0.1 ml/rat (45.71 ± 2.02) while tail deformity significantly decreased (15.71 ± 2.02, 20.00 ± 4.36 and 20.00 ± 4.47) when compared with the control (30.00 ± 1.29). The testicular seminiferous tubules were slightly

  17. Development of narrow width type oil control ring for motorcycle engine

    SciTech Connect

    Tateishi, Yukio; Fujimura, Kazuhiro; Ishihara, Katsushi; Watanabe, Masanor

    1995-12-31

    The reduction of piston ring friction forces, which account for high percentages of the total engine friction loss, is vital for the simultaneous attainments of lower fuel consumption, higher engine power and speed. The authors et al. noted a three-piece type oil control ring in this study, and strived for the development of an oil control ring with a narrow width and a low tangential force. A new three-piece, type oil control ring with a small tolerance on tangential force and a width of 1.2 to 1.5 mm has been successfully developed by studying the effect of such a ring on the lubricating oil consumption, while providing a spring function by press-forming a wire rod having a particular sectional shape.

  18. Tuning single-cell oil production in Ashbya gossypii by engineering the elongation and desaturation systems.

    PubMed

    Ledesma-Amaro, Rodrigo; Santos, María-Angeles; Jiménez, Alberto; Revuelta, José Luis

    2014-09-01

    Microbial oils represent a sustainable alternative to vegetable oils and animal fats as feedstock for both the chemical and biofuel industries. The applications of microbial oils depend on their fatty acid composition, which is defined by the relative amount of each fatty acid, also considering the length and unsaturations of the acyl chain. These two properties are determined by elongases and desaturases. In the present study, we characterized the elongase and desaturase systems in the filamentous fungus Ashbya gossypii, which is able to accumulate high amounts of lipids. Additionally, both the elongation and desaturation systems were engineered in order to broaden the potential applications of A. gossypii oils. Finally, the properties of the strains engineered for biodiesel production were analyzed, with the observation that A. gossypii is a good candidate for the microbial production of renewable biofuels. PMID:24668265

  19. Studies on exhaust emissions of mahua oil operated compression ignition engine.

    PubMed

    Kapilan, N; Reddy, R P

    2009-07-01

    The world is confronted with fossil fuel depletion and environmental degradation. The energy demand and pollution problems lead to research for an alternative renewable energy sources. Vegetable oils and biodiesel present a very promising alternative fuel to diesel. In this work, an experimental work was carried out to study the feasibility of using raw mahua oil (MO) as a substitute for diesel in dual fuel engine. A single cylinder diesel engine was modified to work in dual fuel mode and liquefied petroleum gas (LPG) was used as primary fuel and mahua oil was used as pilot fuel. The results show that the performance of the dual fuel engine at the injector opening pressure of 220 bar and the advanced injection timing of 30 degrees bTDC results in performance close to diesel base line (DBL) operation and lower smoke and oxides of nitrogen emission. PMID:21117439

  20. Comparison of the constituents of two jet engine lubricating oils and their volatile pyrolytic degradation products.

    PubMed

    van Netten, C; Leung, V

    2000-03-01

    Leaking oil seals in jet engines, at locations prior to the compressor stage, can be a cause of smoke in the cabins of BAe-146 aircraft. Compressed combustion air is bled off to pressurize the cabin and to provide a source of fresh air. Bleed air is diverted from a location just prior to the combustion chamber at a temperature around 500 degrees C. To prevent oil breakdown products from entering the cabin air, catalytic converters have been used to clean the air. During an oil seal failure this device becomes overloaded and smoke is observed in the cabin. Some aircraft companies have removed the catalytic converters and claim an improvement in air quality. During an oil seal failure, however, the flight crew is potentially exposed to the thermal breakdown products of the engine oils. Because very little is known regarding the thermal breakdown products of jet engine lubrication oils, two commercially available oils were investigated under laboratory conditions at 525 degrees C to measure the release of CO, CO2,NO2, and HCN as well as volatiles which were analyzed using GC-Mass spectrometry in an attempt to see if the neurotoxic agents tricresyl phosphates (TCPs) and trimethyl propane phosphate (TMPP) would be present or formed. TMPP was not found in these experiments. Some CO2 was generated along with CO which reached levels in excess of 100 ppm. HCN and NO2 were not detected. GC compositions of the two bulk oils and their breakdown products were almost identical. The presence of TCPs was confirmed in the bulk oils and in the volatiles. Localized condensation in the ventilation ducts and filters in the air conditioning packs are likely the reason why the presence of TCPs has not been demonstrated in cabin air. It was recommended that this needed to be verified in aircraft. PMID:10701290

  1. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid

    NASA Astrophysics Data System (ADS)

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-08-01

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2–16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process.

  2. Fuels Coming from Locals Vegetables Oils for Operating of Thermals Engines

    NASA Astrophysics Data System (ADS)

    Agboue, Akichi; Yobou, Bokra

    The energy crisis born from the oil problem determined a renewal of attention on the possible possibilities of production of substitute fuels for the operation of the machines and the thermal engines. The fuel`s production based on vegetable oils require a renewal attention about the research of replacement fuel for the opeating of machines and thermal engines. Actually, the scientific world takes an interest in the research of others liquids fuel obtained with renewables energy sources whose vegetables have a good place. So, for helping to solve the fuel problem and particularly in third world countries without petroleum resources but producing fruits and oils seed, this research was about search of fuel from vegetables oils. Extraction and physico-chemical analysis performed on various vegetables plants show an interesting energy aspect. Evaluation of actually energy parameters will permit to do a comparison with classics fuel like gas-oil and petrol. Finally, analysis of thermal engines show that fuels coming from biomass like jatropha, ricinodendron and pistacia can to use for operating of those thermal engines.

  3. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid

    PubMed Central

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-01-01

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2–16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process. PMID:27488733

  4. Characterization of vegetable oils for use as fuels in diesel engines

    SciTech Connect

    Ryan, T.W. III.; Callahan, T.J.; Dodge, L.G.

    1982-01-01

    The current specifications for petroleum fuels have evolved over the history of the petroleum industry and the development of the internal combustion engine. Present day fuel specifications are based on a wealth of empirical data and practical experience. A similar data base is only now being developed for the specification of vegetable oil fuels for diesel engines. Four different types of vegetable oil (soy, sunflower, cottonseed and peanut) have been obtained, each in at least three different stages of processing. All of the oils (14) have been characterized with respect to their physical and chemical properties. The spray characteristics of five of the oils have been determined at a variety of fuel temperatures using a high-pressure, high-temperature injection bomb and high-speed motion picture camera. These same oils have been tested in a direct injection farm tractor engine. The engine data consists of the normal performance measurements as well as the determination of heat release rates from cylinder pressure data. 3 figures, 7 tables.

  5. Usability of food industry waste oils as fuel for diesel engines.

    PubMed

    Winfried, Russ; Roland, Meyer-Pittroff; Alexander, Dobiasch; Jürgen, Lachenmaier-Kölch

    2008-02-01

    Two cogeneration units were each fitted with a prechamber (IDI) diesel engine in order to test the feasibility of using waste oils from the food industry as a fuel source, and additionally to test emissions generated by the combustion of these fuels. Esterified waste oils and animal fats as well as mustard oil were tested and compared to the more or less "common" fuels: diesel, rapeseed oil and rapeseed methyl ester. The results show that, in principle, each of these fuels is suitable for use in a prechamber diesel engine. Engine performance can be maintained at a constant level. Without catalytic conversion, the nitrogen oxides emissions were comparable. A significant reduction in NO(x) was achieved through the injection of urea. Combining a urea injection with the SCR catalytic converter reduced NO(x) emissions between 53% and 67%. The carbon monoxide emissions from waste oils are not significantly different from those of "common" fuels and can be reduced the same way as of hydrocarbon emissions, through utilization of a catalytic converter. The rate of carbon monoxide reduction by catalytic conversion was 84-86%. A lower hydrocarbon concentration was associated with fuels of agricultural origin. With the catalytic converter a reduction of 29-42% achieved. Each prechamber diesel engine exhibited its own characteristic exhaust, which was independent of fuel type. The selective catalytic reduction of the exhaust emissions can be realized without restriction using fuels of agricultural origin. PMID:17303316

  6. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  7. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid.

    PubMed

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-01-01

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2-16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process. PMID:27488733

  8. Adding a Visualization Feature to Web Search Engines: It’s Time

    SciTech Connect

    Wong, Pak C.

    2008-11-11

    Since the first world wide web (WWW) search engine quietly entered our lives in 1994, the “information need” behind web searching has rapidly grown into a multi-billion dollar business that dominates the internet landscape, drives e-commerce traffic, propels global economy, and affects the lives of the whole human race. Today’s search engines are faster, smarter, and more powerful than those released just a few years ago. With the vast investment pouring into research and development by leading web technology providers and the intense emotion behind corporate slogans such as “win the web” or “take back the web,” I can’t help but ask why are we still using the very same “text-only” interface that was used 13 years ago to browse our search engine results pages (SERPs)? Why has the SERP interface technology lagged so far behind in the web evolution when the corresponding search technology has advanced so rapidly? In this article I explore some current SERP interface issues, suggest a simple but practical visual-based interface design approach, and argue why a visual approach can be a strong candidate for tomorrow’s SERP interface.

  9. Automated small scale oil seed processing plant for production of fuel for diesel engines

    SciTech Connect

    Thompson, J.C.; Peterson, C.L.

    1982-01-01

    University of Idaho seed processing research is centered about a CeCoCo oil expeller. A seed preheater-auger, seed bin, meal auger, and oil pump have been constructed to complete the system, which is automated and instrumented. The press, preheater, cake removal auger, and oil transfer pump are tied into a central panel where energy use is measured and the process controlled. Extracted oil weight, meal weight, process temperature, and input energy are all recorded during operation. The oil is transferred to tanks where it settles for 48 hours or more. It is then pumped through a filtering system and stored ready to be used as an engine fuel. The plant has processed over 11,000 kg of seed with an average extraction efficiency of 78 percent. 5 tables.

  10. Soy-Based, Water-Cooled, TC W-III Two Cycle Engine Oil

    SciTech Connect

    Scharf, Curtis R.; Miller, Mark E.

    2003-08-30

    The objective of this project was to achieve technical approval and commercial launch for a biodegradable soy oil-based, environmentally safe, TC W-III performance, water-cooled, two cycle engine oil. To do so would: (1) develop a new use for RBD soybean oil; (2) increase soybean utilization in North America in the range of 500 K-3.0 MM bushels; and (3) open up supply opportunities of 1.5-5.0 MM bushels worldwide. These goals have been successfully obtained.

  11. A Nano Engineered Membrane for Oil-Water Separation

    NASA Astrophysics Data System (ADS)

    Solomon, Brian; Hyder, Nasim; Varanasi, Kripa

    2012-02-01

    Oil and water separation is an extremely costly problem in the petroleum industry. Pumping the complete emulsion to the surface requires substantially more power than pumping the oil alone. A membrane that can efficiently separate oil from water at the source would revolutionize this process. To this end a novel, layered, hierarchical thermoplastic membrane was fabricated with both nanoscale and microscale features. Modifying the length scales involved in fabrication of the membrane yields interesting and non-obvious implications. Under certain regimes, the microscale features independently control the membrane's permeability, while the microscale features control only the membrane's breakthrough pressure. By operating in this regime, separation efficiencies can be realized that are otherwise unattainable by conventional membranes. Taking it a step further, chemical treatments have been used to achieve higher hydrophobicity for the membrane by lowering the surface energy of the membrane surface. Although this research focused on oil-water separation, the results have implications for other multiphase systems and hold for many other filtration and separation technologies including in lab-on-chip devices and micro/nanofluidic devices.

  12. Effects of Adding Essential Oil to the Diet of Weaned Pigs on Performance, Nutrient Utilization, Immune Response and Intestinal Health

    PubMed Central

    Li, Pengfei; Piao, Xiangshu; Ru, Yingjun; Han, Xu; Xue, Lingfeng; Zhang, Hongyu

    2012-01-01

    The objective of this study was to evaluate the effects of adding essential oils to the diet of weaned pigs on performance, nutrient utilization, immune response and intestinal health. A total of 96 weaning pigs (8.37±1.58 kg) were allotted to one of three dietary treatments. The treatments consisted of an unsupplemented basal diet (negative control, NC) or similar diets supplemented with 0.01% of an essential oil product which contained 18% thymol and cinnamaldehyde (EOD) as well as a diet supplemented with 0.19% of an antibiotic mixture which provided 150 ppm chlortetracycline, 80 ppm colistin sulfate and 50 ppm kitasamycin (positive control, PC). Each treatment was provided to eight pens of pigs with four pigs per pen. Over the entire 35 d experiment, ADG and fecal score were improved (p<0.05) for pigs fed the PC and EOD compared with the NC. Dry matter and crude protein digestibility as well as lymphocyte proliferation for pigs fed the PC and EOD diets were increased significantly compared with NC (p<0.05). IGF-I levels in plasma were significantly increased (p<0.05) in pigs fed the PC diet compared with pigs fed the NC diet. Interleukin-6 concentration was lower (p<0.05) and the tumor necrosis factor-α level was higher (p<0.05) in the plasma of pigs fed the EOD diet than the NC diet. Plasma total antioxidant capacity level increased (p<0.05) in pigs fed the EOD diet compared with pigs fed the NC. Villus height to crypt depth ratio in the jejunum was greater (p<0.05) in pigs fed the PC and EOD diets than the NC. The numbers of E. coli in the cecum, colon and rectum were reduced (p<0.05) in pigs fed the PC and EOD diets compared with the control. In the colon, the ratio of Lactobacilli to E. coli was increased (p<0.05) in pigs fed the EOD diet compared with NC diet. Total aerobe numbers in the rectum were decreased (p<0.05) in pigs fed the PC and EOD diets compared with the control. Collectively, these results indicate that blends of essential oils could be a

  13. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    NASA Astrophysics Data System (ADS)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2016-07-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  14. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    PubMed

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine. PMID:24350455

  15. Experimental investigation of engine emissions with marine gas oil-oxygenate blends.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2010-07-15

    This paper investigates the diesel engine performance and exhaust emissions with marine gas oil-alternative fuel additive. Marine gas oil (MGO) was selected as base fuel for the engine experiments. An oxygenate, diethylene glycol dimethyl ether (DGM), and a biodiesel (BD) jatropha oil methyl ester (JOME) with a volume of 10% were blended with the MGO fuel. JOME was derived from inedible jatropha oil. Lower emissions with diesel-BD blends (soybean methyl ester, rapeseed methyl ester etc.) have been established so far, but the effect of MGO-BD (JOME) blends on engine performance and emissions has been a growing interest as JOME (BD) is derived from inedible oil and MGO is frequently used in maritime transports. No phase separation between MGO-DGM and MGO-JOME blends was found. The neat MGO, MGO-DGM and MGO-JOME blends are termed as MGO, Ox10 and B10 respectively. The experiments were conducted with a six-cylinder, four-stroke, turbocharged, direct-injection Scania DC 1102 (DI) diesel engine. The experimental results showed significant reductions in fine particle number and mass emissions, PM and smoke emissions with Ox10 and B10 fuels compared to the MGO fuel. Other emissions including total unburned hydrocarbon (THC), carbon monoxide (CO) and engine noise were also reduced with the Ox10 and B10 fuels, while maintaining similar brake specific fuel consumption (BSFC) and thermal efficiency with MGO fuel. Oxides of nitrogen (NOx) emissions, on the other hand, were slightly higher with the Ox10 and B10 fuels at high engine load conditions. PMID:20452651

  16. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter

    NASA Astrophysics Data System (ADS)

    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Saravanan, C. G.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.

    2013-12-01

    In this work, we propose pine oil biofuel, a renewable fuel obtained from the resins of pine tree, as a potential substitute fuel for a diesel engine. Pine oil is endowed with enhanced physical and thermal properties such as lower viscosity and boiling point, which enhances the atomization and fuel/air mixing process. However, the lower cetane number of the pine oil hinders its direct use in diesel engine and hence, it is blended in suitable proportions with diesel so that the ignition assistance could be provided by higher cetane diesel. Since lower cetane fuels are prone to more NOX formation, SCR (selective catalyst reduction), using urea as reducing agent, along with a CC (catalytic converter) has been implemented in the exhaust pipe. From the experimental study, the BTE (brake thermal efficiency) was observed to be increased as the composition of pine oil increases in the blend, with B50 (50% pine oil and 50% diesel) showing 7.5% increase over diesel at full load condition. The major emissions such as smoke, CO, HC and NOX were reduced by 70.1%, 67.5%, 58.6% and 15.2%, respectively, than diesel. Further, the average emissions of B50 with SCR and CC assembly were observed to be reduced, signifying the positive impact of pine oil biofuel on atmospheric environment. In the combustion characteristics front, peak heat release rate and maximum in-cylinder pressure were observed to be higher with longer ignition delay.

  17. The pipeline oil pumping engineering based on the Plant Wide Control technology

    NASA Astrophysics Data System (ADS)

    Starikov, D. P.; Rybakov, E. A.; Gromakov, E. I.

    2015-04-01

    This article provides recommendations for the use technology Plant Wide Control to control the pumping of oil through the pipeline. The proposed engineering using pipeline management in general (Pipe Wide Control) will reduce the loss of electric power at the expense of the balance of pumping stations located along the pipeline route.

  18. Engineering industrial oil biosynthesis: cloning and characterization of Kennedy pathway acyltransferases from novel oilseed species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For more than twenty years, various industrial, governmental, and academic laboratories have developed and refined genetic engineering strategies aimed at manipulating lipid metabolism in plants and microbes. The goal of these projects is to produce renewable specialized oils that can effectively c...

  19. Application of tunable diode laser spectroscopy to the real-time analysis of engine oil economy

    NASA Astrophysics Data System (ADS)

    Carduner, Keith R.; Colvin, A. D.; Leong, D. Y.; Schuetzle, Dennis; Mackay, Gervase I.

    1991-05-01

    Tunable Diode Laser Spectroscopy (TDLAS) of oil derived SO2 in automotive exhaust demonstrated acceptable repeatability in determination of oil consumption at steady state engine operating conditions. The response time of the instrument was approximately 30 sec, the time related to the flow rate of the sampling system. Instrument sensitivity is sufficient to measure SO2 levels of 0.1 to 1 ppm required to the oil consumption determination. Typical exhaust gas species were investigated for their interference effects and were observed to have less than a 10% interference on the SO2 signal for mixing ratios with SO2 typical of automotive exhaust. Water, on the other hand, did show a significant, but compensatible interference. Carbon deposition under rich engine conditions was observed and is expected to be a problem for any analytical device and is best solved by using a heated sampling line.

  20. Microbial desalination cell for enhanced biodegradation of waste engine oil using a novel bacterial strain Bacillus subtilis moh3.

    PubMed

    Sabina, K; Fayidh, Mohammed A; Archana, G; Sivarajan, M; Babuskin, S; Babu, P Azhagu Saravana; Radha, K Krishnan; Sukumar, M

    2014-01-01

    Microbial desalination cell (MDC) is a bioelectrochemical system developed recently from microbial fuel cells (MFCs), for producing green energy from organic wastes along with desalination of saltwater. MDC is proved to be a better performer than MFC in terms of power output and chemical oxygen demand removal, with desalination as an additional feature. This study investigates the application potential of MDC for integrated biodegradation of waste engine oil. This study showed, for the first time, that waste engine oil could be used as an organic substrate in MDC, achieving biodegradation of engine oil along with considerable desalination and power production. Utilization of these wastes in MDC can protect the environment from waste engine oil contamination. Indigenous oil-degrading bacteria were isolated and identified from engine oil contaminated sludge. Degradation of waste engine oil by these novel isolates was studied in batch cultures and optimized the growth conditions. The same cultures when used in MDC, gave enhanced biodegradation (70.1 +/- 0.5%) along with desalination (68.3 +/- 0.6%) and power production (3.1 +/- 0.3 mW/m2). Fourier transform-infrared spectroscopy and gas chromatography-mass spectrometry analyses were performed to characterize the degradation metabolites in the anolyte of MDC which clearly indicated the biodegradation of long chain, branched and cyclic hydrocarbons present in waste engine oil. PMID:25145172

  1. Measurement of oil film thickness for application to elastomeric Stirling engine rod seals

    NASA Technical Reports Server (NTRS)

    Krauter, A. I.

    1981-01-01

    The rod seal in the Stirling engine has the function of separating high pressure gas from low or ambient pressure oil. An experimental apparatus was designed to measure the oil film thickness distribution for an elastomeric seal in a reciprocating application. Tests were conducted on commercial elastomeric seals having a 76 mm rod and a 3.8 mm axial width. Test conditions included 70 and 90 seal durometers, a sliding velocity of 0.8 m/sec, and a zero pressure gradient across the seal. An acrylic cylinder and a typical synthetic base automotive lubricant were used. The experimental results showed that the effect of seal hardness on the oil film thickness is considerable. A comparison between analytical and experimental oil film profiles for an elastomeric seal during relatively high speed reciprocating motion showed an overall qualitative agreement.

  2. Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery.

    PubMed

    Sun, Shanshan; Zhang, Zhongzhi; Luo, Yijing; Zhong, Weizhang; Xiao, Meng; Yi, Wenjing; Yu, Li; Fu, Pengcheng

    2011-05-01

    Microbial enhanced oil recovery (MEOR) is a petroleum biotechnology for manipulating function and/or structure of microbial environments existing in oil reservoirs for prolonged exploitation of the largest source of energy. In this study, an Enterobacter cloacae which is capable of producing water-insoluble biopolymers at 37°C and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at higher temperature. The resultant transformants, GW3-3.0, could produce exopolysaccharide up to 8.83 g l(-1) in molasses medium at 54°C. This elevated temperature was within the same temperature range as that for many oil reservoirs. The transformants had stable genetic phenotype which was genetically fingerprinted by RAPD analysis. Core flooding experiments were carried out to ensure effective controlled profile for the simulation of oil recovery. The results have demonstrated that this approach has a promising application potential in MEOR. PMID:21444201

  3. Amine bearing polymeric particles as acid neutralizers for engine oils

    SciTech Connect

    Theodore, A.N.; Chattha, M.S.

    1986-02-04

    This patent describes a lubricating oil composition consisting of a major proportion of a lubricating base oil and about 0.1 to 15 weight percent of an acid neutralizing additive which consists of polymer particles (a) bearing pendant amine groups, and (b) having a diameter of about 500 A and 10,000 A. The amine functional particles are formed by reacting polymer particles bearing pendant epoxide groups with a secondary amine in an amount so as to react essentially all of the epoxide groups on the epoxide bearing polymer particles with the secondary amine. The polymer particles bearing pendant epoxide groups are formed by the free radical addition polymerization of: (a) between about 50 and about 100 weight percent of an ethylenically unsaturated monomers bearing an epoxide group, and (b) 0 up to about 50 weight percent of other monoethylenically unsaturated monomers; in the presence of: (I) a non-polar organic liquid which is a solvent for the polymerizable monomers, but a non-solvent for the resultant polymer, and (II) polymeric dispersion stabilizer containing at least two segments, with one segment being solvated by the non-polar organic liquid and the second segment being of different polarity than the first segment and relatively insoluble in the non-polar organic liquid. The second segment of the stabilizer is chemically attached to the polymerized particle.

  4. Role of lubrication oil in particulate emissions from a hydrogen-powered internal combustion engine.

    PubMed

    Miller, Arthur L; Stipe, Christopher B; Habjan, Matthew C; Ahlstrand, Gilbert G

    2007-10-01

    Recent studies suggest that trace metals emitted by internal combustion engines are derived mainly from combustion of lubrication oil. This hypothesis was examined by investigation of the formation of particulate matter emitted from an internal combustion engine in the absence of fuel-derived soot. Emissions from a modified CAT 3304 diesel engine fueled with hydrogen gas were characterized. The role of organic carbon and metals from lubrication oil on particle formation was investigated under selected engine conditions. The engine produced exhaust aerosol with log normal-size distributions and particle concentrations between 10(5) and 10(7) cm(-3) with geometric mean diameters from 18 to 31 nm. The particles contained organic carbon, little or no elemental carbon, and a much larger percentage of metals than particles from diesel engines. The maximum total carbon emission rate was estimated at 1.08 g h(-1), which is much lower than the emission rate of the original diesel engine. There was also evidence that less volatile elements, such as iron, self-nucleated to form nanoparticles, some of which survive the coagulation process. PMID:17969702

  5. Genotoxic potential of organic extracts from particle emissions of diesel and rapeseed oil powered engines.

    PubMed

    Topinka, Jan; Milcova, Alena; Schmuczerova, Jana; Mazac, Martin; Pechout, Martin; Vojtisek-Lom, Michal

    2012-07-01

    The present study was performed to identify possible genotoxicity induced by organic extracts from particulate matter in the exhaust of two typical diesel engines run on diesel fuel and neat heated fuel-grade rapeseed oil: a Cummins ISBe4 engine tested using the World Harmonized Steady State Test Cycle (WHSC) and modified Engine Steady Cycle (ESC) and a Zetor 1505 engine tested using the Non-Road Steady State Cycle (NRSC). In addition, biodiesel B-100 (neat methylester of rapeseed oil) was tested in the Cummins engine run on the modified ESC. Diluted exhaust was sampled with high-volume samplers on Teflon coated filters. Filters were extracted with dichlormethane (DCM) and DNA adduct levels induced by extractable organic matter (EOM) in an acellular assay of calf thymus DNA coupled with (32)P-postlabeling in the presence and absence of rat liver microsomal S9 fraction were employed. Simultaneously, the chemical analysis of 12 priority PAHs in EOM, including 7 carcinogenic PAHs (c-PAHs) was performed. The results suggest that diesel emissions contain substantially more total PAHs than rapeseed oil emissions (for the ESC) or that these concentrations were comparable (for the WHSC and NRSC), while c-PAHs levels were comparable (for the ESC) or significantly higher (for the WHSC and NRSC) for rapeseed oil emissions. DNA adduct levels induced by diesel and rapeseed oil derived EOM were comparable, but consistently slightly higher for diesel than for rapeseed oil. Highly significant correlations were found between 12 priority PAHs concentrations and DNA adduct levels (0.980; p<0.001) and these correlations were even stronger for c-PAHs (0.990; p<0.001). Metabolic activation by the microsomal S9 fraction resulted in several fold higher genotoxicity, suggesting a major contribution of PAHs to genotoxicity. Directly acting compounds, other than c-PAHs, and not requiring S9 to exhibit DNA reactivity were also significant. Generally, DNA adduct levels were more dependent on

  6. High-speed Oil Engines for Vehicles. Part II

    NASA Technical Reports Server (NTRS)

    Hausfelder, Ludwig

    1927-01-01

    Further progress toward the satisfactory solution of the difficult problem of the distribution and atomization of the injected fuel was made by extensive experimentation with various fuel valves, nozzles, and atomizing devices. Valuable information was also obtained through numerous experimental researches on the combustion of oils and the manner of introducing the combustion air into the cylinder, as well as on the physical processes of atomization, the determination of the size of drops, etc. These researches led to the conclusion that it is possible, even without producing great turbulence in the combustion chamber and at moderate pump pressure, if the degree of atomization and the penetrative power of the fuel jet are adapted to the shape of the combustion chamber and to the dimensions of the cylinder.

  7. Metabolic engineering of plant oils and waxes for use as industrial feedstocks.

    PubMed

    Vanhercke, Thomas; Wood, Craig C; Stymne, Sten; Singh, Surinder P; Green, Allan G

    2013-02-01

    Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks. PMID:23190163

  8. The potential of Chromolaena odorata (L) to decontaminate used engine oil impacted soil under greenhouse conditions.

    PubMed

    Atagana, Harrison Ifeanyichukwu

    2011-08-01

    This study reports on the use of Chromolaena odorata (L) R.M. King and H. Robinson, an Asteraceae (compositae) and an invasive alien weed in Africa for the remediation of soil contaminated with used engine oil. Used engine oilfrom a motor service garage was used to artificially contaminate soil taken from a garden to give total petroleum hydrocarbon (TPH) of between 1 and 40 g kg(-1). Chromolaena odorata (L), propagated by stem cuttings were transplanted into the contaminated soil and watered just enough to keep the soil at about 70% water holding capacity for 90 day. A set of control experiments containing 40 g kg(-1) used engine oil but without plants was set up. All experiments were set up in triplicates. Although the plants in the experiments containing higher than 30 g kg(-1) used engine oil showed relatively slower growth (fewer branches and leaves, and shorter in height) compared to those containing lower concentrations, the plants in all the experiments continued to grow until the end of the 90 day period. Residual TPH after 90 days showed that between 21 and 100% of oil was lost from the planted soil while only 11.5% was lost in the control, which did not contain plants during the same period. Analysis of plant tissues showed that both shoot and root tissues contained detectable levels of TPH and selected PAHs were also detectable. Biomass accumulation by Chromolaena odorata was affected adversely by concentrations of oil higher than 20 g kg(-1). Results of germination rates and germination energy measurements showed that Chromolaena odorata was able to reduce the toxicity of the contaminated soil after 90 days as compared to soils containing freshly contaminated soiL PMID:21972491

  9. Attempts to prevent injector coking with sunflower oil by engine modifications and fuel additives

    SciTech Connect

    van der Walt, A.N.; Hugo, F.J.C.

    1982-01-01

    The effect of injector tip temperature on coking propencity when sunflower oil is used as a fuel for direct injection engines, was tested. Partial retraction of the injector, the addition of a heat shield to the injector and cooling the injector with water was tried. Also, injector temperature was increased by reducing heat transferred to the cylinder head and preheating the sunflower oil. None of these measures could prevent coking of the injector tip. Coating the injector tip with Teflon and increasing the back leakage rate was also tried without success. Only a few of many additives tested, showed some promise of being able to prevent coking. 5 figures, 1 table.

  10. Preliminary Analysis for an Optimized Oil-Free Rotorcraft Engine Concept

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.

    2008-01-01

    Recent developments in gas foil bearing technology have led to numerous advanced high-speed rotating system concepts, many of which have become either commercial products or experimental test articles. Examples include Oil-Free microturbines, motors, generators and turbochargers. The driving forces for integrating gas foil bearings into these high-speed systems are the benefits promised by removing the oil lubrication system. Elimination of the oil system leads to reduced emissions, increased reliability, and decreased maintenance costs. Another benefit is reduced power plant weight. For rotorcraft applications, this would be a major advantage, as every pound removed from the propulsion system results in a payload benefit. Implementing foil gas bearings throughout a rotorcraft gas turbine engine is an important long-term goal that requires overcoming numerous technological hurdles. Adequate thrust bearing load capacity and potentially large gearbox applied radial loads are among them. However, by replacing the turbine end, or hot section, rolling element bearing with a gas foil bearing many of the above benefits can be realized. To this end, engine manufacturers are beginning to explore the possibilities of hot section gas foil bearings in propulsion engines. This paper presents a logical follow-on activity by analyzing a conceptual rotorcraft engine to determine the feasibility of a foil bearing supported core. Using a combination of rotordynamic analyses and a load capacity model, it is shown to be reasonable to consider a gas foil bearing core section.

  11. Combination counterbalance and oil slinger for horizontal shaft engines

    SciTech Connect

    Kronich, P.G.

    1988-05-03

    In an internal combustion engine including a crankcase having moving parts therein including a piston, a connecting rod pivotally connected to the piston, a substantially horizontally disposed rotatable crankshaft pivotally connected to the connecting rod, and a crankshaft counterweight connected to the crankshaft, and a lubricating fluid sump below the moving parts, a counterbalancing and lubricating mechanism is described comprising: lubricating fluid in the sump; an eccentric member rotatably mounted substantially parallel to the crankshaft in the sump and substantially vertically in line below the piston and the crankshaft; drive means coupling together the crankshaft and the eccentric member for rotatably driving the eccentric member in counterrotation to the crankshaft to balance forces created by the moving parts; deflector means extending at least partially above the level of the lubricating fluid and being at least partially positioned above the eccentric member for directing thrown lubricating fluid towards the moving parts.

  12. Engineered solutions to the hazards of oil based muds

    SciTech Connect

    Sweetsur, A.

    1987-01-01

    In the drilling process, mud performs a number of functions requiring different physical and chemical properties and it is useful to consider how these are affected by the use of an oil based fluid. The first function of the mud is to transport cuttings to the surface, which in general requires a velocity of around 100-200 ft/min and a viscosity of 30-50 secs/qt. The mud should have sufficient viscosity and gel strength to ensure that the cuttings are transported from the cutting surface and that they do no sink back to the bottom should circulation be interrupted. Secondly, the mud also works as a cutting fluid to lubricate and cool the bit and to ensure the at it is working on a clean formation, and to assist cutting via the energy of the fluid jets from the bit nozzles. The third essential function of the mud is as a primary means of pressure control. The hydrostatic head of the column of mud serves to counter-balance the formation pressure at any depth and must be amenable to adjust to compensate for variations in pressure. Also, by measuring flow rates in and out of the hole, the volume of mud in the tanks and by monitoring whether the mud contains gas, fluids or hydrocarbons, a large amount of information about what is happening at the bit can be obtained. The fourth property of mud is to provide a filter-cake that lines the bore of the well, helping to support is and preventing the loss of mud to the formation or the ingress of fluids form the formation into the hold.

  13. 76 FR 49525 - Advisory Circular 20-24C, Approval of Propulsion Fuels and Lubricating Oils

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... adding fuels and oils to type certificates as engine, aircraft, or auxiliary power unit (APU) operating... adding fuels and oils as engine, aircraft, or APU operating limitations. These established methods..., aircraft, or APU operating limitations in lieu of the methods described in the AC. However, the EPD...

  14. Biorefining of by-product streams from sunflower-based biodiesel production plants for integrated synthesis of microbial oil and value-added co-products.

    PubMed

    Leiva-Candia, D E; Tsakona, S; Kopsahelis, N; García, I L; Papanikolaou, S; Dorado, M P; Koutinas, A A

    2015-08-01

    This study focuses on the valorisation of crude glycerol and sunflower meal (SFM) from conventional biodiesel production plants for the separation of value-added co-products (antioxidant-rich extracts and protein isolate) and for enhancing biodiesel production through microbial oil synthesis. Microbial oil production was evaluated using three oleaginous yeast strains (Rhodosporidium toruloides, Lipomyces starkeyi and Cryptococcus curvatus) cultivated on crude glycerol and nutrient-rich hydrolysates derived from either whole SFM or SFM fractions that remained after separation of value-added co-products. Fed-batch bioreactor cultures with R. toruloides led to the production of 37.4gL(-1) of total dry weight with a microbial oil content of 51.3% (ww(-1)) when a biorefinery concept based on SFM fractionation was employed. The estimated biodiesel properties conformed with the limits set by the EN 14214 and ASTM D 6751 standards. The estimated cold filter plugging point (7.3-8.6°C) of the lipids produced by R. toruloides is closer to that of biodiesel derived from palm oil. PMID:25930941

  15. A study on the performance and emission characteristics of esterified pinnai oil tested in VCR engine.

    PubMed

    Ashok Kumar, T; Chandramouli, R; Mohanraj, T

    2015-11-01

    Biodiesel is a clean renewable fuel derived from vegetable oils and animal fats. It is biodegradable, oxygenated, non toxic and free from sulfur and aromatics. The biodiesel prepared from pinnai oil undergoes acid esterification followed by alkaline transesterification process. The fatty acid methyl esters components were identified using gas chromatography and compared with the standard properties. The properties of biodiesel are comparable with diesel. The yield of the biodiesel production depends upon the process parameters such as reaction temperature, pH, time duration and amount of catalyst. The yield of biodiesel by transesterification process was 73% at 55°C. This fuel was tested in a variable compression ratio engine with blend ratios of B10 and B20. During the test runs the compression ratio of the engine was varied from 15:1 to 18:1 and the torque is adjusted from zero to maximum value of 22Nm. The performance characteristics such as the brake thermal efficiency, brake specific energy consumption and exhaust gas temperature of the engine are analyzed. The combustion characteristics of biodiesel like ignition delay, combustion duration and maximum gas temperature and the emission characteristics are also analyzed. The performance characteristics, combustion characteristics and engine emission are effective in the variable compression ratio engine with biodiesel and it is compared with diesel. PMID:26116080

  16. Oil consumption measurements of a production engine using the sulfur-trace method

    NASA Astrophysics Data System (ADS)

    Benson, Verlyn Royal

    Controlling the oil consumption of diesel engines is important for customer satisfaction. Existing oil consumption measurement methods are adequate; however, improved methods offer the possibility of faster and more comprehensive results. The sulfur-trace method is an example. Major objectives of this investigation were to adopt a sulfur-trace analyzer for oil consumption measurements, to improve the oil consumption measurement process, and to demonstrate application of the sulfur-trace instrument to individual cylinder sampling. To achieve these objectives, four research questions were applied: (1) What procedures and attention to detail are required? (2) how can results be reported to maximize data interpretation? (3) how do the advantages of the sulfur-trace method compare with the drain-and-weigh method? and (4) what is recommended as an optimized test method? Addressing Research Question 1 required careful attention to numerous parts of the sulfur-trace instrument. These parts included: (a) insulating and heating the exhaust sample lines, (b) ensuring continuous and proper operation of the ozone generator, (c) controlling the precise flow rate of the sample, and (d) removing excess water from the sample. Addressing Research Question 2 required a strip chart recorder, a spreadsheet template, and a chart template to organize, record, and report data. The strip chart recorder provided a backup analog record and a means to document daily activity. Raw data were entered into a spreadsheet for subsequent analyses required for chart reporting. Addressing Research Question 3 included a comparison of sulfur-trace vs. drain-and-weigh method durations and capabilities. After optimization, the same oil consumption results were collected in 10 minutes using the sulfur-trace method as compared with the 100 hours required for the drain-and-weigh method. More importantly, the sulfur-trace method may be used to collect oil consumption data from each individual cylinder, which

  17. Bohai Oil corporation conceptual engineering of overall development scheme for SZ 36-1 oil field. Final report. Export trade information

    SciTech Connect

    Not Available

    1992-10-01

    SZ 36-1 oil field is located in the Liaodong Bay in the northeastern section of Bohai Bay, in approximately 32 meters water depth, 46 kilometers offshore the Suizhong Coast. The reservoir is highly heterogeneous and unconsolidated, and the crude has high viscosity, high specific gravity, and requires artificial lift for production. A phased development of the field is planned. The U.S. Trade and Development Program (TDP) contracted for engineering services to perform conceptual engineering of the overall development scheme for the SZ 36-1 oil field. The study consisted of two parts: (1) concept selection, to assess various schemes for developing the SZ 36-1 field and selecting one to recommend to the Bohai oil corporation (BOC); (2) conceptual engineering of the recommended development concept. The final report covers both the concept selection and concept engineering phases of the study.

  18. Value-added oil and animal feed production from corn-ethanol stillage using the oleaginous fungus Mucor circinelloides.

    PubMed

    Mitra, Debjani; Rasmussen, Mary L; Chand, Priyanka; Chintareddy, Venkat Reddy; Yao, Linxing; Grewell, David; Verkade, John G; Wang, Tong; van Leeuwen, J Hans

    2012-03-01

    This study highlights the potential of oleaginous fungus, Mucor circinelloides in adsorbing/assimilating oil and nutrients in thin stillage (TS), and producing lipid and protein-rich fungal biomass. Fungal cultivation on TS for 2 days in a 6-L airlift bioreactor, resulted in a 92% increase in oil yield from TS, and 20 g/L of fungal biomass (dry) with a lipid content of 46% (g of oil per 100g dry biomass). Reduction in suspended solids and soluble chemical oxygen demand (SCOD) in TS were 95% and 89%, respectively. The polyunsaturated fatty acids in fungal oil were 52% of total lipids. Fungal cells grown on Yeast Malt (YM) broth had a higher concentration of γ-linolenic acid (17 wt.%) than those grown on TS (1.4 wt.%). Supplementing TS with crude glycerol (10%, v/v) during the stationary growth phase led to a further 32% increase (from 46% to 61%) in cellular oil content. PMID:22237170

  19. Study on production of biodiesel from Jatropha oil and the performance and emission of a diesel engine

    NASA Astrophysics Data System (ADS)

    Nor, N. F. M.; Hafidzal, M. H. M.; Shamsuddin, S. A.; Ismail, M. S.; Hashim, A. H.

    2015-05-01

    The use of nonedible oil as a feedstock is needed to replace edible oil as an alternative fuel for diesel engine. This nonedible oils in diesel engine however leads to low performance and higher emission due to its high viscosity. The characteristics of the fuel can be improved through transesterification process. The yield of biodiesel from Jatropha oil using potassium hydroxide catalyst concentration of 1%, reaction temperature 60°C, reaction time 40 minutes and molar ratio methanol to oil 6:1 was 70.1% from the lab scale. The experimental study on the performances and emissions of a diesel engine is carried out using the Jatropha biodiesel produced from the transesterification process and compared with pure diesel. Results show that B20 has closer performance to diesel and lower emission compared to B5 and diesel in terms of CO2 and HC.

  20. Combustion analysis of esters of soybean oil in a diesel engine

    SciTech Connect

    Zhang, Y.; Van Gerpen, J.H.

    1996-09-01

    The alkyl esters of plant oils and animal fats are receiving increasing attention as renewable fuels for diesel engines. These esters have come to be known as biodiesel. One objection to the use of the methyl and ethyl esters of soybean oil as a fuel in diesel engines is their high crystallization temperature. One solution to this problem is to use the isopropyl esters of soybean oil which have significantly lower crystallization temperatures. Another method to improve the cold flow properties of esters is to winterize them to subambient temperature. This is accomplished by cooling the esters and filtering out the components that crystallize most readily. Previous work has shown that when methyl, isopropyl and winterized ester blends were compared with No. 2 diesel fuel, the isopropyl and winterized methyl esters had at least the same emission reduction potential as the methyl esters, with similar engine performance. This paper discusses those results using heat release analysis that shows all of the blends have shorter ignition delays, and lower premixed burn fractions than No. 2 diesel fuel. All tested fuels except the isopropyl ester blends had similar combustion behavior. However, blends with isopropyl ester showed some abnormal combustion behavior, possibly due to high levels of monoglycerides.

  1. Sensitivity and Antioxidant Response of Chlorella sp. MM3 to Used Engine Oil and Its Water Accommodated Fraction.

    PubMed

    Ramadass, Kavitha; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Naidu, Ravi

    2016-07-01

    We exposed the microalgal strain, Chlorella sp. MM3, to unused or used engine oil, or their water accommodated fractions (WAFs) to determine growth inhibition and response of antioxidant enzymes. Oil type and oil concentration greatly affected the microalgal growth. Used oil at 0.04 % (0.4 g L(-1)) resulted in 50 % inhibition in algal growth, measured in terms of chlorophyll-a, while the corresponding concentration of unused oil was nontoxic. Similarly, used oil WAF showed significant toxicity to the algal growth at 10 % level, whereas WAF from unused oil was nontoxic even at 100 % concentration. Peroxidase enzyme in the microalga significantly increased with used oil at concentrations above 0.04 g L(-1) whereas the induction of superoxide dismutase and catalase was apparent only at 0.06 g L(-1). Activities of the antioxidant enzymes increased significantly when the microalga was exposed to 75 and 100 % WAF obtained from used oil. The used oil toxicity on microalga could be due to the presence of toxic soluble mono- and polyaromatic compounds, heavy metals, and other compounds attained by the oil during its use in the motor engines. PMID:27174464

  2. Engineering plant oils as high-value industrial feedstocks for biorefining: the need for underpinning cell biology research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant oils represent renewable sources of long-chain hydrocarbons that can be used as both fuel and chemical feedstocks, and genetic engineering offers an opportunity to create further high-value specialty oils for specific industrial uses. While many genes have been identified for the production of...

  3. Metabolic Engineering Plant Seeds with Fish Oil-Like Levels of DHA

    PubMed Central

    Petrie, James R.; Shrestha, Pushkar; Zhou, Xue-Rong; Mansour, Maged P.; Liu, Qing; Belide, Srinivas; Nichols, Peter D.; Singh, Surinder P.

    2012-01-01

    Background Omega-3 long-chain (≥C20) polyunsaturated fatty acids (ω3 LC-PUFA) have critical roles in human health and development with studies indicating that deficiencies in these fatty acids can increase the risk or severity of cardiovascular and inflammatory diseases in particular. These fatty acids are predominantly sourced from fish and algal oils, but it is widely recognised that there is an urgent need for an alternative and sustainable source of EPA and DHA. Since the earliest demonstrations of ω3 LC-PUFA engineering there has been good progress in engineering the C20 EPA with seed fatty acid levels similar to that observed in bulk fish oil (∼18%), although undesirable ω6 PUFA levels have also remained high. Methodology/Principal Findings The transgenic seed production of the particularly important C22 DHA has been problematic with many attempts resulting in the accumulation of EPA/DPA, but only a few percent of DHA. This study describes the production of up to 15% of the C22 fatty acid DHA in Arabidopsis thaliana seed oil with a high ω3/ω6 ratio. This was achieved using a transgenic pathway to increase the C18 ALA which was then converted to DHA by a microalgal Δ6-desaturase pathway. Conclusions/Significance The amount of DHA described in this study exceeds the 12% level at which DHA is generally found in bulk fish oil. This is a breakthrough in the development of sustainable alternative sources of DHA as this technology should be applicable in oilseed crops. One hectare of a Brassica napus crop containing 12% DHA in seed oil would produce as much DHA as approximately 10,000 fish. PMID:23145108

  4. Analysis of volatiles in porcine liver pâtés with added sage and rosemary essential oils by using SPME-GC-MS.

    PubMed

    Estévez, Mario; Ventanas, Sonia; Ramírez, Rosario; Cava, Ramón

    2004-08-11

    The effect of the addition of two natural antioxidant extracts (sage and rosemary essential oils) and one synthetic (BHT) on the generation of volatile compounds in liver pâtés from Iberian and white pigs was analyzed using SPME-GC-MS. Lipid-derived volatiles such as aldehydes [hexanal, octanal, nonanal, hept-(Z)-4-enal, oct-(E)-2-enal, non-(Z)-2-enal, dec-(E)-2-enal, deca-(E,Z)-2,4-dienal] and alcohols (pentan-1-ol, hexan-1-ol, oct-1-en-3-ol) were the most abundant compounds in the headspace of porcine liver pâtés. Pâtés from different pig breeds presented different volatiles profiles due to their different oxidation susceptibilities as a probable result of their fatty acid profiles and vitamin E content. Regardless of the origin of the pâtés, the addition of BHT successfully reduced the amount of volatiles derived from PUFA oxidation. Added essential oils showed a different effect on the generation of volatiles whether they were added in pâtés from Iberian or white pigs because they inhibited lipid oxidation in the former and enhanced oxidative instability in the latter. SPME successfully allowed the isolation and analysis of 41 volatile terpenes from pâtés with added sage and rosemary essential oils including alpha-pinene, beta-myrcene, 1-limonene, (E)-caryophyllene, linalool, camphor, and 1,8-cineole, which might contribute to the aroma characteristics of liver pâtés. PMID:15291492

  5. Characterization and effect of using Mahua oil biodiesel as fuel in compression ignition engine

    NASA Astrophysics Data System (ADS)

    Kapilan, N.; Ashok Babu, T. P.; Reddy, R. P.

    2009-12-01

    There is an increasing interest in India, to search for suitable alternative fuels that are environment friendly. This led to the choice of Mahua Oil (MO) as one of the main alternative fuels to diesel. In this investigation, Mahua Oil Biodiesel (MOB) and its blend with diesel were used as fuel in a single cylinder, direct injection and compression ignition engine. The MOB was prepared from MO by transesterification using methanol and potassium hydroxide. The fuel properties of MOB are close to the diesel and confirm to the ASTM standards. From the engine test analysis, it was observed that the MOB, B5 and B20 blend results in lower CO, HC and smoke emissions as compared to diesel. But the B5 and B20 blends results in higher efficiency as compared to MOB. Hence MOB or blends of MOB and diesel (B5 or B20) can be used as a substitute for diesel in diesel engines used in transportation as well as in the agriculture sector.

  6. Fuel Properties Improvement of Jatropha Oil using Exhaust Heat of Diesel Engine

    NASA Astrophysics Data System (ADS)

    Raheman, H.; Pradhan, P.

    2012-12-01

    The aim of the present work is to design a helical coil heat exchanger to extract waste heat from exhaust gas of a diesel engine to improve the fuel properties of high viscous crude Jatropha oil (CJO). A detailed designed procedure of helical coil heat exchanger was reported in this paper. The results showed that the fuel properties like density and viscosity reduced by 2.13 and 48.76 % respectively by gaining temperature from exhaust gas. Finally preheated Jatropha oil (PJO) fueled to the 5.5 kW diesel engine and it operated smoothly with a maximum brake thermal efficiency of 29.15 % as compared to 29.88 and 28.33 % for HSD and CJO, respectively. The brake specific energy consumption of CJO and PJO was found to be only 2.84 and 5.47 % higher than that of HSD, respectively. Efficiency of the heat exchanger was found to be varying between 19 and 26 % with engine load.

  7. A low cost mid-infrared sensor for on line contamination monitoring of lubricating oils in marine engines

    NASA Astrophysics Data System (ADS)

    Ben Mohammadi, L.; Kullmann, F.; Holzki, M.; Sigloch, S.; Klotzbuecher, T.; Spiesen, J.; Tommingas, T.; Weismann, P.; Kimber, G.

    2010-04-01

    The chemical and physical condition of oils in marine engines must be monitored to ensure optimum performance of the engine and to avoid damage by degraded oil not adequately lubricating the engine. Routine monitoring requires expensive laboratory testing and highly skilled analysts. This work describes the adaptation and implementation of a mid infrared (MIR) sensor module for continued oil condition monitoring in two-stroke and four-stroke diesel engines. The developed sensor module will help to reduce costs in oil analysis by eliminating the need to collect and send samples to a laboratory for analysis. The online MIR-Sensor module measures the contamination of oil with water, soot, as well as the degradation indicated by the TBN (Total Base Number) value. For the analysis of water, TBN, and soot in marine engine oils, four spectral regions of interest have been identified. The optical absorption in these bands correlating with the contaminations is measured simultaneously by using a four-field thermopile detector, combined with appropriate bandpass filters. Recording of the MIR-absorption was performed in a transmission mode using a flow-through cell with appropriate path length. Since in this case no spectrometer is required, the sensor including the light source, the flowthrough- cell, and the detector can be realised at low cost and in a very compact manner. The optical configuration of the sensor with minimal component number and signal intensity optimisation at the four-field detector was implemented by using non-sequential ray tracing simulation. The used calibration model was robust enough to predict accurately the value for soot, water, and TBN concentration for two-stroke and four-stroke engine oils. The sensor device is designed for direct installation on the host engine or machine and, therefore, becoming an integral part of the lubrication system. It can also be used as a portable stand-alone system for machine fluid analysis in the field.

  8. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    PubMed Central

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7–33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6–52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NOX) emissions when using mixed fuels were 10–39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine). PMID:24688402

  9. Performance of diesel engine using diesel B3 mixed with crude palm oil.

    PubMed

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5-17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7-33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6-52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NO X ) emissions when using mixed fuels were 10-39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine). PMID:24688402

  10. Effect of chitosan edible films added with Thymus moroderi and Thymus piperella essential oil on shelf-life of cooked cured ham.

    PubMed

    Ruiz-Navajas, Y; Viuda-Martos, M; Barber, X; Sendra, E; Perez-Alvarez, J A; Fernández-López, J

    2015-10-01

    The aim of this work was to develop chitosan edible films added with essential oils obtained from two Thymus species, Thymus moroderi (TMEO) and Thymus piperella (TPEO) to determine their application for enhancing safety (antioxidant and antibacterial properties) and shelf-life of cooked cured ham (CCH) stored at 4 °C during 21 days. Addition of TMEO and TPEO into chitosan films decreased the aerobic mesophilic bacteria (AMB) and lactic acid bacteria (LAB) counts in coated cooked cured ham samples as compared with uncoated samples. Both AMB and LAB showed the lowest counts in CCH samples coated with chitosan films added with TPEO at 2 %. In regard to lipid oxidation, the CCH samples coated with chitosan films added with TMEO or TPEO had lower degrees of lipid oxidation than uncoated control samples. Chitosan films added with TPEO at 2 % showed the lowest values. The addition of TPEO or TMEO in chitosan films used as coated in CCH improved their shelf life. PMID:26396394

  11. Human factors engineering in oil and gas--a review of industry guidance.

    PubMed

    Robb, Martin; Miller, Gerald

    2012-01-01

    Oil and gas exploration and production activities are carried out in hazardous environments in many parts of the world. Recent events in the Gulf of Mexico highlight those risks and underline the importance of considering human factors during facility design. Ergonomic factors such as machinery design, facility and accommodation layout and the organization of work activities have been systematically considered over the past twenty years on a limited number of offshore facility design projects to a) minimize the occupational risks to personnel, b) support operations and maintenance tasks and c) improve personnel wellbeing. During this period, several regulators and industry bodies such as the American Bureau of Shipping (ABS), the American Society of Testing and Materials (ASTM), the UK's Health and Safety Executive (HSE), Oil and Gas Producers (OGP), and Norway's Petroleum Safety Authority (PSA) have developed specific HFE design standards and guidance documents for the application of Human Factors Engineering (HFE) to the design and operation of Oil and Gas projects. However, despite the existence of these guidance and recommended design practise documents, and documented proof of their value in enhancing crew safety and efficiency, HFE is still not well understood across the industry and application across projects is inconsistent. This paper summarizes the key Oil and Gas industry bodies' HFE guidance documents, identifies recurring themes and current trends in the use of these standards, provides examples of where and how these HFE standards have been used on past major offshore facility design projects, and suggests criteria for selecting the appropriate HFE strategy and tasks for future major oil and gas projects. It also provides a short history of the application of HFE to the offshore industry, beginning with the use of ASTM F 1166 to a major operator's Deepwater Gulf of Mexico facility in 1990 and the application of HFE to diverse world regions. This

  12. Out-of-plane piezoelectric microresonator and oscillator circuit for monitoring engine oil contamination with diesel

    NASA Astrophysics Data System (ADS)

    Toledo, J.; Manzaneque, T.; Ruiz-Díez, V.; Jiménez-Márquez, F.; Kucera, M.; Pfusterschmied, G.; Wistrela, E.; Schmid, U.; Sánchez-Rojas, J. L.

    2015-05-01

    Real-time monitoring of the physical properties of liquids is an important subject in the automotive industry. Contamination of lubricating oil by diesel soot has a significant impact on engine wear. Resonant microstructures are regarded to be a precise and compact solution for tracking the viscosity and density of lubricant oils. Since the measurement of pure shear forces do not allow an independent determination of the density and viscosity, two out-of-plane modes for the monitoring of oil dilution with diesel have been selected. The first one (12-mode) is working at 51 kHz and the second mode (14-mode) at 340 kHz. Two parameters were measured: the quality factor and the resonance frequency from which the viscosity and density of the fluids under test can be determined, requiring only a small amount of test liquid. A PLL-based oscillator circuit was implemented based on each resonator. Our results demonstrate the performance of the resonator in oils with viscosity up to 90 mPa·s. The quality factor measured at 25°C was 7 for the 12-mode and 19 for the 14-mode. A better resolution in density and viscosity was obtained for the 14-mode, showing a resolution of 3.92·10-5 g/ml for the density and 1.27·10-1 mPa·s for the viscosity, in pure lubricant oil SAE 0W30. An alternative tracking system, based on a discrete oscillator circuit, was tested with the same resonator, showing a comparable stability and supporting our approach.

  13. Laboratory endurance test of a sunflower oil blend in a diesel engine

    SciTech Connect

    Ziejewski, M.; Kaufman, K.R.

    1982-01-01

    This paper compares the effects of using a 25 to 75 blend (v/v) of alkali refined sunflower oil and diesel fuel in a diesel engine as compared to a baseline test on diesel fuel. There were no significant problems with engine operation during the baseline test. However, problems were experienced while using the blended fuel. The major problems were (1) abnormal buildup on the injection nozzle tips, (2) injector needle sticking, (3) secondary injection, (4) carbon buildup in the intake ports, (5) carbon deposits on the exhaust valve stems, (6) carbon filling of the compression ring grooves, and (7) abnormal lacquer and varnish buildup on the third piston land. 6 figures, 4 tables.

  14. Influence of vegetable oil based alternate fuels on residue deposits and components wear in a diesel engine

    SciTech Connect

    Ziejewski, M.; Goettler, H.; Pratt, G.L.

    1986-01-01

    A 25-75 blend (v/v) of alkali-refined sunflower oil and diesel fuel, a 25-75 blend (v/v) of high oleic safflower oil and diesel fuel, a non-ionic sunflower oil-aqueous ethanol microemulsion, and a methyl ester of sunflower oil were evaluated as fuels in a direct injected, turbocharged, intercooled, 4-cylinder Allis-Chalmers diesel engine during a 200-hour EMA cycle laboratory screening endurance test. Engine performance on Phillips 2-D reference fuel served as baseline for the experimental fuels. This investigation employed an analysis of variance to compare CRC carbon and lacquer ratings and wear of engine parts for all tested fuels. The paper deals with carbon and lacquer formation and its effect on long-term engine performance as experienced during the operation with the alternate fuels. Significantly heavier deposits than for the diesel fuel were observed for the microemulsion and 25-75 sunflower oil blend. particularly on the exhaust and intake valve stems, on the piston lands, and in the piston grooves. In all tests engine wear was not significant. The final dimensions of the measured elements did not exceed the manufacturer's initial parts specifications.

  15. Complex polyion-surfactant ion salts in equilibrium with water: changing aggregate shape and size by adding oil.

    PubMed

    Bernardes, Juliana S; Norrman, Jens; Piculell, Lennart; Loh, Watson

    2006-11-23

    The phase behavior of ternary mixtures containing an alkyltrimethylammonium polyacrylate complex salt, water, and a nonpolar "oil" (n-decanol, p-xylene or cyclohexane) is investigated. The complex salts were prepared with short or long polyacrylates (30 or 6000 repeating units) and with hexadecyltrimethylammonium or dodecyltrimethylammonium surfactant ions. Phase diagrams and structures were determined by visual inspection and small-angle X-ray scattering analyses. Systems containing decanol display a predominance of lamellar phases, while hexagonal phases prevail in systems containing p-xylene or cyclohexane. The difference is interpreted as a result of the different locations of the oils within the surfactant aggregates. Decanol is incorporated at the aggregate interface, leading to a decrease in its curvature, which favors the appearance of lamellar structures. p-Xylene and cyclohexane, on the other hand, are mostly incorporated in the interior of the cylindrical aggregate, as reflected by its swelling as the oil content increases. The comparison of these results with those reported for similar systems with monovalent (bromide) counterions indicates a much more limited swelling of the lamellar phases with polymeric counterions by water. This limited swelling behavior is predominantly ascribed to bridging due to the polyions. PMID:17107195

  16. An experimental study on usage of plastic oil and B20 algae biodiesel blend as substitute fuel to diesel engine.

    PubMed

    Ramesha, D K; Kumara, G Prema; Lalsaheb; Mohammed, Aamir V T; Mohammad, Haseeb A; Kasma, Mufteeb Ain

    2016-05-01

    Usage of plastics has been ever increasing and now poses a tremendous threat to the environment. Millions of tons of plastics are produced annually worldwide, and the waste products have become a common feature at overflowing bins and landfills. The process of converting waste plastic into value-added fuels finds a feasible solution for recycling of plastics. Thus, two universal problems such as problems of waste plastic management and problems of fuel shortage are being tackled simultaneously. Converting waste plastics into fuel holds great promise for both the environmental and economic scenarios. In order to carry out the study on plastic wastes, the pyrolysis process was used. Pyrolysis runs without oxygen and in high temperature of about 250-300 °C. The fuel obtained from plastics is blended with B20 algae oil, which is a biodiesel obtained from microalgae. For conducting the various experiments, a 10-HP single-cylinder four-stroke direct-injection water-cooled diesel engine is employed. The engine is made to run at 1500 rpm and the load is varied gradually from 0 to 100 %. The performance, emission and combustion characteristics are observed. The BTE was observed to be higher with respect to diesel for plastic-biodiesel blend and biodiesel blend by 15.7 and 12.9 %, respectively, at full load. For plastic-biodiesel blend, the emission of UBHC and CO decreases with a slight increase in NO x as compared to diesel. It reveals that fuel properties are comparable with petroleum products. Also, the process of converting plastic waste to fuel has now turned the problems into an opportunity to make wealth from waste. PMID:26695415

  17. Effect of adding essential oils of coriander (Coriandrum sativum L.) and hyssop (Hyssopus officinalis L.) on the shelf life of ground beef.

    PubMed

    Michalczyk, Magdalena; Macura, Ryszard; Tesarowicz, Iwona; Banaś, Joanna

    2012-03-01

    This study examined the effect of adding essential oils of hyssop and coriander at the highest concentration (0.02% v/w) sensorially acceptable to a panel of assessors on the microbiological and biochemical characteristics of stored ground beef. Vacuum-packed meat was stored at 0.5±0.5°C and 6±1°C for 15days. The greatest beneficial effect of both additives was in inhibiting the development of undesirable sensory changes (extending acceptability by up to 3days) and the growth of Enterobacteriaceae (by up to approximately 1-2 log cycles compared with the controls). The effect on lactic acid bacteria, total viable bacterial count and other groups of microorganisms investigated was minor (up to 1 log cycle) and similar for both oils. Neither did these additives significantly affect amino nitrogen levels, protease activity, the proportions of meat pigments, protein electropherograms and pH levels. This indicates the limited effect of these essential oils in the concentrations applied on preserving vacuum-packed minced beef. PMID:22153611

  18. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture.

    PubMed

    Karthikeya Sharma, T

    2015-11-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied. PMID:26644918

  19. Metabolic engineering of astaxanthin biosynthesis in maize endosperm and characterization of a prototype high oil hybrid.

    PubMed

    Farré, Gemma; Perez-Fons, Laura; Decourcelle, Mathilde; Breitenbach, Jürgen; Hem, Sonia; Zhu, Changfu; Capell, Teresa; Christou, Paul; Fraser, Paul D; Sandmann, Gerhard

    2016-08-01

    Maize was genetically engineered for the biosynthesis of the high value carotenoid astaxanthin in the kernel endosperm. Introduction of a β-carotene hydroxylase and a β-carotene ketolase into a white maize genetic background extended the carotenoid pathway to astaxanthin. Simultaneously, phytoene synthase, the controlling enzyme of carotenogenesis, was over-expressed for enhanced carotenoid production and lycopene ε-cyclase was knocked-down to direct more precursors into the β-branch of the extended ketocarotenoid pathway which ends with astaxanthin. This astaxanthin-accumulating transgenic line was crossed into a high oil- maize genotype in order to increase the storage capacity for lipophilic astaxanthin. The high oil astaxanthin hybrid was compared to its astaxanthin producing parent. We report an in depth metabolomic and proteomic analysis which revealed major up- or down- regulation of genes involved in primary metabolism. Specifically, amino acid biosynthesis and the citric acid cycle which compete with the synthesis or utilization of pyruvate and glyceraldehyde 3-phosphate, the precursors for carotenogenesis, were down-regulated. Nevertheless, principal component analysis demonstrated that this compositional change is within the range of the two wild type parents used to generate the high oil producing astaxanthin hybrid. PMID:26931320

  20. Engineering and Economics of the USGS Circum-Arctic Oil and Gas Resource Appraisal (CARA) Project

    USGS Publications Warehouse

    Verma, Mahendra K.; White, Loring P.; Gautier, Donald L.

    2008-01-01

    This Open-File report contains illustrative materials, in the form of PowerPoint slides, used for an oral presentation given at the Fourth U.S. Geological Survey Workshop on Reserve Growth of petroleum resources held on March 10-11, 2008. The presentation focused on engineering and economic aspects of the Circum-Arctic Oil and Gas Resource Appraisal (CARA) project, with a special emphasis on the costs related to the development of hypothetical oil and gas fields of different sizes and reservoir characteristics in the North Danmarkshavn Basin off the northeast coast of Greenland. The individual PowerPoint slides highlight the topics being addressed in an abbreviated format; they are discussed below, and are amplified with additional text as appropriate. Also included in this report are the summary results of a typical ?run? to generate the necessary capital and operating costs for the development of an offshore oil field off the northeast coast of Greenland; the data are displayed in MS Excel format generated using Questor software (IHS Energy, Inc.). U.S. Geological Survey (USGS) acknowledges that this report includes data supplied by IHS Energy, Inc.; Copyright (2008) all rights reserved. IHS Energy has granted USGS the permission to publish this report.

  1. Engine dynamometer evaluation of oil formulation factors for improved field sludge protection

    SciTech Connect

    Carroll, D.R.; Robson, R.

    1987-01-01

    Recent examples of sludge incidence in vehicles operated on API SF, SF/CC and SF/CD category oils in both severe duty and normal consumer service from Europe and North America are presented. A comparison of the chemical and morphological characteristics of sludge taken from these vehicles is summarized, as are the sludge-preventing capabilities of various North American and European reference oils. The design and execution of a series of oil formulation understanding programs aimed at evaluating the influence of viscosity modifier chemistry, viscosity grade and various detergent inhibitor package variables on sludge deposit prevention in the M102E and PV-2 (Sequence V-D replacement) engine test being developed by CEC and ASTM, respectively, is presented. The knowledge derived from these formulation programs is used to develop prototype technologies designed to meet the requirements of Volkswaggen 501.01 specifications for black sludge inhibition and the proposed API PS-3 (SG) category and Daimler Benz P.226.3.

  2. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture

    PubMed Central

    Karthikeya Sharma, T.

    2014-01-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied. PMID:26644918

  3. {ital In situ} measurement of fuel in the cylinder wall oil film of a combustion engine by LIF spectroscopy

    SciTech Connect

    Parks, J.E. II; Armfield, J.S.; Barber, T.E.; Storey, J.M.; Wachter, E.A.

    1998-01-01

    Hydrocarbon emissions remain an important concern for the automotive industry due to increasingly strict regulations. In an investigation of possible emission sources within the engine, the concentration of fuel absorbed in the oil film on the cylinder wall of a small internal combustion engine has been measured with laser-induced fluorescence (LIF) spectroscopy. A laser pulse from a nitrogen laser (337.1 nm) provided the excitation, and the fluorescence was monitored with an intensified-charge-coupled device (ICCD) array mounted to a spectrometer. The excitation laser pulse was launched through a window in the engine head onto a fiber-optic probe mounted flush with the cylinder wall. The laser-excited oil film on the fiber-optic probe produced an LIF signal that was collected by the fiber-optic probe and analyzed for fuel content. The timing of the laser pulse and ICCD gate were controlled in order to synchronize the collection of data with a particular point in the engine cycle. Measurements made {ital in situ}, while the engine was running, yield information on the amount of unburned fuel stored in the oil film for various engine conditions. Fuel-in-oil concentrations were determined for various engine temperatures during cold starts, for different fuel enrichment levels, and as a function of the crank angle of the engine cycle. Fuel concentrations as high as 50{percent} were detected during cold starts, and fuel concentrations reached levels greater than 25{percent} for warm engine operation. Changes in the fuel content were also found to be related to enrichment and crank angle. {copyright} {ital 1998} {ital Society for Applied Spectroscopy}

  4. Biodegradation of complex hydrocarbons in spent engine oil by novel bacterial consortium isolated from deep sea sediment.

    PubMed

    Ganesh Kumar, A; Vijayakumar, Lakshmi; Joshi, Gajendra; Magesh Peter, D; Dharani, G; Kirubagaran, R

    2014-10-01

    Complex hydrocarbon and aromatic compounds degrading marine bacterial strains were isolated from deep sea sediment after enrichment on spent engine (SE) oil. Phenotypic characterization and phylogenetic analysis of 16S rRNA gene sequences showed the isolates were related to members of the Pseudoalteromonas sp., Ruegeria sp., Exiguobacterium sp. and Acinetobacter sp. Biodegradation using 1% (v/v) SE oil with individual and mixed strains showed the efficacy of SE oil utilization within a short retention time. The addition of non-ionic surfactant 0.05% (v/v) Tween 80 as emulsifying agent enhanced the solubility of hydrocarbons and renders them more accessible for biodegradation. The degradation of several compounds and the metabolites formed during the microbial oxidation process were confirmed by Fourier transform infrared spectroscopy and Gas chromatography-mass spectrometry analyses. The potential of this consortium to biodegrade SE oil with and without emulsifying agent provides possible application in bioremediation of oil contaminated marine environment. PMID:25171211

  5. Quality control of automotive engine oils with mass-sensitive chemical sensors--QCMs and molecularly imprinted polymers.

    PubMed

    Dickert, F L; Forth, P; Lieberzeit, P A; Voigt, G

    2000-04-01

    Molecularly imprinted polyurethanes were used as sensor materials for monitoring the degradation of automotive engine oils. Imprinting with characteristic oils permits the analysis of these complex mixtures without accurately knowing their composition. Mass-sensitive quartz crystal microbalances (QCMs) coated with such layers exhibit mass effects in addition to frequency shifts caused by viscosity, which can be compensated by an uncoated quartz or a non-imprint layer. Incorporation of degradation products into the imprinted coatings is a bulk phenomenon, which is proven by variation of the sensor layer height. Therefore, the resulting sensor effects are determined by the degradation products in the oil. PMID:11227411

  6. 77 FR 12450 - Airworthiness Directives; BRP-Powertrain GmbH & Co KG Rotax Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ...We are adopting a new airworthiness directive (AD) for BRP- Powertrain GmbH & Co KG Rotax 912 S2, 912 S3, and 914 F2 reciprocating engines. This AD requires performing a one-time inspection of the oil system for leaks and a torque check of the oil pump attachment bolts, and if leaks are detected, performing a one-time inspection of the oil pump and engine valve train, on certain serial number......

  7. Comparative analysis of the long-term performance of a diesel engine on vegetable oil based alternate fuels

    SciTech Connect

    Ziejewski, M.; Goettler, H.; Pratt, G.L.

    1986-01-01

    A 25-75 blend (v/v) of alkali-refined sunflower oil and diesel fuel, a 25-75 blend (v/v) of high oleic safflower oil and diesel fuel, a non-ionic sunflower oil-aqueous ethanol microemulsion, and a methyl ester of sunflower oil were evaluated as fuels in a direct injected, turbo-charged, intercooled, 4-cylinder Allis-Chalmers diesel engine during 200-hour EMA cycle laboratory screening endurance tests. Engine performance on Phillips 2-D reference fuel served as baseline for the experimental fuels. The experiment was conducted to develop prediction equations to determine the effects of alternate fuels on long-term engine performance. Least squares regression procedures were used to analyze long-term effects the test fuels had on engine performance and to simultaneously compare the test fuels. Several variables were used to measure engine performance. These response variables were volumetric fuel flow, energy input, power output, brake specific energy consumption, exhaust temperature and exhaust smoke. The predictor variables were time of the EMA cycle and fuel type. Two multivariate tests were performed in this analysis. The first tested the significance of time on the response variable. The second tested the fuel effect. Both tests were significant. The results of the univariate regressions indicated that time had a significant effect only on exhaust temperature. In all other cases, time was not a factor. However, significant difference in the intercepts of the prediction equations were found between tested fuels.

  8. Acute toxicity of virgin and used engine oil enriched with copper nano particles in the earthworm

    NASA Astrophysics Data System (ADS)

    Khodabandeh, M.; Koohi, M. K.; Roshani, A.; Shahroziyan, E.; Badri, B.; Pourfallah, A.; Shams, Gh; Hobbenaghi, R.; Sadeghi-Hashjin, G.

    2011-07-01

    In spite of development of nanotechnology and creation of new opportunities for industry, new applications and products initiated by this technology may cause harmful effects on human health and environment. Unfortunately, there is no sufficient information on the harmful effects caused by application of some nano materials; the current knowledge in this field is limited solely to the nano particles but not the final products. Nano cupper particles, as one of the common materials produced in industrial scale is widely used as additives into engine oil to reduce friction and improve lubrication. However, the difference between the effects of virgin and used conventional engine oil (CEO) and the engine oil containing cupper nano particles (NEO) on the environment is not known. Earthworm, as a one of the species which could live and survive in different sorts of earth and has a certain role in protecting the soil structure and fertility, was used in this experiment. In accordance with the recommended method of OECD.1984, Filter Paper test in 24 and 48 h based on 8 concentrations in the range of 3×10-3 - 24×10-3 ml/cm2 and Artificial Soil test in 7 and 14 days based on 7 concentrations in the range of 0.1 mg/kg - 100 g/kg were carried out to study earthworms in terms of lifetime (LC50), morphology and pathology. It was shown that the 48 h LC50 for virgin CEO, virgin NEO, used CEO(8000 km) and used NEO (8000 km) were 6×10-3, 23×10-3, 24×10-3 and 16×10-3 ml/cm2 respectively. Furthermore, 14-day LC50 in artificial soil for all cases were above 100 g/kg. It is concluded that virgin CEO is more toxic than virgin NEO. Meanwhile, the CEO shows significant reduction in toxicity after consumption and the used NEO shows more toxicity in comparison to virgin product. It seems that more investigations on the effects of final products specifically after consumption is necessary because the products after consumption have the most contact with environment and subsequently

  9. A Study on Performance, Combustion and Emission Characteristics of Compression Ignition Engine Using Fish Oil Biodiesel Blends

    NASA Astrophysics Data System (ADS)

    Ramesha, D. K.; Thimmannachar, Rajiv K.; Simhasan, R.; Nagappa, Manjunath; Gowda, P. M.

    2012-07-01

    Bio-fuel is a clean burning fuel made from natural renewable energy resource; it operates in C. I. engine similar to the petroleum diesel. The rising cost of diesel and the danger caused to the environment has led to an intensive and desperate search for alternative fuels. Among them, animal fats like the fish oil have proven to be a promising substitute to diesel. In this experimental study, A computerized 4-stroke, single cylinder, constant speed, direct injection diesel engine was operated on fish oil-biodiesel of different blends. Three different blends of 10, 20, and 30 % by volume were used for this study. Various engine performance, combustion and emission parameters such as Brake Thermal Efficiency, Brake Specific Fuel Consumption, Heat Release Rate, Peak Pressure, Exhaust Gas Temperature, etc. were recorded from the acquired data. The data was recorded with the help of an engine analysis software. The recorded parameters were studied for varying loads and their corresponding graphs have been plotted for comparison purposes. Petroleum Diesel has been used as the reference. From the properties and engine test results it has been established that fish oil biodiesel is a better replacement for diesel without any engine modification.

  10. Analysis of the piston ring/liner oil film development during warm-up for an SI-engine

    SciTech Connect

    Froelund, K.; Schramm, J.; Tian, T.; Wong, V.; Hochgreb, S.

    1996-12-31

    A one-dimensional ring-pack lubrication model developed at MIT is applied to simulate the oil film behavior during the warm-up period of a Kohler spark ignition engine. This is done by making assumptions for the evolution of the oil temperatures during warm-up and that the oil control ring during downstrokes is fully flooded. The ring-pack lubrication model includes features such as three different lubrication regimes, i.e. pure hydrodynamic lubrication, boundary lubrication and pure asperity contact, nonsteady wetting of both inlet and outlet of the piston ring, capability to use all ring face profiles that can be approximated by piece-wise polynomials and, finally, the ability to model the rheology of multi-grade oils. Not surprisingly, the simulations show that by far the most important parameter is the temperature dependence of the oil viscosity. This dependence is subsequently examined further by choosing different oils. The baseline oil is SAE 10W30 and results are compared to those using the SAE 30 and the SAE 10W50 oils.

  11. Monitoring of the Physical and Chemical Properties of a Gasoline Engine Oil during Its Usage

    PubMed Central

    Rahimi, Behnam; Semnani, Abolfazl; Nezamzadeh-Ejhieh, Alireza; Shakoori Langeroodi, Hamid; Hakim Davood, Massoud

    2012-01-01

    Physicochemical properties of a mineral-based gasoline engine oil have been monitored at 0, 500, 1000, 2000, 3500, 6000, 8500, and 11500 kilometer of operation. Tracing has been performed by inductively coupled plasma and some other techniques. At each series of measurements, the concentrations of twenty four elements as well as physical properties such as: viscosity at 40 and 100°C; viscosity index; flash point; pour point; specific gravity; color; total acid and base numbers; water content have been determined. The results are indicative of the decreasing trend in concentration of additive elements and increasing in concentration for wear elements. Different trends have been observed for various physical properties. The possible reasons for variations in physical and chemical properties have been discussed. PMID:22567569

  12. Monitoring of the Physical and Chemical Properties of a Gasoline Engine Oil during Its Usage.

    PubMed

    Rahimi, Behnam; Semnani, Abolfazl; Nezamzadeh-Ejhieh, Alireza; Shakoori Langeroodi, Hamid; Hakim Davood, Massoud

    2012-01-01

    Physicochemical properties of a mineral-based gasoline engine oil have been monitored at 0, 500, 1000, 2000, 3500, 6000, 8500, and 11500 kilometer of operation. Tracing has been performed by inductively coupled plasma and some other techniques. At each series of measurements, the concentrations of twenty four elements as well as physical properties such as: viscosity at 40 and 100°C; viscosity index; flash point; pour point; specific gravity; color; total acid and base numbers; water content have been determined. The results are indicative of the decreasing trend in concentration of additive elements and increasing in concentration for wear elements. Different trends have been observed for various physical properties. The possible reasons for variations in physical and chemical properties have been discussed. PMID:22567569

  13. A study of oil lubrication in a rotating engine using stroboscopic neutron imaging

    NASA Astrophysics Data System (ADS)

    Schillinger, Burkhard; Brunner, Johannes; Calzada, Elbio

    2006-11-01

    Even at modern high-flux neutron sources, the required exposure time for one neutron radiography image with high counting statistics is in the order of 1 s. Continuous time-resolved imaging of objects in motion is thus very limited in time resolution and signal dynamics. However, repetitive motions can be recorded with a stroboscopic technique: A triggerable accumulating detector is triggered for many identical time windows of the cyclic motion until sufficient fluence is accumulated for one image. The image is read out, the delay for the time window is shifted and the recording repeated until a complete movie of the cyclic motion can be put together. We report about a study of oil flux in a running, electrically driven BMW engine out of current production.

  14. Renewable sugars from oil palm frond juice as an alternative novel fermentation feedstock for value-added products.

    PubMed

    Zahari, Mior Ahmad Khushairi Mohd; Zakaria, Mohd Rafein; Ariffin, Hidayah; Mokhtar, Mohd Noriznan; Salihon, Jailani; Shirai, Yoshihito; Hassan, Mohd Ali

    2012-04-01

    In this paper, we report that pressed juice from oil palm frond (OPF) contained renewable sugars such as glucose, sucrose and fructose. By using a simple sugarcane press, 50% (wt/wt) of OPF juice was obtained from fresh OPF. The glucose content in the juice was 53.95±2.86g/l, which accounts for 70% of the total free sugars. We have examined the effect of various OPF juice concentrations on the production of poly(3-hydroxybutyrate), P(3HB) by Cupriavidus necator CCUG 52238(T). The cell dry mass in shake flask experiment reached 8.42g/l, with 32wt.% of P(3HB) at 30% (v/v) of OPF juice, comparable with using technical grade sugars. The biopolymer had a molecular mass, M(w) of 812kDa, with a low polydispersity index of 1.61. This result indicates that OPF juice can be used as an alternative renewable carbon source for P(3HB) production and has potential as a renewable carbon source. PMID:22342083

  15. Feasibility study of a cosmetic cream added with aqueous extract and oil from date (Phoenix dactylifera L.) fruit seed using experimental design.

    PubMed

    Lecheb, Fatma; Benamara, Salem

    2015-01-01

    This article reports on the feasibility study of a cosmetic cream added with aqueous extract and oil from date (Phoenix dactylifera L.) fruit seed using experimental design. First, the mixture design was applied to optimize the cosmetic formula. The responses (dependent variables) were the spreadability (YSp) and viscosity (YVis), the factors (independent variables) being the weight proportions of the fatty phase (X1), the aqueous date seed extract (X2), and the beeswax (X3). Second, the cosmetic stability study was conducted by applying a full factorial design. Here, three responses were considered [spreadability (Sp), viscosity (Vis), and peroxide index (PI)], the independent variables being the concentration of the date seed oil (DSO) (x1), storage temperature (x2), and storage time (x3). Results showed that in the case of mixture design, the second-order polynomial equations correctly described experimental data. Globally, results show that there is a relatively wide composition range to ensure a suitable cosmetic cream from the point of view of Sp and Vis. Regarding the cosmetic stability, the storage time was found to be the most influential factor on both Vis and PI, which are considered here as indicators of physical and chemical stability of the emulsion, respectively. Finally, the elaborated and commercial cosmetics were compared in terms of pH, Sp, and centrifugation test (Ct). PMID:27125011

  16. Single- and dual-fiber fluorescence probes: application to oil-film measurements in an internal combustion engine.

    PubMed

    Ghandhi, J B

    2000-10-20

    Single- and dual-fiber fluorescence probes have been utilized to study oil-film behavior in a firing Diesel engine. A detailed analysis of the response characteristics of these probes was performed, and universal response curves have been generated through identification of the appropriate nondimensional parameters. For single-fiber probes a single curve was obtained, and for dual-fiber probes families of curves were identified based on three geometric dimensionless parameters. The complementary response characteristics of the single- and dual-fiber probes allows determination of the oil distribution within the piston-liner gap. The dual-fiber probe is not sensitive at small distances. Thus its signal originates solely from the piston surface, whereas the single-fiber probe is most sensitive at small distances and hence to the wall oil film. The engine data from the dual-fiber probe confirmed the presence of an oil film on the piston and provided a means of quantifying the transport of this oil within the engine. PMID:18354541

  17. Metabolic Engineering Camelina sativa with Fish Oil-Like Levels of DHA

    PubMed Central

    Belide, Srinivas; Kennedy, Yoko; Lester, Geraldine; Liu, Qing; Divi, Uday K.; Mulder, Roger J.; Mansour, Maged P.; Nichols, Peter D.; Singh, Surinder P.

    2014-01-01

    Background Omega-3 long-chain (≥C20) polyunsaturated fatty acids (ω3 LC-PUFA) such as eicosapentaenoic acid (EPA) and docosapentaenoic acid (DHA) are critical for human health and development. Numerous studies have indicated that deficiencies in these fatty acids can increase the risk or severity of cardiovascular, inflammatory and other diseases or disorders. EPA and DHA are predominantly sourced from marine fish although the primary producers are microalgae. Much work has been done to engineer a sustainable land-based source of EPA and DHA to reduce pressure on fish stocks in meeting future demand, with previous studies describing the production of fish oil-like levels of DHA in the model plant species, Arabidopsis thaliana. Principal Findings In this study we describe the production of fish oil-like levels (>12%) of DHA in the oilseed crop species Camelina sativa achieving a high ω3/ω6 ratio. The construct previously transformed in Arabidopsis as well as two modified construct versions designed to increase DHA production were used. DHA was found to be stable to at least the T5 generation and the EPA and DHA were found to be predominantly at the sn-1,3 positions of triacylglycerols. Transgenic and parental lines did not have different germination or seedling establishment rates. Conclusions DHA can be produced at fish oil-like levels in industrially-relevant oilseed crop species using multi-gene construct designs which are stable over multiple generations. This study has implications for the future of sustainable EPA and DHA production from land-based sources. PMID:24465476

  18. Testing and preformance measurement of straight vegetable oils as an alternative fuel for diesel engines

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Arunachalam

    Rising fuel prices, growing energy demand, concerns over domestic energy security and global warming from greenhouse gas emissions have triggered the global interest in bio-energy and bio-fuel crop development. Backlash from these concerns can result in supply shocks of traditional fossil fuels and create immense economic pressure. It is thus widely argued that bio-fuels would particularly benefit developing countries by off-setting their dependencies on imported petroleum. Domestically, the transportation sector accounts for almost 40% of liquid fuel consumption, while on-farm application like tractors and combines for agricultural purposes uses close to an additional 18%. It is estimated that 40% of the farm budget can be attributed to the fuel costs. With the cost of diesel continuously rising, farmers are now looking at using Straight Vegetable Oil (SVO) as an alternative fuel by producing their own fuel crops. This study evaluates conventional diesel compared to the use of SVO like Camelina, Canola and Juncea grown on local farms in Colorado for their performance and emissions on a John Deere 4045 Tier-II engine. Additionally, physical properties like density and viscosity, metal/mineral content, and cold flow properties like CFPP and CP of these oils were measured using ASTM standards and compared to diesel. It was found that SVOs did not show significant differences compared to diesel fuel with regards to engine emissions, but did show an increase in thermal efficiency. Therefore, this study supports the continued development of SVO production as a viable alternative to diesel fuels, particularly for on-farm applications. The need for providing and developing a sustainable, economic and environmental friendly fuel alternative has taken an aggressive push which will require a strong multidisciplinary education in the field of bio-energy. Commercial bio-energy development has the potential to not only alleviate the energy concerns, but also to give renewed

  19. Evaluation of Army engine oils in hydraulic/power-transmission-system components. Final report, August 1984-November 1985

    SciTech Connect

    Marbach, H.W.; Lestz, S.J.

    1985-11-01

    The objective of the MACI Hydraulic System and Components Program is to perform technical evaluation and assessment of commerically available qualified and fielded Army engine oils and to determine if such oils can be used as hydraulic fluids in Army commercial construction equipment and material-handling equipment. Five Army specification engine lubricants--four MIL-L-2104D (one grade 10W, one grade 30, two grade 15W-40) and one MIL-L-46167, grade 0W-20--were evaluated using four critical component performance tests used by manufacturers. Data compiled from this and previous work have shown that the limiting factors of the Army engine oils used as hydraulic and multipurpose power transmission fluids appear to be (1) wet-brake chatter noise, (2) hydraulic-pump wear problems with some piston pumps using MIL-L-46167 Arctic engine oils at temperatures hotter-than-expected Arctic conditions, and possibly (3) copper corrosion. The prime area of concern is the wet-brake chatter noise.

  20. Particulate morphology of waste cooking oil biodiesel and diesel in a heavy duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hwang, Joonsik; Jung, Yongjin; Bae, Choongsik

    2014-08-01

    The effect of biodiesel produced from waste cooking oil (WCO) on the particulate matters (PM) of a direct injection (DI) diesel engine was experimentally investigated and compared with commercial diesel fuel. Soot agglomerates were collected with a thermophoretic sampling device installed in the exhaust pipe of the engine. The morphology of soot particles was analyzed using high resolution transmission electron microscopy (TEM). The elemental and thermogravimetric analysis (TGA) were also conducted to study chemical composition of soot particles. Based on the TEM images, it was revealed that the soot derived from WCO biodiesel has a highly graphitic shell-core arrangement compared to diesel soot. The mean size was measured from averaging 400 primary particles for WCO biodiesel and diesel respectively. The values for WCO biodiesel indicated 19.9 nm which was smaller than diesel's 23.7 nm. From the TGA results, WCO biodiesel showed faster oxidation process. While the oxidation of soot particles from diesel continued until 660°C, WCO biodiesel soot oxidation terminated at 560°C. Elemental analysis results showed that the diesel soot was mainly composed of carbon and hydrogen. On the other hand, WCO biodiesel soot contained high amount of oxygen species.

  1. Novel schemes for production of biodiesel and value-added co-products from microalgal oil using heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Dong, Tao

    Microalgae are promising sources of biofuels primarily because of their higher potential productivity compared to terrestrial biofuel crops. However, the production of liquid fuels from microalgae suffers from a lack of viable methods of extraction, conversion and fractionation of various components of the algal biomass. In this dissertation study, a rapid method was developed to accurately evaluate the biodiesel potential of microalgae biomass. The major advantage of this method is in situ fatty acid methyl ester (FAME) preparation directly from wet fresh microalgal and yeast biomass, without prior solvent extraction or dehydration. FAMEs were prepared by a sequential alkaline hydrolysis and acidic esterification process. This method can be used even with high amount of water in the biomass and is applicable to a vast range of microalgae and yeast species. A two-step in situ process was also investigated in this study to obtain a high FAME yield from microalgae biomass that had high free fatty acids (FFA) content. This process has the potential to reduce the production cost of microalgae-derived FAME and be more environmental compatible due to the higher FAME yield with reduced catalyst consumption. A cost-effective bio-char based catalyst was tested for the two-step biodiesel production. The results indicated that the bio-char catalyst was superior to commercial Amberly-15. A scalable chlorophyll remove process was also developed as a part of the system. The research resulted in a practical and cost-effective approach for producing biodiesel from crude microalgal oil. An integrated approach was explored in the fourth part of the study to produce biodiesel and fractionate high-value polyunsaturated fatty acid (PUFA). Zeolites were employed as the catalyst for selective esterification of fatty acids according to their chain length and degree of saturation. Low-value short chain FFA could be largely converted into FAME, while PUFA would remain unreacted due to

  2. Energy Return on Investment (EROI) for Forty Global Oilfields Using a Detailed Engineering-Based Model of Oil Production

    PubMed Central

    Brandt, Adam R.; Sun, Yuchi; Bharadwaj, Sharad; Livingston, David; Tan, Eugene; Gordon, Deborah

    2015-01-01

    Studies of the energy return on investment (EROI) for oil production generally rely on aggregated statistics for large regions or countries. In order to better understand the drivers of the energy productivity of oil production, we use a novel approach that applies a detailed field-level engineering model of oil and gas production to estimate energy requirements of drilling, producing, processing, and transporting crude oil. We examine 40 global oilfields, utilizing detailed data for each field from hundreds of technical and scientific data sources. Resulting net energy return (NER) ratios for studied oil fields range from ≈2 to ≈100 MJ crude oil produced per MJ of total fuels consumed. External energy return (EER) ratios, which compare energy produced to energy consumed from external sources, exceed 1000:1 for fields that are largely self-sufficient. The lowest energy returns are found to come from thermally-enhanced oil recovery technologies. Results are generally insensitive to reasonable ranges of assumptions explored in sensitivity analysis. Fields with very large associated gas production are sensitive to assumptions about surface fluids processing due to the shifts in energy consumed under different gas treatment configurations. This model does not currently include energy invested in building oilfield capital equipment (e.g., drilling rigs), nor does it include other indirect energy uses such as labor or services. PMID:26695068

  3. Energy Return on Investment (EROI) for Forty Global Oilfields Using a Detailed Engineering-Based Model of Oil Production.

    PubMed

    Brandt, Adam R; Sun, Yuchi; Bharadwaj, Sharad; Livingston, David; Tan, Eugene; Gordon, Deborah

    2015-01-01

    Studies of the energy return on investment (EROI) for oil production generally rely on aggregated statistics for large regions or countries. In order to better understand the drivers of the energy productivity of oil production, we use a novel approach that applies a detailed field-level engineering model of oil and gas production to estimate energy requirements of drilling, producing, processing, and transporting crude oil. We examine 40 global oilfields, utilizing detailed data for each field from hundreds of technical and scientific data sources. Resulting net energy return (NER) ratios for studied oil fields range from ≈2 to ≈100 MJ crude oil produced per MJ of total fuels consumed. External energy return (EER) ratios, which compare energy produced to energy consumed from external sources, exceed 1000:1 for fields that are largely self-sufficient. The lowest energy returns are found to come from thermally-enhanced oil recovery technologies. Results are generally insensitive to reasonable ranges of assumptions explored in sensitivity analysis. Fields with very large associated gas production are sensitive to assumptions about surface fluids processing due to the shifts in energy consumed under different gas treatment configurations. This model does not currently include energy invested in building oilfield capital equipment (e.g., drilling rigs), nor does it include other indirect energy uses such as labor or services. PMID:26695068

  4. Feasibility of observing small differences in friction mean effective pressure between different lubricating oil formations using small, single-cylinder motored engine rig

    DOE PAGESBeta

    Rohr, William F.; Nguyen, Ke; Bunting, Bruce G.; Qu, Jun

    2015-09-01

    Here, the feasibility of using a motored single-cylinder 517 cc diesel engine to observe small frictional differences between oil formulations is investigated. Friction mean effective pressure (FMEP) is measured and compared for an SAE 10W-30 and an SAE 5W-20 oil in three stages of production: base oil, commercial oil without a friction and wear reducing additive, and fully formulated commercial oil. In addition, a commercial SAE 5W-30 engine oil is investigated. Friction mean effective pressure is plotted versus oil dynamic viscosity to compare the lubricant FMEP at a given viscosity. Linear regressions and average friction mean effective pressure are usedmore » as a secondary means of comparing FMEP for the various oil formulations. Differences between the oils are observed with the base oil having higher friction at a given viscosity but a lower average FMEP due to the temperature distribution of the test and lower viscosities reached by the base oil. The commercial oil is shown to have both a higher FMEP at a given viscosity and a higher average FMEP than the commercial oil without a friction and wear reducing additive. The increase in friction for the oil without a friction and wear reduction additive indicates that the operational regime of the engine may be out of the bounds of the optimal regime for the additive or that the additive is more optimized for wear reduction. Results show that it is feasible to observe small differences in FMEP between lubricating oil formulations using a small, single-cylinder motored engine.« less

  5. Feasibility of observing small differences in friction mean effective pressure between different lubricating oil formations using small, single-cylinder motored engine rig

    SciTech Connect

    Rohr, William F.; Nguyen, Ke; Bunting, Bruce G.; Qu, Jun

    2015-09-01

    Here, the feasibility of using a motored single-cylinder 517 cc diesel engine to observe small frictional differences between oil formulations is investigated. Friction mean effective pressure (FMEP) is measured and compared for an SAE 10W-30 and an SAE 5W-20 oil in three stages of production: base oil, commercial oil without a friction and wear reducing additive, and fully formulated commercial oil. In addition, a commercial SAE 5W-30 engine oil is investigated. Friction mean effective pressure is plotted versus oil dynamic viscosity to compare the lubricant FMEP at a given viscosity. Linear regressions and average friction mean effective pressure are used as a secondary means of comparing FMEP for the various oil formulations. Differences between the oils are observed with the base oil having higher friction at a given viscosity but a lower average FMEP due to the temperature distribution of the test and lower viscosities reached by the base oil. The commercial oil is shown to have both a higher FMEP at a given viscosity and a higher average FMEP than the commercial oil without a friction and wear reducing additive. The increase in friction for the oil without a friction and wear reduction additive indicates that the operational regime of the engine may be out of the bounds of the optimal regime for the additive or that the additive is more optimized for wear reduction. Results show that it is feasible to observe small differences in FMEP between lubricating oil formulations using a small, single-cylinder motored engine.

  6. Influence of high rotational speeds on heat transfer and oil film thickness in aero-engine bearing chambers

    NASA Astrophysics Data System (ADS)

    Wittig, S.; Glahn, A.; Himmelsbach, J.

    1994-04-01

    Increasing the thermal loading of bearing chambers in modern aero-engines requires advanced techniques for the determination of heat transfer characteristics. In the present study, film thickness and heat transfer measurements have been carried out for the complex two-phase oil/air flow in bearing chambers. In order to ensure real engine conditions, a new test facility has been built up, designed for rotational speeds up to n = 16,000 rpm and maximum flow temperatures of T(sub max) = 473 K. Sealing air and lubrication oil flow can be varied nearly in the whole range of aero-engine applications. Special interest is directed toward the development of an ultrasonic oil film thickness measuring technique, which can be used without any reaction on the flow inside the chamber. The determination of local heat transfer at the bearing chamber housing is based on a well-known temperature gradient method using surface temperature measurements and a finite element code to determine temperature distributions within the bearing chamber housing. The influence of high rotational speed on the local heat transfer and the oil film thickness is discussed.

  7. Carcass fat quality of pigs is not improved by adding corn germ, beef tallow, palm kernel oil, or glycerol to finishing diets containing distillers dried grains with solubles.

    PubMed

    Lee, J W; Kil, D Y; Keever, B D; Killefer, J; McKeith, F K; Sulabo, R C; Stein, H H

    2013-05-01

    The objective of this experiment was to test the hypothesis that the reduced carcass fat quality that is often observed in pigs fed diets containing distillers dried grains with solubles (DDGS) may be ameliorated if corn germ, beef tallow, palm kernel oil, or glycerol is added to diets fed during the finishing period. A total of 36 barrows and 36 gilts (initial BW 43.7 ± 2.0 kg) were individually housed and randomly allotted to 1 of 6 dietary treatments in a 2 × 6 factorial arrangement, with gender and diet as main factors. Each dietary treatment had 12 replicate pigs. A corn-soybean meal control diet and a diet containing corn, soybean meal, and 30% DDGS were formulated. Four additional diets were formulated by adding 15% corn germ, 3% beef tallow, 3% palm kernel oil, or 5% glycerol to the DDGS-containing diet. Growth performance, carcass characteristics, and LM quality were determined, and backfat and belly fat samples were collected for fatty acid analysis. There was no gender × diet interaction for any of the response variables measured. For the entire finisher period (d 0 to 88), diet had no effect on ADG, but pigs fed 3% palm kernel oil tended (P < 0.10) to have less ADFI and greater G:F than pigs fed the control diet. Barrows had greater (P < 0.01) ADG and ADFI, and less (P < 0.001) G:F than gilts. Pigs fed the DDGS diet had reduced (P < 0.05) loin eye area compared with pigs fed the control diet, but diet had no effect on other carcass characteristics. Barrows had greater (P < 0.001) final BW at the end of both phases, greater (P < 0.001) HCW and backfat thickness, and tended (P = 0.10) to have greater dressing percentage, but less (P < 0.001) fat-free lean percentage than gilts. Backfat of pigs fed the 5 DDGS-containing diets had less (P < 0.05) L* values than pigs fed the control diet and backfat of gilts had greater (P < 0.001) a* and b* values than barrows. Pigs fed the control diet had greater (P < 0.05) belly flop distance compared with pigs fed

  8. Transgenic oil palm: production and projection.

    PubMed

    Parveez, G K; Masri, M M; Zainal, A; Majid, N A; Yunus, A M; Fadilah, H H; Rasid, O; Cheah, S C

    2000-12-01

    Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020. PMID:11171275

  9. Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway.

    PubMed

    Zhu, Wen-Liang; Cui, Jin-Yu; Cui, Lan-Yu; Liang, Wei-Fan; Yang, Song; Zhang, Chong; Xing, Xin-Hui

    2016-03-01

    Methylotrophic biosynthesis using methanol as a feedstock is a promising and attractive method to solve the over-dependence of the bioindustry on sugar feedstocks derived from grains that are used for food. In this study, we introduced and engineered the mevalonate pathway into Methylobacterium extorquens AM1 to achieve high mevalonate production from methanol, which could be a platform for terpenoid synthesis. We first constructed a natural operon (MVE) harboring the mvaS and mvaE genes from Enterococcus faecalis as well as an artificial operon (MVH) harboring the hmgcs1 gene from Blattella germanica and the tchmgr gene from Trypanosoma cruzi that encoded enzymes with the highest reported activities. We achieved mevalonate titers of 56 and 66 mg/L, respectively, in flask cultivation. Introduction of the phaA gene from Ralstonia eutropha into the operon MVH increased the mevalonate titer to 180 mg/L, 3.2-fold higher than that of the natural operon MVE. Further modification of the expression level of the phaA gene by regulating the strength of the ribosomal binding site resulted in an additional 20 % increase in mevalonate production to 215 mg/L. A fed-batch fermentation of the best-engineered strain yielded a mevalonate titer of 2.22 g/L, which was equivalent to an overall yield and productivity of 28.4 mg mevalonate/g methanol and 7.16 mg/L/h, respectively. The production of mevalonate from methanol, which is the initial, but critical step linking methanol with valuable terpenoids via methylotrophic biosynthesis, represents a proof of concept for pathway engineering in M. extorquens AM1. PMID:26521242

  10. A new approach involving a multi transducer ultrasonic system for cleaning turbine engines' oil filters under practical conditions.

    PubMed

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo; Chang, Soon Woong; Bui, Hong Ha

    2016-09-01

    The purpose of this paper is to provide a green technology that can clean turbine engine oil filters effectively in ships using ultrasound, with ultrasonic devices having a frequency of 25kHz and different powers of 300W and 600W, respectively. The effects of temperature, ultrasonic cleaning times, pressure losses through the oil filter, solvent washing, and ultrasonic power devices were investigated. In addition, the cleaning efficiency of three modes (hand washing, preliminary washing and ultrasonic washing) were compared to assess their relative effectiveness. Experimental results revealed that the necessary ultrasonic time varied significantly depending on which solvent was used for washing. For instance, the optimum ultrasonic cleaning time was 50-60min when the oil filter was cleaned in a solvent of kerosene oil (KO) and over 80min when in a solvent of diesel oil (DO) using the same ultrasonic generator device (25kHz, 600W) and experimental conditions. Furthermore, microscopic examination did not reveal any damage or breakdown on or within the structure of the filter after ultrasonic cleaning, even in the filter's surfaces at a constantly low frequency of 25kHz and power specific capacity (100W/gal). Overall, it may be concluded that ultrasound-assisted oil filter washing is effective, requiring a significantly shorter time than manual washing. This ultrasonic method also shows promise as a green technology for washing oil filters in turbine engines in general and Vietnamese navy ships in particular, because of its high cleaning efficiency, operational simplicity and savings. PMID:27423027

  11. Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants.

    PubMed

    Mnif, Inès; Mnif, Sami; Sahnoun, Rihab; Maktouf, Sameh; Ayedi, Younes; Ellouze-Chaabouni, Semia; Ghribi, Dhouha

    2015-10-01

    Bioremediation, involving the use of microorganisms to detoxify or remove pollutants, is the most interesting strategy for hydrocarbon remediation. In this aim, four hydrocarbon-degrading bacteria were isolated from oil-contaminated soil in Tunisia. They were identified by the 16S rDNA sequence analysis, as Lysinibacillus bronitolerans RI18 (KF964487), Bacillus thuringiensis RI16 (KM111604), Bacillus weihenstephanensis RI12 (KM094930), and Acinetobacter radioresistens RI7 (KJ829530). Moreover, a lipopeptide biosurfactant produced by Bacillus subtilis SPB1, confirmed to increase diesel solubility, was tested to increase diesel biodegradation along with co-inoculation with two biosurfactant-producing strains. Culture studies revealed the enhancement of diesel biodegradation by the selected consortium with the addition of SPB1 lipopeptide and in the cases of co-inoculation by biosurfactant-producing strain. In fact, an improvement of about 38.42 and 49.65 % of diesel degradation was registered in the presence of 0.1 % lipopeptide biosurfactant and when culturing B. subtilis SPB1 strain with the isolated consortium, respectively. Furthermore, the best improvement, evaluated to about 55.4 %, was recorded when using the consortium cultured with B. subtilis SPB1 and A. radioresistens RI7 strains. Gas chromatography analyses were correlated with the gravimetric evaluation of the residual hydrocarbons. Results suggested the potential applicability of the selected consortium along with the ex situ- and in situ-added biosurfactant for the effective bioremediation of diesel-contaminated water and soil. PMID:25994261

  12. [Research on engine remaining useful life prediction based on oil spectrum analysis and particle filtering].

    PubMed

    Sun, Lei; Jia, Yun-xian; Cai, Li-ying; Lin, Guo-yu; Zhao, Jin-song

    2013-09-01

    The spectrometric oil analysis(SOA) is an important technique for machine state monitoring, fault diagnosis and prognosis, and SOA based remaining useful life(RUL) prediction has an advantage of finding out the optimal maintenance strategy for machine system. Because the complexity of machine system, its health state degradation process can't be simply characterized by linear model, while particle filtering(PF) possesses obvious advantages over traditional Kalman filtering for dealing nonlinear and non-Gaussian system, the PF approach was applied to state forecasting by SOA, and the RUL prediction technique based on SOA and PF algorithm is proposed. In the prediction model, according to the estimating result of system's posterior probability, its prior probability distribution is realized, and the multi-step ahead prediction model based on PF algorithm is established. Finally, the practical SOA data of some engine was analyzed and forecasted by the above method, and the forecasting result was compared with that of traditional Kalman filtering method. The result fully shows the superiority and effectivity of the PMID:24369656

  13. Canola engineered with a microalgal polyketide synthase-like system produces oil enriched in docosahexaenoic acid.

    PubMed

    Walsh, Terence A; Bevan, Scott A; Gachotte, Daniel J; Larsen, Cory M; Moskal, William A; Merlo, P A Owens; Sidorenko, Lyudmila V; Hampton, Ronnie E; Stoltz, Virginia; Pareddy, Dayakar; Anthony, Geny I; Bhaskar, Pudota B; Marri, Pradeep R; Clark, Lauren M; Chen, Wei; Adu-Peasah, Patrick S; Wensing, Steven T; Zirkle, Ross; Metz, James G

    2016-08-01

    Dietary omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), docosahexaenoic acid (DHA, C22:6) and eicosapentaenoic acid (EPA, C20:5) are usually derived from marine fish. Although production of both EPA and DHA has been engineered into land plants, including Arabidopsis, Camelina sativa and Brassica juncea, neither has been produced in commercially relevant amounts in a widely grown crop. We report expression of a microalgal polyketide synthase-like PUFA synthase system, comprising three multidomain polypeptides and an accessory enzyme, in canola (Brassica napus) seeds. This transgenic enzyme system is expressed in the cytoplasm, and synthesizes DHA and EPA de novo from malonyl-CoA without substantially altering plastidial fatty acid production. Furthermore, there is no significant impact of DHA and EPA production on seed yield in either the greenhouse or the field. Canola oil processed from field-grown grain contains 3.7% DHA and 0.7% EPA, and can provide more than 600 mg of omega-3 LC-PUFAs in a 14 g serving. PMID:27398790

  14. Factors in the Design of Centrifugal Type Injection Valves for Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, W F; Beardsley, E G

    1928-01-01

    This research was undertaken in connection with a general study of the application of the fuel injection engine to aircraft. The purpose of the investigation was to determine the effect of four important factors in the design of a centrifugal type automatic injection valve on the penetration, general shape, and distribution of oil sprays. The general method employed was to record the development of single sprays by means of special high-speed photographic apparatus capable of taking 25 consecutive pictures of the moving spray at a rate of 4,000 per second. Investigations were made concerning the effects on spray characteristics, of the helix angle of helical grooves, the ratio of the cross-sectional area of the orifice to that of the grooves, the ratio of orifice length to diameter, and the position of the seat. Maximum spray penetration was obtained with a ratio of orifice length to diameter of about 1.5. Slightly greater penetration was obtained with the seat directly before the orifice.

  15. ADVANCED OIL PROCESSING/UTILIZATION ENVIRONMENTAL ENGINEERING: EPA PROGRAM STATUS REPORT

    EPA Science Inventory

    The report gives the status of EPA/IERL-RTP's Advanced Oil Processing Program. It projects the amounts and normal practice and patterns of the use of residual oil and the contaminants in residual oil, using emission standards as a yard stick to indicate where potential problems e...

  16. Searching for a Safe Source of Castor Oil Production through Metabolic Engineering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Castor oil contains 90% ricinoleate (12-hydroxy-oleate) which has numerous industrial uses. The production of castor oil is hampered by the presence of the toxin ricin and hyper-allergenic 2S albumins in its seed. We are developing a safe source of castor oil by two approaches: blocking gene expres...

  17. Engineering of a Synthetic Metabolic Pathway for the Assimilation of (d)-Xylose into Value-Added Chemicals.

    PubMed

    Cam, Yvan; Alkim, Ceren; Trichez, Debora; Trebosc, Vincent; Vax, Amélie; Bartolo, François; Besse, Philippe; François, Jean Marie; Walther, Thomas

    2016-07-15

    A synthetic pathway for (d)-xylose assimilation was stoichiometrically evaluated and implemented in Escherichia coli strains. The pathway proceeds via isomerization of (d)-xylose to (d)-xylulose, phosphorylation of (d)-xylulose to obtain (d)-xylulose-1-phosphate (X1P), and aldolytic cleavage of the latter to yield glycolaldehyde and DHAP. Stoichiometric analyses showed that this pathway provides access to ethylene glycol with a theoretical molar yield of 1. Alternatively, both glycolaldehyde and DHAP can be converted to glycolic acid with a theoretical yield that is 20% higher than for the exclusive production of this acid via the glyoxylate shunt. Simultaneous expression of xylulose-1 kinase and X1P aldolase activities, provided by human ketohexokinase-C and human aldolase-B, respectively, restored growth of a (d)-xylulose-5-kinase mutant on xylose. This strain produced ethylene glycol as the major metabolic endproduct. Metabolic engineering provided strains that assimilated the entire C2 fraction into the central metabolism or that produced 4.3 g/L glycolic acid at a molar yield of 0.9 in shake flasks. PMID:26186096

  18. The organic composition of diesel particulate matter, diesel fuel and engine oil of a non-road diesel generator.

    PubMed

    Liang, Fuyan; Lu, Mingming; Keener, Tim C; Liu, Zifei; Khang, Soon-Jai

    2005-10-01

    Diesel-powered equipment is known to emit significant quantities of fine particulate matter to the atmosphere. Numerous organic compounds can be adsorbed onto the surfaces of these inhalable particles, among which polycyclic aromatic hydrocarbons (PAHs) are considered potential occupational carcinogens. Guidelines have been established by various agencies regarding diesel emissions and various control technologies are under development. The purpose of this study is to identify, quantify and compare the organic compounds in diesel particulate matter (DPM) with the diesel fuel and engine oil used in a non-road diesel generator. Approximately 90 organic compounds were quantified (with molecular weight ranging from 120 to 350), which include alkanes, PAHs, alkylated PAHs, alkylbenzenes and alkanoic acids. The low sulfur diesel fuel contains 61% alkanes and 7.1% of PAHs. The identifiable portion of the engine oil contains mainly the alkanoic and benzoic acids. The composition of DPM suggests that they may be originated from unburned diesel fuel, engine oil evaporation and combustion generated products. Compared with diesel fuel, DPM contains fewer fractions of alkanes and more PAH compounds, with the shift toward higher molecular weight ones. The enrichment of compounds with higher molecular weight in DPM may be combustion related (pyrogenic). PMID:16193170

  19. Comparative combustion studies on various plant oil esters and the long term effects of an ethyl ester on a compression ignition engine

    SciTech Connect

    Hawkins, C.S.; Fuls, J.

    1982-01-01

    Combustion studies on both ethyl and methyl esters of various plant oils were carried out using the same engine for all the tests so that comparative studies could be achieved. Twelve esters were tested and the pertinent data was recorded. Some of the more important results are published in this paper to serve as a comparative guide to the study of plant oil esters as fuel. Bruwer et. al. (1980) suggested the use of plant oil esters to prevent injector coking in modern compression ignition engines. Very little information is available on the long term effects of such ester use. Cyclic endurance tests have been carried out on Perkins engines running on ethyl esters of sunflower oil. The exciting results of this work are reported, with specific reference to one tractor engine which has recorded more than 1 300 trouble free hours. 3 tables.

  20. Classification of energy-conserving engine oil for passenger cars, vans, sport utility vehicles, and light-duty trucks (revised May 97). (SAE standard)

    SciTech Connect

    1997-05-01

    This SAE Standard was developed cooperatively by SAE, ASTM, and API to define and identify energy conserving engine oils for passenger cars, vans, and light-duty (3856 kg (8500 lb) GVW or less) trucks.

  1. Engineering synthetic bacterial consortia for enhanced desulfurization and revalorization of oil sulfur compounds.

    PubMed

    Martínez, Igor; Mohamed, Magdy El-Said; Rozas, Daniel; García, José Luis; Díaz, Eduardo

    2016-05-01

    The 4S pathway is the most studied bioprocess for the removal of the recalcitrant sulfur of aromatic heterocycles present in fuels. It consists of three sequential functional units, encoded by the dszABCD genes, through which the model compound dibenzothiophene (DBT) is transformed into the sulfur-free 2-hydroxybiphenyl (2HBP) molecule. In this work, a set of synthetic dsz cassettes were implanted in Pseudomonas putida KT2440, a model bacterial "chassis" for metabolic engineering studies. The complete dszB1A1C1-D1 cassette behaved as an attractive alternative - to the previously constructed recombinant dsz cassettes - for the conversion of DBT into 2HBP. Refactoring the 4S pathway by the use of synthetic dsz modules encoding individual 4S pathway reactions revealed unanticipated traits, e.g., the 4S intermediate 2HBP-sulfinate (HBPS) behaves as an inhibitor of the Dsz monooxygenases, and once secreted from the cells it cannot be further taken up. That issue should be addressed for the rational design of more efficient biocatalysts for DBT bioconversions. In this sense, the construction of synthetic bacterial consortia to compartmentalize the 4S pathway into different cell factories for individual optimization was shown to enhance the conversion of DBT into 2HBP, overcome the inhibition of the Dsz enzymes by the 4S intermediates, and enable efficient production of unattainable high added value intermediates, e.g., HBPS, that are difficult to obtain using the current monocultures. PMID:26802977

  2. Emissions from diesel engines using fatty acid methyl esters from different vegetable oils as blends and pure fuel

    NASA Astrophysics Data System (ADS)

    Schröder, O.; Munack, A.; Schaak, J.; Pabst, C.; Schmidt, L.; Bünger, J.; Krahl, J.

    2012-05-01

    Biodiesel is used as a neat fuel as well as in blends with mineral diesel fuel. Because of the limited availability of fossil resources, an increase of biogenic compounds in fuels is desired. To achieve this goal, next to rapeseed oil, other sustainably produced vegetable oils can be used as raw materials. These raw materials influence the fuel properties as well as the emissions. To investigate the environmental impact of the exhaust gas, it is necessary to determine regulated and non-regulated exhaust gas components. In detail, emissions of aldehydes and polycyclic aromatic hydrocarbons (PAH), as well as mutagenicity in the Ames test are of special interest. In this paper emission measurements on a Euro III engine OM 906 of Mercedes-Benz are presented. As fuel vegetable oil methyl esters from various sources and reference diesel fuel were used as well as blends of the vegetable oil methyl esters with diesel fuel. PAH were sampled according to VDI Guideline 3872. The sampling procedure of carbonyls was accomplished using DNPH cartridges coupled with potassium iodide cartridges. The carbon monoxide and hydrocarbon emissions of the tested methyl esters show advantages over DF. The particle mass emissions of methyl esters were likewise lower than those of DF, only linseed oil methyl ester showed higher particle mass emissions. A disadvantage is the use of biodiesel with respect to emissions of nitrogen oxides. They increased depending on the type of methyl ester by 10% to 30%. Emissions of polycyclic aromatic hydrocarbons (PAHs) and the results of mutagenicity tests correlate with those of the PM measurements, at which for palm oil methyl ester next to coconut oil methyl ester the lowest emissions were detected. From these results one can formulate a clear link between the iodine number of the ester and the emission behaviour. For blends of biodiesel and diesel fuel, emissions changed linearly with the proportion of biodiesel. However, especially in the non

  3. Effect of the level of unsaturation and of alcohol modifications of plant oil fuels on the long-term performance of a direct injected diesel engine

    SciTech Connect

    Ziejewski, M.

    1985-01-01

    A 200-hour durability screening test recommended by the Engine Manufacturers Association was adopted to study the effects of four alternate fuels on the long-term performance of a four cylinder, direct injected diesel engine. Tested fuels included diesel fuel (control), a 25-75 blend by volume of alkali-refined sunflower oil and diesel fuel, a 25-75 blend by volume of high oleic safflower oil and diesel fuel, a nonionic sunflower oil-aqueous ethanol microemulsion, and a methyl ester of sunflower oil. Least squares regression procedures were used to analyze the long term effects of the test fuels on engine performance and to compare the test fuels. Time of the engine operation had a significant effect only on exhaust temperature. For all other response variables, time was not a factor. However, significant differences between tested fuels were observed. An analysis of variance was employed to compare CRC carbon and lacquer ratings, as well as wear of engine parts. The carbon deposits produced by the microemulsion and the 25-75 sunflower oil blend were significantly heavier than those generated by the other tested fuels. None of the fuels produced excessive engine wear. The 25-75 sunflower oil blend and the microemulsion caused problems with the fuel injection system.

  4. Green strategy from waste to value-added-chemical production: efficient biosynthesis of 6-hydroxy-3-succinoyl-pyridine by an engineered biocatalyst

    PubMed Central

    Yu, Hao; Tang, Hongzhi; Xu, Ping

    2014-01-01

    Value-added intermediates produced by microorganisms during the catabolism of N-heterocycles are potential building blocks for agrochemical synthesis and pharmaceutical production. 6-Hydroxy-3-succinoyl-pyridine (HSP), an intermediate in nicotine degradation, is an important precursor for the synthesis of drugs and compounds with biological activities. In the present study, we show that an engineered biocatalyst, Pseudomonas putida P-HSP, efficiently produced HSP from the renewable raw material of tobacco-waste that contains a high concentration of nicotine. The genetically constructed strain P-HSP realized a high accumulation of HSP, and HSP production was 3.7-fold higher than the non-engineered strain S16. Under optimal conditions, HSP was produced at high concentrations of 6.8 g l−1 and 16.3 g l−1 from tobacco-waste and nicotine, respectively. This work demonstrates a green strategy to block the catabolic pathway of N-heterocycles, which is a promising approach for the mutasynthesis of valuable compounds. PMID:24953905

  5. X-ray fluorescence mapping and micro-XANES spectroscopic characterization of exhaust particulates emitted from auto engines burning MMT-added gasoline.

    PubMed

    Mölders, N; Schilling, P J; Wong, J; Roos, J W; Smith, I L

    2001-08-01

    The elemental distribution and compositional homogeneity in auto exhaust particulates emitted from methylcyclopentadienyl manganese tricarbonyl-(MMT-)added gasoline engines have been investigated using a newly installed synchrotron X-ray microprobe. Two representative groups of exhaust particulate matter, as defined in a recent bulk X-ray absorption fine structure (XAFS) spectroscopic study at the Mn K-edge, were studied. The micro-X-ray absorption near-edge structure (XANES) spectra indicate a relatively homogeneous distribution of phases within a given particulate sample, down to a spatial extent of 40 microm (the resolution of microprobe). The micro-XANES also enabled analysis of several areas which displayed compositions different from the bulk sample, supporting the general theory describing manganese species formation in the exhaust. The ability to evaluate small regions also enabled direct verification of manganese sulfate from the S XANES despite the vast excess of sulfur present in other forms. The presence of a chloride compound, introduced through the sample dilution air and engine intake air, was also revealed. The study demonstrates the value of the combined X-ray microfluorescence with excitation by polychromatic radiation for elemental mapping and micro-XANES spectroscopy for chemical speciation in the study of dilute environmental materials containing low-Z constituents such as Cl, S, and P. PMID:11505987

  6. Green strategy from waste to value-added-chemical production: efficient biosynthesis of 6-hydroxy-3-succinoyl-pyridine by an engineered biocatalyst.

    PubMed

    Yu, Hao; Tang, Hongzhi; Xu, Ping

    2014-01-01

    Value-added intermediates produced by microorganisms during the catabolism of N-heterocycles are potential building blocks for agrochemical synthesis and pharmaceutical production. 6-Hydroxy-3-succinoyl-pyridine (HSP), an intermediate in nicotine degradation, is an important precursor for the synthesis of drugs and compounds with biological activities. In the present study, we show that an engineered biocatalyst, Pseudomonas putida P-HSP, efficiently produced HSP from the renewable raw material of tobacco-waste that contains a high concentration of nicotine. The genetically constructed strain P-HSP realized a high accumulation of HSP, and HSP production was 3.7-fold higher than the non-engineered strain S16. Under optimal conditions, HSP was produced at high concentrations of 6.8 g l(-1) and 16.3 g l(-1) from tobacco-waste and nicotine, respectively. This work demonstrates a green strategy to block the catabolic pathway of N-heterocycles, which is a promising approach for the mutasynthesis of valuable compounds. PMID:24953905

  7. Performance and emission characteristics of a low heat rejection engine with different air gap thicknesses with Jatropha oil based bio-diesel.

    PubMed

    Murali Krishna, M V S; Sarita, G; Seshagiri Rao, V V R; Chowdary, R P; Ramana Reddy, Ch V

    2010-04-01

    The research work on alternate fuels has been the topic of wider interest in the context of depletion of fossil fuels and increasing of pollution levels of the engines with conventional fossil fuels. Alcohols and vegetable oils are considered to replace diesel fuels as they are renewable in nature. However, use of alcohols in internal combustion engines is limited in India, as these fuels are diverted to PetroChemical industries and hence much emphasis is given to the non-edible vegetable oils as alternate fuels in internal combustion engines. However, the drawbacks of low volatility and high viscosity associated with non-edible vegetable oils call for hot combustion chamber, provided by low heat rejection (LHR) diesel engine. Investigations are carried out on a LHR diesel engine with varied air gap thicknesses and injection pressures with jatropha oil based bio-diesel at normal temperature. Performance is improved with high degree of insulation with LHR engine with vegetable oil in comparison with conventional engine (CE) with pure diesel operation. PMID:21114115

  8. 75 FR 801 - Airworthiness Directives; Rolls-Royce plc RB211-Trent 500, 700, and 800 Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ...The FAA proposes to supersede an existing airworthiness directive (AD) for Rolls-Royce plc RB211-Trent 800 series turbofan engines. That AD currently requires replacing the fuel-to-oil heat exchanger (FOHE). This proposed AD would require replacing the FOHE on the RB211-Trent 500 and RB211-Trent 700 series turbofan engines in addition to the RB211-Trent 800 series turbofan engines. This......

  9. Gas chromatographic determination of some phenolic compounds in fuels and engine oil after simultaneous derivatization and microextraction.

    PubMed

    Farajzadeh, Mir Ali; Yadeghari, Adeleh; Khoshmaram, Leila; Ghorbanpour, Houshang

    2014-10-01

    In this study, a simultaneous derivatization/air-assisted liquid-liquid microextraction method has been developed for sample preparation of some phenolic compounds in fuels and engine oil. Analytes are transferred by back liquid-liquid extraction into NaOH solution and then are derivatized with butyl chloroformate and extracted simultaneously into carbon tetrachloride. The extracted derivatized analytes are analyzed using gas chromatography with flame ionization detection. The effect of extracting solvent type, derivatization agent and extraction solvent volumes, ionic strength of the aqueous solution, number of extraction cycles, etc., on the extraction efficiency is investigated. The calibration graphs are linear in the range of 3-10,000 μg/L. Enhancement factors, enrichment factors, and extraction recoveries are in the ranges of 497 to 1471, 571 to 991, and 60 to 109%, respectively. Detection limits are obtained in the range of 0.8 to 2.0 μg/L. Relative standard deviations for the extraction of each selected phenols are in the ranges of 2-4% for intraday (n = 6) and 3-6% (n = 5) for interday precisions for 200 μg/L. This technique is successfully applied for the extraction, preconcentration, and determination of the selected phenols in gasoline, kerosene, gas oil, and engine oil. PMID:25082460

  10. Current progress towards the metabolic engineering of plant oil for hydroxy fatty acids production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oil is not only edible but also can be used for industrial purposes. The industrial demand for vegetable oil will increase with the future depletion of fossil fuels and environmental problems such as climate change, caused by increased carbon dioxide in the air. Some plants accumulate high...

  11. Evaluation of Oil-Industry Stimulation Practices for Engineered Geothermal Systems

    SciTech Connect

    Peter Van Dyke; Leen Weijers; Ann Robertson-Tait; Norm Warpinski; Mike Mayerhofer; Bill Minner; Craig Cipolla

    2007-10-17

    Geothermal energy extraction is typically achieved by use of long open-hole intervals in an attempt to connect the well with the greatest possible rock mass. This presents a problem for the development of Enhanced (Engineered) Geothermal Systems (EGS), owing to the challenge of obtaining uniform stimulation throughout the open-hole interval. Fluids are often injected in only a fraction of that interval, reducing heat transfer efficiency and increasing energy cost. Pinnacle Technologies, Inc. and GeothermEx, Inc. evaluated a variety of techniques and methods that are commonly used for hydraulic fracturing of oil and gas wells to increase and evaluate stimulation effectiveness in EGS wells. Headed by Leen Weijers, formerly Manager of Technical Development at Pinnacle Technologies, Inc., the project ran from August 1, 2004 to July 31, 2006 in two one-year periods to address the following tasks and milestones: 1) Analyze stimulation results from the closest oil-field equivalents for EGS applications in the United States (e.g., the Barnett Shale in North Texas) (section 3 on page 8). Pinnacle Technologies, Inc. has collected fracture growth data from thousands of stimulations (section 3.1 on page 12). This data was further evaluated in the context of: a) Identifying techniques best suited to developing a stimulated EGS fracture network (section 3.2 on page 29), and b) quantifying the growth of the network under various conditions to develop a calibrated model for fracture network growth (section 3.3 on page 30). The developed model can be used to design optimized EGS fracture networks that maximize contact with the heat source and minimize short-circuiting (section 3.4 on page 38). 2) Evaluate methods used in oil field applications to improve fluid diversion and penetration and determine their applicability to EGS (section 4 on page 50). These methods include, but are not limited to: a) Stimulation strategies (propped fracturing versus water fracturing versus injecting

  12. Combusting vegetable oils in diesel engines: the impact of unsaturated fatty acids on particle emissions and mutagenic effects of the exhaust.

    PubMed

    Bünger, Jürgen; Bünger, Jörn F; Krahl, Jürgen; Munack, Axel; Schröder, Olaf; Brüning, Thomas; Hallier, Ernst; Westphal, Götz A

    2016-06-01

    High particle emissions and strong mutagenic effects were observed after combustion of vegetable oil in diesel engines. This study tested the hypothesis that these results are affected by the amount of unsaturated or polyunsaturated fatty acids of vegetable oils. Four different vegetable oils (coconut oil, CO; linseed oil, LO; palm tree oil, PO; and rapeseed oil, RO) and common diesel fuel (DF) were combusted in a heavy-duty diesel engine. The exhausts were investigated for particle emissions and mutagenic effects in direct comparison with emissions of DF. The engine was operated using the European Stationary Cycle. Particle masses were measured gravimetrically while mutagenicity was determined using the bacterial reverse mutation assay with tester strains TA98 and TA100. Combustion of LO caused the largest amount of total particulate matter (TPM). In comparison with DF, it particularly raised the soluble organic fraction (SOF). RO presented second highest TPM and SOF, followed by CO and PO, which were scarcely above DF. RO revealed the highest number of mutations of the vegetable oils closely followed by LO. PO was less mutagenic, but still induced stronger effects than DF. While TPM and SOF were strongly correlated with the content of polyunsaturated fatty acids in the vegetable oils, mutagenicity had a significant correlation with the amount of total unsaturated fatty acids. This study supports the hypothesis that numbers of double bounds in unsaturated fatty acids of vegetable oils combusted in diesel engines influence the amount of emitted particles and the mutagenicity of the exhaust. Further investigations have to elucidate the causal relationship. PMID:26126632

  13. Advanced airbreathing engine lubricants study with a tetraester fluid and a synthetic paraffinic oil at 492 K (425 F)

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.; Bamberger, E. N.

    1972-01-01

    Groups of 120-mm-bore angular-contact ball bearings made from AISI M-50 steel were fatigue tested with a tetraester and a synthetic paraffinic oil at a bearing temperature of 492 K (425 F) in an air environment. Bearing life exceeded AFBMA-predicted (catalog) life by factors in excess of 4 and 10 for the tetraester and synthetic paraffinic fluids, respectively. The final viscosities after 500 hours of operation were 14 and 6 times the initial values, respectively. During the same time period, when the test oil is replaced at a rate approximating the replenishment rate in actual commerical engine usage, no significant increase in lubricant viscosity with time was observed.

  14. Value Added?

    ERIC Educational Resources Information Center

    UCLA IDEA, 2012

    2012-01-01

    Value added measures (VAM) uses changes in student test scores to determine how much "value" an individual teacher has "added" to student growth during the school year. Some policymakers, school districts, and educational advocates have applauded VAM as a straightforward measure of teacher effectiveness: the better a teacher, the better students…

  15. Oil-air mist lubrication as an emergency system and as a primary lubrication system. [for helicopter engines

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.

    1976-01-01

    The feasibility of an emergency aspirator once-through lubrication system was demonstrated as a viable survivability concept for Army helicopter mainshaft engine bearings for periods as long as 30 minutes. It was also shown in an experimental study using a 46-mm bore bearing test machine that an oil-air mist once-through system with auxiliary air cooling is an effective primary lubrication system at speeds up to 2,500,000 DN for extended operating periods of at least 50 hours.

  16. Experimental and Analytical Determination of the Motion of Hydraulically Operated Valve Stems in Oil Engine Injection Systems

    NASA Technical Reports Server (NTRS)

    Gelalles, A G; Rothrock, A M

    1930-01-01

    This research on the pressure variations in the injection system of the N.A.C.A. Spray Photography Equipment and on the effects of these variations on the motion of the timing valve stem was undertaken in connection with the study of fuel injection systems for high-speed oil engines. The methods of analysis of the pressure variations and the general equation for the motion of the spring-loaded stem for the timing valve are applicable to a spring-loaded automatic injection valve, and in general to all hydraulically operated valves. A sample calculation for a spring-loaded automatic injection valve is included.

  17. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase

    PubMed Central

    Mahmoud, Soheil S.; Croteau, Rodney B.

    2001-01-01

    Peppermint (Mentha × piperita L.) was independently transformed with a homologous sense version of the 1-deoxy-d-xylulose-5-phosphate reductoisomerase cDNA and with a homologous antisense version of the menthofuran synthase cDNA, both driven by the CaMV 35S promoter. Two groups of transgenic plants were regenerated in the reductoisomerase experiments, one of which remained normal in appearance and development; another was deficient in chlorophyll production and grew slowly. Transgenic plants of normal appearance and growth habit expressed the reductoisomerase transgene strongly and constitutively, as determined by RNA blot analysis and direct enzyme assay, and these plants accumulated substantially more essential oil (about 50% yield increase) without change in monoterpene composition compared with wild-type. Chlorophyll-deficient plants did not afford detectable reductoisomerase mRNA or enzyme activity and yielded less essential oil than did wild-type plants, indicating cosuppression of the reductoisomerase gene. Plants transformed with the antisense version of the menthofuran synthase cDNA were normal in appearance but produced less than half of this undesirable monoterpene oil component than did wild-type mint grown under unstressed or stressed conditions. These experiments demonstrate that essential oil quantity and quality can be regulated by metabolic engineering. Thus, alteration of the committed step of the mevalonate-independent pathway for supply of terpenoid precursors improves flux through the pathway that leads to increased monoterpene production, and antisense manipulation of a selected downstream monoterpene biosynthetic step leads to improved oil composition. PMID:11427737

  18. A New Fluorinated Tyrosinase Inhibitor from a Chemically Engineered Essential Oil.

    PubMed

    García, Paula; Salazar, Mario O; Ramallo, I Ayelen; Furlan, Ricardo L E

    2016-06-13

    The generation of fluorinated essential oils as a source of bioactive compounds is described. Most of the components of the natural mixtures were altered, leading to the discovery of a new fluorinated tyrosinase inhibitor. PMID:27144399

  19. Combustion and heat transfer in a high speed diesel engine operating with rape seed oil methyl ester fuel

    NASA Astrophysics Data System (ADS)

    Turunen, R.

    The properties of RME (rape seed oil methyl ester) as a fuel for a diesel engine have been investigated theoretically and experimentally. The experiments were made with a turbocharged high-speed DI engine. During experiments the specific fuel consumption, exhaust gas emissions, heat release rate, flame temperature and the temperatures of the combustion chamber walls were measured. A test was also made using the measured flame temperature as an initial value for a two-zone combustion model. The theoretical investigations show that it is possible to achieve with RME approximately the same power as with ordinary diesel fuel from the same cylinder volume. The fuels give very similar theoretical (ideal) working cycles and also the efficiencies of the cycles are very near to each other.

  20. Economic and engineering evaluation of plant oils as a diesel fuel. Final report

    SciTech Connect

    Engler, C.R.; LePori, W.A.; Johnson, L.A.; Griffin, R.C.; Diehl, K.C.; Moore, D.S.; Lacewell, R.D.; Coble, C.G.; Lusas, E.W.; Hiler, E.A.

    1982-04-15

    The annual total yield of plant oils in the US is about 3.7 billion gallons. Diesel use by agriculture is about 2.0 billion gallons annually and is growing rapidly relative to gasoline use. Based on these amounts, plant oils could satisfy agriculture's diesel fuel requirements during the near future. However, diversion of large quantities of plant oils for such purposes would have dramatic impacts on plant oil prices and be reflected in numerous adjustments throughout agriculture and other sectors of the economy. The competitive position of sunflowers for plant oil production in Texas was analyzed. In those regions with a cotton alternative, sunflowers were not, for the most part, economically competitive. However, sunflower production is competitive with grain sorghum in certain cases. To develop a meaningful production base for oilseed crops in Texas, yields need to be improved or increases in oilseed prices relative to cotton must take place. This implies some limitations for the potential of Texas to produce large quantities of plant oils.

  1. SRC burn test in 700-hp oil-designed boiler. Volume 2. Engineering evaluation report. Final technical report. [Oil-fired boiler to solvent-refined coal

    SciTech Connect

    Not Available

    1983-12-01

    Volume 2 of this report gives the results of an engineering evaluation study and economic analysis of converting an existing 560-MW residual (No. 6) oil-fired unit to burn solvent refined coal (SRC) fuel forms. Volume 1 represents an integrated overview of the test program conducted at the Pittsburgh Energy Technology Center. Three SRC forms (pulverized SRC, a solution of SRC dissolved in process-derived distillates, and a slurry of SRC and water) were examined. The scope of modifications necessary to convert the unit to each of the three SRC fuel forms was identified and a capital cost of the necessary modifications estimated. A fuel conversion feasibility study of the boiler was performed wherein boiler modifications and performance effects of each fuel on the boiler were identified. An economic analysis of the capital and operating fuel expenses of conversion of the unit was performed. It was determined that conversion of the unit to any one of the three SRC fuel forms was feasible where appropriate modifications were made. It also was determined that the conversion of the unit can be economically attractive if SRC fuel forms can be manufactured and sold at prices discounted somewhat from the price of No. 16 Fuel Oil. As expected, greater discounts are required for the pulverized SRC and the slurry than for the solution of SRC dissolved in process-derived distillates.

  2. 78 FR 5126 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ...We are adopting a new airworthiness directive (AD) for all Rolls-Royce plc (RR) RB211-Trent 970-84, 970B-84, 972-84, 972B-84, 977- 84, 977B-84, and 980-84 turbofan engines. This AD requires replacement of the fuel oil heat exchanger (FOHE). This AD was prompted by a report of an in-flight increase of N2 intermediate pressure rotor vibrations resulting in an engine surge and pilot shut down of......

  3. Study of Miller timing on exhaust emissions of a hydrotreated vegetable oil (HVO)-fueled diesel engine.

    PubMed

    Heikkilä, Juha; Happonen, Matti; Murtonen, Timo; Lehto, Kalle; Sarjovaara, Teemu; Larmi, Martti; Keskinen, Jorma; Virtanen, Annele

    2012-11-01

    The effect of intake valve closure (IVC) timing by utilizing Miller cycle and start of injection (SOI) on particulate matter (PM), particle number and nitrogen oxide (NOx) emissions was studied with a hydrotreated vegetable oil (HVO)-fueled nonroad diesel engine. HVO-fueled engine emissions, including aldehyde and polyaromatic hydrocarbon (PAH) emissions, were also compared with those emitted with fossil EN590 diesel fuel. At the engine standard settings, particle number and NOx emissions decreased at all the studied load points (50%, 75%, and 100%) when the fuel was changed from EN590 to HVO. Adjusting IVC timing enabled a substantial decrease in NOx emission and combined with SOI timing adjustment somewhat smaller decrease in both NOx and particle emissions at IVC -50 and -70 degrees CA points. The HVO fuel decreased PAH emissions mainly due to the absence of aromatics. Aldehyde emissions were lower with the HVO fuel with medium (50%) load. At higher loads (75% and 100%), aldehyde emissions were slightly higher with the HVO fuel. However, the aldehyde emission levels were quite low, so no clear conclusions on the effect of fuel can be made. Overall, the study indicates that paraffinic HVO fuels are suitable for emission reduction with valve and injection timing adjustment and thus provide possibilities for engine manufacturers to meet the strictening emission limits. PMID:23210222

  4. The Effects of Fuel and Cylinder Gas Densities on the Characteristics of Fuel Sprays for Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, W F; Beardsley, Edward G

    1928-01-01

    This investigation was conducted as a part of a general research on fuel-injection engines for aircraft. The purpose of the investigation was to determine the effects of fuel and cylinder gas densities with several characteristics of fuel sprays for oil engines. The start, growth, and cut-off of single fuel sprays produced by automatic injection valves were recorded on photographic film by means of special high-speed motion-picture apparatus. This equipment, which has been described in previous reports, is capable of taking twenty-five consecutive pictures of the moving spray at the rate of 4,000 per second. The penetrations of the fuel sprays increased and the cone angles and relative distributions decreased with increase in the specific gravity of the fuel. The density of the gas into which the fuel sprays were injected controlled their penetration. This was the only characteristic of the chamber gas that had a measurable effect upon the fuel sprays. Application of fuel-spray penetration data to the case of an engine, in which the pressure is rising during injection, indicated that fuel sprays may penetrate considerably farther than when injected into a gas at a density equal to that of the gas in an engine cylinder at top center.

  5. Performance and exhaust emission characteristics of variable compression ratio diesel engine fuelled with esters of crude rice bran oil.

    PubMed

    Vasudeva, Mohit; Sharma, Sumeet; Mohapatra, S K; Kundu, Krishnendu

    2016-01-01

    As a substitute to petroleum-derived diesel, biodiesel has high potential as a renewable and environment friendly energy source. For petroleum importing countries the choice of feedstock for biodiesel production within the geographical region is a major influential factor. Crude rice bran oil is found to be good and viable feedstock for biodiesel production. A two step esterification is carried out for higher free fatty acid crude rice bran oil. Blends of 10, 20 and 40 % by vol. crude rice bran biodiesel are tested in a variable compression ratio diesel engine at compression ratio 15, 16, 17 and 18. Engine performance and exhaust emission parameters are examined. Cylinder pressure-crank angle variation is also plotted. The increase in compression ratio from 15 to 18 resulted in 18.6 % decrease in brake specific fuel consumption and 14.66 % increase in brake thermal efficiency on an average. Cylinder pressure increases by 15 % when compression ratio is increased. Carbon monoxide emission decreased by 22.27 %, hydrocarbon decreased by 38.4 %, carbon dioxide increased by 17.43 % and oxides of nitrogen as NOx emission increased by 22.76 % on an average when compression ratio is increased from 15 to 18. The blends of crude rice bran biodiesel show better results than diesel with increase in compression ratio. PMID:27066330

  6. Oil Heat Vent Analysis Program (OHVAP) users manual and engineering report

    SciTech Connect

    Krajewski, R.F.

    1996-11-01

    Oil-fired heating appliances have traditionally used conventional chimney venting systems. In more recent times, masonry chimneys have given way to fabricated metal chimneys which have had the advantage of lower installed cost. Even more recently, there has been an effort by the industry to apply power venting technology to oil-fired appliances. These changes in venting technology have been accompanied by ever improving appliance efficiencies. The successful application of these modern, high efficiency oil-fired appliances depends upon the safe and cost effective integration of the heating appliance and the vent system. Unfortunately, due to the complexity inherent in such issues as heat loss, condensation and corrosion the available manual calculations provide only a steady state rather than transient analysis. In addition, these methods are exceedingly cumbersome. While computerized methods have been developed, for the most part they are usually these same steady state calculations placed into a spreadsheet or BASIC program. This report describes the oil heat vent analysis program (OHVAP) for the analysis of ventilation of oil-fired appliances.

  7. Natural Oil Production from Microorganisms: Bioprocess and Microbe Engineering for Total Carbon Utilization in Biofuel Production

    SciTech Connect

    2010-07-15

    Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied from novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.

  8. Multigene Engineering of Triacylglycerol Metabolism Boosts Seed Oil Content in Arabidopsis1[W][OPEN

    PubMed Central

    van Erp, Harrie; Kelly, Amélie A.; Menard, Guillaume; Eastmond, Peter J.

    2014-01-01

    Increasing the yield of oilseed crops is an important objective for biotechnologists. A number of individual genes involved in triacylglycerol metabolism have previously been reported to enhance the oil content of seeds when their expression is altered. However, it has yet to be established whether specific combinations of these genes can be used to achieve an additive effect and whether this leads to enhanced yield. Using Arabidopsis (Arabidopsis thaliana) as an experimental system, we show that seed-specific overexpression of WRINKLED1 (a transcriptional regulator of glycolysis and fatty acid synthesis) and DIACYLGLYCEROL ACYLTRANSFERASE1 (a triacylglycerol biosynthetic enzyme) combined with suppression of the triacylglycerol lipase SUGAR-DEPENDENT1 results in a higher percentage seed oil content and greater seed mass than manipulation of each gene individually. Analysis of total seed yield per plant suggests that, despite a reduction in seed number, the total yield of oil is also increased. PMID:24696520

  9. An Experimental Investigation on Performance and Emissions Characteristics of Jatropha Oil Blends with Diesel in a Direct Injection Compression Ignition Engine

    NASA Astrophysics Data System (ADS)

    De, B.; Bose, P. K.; Panua, R. S.

    2012-07-01

    Continuous effort to reducing pollutant emissions, especially smoke and nitrogen oxides from internal combustion engines, have promoted research for alternative fuels. Vegetable oils, because of their agricultural origin and due to less carbon content compared to mineral diesel are producing less CO2 emissions to the atmosphere. It also reduces import of petroleum products. In the present contribution, experiments were conducted using Jatropha oil blends with diesel to study the effect on performance and emissions characteristics of a existing diesel engine. In this study viscosity of Jatropha oil was reduced by blending with diesel. A single cylinder, four stroke, constant speed, water cooled, diesel engine was used. The results show that for lower blend concentrations various parameters such as thermal efficiency, brake specific fuel consumption, smoke opacity, CO2, and NO x emissions are acceptable compared to that of mineral diesel. But, it was observed that for higher blend concentrations, performance and emissions were much inferior compared to diesel.

  10. Polycyclic aromatic hydrocarbons (PAHs) in exhaust emissions from diesel engines powered by rapeseed oil methylester and heated non-esterified rapeseed oil

    NASA Astrophysics Data System (ADS)

    Vojtisek-Lom, Michal; Czerwinski, Jan; Leníček, Jan; Sekyra, Milan; Topinka, Jan

    2012-12-01

    Polycyclic aromatic hydrocarbons (PAHs) of exhaust emissions were studied in four direct-injection turbocharged four-cylinder diesel engines, with power ratings of 90-136 kW. The engines were operated on biodiesel (B-100), a blend of 30% biodiesel in diesel fuel (B-30), and heated rapeseed oil (RO) in two independent laboratories. Diesel particle filters (DPF) and selective catalytic reduction (SCR) systems were used with B-30 and B-100. Concentrations of individual PAHs sampled in different substrates (quartz, borosilicate fiber and fluorocarbon membrane filters, polyurethane foam) were analyzed using different methods. Benzo[a]pyrene toxic equivalents (BaP TEQ) were calculated using different sets of toxic equivalency factors (TEF). Operation on B-100 without aftertreatment devices, compared to diesel fuel, yielded a mean reduction in PAHs of 73%, consistent across engines and among TEF used. A lower PAH reduction was obtained using B-30. The BaP TEQ reductions on DPF were 91-99% using B-100, for one non-catalyzed DPF, and over 99% in all other cases. The BaP TEQ for heated RO were higher than those for B-100 and one half lower to over twice as high as that of diesel fuel. B-100 and RO samples featured, compared to diesel fuel, a relatively high share of higher molecular weight PAH and a relatively low share of lighter PAHs. Using different sets of TEF or different detection methods did not consistently affect the observed effect of fuels on BaP TEQ. The compilation of multiple tests was helpful for discerning emerging patterns. The collection of milligrams of particulate matter per sample was generally needed for quantification of all individual PAHs.

  11. Effect of Narrow Cut Oil Shale Distillates on HCCI Engine Performance

    SciTech Connect

    Eaton, Scott J; Bunting, Bruce G; Lewis Sr, Samuel Arthur; Fairbridge, Craig

    2009-01-01

    In this investigation, oil shale crude obtained from the Green River Formation in Colorado using Paraho Direct retorting was mildly hydrotreated and distilled to produce 7 narrow boiling point fuels of equal volumes. The resulting derived cetane numbers ranged between 38.3 and 43.9. Fuel chemistry and bulk properties strongly correlated with boiling point.

  12. Oil spill removal techniques and equipment. (Latest citations from Fluidex (Fluid Engineering Abstracts) database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning equipment and techniques for the control, dispersal, cleanup, and disposal of oil spills. Topics include chemical dispersants, booms, and mechanical skimmers. The citations emphasize spill removal for harbors, estuaries, and shorelines, and examine spill impact on water birds and marine life. (Contains a minimum of 195 citations and includes a subject term index and title list.)

  13. Development and validation of an environmentally friendly attenuated total reflectance in the mid-infrared region method for the determination of ethanol content in used engine lubrication oil.

    PubMed

    Hatanaka, Rafael Rodrigues; Sequinel, Rodrigo; Gualtieri, Carlos Eduardo; Tercini, Antônio Carlos Bergamaschi; Flumignan, Danilo Luiz; de Oliveira, José Eduardo

    2013-05-15

    Lubricating oils are crucial in the operation of automotive engines because they both reduce friction between moving parts and protect against corrosion. However, the performance of lubricant oil may be affected by contaminants, such as gasoline, diesel, ethanol, water and ethylene glycol. Although there are many standard methods and studies related to the quantification of contaminants in lubricant oil, such as gasoline and diesel oil, to the best of our knowledge, no methods have been reported for the quantification of ethanol in used Otto cycle engine lubrication oils. Therefore, this work aimed at the development and validation of a routine method based on partial least-squares multivariate analysis combined with attenuated total reflectance in the mid-infrared region to quantify ethanol content in used lubrication oil. The method was validated based on its figures of merit (using the net analyte signal) as follows: limit of detection (0.049%), limit of quantification (0.16%), accuracy (root mean square error of prediction=0.089% w/w), repeatability (0.05% w/w), fit (R(2)=0.9997), mean selectivity (0.047), sensitivity (0.011), inverse analytical sensitivity (0.016% w/w(-1)) and signal-to-noise ratio (max: 812.4 and min: 200.9). The results show that the proposed method can be routinely implemented for the quality control of lubricant oils. PMID:23618159

  14. Thiol oxidation and protein cross-link formation during chill storage of pork patties added essential oil of oregano, rosemary, or garlic.

    PubMed

    Nieto, Gema; Jongberg, Sisse; Andersen, Mogens L; Skibsted, Leif H

    2013-10-01

    The effect of two levels (0.05% and 0.4%) of essential oil of rosemary, oregano, or garlic on protein oxidation in pork patties was studied during storage under modified atmosphere (MAP: 70% O2: 20% CO2: 10% N2) or under aerobic conditions (AE) at 4°C. The oxidative stability of the meat proteins was evaluated as loss of thiols for up to 9 days of storage, and as formation of myosin cross-links analyzed by SDS-PAGE after 12 days of storage. Protein thiols were lost during storage to yield myosin disulfide cross-links. Essential oils of rosemary and oregano were found to retard the loss of thiols otherwise resulting in myosin cross-links. Garlic essential oil, on the contrary, was found to promote protein oxidation, as seen by an extreme loss in thiol groups, and elevated myosin cross-link formation compared to control. PMID:23743026

  15. Particulate emissions from a stationary engine fueled with ultra-low-sulfur diesel and waste-cooking-oil-derived biodiesel.

    PubMed

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-10-01

    Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture. PMID:22070039

  16. Adding Value.

    ERIC Educational Resources Information Center

    Orsini, Larry L.; Hudack, Lawrence R.; Zekan, Donald L.

    1999-01-01

    The value-added statement (VAS), relatively unknown in the United States, is used in financial reports by many European companies. Saint Bonaventure University (New York) has adapted a VAS to make it appropriate for not-for-profit universities by identifying stakeholder groups (students, faculty, administrators/support personnel, creditors, the…

  17. DIFFERENTIAL TRANSCRIPTION FACTOR ACTIVATION AD GENE EXPRESSION PROFILES IN HUMAN VASCULAR ENDOTHELIAL CELLS ON EXPOSURE TO RESIDUAL OIL FLY ASH (ROFA) AND VANADIUM

    EPA Science Inventory


    Differential transcription factor activation and gene expression profiles in human vascular endothelial cells on exposure to residual oil fly ash (ROFA) and vanadium.
    Srikanth S. Nadadur and Daniel L. Costa, US EPA, ORD, NHEERL (ETD, Pulmonary Toxicology Branch), Research ...

  18. Applications of science and engineering to quantify and control the Deepwater Horizon oil spill

    PubMed Central

    McNutt, Marcia K.; Chu, Steven; Lubchenco, Jane; Hunter, Tom; Dreyfus, Gabrielle; Murawski, Steven A.; Kennedy, David M.

    2012-01-01

    The unprecedented engagement of scientists from government, academia, and industry enabled multiple unanticipated and unique problems to be addressed during the Deepwater Horizon oil spill. During the months between the initial blowout on April 20, 2010, and the final well kill on September 19, 2010, researchers prepared options, analyses of tradeoffs, assessments, and calculations of uncertainties associated with the flow rate of the well, well shut in, killing the well, and determination of the location of oil released into the environment. This information was used in near real time by the National Incident Commander and other government decision-makers. It increased transparency into BP’s proposed actions and gave the government confidence that, at each stage proposed, courses of action had been thoroughly vetted to reduce risk to human life and the environment and improve chances of success. PMID:23213225

  19. Applications of science and engineering to quantify and control the Deepwater Horizon oil spill

    USGS Publications Warehouse

    McNutt, Marcia K.; Chu, Steven; Lubchenco, Jane; Hunter, Tom; Dreyfus, Gabrielle; Murawski, Steven A.; Kennedy, David M.

    2012-01-01

    The unprecedented engagement of scientists from government, academia, and industry enabled multiple unanticipated and unique problems to be addressed during the Deepwater Horizon oil spill. During the months between the initial blowout on April 20, 2010, and the final well kill on September 19, 2010, researchers prepared options, analyses of tradeoffs, assessments, and calculations of uncertainties associated with the flow rate of the well, well shut in, killing the well, and determination of the location of oil released into the environment. This information was used in near real time by the National Incident Commander and other government decision-makers. It increased transparency into BP’s proposed actions and gave the government confidence that, at each stage proposed, courses of action had been thoroughly vetted to reduce risk to human life and the environment and improve chances of success.

  20. A New High-Speed Oil-Free Turbine Engine Rotordynamic Simulator Test Rig

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2007-01-01

    A new test rig has been developed for simulating high-speed turbomachinery rotor systems using Oil-Free foil air bearing technology. Foil air bearings have been used in turbomachinery, primarily air cycle machines, for the past four decades to eliminate the need for oil lubrication. The goal of applying this bearing technology to other classes of turbomachinery has prompted the fabrication of this test rig. The facility gives bearing designers the capability to test potential bearing designs with shafts that simulate the rotating components of a target machine without the high cost of building "make-and-break" hardware. The data collected from this rig can be used to make design changes to the shaft and bearings in subsequent design iterations. This paper describes the new test rig and demonstrates its capabilities through the initial run with a simulated shaft system.

  1. Integrated oil and reservoir database system for geological and petroleum engineering

    SciTech Connect

    Lau, K.Y.; Schneider, R.; Sepehrnoori, K.; Lake, L.W.

    1984-08-01

    As the data available to explorers and operators increase and when timeliness and accuracy of record keeping are of concern, the need for a more efficient data handling technique has prompted research in the application of database technology in the oil industry. In this thesis, a database is developed to cover areas in exploration, drilling, production, scout tickets and well logs. Salient characteristics of wells and reservoirs are investigated and a global structure is obtained. The relationship between well and reservoir is found to be a many-to-many type. Out of the three widely accepted data models (hierarchical, network, and relational), the relational model was chosen in our approach because of its easiness to use and ability to implement the many-to-many relationship. A set of criteria for evaluation of logical database design methodologies is presented and a modified entity-relationship approach is used. The global structure of the database is implemented in VAX/VMS INGRES, a commercial relational database management system. The database model and the data dictionary are tested through an application to the data of two reservoirs provided by Conoco Oil Inc. and Shell Oil Co. 88 references, 27 figures, 9 tables.

  2. Integrated oil and reservoir database system for geological and petroleum engineering. Annual report

    SciTech Connect

    Lau, K.Y.; Schneider, R.; Sepehrnoori, K.; Lake, L.W.

    1984-12-01

    As the data available to explorers and operators increase and when timeliness and accuracy of record keeping are of concern, the need for a more efficient data handling technique has prompted research in the applications of database technology in the oil industry. In this thesis, a database is developed to cover areas in exploration, drilling, production, scout tickets and well logs. Salient characteristics of wells and reservoirs are investigated and a global structure is obtained. The relationship between well and reservoir is found to be a many-to-many type. Out of the three widely accepted data models (hierarchical, network, and relational), the relational model was chosen in our approach because of its easiness to use and ability to implement the many-to-many relationship. A set of criteria for evaluation of logical database design methodologies is presented and a modified entity-relationship approach is used. The global structure of the database is implemented in VAX/VMS INGRES, a commercial relational database management system. The database model and the data dictionary are tested through an application to the data of two reservoirs provided by Conoco Oil Inc. and Shell Oil Co. 88 references, 27 figures, 9 tables.

  3. Construction and evaluation of an exopolysaccharide-producing engineered bacterial strain by protoplast fusion for microbial enhanced oil recovery.

    PubMed

    Sun, Shanshan; Luo, Yijing; Cao, Siyuan; Li, Wenhong; Zhang, Zhongzhi; Jiang, Lingxi; Dong, Hanping; Yu, Li; Wu, Wei-Min

    2013-09-01

    Enterobacter cloacae strain JD, which produces water-insoluble biopolymers at optimal temperature of 30°C, and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at high temperatures by protoplast fusion. The obtained fusant strain ZR3 produced exopolysaccharides at up to 45°C with optimal growth temperature at 35°C. The fusant produced exopolysaccharides of approximately 7.5 g/L or more at pH between 7.0 and 9.0. The feasibility of the enhancement of crude oil recovery with the fusant was tested in a sand-packed column at 40°C. The results demonstrated that bioaugmentation of the fusant was promising approach for MEOR. Mass growth of the fusant was confirmed in fermentor tests. PMID:23856587

  4. A Honeycomb-Structured Ti-6Al-4V Oil-Gas Separation Rotor Additively Manufactured by Selective Electron Beam Melting for Aero-engine Applications

    NASA Astrophysics Data System (ADS)

    Tang, H. P.; Wang, Q. B.; Yang, G. Y.; Gu, J.; Liu, N.; Jia, L.; Qian, M.

    2016-03-01

    Oil -gas separation is a key process in an aero-engine lubrication system. This study reports an innovative development in oil -gas separation. A honeycomb-structured rotor with hexagonal cone-shaped pore channels has been designed, additively manufactured from Ti-6Al-4V using selective electron beam melting (SEBM) and assessed for oil -gas separation for aero-engine application. The Ti-6Al-4V honeycomb structure showed a high compressive strength of 110 MPa compared to less than 20 MPa for metal foam structures. The oil -gas separation efficiency of the honeycomb-structured separation rotor achieved 99.8% at the rotation speed of 6000 rpm with much lower ventilation resistance (17.3 kPa) than that of the separator rotor constructed using a Ni-Cr alloy foam structure (23.5 kPa). The honeycomb-structured Ti-6Al-4V separator rotor produced by SEBM provides a promising solution to more efficient oil -gas separation in the aero-engine lubrication system.

  5. DIS in AdS

    NASA Astrophysics Data System (ADS)

    Albacete, Javier L.; Kovchegov, Yuri V.; Taliotis, Anastasios

    2009-03-01

    We calculate the total cross section for the scattering of a quark-anti-quark dipole on a large nucleus at high energy for a strongly coupled N = 4 super Yang-Mills theory using AdS/CFT correspondence. We model the nucleus by a metric of a shock wave in AdS5. We then calculate the expectation value of the Wilson loop (the dipole) by finding the extrema of the Nambu-Goto action for an open string attached to the quark and antiquark lines of the loop in the background of an AdS5 shock wave. We find two physically meaningful extremal string configurations. For both solutions we obtain the forward scattering amplitude N for the quark dipole-nucleus scattering. We study the onset of unitarity with increasing center-of-mass energy and transverse size of the dipole: we observe that for both solutions the saturation scale Qs is independent of energy/Bjorken-x and depends on the atomic number of the nucleus as Qs˜A1/3. Finally we observe that while one of the solutions we found corresponds to the pomeron intercept of αP = 2 found earlier in the literature, when extended to higher energy or larger dipole sizes it violates the black disk limit. The other solution we found respects the black disk limit and yields the pomeron intercept of αP = 1.5. We thus conjecture that the right pomeron intercept in gauge theories at strong coupling may be αP = 1.5.

  6. Structure engineering of filled protein microbeads to tailor release of oil droplets in gastric digestion.

    PubMed

    van Leusden, P; den Hartog, G J M; Bast, A; Postema, M; van der Linden, E; Sagis, L M C

    2016-08-10

    Oil-soluble components can be encapsulated in an O/W1/W2 microsystem, in which they are dissolved in oil droplets dispersed in a gelled microbead (W1), which forms a barrier between the oil droplets and the aqueous continuous phase (W2). We investigated the rate and mechanism of breakdown of protein microbeads in a simulated gastric system, and studied the influence of microbead protein concentration, gelling method (cold-set, slow and fast heat-set), and further processing (freeze-drying), on the breakdown process. Breakdown rate decreased with increasing protein content of the beads, for the same method of production. Due to the porosity of the slowly-heated heat-set beads, breakdown occurred evenly throughout the entire bead. Cold-set microbeads of 10% protein broke down slightly slower than the heat-set microbeads of 15%. The denser surface of the 10% beads slowed down the diffusion of the enzymes into the bead's interior, causing the beads to be broken down from the outside inward. All these beads broke down within one hour. Increasing the rate of temperature increase during the heating step dramatically slowed breakdown. There was no significant breakdown of rapidly heated beads within 138 minutes, even though no difference in microstructure between rapidly and slowly heated beads was visible with electron microscopy. Freeze-drying of the beads also slowed their breakdown. After 132 minutes more than half the measured particle volume of were intact beads. Freeze-drying changed the microstructure of the beads irreversibly: rehydrating the dried beads did not result in a breakdown behaviour similar to that of unprocessed beads. PMID:27458022

  7. Integrated geologic and engineering determination of oil-reserve-growth potential in carbonate reservoirs

    SciTech Connect

    Holtz, M.H.; Rupel, S.C.; Hocott, C.R. )

    1992-11-01

    Leonardian restricted-platform carbonate reservoirs in the Permian Basin in West Texas and southeastern New Mexico exhibit abnormally low recovery efficiencies. Cumulative production form these mature reservoirs is only 18% of the original oil in place (OOIP), or about one-half the average recovery efficiency of Permian Basin carbonate reservoirs. Low recovery efficiency is directly related to high degrees of vertical and lateral facies heterogeneity caused by high-frequency, cyclic sedimentation in low-energy, carbonate platform environments and by equally complex postdepositional diagenesis. This paper reports that because of their geologic complexity, these reservoirs have high reserve-growth potential.

  8. Role of reservoir engineering in the assessment of undiscovered oil and gas resources in the National Petroleum Reserve, Alaska

    USGS Publications Warehouse

    Verma, M.K.; Bird, K.J.

    2005-01-01

    The geology and reservoir-engineering data were integrated in the 2002 U.S. Geological Survey assessment of the National Petroleum Reserve in Alaska (NPRA). VVhereas geology defined the analog pools and fields and provided the basic information on sizes and numbers of hypothesized petroleum accumulations, reservoir engineering helped develop necessary equations and correlations, which allowed the determination of reservoir parameters for better quantification of in-place petroleum volumes and recoverable reserves. Seismic- and sequence-stratigraphic study of the NPRA resulted in identification of 24 plays. Depth ranges in these 24 plays, however, were typically greater than depth ranges of analog plays for which there were available data, necessitating the need for establishing correlations. The basic parameters required were pressure, temperature, oil and gas formation volume factors, liquid/gas ratios for the associated and nonassociated gas, and recovery factors. Finally, the re sults of U.S. Geological Survey deposit simulation were used in carrying out an economic evaluation, which has been separately published. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.

  9. Performance and Emission Characteristics of a Compression Ignition Engine Operating on Blends of Castor Oil Biodiesel-Diesel

    NASA Astrophysics Data System (ADS)

    Kanwar, Roopesh; Sharma, Pushpendra Kumar; Singh, Aditya Narayan; Agrawal, Yadvendra Kumar

    2016-06-01

    Diesel vehicles are the nerves and veins of transportation, particularly in developing countries. With the rapid rate of modernization, increasing demand of fuel is inevitable. The exponential increase in fuel prices and the scarcity of its supply from the environment have promoted interest in the development of alternative sources of fuel. In this work, genus Ricinus communis L. was studied in order to delimit their potential as a raw material for biodiesel production. Further, castor oil, ethyl ester were prepared by transesterification using potassium hydroxide (KOH) as a catalyst and tested on a four-stroke, single-cylinder compression ignition engine. The test was carried out at a constant speed of 3000 rpm at different loads. The results represent a substantial decrease in carbon monoxide (CO) emission with an increasing biodiesel percentage. The reduction of CO in B05, B10, B15 and B20 averaged 11.75, 22.02, 24.23 and 28.79 %, respectively, compared to mineral diesel. The emission results of the comparative test indicated that CO, oxygen (O2) and smoke density emissions are found to be lower when the engine is filled with B05, B10, B15 and B20 as compared to mineral diesel, while carbon dioxide (CO2) and nitrogen oxide (NOx) with B05, B10, B15 and B20 are found to increase marginally. Brake thermal efficiency and brake specific fuel consumption decrease and increase respectively in biodiesel with different blends in comparison of mineral diesel.

  10. Effects of Surface-Engineered Nanoparticle-Based Dispersants for Marine Oil Spills on the Model Organism Artemia franciscana

    PubMed Central

    2015-01-01

    Fine particles are under active consideration as alternatives to chemical dispersants for large-scale petroleum spills. Fine carbon particles with engineered surface chemistry have been shown to stabilize oil-in-water emulsions, but the environmental impacts of large-scale particle introduction to the marine environment are unknown. Here we study the impact of surface-engineered carbon-black materials on brine shrimp (Artemia franciscana) as a model marine microcrustacean. Mortality was characterized at 50–1000 mg/L, and levels of heat shock protein 70 (hsp70) were characterized at sublethal particle concentrations (25–50 mg/L). Functionalized carbon black (CB) nanoparticles were found to be nontoxic at all concentrations, while hydrophobic (annealed) and as-produced CB induced adverse effects at high concentrations. CB was also shown to adsorb benzene, a model hydrocarbon representing the more soluble and toxic low-molecular weight aromatic fraction of petroleum, but the extent of adsorption was insufficient to mitigate benzene toxicity to Artemia in coexposure experiments. At lower benzene concentrations (25–75 mg/L), coexposure with annealed and as-produced CB increased hsp70 protein levels. This study suggests that surface functionalization for increased hydrophilicity can not only improve the performance of CB-based dispersants but also reduce their adverse environmental impacts on marine organisms. PMID:24823274

  11. Effects of surface-engineered nanoparticle-based dispersants for marine oil spills on the model organism Artemia franciscana.

    PubMed

    Rodd, April L; Creighton, Megan A; Vaslet, Charles A; Rangel-Mendez, J Rene; Hurt, Robert H; Kane, Agnes B

    2014-06-01

    Fine particles are under active consideration as alternatives to chemical dispersants for large-scale petroleum spills. Fine carbon particles with engineered surface chemistry have been shown to stabilize oil-in-water emulsions, but the environmental impacts of large-scale particle introduction to the marine environment are unknown. Here we study the impact of surface-engineered carbon-black materials on brine shrimp (Artemia franciscana) as a model marine microcrustacean. Mortality was characterized at 50-1000 mg/L, and levels of heat shock protein 70 (hsp70) were characterized at sublethal particle concentrations (25-50 mg/L). Functionalized carbon black (CB) nanoparticles were found to be nontoxic at all concentrations, while hydrophobic (annealed) and as-produced CB induced adverse effects at high concentrations. CB was also shown to adsorb benzene, a model hydrocarbon representing the more soluble and toxic low-molecular weight aromatic fraction of petroleum, but the extent of adsorption was insufficient to mitigate benzene toxicity to Artemia in coexposure experiments. At lower benzene concentrations (25-75 mg/L), coexposure with annealed and as-produced CB increased hsp70 protein levels. This study suggests that surface functionalization for increased hydrophilicity can not only improve the performance of CB-based dispersants but also reduce their adverse environmental impacts on marine organisms. PMID:24823274

  12. Bioremediation of oil polluted marine sediments: A bio-engineering treatment.

    PubMed

    Cappello, Simone; Calogero, Rosario; Santisi, Santina; Genovese, Maria; Denaro, Renata; Genovese, Lucrezia; Giuliano, Laura; Mancini, Giuseppe; Yakimov, Michail M

    2015-06-01

    The fate of hydrocarbon pollutants and the development of oil-degrading indigenous marine bacteria in contaminated sediments are strongly influenced by abiotic factors such as temperature, low oxygen levels, and nutrient availability. In this work, the effects of different biodegradation processes (bioremediation) on oil-polluted anoxic sediments were analyzed. In particular, as a potential bioremediation strategy for polluted sediments, we applied a prototype of the "Modular Slurry System" (MSS), allowing containment of the sediments and their physical-chemical treatment (by air insufflations, temperature regulation, and the use of a slow-release fertilizer). Untreated polluted sediments served as the blank in a non-controlled experiment. During the experimental period (30 days), bacterial density and biochemical oxygen demand were measured and functional genes were identified by screening. Quantitative measurements of pollutants and an eco-toxicological analysis (mortality of Corophium orientale) were carried out at the beginning and end of the experiments. The results demonstrated the high biodegradative capability achieved with the proposed technology and its strong reduction of pollutant concentrations and thus toxicity. PMID:26496620

  13. A highly resilient mesoporous SiOx lithium storage material engineered by oil-water templating.

    PubMed

    Park, Eunjun; Park, Min-Sik; Lee, Jaewoo; Kim, Ki Jae; Jeong, Goojin; Kim, Jung Ho; Kim, Young-Jun; Kim, Hansu

    2015-02-01

    Mesoporous silicon-based materials gained considerable attention as high-capacity lithium-storage materials. However, the practical use is still limited by the complexity and limited number of available synthetic routes. Here, we report carbon-coated porous SiOx as high capacity lithium storage material prepared by using a sol-gel reaction of hydrogen silsesquioxane and oil-water templating. A hydrophobic oil is employed as a pore former inside the SiOx matrix and a precursor for carbon coating on the SiOx . The anode exhibits a high capacity of 730 mAh g(-1) and outstanding cycling performance over 100 cycles without significant dimensional changes. Carbon-coated porous SiOx also showed highly stable thermal reliability comparable to that of graphite. These promising properties come from the mesopores in the SiOx matrix, which ensures reliable operation of lithium storage in SiOx . The scalable sol-gel process presented here can open up a new avenue for the versatile preparation of porous SiOx lithium storage materials. PMID:25581319

  14. Separation of oil-in-water emulsions by microbubble treatment and the effect of adding coagulant or cationic surfactant on removal efficiency.

    PubMed

    Van Le, Tuan; Imai, Tsuyoshi; Higuchi, Takaya; Doi, Ryosuke; Teeka, Jantima; Xiaofeng, Sun; Teerakun, Mullika

    2012-01-01

    This study examined the efficiencies of microbubble (MB) treatment, MB treatment with polyaluminium chloride (PAC) as a coagulant, and MB treatment with cetyltrimethylammonium chloride (CTAC) as a cationic surfactant in the separation of emulsified oil (EO) by modified column flotation. Batch mode experiments were conducted by synthesizing emulsified palm oil (d<20 μm), and the chemical oxygen demand (COD) of the influent and effluent was measured to evaluate the treatment performance. MB treatment with PAC and MB treatment with CTAC were found to be more efficient in EO removal than the MB treatment alone. At an EO concentration of ∼1,000 mg L(-1) (pH 7) and under identical treatment conditions (MB generation time: 2.5 min, flotation time: 30 min), MB treatment with PAC (50 mg L(-1)) and that with CTAC (0.5 mg L(-1)) showed equally high EO removal efficiencies of 92 and 89%, respectively. This result is of significant relevance to studies focusing on the development of economical and high-efficiency flotation systems. Furthermore, the effect of pH was investigated by varying the sample pH from 3 to 8, which showed that the EO separation efficiency of MB alone increased drastically from slightly alkaline to acidic condition. PMID:22797232

  15. DIS in AdS

    SciTech Connect

    Albacete, Javier L.; Kovchegov, Yuri V.; Taliotis, Anastasios

    2009-03-23

    We calculate the total cross section for the scattering of a quark-anti-quark dipole on a large nucleus at high energy for a strongly coupled N = 4 super Yang-Mills theory using AdS/CFT correspondence. We model the nucleus by a metric of a shock wave in AdS{sub 5}. We then calculate the expectation value of the Wilson loop (the dipole) by finding the extrema of the Nambu-Goto action for an open string attached to the quark and antiquark lines of the loop in the background of an AdS{sub 5} shock wave. We find two physically meaningful extremal string configurations. For both solutions we obtain the forward scattering amplitude N for the quark dipole-nucleus scattering. We study the onset of unitarity with increasing center-of-mass energy and transverse size of the dipole: we observe that for both solutions the saturation scale Q{sub s} is independent of energy/Bjorken-x and depends on the atomic number of the nucleus as Q{sub s}{approx}A{sup 1/3}. Finally we observe that while one of the solutions we found corresponds to the pomeron intercept of {alpha}{sub P} = 2 found earlier in the literature, when extended to higher energy or larger dipole sizes it violates the black disk limit. The other solution we found respects the black disk limit and yields the pomeron intercept of {alpha}{sub P} = 1.5. We thus conjecture that the right pomeron intercept in gauge theories at strong coupling may be {alpha}{sub P} = 1.5.

  16. Oil-based paint poisoning

    MedlinePlus

    Paint - oil based - poisoning ... Hydrocarbons are the primary poisonous ingredient in oil paints. Some oil paints have heavy metals such as lead, mercury, cobalt, and barium added as pigment. These heavy metals can cause additional ...

  17. Bubbling AdS3

    NASA Astrophysics Data System (ADS)

    Martelli, Dario; Morales, Jose F.

    2005-02-01

    In the light of the recent Lin, Lunin, Maldacena (LLM) results, we investigate 1/2-BPS geometries in minimal (and next to minimal) supergravity in D = 6 dimensions. In the case of minimal supergravity, solutions are given by fibrations of a two-torus T2 specified by two harmonic functions. For a rectangular torus the two functions are related by a non-linear equation with rare solutions: AdS3 × S3, the pp-wave and the multi-center string. ``Bubbling'', i.e. superpositions of droplets, is accommodated by allowing the complex structure of the T2 to vary over the base. The analysis is repeated in the presence of a tensor multiplet and similar conclusions are reached, with generic solutions describing D1D5 (or their dual fundamental string-momentum) systems. In this framework, the profile of the dual fundamental string-momentum system is identified with the boundaries of the droplets in a two-dimensional plane.

  18. Seismic evaluation of NOSR 2. Naval Oil Shale Reserves management support and systems engineering project. [Utah

    SciTech Connect

    Not Available

    1982-01-01

    In June 1981, the Department of Energy (DOE) elected to conduct a seismic evaluation of NOSR 2 in Utah. This survey was carried out by TRW for DOE as part of the resource assessment of the Naval Oil Shale Reserves. The objective of the seismic survey was to determine if there are any structures on the Reserve which may have trapped hydrocarbons. An evaluation of the results indicated the elongated anticlinal structure in the southeast corner (Tabyago Dome) does have dip reversal and that there is a closed structure. Centered in Section 21, T13S, R19E, that structure has a high probability of having trapped hydrocarbons. Any well drilled on that structure should test all the potential producing formations down to the Pre-Cambrian (15,000 feet). It is also possible that several stratigraphic traps exist on a north-trending anticline in R19E. The seismic survey was carried out during August-September 1981 when the Seismograph Service Corporation (SSC) shot an additional eight seismic lines over the entire Reserve. With the three existing commercial seismic lines, a total of 66.25 miles of seismic profiles were available for the evaluation. Additional geologic information from existing reports and data from producing areas which surround the Reserve also were used in making the final assessment. 9 references, 7 figures, 3 tables.

  19. Biodegradation of organic compounds during co-composting of olive oil mill waste and municipal solid waste with added rock phosphate.

    PubMed

    Barje, Farid; El Fels, Loubna; El Hajjouji, Houda; Winterton, Peter; Hafidi, Mohamed

    2013-01-01

    Liquid and solid olive oil mill waste was treated by com posting in a mixture with the organic part of municipal solid waste and rock phosphate. The transformations that occurred during the process were evaluated by physical, chemical and spectroscopic analyses. After five months of com posting, the final compost presented a C/N ratio under 20, an NH4+/NO3(-)] ratio under 1 and a pH around neutral. A high level of organic matter decomposition paralleled a notable abatement of phenols and lipids. The results show the effective dissolution of mineral elements during composting. This transformation was followed by Fourier transform infrared which showed a decrease in the absorption bands of aliphatic bonds (2925 and 2855 cm(-1)) and carbonyls of carboxylic origin (1740 cm (-1)). In addition to the increase in humic substances and the improvement of germination indices, the parameters studied confirm the stability and the maturity of the composts. The absence of phytotoxicity opens the way to agricultural spreading. PMID:24617055

  20. The impact of using biodiesel/marine gas oil blends on exhaust emissions from a stationary diesel engine.

    PubMed

    Karavalakis, G; Tzirakis, E; Mattheou, L; Stournas, S; Zannikos, F; Karonis, D

    2008-12-01

    The purpose of this work was to investigate the impact of marine gas oil (MGO)/biodiesel blends on the exhaust emissions and fuel consumption in a single cylinder, stationary, diesel engine. Three different origins of biodiesel were used as the blending feedstock with the reference MGO, at proportions of 5 and 10% by volume. Methyl esters were examined according to the automotive FAME standard EN 14214. The baseline MGO and biodiesel blends were examined according to ISO 8217:2005 specifications for the DMA category. Independently of the biodiesel used, a decrease of PM, HC, CO and CO(2) emissions was observed. Emissions of NO(x) were also lower with respect to MGO. This reduction in NO(x) may be attributed to some physicochemical properties of the fuels applied, such as the higher cetane number and the lower volatility of methyl esters. Reductions in PM for biodiesel blends were lower in the exhaust than those of the reference fuel which was attributed to the oxygen content and the near absence of sulphur and aromatics compounds in biodiesel. However, a slight increase in fuel consumption was observed for the biodiesel blends that may be tolerated due to the exhaust emissions benefits. Brake thermal efficiency was also determined. Unregulated emissions were characterized by determining the soluble organic fraction content of the particulate matter. PMID:18988104

  1. Emissions of EC, OC, and PAHs from cottonseed oil biodiesel in a heavy-duty diesel engine.

    PubMed

    Song, Wei W; He, Ke B; Wang, Jian X; Wang, Xin T; Shi, Xiao Y; Yu, Chao; Chen, Wen M; Zheng, Liang

    2011-08-01

    Biodiesel fuels, made from renewable resources, have emerged as viable alternatives to conventional diesel fuel, but their impact on emissions is not fully understood. This study examines elemental carbon (EC), organic carbon (OC), and polycyclic aromatic hydrocarbons (PAHs) emissions from cottonseed oil biodiesel (CSO-B100). Relative to normal diesel fuel, CSO-B100 reduced EC emissions by 64% (±16%). The bulk of EC emitted from CSO-B100 was in the fine particle mode (<1.4 μm), which is similar to normal diesel. OC was found in all size ranges, whereas emissions of OC(1.4-2.5) were proportionately higher in OC(2.5) from CSO-B100 than from diesel. The CSO-B100 emission factors derived from this study are significantly lower, even without aftertreatment, than the China-4 emission standards established in Beijing and Euro-IV diesel engine standards. The toxic equivalency factors (TEFs) for CSO-B100 was half the TEFs of diesel, which suggests that PAHs emitted from CSO-B100 may be less toxic. PMID:21736340

  2. Critical review, comparative evaluation, cost update, and baseline data development services in oil shale mining, in-situ liquefaction, and above ground retorting processes from the environmental, permitting, and licensing viewpoints. Volume I. Oil-shale retorting process engineering

    SciTech Connect

    Not Available

    1980-12-15

    The present volume is the first of a series of three constituting the title study. It provides a brief but thorough description of six Oil Shale Retorting Processes, namely: Paraho, Tosco II, Oxidental Modified In-Situ, Rio Blanco, Union Oil, and Superior Oil. The processes are treated at Unit Operations level, including operations such as Mining, Crushing, Screening, Conveying, Hydrogenation (or Upgrading), Hydrogen Manufacturing Plant, Amine Treating, Low-Btu Gas Treating, Tail Gas Treating, Sulfur Recovery, Wastewater Treatment, Sour Waste Stripping, Refining, Spent Shale Disposal, etc. The present first volume of the study provides most process engineering information required in order for Control Requirements, at specific points of a given unit operations flowsheet, to be fully assessed. Flow sheets for unit operations presented in the present Volume I are only conceptual and qualitative. Some quantitative data on volumeric flow rates of specific flow streams are occasionally given. However, no systematic effort has been presently made to develop a numerical data base on process flow streams. This has been done in a much more systematic and thorough manner in another FMR study performed on behalf of DOE under title Source Terms for the Health and Environmental Effects Document (HEED) for Oil Shale - 1982. Additional original quantitative analysis has been performed by FMR towards developing material balances for specific oil shale feeds into specific retorting processes.

  3. Adding Value to the Learning Process by Online Peer Review Activities: Towards the Elaboration of a Methodology to Promote Critical Thinking in Future Engineers

    ERIC Educational Resources Information Center

    Dominguez, Caroline; Nascimento, Maria M.; Payan-Carreira, Rita; Cruz, Gonçalo; Silva, Helena; Lopes, José; Morais, Maria da Felicidade A.; Morais, Eva

    2015-01-01

    Considering the results of research on the benefits and difficulties of peer review, this paper describes how teaching faculty, interested in endorsing the acquisition of communication and critical thinking (CT) skills among engineering students, has been implementing a learning methodology throughout online peer review activities. While…

  4. ASSAY FOR DETECTION AD ENUMERATION OF GENETICALLY ENGINEERED MICROORGANISMS WHICH IS BASED ON THE ACTIVITY OF A DEREGULATED 2,4-DICHLOROPHENOXYACETATE MONOOXYGENASE

    EPA Science Inventory

    An assay system was developed for the enumeration of genetically engineered microorganisms expressing a deregulated 2,4-dichlorophenoxyacetate (TFD) monooxygenase, which coverts phenoxyacetate (PAA) to phenol. n PAA-amended cultures of Pseudomonas aeruginosa PAO1C (pRO103) and Ps...

  5. Evaluation of the "added value" of SIMS: A mass spectrometric and spectroscopic study of an unusual Naples yellow oil paint reconstruction

    NASA Astrophysics Data System (ADS)

    Keune, Katrien; Hoogland, Frank; Boon, Jaap J.; Peggie, David; Higgitt, Catherine

    2009-07-01

    Naples yellow-containing oil paints aged under natural and artificial conditions were investigated as model systems to evaluate the potential of secondary ion mass spectrometry (SIMS) when used in combination with other mass spectrometric and spectroscopic analytical methods. Although the advantage of SIMS is the simultaneous detection of organic and inorganic components and their spatial distribution, the methodology has limitations in compound sensitivity and shows bias towards certain constituents. Gas chromatography-mass spectrometry (GC/MS) shows dicarboxylic fatty acids to be main components in the paint, but SIMS detects these compounds poorly. Electrospray ionisation mass spectrometry (ESI-MS) shows a broad range of glyceryl derivatives of mono- and dicarboxylic fatty acids (mono-, di- and triglyceride derivatives), while SIMS only detects the mono- and diglycerides of the monocarboxylic acids. Compared to SIMS, direct temperature-resolved mass spectrometry (DTMS) offers greater insight into how the various constituents are incorporated into the paint film, but SIMS data supports the information provided by Fourier transform infrared (FTIR) on metal soap formation. The surface sensitivity of SIMS is an advantage for probing paint constituent distributions and was exploited to examine variations in the composition of the top and bottom of a paint film, and the spatial correlation between metal and fatty acid composition in metal soap aggregates. Disadvantages of SIMS are the low yields and matrix dependency of the organic species in the paint matrix. Application of an ultra-thin gold coating overcomes this, and enhances the organic secondary ion yields leading to more accurate spatial distribution.

  6. Vegetable oil fuel standards

    SciTech Connect

    Pryde, E.H.

    1982-01-01

    Suggested standards for vegetable oils and ester fuels, as well as ASTM specifications for No. 2 diesel oil are given. The following physical properties were discussed: cetane number, cloud point, distillation temperatures, flash point, pour point, turbidity, viscosity, free fatty acids, iodine value, phosphorus, and wax. It was apparent that vegetable oils and their esters cannot meet ASTM specifications D975 for No. 2 diesel oil for use in the diesel engine. Vegetable oil modification or engine design modification may make it possible eventually for vegetable oils to become suitable alternative fuels. Vegetable oils must be recognized as experimental fuels until modifications have been tested thoroughly and generally accepted. 1 table. (DP)

  7. Effects of fish oil and starch added to a diet containing sunflower-seed oil on dairy goat performance, milk fatty acid composition and in vivo delta9-desaturation of [13C]vaccenic acid.

    PubMed

    Bernard, Laurence; Mouriot, Julien; Rouel, Jacques; Glasser, Frédéric; Capitan, Pierre; Pujos-Guillot, Estelle; Chardigny, Jean-Michel; Chilliard, Yves

    2010-08-01

    The potential benefits on human health have prompted an interest in developing nutritional strategies for specifically increasing rumenic acid (RA) in ruminant milk. The aims of the present study were to (i) compare two dietary treatments with lipid supplements on milk yield and composition, (ii) measure the in vivo delta9-desaturation of vaccenic acid (VA) to RA using 13C-labelled VA and (iii) determine the effect of the dietary treatments on this variable. Treatments were 90 g sunflower-seed oil (SO) per d or 60 g sunflower-seed oil and 30 g fish oil per d plus additional starch (SFO), in a grassland hay-based diet given to eight Alpine goats in a 2 x 2 cross-over design with 21 d experimental periods. Milk yield and composition were similar between treatments. Goats fed SFO had higher milk 6 : 0-16 : 0 concentration, lower milk sigmaC18 concentrations and showed no effect on milk VA and RA, compared with SO. At the end of the experiment, intravenous injection of 1.5 g [13C]VA followed by measurements of milk lipid 13C enrichment showed that in vivo 31.7 and 31.6 % of VA was delta9-desaturated into milk RA in the caprine with the SO and SFO treatments, respectively. The expression of genes encoding for delta9-desaturase (or stearoyl-CoA desaturase; SCD1, SCD5) in mammary tissues and four milk delta9-desaturation ratios were similar between treatments. In conclusion, the present study provides the first estimates of in vivo endogenous synthesis of RA (63-73 % of milk RA) from VA in goats, and shows no difference between the two lipid supplements compared. PMID:20307350

  8. Cognitive impairment and associated loss in brain white microstructure in aircrew members exposed to engine oil fumes.

    PubMed

    Reneman, Liesbeth; Schagen, Sanne B; Mulder, Michel; Mutsaerts, Henri J; Hageman, Gerard; de Ruiter, Michiel B

    2016-06-01

    Cabin air in airplanes can be contaminated with engine oil contaminants. These contaminations may contain organophosphates (OPs) which are known neurotoxins to brain white matter. However, it is currently unknown if brain white matter in aircrew is affected. We investigated whether we could objectify cognitive complaints in aircrew and whether we could find a neurobiological substrate for their complaints. After medical ethical approval from the local institutional review board, informed consent was obtained from 12 aircrew (2 females, on average aged 44.4 years, 8,130 flying hours) with cognitive complaints and 11 well matched control subjects (2 females, 43.4 years, 233 flying hours). Depressive symptoms and self-reported cognitive symptoms were assessed, in addition to a neuropsychological test battery. State of the art Magnetic Resonance Imaging (MRI) techniques were administered that assess structural and functional changes, with a focus on white matter integrity. In aircrew we found significantly more self-reported cognitive complaints and depressive symptoms, and a higher number of tests scored in the impaired range compared to the control group. We observed small clusters in the brain in which white matter microstructure was affected. Also, we observed higher cerebral perfusion values in the left occipital cortex, and reduced brain activation on a functional MRI executive function task. The extent of cognitive impairment was strongly associated with white matter integrity, but extent of estimated number of flight hours was not associated with cognitive impairment nor with reductions in white matter microstructure. Defects in brain white matter microstructure and cerebral perfusion are potential neurobiological substrates for cognitive impairments and mood deficits reported in aircrew. PMID:26063438

  9. Engine

    SciTech Connect

    Shin, H.B.

    1984-02-28

    An internal combustion engine has a piston rack depending from each piston. This rack is connected to a power output shaft through a mechanical rectifier so that the power output shaft rotates in only one direction. A connecting rod is pivotally connected at one end to the rack and at the other end to the crank of a reduced function crankshaft so that the crankshaft rotates at the same angular velocity as the power output shaft and at the same frequency as the pistons. The crankshaft has a size, weight and shape sufficient to return the pistons back into the cylinders in position for the next power stroke.

  10. Effects of hydrotreated vegetable oil on emissions of aerosols and gases from light-duty and medium-duty older technology engines.

    PubMed

    Bugarski, Aleksandar D; Hummer, Jon A; Vanderslice, Shawn

    2016-01-01

    This study was conducted to assess the potential of hydrotreated vegetable oil renewable diesel (HVORD) as a control strategy to reduce exposure of workers to diesel aerosols and gases. The effects of HVORD on criteria aerosol and gaseous emissions were compared with those of ultralow sulfur diesel (ULSD). The results of comprehensive testing at four steady-state conditions and one transient cycle were used to characterize the aerosol and gaseous emissions from two older technology engines: (1) a naturally aspirated mechanically controlled and (2) a turbocharged electronically controlled engine. Both engines were equipped with diesel oxidation catalytic converters (DOCs). For all test conditions, both engines emitted measurably lower total mass concentrations of diesel aerosols, total carbon, and elemental carbon when HVORD was used in place of ULSD. For all test conditions, the reductions in total mass concentrations were more substantial for the naturally aspirated than for the turbocharged engine. In the case of the naturally aspirated engine, HVORD also favorably affected total surface area of aerosols deposited in the alveolar region of human lungs (TSAADAR) and the total number concentrations of aerosols. In the case of the turbocharged electronically controlled engine, for some of the test conditions HVORD adversely affected the TSAADAR and total number concentrations of aerosols. In the majority of the test cases involving the naturally aspirated mechanically controlled engine, HVORD favorably affected carbon dioxide (CO2), nitrogen oxides (NOX), and nitric oxide (NO) concentrations, but adversely affected NO2 and total hydrocarbon concentrations, while the effects of the fuels on carbon monoxide (CO) concentrations were masked by the effects of DOC. In the case of the turbocharged electronically controlled engine, the CO2, CO, NOX, NO, and total hydrocarbon concentrations were generally lower when HVORD was used in place of ULSD. The effects of the fuels

  11. Metabolic engineering of oilseed crops to produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value.

    PubMed

    Liu, Jinjie; Rice, Adam; McGlew, Kathleen; Shaw, Vincent; Park, Hyunwoo; Clemente, Tom; Pollard, Mike; Ohlrogge, John; Durrett, Timothy P

    2015-08-01

    Seed oils have proved recalcitrant to modification for the production of industrially useful lipids. Here, we demonstrate the successful metabolic engineering and subsequent field production of an oilseed crop with the highest accumulation of unusual oil achieved so far in transgenic plants. Previously, expression of the Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene in wild-type Arabidopsis seeds resulted in the accumulation of 45 mol% of unusual 3-acetyl-1,2-diacyl-sn-glycerols (acetyl-TAGs) in the seed oil (Durrett et al., 2010 PNAS 107:9464). Expression of EaDAcT in dgat1 mutants compromised in their ability to synthesize regular triacylglycerols increased acetyl-TAGs to 65 mol%. Camelina and soybean transformed with the EaDAcT gene accumulate acetyl-triacylglycerols (acetyl-TAGs) at up to 70 mol% of seed oil. A similar strategy of coexpression of EaDAcT together with RNAi suppression of DGAT1 increased acetyl-TAG levels to up to 85 mol% in field-grown transgenic Camelina. Additionally, total moles of triacylglycerol (TAG) per seed increased 20%. Analysis of the acetyl-TAG fraction revealed a twofold reduction in very long chain fatty acids (VLCFA), consistent with their displacement from the sn-3 position by acetate. Seed germination remained high, and seedlings were able to metabolize the stored acetyl-TAGs as rapidly as regular triacylglycerols. Viscosity, freezing point and caloric content of the Camelina acetyl-TAG oils were reduced, enabling use of this oil in several nonfood and food applications. PMID:25756355

  12. Heavy oil recovery process: Conceptual engineering of a downhole methanator and preliminary estimate of facilities cost for application to North Slope Alaska

    SciTech Connect

    Gondouin, M.

    1991-10-31

    The West Sak (Upper Cretaceous) sands, overlaying the Kuparuk field, would rank among the largest known oil fields in the US, but technical difficulties have so far prevented its commercial exploitation. Steam injection is the most successful and the most commonly-used method of heavy oil recovery, but its application to the West Sak presents major problems. Such difficulties may be overcome by using a novel approach, in which steam is generated downhole in a catalytic Methanator, from Syngas made at the surface from endothermic reactions (Table 1). The Methanator effluent, containing steam and soluble gases resulting from exothermic reactions (Table 1), is cyclically injected into the reservoir by means of a horizontal drainhole while hot produced fluids flow form a second drainhole into a central production tubing. The downhole reactor feed and BFW flow downward to two concentric tubings. The large-diameter casing required to house the downhole reactor assembly is filled above it with Arctic Pack mud, or crude oil, to further reduce heat leaks. A quantitative analysis of this production scheme for the West Sak required a preliminary engineering of the downhole and surface facilities and a tentative forecast of well production rates. The results, based on published information on the West Sak, have been used to estimate the cost of these facilities, per daily barrel of oil produced. A preliminary economic analysis and conclusions are presented together with an outline of future work. Economic and regulatory conditions which would make this approach viable are discussed. 28 figs.

  13. Enzymatic production of biodiesel from waste cooking oil in a packed-bed reactor: an engineering approach to separation of hydrophilic impurities.

    PubMed

    Hama, Shinji; Yoshida, Ayumi; Tamadani, Naoki; Noda, Hideo; Kondo, Akihiko

    2013-05-01

    An engineering approach was applied to an efficient biodiesel production from waste cooking oil. In this work, an enzymatic packed-bed reactor (PBR) was integrated with a glycerol-separating system and used successfully for methanolysis, yielding a methyl ester content of 94.3% and glycerol removal of 99.7%. In the glycerol-separating system with enhanced retention time, the effluent contained lesser amounts of glycerol and methanol than those in the unmodified system, suggesting its promising ability to remove hydrophilic impurities from the oil layer. The PBR system was also applied to oils with high acid values, in which fatty acids could be esterified and the large amount of water was extracted using the glycerol-separating system. The long-term operation demonstrated the high lipase stability affording less than 0.2% residual triglyceride in 22 batches. Therefore, the PBR system, which facilitates the separation of hydrophilic impurities, is applicable to the enzymatic biodiesel production from waste cooking oil. PMID:22795609

  14. Ultra-sensitive biosensor based on genetically engineered acetylcholinesterase immobilized in poly (vinyl alcohol)/Fe-Ni alloy nanocomposite for phosmet detection in olive oil.

    PubMed

    El-Moghazy, A Y; Soliman, E A; Ibrahim, H Z; Noguer, T; Marty, J-L; Istamboulie, G

    2016-07-15

    An ultra-sensitive screen-printed biosensor was successfully developed for phosmet detection in olive oil, based on a genetically-engineered acetylcholinesterase (AChE) immobilized in a azide-unit water-pendant polyvinyl alcohol (PVA-AWP)/Fe-Ni alloy nanocomposite. Fe-Ni not only allowed amplifying the response current but also lowering the applied potential from 80 mV to 30 mV vs Ag/AgCl. The biosensor showed a very good analytical performance for phosmet detection, with a detection limit of 0.1 nM. This detection limit is lower than the allowable concentrations set by international regulations. In addition to the good reproducibility, operational and storage stability, the developed biosensor was successfully used for the determination of phosmet in olive oil samples without any laborious pre-treatment. The phosmet recovery rate was about 96% after a simple liquid-liquid extraction. PMID:26948591

  15. Analysis of archaeological triacylglycerols by high resolution nanoESI, FT-ICR MS and IRMPD MS/MS: Application to 5th century BC-4th century AD oil lamps from Olbia (Ukraine)

    NASA Astrophysics Data System (ADS)

    Garnier, Nicolas; Rolando, Christian; Høtje, Jakob Munk; Tokarski, Caroline

    2009-07-01

    This work presents the precise identification of triacylglycerols (TAGs) extracted from archaeological samples using a methodology based on nanoelectrospray and Fourier transform mass spectrometry. The archaeological TAG identification needs adapted sample preparation protocols to trace samples in advanced degradation state. More precisely, the proposed preparation procedure includes extraction of the lipid components from finely grinded ceramic using dichloromethane/methanol mixture with additional ultrasonication treatment, and TAG purification by solid phase extraction on a diol cartridge. Focusing on the analytical approach, the implementation of "in-house" species-dependent TAG database was investigated using MS and InfraRed Multiphoton Dissociation (IRMPD) MS/MS spectra; several vegetal oils, dairy products and animal fats were studied. The high mass accuracy of the Fourier transform analyzer ([Delta]m below 2.5 ppm) provides easier data interpretation, and allows distinction between products of different origins. In details, the IRMPD spectra of the lithiated TAGs reveal fragmentation reactions including loss of free neutral fatty acid and loss of fatty acid as [alpha],[beta]-unsaturated moieties. Based on the developed preparation procedure and on the constituted database, TAG extracts from 5th century BC to 4th century AD Olbia lamps were analyzed. The structural information obtained succeeds in identifying that bovine/ovine fats were used as fuel used in these archaeological Olbia lamps.

  16. Adding value to the learning process by online peer review activities: towards the elaboration of a methodology to promote critical thinking in future engineers

    NASA Astrophysics Data System (ADS)

    Dominguez, Caroline; Nascimento, Maria M.; Payan-Carreira, Rita; Cruz, Gonçalo; Silva, Helena; Lopes, José; Morais, Maria da Felicidade A.; Morais, Eva

    2015-09-01

    Considering the results of research on the benefits and difficulties of peer review, this paper describes how teaching faculty, interested in endorsing the acquisition of communication and critical thinking (CT) skills among engineering students, has been implementing a learning methodology throughout online peer review activities. While introducing a new methodology, it is important to weight the advantages found and the conditions that might have restrained the activity outcomes, thereby modulating its overall efficiency. Our results show that several factors are decisive for the success of the methodology: the use of specific and detailed orientation guidelines for CT skills, the students' training on how to deliver a meaningful feedback, the opportunity to counter-argument, the selection of good assignments' examples, and the constant teacher's monitoring of the activity. Results also tackle other aspects of the methodology such as the thinking skills evaluation tools (grades and tests) that most suit our reality. An improved methodology is proposed taking in account the encountered limitations, thus offering the possibility to other interested institutions to use/test and/or improve it.

  17. Polarised black holes in AdS

    NASA Astrophysics Data System (ADS)

    Costa, Miguel S.; Greenspan, Lauren; Oliveira, Miguel; Penedones, João; Santos, Jorge E.

    2016-06-01

    We consider solutions in Einstein-Maxwell theory with a negative cosmological constant that asymptote to global AdS 4 with conformal boundary {S}2× {{{R}}}t. At the sphere at infinity we turn on a space-dependent electrostatic potential, which does not destroy the asymptotic AdS behaviour. For simplicity we focus on the case of a dipolar electrostatic potential. We find two new geometries: (i) an AdS soliton that includes the full backreaction of the electric field on the AdS geometry; (ii) a polarised neutral black hole that is deformed by the electric field, accumulating opposite charges in each hemisphere. For both geometries we study boundary data such as the charge density and the stress tensor. For the black hole we also study the horizon charge density and area, and further verify a Smarr formula. Then we consider this system at finite temperature and compute the Gibbs free energy for both AdS soliton and black hole phases. The corresponding phase diagram generalizes the Hawking-Page phase transition. The AdS soliton dominates the low temperature phase and the black hole the high temperature phase, with a critical temperature that decreases as the external electric field increases. Finally, we consider the simple case of a free charged scalar field on {S}2× {{{R}}}t with conformal coupling. For a field in the SU(N ) adjoint representation we compare the phase diagram with the above gravitational system.

  18. Value-added products from vegetable oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygenated fatty acids are useful as specialty chemicals, plasticizers, and biomedicals. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to new comp...

  19. Experimental investigation of the physical properties of medium and heavy oils, their vaporization and use in explosion engines. Part III

    NASA Technical Reports Server (NTRS)

    Heinlein, Fritz

    1926-01-01

    The test equipment for studying the vaporization of heavy and medium oils is described as well as some of the experimental properties explored such as vaporization speed and diffusion coefficient. The experiemtal arrangement is also discussed.

  20. Enhancing Engineering Education through Engineering Management

    ERIC Educational Resources Information Center

    Pence, Kenneth R.; Rowe, Christopher J.

    2012-01-01

    Engineering Management courses are added to a traditional engineering curriculum to enhance the value of an undergraduate's engineering degree. A four-year engineering degree often leaves graduates lacking in business and management acumen. Engineering management education covers topics enhancing the value of new graduates by teaching management…

  1. Production of Long-Chain α,ω-Dicarboxylic Acids by Engineered Escherichia coli from Renewable Fatty Acids and Plant Oils.

    PubMed

    Sathesh-Prabu, Chandran; Lee, Sung Kuk

    2015-09-23

    Long-chain α,ω-dicarboxylic acids (LDCAs, ≥ C12) are widely used as a raw material for preparing various commodities and polymers. In this study, a CYP450-monooxygenase-mediated ω-oxidation pathway system with high ω-regioselectivity was heterologously expressed in Escherichia coli to produce DCAs from fatty acids. The resulting engineered E. coli produced a maximum of 41 mg/L of C12 DCA and 163 mg/L of C14 DCA from fatty acids (1 g/L), following 20 h of whole cell biotransformation. Addition of a heme precursor and the hydroxyl radical scavenger, thiourea, increased product concentration (159 mg/L of C12 DCA and 410 mg/L of C14 DCA) in a shorter culture duration than that of the corresponding controls. DCAs of various chain lengths were synthesized from coconut oil hydrolysate using the engineered E. coli. This novel synthetic biocatalytic system could be applied to produce high value DCAs in a cost-effective manner from renewable plant oils. PMID:26359801

  2. Comparative in vitro cytotoxicity assessment of airborne particulate matter emitted from stationary engine fuelled with diesel and waste cooking oil-derived biodiesel

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Pavagadhi, Shruti; Sethu, Swaminathan; Hande, M. Prakash; Balasubramanian, Rajasekhar

    2012-12-01

    Biodiesel derived from waste cooking oil (WCO) is gaining increased attention as an alternative fuel due to lower particulate emissions and other beneficial factors such as low cost and utilization of waste oil. However, very little information is available on toxicity of airborne particulate matter (PM) emitted from biodiesel combustion. In this study, PM emitted from WCO-derived biodiesel (B100) was analyzed for its toxic potential together with ultra low sulphur diesel (ULSD) as a reference fuel and their blend (B50). Human lung epithelial carcinoma cells (A549) were used for this comparative toxicity study. Results indicate that cytotoxicity and oxidative stress were higher for B100 relative to ULSD. Furthermore, caspase 3/7 activity indicates that cell death induced by B100 was due to either caspase independent apoptotic process or other programmed cell death pathways. The toxicity was also evaluated for different engine load conditions. It was observed that at lower loads there was no significant difference in the toxicological response of B100 and ULSD. However, with increase in the engine load, B100 and B50 showed significantly higher toxicity and oxidative stress compared to ULSD.

  3. Natural oils as lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is currently an availability of vegetable oil lubricants, with the exception of engine oils. Vegetable oils are environmentally friendly, renewable, contribute to the reduction of our dependence on imported petroleum, and add value to the farmer. However, there are inherent weaknesses in veg...

  4. Structural Oil Pan With Integrated Oil Filtration And Cooling System

    DOEpatents

    Freese, V, Charles Edwin

    2000-05-09

    An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

  5. Investigations on the effect of chlorine in lubricating oil and the presence of a diesel oxidation catalyst on PCDD/F releases from an internal combustion engine.

    PubMed

    Dyke, Patrick H; Sutton, Mike; Wood, David; Marshall, Jonathan

    2007-04-01

    This paper reports on an intensive study into releases of polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated furans (PCDF) and polychlorinated biphenyls (PCB) from a diesel engine and the analysis of PCDD/F and PCB in crankcase lubricating oil. Experimental conditions were set and carefully controlled in order to maximize the possible impact of, and our ability to measure the effect of, changes in the levels of chlorine in the lubricant. Emissions to air were measured using modified EPA methods following the principles of the European EN 1948 standards. A series of 40 experimental runs were completed using three reference lubricants formulated to have three levels of chlorine present as a residual component (at levels of 12, 131 and 259 mg kg(-1) or ppm). The engine was run with and without the diesel oxidation catalyst. All lubricants were realistic oils and the use of unrealistic additives or doping of components - particularly chlorine - in the fuel and lubricant was carefully avoided. Analysis of fuel and lubricant (before and after testing) samples required strenuous attention to achieve acceptable recoveries and showed non-detectable levels of PCB and PCDD/F at a detection limit of around 1.5 ng I-TEQ kg(-1) (ppt), indistinguishable from the laboratory blank. The testing demonstrated the need for extreme care to be taken in developing measurement methods that are sufficiently sensitive for measuring chlorine content of fluids and PCDD/F in oils, the latter being particularly challenging. Mean emissions of PCDD/F with the diesel oxidation catalyst in place were 23 pg I-TEQ l(-1) of fuel and with the diesel oxidation catalyst removed 97 pg I-TEQ l(-1) of fuel. The results of this testing showed that the emissions of PCDD/F were greatly reduced by the presence of a diesel oxidation catalyst in the exhaust, a finding that has not been explicitly tested in previous work. They also show that emissions from the engine were not controlled by the level of

  6. 40 CFR 91.308 - Lubricating oil and test fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Lubricating oil and test fuel. 91.308....308 Lubricating oil and test fuel. (a) Lubricating oil. (1) Use the engine lubricating oil which meets... specifications of the lubricating oil used for the test. (2) For two-stroke engines, the fuel/oil mixture...

  7. 40 CFR 91.308 - Lubricating oil and test fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Lubricating oil and test fuel. 91.308....308 Lubricating oil and test fuel. (a) Lubricating oil. (1) Use the engine lubricating oil which meets... specifications of the lubricating oil used for the test. (2) For two-stroke engines, the fuel/oil mixture...

  8. Experimental investigation of the physical properties of medium and heavy oils, their vaporization and use in explosion engines. Part IV

    NASA Technical Reports Server (NTRS)

    Heinlein, Fritz

    1926-01-01

    This report presents a theoretical treatment of the vaporization process of medium and heavy oils. The results of this investigation, which were mostly obtained from the lighter components of the heavy fuels, require a 10- or 16-fold vaporization in comparison with gasoline. We must attain a still finer degree of atomization, in order to include the heavier components.

  9. Smeared antibranes polarise in AdS

    NASA Astrophysics Data System (ADS)

    Gautason, Fridrik Freyr; Truijen, Brecht; Van Riet, Thomas

    2015-07-01

    In the recent literature it has been questioned whether the local backreaction of antibranes in flux throats can induce a perturbative brane-flux decay. Most evidence for this can be gathered for D6 branes and D p branes smeared over 6 - p compact directions, in line with the absence of finite temperature solutions for these cases. The solutions in the literature have flat worldvolume geometries and non-compact transversal spaces. In this paper we consider what happens when the worldvolume is AdS and the transversal space is compact. We show that in these circumstances brane polarisation smoothens out the flux singularity, which is an indication that brane-flux decay is prevented. This is consistent with the fact that the cosmological constant would be less negative after brane-flux decay. Our results extend recent results on AdS7 solutions from D6 branes to AdS p+1 solutions from D p branes. We show that supersymmetry of the AdS solutions depend on p non-trivially.

  10. AdS orbifolds and Penrose limits

    SciTech Connect

    Alishahiha, Mohsen; Sheikh-Jabbari, Mohammad M.; Tatar, Radu

    2002-12-09

    In this paper we study the Penrose limit of AdS{sub 5} orbifolds. The orbifold can be either in the pure spatial directions or space and time directions. For the AdS{sub 5}/{Lambda} x S{sup 5} spatial orbifold we observe that after the Penrose limit we obtain the same result as the Penrose limit of AdS{sub 5} x S{sup 5}/{Lambda}. We identify the corresponding BMN operators in terms of operators of the gauge theory on R x S{sup 3}/{Lambda}. The semi-classical description of rotating strings in these backgrounds have also been studied. For the spatial AdS orbifold we show that in the quadratic order the obtained action for the fluctuations is the same as that in S{sup 5} orbifold, however, the higher loop correction can distinguish between two cases.

  11. Vegetable oils for tractors

    SciTech Connect

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  12. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  13. Microbial production of value-added nutraceuticals.

    PubMed

    Wang, Jian; Guleria, Sanjay; Koffas, Mattheos A G; Yan, Yajun

    2016-02-01

    Nutraceuticals are important natural bioactive compounds that confer health-promoting and medical benefits to humans. Globally growing demands for value-added nutraceuticals for prevention and treatment of human diseases have rendered nutraceuticals a multi-billion dollar market. However, supply limitations and extraction difficulties from natural sources such as plants, animals or fungi, restrict the large-scale use of nutraceuticals. Metabolic engineering via microbial production platforms has been advanced as an eco-friendly alternative approach for production of value-added nutraceuticals from simple carbon sources. Microbial platforms like the most widely used Escherichia coli and Saccharomyces cerevisiae have been engineered as versatile cell factories for production of diverse and complex value-added chemicals such as phytochemicals, prebiotics, polysaccaharides and poly amino acids. This review highlights the recent progresses in biological production of value-added nutraceuticals via metabolic engineering approaches. PMID:26716360

  14. Introducing ADS 2.0

    NASA Astrophysics Data System (ADS)

    Accomazzi, Alberto; Kurtz, M. J.; Henneken, E. A.; Grant, C. S.; Thompson, D.; Luker, J.; Chyla, R.; Murray, S. S.

    2014-01-01

    In the spring of 1993, the Smithsonian/NASA Astrophysics Data System (ADS) first launched its bibliographic search system. It was known then as the ADS Abstract Service, a component of the larger Astrophysics Data System effort which had developed an interoperable data system now seen as a precursor of the Virtual Observatory. As a result of the massive technological and sociological changes in the field of scholarly communication, the ADS is now completing the most ambitious technological upgrade in its twenty-year history. Code-named ADS 2.0, the new system features: an IT platform built on web and digital library standards; a new, extensible, industrial strength search engine; a public API with various access control capabilities; a set of applications supporting search, export, visualization, analysis; a collaborative, open source development model; and enhanced indexing of content which includes the full-text of astronomy and physics publications. The changes in the ADS platform affect all aspects of the system and its operations, including: the process through which data and metadata are harvested, curated and indexed; the interface and paradigm used for searching the database; and the follow-up analysis capabilities available to the users. This poster describes the choices behind the technical overhaul of the system, the technology stack used, and the opportunities which the upgrade is providing us with, namely gains in productivity and enhancements in our system capabilities.

  15. United States Air Force 611th Civil Engineer Squadron, Elmendorf AFB, Alaska. Final engineering evaluation/cost analysis: Petroleum, oil, and lubricants area, Galena Airport, Alaska

    SciTech Connect

    1996-02-05

    This decision document presents the selected removal action for the Installation Restoration Program (IRP) site ST005, otherwise known as the POL Tank Farm, at Galena Airport, Alaska. This decision is based on the administrative record for this site, specifically the draft Remedial Investigation Report (March 1995) and the Treatability Study Report (January 1995) (PB95-225314). The information from these documents is summarized, along with an analysis of potential removal action alternatives in the Engineering Evaluation/Cost Analysis (EE/CA).

  16. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Conformity under 40 CFR part 86, 40 CFR part 89, or 40 CFR part 1039 and the certification of the vehicle or... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  17. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Conformity under 40 CFR part 86, 40 CFR part 89, or 40 CFR part 1039 and the certification of the vehicle or... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  18. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Conformity under 40 CFR part 86, 40 CFR part 89, or 40 CFR part 1039 and the certification of the vehicle or... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  19. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Conformity under 40 CFR part 86, 40 CFR part 89, or 40 CFR part 1039 and the certification of the vehicle or... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  20. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Conformity under 40 CFR part 86, 40 CFR part 89, or 40 CFR part 1039 and the certification of the vehicle or... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  1. Microscopic Dimensions Engineering: Stepwise Manipulation of the Surface Wettability on 3D Substrates for Oil/Water Separation.

    PubMed

    Du, Ran; Gao, Xin; Feng, Qingliang; Zhao, Qiuchen; Li, Pan; Deng, Shibin; Shi, Liurong; Zhang, Jin

    2016-02-01

    Microscopic dimensions engineering is proposed to devise a series of 3D superhydrophobic substrates with microstructures of different dimensions. Combined theoretical modeling and experiments give the relationship of surface roughness and superhydrophobic properties, important for guiding the design of superior superwettable materials for water remediation and other uses. PMID:26618329

  2. Engineering interfacial properties by anionic surfactant-chitosan complexes to improve stability of oil-in-water emulsions.

    PubMed

    Zinoviadou, Kyriaki G; Scholten, Elke; Moschakis, Thomas; Biliaderis, Costas G

    2012-03-01

    Oil-in-water emulsions (10% w/w n-tetradecane) were prepared at pH = 5.7 by using, as surface active agents, electrostatically formed complexes of sodium stearoyl lactylate (SSL) at a concentration of 0.4% (w/w) and chitosan (CH) in a concentration range between 0 and 0.48% w/w. The use of complexes in emulsions with a low concentration of CH (<0.24% w/w) resulted in highly flocculated systems; instead, with increased level of CH, the emulsions had a smaller average droplet size and exhibited greater stability during storage. Emulsions stabilised by SSL/CH complexes showed non-Newtonian flow behavior with pronounced shear thinning. Among all formulations studied none showed a gel-like behavior since in all cases the G' (storage modulus) was lower that G'' (loss modulus). Adsorption kinetics of pure SSL and SSL/CH complexes to the oil/water interfaces were evaluated using an automated drop tensiometer (ADT). Even though complexation of SSL with CH resulted in a delay of the adsorption of the surface active species at the oil/water interface, the inclusion of the polysaccharide resulted in substantially improved interfacial properties as indicated by a significant increase of the dilatational modulus. Furthermore, the enhanced interfacial properties of the emulsion droplets resulted in improved stability against freeze-thaw cycling. The results of this study may facilitate the development of frozen food products such as desserts with an ameliorated stability and favorable sensorial characteristics. PMID:22298029

  3. An engineered lipid remodeling system using a galactolipid synthase promoter during phosphate starvation enhances oil accumulation in plants

    PubMed Central

    Shimojima, Mie; Madoka, Yuka; Fujiwara, Ryota; Murakawa, Masato; Yoshitake, Yushi; Ikeda, Keiko; Koizumi, Ryota; Endo, Keiji; Ozaki, Katsuya; Ohta, Hiroyuki

    2015-01-01

    Inorganic phosphate (Pi) depletion is a serious problem for plant growth. Membrane lipid remodeling is a defense mechanism that plants use to survive Pi-depleted conditions. During Pi starvation, phospholipids are degraded to supply Pi for other essential biological processes, whereas galactolipid synthesis in plastids is up-regulated via the transcriptional activation of monogalactosyldiacylglycerol synthase 3 (MGD3). Thus, the produced galactolipids are transferred to extraplastidial membranes to substitute for phospholipids. We found that, Pi starvation induced oil accumulation in the vegetative tissues of various seed plants without activating the transcription of enzymes involved in the later steps of triacylglycerol (TAG) biosynthesis. Moreover, the Arabidopsis starchless phosphoglucomutase mutant, pgm-1, accumulated higher TAG levels than did wild-type plants under Pi-depleted conditions. We generated transgenic plants that expressed a key gene involved in TAG synthesis using the Pi deficiency–responsive MGD3 promoter in wild-type and pgm-1 backgrounds. During Pi starvation, the transgenic plants accumulated higher TAG amounts compared with the non-transgenic plants, suggesting that the Pi deficiency–responsive promoter of galactolipid synthase in plastids may be useful for producing transgenic plants that accumulate more oil under Pi-depleted conditions. PMID:26379690

  4. Influence of the processed sunflower oil on the cement properties

    NASA Astrophysics Data System (ADS)

    Fleysher, A. U.; Tokarchuk, V. V.; Sviderskiy, V. A.

    2015-01-01

    Used oils (vegetable oil, animal oil, engine oil, etc.), which are essentially industrial wastes, have found application as secondary raw materials in some braches of industry. In particular, the only well-known and commonly-used way of utilizing wastes of vegetable oils is to apply them as raw materials in the production of biodiesel. The goal of the present study is to develop a conceptually new way of vegetable oil wastes utilization in the building industry. The test admixture D-148 was obtained from the processing of wastes of sunflower oil and it mainly consists of fatty acid diethanolamide. The test admixture was added to the cement system for the purpose of studying its influence on water demand, flowability, setting times, compressive strength and moisture adsorption. The test admixture D-148 at the optimal content 0. 2 weight % causes 10% decrease in water demand, 1.7 time increase in flowability (namely spread diameter), 23% increase in grade strength and 34% decrease in moisture adsorption. The results of the present investigation make it possible to consider the final product of the waste sunflower oil processing as multifunctional plasticizing-waterproofing admixture.

  5. The AdS particle [rapid communication

    NASA Astrophysics Data System (ADS)

    Ghosh, Subir

    2005-09-01

    In this Letter we have considered a relativistic Nambu-Goto model for a particle in AdS metric. With appropriate gauge choice to fix the reparameterization invariance, we recover the previously discussed [S. Ghosh, P. Pal, Phys. Lett. B 618 (2005) 243, arxiv:hep-th/0502192] "exotic oscillator". The Snyder algebra and subsequently the κ-Minkowski spacetime are also derived. Lastly we comment on the impossibility of constructing a non-commutative spacetime in the context of open string where only a curved target space is introduced.

  6. Tests of oil scraper piston ring and piston fitted with oil drain holes

    NASA Technical Reports Server (NTRS)

    Mcdewell, H S

    1922-01-01

    Tests were conducted to determine whether or not a properly located and properly designed oil scraper piston ring, installed on a piston provided with oil drain holes of sufficient area, would prevent the excessive oiling of the Liberty engine, particularly with the engine running at idling speed with full oil pressure. Results showed that excessive oiling was in fact prevented. It is strongly recommended that scraper rings and pistons be adopted for aircraft engines.

  7. Probing crunching AdS cosmologies

    NASA Astrophysics Data System (ADS)

    Kumar, S. Prem; Vaganov, Vladislav

    2016-02-01

    Holographic gravity duals of deformations of CFTs formulated on de Sitter spacetime contain FRW geometries behind a horizon, with cosmological big crunch singularities. Using a specific analytically tractable solution within a particular single scalar truncation of {N}=8 supergravity on AdS4, we first probe such crunching cosmologies with spacelike radial geodesics that compute spatially antipodal correlators of large dimension boundary operators. At late times, the geodesics lie on the FRW slice of maximal expansion behind the horizon. The late time two-point functions factorise, and when transformed to the Einstein static universe, they exhibit a temporal non-analyticity determined by the maximal value of the scale factor ã max. Radial geodesics connecting antipodal points necessarily have de Sitter energy Ɛ ≲ ã max, while geodesics with Ɛ > ã max terminate at the crunch, the two categories of geodesics being separated by the maximal expansion slice. The spacelike crunch singularity is curved "outward" in the Penrose diagram for the deformed AdS backgrounds, and thus geodesic limits of the antipodal correlators do not directly probe the crunch. Beyond the geodesic limit, we point out that the scalar wave equation, analytically continued into the FRW patch, has a potential which is singular at the crunch along with complex WKB turning points in the vicinity of the FRW crunch. We then argue that the frequency space Green's function has a branch point determined by ã max which corresponds to the lowest quasinormal frequency.

  8. Field evaluation of all-season tactical engine oil OE/HDO-15/40 at Ft. Knox, Kentucky and Ft. Bliss, Texas. Interim report, July 1984-December 1985

    SciTech Connect

    Butler, W.E.; Alvarez, R.A.; Buckingham, J.P.; Owens, E.C.; Bowen, T.C.

    1986-07-01

    Requirements for a multiviscosity grade 15W-40 engine oil were developed and the lubricant introduced for military consumption. The program efforts cover a demonstration and field-validation program of the newly introduced grade 15W-40 lubricant. The test involved a wide variety of combat, tactical, and support equipment operated by the 2D Squadron, 6th Cavalry at Fort Knox, KY, and the 3D Armored Cavalry Regiment at Fort Bliss, TX. During the test, vehicles accumulated in excess of 1,840,000 miles of operation under ambient conditions ranging from monthly low temperatures of -8 C (18 F) at Fort Knox to monthly high temperatures of 35 C (95 F) at Fort Bliss. Two-grade 15W-40, MIL-L-2104D qualified lubricants were employed in the test, one product at each of the test locations. The test lubricants were used in all equipment components, engines, transmissions, hydraulic systems, etc., that required MIL-L-2104 engine oil. Equipment within the test fleets were monitored in regard to wear performance, frequency of component replacement, and operational characteristics. Overall, the grade 15W-40 products demonstrated satisfactory and equivalent performance to single-graded oils. The oil was well received by both operators and maintenance personnel who noted that the grade 15W-40 products significantly reduced logistics burden by having only one grade product to requisition, store, and transport to the field.

  9. Assessment of remaining recoverable oil in selected major oil fields of the San Joaquin Basin, California

    USGS Publications Warehouse

    Tennyson, Marilyn E.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Klett, Timothy R.; Verma, Mahendra K.; Ryder, Robert T.; Attanasi, E.D.; Freeman, P.A.; Le, Phoung A.

    2012-01-01

    The U.S. Geological Survey (USGS) recently completed an estimate of volumes of technically recoverable, conventional oil that could eventually be added to reserves in nine selected major oil fields in the San Joaquin Basin in central California. The mean total volume of potential oil reserves that might be added in the nine fields using improved oil-recovery technologies was estimated to be about 6.5 billion barrels of oil.

  10. Performance and emission parameters of single cylinder diesel engine using castor oil bio-diesel blended fuels

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Ghobadian, B.; Najafi, G.; Jaliliantabar, F.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the performance and emission parameters of a CI single cylinder diesel engine operating on biodiesel-diesel blends (B0, B5, B10, B15 and E20: 20% biodiesel and 80% diesel by volume). A reactor was designed, fabricated and evaluated for biodiesel production. The results showed that increasing the biodiesel content in the blend fuel will increase the performance parameters and decrease the emission parameters. Maximum power was detected for B0 at 2650 rpm and maximum torque was belonged to B20 at 1600 rpm. The experimental results revealed that using biodiesel-diesel blended fuels increased the power and torque output of the engine. For biodiesel blends it was found that the specific fuel consumption (sfc) was decreased. B10 had the minimum amount for sfc. The concentration of CO2 and HC emissions in the exhaust pipe were measured and found to be decreased when biodiesel blends were introduced. This was due to the high oxygen percentage in the biodiesel compared to the net diesel fuel. In contrast, the concentration of CO and NOx was found to be increased when biodiesel is introduced.

  11. Oil degradation in soil.

    PubMed Central

    Raymond, R L; Hudson, J O; Jamison, V W

    1976-01-01

    The environmental effects of adding certain selected petroleum products to field soils at widely separated geographical locations under optimum conditions for biodegradation were studied. The locations selected for study of soil biodegradation of six oils (used crankcase oil from cars, used crankcase oil from trucks, an Arabian Heavy crude oil, a Coastal Mix crude oil, a home heating oil no. 2, and a residual fuel oil no. 6) were Marcus Hook, Pennsylvania, Tulsa, Oklahoma, and Corpus Christi, Texas. The investigative process, covering a period of 1 year at each location, was conducted in 14 fields plots (1.7 by 3.0 m) to which the oils were added in a single application at a rate of 11.9 m3/4 X 10(3) m2. One-half of the plots at each location were fertilized, and the incorporation of the oils and fertilizers was accomplished with rototillers to a depth of 10 to 15 cm. Concentrations of all oils decreased significantly at all locations. The average reduction ranged from 48.5 to 90.0% depending upon the type of oil and location. Rates of degradation did not exceed 2.4 m3/4 X 10(3) m2 per month. Compositional changes in the oil with time were investigated using silica gel fractionation, gas chromatography, and ultraviolet absorbance. With the possible exception of the two fuel oils, the compositional changes were generally in the same direction for all of the oils. The silica gel fractionation and gravimetric data on residual oils show that all classes of compounds were degraded, but the more polar type degrade more slowly. Analysis of runoff water, leachate, and soils indicated that at the concentration applied no oil less was observed from these plots via water movement. No significant movement of lead compounds added to the soils in the used crankcase oils was observed. Significant increases in hydrocarbon-utilizing microorganisms were demonstrated in all treated plots using either the pure hydrocarbon, n-hexadecane, or the applied oils as the growth substrate

  12. AdS3: the NHEK generation

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; Heurtier, Lucien; Puhm, Andrea

    2016-05-01

    It was argued in [1] that the five-dimensional near-horizon extremal Kerr (NHEK) geometry can be embedded in String Theory as the infrared region of an infinite family of non-supersymmetric geometries that have D1, D5, momentum and KK monopole charges. We show that there exists a method to embed these geometries into asymptotically- {AdS}_3× {S}^3/{{Z}}_N solutions, and hence to obtain infinite families of flows whose infrared is NHEK. This indicates that the CFT dual to the NHEK geometry is the IR fixed point of a Renormalization Group flow from a known local UV CFT and opens the door to its explicit construction.

  13. Medium engineering for enhanced production of undecylprodigiosin antibiotic in Streptomyces coelicolor using oil palm biomass hydrolysate as a carbon source.

    PubMed

    Bhatia, Shashi Kant; Lee, Bo-Rahm; Sathiyanarayanan, Ganesan; Song, Hun-Seok; Kim, Junyoung; Jeon, Jong-Min; Kim, Jung-Ho; Park, Sung-Hee; Yu, Ju-Hyun; Park, Kyungmoon; Yang, Yung-Hun

    2016-10-01

    In this study, a biosugar obtained from empty fruit bunch (EFB) of oil palm by hot water treatment and subsequent enzymatic saccharification was used for undecylprodigiosin production, using Streptomyces coelicolor. Furfural is a major inhibitor present in EFB hydrolysate (EFBH), having a minimum inhibitory concentration (MIC) of 1.9mM, and it reduces utilization of glucose (27%), xylose (59%), inhibits mycelium formation, and affects antibiotic production. Interestingly, furfural was found to be a good activator of undecylprodigiosin production in S. coelicolor, which enhanced undecylprodigiosin production by up to 52%. Optimization by mixture analysis resulted in a synthetic medium containing glucose:furfural:ACN:DMSO (1%, 2mM, 0.2% and 0.3%, respectively). Finally, S. coelicolor was cultured in a fermenter in minimal medium with EFBH as a carbon source and addition of the components described above. This yielded 4.2μg/mgdcw undecylprodigiosin, which was 3.2-fold higher compared to that in un-optimized medium. PMID:26951741

  14. Shadows, currents, and AdS fields

    SciTech Connect

    Metsaev, R. R.

    2008-11-15

    Conformal totally symmetric arbitrary spin currents and shadow fields in flat space-time of dimension greater than or equal to four are studied. A gauge invariant formulation for such currents and shadow fields is developed. Gauge symmetries are realized by involving the Stueckelberg fields. A realization of global conformal boost symmetries is obtained. Gauge invariant differential constraints for currents and shadow fields are obtained. AdS/CFT correspondence for currents and shadow fields and the respective normalizable and non-normalizable solutions of massless totally symmetric arbitrary spin AdS fields are studied. The bulk fields are considered in a modified de Donder gauge that leads to decoupled equations of motion. We demonstrate that leftover on shell gauge symmetries of bulk fields correspond to gauge symmetries of boundary currents and shadow fields, while the modified de Donder gauge conditions for bulk fields correspond to differential constraints for boundary conformal currents and shadow fields. Breaking conformal symmetries, we find interrelations between the gauge invariant formulation of the currents and shadow fields, and the gauge invariant formulation of massive fields.

  15. Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield.

    PubMed

    Goncalves, Elton C; Wilkie, Ann C; Kirst, Matias; Rathinasabapathi, Bala

    2016-08-01

    The great need for more sustainable alternatives to fossil fuels has increased our research interests in algal biofuels. Microalgal cells, characterized by high photosynthetic efficiency and rapid cell division, are an excellent source of neutral lipids as potential fuel stocks. Various stress factors, especially nutrient-starvation conditions, induce an increased formation of lipid bodies filled with triacylglycerol in these cells. Here we review our knowledge base on glycerolipid synthesis in the green algae with an emphasis on recent studies on carbon flux, redistribution of lipids under nutrient-limiting conditions and its regulation. We discuss the contributions and limitations of classical and novel approaches used to elucidate the algal triacylglycerol biosynthetic pathway and its regulatory network in green algae. Also discussed are gaps in knowledge and suggestions for much needed research both on the biology of triacylglycerol accumulation and possible avenues to engineer improved algal strains. PMID:26801206

  16. Vegetable oil as fuel

    SciTech Connect

    Not Available

    1980-11-01

    A review is presented of various experiments undertaken over the past few years in the U.S. to test the performance of vegetable oils in diesel engines, mainly with a view to on-farm energy self-sufficiency. The USDA Northern Regional Research Center in Peoria, Illinois, is screening native U.S. plant species as potential fuel oil sources.

  17. Crude oil desalting process

    SciTech Connect

    Naeger, D.P.; Perugini, J.J.

    1992-05-19

    This patent describes a method for removing chlorides from crude oil during processing in a petroleum refinery desalter wash water operation. It comprises adding to the wash water or the crude oil upstream of the desalter a sufficient amount for the purpose of a composition comprising an organic amine with a pKb of from 2 to 6 and in which 1 to 18 carbon atoms are present per nitrogen atom and potassium hydroxide, the composition being mixed with the crude oil in the desalter to remove the chlorides from the crude oil at the desalter.

  18. Petroleum reservoir engineering support for the Office of Naval Petroleum and Oil Shale Reserves. Final technical report

    SciTech Connect

    Not Available

    1986-10-01

    In accordance with the ''Procedures for the Determination and Approval of Maximum Efficient Rates of Production from the Naval Petroleum Reserves'' issued by the Office of Naval Petroleum and Oil Shale Reserves, US Department of Energy, dated January 1985, the proposed MER for the NWS A4-A6 reservoirs is herewith submitted. The subject Task Assignment was explicit as to certain operational restraints within which the MER determinations were to be made. In the case of the NWS A4-A6 reservoirs, these restraints were limited to a specification of the water injection rates, i.e., gradually building up to and maintaining an injection rate of 22,000 barrels water per day. Accordingly, the proposed MER results in an average of 8575 BOA/D for the six-month period ending March 31, 1987, and 8662 BOA/D for the nine-month period ending mid-year 1987. We believe that these rates will be both attainable and sustainable, and will be a reasonable target which is justified in terms of both maximizing ultimate recovery and providing a suitable economic return. The study was performed in the manner prescribed by the Department of Energy. It was based on the reservoir study which was made by Evans, Carey and Crozier, and which had an effective date of May 1, 1986. The proposed MER differs from that in the study only as a result of injection rates which vary slightly from those assumed in the latter. Each of the sections of this MER proposal contains a discussion, if appropriate, plus such graphical or tabular presentations as are necessary to explain and/or support the conclusions contained therein.

  19. Conceptual design of production systems for NOSR 1. Naval Oil Shale Reserves management support and systems engineering project

    SciTech Connect

    Not Available

    1980-10-01

    The objective of this study is to screen out those technology options that are obviously unsuitable for NOSR 1 application, and to establish a framework for future production systems evaluations. This study has attempted to put all available data on a common basis, and derive those data that are unavailable. The results of this study have enabled us to perform the initial screening. The initial screening includes consideration of all technologies (mining, ore handling, retorting, upgrading, and transportation), synthesis of total production systems, and computation of capital costs. An assessment of six mining options has shown that room-and-pillar mining and vertical modified in situ (MIS) mining are the only options feasible for NOSR 1. With room-and-pillar mining and surface retorting of 34 GPT shale, the recoverable reserves on NOSR 1 are sufficient to last 90 to 100 years at a production rate of 50,000 BPD. At this same production rate, the recoverable reserves are sufficient for 20 to 30 years when MIS and MIS/surface retorting options are considered. There are approximately 17 options available for retorting shale. These fall broadly into the categories of surface and in situ retorting, solvent processing, and bioleaching. Process options retained after initial screening include: Paraho, Lurgi-Ruhrgas, Union B, Tosco II, Superior Circular Grate, Oxy MIS, RISE, and MIS/surface retorting combustion. Preliminary analyses of water requirements have shown that the Paraho and Tosco processes consume the least water, whereas the Lurgi process consumes the most. Capital costs (or investment) for nine options have been calculated for a nominal 50,000 BPD plant producing both pipeline and refinery feedstock oil. The Lurgi process is shown to be the least expensive primarily because of the low investment in the retorts. The modified in situ process has the highest investment. 20 figures, 19 tables.

  20. 33 CFR 157.35 - Ballast added to cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Ballast added to cargo tanks. 157.35 Section 157.35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... OIL IN BULK Vessel Operation § 157.35 Ballast added to cargo tanks. The master of a tank vessel...

  1. Realizing "value-added" metrology

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin; Lipscomb, Pete; Allgair, John; Patel, Dilip; Caldwell, Mark; Solecky, Eric; Archie, Chas; Morningstar, Jennifer; Rice, Bryan J.; Singh, Bhanwar; Cain, Jason; Emami, Iraj; Banke, Bill, Jr.; Herrera, Alfredo; Ukraintsev, Vladamir; Schlessinger, Jerry; Ritchison, Jeff

    2007-03-01

    The conventional premise that metrology is a "non-value-added necessary evil" is a misleading and dangerous assertion, which must be viewed as obsolete thinking. Many metrology applications are key enablers to traditionally labeled "value-added" processing steps in lithography and etch, such that they can be considered integral parts of the processes. Various key trends in modern, state-of-the-art processing such as optical proximity correction (OPC), design for manufacturability (DFM), and advanced process control (APC) are based, at their hearts, on the assumption of fine-tuned metrology, in terms of uncertainty and accuracy. These trends are vehicles where metrology thus has large opportunities to create value through the engineering of tight and targetable process distributions. Such distributions make possible predictability in speed-sorts and in other parameters, which results in high-end product. Additionally, significant reliance has also been placed on defect metrology to predict, improve, and reduce yield variability. The necessary quality metrology is strongly influenced by not only the choice of equipment, but also the quality application of these tools in a production environment. The ultimate value added by metrology is a result of quality tools run by a quality metrology team using quality practices. This paper will explore the relationships among present and future trends and challenges in metrology, including equipment, key applications, and metrology deployment in the manufacturing flow. Of key importance are metrology personnel, with their expertise, practices, and metrics in achieving and maintaining the required level of metrology performance, including where precision, matching, and accuracy fit into these considerations. The value of metrology will be demonstrated to have shifted to "key enabler of large revenues," debunking the out-of-date premise that metrology is "non-value-added." Examples used will be from critical dimension (CD

  2. Ionic Liquids as Novel Lubricants and Additives for Diesel Engine Applications

    SciTech Connect

    Qu, Jun; Blau, Peter Julian; Dai, Sheng; Luo, Huimin; Meyer III, Harry M

    2009-01-01

    The lubricating properties of two ionic liquids with the same anion but different cations, one ammonium IL [C8H17]3NH.Tf2N and one imidazolium IL C10mim.Tf2N, were evaluated both in neat form and as oil additives. Experiments were conducted using a standardized reciprocating sliding test using a segment of a Cr-plated diesel engine piston ring against a grey cast iron flat specimen with simulated honing marks as on the engine cylinder liner. The selected ionic liquids were benchmarked against conventional hydrocarbon oils. Substantial friction and wear reductions, up to 55% and 34%, respectively, were achieved for the neat ionic liquids compared to a fully-formulated 15W40 engine oil. Adding 5 vol% ILs into mineral oil has demonstrated significant improvement in the lubricity. One blend even outperformed the 15W40 engine oil with 9% lower friction and 34% less wear. Lubrication regime modeling, worn surface morphology examination, and surface chemical analysis were conducted to help understand the lubricating mechanisms for ionic liquids. Results suggest great potential for using ionic liquids as base lubricants or lubricant additives for diesel engine applications.

  3. ADS pilot program Plan

    NASA Technical Reports Server (NTRS)

    Clauson, J.; Heuser, J.

    1981-01-01

    The Applications Data Service (ADS) is a system based on an electronic data communications network which will permit scientists to share the data stored in data bases at universities and at government and private installations. It is designed to allow users to readily locate and access high quality, timely data from multiple sources. The ADS Pilot program objectives and the current plans for accomplishing those objectives are described.

  4. Tea tree oil.

    PubMed

    Larson, David; Jacob, Sharon E

    2012-01-01

    Tea tree oil is an increasingly popular ingredient in a variety of household and cosmetic products, including shampoos, massage oils, skin and nail creams, and laundry detergents. Known for its potential antiseptic properties, it has been shown to be active against a variety of bacteria, fungi, viruses, and mites. The oil is extracted from the leaves of the tea tree via steam distillation. This essential oil possesses a sharp camphoraceous odor followed by a menthol-like cooling sensation. Most commonly an ingredient in topical products, it is used at a concentration of 5% to 10%. Even at this concentration, it has been reported to induce contact sensitization and allergic contact dermatitis reactions. In 1999, tea tree oil was added to the North American Contact Dermatitis Group screening panel. The latest prevalence rates suggest that 1.4% of patients referred for patch testing had a positive reaction to tea tree oil. PMID:22653070

  5. Repellent effect of plant essential oils against Aedes albopictus.

    PubMed

    Yang, Pin; Ma, Yajun

    2005-12-01

    Six essential oils: asteraceae oil, rutaceae oil, mentha piperta oil, carvacryl oil, citronella oil, and eucalyptus oil were tested for evaluation of their repellent effects against Aedes albopictus mosquitoes under laboratory conditions. Only citronella oil and eucalyptus oil were tested with human beings. There was considerable protection for mice. Carvacryl oil (7%) provided 100% protection for mice after 7 h. Eucalyptus oil (15%) gave protection to humans for least 3 h; the protection time was prolonged to 5 h after adding 5% vanillin. The mixture could be developed into a practical product after the field evaluation. PMID:16599157

  6. Products from vegetable oils

    SciTech Connect

    Bagby, M.O.

    1995-12-01

    Vegetable oils serve various industrial applications such as plasticizers, emulsifiers, surfactants, plastics and resins. Research and development approaches may take advantage of natural properties of the oils. More often it is advantageous to modify those properties for specific applications. One example is the preparation of ink vehicles using vegetable oils in the absence of petroleum. They are cost competitive with petroleum-based inks with similar quality factors. Vegetable oils have potential as renewable sources of fuels for the diesel engine. However, several characteristics can restrict their use. These include poor cold-engine startup, misfire and for selected fuels, high pour point and cloud point temperatures. Other characteristics include incomplete combustion causing carbon buildup, lube oil dilution and degradation, and elevated NO{sub x} emissions. Precombustion and fuel quality data are presented as a tool for understanding and solving these operational and durability problems.

  7. Assessment of remaining recoverable oil in selected major oil fields of the Permian Basin, Texas and New Mexico

    USGS Publications Warehouse

    Tennyson, Marilyn E.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Klett, Timothy R.; Verma, Mahendra K.; Ryder, Robert T.; Attanasi, E.D.; Freeman, P.A.; Le, Phoung A.

    2012-01-01

    The U.S. Geological Survey (USGS) recently completed an estimate of technically recoverable, conventional oil in selected oil fields in the Permian Basin in west Texas and southeastern New Mexico. The mean total volume of potential additional oil resources that might be added using improved oil-recovery technologies was estimated to be about 2.7 billion barrels of oil.

  8. 14 CFR 27.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... capacity (with respect to operating limitations established for the engine) to ensure that engine oil... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil strainer or filter. 27.1019 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1019 Oil strainer or filter....

  9. The toxicity of commercial jet oils.

    PubMed

    Winder, Chris; Balouet, Jean-Christophe

    2002-06-01

    Jet oils are specialized synthetic oils used in high-performance jet engines. They have an appreciable hazard due to toxic ingredients, but are safe in use provided that maintenance personnel follow appropriate safety precautions and the oil stays in the engine. Aircraft engines that leak oil may expose others to the oils through uncontrolled exposure. Airplanes that use engines as a source of bleed air for cabin pressurization may have this source contaminated by the oil if an engine leaks. Examination of the ingredients of the oil indicates that at least two ingredients are hazardous: N-phenyl-1-naphthylamine (a skin sensitizer) and tricresyl phosphate (a neurotoxicant, if ortho-cresyl isomers are present). Publicly available information such as labels and MSDS understates the hazards of such ingredients and in the case of ortho-cresyl phosphates by several orders of magnitude. PMID:12123648

  10. Innovations Without Added Costs

    ERIC Educational Resources Information Center

    Cereghino, Edward

    1974-01-01

    There is no question that we are in a tight money market, and schools are among the first institutions to feel the squeeze. Therefore, when a plan is offered that provides for innovations without added costs, its something worth noting. (Editor)

  11. What Value "Value Added"?

    ERIC Educational Resources Information Center

    Richards, Andrew

    2015-01-01

    Two quantitative measures of school performance are currently used, the average points score (APS) at Key Stage 2 and value-added (VA), which measures the rate of academic improvement between Key Stage 1 and 2. These figures are used by parents and the Office for Standards in Education to make judgements and comparisons. However, simple…

  12. Integrated palm oil processing

    SciTech Connect

    Compere, A.L.; Griffith, W.L.; Googin, J.M.

    1983-01-01

    Tree palms are a promising source of fuel extenders and substitutes. They are perennials which bear oil for a period of two to three decades after a roughly four year preliminary growth period. Tree palms are now one of the most efficient energy crops: the best modern varieties can provide up to 6 tonnes per hectare per year of mesocarp and kernal oils. Palms are particularly attractive in areas where more conventional farming would pose a significant threat of laterization of cause major ecological problems. Technology for palm oil production is can range between village level manual operations and highly industrialized mills. Process energy is often supplied by combustion of byproducts. Although palm oil is a good energy crop, its physical and combustion properties preclude most use in conventional diesel engines, although palm oil could be directly blended with residual fuel oils for use in some large engines. At present, two uses for palm oil as a diesel fuel extender or substitute appear attractive: microemulsion blends using palm soapstock and monoesters produced by exchanging small alcohols for the glycerol in triglycerides. The amount of alcohols required for conversion of a substantial fraction of palm oil or palm oil soapstock to fuel extenders or substitutes is proportionately small, and, to a major extent, can be supplied by palm processing waste materials. Fermentation and gasification produced alcohols in the one to four carbon range are suitable for use in formulating palm oil based fuels. On a stoichiometric basis, it appears that the value of the palm oil and alcohols are very close to their value as export items. Use of these palm oil fuels could help to decrease balance of payments problems for developing countries, as well as provide a secure market for agricultural products and improved rural employment.

  13. Seed-specific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops.

    PubMed

    Bhunia, Rupam Kumar; Chakraborty, Anirban; Kaur, Ranjeet; Gayatri, T; Bhattacharyya, Jagannath; Basu, Asitava; Maiti, Mrinal K; Sen, Soumitra Kumar

    2014-11-01

    The sesame 2S albumin (2Salb) promoter was evaluated for its capacity to express the reporter gusA gene encoding β-glucuronidase in transgenic tobacco seeds relative to the soybean fad3C gene promoter element. Results revealed increased expression of gusA gene in tobacco seed tissue when driven by sesame 2S albumin promoter. Prediction based deletion analysis of both the promoter elements confirmed the necessary cis-acting regulatory elements as well as the minimal promoter element for optimal expression in each case. The results also revealed that cis-regulatory elements might have been responsible for high level expression as well as spatio-temporal regulation of the sesame 2S albumin promoter. Transgenic over-expression of a fatty acid desaturase (fad3C) gene of soybean driven by 2S albumin promoter resulted in seed-specific enhanced level of α-linolenic acid in sesame. The present study, for the first time helped to identify that the sesame 2S albumin promoter is a promising endogenous genetic element in genetic engineering approaches requiring spatio-temporal regulation of gene(s) of interest in sesame and can also be useful as a heterologous genetic element in other important oil seed crop plants in general for which seed oil is the harvested product. The study also established the feasibility of fatty acid metabolic engineering strategy undertaken to improve quality of edible seed oil in sesame using the 2S albumin promoter as regulatory element. PMID:25139230

  14. Introducing ADS Labs

    NASA Astrophysics Data System (ADS)

    Accomazzi, Alberto; Henneken, E.; Grant, C. S.; Kurtz, M. J.; Di Milia, G.; Luker, J.; Thompson, D. M.; Bohlen, E.; Murray, S. S.

    2011-05-01

    ADS Labs is a platform that ADS is introducing in order to test and receive feedback from the community on new technologies and prototype services. Currently, ADS Labs features a new interface for abstract searches, faceted filtering of results, visualization of co-authorship networks, article-level recommendations, and a full-text search service. The streamlined abstract search interface provides a simple, one-box search with options for ranking results based on a paper relevancy, freshness, number of citations, and downloads. In addition, it provides advanced rankings based on collaborative filtering techniques. The faceted filtering interface allows users to narrow search results based on a particular property or set of properties ("facets"), allowing users to manage large lists and explore the relationship between them. For any set or sub-set of records, the co-authorship network can be visualized in an interactive way, offering a view of the distribution of contributors and their inter-relationships. This provides an immediate way to detect groups and collaborations involved in a particular research field. For a majority of papers in Astronomy, our new interface will provide a list of related articles of potential interest. The recommendations are based on a number of factors, including text similarity, citations, and co-readership information. The new full-text search interface allows users to find all instances of particular words or phrases in the body of the articles in our full-text archive. This includes all of the scanned literature in ADS as well as a select portion of the current astronomical literature, including ApJ, ApJS, AJ, MNRAS, PASP, A&A, and soon additional content from Springer journals. Fulltext search results include a list of the matching papers as well as a list of "snippets" of text highlighting the context in which the search terms were found. ADS Labs is available at http://adslabs.org

  15. Rheological properties of heavy oils and heavy oil emulsions

    SciTech Connect

    Khan, M.R.

    1996-06-01

    In this study, the author investigated the effects of a number of process variables such as shear rate, measurement temperature, pressure, the influence of pretreatment, and the role of various amounts of added water on the rheology of the resulting heavy oil or the emulsion. Rheological properties of heavy oils and the corresponding emulsions are important from transportation and processing standpoints.

  16. Emission profile of 18 carbonyl compounds, CO, CO 2, and NO x emitted by a diesel engine fuelled with diesel and ternary blends containing diesel, ethanol and biodiesel or vegetable oils

    NASA Astrophysics Data System (ADS)

    Guarieiro, Lílian Lefol Nani; de Souza, Amanda Figueiredo; Torres, Ednildo Andrade; de Andrade, Jailson B.

    The impact of vehicular emissions on air depends, among other factors, on the composition of fuel and the technology used to build the engines. The reduction of vehicular emissions requires changes in the fuel composition, and improving the technologies used in the manufacturing of engines and for the after-treatment of gases. In general, improvements to diesel engines have targeted not only emission reductions, but also reductions in fuel consumption. However, changes in the fuel composition have been shown to be a more rapid and effective alternative to reduce pollution. Some factors should been taken into consideration when searching for an alternative fuel to be used in diesel engines, such as emissions, fuel stability, availability and its distribution, as well as its effects on the engine durability. In this work, 45 fuel blends were prepared and their stability was evaluated. The following mixtures (v/v/v) were stable for the 90-day period and were used in the emission study: diesel/ethanol - 90/10%, diesel/ethanol/soybean biodiesel - 80/15/5%, diesel/ethanol/castor biodiesel - 80/15/5%, diesel/ethanol/residual biodiesel - 80/15/5%, diesel/ethanol/soybean oil - 90/7/3%, and diesel/ethanol/castor oil - 90/7/3%. The diesel/ethanol fuel showed higher reduction of NO x emission at a lower load (2 kW) when compared with pure diesel. The other fuels showed a decrease of NO x emissions in the ranges of 6.9-75% and 4-85% at 1800 rpm and 2000 rpm, respectively. The combustion efficiencies of the diesel can be enhanced by the addition of the oxygenate fuels, like ethanol and biodiesel/vegetable oil, resulting in a more complete combustion in terms of NO x emission. In the case of CO 2 the decreases were in the ranges of 5-24% and 4-6% at 1800 rpm and 2000 rpm, respectively. Meanwhile, no differences were observed in CO emission. The carbonyl compounds (CC) studied were formaldehyde, acetaldehyde, propionaldehyde, acrolein, acetone, crotonaldehyde, butyraldehyde

  17. Fuel for diesel engine

    SciTech Connect

    Mori, M.

    1983-09-20

    A fuel is disclosed for a diesel engine which comprises a mixture of (A) an alcohol, (B) gas oil and (C) castor oil, wherein the contents of the respective components satisfy requirements represented by the following formulae: 0% by volume < A 80% by volume, 10% by volume B < 50% by volume, and 10% by volume C < 50% by volume.

  18. Palm Oil

    MedlinePlus

    Palm oil is obtained from the fruit of the oil palm tree. Palm oil is used for preventing vitamin A deficiency, cancer, ... blood pressure, high cholesterol, and cyanide poisoning. Palm oil is used for weight loss and increasing the ...

  19. Diesel oil

    MedlinePlus

    Oil ... Diesel oil ... Diesel oil poisoning can cause symptoms in many parts of the body. EYES, EARS, NOSE, AND THROAT Loss of ... most dangerous effects of hydrocarbon (such as diesel oil) poisoning are due to inhaling the fumes. NERVOUS ...

  20. Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass.

    PubMed

    Fabbri, Daniele; Torri, Cristian

    2016-04-01

    Biogas is a mixture of CO2 and CH4 produced by a consortia of Bacteria and Archeae operating in anaerobic digestion (AD) plants. Biogas can be burnt as such in engines to produce electricity and heat or upgraded into biomethane. Biomethane is a drop-in fuel that can be injected in the natural gas grid or utilised as a transport fuel. While a wide array of biomass feedstock can be degraded into biogas, unconverted lignin, hemicellulose and cellulose end up in the co-product digestate leaving a large portion of chemical energy unutilised. Pyrolysis (Py) transforms in a single step and without chemical reagents the lignocellulose matrix into gaseous (syngas), liquid (bio-oil, pyrolysis oil) and solid (biochar) fractions for the development of renewable fuels and materials. The Py route applied downstream to AD is actively investigated in order to valorise the solid digestate presently destined only for soil applications. Coupling Py upstream to AD is an emerging field of research aimed at expanding the feedstock towards biologically recalcitrant substrates (wood, paper, sludge). The biomethanation potential was demonstrated for gaseous (H2/CO) and water soluble pyrolysis products, while the influence of insoluble pyrolytic lignin remains fairly unexplored. Biochar can promote the production of biomethane by acting as a support for microorganism colonisation, conductor for direct interspecies electron transfer, sorbent for hydrophobic inhibitors, and reactant for in situ biogas upgrading. Enhancing the advantages (carbon source) over the side effects (toxicity) of Py fractions represents the main challenge of Py-AD. This can be addressed by increasing the selectivity of the thermochemical process or improving the ecological flexibility of mixed bacterial consortia towards chemically complex environments. PMID:26948108

  1. Comparison of neurotoxic effects and potential risks from oral administration or ingestion of tricresyl phosphate and jet engine oil containing tricresyl phosphate.

    PubMed

    Mackerer, C R; Barth, M L; Krueger, A J; Chawla, B; Roy, T A

    1999-07-01

    Neurotoxicity of tricresyl phosphates (TCPs) and jet engine oil (JEO) containing TCPs were evaluated in studies conducted in both rat and hen. Results for currently produced samples ("conventional" and "low-toxicity") were compared with published findings on older samples to identify compositional changes and relate those changes to neurotoxic potential. Finally, a human risk assessment for exposure by oral ingestion of currently produced TCPs in JEO at 3% (JEO + 3%) was conducted. TCPs and certain other triaryl phosphates administered as single doses inhibited brain neuropathy target esterase (B-NTE; neurotoxic esterase) in the rat and the hen (hen 3.25 times as sensitive), and both species were deemed acceptable for initial screening purposes. Neither rat nor hen was sensitive enough to detect statistically significant inhibition of B-NTE after single doses of IEO + 3% "conventional" TCP. Subacute administration of 2 g/kg/d of JEO + 3% "conventional" TCP to the hen produced B-NTE inhibition (32%), which did not result in organophosphorus-induced delayed neurotoxicity (OPIDN). Subchronic administration of JEO + 3% TCP but not JEO + 1% TCP at 2 g/kg/d produced OPIDN. Thus, the threshold for OPIDN was between 20 and 60 mg "conventional" TCP/kg/d in JEO for 10 wk. The current "conventional" TCPs used in JEO and new "low-toxicity" TCPs now used in some JEO are synthesized from phenolic mixtures having reduced levels of ortho-cresol and ortho-xylenols resulting in TCPs of very high content of meta- and para-substituted phenyl moieties; this change in composition results in lower toxicity. The "conventional" TCPs still retain enough inhibitory activity to produce OPIDN, largely because of the presence of ortho-xylyl moieties; the "low-toxicity" TCPs are largely devoid of ortho substituents and have extremely low potential to cause OPIDN. The TCPs produced in the 1940s and 1950s were more than 400 times as toxic as the "low-toxicity" TCPs produced today. Analysis of the

  2. Treatment of vegetable oils

    SciTech Connect

    Bessler, T.R.

    1986-05-13

    A process is described for preparing an injectable vegetable oil selected from the group consisting of soybean oil and sunflower oil and mixtures thereof which comprise: (a) first treating the vegetable oil at a temperature of 80/sup 0/C to about 130/sup 0/C with an acid clay; (b) deodorizing the vegetable oil with steam at a temperature of 220/sup 0/C to about 280/sup 0/C and applying a vacuum to remove volatilized components; (c) treating the deodorized vegetable oil, at a temperature of from about 10/sup 0/C to about 60/sup 0/C, with an acid clay to reduce the content of a member selected from the group consisting of diglycerides, tocopherol components, and trilinolenin and mixtures thereof, wherein the acid clay is added in a weight ratio to the deoderized vegetable oil of from about 1:99 to about 1:1; and (d) thereafter conducting a particulate filtration to remove a substantial portion of the acid clay from the vegetable oil, wherein the filtration is accomplished with filters having a pore size of from about 0.1 to 0.45 microns, thereby obtaining the injectable oil.

  3. 14 CFR 27.1011 - Engines: General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... not above that safe for continuous operation. (b) The usable oil capacity of each system may not be... circulation and cooling. Instead of a rational analysis of endurance and consumption, a usable oil capacity of... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine...

  4. 14 CFR 27.1011 - Engines: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... not above that safe for continuous operation. (b) The usable oil capacity of each system may not be... circulation and cooling. Instead of a rational analysis of endurance and consumption, a usable oil capacity of... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine...

  5. 14 CFR 27.1011 - Engines: General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... not above that safe for continuous operation. (b) The usable oil capacity of each system may not be... circulation and cooling. Instead of a rational analysis of endurance and consumption, a usable oil capacity of... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine...

  6. 14 CFR 27.1011 - Engines: General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... not above that safe for continuous operation. (b) The usable oil capacity of each system may not be... circulation and cooling. Instead of a rational analysis of endurance and consumption, a usable oil capacity of... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine...

  7. 14 CFR 27.1011 - Engines: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... not above that safe for continuous operation. (b) The usable oil capacity of each system may not be... circulation and cooling. Instead of a rational analysis of endurance and consumption, a usable oil capacity of... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine...

  8. 14 CFR 27.1015 - Oil tank tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil tank tests. 27.1015 Section 27.1015... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1015 Oil tank tests. Each oil tank must be... that each pressurized oil tank used with a turbine engine must be designed and installed so that it...

  9. 14 CFR 27.1015 - Oil tank tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil tank tests. 27.1015 Section 27.1015... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1015 Oil tank tests. Each oil tank must be... that each pressurized oil tank used with a turbine engine must be designed and installed so that it...

  10. 14 CFR 27.1015 - Oil tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil tank tests. 27.1015 Section 27.1015... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1015 Oil tank tests. Each oil tank must be... that each pressurized oil tank used with a turbine engine must be designed and installed so that it...

  11. 14 CFR 27.1015 - Oil tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil tank tests. 27.1015 Section 27.1015... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1015 Oil tank tests. Each oil tank must be... that each pressurized oil tank used with a turbine engine must be designed and installed so that it...

  12. LD in AD 2000.

    ERIC Educational Resources Information Center

    Smith, Bert Kruger

    The author discusses potential problems and benefits for learning disabled (LD) students in the year 2000. Considered are developments in three areas: human engineering (such as the role of amniocentesis in prevention of disabilities), education (including new audiovisual technology and a restructuring of secondary education), and human…

  13. Regulatory steps associated with use of value-added recombinant proteins and peptides screened in high-throughput for expression in genetically engineered starch and cellulosic fuel ethanol yeast strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant proteins expressed in animals have been a public concern as a perceived risk to the consumer. Animals are currently being treated with genetically engineered biologicals, such as growth hormone, or fed genetically modified plants. Similarly, various commercially-valuable proteins or pe...

  14. Co-processing of carbonaceous solids and petroleum oil

    DOEpatents

    Gupta, Avinash; Greene, Marvin I.

    1992-01-01

    In a process for producing distillates from coal by a first stage thermal liquefaction followed by a catalytic hydrogenation, liquefaction solvent is added at points spaced over the length of the thermal liquefaction heater. Coal may be co-processed with petroleum oil by adding pre-hydrogenated oil to the first stage or unhydrogenated oil to the second stage.

  15. Two Virasoro symmetries in stringy warped AdS3

    NASA Astrophysics Data System (ADS)

    Compère, Geoffrey; Guica, Monica; Rodriguez, Maria J.

    2014-12-01

    We study three-dimensional consistent truncations of type IIB supergravity which admit warped AdS3 solutions. These theories contain subsectors that have no bulk dynamics. We show that the symplectic form for these theories, when restricted to the non-dynamical subsectors, equals the symplectic form for pure Einstein gravity in AdS3. Consequently, for each consistent choice of boundary conditions in AdS3, we can define a consistent phase space in warped AdS3 with identical conserved charges. This way, we easily obtain a Virasoro × Virasoro asymptotic symmetry algebra in warped AdS3; two different types of Virasoro × Kač-Moody symmetries are also consistent alternatives.

  16. Shear rheological characterization of motor oils

    NASA Technical Reports Server (NTRS)

    Bair, Scott; Winer, Ward O.

    1988-01-01

    Measurements of high pressure viscosity, traction coefficient, and EHD film thickness were performed on twelve commercial automotive engine oils, a reference oil, two unformulated base oils and two unformated base oil and polymer blends. An effective high shear rate inlet viscosity was calculated from film thickness and pressure viscosity coefficient. The difference between measured and effective viscosity is a function of the polymer type and concentration. Traction measurements did not discriminate mileage formulated oils from those not so designated.

  17. Technical assessment of an oil-fired residential cogeneration system

    SciTech Connect

    McDonald, R.J.

    1993-01-01

    The definition of cogeneration, within the context of this project, is the simultaneous production of electricity and heat energy from a single machine. This report will present the results of an engineering analysis of the efficiency and energy-conservation potential associated with a unique residential oil-fired cogeneration system that provides both heat and electric power. The system operates whenever a thermostat signals a call for heat in the home, just as a conventional heating system. However, this system has the added benefit of cogenerating electricity whenever it is running to provide space heating comfort. The system is designed to burn No. 2 heating oil, which is consumed in an 11-horsepower, two cylinder, 56.75-cubic-inch, 1850-RPM diesel engine. This unit is the only pre-production prototype residential No. 2 oil-fired cogeneration system known to exist in the world. As such, it is considered a landmark development in the field of oil-heat technology.

  18. Flow properties of Utah shale oils

    SciTech Connect

    Seitzer, W.H.; Lovell, P.F.

    1981-12-01

    In a concentric cylinder viscometer, Utah shale oils have different characteristics, both at equilibrium flow and during start-up from rest, depending on whether the wax has crystallized as needles or spherulites. Compared with waxy crude oils, which are thixotropic, shale oil has the added rheological property of being antithixotropic. 7 refs.

  19. Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: essential oil (thyme oil) and cationic surfactant (lauric arginate).

    PubMed

    Chang, Yuhua; McLandsborough, Lynne; McClements, David Julian

    2015-04-01

    The influence of a cationic surfactant (lauric arginate, LAE) on the physical properties and antimicrobial efficacy of thyme oil nanoemulsions was investigated. Nanoemulsions prepared from pure thyme oil were highly unstable due to Ostwald ripening, but they could be stabilized by adding a ripening inhibitor (corn oil) to the oil phase prior to homogenisation. The loading capacity and antimicrobial efficacy of thyme oil nanoemulsions were significantly increased by adding LAE. In the absence of LAE, at least 60 wt% corn oil had to be added to the lipid phase to inhibit Ostwald ripening; but in the presence of 0.1 wt% LAE, only 30 wt% corn oil was needed. LAE addition substantially increased the antimicrobial efficacy of the thyme oil nanoemulsions: 200 μg/ml thyme oil was needed to inhibit growth of a spoilage yeast (Zygosaccharomyces bailii) if LAE was added, whereas ⩾ 400 μg/ml was needed in the absence of LAE. PMID:25442557

  20. Hydrogen added after-burner system

    SciTech Connect

    Kanada, Youji; Hayasi, Masaharu; Akaki, Motonobu; Tsuchikawa, Shunzou; Isomura, Akihito

    1996-09-01

    The authors developed a hydrogen-added afterburner system for a new catalyst heating system, which realized large reduction of emissions during start-up at low temperatures when hydrocarbon (HC) emission was rather high. Key development items of this system are a water electrolysis type small size on-board hydrogen supply unit and an engine matching technique for the verification of emission reduction effects.

  1. Leading Change, Adding Value.

    PubMed

    Evans, Nick

    2016-09-12

    Essential facts Leading Change, Adding Value is NHS England's new nursing and midwifery framework. It is designed to build on Compassion in Practice (CiP), which was published 3 years ago and set out the 6Cs: compassion, care, commitment, courage, competence and communication. CiP established the values at the heart of nursing and midwifery, while the new framework sets out how staff can help transform the health and care sectors to meet the aims of the NHS England's Five Year Forward View. PMID:27615573

  2. A hybrid disturbance rejection control solution for variable valve timing system of gasoline engines.

    PubMed

    Xie, Hui; Song, Kang; He, Yu

    2014-07-01

    A novel solution for electro-hydraulic variable valve timing (VVT) system of gasoline engines is proposed, based on the concept of active disturbance rejection control (ADRC). Disturbances, such as oil pressure and engine speed variations, are all estimated and mitigated in real-time. A feed-forward controller was added to enhance the performance of the system based on a simple and static first principle model, forming a hybrid disturbance rejection control (HDRC) strategy. HDRC was validated by experimentation and compared with an existing manually tuned proportional-integral (PI) controller. The results show that HDRC provided a faster response and better tolerance of engine speed and oil pressure variations. PMID:24238361

  3. Dirac operator on fuzzy AdS2

    NASA Astrophysics Data System (ADS)

    Fakhri, Hossein; Imaanpur, Ali

    2003-03-01

    In this article we construct the chirality and Dirac operators on noncommutative AdS2. We also derive the discrete spectrum of the Dirac operator which is important in the study of the spectral triple associated to AdS2. It is shown that the degeneracy of the spectrum present in the commutative AdS2 is lifted in the noncommutative case. The way we construct the chirality operator is suggestive of how to introduce the projector operators of the corresponding projective modules on this space.

  4. An xp model on AdS2 spacetime

    NASA Astrophysics Data System (ADS)

    Molina-Vilaplana, Javier; Sierra, Germán

    2013-12-01

    In this paper we formulate the xp model on the AdS2 spacetime. We find that the spectrum of the Hamiltonian has positive and negative eigenvalues, whose absolute values are given by a harmonic oscillator spectrum, which in turn coincides with that of a massive Dirac fermion in AdS2. We extend this result to generic xp models which are shown to be equivalent to a massive Dirac fermion on spacetimes whose metric depend of the xp Hamiltonian. Finally, we construct the generators of the isometry group SO(2,1) of the AdS2 spacetime, and discuss the relation with conformal quantum mechanics.

  5. ADS Development in Japan

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kenji

    2010-06-01

    Accelerator driven nuclear transmutation system has been pursued to have a clue to the solution of high-level radioactive waste management. The concept consists of super conducting linac, sub-critical reactor and the beam window. Reference model is set up to 800MW thermal power by using 1.5GeV proton beams with considerations multi-factors such as core criticality. Materials damage is simulated by high-energy particle transport codes and so on. Recent achievement on irradiation materials experiment is stated and the differences are pointed out if core burn-up is considered or not. Heat balance in tank-type ADS indicates the temperature conditions of steam generator, the beam widow and cladding materials. Lead-bismuth eutectics demonstration has been conducted. Corrosion depth rate was shown by experiments.

  6. Supersymmetric warped AdS in extended topologically massive supergravity

    NASA Astrophysics Data System (ADS)

    Deger, N. S.; Kaya, A.; Samtleben, H.; Sezgin, E.

    2014-07-01

    We determine the most general form of off-shell N=(1,1) supergravity field configurations in three dimensions by requiring that at least one off-shell Killing spinor exists. We then impose the field equations of the topologically massive off-shell supergravity and find a class of solutions whose properties crucially depend on the norm of the auxiliary vector field. These are spacelike-squashed and timelike-stretched AdS3 for the spacelike and timelike norms, respectively. At the transition point where the norm vanishes, the solution is null warped AdS3. This occurs when the coefficient of the Lorentz-Chern-Simons term is related to the AdS radius by μℓ=2. We find that the spacelike-squashed AdS3 can be modded out by a suitable discrete subgroup of the isometry group, yielding an extremal black hole solution which avoids closed timelike curves.

  7. Lubrication from mixture of boric acid with oils and greases

    SciTech Connect

    Erdemir, Ali

    1995-01-01

    Lubricating compositions including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

  8. Lubrication from mixture of boric acid with oils and greases

    SciTech Connect

    Erdemir, A.

    1995-07-11

    Lubricating compositions are disclosed including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

  9. 78 FR 42677 - Airworthiness Directives; Austro Engine GmbH Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... applies to all Austro Engine GmbH model E4 engines, with a waste gate controller, part number (P/N) E4A-41... directive (AD) for all Austro Engine GmbH model E4 engines. This AD requires removing from service certain... the Internet at http://www.regulations.gov ; or in person at the Docket Management Facility between...

  10. Oil Spills

    MedlinePlus

    Oil spills often happen because of accidents, when people make mistakes or equipment breaks down. Other causes include natural disasters or deliberate acts. Oil spills have major environmental and economic effects. Oil spills ...

  11. Coconut Oil

    MedlinePlus

    ... a moisturizer, for neonatal health, and to treat eczema and a skin condition called psoriasis. Coconut oil ... effectiveness ratings for COCONUT OIL are as follows: Eczema. Research suggests that applying virgin coconut oil to ...

  12. Preparation of Reference Material 8504, Transformer Oil

    PubMed Central

    Poster, Dianne L.; Schantz, Michele M.; Wise, Stephen A.

    2005-01-01

    A new reference material (RM), RM 8504, has been prepared for use as a diluent oil with Aroclors in transformer oil Standard Reference Materials (SRMs) 3075 to 3080 and SRM 3090 when developing and validating methods for the determination of polychlorinated biphenyls (PCBs) as Aroclors in transformer oil or similar matrices. SRMs 3075-3080 and SRM 3090 consist of individual Aroclors in the same transformer oil that was used to prepare RM 8504. A unit of RM 8504 consists of one bottle containing approximately 100 mL of transformer oil. No additional constituents have been added to the oil. PMID:27308183

  13. Coat forming quenching oil and distortion

    SciTech Connect

    Asada, S.

    1996-12-31

    Coat forming quenching oil which provides lubricous black coating on the treated surface of materials simultaneously with quenching is known to improve effectively surface characteristics of parts/materials treated. However, Zn-DTP added to this oil will be consumed some what at each quenching and gradual deterioration of the oil is inevitable and affecting greatly to cooling performance of the oil. To maintain long period oil stability by minimizing consumption of additive and suppressing cooling performance degradation, a new coat forming quenching oil containing petroleum type sulfonate has been developed. This is finally to contribute keeping low distortion level of treated materials in long term.

  14. Envera Variable Compression Ratio Engine

    SciTech Connect

    Charles Mendler

    2011-03-15

    the compression ratio can be raised (to as much as 18:1) providing high engine efficiency. It is important to recognize that for a well designed VCR engine cylinder pressure does not need to be higher than found in current production turbocharged engines. As such, there is no need for a stronger crankcase, bearings and other load bearing parts within the VCR engine. The Envera VCR mechanism uses an eccentric carrier approach to adjust engine compression ratio. The crankshaft main bearings are mounted in this eccentric carrier or 'crankshaft cradle' and pivoting the eccentric carrier 30 degrees adjusts compression ratio from 9:1 to 18:1. The eccentric carrier is made up of a casting that provides rigid support for the main bearings, and removable upper bearing caps. Oil feed to the main bearings transits through the bearing cap fastener sockets. The eccentric carrier design was chosen for its low cost and rigid support of the main bearings. A control shaft and connecting links are used to pivot the eccentric carrier. The control shaft mechanism features compression ratio lock-up at minimum and maximum compression ratio settings. The control shaft method of pivoting the eccentric carrier was selected due to its lock-up capability. The control shaft can be rotated by a hydraulic actuator or an electric motor. The engine shown in Figures 3 and 4 has a hydraulic actuator that was developed under the current program. In-line 4-cylinder engines are significantly less expensive than V engines because an entire cylinder head can be eliminated. The cost savings from eliminating cylinders and an entire cylinder head will notably offset the added cost of the VCR and supercharging. Replacing V6 and V8 engines with in-line VCR 4-cylinder engines will provide high fuel economy at low cost. Numerous enabling technologies exist which have the potential to increase engine efficiency. The greatest efficiency gains are realized when the right combination of advanced and new technologies

  15. Value Added in English Schools

    ERIC Educational Resources Information Center

    Ray, Andrew; McCormack, Tanya; Evans, Helen

    2009-01-01

    Value-added indicators are now a central part of school accountability in England, and value-added information is routinely used in school improvement at both the national and the local levels. This article describes the value-added models that are being used in the academic year 2007-8 by schools, parents, school inspectors, and other…

  16. Per aspirin ad astra...

    PubMed

    Hartung, Thomas

    2009-12-01

    Taking the 110th anniversary of marketing of aspirin as starting point, the almost scary toxicological profile of aspirin is contrasted with its actual use experience. The author concludes that we are lucky that, in 1899, there was no regulatory toxicology. Adding, for the purpose of this article, a fourth R to the Three Rs, i.e. Realism, three reality-checks are carried out. The first one comes to the conclusion that the tools of toxicology are hardly adequate for the challenges ahead. The second one concludes that, specifically, the implementation of the EU REACH system is not feasible with these tools, mainly with regard to throughput. The third one challenges the belief that classical alternative methods, i.e. replacing animal test-based tools one by one, is actually leading to a new toxicology - it appears to change only patches of the patchwork, but not to overcome any inherent limitations other than ethical ones. The perspective lies in the Toxicology for the 21st Century initiatives, which aim to create a new approach from the scratch, by an evidence-based toxicology and a global "Human Toxicology Programme". PMID:20105011

  17. Influence of vegetable oils fatty-acid composition on biodiesel optimization.

    PubMed

    Pinzi, S; Mata-Granados, J M; Lopez-Gimenez, F J; Luque de Castro, M D; Dorado, M P

    2011-01-01

    Biodiesel is an alternative fuel for diesel engines produced through transesterification of oleaginous feedstocks. To analyze the influence of the fatty-acid composition on biodiesel optimization, transesterification of several vegetable oils has been studied. Reactions were carried out in flasks filled with vegetable oils, heated to the reaction temperature and stirred at 1100 rpm. The reactions started when the methanol and potassium hydroxide solutions were added to the flasks. Concentration of catalyst, amount of methanol, reaction temperature and time were optimized using a factorial design and a surface response design. Also, a kinetics study was carried out to optimize the reaction time. Results showed that reaction parameters optimal values depend on the oil chemical and physical properties. It can be concluded from this field trial that the effect of both catalyst concentration and reaction time over the transesterification yield is greatly influenced by the saturation degree and fatty-acid chain length. PMID:20826083

  18. Supergravity at the boundary of AdS supergravity

    NASA Astrophysics Data System (ADS)

    Amsel, Aaron J.; Compère, Geoffrey

    2009-04-01

    We give a general analysis of AdS boundary conditions for spin-3/2 Rarita-Schwinger fields and investigate boundary conditions preserving supersymmetry for a graviton multiplet in AdS4. Linear Rarita-Schwinger fields in AdSd are shown to admit mixed Dirichlet-Neumann boundary conditions when their mass is in the range 0≤|m|<1/2lAdS. We also demonstrate that mixed boundary conditions are allowed for larger masses when the inner product is “renormalized” accordingly with the action. We then use the results obtained for |m|=1/lAdS to explore supersymmetric boundary conditions for N=1 AdS4 supergravity in which the metric and Rarita-Schwinger fields are fluctuating at the boundary. We classify boundary conditions that preserve boundary supersymmetry or superconformal symmetry. Under the AdS/CFT dictionary, Neumann boundary conditions in d=4 supergravity correspond to gauging the superconformal group of the three-dimensional CFT describing M2-branes, while N=1 supersymmetric mixed boundary conditions couple the CFT to N=1 superconformal topologically massive gravity.

  19. Heat engines

    NASA Astrophysics Data System (ADS)

    Rekos, N. F., Jr.; Parsons, E. L., Jr.

    1989-09-01

    For the past decade, the Department of Energy (DOE) has sponsored projects to develop diesel and gas turbine engines capable of operating on low-cost, coal-based fuels. Much of the current work addresses the use of coal-water fuel (CWF) in diesel and turbines, although there is some work with dry coal feed and other coal fuels. Both the diesel and gas turbine portions of the program include proof-of-concept and support projects. Specific highlights of the program include: engine tests and economic analyses have shown that CWF can replace 70 percent of the diesel oil used in the duty cycle of a typical main-line locomotive; A. D. Little and Cooper-Bessemer completed a system and economic study of coal-fueled diesel engines for modular power and industrial cogeneration markets. The coal-fueled diesel was found to be competitive at fuel oil prices of $5.50 per million British thermal units (MBtu); Over 200 hours of testing have been completed using CWF in full-scale, single-cylinder diesel engines. Combustion efficiencies have exceeded 99 percent; Both CWF and dry coal fuel forms can be burned in short residence time in-line combustors and in off-base combustors with a combustion efficiency of over 99 percent; Rich/lean combustion systems employed by the three major DOE contractors have demonstrated low NO(sub x) emissions levels; Contractors have also achieved promising results for controlling sulfur oxide (SO(sub x)) emissions using calcium-based sorbents; Slagging combustors have achieved between 65 and 95 percent slag capture, which will limit particulate loading on pre-turbine cleanup devices. For many of the gas turbine and diesel applications emission standards do not exist. Our goal is to develop coal-fueled diesels and gas turbines that not only meet all applicable emission standards that do exist, but also are capable of meeting possible future standards.

  20. Oil additive process

    SciTech Connect

    Bishop, H.

    1988-10-18

    This patent describes a method of making an additive comprising: (a) adding 2 parts by volume of 3% sodium hypochlorite to 45 parts by volume of diesel oil fuel to form a sulphur free fuel, (b) removing all water and foreign matter formed by the sodium hypochlorite, (c) blending 30 parts by volume of 24% lead naphthanate with 15 parts by volume of the sulphur free fuel, 15 parts by volume of light-weight material oil to form a blended mixture, and (d) heating the blended mixture slowly and uniformly to 152F.

  1. Compression relief engine brake

    SciTech Connect

    Meneely, V.A.

    1987-10-06

    A compression relief brake is described for four cycle internal-combustion engines, comprising: a pressurized oil supply; means for selectively pressurizing a hydraulic circuit with oil from the oil supply; a master piston and cylinder communicating with a slave piston and cylinder via the hydraulic circuit; an engine exhaust valve mechanically coupled to the engine and timed to open during the exhaust cycle of the engine the exhaust valve coupled to the slave piston. The exhaust valve is spring-based in a closed state to contact a valve seat; a sleeve frictionally and slidably disposed within a cavity defined by the slave piston which cavity communicates with the hydraulic circuit. When the hydraulic circuit is selectively pressurized and the engine is operating the sleeve entraps an incompressible volume of oil within the cavity to generate a displacement of the slave piston within the slave cylinder, whereby a first gap is maintained between the exhaust valve and its associated seat; and means for reciprocally activating the master piston for increasing the pressure within the previously pressurized hydraulic circuit during at least a portion of the expansion cycle of the engine whereby a second gap is reciprocally maintained between the exhaust valve and its associated seat.

  2. Asymptotically AdS spacetimes with a timelike Kasner singularity

    NASA Astrophysics Data System (ADS)

    Ren, Jie

    2016-07-01

    Exact solutions to Einstein's equations for holographic models are presented and studied. The IR geometry has a timelike cousin of the Kasner singularity, which is the less generic case of the BKL (Belinski-Khalatnikov-Lifshitz) singularity, and the UV is asymptotically AdS. This solution describes a holographic RG flow between them. The solution's appearance is an interpolation between the planar AdS black hole and the AdS soliton. The causality constraint is always satisfied. The entanglement entropy and Wilson loops are discussed. The boundary condition for the current-current correlation function and the Laplacian in the IR is examined. There is no infalling wave in the IR, but instead, there is a normalizable solution in the IR. In a special case, a hyperscaling-violating geometry is obtained after a dimensional reduction.

  3. All AdS7 solutions of type II supergravity

    NASA Astrophysics Data System (ADS)

    Apruzzi, Fabio; Fazzi, Marco; Rosa, Dario; Tomasiello, Alessandro

    2014-04-01

    In M-theory, the only AdS7 supersymmetric solutions are AdS7 × S 4 and its orbifolds. In this paper, we find and classify new supersymmetric solutions of the type AdS7 × M 3 in type II supergravity. While in IIB none exist, in IIA with Romans mass (which does not lift to M-theory) there are many new ones. We use a pure spinor approach reminiscent of generalized complex geometry. Without the need for any Ansatz, the system determines uniquely the form of the metric and fluxes, up to solving a system of ODEs. Namely, the metric on M 3 is that of an S 2 fibered over an interval; this is consistent with the Sp(1) R-symmetry of the holographically dual (1,0) theory. By including D8 brane sources, one can numerically obtain regular solutions, where topologically M 3 ≅ S 3.

  4. Worldsheet scattering in AdS3/CFT2

    NASA Astrophysics Data System (ADS)

    Sundin, Per; Wulff, Linus

    2013-07-01

    We confront the recently proposed exact S-matrices for AdS 3/ CFT 2 with direct worldsheet calculations. Utilizing the BMN and Near Flat Space (NFS) expansions for strings on AdS 3 × S 3 × S 3 × S 1 and AdS 3 × S 3 × T 4 we compute both tree-level and one-loop scattering amplitudes. Up to some minor issues we find nice agreement in the tree-level sector. At the one-loop level however we find that certain non-zero tree-level processes, which are not visible in the exact solution, contribute, via the optical theorem, and give an apparent mismatch for certain amplitudes. Furthermore we find that a proposed one-loop modification of the dressing phase correctly reproduces the worldsheet calculation while the standard Hernandez-Lopez phase does not. We also compute several massless to massless processes.

  5. Detailed ultraviolet asymptotics for AdS scalar field perturbations

    NASA Astrophysics Data System (ADS)

    Evnin, Oleg; Jai-akson, Puttarak

    2016-04-01

    We present a range of methods suitable for accurate evaluation of the leading asymptotics for integrals of products of Jacobi polynomials in limits when the degrees of some or all polynomials inside the integral become large. The structures in question have recently emerged in the context of effective descriptions of small amplitude perturbations in anti-de Sitter (AdS) spacetime. The limit of high degree polynomials corresponds in this situation to effective interactions involving extreme short-wavelength modes, whose dynamics is crucial for the turbulent instabilities that determine the ultimate fate of small AdS perturbations. We explicitly apply the relevant asymptotic techniques to the case of a self-interacting probe scalar field in AdS and extract a detailed form of the leading large degree behavior, including closed form analytic expressions for the numerical coefficients appearing in the asymptotics.

  6. New massive gravity and AdS(4) counterterms.

    PubMed

    Jatkar, Dileep P; Sinha, Aninda

    2011-04-29

    We show that the recently proposed Dirac-Born-Infeld extension of new massive gravity emerges naturally as a counterterm in four-dimensional anti-de Sitter space (AdS(4)). The resulting on-shell Euclidean action is independent of the cutoff at zero temperature. We also find that the same choice of counterterm gives the usual area law for the AdS(4) Schwarzschild black hole entropy in a cutoff-independent manner. The parameter values of the resulting counterterm action correspond to a c=0 theory in the context of the duality between AdS(3) gravity and two-dimensional conformal field theory. We rewrite this theory in terms of the gauge field that is used to recast 3D gravity as a Chern-Simons theory. PMID:21635026

  7. Oil Spill!

    ERIC Educational Resources Information Center

    Ansberry, Karen Rohrich; Morgan, Emily

    2005-01-01

    An oil spill occurs somewhere in the world almost every day of the year, and the consequences can be devastating. In this month's column, students explore the effects of oil spills on plants, animals, and the environment and investigate oil spill clean-up methods through a simulated oil spill. The activities described in this article give students…

  8. Infrared Spectroscopy of Bilberry Extract Water-in-Oil Emulsions: Sensing the Water-Oil Interface

    PubMed Central

    Kiefer, Johannes; Frank, Kerstin; Zehentbauer, Florian M.; Schuchmann, Heike P.

    2016-01-01

    Water-in-oil (w/o) emulsions are of great interest in many areas of the life sciences, including food technology, bioprocess engineering, and pharmaceuticals. Such emulsions are complex multi-component systems and the molecular mechanisms which lead to a stable emulsion are yet to be fully understood. In this work, attenuated total reflection (ATR) infrared (IR) spectroscopy is applied to a series of w/o emulsions of an aqueous anthocyanin-rich bilberry extract dispersed in a medium chain triglyceride (MCT) oil phase. The content of the emulsifier polyglycerin-polyricinoleat (PGPR) has been varied systematically in order to investigate whether or not its concentration has an impact on the molecular stabilization mechanisms. The molecular stabilization is accessed by a careful analysis of the IR spectrum, where changes in the vibrational frequencies and signal strengths indicate alterations of the molecular environment at the water/oil interface. The results suggest that adding emulsifier in excess of 1% by weight does not lead to an enhanced stabilization of the emulsion. PMID:27089376

  9. Infrared Spectroscopy of Bilberry Extract Water-in-Oil Emulsions: Sensing the Water-Oil Interface.

    PubMed

    Kiefer, Johannes; Frank, Kerstin; Zehentbauer, Florian M; Schuchmann, Heike P

    2016-01-01

    Water-in-oil (w/o) emulsions are of great interest in many areas of the life sciences, including food technology, bioprocess engineering, and pharmaceuticals. Such emulsions are complex multi-component systems and the molecular mechanisms which lead to a stable emulsion are yet to be fully understood. In this work, attenuated total reflection (ATR) infrared (IR) spectroscopy is applied to a series of w/o emulsions of an aqueous anthocyanin-rich bilberry extract dispersed in a medium chain triglyceride (MCT) oil phase. The content of the emulsifier polyglycerin-polyricinoleat (PGPR) has been varied systematically in order to investigate whether or not its concentration has an impact on the molecular stabilization mechanisms. The molecular stabilization is accessed by a careful analysis of the IR spectrum, where changes in the vibrational frequencies and signal strengths indicate alterations of the molecular environment at the water/oil interface. The results suggest that adding emulsifier in excess of 1% by weight does not lead to an enhanced stabilization of the emulsion. PMID:27089376

  10. The N.A.C.A. Photographic Apparatus for Studying Fuel Sprays from Oil Engine Injection Valves and Test Results from Several Researches

    NASA Technical Reports Server (NTRS)

    Beardsley, Edward G

    1928-01-01

    Apparatus for recording photographically the start, growth, and cut-off of oil sprays from injection valves has been developed at the Langley Memorial Aeronautical Laboratory. The apparatus consists of a high-tension transformer by means of which a bank of condensers is charged to a high voltage. The controlled discharge of these condensers in sequence, at a rate of several thousand per second, produces electric sparks of sufficient intensity to illuminate the moving spray for photographing. The sprays are injected from various types of valves into a chamber containing gases at pressures up to 600 pounds per square inch. Several series of pictures are shown. The results give the effects of injection pressure, chamber pressure, specific gravity of the fuel oil used, and injection-valve design, upon spray characteristics.

  11. Phases of global AdS black holes

    NASA Astrophysics Data System (ADS)

    Basu, Pallab; Krishnan, Chethan; Subramanian, P. N. Bala

    2016-06-01

    We study the phases of gravity coupled to a charged scalar and gauge field in an asymptotically Anti-de Sitter spacetime ( AdS 4) in the grand canonical ensemble. For the conformally coupled scalar, an intricate phase diagram is charted out between the four relevant solutions: global AdS, boson star, Reissner-Nordstrom black hole and the hairy black hole. The nature of the phase diagram undergoes qualitative changes as the charge of the scalar is changed, which we discuss. We also discuss the new features that arise in the extremal limit.

  12. 14 CFR 25.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil strainer or filter. 25.1019 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of...

  13. 14 CFR 23.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil strainer or filter. 23.1019 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer...

  14. 14 CFR 25.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil strainer or filter. 25.1019 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of...

  15. 14 CFR 23.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil strainer or filter. 23.1019 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer...

  16. 14 CFR 29.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil strainer or filter. 29.1019 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all...

  17. 14 CFR 23.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil strainer or filter. 23.1019 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer...

  18. 14 CFR 29.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil strainer or filter. 29.1019 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all...

  19. 14 CFR 23.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil strainer or filter. 23.1019 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer...

  20. 14 CFR 25.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil strainer or filter. 25.1019 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of...

  1. 14 CFR 27.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil strainer or filter. 27.1019 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of...

  2. 14 CFR 27.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil strainer or filter. 27.1019 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of...

  3. 14 CFR 27.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil strainer or filter. 27.1019 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of...

  4. 14 CFR 29.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil strainer or filter. 29.1019 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all...

  5. 14 CFR 25.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil strainer or filter. 25.1019 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of...

  6. 14 CFR 27.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil strainer or filter. 27.1019 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of...

  7. 14 CFR 29.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil strainer or filter. 29.1019 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all...

  8. 14 CFR 29.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil strainer or filter. 29.1019 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all...

  9. Engine fuels from biomass

    NASA Astrophysics Data System (ADS)

    Parker, H. W.

    1981-01-01

    Sources of biomass fuels for engines are compared to other synfuels. Biomass can be converted to gaseous and liquid engine fuels by the same processes utilized for coal conversion such as gasification, direct liquefaction, and indirect liquefaction. Alternatively, biomass can be converted into liquid fuels by fermentation to methane or ethanol. The quantities of biomass derived engine fuels potentially available in the next decade are relatively small, and the anticipated costs are significantly greater than for liquid engine fuels made from coal or oil shale.

  10. The forecaster's added value

    NASA Astrophysics Data System (ADS)

    Turco, M.; Milelli, M.

    2009-09-01

    skill scores of two competitive forecast. It is important to underline that the conclusions refer to the analysis of the Piemonte operational alert system, so they cannot be directly taken as universally true. But we think that some of the main lessons that can be derived from this study could be useful for the meteorological community. In details, the main conclusions are the following: - despite the overall improvement in global scale and the fact that the resolution of the limited area models has increased considerably over recent years, the QPF produced by the meteorological models involved in this study has not improved enough to allow its direct use, that is, the subjective HQPF continues to offer the best performance; - in the forecast process, the step where humans have the largest added value with respect to mathematical models, is the communication. In fact the human characterisation and communication of the forecast uncertainty to end users cannot be replaced by any computer code; - eventually, although there is no novelty in this study, we would like to show that the correct application of appropriated statistical techniques permits a better definition and quantification of the errors and, mostly important, allows a correct (unbiased) communication between forecasters and decision makers.

  11. Mystery cloud of AD 536

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.

    1984-01-01

    The possible cause of the densest and most persistent dry fog on record, which was observed in Europe and the Middle East during AD 536 and 537, is discussed. The fog's long duration toward the south and the high sulfuric acid signal detected in Greenland in ice cores dated around AD 540 support the theory that the fog was due to the explosion of the Rabaul volcano, the occurrence of which has been dated at about AD 540 by the radiocarbon method.

  12. Comparisons of Biodiesel Produced from Oils of Various Peanut Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is a renewable, clean burning alternative fuel that can be used in standard diesel engines with no engine modification and no perceptible loss in engine performance. Biodiesel production typically involves the transesterification of a seed oil feedstock, with soybean oil being the primary...

  13. Process for converting heavy oil deposited on coal to distillable oil in a low severity process

    DOEpatents

    Ignasiak, Teresa; Strausz, Otto; Ignasiak, Boleslaw; Janiak, Jerzy; Pawlak, Wanda; Szymocha, Kazimierz; Turak, Ali A.

    1994-01-01

    A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

  14. Diesel Engine Idling Test

    SciTech Connect

    Larry Zirker; James Francfort; Jordon Fielding

    2006-02-01

    In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

  15. AdS Branes from Partial Breaking of Superconformal Symmetries

    SciTech Connect

    Ivanov, E.A.

    2005-10-01

    It is shown how the static-gauge world-volume superfield actions of diverse superbranes on the AdS{sub d+1} superbackgrounds can be systematically derived from nonlinear realizations of the appropriate AdS supersymmetries. The latter are treated as superconformal symmetries of flat Minkowski superspaces of the bosonic dimension d. Examples include the N = 1 AdS{sub 4} supermembrane, which is associated with the 1/2 partial breaking of the OSp(1|4) supersymmetry down to the N = 1, d = 3 Poincare supersymmetry, and the T-duality related L3-brane on AdS{sub 5} and scalar 3-brane on AdS{sub 5} x S{sup 1}, which are associated with two different patterns of 1/2 breaking of the SU(2, 2|1) supersymmetry. Another (closely related) topic is the AdS/CFT equivalence transformation. It maps the world-volume actions of the codimension-one AdS{sub d+1} (super)branes onto the actions of the appropriate Minkowski (super)conformal field theories in the dimension d.

  16. AdS5 backgrounds with 24 supersymmetries

    NASA Astrophysics Data System (ADS)

    Beck, S.; Gutowski, J.; Papadopoulos, G.

    2016-06-01

    We prove a non-existence theorem for smooth AdS 5 solutions with connected, compact without boundary internal space that preserve strictly 24 supersymmetries. In particular, we show that D = 11 supergravity does not admit such solutions, and that all such solutions of IIB supergravity are locally isometric to the AdS 5 × S 5 maximally supersymmetric background. Furthermore, we prove that (massive) IIA supergravity also does not admit such solutions, provided that the homogeneity conjecture for massive IIA supergravity is valid. In the context of AdS/CFT these results imply that if gravitational duals for strictly mathcal{N}=3 superconformal theories in 4-dimensions exist, they are either singular or their internal spaces are not compact.

  17. Entanglement temperature and perturbed AdS3 geometry

    NASA Astrophysics Data System (ADS)

    Levine, G. C.; Caravan, B.

    2016-06-01

    Generalizing the first law of thermodynamics, the increase in entropy density δ S (x ) of a conformal field theory (CFT) is proportional to the increase in energy density, δ E (x ) , of a subsystem divided by a spatially dependent entanglement temperature, TE(x ) , a fixed parameter determined by the geometry of the subsystem, crossing over to thermodynamic temperature at high temperatures. In this paper we derive a generalization of the thermodynamic Clausius relation, showing that deformations of the CFT by marginal operators are associated with spatial temperature variations, δ TE(x ) , and spatial energy correlations play the role of specific heat. Using AdS/CFT duality we develop a relationship between a perturbation in the local entanglement temperature of the CFT and the perturbation of the bulk AdS metric. In two dimensions, we demonstrate a method through which direct diagonalizations of the boundary quantum theory may be used to construct geometric perturbations of AdS3 .

  18. Bioremediating oil spills in nutrient poor ocean waters using fertilized clay mineral flakes: some experimental constraints.

    PubMed

    Warr, Laurence N; Friese, André; Schwarz, Florian; Schauer, Frieder; Portier, Ralph J; Basirico, Laura M; Olson, Gregory M

    2013-01-01

    Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98%) of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity. PMID:23864952

  19. Influence of fatty acid methyl esters from hydroxylated vegetable oils on diesel fuel lubricity.

    PubMed

    Goodrum, John W; Geller, Daniel P

    2005-05-01

    Current and future regulations on the sulfur content of diesel fuel have led to a decrease in lubricity of these fuels. This decreased lubricity poses a significant problem as it may lead to wear and damage of diesel engines, primarily fuel injection systems. Vegetable oil based diesel fuel substitutes (biodiesel) have been shown to be clean and effective and may increase overall lubricity when added to diesel fuel at nominally low levels. Previous studies on castor oil suggest that its uniquely high level of the hydroxy fatty acid ricinoleic acid may impart increased lubricity to the oil and its derivatives as compared to other vegetable oils. Likewise, the developing oilseed Lesquerella may also increase diesel lubricity through its unique hydroxy fatty acid composition. This study examines the effect of castor and Lesquerella oil esters on the lubricity of diesel fuel using the High-Frequency Reciprocating Rig (HFRR) test and compares these results to those for the commercial vegetable oil derivatives soybean and rapeseed methyl esters. PMID:15607199

  20. Holographic heat engines

    NASA Astrophysics Data System (ADS)

    Johnson, Clifford V.

    2014-10-01

    It is shown that in theories of gravity where the cosmological constant is considered a thermodynamic variable, it is natural to use black holes as heat engines. Two examples are presented in detail using AdS charged black holes as the working substance. We notice that for static black holes, the maximally efficient traditional Carnot engine is also a Stirling engine. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. We first propose a precise picture of how the traditional thermodynamic dictionary of holography is extended when the cosmological constant is dynamical and then conjecture that the engine cycles can be performed by using renormalization group flow. We speculate about the existence of a natural dual field theory counterpart to the gravitational thermodynamic volume.

  1. Engine monitoring display study

    NASA Technical Reports Server (NTRS)

    Hornsby, Mary E.

    1992-01-01

    The current study is part of a larger NASA effort to develop displays for an engine-monitoring system to enable the crew to monitor engine parameter trends more effectively. The objective was to evaluate the operational utility of adding three types of information to the basic Boeing Engine Indicating and Crew Alerting System (EICAS) display formats: alphanumeric alerting messages for engine parameters whose values exceed caution or warning limits; alphanumeric messages to monitor engine parameters that deviate from expected values; and a graphic depiction of the range of expected values for current conditions. Ten training and line pilots each flew 15 simulated flight scenarios with five variants of the basic EICAS format; these variants included different combinations of the added information. The pilots detected engine problems more quickly when engine alerting messages were included in the display; adding a graphic depiction of the range of expected values did not affect detection speed. The pilots rated both types of alphanumeric messages (alert and monitor parameter) as more useful and easier to interpret than the graphic depiction. Integrating engine parameter messages into the EICAS alerting system appears to be both useful and preferred.

  2. Heavy oil recovery process: Conceptual engineering of a downhole methanator and preliminary estimate of facilities cost for application to North Slope Alaska

    SciTech Connect

    Not Available

    1990-01-01

    Results from Tasks 8 and 9 are presented. Task 8 addressed the cost of materials and manufacturing of the Downhole Methanator and the cost of drilling and completing the vertical cased well and two horizontal drain holes in the West Sak reservoir. Task 9 addressed the preliminary design of surface facilities to support the enhanced recovery of heavy oil. Auxiliary facilities include steam reformers for carbon dioxide-rich natural gas reforming, emergency electric generators, nitrogen gas generators, and an ammonia synthesis unit. The ammonia is needed to stabilize the swelling of clays in the reservoir. Cost estimations and a description of how they were obtained are given.

  3. Lorentzian AdS geometries, wormholes, and holography

    SciTech Connect

    Arias, Raul E.; Silva, Guillermo A.; Botta Cantcheff, Marcelo

    2011-03-15

    We investigate the structure of two-point functions for the quantum field theory dual to an asymptotically Lorentzian Anti de Sitter (AdS) wormhole. The bulk geometry is a solution of five-dimensional second-order Einstein-Gauss-Bonnet gravity and causally connects two asymptotically AdS spacetimes. We revisit the Gubser-Klebanov-Polyakov-Witten prescription for computing two-point correlation functions for dual quantum field theories operators O in Lorentzian signature and we propose to express the bulk fields in terms of the independent boundary values {phi}{sub 0}{sup {+-}} at each of the two asymptotic AdS regions; along the way we exhibit how the ambiguity of normalizable modes in the bulk, related to initial and final states, show up in the computations. The independent boundary values are interpreted as sources for dual operators O{sup {+-}} and we argue that, apart from the possibility of entanglement, there exists a coupling between the degrees of freedom living at each boundary. The AdS{sub 1+1} geometry is also discussed in view of its similar boundary structure. Based on the analysis, we propose a very simple geometric criterion to distinguish coupling from entanglement effects among two sets of degrees of freedom associated with each of the disconnected parts of the boundary.

  4. Self-dual warped AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Ning, Bo

    2010-12-01

    We study a new class of solutions of three-dimensional topological massive gravity. These solutions can be taken as nonextremal black holes, with their extremal counterparts being discrete quotients of spacelike warped AdS3 along the U(1)L isometry. We study the thermodynamics of these black holes and show that the first law is satisfied. We also show that for consistent boundary conditions, the asymptotic symmetry generators form only one copy of the Virasoro algebra with central charge cL=(4νℓ)/(G(ν2+3)), with which the Cardy formula reproduces the black hole entropy. We compute the real-time correlators of scalar perturbations and find a perfect match with the dual conformal field theory (CFT) predictions. Our study provides a novel example of warped AdS/CFT correspondence: the self-dual warped AdS3 black hole is dual to a CFT with nonvanishing left central charge. Moreover, our investigation suggests that the quantum topological massive gravity asymptotic to the same spacelike warped AdS3 in different consistent ways may be dual to different two-dimensional CFTs.

  5. 14 CFR 29.1011 - Engines: general.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... temperature not above that safe for continuous operation. (b) The usable oil capacity of each system may not... consumption, a usable oil capacity of one gallon for each 40 gallons of usable fuel may be used for... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1011 Engines: general. (a) Each...

  6. 14 CFR 29.1011 - Engines: general.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... temperature not above that safe for continuous operation. (b) The usable oil capacity of each system may not... consumption, a usable oil capacity of one gallon for each 40 gallons of usable fuel may be used for... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1011 Engines: general. (a) Each...

  7. 14 CFR 29.1011 - Engines: general.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... temperature not above that safe for continuous operation. (b) The usable oil capacity of each system may not... consumption, a usable oil capacity of one gallon for each 40 gallons of usable fuel may be used for... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1011 Engines: general. (a) Each...

  8. 14 CFR 29.1011 - Engines: general.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... temperature not above that safe for continuous operation. (b) The usable oil capacity of each system may not... consumption, a usable oil capacity of one gallon for each 40 gallons of usable fuel may be used for... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1011 Engines: general. (a) Each...

  9. 14 CFR 29.1011 - Engines: general.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... temperature not above that safe for continuous operation. (b) The usable oil capacity of each system may not... consumption, a usable oil capacity of one gallon for each 40 gallons of usable fuel may be used for... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1011 Engines: general. (a) Each...

  10. Commercialization of coal diesel engines for non-utility and export power markets

    SciTech Connect

    Wilson, R.P.; Balles, E.N.; Rao, K.; Benedek, K.R.; Benson, C.E.; Mayville, R.A.; Itse, D.; Kimberley, J.; Parkinson, J.

    1993-11-01

    The basic motivation behind this project is to develop coal-burning heat engine technology primarily for 10-100 MW modular stationary power applications in the late 1990`s and beyond, when oil and gas prices may return to the $5--7/MMBtu range. The fuel is a low-cost, coal-based liquid with the consistency of black paint, composed of 12-micron mean size premium 2% ash coal dust mixed 50/50 with water. The Clean Coal Diesel Plant of the future is targeted for the 10-100 MW non-utility generation (NUG) and small utility markets, including independent power producers (IPP) and cogeneration. A family of plant designs will be offered using the Cooper-Bessemer 3.8, 5.0, and 6.3 MW Model LS engines as building blocks. In addition, larger plants will be configured with an engine in the 10-25 MW class (Cooper will license the technology to other large bore stationary engine manufacturers). The reciprocating engine offers a remarkable degree of flexibility in selecting plant capacity. This flexibility exists because the engines are modular in every sense (fuel cell stacks have similar modularity). Scale-up is accomplished simply by adding cylinders (e.g., 20 vs 16) or by adding engines (4 vs 3). There is no scale-up of the basic cylinder size. Thus, there is essentially no technical development needed to scale-up the Cooper-Bessemer Clean Coal Diesel Technology all the way from 2 MW (one 6-cylinder engine) to 50 MW (eight 20-cylinder engines), other than engineering adaptation of the turbocharger to match the engine.

  11. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    SciTech Connect

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; William Raatz; Cari Breton; Stephen C. Ruppel; Charles Kerans; Mark H. Holtz

    2003-04-01

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Information System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

  12. Oil Saving Seal

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Driven under difficult field conditions, the Army Jeep shown went more than 22,000 miles without an oil change in a test conducted by the U.S. Army Mobility Equipment Research and Development Command. Key to this exceptionally long oil life was a set of piston ring seals made of a new synthetic rubber formula called RC-34; the seal pictured, photographed after its arduous Army trial, shows no signs of deterioration. The seal and the RC-34 material, which may soon be available for use in the family auto, were developed by Ramsey Corporation, St. Louis, Missouri, a division of TRW Automotive Worldwide. The oil in an automobile engine must be I replaced every few thousand miles not because it wears out but because it becomes contaminated. The contamination sources are gasoline and combustion gases which blow by the piston rings to mix with the oil, reducing the oil's ability to lubricate properly. Seeking to prolong oil life by eliminating "blowby," Ramsey Corporation looked for a better way to seal piston rings and used NASA technology as a departure point. The parent company TRW, under contract to NASA's Jet Propulsion Laboratory, had developed seals and bladders from a type of material called elastomers which where designed to withstand the environmental extremes of interplanetary flight. That effort formed a knowledge base for research which culminated in Ramsey's RC-34 elastomer.

  13. 78 FR 18920 - Airworthiness Directives; Austro Engine GmbH Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... AD applies to all Austro Engine GmbH model E4 engines, with a waste gate controller, part number (P/N...). SUMMARY: We propose to adopt a new airworthiness directive (AD) for all Austro Engine GmbH model E4... comments electronically. Mail: Docket Management Facility, U.S. Department of Transportation, 1200...

  14. ADS: The Next Generation Search Platform

    NASA Astrophysics Data System (ADS)

    Accomazzi, A.; Kurtz, M. J.; Henneken, E. A.; Chyla, R.; Luker, J.; Grant, C. S.; Thompson, D. M.; Holachek, A.; Dave, R.; Murray, S. S.

    2015-04-01

    Four years after the last LISA meeting, the NASA Astrophysics Data System (ADS) finds itself in the middle of major changes to the infrastructure and contents of its database. In this paper we highlight a number of features of great importance to librarians and discuss the additional functionality that we are currently developing. Our citation coverage has doubled since 2010 and now consists of over 10 million citations. We are normalizing the affiliation information in our records and we have started collecting and linking funding sources with papers in our system. At the same time, we are undergoing major technology changes in the ADS platform. We have rolled out and are now enhancing a new high-performance search engine capable of performing full-text as well as metadata searches using an intuitive query language. We are currently able to index acknowledgments, affiliations, citations, and funding sources. While this effort is still ongoing, some of its benefits are already available through the ADS Labs user interface and API at http://adslabs.org/adsabs/.

  15. Peanut Oil

    MedlinePlus

    ... Rectally, peanut oil is used in ointments and medicinal oils for treating constipation. Pharmaceutical companies use peanut ... applied to the skin, or used rectally in medicinal amounts. Special precautions & warnings: Pregnancy and breast-feeding: ...

  16. Palm Oil

    MedlinePlus

    ... A deficiency, cancer, brain disease, aging; and treating malaria, high blood pressure, high cholesterol, and cyanide poisoning. ... oils, such as soybean, canola, or sunflower oil. Malaria. Some research suggests that dietary consumption of palm ...

  17. Oil Spills

    MedlinePlus

    ... is to provide scientific support to the U.S. Coast Guard officers in charge of response operations. In addition ... NOAA Responds to Oil Spills While the U.S. Coast Guard oversees all responses to oil spills and chemical ...

  18. Oil biotechnology: Past, present and future prospects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biocatalysts for both petroleum oil and vegetable oils are quite similar. In 1970, scientists focused on converting petroleum products to value-added oxygenated products such as alcohols, ketones, epoxids and acids. The biocatalysts involved in these reactions are metal containing oxygenases. Aft...

  19. Treatment of oil-in-water emulsions

    SciTech Connect

    Presley, C.T.; Harrison, R.J.

    1980-01-08

    Petroleum is separated from an oil-in-water emulsion containing water-soluble polymer such as polyacrylamide prior to refining by adding amphoteric metal cations (Zn, Al, Sn, and Co) to the emulsion to form a flocculate and then treating the resulting flocculate with a strong base to recover the oil and metal. 11 claims.

  20. Treatment of oil-in-water emulsions

    SciTech Connect

    Harrison, R.J.; Presley, C.T.

    1980-01-08

    Petroleum is separated from an ''oil-in-water'' emulsion containing water-soluble polymer prior to refining by adding amphoteric metal cations to the emulsion to form a flocculate and then treating the resulting flocculate with a strong base to recover the oil and metal.

  1. Warped AdS3/dipole-CFT duality

    NASA Astrophysics Data System (ADS)

    Song, Wei; Strominger, Andrew

    2012-05-01

    String theory contains solutions with {{SL}}( {{2},{R}} ){{R}} × {{U}}{( {1} )_L} -invariant warped AdS3 (WAdS3) factors arising as continuous deformations of ordinary AdS3 factors. We propose that some of these are holographically dual to the IR limits of nonlocal dipole-deformed 2D D-brane gauge theories, referred to as "dipole CFTs". Neither the bulk nor boundary theories are currently well-understood, and consequences of the proposed duality for both sides is investigated. The bulk entropy-area law suggests that dipole CFTs have (at large N) a high-energy density of states which does not depend on the deformation parameter. Putting the boundary theory on a spatial circle leads to closed timelike curves in the bulk, suggesting a relation of the latter to dipole-type nonlocality.

  2. New boundary conditions for AdS3

    NASA Astrophysics Data System (ADS)

    Compère, Geoffrey; Song, Wei; Strominger, Andrew

    2013-05-01

    New chiral boundary conditions are found for quantum gravity with matter on AdS3. The associated asymptotic symmetry group is generated by a single right-moving U(1) Kac-Moody-Virasoro algebra with {c_R}={3ℓ}/2G . The Kac-Moody zero mode generates global left-moving translations and equals, for a BTZ black hole, the sum of the total mass and spin. The level is positive about the global vacuum and negative in the black hole sector, corresponding to ergosphere formation. Realizations arising in Chern-Simons gravity and string theory are analyzed. The new boundary conditions are shown to naturally arise for warped AdS3 in the limit that the warp parameter is taken to zero.

  3. Observing quantum gravity in asymptotically AdS space

    NASA Astrophysics Data System (ADS)

    Emelyanov, Slava

    2015-12-01

    The question is studied of whether an observer can discover quantum gravity in the semiclassical regime. It is shown that it is indeed possible to probe a certain quantum gravity effect by employing an appropriately designed detector. The effect is related to the possibility of having topologically inequivalent geometries in the path-integral approach at the same time. A conformal field theory (CFT) state which is expected to describe the eternal anti-de Sitter (AdS) black hole in the large-N limit is discussed. It is argued under certain assumptions that the black hole boundary should be merely a patch of the entire AdS boundary. This leads then to a conclusion that that CFT state is the ordinary CFT vacuum restricted to that patch. If existent, the bulk CFT operators can behave as the ordinary semiclassical quantum field theory in the large-N limit in the weak sense.

  4. Semiclassical Virasoro blocks from AdS3 gravity

    NASA Astrophysics Data System (ADS)

    Hijano, Eliot; Kraus, Per; Perlmutter, Eric; Snively, River

    2015-12-01

    We present a unified framework for the holographic computation of Virasoro conformal blocks at large central charge. In particular, we provide bulk constructions that correctly reproduce all semiclassical Virasoro blocks that are known explicitly from conformal field theory computations. The results revolve around the use of geodesic Witten diagrams, recently introduced in [1], evaluated in locally AdS3 geometries generated by backreaction of heavy operators. We also provide an alternative computation of the heavy-light semiclassical block — in which two external operators become parametrically heavy — as a certain scattering process involving higher spin gauge fields in AdS3; this approach highlights the chiral nature of Virasoro blocks. These techniques may be systematically extended to compute corrections to these blocks and to interpolate amongst the different semiclassical regimes.

  5. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    SciTech Connect

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

    2004-05-01

    The Permian Basin of west Texas and southeast New Mexico has produced >30 Bbbl (4.77 x 10{sup 9} m{sup 3}) of oil through 2000, most of it from 1,339 reservoirs having individual cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}). These significant-sized reservoirs are the focus of this report. Thirty-two Permian Basin oil plays were defined, and each of the 1,339 significant-sized reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. Associated reservoir information within linked data tables includes Railroad Commission of Texas reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are <1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. This report contains a summary description of each play, including key reservoir characteristics and successful reservoir-management practices that have been used in the play. The CD accompanying the report contains a pdf version of the report, the GIS project, pdf maps of all plays, and digital data files. Oil production from the reservoirs in the Permian Basin having cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 from these significant-sized reservoirs was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl 5.25 x 10{sup 8} m{sup 3}), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres

  6. Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities

    SciTech Connect

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

    2004-01-13

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest onshore petroleum-producing basin in the United States. Approximately 1,300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of oil through 2000. Of these significant-sized reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. There are 32 geologic plays that have been defined for Permian Basin oil reservoirs, and each of the 1,300 major reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. The final reservoir shapefile for each play contains the geographic location of each reservoir. Associated reservoir information within the linked data tables includes RRC reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are smaller than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. Oil production from the reservoirs in the Permian Basin having cumulative production of >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl [5.25 x 10{sup 8} m{sup 3}]), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]). Detailed studies of three reservoirs

  7. Alday-Maldacena Duality and AdS Plateau Problem

    NASA Astrophysics Data System (ADS)

    Morozov, A.

    A short summary of approximate approach to the study of minimal surfaces in AdS, based on solving Nambu-Goto equations iteratively. Today, after partial denunciation of the BDS conjecture, this looks like the only constructive approach to understanding the ways of its possible modification and thus to saving the Alday-Maldacena duality. Numerous open technical problems are explicitly formulated throughout the text.

  8. Developments in oil shale in 1987

    SciTech Connect

    Knutson, C.F.; Dana, G.F.; Solti, G.; Qian, J.L.; Ball, F.D.; Hutton, A.C.; Hanna, J.; Russell, P.L.; Piper, E.M.

    1988-10-01

    Oil shale development continued at a slow pace in 1987. The continuing interest in this commodity is demonstrated by the 342 oil shale citations added to the US Department of Energy Energy Database during 1987. The Unocal project in Parachute, Colorado, produced 600,000 bbl of synfuel in 1987. An appreciable amount of 1987's activity was associated with the nonsynfuel uses of oil shale. 4 figs., 2 tabs.

  9. On information loss in AdS3/CFT2

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, A. Liam; Kaplan, Jared; Li, Daliang; Wang, Junpu

    2016-05-01

    We discuss information loss from black hole physics in AdS3, focusing on two sharp signatures infecting CFT2 correlators at large central charge c: `forbidden singularities' arising from Euclidean-time periodicity due to the effective Hawking temperature, and late-time exponential decay in the Lorentzian region. We study an infinite class of examples where forbidden singularities can be resolved by non-perturbative effects at finite c, and we show that the resolution has certain universal features that also apply in the general case. Analytically continuing to the Lorentzian regime, we find that the non-perturbative effects that resolve forbidden singularities qualitatively change the behavior of correlators at times t ˜ S BH , the black hole entropy. This may resolve the exponential decay of correlators at late times in black hole backgrounds. By Borel resumming the 1 /c expansion of exact examples, we explicitly identify `information-restoring' effects from heavy states that should correspond to classical solutions in AdS3. Our results suggest a line of inquiry towards a more precise formulation of the gravitational path integral in AdS3.

  10. Supersymmetric giant graviton solutions in AdS3

    NASA Astrophysics Data System (ADS)

    Mandal, Gautam; Raju, Suvrat; Smedbäck, Mikael

    2008-02-01

    We parametrize all classical probe brane configurations that preserve four supersymmetries in (a) the extremal D1-D5 geometry, (b) the extremal D1-D5-P geometry, (c) the smooth D1-D5 solutions proposed by Lunin and Mathur, and (d) global AdS3×S3×T4/K3. These configurations consist of D1 branes, D5 branes, and bound states of D5 and D1 branes with the property that a particular Killing vector is tangent to the brane world volume at each point. We show that the supersymmetric sector of the D5-brane world volume theory may be analyzed in an effective 1+1 dimensional framework that places it on the same footing as D1 branes. In global AdS and the corresponding Lunin-Mathur solution, the solutions we describe are “bound” to the center of AdS for generic parameters and cannot escape to infinity. We show that these probes only exist on the submanifold of moduli space where the background BNS field and theta angle vanish. We quantize these probes in the near-horizon region of the extremal D1-D5 geometry and obtain the theory of long strings discussed by Seiberg and Witten.

  11. Technical Seminar: Oil-Free Turbomachinery for Rotorcraft

    NASA Video Gallery

    Rotorcraft engines are among the most demanding applications for conventional oil-lubricated bearings because they must operate with extreme reliability and the highest possible power density. Rece...

  12. Oil Spills

    MedlinePlus

    ... deliberate acts. Oil spills have major environmental and economic effects. Oil spills can also affect human health. These effects can depend on what kind of oil was spilled and where (on land, in a river, or in the ocean). Other factors include what kind of exposure and how much ...

  13. Mineral oils

    NASA Technical Reports Server (NTRS)

    Furby, N. W.

    1973-01-01

    The characteristics of lubricants made from mineral oils are discussed. Types and compositions of base stocks are reviewed and the product demands and compositions of typical products are outlined. Processes for commercial production of mineral oils are examined. Tables of data are included to show examples of product types and requirements. A chemical analysis of three types of mineral oils is reported.

  14. Engineering salt-tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation

    PubMed Central

    Zhang, Hong-Xia; Hodson, Joanna N.; Williams, John P.; Blumwald, Eduardo

    2001-01-01

    Transgenic Brassica napus plants overexpressing AtNHX1, a vacuolar Na+/H+ antiport from Arabidopsis thaliana, were able to grow, flower, and produce seeds in the presence of 200 mM sodium chloride. Although the transgenic plants grown in high salinity accumulated sodium up to 6% of their dry weight, growth of the these plants was only marginally affected by the high salt concentration. Moreover, seed yields and the seed oil quality were not affected by the high salinity of the soil. Our results demonstrate the potential use of these transgenic plants for agricultural use in saline soils. Our findings, showing that the modification of a single trait significantly improved the salinity tolerance of this crop plant, suggest that with a combination of breeding and transgenic plants it could be possible to produce salt-tolerant crops with far fewer target traits than had been anticipated. PMID:11606781

  15. 13. Engine room, view of Ames aniflow (engine #1). 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Engine room, view of Ames aniflow (engine #1). 4 cylinder-1953, centrifuge oil separator in foreground, doorway to machine shop on right in background, taken from southeast - East Boston Pumping Station, Chelsea Street at Chelsea Creek, Boston, Suffolk County, MA

  16. Process for tertiary oil recovery using tall oil pitch

    DOEpatents

    Radke, C.J.

    1983-07-25

    A process and compositions for enhancing the recovery of acid crudes are disclosed. The process involves injecting caustic solutions into the reservoir to maintain a pH of 11 to 13. The fluid contains an effective amount of multivalent cation for inhibiting alkaline silica dissolution with the reservoir. A tall oil pitch soap is added as a polymeric mobility control agent. (DMC)

  17. Production of Lipase and Oxygenated Fatty Acids from Vegetable Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils such as soybean oil and corn oil are cheap raw materials. Various value-added oxygenated fatty acids have been produced from unsaturated fatty acids such as oleic and linoleic acid by biotransformation. Lipase from the non-pathogenic yeast Candida cylindracea is another important va...

  18. Oil and lipids biocatalysis: Past, present and future prospects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biocatalysts (enzymes) for both petroleum oil and vegetable oils are quite similar. In the 1960s, scientists were trying to convert the excess petroleum oil into single cell protein. After 1970, scientists focused on converting petroleum products to value-added products such as oxygenated products...

  19. Bending AdS waves with new massive gravity

    NASA Astrophysics Data System (ADS)

    Ayón-Beato, Eloy; Giribet, Gaston; Hassaïne, Mokhtar

    2009-05-01

    We study AdS-waves in the three-dimensional new theory of massive gravity recently proposed by Bergshoeff, Hohm, and Townsend. The general configuration of this type is derived and shown to exhibit different branches, with different asymptotic behaviors. In particular, for the special fine tuning m2 = ±1/(2l2), solutions with logarithmic fall-off arise, while in the range m2 > -1/(2l2), spacetimes with Schrödinger isometry group are admitted as solutions. Spacetimes that are asymptotically AdS3, both for the Brown-Henneaux and for the weakened boundary conditions, are also identified. The metric function that characterizes the profile of the AdS-wave behaves as a massive excitation on the spacetime, with an effective mass given by meff2 = m2-1/(2l2). For the critical value m2 = -1/(2l2), the value of the effective mass precisely saturates the Breitenlohner-Freedman bound for the AdS3 space where the wave is propagating on. The analogies with the AdS-wave solutions of topologically massive gravity are also discussed. Besides, we consider the coupling of both massive deformations to Einstein gravity and find the exact configurations for the complete theory, discussing all the different branches exhaustively. One of the effects of introducing the Chern-Simons gravitational term is that of breaking the degeneracy in the effective mass of the generic modes of pure New Massive Gravity, producing a fine structure due to parity violation. Another effect is that the zoo of exact logarithmic specimens becomes considerably enlarged.

  20. ADS/CFT and QCD

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U. /SLAC

    2007-02-21

    The AdS/CFT correspondence between string theory in AdS space and conformal .eld theories in physical spacetime leads to an analytic, semi-classical model for strongly-coupled QCD which has scale invariance and dimensional counting at short distances and color confinement at large distances. Although QCD is not conformally invariant, one can nevertheless use the mathematical representation of the conformal group in five-dimensional anti-de Sitter space to construct a first approximation to the theory. The AdS/CFT correspondence also provides insights into the inherently non-perturbative aspects of QCD, such as the orbital and radial spectra of hadrons and the form of hadronic wavefunctions. In particular, we show that there is an exact correspondence between the fifth-dimensional coordinate of AdS space z and a specific impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions, the fundamental entities which encode hadron properties and allow the computation of decay constants, form factors, and other exclusive scattering amplitudes. New relativistic lightfront equations in ordinary space-time are found which reproduce the results obtained using the 5-dimensional theory. The effective light-front equations possess remarkable algebraic structures and integrability properties. Since they are complete and orthonormal, the AdS/CFT model wavefunctions can also be used as a basis for the diagonalization of the full light-front QCD Hamiltonian, thus systematically improving the AdS/CFT approximation.