Science.gov

Sample records for adding engine oil

  1. Engineered soy oils for new value added applications

    NASA Astrophysics Data System (ADS)

    Tran, Phuong T.

    Soybean oil is an abundant annually renewable resource. It is composed of triglycerides with long chain saturated and unsaturated fatty acids. The presence of unsaturated fatty acids allows for chemical modification to introduce new functionalities to soybean oil. A portfolio of chemically modified soy oil with suitable functional groups has been designed and engineered to serve as the starting material in applications such as polyamides, polyesters, polyurethanes, composites, and lubricants. Anhydride, hydroxyl, and silicone functionalities were introduced to soy oil. Anhydride functionality was introduced using a single-step free radical initiated process, and the chemically modified soy oils were evaluated for potential applications as a composite and lubricant. Hydroxyl functionalities were introduced in a single-step catalytic ozonolysis process recently developed in our labs, which proceeds rapidly and efficiently at room temperature without solvent. The transformed soy oil was used to successfully prepare bio-lubricants with good thermal/oxidative stability and bio-plastics such as polyamides, polyesters, and polyurethanes. A new class of organic-inorganic hybrid materials was prepared by curing vinyltrimethoxysilane functionalized soy oil. This hybrid material could have potential as biobased sealant through a moisture initiated room temperature cure. These new classes of soy-based materials are competitive both in cost and performance to petroleum based materials, but offer the advantage of being biobased.

  2. Characterization of polycyclic aromatic hydrocarbons from the diesel engine by adding light cycle oil to premium diesel fuel.

    PubMed

    Lin, Yuan-Chung; Lee, Wen-Jhy; Chen, Chung-Bang

    2006-06-01

    Diesel fuels governed by U.S. regulations are based on the index of the total aromatic contents. Three diesel fuels, containing various fractions of light cycle oil (LCO) and various sulfur, total polyaromatic, and total aromatic contents, were used in a heavy-duty diesel engine (HDDE) under transient cycle test to assess the feasibility of using current indices in managing the emissions of polycyclic aromatic hydrocarbons (PAHs) from HDDE. The mean sulfur content in LCO is 20.8 times as much as that of premium diesel fuel (PDF). The mean total polyaromatic content in LCO is 28.7 times as much as that of PDF, and the mean total aromatic content in LCO is 2.53 times as much as that of PDF. The total polyaromatic hydrocarbon emission factors in the exhaust from the diesel engine, as determined using PDF L3.5 (3.5% LCO and 96.5% PDF), L7.5 (7.5% LCO and 92.5% PDF), and L15 (15% LCO and 85% PDF) were 14.3, 25.8, 44, and 101 mg L(-1), respectively. The total benzo(a)pyrene equivalent (BaPeq) emission factors in the exhaust from PDF, L3.5, L7.5, and L15 were 0.0402, 0.121, 0.219, and 0.548 mg L(-1), respectively. Results indicated that using L3.5 instead of PDF will result in an 80.4% and a 201% increase of emission for total PAHs and total BaPeq, respectively. The relationships between the total polyaromatic hydrocarbon emission factor and the two emission control indices, including fuel polyaromatic content and fuel aromatic content, suggest that both indices could be used feasibly to regulate total PAH emissions. These results strongly suggest that LCO used in the traveling diesel vehicles significantly influences PAH emissions.

  3. Engine wear and lubricating oil contamination from plant oil fuels

    SciTech Connect

    Darcey, C.L.; LePori, W.A.; Yarbrough, C.M.

    1982-12-01

    Engine disassembly with wear measurements, and lubricating oil analysis were used to determine wear rates on a one cylinder diesel engine. Results are reported from short duration tests on the wear rates of various levels of processed sunflower oil, a 25% blend with diesel fuel, and processed cottonseed oil.

  4. Designing added functions in engineered cementitious composites

    NASA Astrophysics Data System (ADS)

    Yang, En-Hua

    In this dissertation, a new and systematic material design approach is developed for ECC with added functions through material microstructures linkage to composite macroscopic behavior. The thesis research embodies theoretical development by building on previous ECC micromechanical models, and experimental investigations into three specific new versions of ECC with added functions aimed at addressing societal demands of our built infrastructure. Specifically, the theoretical study includes three important ECC modeling elements: Steady-state crack propagation analyses and simulation, predictive accuracy of the fiber bridging constitutive model, and development of the rate-dependent strain-hardening criteria. The first element establishes the steady-state cracking criterion as a fundamental requirement for multiple cracking behavior in brittle matrix composites. The second element improves the accuracy of crack-width prediction in ECC. The third element establishes the micromechanics basis for impact-resistant ECC design. Three new ECCs with added functions were developed and experimentally verified in this thesis research through the enhanced theoretical framework. A green ECC incorporating a large volume of industrial waste was demonstrated to possess reduced crack width and drying shrinkage. The self-healing ECC designed with tight crack width was demonstrated to recover transport and mechanical properties after microcrack damage when exposed to wet and dry cycles. The impact-resistant ECC was demonstrated to retain tensile ductility with increased strength under moderately high strain-rate loading. These new versions of ECC with added functions are expected to contribute greatly to enhancing the sustainability, durability, and safety of civil infrastructure built with ECC. This research establishes the effectiveness of micromechanics-based design and material ingredient tailoring for ECC with added new attributes but without losing its basic tensile ductile

  5. Volatility of synthetic oils in engines

    SciTech Connect

    Nepogod'ev, A.V.; Mitin, I.V.; Vipper, A.B.

    1984-01-01

    This article compares the volatilities of mineral and synthetic oils in automotive and tractor engines, and defines the conditions under which synthetic oils have substantial advantages in volatility over the polymer-compounded mineral oils. The oil vaporization rates in a Petter W-1 single-cylinder carburetor engine is measured by means of a specially developed procedure. The oils used to lubricate automotive and tractor engines in the northern and arctic regions consist of a lowviscosity mineral oil base stock compounded with a polymeric additive. It is determined that the main factor influencing the vaporization of oils in the engine is the distillation range of the oil; that synthetic and mineral oils that are similar in distillation range will vaporize at approximately the same rate; that the rate of oil vaporization depends to a considerable degree on the cylinder temperature; that the advantages of synthetic and semisynthetic oils in volatility in comparison with polymer-compounded mineral oils, will be greater for higher cylinder temperatures; and that the use of synthetic components is advisable in 5W/30 and 10W/30 oils intended for use in engines with upper cylinder temperatures above 150/sup 0/C and in 5W/30, 10W/30, and 15W/30 oils intended for use in engines with upper cylinder temperatures of 180-190/sup 0/C.

  6. Engineering microbial factories for synthesis of value-added products

    PubMed Central

    Du, Jing; Shao, Zengyi; Zhao, Huimin

    2011-01-01

    Microorganisms have become an increasingly important platform for the production of drugs, chemicals, and biofuels from renewable resources. Advances in protein engineering, metabolic engineering, and synthetic biology enable redesigning microbial cellular networks and fine-tuning physiological capabilities, thus generating industrially viable strains for the production of natural and unnatural value-added compounds. In this review, we describe the recent progress on engineering microbial factories for synthesis of valued-added products including alkaloids, terpenoids, flavonoids, polyketides, non-ribosomal peptides, biofuels, and chemicals. Related topics on lignocellulose degradation, sugar utilization, and microbial tolerance improvement will also be discussed. PMID:21526386

  7. Clerget 100 hp heavy-oil engine

    NASA Technical Reports Server (NTRS)

    Leglise, Pierre

    1931-01-01

    A complete technical description of the Clerget heavy-oil engine is presented along with the general characteristics. The general characteristics are: 9 cylinders, bore 120 mm, stroke 130 mm, four-stroke cycle engine, rated power limited to 100 hp at 1800 rpm; weight 228 kg; propeller with direct drive and air cooling. Moving parts, engine block, and lubrication are all presented.

  8. Oleaginous yeast: a value-added platform for renewable oils.

    PubMed

    Probst, Kyle V; Schulte, Leslie R; Durrett, Timothy P; Rezac, Mary E; Vadlani, Praveen V

    2016-10-01

    Yeast single cell oil (SCO) is a non-crop-based, renewable oil source that can be used for the production of bio-based oleochemicals. Stand-alone production of SCO for oleochemicals is currently not cost-competitive because lower-cost alternatives from petroleum and crop-based resources are available. Utilizing low-valued nutrient sources, implementing cost-efficient downstream processes and adopting biotechnological advancements such as systems biology and metabolic engineering could prove valuable in making an SCO platform a reality in the emerging bio-based economy. This review aims to consider key biochemical pathways for storage lipid synthesis, possible pathways for SCO yield improvement, previously used bioprocessing techniques for SCO production, challenges in SCO commercialization and advantages of adopting a renewable SCO platform.

  9. Some engineering properties of heavy concrete added silica fume

    SciTech Connect

    Akkaş, Ayşe; Başyiğit, Celalettin; Esen, Serap

    2013-12-16

    Many different types of building materials have been used in building construction for years. Heavy concretes can be used as a building material for critical building as it can contain a mixture of many heavy elements. The barite itself for radiation shielding can be used and also in concrete to produce the workable concrete with a maximum density and adequate structural strength. In this study, some engineering properties like compressive strength, elasticity modules and flexure strength of heavy concretes’ added Silica fume have been investigated.

  10. Carcinogenic potential of gasoline and diesel engine oils.

    PubMed

    McKee, R H; Plutnick, R T

    1989-10-01

    Used gasoline engine oils are carcinogenic in mouse skin and mutagenic in Salmonella. The toxicity of fresh gasoline engine oils and that of fresh and used diesel engine oils are less well defined. The present studies examined the dermal carcinogenic potential of a series of fresh and used oils from both gasoline and diesel engines. The used oils represented a variety of operating conditions. The objective of the study was to assess the potential carcinogenic hazards associated with exposure to these materials. The majority of the used gasoline engine oils tested were carcinogenic although one oil, collected after a relatively short drainage interval, was inactive in the dermal carcinogenesis bioassay. Additionally, polycyclic aromatic hydrocarbon (PAH) concentrations were elevated in the used oils in comparison to the fresh oils. The fresh gasoline engine oils and both the fresh and used diesel engine oil samples were noncarcinogenic, and there was little evidence of elevated PAH levels in the used diesel engine oils. The carcinogenic potency of used oils from gasoline engines was related to drainage interval, but other factors such as contribution of the fuel due to blowby and driving cycle may also have been important. The used diesel engine oils were not carcinogenic even after extended use.

  11. Real-time measurement of engine oil economy

    SciTech Connect

    Butler, J.W.; Korniski, T.; Calvin, A.D.; Jary, E.H.

    1987-01-01

    A coulometric SO/sub 2/ monitor has been developed to measure SO/sub 2/ generated from combustion of S in oil to determine engine oil consumption. Sulfur-free fuel is used to eliminate background levels of SO/sub 2/. Addition of an SO/sub 2/ standard gas to the engine during test insures accurate normalization of sampling system flows and quantitative measurement of engine oil economy. Precision of the SO/sub 2/ microcoulometer technique was better than +-8%. The SO/sub 2/ microcoulometer is used during steady state engine operation, and may be used in determining oil consumption from individual cylinders. Existence of engine oil consumption via an aerosol mechanism is investigated and measured. Effects of engine operating temperature and positive crankcase ventilation (PCV) on engine oil economy are given.

  12. Adding a visualization feature to web search engines: it's time.

    PubMed

    Wong, Pak Chung

    2008-01-01

    It's widely recognized that all Web search engines today are almost identical in presentation layout and behavior. In fact, the same presentation approach has been applied to depicting search engine results pages (SERPs) since the first Web search engine launched in 1993. In this Visualization Viewpoints article, I propose to add a visualization feature to Web search engines and suggest that the new addition can improve search engines' performance and capabilities, which in turn lead to better Web search technology.

  13. 7 CFR 3201.102 - Engine crankcase oils.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Designated Items § 3201.102 Engine crankcase oils. (a) Definition. Lubricating products formulated to provide lubrication and wear protection for four-cycle gasoline or diesel engines. (b) Minimum biobased content. The... 7 Agriculture 15 2014-01-01 2014-01-01 false Engine crankcase oils. 3201.102 Section...

  14. 7 CFR 2902.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false 2-Cycle engine oils. 2902.25 Section 2902.25... Items § 2902.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to... least 34 percent, which shall be based on the amount of qualifying biobased carbon in the product as...

  15. 7 CFR 2902.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false 2-Cycle engine oils. 2902.25 Section 2902.25... Items § 2902.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to... least 34 percent, which shall be based on the amount of qualifying biobased carbon in the product as...

  16. Characterization of lubrication oil emissions from aircraft engines.

    PubMed

    Yu, Zhenhong; Liscinsky, David S; Winstead, Edward L; True, Bruce S; Timko, Michael T; Bhargava, Anuj; Herndon, Scott C; Miake-Lye, Richard C; Anderson, Bruce E

    2010-12-15

    In this first ever study, particulate matter (PM) emitted from the lubrication system overboard breather vent for two different models of aircraft engines has been systematically characterized. Lubrication oil was confirmed as the predominant component of the emitted particulate matter based upon the characteristic mass spectrum of the pure oil. Total particulate mass and size distributions of the emitted oil are also investigated by several high-sensitivity aerosol characterization instruments. The emission index (EI) of lubrication oil at engine idle is in the range of 2-12 mg kg(-1) and increases with engine power. The chemical composition of the oil droplets is essentially independent of engine thrust, suggesting that engine oil does not undergo thermally driven chemical transformations during the ∼4 h test window. Volumetric mean diameter is around 250-350 nm for all engine power conditions with a slight power dependence.

  17. Terahertz spectroscopy properties of the selected engine oils

    NASA Astrophysics Data System (ADS)

    Zhu, Shouming; Zhao, Kun; Lu, Tian; Zhao, Songqing; Zhou, Qingli; Shi, Yulei; Zhao, Dongmei; Zhang, Cunlin

    2010-11-01

    Engine oil, most of which is extracted from petroleum, consist of complex mixtures of hydrocarbons of molecular weights in the range of 250-1000. Variable amounts of different additives are put into them to inhibit oxidation, improve the viscosity index, decrease the fluidity point and avoid foaming or settling of solid particles among others. Terahertz (THz) spectroscopy contains rich physical, chemical, and structural information of the materials. Most low-frequency vibrational and rotational spectra of many petrochemicals lie in this frequency range. In recent years, much attention has been paid to the THz spectroscopic studies of petroleum products. In this paper, the optical properties and spectroscopy of selected kinds of engine oil consisting of shell HELIX 10W-40, Mobilube GX 80W-90, GEELY ENGINE OIL SG 10W-30, SMA engine oil SG 5W-30, SMA engine oil SG 10W-30, SMA engine oil SG 75W-90 have been studied by the terahertz time-domain spectroscopy (THz-TDS) in the spectral range of 0.6-2.5 THz. Engine oil with different viscosities in the terahertz spectrum has certain regularity. In the THz-TDS, with the increase of viscosity, time delay is greater and with the increase of viscosity, refractive indexes also grow and their rank is extremely regular. The specific kinds of engine oil can be identified according to their different spectral features in the THz range. The THz-TDS technology has potentially significant impact on the engine oil analysis.

  18. ADS genes for reducing saturated fatty acid levels in seed oils

    DOEpatents

    Heilmann, Ingo H.; Shanklin, John

    2010-02-02

    The present invention relates to enzymes involved in lipid metabolism. In particular, the present invention provides coding sequences for Arabidopsis Desaturases (ADS), the encoded ADS polypeptides, and methods for using the sequences and encoded polypeptides, where such methods include decreasing and increasing saturated fatty acid content in plant seed oils.

  19. ADS genes for reducing saturated fatty acid levels in seed oils

    DOEpatents

    Heilmann, Ingo H; Shanklin, John

    2014-03-18

    The present invention relates to enzymes involved in lipid metabolism. In particular, the present invention provides coding sequences for Arabidopsis Desaturases (ADS), the encoded ADS polypeptides, and methods for using the sequences and encoded polypeptides, where such methods include decreasing and increasing saturated fatty acid content in plant seed oils.

  20. Volatility and oil consumption of SAE 5W-30 engine oil

    SciTech Connect

    Didot, F.E.; Green, E.; Johnson, R.H.

    1987-01-01

    Experience has shown oil economy, or conversely, oil consumption, to be a significant factor in the consumer's perception of engine oil quality. Recent changes in the primary viscosity grade recommendations by the major automotive manufacturers have made the consumer even more sensitive to real, and/or perceived, changes in engine oil performance. This paper examines the effect of volatility characteristics on engine oil consumption, in both laboratory test engines and vehicle fleet testing. Special attention is given to the SAE 5W-30 viscosity grade in comparison to the widely marketed SAE 10W-40 grade product.

  1. Born-Infeld AdS black holes as heat engines

    NASA Astrophysics Data System (ADS)

    Johnson, Clifford V.

    2016-07-01

    We study the efficiency of heat engines that perform mechanical work via the pdV terms present in the first law in extended gravitational thermodynamics. We use charged black holes as the working substance, for a particular choice of engine cycle. The context is Einstein gravity with negative cosmological constant and a Born-Infeld nonlinear electrodynamics sector. We compare the results for these ‘holographic’ heat engines to previous results obtained for Einstein-Maxwell black holes, and for the case where there is a Gauss-Bonnet sector.

  2. Born–Infeld AdS black holes as heat engines

    NASA Astrophysics Data System (ADS)

    Johnson, Clifford V.

    2016-07-01

    We study the efficiency of heat engines that perform mechanical work via the pdV terms present in the first law in extended gravitational thermodynamics. We use charged black holes as the working substance, for a particular choice of engine cycle. The context is Einstein gravity with negative cosmological constant and a Born–Infeld nonlinear electrodynamics sector. We compare the results for these ‘holographic’ heat engines to previous results obtained for Einstein–Maxwell black holes, and for the case where there is a Gauss–Bonnet sector.

  3. Recycled waste oil: A fuel for medium speed diesel engines?

    SciTech Connect

    Cheng, A.B.L.; Poynton, W.A.; Howard, J.G.

    1996-12-31

    This paper describes the exploratory engine trials that Mirrlees Blackstone has undertaken to investigate the effect of fueling an engine using waste oil derived from used lubricants. The effect on the engine`s mechanical components, and thermal performance are examined, and the steps taken to overcome problems are discussed. The proposed engine is sited within the Research and Development facilities, housed separately from the manufacturing plant. The unit is already capable of operating on two different types of fuel with single engine set up. It is a 3 cylinder, 4-stroke turbocharged direct injection engine mounted on an underbase and it operates at 600 rpm, 15.0 bar B.M.E.P. (Brake Mean Effective Pressure). It is a mature engine, built {approximately} 20 years previously, and used for emergency stand-by duties in the company`s powerhouse. The test engine is coupled to an alternator and the electricity generated is fed to the national grid. Initial samples of treated fuel oil, analyzed by an independent oil analysis consultant, indicated that the fuel oil does not correspond to a normal fuel oil. They contained high concentrations of trace elements (i.e. calcium, phosphorus, lead, aluminum and silicon) which was consistent with sourcing from waste lubricating oils. The fuel oil was considered to be too severe for use in an engine.

  4. Plant oils as applied to spark ignition engines

    SciTech Connect

    Hoki, M.; Liljedahl, J.B.; Takeda, S.

    1983-12-01

    Eucalyptus and orange oil blended with gasoline were used to find their burning characteristics and the effect upon engine performance. The appropriate ignition timing for the eucalyptus oil blend fuel for optimum engine performance was investigated as well as the antiknock quality of the fuel.

  5. 7 CFR 3201.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false 2-Cycle engine oils. 3201.25 Section 3201.25... Designated Items § 3201.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle... of at least 34 percent, which shall be based on the amount of qualifying biobased carbon in...

  6. 7 CFR 3201.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false 2-Cycle engine oils. 3201.25 Section 3201.25... Designated Items § 3201.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle... of at least 34 percent, which shall be based on the amount of qualifying biobased carbon in...

  7. 7 CFR 3201.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false 2-Cycle engine oils. 3201.25 Section 3201.25... Designated Items § 3201.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle... of at least 34 percent, which shall be based on the amount of qualifying biobased carbon in...

  8. Orange oil and its application to spark ignition engine

    SciTech Connect

    Takeda, S.

    1982-12-01

    Orange oil can be extracted from the peel of citrus. In Japan the production of orange oil is about 2000 tons per year. No orange oil has been however used for any specific purpose. The main ingredient of orange oil consists of d-limonen. About 0.6-1.0% oil can be extracted from the peel of ''Unshu orange'', which is a kind of typical Japanese tangerine. Orange oil has 106-140 research octane number which is good for running the CFR engine. The flash point of orange oil measured by Pensky-Martens method was at 56/sup 0/C. For the use of orange oil only as fuel without blending, there was found to be some difficulty in engine startability under cold conditions.

  9. Evaluation of passenger car gasoline engine oils by JASO test procedures - Report by JASO engine oil subcommittee

    SciTech Connect

    Takano, T.; Nakamura, K.; Sakamoto, K.

    1987-01-01

    Japan Automobile Standards Organization (JASO) Engine Oil Sub-committee have been working on the unification of the engine oil evaluation test procedures in Japan. The Engine Oil Sub-committee participated in the recent activity of the worldwide engine oil standardization of SAE and ISO. As one of the chain of activities, JASO tests M328, M331, and M333 (valve train wear, detergency and high temperature oxidation respectively) were conducted on the REOs of ASTM and CEC to find the correlation. The detergency tests (varnish and sludge) showed good correlation with the ASTM REOs. CEC good and poor reference oils seemed to give good results in JASO valve train wear test, while ASTM reference oils unexpectedly gave opposite results in Japanese valve train wear tests.

  10. Approximate ad-hoc query engine for simulation data

    SciTech Connect

    Abdulla, G; Baldwin, C; Critchlow, T; Kamimura, R; Lozares, I; Musick, R; Tang, N; Lee, B S; Snapp, R

    2001-02-01

    In this paper, we describe AQSim, an ongoing effort to design and implement a system to manage terabytes of scientific simulation data. The goal of this project is to reduce data storage requirements and access times while permitting ad-hoc queries using statistical and mathematical models of the data. In order to facilitate data exchange between models based on different representations, we are evaluating using the ASCI common data model which is comprised of several layers of increasing semantic complexity. To support queries over the spatial-temporal mesh structured data we are in the process of defining and implementing a grammar for MeshSQL.

  11. FTIR analysis and monitoring of synthetic aviation engine oils.

    PubMed

    Adams, Mike J; Romeo, Melissa J; Rawson, Paul

    2007-10-15

    Synthetic turbine oils from military aircraft engines were analysed for antioxidant content and total acid number using infrared (IR) spectroscopy. Two-dimensional IR correlation analysis was employed to investigate and interpret observed trends in the spectra, as acid was formed and antioxidant species were depleted in the oils, as a function of aging and engine wear. Principal components and partial least squares algorithms were used and compared for the development of calibration and prediction models. Transmission IR spectrometry is demonstrated to be effective for the analysis and monitoring of synthetic aviation turbine engine oils and shown to provide rapid and accurate information as compared with traditional analytical techniques and methods.

  12. Method and apparatus for reduced oil consumption and oil deterioration in reciprocating engines

    SciTech Connect

    Beaty, K.D.

    1989-06-26

    This patent describes a method for reducing oil consumption and oil deterioration in a reciprocating engine. It comprises: providing the engine with ceramic rings and ceramic cylinder linings the rings and the linings being in direct sliding contact; providing a means for the minimal adsorption of an oil lubricant on the rings and the linings to form a lubricating boundary-film on the rings and linings; and providing a means for restriction of an excess of the oil lubricant from entering the piston ring/cylinder liner region of the engine precluding a hydrodynamic, full film lubricant layer between the rings and linings.

  13. Performance of Diesel Engine Using Blended Crude Jatropha Oil

    NASA Astrophysics Data System (ADS)

    Kamarudin, Kamarul Azhar; Mohd Sazali, Nor Shahida Akma; Mohd Ali, Mas Fauzi; Alimin, Ahmad Jais; Khir, Saffiah Abdullah

    2010-06-01

    Vegetable oil presents a very promising alternative to diesel oil since it is renewable and has similar properties to the diesel. In view of this, crude jatropha oil is selected and its viscosity is reduced by blending it with diesel. Since jatropha oil has properties which are similar to mineral diesel, it can be used in compression ignition engines without any engine modification. This paper presents the results of investigation carried out on a four-cylinder, four strokes and indirect-injection diesel engine. The engine, operated using composition blends of crude jatropha oil and diesel, were compared with mineral diesel. An experimental investigation has been carried out to analyze the performance characteristics of a compression ignition engine from the blended fuel (5%, 10%, 20% and 30%). A naturally aspirated four-stroke indirect injection diesel engine was tested at full load conditions, speeds between 1000 and 3500 rpm with intervals of 500 rpm. Results obtained from the measures of torque, power, specific fuel consumptions, thermal efficiency and brake mean effective pressure are nearly the same between blended and diesel fuel. An overall graph shows that the performance of relevant parameters from blended fuel is most likely similar to the performance produced from diesel. The experimental results proved that the use of crude jatropha oil in compression ignition engines is a viable alternative to diesel.

  14. Spacecraft Testing Programs: Adding Value to the Systems Engineering Process

    NASA Technical Reports Server (NTRS)

    Britton, Keith J.; Schaible, Dawn M.

    2011-01-01

    Testing has long been recognized as a critical component of spacecraft development activities - yet many major systems failures may have been prevented with more rigorous testing programs. The question is why is more testing not being conducted? Given unlimited resources, more testing would likely be included in a spacecraft development program. Striking the right balance between too much testing and not enough has been a long-term challenge for many industries. The objective of this paper is to discuss some of the barriers, enablers, and best practices for developing and sustaining a strong test program and testing team. This paper will also explore the testing decision factors used by managers; the varying attitudes toward testing; methods to develop strong test engineers; and the influence of behavior, culture and processes on testing programs. KEY WORDS: Risk, Integration and Test, Validation, Verification, Test Program Development

  15. Quality improvement of pyrolysis oil from waste rubber by adding sawdust

    SciTech Connect

    Wang, Wen-liang; Chang, Jian-min; Cai, Li-ping; Shi, Sheldon Q.

    2014-12-15

    Highlights: • Rubber-pyrolysis oil is difficult to be fuel due to high proportion of PAHs. • The efficiency of pyrolysis was increased as the percentage of sawdust increased. • The adding of sawdust improved pyrolysis oil quality by reducing the PAHs content. • Adding sawdust reduced nitrogen/sulfur in oil and was easier to convert to diesel. - Abstract: This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during the pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG–FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis–gas chromatography (GC)–mass spectrometry (Py–GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2 s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil.

  16. Oil cooling system for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.; Kast, H. B. (Inventor)

    1977-01-01

    A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess of fuel control requirements back to aircraft fuel tank, thereby increasing the fuel pump heat sink and decreasing the pump temperature rise without the addition of valving other than that normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. Fluid circuitry is provided to route hot engine oil through a plurality of heat exchangers disposed within the system to provide for selective cooling of the oil.

  17. 21. Power plant engine fuel oil piping diagrams, sheet 83 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Power plant engine fuel oil piping diagrams, sheet 83 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  18. Improving peppermint essential oil yield and composition by metabolic engineering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peppermint (Mentha x piperita L.) was transformed with various gene constructs to evaluate the utility of metabolic engineering for improving essential oil yield and composition. Oil yield increases were achieved by overexpressing genes involved in the supply of precursors through the 2C-methyl-D-er...

  19. Long term testing of peanut oil in engines

    SciTech Connect

    Goodrum, J.W.

    1985-01-01

    Durability tests of engines using crude peanut oil blended with no. 2 diesel were conducted, using the E.M.A. screening procedure. Direct and indirect injection designs were operated on 20:80 and 80:28 fuel blends. Time-dependent exhaust temperature changes, mechanical wear, and crank-case oil viscosity changes were evaluated.

  20. Effect of EGR contamination of diesel engine oil on wear.

    SciTech Connect

    Ajayi, O. O.; Erdemir, A.; Fenske, G. R.; Aldajah, S.; Goldblatt, I. L.; Energy Systems; United Arab Emirates Univ.; BP-Global Lubricants Technology

    2007-09-01

    Exhaust gas recirculation (EGR) is one of the effective means to reduce the NO{sub X} emission from diesel engines. Returning exhaust product to the diesel engine combustion chamber accelerated the degradation of the lubricant engine oil, primarily by increasing the total acid number (TAN) as well as the soot content and, consequently, the viscosity. These oil degradation mechanisms were observed in engine oil exposed to EGR during a standard Cummins M-l 1 diesel engine test. Four-ball wear tests with M-50 balls showed that, although the used oils slightly decrease the friction coefficients, they increased the ball wear by two orders of magnitude when compared to tests with clean oil. Wear occurred primarily by an abrasive mechanism, but in oil with the highest soot loading of 12%, scuffing and soot particle embedment were also observed. Laboratory wear tests showed a linear correlation with the TAN, while the crosshead wear during the engine test was proportional to the soot content.

  1. Improving peppermint essential oil yield and composition by metabolic engineering.

    PubMed

    Lange, Bernd Markus; Mahmoud, Soheil Seyed; Wildung, Mark R; Turner, Glenn W; Davis, Edward M; Lange, Iris; Baker, Raymond C; Boydston, Rick A; Croteau, Rodney B

    2011-10-11

    Peppermint (Mentha × piperita L.) was transformed with various gene constructs to evaluate the utility of metabolic engineering for improving essential oil yield and composition. Oil yield increases were achieved by overexpressing genes involved in the supply of precursors through the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. Two-gene combinations to enhance both oil yield and composition in a single transgenic line were assessed as well. The most promising results were obtained by transforming plants expressing an antisense version of (+)-menthofuran synthase, which is critical for adjusting the levels of specific undesirable oil constituents, with a construct for the overexpression of the MEP pathway gene 1-deoxy-D-xylulose 5-phosphate reductoisomerase (up to 61% oil yield increase over wild-type controls with low levels of the undesirable side-product (+)-menthofuran and its intermediate (+)-pulegone). Elite transgenic lines were advanced to multiyear field trials, which demonstrated consistent oil yield increases of up to 78% over wild-type controls and desirable effects on oil composition under commercial growth conditions. The transgenic expression of a gene encoding (+)-limonene synthase was used to accumulate elevated levels of (+)-limonene, which allows oil derived from transgenic plants to be recognized during the processing of commercial formulations containing peppermint oil. Our study illustrates the utility of metabolic engineering for the sustainable agricultural production of high quality essential oils at a competitive cost. PMID:21963983

  2. Improving peppermint essential oil yield and composition by metabolic engineering.

    PubMed

    Lange, Bernd Markus; Mahmoud, Soheil Seyed; Wildung, Mark R; Turner, Glenn W; Davis, Edward M; Lange, Iris; Baker, Raymond C; Boydston, Rick A; Croteau, Rodney B

    2011-10-11

    Peppermint (Mentha × piperita L.) was transformed with various gene constructs to evaluate the utility of metabolic engineering for improving essential oil yield and composition. Oil yield increases were achieved by overexpressing genes involved in the supply of precursors through the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. Two-gene combinations to enhance both oil yield and composition in a single transgenic line were assessed as well. The most promising results were obtained by transforming plants expressing an antisense version of (+)-menthofuran synthase, which is critical for adjusting the levels of specific undesirable oil constituents, with a construct for the overexpression of the MEP pathway gene 1-deoxy-D-xylulose 5-phosphate reductoisomerase (up to 61% oil yield increase over wild-type controls with low levels of the undesirable side-product (+)-menthofuran and its intermediate (+)-pulegone). Elite transgenic lines were advanced to multiyear field trials, which demonstrated consistent oil yield increases of up to 78% over wild-type controls and desirable effects on oil composition under commercial growth conditions. The transgenic expression of a gene encoding (+)-limonene synthase was used to accumulate elevated levels of (+)-limonene, which allows oil derived from transgenic plants to be recognized during the processing of commercial formulations containing peppermint oil. Our study illustrates the utility of metabolic engineering for the sustainable agricultural production of high quality essential oils at a competitive cost.

  3. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    NASA Astrophysics Data System (ADS)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  4. Mechanisms for lowering of interfacial tension in alkali/acidic oil systems; Effect of added surfactant

    SciTech Connect

    Rudin, J. Wasan, D.T. . Dept. of Chemical Engineering)

    1992-08-01

    This paper reports that experimental studies are conducted in order to determine the physicochemical mechanism responsible for lowering of interfacial tension in alkali, surfactant, and surfactant-enhanced alkali/acidic oil systems. A well-defined model oil is chosen to examine the influence of various surfactants and surfactant mixtures, such as oleic acid and its ionic counterpart, sodium dodecyl sulfate, petroleum sulfonate, and isobutanol, on equilibrium interfacial tension. With added surfactant alone, the interfacial tension goes through an ultralow minimum with increasing acid concentration. This proves for the first time that the un-ionized acid species plays a major role in affecting interfacial tension, and the ionized acid species.

  5. Effects of engine oil viscosity and composition on fuel efficiency

    SciTech Connect

    Clevenger, J.E.; Carlson, D.C.; Kleiser, W.M.

    1984-01-01

    A 2.3l engine dynamometer test procedure that measures the effects of engine oils on fuel efficiency has been developed that a) generally agrees with the ASTM five-car test, b) has good test repeatability and c) is capable of detecting small differences among test oils with high statistical confidence. Factors in a lubricant affecting fuel efficiency such as SAE viscosity grade, VI improver, detergent-inhibitor (DI) package and friction modifier selection were investigated in the 2.3l engine dynamometer test. A general trend of improved fuel efficiency was found with reduction in single-grade and multigrade oil viscosity. VI improver selection was found to have a significant effect on the fuel efficiency of multigrade oils. In some cases the difference in fuel efficiency among multigrade oils containing different VI improvers was about the same as the gain in fuel efficiency from reducing SAE grade from an SAE 10w-40 to an SAE 5w-30. Results show that by careful selection of the VI improver and DI package it is possible to formulate multigrade oils that exceed the requirements of the current ASTM energy-conserving engine oil classification.

  6. Microbial chemical factories: recent advances in pathway engineering for synthesis of value added chemicals.

    PubMed

    Dhamankar, Himanshu; Prather, Kristala L J

    2011-08-01

    The dwindling nature of petroleum and other fossil reserves has provided impetus towards microbial synthesis of fuels and value added chemicals from biomass-derived sugars as a renewable resource. Microbes have naturally evolved enzymes and pathways that can convert biomass into hundreds of unique chemical structures, a property that can be effectively exploited for their engineering into Microbial Chemical Factories (MCFs). De novo pathway engineering facilitates expansion of the repertoire of microbially synthesized compounds beyond natural products. In this review, we visit some recent successes in such novel pathway engineering and optimization, with particular emphasis on the selection and engineering of pathway enzymes and balancing of their accessory cofactors.

  7. Magnetorheology of suspensions based on graphene oxide coated or added carbonyl iron microspheres and sunflower oil

    NASA Astrophysics Data System (ADS)

    Chen, Kaikai; Zhang, Wen Ling; Shan, Lei; Zhang, Xiangjun; Meng, Yonggang; Choi, Hyoung Jin; Tian, Yu

    2014-10-01

    Magnetorheological (MR) fluids based on carbonyl iron (CI) particles coated with graphene oxide (GO) and sunflower oils were studied and compared with MR fluids (MRFs) prepared with CI particles added with GO sheets. Adding GO sheets into CI had a negligible effect on the rheological properties of the MRF. Coating the spheres with GO markedly decreased the shear strength at high shear rates due to the remarkable lubricating function of the GO surface. Different behaviors were observed in the shear thickening phenomenon when the GO surface changed the mechanical interaction between particles. The results demonstrated the importance of the role of interparticle friction for MRF in shear mode and discussed the weak shear thickening phenomenon with fine lubricating coating layers and oils.

  8. Engineered microbes and methods for microbial oil production

    DOEpatents

    Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar

    2015-02-10

    Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis and storage properties.

  9. Short-term performance of diesel oil and sunflower oil mixtures in diesel engines

    SciTech Connect

    Kaufman, K.R.; Ziejewski, M.; Marohl, M.; Kucera, H.L.

    1982-05-01

    A series of short tests were run on two different makes of diesel tractor. The fuel used in addition to the No. 2 diesel fuel were refined sunflower oil, crude sunflower oil and five blends of each of these fuels with No. 2 diesel fuel. Engine performance parameters measured include: engine power, volumetric fuel efficiency, thermal efficiency, exhaust temperature, Bosch smoke number and fuel flow. (Refs. 3).

  10. Cholesterol Lowering Effect of Plant Stanol Ester Yoghurt Drinks with Added Camelina Oil

    PubMed Central

    Salo, Pia; Kuusisto, Päivi

    2016-01-01

    The aim of this study was to investigate the effects of yoghurt minidrinks containing two doses of plant stanol ester either with or without added camelina oil on the serum cholesterol levels in moderately hypercholesterolemic subjects. In this randomised, double-blind, parallel group study, 143 subjects consumed a 65 mL minidrink together with a meal daily for four weeks. The minidrink contained 1.6 or 2.0 grams of plant stanols with or without 2 grams of alpha-linolenic acid-rich camelina oil. The placebo minidrink did not contain plant stanols or camelina oil. All plant stanol treated groups showed statistically significant total, LDL, and non-HDL cholesterol lowering relative to baseline and relative to placebo. Compared to placebo, LDL cholesterol was lowered by 9.4% (p < 0.01) and 8.1% (p < 0.01) with 1.6 g and 2 g plant stanols, respectively. With addition of Camelina oil, 1.6 g plant stanols resulted in 11.0% (p < 0.01) and 2 g plant stanols in 8.4% (p < 0.01) reduction in LDL cholesterol compared to placebo. In conclusion, yoghurt minidrinks with plant stanol ester reduced serum LDL cholesterol significantly and addition of a small amount of camelina oil did not significantly enhance the cholesterol lowering effect. This trial was registered with ClinicalTrials.gov NCT02628990. PMID:26998355

  11. Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films.

    PubMed

    Avila-Sosa, Raúl; Palou, Enrique; Jiménez Munguía, María Teresa; Nevárez-Moorillón, Guadalupe Virginia; Navarro Cruz, Addí Rhode; López-Malo, Aurelio

    2012-02-01

    Antimicrobial agents can be incorporated into edible films to provide microbiological stability, since films can be used as carriers of a variety of additives to extend product shelf life and reduce the risk of microbial growth on food surfaces. Addition of antimicrobial agents to edible films offers advantages such as the use of small antimicrobial concentrations and low diffusion rates. The aim of this study was to evaluate inhibition by vapor contact of Aspergillus niger and Penicillium digitatum by selected concentrations of Mexican oregano (Lippia berlandieri Schauer), cinnamon (Cinnamomum verum) or lemongrass (Cymbopogon citratus) essential oils (EOs) added to amaranth, chitosan, or starch edible films. Essential oils were characterized by gas chromatography-mass spectrometry (GC/MS) analysis. Amaranth, chitosan and starch edible films were formulated with essential oil concentrations of 0.00, 0.25, 0.50, 0.75, 1.00, 2.00, or 4.00%. Antifungal activity was evaluated by determining the mold radial growth on agar media inoculated with A. niger and P. digitatum after exposure to vapors arising from essential oils added to amaranth, chitosan or starch films using the inverted lid technique. The modified Gompertz model adequately described mold growth curves (mean coefficient of determination 0.991 ± 0.05). Chitosan films exhibited better antifungal effectiveness (inhibition of A. niger with 0.25% of Mexican oregano and cinnamon EO; inhibition of P. digitatum with 0.50% EOs) than amaranth films (2.00 and 4.00% of cinnamon and Mexican oregano EO were needed to inhibit the studied molds, respectively). For chitosan and amaranth films a significant increase (p<0.05) of lag phase was observed among film concentrations while a significant decrease (p<0.05) of maximum specific growth was determined. Chitosan edible films incorporating Mexican oregano or cinnamon essential oil could improve the quality of foods by the action of the volatile compounds on surface growth

  12. Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films.

    PubMed

    Avila-Sosa, Raúl; Palou, Enrique; Jiménez Munguía, María Teresa; Nevárez-Moorillón, Guadalupe Virginia; Navarro Cruz, Addí Rhode; López-Malo, Aurelio

    2012-02-01

    Antimicrobial agents can be incorporated into edible films to provide microbiological stability, since films can be used as carriers of a variety of additives to extend product shelf life and reduce the risk of microbial growth on food surfaces. Addition of antimicrobial agents to edible films offers advantages such as the use of small antimicrobial concentrations and low diffusion rates. The aim of this study was to evaluate inhibition by vapor contact of Aspergillus niger and Penicillium digitatum by selected concentrations of Mexican oregano (Lippia berlandieri Schauer), cinnamon (Cinnamomum verum) or lemongrass (Cymbopogon citratus) essential oils (EOs) added to amaranth, chitosan, or starch edible films. Essential oils were characterized by gas chromatography-mass spectrometry (GC/MS) analysis. Amaranth, chitosan and starch edible films were formulated with essential oil concentrations of 0.00, 0.25, 0.50, 0.75, 1.00, 2.00, or 4.00%. Antifungal activity was evaluated by determining the mold radial growth on agar media inoculated with A. niger and P. digitatum after exposure to vapors arising from essential oils added to amaranth, chitosan or starch films using the inverted lid technique. The modified Gompertz model adequately described mold growth curves (mean coefficient of determination 0.991 ± 0.05). Chitosan films exhibited better antifungal effectiveness (inhibition of A. niger with 0.25% of Mexican oregano and cinnamon EO; inhibition of P. digitatum with 0.50% EOs) than amaranth films (2.00 and 4.00% of cinnamon and Mexican oregano EO were needed to inhibit the studied molds, respectively). For chitosan and amaranth films a significant increase (p<0.05) of lag phase was observed among film concentrations while a significant decrease (p<0.05) of maximum specific growth was determined. Chitosan edible films incorporating Mexican oregano or cinnamon essential oil could improve the quality of foods by the action of the volatile compounds on surface growth

  13. Emissions in the exhaust of fishing boats after adding viscous agents into fuel oils.

    PubMed

    Hsieh, Lien-Te; Shih, Shun-I; Lin, Sheng-Lun; Yang, Tsun-Lirng; Wu, Tser-Son; Hung, Chung-Hsien

    2009-12-20

    In order to avoid the illegal use of fishing boat fuel A (FBFA) by traveling diesel vehicles (TDVs) in Taiwan, alternatives that are easily distinguished from premium diesel fuel (PDF) were prepared to evaluate their suitability. Two new ingredients, pyrolysis fuel oil (PFO) and residue of desulfurization unit (RDS), were added into FBFA and formed PFO0.5 and RDS0.5, respectively. Along with FBFA, these three fuels were analyzed for their chemical and physical properties. Furthermore, they were used by three fishing boats with different sizes, output powers, and weights. The engine performances and pollutant emissions were examined and monitored. Experimental results show that there are significant differences in appearance between PDF and the two new blended fuels (PFO0.5 and RDS0.5), and thus misuse or illegal use of FBFA could be substantially reduced. The fuel consumption, which is negatively related to the heating value of fuels, is in order of FBFA

  14. Quality improvement of pyrolysis oil from waste rubber by adding sawdust.

    PubMed

    Wang, Wen-liang; Chang, Jian-min; Cai, Li-ping; Shi, Sheldon Q

    2014-12-01

    This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during the pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG-FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis-gas chromatography (GC)-mass spectrometry (Py-GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil.

  15. Conductometric sensors for monitoring degradation of automotive engine oil.

    PubMed

    Latif, Usman; Dickert, Franz L

    2011-01-01

    Conductometric sensors have been fabricated by applying imprinted polymers as receptors for monitoring engine oil quality. Titania and silica layers are synthesized via the sol-gel technique and used as recognition materials for acidic components present in used lubricating oil. Thin-film gold electrodes forming an interdigitated structure are used as transducers to measure the conductance of polymer coatings. Optimization of layer composition is carried out by varying the precursors, e.g., dimethylaminopropyltrimethoxysilane (DMAPTMS), and aminopropyl-triethoxysilane (APTES). Characterization of these sensitive materials is performed by testing against oil oxidation products, e.g., carbonic acids. The results depict that imprinted aminopropyltriethoxysilane (APTES) polymer is a promising candidate for detecting the age of used lubricating oil. In the next strategy, polyurethane-nanotubes composite as sensitive material is synthesized, producing appreciable differentiation pattern between fresh and used oils at elevated temperature with enhanced sensitivity. PMID:22164094

  16. Single-cylinder diesel engine study of four vegetable oils

    SciTech Connect

    Jacobus, M.J.; Geyer, S.M.; Lestz, S.S.; Risby, T.M.; Taylor, W.D.

    1983-10-01

    A single-cylinder, 0.36l, D.I. Diesel engine was operated on Diesel fuel, sunflowerseed oil, cottonseed oil, soybean oil, and peanut oil. The purpose of this study was to provide a detailed comparison of performance and emissions data and to characterize the biological activity of the particulate soluble organic fraction for each fuel using the Ames Salmonella typhimurium test. In addition, exhaust gas aldehyde samples were collected using the DNPH method. These samples were analyzed gravimetrically and separated into components from formaldehyde to heptaldehyde with a gas chromatograph. Results comparing the vegetable oils to Diesel fuel generally show slight improvements in thermal efficiency and indicated specific energy consumption; equal or higher gas-phase emissions; lower indicated specific revertant emissions; and significantly higher aldehyde emissions, including an increased percentage of formaldehyde.

  17. Conductometric sensors for monitoring degradation of automotive engine oil.

    PubMed

    Latif, Usman; Dickert, Franz L

    2011-01-01

    Conductometric sensors have been fabricated by applying imprinted polymers as receptors for monitoring engine oil quality. Titania and silica layers are synthesized via the sol-gel technique and used as recognition materials for acidic components present in used lubricating oil. Thin-film gold electrodes forming an interdigitated structure are used as transducers to measure the conductance of polymer coatings. Optimization of layer composition is carried out by varying the precursors, e.g., dimethylaminopropyltrimethoxysilane (DMAPTMS), and aminopropyl-triethoxysilane (APTES). Characterization of these sensitive materials is performed by testing against oil oxidation products, e.g., carbonic acids. The results depict that imprinted aminopropyltriethoxysilane (APTES) polymer is a promising candidate for detecting the age of used lubricating oil. In the next strategy, polyurethane-nanotubes composite as sensitive material is synthesized, producing appreciable differentiation pattern between fresh and used oils at elevated temperature with enhanced sensitivity.

  18. 7 Processes that Enable NASA Software Engineering Technologies: Value-Added Process Engineering

    NASA Technical Reports Server (NTRS)

    Housch, Helen; Godfrey, Sally

    2011-01-01

    The presentation reviews Agency process requirements and the purpose, benefits, and experiences or seven software engineering processes. The processes include: product integration, configuration management, verification, software assurance, measurement and analysis, requirements management, and planning and monitoring.

  19. FRYING STABILITY OF PURIFIED MID-OLEIC SUNFLOWER OIL TRIACYLGLYCEROLS WITH ADDED PURE TOCOPHEROLS AND TOCOPHEROL MIXTURES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the effects of the addition of pure tocopherols to triacylglycerols, alpha, gamma, and delta tocopherols were added singly and in various combinations to stripped mid-oleic sunflower oil (SMOSUN). Tortilla chips were fried in the treated oils and then aged at ambient temperature to det...

  20. Viscosity of diesel engine fuel oil under pressure

    NASA Technical Reports Server (NTRS)

    Hersey, Mayo D

    1929-01-01

    In the development of Diesel engine fuel injection systems it is necessary to have an approximate knowledge of the absolute viscosity of the fuel oil under high hydrostatic pressures. This report presents the results of experimental tests conducted by Mr. Jackson Newton Shore, utilizing the A.S.M.E. high pressure equipment.

  1. Oil cooling system for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.; Kast, H. B. (Inventor)

    1977-01-01

    A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess fuel control requirements back to the aircraft fuel tank. This increases the fuel pump heat sink and decreases the pump temperature rise without the addition of valving other than normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. In one embodiment, a divider valve is provided to take all excess fuel from either upstream or downstream of the fuel filter and route it back to the tanks, the ratio of upstream to downstream extraction being a function of fuel pump discharge pressure.

  2. The use of tyre pyrolysis oil in diesel engines.

    PubMed

    Murugan, S; Ramaswamy, M C; Nagarajan, G

    2008-12-01

    Tests have been carried out to evaluate the performance, emission, and combustion characteristics of a single cylinder direct injection diesel engine fueled with 10%, 30%, and 50% of tyre pyrolysis oil (TPO) blended with diesel fuel (DF). The TPO was derived from waste automobile tyres through vacuum pyrolysis. The combustion parameters such as heat release rate, cylinder peak pressure, and maximum rate of pressure rise also analysed. Results showed that the brake thermal efficiency of the engine fueled with TPO-DF blends increased with an increase in blend concentration and reduction of DF concentration. NO(x), HC, CO, and smoke emissions were found to be higher at higher loads due to the high aromatic content and longer ignition delay. The cylinder peak pressure increased from 71 bars to 74 bars. The ignition delays were longer than with DF. It is concluded that it is possible to use tyre pyrolysis oil in diesel engines as an alternate fuel in the future.

  3. System for removing lubricating oil from an internal combustion engine oil pan

    SciTech Connect

    Sendak, R.M.

    1992-09-22

    This patent describes a portable system for removing lubricating oil from an internal combustion engine oil pan through an associated dip stick tube. It comprises: an electric pump adapted to be driven by means connected to the electric pump and including means first and second conduit means connected to the pump, a flexible hand siphon vacuum pump in the second conduit means downstream of the pump, a 12 volt electric drive motor, and switch means.

  4. Esterified sago waste for engine oil removal in aqueous environment.

    PubMed

    Ngaini, Zainab; Noh, Farid; Wahi, Rafeah

    2014-01-01

    Agro-waste from the bark of Metroxylon sagu (sago) was studied as a low cost and effective oil sorbent in dry and aqueous environments. Sorption study was conducted using untreated sago bark (SB) and esterified sago bark (ESB) in used engine oil. Characterization study showed that esterification has successfully improved the hydrophobicity, buoyancy, surface roughness and oil sorption capacity of ESB. Sorption study revealed that water uptake of SB is higher (30 min static: 2.46 g/g, dynamic: 2.67 g/g) compared with ESB (30 min static: 0.18 g/g, dynamic: 0.14 g/g). ESB, however, showed higher oil sorption capacity in aqueous environment (30 min static: 2.30 g/g, dynamic: 2.14) compared with SB (30 min static: 0 g/g, dynamic: 0 g/g). ESB has shown great poTENTial as effective oil sorbent in aqueous environment due to its high oil sorption capacity, low water uptake and high buoyancy. PMID:25176478

  5. Gas Turbine Engine Carbon Oil Seals Computerized Assembly

    NASA Technical Reports Server (NTRS)

    Lee, Robert

    2006-01-01

    In a bearing compartment there are a series of parts when assembled determine the location of the bearing and seal as related to the centerline of rotation. We see part datums that do not establish A coincident path from the bearing to the seal. High engine vibration can cause severe oil leakage. The inability of the seal to respond fast enough to the rotating element Radial Seal: Sensitive to housing air pressure Sensitive to seal runout ? Axial Seal: Very sensitive to seal perpendicularity to shaft. Goals include: 1) Repeatable assembly process; 2) Accurate assembly process; 3) Minimize seal runout; 4) Design to engine centerline of rotation, i.e. bearings.

  6. Inverse gas chromatography and other chromatographic techniques in the examination of engine oils.

    PubMed

    Fall, Jacek; Voelkel, Adam

    2002-09-01

    The emerging market of engine oils consists of a number of products from different viscosity and quality classes. Determination of the base oil used in manufacturing of the final product (engine oil) as well as estimation of mutual miscibility of oils and their solubility could be crucial problems. Inverse gas chromatography and other chromatographic techniques are presented as an interesting and fruitful extension of normalised standard analytical methods used in the oil industry. PMID:12385390

  7. Performance and emissions characteristics of a naturally aspirated diesel engine with vegetable oil fuels - 2

    SciTech Connect

    Humke, A.L.; Barsic, N.J.

    1981-01-01

    A naturally aspirated, direct injected diesel engine was used to evaluate the performance and emissions characteristics of a crude soybean oil, a 50 percent (by volume) mixture of crude soybean oil and no. 2 diesel fuel, and a degummed soybean oil. The data were compared with previous tests conducted on the same engine using diesel fuel, crude sunflower oil and a 50 percent mixture of crude sunflower oil and diesel fuel. 18 refs.

  8. Biodegradation of engine oil by fungi from mangrove habitat.

    PubMed

    Ameen, Fuad; Hadi, Sarfaraz; Moslem, Mohamed; Al-Sabri, Ahmed; Yassin, Mohamed A

    2015-01-01

    The pollution of land and water by petroleum compounds is a matter of growing concern necessitating the development of methodologies, including microbial biodegradation, to minimize the impending impacts. It has been extensively reported that fungi from polluted habitats have the potential to degrade pollutants, including petroleum compounds. The Red Sea is used extensively for the transport of oil and is substantially polluted, due to leaks, spills, and occasional accidents. Tidal water, floating debris, and soil sediment were collected from mangrove stands on three polluted sites along the Red Sea coast of Saudi Arabia and forty-five fungal isolates belonging to 13 genera were recovered from these samples. The isolates were identified on the basis of a sequence analysis of the 18S rRNA gene fragment. Nine of these isolates were found to be able to grow in association with engine oil, as the sole carbon source, under in vitro conditions. These selected isolates and their consortium accumulated greater biomass, liberated more CO2, and produced higher levels of extracellular enzymes, during cultivation with engine oil as compared with the controls. These observations were authenticated by gas chromatography-mass spectrophotometry (GC-MS) analysis, which indicated that many high mass compounds present in the oil before treatment either disappeared or showed diminished levels.

  9. Biodegradation of engine oil by fungi from mangrove habitat.

    PubMed

    Ameen, Fuad; Hadi, Sarfaraz; Moslem, Mohamed; Al-Sabri, Ahmed; Yassin, Mohamed A

    2015-01-01

    The pollution of land and water by petroleum compounds is a matter of growing concern necessitating the development of methodologies, including microbial biodegradation, to minimize the impending impacts. It has been extensively reported that fungi from polluted habitats have the potential to degrade pollutants, including petroleum compounds. The Red Sea is used extensively for the transport of oil and is substantially polluted, due to leaks, spills, and occasional accidents. Tidal water, floating debris, and soil sediment were collected from mangrove stands on three polluted sites along the Red Sea coast of Saudi Arabia and forty-five fungal isolates belonging to 13 genera were recovered from these samples. The isolates were identified on the basis of a sequence analysis of the 18S rRNA gene fragment. Nine of these isolates were found to be able to grow in association with engine oil, as the sole carbon source, under in vitro conditions. These selected isolates and their consortium accumulated greater biomass, liberated more CO2, and produced higher levels of extracellular enzymes, during cultivation with engine oil as compared with the controls. These observations were authenticated by gas chromatography-mass spectrophotometry (GC-MS) analysis, which indicated that many high mass compounds present in the oil before treatment either disappeared or showed diminished levels. PMID:26582288

  10. Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages

    DOEpatents

    Boggs, D.L.; Baraszu, D.J.; Foulkes, D.M.; Gomes, E.G.

    1998-12-29

    An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine`s crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages. 4 figs.

  11. Physisporinus vitreus: a versatile white rot fungus for engineering value-added wood products.

    PubMed

    Schwarze, Francis W M R; Schubert, Mark

    2011-11-01

    The credo of every scientist working in the field of applied science is to transfer knowledge "from science to market," a process that combines (1) science (fundamental discoveries and basic research) with (2) technology development (performance assessment and optimization) and (3) technology transfer (industrial application). Over the past 7 years, we have intensively investigated the potential of the white rot fungus, Physisporinus vitreus, for engineering value-added wood products. Because of its exceptional wood degradation pattern, i.e., selective lignification without significant wood strength losses and a preferential degradation of bordered pit membranes, it is possible to use this fungus under controlled conditions to improve the acoustic properties of tonewood (i.e., "mycowood") as well as to enhance the uptake of preservatives and wood modification substances in refractory wood species (e.g., Norway spruce), a process known as "bioincising." This minireview summarizes the research that we have performed with P. vitreus and critically discusses the challenges encountered during the development of two distinct processes for engineering value-added wood products. Finally, we peep into the future potential of the bioincising and mycowood processes for additional applications in the forest and wood industry.

  12. The MYRRHA ADS Project in Belgium Enters the Front End Engineering Phase

    NASA Astrophysics Data System (ADS)

    De Bruyn, Didier; Abderrahim, Hamid Aït; Baeten, Peter; Leysen, Paul

    The MYRRHA project started in 1998 by SCK•CEN. MYRRHA is a MTR, based on the ADS concept, for material and fuel research, for studying the feasibility of transmutation of Minor Actinides and Long-Lived Fission Products arising from radioactive waste reprocessing and finally for demonstrating at a reasonable power scale the principle of the ADS. The MYRRHA design has progressed through various framework programmes of the European Commission in the context of Partitioning and Transmutation. The design has now entered into the Front End Engineering Phase (FEED) covering the period 2012-2015. The engineering company, which will handle this phase, has been selected and the works have begun in the late 2013. In the mean time we have made some refinements in both primary systems and plant layout, including reactor building design. In this paper, we present the most recent developments of the MYRRHA design in terms of reactor building and plant layout as existing today as well as a preliminary study concerning the spent fuel building of the facility. During the oral presentation we add some preliminary results of the interaction with the FEED contractor and the most recent version of the primary systems.

  13. High Thermal Conductivity Carbon Foam used for the Thermal Management of Engine Oil

    SciTech Connect

    Ott, R.D.; McMillan, A.D.; Choudhury, A.

    2006-02-02

    The need for maintaining a lower specific engine oil temperature is essential in enhancing the longevity of the oil and of the engine and its components. By decreasing the engine oil temperature the oil is able to perform its job more efficiently. It is proposed to use the carbon foam, with its exceptional thermal management capabilities, to aid in reducing and stabilizing the engine oil temperature during steady state operation. Also, it is possible to use the carbon foam to heat the engine oil during startup to reduce emissions and possibly engine wear. The mesophase pitch derived carbon foam, developed at Oak Ridge National Laboratory, is a material that offers excellent thermal management capability. The foam has an open cell structure (0.98 fraction open porosity) with graphitic ligaments aligned parallel to the cell walls. The alignment of the graphitic ligaments in a three dimensional array gives the foam homogeneous thermal properties, unlike graphite fibers. The bulk thermal conductivity of the foam has been measured to be 175 W/m{center_dot}K, placing it on the level of 6061 aluminum, which has a bulk thermal conductivity of 180 W/m{center_dot}K. Copper has a bulk thermal conductivity over two times higher, at 400 W/m{center_dot}K. The proposed research will entail using the carbon foam, with its excellent thermal management capabilities, as a cooling and heating medium for engine oil, or in other words an oil temperature regulator. The foam will aid in maintaining a specific oil temperature during steady state operation and in heating of the engine oil at startup. Being able to maintain a consistent oil temperature will ensure better operation of engine oil, by extending the life of the oil and engine. All Parties will conduct research efforts in order to determine the best utilization of the carbon foam in managing engine oil temperatures.

  14. Application of microwave irradiation for the removal of polychlorinated biphenyls from siloxane transformer and hydrocarbon engine oils.

    PubMed

    Antonetti, Claudia; Licursi, Domenico; Raspolli Galletti, Anna Maria; Martinelli, Marco; Tellini, Filippo; Valentini, Giorgio; Gambineri, Francesca

    2016-09-01

    The removal of polychlorinated biphenyls (PCBs) both from siloxane transformer oil and hydrocarbon engine oil was investigated through the application of microwave (MW) irradiation and a reaction system based on polyethyleneglycol (PEG) and potassium hydroxide. The influence of the main reaction parameters (MW irradiation time, molecular weight of PEG, amount of added reactants and temperature) on the dechlorination behavior was studied. Promising performances were reached, allowing about 50% of dechlorination under the best experimental conditions, together time and energy saving compared to conventional heating systems. Moreover, an interesting dechlorination degree (up to 32%) was achieved for siloxane transformer oil when MW irradiation was employed as the unique driving force. To the best of our knowledge, this is the first time in which MW irradiation is tested as the single driving force for the dechlorination of these two types of PCB-contaminated oils.

  15. Assessing the Value-Added by the Environmental Testing Process with the Aide of Physics/Engineering of Failure Evaluations

    NASA Technical Reports Server (NTRS)

    Cornford, S.; Gibbel, M.

    1997-01-01

    NASA's Code QT Test Effectiveness Program is funding a series of applied research activities focused on utilizing the principles of physics and engineering of failure and those of engineering economics to assess and improve the value-added by the various validation and verification activities to organizations.

  16. Development of the ASTM sequence IIIE engine oil oxidation and wear test

    SciTech Connect

    Smolenski, D.J.; Bergin, S.P

    1988-01-01

    The ASTM Sequence IIID engine-dynamometer test has been used to evaluate the high-temperature protection provided by engine oils with respect to valve train wear, viscosity increase (oil thickening), deposits, and oil consumption. The obsolescence of the engine used in this test along with the need to define even higher levels of performance associated with a new oil category (SG) prompted efforts at developing a replacement test. This paper describes the hardware and procedure development of this replacement test, the ASTM Sequence IIIE test. Test precision and correlation with field and Sequence IIID results on a series of reference oils is also discussed.

  17. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    SciTech Connect

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  18. EXPLORING LOW EMISSION DIESEL ENGINE OILS WORKSHOP - A SUMMARY REPORT

    SciTech Connect

    Perez, Joseph

    2000-08-20

    This paper discusses and summarizes some of the results of the title workshop. The workshop was held January 31-February 2, 2000 in Phoenix, Arizona. The purpose of the workshop was ''To craft a shared vision for Industry-Government (DOE) research and development collaboration in Diesel Engine Oils to minimize emissions while maintaining or enhancing engine performance''. The final report of the workshop (NREL/SR-570-28521) was issued in June 2000 by the National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401-3393. There were some 95 participants at the workshop representing industry, government and academia, Figure 1. The format for the workshop is described in Figure 2. This format allowed for considerable discussion of the various issues prior to deliberations in breakout groups. This process resulted in recommendations to solve the issues related to the next generation of diesel engine oils. Keynote addresses by SAE President Rodica Baranescu (International Truck and Engine Corporation), James Eberhardt of DOE and Paul Machiele of EPA focused on diesel progress, workshop issues and regulatory fuel issues. A panel of experts further defined the issues of interest, presenting snapshots of the current status in their areas of expertise. A Q&A session was followed by a series of technical presentations discussing the various areas. Some two dozen presentations covered the technical issues, Figure 3. An open forum was held to allow any participant to present related studies or comment on any of the technical issues. The participants broke into work groups addressing the various areas found on Figure 2. A group leader was appointed and reported on their findings, recommendations, suggested participants for projects and on related items.

  19. Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages

    DOEpatents

    Boggs, David Lee; Baraszu, Daniel James; Foulkes, David Mark; Gomes, Enio Goyannes

    1998-01-01

    An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine's crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages.

  20. Engineered silica nanoparticles as additives in lubricant oils

    NASA Astrophysics Data System (ADS)

    Díaz-Faes López, Teresa; Fernández González, Alfonso; Del Reguero, Ángel; Matos, María; Díaz-García, Marta E.; Badía-Laíño, Rosana

    2015-10-01

    Silica nanoparticles (SiO2 NPs) synthesized by the sol-gel approach were engineered for size and surface properties by grafting hydrophobic chains to prevent their aggregation and facilitate their contact with the phase boundary, thus improving their dispersibility in lubricant base oils. The surface modification was performed by covalent binding of long chain alkyl functionalities using lauric acid and decanoyl chloride to the SiO2 NP surface. The hybrid SiO2 NPs were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, simultaneous differential thermal analysis, nuclear magnetic resonance and dynamic light scattering, while their dispersion in two base oils was studied by static multiple light scattering at low (0.01% w/v) and high (0.50%w/v) concentrations. The nature of the functional layer and the functionalization degree seemed to be directly involved in the stability of the suspensions. The potential use of the functional SiO2 NPs as lubricant additives in base oils, specially designed for being used in hydraulic circuits, has been outlined by analyzing the tribological properties of the dispersions. The dendritic structure of the external layer played a key role in the tribological characteristics of the material by reducing the friction coefficient and wear. These nanoparticles reduce drastically the waste of energy in friction processes and are more environmentally friendly than other additives.

  1. [Progress in engineering Escherichia coli for production of high-value added organic acids and alcohols].

    PubMed

    Wang, Jiming; Liu, Wei; Xu, Xin; Zhang, Haibo; Xian, Mo

    2013-10-01

    Confronted with the gradual exhaustion of the earth's fossil energy resources and the grimmer environmental deterioration, the bio-based process to produce high-value added platform chemicals from renewable biomass is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to various advantages, such as clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. This review focuses on recent progresses in metabolic engineering of E. coli that lead to efficient recombinant biocatalysts for production of high-value organic acids such as succinic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like glycerol and xylitol. Besides, this review also discusses several other platform chemicals, including 2,5-furan dicarboxylic acid, aspartic acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxy-gamma-butyrolactone and sorbitol, which have not been produced by E. coli until now. PMID:24432652

  2. Fungal inactivation by Mexican oregano (Lippia berlandieri Schauer) essential oil added to amaranth, chitosan, or starch edible films.

    PubMed

    Avila-Sosa, Raúl; Hernández-Zamoran, Erika; López-Mendoza, Ingrid; Palou, Enrique; Jiménez Munguía, María Teresa; Nevárez-Moorillón, Guadalupe Virginia; López-Malo, Aurelio

    2010-04-01

    Edible films can incorporate antimicrobial agents to provide microbiological stability, since they can be used as carriers of a wide number of additives that can extend product shelf life and reduce the risk of pathogenic bacteria growth on food surfaces. Addition of antimicrobial agents to edible films offers advantages such as the use of low antimicrobial concentrations and low diffusion rates. The aim of this study was to evaluate inhibition of Aspergillus niger and Penicillium spp. by selected concentrations of Mexican oregano (Lippia berlandieri Schauer) essential oil added to amaranth, chitosan, or starch edible films. Oregano essential oil was characterized by gas chromatography-mass spectrometry (GC/MS) analysis. Amaranth, chitosan, and starch edible films were formulated with essential oil concentrations of 0%, 0.25%, 0.50%, 0.75%, 1%, 2%, and 4%. Mold radial growth was evaluated inoculating spores in 2 ways: edible films were placed over inoculated agar, Film/Inoculum mode (F/I), or the edible films were first placed in the agar and then films were inoculated, Inoculum/Film mode (I/F). The modified Gompertz model adequately described growth curves. There was no significant difference (P > 0.05) in growth parameters between the 2 modes of inoculation. Antifungal effectiveness of edible films was starch > chitosan > amaranth. In starch edible films, both studied molds were inhibited with 0.50% of essential oil. Edible films added with Mexican oregano essential oil could improve the quality of foods by controlling surface growth of molds. PMID:20492301

  3. Oil-Free Turbomachinery Team Passed Milestone on Path to the First Oil-Free Turbine Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Bream, Bruce L.

    2002-01-01

    The Oil-Free Turbine Engine Technology Project team successfully demonstrated a foil-air bearing designed for the core rotor shaft of a turbine engine. The bearings were subjected to test conditions representative of the engine core environment through a combination of high speeds, sustained loads, and elevated temperatures. The operational test envelope was defined during conceptual design studies completed earlier this year by bearing manufacturer Mohawk Innovative Technologies and the turbine engine company Williams International. The prototype journal foil-air bearings were tested at the NASA Glenn Research Center. Glenn is working with Williams and Mohawk to create a revolution in turbomachinery by developing the world's first Oil-Free turbine aircraft engine. NASA's General Aviation Propulsion project and Williams International recently developed the FJX-2 turbofan engine that is being commercialized as the EJ-22. This core bearing milestone is a first step toward a future version of the EJ-22 that will take advantage of recent advances in foil-air bearings by eliminating the need for oil lubrication systems and rolling element bearings. Oil-Free technology can reduce engine weight by 15 percent and let engines operate at very high speeds, yielding power density improvements of 20 percent, and reducing engine maintenance costs. In addition, with NASA coating technology, engines can operate at temperatures up to 1200 F. Although the project is still a couple of years from a full engine test of the bearings, this milestone shows that the bearing design exceeds the expected environment, thus providing confidence that an Oil-Free turbine aircraft engine will be attained. The Oil-Free Turbomachinery Project is supported through the Aeropropulsion Base Research Program.

  4. Physical and nutritional properties of baby food containing added red salmon oil (Oncorhynchus nerka) and microencapsulated red salmon oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unpurified red salmon oil (UPSO) was purified (PSO) using chitosan. Both unpurified and purified oils were evaluated for peroxide value (PV), free fatty acids (FFA), fatty acid methyl esters (FAME), moisture, and color. An emulsion system containing PSO (EPSO) was prepared: system was analyzed for c...

  5. Tribological bench and engine dynamometer tests of a low viscosity SAE 0W-16 engine oil using a combination of ionic liquid and ZDDP as anti-wear additives

    SciTech Connect

    Barnhill, William C.; Gao, Hong; Kheireddin, Bassem; Papke, Brian L.; Luo, Huimin; West, Brian H.; Qu, Jun

    2015-09-29

    We have previously reported an oil-miscible phosphonium-organophosphate ionic liquid (IL) with an effective anti-wear (AW) functionality when added to a base oil by itself or combined with a conventional zinc dialkyldithiophosphate (ZDDP) for a synergistic effect. In this research, we investigated whether this synergy manifests in formulated engine oils. An experimental SAE 0W-16 engine oil was generated containing a combination of IL and ZDDP with equal phosphorus contribution. The prototype engine oil was first evaluated using tribological bench tests: AW performance in boundary lubrication (BL) and friction behavior (Stribeck curves) in elastohydrodynamic, mixed, and BL. In addition, the forthcoming standard Sequence VIE engine dynamometer test was then conducted to demonstrate improved fuel economy. Results were benchmarked against those of another experimental engine oil with almost the same formulation except using ZDDP only without the IL (similar total phosphorus content). The IL-ZDDP formulation consistently outperforms the ZDDP-only formulation in friction reduction and wear protection, and results from the bench and engine tests are well correlated.

  6. Tribological bench and engine dynamometer tests of a low viscosity SAE 0W-16 engine oil using a combination of ionic liquid and ZDDP as anti-wear additives

    DOE PAGES

    Barnhill, William C.; Gao, Hong; Kheireddin, Bassem; Papke, Brian L.; Luo, Huimin; West, Brian H.; Qu, Jun

    2015-09-29

    We have previously reported an oil-miscible phosphonium-organophosphate ionic liquid (IL) with an effective anti-wear (AW) functionality when added to a base oil by itself or combined with a conventional zinc dialkyldithiophosphate (ZDDP) for a synergistic effect. In this research, we investigated whether this synergy manifests in formulated engine oils. An experimental SAE 0W-16 engine oil was generated containing a combination of IL and ZDDP with equal phosphorus contribution. The prototype engine oil was first evaluated using tribological bench tests: AW performance in boundary lubrication (BL) and friction behavior (Stribeck curves) in elastohydrodynamic, mixed, and BL. In addition, the forthcoming standardmore » Sequence VIE engine dynamometer test was then conducted to demonstrate improved fuel economy. Results were benchmarked against those of another experimental engine oil with almost the same formulation except using ZDDP only without the IL (similar total phosphorus content). The IL-ZDDP formulation consistently outperforms the ZDDP-only formulation in friction reduction and wear protection, and results from the bench and engine tests are well correlated.« less

  7. Performance of Several Combustion Chambers Designed for Aircraft Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, William F; Kemper, Carlton

    1928-01-01

    Several investigations have been made on single-cylinder test engines to determine the performance characteristics of four types of combustion chambers designed for aircraft oil engines. Two of the combustion chambers studied were bulb-type precombustion chambers, the connecting orifice of one having been designed to produce high turbulence by tangential air flow in both the precombustion chamber and the cylinder. The other two were integral combustion chambers, one being dome-shaped and the other pent-roof shaped. The injection systems used included cam and eccentric driven fuel pumps, and diaphragm and spring-loaded fuel-injection valves. A diaphragm type maximum cylinder pressure indicator was used in part of these investigations with which the cylinder pressures were controlled to definite valves. The performance of the engines when equipped with each of the combustion chambers is discussed. The best performance for the tests reported was obtained with a bulb-type combustion chamber designed to give a high degree of turbulence within the bulb and cylinder. (author)

  8. CFD analysis of turboprop engine oil cooler duct for best rate of climb condition

    NASA Astrophysics Data System (ADS)

    Kalia, Saurabh; CA, Vinay; Hegde, Suresh M.

    2016-09-01

    Turboprop engines are widely used in commuter category airplanes. Aircraft Design bureaus routinely conduct the flight tests to confirm the performance of the system. The lubrication system of the engine is designed to provide a constant supply of clean lubrication oil to the engine bearings, the reduction gears, the torque-meter, the propeller and the accessory gearbox. The oil lubricates, cools and also conducts foreign material to the oil filter where it is removed from further circulation. Thus a means of cooling the engine oil must be provided and a suitable oil cooler (OC) and ducting system was selected and designed for this purpose. In this context, it is relevant to study and analyse behaviour of the engine oil cooler system before commencing actual flight tests. In this paper, the performance of the oil cooler duct with twin flush NACA inlet housed inside the nacelle has been studied for aircraft best rate of climb (ROC) condition using RANS based SST K-omega model by commercial software ANSYS Fluent 13.0. From the CFD analysis results, it is found that the mass flow rate captured and pressure drop across the oil cooler for the best ROC condition is meeting the oil cooler manufacturer requirements thus, the engine oil temperature is maintained within prescribed limits.

  9. TOF-SIMS analysis of friction surfaces of hard coatings tested in engine oil

    NASA Astrophysics Data System (ADS)

    Murase, Atsushi; Mori, Hiroyuki; Ohmori, Toshihide

    2008-12-01

    This report describes the results of TOF-SIMS analysis of friction surfaces of hard coatings such as CrN and TiN tested in model engine oil containing typical engine oil additives, i.e., polyisobutenyl succinimide, Ca-sulfonate, Zn-dithiophosphate, and Mo-dithiocarbamate, as a real-world lubrication system used in the automobile industry. As model engine oils, two types of lubrication systems containing the above additives were prepared. For the aim of analysis of friction surfaces of engine oil lubrication systems, the friction surfaces tested with each additive were analyzed before the analysis for the engine oil systems. By TOF-SIMS analysis of friction surfaces tested in each additive, secondary ions originating from adsorbed components were detected for each additive. From this result, the friction surfaces for model engine oil were analyzed by TOF-SIMS. The differences in adsorbing behavior of additives between different engine oil components and between different substrates were clarified, and the causes of difference in friction coefficient among the engine oil lubrication systems were partly explained with the adsorbing behavior of Mo-dithiocarbamate. These results demonstrate that TOF-SIMS analysis of friction surfaces is useful for the analysis of real-world lubrication phenomena.

  10. Catalytic modification of fats and oils to value-added biobased products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biobased materials derived from fats and oils can be relatively benign to the environment because they tend to have good biodegradability. Oils are used in a myriad of applications, including foods, cosmetics, paints, biodegradable lubricants and polymers, biodiesel, and more. For many of these ap...

  11. Effect of adding palm oil mill decanter cake slurry with regular turning operation on the composting process and quality of compost from oil palm empty fruit bunches.

    PubMed

    Yahya, Azmi; Sye, Chong Puay; Ishola, Tajudeen Abiodun; Suryanto, Hadi

    2010-11-01

    Formation of compost from oil palm empty fruit bunches (EFB) and decanter cake slurry by adding palm oil mill effluent (POME) with regular turning operation was investigated. The experiment was conducted in a commercial composting plant under the normal production process. The addition of decanter cake slurry has hastened the composting process of the EFB. The C/N ratio after 51 days for the mature compost with the decanter cake slurry was 18.65 while that of the matured compost without the decanter cake slurry remained high at 28.96. The compost formed from the addition of decanter cake to EFB and POME had 46.4% nitrogen, 17.9% phosphorus, 17.7% potassium and 23.1% calcium more than that without decanter cake. The use of compost produced from EFB, POME and decanter cake slurry could solve more environmental problems and enhance economic benefits in the oil palm industry.

  12. Study on the engine oil's wear based on the flash point

    NASA Astrophysics Data System (ADS)

    Niculescu, R.; Iorga-Simăn, V.; Trică, A.; Clenci, A.

    2016-08-01

    Increasing energy performance of internal combustion engines is largely influenced by frictional forces that arise between moving parts. Thus, in this respect, the nature and quality of the engine oil used is an important factor. Equally important is the effect of various engine injection strategies upon the oil quality. In other words, it's of utmost importance to maintain the quality of engine oil during engine's operation. Oil dilution is one of the most common causes that lead to its wear, creating lubrication problems. Moreover, at low temperatures operating conditions, the oil dilution with diesel fuel produces wax. When starting the engine, this may lead to lubrication deficiencies and even oil starvation with negative consequences on the engine mechanism parts wear (piston, rings and cylinders) but also crankcase bearings wear.Engine oil dilution with diesel fuel have several causes: wear of rings and/or injectors, late post-injection strategy for the sake of particulate filter regeneration, etc.This paper presents a study on the degree of deterioration of engine oils as a result of dilution with diesel fuel. The analysed oils used for this study were taken from various models of engines equipped with diesel particulate filter. The assessment is based on the determination of oil flash point and dilution degree using the apparatus Eraflash produced by Eralytics, Austria. Eraflash measurement is directly under the latest and safest standards ASTM D6450 & D7094), which are in excellent correlation with ASTM D93 Pensky - Martens ASTM D56 TAG methods; it uses the Continuous Closed Cup method for finding the Flash Point (CCCFP).

  13. Comparison of diesel engine performance and emissions from neat and transesterified vegetable oils

    SciTech Connect

    Geyer, S.M.; Jacobus, M.J.; Lestz, S.S.

    1984-01-01

    A single-cylinder, 0.36 L, D1 diesel engine was operated on a certified No. 2 diesel fuel, cottonseed oil, sunflowerseed oil, methyl ester of cottonseed oil, and methyl ester of sunflowerseed oil. The purpose of this study was to provide a comparison of performance and emission data when operating on net vegetable oils, transesterified vegetable oils, and diesel fuel. Results comparing the various vegetable oil fuels with No. 2 diesel fuel generally show slight improvements in thermal efficiency and higher exhaust gas temperatures when operating on vegetable oils; equal or higher gas-phase emissions with vegetable oils; lower indicated specific revertant emissions with vegetable oils; and significantly higher aldehyde emissions, including an increased percentage of formaldehyde. (Refs. 14).

  14. Remedial processing of oil shale fly ash (OSFA) and its value-added conversion into glass-ceramics.

    PubMed

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-12-01

    Recently, various solid wastes such as sewage sludge, coal fly ash and slag have been recycled into various products such as sintered bricks, ceramics and cement concrete. Application of these recycling approaches is much better and greener than conventional landfills since it can solve the problems of storage of industrial wastes and reduce exploration of natural resources for construction materials to protect the environment. Therefore, in this study, an attempt was made to recycle oil shale fly ash (OSFA), a by-product obtained from the extracting of shale oil in the oil shale industry, into a value-added glass-ceramic material via melting and sintering method. The influence of basicity (CaO/SiO2 ratio) by adding calcium oxide on the performance of glass-ceramics was studied in terms of phase transformation, mechanical properties, chemical resistances and heavy metals leaching tests. Crystallization kinetics results showed that the increase of basicity reduced the activation energies of crystallization but did not change the crystallization mechanism. When increasing the basicity from 0.2 to 0.5, the densification of sintering body was enhanced due to the promotion of viscous flow of glass powders, and therefore the compression strength and bending strength of glass-ceramics were increased. Heavy metals leaching results indicated that the produced OSFA-based glass-ceramics could be taken as non-hazardous materials. The maximum mechanical properties of compression strength of 186 ± 3 MPa, bending strength of 78 ± 6 MPa, good chemical resistances and low heavy metals leaching concentrations showed that it could be used as a substitute material for construction applications. The proposed approach will be one of the potential sustainable solutions in reducing the storage of oil shale fly ash as well as converting it into a value-added product.

  15. Remedial processing of oil shale fly ash (OSFA) and its value-added conversion into glass-ceramics.

    PubMed

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-12-01

    Recently, various solid wastes such as sewage sludge, coal fly ash and slag have been recycled into various products such as sintered bricks, ceramics and cement concrete. Application of these recycling approaches is much better and greener than conventional landfills since it can solve the problems of storage of industrial wastes and reduce exploration of natural resources for construction materials to protect the environment. Therefore, in this study, an attempt was made to recycle oil shale fly ash (OSFA), a by-product obtained from the extracting of shale oil in the oil shale industry, into a value-added glass-ceramic material via melting and sintering method. The influence of basicity (CaO/SiO2 ratio) by adding calcium oxide on the performance of glass-ceramics was studied in terms of phase transformation, mechanical properties, chemical resistances and heavy metals leaching tests. Crystallization kinetics results showed that the increase of basicity reduced the activation energies of crystallization but did not change the crystallization mechanism. When increasing the basicity from 0.2 to 0.5, the densification of sintering body was enhanced due to the promotion of viscous flow of glass powders, and therefore the compression strength and bending strength of glass-ceramics were increased. Heavy metals leaching results indicated that the produced OSFA-based glass-ceramics could be taken as non-hazardous materials. The maximum mechanical properties of compression strength of 186 ± 3 MPa, bending strength of 78 ± 6 MPa, good chemical resistances and low heavy metals leaching concentrations showed that it could be used as a substitute material for construction applications. The proposed approach will be one of the potential sustainable solutions in reducing the storage of oil shale fly ash as well as converting it into a value-added product. PMID:26387050

  16. Lubrication System 1. Check and Change the Engine Oil. Student Manual. Small Engine Repair Series. First Edition.

    ERIC Educational Resources Information Center

    Hill, Pamela

    This student manual on checking and changing the engine oil is the second of three in an instructional package on the lubrication system in the Small Engine Repair Series for handicapped students. The stated purpose for the booklet is to help students learn what tools and equipment to use and all the steps of the job. Informative material and…

  17. Compression-ignition engine performance with undoped and doped fuel oils and alcohol mixtures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Foster, Hampton H

    1939-01-01

    Several fuel oils, doped fuel oils, and mixtures of alcohol and fuel oil were tested in a high-speed, single-cylinder, compression-ignition engine to determine power output, fuel consumption, and ignition and combustion characteristics. Fuel oils or doped fuel oils of high octane number had shorter ignition lags, lower rates of pressure rise, and gave smoother engine operation than fuel oils or doped fuel oils of low octane number. Higher engine rotative speeds and boost pressures resulted in smoother engine operation and permitted the use of fuel oils of relatively low octane number. Although the addition of a dope to a fuel oil decreased the ignition lag and the rate of pressure rise, the ensuing rate of combustion was somewhat slower than for the undoped fuel oil so that the effectiveness of combustion was practically unchanged. Alcohol used as an auxiliary fuel, either as a mixture or by separate injection, increased the rates of pressure rise and induced roughness. In general, the power output decreased as the proportion of alcohol increased and, below maximum power, varied with the heating value of the total fuel charge.

  18. Improving magnetic properties of MgB2 bulk superconductors by synthetic engine oil treatment

    NASA Astrophysics Data System (ADS)

    Taylan Koparan, E.; Savaskan, B.; Yanmaz, E.

    2016-08-01

    The present study focuses on the effects of standby time of the MgB2 samples immersed in synthetic engine oil on the critical current density (Jc(H)), magnetic field dependence of the pinning force density fp(b) and Tc performances of MgB2 bulk superconductors. Synthetic engine oil was used as a product which is cheap and a rich carbon source. Manufactured MgB2 pellet samples were immersed at different standby time of 30 min, 120 min, 300 min and 1440 min in synthetic engine oil after the first heating process. Finally, MgB2 samples immersed in synthetic engine oil were sintered at 1000 °C and kept for 15 min in Ar atmosphere. The critical current density of all of MgB2 samples immersed at different standby time in engine oil in whole field range was better than that of the pure MgB2 sample because of the number of the pinning centers. The MgB2 sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. The Jc value for the pure sample is 2.0 × 103 A/cm2, whereas for the MgB2 sample immersed at 300 min standby time in engine oil the Jc is enhanced to 4.8 × 103A/cm2 at 5 K and 3 T. The superconducting transition temperature (Tc) did not change with the increasing standby time of the samples in synthetic engine oil at all. The best diamagnetic property was obtained from the sample which kept in synthetic engine oil for 300 min. Synthetic engine oil treatment results in remarkable improvement of the critical current density and pinning force performances of MgB2 superconductors. It was found that all MgB2 samples have a different pinning property at different measuring temperatures. Using synthetic engine oil as a product which is cheap and a rich carbon source in MgB2 bulk superconductors makes MgB2 samples immersed in synthetic engine oil a good candidate for industrial applications.

  19. Value-added utilization of oil palm ash: a superior recycling of the industrial agricultural waste.

    PubMed

    Foo, K Y; Hameed, B H

    2009-12-30

    Concern about environmental protection has increased over the years from a global viewpoint. To date, the infiltration of oil palm ash into the groundwater tables and aquifer systems which poses a potential risk and significant hazards towards the public health and ecosystems, remain an intricate challenge for the 21st century. With the revolution of biomass reutilization strategy, there has been a steadily growing interest in this research field. Confirming the assertion, this paper presents a state of art review of oil palm ash industry, its fundamental characteristics and environmental implications. Moreover, the key advance of its implementations, major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of oil palm ash in numerous field of application represents a plausible and powerful circumstance, for accruing the worldwide environmental benefit and shaping the national economy.

  20. Effect of added citrus fibre and spice essential oils on quality characteristics and shelf-life of mortadella.

    PubMed

    Viuda-Martos, M; Ruiz-Navajas, Y; Fernández-López, J; Pérez-Alvarez, J A

    2010-07-01

    The objective of this work was to study the effect of adding orange dietary fibre (1%), rosemary essential oil (0.02%) or thyme essential oil (0.02%) and the storage conditions on the quality characteristics and the shelf-life of mortadella, a bologna-type sausage. The moisture, fat, ash content and colour coordinates lightness (L*) and yellowness (b*) were affected by the fibre content. The treatments analysed lowered the levels of residual nitrite (57.56% and 57.61%) and the extent of lipid oxidation, while analysis of the samples revealed the presence of the flavonoids, hesperidin and narirutin. No enterobacteria or psychotropic bacteria were found in any of the treatments. The treated samples stored in vacuum packaging showed the lowest aerobic and lactic acid bacteria counts. Sensorially, the most appreciated sample was the one containing orange dietary fibre and rosemary essential oil, stored in vacuum packaging. Orange dietary fibre and spice essential oils could find a use in the food industry to improve the shelf-life of meat products.

  1. Effect of added caffeic acid and tyrosol on the fatty acid and volatile profiles of camellia oil following heating.

    PubMed

    Haiyan, Zhong; Bedgood, Danny R; Bishop, Andrea G; Prenzler, Paul D; Robards, Kevin

    2006-12-13

    Camellia oil is widely used in some parts of the world partly because of its high oxidative stability. The effect of heating a refined camellia oil for 1 h at 120 degrees C or 2 h at 170 degrees C with exogenous antioxidant, namely, caffeic acid and tyrosol, was studied. Parameters used to assess the effect of heating were peroxide and K values, volatile formation, and fatty acid profile. Of these, volatile formation was the most sensitive index of change as seen in the number of volatiles and the total area count of volatiles in gas chromatograms. Hexanal was generally the dominant volatile in treated and untreated samples with a concentration of 2.13 and 5.34 mg kg(-1) in untreated oils heated at 120 and 170 degrees C, respectively. The hexanal content was significantly reduced in heated oils to which tyrosol and/or caffeic acid had been added. Using volatile formation as an index of oxidation, tyrosol was the more effective antioxidant of these compounds. This is contradictory to generally accepted antioxidant structure-activity relationships. Changes in fatty acid profiles after heating for up to 24 h at 180 degrees C were not significant.

  2. Failure Analysis and Regeneration Performances Evaluation on Engine Lubricating Oil

    NASA Astrophysics Data System (ADS)

    Wang, X. L.; Zhang, G. N.; Zhang, J. Y.; Yin, Y. L.; Xu, Y.

    To investigate the behavior of failure and recycling of lubricating oils, three sorts of typical 10w-40 lubricating oils used in heavy-load vehicle including the new oil, waste oil and regeneration oil regenerated by self-researched green regeneration technology were selected. The tribology properties were tested by four-ball friction wear tester as well. The results indicated that the performance of anti-extreme pressure of regeneration oil increase by 34.1% compared with the waste one and its load- carrying ability is close to the new oil; the feature of wear spot are better than those of the waste oil and frictional coefficient almost reach the level of the new oil's. As a result, the performance of anti-wear and friction reducing are getting better obviously.

  3. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion

    NASA Astrophysics Data System (ADS)

    Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao

    2016-04-01

    Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification.

  4. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion.

    PubMed

    Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao

    2016-01-01

    Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification. PMID:27087362

  5. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion

    PubMed Central

    Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao

    2016-01-01

    Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification. PMID:27087362

  6. Influence of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission.

    PubMed

    Keskin, Ali; Gürü, Metin; Altiparmak, Duran

    2008-09-01

    The purpose of this study is to investigate influences of tall oil biodiesel with Mg and Mo based fuel additives on diesel engine performance and emission. Tall oil resinic acids were reacted with MgO and MoO(2) stoichiometrically for the production of metal-based fuel additives (combustion catalysts). The metal-based additives were added into tall oil biodiesel (B60) at the rate of 4 micromol/l, 8 micromol/l and 12 micromol/l for preparing test fuels. In general, both of the metal-based additives improved flash point, pour point and viscosity of the biodiesel fuel, depending on the rate of additives. A single cylinder DI diesel engine was used in the tests. Engine performance values did not change significantly with biodiesel fuels, but exhaust emission profile was improved. CO emissions and smoke opacity decreased by 56.42% and by 30.43%, respectively. In general, low NO(x) and CO(2) emissions were measured with the biodiesel fuels.

  7. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... vehicles or nonroad diesel engines? No person may introduce used motor oil, or used motor oil blended with... later nonroad diesel engines (not including locomotive or marine diesel engines), unless both of...

  8. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... vehicles or nonroad diesel engines? No person may introduce used motor oil, or used motor oil blended with... later nonroad diesel engines (not including locomotive or marine diesel engines), unless both of...

  9. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... vehicles or nonroad diesel engines? No person may introduce used motor oil, or used motor oil blended with... later nonroad diesel engines (not including locomotive or marine diesel engines), unless both of...

  10. Films of starch and poly(butylene adipate co-terephthalate) added of soybean oil (SO) and Tween 80.

    PubMed

    Brandelero, Renata P Herrera; Grossmann, Maria Victória; Yamashita, Fabio

    2012-11-01

    Starch extruded in the presence of a plasticizer results in a material called thermoplastic starch (TPS). TPS mixed with poly(butylene adipate co-terephthalate) (PBAT), soybean oil (SO), and surfactant may result in films with improved mechanical properties due to greater hydrophobicity and compatibility among the polymers. This study characterized films produced from blends containing 65% TPS and 35% PBAT with SO added as compatibilizer. The Tween 80 was added to prevention of phase separation. The elongation and resistance were greater in the films with SO. The infrared spectra confirmed an increase in ester groups bonded to the PBAT and the presence of groups bonded to the starch ring, indicating TPS-SO and PBAT-SO interactions. The micrographs suggest that the films with SO were more homogenous. Thus, SO is considered to be a good compatibilizer for blends of TPS and PBAT.

  11. Experimental investigation of the physical properties of medium and heavy oils, their vaporization and use in explosion engines. Part I

    NASA Technical Reports Server (NTRS)

    Heinlein, Fritz

    1926-01-01

    While little has been accomplished in obtaining an abundant supply of light oils from coal and heavy oils, progress has been made on engine design to make use of the heavier oils. Progress has been made in two different directions which are outlined in this paper: the group of engines with medium and high-pressure carburetion in the cylinder; and the group of engines with low-pressure carburetion of the heavy oils before reaching the cylinder.

  12. First results with Mercedes-Benz DI diesel engines running on monoesters of vegetable oils

    SciTech Connect

    Ventura, L.M.; Nascimento, A.C.; Bandel, W.

    1982-01-01

    In their pure form the vegetable oils are not suitable for the use in modern DI diesel engines, due to the excessive carbon deposit on the injection nozzles and in the combustion chamber. Nevertheless, these oils are promising candidates as raw materials for alternative diesel fuels. Processes are being developed to transform the long vegetable oil molecules into smaller molecules in order to fulfill the fuel requirements of DI diesel engines. Methyl and ethyl esters of fatty acids e.g. obtained by transesterification of vegetable oils through their catalytic reaction with methanol and ethanol, have shown a typical diesel fuel behaviour in conventional DI engines without excessive deposit formation. Problems concerning lubricating oil contamiation, and possibile remedial measures to avoid it, are being examined. There are also problems to be solved in relation to white smoke formation and the odor of exhaust gases. 10 figures.

  13. Utilization of sunflower seed oil as a renewable fuel for diesel engines

    SciTech Connect

    Bruwer, J.J.; van der Boshoff, B.; Hugo, F.J.C.; Fuls, J.; Hawkins, C.; van der Walt, A.N.; Engelbrecht, A.; du Plessis, L.M.

    1981-01-01

    Research, using several makes of diesel engine, showed that sunflower seed oil, and particularly an ethyl ester mixture, has the potential to extend diesel fuel provided solutions are found for injector coking problems. (MHR)

  14. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  15. Engineering evaluation of plant oils as diesel fuel. Final report. Vol. I

    SciTech Connect

    Engler, C.R.; Johnson, L.A.; Lepori, W.A.; Yarbrough, C.M.

    1983-09-13

    This project includes evaluations of cottonseed oils and sunflower oil ethyl esters in both direct injection and precombustion chamber design diesel engines. It is one part of a major research program at Texas A and M University to study the technical feasibility of using plant oils or animal fats as alternative diesel fuels. Goals for the overall program are to define physical and chemical characteristics and optimum processing methods required for high quality alternative diesel fuels from plant or animal oils and to investigate effects of engine design on alternative fuel performance. This report describes work done under the current contract which includes evaluations of cottonseed oils and sunflower oil interesterified with ethanol as alternative diesel fuels. 15 figures, 18 tables.

  16. Fuel properties and engine performance of biodiesel from waste cooking oil collected in Dhaka city

    NASA Astrophysics Data System (ADS)

    Islam, R. B.; Islam, R.; Uddin, M. N.; Ehsan, Md.

    2016-07-01

    Waste cooking oil can be a potential source of biodiesel that has least effect on the edible oil consumption. Increasing number of hotel-restaurants and more active monitoring by health authorities have increased the generation of waste cooking oil significantly in densely populated cities like Dhaka. If not used or disposed properly, waste cooking oil itself may generate lot of environmental issues. In this work, waste cooking oils from different restaurants within Dhaka City were collected and some relevant properties of these waste oils were measured. Based on the samples studied one with the highest potential as biodiesel feed was identified and processed for engine performance. Standard trans-esterification process was used to produce biodiesel from the selected waste cooking oil. Biodiesel blends of B20 and B40 category were made and tested on a single cylinder direct injection diesel engine. Engine performance parameters included - bhp, bsfc and exhaust emission for rated and part load conditions. Results give a quantitative assessment of the potential of using biodiesel from waste cooking oil as fuel for diesel engines in Bangladesh.

  17. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels. PMID:22519083

  18. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  19. Value-added potential of expeller-pressed canola oil refining: characterization of sinapic acid derivatives and tocopherols from byproducts.

    PubMed

    Chen, Yougui; Thiyam-Hollander, Usha; Barthet, Veronique J; Aachary, Ayyappan A

    2014-10-01

    Valuable phenolic antioxidants are lost during oil refining, but evaluation of their occurrence in refining byproducts is lacking. Rapeseed and canola oil are both rich sources of sinapic acid derivatives and tocopherols. The retention and loss of sinapic acid derivatives and tocopherols in commercially produced expeller-pressed canola oils subjected to various refining steps and the respective byproducts were investigated. Loss of canolol (3) and tocopherols were observed during bleaching (84.9%) and deodorization (37.6%), respectively. Sinapic acid (2) (42.9 μg/g), sinapine (1) (199 μg/g), and canolol (344 μg/g) were found in the refining byproducts, namely, soap stock, spent bleaching clay, and wash water, for the first time. Tocopherols (3.75 mg/g) and other nonidentified phenolic compounds (2.7 mg sinapic acid equivalent/g) were found in deodistillates, a byproduct of deodorization. DPPH radical scavenging confirmed the antioxidant potential of the byproducts. This study confirms the value-added potential of byproducts of refining as sources of endogenous phenolics.

  20. The MYRRHA ADS Project in Belgium Enters the Front End Engineering Phase

    NASA Astrophysics Data System (ADS)

    Schyns, M.; Aït Abderrahim, H.; Baeten, P.; Fernandez, R.; De Bruyn, D.

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level.

  1. Analysis of oil consumption in cylinder of diesel engine for optimization of piston rings

    NASA Astrophysics Data System (ADS)

    Zhang, Junhong; Zhang, Guichang; He, Zhenpeng; Lin, Jiewei; Liu, Hai

    2013-01-01

    The performance and particulate emission of a diesel engine are affected by the consumption of lubricating oil. Most studies on oil consumption mechanism of the cylinder have been done by using the experimental method, however they are very costly. Therefore, it is very necessary to study oil consumption mechanism of the cylinder and obtain the accurate results by the calculation method. Firstly, four main modes of lubricating oil consumption in cylinder are analyzed and then the oil consumption rate under common working conditions are calculated for the four modes based on an engine. Then, the factors that affect the lubricating oil consumption such as working conditions, the second ring closed gap, the elastic force of the piston rings are also investigated for the four modes. The calculation results show that most of the lubricating oil is consumed by evaporation on the liner surface. Besides, there are three other findings: (1) The oil evaporation from the liner is determined by the working condition of an engine; (2) The increase of the ring closed gap reduces the oil blow through the top ring end gap but increases blow-by; (3) With the increase of the elastic force of the ring, both the left oil film thickness and the oil throw-off at the top ring decrease. The oil scraping of the piston top edge is consequently reduced while the friction loss between the rings and the liner increases. A neural network prediction model of the lubricating oil consumption in cylinder is established based on the BP neural network theory, and then the model is trained and validated. The main piston rings parameters which affect the oil consumption are optimized by using the BP neural network prediction model and the prediction accuracy of this BP neural network is within 8%, which is acceptable for normal engineering applications. The oil consumption is also measured experimentally. The relative errors of the calculated and experimental values are less than 10%, verifying the

  2. Performance of an IDI Engine Fueled with Fatty Acid Methyl Esters Formulated from Cotton Seeds Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluates the performance of an indirect injection (IDI) diesel engine fueled with cottonseed biodiesel while assessing the IDI engine multi-fuel capability. Millions of tons of cotton seeds are available in the southeast of the USA every year and they contain oils that can be transesteri...

  3. Long-term operation of a turbocharged diesel engine on soybean oil fuel blends

    SciTech Connect

    Ziemke, M.C.; Peters, J.F.; Schroer, B.

    1983-08-01

    It has been known for more than 50 years that some diesel engines could be fueled for short periods with vegetable oils, either neat or with hydrocarbon fuel additives. World overproduction of soybean oil is increasing its potential as an economical diesel fuel extender. The subject test program was undertaken to determine long-term effects of this alternate fuel on a modern, high-speed diesel engine. The choice of a vegetable oil (soybean oil) as an alternative diesel engine fuel or fuel extender rather than the other major biomass motor fuel (ethanol) is related to the relative properties of these fuels. The common U.S. vegetable oils are much closer to hydrocarbon (No. 2D) diesel fuel than is ethanol in both cetane rating and volumetric energy content. Unlike ethanol, the vegetable oils can be blended 1:1 with No. 2D fuel to produce engine power and volumetric fuel consumption levels practically identical to those obtained with 100% No. 2D fuel. However, engine operation and laboratory bench tests demonstrated that some fuel blends were unsatisfactory for continuous use. The reasons for these difficulties were determined and a satisfactory fuel blend was proven through prolonged testing.

  4. Compression ignition engine fuel properties of a used sunflower oil-diesel fuel blend

    SciTech Connect

    Oezaktas, T.

    2000-05-01

    Vegetable oils may be used with dilution modification technique as an alternative diesel fuel. In this study, a used sunflower oil-diesel fuel blend (20:80 {nu}/{nu}%) was investigated in a Pancar Motor E-108-type diesel engine to observe engine characteristics and exhaust emission. The effect of the compression ratio on ignition delay characteristics and smoke emissions of blend fuel was determined in this CFR engine. The results of fuel blends were compared with the reference grade No. 2-D diesel fuel.

  5. Metabolic engineering of cottonseed oil biosynthesis pathway via RNA interference.

    PubMed

    Xu, Zhongping; Li, Jingwen; Guo, Xiaoping; Jin, Shuangxia; Zhang, Xianlong

    2016-01-01

    Cottonseed oil is recognized as an important oil in food industry for its unique characters: low flavor reversion and the high level of antioxidants (VitaminE) as well as unsaturated fatty acid. However, the cottonseed oil content of cultivated cotton (Gossypium hirsutum) is only around 20%. In this study, we modified the accumulation of oils by the down-regulation of phosphoenolpyruvate carboxylase 1 (GhPEPC1) via RNA interference in transgenic cotton plants. The qRT-PCR and enzyme activity assay revealed that the transcription and expression of GhPEPC1 was dramatically down-regulated in transgenic lines. Consequently, the cottonseed oil content in several transgenic lines showed a significant (P < 0.01) increase (up to 16.7%) without obvious phenotypic changes under filed condition when compared to the control plants. In order to elucidate the molecular mechanism of GhPEPC1 in the regulation of seed oil content, we quantified the expression of the carbon metabolism related genes of transgenic GhPEPC1 RNAi lines by transcriptome analysis. This analysis revealed the decrease of GhPEPC1 expression led to the increase expression of triacylglycerol biosynthesis-related genes, which eventually contributed to the lipid biosynthesis in cotton. This result provides a valuable information for cottonseed oil biosynthesis pathway and shows the potential of creating high cottonseed oil germplasm by RNAi strategy for cotton breeding. PMID:27620452

  6. Metabolic engineering of cottonseed oil biosynthesis pathway via RNA interference

    PubMed Central

    Xu, Zhongping; Li, Jingwen; Guo, Xiaoping; Jin, Shuangxia; Zhang, Xianlong

    2016-01-01

    Cottonseed oil is recognized as an important oil in food industry for its unique characters: low flavor reversion and the high level of antioxidants (VitaminE) as well as unsaturated fatty acid. However, the cottonseed oil content of cultivated cotton (Gossypium hirsutum) is only around 20%. In this study, we modified the accumulation of oils by the down-regulation of phosphoenolpyruvate carboxylase 1 (GhPEPC1) via RNA interference in transgenic cotton plants. The qRT-PCR and enzyme activity assay revealed that the transcription and expression of GhPEPC1 was dramatically down-regulated in transgenic lines. Consequently, the cottonseed oil content in several transgenic lines showed a significant (P < 0.01) increase (up to 16.7%) without obvious phenotypic changes under filed condition when compared to the control plants. In order to elucidate the molecular mechanism of GhPEPC1 in the regulation of seed oil content, we quantified the expression of the carbon metabolism related genes of transgenic GhPEPC1 RNAi lines by transcriptome analysis. This analysis revealed the decrease of GhPEPC1 expression led to the increase expression of triacylglycerol biosynthesis-related genes, which eventually contributed to the lipid biosynthesis in cotton. This result provides a valuable information for cottonseed oil biosynthesis pathway and shows the potential of creating high cottonseed oil germplasm by RNAi strategy for cotton breeding. PMID:27620452

  7. Ferrographic and spectrometer oil analysis from a failed gas turbine engine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1982-01-01

    An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, a plasma, an atomic absorption, and an emission spectrometer to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations ( 2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure.

  8. Ferrographic and spectrometer oil analysis from a failed gas turbine engine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1983-01-01

    An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor parts that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, and with plasma, atomic absorption, and emission spectrometers to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations (2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure. Previously announced in STAR as N83-12433

  9. Beneficiation-hydroretort processing of US oil shales, engineering study

    SciTech Connect

    Johnson, L.R.; Riley, R.H.

    1988-12-01

    This report describes a beneficiation facility designed to process 1620 tons per day of run-of-mine Alabama oil shale containing 12.7 gallons of kerogen per ton of ore (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay) suitable for feed to a hydroretort oil extraction facility of nominally 20,000 barrels per day capacity. The beneficiation plant design prepared includes the operations of crushing, grinding, flotation, thickening, filtering, drying, briquetting, conveying and tailings empoundment. A complete oil shale beneficiation plant is described including all anticipated ancillary facilities. For purposes of determining capital and operating costs, the beneficiation facility is assumed to be located on a generic site in the state of Alabama. The facility is described in terms of the individual unit operations with the capital costs being itemized in a similar manner. Additionally, the beneficiation facility estimated operating costs are presented to show operating costs per ton of concentrate produced, cost per barrel of oil contained in concentrate and beneficiation cost per barrel of oil extracted from concentrate by hydroretorting. All costs are presented in fourth quarter of 1988 dollars.

  10. Diesel engine endurance tests using JP-8 fuel blended with used engine oil. Interim report November 1996--December 1997

    SciTech Connect

    Frame, E.A.; Yost, D.M.; Palacios, C.F.

    1998-07-01

    Tests were done to examine the feasibility of disposing of used engine oil from military vehicles by blending it with JP-8 engine fuel to be used in diesel vehicles. Two Army diesel engines were evaluated in cyclic endurance dynamometer test procedures using JP-8 fuel blended with 7.5% vol used oil. Results were compared to baseline performance using neat JP-8 fuel. The following major differences were observed when using blended fuel: Significant ashy deposits were found in the pre-combustion chamber of the 4-cycle diesel engine; indications of imminent exhaust valve burning (streaking) were found on the exhaust valves in the 2-cycle diesel engine. For both engines, condition was such that continuous use of 7.5 %vol blend would not be recommended. Considering it would take between 19--68 years for an Army engine to reach the end of endurance test condition, use of blended fuel 1 or 2 times per year is judged acceptable from an endurance standpoint.

  11. Experimental study on the performance characteristics and emission analysis of a diesel engine using vegetable oils

    NASA Astrophysics Data System (ADS)

    Saha, Anup; Ehite, Ekramul Haque; Alam, M. M.

    2016-07-01

    In this research, Vegetable oils derived from Sesame Seed and Rice Bran were used and experimented upon. Using Kerosene as the solvent in varying proportions (30%, 50%, 70% by volume) with the vegetables oils, different blends of Sesame and Rice Bran Oils were produced. The important characteristic properties were found by experimentation and compared with those of Straight Run Diesel. Subsequently, Straight Run Diesel, vegetable oils and their blends were used to run a diesel engine one-by-one and the performance analysis was conducted, followed by an investigation of the exhaust emissions. From the comparative performance analysis, it was found that Rice Bran oil showed better performance as a fuel than Sesame with regards to power production and specific fuel consumption and also resulted in less Carbon Monoxide (CO) emission than Sesame oil blends.

  12. Fatty acids profile and alteration of lemon seeds extract (Citrus limon) added to soybean oil under thermoxidation.

    PubMed

    Luzia, Débora Maria Moreno; Jorge, Neuza

    2013-10-01

    This paper aimed at evaluating fatty acids profile and the total alteration of lemon seeds extract added to soybean oil under thermoxidation, verifying the isolated and synergistic effect of these antioxidants. Therefore, Control treatments, LSE (2,400 mg/kg Lemon Seeds Extract), TBHQ (mg/kg), Mixture 1 (LSE + 50 mg/kg TBHQ) and Mixture 2 (LSE + 25 mg/kg TBHQ) were subjected to 180°C for 20 h. Samples were taken at 0, 5, 10, 15 and 20 h intervals and analyzed as for fatty acid profile and total polar compounds. Results were subjected to variance analyses and Tukey tests at a 5% significance level. An increase in the percentage of saturated fatty acids and mono-unsaturated, and decrease in polyunsaturated fatty acids was observed, regardless of the treatments studied. For total polar compounds, it was verified that Mixtures 1 and 2 presented values lower than 25% with 20 h of heating, not surpassing the limits established in many countries for disposal of oils and fats under high temperatures, thus proving the synergistic effect of antioxidants. PMID:24426004

  13. Effects of adding bulking agent, inorganic nutrient and microbial inocula on biopile treatment for oil-field drilling waste.

    PubMed

    Ma, Jie; Yang, Yongqi; Dai, Xiaoli; Chen, Yetong; Deng, Hanmei; Zhou, Huijun; Guo, Shaohui; Yan, Guangxu

    2016-05-01

    Contamination from oil-field drilling waste is a worldwide environmental problem. This study investigated the performance of four bench-scale biopiles in treating drilling waste: 1) direct biopile (DW), 2) biopile plus oil-degrading microbial consortium (DW + M), 3) biopile plus microbial consortium and bulking agents (saw dust) (DW + M + BA), 4) biopile plus microbial consortium, bulking agents, and inorganic nutrients (Urea and K2HPO4) (DW + M + BA + N). Ninety days of biopiling removed 41.0%, 44.0%, 55.7% and 87.4% of total petroleum hydrocarbon (TPH) in the pile "DW", "DW + M", "DW + M + BA", and "DW + M + BA + N" respectively. Addition of inorganic nutrient and bulking agents resulted in a 56.9% and 26.6% increase in TPH removal efficiency respectively. In contrast, inoculation of hydrocarbon-degrading microorganisms only slightly enhanced the contaminant removal (increased 7.3%). The biopile with stronger contaminant removal also had higher pile temperature and lower pile pH (e.g., in "DW + M + BA + N"). GC-MS analysis shows that biopiling significantly reduced the total number of detected contaminants and changed the chemical composition. Overall, this study shows that biopiling is an effective remediation technology for drilling waste. Adding inorganic nutrients and bulking agents can significantly improve biopile performance while addition of microbial inocula had minimal positive impacts on contaminant removal.

  14. Effects of adding bulking agent, inorganic nutrient and microbial inocula on biopile treatment for oil-field drilling waste.

    PubMed

    Ma, Jie; Yang, Yongqi; Dai, Xiaoli; Chen, Yetong; Deng, Hanmei; Zhou, Huijun; Guo, Shaohui; Yan, Guangxu

    2016-05-01

    Contamination from oil-field drilling waste is a worldwide environmental problem. This study investigated the performance of four bench-scale biopiles in treating drilling waste: 1) direct biopile (DW), 2) biopile plus oil-degrading microbial consortium (DW + M), 3) biopile plus microbial consortium and bulking agents (saw dust) (DW + M + BA), 4) biopile plus microbial consortium, bulking agents, and inorganic nutrients (Urea and K2HPO4) (DW + M + BA + N). Ninety days of biopiling removed 41.0%, 44.0%, 55.7% and 87.4% of total petroleum hydrocarbon (TPH) in the pile "DW", "DW + M", "DW + M + BA", and "DW + M + BA + N" respectively. Addition of inorganic nutrient and bulking agents resulted in a 56.9% and 26.6% increase in TPH removal efficiency respectively. In contrast, inoculation of hydrocarbon-degrading microorganisms only slightly enhanced the contaminant removal (increased 7.3%). The biopile with stronger contaminant removal also had higher pile temperature and lower pile pH (e.g., in "DW + M + BA + N"). GC-MS analysis shows that biopiling significantly reduced the total number of detected contaminants and changed the chemical composition. Overall, this study shows that biopiling is an effective remediation technology for drilling waste. Adding inorganic nutrients and bulking agents can significantly improve biopile performance while addition of microbial inocula had minimal positive impacts on contaminant removal. PMID:26891352

  15. Dietary supplementation of pyrroloquinoline quinone disodium protects against oxidative stress and liver damage in laying hens fed an oxidized sunflower oil-added diet.

    PubMed

    Wang, J; Zhang, H J; Xu, L; Long, C; Samuel, K G; Yue, H Y; Sun, L L; Wu, S G; Qi, G H

    2016-07-01

    The protective effects of dietary pyrroloquinoline quinone disodium (PQQ.Na2) supplementation against oxidized sunflower oil-induced oxidative stress and liver injury in laying hens were examined. Three hundred and sixty 53-week-old Hy-Line Gray laying hens were randomly allocated into one of the five dietary treatments. The treatments included: (1) a diet containing 2% fresh sunflower oil; (2) a diet containing 2% thermally oxidized sunflower oil; (3) an oxidized sunflower oil diet with 100 mg/kg of added vitamin E; (4) an oxidized sunflower oil diet with 0.08 mg/kg of PQQ.Na2; and (5) an oxidized sunflower oil diet with 0.12 mg/kg of PQQ.Na2. Birds fed the oxidized sunflower oil diet showed a lower feed intake compared to birds fed the fresh oil diet or oxidized oil diet supplemented with vitamin E (P=0.009). Exposure to oxidized sunflower oil increased plasma malondialdehyde (P<0.001), hepatic reactive oxygen species (P<0.05) and carbonyl group levels (P<0.001), but decreased plasma glutathione levels (P=0.006) in laying hens. These unfavorable changes induced by the oxidized sunflower oil diet were modulated by dietary vitamin E or PQQ.Na2 supplementation to levels comparable to the fresh oil group. Dietary supplementation with PQQ.Na2 or vitamin E increased the activities of total superoxide dismutase and glutathione peroxidase in plasma and the liver, when compared with the oxidized sunflower oil group (P<0.05). PQQ.Na2 or vitamin E diminished the oxidized sunflower oil diet induced elevation of liver weight (P=0.026), liver to BW ratio (P=0.001) and plasma activities of alanine aminotransferase (P=0.001) and aspartate aminotransferase (P<0.001) and maintained these indices at the similar levels to the fresh oil diet. Furthermore, oxidized sunflower oil increased hepatic DNA tail length (P<0.05) and tail moment (P<0.05) compared with the fresh oil group. Dietary supplementation of PQQ.Na2 or vitamin E decreased the oxidized oil diet induced DNA tail length

  16. Classification and individualization of used engine oils using elemental composition and discriminant analysis.

    PubMed

    Kim, Yuna; Kim, Nam Yee; Park, Seh Youn; Lee, Dong-Kye; Lee, Jin Hoon

    2013-07-10

    The six most common commercial automotive gasoline and diesel engine oils in the Republic of Korea, ZIC A, ZIC XQ RV/SUV, Kixx G1, Kixx RV, and the brand name products HD Premium gasoline and HD Premium diesel, were randomly used in nineteen different vehicles. Samples of seventy-six used engine oils, which were withdrawn from the sumps of those vehicles at different intervals, were analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES), and statistically compared. Two data analysis strategies were used to interpret and understand the elemental profiles in the multi-dimensional data. Macro (additive elements of Ca, Zn and P) and trace (wear metal elements of Ag, Al, Ba, Cd, Cr, Cu, Fe, Mg, Mo, Na, Ni, Pb and Sn) elements were used as potential markers to determine the brand of oil used and the engine type in which the oil was used, and to trace the individual vehicle for forensic purposes. The discriminant analysis statistical technique was applied, and its prediction ability was assessed. In this study, 92.1%, 82.9% and 92.1% of the cross-validated grouped cases correctly predicted the brand of oil, the engine type and the vehicle that was the source of the oil, respectively. PMID:23806831

  17. Phosphatidic acid phosphatase and diacylglycerol acyltransferase: potential targets for metabolic engineering of microorganism oil.

    PubMed

    Jin, Hong-Hao; Jiang, Jian-Guo

    2015-04-01

    Oleaginous microorganism is becoming one of the most promising oil feedstocks for biodiesel production due to its great advantages in triglyceride (TAG) accumulation. Previous studies have shown that de novo TAG biosynthesis can be divided into two parts: the fatty acid biosynthesis pathway (the upstream part which generates acyl-CoAs) and the glycerol-3-phosphate acylation pathway (the downstream part in which three acyl groups are sequentially added onto a glycerol backbone). This review mainly focuses on two enzymes in the G3P pathway, phosphatidic acid phosphatase (PAP) and diacylglycerol acyltransferase (DGAT). The former catalyzes a dephosphorylation reaction, and the latter catalyzes a subsequent acylation reaction. Genes, functional motifs, transmembrane domains, action mechanism, and new studies of the two enzymes are discussed in detail. Furthermore, this review also covers diacylglycerol kinase, an enzyme that catalyzes the reverse reaction of diacylglycerol formation. In addition, PAP and DGAT are the conjunction points of the G3P pathway, the Kennedy pathway, and the CDP-diacylglycerol pathway (CDP-DAG pathway), and the mutual transformation between TAGs and phospholipids is discussed as well. Given that both the Kennedy and CDP-diacylglycerol pathways are in metabolic interlock (MI) with the G3P pathway, it is suggested that, via metabolic engineering, TAG accumulation can be improved by the two pathways based on the pivotal function of PAP and DGAT.

  18. Dynamic Oil Consumption Measurement of Internal Combustion Engines using Laser Spectroscopy.

    PubMed

    Sellmeier, Stefan; Alonso, Eduardo; Boesl, Ulrich

    2014-01-01

    A new approach has been developed to measure dynamic consumption of lubricant oil in an internal combustion engine. It is based on the already known technique where sulfur is used as a natural tracer of the engine oil. Since ejection of motor oil in gaseous form into the exhaust is by far the main source of engine oil consumption, detection of sulfur in the exhaust emission is a valuable way to measure engine oil consumption in a dynamic way. In earlier approaches, this is done by converting all sulfur containing chemical components into SO2 by thermal pyrolysis in a high temperature furnace at atmospheric pressure. The so-formed SO2 then is detected by broadband-UV-induced fluorescence or mass spectrometric methods. The challenge is to reach the necessary detection limit of 50 ppb. The new approach presented here includes sulfur conversion in a low-pressure discharge cell and laser-induced fluorescence with wavelength and fluorescence lifetime selection. A limit of detection down to 10 ppb at a temporal resolution in the time scale of few seconds is reached. Extensive, promising studies have been performed at a real engine test bench. Future developments of a compact, mobile device based on these improvements are discussed. PMID:24279690

  19. Dynamic Oil Consumption Measurement of Internal Combustion Engines using Laser Spectroscopy.

    PubMed

    Sellmeier, Stefan; Alonso, Eduardo; Boesl, Ulrich

    2014-01-01

    A new approach has been developed to measure dynamic consumption of lubricant oil in an internal combustion engine. It is based on the already known technique where sulfur is used as a natural tracer of the engine oil. Since ejection of motor oil in gaseous form into the exhaust is by far the main source of engine oil consumption, detection of sulfur in the exhaust emission is a valuable way to measure engine oil consumption in a dynamic way. In earlier approaches, this is done by converting all sulfur containing chemical components into SO2 by thermal pyrolysis in a high temperature furnace at atmospheric pressure. The so-formed SO2 then is detected by broadband-UV-induced fluorescence or mass spectrometric methods. The challenge is to reach the necessary detection limit of 50 ppb. The new approach presented here includes sulfur conversion in a low-pressure discharge cell and laser-induced fluorescence with wavelength and fluorescence lifetime selection. A limit of detection down to 10 ppb at a temporal resolution in the time scale of few seconds is reached. Extensive, promising studies have been performed at a real engine test bench. Future developments of a compact, mobile device based on these improvements are discussed.

  20. Value-added conversion of waste cooking oil and post-consumer PET bottles into biodiesel and polyurethane foams.

    PubMed

    Dang, Yu; Luo, Xiaolan; Wang, Feng; Li, Yebo

    2016-06-01

    A sustainable process of value-added utilization of wastes including waste cooking oil (WCO) and post-consumer PET bottles for the production of biodiesel and polyurethane (PU) foams was developed. WCO collected from campus cafeteria was firstly converted into biodiesel, which can be used as vehicle fuel. Then crude glycerol (CG), a byproduct of the above biodiesel process, was incorporated into the glycolysis process of post-consumer PET bottles collected from campus to produce polyols. Thirdly, PU foams were synthesized through the reaction of the above produced polyols with isocyanate in the presence of catalysts and other additives. The characterization of the produced biodiesel demonstrated that its properties meet the specification of biodiesel standard. The effect of crude glycerol loading on the properties of polyols and PU foams were investigated. All the polyols showed satisfactory properties for the production of rigid PU foams which had performance comparable to those of some petroleum-based analogs. A mass balance and a cost analysis for the conversion of WCO and waste PET into biodiesel and PU foams were also discussed. This study demonstrated the potential of WCO and PET waste for the production of value-added products.

  1. Value-added conversion of waste cooking oil and post-consumer PET bottles into biodiesel and polyurethane foams.

    PubMed

    Dang, Yu; Luo, Xiaolan; Wang, Feng; Li, Yebo

    2016-06-01

    A sustainable process of value-added utilization of wastes including waste cooking oil (WCO) and post-consumer PET bottles for the production of biodiesel and polyurethane (PU) foams was developed. WCO collected from campus cafeteria was firstly converted into biodiesel, which can be used as vehicle fuel. Then crude glycerol (CG), a byproduct of the above biodiesel process, was incorporated into the glycolysis process of post-consumer PET bottles collected from campus to produce polyols. Thirdly, PU foams were synthesized through the reaction of the above produced polyols with isocyanate in the presence of catalysts and other additives. The characterization of the produced biodiesel demonstrated that its properties meet the specification of biodiesel standard. The effect of crude glycerol loading on the properties of polyols and PU foams were investigated. All the polyols showed satisfactory properties for the production of rigid PU foams which had performance comparable to those of some petroleum-based analogs. A mass balance and a cost analysis for the conversion of WCO and waste PET into biodiesel and PU foams were also discussed. This study demonstrated the potential of WCO and PET waste for the production of value-added products. PMID:27055365

  2. University of Idaho tests engines with biodiesel from waste oil

    SciTech Connect

    Peterson, C.; Fleischman, G.

    1995-12-31

    This article reports on preliminary work at the University of Idaho that investigates the possibilities of capitalizing on Idaho`s large volumes of waste oil and potatoes-generated ethanol to produce biodiesel fuel. This fuel would be hydrogenated soy ethyl ester, MySEE for short, made through a reaction between waste oil and ethanol made from potato waste. Address for full report is given.

  3. Some Adverse Effects of Used Engine Oil (Common Waste Pollutant) On Reproduction of Male Sprague Dawley Rats

    PubMed Central

    Akintunde, Wasiu Olalekan; Olugbenga, Ojo A.; Olufemi, Ogundipe O.

    2015-01-01

    AIM: Used oil is contaminated not only with heavy metals but also with polycyclic aromatic hydrocarbons (PAHs) that are insignificant in the unused oil. In our study we determined possible reproductive effects of used engine oil on male rats. MATERIAL AND METHODS: Twenty eight male Wistar rats were used for the study. The rats had average weight of 181.5 ± 10 g, animal feeds and portable water was provided ad-libitum. The rats were assigned to 4 groups (n = 7) including control. The treated groups orally received 0.1 ml/rat, 0.2 ml/rat and 0.4 ml/rat of the used engine oil every other day for 28 days using oral canulla. The spermatozoa were collected from epididymis for sperm analysis and testes were removed and preserved in Bouin’s fluid for routine histological analysis. RESULTS: Our results showed that there was progressive weight increase among the control group of rats that received distilled water. Meanwhile, rats that received 0.4 ml/rat of the used engine oil showed significant (P < 0.05) weight loss in second and third week of administration while rats that received 0.2 ml/rat and 0.1 ml/rat of the used engine oil showed non-significant (P > 0.05) weight reduction. The spermatozoa number was decreased with significance (P < 0.05) at 0.2 ml/rat (2.38 ± 0.29) and 0.4 ml/rat (1.98 ± 0.08) when compared with the control (5.00 ± 0.89). However, the percentage of motile sperms was reduced significantly (P <0.05) at 0.2 ml/rat (52.86 ± 3.59) and 0.4 ml/rat (45.71 ± 2.94) except at 0.1 ml/rat where the reduction (64.00 ± 7.5) was not significant (P> 0.05). The percentage of head deformity been 41.43 ± 2.61 and 42.00 ± 3.74 at 0.2 ml/rat and 0.4 ml/rat respectively, also significant increase of middle piece deformity was observed only at 0.1 ml/rat (45.71 ± 2.02) while tail deformity significantly decreased (15.71 ± 2.02, 20.00 ± 4.36 and 20.00 ± 4.47) when compared with the control (30.00 ± 1.29). The testicular seminiferous tubules were slightly

  4. Soil stabilization using oil shale solid wastes: Laboratory evaluation of engineering properties

    SciTech Connect

    Turner, J.P.

    1991-01-01

    Oil shale solid wastes were evaluated for possible use as soil stabilizers. A laboratory study was conducted and consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in strength, durability, and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern shale can be used for soil stabilization if limestone is added during combustion. Without limestone, eastern oil shale waste exhibits little or no cementation. The testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented. 11 refs., 3 figs., 10 tabs.

  5. Adding a Visualization Feature to Web Search Engines: It’s Time

    SciTech Connect

    Wong, Pak C.

    2008-11-11

    Since the first world wide web (WWW) search engine quietly entered our lives in 1994, the “information need” behind web searching has rapidly grown into a multi-billion dollar business that dominates the internet landscape, drives e-commerce traffic, propels global economy, and affects the lives of the whole human race. Today’s search engines are faster, smarter, and more powerful than those released just a few years ago. With the vast investment pouring into research and development by leading web technology providers and the intense emotion behind corporate slogans such as “win the web” or “take back the web,” I can’t help but ask why are we still using the very same “text-only” interface that was used 13 years ago to browse our search engine results pages (SERPs)? Why has the SERP interface technology lagged so far behind in the web evolution when the corresponding search technology has advanced so rapidly? In this article I explore some current SERP interface issues, suggest a simple but practical visual-based interface design approach, and argue why a visual approach can be a strong candidate for tomorrow’s SERP interface.

  6. Development of narrow width type oil control ring for motorcycle engine

    SciTech Connect

    Tateishi, Yukio; Fujimura, Kazuhiro; Ishihara, Katsushi; Watanabe, Masanor

    1995-12-31

    The reduction of piston ring friction forces, which account for high percentages of the total engine friction loss, is vital for the simultaneous attainments of lower fuel consumption, higher engine power and speed. The authors et al. noted a three-piece type oil control ring in this study, and strived for the development of an oil control ring with a narrow width and a low tangential force. A new three-piece, type oil control ring with a small tolerance on tangential force and a width of 1.2 to 1.5 mm has been successfully developed by studying the effect of such a ring on the lubricating oil consumption, while providing a spring function by press-forming a wire rod having a particular sectional shape.

  7. Comparison of the constituents of two jet engine lubricating oils and their volatile pyrolytic degradation products.

    PubMed

    van Netten, C; Leung, V

    2000-03-01

    Leaking oil seals in jet engines, at locations prior to the compressor stage, can be a cause of smoke in the cabins of BAe-146 aircraft. Compressed combustion air is bled off to pressurize the cabin and to provide a source of fresh air. Bleed air is diverted from a location just prior to the combustion chamber at a temperature around 500 degrees C. To prevent oil breakdown products from entering the cabin air, catalytic converters have been used to clean the air. During an oil seal failure this device becomes overloaded and smoke is observed in the cabin. Some aircraft companies have removed the catalytic converters and claim an improvement in air quality. During an oil seal failure, however, the flight crew is potentially exposed to the thermal breakdown products of the engine oils. Because very little is known regarding the thermal breakdown products of jet engine lubrication oils, two commercially available oils were investigated under laboratory conditions at 525 degrees C to measure the release of CO, CO2,NO2, and HCN as well as volatiles which were analyzed using GC-Mass spectrometry in an attempt to see if the neurotoxic agents tricresyl phosphates (TCPs) and trimethyl propane phosphate (TMPP) would be present or formed. TMPP was not found in these experiments. Some CO2 was generated along with CO which reached levels in excess of 100 ppm. HCN and NO2 were not detected. GC compositions of the two bulk oils and their breakdown products were almost identical. The presence of TCPs was confirmed in the bulk oils and in the volatiles. Localized condensation in the ventilation ducts and filters in the air conditioning packs are likely the reason why the presence of TCPs has not been demonstrated in cabin air. It was recommended that this needed to be verified in aircraft.

  8. Comparison of the constituents of two jet engine lubricating oils and their volatile pyrolytic degradation products.

    PubMed

    van Netten, C; Leung, V

    2000-03-01

    Leaking oil seals in jet engines, at locations prior to the compressor stage, can be a cause of smoke in the cabins of BAe-146 aircraft. Compressed combustion air is bled off to pressurize the cabin and to provide a source of fresh air. Bleed air is diverted from a location just prior to the combustion chamber at a temperature around 500 degrees C. To prevent oil breakdown products from entering the cabin air, catalytic converters have been used to clean the air. During an oil seal failure this device becomes overloaded and smoke is observed in the cabin. Some aircraft companies have removed the catalytic converters and claim an improvement in air quality. During an oil seal failure, however, the flight crew is potentially exposed to the thermal breakdown products of the engine oils. Because very little is known regarding the thermal breakdown products of jet engine lubrication oils, two commercially available oils were investigated under laboratory conditions at 525 degrees C to measure the release of CO, CO2,NO2, and HCN as well as volatiles which were analyzed using GC-Mass spectrometry in an attempt to see if the neurotoxic agents tricresyl phosphates (TCPs) and trimethyl propane phosphate (TMPP) would be present or formed. TMPP was not found in these experiments. Some CO2 was generated along with CO which reached levels in excess of 100 ppm. HCN and NO2 were not detected. GC compositions of the two bulk oils and their breakdown products were almost identical. The presence of TCPs was confirmed in the bulk oils and in the volatiles. Localized condensation in the ventilation ducts and filters in the air conditioning packs are likely the reason why the presence of TCPs has not been demonstrated in cabin air. It was recommended that this needed to be verified in aircraft. PMID:10701290

  9. Usability of food industry waste oils as fuel for diesel engines.

    PubMed

    Winfried, Russ; Roland, Meyer-Pittroff; Alexander, Dobiasch; Jürgen, Lachenmaier-Kölch

    2008-02-01

    Two cogeneration units were each fitted with a prechamber (IDI) diesel engine in order to test the feasibility of using waste oils from the food industry as a fuel source, and additionally to test emissions generated by the combustion of these fuels. Esterified waste oils and animal fats as well as mustard oil were tested and compared to the more or less "common" fuels: diesel, rapeseed oil and rapeseed methyl ester. The results show that, in principle, each of these fuels is suitable for use in a prechamber diesel engine. Engine performance can be maintained at a constant level. Without catalytic conversion, the nitrogen oxides emissions were comparable. A significant reduction in NO(x) was achieved through the injection of urea. Combining a urea injection with the SCR catalytic converter reduced NO(x) emissions between 53% and 67%. The carbon monoxide emissions from waste oils are not significantly different from those of "common" fuels and can be reduced the same way as of hydrocarbon emissions, through utilization of a catalytic converter. The rate of carbon monoxide reduction by catalytic conversion was 84-86%. A lower hydrocarbon concentration was associated with fuels of agricultural origin. With the catalytic converter a reduction of 29-42% achieved. Each prechamber diesel engine exhibited its own characteristic exhaust, which was independent of fuel type. The selective catalytic reduction of the exhaust emissions can be realized without restriction using fuels of agricultural origin.

  10. Fuels Coming from Locals Vegetables Oils for Operating of Thermals Engines

    NASA Astrophysics Data System (ADS)

    Agboue, Akichi; Yobou, Bokra

    The energy crisis born from the oil problem determined a renewal of attention on the possible possibilities of production of substitute fuels for the operation of the machines and the thermal engines. The fuel`s production based on vegetable oils require a renewal attention about the research of replacement fuel for the opeating of machines and thermal engines. Actually, the scientific world takes an interest in the research of others liquids fuel obtained with renewables energy sources whose vegetables have a good place. So, for helping to solve the fuel problem and particularly in third world countries without petroleum resources but producing fruits and oils seed, this research was about search of fuel from vegetables oils. Extraction and physico-chemical analysis performed on various vegetables plants show an interesting energy aspect. Evaluation of actually energy parameters will permit to do a comparison with classics fuel like gas-oil and petrol. Finally, analysis of thermal engines show that fuels coming from biomass like jatropha, ricinodendron and pistacia can to use for operating of those thermal engines.

  11. Characterization of vegetable oils for use as fuels in diesel engines

    SciTech Connect

    Ryan, T.W. III.; Callahan, T.J.; Dodge, L.G.

    1982-01-01

    The current specifications for petroleum fuels have evolved over the history of the petroleum industry and the development of the internal combustion engine. Present day fuel specifications are based on a wealth of empirical data and practical experience. A similar data base is only now being developed for the specification of vegetable oil fuels for diesel engines. Four different types of vegetable oil (soy, sunflower, cottonseed and peanut) have been obtained, each in at least three different stages of processing. All of the oils (14) have been characterized with respect to their physical and chemical properties. The spray characteristics of five of the oils have been determined at a variety of fuel temperatures using a high-pressure, high-temperature injection bomb and high-speed motion picture camera. These same oils have been tested in a direct injection farm tractor engine. The engine data consists of the normal performance measurements as well as the determination of heat release rates from cylinder pressure data. 3 figures, 7 tables.

  12. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid.

    PubMed

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-01-01

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2-16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process. PMID:27488733

  13. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid

    PubMed Central

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-01-01

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2–16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process. PMID:27488733

  14. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid

    NASA Astrophysics Data System (ADS)

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-08-01

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2–16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process.

  15. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  16. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid.

    PubMed

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-08-04

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2-16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process.

  17. Automated small scale oil seed processing plant for production of fuel for diesel engines

    SciTech Connect

    Thompson, J.C.; Peterson, C.L.

    1982-01-01

    University of Idaho seed processing research is centered about a CeCoCo oil expeller. A seed preheater-auger, seed bin, meal auger, and oil pump have been constructed to complete the system, which is automated and instrumented. The press, preheater, cake removal auger, and oil transfer pump are tied into a central panel where energy use is measured and the process controlled. Extracted oil weight, meal weight, process temperature, and input energy are all recorded during operation. The oil is transferred to tanks where it settles for 48 hours or more. It is then pumped through a filtering system and stored ready to be used as an engine fuel. The plant has processed over 11,000 kg of seed with an average extraction efficiency of 78 percent. 5 tables.

  18. Development of micro engine oil condition sensor using multi-wall carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Na, Dae Seok; Jung-Ho Pak, James; Kyeong Kim, Jai

    2007-03-01

    A new interdigit-type micro oil condition sensor was designed and fabricated for monitoring the deterioration of lubricating and insulating oils. The designed sensor operates based on the change of the dielectric constant and electrical conductivity. In order to improve sensor performance, an oil condition sensor was fabricated using MEMS technology and multi-wall carbon nanotube film. The experiment was performed with automobile engine oils with the same brand and quality so as to ensure measurement reliability. Capacitance changes were measured according to increasing mileage and the sensors' performance was improved. These results show that the proposed sensor could measure the degree of oil deterioration with a high sensitivity and it is applicable to other lubricating systems as well as insulating systems.

  19. Soy-Based, Water-Cooled, TC W-III Two Cycle Engine Oil

    SciTech Connect

    Scharf, Curtis R.; Miller, Mark E.

    2003-08-30

    The objective of this project was to achieve technical approval and commercial launch for a biodegradable soy oil-based, environmentally safe, TC W-III performance, water-cooled, two cycle engine oil. To do so would: (1) develop a new use for RBD soybean oil; (2) increase soybean utilization in North America in the range of 500 K-3.0 MM bushels; and (3) open up supply opportunities of 1.5-5.0 MM bushels worldwide. These goals have been successfully obtained.

  20. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    NASA Astrophysics Data System (ADS)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2016-07-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  1. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    PubMed

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine. PMID:24350455

  2. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    PubMed

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  3. Experimental investigation of engine emissions with marine gas oil-oxygenate blends.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2010-07-15

    This paper investigates the diesel engine performance and exhaust emissions with marine gas oil-alternative fuel additive. Marine gas oil (MGO) was selected as base fuel for the engine experiments. An oxygenate, diethylene glycol dimethyl ether (DGM), and a biodiesel (BD) jatropha oil methyl ester (JOME) with a volume of 10% were blended with the MGO fuel. JOME was derived from inedible jatropha oil. Lower emissions with diesel-BD blends (soybean methyl ester, rapeseed methyl ester etc.) have been established so far, but the effect of MGO-BD (JOME) blends on engine performance and emissions has been a growing interest as JOME (BD) is derived from inedible oil and MGO is frequently used in maritime transports. No phase separation between MGO-DGM and MGO-JOME blends was found. The neat MGO, MGO-DGM and MGO-JOME blends are termed as MGO, Ox10 and B10 respectively. The experiments were conducted with a six-cylinder, four-stroke, turbocharged, direct-injection Scania DC 1102 (DI) diesel engine. The experimental results showed significant reductions in fine particle number and mass emissions, PM and smoke emissions with Ox10 and B10 fuels compared to the MGO fuel. Other emissions including total unburned hydrocarbon (THC), carbon monoxide (CO) and engine noise were also reduced with the Ox10 and B10 fuels, while maintaining similar brake specific fuel consumption (BSFC) and thermal efficiency with MGO fuel. Oxides of nitrogen (NOx) emissions, on the other hand, were slightly higher with the Ox10 and B10 fuels at high engine load conditions. PMID:20452651

  4. Experimental investigation of engine emissions with marine gas oil-oxygenate blends.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2010-07-15

    This paper investigates the diesel engine performance and exhaust emissions with marine gas oil-alternative fuel additive. Marine gas oil (MGO) was selected as base fuel for the engine experiments. An oxygenate, diethylene glycol dimethyl ether (DGM), and a biodiesel (BD) jatropha oil methyl ester (JOME) with a volume of 10% were blended with the MGO fuel. JOME was derived from inedible jatropha oil. Lower emissions with diesel-BD blends (soybean methyl ester, rapeseed methyl ester etc.) have been established so far, but the effect of MGO-BD (JOME) blends on engine performance and emissions has been a growing interest as JOME (BD) is derived from inedible oil and MGO is frequently used in maritime transports. No phase separation between MGO-DGM and MGO-JOME blends was found. The neat MGO, MGO-DGM and MGO-JOME blends are termed as MGO, Ox10 and B10 respectively. The experiments were conducted with a six-cylinder, four-stroke, turbocharged, direct-injection Scania DC 1102 (DI) diesel engine. The experimental results showed significant reductions in fine particle number and mass emissions, PM and smoke emissions with Ox10 and B10 fuels compared to the MGO fuel. Other emissions including total unburned hydrocarbon (THC), carbon monoxide (CO) and engine noise were also reduced with the Ox10 and B10 fuels, while maintaining similar brake specific fuel consumption (BSFC) and thermal efficiency with MGO fuel. Oxides of nitrogen (NOx) emissions, on the other hand, were slightly higher with the Ox10 and B10 fuels at high engine load conditions.

  5. Engineering industrial oil biosynthesis: cloning and characterization of Kennedy pathway acyltransferases from novel oilseed species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For more than twenty years, various industrial, governmental, and academic laboratories have developed and refined genetic engineering strategies aimed at manipulating lipid metabolism in plants and microbes. The goal of these projects is to produce renewable specialized oils that can effectively c...

  6. The pipeline oil pumping engineering based on the Plant Wide Control technology

    NASA Astrophysics Data System (ADS)

    Starikov, D. P.; Rybakov, E. A.; Gromakov, E. I.

    2015-04-01

    This article provides recommendations for the use technology Plant Wide Control to control the pumping of oil through the pipeline. The proposed engineering using pipeline management in general (Pipe Wide Control) will reduce the loss of electric power at the expense of the balance of pumping stations located along the pipeline route.

  7. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter

    NASA Astrophysics Data System (ADS)

    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Saravanan, C. G.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.

    2013-12-01

    In this work, we propose pine oil biofuel, a renewable fuel obtained from the resins of pine tree, as a potential substitute fuel for a diesel engine. Pine oil is endowed with enhanced physical and thermal properties such as lower viscosity and boiling point, which enhances the atomization and fuel/air mixing process. However, the lower cetane number of the pine oil hinders its direct use in diesel engine and hence, it is blended in suitable proportions with diesel so that the ignition assistance could be provided by higher cetane diesel. Since lower cetane fuels are prone to more NOX formation, SCR (selective catalyst reduction), using urea as reducing agent, along with a CC (catalytic converter) has been implemented in the exhaust pipe. From the experimental study, the BTE (brake thermal efficiency) was observed to be increased as the composition of pine oil increases in the blend, with B50 (50% pine oil and 50% diesel) showing 7.5% increase over diesel at full load condition. The major emissions such as smoke, CO, HC and NOX were reduced by 70.1%, 67.5%, 58.6% and 15.2%, respectively, than diesel. Further, the average emissions of B50 with SCR and CC assembly were observed to be reduced, signifying the positive impact of pine oil biofuel on atmospheric environment. In the combustion characteristics front, peak heat release rate and maximum in-cylinder pressure were observed to be higher with longer ignition delay.

  8. Quantifying the Contribution of Lubrication Oil Carbon to Particulate Emissions from a Diesel Engine

    SciTech Connect

    Buchholz, B A; Dibble, R W; Rich, D; Cheng, A S

    2003-01-31

    The contribution of lubrication oil to particulate matter (PM) emissions from a Cummins B5.9 Diesel engine was measured using accelerator mass spectrometry to trace carbon isotope concentrations. The engine operated at fixed medium load (285 N-m (210 ft.lbs.) at 1600 rpm) used 100% biodiesel fuel (8100) with a contemporary carbon-14 ({sup 14}C) concentration of 103 amol {sup 14}C mg C. The {sup 14}C concentration of the exhaust CO{sub 2} and PM were 102 and 99 amol {sup 14}C/mg C, respectively. The decrease in {sup 14}C content in the CO, and PM are due to the consumption of lubrication oil which is {sup 14}C-free. Approximately 4% of the carbon in PM came from lubrication oil under these operating conditions.

  9. Quantifying the Contribution of Lubrication Oil to Particulate Emissions from a Diesel Engine

    SciTech Connect

    Cheng, A S; Rich, D; Dibble, R W; Buchholz, B A

    2002-12-06

    The contribution of lubrication oil to particulate matter (PM) emissions from a Cummins B5.9 Diesel engine was measured using accelerator mass spectrometry to trace carbon isotope concentrations. The engine operated at fixed medium load (285 N-m (210 ft.lbs.) 1600 m) used 100% biodiesel fuel (B100) with a contemporary carbon-14 ({sup 14}C) concentration of 103 amol {sup 14}C/ mg C. The C concentration of the exhaust C02 and PM were 102 and 99 amol {sup 14}C/mg C, respectively. The decrease in I4C content in the PM is due to the consumption of lubrication oil which is {sup 14}C-free. Approximately 4% of the carbon in PM came from lubrication oil under these operating conditions. The slight depression in CO{sub 2} isotope content could be attributed to ambient CO{sub 2} levels and measurement uncertainty.

  10. Microbial desalination cell for enhanced biodegradation of waste engine oil using a novel bacterial strain Bacillus subtilis moh3.

    PubMed

    Sabina, K; Fayidh, Mohammed A; Archana, G; Sivarajan, M; Babuskin, S; Babu, P Azhagu Saravana; Radha, K Krishnan; Sukumar, M

    2014-01-01

    Microbial desalination cell (MDC) is a bioelectrochemical system developed recently from microbial fuel cells (MFCs), for producing green energy from organic wastes along with desalination of saltwater. MDC is proved to be a better performer than MFC in terms of power output and chemical oxygen demand removal, with desalination as an additional feature. This study investigates the application potential of MDC for integrated biodegradation of waste engine oil. This study showed, for the first time, that waste engine oil could be used as an organic substrate in MDC, achieving biodegradation of engine oil along with considerable desalination and power production. Utilization of these wastes in MDC can protect the environment from waste engine oil contamination. Indigenous oil-degrading bacteria were isolated and identified from engine oil contaminated sludge. Degradation of waste engine oil by these novel isolates was studied in batch cultures and optimized the growth conditions. The same cultures when used in MDC, gave enhanced biodegradation (70.1 +/- 0.5%) along with desalination (68.3 +/- 0.6%) and power production (3.1 +/- 0.3 mW/m2). Fourier transform-infrared spectroscopy and gas chromatography-mass spectrometry analyses were performed to characterize the degradation metabolites in the anolyte of MDC which clearly indicated the biodegradation of long chain, branched and cyclic hydrocarbons present in waste engine oil.

  11. Role of lubrication oil in particulate emissions from a hydrogen-powered internal combustion engine.

    PubMed

    Miller, Arthur L; Stipe, Christopher B; Habjan, Matthew C; Ahlstrand, Gilbert G

    2007-10-01

    Recent studies suggest that trace metals emitted by internal combustion engines are derived mainly from combustion of lubrication oil. This hypothesis was examined by investigation of the formation of particulate matter emitted from an internal combustion engine in the absence of fuel-derived soot. Emissions from a modified CAT 3304 diesel engine fueled with hydrogen gas were characterized. The role of organic carbon and metals from lubrication oil on particle formation was investigated under selected engine conditions. The engine produced exhaust aerosol with log normal-size distributions and particle concentrations between 10(5) and 10(7) cm(-3) with geometric mean diameters from 18 to 31 nm. The particles contained organic carbon, little or no elemental carbon, and a much larger percentage of metals than particles from diesel engines. The maximum total carbon emission rate was estimated at 1.08 g h(-1), which is much lower than the emission rate of the original diesel engine. There was also evidence that less volatile elements, such as iron, self-nucleated to form nanoparticles, some of which survive the coagulation process. PMID:17969702

  12. Role of lubrication oil in particulate emissions from a hydrogen-powered internal combustion engine.

    PubMed

    Miller, Arthur L; Stipe, Christopher B; Habjan, Matthew C; Ahlstrand, Gilbert G

    2007-10-01

    Recent studies suggest that trace metals emitted by internal combustion engines are derived mainly from combustion of lubrication oil. This hypothesis was examined by investigation of the formation of particulate matter emitted from an internal combustion engine in the absence of fuel-derived soot. Emissions from a modified CAT 3304 diesel engine fueled with hydrogen gas were characterized. The role of organic carbon and metals from lubrication oil on particle formation was investigated under selected engine conditions. The engine produced exhaust aerosol with log normal-size distributions and particle concentrations between 10(5) and 10(7) cm(-3) with geometric mean diameters from 18 to 31 nm. The particles contained organic carbon, little or no elemental carbon, and a much larger percentage of metals than particles from diesel engines. The maximum total carbon emission rate was estimated at 1.08 g h(-1), which is much lower than the emission rate of the original diesel engine. There was also evidence that less volatile elements, such as iron, self-nucleated to form nanoparticles, some of which survive the coagulation process.

  13. Effect of adding non-volatile oil as a core material for the floating microspheres prepared by emulsion solvent diffusion method.

    PubMed

    Lee, J H; Park, T G; Lee, Y B; Shin, S C; Choi, H K

    2001-01-01

    Eudragit microspheres, to float in the gastrointestinal tract, were prepared to prolong a gastrointestinal transit time. To enhance their buoyancy, non-volatile oil was added to the dispersed phase. When an oil component was not miscible with water, over 90% was entrapped within the microspheres and prolonged the floating time of the microspheres. Depending on the solvent ratio, the morphologies of the microspheres were different and the best result was obtained when the ratio of dichloromethane:ethanol:isopropanol was 5:6:4. As the isopropanol portion increased, the time to form microspheres was delayed and the amount of fibre-like substance produced was decreased, due to the slow diffusion rate of the solvent. Compared with microspheres prepared without non-volatile oil, the release rate of the drug from microspheres was faster in all cases tested, except the microspheres containing mineral oil. The solubility of the drug in the non-volatile oil affected the release profiles of the drugs. The non-volatile oil tends to decrease the glass transition temperature of prepared microspheres and change the release profile. The internal morphology of the microspheres was slightly different depending on the entrapped oil phase used. Tiny spherical objects were present at the inner surface of microspheres and the inside of the shell.

  14. Amine bearing polymeric particles as acid neutralizers for engine oils

    SciTech Connect

    Theodore, A.N.; Chattha, M.S.

    1986-02-04

    This patent describes a lubricating oil composition consisting of a major proportion of a lubricating base oil and about 0.1 to 15 weight percent of an acid neutralizing additive which consists of polymer particles (a) bearing pendant amine groups, and (b) having a diameter of about 500 A and 10,000 A. The amine functional particles are formed by reacting polymer particles bearing pendant epoxide groups with a secondary amine in an amount so as to react essentially all of the epoxide groups on the epoxide bearing polymer particles with the secondary amine. The polymer particles bearing pendant epoxide groups are formed by the free radical addition polymerization of: (a) between about 50 and about 100 weight percent of an ethylenically unsaturated monomers bearing an epoxide group, and (b) 0 up to about 50 weight percent of other monoethylenically unsaturated monomers; in the presence of: (I) a non-polar organic liquid which is a solvent for the polymerizable monomers, but a non-solvent for the resultant polymer, and (II) polymeric dispersion stabilizer containing at least two segments, with one segment being solvated by the non-polar organic liquid and the second segment being of different polarity than the first segment and relatively insoluble in the non-polar organic liquid. The second segment of the stabilizer is chemically attached to the polymerized particle.

  15. The use of surface layer with boron in friction pairs lubricated by engine oils

    NASA Astrophysics Data System (ADS)

    Szczypiński-Sala, W.; Lubas, J.

    2016-09-01

    The aim of the present work is to determine the influence of surface layers with boron and engine oil on the processes of friction and wear in friction pairs. The ring samples with borided surface layer cooperated under test conditions with counterparts made with CuPb30 and AlSn20 bearing alloys. During the tests, the friction pairs were lubricated with 15W/40 Lotos mineral oil and 5W/40 Lotos synthetic oil. The lubrication of friction area with Lotos mineral oil causes the reduction of the friction force, the temperature in the friction area and the wear of the bearing alloys under study, whereas the lubrication with Lotos synthetic oil reduces the changes in the geometrical structure of the cooperating friction pair elements. Lubrication of the friction area in the start-up phase of the friction pair by mineral oil causes faster stabilization of the friction conditions in the contact area than in the cause of lubrication of the friction pair by synthetic oil. The intensity of wear of the AlSn20 bearing alloy cooperating with the borided surface layer is three times smaller than the intensity of use of the CuPb30 alloy bearing.

  16. High-speed Oil Engines for Vehicles. Part II

    NASA Technical Reports Server (NTRS)

    Hausfelder, Ludwig

    1927-01-01

    Further progress toward the satisfactory solution of the difficult problem of the distribution and atomization of the injected fuel was made by extensive experimentation with various fuel valves, nozzles, and atomizing devices. Valuable information was also obtained through numerous experimental researches on the combustion of oils and the manner of introducing the combustion air into the cylinder, as well as on the physical processes of atomization, the determination of the size of drops, etc. These researches led to the conclusion that it is possible, even without producing great turbulence in the combustion chamber and at moderate pump pressure, if the degree of atomization and the penetrative power of the fuel jet are adapted to the shape of the combustion chamber and to the dimensions of the cylinder.

  17. Metabolic engineering of plant oils and waxes for use as industrial feedstocks.

    PubMed

    Vanhercke, Thomas; Wood, Craig C; Stymne, Sten; Singh, Surinder P; Green, Allan G

    2013-02-01

    Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks.

  18. The potential of Chromolaena odorata (L) to decontaminate used engine oil impacted soil under greenhouse conditions.

    PubMed

    Atagana, Harrison Ifeanyichukwu

    2011-08-01

    This study reports on the use of Chromolaena odorata (L) R.M. King and H. Robinson, an Asteraceae (compositae) and an invasive alien weed in Africa for the remediation of soil contaminated with used engine oil. Used engine oilfrom a motor service garage was used to artificially contaminate soil taken from a garden to give total petroleum hydrocarbon (TPH) of between 1 and 40 g kg(-1). Chromolaena odorata (L), propagated by stem cuttings were transplanted into the contaminated soil and watered just enough to keep the soil at about 70% water holding capacity for 90 day. A set of control experiments containing 40 g kg(-1) used engine oil but without plants was set up. All experiments were set up in triplicates. Although the plants in the experiments containing higher than 30 g kg(-1) used engine oil showed relatively slower growth (fewer branches and leaves, and shorter in height) compared to those containing lower concentrations, the plants in all the experiments continued to grow until the end of the 90 day period. Residual TPH after 90 days showed that between 21 and 100% of oil was lost from the planted soil while only 11.5% was lost in the control, which did not contain plants during the same period. Analysis of plant tissues showed that both shoot and root tissues contained detectable levels of TPH and selected PAHs were also detectable. Biomass accumulation by Chromolaena odorata was affected adversely by concentrations of oil higher than 20 g kg(-1). Results of germination rates and germination energy measurements showed that Chromolaena odorata was able to reduce the toxicity of the contaminated soil after 90 days as compared to soils containing freshly contaminated soiL

  19. Preliminary Analysis for an Optimized Oil-Free Rotorcraft Engine Concept

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.

    2008-01-01

    Recent developments in gas foil bearing technology have led to numerous advanced high-speed rotating system concepts, many of which have become either commercial products or experimental test articles. Examples include Oil-Free microturbines, motors, generators and turbochargers. The driving forces for integrating gas foil bearings into these high-speed systems are the benefits promised by removing the oil lubrication system. Elimination of the oil system leads to reduced emissions, increased reliability, and decreased maintenance costs. Another benefit is reduced power plant weight. For rotorcraft applications, this would be a major advantage, as every pound removed from the propulsion system results in a payload benefit. Implementing foil gas bearings throughout a rotorcraft gas turbine engine is an important long-term goal that requires overcoming numerous technological hurdles. Adequate thrust bearing load capacity and potentially large gearbox applied radial loads are among them. However, by replacing the turbine end, or hot section, rolling element bearing with a gas foil bearing many of the above benefits can be realized. To this end, engine manufacturers are beginning to explore the possibilities of hot section gas foil bearings in propulsion engines. This paper presents a logical follow-on activity by analyzing a conceptual rotorcraft engine to determine the feasibility of a foil bearing supported core. Using a combination of rotordynamic analyses and a load capacity model, it is shown to be reasonable to consider a gas foil bearing core section.

  20. Attempts to prevent injector coking with sunflower oil by engine modifications and fuel additives

    SciTech Connect

    van der Walt, A.N.; Hugo, F.J.C.

    1982-01-01

    The effect of injector tip temperature on coking propencity when sunflower oil is used as a fuel for direct injection engines, was tested. Partial retraction of the injector, the addition of a heat shield to the injector and cooling the injector with water was tried. Also, injector temperature was increased by reducing heat transferred to the cylinder head and preheating the sunflower oil. None of these measures could prevent coking of the injector tip. Coating the injector tip with Teflon and increasing the back leakage rate was also tried without success. Only a few of many additives tested, showed some promise of being able to prevent coking. 5 figures, 1 table.

  1. Combination counterbalance and oil slinger for horizontal shaft engines

    SciTech Connect

    Kronich, P.G.

    1988-05-03

    In an internal combustion engine including a crankcase having moving parts therein including a piston, a connecting rod pivotally connected to the piston, a substantially horizontally disposed rotatable crankshaft pivotally connected to the connecting rod, and a crankshaft counterweight connected to the crankshaft, and a lubricating fluid sump below the moving parts, a counterbalancing and lubricating mechanism is described comprising: lubricating fluid in the sump; an eccentric member rotatably mounted substantially parallel to the crankshaft in the sump and substantially vertically in line below the piston and the crankshaft; drive means coupling together the crankshaft and the eccentric member for rotatably driving the eccentric member in counterrotation to the crankshaft to balance forces created by the moving parts; deflector means extending at least partially above the level of the lubricating fluid and being at least partially positioned above the eccentric member for directing thrown lubricating fluid towards the moving parts.

  2. Biorefining of by-product streams from sunflower-based biodiesel production plants for integrated synthesis of microbial oil and value-added co-products.

    PubMed

    Leiva-Candia, D E; Tsakona, S; Kopsahelis, N; García, I L; Papanikolaou, S; Dorado, M P; Koutinas, A A

    2015-08-01

    This study focuses on the valorisation of crude glycerol and sunflower meal (SFM) from conventional biodiesel production plants for the separation of value-added co-products (antioxidant-rich extracts and protein isolate) and for enhancing biodiesel production through microbial oil synthesis. Microbial oil production was evaluated using three oleaginous yeast strains (Rhodosporidium toruloides, Lipomyces starkeyi and Cryptococcus curvatus) cultivated on crude glycerol and nutrient-rich hydrolysates derived from either whole SFM or SFM fractions that remained after separation of value-added co-products. Fed-batch bioreactor cultures with R. toruloides led to the production of 37.4gL(-1) of total dry weight with a microbial oil content of 51.3% (ww(-1)) when a biorefinery concept based on SFM fractionation was employed. The estimated biodiesel properties conformed with the limits set by the EN 14214 and ASTM D 6751 standards. The estimated cold filter plugging point (7.3-8.6°C) of the lipids produced by R. toruloides is closer to that of biodiesel derived from palm oil.

  3. A study on the performance and emission characteristics of esterified pinnai oil tested in VCR engine.

    PubMed

    Ashok Kumar, T; Chandramouli, R; Mohanraj, T

    2015-11-01

    Biodiesel is a clean renewable fuel derived from vegetable oils and animal fats. It is biodegradable, oxygenated, non toxic and free from sulfur and aromatics. The biodiesel prepared from pinnai oil undergoes acid esterification followed by alkaline transesterification process. The fatty acid methyl esters components were identified using gas chromatography and compared with the standard properties. The properties of biodiesel are comparable with diesel. The yield of the biodiesel production depends upon the process parameters such as reaction temperature, pH, time duration and amount of catalyst. The yield of biodiesel by transesterification process was 73% at 55°C. This fuel was tested in a variable compression ratio engine with blend ratios of B10 and B20. During the test runs the compression ratio of the engine was varied from 15:1 to 18:1 and the torque is adjusted from zero to maximum value of 22Nm. The performance characteristics such as the brake thermal efficiency, brake specific energy consumption and exhaust gas temperature of the engine are analyzed. The combustion characteristics of biodiesel like ignition delay, combustion duration and maximum gas temperature and the emission characteristics are also analyzed. The performance characteristics, combustion characteristics and engine emission are effective in the variable compression ratio engine with biodiesel and it is compared with diesel.

  4. Oil consumption measurements of a production engine using the sulfur-trace method

    NASA Astrophysics Data System (ADS)

    Benson, Verlyn Royal

    Controlling the oil consumption of diesel engines is important for customer satisfaction. Existing oil consumption measurement methods are adequate; however, improved methods offer the possibility of faster and more comprehensive results. The sulfur-trace method is an example. Major objectives of this investigation were to adopt a sulfur-trace analyzer for oil consumption measurements, to improve the oil consumption measurement process, and to demonstrate application of the sulfur-trace instrument to individual cylinder sampling. To achieve these objectives, four research questions were applied: (1) What procedures and attention to detail are required? (2) how can results be reported to maximize data interpretation? (3) how do the advantages of the sulfur-trace method compare with the drain-and-weigh method? and (4) what is recommended as an optimized test method? Addressing Research Question 1 required careful attention to numerous parts of the sulfur-trace instrument. These parts included: (a) insulating and heating the exhaust sample lines, (b) ensuring continuous and proper operation of the ozone generator, (c) controlling the precise flow rate of the sample, and (d) removing excess water from the sample. Addressing Research Question 2 required a strip chart recorder, a spreadsheet template, and a chart template to organize, record, and report data. The strip chart recorder provided a backup analog record and a means to document daily activity. Raw data were entered into a spreadsheet for subsequent analyses required for chart reporting. Addressing Research Question 3 included a comparison of sulfur-trace vs. drain-and-weigh method durations and capabilities. After optimization, the same oil consumption results were collected in 10 minutes using the sulfur-trace method as compared with the 100 hours required for the drain-and-weigh method. More importantly, the sulfur-trace method may be used to collect oil consumption data from each individual cylinder, which

  5. Study on production of biodiesel from Jatropha oil and the performance and emission of a diesel engine

    NASA Astrophysics Data System (ADS)

    Nor, N. F. M.; Hafidzal, M. H. M.; Shamsuddin, S. A.; Ismail, M. S.; Hashim, A. H.

    2015-05-01

    The use of nonedible oil as a feedstock is needed to replace edible oil as an alternative fuel for diesel engine. This nonedible oils in diesel engine however leads to low performance and higher emission due to its high viscosity. The characteristics of the fuel can be improved through transesterification process. The yield of biodiesel from Jatropha oil using potassium hydroxide catalyst concentration of 1%, reaction temperature 60°C, reaction time 40 minutes and molar ratio methanol to oil 6:1 was 70.1% from the lab scale. The experimental study on the performances and emissions of a diesel engine is carried out using the Jatropha biodiesel produced from the transesterification process and compared with pure diesel. Results show that B20 has closer performance to diesel and lower emission compared to B5 and diesel in terms of CO2 and HC.

  6. Sensitivity and Antioxidant Response of Chlorella sp. MM3 to Used Engine Oil and Its Water Accommodated Fraction.

    PubMed

    Ramadass, Kavitha; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Naidu, Ravi

    2016-07-01

    We exposed the microalgal strain, Chlorella sp. MM3, to unused or used engine oil, or their water accommodated fractions (WAFs) to determine growth inhibition and response of antioxidant enzymes. Oil type and oil concentration greatly affected the microalgal growth. Used oil at 0.04 % (0.4 g L(-1)) resulted in 50 % inhibition in algal growth, measured in terms of chlorophyll-a, while the corresponding concentration of unused oil was nontoxic. Similarly, used oil WAF showed significant toxicity to the algal growth at 10 % level, whereas WAF from unused oil was nontoxic even at 100 % concentration. Peroxidase enzyme in the microalga significantly increased with used oil at concentrations above 0.04 g L(-1) whereas the induction of superoxide dismutase and catalase was apparent only at 0.06 g L(-1). Activities of the antioxidant enzymes increased significantly when the microalga was exposed to 75 and 100 % WAF obtained from used oil. The used oil toxicity on microalga could be due to the presence of toxic soluble mono- and polyaromatic compounds, heavy metals, and other compounds attained by the oil during its use in the motor engines.

  7. Direct observation of oil consumption mechanisms in a production spark ignition engine using fluorescence techniques. Master's thesis

    SciTech Connect

    Lusted, R.M.

    1994-05-01

    The oil consumption characteristics of a four cylinder, normally aspirated spark-ignition engine were investigated for different piston ring end-gap configurations. A radiotracer was used to perform direct measurement of the oil consumption while Laser-induced Fluorescence (LIF) was used to perform the oil film thickness measurements for consumption predictions using the 'Puddle Theory of Oil Consumption,' which relates oil consumption to second land film thickness and reverse flow through top ring gap. The consumption data was evaluated to determine the impact of top ring end-gap azimuthal location on oil consumption. The film thickness data was used to evaluate the extent to which the oil Puddle Theory predicts variations seen in the actual oil consumption. A tritium radiotracer oil consumption measurement system with an accuracy of 94.6% was designed and constructed. This was used to perform direct measurements of the test engine oil consumption in two different test matrices. The first evaluated a piston ring configuration with the rings free to rotate. The second evaluated configurations with the top ring and second piston rings pinned to fix the azimuthal location of the end-gap; the azimuth of the top ring was varied. In the second test matrix, the oil film thickness on the piston's second land was measured, and predictions were made on the basis of that measurement.

  8. Engineering plant oils as high-value industrial feedstocks for biorefining: the need for underpinning cell biology research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant oils represent renewable sources of long-chain hydrocarbons that can be used as both fuel and chemical feedstocks, and genetic engineering offers an opportunity to create further high-value specialty oils for specific industrial uses. While many genes have been identified for the production of...

  9. Distinguishing Gasoline Engine Oils of Different Viscosities Using Terahertz Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Adbul-Munaim, Ali Mazin; Reuter, Marco; Koch, Martin; Watson, Dennis G.

    2015-07-01

    Terahertz-time-domain spectroscopy (THz-TDS) in the range of 0.5-2.0 THz was evaluated for distinguishing among gasoline engine oils of three different grades (SAE 5W-20, 10W-40, and 20W-50) from the same manufacturer. Absorption coefficient showed limited potential and only distinguished ( p < 0.05) the 20W-50 grade from the other two grades in the 1.7-2.0-THz range. Refractive index data demonstrated relatively flat and consistently spaced curves for the three oil grades. ANOVA results confirmed a highly significant difference ( p < 0.0001) in refractive index among each of the three oils across the 0.5-2.0-THz range. Linear regression was applied to refractive index data at 0.25-THz intervals from 0.5 to 2.0 THz to predict kinematic viscosity. All seven linear regression models, intercepts, and refractive index coefficients were highly significant ( p < 0.0001). All models had a similar fit with R 2 ranging from 0.9773 to 0.9827 and RMSE ranging from 6.33 to 7.75. The refractive indices at 1.25 THz produced the best fit. The refractive indices of these oil samples were promising for identification and distinction of oil grades.

  10. Identification of lubrication oil in the particulate matter emissions from engine exhaust of in-service commercial aircraft.

    PubMed

    Yu, Zhenhong; Herndon, Scott C; Ziemba, Luke D; Timko, Michael T; Liscinsky, David S; Anderson, Bruce E; Miake-Lye, Richard C

    2012-09-01

    Lubrication oil was identified in the organic particulate matter (PM) emissions of engine exhaust plumes from in-service commercial aircraft at Chicago Midway Airport (MDW) and O'Hare International Airport (ORD). This is the first field study focused on aircraft lubrication oil emissions, and all of the observed plumes described in this work were due to near-idle engine operations. The identification was carried out with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF AMS) via a collaborative laboratory and field investigation. A characteristic mass marker of lubrication oil, I(85)/I(71), the ratio of ion fragment intensity between m/z = 85 and 71, was used to distinguish lubrication oil from jet engine combustion products. This AMS marker was based on ion fragmentation patterns measured using electron impact ionization for two brands of widely used lubrication oil in a laboratory study. The AMS measurements of exhaust plumes from commercial aircraft in this airport field study reveal that lubrication oil is commonly present in organic PM emissions that are associated with emitted soot particles, unlike the purely oil droplets observed at the lubrication system vent. The characteristic oil marker, I(85)/I(71), was applied to quantitatively determine the contribution from lubrication oil in measured aircraft plumes, which ranges from 5% to 100%.

  11. Borage or primrose oil added to standardized diets are equivalent sources for gamma-linolenic acid in rats.

    PubMed

    Raederstorff, D; Moser, U

    1992-12-01

    The aim of this study was to evaluate the effect of different doses and sources of dietary gamma-linolenic acid (GLA) on the tissue phospholipid fatty acid composition. Rats fed four different levels of GLA (2.3, 4.6, 6.4 and 16.2 g of GLA/kg diet) in the form of either borage oil or evening primrose oil during 6 wk were compared with animals fed corn oil. The levels of dihomo-gamma-linolenic acid (DHLA) and GLA showed a significant dose-related increase in liver, erythrocyte and aorta phospholipids. Moreover, the arachidonic acid/DHLA ratios in tissues decreased with increasing intake of dietary GLA. There was no significant difference in tissue GLA and DHLA levels within groups given equal amounts of dietary GLA either as borage oil or evening primrose oil. The amount of dietary GLA administered did not significantly influence prostaglandin E2 production in stimulated aortic rings and thromboxane B2 levels in serum; however, an increase in prostaglandin E1 derived from DHLA was observed in the supernatants of stimulated aorta.

  12. Analysis of volatiles in porcine liver pâtés with added sage and rosemary essential oils by using SPME-GC-MS.

    PubMed

    Estévez, Mario; Ventanas, Sonia; Ramírez, Rosario; Cava, Ramón

    2004-08-11

    The effect of the addition of two natural antioxidant extracts (sage and rosemary essential oils) and one synthetic (BHT) on the generation of volatile compounds in liver pâtés from Iberian and white pigs was analyzed using SPME-GC-MS. Lipid-derived volatiles such as aldehydes [hexanal, octanal, nonanal, hept-(Z)-4-enal, oct-(E)-2-enal, non-(Z)-2-enal, dec-(E)-2-enal, deca-(E,Z)-2,4-dienal] and alcohols (pentan-1-ol, hexan-1-ol, oct-1-en-3-ol) were the most abundant compounds in the headspace of porcine liver pâtés. Pâtés from different pig breeds presented different volatiles profiles due to their different oxidation susceptibilities as a probable result of their fatty acid profiles and vitamin E content. Regardless of the origin of the pâtés, the addition of BHT successfully reduced the amount of volatiles derived from PUFA oxidation. Added essential oils showed a different effect on the generation of volatiles whether they were added in pâtés from Iberian or white pigs because they inhibited lipid oxidation in the former and enhanced oxidative instability in the latter. SPME successfully allowed the isolation and analysis of 41 volatile terpenes from pâtés with added sage and rosemary essential oils including alpha-pinene, beta-myrcene, 1-limonene, (E)-caryophyllene, linalool, camphor, and 1,8-cineole, which might contribute to the aroma characteristics of liver pâtés.

  13. A low cost mid-infrared sensor for on line contamination monitoring of lubricating oils in marine engines

    NASA Astrophysics Data System (ADS)

    Ben Mohammadi, L.; Kullmann, F.; Holzki, M.; Sigloch, S.; Klotzbuecher, T.; Spiesen, J.; Tommingas, T.; Weismann, P.; Kimber, G.

    2010-04-01

    The chemical and physical condition of oils in marine engines must be monitored to ensure optimum performance of the engine and to avoid damage by degraded oil not adequately lubricating the engine. Routine monitoring requires expensive laboratory testing and highly skilled analysts. This work describes the adaptation and implementation of a mid infrared (MIR) sensor module for continued oil condition monitoring in two-stroke and four-stroke diesel engines. The developed sensor module will help to reduce costs in oil analysis by eliminating the need to collect and send samples to a laboratory for analysis. The online MIR-Sensor module measures the contamination of oil with water, soot, as well as the degradation indicated by the TBN (Total Base Number) value. For the analysis of water, TBN, and soot in marine engine oils, four spectral regions of interest have been identified. The optical absorption in these bands correlating with the contaminations is measured simultaneously by using a four-field thermopile detector, combined with appropriate bandpass filters. Recording of the MIR-absorption was performed in a transmission mode using a flow-through cell with appropriate path length. Since in this case no spectrometer is required, the sensor including the light source, the flowthrough- cell, and the detector can be realised at low cost and in a very compact manner. The optical configuration of the sensor with minimal component number and signal intensity optimisation at the four-field detector was implemented by using non-sequential ray tracing simulation. The used calibration model was robust enough to predict accurately the value for soot, water, and TBN concentration for two-stroke and four-stroke engine oils. The sensor device is designed for direct installation on the host engine or machine and, therefore, becoming an integral part of the lubrication system. It can also be used as a portable stand-alone system for machine fluid analysis in the field.

  14. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    PubMed Central

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7–33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6–52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NOX) emissions when using mixed fuels were 10–39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine). PMID:24688402

  15. Performance of diesel engine using diesel B3 mixed with crude palm oil.

    PubMed

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5-17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7-33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6-52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NO X ) emissions when using mixed fuels were 10-39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine).

  16. Performance of diesel engine using diesel B3 mixed with crude palm oil.

    PubMed

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5-17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7-33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6-52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NO X ) emissions when using mixed fuels were 10-39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine). PMID:24688402

  17. SG oils

    SciTech Connect

    Chamberlin, W.

    1988-01-01

    Automobile manufacturers worldwide have targeted improved vehicle quality as a major goal. Engine oil quality is one component in the quest for an improved quality image. Engine design changes have imposed increased stresses on engine oils. API SG oils will provide a margin of protection to the engine against sludge and varnish deposit formation and valve train wear.

  18. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture.

    PubMed

    Karthikeya Sharma, T

    2015-11-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.

  19. Human factors engineering in oil and gas--a review of industry guidance.

    PubMed

    Robb, Martin; Miller, Gerald

    2012-01-01

    Oil and gas exploration and production activities are carried out in hazardous environments in many parts of the world. Recent events in the Gulf of Mexico highlight those risks and underline the importance of considering human factors during facility design. Ergonomic factors such as machinery design, facility and accommodation layout and the organization of work activities have been systematically considered over the past twenty years on a limited number of offshore facility design projects to a) minimize the occupational risks to personnel, b) support operations and maintenance tasks and c) improve personnel wellbeing. During this period, several regulators and industry bodies such as the American Bureau of Shipping (ABS), the American Society of Testing and Materials (ASTM), the UK's Health and Safety Executive (HSE), Oil and Gas Producers (OGP), and Norway's Petroleum Safety Authority (PSA) have developed specific HFE design standards and guidance documents for the application of Human Factors Engineering (HFE) to the design and operation of Oil and Gas projects. However, despite the existence of these guidance and recommended design practise documents, and documented proof of their value in enhancing crew safety and efficiency, HFE is still not well understood across the industry and application across projects is inconsistent. This paper summarizes the key Oil and Gas industry bodies' HFE guidance documents, identifies recurring themes and current trends in the use of these standards, provides examples of where and how these HFE standards have been used on past major offshore facility design projects, and suggests criteria for selecting the appropriate HFE strategy and tasks for future major oil and gas projects. It also provides a short history of the application of HFE to the offshore industry, beginning with the use of ASTM F 1166 to a major operator's Deepwater Gulf of Mexico facility in 1990 and the application of HFE to diverse world regions. This

  20. Out-of-plane piezoelectric microresonator and oscillator circuit for monitoring engine oil contamination with diesel

    NASA Astrophysics Data System (ADS)

    Toledo, J.; Manzaneque, T.; Ruiz-Díez, V.; Jiménez-Márquez, F.; Kucera, M.; Pfusterschmied, G.; Wistrela, E.; Schmid, U.; Sánchez-Rojas, J. L.

    2015-05-01

    Real-time monitoring of the physical properties of liquids is an important subject in the automotive industry. Contamination of lubricating oil by diesel soot has a significant impact on engine wear. Resonant microstructures are regarded to be a precise and compact solution for tracking the viscosity and density of lubricant oils. Since the measurement of pure shear forces do not allow an independent determination of the density and viscosity, two out-of-plane modes for the monitoring of oil dilution with diesel have been selected. The first one (12-mode) is working at 51 kHz and the second mode (14-mode) at 340 kHz. Two parameters were measured: the quality factor and the resonance frequency from which the viscosity and density of the fluids under test can be determined, requiring only a small amount of test liquid. A PLL-based oscillator circuit was implemented based on each resonator. Our results demonstrate the performance of the resonator in oils with viscosity up to 90 mPa·s. The quality factor measured at 25°C was 7 for the 12-mode and 19 for the 14-mode. A better resolution in density and viscosity was obtained for the 14-mode, showing a resolution of 3.92·10-5 g/ml for the density and 1.27·10-1 mPa·s for the viscosity, in pure lubricant oil SAE 0W30. An alternative tracking system, based on a discrete oscillator circuit, was tested with the same resonator, showing a comparable stability and supporting our approach.

  1. Laboratory endurance test of a sunflower oil blend in a diesel engine

    SciTech Connect

    Ziejewski, M.; Kaufman, K.R.

    1982-01-01

    This paper compares the effects of using a 25 to 75 blend (v/v) of alkali refined sunflower oil and diesel fuel in a diesel engine as compared to a baseline test on diesel fuel. There were no significant problems with engine operation during the baseline test. However, problems were experienced while using the blended fuel. The major problems were (1) abnormal buildup on the injection nozzle tips, (2) injector needle sticking, (3) secondary injection, (4) carbon buildup in the intake ports, (5) carbon deposits on the exhaust valve stems, (6) carbon filling of the compression ring grooves, and (7) abnormal lacquer and varnish buildup on the third piston land. 6 figures, 4 tables.

  2. Influence of vegetable oil based alternate fuels on residue deposits and components wear in a diesel engine

    SciTech Connect

    Ziejewski, M.; Goettler, H.; Pratt, G.L.

    1986-01-01

    A 25-75 blend (v/v) of alkali-refined sunflower oil and diesel fuel, a 25-75 blend (v/v) of high oleic safflower oil and diesel fuel, a non-ionic sunflower oil-aqueous ethanol microemulsion, and a methyl ester of sunflower oil were evaluated as fuels in a direct injected, turbocharged, intercooled, 4-cylinder Allis-Chalmers diesel engine during a 200-hour EMA cycle laboratory screening endurance test. Engine performance on Phillips 2-D reference fuel served as baseline for the experimental fuels. This investigation employed an analysis of variance to compare CRC carbon and lacquer ratings and wear of engine parts for all tested fuels. The paper deals with carbon and lacquer formation and its effect on long-term engine performance as experienced during the operation with the alternate fuels. Significantly heavier deposits than for the diesel fuel were observed for the microemulsion and 25-75 sunflower oil blend. particularly on the exhaust and intake valve stems, on the piston lands, and in the piston grooves. In all tests engine wear was not significant. The final dimensions of the measured elements did not exceed the manufacturer's initial parts specifications.

  3. An experimental study on usage of plastic oil and B20 algae biodiesel blend as substitute fuel to diesel engine.

    PubMed

    Ramesha, D K; Kumara, G Prema; Lalsaheb; Mohammed, Aamir V T; Mohammad, Haseeb A; Kasma, Mufteeb Ain

    2016-05-01

    Usage of plastics has been ever increasing and now poses a tremendous threat to the environment. Millions of tons of plastics are produced annually worldwide, and the waste products have become a common feature at overflowing bins and landfills. The process of converting waste plastic into value-added fuels finds a feasible solution for recycling of plastics. Thus, two universal problems such as problems of waste plastic management and problems of fuel shortage are being tackled simultaneously. Converting waste plastics into fuel holds great promise for both the environmental and economic scenarios. In order to carry out the study on plastic wastes, the pyrolysis process was used. Pyrolysis runs without oxygen and in high temperature of about 250-300 °C. The fuel obtained from plastics is blended with B20 algae oil, which is a biodiesel obtained from microalgae. For conducting the various experiments, a 10-HP single-cylinder four-stroke direct-injection water-cooled diesel engine is employed. The engine is made to run at 1500 rpm and the load is varied gradually from 0 to 100 %. The performance, emission and combustion characteristics are observed. The BTE was observed to be higher with respect to diesel for plastic-biodiesel blend and biodiesel blend by 15.7 and 12.9 %, respectively, at full load. For plastic-biodiesel blend, the emission of UBHC and CO decreases with a slight increase in NO x as compared to diesel. It reveals that fuel properties are comparable with petroleum products. Also, the process of converting plastic waste to fuel has now turned the problems into an opportunity to make wealth from waste. PMID:26695415

  4. An experimental study on usage of plastic oil and B20 algae biodiesel blend as substitute fuel to diesel engine.

    PubMed

    Ramesha, D K; Kumara, G Prema; Lalsaheb; Mohammed, Aamir V T; Mohammad, Haseeb A; Kasma, Mufteeb Ain

    2016-05-01

    Usage of plastics has been ever increasing and now poses a tremendous threat to the environment. Millions of tons of plastics are produced annually worldwide, and the waste products have become a common feature at overflowing bins and landfills. The process of converting waste plastic into value-added fuels finds a feasible solution for recycling of plastics. Thus, two universal problems such as problems of waste plastic management and problems of fuel shortage are being tackled simultaneously. Converting waste plastics into fuel holds great promise for both the environmental and economic scenarios. In order to carry out the study on plastic wastes, the pyrolysis process was used. Pyrolysis runs without oxygen and in high temperature of about 250-300 °C. The fuel obtained from plastics is blended with B20 algae oil, which is a biodiesel obtained from microalgae. For conducting the various experiments, a 10-HP single-cylinder four-stroke direct-injection water-cooled diesel engine is employed. The engine is made to run at 1500 rpm and the load is varied gradually from 0 to 100 %. The performance, emission and combustion characteristics are observed. The BTE was observed to be higher with respect to diesel for plastic-biodiesel blend and biodiesel blend by 15.7 and 12.9 %, respectively, at full load. For plastic-biodiesel blend, the emission of UBHC and CO decreases with a slight increase in NO x as compared to diesel. It reveals that fuel properties are comparable with petroleum products. Also, the process of converting plastic waste to fuel has now turned the problems into an opportunity to make wealth from waste.

  5. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture

    PubMed Central

    Karthikeya Sharma, T.

    2014-01-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied. PMID:26644918

  6. Effect of adding essential oils of coriander (Coriandrum sativum L.) and hyssop (Hyssopus officinalis L.) on the shelf life of ground beef.

    PubMed

    Michalczyk, Magdalena; Macura, Ryszard; Tesarowicz, Iwona; Banaś, Joanna

    2012-03-01

    This study examined the effect of adding essential oils of hyssop and coriander at the highest concentration (0.02% v/w) sensorially acceptable to a panel of assessors on the microbiological and biochemical characteristics of stored ground beef. Vacuum-packed meat was stored at 0.5±0.5°C and 6±1°C for 15days. The greatest beneficial effect of both additives was in inhibiting the development of undesirable sensory changes (extending acceptability by up to 3days) and the growth of Enterobacteriaceae (by up to approximately 1-2 log cycles compared with the controls). The effect on lactic acid bacteria, total viable bacterial count and other groups of microorganisms investigated was minor (up to 1 log cycle) and similar for both oils. Neither did these additives significantly affect amino nitrogen levels, protease activity, the proportions of meat pigments, protein electropherograms and pH levels. This indicates the limited effect of these essential oils in the concentrations applied on preserving vacuum-packed minced beef.

  7. Effect of adding essential oils of coriander (Coriandrum sativum L.) and hyssop (Hyssopus officinalis L.) on the shelf life of ground beef.

    PubMed

    Michalczyk, Magdalena; Macura, Ryszard; Tesarowicz, Iwona; Banaś, Joanna

    2012-03-01

    This study examined the effect of adding essential oils of hyssop and coriander at the highest concentration (0.02% v/w) sensorially acceptable to a panel of assessors on the microbiological and biochemical characteristics of stored ground beef. Vacuum-packed meat was stored at 0.5±0.5°C and 6±1°C for 15days. The greatest beneficial effect of both additives was in inhibiting the development of undesirable sensory changes (extending acceptability by up to 3days) and the growth of Enterobacteriaceae (by up to approximately 1-2 log cycles compared with the controls). The effect on lactic acid bacteria, total viable bacterial count and other groups of microorganisms investigated was minor (up to 1 log cycle) and similar for both oils. Neither did these additives significantly affect amino nitrogen levels, protease activity, the proportions of meat pigments, protein electropherograms and pH levels. This indicates the limited effect of these essential oils in the concentrations applied on preserving vacuum-packed minced beef. PMID:22153611

  8. Natural removal of added N-nutrients, reactive phosphorus, crude oil, and heavy metals from the water phase in a simulated water/sediment system

    SciTech Connect

    Lam-Leung, S.Y.; Cheung, M.T.; He, Y.Q.

    1996-08-01

    Water/sediment simulation systems were constructed by using an aquarium (0.45 x 0.29 x 0.35 m{sup 3}), filled with suitable amounts of water and sediment collected from three selected locations: Lan Hau Shan (LHS), Tai Hu (TH), and Loong Yu Tao (LYT) of the Zhujiang (Pearl River) Estuary of China in November 1992 at low-tide period. The salinities of the water samples collected form LHS, TH, LYT were found to be 0.2, 4.6, 16.2 g L{sup -1}, respectively. Known amounts of ammonium, nitrate, nitrite, reactive phosphorous, crude oil, arsenate(III), cadmium (II), copper(II), and zinc(II) were added as pollutants into each of the water/sediment simulation systems. The rates of the natural removal of each added pollutant in all water/sediment simulation systems were studied by monitoring their concentrations at various intrevals in the investigation period. Except for Cr(III) and reactive phosphorous in the water/sediment systems of the LHS, TH, and LYT sites, and nitrate in the TH and LYT sites, the concentrations of the added pollutants in the water phase of the studied systems under a flow-condition simulation were reduced to 8% or less of the corresponding added amount on or before the 12th day by natural processes. The rate of self-purification and the estimated assimulative capacity of each added pollutant in all water/sediment simulation systems is discussed. 30 refs., 11 figs., 4 tabs.

  9. Engineering and Economics of the USGS Circum-Arctic Oil and Gas Resource Appraisal (CARA) Project

    USGS Publications Warehouse

    Verma, Mahendra K.; White, Loring P.; Gautier, Donald L.

    2008-01-01

    This Open-File report contains illustrative materials, in the form of PowerPoint slides, used for an oral presentation given at the Fourth U.S. Geological Survey Workshop on Reserve Growth of petroleum resources held on March 10-11, 2008. The presentation focused on engineering and economic aspects of the Circum-Arctic Oil and Gas Resource Appraisal (CARA) project, with a special emphasis on the costs related to the development of hypothetical oil and gas fields of different sizes and reservoir characteristics in the North Danmarkshavn Basin off the northeast coast of Greenland. The individual PowerPoint slides highlight the topics being addressed in an abbreviated format; they are discussed below, and are amplified with additional text as appropriate. Also included in this report are the summary results of a typical ?run? to generate the necessary capital and operating costs for the development of an offshore oil field off the northeast coast of Greenland; the data are displayed in MS Excel format generated using Questor software (IHS Energy, Inc.). U.S. Geological Survey (USGS) acknowledges that this report includes data supplied by IHS Energy, Inc.; Copyright (2008) all rights reserved. IHS Energy has granted USGS the permission to publish this report.

  10. Strong mutagenic effects of diesel engine emissions using vegetable oil as fuel.

    PubMed

    Bünger, Jürgen; Krahl, Jürgen; Munack, Axel; Ruschel, Yvonne; Schröder, Olaf; Emmert, Birgit; Westphal, Götz; Müller, Michael; Hallier, Ernst; Brüning, Thomas

    2007-08-01

    Diesel engine emissions (DEE) are classified as probably carcinogenic to humans. In recent years every effort was made to reduce DEE and their content of carcinogenic and mutagenic polycyclic aromatic compounds. Since 1995 we observed an appreciable reduction of mutagenicity of DEE driven by reformulated or newly designed fuels in several studies. Recently, the use of rapeseed oil as fuel for diesel engines is rapidly growing among German transportation businesses and agriculture due to economic reasons. We compared the mutagenic effects of DEE from two different batches of rapeseed oil (RSO) with rapeseed methyl ester (RME, biodiesel), natural gas derived synthetic fuel (gas-to-liquid, GTL), and a reference diesel fuel (DF). The test engine was a heavy-duty truck diesel running the European Stationary Cycle. Particulate matter from the exhaust was sampled onto PTFE-coated glass fibre filters and extracted with dichloromethane in a soxhlet apparatus. The gas phase constituents were sampled as condensates. The mutagenicity of the particle extracts and the condensates was tested using the Salmonella typhimurium/mammalian microsome assay with tester strains TA98 and TA100. Compared to DF the two RSO qualities significantly increased the mutagenic effects of the particle extracts by factors of 9.7 up to 59 in tester strain TA98 and of 5.4 up to 22.3 in tester strain TA100, respectively. The condensates of the RSO fuels caused an up to factor 13.5 stronger mutagenicity than the reference fuel. RME extracts had a moderate but significant higher mutagenic response in assays of TA98 with metabolic activation and TA100 without metabolic activation. GTL samples did not differ significantly from DF. In conclusion, the strong increase of mutagenicity using RSO as diesel fuel compared to the reference DF and other fuels causes deep concern on future usage of this biologic resource as a replacement of established diesel fuels.

  11. Biodegradation of complex hydrocarbons in spent engine oil by novel bacterial consortium isolated from deep sea sediment.

    PubMed

    Ganesh Kumar, A; Vijayakumar, Lakshmi; Joshi, Gajendra; Magesh Peter, D; Dharani, G; Kirubagaran, R

    2014-10-01

    Complex hydrocarbon and aromatic compounds degrading marine bacterial strains were isolated from deep sea sediment after enrichment on spent engine (SE) oil. Phenotypic characterization and phylogenetic analysis of 16S rRNA gene sequences showed the isolates were related to members of the Pseudoalteromonas sp., Ruegeria sp., Exiguobacterium sp. and Acinetobacter sp. Biodegradation using 1% (v/v) SE oil with individual and mixed strains showed the efficacy of SE oil utilization within a short retention time. The addition of non-ionic surfactant 0.05% (v/v) Tween 80 as emulsifying agent enhanced the solubility of hydrocarbons and renders them more accessible for biodegradation. The degradation of several compounds and the metabolites formed during the microbial oxidation process were confirmed by Fourier transform infrared spectroscopy and Gas chromatography-mass spectrometry analyses. The potential of this consortium to biodegrade SE oil with and without emulsifying agent provides possible application in bioremediation of oil contaminated marine environment.

  12. Quality control of automotive engine oils with mass-sensitive chemical sensors--QCMs and molecularly imprinted polymers.

    PubMed

    Dickert, F L; Forth, P; Lieberzeit, P A; Voigt, G

    2000-04-01

    Molecularly imprinted polyurethanes were used as sensor materials for monitoring the degradation of automotive engine oils. Imprinting with characteristic oils permits the analysis of these complex mixtures without accurately knowing their composition. Mass-sensitive quartz crystal microbalances (QCMs) coated with such layers exhibit mass effects in addition to frequency shifts caused by viscosity, which can be compensated by an uncoated quartz or a non-imprint layer. Incorporation of degradation products into the imprinted coatings is a bulk phenomenon, which is proven by variation of the sensor layer height. Therefore, the resulting sensor effects are determined by the degradation products in the oil. PMID:11227411

  13. Quality control of automotive engine oils with mass-sensitive chemical sensors--QCMs and molecularly imprinted polymers.

    PubMed

    Dickert, F L; Forth, P; Lieberzeit, P A; Voigt, G

    2000-04-01

    Molecularly imprinted polyurethanes were used as sensor materials for monitoring the degradation of automotive engine oils. Imprinting with characteristic oils permits the analysis of these complex mixtures without accurately knowing their composition. Mass-sensitive quartz crystal microbalances (QCMs) coated with such layers exhibit mass effects in addition to frequency shifts caused by viscosity, which can be compensated by an uncoated quartz or a non-imprint layer. Incorporation of degradation products into the imprinted coatings is a bulk phenomenon, which is proven by variation of the sensor layer height. Therefore, the resulting sensor effects are determined by the degradation products in the oil.

  14. Comparative analysis of the long-term performance of a diesel engine on vegetable oil based alternate fuels

    SciTech Connect

    Ziejewski, M.; Goettler, H.; Pratt, G.L.

    1986-01-01

    A 25-75 blend (v/v) of alkali-refined sunflower oil and diesel fuel, a 25-75 blend (v/v) of high oleic safflower oil and diesel fuel, a non-ionic sunflower oil-aqueous ethanol microemulsion, and a methyl ester of sunflower oil were evaluated as fuels in a direct injected, turbo-charged, intercooled, 4-cylinder Allis-Chalmers diesel engine during 200-hour EMA cycle laboratory screening endurance tests. Engine performance on Phillips 2-D reference fuel served as baseline for the experimental fuels. The experiment was conducted to develop prediction equations to determine the effects of alternate fuels on long-term engine performance. Least squares regression procedures were used to analyze long-term effects the test fuels had on engine performance and to simultaneously compare the test fuels. Several variables were used to measure engine performance. These response variables were volumetric fuel flow, energy input, power output, brake specific energy consumption, exhaust temperature and exhaust smoke. The predictor variables were time of the EMA cycle and fuel type. Two multivariate tests were performed in this analysis. The first tested the significance of time on the response variable. The second tested the fuel effect. Both tests were significant. The results of the univariate regressions indicated that time had a significant effect only on exhaust temperature. In all other cases, time was not a factor. However, significant difference in the intercepts of the prediction equations were found between tested fuels.

  15. Acute toxicity of virgin and used engine oil enriched with copper nano particles in the earthworm

    NASA Astrophysics Data System (ADS)

    Khodabandeh, M.; Koohi, M. K.; Roshani, A.; Shahroziyan, E.; Badri, B.; Pourfallah, A.; Shams, Gh; Hobbenaghi, R.; Sadeghi-Hashjin, G.

    2011-07-01

    In spite of development of nanotechnology and creation of new opportunities for industry, new applications and products initiated by this technology may cause harmful effects on human health and environment. Unfortunately, there is no sufficient information on the harmful effects caused by application of some nano materials; the current knowledge in this field is limited solely to the nano particles but not the final products. Nano cupper particles, as one of the common materials produced in industrial scale is widely used as additives into engine oil to reduce friction and improve lubrication. However, the difference between the effects of virgin and used conventional engine oil (CEO) and the engine oil containing cupper nano particles (NEO) on the environment is not known. Earthworm, as a one of the species which could live and survive in different sorts of earth and has a certain role in protecting the soil structure and fertility, was used in this experiment. In accordance with the recommended method of OECD.1984, Filter Paper test in 24 and 48 h based on 8 concentrations in the range of 3×10-3 - 24×10-3 ml/cm2 and Artificial Soil test in 7 and 14 days based on 7 concentrations in the range of 0.1 mg/kg - 100 g/kg were carried out to study earthworms in terms of lifetime (LC50), morphology and pathology. It was shown that the 48 h LC50 for virgin CEO, virgin NEO, used CEO(8000 km) and used NEO (8000 km) were 6×10-3, 23×10-3, 24×10-3 and 16×10-3 ml/cm2 respectively. Furthermore, 14-day LC50 in artificial soil for all cases were above 100 g/kg. It is concluded that virgin CEO is more toxic than virgin NEO. Meanwhile, the CEO shows significant reduction in toxicity after consumption and the used NEO shows more toxicity in comparison to virgin product. It seems that more investigations on the effects of final products specifically after consumption is necessary because the products after consumption have the most contact with environment and subsequently

  16. Effect of cylinder distortions and piston ring design on oil consumption and friction losses in automobile engines

    SciTech Connect

    Brombolich, L.J.

    1988-07-01

    Much analysis has been done on piston ring design in circular cylinder bores; however, engine bores are never perfectly circular. Mechanical loads, from machining operations and assembling the engine, and thermal loads cause distortion of the engine bores. Engine bore distortions are important in predicting the effectiveness of piston rings to control oil consumption, yet minimize friction in spark ignited engines. Only recently has the effect of these bore distortions been investigated. The RING program has been developed to analyze ring conformability in distorted cylinder bores. In particular, oil transport and friction are predicted for the engine cycle. The finite element technique was used in a non-linear contact solution for the piston ring pack in a distorted bore. The inter-ring gas pressure loads and piston and ring dynamic loads are computed for the ring pack. The Reynolds' equation is solved for lubricant film thickness. Hydrodynamic or boundary friction power losses are calculated based on the lubricant film thickness between the ring and bore. During development of the program, correlation of results were made with experimental measurements. Oil consumption and friction measurements of operating production engines with measured bore distortions were compared with results from the RING program. Predicted gaps between the piston ring and distorted bore were verified with measurements of gaps for a ring in a ring gage. Results from the RING program and the correlation analysis confirm the importance of distortions in predicting engine performance. Bore distortions should also be considered in predicting emission and wear in reciprocating engine designs to improve engine performance and life. 106 refs., 70 figs., 7 tabs.

  17. A Study on Performance, Combustion and Emission Characteristics of Compression Ignition Engine Using Fish Oil Biodiesel Blends

    NASA Astrophysics Data System (ADS)

    Ramesha, D. K.; Thimmannachar, Rajiv K.; Simhasan, R.; Nagappa, Manjunath; Gowda, P. M.

    2012-07-01

    Bio-fuel is a clean burning fuel made from natural renewable energy resource; it operates in C. I. engine similar to the petroleum diesel. The rising cost of diesel and the danger caused to the environment has led to an intensive and desperate search for alternative fuels. Among them, animal fats like the fish oil have proven to be a promising substitute to diesel. In this experimental study, A computerized 4-stroke, single cylinder, constant speed, direct injection diesel engine was operated on fish oil-biodiesel of different blends. Three different blends of 10, 20, and 30 % by volume were used for this study. Various engine performance, combustion and emission parameters such as Brake Thermal Efficiency, Brake Specific Fuel Consumption, Heat Release Rate, Peak Pressure, Exhaust Gas Temperature, etc. were recorded from the acquired data. The data was recorded with the help of an engine analysis software. The recorded parameters were studied for varying loads and their corresponding graphs have been plotted for comparison purposes. Petroleum Diesel has been used as the reference. From the properties and engine test results it has been established that fish oil biodiesel is a better replacement for diesel without any engine modification.

  18. Performance and emission of generator Diesel engine using methyl esters of palm oil and diesel blends at different compression ratio

    NASA Astrophysics Data System (ADS)

    Aldhaidhawi, M.; Chiriac, R.; Bădescu, V.; Pop, H.; Apostol, V.; Dobrovicescu, A.; Prisecaru, M.; Alfaryjat, A. A.; Ghilvacs, M.; Alexandru, A.

    2016-08-01

    This study proposes engine model to predicate the performance and exhaust gas emissions of a single cylinder four stroke direct injection engine which was fuelled with diesel and palm oil methyl ester of B7 (blends 7% palm oil methyl ester with 93% diesel by volume) and B10. The experiment was conducted at constant engine speed of 3000 rpm and different engine loads operations with compression ratios of 18:1, 20:1 and 22:1. The influence of the compression ratio and fuel typeson specific fuel consumption and brake thermal efficiency has been investigated and presented. The optimum compression ratio which yields better performance has been identified. The result from the present work confirms that biodiesel resulting from palm oil methyl ester could represent a superior alternative to diesel fuel when the engine operates with variable compression ratios. The blends, when used as fuel, result in a reduction of the brake specific fuel consumption and brake thermal efficiency, while NOx emissions was increased when the engine is operated with biodiesel blends.

  19. Analysis of the piston ring/liner oil film development during warm-up for an SI-engine

    SciTech Connect

    Froelund, K.; Schramm, J.; Tian, T.; Wong, V.; Hochgreb, S.

    1996-12-31

    A one-dimensional ring-pack lubrication model developed at MIT is applied to simulate the oil film behavior during the warm-up period of a Kohler spark ignition engine. This is done by making assumptions for the evolution of the oil temperatures during warm-up and that the oil control ring during downstrokes is fully flooded. The ring-pack lubrication model includes features such as three different lubrication regimes, i.e. pure hydrodynamic lubrication, boundary lubrication and pure asperity contact, nonsteady wetting of both inlet and outlet of the piston ring, capability to use all ring face profiles that can be approximated by piece-wise polynomials and, finally, the ability to model the rheology of multi-grade oils. Not surprisingly, the simulations show that by far the most important parameter is the temperature dependence of the oil viscosity. This dependence is subsequently examined further by choosing different oils. The baseline oil is SAE 10W30 and results are compared to those using the SAE 30 and the SAE 10W50 oils.

  20. Monitoring of the Physical and Chemical Properties of a Gasoline Engine Oil during Its Usage

    PubMed Central

    Rahimi, Behnam; Semnani, Abolfazl; Nezamzadeh-Ejhieh, Alireza; Shakoori Langeroodi, Hamid; Hakim Davood, Massoud

    2012-01-01

    Physicochemical properties of a mineral-based gasoline engine oil have been monitored at 0, 500, 1000, 2000, 3500, 6000, 8500, and 11500 kilometer of operation. Tracing has been performed by inductively coupled plasma and some other techniques. At each series of measurements, the concentrations of twenty four elements as well as physical properties such as: viscosity at 40 and 100°C; viscosity index; flash point; pour point; specific gravity; color; total acid and base numbers; water content have been determined. The results are indicative of the decreasing trend in concentration of additive elements and increasing in concentration for wear elements. Different trends have been observed for various physical properties. The possible reasons for variations in physical and chemical properties have been discussed. PMID:22567569

  1. Monitoring of the Physical and Chemical Properties of a Gasoline Engine Oil during Its Usage.

    PubMed

    Rahimi, Behnam; Semnani, Abolfazl; Nezamzadeh-Ejhieh, Alireza; Shakoori Langeroodi, Hamid; Hakim Davood, Massoud

    2012-01-01

    Physicochemical properties of a mineral-based gasoline engine oil have been monitored at 0, 500, 1000, 2000, 3500, 6000, 8500, and 11500 kilometer of operation. Tracing has been performed by inductively coupled plasma and some other techniques. At each series of measurements, the concentrations of twenty four elements as well as physical properties such as: viscosity at 40 and 100°C; viscosity index; flash point; pour point; specific gravity; color; total acid and base numbers; water content have been determined. The results are indicative of the decreasing trend in concentration of additive elements and increasing in concentration for wear elements. Different trends have been observed for various physical properties. The possible reasons for variations in physical and chemical properties have been discussed.

  2. A study of oil lubrication in a rotating engine using stroboscopic neutron imaging

    NASA Astrophysics Data System (ADS)

    Schillinger, Burkhard; Brunner, Johannes; Calzada, Elbio

    2006-11-01

    Even at modern high-flux neutron sources, the required exposure time for one neutron radiography image with high counting statistics is in the order of 1 s. Continuous time-resolved imaging of objects in motion is thus very limited in time resolution and signal dynamics. However, repetitive motions can be recorded with a stroboscopic technique: A triggerable accumulating detector is triggered for many identical time windows of the cyclic motion until sufficient fluence is accumulated for one image. The image is read out, the delay for the time window is shifted and the recording repeated until a complete movie of the cyclic motion can be put together. We report about a study of oil flux in a running, electrically driven BMW engine out of current production.

  3. Renewable sugars from oil palm frond juice as an alternative novel fermentation feedstock for value-added products.

    PubMed

    Zahari, Mior Ahmad Khushairi Mohd; Zakaria, Mohd Rafein; Ariffin, Hidayah; Mokhtar, Mohd Noriznan; Salihon, Jailani; Shirai, Yoshihito; Hassan, Mohd Ali

    2012-04-01

    In this paper, we report that pressed juice from oil palm frond (OPF) contained renewable sugars such as glucose, sucrose and fructose. By using a simple sugarcane press, 50% (wt/wt) of OPF juice was obtained from fresh OPF. The glucose content in the juice was 53.95±2.86g/l, which accounts for 70% of the total free sugars. We have examined the effect of various OPF juice concentrations on the production of poly(3-hydroxybutyrate), P(3HB) by Cupriavidus necator CCUG 52238(T). The cell dry mass in shake flask experiment reached 8.42g/l, with 32wt.% of P(3HB) at 30% (v/v) of OPF juice, comparable with using technical grade sugars. The biopolymer had a molecular mass, M(w) of 812kDa, with a low polydispersity index of 1.61. This result indicates that OPF juice can be used as an alternative renewable carbon source for P(3HB) production and has potential as a renewable carbon source.

  4. Single- and dual-fiber fluorescence probes: application to oil-film measurements in an internal combustion engine.

    PubMed

    Ghandhi, J B

    2000-10-20

    Single- and dual-fiber fluorescence probes have been utilized to study oil-film behavior in a firing Diesel engine. A detailed analysis of the response characteristics of these probes was performed, and universal response curves have been generated through identification of the appropriate nondimensional parameters. For single-fiber probes a single curve was obtained, and for dual-fiber probes families of curves were identified based on three geometric dimensionless parameters. The complementary response characteristics of the single- and dual-fiber probes allows determination of the oil distribution within the piston-liner gap. The dual-fiber probe is not sensitive at small distances. Thus its signal originates solely from the piston surface, whereas the single-fiber probe is most sensitive at small distances and hence to the wall oil film. The engine data from the dual-fiber probe confirmed the presence of an oil film on the piston and provided a means of quantifying the transport of this oil within the engine. PMID:18354541

  5. Single- and dual-fiber fluorescence probes: application to oil-film measurements in an internal combustion engine.

    PubMed

    Ghandhi, J B

    2000-10-20

    Single- and dual-fiber fluorescence probes have been utilized to study oil-film behavior in a firing Diesel engine. A detailed analysis of the response characteristics of these probes was performed, and universal response curves have been generated through identification of the appropriate nondimensional parameters. For single-fiber probes a single curve was obtained, and for dual-fiber probes families of curves were identified based on three geometric dimensionless parameters. The complementary response characteristics of the single- and dual-fiber probes allows determination of the oil distribution within the piston-liner gap. The dual-fiber probe is not sensitive at small distances. Thus its signal originates solely from the piston surface, whereas the single-fiber probe is most sensitive at small distances and hence to the wall oil film. The engine data from the dual-fiber probe confirmed the presence of an oil film on the piston and provided a means of quantifying the transport of this oil within the engine.

  6. Feasibility study of a cosmetic cream added with aqueous extract and oil from date (Phoenix dactylifera L.) fruit seed using experimental design.

    PubMed

    Lecheb, Fatma; Benamara, Salem

    2015-01-01

    This article reports on the feasibility study of a cosmetic cream added with aqueous extract and oil from date (Phoenix dactylifera L.) fruit seed using experimental design. First, the mixture design was applied to optimize the cosmetic formula. The responses (dependent variables) were the spreadability (YSp) and viscosity (YVis), the factors (independent variables) being the weight proportions of the fatty phase (X1), the aqueous date seed extract (X2), and the beeswax (X3). Second, the cosmetic stability study was conducted by applying a full factorial design. Here, three responses were considered [spreadability (Sp), viscosity (Vis), and peroxide index (PI)], the independent variables being the concentration of the date seed oil (DSO) (x1), storage temperature (x2), and storage time (x3). Results showed that in the case of mixture design, the second-order polynomial equations correctly described experimental data. Globally, results show that there is a relatively wide composition range to ensure a suitable cosmetic cream from the point of view of Sp and Vis. Regarding the cosmetic stability, the storage time was found to be the most influential factor on both Vis and PI, which are considered here as indicators of physical and chemical stability of the emulsion, respectively. Finally, the elaborated and commercial cosmetics were compared in terms of pH, Sp, and centrifugation test (Ct). PMID:27125011

  7. Testing and preformance measurement of straight vegetable oils as an alternative fuel for diesel engines

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Arunachalam

    Rising fuel prices, growing energy demand, concerns over domestic energy security and global warming from greenhouse gas emissions have triggered the global interest in bio-energy and bio-fuel crop development. Backlash from these concerns can result in supply shocks of traditional fossil fuels and create immense economic pressure. It is thus widely argued that bio-fuels would particularly benefit developing countries by off-setting their dependencies on imported petroleum. Domestically, the transportation sector accounts for almost 40% of liquid fuel consumption, while on-farm application like tractors and combines for agricultural purposes uses close to an additional 18%. It is estimated that 40% of the farm budget can be attributed to the fuel costs. With the cost of diesel continuously rising, farmers are now looking at using Straight Vegetable Oil (SVO) as an alternative fuel by producing their own fuel crops. This study evaluates conventional diesel compared to the use of SVO like Camelina, Canola and Juncea grown on local farms in Colorado for their performance and emissions on a John Deere 4045 Tier-II engine. Additionally, physical properties like density and viscosity, metal/mineral content, and cold flow properties like CFPP and CP of these oils were measured using ASTM standards and compared to diesel. It was found that SVOs did not show significant differences compared to diesel fuel with regards to engine emissions, but did show an increase in thermal efficiency. Therefore, this study supports the continued development of SVO production as a viable alternative to diesel fuels, particularly for on-farm applications. The need for providing and developing a sustainable, economic and environmental friendly fuel alternative has taken an aggressive push which will require a strong multidisciplinary education in the field of bio-energy. Commercial bio-energy development has the potential to not only alleviate the energy concerns, but also to give renewed

  8. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Conformity under 40 CFR part 86, 40 CFR part 89, or 40 CFR part 1039 and the certification of the vehicle or... 40 Protection of Environment 16 2011-07-01 2011-07-01 false May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of...

  9. Application of a Combustion Model to a Diesel Engine Fueled with Vegetable Oils

    NASA Astrophysics Data System (ADS)

    Radu, Rosca; Edward, Rakosi; Comsa, Iulian-Agape; Radu, Gaiginschi

    The paper presents the application of a three component model to the theoretical study of the combustion process of a Diesel engine fueled with sunflower oil and sunflower oil-Diesel fuel mixtures. The model assumes that the working fluid consists of three components: the fresh air, the flame and the burned gases. The combustion model uses the energy conservation equation: vc·Qc·dξα=dUα+dLα+dQwα, [1] where vc is the fuel cyclic dose, Qc is the fuel heating value, ξα=vcα/vc, vcα is the quantity of burned fuel up to the moment α, Uα is the internal energy of the working fluid, Qwα is the heat exchanged through the cylinder walls and Lα is the mechanical work. The heat release law was assumed to be a Vibe type one: ξα=Rc·[1-exp(-6.9·AmPp+1)]+(1-Rc)·[1-exp(-6.9·Amd+1)], [2] where: ·Ap=(α-αd)/(αP-αd) and A=(α-αd)/(αF-αd) ·αd-start of combustion angle ·αf-end of combustion angle ·αP-end of rapid combustion angle. Using Eqs. [1] and [2] we have obtained the cylinder pressure during combustion, for the vegetable fuels taken into account; the peak values were confirmed during the experiments.

  10. Novel schemes for production of biodiesel and value-added co-products from microalgal oil using heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Dong, Tao

    Microalgae are promising sources of biofuels primarily because of their higher potential productivity compared to terrestrial biofuel crops. However, the production of liquid fuels from microalgae suffers from a lack of viable methods of extraction, conversion and fractionation of various components of the algal biomass. In this dissertation study, a rapid method was developed to accurately evaluate the biodiesel potential of microalgae biomass. The major advantage of this method is in situ fatty acid methyl ester (FAME) preparation directly from wet fresh microalgal and yeast biomass, without prior solvent extraction or dehydration. FAMEs were prepared by a sequential alkaline hydrolysis and acidic esterification process. This method can be used even with high amount of water in the biomass and is applicable to a vast range of microalgae and yeast species. A two-step in situ process was also investigated in this study to obtain a high FAME yield from microalgae biomass that had high free fatty acids (FFA) content. This process has the potential to reduce the production cost of microalgae-derived FAME and be more environmental compatible due to the higher FAME yield with reduced catalyst consumption. A cost-effective bio-char based catalyst was tested for the two-step biodiesel production. The results indicated that the bio-char catalyst was superior to commercial Amberly-15. A scalable chlorophyll remove process was also developed as a part of the system. The research resulted in a practical and cost-effective approach for producing biodiesel from crude microalgal oil. An integrated approach was explored in the fourth part of the study to produce biodiesel and fractionate high-value polyunsaturated fatty acid (PUFA). Zeolites were employed as the catalyst for selective esterification of fatty acids according to their chain length and degree of saturation. Low-value short chain FFA could be largely converted into FAME, while PUFA would remain unreacted due to

  11. 76 FR 77382 - Airworthiness Directives; Continental Motors, Inc. (CMI) Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ..., Inc. (CMI) Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final... engines. This emergency AD was sent previously to all known U.S. owners and operators of these engines... adapter gear shaft, leading to an inoperable oil scavenge pump and engine in-flight shutdown. DATES:...

  12. Energy Return on Investment (EROI) for Forty Global Oilfields Using a Detailed Engineering-Based Model of Oil Production.

    PubMed

    Brandt, Adam R; Sun, Yuchi; Bharadwaj, Sharad; Livingston, David; Tan, Eugene; Gordon, Deborah

    2015-01-01

    Studies of the energy return on investment (EROI) for oil production generally rely on aggregated statistics for large regions or countries. In order to better understand the drivers of the energy productivity of oil production, we use a novel approach that applies a detailed field-level engineering model of oil and gas production to estimate energy requirements of drilling, producing, processing, and transporting crude oil. We examine 40 global oilfields, utilizing detailed data for each field from hundreds of technical and scientific data sources. Resulting net energy return (NER) ratios for studied oil fields range from ≈2 to ≈100 MJ crude oil produced per MJ of total fuels consumed. External energy return (EER) ratios, which compare energy produced to energy consumed from external sources, exceed 1000:1 for fields that are largely self-sufficient. The lowest energy returns are found to come from thermally-enhanced oil recovery technologies. Results are generally insensitive to reasonable ranges of assumptions explored in sensitivity analysis. Fields with very large associated gas production are sensitive to assumptions about surface fluids processing due to the shifts in energy consumed under different gas treatment configurations. This model does not currently include energy invested in building oilfield capital equipment (e.g., drilling rigs), nor does it include other indirect energy uses such as labor or services. PMID:26695068

  13. Energy Return on Investment (EROI) for Forty Global Oilfields Using a Detailed Engineering-Based Model of Oil Production

    PubMed Central

    Brandt, Adam R.; Sun, Yuchi; Bharadwaj, Sharad; Livingston, David; Tan, Eugene; Gordon, Deborah

    2015-01-01

    Studies of the energy return on investment (EROI) for oil production generally rely on aggregated statistics for large regions or countries. In order to better understand the drivers of the energy productivity of oil production, we use a novel approach that applies a detailed field-level engineering model of oil and gas production to estimate energy requirements of drilling, producing, processing, and transporting crude oil. We examine 40 global oilfields, utilizing detailed data for each field from hundreds of technical and scientific data sources. Resulting net energy return (NER) ratios for studied oil fields range from ≈2 to ≈100 MJ crude oil produced per MJ of total fuels consumed. External energy return (EER) ratios, which compare energy produced to energy consumed from external sources, exceed 1000:1 for fields that are largely self-sufficient. The lowest energy returns are found to come from thermally-enhanced oil recovery technologies. Results are generally insensitive to reasonable ranges of assumptions explored in sensitivity analysis. Fields with very large associated gas production are sensitive to assumptions about surface fluids processing due to the shifts in energy consumed under different gas treatment configurations. This model does not currently include energy invested in building oilfield capital equipment (e.g., drilling rigs), nor does it include other indirect energy uses such as labor or services. PMID:26695068

  14. Energy Return on Investment (EROI) for Forty Global Oilfields Using a Detailed Engineering-Based Model of Oil Production.

    PubMed

    Brandt, Adam R; Sun, Yuchi; Bharadwaj, Sharad; Livingston, David; Tan, Eugene; Gordon, Deborah

    2015-01-01

    Studies of the energy return on investment (EROI) for oil production generally rely on aggregated statistics for large regions or countries. In order to better understand the drivers of the energy productivity of oil production, we use a novel approach that applies a detailed field-level engineering model of oil and gas production to estimate energy requirements of drilling, producing, processing, and transporting crude oil. We examine 40 global oilfields, utilizing detailed data for each field from hundreds of technical and scientific data sources. Resulting net energy return (NER) ratios for studied oil fields range from ≈2 to ≈100 MJ crude oil produced per MJ of total fuels consumed. External energy return (EER) ratios, which compare energy produced to energy consumed from external sources, exceed 1000:1 for fields that are largely self-sufficient. The lowest energy returns are found to come from thermally-enhanced oil recovery technologies. Results are generally insensitive to reasonable ranges of assumptions explored in sensitivity analysis. Fields with very large associated gas production are sensitive to assumptions about surface fluids processing due to the shifts in energy consumed under different gas treatment configurations. This model does not currently include energy invested in building oilfield capital equipment (e.g., drilling rigs), nor does it include other indirect energy uses such as labor or services.

  15. Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway.

    PubMed

    Zhu, Wen-Liang; Cui, Jin-Yu; Cui, Lan-Yu; Liang, Wei-Fan; Yang, Song; Zhang, Chong; Xing, Xin-Hui

    2016-03-01

    Methylotrophic biosynthesis using methanol as a feedstock is a promising and attractive method to solve the over-dependence of the bioindustry on sugar feedstocks derived from grains that are used for food. In this study, we introduced and engineered the mevalonate pathway into Methylobacterium extorquens AM1 to achieve high mevalonate production from methanol, which could be a platform for terpenoid synthesis. We first constructed a natural operon (MVE) harboring the mvaS and mvaE genes from Enterococcus faecalis as well as an artificial operon (MVH) harboring the hmgcs1 gene from Blattella germanica and the tchmgr gene from Trypanosoma cruzi that encoded enzymes with the highest reported activities. We achieved mevalonate titers of 56 and 66 mg/L, respectively, in flask cultivation. Introduction of the phaA gene from Ralstonia eutropha into the operon MVH increased the mevalonate titer to 180 mg/L, 3.2-fold higher than that of the natural operon MVE. Further modification of the expression level of the phaA gene by regulating the strength of the ribosomal binding site resulted in an additional 20 % increase in mevalonate production to 215 mg/L. A fed-batch fermentation of the best-engineered strain yielded a mevalonate titer of 2.22 g/L, which was equivalent to an overall yield and productivity of 28.4 mg mevalonate/g methanol and 7.16 mg/L/h, respectively. The production of mevalonate from methanol, which is the initial, but critical step linking methanol with valuable terpenoids via methylotrophic biosynthesis, represents a proof of concept for pathway engineering in M. extorquens AM1.

  16. Feasibility of observing small differences in friction mean effective pressure between different lubricating oil formations using small, single-cylinder motored engine rig

    DOE PAGES

    Rohr, William F.; Nguyen, Ke; Bunting, Bruce G.; Qu, Jun

    2015-09-01

    Here, the feasibility of using a motored single-cylinder 517 cc diesel engine to observe small frictional differences between oil formulations is investigated. Friction mean effective pressure (FMEP) is measured and compared for an SAE 10W-30 and an SAE 5W-20 oil in three stages of production: base oil, commercial oil without a friction and wear reducing additive, and fully formulated commercial oil. In addition, a commercial SAE 5W-30 engine oil is investigated. Friction mean effective pressure is plotted versus oil dynamic viscosity to compare the lubricant FMEP at a given viscosity. Linear regressions and average friction mean effective pressure are usedmore » as a secondary means of comparing FMEP for the various oil formulations. Differences between the oils are observed with the base oil having higher friction at a given viscosity but a lower average FMEP due to the temperature distribution of the test and lower viscosities reached by the base oil. The commercial oil is shown to have both a higher FMEP at a given viscosity and a higher average FMEP than the commercial oil without a friction and wear reducing additive. The increase in friction for the oil without a friction and wear reduction additive indicates that the operational regime of the engine may be out of the bounds of the optimal regime for the additive or that the additive is more optimized for wear reduction. Results show that it is feasible to observe small differences in FMEP between lubricating oil formulations using a small, single-cylinder motored engine.« less

  17. Feasibility of observing small differences in friction mean effective pressure between different lubricating oil formations using small, single-cylinder motored engine rig

    SciTech Connect

    Rohr, William F.; Nguyen, Ke; Bunting, Bruce G.; Qu, Jun

    2015-09-01

    Here, the feasibility of using a motored single-cylinder 517 cc diesel engine to observe small frictional differences between oil formulations is investigated. Friction mean effective pressure (FMEP) is measured and compared for an SAE 10W-30 and an SAE 5W-20 oil in three stages of production: base oil, commercial oil without a friction and wear reducing additive, and fully formulated commercial oil. In addition, a commercial SAE 5W-30 engine oil is investigated. Friction mean effective pressure is plotted versus oil dynamic viscosity to compare the lubricant FMEP at a given viscosity. Linear regressions and average friction mean effective pressure are used as a secondary means of comparing FMEP for the various oil formulations. Differences between the oils are observed with the base oil having higher friction at a given viscosity but a lower average FMEP due to the temperature distribution of the test and lower viscosities reached by the base oil. The commercial oil is shown to have both a higher FMEP at a given viscosity and a higher average FMEP than the commercial oil without a friction and wear reducing additive. The increase in friction for the oil without a friction and wear reduction additive indicates that the operational regime of the engine may be out of the bounds of the optimal regime for the additive or that the additive is more optimized for wear reduction. Results show that it is feasible to observe small differences in FMEP between lubricating oil formulations using a small, single-cylinder motored engine.

  18. Transgenic oil palm: production and projection.

    PubMed

    Parveez, G K; Masri, M M; Zainal, A; Majid, N A; Yunus, A M; Fadilah, H H; Rasid, O; Cheah, S C

    2000-12-01

    Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020.

  19. A new approach involving a multi transducer ultrasonic system for cleaning turbine engines' oil filters under practical conditions.

    PubMed

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo; Chang, Soon Woong; Bui, Hong Ha

    2016-09-01

    The purpose of this paper is to provide a green technology that can clean turbine engine oil filters effectively in ships using ultrasound, with ultrasonic devices having a frequency of 25kHz and different powers of 300W and 600W, respectively. The effects of temperature, ultrasonic cleaning times, pressure losses through the oil filter, solvent washing, and ultrasonic power devices were investigated. In addition, the cleaning efficiency of three modes (hand washing, preliminary washing and ultrasonic washing) were compared to assess their relative effectiveness. Experimental results revealed that the necessary ultrasonic time varied significantly depending on which solvent was used for washing. For instance, the optimum ultrasonic cleaning time was 50-60min when the oil filter was cleaned in a solvent of kerosene oil (KO) and over 80min when in a solvent of diesel oil (DO) using the same ultrasonic generator device (25kHz, 600W) and experimental conditions. Furthermore, microscopic examination did not reveal any damage or breakdown on or within the structure of the filter after ultrasonic cleaning, even in the filter's surfaces at a constantly low frequency of 25kHz and power specific capacity (100W/gal). Overall, it may be concluded that ultrasound-assisted oil filter washing is effective, requiring a significantly shorter time than manual washing. This ultrasonic method also shows promise as a green technology for washing oil filters in turbine engines in general and Vietnamese navy ships in particular, because of its high cleaning efficiency, operational simplicity and savings. PMID:27423027

  20. A new approach involving a multi transducer ultrasonic system for cleaning turbine engines' oil filters under practical conditions.

    PubMed

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo; Chang, Soon Woong; Bui, Hong Ha

    2016-09-01

    The purpose of this paper is to provide a green technology that can clean turbine engine oil filters effectively in ships using ultrasound, with ultrasonic devices having a frequency of 25kHz and different powers of 300W and 600W, respectively. The effects of temperature, ultrasonic cleaning times, pressure losses through the oil filter, solvent washing, and ultrasonic power devices were investigated. In addition, the cleaning efficiency of three modes (hand washing, preliminary washing and ultrasonic washing) were compared to assess their relative effectiveness. Experimental results revealed that the necessary ultrasonic time varied significantly depending on which solvent was used for washing. For instance, the optimum ultrasonic cleaning time was 50-60min when the oil filter was cleaned in a solvent of kerosene oil (KO) and over 80min when in a solvent of diesel oil (DO) using the same ultrasonic generator device (25kHz, 600W) and experimental conditions. Furthermore, microscopic examination did not reveal any damage or breakdown on or within the structure of the filter after ultrasonic cleaning, even in the filter's surfaces at a constantly low frequency of 25kHz and power specific capacity (100W/gal). Overall, it may be concluded that ultrasound-assisted oil filter washing is effective, requiring a significantly shorter time than manual washing. This ultrasonic method also shows promise as a green technology for washing oil filters in turbine engines in general and Vietnamese navy ships in particular, because of its high cleaning efficiency, operational simplicity and savings.

  1. Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants.

    PubMed

    Mnif, Inès; Mnif, Sami; Sahnoun, Rihab; Maktouf, Sameh; Ayedi, Younes; Ellouze-Chaabouni, Semia; Ghribi, Dhouha

    2015-10-01

    Bioremediation, involving the use of microorganisms to detoxify or remove pollutants, is the most interesting strategy for hydrocarbon remediation. In this aim, four hydrocarbon-degrading bacteria were isolated from oil-contaminated soil in Tunisia. They were identified by the 16S rDNA sequence analysis, as Lysinibacillus bronitolerans RI18 (KF964487), Bacillus thuringiensis RI16 (KM111604), Bacillus weihenstephanensis RI12 (KM094930), and Acinetobacter radioresistens RI7 (KJ829530). Moreover, a lipopeptide biosurfactant produced by Bacillus subtilis SPB1, confirmed to increase diesel solubility, was tested to increase diesel biodegradation along with co-inoculation with two biosurfactant-producing strains. Culture studies revealed the enhancement of diesel biodegradation by the selected consortium with the addition of SPB1 lipopeptide and in the cases of co-inoculation by biosurfactant-producing strain. In fact, an improvement of about 38.42 and 49.65 % of diesel degradation was registered in the presence of 0.1 % lipopeptide biosurfactant and when culturing B. subtilis SPB1 strain with the isolated consortium, respectively. Furthermore, the best improvement, evaluated to about 55.4 %, was recorded when using the consortium cultured with B. subtilis SPB1 and A. radioresistens RI7 strains. Gas chromatography analyses were correlated with the gravimetric evaluation of the residual hydrocarbons. Results suggested the potential applicability of the selected consortium along with the ex situ- and in situ-added biosurfactant for the effective bioremediation of diesel-contaminated water and soil.

  2. Canola engineered with a microalgal polyketide synthase-like system produces oil enriched in docosahexaenoic acid.

    PubMed

    Walsh, Terence A; Bevan, Scott A; Gachotte, Daniel J; Larsen, Cory M; Moskal, William A; Merlo, P A Owens; Sidorenko, Lyudmila V; Hampton, Ronnie E; Stoltz, Virginia; Pareddy, Dayakar; Anthony, Geny I; Bhaskar, Pudota B; Marri, Pradeep R; Clark, Lauren M; Chen, Wei; Adu-Peasah, Patrick S; Wensing, Steven T; Zirkle, Ross; Metz, James G

    2016-08-01

    Dietary omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), docosahexaenoic acid (DHA, C22:6) and eicosapentaenoic acid (EPA, C20:5) are usually derived from marine fish. Although production of both EPA and DHA has been engineered into land plants, including Arabidopsis, Camelina sativa and Brassica juncea, neither has been produced in commercially relevant amounts in a widely grown crop. We report expression of a microalgal polyketide synthase-like PUFA synthase system, comprising three multidomain polypeptides and an accessory enzyme, in canola (Brassica napus) seeds. This transgenic enzyme system is expressed in the cytoplasm, and synthesizes DHA and EPA de novo from malonyl-CoA without substantially altering plastidial fatty acid production. Furthermore, there is no significant impact of DHA and EPA production on seed yield in either the greenhouse or the field. Canola oil processed from field-grown grain contains 3.7% DHA and 0.7% EPA, and can provide more than 600 mg of omega-3 LC-PUFAs in a 14 g serving. PMID:27398790

  3. Factors in the Design of Centrifugal Type Injection Valves for Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, W F; Beardsley, E G

    1928-01-01

    This research was undertaken in connection with a general study of the application of the fuel injection engine to aircraft. The purpose of the investigation was to determine the effect of four important factors in the design of a centrifugal type automatic injection valve on the penetration, general shape, and distribution of oil sprays. The general method employed was to record the development of single sprays by means of special high-speed photographic apparatus capable of taking 25 consecutive pictures of the moving spray at a rate of 4,000 per second. Investigations were made concerning the effects on spray characteristics, of the helix angle of helical grooves, the ratio of the cross-sectional area of the orifice to that of the grooves, the ratio of orifice length to diameter, and the position of the seat. Maximum spray penetration was obtained with a ratio of orifice length to diameter of about 1.5. Slightly greater penetration was obtained with the seat directly before the orifice.

  4. Comparative combustion studies on various plant oil esters and the long term effects of an ethyl ester on a compression ignition engine

    SciTech Connect

    Hawkins, C.S.; Fuls, J.

    1982-01-01

    Combustion studies on both ethyl and methyl esters of various plant oils were carried out using the same engine for all the tests so that comparative studies could be achieved. Twelve esters were tested and the pertinent data was recorded. Some of the more important results are published in this paper to serve as a comparative guide to the study of plant oil esters as fuel. Bruwer et. al. (1980) suggested the use of plant oil esters to prevent injector coking in modern compression ignition engines. Very little information is available on the long term effects of such ester use. Cyclic endurance tests have been carried out on Perkins engines running on ethyl esters of sunflower oil. The exciting results of this work are reported, with specific reference to one tractor engine which has recorded more than 1 300 trouble free hours. 3 tables.

  5. Classification of energy-conserving engine oil for passenger cars, vans, sport utility vehicles, and light-duty trucks (revised May 97). (SAE standard)

    SciTech Connect

    1997-05-01

    This SAE Standard was developed cooperatively by SAE, ASTM, and API to define and identify energy conserving engine oils for passenger cars, vans, and light-duty (3856 kg (8500 lb) GVW or less) trucks.

  6. The organic composition of diesel particulate matter, diesel fuel and engine oil of a non-road diesel generator.

    PubMed

    Liang, Fuyan; Lu, Mingming; Keener, Tim C; Liu, Zifei; Khang, Soon-Jai

    2005-10-01

    Diesel-powered equipment is known to emit significant quantities of fine particulate matter to the atmosphere. Numerous organic compounds can be adsorbed onto the surfaces of these inhalable particles, among which polycyclic aromatic hydrocarbons (PAHs) are considered potential occupational carcinogens. Guidelines have been established by various agencies regarding diesel emissions and various control technologies are under development. The purpose of this study is to identify, quantify and compare the organic compounds in diesel particulate matter (DPM) with the diesel fuel and engine oil used in a non-road diesel generator. Approximately 90 organic compounds were quantified (with molecular weight ranging from 120 to 350), which include alkanes, PAHs, alkylated PAHs, alkylbenzenes and alkanoic acids. The low sulfur diesel fuel contains 61% alkanes and 7.1% of PAHs. The identifiable portion of the engine oil contains mainly the alkanoic and benzoic acids. The composition of DPM suggests that they may be originated from unburned diesel fuel, engine oil evaporation and combustion generated products. Compared with diesel fuel, DPM contains fewer fractions of alkanes and more PAH compounds, with the shift toward higher molecular weight ones. The enrichment of compounds with higher molecular weight in DPM may be combustion related (pyrogenic).

  7. Integration of geoscience and engineering in the oil industry - just a dream?

    PubMed

    Stankiewicz, B Artur

    2003-11-20

    The past two decades of the twentieth century have been very 'rocky' for the oil industry, as shown by the overall negative perception of the oil companies by the general public. Fluctuating oil prices, many rounds of staff redundancies, environmental disasters and budget cuts supported the overall image of the oil industry as being 'the technology impaired and environmentally insensible giant'. But advances and positive changes have been quietly happening in most of the oil companies. In the twenty-first century, we will witness the metamorphosis of the oil and gas companies into energy businesses - the era of cleaner and safer oil and gas production, and alternative energy resources such as wind, solar and hydrogen is already underway.

  8. Effect of the level of unsaturation and of alcohol modifications of plant oil fuels on the long-term performance of a direct injected diesel engine

    SciTech Connect

    Ziejewski, M.

    1985-01-01

    A 200-hour durability screening test recommended by the Engine Manufacturers Association was adopted to study the effects of four alternate fuels on the long-term performance of a four cylinder, direct injected diesel engine. Tested fuels included diesel fuel (control), a 25-75 blend by volume of alkali-refined sunflower oil and diesel fuel, a 25-75 blend by volume of high oleic safflower oil and diesel fuel, a nonionic sunflower oil-aqueous ethanol microemulsion, and a methyl ester of sunflower oil. Least squares regression procedures were used to analyze the long term effects of the test fuels on engine performance and to compare the test fuels. Time of the engine operation had a significant effect only on exhaust temperature. For all other response variables, time was not a factor. However, significant differences between tested fuels were observed. An analysis of variance was employed to compare CRC carbon and lacquer ratings, as well as wear of engine parts. The carbon deposits produced by the microemulsion and the 25-75 sunflower oil blend were significantly heavier than those generated by the other tested fuels. None of the fuels produced excessive engine wear. The 25-75 sunflower oil blend and the microemulsion caused problems with the fuel injection system.

  9. Emissions from diesel engines using fatty acid methyl esters from different vegetable oils as blends and pure fuel

    NASA Astrophysics Data System (ADS)

    Schröder, O.; Munack, A.; Schaak, J.; Pabst, C.; Schmidt, L.; Bünger, J.; Krahl, J.

    2012-05-01

    Biodiesel is used as a neat fuel as well as in blends with mineral diesel fuel. Because of the limited availability of fossil resources, an increase of biogenic compounds in fuels is desired. To achieve this goal, next to rapeseed oil, other sustainably produced vegetable oils can be used as raw materials. These raw materials influence the fuel properties as well as the emissions. To investigate the environmental impact of the exhaust gas, it is necessary to determine regulated and non-regulated exhaust gas components. In detail, emissions of aldehydes and polycyclic aromatic hydrocarbons (PAH), as well as mutagenicity in the Ames test are of special interest. In this paper emission measurements on a Euro III engine OM 906 of Mercedes-Benz are presented. As fuel vegetable oil methyl esters from various sources and reference diesel fuel were used as well as blends of the vegetable oil methyl esters with diesel fuel. PAH were sampled according to VDI Guideline 3872. The sampling procedure of carbonyls was accomplished using DNPH cartridges coupled with potassium iodide cartridges. The carbon monoxide and hydrocarbon emissions of the tested methyl esters show advantages over DF. The particle mass emissions of methyl esters were likewise lower than those of DF, only linseed oil methyl ester showed higher particle mass emissions. A disadvantage is the use of biodiesel with respect to emissions of nitrogen oxides. They increased depending on the type of methyl ester by 10% to 30%. Emissions of polycyclic aromatic hydrocarbons (PAHs) and the results of mutagenicity tests correlate with those of the PM measurements, at which for palm oil methyl ester next to coconut oil methyl ester the lowest emissions were detected. From these results one can formulate a clear link between the iodine number of the ester and the emission behaviour. For blends of biodiesel and diesel fuel, emissions changed linearly with the proportion of biodiesel. However, especially in the non

  10. Performance and emission characteristics of a low heat rejection engine with different air gap thicknesses with Jatropha oil based bio-diesel.

    PubMed

    Murali Krishna, M V S; Sarita, G; Seshagiri Rao, V V R; Chowdary, R P; Ramana Reddy, Ch V

    2010-04-01

    The research work on alternate fuels has been the topic of wider interest in the context of depletion of fossil fuels and increasing of pollution levels of the engines with conventional fossil fuels. Alcohols and vegetable oils are considered to replace diesel fuels as they are renewable in nature. However, use of alcohols in internal combustion engines is limited in India, as these fuels are diverted to PetroChemical industries and hence much emphasis is given to the non-edible vegetable oils as alternate fuels in internal combustion engines. However, the drawbacks of low volatility and high viscosity associated with non-edible vegetable oils call for hot combustion chamber, provided by low heat rejection (LHR) diesel engine. Investigations are carried out on a LHR diesel engine with varied air gap thicknesses and injection pressures with jatropha oil based bio-diesel at normal temperature. Performance is improved with high degree of insulation with LHR engine with vegetable oil in comparison with conventional engine (CE) with pure diesel operation. PMID:21114115

  11. Performance and emission characteristics of a low heat rejection engine with different air gap thicknesses with Jatropha oil based bio-diesel.

    PubMed

    Murali Krishna, M V S; Sarita, G; Seshagiri Rao, V V R; Chowdary, R P; Ramana Reddy, Ch V

    2010-04-01

    The research work on alternate fuels has been the topic of wider interest in the context of depletion of fossil fuels and increasing of pollution levels of the engines with conventional fossil fuels. Alcohols and vegetable oils are considered to replace diesel fuels as they are renewable in nature. However, use of alcohols in internal combustion engines is limited in India, as these fuels are diverted to PetroChemical industries and hence much emphasis is given to the non-edible vegetable oils as alternate fuels in internal combustion engines. However, the drawbacks of low volatility and high viscosity associated with non-edible vegetable oils call for hot combustion chamber, provided by low heat rejection (LHR) diesel engine. Investigations are carried out on a LHR diesel engine with varied air gap thicknesses and injection pressures with jatropha oil based bio-diesel at normal temperature. Performance is improved with high degree of insulation with LHR engine with vegetable oil in comparison with conventional engine (CE) with pure diesel operation.

  12. Hairy AdS solitons

    NASA Astrophysics Data System (ADS)

    Anabalón, Andrés; Astefanesei, Dumitru; Choque, David

    2016-11-01

    We construct exact hairy AdS soliton solutions in Einstein-dilaton gravity theory. We examine their thermodynamic properties and discuss the role of these solutions for the existence of first order phase transitions for hairy black holes. The negative energy density associated to hairy AdS solitons can be interpreted as the Casimir energy that is generated in the dual filed theory when the fermions are antiperiodic on the compact coordinate.

  13. Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) from Plant Oil by Engineered Ralstonia eutropha Strains▿†

    PubMed Central

    Budde, Charles F.; Riedel, Sebastian L.; Willis, Laura B.; Rha, ChoKyun; Sinskey, Anthony J.

    2011-01-01

    The polyhydroxyalkanoate (PHA) copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(HB-co-HHx)] has been shown to have potential to serve as a commercial bioplastic. Synthesis of P(HB-co-HHx) from plant oil has been demonstrated with recombinant Ralstonia eutropha strains expressing heterologous PHA synthases capable of incorporating HB and HHx into the polymer. With these strains, however, short-chain-length fatty acids had to be included in the medium to generate PHA with high HHx content. Our group has engineered two R. eutropha strains that accumulate high levels of P(HB-co-HHx) with significant HHx content directly from palm oil, one of the world's most abundant plant oils. The strains express a newly characterized PHA synthase gene from the bacterium Rhodococcus aetherivorans I24. Expression of an enoyl coenzyme A (enoyl-CoA) hydratase gene (phaJ) from Pseudomonas aeruginosa was shown to increase PHA accumulation. Furthermore, varying the activity of acetoacetyl-CoA reductase (encoded by phaB) altered the level of HHx in the polymer. The strains with the highest PHA titers utilized plasmids for recombinant gene expression, so an R. eutropha plasmid stability system was developed. In this system, the essential pyrroline-5-carboxylate reductase gene proC was deleted from strain genomes and expressed from a plasmid, making the plasmid necessary for growth in minimal media. This study resulted in two engineered strains for production of P(HB-co-HHx) from palm oil. In palm oil fermentations, one strain accumulated 71% of its cell dry weight as PHA with 17 mol% HHx, while the other strain accumulated 66% of its cell dry weight as PHA with 30 mol% HHx. PMID:21398488

  14. Gas chromatographic determination of some phenolic compounds in fuels and engine oil after simultaneous derivatization and microextraction.

    PubMed

    Farajzadeh, Mir Ali; Yadeghari, Adeleh; Khoshmaram, Leila; Ghorbanpour, Houshang

    2014-10-01

    In this study, a simultaneous derivatization/air-assisted liquid-liquid microextraction method has been developed for sample preparation of some phenolic compounds in fuels and engine oil. Analytes are transferred by back liquid-liquid extraction into NaOH solution and then are derivatized with butyl chloroformate and extracted simultaneously into carbon tetrachloride. The extracted derivatized analytes are analyzed using gas chromatography with flame ionization detection. The effect of extracting solvent type, derivatization agent and extraction solvent volumes, ionic strength of the aqueous solution, number of extraction cycles, etc., on the extraction efficiency is investigated. The calibration graphs are linear in the range of 3-10,000 μg/L. Enhancement factors, enrichment factors, and extraction recoveries are in the ranges of 497 to 1471, 571 to 991, and 60 to 109%, respectively. Detection limits are obtained in the range of 0.8 to 2.0 μg/L. Relative standard deviations for the extraction of each selected phenols are in the ranges of 2-4% for intraday (n = 6) and 3-6% (n = 5) for interday precisions for 200 μg/L. This technique is successfully applied for the extraction, preconcentration, and determination of the selected phenols in gasoline, kerosene, gas oil, and engine oil. PMID:25082460

  15. Gas chromatographic determination of some phenolic compounds in fuels and engine oil after simultaneous derivatization and microextraction.

    PubMed

    Farajzadeh, Mir Ali; Yadeghari, Adeleh; Khoshmaram, Leila; Ghorbanpour, Houshang

    2014-10-01

    In this study, a simultaneous derivatization/air-assisted liquid-liquid microextraction method has been developed for sample preparation of some phenolic compounds in fuels and engine oil. Analytes are transferred by back liquid-liquid extraction into NaOH solution and then are derivatized with butyl chloroformate and extracted simultaneously into carbon tetrachloride. The extracted derivatized analytes are analyzed using gas chromatography with flame ionization detection. The effect of extracting solvent type, derivatization agent and extraction solvent volumes, ionic strength of the aqueous solution, number of extraction cycles, etc., on the extraction efficiency is investigated. The calibration graphs are linear in the range of 3-10,000 μg/L. Enhancement factors, enrichment factors, and extraction recoveries are in the ranges of 497 to 1471, 571 to 991, and 60 to 109%, respectively. Detection limits are obtained in the range of 0.8 to 2.0 μg/L. Relative standard deviations for the extraction of each selected phenols are in the ranges of 2-4% for intraday (n = 6) and 3-6% (n = 5) for interday precisions for 200 μg/L. This technique is successfully applied for the extraction, preconcentration, and determination of the selected phenols in gasoline, kerosene, gas oil, and engine oil.

  16. Current progress towards the metabolic engineering of plant oil for hydroxy fatty acids production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oil is not only edible but also can be used for industrial purposes. The industrial demand for vegetable oil will increase with the future depletion of fossil fuels and environmental problems such as climate change, caused by increased carbon dioxide in the air. Some plants accumulate high...

  17. Combusting vegetable oils in diesel engines: the impact of unsaturated fatty acids on particle emissions and mutagenic effects of the exhaust.

    PubMed

    Bünger, Jürgen; Bünger, Jörn F; Krahl, Jürgen; Munack, Axel; Schröder, Olaf; Brüning, Thomas; Hallier, Ernst; Westphal, Götz A

    2016-06-01

    High particle emissions and strong mutagenic effects were observed after combustion of vegetable oil in diesel engines. This study tested the hypothesis that these results are affected by the amount of unsaturated or polyunsaturated fatty acids of vegetable oils. Four different vegetable oils (coconut oil, CO; linseed oil, LO; palm tree oil, PO; and rapeseed oil, RO) and common diesel fuel (DF) were combusted in a heavy-duty diesel engine. The exhausts were investigated for particle emissions and mutagenic effects in direct comparison with emissions of DF. The engine was operated using the European Stationary Cycle. Particle masses were measured gravimetrically while mutagenicity was determined using the bacterial reverse mutation assay with tester strains TA98 and TA100. Combustion of LO caused the largest amount of total particulate matter (TPM). In comparison with DF, it particularly raised the soluble organic fraction (SOF). RO presented second highest TPM and SOF, followed by CO and PO, which were scarcely above DF. RO revealed the highest number of mutations of the vegetable oils closely followed by LO. PO was less mutagenic, but still induced stronger effects than DF. While TPM and SOF were strongly correlated with the content of polyunsaturated fatty acids in the vegetable oils, mutagenicity had a significant correlation with the amount of total unsaturated fatty acids. This study supports the hypothesis that numbers of double bounds in unsaturated fatty acids of vegetable oils combusted in diesel engines influence the amount of emitted particles and the mutagenicity of the exhaust. Further investigations have to elucidate the causal relationship.

  18. Combusting vegetable oils in diesel engines: the impact of unsaturated fatty acids on particle emissions and mutagenic effects of the exhaust.

    PubMed

    Bünger, Jürgen; Bünger, Jörn F; Krahl, Jürgen; Munack, Axel; Schröder, Olaf; Brüning, Thomas; Hallier, Ernst; Westphal, Götz A

    2016-06-01

    High particle emissions and strong mutagenic effects were observed after combustion of vegetable oil in diesel engines. This study tested the hypothesis that these results are affected by the amount of unsaturated or polyunsaturated fatty acids of vegetable oils. Four different vegetable oils (coconut oil, CO; linseed oil, LO; palm tree oil, PO; and rapeseed oil, RO) and common diesel fuel (DF) were combusted in a heavy-duty diesel engine. The exhausts were investigated for particle emissions and mutagenic effects in direct comparison with emissions of DF. The engine was operated using the European Stationary Cycle. Particle masses were measured gravimetrically while mutagenicity was determined using the bacterial reverse mutation assay with tester strains TA98 and TA100. Combustion of LO caused the largest amount of total particulate matter (TPM). In comparison with DF, it particularly raised the soluble organic fraction (SOF). RO presented second highest TPM and SOF, followed by CO and PO, which were scarcely above DF. RO revealed the highest number of mutations of the vegetable oils closely followed by LO. PO was less mutagenic, but still induced stronger effects than DF. While TPM and SOF were strongly correlated with the content of polyunsaturated fatty acids in the vegetable oils, mutagenicity had a significant correlation with the amount of total unsaturated fatty acids. This study supports the hypothesis that numbers of double bounds in unsaturated fatty acids of vegetable oils combusted in diesel engines influence the amount of emitted particles and the mutagenicity of the exhaust. Further investigations have to elucidate the causal relationship. PMID:26126632

  19. Evaluation of Oil-Industry Stimulation Practices for Engineered Geothermal Systems

    SciTech Connect

    Peter Van Dyke; Leen Weijers; Ann Robertson-Tait; Norm Warpinski; Mike Mayerhofer; Bill Minner; Craig Cipolla

    2007-10-17

    Geothermal energy extraction is typically achieved by use of long open-hole intervals in an attempt to connect the well with the greatest possible rock mass. This presents a problem for the development of Enhanced (Engineered) Geothermal Systems (EGS), owing to the challenge of obtaining uniform stimulation throughout the open-hole interval. Fluids are often injected in only a fraction of that interval, reducing heat transfer efficiency and increasing energy cost. Pinnacle Technologies, Inc. and GeothermEx, Inc. evaluated a variety of techniques and methods that are commonly used for hydraulic fracturing of oil and gas wells to increase and evaluate stimulation effectiveness in EGS wells. Headed by Leen Weijers, formerly Manager of Technical Development at Pinnacle Technologies, Inc., the project ran from August 1, 2004 to July 31, 2006 in two one-year periods to address the following tasks and milestones: 1) Analyze stimulation results from the closest oil-field equivalents for EGS applications in the United States (e.g., the Barnett Shale in North Texas) (section 3 on page 8). Pinnacle Technologies, Inc. has collected fracture growth data from thousands of stimulations (section 3.1 on page 12). This data was further evaluated in the context of: a) Identifying techniques best suited to developing a stimulated EGS fracture network (section 3.2 on page 29), and b) quantifying the growth of the network under various conditions to develop a calibrated model for fracture network growth (section 3.3 on page 30). The developed model can be used to design optimized EGS fracture networks that maximize contact with the heat source and minimize short-circuiting (section 3.4 on page 38). 2) Evaluate methods used in oil field applications to improve fluid diversion and penetration and determine their applicability to EGS (section 4 on page 50). These methods include, but are not limited to: a) Stimulation strategies (propped fracturing versus water fracturing versus injecting

  20. Value Added?

    ERIC Educational Resources Information Center

    UCLA IDEA, 2012

    2012-01-01

    Value added measures (VAM) uses changes in student test scores to determine how much "value" an individual teacher has "added" to student growth during the school year. Some policymakers, school districts, and educational advocates have applauded VAM as a straightforward measure of teacher effectiveness: the better a teacher, the better students…

  1. Advanced airbreathing engine lubricants study with a tetraester fluid and a synthetic paraffinic oil at 492 K (425 F)

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.; Bamberger, E. N.

    1972-01-01

    Groups of 120-mm-bore angular-contact ball bearings made from AISI M-50 steel were fatigue tested with a tetraester and a synthetic paraffinic oil at a bearing temperature of 492 K (425 F) in an air environment. Bearing life exceeded AFBMA-predicted (catalog) life by factors in excess of 4 and 10 for the tetraester and synthetic paraffinic fluids, respectively. The final viscosities after 500 hours of operation were 14 and 6 times the initial values, respectively. During the same time period, when the test oil is replaced at a rate approximating the replenishment rate in actual commerical engine usage, no significant increase in lubricant viscosity with time was observed.

  2. Process for treating and regenerating used oil products

    SciTech Connect

    Sader, G.

    1983-03-08

    In the recovery of regenerated mineral and synthetic oils from blackish dirty lubricating or industrial oils, a quaternary ammonium salt or mixture of salts is added to the dirty oil and the mixture is subjected to agitation. The agitated mixture is next subjected to a decanting operation making it possible to recover, as the upper supernatant fraction, an oil exhibiting approximately the same characteristics as a new starting oil useful for automotive engines, transmissions and differentials, as a lubricant for machine tools, useful in transformers and other electric and electropneumatic devices and also useful as a hydraulic fluid.

  3. Improvement of the thermostability and activity of halohydrin dehalogenase from Agrobacterium radiobacter AD1 by engineering C-terminal amino acids.

    PubMed

    Wang, Xiong; Han, Shaoqiang; Yang, Zujun; Tang, Lixia

    2015-10-20

    In the current study, a three-tiered mutagenesis strategy was employed to simultaneously improve the thermostability and activity of halohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC) by engineering the last ten amino acids (Met245∼Glu254) of its C-terminal region. Initially, truncated mutagenesis results displayed that C-terminal deletions decreased the thermostability and/or activity of HheC. Then ten residues were subjected to single-site saturation mutagenesis, resulting in 20 beneficial single-point variants related to the thermostability or activity of HheC. The results clearly indicated that residues Met252∼Glu254 and Trp249 are crucial for regulating enzyme thermostability and activity, respectively. Finally, the beneficial substitutions were combined using efficient multi-site combinatorial mutagenesis approaches, leading to an outstanding variant PX14 (Trp249Pro/Met252Leu/Pro253Asp), which had a 17.8-fold higher half-life and a 4.0-fold higher kcat value than that of wild-type HheC. These results indicated that the C-terminal residues play an important role in modulating both the thermostability and activity of HheC.

  4. 32P-postlabelling analysis of DNA adducts in the skin of mice treated with petrol and diesel engine lubricating oils and exhaust condensates.

    PubMed

    Schoket, B; Hewer, A; Grover, P L; Phillips, D H

    1989-08-01

    Samples of unused or used petrol and diesel engine lubricating oils were applied to the shaved dorsal skin of 4- to 6-week-old male Parkes mice, either as a single treatment (50 microliters/mouse) or as four consecutive daily treatments (50 microliters/application). DNA isolated from the skin 24 h after the final treatment was digested to 3'-mononucleotides and analysed by 32P-postlabelling for the presence of aromatic adducts. Enhancement of sensitivity using butanol extraction or nuclease P1 digestion of the DNA hydrolysates led to the detection of up to eight adduct spots on polyethyleneimine-cellulose thin-layer chromatograms with samples of DNA from skin treated with used engine oils, at levels of 40-150 amol total adducts/micrograms DNA. Multiple treatments with the used oils gave rise to similar patterns of adducts in lung DNA. A single treatment of mouse skin with petrol engine exhaust condensate (50 microliters), or diesel engine exhaust condensate (50 microliters), containing 20 and 46 micrograms benzo[a]pyrene (BaP)/g respectively, gave rise to approximately 75 amol total adducts/micrograms DNA in skin. A significant proportion, 31 and 48% respectively, of the adducts formed by the petrol and diesel engine exhaust condensates co-chromatographed with the major BaP-DNA adduct, but with the used engine oils, only petrol engine oil, and not diesel engine oil, produced significant amounts of an adduct (22% of total) that corresponded to the BaP-DNA adduct.

  5. Experimental and Analytical Determination of the Motion of Hydraulically Operated Valve Stems in Oil Engine Injection Systems

    NASA Technical Reports Server (NTRS)

    Gelalles, A G; Rothrock, A M

    1930-01-01

    This research on the pressure variations in the injection system of the N.A.C.A. Spray Photography Equipment and on the effects of these variations on the motion of the timing valve stem was undertaken in connection with the study of fuel injection systems for high-speed oil engines. The methods of analysis of the pressure variations and the general equation for the motion of the spring-loaded stem for the timing valve are applicable to a spring-loaded automatic injection valve, and in general to all hydraulically operated valves. A sample calculation for a spring-loaded automatic injection valve is included.

  6. Combustion and heat transfer in a high speed diesel engine operating with rape seed oil methyl ester fuel

    NASA Astrophysics Data System (ADS)

    Turunen, R.

    The properties of RME (rape seed oil methyl ester) as a fuel for a diesel engine have been investigated theoretically and experimentally. The experiments were made with a turbocharged high-speed DI engine. During experiments the specific fuel consumption, exhaust gas emissions, heat release rate, flame temperature and the temperatures of the combustion chamber walls were measured. A test was also made using the measured flame temperature as an initial value for a two-zone combustion model. The theoretical investigations show that it is possible to achieve with RME approximately the same power as with ordinary diesel fuel from the same cylinder volume. The fuels give very similar theoretical (ideal) working cycles and also the efficiencies of the cycles are very near to each other.

  7. A New Fluorinated Tyrosinase Inhibitor from a Chemically Engineered Essential Oil.

    PubMed

    García, Paula; Salazar, Mario O; Ramallo, I Ayelen; Furlan, Ricardo L E

    2016-06-13

    The generation of fluorinated essential oils as a source of bioactive compounds is described. Most of the components of the natural mixtures were altered, leading to the discovery of a new fluorinated tyrosinase inhibitor. PMID:27144399

  8. A New Fluorinated Tyrosinase Inhibitor from a Chemically Engineered Essential Oil.

    PubMed

    García, Paula; Salazar, Mario O; Ramallo, I Ayelen; Furlan, Ricardo L E

    2016-06-13

    The generation of fluorinated essential oils as a source of bioactive compounds is described. Most of the components of the natural mixtures were altered, leading to the discovery of a new fluorinated tyrosinase inhibitor.

  9. Economic and engineering evaluation of plant oils as a diesel fuel. Final report

    SciTech Connect

    Engler, C.R.; LePori, W.A.; Johnson, L.A.; Griffin, R.C.; Diehl, K.C.; Moore, D.S.; Lacewell, R.D.; Coble, C.G.; Lusas, E.W.; Hiler, E.A.

    1982-04-15

    The annual total yield of plant oils in the US is about 3.7 billion gallons. Diesel use by agriculture is about 2.0 billion gallons annually and is growing rapidly relative to gasoline use. Based on these amounts, plant oils could satisfy agriculture's diesel fuel requirements during the near future. However, diversion of large quantities of plant oils for such purposes would have dramatic impacts on plant oil prices and be reflected in numerous adjustments throughout agriculture and other sectors of the economy. The competitive position of sunflowers for plant oil production in Texas was analyzed. In those regions with a cotton alternative, sunflowers were not, for the most part, economically competitive. However, sunflower production is competitive with grain sorghum in certain cases. To develop a meaningful production base for oilseed crops in Texas, yields need to be improved or increases in oilseed prices relative to cotton must take place. This implies some limitations for the potential of Texas to produce large quantities of plant oils.

  10. The Effects of Fuel and Cylinder Gas Densities on the Characteristics of Fuel Sprays for Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, W F; Beardsley, Edward G

    1928-01-01

    This investigation was conducted as a part of a general research on fuel-injection engines for aircraft. The purpose of the investigation was to determine the effects of fuel and cylinder gas densities with several characteristics of fuel sprays for oil engines. The start, growth, and cut-off of single fuel sprays produced by automatic injection valves were recorded on photographic film by means of special high-speed motion-picture apparatus. This equipment, which has been described in previous reports, is capable of taking twenty-five consecutive pictures of the moving spray at the rate of 4,000 per second. The penetrations of the fuel sprays increased and the cone angles and relative distributions decreased with increase in the specific gravity of the fuel. The density of the gas into which the fuel sprays were injected controlled their penetration. This was the only characteristic of the chamber gas that had a measurable effect upon the fuel sprays. Application of fuel-spray penetration data to the case of an engine, in which the pressure is rising during injection, indicated that fuel sprays may penetrate considerably farther than when injected into a gas at a density equal to that of the gas in an engine cylinder at top center.

  11. Study of Miller timing on exhaust emissions of a hydrotreated vegetable oil (HVO)-fueled diesel engine.

    PubMed

    Heikkilä, Juha; Happonen, Matti; Murtonen, Timo; Lehto, Kalle; Sarjovaara, Teemu; Larmi, Martti; Keskinen, Jorma; Virtanen, Annele

    2012-11-01

    The effect of intake valve closure (IVC) timing by utilizing Miller cycle and start of injection (SOI) on particulate matter (PM), particle number and nitrogen oxide (NOx) emissions was studied with a hydrotreated vegetable oil (HVO)-fueled nonroad diesel engine. HVO-fueled engine emissions, including aldehyde and polyaromatic hydrocarbon (PAH) emissions, were also compared with those emitted with fossil EN590 diesel fuel. At the engine standard settings, particle number and NOx emissions decreased at all the studied load points (50%, 75%, and 100%) when the fuel was changed from EN590 to HVO. Adjusting IVC timing enabled a substantial decrease in NOx emission and combined with SOI timing adjustment somewhat smaller decrease in both NOx and particle emissions at IVC -50 and -70 degrees CA points. The HVO fuel decreased PAH emissions mainly due to the absence of aromatics. Aldehyde emissions were lower with the HVO fuel with medium (50%) load. At higher loads (75% and 100%), aldehyde emissions were slightly higher with the HVO fuel. However, the aldehyde emission levels were quite low, so no clear conclusions on the effect of fuel can be made. Overall, the study indicates that paraffinic HVO fuels are suitable for emission reduction with valve and injection timing adjustment and thus provide possibilities for engine manufacturers to meet the strictening emission limits.

  12. Application of the ultra-thin elastohydrodynamic oil film thickness technique to the study of automotive engine oils

    NASA Astrophysics Data System (ADS)

    Cooper, D.; Moore, A. J.

    1994-06-01

    Recent advances in the measurement of elastohydrodynamic (EHD) oil film thickness have enabled films of only a few molecules width to be measured with good accuracy. As a result, the range of temperature and viscosity that may be permitted in EHD experiments has been significantly extended and the practical value of the information obtained correspondingly increased. This paper explores the potential value of such techniques for investigating the viscometric behavior of lubricants at high pressure and shear rate. It is shown that the film-forming behavior of a viscometrically well-characterized Newtonian lubricant continues to obey classical EHD theory at film thicknesses as low as 10 nm. The level of agreement is close enough for pressure-viscosity characteristics to be deduced directly from film thickness information through the application of EHD theory. For polymer-containing, non-Newtonian lubricants, a high shear viscosity can be determined from film thickness data if pressure-viscosity characteristics are first established. A suitably structured sequence of experiments is described which yield estimates of both properties. To help interpret the viscometric information thus obtained, inlet zone viscosities are compared both with conventionally determined high shear viscosities and with the values predicted by a model of polymer solution behavior.

  13. Performance and exhaust emission characteristics of variable compression ratio diesel engine fuelled with esters of crude rice bran oil.

    PubMed

    Vasudeva, Mohit; Sharma, Sumeet; Mohapatra, S K; Kundu, Krishnendu

    2016-01-01

    As a substitute to petroleum-derived diesel, biodiesel has high potential as a renewable and environment friendly energy source. For petroleum importing countries the choice of feedstock for biodiesel production within the geographical region is a major influential factor. Crude rice bran oil is found to be good and viable feedstock for biodiesel production. A two step esterification is carried out for higher free fatty acid crude rice bran oil. Blends of 10, 20 and 40 % by vol. crude rice bran biodiesel are tested in a variable compression ratio diesel engine at compression ratio 15, 16, 17 and 18. Engine performance and exhaust emission parameters are examined. Cylinder pressure-crank angle variation is also plotted. The increase in compression ratio from 15 to 18 resulted in 18.6 % decrease in brake specific fuel consumption and 14.66 % increase in brake thermal efficiency on an average. Cylinder pressure increases by 15 % when compression ratio is increased. Carbon monoxide emission decreased by 22.27 %, hydrocarbon decreased by 38.4 %, carbon dioxide increased by 17.43 % and oxides of nitrogen as NOx emission increased by 22.76 % on an average when compression ratio is increased from 15 to 18. The blends of crude rice bran biodiesel show better results than diesel with increase in compression ratio.

  14. Performance and exhaust emission characteristics of variable compression ratio diesel engine fuelled with esters of crude rice bran oil.

    PubMed

    Vasudeva, Mohit; Sharma, Sumeet; Mohapatra, S K; Kundu, Krishnendu

    2016-01-01

    As a substitute to petroleum-derived diesel, biodiesel has high potential as a renewable and environment friendly energy source. For petroleum importing countries the choice of feedstock for biodiesel production within the geographical region is a major influential factor. Crude rice bran oil is found to be good and viable feedstock for biodiesel production. A two step esterification is carried out for higher free fatty acid crude rice bran oil. Blends of 10, 20 and 40 % by vol. crude rice bran biodiesel are tested in a variable compression ratio diesel engine at compression ratio 15, 16, 17 and 18. Engine performance and exhaust emission parameters are examined. Cylinder pressure-crank angle variation is also plotted. The increase in compression ratio from 15 to 18 resulted in 18.6 % decrease in brake specific fuel consumption and 14.66 % increase in brake thermal efficiency on an average. Cylinder pressure increases by 15 % when compression ratio is increased. Carbon monoxide emission decreased by 22.27 %, hydrocarbon decreased by 38.4 %, carbon dioxide increased by 17.43 % and oxides of nitrogen as NOx emission increased by 22.76 % on an average when compression ratio is increased from 15 to 18. The blends of crude rice bran biodiesel show better results than diesel with increase in compression ratio. PMID:27066330

  15. An Experimental Investigation on Performance and Emissions Characteristics of Jatropha Oil Blends with Diesel in a Direct Injection Compression Ignition Engine

    NASA Astrophysics Data System (ADS)

    De, B.; Bose, P. K.; Panua, R. S.

    2012-07-01

    Continuous effort to reducing pollutant emissions, especially smoke and nitrogen oxides from internal combustion engines, have promoted research for alternative fuels. Vegetable oils, because of their agricultural origin and due to less carbon content compared to mineral diesel are producing less CO2 emissions to the atmosphere. It also reduces import of petroleum products. In the present contribution, experiments were conducted using Jatropha oil blends with diesel to study the effect on performance and emissions characteristics of a existing diesel engine. In this study viscosity of Jatropha oil was reduced by blending with diesel. A single cylinder, four stroke, constant speed, water cooled, diesel engine was used. The results show that for lower blend concentrations various parameters such as thermal efficiency, brake specific fuel consumption, smoke opacity, CO2, and NO x emissions are acceptable compared to that of mineral diesel. But, it was observed that for higher blend concentrations, performance and emissions were much inferior compared to diesel.

  16. Natural Oil Production from Microorganisms: Bioprocess and Microbe Engineering for Total Carbon Utilization in Biofuel Production

    SciTech Connect

    2010-07-15

    Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied from novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.

  17. Multigene Engineering of Triacylglycerol Metabolism Boosts Seed Oil Content in Arabidopsis1[W][OPEN

    PubMed Central

    van Erp, Harrie; Kelly, Amélie A.; Menard, Guillaume; Eastmond, Peter J.

    2014-01-01

    Increasing the yield of oilseed crops is an important objective for biotechnologists. A number of individual genes involved in triacylglycerol metabolism have previously been reported to enhance the oil content of seeds when their expression is altered. However, it has yet to be established whether specific combinations of these genes can be used to achieve an additive effect and whether this leads to enhanced yield. Using Arabidopsis (Arabidopsis thaliana) as an experimental system, we show that seed-specific overexpression of WRINKLED1 (a transcriptional regulator of glycolysis and fatty acid synthesis) and DIACYLGLYCEROL ACYLTRANSFERASE1 (a triacylglycerol biosynthetic enzyme) combined with suppression of the triacylglycerol lipase SUGAR-DEPENDENT1 results in a higher percentage seed oil content and greater seed mass than manipulation of each gene individually. Analysis of total seed yield per plant suggests that, despite a reduction in seed number, the total yield of oil is also increased. PMID:24696520

  18. Polycyclic aromatic hydrocarbons (PAHs) in exhaust emissions from diesel engines powered by rapeseed oil methylester and heated non-esterified rapeseed oil

    NASA Astrophysics Data System (ADS)

    Vojtisek-Lom, Michal; Czerwinski, Jan; Leníček, Jan; Sekyra, Milan; Topinka, Jan

    2012-12-01

    Polycyclic aromatic hydrocarbons (PAHs) of exhaust emissions were studied in four direct-injection turbocharged four-cylinder diesel engines, with power ratings of 90-136 kW. The engines were operated on biodiesel (B-100), a blend of 30% biodiesel in diesel fuel (B-30), and heated rapeseed oil (RO) in two independent laboratories. Diesel particle filters (DPF) and selective catalytic reduction (SCR) systems were used with B-30 and B-100. Concentrations of individual PAHs sampled in different substrates (quartz, borosilicate fiber and fluorocarbon membrane filters, polyurethane foam) were analyzed using different methods. Benzo[a]pyrene toxic equivalents (BaP TEQ) were calculated using different sets of toxic equivalency factors (TEF). Operation on B-100 without aftertreatment devices, compared to diesel fuel, yielded a mean reduction in PAHs of 73%, consistent across engines and among TEF used. A lower PAH reduction was obtained using B-30. The BaP TEQ reductions on DPF were 91-99% using B-100, for one non-catalyzed DPF, and over 99% in all other cases. The BaP TEQ for heated RO were higher than those for B-100 and one half lower to over twice as high as that of diesel fuel. B-100 and RO samples featured, compared to diesel fuel, a relatively high share of higher molecular weight PAH and a relatively low share of lighter PAHs. Using different sets of TEF or different detection methods did not consistently affect the observed effect of fuels on BaP TEQ. The compilation of multiple tests was helpful for discerning emerging patterns. The collection of milligrams of particulate matter per sample was generally needed for quantification of all individual PAHs.

  19. Development and validation of an environmentally friendly attenuated total reflectance in the mid-infrared region method for the determination of ethanol content in used engine lubrication oil.

    PubMed

    Hatanaka, Rafael Rodrigues; Sequinel, Rodrigo; Gualtieri, Carlos Eduardo; Tercini, Antônio Carlos Bergamaschi; Flumignan, Danilo Luiz; de Oliveira, José Eduardo

    2013-05-15

    Lubricating oils are crucial in the operation of automotive engines because they both reduce friction between moving parts and protect against corrosion. However, the performance of lubricant oil may be affected by contaminants, such as gasoline, diesel, ethanol, water and ethylene glycol. Although there are many standard methods and studies related to the quantification of contaminants in lubricant oil, such as gasoline and diesel oil, to the best of our knowledge, no methods have been reported for the quantification of ethanol in used Otto cycle engine lubrication oils. Therefore, this work aimed at the development and validation of a routine method based on partial least-squares multivariate analysis combined with attenuated total reflectance in the mid-infrared region to quantify ethanol content in used lubrication oil. The method was validated based on its figures of merit (using the net analyte signal) as follows: limit of detection (0.049%), limit of quantification (0.16%), accuracy (root mean square error of prediction=0.089% w/w), repeatability (0.05% w/w), fit (R(2)=0.9997), mean selectivity (0.047), sensitivity (0.011), inverse analytical sensitivity (0.016% w/w(-1)) and signal-to-noise ratio (max: 812.4 and min: 200.9). The results show that the proposed method can be routinely implemented for the quality control of lubricant oils.

  20. Development and validation of an environmentally friendly attenuated total reflectance in the mid-infrared region method for the determination of ethanol content in used engine lubrication oil.

    PubMed

    Hatanaka, Rafael Rodrigues; Sequinel, Rodrigo; Gualtieri, Carlos Eduardo; Tercini, Antônio Carlos Bergamaschi; Flumignan, Danilo Luiz; de Oliveira, José Eduardo

    2013-05-15

    Lubricating oils are crucial in the operation of automotive engines because they both reduce friction between moving parts and protect against corrosion. However, the performance of lubricant oil may be affected by contaminants, such as gasoline, diesel, ethanol, water and ethylene glycol. Although there are many standard methods and studies related to the quantification of contaminants in lubricant oil, such as gasoline and diesel oil, to the best of our knowledge, no methods have been reported for the quantification of ethanol in used Otto cycle engine lubrication oils. Therefore, this work aimed at the development and validation of a routine method based on partial least-squares multivariate analysis combined with attenuated total reflectance in the mid-infrared region to quantify ethanol content in used lubrication oil. The method was validated based on its figures of merit (using the net analyte signal) as follows: limit of detection (0.049%), limit of quantification (0.16%), accuracy (root mean square error of prediction=0.089% w/w), repeatability (0.05% w/w), fit (R(2)=0.9997), mean selectivity (0.047), sensitivity (0.011), inverse analytical sensitivity (0.016% w/w(-1)) and signal-to-noise ratio (max: 812.4 and min: 200.9). The results show that the proposed method can be routinely implemented for the quality control of lubricant oils. PMID:23618159

  1. Effect of Narrow Cut Oil Shale Distillates on HCCI Engine Performance

    SciTech Connect

    Eaton, Scott J; Bunting, Bruce G; Lewis Sr, Samuel Arthur; Fairbridge, Craig

    2009-01-01

    In this investigation, oil shale crude obtained from the Green River Formation in Colorado using Paraho Direct retorting was mildly hydrotreated and distilled to produce 7 narrow boiling point fuels of equal volumes. The resulting derived cetane numbers ranged between 38.3 and 43.9. Fuel chemistry and bulk properties strongly correlated with boiling point.

  2. Oil spill removal techniques and equipment. (Latest citations from Fluidex (Fluid Engineering Abstracts) database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning equipment and techniques for the control, dispersal, cleanup, and disposal of oil spills. Topics include chemical dispersants, booms, and mechanical skimmers. The citations emphasize spill removal for harbors, estuaries, and shorelines, and examine spill impact on water birds and marine life. (Contains a minimum of 195 citations and includes a subject term index and title list.)

  3. Thiol oxidation and protein cross-link formation during chill storage of pork patties added essential oil of oregano, rosemary, or garlic.

    PubMed

    Nieto, Gema; Jongberg, Sisse; Andersen, Mogens L; Skibsted, Leif H

    2013-10-01

    The effect of two levels (0.05% and 0.4%) of essential oil of rosemary, oregano, or garlic on protein oxidation in pork patties was studied during storage under modified atmosphere (MAP: 70% O2: 20% CO2: 10% N2) or under aerobic conditions (AE) at 4°C. The oxidative stability of the meat proteins was evaluated as loss of thiols for up to 9 days of storage, and as formation of myosin cross-links analyzed by SDS-PAGE after 12 days of storage. Protein thiols were lost during storage to yield myosin disulfide cross-links. Essential oils of rosemary and oregano were found to retard the loss of thiols otherwise resulting in myosin cross-links. Garlic essential oil, on the contrary, was found to promote protein oxidation, as seen by an extreme loss in thiol groups, and elevated myosin cross-link formation compared to control.

  4. 78 FR 34605 - Airworthiness Directives; CFM International S.A. Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... pad ``oil dynamic seal'' assembly. This proposed AD was prompted by 42 events of total loss of engine... inspection to verify re- installation of the handcranking pad cover after removal of the pad cover for maintenance until installation of a handcranking pad oil dynamic seal assembly. This inspection...

  5. DIFFERENTIAL TRANSCRIPTION FACTOR ACTIVATION AD GENE EXPRESSION PROFILES IN HUMAN VASCULAR ENDOTHELIAL CELLS ON EXPOSURE TO RESIDUAL OIL FLY ASH (ROFA) AND VANADIUM

    EPA Science Inventory


    Differential transcription factor activation and gene expression profiles in human vascular endothelial cells on exposure to residual oil fly ash (ROFA) and vanadium.
    Srikanth S. Nadadur and Daniel L. Costa, US EPA, ORD, NHEERL (ETD, Pulmonary Toxicology Branch), Research ...

  6. Applications of science and engineering to quantify and control the Deepwater Horizon oil spill

    PubMed Central

    McNutt, Marcia K.; Chu, Steven; Lubchenco, Jane; Hunter, Tom; Dreyfus, Gabrielle; Murawski, Steven A.; Kennedy, David M.

    2012-01-01

    The unprecedented engagement of scientists from government, academia, and industry enabled multiple unanticipated and unique problems to be addressed during the Deepwater Horizon oil spill. During the months between the initial blowout on April 20, 2010, and the final well kill on September 19, 2010, researchers prepared options, analyses of tradeoffs, assessments, and calculations of uncertainties associated with the flow rate of the well, well shut in, killing the well, and determination of the location of oil released into the environment. This information was used in near real time by the National Incident Commander and other government decision-makers. It increased transparency into BP’s proposed actions and gave the government confidence that, at each stage proposed, courses of action had been thoroughly vetted to reduce risk to human life and the environment and improve chances of success. PMID:23213225

  7. Applications of science and engineering to quantify and control the Deepwater Horizon oil spill

    USGS Publications Warehouse

    McNutt, Marcia K.; Chu, Steven; Lubchenco, Jane; Hunter, Tom; Dreyfus, Gabrielle; Murawski, Steven A.; Kennedy, David M.

    2012-01-01

    The unprecedented engagement of scientists from government, academia, and industry enabled multiple unanticipated and unique problems to be addressed during the Deepwater Horizon oil spill. During the months between the initial blowout on April 20, 2010, and the final well kill on September 19, 2010, researchers prepared options, analyses of tradeoffs, assessments, and calculations of uncertainties associated with the flow rate of the well, well shut in, killing the well, and determination of the location of oil released into the environment. This information was used in near real time by the National Incident Commander and other government decision-makers. It increased transparency into BP’s proposed actions and gave the government confidence that, at each stage proposed, courses of action had been thoroughly vetted to reduce risk to human life and the environment and improve chances of success.

  8. A New High-Speed Oil-Free Turbine Engine Rotordynamic Simulator Test Rig

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2007-01-01

    A new test rig has been developed for simulating high-speed turbomachinery rotor systems using Oil-Free foil air bearing technology. Foil air bearings have been used in turbomachinery, primarily air cycle machines, for the past four decades to eliminate the need for oil lubrication. The goal of applying this bearing technology to other classes of turbomachinery has prompted the fabrication of this test rig. The facility gives bearing designers the capability to test potential bearing designs with shafts that simulate the rotating components of a target machine without the high cost of building "make-and-break" hardware. The data collected from this rig can be used to make design changes to the shaft and bearings in subsequent design iterations. This paper describes the new test rig and demonstrates its capabilities through the initial run with a simulated shaft system.

  9. Microemulsions from vegetable oil and aqueous alcohol with trialkylamine surfactant as alternative fuel for diesel engines

    SciTech Connect

    Schwab, A.W.; Pryde, E.H.

    1984-05-29

    Hybrid fuel microemulsions are prepared from vegetable oil, a C/sub 1/-C/sub 3/ alcohol, water, and a surfactant comprising a lower trialkylamine. For enhanced water tolerance by the fuel, the amine is reacted with a longchain fatty acid for conversion to the corresponding trialkylammonium soap. Optionally, 1-butanol is incorporated into the system as a cosurfactant for the purpose of lowering both the viscosity and the solidification temperature.

  10. Emissions of particulate matter and associated polycyclic aromatic hydrocarbons from agricultural diesel engine fueled with degummed, deacidified mixed crude palm oil blends.

    PubMed

    Phoungthong, Khamphe; Tekasakul, Surajit; Tekasakul, Perapong; Prateepchaikul, Gumpon; Jindapetch, Naret; Furuuchi, Masami; Hata, Mitsuhiko

    2013-04-01

    Mixed crude palm oil (MCPO), the mixture of palm fiber oil and palm kernel oil, has become of great interest as a renewable energy source. It can be easily extracted from whole dried palm fruits. In the present work, the degummed, deacidified MCPO was blended in petroleum diesel at portions of 30% and 40% by volume and then tested in agricultural diesel engines for long-term usage. The particulates from the exhaust of the engines were collected every 500 hr using a four-stage cascade air sampler. The 50% cut-off aerodynamic diameters for the first three stages were 10, 2.5 and 1 microm, while the last stage collected all particles smaller than 1 microm. Sixteen particle bounded polycyclic aromatic hydrocarbons (PAHs) were analyzed using a high performance liquid chromatography. The results indicated that the size distribution of particulate matter was in the accumulation mode and the pattern of total PAHs associated with fine-particles (< 1 microm) showed a dominance of larger molecular weight PAHs (4-6 aromatic rings), especially pyrene. The mass median diameter, PM and total PAH concentrations decreased when increasing the palm oil content, but increased when the running hours of the engine were increased. In addition, Commercial petroleum diesel (PB0) gave the highest value of carcinogenic potency equivalent (BaP(eq)) for all particle size ranges. As the palm oil was increased, the BaP(eq) decreased gradually. Therefore the degummed-deacidified MCPO blends are recommended for diesel substitute.

  11. A Honeycomb-Structured Ti-6Al-4V Oil-Gas Separation Rotor Additively Manufactured by Selective Electron Beam Melting for Aero-engine Applications

    NASA Astrophysics Data System (ADS)

    Tang, H. P.; Wang, Q. B.; Yang, G. Y.; Gu, J.; Liu, N.; Jia, L.; Qian, M.

    2016-03-01

    Oil -gas separation is a key process in an aero-engine lubrication system. This study reports an innovative development in oil -gas separation. A honeycomb-structured rotor with hexagonal cone-shaped pore channels has been designed, additively manufactured from Ti-6Al-4V using selective electron beam melting (SEBM) and assessed for oil -gas separation for aero-engine application. The Ti-6Al-4V honeycomb structure showed a high compressive strength of 110 MPa compared to less than 20 MPa for metal foam structures. The oil -gas separation efficiency of the honeycomb-structured separation rotor achieved 99.8% at the rotation speed of 6000 rpm with much lower ventilation resistance (17.3 kPa) than that of the separator rotor constructed using a Ni-Cr alloy foam structure (23.5 kPa). The honeycomb-structured Ti-6Al-4V separator rotor produced by SEBM provides a promising solution to more efficient oil -gas separation in the aero-engine lubrication system.

  12. 78 FR 17297 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-21

    ...-to-oil heat exchanger mounts. FAA's Determination We are issuing this AD because we evaluated all the... information identified in this AD, contact Rolls-Royce plc, Corporate Communications, P.O. Box 31, Derby.../contact/civil_team.jsp . You may view this service information at the FAA, Engine & Propeller...

  13. Structure engineering of filled protein microbeads to tailor release of oil droplets in gastric digestion.

    PubMed

    van Leusden, P; den Hartog, G J M; Bast, A; Postema, M; van der Linden, E; Sagis, L M C

    2016-08-10

    Oil-soluble components can be encapsulated in an O/W1/W2 microsystem, in which they are dissolved in oil droplets dispersed in a gelled microbead (W1), which forms a barrier between the oil droplets and the aqueous continuous phase (W2). We investigated the rate and mechanism of breakdown of protein microbeads in a simulated gastric system, and studied the influence of microbead protein concentration, gelling method (cold-set, slow and fast heat-set), and further processing (freeze-drying), on the breakdown process. Breakdown rate decreased with increasing protein content of the beads, for the same method of production. Due to the porosity of the slowly-heated heat-set beads, breakdown occurred evenly throughout the entire bead. Cold-set microbeads of 10% protein broke down slightly slower than the heat-set microbeads of 15%. The denser surface of the 10% beads slowed down the diffusion of the enzymes into the bead's interior, causing the beads to be broken down from the outside inward. All these beads broke down within one hour. Increasing the rate of temperature increase during the heating step dramatically slowed breakdown. There was no significant breakdown of rapidly heated beads within 138 minutes, even though no difference in microstructure between rapidly and slowly heated beads was visible with electron microscopy. Freeze-drying of the beads also slowed their breakdown. After 132 minutes more than half the measured particle volume of were intact beads. Freeze-drying changed the microstructure of the beads irreversibly: rehydrating the dried beads did not result in a breakdown behaviour similar to that of unprocessed beads. PMID:27458022

  14. Effects of Surface-Engineered Nanoparticle-Based Dispersants for Marine Oil Spills on the Model Organism Artemia franciscana

    PubMed Central

    2015-01-01

    Fine particles are under active consideration as alternatives to chemical dispersants for large-scale petroleum spills. Fine carbon particles with engineered surface chemistry have been shown to stabilize oil-in-water emulsions, but the environmental impacts of large-scale particle introduction to the marine environment are unknown. Here we study the impact of surface-engineered carbon-black materials on brine shrimp (Artemia franciscana) as a model marine microcrustacean. Mortality was characterized at 50–1000 mg/L, and levels of heat shock protein 70 (hsp70) were characterized at sublethal particle concentrations (25–50 mg/L). Functionalized carbon black (CB) nanoparticles were found to be nontoxic at all concentrations, while hydrophobic (annealed) and as-produced CB induced adverse effects at high concentrations. CB was also shown to adsorb benzene, a model hydrocarbon representing the more soluble and toxic low-molecular weight aromatic fraction of petroleum, but the extent of adsorption was insufficient to mitigate benzene toxicity to Artemia in coexposure experiments. At lower benzene concentrations (25–75 mg/L), coexposure with annealed and as-produced CB increased hsp70 protein levels. This study suggests that surface functionalization for increased hydrophilicity can not only improve the performance of CB-based dispersants but also reduce their adverse environmental impacts on marine organisms. PMID:24823274

  15. Effects of surface-engineered nanoparticle-based dispersants for marine oil spills on the model organism Artemia franciscana.

    PubMed

    Rodd, April L; Creighton, Megan A; Vaslet, Charles A; Rangel-Mendez, J Rene; Hurt, Robert H; Kane, Agnes B

    2014-06-01

    Fine particles are under active consideration as alternatives to chemical dispersants for large-scale petroleum spills. Fine carbon particles with engineered surface chemistry have been shown to stabilize oil-in-water emulsions, but the environmental impacts of large-scale particle introduction to the marine environment are unknown. Here we study the impact of surface-engineered carbon-black materials on brine shrimp (Artemia franciscana) as a model marine microcrustacean. Mortality was characterized at 50-1000 mg/L, and levels of heat shock protein 70 (hsp70) were characterized at sublethal particle concentrations (25-50 mg/L). Functionalized carbon black (CB) nanoparticles were found to be nontoxic at all concentrations, while hydrophobic (annealed) and as-produced CB induced adverse effects at high concentrations. CB was also shown to adsorb benzene, a model hydrocarbon representing the more soluble and toxic low-molecular weight aromatic fraction of petroleum, but the extent of adsorption was insufficient to mitigate benzene toxicity to Artemia in coexposure experiments. At lower benzene concentrations (25-75 mg/L), coexposure with annealed and as-produced CB increased hsp70 protein levels. This study suggests that surface functionalization for increased hydrophilicity can not only improve the performance of CB-based dispersants but also reduce their adverse environmental impacts on marine organisms. PMID:24823274

  16. Effects of surface-engineered nanoparticle-based dispersants for marine oil spills on the model organism Artemia franciscana.

    PubMed

    Rodd, April L; Creighton, Megan A; Vaslet, Charles A; Rangel-Mendez, J Rene; Hurt, Robert H; Kane, Agnes B

    2014-06-01

    Fine particles are under active consideration as alternatives to chemical dispersants for large-scale petroleum spills. Fine carbon particles with engineered surface chemistry have been shown to stabilize oil-in-water emulsions, but the environmental impacts of large-scale particle introduction to the marine environment are unknown. Here we study the impact of surface-engineered carbon-black materials on brine shrimp (Artemia franciscana) as a model marine microcrustacean. Mortality was characterized at 50-1000 mg/L, and levels of heat shock protein 70 (hsp70) were characterized at sublethal particle concentrations (25-50 mg/L). Functionalized carbon black (CB) nanoparticles were found to be nontoxic at all concentrations, while hydrophobic (annealed) and as-produced CB induced adverse effects at high concentrations. CB was also shown to adsorb benzene, a model hydrocarbon representing the more soluble and toxic low-molecular weight aromatic fraction of petroleum, but the extent of adsorption was insufficient to mitigate benzene toxicity to Artemia in coexposure experiments. At lower benzene concentrations (25-75 mg/L), coexposure with annealed and as-produced CB increased hsp70 protein levels. This study suggests that surface functionalization for increased hydrophilicity can not only improve the performance of CB-based dispersants but also reduce their adverse environmental impacts on marine organisms.

  17. Role of reservoir engineering in the assessment of undiscovered oil and gas resources in the National Petroleum Reserve, Alaska

    USGS Publications Warehouse

    Verma, M.K.; Bird, K.J.

    2005-01-01

    The geology and reservoir-engineering data were integrated in the 2002 U.S. Geological Survey assessment of the National Petroleum Reserve in Alaska (NPRA). VVhereas geology defined the analog pools and fields and provided the basic information on sizes and numbers of hypothesized petroleum accumulations, reservoir engineering helped develop necessary equations and correlations, which allowed the determination of reservoir parameters for better quantification of in-place petroleum volumes and recoverable reserves. Seismic- and sequence-stratigraphic study of the NPRA resulted in identification of 24 plays. Depth ranges in these 24 plays, however, were typically greater than depth ranges of analog plays for which there were available data, necessitating the need for establishing correlations. The basic parameters required were pressure, temperature, oil and gas formation volume factors, liquid/gas ratios for the associated and nonassociated gas, and recovery factors. Finally, the re sults of U.S. Geological Survey deposit simulation were used in carrying out an economic evaluation, which has been separately published. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.

  18. Performance and Emission Characteristics of a Compression Ignition Engine Operating on Blends of Castor Oil Biodiesel-Diesel

    NASA Astrophysics Data System (ADS)

    Kanwar, Roopesh; Sharma, Pushpendra Kumar; Singh, Aditya Narayan; Agrawal, Yadvendra Kumar

    2016-06-01

    Diesel vehicles are the nerves and veins of transportation, particularly in developing countries. With the rapid rate of modernization, increasing demand of fuel is inevitable. The exponential increase in fuel prices and the scarcity of its supply from the environment have promoted interest in the development of alternative sources of fuel. In this work, genus Ricinus communis L. was studied in order to delimit their potential as a raw material for biodiesel production. Further, castor oil, ethyl ester were prepared by transesterification using potassium hydroxide (KOH) as a catalyst and tested on a four-stroke, single-cylinder compression ignition engine. The test was carried out at a constant speed of 3000 rpm at different loads. The results represent a substantial decrease in carbon monoxide (CO) emission with an increasing biodiesel percentage. The reduction of CO in B05, B10, B15 and B20 averaged 11.75, 22.02, 24.23 and 28.79 %, respectively, compared to mineral diesel. The emission results of the comparative test indicated that CO, oxygen (O2) and smoke density emissions are found to be lower when the engine is filled with B05, B10, B15 and B20 as compared to mineral diesel, while carbon dioxide (CO2) and nitrogen oxide (NOx) with B05, B10, B15 and B20 are found to increase marginally. Brake thermal efficiency and brake specific fuel consumption decrease and increase respectively in biodiesel with different blends in comparison of mineral diesel.

  19. Vegetable-oil test

    SciTech Connect

    Suber, H.

    1983-01-01

    A diesel engine was tested using soy oil as fuel. Tests were run using 20%, 50% 75%, and 100% soy oil combined with diesel fuel. Performance dropped somewhat at 75 and 100% soy oil. After media coverage, used soy oil was difficult to obtain. Other problems mentioned are increased carbon buildup, changes in crankcase oil, and odor. (MHR)

  20. Engineering flax plants to increase their antioxidant capacity and improve oil composition and stability.

    PubMed

    Zuk, Magdalena; Prescha, Anna; Stryczewska, Monika; Szopa, Jan

    2012-05-16

    The composition of polyunsaturated fatty acids in the tissues is very important to human health and strongly depends on dietary intake. Since flax seeds are the richest source of polyunsaturated acids, their consumption might be beneficial for human health. Unfortunately, they are highly susceptible to auto-oxidation, which generates toxic derivatives. The main goal of this study was the generation of genetically modified flax plants with increased antioxidant potential and stable and healthy oil production. Since among phenylpropanoid compounds those belonging to the flavonoid route have the lowest antioxidant capacity, the approach was to inhibit this route of the pathway, which might result in accumulation of other compounds more effective in antioxidation. The suppression of the chalcone synthase gene resulted in hydrolyzable tannin accumulation and thus increased antioxidant status of seeds of the transgenic plant. This was due to the partial redirecting of substrates for flavonoid biosynthesis to the other routes of the phenylpropanoid pathway. Consequently, transgenic plants produced more (20-45%) polyunsaturated fatty acids than the control and mainly α-linolenic acid. Thus, increasing the antioxidant potential of flax plants has benefits in terms of the yield of suitable oil for human dietary consumption.

  1. Bioremediation of oil polluted marine sediments: A bio-engineering treatment.

    PubMed

    Cappello, Simone; Calogero, Rosario; Santisi, Santina; Genovese, Maria; Denaro, Renata; Genovese, Lucrezia; Giuliano, Laura; Mancini, Giuseppe; Yakimov, Michail M

    2015-06-01

    The fate of hydrocarbon pollutants and the development of oil-degrading indigenous marine bacteria in contaminated sediments are strongly influenced by abiotic factors such as temperature, low oxygen levels, and nutrient availability. In this work, the effects of different biodegradation processes (bioremediation) on oil-polluted anoxic sediments were analyzed. In particular, as a potential bioremediation strategy for polluted sediments, we applied a prototype of the "Modular Slurry System" (MSS), allowing containment of the sediments and their physical-chemical treatment (by air insufflations, temperature regulation, and the use of a slow-release fertilizer). Untreated polluted sediments served as the blank in a non-controlled experiment. During the experimental period (30 days), bacterial density and biochemical oxygen demand were measured and functional genes were identified by screening. Quantitative measurements of pollutants and an eco-toxicological analysis (mortality of Corophium orientale) were carried out at the beginning and end of the experiments. The results demonstrated the high biodegradative capability achieved with the proposed technology and its strong reduction of pollutant concentrations and thus toxicity. PMID:26496620

  2. Bioremediation of oil polluted marine sediments: A bio-engineering treatment.

    PubMed

    Cappello, Simone; Calogero, Rosario; Santisi, Santina; Genovese, Maria; Denaro, Renata; Genovese, Lucrezia; Giuliano, Laura; Mancini, Giuseppe; Yakimov, Michail M

    2015-06-01

    The fate of hydrocarbon pollutants and the development of oil-degrading indigenous marine bacteria in contaminated sediments are strongly influenced by abiotic factors such as temperature, low oxygen levels, and nutrient availability. In this work, the effects of different biodegradation processes (bioremediation) on oil-polluted anoxic sediments were analyzed. In particular, as a potential bioremediation strategy for polluted sediments, we applied a prototype of the "Modular Slurry System" (MSS), allowing containment of the sediments and their physical-chemical treatment (by air insufflations, temperature regulation, and the use of a slow-release fertilizer). Untreated polluted sediments served as the blank in a non-controlled experiment. During the experimental period (30 days), bacterial density and biochemical oxygen demand were measured and functional genes were identified by screening. Quantitative measurements of pollutants and an eco-toxicological analysis (mortality of Corophium orientale) were carried out at the beginning and end of the experiments. The results demonstrated the high biodegradative capability achieved with the proposed technology and its strong reduction of pollutant concentrations and thus toxicity.

  3. A highly resilient mesoporous SiOx lithium storage material engineered by oil-water templating.

    PubMed

    Park, Eunjun; Park, Min-Sik; Lee, Jaewoo; Kim, Ki Jae; Jeong, Goojin; Kim, Jung Ho; Kim, Young-Jun; Kim, Hansu

    2015-02-01

    Mesoporous silicon-based materials gained considerable attention as high-capacity lithium-storage materials. However, the practical use is still limited by the complexity and limited number of available synthetic routes. Here, we report carbon-coated porous SiOx as high capacity lithium storage material prepared by using a sol-gel reaction of hydrogen silsesquioxane and oil-water templating. A hydrophobic oil is employed as a pore former inside the SiOx matrix and a precursor for carbon coating on the SiOx . The anode exhibits a high capacity of 730 mAh g(-1) and outstanding cycling performance over 100 cycles without significant dimensional changes. Carbon-coated porous SiOx also showed highly stable thermal reliability comparable to that of graphite. These promising properties come from the mesopores in the SiOx matrix, which ensures reliable operation of lithium storage in SiOx . The scalable sol-gel process presented here can open up a new avenue for the versatile preparation of porous SiOx lithium storage materials.

  4. Modeling the lubrication, dynamics, and effects of piston dynamic tilt of twin-land oil control rings in internal combustion engines

    SciTech Connect

    Tian, T.; Wong, V.W.

    2000-01-01

    A theoretical model was developed to study the lubrication, friction, dynamics, and oil transport of twin-land oil control rings (TLOCR) in internal combustion engines. A mixed lubrication model with consideration of shear-thinning effects of multigrade oils was used to describe the lubrication between the running surfaces of the two lands and the liner. Oil squeezing and asperity contact were both considered for the interaction between the flanks of the TLOCR and the ring groove. Then, the moments and axial forces from TLOCR/liner lubrication and TLOCR/groove interaction were coupled into the dynamic equations of the TLOCR. Furthermore, effects of piston dynamic tilt were considered in a quasi three-dimensional manner so that the behaviors of the TLOCR at different circumferential location could be studied. As a first step, variation of the third land pressure was neglected. The model predictions were illustrated via an SI engine. One important finding is that around thrust and anti-thrust sides, the difference between the minimum oil film thickness of two lands can be as high as several micrometers due to piston dynamic tilt. As a result, at thrust and anti-thrust sides, significant oil can pass under one land of the TLOCR along the bore, although the other land perfectly seals the bore. Then, the capabilities of the model were further explained by studying the effects of ring tension and torsional resistance on the lubrication and oil transport between the lands and the liner. The effects of oil film thickness on the flanks of the ring groove on the dynamics of the TLOCR were also studied. Friction results show that boundary lubrication contributes significantly to the total friction of the TLOCR.

  5. DIS in AdS

    SciTech Connect

    Albacete, Javier L.; Kovchegov, Yuri V.; Taliotis, Anastasios

    2009-03-23

    We calculate the total cross section for the scattering of a quark-anti-quark dipole on a large nucleus at high energy for a strongly coupled N = 4 super Yang-Mills theory using AdS/CFT correspondence. We model the nucleus by a metric of a shock wave in AdS{sub 5}. We then calculate the expectation value of the Wilson loop (the dipole) by finding the extrema of the Nambu-Goto action for an open string attached to the quark and antiquark lines of the loop in the background of an AdS{sub 5} shock wave. We find two physically meaningful extremal string configurations. For both solutions we obtain the forward scattering amplitude N for the quark dipole-nucleus scattering. We study the onset of unitarity with increasing center-of-mass energy and transverse size of the dipole: we observe that for both solutions the saturation scale Q{sub s} is independent of energy/Bjorken-x and depends on the atomic number of the nucleus as Q{sub s}{approx}A{sup 1/3}. Finally we observe that while one of the solutions we found corresponds to the pomeron intercept of {alpha}{sub P} = 2 found earlier in the literature, when extended to higher energy or larger dipole sizes it violates the black disk limit. The other solution we found respects the black disk limit and yields the pomeron intercept of {alpha}{sub P} = 1.5. We thus conjecture that the right pomeron intercept in gauge theories at strong coupling may be {alpha}{sub P} = 1.5.

  6. Influence of adding Sea Spaghetti seaweed and replacing the animal fat with olive oil or a konjac gel on pork meat batter gelation. Potential protein/alginate association.

    PubMed

    Fernández-Martín, F; López-López, I; Cofrades, S; Colmenero, F Jiménez

    2009-10-01

    Standard and modulated differential scanning calorimetry (DSC, MDSC) and dynamic rheological thermal analysis (DRTA) were used to in situ simulate the batter gelation process. Texture profile analysis (TPA) and conventional quality evaluations were applied to processed products. Sea Spaghetti seaweed addition was highly effective at reinforcing water/oil retention capacity, hardness and elastic modulus in all formulations. Olive oil substituting half pork fat yielded a presumably healthier product with slightly better characteristics than control. A konjac-starch mixed gel replacing 70% of pork fat produced a similar product to control but with nearly 10% more water. DSC revealed the currently unknown phenomenon that Sea Spaghetti alginates apparently prevented thermal denaturation of a considerable protein fraction. MDSC confirmed that this mainly concerned non-reversing effects, and displayed glass transition temperatures in the range of 55-65°C. DRTA and TPA indicated however much stronger alginate-type gels. It is tentatively postulated that salt-soluble proteins associate athermally with seaweed alginates on heating to constitute a separate phase in a thermal composite-gelling process.

  7. Emission comparison of urban bus engine fueled with diesel oil and 'biodiesel' blend.

    PubMed

    Turrio-Baldassarri, Luigi; Battistelli, Chiara L; Conti, Luigi; Crebelli, Riccardo; De Berardis, Barbara; Iamiceli, Anna Laura; Gambino, Michele; Iannaccone, Sabato

    2004-07-01

    The chemical and toxicological characteristics of emissions from an urban bus engine fueled with diesel and biodiesel blend were studied. Exhaust gases were produced by a turbocharged EURO 2 heavy-duty diesel engine, operating in steady-state conditions on the European test 13 mode cycle (ECE R49). Regulated and unregulated pollutants, such as carcinogenic polycyclic aromatic hydrocarbons (PAHs) and nitrated derivatives (nitro-PAHs), carbonyl compounds and light aromatic hydrocarbons were quantified. Mutagenicity of the emissions was evaluated by the Salmonella typhimurium/mammalian microsome assay. The effect of the fuels under study on the size distribution of particulate matter (PM) was also evaluated. The use of biodiesel blend seems to result in small reductions of emissions of most of the aromatic and polyaromatic compounds; these differences, however, have no statistical significance at 95% confidence level. Formaldehyde, on the other hand, has a statistically significant increase of 18% with biodiesel blend. In vitro toxicological assays show an overall similar mutagenic potency and genotoxic profile for diesel and biodiesel blend emissions. The electron microscopy analysis indicates that PM for both fuels has the same chemical composition, morphology, shape and granulometric spectrum, with most of the particles in the range 0.06-0.3 microm. PMID:15172578

  8. In situ combustion of Antrim oil shale: field test of Tejas petroleum engineers burner

    SciTech Connect

    Cole, J.L.; Pihlaja, R.K.

    1980-01-01

    A major problem in having a successful in situ extraction experiment in Antrim oil shale has been the lack of a reliable ignition system. A reliable burner system has now been found. A methane burner was successfully tested for an intermittant 5-day period with a total of 82 hours of burner operation. The burner was ignited at 800 psig (well pressure) and reignited five times. The burner operated during the test at a theoretical gas temperature of 1200/sup 0/F. Increased temperatures are possible with greater fuel to air ratios. The burner was monitored three different ways. Three thermocouples monitored exhaust gas temperature. A sample was taken of exhaust gas and analyzed for CO, CO/sub 2/, O/sub 2/ and unburned hydrocarbons. The burner pressure pulses were monitored by pressure gauges at the surface on the methane supply line. The three different systems gave an indication of whether the burner was operating. The only thing that the burner test idn't investigate was the upper safe operating temperature limit.

  9. Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil.

    PubMed

    Di, Yage; Cheung, C S; Huang, Zuohua

    2009-01-01

    Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultra-low sulfur diesel, bi oesel and their blends, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev/min. Blended fuels containing 19.6%, 39.4%, 59.4% and 79.6% by volume of biodiesel, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. Biodiesel used in this study was converted from waste cooking oil. The following results are obtained with an increase of biodiesel in the fuel. The brake specific fuel consumption and the brake thermal efficiency increase. The HC and CO emissions decrease while NO(x) and NO(2) emissions increase. The smoke opacity and particulate mass concentrations reduce significantly at high engine load. In addition, for submicron particles, the geometry mean diameter of the particles becomes smaller while the total number concentration increases. For the unregulated gaseous emissions, generally, the emissions of formaldehyde, 1,3-butadiene, toluene, xylene decrease, however, acetaldehyde and benzene emissions increase. The results indicate that the combination of ultra-low sulfur diesel and biodiesel from waste cooking oil gives similar results to those in the literature using higher sulfur diesel fuels and biodiesel from other sources.

  10. The effect of essential oils of dietary wormwood (Artemisia princeps), with and without added vitamin E, on oxidative stress and some genes involved in cholesterol metabolism.

    PubMed

    Chung, Mi Ja; Kang, Ah-Young; Park, Sung-Ok; Park, Kuen-Woo; Jun, Hee-Jin; Lee, Sung-Joon

    2007-08-01

    Wormwood (Artemisia princeps) due to the abundance of antioxidant in its essential oils (EO), has been used as a traditional drug and health food in Korea. Oxidative stress plays an important role in the etiology of atherosclerosis thus antioxidative chemicals improves hepatic lipid metabolism partly by reducing oxysterol formation. The antioxidant activity was assessed using two methods, human low-density lipoprotein (LDL) oxidation and the anti-DPPH free radical assays. It was found that the antioxidant activity of EO with vitamin E higher than EO alone. To study mechanisms accounting for the antiatherosclerotic properties of this wormwood EO, we examined the expression of key genes in cholesterol metabolism such as the LDL receptor, the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and sterol regulatory element binding proteins. The induction was increased up to twofold at 0.05 mg/mL of EO treatment in HepG2 cells for 24h. When EO (0.2 mg/mL) was co-incubated with vitamin E, interestingly, the LDL receptor was dramatically induced by 5-6-folds. HMG-CoA reductase did not change. However, treatment with the higher concentration resulted in cytotoxicity. Our data suggest that wormwood EO with vitamin E may be anti-atherogenic due to their inhibition of LDL oxidation and upregulation of the LDL receptor.

  11. Biodegradation of organic compounds during co-composting of olive oil mill waste and municipal solid waste with added rock phosphate.

    PubMed

    Barje, Farid; El Fels, Loubna; El Hajjouji, Houda; Winterton, Peter; Hafidi, Mohamed

    2013-01-01

    Liquid and solid olive oil mill waste was treated by com posting in a mixture with the organic part of municipal solid waste and rock phosphate. The transformations that occurred during the process were evaluated by physical, chemical and spectroscopic analyses. After five months of com posting, the final compost presented a C/N ratio under 20, an NH4+/NO3(-)] ratio under 1 and a pH around neutral. A high level of organic matter decomposition paralleled a notable abatement of phenols and lipids. The results show the effective dissolution of mineral elements during composting. This transformation was followed by Fourier transform infrared which showed a decrease in the absorption bands of aliphatic bonds (2925 and 2855 cm(-1)) and carbonyls of carboxylic origin (1740 cm (-1)). In addition to the increase in humic substances and the improvement of germination indices, the parameters studied confirm the stability and the maturity of the composts. The absence of phytotoxicity opens the way to agricultural spreading. PMID:24617055

  12. Evaluation of the "added value" of SIMS: A mass spectrometric and spectroscopic study of an unusual Naples yellow oil paint reconstruction

    NASA Astrophysics Data System (ADS)

    Keune, Katrien; Hoogland, Frank; Boon, Jaap J.; Peggie, David; Higgitt, Catherine

    2009-07-01

    Naples yellow-containing oil paints aged under natural and artificial conditions were investigated as model systems to evaluate the potential of secondary ion mass spectrometry (SIMS) when used in combination with other mass spectrometric and spectroscopic analytical methods. Although the advantage of SIMS is the simultaneous detection of organic and inorganic components and their spatial distribution, the methodology has limitations in compound sensitivity and shows bias towards certain constituents. Gas chromatography-mass spectrometry (GC/MS) shows dicarboxylic fatty acids to be main components in the paint, but SIMS detects these compounds poorly. Electrospray ionisation mass spectrometry (ESI-MS) shows a broad range of glyceryl derivatives of mono- and dicarboxylic fatty acids (mono-, di- and triglyceride derivatives), while SIMS only detects the mono- and diglycerides of the monocarboxylic acids. Compared to SIMS, direct temperature-resolved mass spectrometry (DTMS) offers greater insight into how the various constituents are incorporated into the paint film, but SIMS data supports the information provided by Fourier transform infrared (FTIR) on metal soap formation. The surface sensitivity of SIMS is an advantage for probing paint constituent distributions and was exploited to examine variations in the composition of the top and bottom of a paint film, and the spatial correlation between metal and fatty acid composition in metal soap aggregates. Disadvantages of SIMS are the low yields and matrix dependency of the organic species in the paint matrix. Application of an ultra-thin gold coating overcomes this, and enhances the organic secondary ion yields leading to more accurate spatial distribution.

  13. Effects of fish oil and starch added to a diet containing sunflower-seed oil on dairy goat performance, milk fatty acid composition and in vivo delta9-desaturation of [13C]vaccenic acid.

    PubMed

    Bernard, Laurence; Mouriot, Julien; Rouel, Jacques; Glasser, Frédéric; Capitan, Pierre; Pujos-Guillot, Estelle; Chardigny, Jean-Michel; Chilliard, Yves

    2010-08-01

    The potential benefits on human health have prompted an interest in developing nutritional strategies for specifically increasing rumenic acid (RA) in ruminant milk. The aims of the present study were to (i) compare two dietary treatments with lipid supplements on milk yield and composition, (ii) measure the in vivo delta9-desaturation of vaccenic acid (VA) to RA using 13C-labelled VA and (iii) determine the effect of the dietary treatments on this variable. Treatments were 90 g sunflower-seed oil (SO) per d or 60 g sunflower-seed oil and 30 g fish oil per d plus additional starch (SFO), in a grassland hay-based diet given to eight Alpine goats in a 2 x 2 cross-over design with 21 d experimental periods. Milk yield and composition were similar between treatments. Goats fed SFO had higher milk 6 : 0-16 : 0 concentration, lower milk sigmaC18 concentrations and showed no effect on milk VA and RA, compared with SO. At the end of the experiment, intravenous injection of 1.5 g [13C]VA followed by measurements of milk lipid 13C enrichment showed that in vivo 31.7 and 31.6 % of VA was delta9-desaturated into milk RA in the caprine with the SO and SFO treatments, respectively. The expression of genes encoding for delta9-desaturase (or stearoyl-CoA desaturase; SCD1, SCD5) in mammary tissues and four milk delta9-desaturation ratios were similar between treatments. In conclusion, the present study provides the first estimates of in vivo endogenous synthesis of RA (63-73 % of milk RA) from VA in goats, and shows no difference between the two lipid supplements compared.

  14. Effects of fish oil and starch added to a diet containing sunflower-seed oil on dairy goat performance, milk fatty acid composition and in vivo delta9-desaturation of [13C]vaccenic acid.

    PubMed

    Bernard, Laurence; Mouriot, Julien; Rouel, Jacques; Glasser, Frédéric; Capitan, Pierre; Pujos-Guillot, Estelle; Chardigny, Jean-Michel; Chilliard, Yves

    2010-08-01

    The potential benefits on human health have prompted an interest in developing nutritional strategies for specifically increasing rumenic acid (RA) in ruminant milk. The aims of the present study were to (i) compare two dietary treatments with lipid supplements on milk yield and composition, (ii) measure the in vivo delta9-desaturation of vaccenic acid (VA) to RA using 13C-labelled VA and (iii) determine the effect of the dietary treatments on this variable. Treatments were 90 g sunflower-seed oil (SO) per d or 60 g sunflower-seed oil and 30 g fish oil per d plus additional starch (SFO), in a grassland hay-based diet given to eight Alpine goats in a 2 x 2 cross-over design with 21 d experimental periods. Milk yield and composition were similar between treatments. Goats fed SFO had higher milk 6 : 0-16 : 0 concentration, lower milk sigmaC18 concentrations and showed no effect on milk VA and RA, compared with SO. At the end of the experiment, intravenous injection of 1.5 g [13C]VA followed by measurements of milk lipid 13C enrichment showed that in vivo 31.7 and 31.6 % of VA was delta9-desaturated into milk RA in the caprine with the SO and SFO treatments, respectively. The expression of genes encoding for delta9-desaturase (or stearoyl-CoA desaturase; SCD1, SCD5) in mammary tissues and four milk delta9-desaturation ratios were similar between treatments. In conclusion, the present study provides the first estimates of in vivo endogenous synthesis of RA (63-73 % of milk RA) from VA in goats, and shows no difference between the two lipid supplements compared. PMID:20307350

  15. Vegetable oil fuel standards

    SciTech Connect

    Pryde, E.H.

    1982-01-01

    Suggested standards for vegetable oils and ester fuels, as well as ASTM specifications for No. 2 diesel oil are given. The following physical properties were discussed: cetane number, cloud point, distillation temperatures, flash point, pour point, turbidity, viscosity, free fatty acids, iodine value, phosphorus, and wax. It was apparent that vegetable oils and their esters cannot meet ASTM specifications D975 for No. 2 diesel oil for use in the diesel engine. Vegetable oil modification or engine design modification may make it possible eventually for vegetable oils to become suitable alternative fuels. Vegetable oils must be recognized as experimental fuels until modifications have been tested thoroughly and generally accepted. 1 table. (DP)

  16. Engine

    SciTech Connect

    Shin, H.B.

    1984-02-28

    An internal combustion engine has a piston rack depending from each piston. This rack is connected to a power output shaft through a mechanical rectifier so that the power output shaft rotates in only one direction. A connecting rod is pivotally connected at one end to the rack and at the other end to the crank of a reduced function crankshaft so that the crankshaft rotates at the same angular velocity as the power output shaft and at the same frequency as the pistons. The crankshaft has a size, weight and shape sufficient to return the pistons back into the cylinders in position for the next power stroke.

  17. Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: engine performance and regulated and unregulated exhaust emissions.

    PubMed

    Cardone, Massimo; Prati, Maria Vittoria; Rocco, Vittorio; Seggiani, Maurizia; Senatore, Adolfo; Vitoloi, Sandra

    2002-11-01

    A comparison of the performance of Brassica carinata oil-derived biodiesel with a commercial rapeseed oil-derived biodiesel and petroleum diesel fuel is discussed as regards engine performance and regulated and unregulated exhaust emissions. B. carinata is an oil crop that can be cultivated in coastal areas of central-southern Italy, where it is more difficult to achieve the productivity potentials of Brassica napus (by far the most common rapeseed cultivated in continental Europe). Experimental tests were carried out on a turbocharged direct injection passenger car diesel engine fueled with 100% biodiesel. The unregulated exhaust emissions were characterized by determining the SOOT and soluble organic fraction content in the particulate matter, together with analysis of the content and speciation of polycyclic aromatic hydrocarbons, some of which are potentially carcinogenic, and of carbonyl compounds (aldehydes, ketones) that act as ozone precursors. B. carinata and commercial biodiesel behaved similarly as far as engine performance and regulated and unregulated emissions were concerned. When compared with petroleum diesel fuel, the engine test bench analysis did not show any appreciable variation of output engine torque values, while there was a significant difference in specific fuel consumption data at the lowest loads for the biofuels and petroleum diesel fuel. The biofuels were observed to produce higher levels of NOx concentrations and lower levels of PM with respect to the diesel fuel. The engine heat release analysis conducted shows that there is a potential for increased thermal NOx generation when firing biodiesel with no prior modification to the injection timing. It seems that, for both the biofuels, this behavior is caused by an advanced combustion evolution, which is particularly apparent at the higher loads. When compared with petroleum diesel fuel, biodiesel emissions contain less SOOT, and a greater fraction of the particulate was soluble. The

  18. Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: engine performance and regulated and unregulated exhaust emissions.

    PubMed

    Cardone, Massimo; Prati, Maria Vittoria; Rocco, Vittorio; Seggiani, Maurizia; Senatore, Adolfo; Vitoloi, Sandra

    2002-11-01

    A comparison of the performance of Brassica carinata oil-derived biodiesel with a commercial rapeseed oil-derived biodiesel and petroleum diesel fuel is discussed as regards engine performance and regulated and unregulated exhaust emissions. B. carinata is an oil crop that can be cultivated in coastal areas of central-southern Italy, where it is more difficult to achieve the productivity potentials of Brassica napus (by far the most common rapeseed cultivated in continental Europe). Experimental tests were carried out on a turbocharged direct injection passenger car diesel engine fueled with 100% biodiesel. The unregulated exhaust emissions were characterized by determining the SOOT and soluble organic fraction content in the particulate matter, together with analysis of the content and speciation of polycyclic aromatic hydrocarbons, some of which are potentially carcinogenic, and of carbonyl compounds (aldehydes, ketones) that act as ozone precursors. B. carinata and commercial biodiesel behaved similarly as far as engine performance and regulated and unregulated emissions were concerned. When compared with petroleum diesel fuel, the engine test bench analysis did not show any appreciable variation of output engine torque values, while there was a significant difference in specific fuel consumption data at the lowest loads for the biofuels and petroleum diesel fuel. The biofuels were observed to produce higher levels of NOx concentrations and lower levels of PM with respect to the diesel fuel. The engine heat release analysis conducted shows that there is a potential for increased thermal NOx generation when firing biodiesel with no prior modification to the injection timing. It seems that, for both the biofuels, this behavior is caused by an advanced combustion evolution, which is particularly apparent at the higher loads. When compared with petroleum diesel fuel, biodiesel emissions contain less SOOT, and a greater fraction of the particulate was soluble. The

  19. Effects of hydrotreated vegetable oil on emissions of aerosols and gases from light-duty and medium-duty older technology engines.

    PubMed

    Bugarski, Aleksandar D; Hummer, Jon A; Vanderslice, Shawn

    2016-01-01

    This study was conducted to assess the potential of hydrotreated vegetable oil renewable diesel (HVORD) as a control strategy to reduce exposure of workers to diesel aerosols and gases. The effects of HVORD on criteria aerosol and gaseous emissions were compared with those of ultralow sulfur diesel (ULSD). The results of comprehensive testing at four steady-state conditions and one transient cycle were used to characterize the aerosol and gaseous emissions from two older technology engines: (1) a naturally aspirated mechanically controlled and (2) a turbocharged electronically controlled engine. Both engines were equipped with diesel oxidation catalytic converters (DOCs). For all test conditions, both engines emitted measurably lower total mass concentrations of diesel aerosols, total carbon, and elemental carbon when HVORD was used in place of ULSD. For all test conditions, the reductions in total mass concentrations were more substantial for the naturally aspirated than for the turbocharged engine. In the case of the naturally aspirated engine, HVORD also favorably affected total surface area of aerosols deposited in the alveolar region of human lungs (TSAADAR) and the total number concentrations of aerosols. In the case of the turbocharged electronically controlled engine, for some of the test conditions HVORD adversely affected the TSAADAR and total number concentrations of aerosols. In the majority of the test cases involving the naturally aspirated mechanically controlled engine, HVORD favorably affected carbon dioxide (CO2), nitrogen oxides (NOX), and nitric oxide (NO) concentrations, but adversely affected NO2 and total hydrocarbon concentrations, while the effects of the fuels on carbon monoxide (CO) concentrations were masked by the effects of DOC. In the case of the turbocharged electronically controlled engine, the CO2, CO, NOX, NO, and total hydrocarbon concentrations were generally lower when HVORD was used in place of ULSD. The effects of the fuels

  20. Effects of hydrotreated vegetable oil on emissions of aerosols and gases from light-duty and medium-duty older technology engines.

    PubMed

    Bugarski, Aleksandar D; Hummer, Jon A; Vanderslice, Shawn

    2016-01-01

    This study was conducted to assess the potential of hydrotreated vegetable oil renewable diesel (HVORD) as a control strategy to reduce exposure of workers to diesel aerosols and gases. The effects of HVORD on criteria aerosol and gaseous emissions were compared with those of ultralow sulfur diesel (ULSD). The results of comprehensive testing at four steady-state conditions and one transient cycle were used to characterize the aerosol and gaseous emissions from two older technology engines: (1) a naturally aspirated mechanically controlled and (2) a turbocharged electronically controlled engine. Both engines were equipped with diesel oxidation catalytic converters (DOCs). For all test conditions, both engines emitted measurably lower total mass concentrations of diesel aerosols, total carbon, and elemental carbon when HVORD was used in place of ULSD. For all test conditions, the reductions in total mass concentrations were more substantial for the naturally aspirated than for the turbocharged engine. In the case of the naturally aspirated engine, HVORD also favorably affected total surface area of aerosols deposited in the alveolar region of human lungs (TSAADAR) and the total number concentrations of aerosols. In the case of the turbocharged electronically controlled engine, for some of the test conditions HVORD adversely affected the TSAADAR and total number concentrations of aerosols. In the majority of the test cases involving the naturally aspirated mechanically controlled engine, HVORD favorably affected carbon dioxide (CO2), nitrogen oxides (NOX), and nitric oxide (NO) concentrations, but adversely affected NO2 and total hydrocarbon concentrations, while the effects of the fuels on carbon monoxide (CO) concentrations were masked by the effects of DOC. In the case of the turbocharged electronically controlled engine, the CO2, CO, NOX, NO, and total hydrocarbon concentrations were generally lower when HVORD was used in place of ULSD. The effects of the fuels

  1. Cognitive impairment and associated loss in brain white microstructure in aircrew members exposed to engine oil fumes.

    PubMed

    Reneman, Liesbeth; Schagen, Sanne B; Mulder, Michel; Mutsaerts, Henri J; Hageman, Gerard; de Ruiter, Michiel B

    2016-06-01

    Cabin air in airplanes can be contaminated with engine oil contaminants. These contaminations may contain organophosphates (OPs) which are known neurotoxins to brain white matter. However, it is currently unknown if brain white matter in aircrew is affected. We investigated whether we could objectify cognitive complaints in aircrew and whether we could find a neurobiological substrate for their complaints. After medical ethical approval from the local institutional review board, informed consent was obtained from 12 aircrew (2 females, on average aged 44.4 years, 8,130 flying hours) with cognitive complaints and 11 well matched control subjects (2 females, 43.4 years, 233 flying hours). Depressive symptoms and self-reported cognitive symptoms were assessed, in addition to a neuropsychological test battery. State of the art Magnetic Resonance Imaging (MRI) techniques were administered that assess structural and functional changes, with a focus on white matter integrity. In aircrew we found significantly more self-reported cognitive complaints and depressive symptoms, and a higher number of tests scored in the impaired range compared to the control group. We observed small clusters in the brain in which white matter microstructure was affected. Also, we observed higher cerebral perfusion values in the left occipital cortex, and reduced brain activation on a functional MRI executive function task. The extent of cognitive impairment was strongly associated with white matter integrity, but extent of estimated number of flight hours was not associated with cognitive impairment nor with reductions in white matter microstructure. Defects in brain white matter microstructure and cerebral perfusion are potential neurobiological substrates for cognitive impairments and mood deficits reported in aircrew.

  2. Cognitive impairment and associated loss in brain white microstructure in aircrew members exposed to engine oil fumes.

    PubMed

    Reneman, Liesbeth; Schagen, Sanne B; Mulder, Michel; Mutsaerts, Henri J; Hageman, Gerard; de Ruiter, Michiel B

    2016-06-01

    Cabin air in airplanes can be contaminated with engine oil contaminants. These contaminations may contain organophosphates (OPs) which are known neurotoxins to brain white matter. However, it is currently unknown if brain white matter in aircrew is affected. We investigated whether we could objectify cognitive complaints in aircrew and whether we could find a neurobiological substrate for their complaints. After medical ethical approval from the local institutional review board, informed consent was obtained from 12 aircrew (2 females, on average aged 44.4 years, 8,130 flying hours) with cognitive complaints and 11 well matched control subjects (2 females, 43.4 years, 233 flying hours). Depressive symptoms and self-reported cognitive symptoms were assessed, in addition to a neuropsychological test battery. State of the art Magnetic Resonance Imaging (MRI) techniques were administered that assess structural and functional changes, with a focus on white matter integrity. In aircrew we found significantly more self-reported cognitive complaints and depressive symptoms, and a higher number of tests scored in the impaired range compared to the control group. We observed small clusters in the brain in which white matter microstructure was affected. Also, we observed higher cerebral perfusion values in the left occipital cortex, and reduced brain activation on a functional MRI executive function task. The extent of cognitive impairment was strongly associated with white matter integrity, but extent of estimated number of flight hours was not associated with cognitive impairment nor with reductions in white matter microstructure. Defects in brain white matter microstructure and cerebral perfusion are potential neurobiological substrates for cognitive impairments and mood deficits reported in aircrew. PMID:26063438

  3. Metabolic engineering of oilseed crops to produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value.

    PubMed

    Liu, Jinjie; Rice, Adam; McGlew, Kathleen; Shaw, Vincent; Park, Hyunwoo; Clemente, Tom; Pollard, Mike; Ohlrogge, John; Durrett, Timothy P

    2015-08-01

    Seed oils have proved recalcitrant to modification for the production of industrially useful lipids. Here, we demonstrate the successful metabolic engineering and subsequent field production of an oilseed crop with the highest accumulation of unusual oil achieved so far in transgenic plants. Previously, expression of the Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene in wild-type Arabidopsis seeds resulted in the accumulation of 45 mol% of unusual 3-acetyl-1,2-diacyl-sn-glycerols (acetyl-TAGs) in the seed oil (Durrett et al., 2010 PNAS 107:9464). Expression of EaDAcT in dgat1 mutants compromised in their ability to synthesize regular triacylglycerols increased acetyl-TAGs to 65 mol%. Camelina and soybean transformed with the EaDAcT gene accumulate acetyl-triacylglycerols (acetyl-TAGs) at up to 70 mol% of seed oil. A similar strategy of coexpression of EaDAcT together with RNAi suppression of DGAT1 increased acetyl-TAG levels to up to 85 mol% in field-grown transgenic Camelina. Additionally, total moles of triacylglycerol (TAG) per seed increased 20%. Analysis of the acetyl-TAG fraction revealed a twofold reduction in very long chain fatty acids (VLCFA), consistent with their displacement from the sn-3 position by acetate. Seed germination remained high, and seedlings were able to metabolize the stored acetyl-TAGs as rapidly as regular triacylglycerols. Viscosity, freezing point and caloric content of the Camelina acetyl-TAG oils were reduced, enabling use of this oil in several nonfood and food applications. PMID:25756355

  4. Metabolic engineering of oilseed crops to produce high levels of novel acetyl glyceride oils with reduced viscosity, freezing point and calorific value.

    PubMed

    Liu, Jinjie; Rice, Adam; McGlew, Kathleen; Shaw, Vincent; Park, Hyunwoo; Clemente, Tom; Pollard, Mike; Ohlrogge, John; Durrett, Timothy P

    2015-08-01

    Seed oils have proved recalcitrant to modification for the production of industrially useful lipids. Here, we demonstrate the successful metabolic engineering and subsequent field production of an oilseed crop with the highest accumulation of unusual oil achieved so far in transgenic plants. Previously, expression of the Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene in wild-type Arabidopsis seeds resulted in the accumulation of 45 mol% of unusual 3-acetyl-1,2-diacyl-sn-glycerols (acetyl-TAGs) in the seed oil (Durrett et al., 2010 PNAS 107:9464). Expression of EaDAcT in dgat1 mutants compromised in their ability to synthesize regular triacylglycerols increased acetyl-TAGs to 65 mol%. Camelina and soybean transformed with the EaDAcT gene accumulate acetyl-triacylglycerols (acetyl-TAGs) at up to 70 mol% of seed oil. A similar strategy of coexpression of EaDAcT together with RNAi suppression of DGAT1 increased acetyl-TAG levels to up to 85 mol% in field-grown transgenic Camelina. Additionally, total moles of triacylglycerol (TAG) per seed increased 20%. Analysis of the acetyl-TAG fraction revealed a twofold reduction in very long chain fatty acids (VLCFA), consistent with their displacement from the sn-3 position by acetate. Seed germination remained high, and seedlings were able to metabolize the stored acetyl-TAGs as rapidly as regular triacylglycerols. Viscosity, freezing point and caloric content of the Camelina acetyl-TAG oils were reduced, enabling use of this oil in several nonfood and food applications.

  5. Adding value to the learning process by online peer review activities: towards the elaboration of a methodology to promote critical thinking in future engineers

    NASA Astrophysics Data System (ADS)

    Dominguez, Caroline; Nascimento, Maria M.; Payan-Carreira, Rita; Cruz, Gonçalo; Silva, Helena; Lopes, José; Morais, Maria da Felicidade A.; Morais, Eva

    2015-09-01

    Considering the results of research on the benefits and difficulties of peer review, this paper describes how teaching faculty, interested in endorsing the acquisition of communication and critical thinking (CT) skills among engineering students, has been implementing a learning methodology throughout online peer review activities. While introducing a new methodology, it is important to weight the advantages found and the conditions that might have restrained the activity outcomes, thereby modulating its overall efficiency. Our results show that several factors are decisive for the success of the methodology: the use of specific and detailed orientation guidelines for CT skills, the students' training on how to deliver a meaningful feedback, the opportunity to counter-argument, the selection of good assignments' examples, and the constant teacher's monitoring of the activity. Results also tackle other aspects of the methodology such as the thinking skills evaluation tools (grades and tests) that most suit our reality. An improved methodology is proposed taking in account the encountered limitations, thus offering the possibility to other interested institutions to use/test and/or improve it.

  6. Challenges in engineering microbes for biofuels production.

    PubMed

    Stephanopoulos, Gregory

    2007-02-01

    Economic and geopolitical factors (high oil prices, environmental concerns, and supply instability) have been prompting policy-makers to put added emphasis on renewable energy sources. For the scientific community, recent advances, embodied in new insights into basic biology and technology that can be applied to metabolic engineering, are generating considerable excitement. There is justified optimism that the full potential of biofuel production from cellulosic biomass will be obtainable in the next 10 to 15 years.

  7. DK-26 model added to Daihastu product line

    SciTech Connect

    1996-12-01

    Adding to the company`s modern-design DK series of medium-speed engines, Daihatsu Diesel has introduced the DK-26 diesel. With a rated power output of 1681 kW at 720 or 750 r/min, the new six-cylinder engine fits nicely between the DK-20 and DK-28 models introduced over the last three years. Daihatsu`s recent diesel engine developments have focused on meeting market requirements in the years to come for prime movers in marine propulsion, marine auxiliary power generation and stationary power plant applications. The newly developed DK series aims to meet these requirements with high reliability and durability, reduced maintenance costs, and high operational economy. Other design goals were for the engines to be environmentally friendly, as well as light and compact. With three different bore sizes available, the DK series covers a power range from 400kW to 2500 kW, meeting most power requirements for marine generators, as well as propulsion systems for ferries, fishing boats and freighters. The engines are rated for operation on diesel oil, as well as heavy fuel to 180 cSt/50{degree}C. 2 figs., 1 tab.

  8. Heavy oil recovery process: Conceptual engineering of a downhole methanator and preliminary estimate of facilities cost for application to North Slope Alaska

    SciTech Connect

    Gondouin, M.

    1991-10-31

    The West Sak (Upper Cretaceous) sands, overlaying the Kuparuk field, would rank among the largest known oil fields in the US, but technical difficulties have so far prevented its commercial exploitation. Steam injection is the most successful and the most commonly-used method of heavy oil recovery, but its application to the West Sak presents major problems. Such difficulties may be overcome by using a novel approach, in which steam is generated downhole in a catalytic Methanator, from Syngas made at the surface from endothermic reactions (Table 1). The Methanator effluent, containing steam and soluble gases resulting from exothermic reactions (Table 1), is cyclically injected into the reservoir by means of a horizontal drainhole while hot produced fluids flow form a second drainhole into a central production tubing. The downhole reactor feed and BFW flow downward to two concentric tubings. The large-diameter casing required to house the downhole reactor assembly is filled above it with Arctic Pack mud, or crude oil, to further reduce heat leaks. A quantitative analysis of this production scheme for the West Sak required a preliminary engineering of the downhole and surface facilities and a tentative forecast of well production rates. The results, based on published information on the West Sak, have been used to estimate the cost of these facilities, per daily barrel of oil produced. A preliminary economic analysis and conclusions are presented together with an outline of future work. Economic and regulatory conditions which would make this approach viable are discussed. 28 figs.

  9. Phytoassessment of a waste engine oil-polluted soil exposed to two different intervals of monitored natural attenuation using African yam bean (Sphenostylis stenocarpa).

    PubMed

    Ikhajiagbe, B; Anoliefo, G O; Jolaoso, M A; Oshomoh, E O

    2013-07-15

    The present study comparatively investigated the phytotoxic effects of waste engine oil (WEO)-polluted soil exposed to monitored natural attenuation up to 5 and 14 months respectively. Soil was previously polluted with WEO at 0, 1, 2.5, 5 and 10% w/w oil in soil. Although, there was significant reduction in heavy metal concentration of soil as well as total hydrocarbon contents, performance of Sphenostylis stenocarpa was greatly retarded when sown at 5 months after pollution (MAP), with death of all seedlings except in the control. However, growth and yield performances were significantly (p > 0.05) enhanced at 14 MAP. Computation of hazard quotient showed that ecological risk factor initially posed by the presence of heavy metals in the soil at 5 MAP was significantly (p > 0.05) reduced to safe levels at 14 MAP.

  10. Analysis of archaeological triacylglycerols by high resolution nanoESI, FT-ICR MS and IRMPD MS/MS: Application to 5th century BC-4th century AD oil lamps from Olbia (Ukraine)

    NASA Astrophysics Data System (ADS)

    Garnier, Nicolas; Rolando, Christian; Høtje, Jakob Munk; Tokarski, Caroline

    2009-07-01

    This work presents the precise identification of triacylglycerols (TAGs) extracted from archaeological samples using a methodology based on nanoelectrospray and Fourier transform mass spectrometry. The archaeological TAG identification needs adapted sample preparation protocols to trace samples in advanced degradation state. More precisely, the proposed preparation procedure includes extraction of the lipid components from finely grinded ceramic using dichloromethane/methanol mixture with additional ultrasonication treatment, and TAG purification by solid phase extraction on a diol cartridge. Focusing on the analytical approach, the implementation of "in-house" species-dependent TAG database was investigated using MS and InfraRed Multiphoton Dissociation (IRMPD) MS/MS spectra; several vegetal oils, dairy products and animal fats were studied. The high mass accuracy of the Fourier transform analyzer ([Delta]m below 2.5 ppm) provides easier data interpretation, and allows distinction between products of different origins. In details, the IRMPD spectra of the lithiated TAGs reveal fragmentation reactions including loss of free neutral fatty acid and loss of fatty acid as [alpha],[beta]-unsaturated moieties. Based on the developed preparation procedure and on the constituted database, TAG extracts from 5th century BC to 4th century AD Olbia lamps were analyzed. The structural information obtained succeeds in identifying that bovine/ovine fats were used as fuel used in these archaeological Olbia lamps.

  11. Segmented strings in AdS 3

    NASA Astrophysics Data System (ADS)

    Callebaut, Nele; Gubser, Steven S.; Samberg, Andreas; Toldo, Chiara

    2015-11-01

    We study segmented strings in flat space and in AdS 3. In flat space, these well known classical motions describe strings which at any instant of time are piecewise linear. In AdS 3, the worldsheet is composed of faces each of which is a region bounded by null geodesics in an AdS 2 subspace of AdS 3. The time evolution can be described by specifying the null geodesic motion of kinks in the string at which two segments are joined. The outcome of collisions of kinks on the worldsheet can be worked out essentially using considerations of causality. We study several examples of closed segmented strings in AdS 3 and find an unexpected quasi-periodic behavior. We also work out a WKB analysis of quantum states of yo-yo strings in AdS 5 and find a logarithmic term reminiscent of the logarithmic twist of string states on the leading Regge trajectory.

  12. Polarised black holes in AdS

    NASA Astrophysics Data System (ADS)

    Costa, Miguel S.; Greenspan, Lauren; Oliveira, Miguel; Penedones, João; Santos, Jorge E.

    2016-06-01

    We consider solutions in Einstein-Maxwell theory with a negative cosmological constant that asymptote to global AdS 4 with conformal boundary {S}2× {{{R}}}t. At the sphere at infinity we turn on a space-dependent electrostatic potential, which does not destroy the asymptotic AdS behaviour. For simplicity we focus on the case of a dipolar electrostatic potential. We find two new geometries: (i) an AdS soliton that includes the full backreaction of the electric field on the AdS geometry; (ii) a polarised neutral black hole that is deformed by the electric field, accumulating opposite charges in each hemisphere. For both geometries we study boundary data such as the charge density and the stress tensor. For the black hole we also study the horizon charge density and area, and further verify a Smarr formula. Then we consider this system at finite temperature and compute the Gibbs free energy for both AdS soliton and black hole phases. The corresponding phase diagram generalizes the Hawking-Page phase transition. The AdS soliton dominates the low temperature phase and the black hole the high temperature phase, with a critical temperature that decreases as the external electric field increases. Finally, we consider the simple case of a free charged scalar field on {S}2× {{{R}}}t with conformal coupling. For a field in the SU(N ) adjoint representation we compare the phase diagram with the above gravitational system.

  13. Enhancing Engineering Education through Engineering Management

    ERIC Educational Resources Information Center

    Pence, Kenneth R.; Rowe, Christopher J.

    2012-01-01

    Engineering Management courses are added to a traditional engineering curriculum to enhance the value of an undergraduate's engineering degree. A four-year engineering degree often leaves graduates lacking in business and management acumen. Engineering management education covers topics enhancing the value of new graduates by teaching management…

  14. A hybrid disturbance rejection control solution for variable valve timing system of gasoline engines.

    PubMed

    Xie, Hui; Song, Kang; He, Yu

    2014-07-01

    A novel solution for electro-hydraulic variable valve timing (VVT) system of gasoline engines is proposed, based on the concept of active disturbance rejection control (ADRC). Disturbances, such as oil pressure and engine speed variations, are all estimated and mitigated in real-time. A feed-forward controller was added to enhance the performance of the system based on a simple and static first principle model, forming a hybrid disturbance rejection control (HDRC) strategy. HDRC was validated by experimentation and compared with an existing manually tuned proportional-integral (PI) controller. The results show that HDRC provided a faster response and better tolerance of engine speed and oil pressure variations.

  15. Production of Long-Chain α,ω-Dicarboxylic Acids by Engineered Escherichia coli from Renewable Fatty Acids and Plant Oils.

    PubMed

    Sathesh-Prabu, Chandran; Lee, Sung Kuk

    2015-09-23

    Long-chain α,ω-dicarboxylic acids (LDCAs, ≥ C12) are widely used as a raw material for preparing various commodities and polymers. In this study, a CYP450-monooxygenase-mediated ω-oxidation pathway system with high ω-regioselectivity was heterologously expressed in Escherichia coli to produce DCAs from fatty acids. The resulting engineered E. coli produced a maximum of 41 mg/L of C12 DCA and 163 mg/L of C14 DCA from fatty acids (1 g/L), following 20 h of whole cell biotransformation. Addition of a heme precursor and the hydroxyl radical scavenger, thiourea, increased product concentration (159 mg/L of C12 DCA and 410 mg/L of C14 DCA) in a shorter culture duration than that of the corresponding controls. DCAs of various chain lengths were synthesized from coconut oil hydrolysate using the engineered E. coli. This novel synthetic biocatalytic system could be applied to produce high value DCAs in a cost-effective manner from renewable plant oils. PMID:26359801

  16. Comparative in vitro cytotoxicity assessment of airborne particulate matter emitted from stationary engine fuelled with diesel and waste cooking oil-derived biodiesel

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Pavagadhi, Shruti; Sethu, Swaminathan; Hande, M. Prakash; Balasubramanian, Rajasekhar

    2012-12-01

    Biodiesel derived from waste cooking oil (WCO) is gaining increased attention as an alternative fuel due to lower particulate emissions and other beneficial factors such as low cost and utilization of waste oil. However, very little information is available on toxicity of airborne particulate matter (PM) emitted from biodiesel combustion. In this study, PM emitted from WCO-derived biodiesel (B100) was analyzed for its toxic potential together with ultra low sulphur diesel (ULSD) as a reference fuel and their blend (B50). Human lung epithelial carcinoma cells (A549) were used for this comparative toxicity study. Results indicate that cytotoxicity and oxidative stress were higher for B100 relative to ULSD. Furthermore, caspase 3/7 activity indicates that cell death induced by B100 was due to either caspase independent apoptotic process or other programmed cell death pathways. The toxicity was also evaluated for different engine load conditions. It was observed that at lower loads there was no significant difference in the toxicological response of B100 and ULSD. However, with increase in the engine load, B100 and B50 showed significantly higher toxicity and oxidative stress compared to ULSD.

  17. Investigations on the effect of chlorine in lubricating oil and the presence of a diesel oxidation catalyst on PCDD/F releases from an internal combustion engine.

    PubMed

    Dyke, Patrick H; Sutton, Mike; Wood, David; Marshall, Jonathan

    2007-04-01

    This paper reports on an intensive study into releases of polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated furans (PCDF) and polychlorinated biphenyls (PCB) from a diesel engine and the analysis of PCDD/F and PCB in crankcase lubricating oil. Experimental conditions were set and carefully controlled in order to maximize the possible impact of, and our ability to measure the effect of, changes in the levels of chlorine in the lubricant. Emissions to air were measured using modified EPA methods following the principles of the European EN 1948 standards. A series of 40 experimental runs were completed using three reference lubricants formulated to have three levels of chlorine present as a residual component (at levels of 12, 131 and 259 mg kg(-1) or ppm). The engine was run with and without the diesel oxidation catalyst. All lubricants were realistic oils and the use of unrealistic additives or doping of components - particularly chlorine - in the fuel and lubricant was carefully avoided. Analysis of fuel and lubricant (before and after testing) samples required strenuous attention to achieve acceptable recoveries and showed non-detectable levels of PCB and PCDD/F at a detection limit of around 1.5 ng I-TEQ kg(-1) (ppt), indistinguishable from the laboratory blank. The testing demonstrated the need for extreme care to be taken in developing measurement methods that are sufficiently sensitive for measuring chlorine content of fluids and PCDD/F in oils, the latter being particularly challenging. Mean emissions of PCDD/F with the diesel oxidation catalyst in place were 23 pg I-TEQ l(-1) of fuel and with the diesel oxidation catalyst removed 97 pg I-TEQ l(-1) of fuel. The results of this testing showed that the emissions of PCDD/F were greatly reduced by the presence of a diesel oxidation catalyst in the exhaust, a finding that has not been explicitly tested in previous work. They also show that emissions from the engine were not controlled by the level of

  18. Investigations on the effect of chlorine in lubricating oil and the presence of a diesel oxidation catalyst on PCDD/F releases from an internal combustion engine.

    PubMed

    Dyke, Patrick H; Sutton, Mike; Wood, David; Marshall, Jonathan

    2007-04-01

    This paper reports on an intensive study into releases of polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated furans (PCDF) and polychlorinated biphenyls (PCB) from a diesel engine and the analysis of PCDD/F and PCB in crankcase lubricating oil. Experimental conditions were set and carefully controlled in order to maximize the possible impact of, and our ability to measure the effect of, changes in the levels of chlorine in the lubricant. Emissions to air were measured using modified EPA methods following the principles of the European EN 1948 standards. A series of 40 experimental runs were completed using three reference lubricants formulated to have three levels of chlorine present as a residual component (at levels of 12, 131 and 259 mg kg(-1) or ppm). The engine was run with and without the diesel oxidation catalyst. All lubricants were realistic oils and the use of unrealistic additives or doping of components - particularly chlorine - in the fuel and lubricant was carefully avoided. Analysis of fuel and lubricant (before and after testing) samples required strenuous attention to achieve acceptable recoveries and showed non-detectable levels of PCB and PCDD/F at a detection limit of around 1.5 ng I-TEQ kg(-1) (ppt), indistinguishable from the laboratory blank. The testing demonstrated the need for extreme care to be taken in developing measurement methods that are sufficiently sensitive for measuring chlorine content of fluids and PCDD/F in oils, the latter being particularly challenging. Mean emissions of PCDD/F with the diesel oxidation catalyst in place were 23 pg I-TEQ l(-1) of fuel and with the diesel oxidation catalyst removed 97 pg I-TEQ l(-1) of fuel. The results of this testing showed that the emissions of PCDD/F were greatly reduced by the presence of a diesel oxidation catalyst in the exhaust, a finding that has not been explicitly tested in previous work. They also show that emissions from the engine were not controlled by the level of

  19. Structural Oil Pan With Integrated Oil Filtration And Cooling System

    DOEpatents

    Freese, V, Charles Edwin

    2000-05-09

    An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

  20. AdS duals of matrix strings

    NASA Astrophysics Data System (ADS)

    Morales, Jose F.; Samtleben, Henning

    2003-06-01

    We review recent work on the holographic duals of type II and heterotic matrix string theories described by warped AdS3 supergravities. In particular, we compute the spectra of Kaluza-Klein primaries for type I, II supergravities on warped AdS3 × S7 and match them with the primary operators in the dual two-dimensional gauge theories. The presence of non-trivial warp factors and dilaton profiles requires a modification of the familiar dictionary between masses and 'scaling' dimensions of fields and operators. We present these modifications for the general case of domain wall/QFT correspondences between supergravities on warped AdSd+1 × Sq geometries and super Yang-Mills theories with 16 supercharges.

  1. Experimental investigation of the physical properties of medium and heavy oils, their vaporization and use in explosion engines. Part IV

    NASA Technical Reports Server (NTRS)

    Heinlein, Fritz

    1926-01-01

    This report presents a theoretical treatment of the vaporization process of medium and heavy oils. The results of this investigation, which were mostly obtained from the lighter components of the heavy fuels, require a 10- or 16-fold vaporization in comparison with gasoline. We must attain a still finer degree of atomization, in order to include the heavier components.

  2. Influence of sliding surface roughness and oil temperature on piston ring pack operation of an automotive IC engine

    NASA Astrophysics Data System (ADS)

    Wolff, A.

    2016-09-01

    In the paper a comprehensive model of a piston ring pack motion on an oil film has been presented. The local oil film thickness can be compared to height of the combined roughness of sliding surfaces of piston rings and cylinder liner. Equations describing the mixed lubrication problem based on the empirical mathematical model formulated in works of Patir, Cheng and Greenwood, Tripp have been combined and used in this paper. The developed model takes the following phenomena into account: hydrodynamic and contact forces, spring and gas forces acting on piston rings. The rings motion concerning low and high temperature of cylinder surface has been compared. These results concern cases of hydrodynamic and mixed lubrication. Changes of oil wetted area and contact zone of piston rings have been shown. In addition the oil film thickness distribution along cylinder liner and all the forces acting on piston rings have been analysed and discussed. The results have been presented in form of relevant diagrams. The developed model and software can be utilized for optimization of piston rings design.

  3. Introducing ADS 2.0

    NASA Astrophysics Data System (ADS)

    Accomazzi, Alberto; Kurtz, M. J.; Henneken, E. A.; Grant, C. S.; Thompson, D.; Luker, J.; Chyla, R.; Murray, S. S.

    2014-01-01

    In the spring of 1993, the Smithsonian/NASA Astrophysics Data System (ADS) first launched its bibliographic search system. It was known then as the ADS Abstract Service, a component of the larger Astrophysics Data System effort which had developed an interoperable data system now seen as a precursor of the Virtual Observatory. As a result of the massive technological and sociological changes in the field of scholarly communication, the ADS is now completing the most ambitious technological upgrade in its twenty-year history. Code-named ADS 2.0, the new system features: an IT platform built on web and digital library standards; a new, extensible, industrial strength search engine; a public API with various access control capabilities; a set of applications supporting search, export, visualization, analysis; a collaborative, open source development model; and enhanced indexing of content which includes the full-text of astronomy and physics publications. The changes in the ADS platform affect all aspects of the system and its operations, including: the process through which data and metadata are harvested, curated and indexed; the interface and paradigm used for searching the database; and the follow-up analysis capabilities available to the users. This poster describes the choices behind the technical overhaul of the system, the technology stack used, and the opportunities which the upgrade is providing us with, namely gains in productivity and enhancements in our system capabilities.

  4. Vegetable oils for tractors

    SciTech Connect

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  5. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  6. Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters.

    PubMed

    Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2006-02-01

    Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms.

  7. Neutral Lipid Biosynthesis in Engineered Escherichia coli: Jojoba Oil-Like Wax Esters and Fatty Acid Butyl Esters

    PubMed Central

    Kalscheuer, Rainer; Stöveken, Tim; Luftmann, Heinrich; Malkus, Ursula; Reichelt, Rudolf; Steinbüchel, Alexander

    2006-01-01

    Wax esters are esters of long-chain fatty acids and long-chain fatty alcohols which are of considerable commercial importance and are produced on a scale of 3 million tons per year. The oil from the jojoba plant (Simmondsia chinensis) is the main biological source of wax esters. Although it has a multitude of potential applications, the use of jojoba oil is restricted, due to its high price. In this study, we describe the establishment of heterologous wax ester biosynthesis in a recombinant Escherichia coli strain by coexpression of a fatty alcohol-producing bifunctional acyl-coenzyme A reductase from the jojoba plant and a bacterial wax ester synthase from Acinetobacter baylyi strain ADP1, catalyzing the esterification of fatty alcohols and coenzyme A thioesters of fatty acids. In the presence of oleate, jojoba oil-like wax esters such as palmityl oleate, palmityl palmitoleate, and oleyl oleate were produced, amounting to up to ca. 1% of the cellular dry weight. In addition to wax esters, fatty acid butyl esters were unexpectedly observed in the presence of oleate. The latter could be attributed to solvent residues of 1-butanol present in the medium component, Bacto tryptone. Neutral lipids produced in recombinant E. coli were accumulated as intracytoplasmic inclusions, demonstrating that the formation and structural integrity of bacterial lipid bodies do not require specific structural proteins. This is the first report on substantial biosynthesis and accumulation of neutral lipids in E. coli, which might open new perspectives for the biotechnological production of cheap jojoba oil equivalents from inexpensive resources employing recombinant microorganisms. PMID:16461689

  8. 75 FR 801 - Airworthiness Directives; Rolls-Royce plc RB211-Trent 500, 700, and 800 Series Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... requires replacing the fuel-to-oil heat exchanger (FOHE). This proposed AD would require replacing the FOHE..., 553A2-61, 556A2-61, 556B2-61, and 560A2-61 turbofan engines with fuel-to-oil heat exchangers (FOHEs... through Friday, except Federal holidays. Fax: (202) 493-2251. Contact Rolls-Royce plc, P.O. Box 31,...

  9. Determination of ortho-cresyl phosphate isomers of tricresyl phosphate used in aircraft turbine engine oils by gas chromatography and mass spectrometry.

    PubMed

    De Nola, G; Kibby, J; Mazurek, W

    2008-07-25

    Tricresyl phosphate (TCP) is used as an anti-wear additive in aircraft turbine engine oil. Concerns about its toxicity are largely based on the tri-o-cresyl phosphate isomer content. However, the presence of other and more toxic isomers has been previously suggested. In this work, the structural isomers of TCP have been determined by two methods (experimental and semi-theoretical). First, the TCP isomers were separated by gas chromatography (GC) and identified by mass spectrometry (MS). Second, after base cleavage of TCP, GC was used to quantify the cresol precursors. These results were used to calculate the TCP isomer distribution based on the assumption of a statistical distribution of the TCP isomers. The results from the two determinations showed reasonable agreement for three of the four oils studied. The o-cresyl isomers were found to be present almost exclusively as the more toxic mono-o-cresyl isomers in the concentration range 13-150 mg/L. The ability to analyse for the mono-o-cresyl isomers allows the toxicity of TCP to be based on the latter isomers rather than on the less toxic tri-o-cresyl phosphate isomer.

  10. Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil

    PubMed Central

    Burgal, Julie; Shockey, Jay; Lu, Chaofu; Dyer, John; Larson, Tony; Graham, Ian; Browse, John

    2010-01-01

    Summary A central goal of green chemistry is to produce industrially useful fatty acids in oilseed crops. Although genes encoding suitable fatty acid-modifying enzymes are available from many wild species, progress has been limited because the expression of these genes in transgenic plants produces low yields of the desired products. For example, Ricinus communis fatty acid hydroxylase 12 (FAH12) produces a maximum of only 17% hydroxy fatty acids (HFAs) when expressed in Arabidopsis. cDNA clones encoding R. communis enzymes for additional steps in the seed oil biosynthetic pathway were identified. Expression of these cDNAs in FAH12 transgenic plants revealed that the R. communis type-2 acyl-coenzyme A:diacylglycerol acyltransferase (RcDGAT2) could increase HFAs from 17% to nearly 30%. Detailed comparisons of seed neutral lipids from the single- and double-transgenic lines indicated that RcDGAT2 substantially modified the triacylglycerol (TAG) pool, with significant increases in most of the major TAG species observed in native castor bean oil. These data suggest that RcDGAT2 prefers acyl-coenzyme A and diacylglycerol substrates containing HFAs, and biochemical analyses of RcDGAT2 expressed in yeast cells confirmed a strong preference for HFA-containing diacylglycerol substrates. Our results demonstrate that pathway engineering approaches can be used successfully to increase the yields of industrial feedstocks in plants, and that members of the DGAT2 gene family probably play a key role in this process. PMID:18643899

  11. Agricultural Education: Value Adding.

    ERIC Educational Resources Information Center

    Riesenberg, Lou E.; And Others

    1989-01-01

    This issue develops the theme of "Agricultural Education--Value Adding." The concept value adding has been a staple in the world of agricultural business for describing adding value to a commodity that would profit the producer and the local community. Agricultural education should add value to individuals and society to justify agricultural…

  12. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  13. Mussel-inspired one-step copolymerization to engineer hierarchically structured surface with superhydrophobic properties for removing oil from water.

    PubMed

    Huang, Shouying

    2014-10-01

    In the present study, a superhydrophobic polyurethane (PU) sponge with hierarchically structured surface, which exhibits excellent performance in absorbing oils/organic solvents, was fabricated for the first time through mussel-inspired one-step copolymerization approach. Specifically, dopamine (a small molecular bioadhesive) and n-dodecylthiol were copolymerized in an alkaline aqueous solution to generate polydopamine (PDA) nanoaggregates with n-dodecylthiol motifs on the surface of the PU sponge skeletons. Then, the superhydrophobic sponge that comprised a hierarchical structured surface similar to the chemical/topological structures of lotus leaf was fabricated. The topological structures, surface wettability, and mechanical property of the sponge were characterized by scanning electron microscopy, contact angle experiments, and compression test. Just as a result of the highly porous structure, superhydrophobic property and strong mechanical stability, this sponge exhibited desirable absorption capability of oils/organic solvents (weight gains ranging from 2494% to 8670%), suggesting a promising sorbents for the removal of oily pollutants from water. Furthermore, thanks to the nonutilization of the complicated processes or sophisticated equipment, the fabrication of the superhydrophobic sponge seemed to be quite easy to scale up. All these merits make the sponge a competitive candidate when compared to the conventional absorbents, for example, nonwoven polypropylene fabric.

  14. An engineered lipid remodeling system using a galactolipid synthase promoter during phosphate starvation enhances oil accumulation in plants.

    PubMed

    Shimojima, Mie; Madoka, Yuka; Fujiwara, Ryota; Murakawa, Masato; Yoshitake, Yushi; Ikeda, Keiko; Koizumi, Ryota; Endo, Keiji; Ozaki, Katsuya; Ohta, Hiroyuki

    2015-01-01

    Inorganic phosphate (Pi) depletion is a serious problem for plant growth. Membrane lipid remodeling is a defense mechanism that plants use to survive Pi-depleted conditions. During Pi starvation, phospholipids are degraded to supply Pi for other essential biological processes, whereas galactolipid synthesis in plastids is up-regulated via the transcriptional activation of monogalactosyldiacylglycerol synthase 3 (MGD3). Thus, the produced galactolipids are transferred to extraplastidial membranes to substitute for phospholipids. We found that, Pi starvation induced oil accumulation in the vegetative tissues of various seed plants without activating the transcription of enzymes involved in the later steps of triacylglycerol (TAG) biosynthesis. Moreover, the Arabidopsis starchless phosphoglucomutase mutant, pgm-1, accumulated higher TAG levels than did wild-type plants under Pi-depleted conditions. We generated transgenic plants that expressed a key gene involved in TAG synthesis using the Pi deficiency-responsive MGD3 promoter in wild-type and pgm-1 backgrounds. During Pi starvation, the transgenic plants accumulated higher TAG amounts compared with the non-transgenic plants, suggesting that the Pi deficiency-responsive promoter of galactolipid synthase in plastids may be useful for producing transgenic plants that accumulate more oil under Pi-depleted conditions.

  15. Influence of palm oil biodiesel on the chemical and morphological characteristics of particulate matter emitted by a diesel engine

    NASA Astrophysics Data System (ADS)

    Salamanca, Maurin; Mondragón, Fanor; Agudelo, John R.; Santamaría, Alexander

    2012-12-01

    The influence on the chemical composition of the particle matter (PM) produced in an automotive diesel engine operated with palm biodiesel (PB) and its blends with diesel fuel were studied. The opacity index showed a decrease on the PM emitted by the engine when palm biodiesel amount increased in the fuel, a result that also agrees with the amount of PM collected in filters. Similarly, the PB concentration did not affect the average size of PM emitted compared to diesel. But, it seems to be that biodiesel and its blends tend to produce PM with a higher number of small particles. The chemical composition of PM obtained from PB blends and pure PB were similar to those reported before; however no correlation with biodiesel concentration was found, except for the evident reduction on sulfur content in particle matter, a fact that can be associated with a fuel dilution effect.

  16. Influence of the processed sunflower oil on the cement properties

    NASA Astrophysics Data System (ADS)

    Fleysher, A. U.; Tokarchuk, V. V.; Sviderskiy, V. A.

    2015-01-01

    Used oils (vegetable oil, animal oil, engine oil, etc.), which are essentially industrial wastes, have found application as secondary raw materials in some braches of industry. In particular, the only well-known and commonly-used way of utilizing wastes of vegetable oils is to apply them as raw materials in the production of biodiesel. The goal of the present study is to develop a conceptually new way of vegetable oil wastes utilization in the building industry. The test admixture D-148 was obtained from the processing of wastes of sunflower oil and it mainly consists of fatty acid diethanolamide. The test admixture was added to the cement system for the purpose of studying its influence on water demand, flowability, setting times, compressive strength and moisture adsorption. The test admixture D-148 at the optimal content 0. 2 weight % causes 10% decrease in water demand, 1.7 time increase in flowability (namely spread diameter), 23% increase in grade strength and 34% decrease in moisture adsorption. The results of the present investigation make it possible to consider the final product of the waste sunflower oil processing as multifunctional plasticizing-waterproofing admixture.

  17. Tests of oil scraper piston ring and piston fitted with oil drain holes

    NASA Technical Reports Server (NTRS)

    Mcdewell, H S

    1922-01-01

    Tests were conducted to determine whether or not a properly located and properly designed oil scraper piston ring, installed on a piston provided with oil drain holes of sufficient area, would prevent the excessive oiling of the Liberty engine, particularly with the engine running at idling speed with full oil pressure. Results showed that excessive oiling was in fact prevented. It is strongly recommended that scraper rings and pistons be adopted for aircraft engines.

  18. Adding flavor to AdS4/CFT3

    NASA Astrophysics Data System (ADS)

    Ammon, Martin; Erdmenger, Johanna; Meyer, René; O'Bannon, Andy; Wrase, Timm

    2009-11-01

    Aharony, Bergman, Jafferis, and Maldacena have proposed that the low-energy description of multiple M2-branes at a Bbb C4/Bbb Zk singularity is a (2+1)-dimensional Script N = 6 supersymmetric U(Nc) × U(Nc) Chern-Simons matter theory, the ABJM theory. In the large-Nc limit, its holographic dual is supergravity in AdS4 × S7/Bbb Zk. We study various ways to add fields that transform in the fundamental representation of the gauge groups, i.e. flavor fields, to the ABJM theory. We work in a probe limit and perform analyses in both the supergravity and field theory descriptions. In the supergravity description we find a large class of supersymmetric embeddings of probe flavor branes. In the field theory description, we present a general method to determine the couplings of the flavor fields to the fields of the ABJM theory. We then study four examples in detail: codimension-zero Script N = 3 supersymmetric flavor, described in supergravity by Kaluza-Klein monopoles or D6-branes; codimension-one Script N = (0,6) supersymmetric chiral flavor, described by D8-branes; codimension-one Script N = (3,3) supersymmetric non-chiral flavor, described by M5/D4-branes; codimension-two Script N = 4 supersymmetric flavor, described by M2/D2-branes. Finally we discuss special physical equivalences between brane embeddings in M-theory, and their interpretation in the field theory description.

  19. Twistor methods for AdS5

    NASA Astrophysics Data System (ADS)

    Adamo, Tim; Skinner, David; Williams, Jack

    2016-08-01

    We consider the application of twistor theory to five-dimensional anti-de Sitter space. The twistor space of AdS5 is the same as the ambitwistor space of the four-dimensional conformal boundary; the geometry of this correspondence is reviewed for both the bulk and boundary. A Penrose transform allows us to describe free bulk fields, with or without mass, in terms of data on twistor space. Explicit representatives for the bulk-to-boundary propagators of scalars and spinors are constructed, along with twistor action functionals for the free theories. Evaluating these twistor actions on bulk-to-boundary propagators is shown to produce the correct two-point functions.

  20. AdS3: the NHEK generation

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; Heurtier, Lucien; Puhm, Andrea

    2016-05-01

    It was argued in [1] that the five-dimensional near-horizon extremal Kerr (NHEK) geometry can be embedded in String Theory as the infrared region of an infinite family of non-supersymmetric geometries that have D1, D5, momentum and KK monopole charges. We show that there exists a method to embed these geometries into asymptotically- {AdS}_3× {S}^3/{{Z}}_N solutions, and hence to obtain infinite families of flows whose infrared is NHEK. This indicates that the CFT dual to the NHEK geometry is the IR fixed point of a Renormalization Group flow from a known local UV CFT and opens the door to its explicit construction.

  1. Shadows, currents, and AdS fields

    SciTech Connect

    Metsaev, R. R.

    2008-11-15

    Conformal totally symmetric arbitrary spin currents and shadow fields in flat space-time of dimension greater than or equal to four are studied. A gauge invariant formulation for such currents and shadow fields is developed. Gauge symmetries are realized by involving the Stueckelberg fields. A realization of global conformal boost symmetries is obtained. Gauge invariant differential constraints for currents and shadow fields are obtained. AdS/CFT correspondence for currents and shadow fields and the respective normalizable and non-normalizable solutions of massless totally symmetric arbitrary spin AdS fields are studied. The bulk fields are considered in a modified de Donder gauge that leads to decoupled equations of motion. We demonstrate that leftover on shell gauge symmetries of bulk fields correspond to gauge symmetries of boundary currents and shadow fields, while the modified de Donder gauge conditions for bulk fields correspond to differential constraints for boundary conformal currents and shadow fields. Breaking conformal symmetries, we find interrelations between the gauge invariant formulation of the currents and shadow fields, and the gauge invariant formulation of massive fields.

  2. Performance and emission parameters of single cylinder diesel engine using castor oil bio-diesel blended fuels

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Ghobadian, B.; Najafi, G.; Jaliliantabar, F.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the performance and emission parameters of a CI single cylinder diesel engine operating on biodiesel-diesel blends (B0, B5, B10, B15 and E20: 20% biodiesel and 80% diesel by volume). A reactor was designed, fabricated and evaluated for biodiesel production. The results showed that increasing the biodiesel content in the blend fuel will increase the performance parameters and decrease the emission parameters. Maximum power was detected for B0 at 2650 rpm and maximum torque was belonged to B20 at 1600 rpm. The experimental results revealed that using biodiesel-diesel blended fuels increased the power and torque output of the engine. For biodiesel blends it was found that the specific fuel consumption (sfc) was decreased. B10 had the minimum amount for sfc. The concentration of CO2 and HC emissions in the exhaust pipe were measured and found to be decreased when biodiesel blends were introduced. This was due to the high oxygen percentage in the biodiesel compared to the net diesel fuel. In contrast, the concentration of CO and NOx was found to be increased when biodiesel is introduced.

  3. Assessment of remaining recoverable oil in selected major oil fields of the San Joaquin Basin, California

    USGS Publications Warehouse

    Tennyson, Marilyn E.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Klett, Timothy R.; Verma, Mahendra K.; Ryder, Robert T.; Attanasi, E.D.; Freeman, P.A.; Le, Phoung A.

    2012-01-01

    The U.S. Geological Survey (USGS) recently completed an estimate of volumes of technically recoverable, conventional oil that could eventually be added to reserves in nine selected major oil fields in the San Joaquin Basin in central California. The mean total volume of potential oil reserves that might be added in the nine fields using improved oil-recovery technologies was estimated to be about 6.5 billion barrels of oil.

  4. Development stategy for a mature oil field in Lake Maracaibo, Venezuela - an integrated study in petroleum engineering

    SciTech Connect

    Rondon, L.; Coll, C.; Cordova, P.; Gamero, H.

    1996-12-31

    The results from a 3-D , 3-Phase numerical simulation model of Lower Lagunillas reservoir in Block IV Lake Maracaibo, indicate the possibility of additional recovery from this mature field by drilling infill horizontal wells. The simulation model was the final outcome of an integrated work effort by a team of specialists. The field has produced approximately 920 MMSTB or 43% of OOIP to date and the remaining reserves are estimated to be 270 MMSTB. The reservoir pressure has declined from 4200 psi to 1400 psi, well below the bubble point pressure of 4000 psi. The objectives of an integrated reservoir study were to understand the reservoir heterogeneity and dynamics, evaluate the efficiency of the gas injection started in 1966 and the strength of the active acquifer as pressure support mechanisms. The new model shows the presence of layers with bypassed oil and higher pressures between layers that show greater pressure depletion and high GOR This situation demonstrates the need to formulate a new development strategy for efficiently recovering the remaining reserves. The study indicates that the drilling of horizontal wells or infill deviated wells in some of these layers offers the best solution for maximizing recovery from this reservoir taking full advantage of the reservoir heterogeneity aquifer support and secondary gas cap to optimize well locations.

  5. Engineered tobacco and microalgae secreting the fungal laccase POXA1b reduce phenol content in olive oil mill wastewater.

    PubMed

    Chiaiese, Pasquale; Palomba, Francesca; Tatino, Filippo; Lanzillo, Carmine; Pinto, Gabriele; Pollio, Antonino; Filippone, Edgardo

    2011-12-10

    Olive oil mill wastewaters (OMWs) are characterised by low pH and a high content of mono- and polyaromatic compounds that exert microbial and phytotoxic activity. The laccase cDNA of the poxA1b gene from Pleurotus ostreatus, carrying a signal peptide sequence for enzyme secretion and driven by the CaMV 35S promoter, was cloned into a plant expression vector. Nuclear genetic transformation was carried out by co-cultivation of Agrobacterium tumefaciens with tobacco cv Samsun NN leaves and cells of five different microalgae accessions belonging to the genera Chlamydomonas, Chlorella and Ankistrodesmus. Transgenic plants and microalgae were able to express and secrete the recombinant laccase in the root exudates and the culture medium, respectively. In comparison to untransformed controls, the ability to reduce phenol content in OMW solution was enhanced up to 2.8-fold in transgenic tobacco lines and by up to about 40% in two microalgae accessions. The present work provides new evidence for metabolic improvement of green organisms through the transgenic approach to remediation.

  6. Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield.

    PubMed

    Goncalves, Elton C; Wilkie, Ann C; Kirst, Matias; Rathinasabapathi, Bala

    2016-08-01

    The great need for more sustainable alternatives to fossil fuels has increased our research interests in algal biofuels. Microalgal cells, characterized by high photosynthetic efficiency and rapid cell division, are an excellent source of neutral lipids as potential fuel stocks. Various stress factors, especially nutrient-starvation conditions, induce an increased formation of lipid bodies filled with triacylglycerol in these cells. Here we review our knowledge base on glycerolipid synthesis in the green algae with an emphasis on recent studies on carbon flux, redistribution of lipids under nutrient-limiting conditions and its regulation. We discuss the contributions and limitations of classical and novel approaches used to elucidate the algal triacylglycerol biosynthetic pathway and its regulatory network in green algae. Also discussed are gaps in knowledge and suggestions for much needed research both on the biology of triacylglycerol accumulation and possible avenues to engineer improved algal strains. PMID:26801206

  7. Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield.

    PubMed

    Goncalves, Elton C; Wilkie, Ann C; Kirst, Matias; Rathinasabapathi, Bala

    2016-08-01

    The great need for more sustainable alternatives to fossil fuels has increased our research interests in algal biofuels. Microalgal cells, characterized by high photosynthetic efficiency and rapid cell division, are an excellent source of neutral lipids as potential fuel stocks. Various stress factors, especially nutrient-starvation conditions, induce an increased formation of lipid bodies filled with triacylglycerol in these cells. Here we review our knowledge base on glycerolipid synthesis in the green algae with an emphasis on recent studies on carbon flux, redistribution of lipids under nutrient-limiting conditions and its regulation. We discuss the contributions and limitations of classical and novel approaches used to elucidate the algal triacylglycerol biosynthetic pathway and its regulatory network in green algae. Also discussed are gaps in knowledge and suggestions for much needed research both on the biology of triacylglycerol accumulation and possible avenues to engineer improved algal strains.

  8. 33 CFR 157.35 - Ballast added to cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Ballast added to cargo tanks. 157.35 Section 157.35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... OIL IN BULK Vessel Operation § 157.35 Ballast added to cargo tanks. The master of a tank vessel...

  9. 33 CFR 157.35 - Ballast added to cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Ballast added to cargo tanks. 157.35 Section 157.35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... OIL IN BULK Vessel Operation § 157.35 Ballast added to cargo tanks. The master of a tank vessel...

  10. Biocatalysis in Oil Refining

    SciTech Connect

    Borole, Abhijeet P; Ramirez-Corredores, M. M.

    2007-01-01

    Biocatalysis in Oil Refining focuses on petroleum refining bioprocesses, establishing a connection between science and technology. The micro organisms and biomolecules examined for biocatalytic purposes for oil refining processes are thoroughly detailed. Terminology used by biologists, chemists and engineers is brought into a common language, aiding the understanding of complex biological-chemical-engineering issues. Problems to be addressed by the future R&D activities and by new technologies are described and summarized in the last chapter.

  11. 76 FR 79051 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ...-AD; Amendment 39-16894; AD 2011-26-04] RIN 2120-AA64 Airworthiness Directives; Lycoming Engines, Fuel... AD to prevent failure of the fuel injector fuel lines that would allow fuel to spray into the engine... response, any AD made applicable to TCM engines with externally mounted fuel injector lines, would have...

  12. Vegetable oil as fuel

    SciTech Connect

    Not Available

    1980-11-01

    A review is presented of various experiments undertaken over the past few years in the U.S. to test the performance of vegetable oils in diesel engines, mainly with a view to on-farm energy self-sufficiency. The USDA Northern Regional Research Center in Peoria, Illinois, is screening native U.S. plant species as potential fuel oil sources.

  13. Petroleum reservoir engineering support for the Office of Naval Petroleum and Oil Shale Reserves. Final technical report

    SciTech Connect

    Not Available

    1986-10-01

    In accordance with the ''Procedures for the Determination and Approval of Maximum Efficient Rates of Production from the Naval Petroleum Reserves'' issued by the Office of Naval Petroleum and Oil Shale Reserves, US Department of Energy, dated January 1985, the proposed MER for the NWS A4-A6 reservoirs is herewith submitted. The subject Task Assignment was explicit as to certain operational restraints within which the MER determinations were to be made. In the case of the NWS A4-A6 reservoirs, these restraints were limited to a specification of the water injection rates, i.e., gradually building up to and maintaining an injection rate of 22,000 barrels water per day. Accordingly, the proposed MER results in an average of 8575 BOA/D for the six-month period ending March 31, 1987, and 8662 BOA/D for the nine-month period ending mid-year 1987. We believe that these rates will be both attainable and sustainable, and will be a reasonable target which is justified in terms of both maximizing ultimate recovery and providing a suitable economic return. The study was performed in the manner prescribed by the Department of Energy. It was based on the reservoir study which was made by Evans, Carey and Crozier, and which had an effective date of May 1, 1986. The proposed MER differs from that in the study only as a result of injection rates which vary slightly from those assumed in the latter. Each of the sections of this MER proposal contains a discussion, if appropriate, plus such graphical or tabular presentations as are necessary to explain and/or support the conclusions contained therein.

  14. 76 FR 68636 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... Thielert Aircraft Engines GmbH (TAE) Models TAE 125-01 and TAE 125- 02-99 reciprocating engines. That AD... Register approved the incorporation by reference of Thielert Aircraft Engines GmbH Service Bulletin (SB) No..., 2010), and adding the following new AD: 2011-23-01 Thielert Aircraft Engines GmbH: Amendment...

  15. Ionic Liquids as Novel Lubricants and Additives for Diesel Engine Applications

    SciTech Connect

    Qu, Jun; Blau, Peter Julian; Dai, Sheng; Luo, Huimin; Meyer III, Harry M

    2009-01-01

    The lubricating properties of two ionic liquids with the same anion but different cations, one ammonium IL [C8H17]3NH.Tf2N and one imidazolium IL C10mim.Tf2N, were evaluated both in neat form and as oil additives. Experiments were conducted using a standardized reciprocating sliding test using a segment of a Cr-plated diesel engine piston ring against a grey cast iron flat specimen with simulated honing marks as on the engine cylinder liner. The selected ionic liquids were benchmarked against conventional hydrocarbon oils. Substantial friction and wear reductions, up to 55% and 34%, respectively, were achieved for the neat ionic liquids compared to a fully-formulated 15W40 engine oil. Adding 5 vol% ILs into mineral oil has demonstrated significant improvement in the lubricity. One blend even outperformed the 15W40 engine oil with 9% lower friction and 34% less wear. Lubrication regime modeling, worn surface morphology examination, and surface chemical analysis were conducted to help understand the lubricating mechanisms for ionic liquids. Results suggest great potential for using ionic liquids as base lubricants or lubricant additives for diesel engine applications.

  16. Crude oil desalting process

    SciTech Connect

    Naeger, D.P.; Perugini, J.J.

    1992-05-19

    This patent describes a method for removing chlorides from crude oil during processing in a petroleum refinery desalter wash water operation. It comprises adding to the wash water or the crude oil upstream of the desalter a sufficient amount for the purpose of a composition comprising an organic amine with a pKb of from 2 to 6 and in which 1 to 18 carbon atoms are present per nitrogen atom and potassium hydroxide, the composition being mixed with the crude oil in the desalter to remove the chlorides from the crude oil at the desalter.

  17. Adding a Woman's Touch.

    ERIC Educational Resources Information Center

    Levine, Dana

    1985-01-01

    "Females in Engineering, Methods, Motivation, and Experience" (FEMME) is a precollege program at New Jersey Institute of Technology giving academically talented ninth-grade girls an introduction to engineering. Four experiments (windmill building, burglar alarm construction, electrochemistry, and spatial reasoning activities) helpful in achieving…

  18. ADS pilot program Plan

    NASA Technical Reports Server (NTRS)

    Clauson, J.; Heuser, J.

    1981-01-01

    The Applications Data Service (ADS) is a system based on an electronic data communications network which will permit scientists to share the data stored in data bases at universities and at government and private installations. It is designed to allow users to readily locate and access high quality, timely data from multiple sources. The ADS Pilot program objectives and the current plans for accomplishing those objectives are described.

  19. 14 CFR 27.1011 - Engines: General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engines: General. 27.1011 Section 27.1011... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine must... maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure...

  20. 14 CFR 29.1011 - Engines: general.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engines: general. 29.1011 Section 29.1011... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1011 Engines: general. (a) Each engine... the maximum allowable oil consumption of the engine under the same conditions, plus a suitable...

  1. 14 CFR 27.1011 - Engines: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engines: General. 27.1011 Section 27.1011... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine must... maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure...

  2. 14 CFR 29.1011 - Engines: general.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engines: general. 29.1011 Section 29.1011... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1011 Engines: general. (a) Each engine... the maximum allowable oil consumption of the engine under the same conditions, plus a suitable...

  3. 76 FR 8661 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ...-14-07, Amendment 39-15602 (73 FR 39574), for certain fuel injected reciprocating engines manufactured... Directives; Lycoming Engines, Fuel Injected Reciprocating Engines AGENCY: Federal Aviation Administration... airworthiness directive (AD) that applies to certain fuel injected reciprocating engines manufactured...

  4. 14 CFR 23.1013 - Oil tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Expansion space. Oil tank expansion space must be provided so that— (1) Each oil tank used with a reciprocating engine has an expansion space of not less than the greater of 10 percent of the tank capacity or 0.5 gallon, and each oil tank used with a turbine engine has an expansion space of not less than...

  5. 14 CFR 29.1013 - Oil tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... oil tank installation must meet the requirements of § 29.967. (b) Expansion space. Oil tank expansion space must be provided so that— (1) Each oil tank used with a reciprocating engine has an expansion... used with a turbine engine has an expansion space of not less than 10 percent of the tank capacity;...

  6. 14 CFR 29.1013 - Oil tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... oil tank installation must meet the requirements of § 29.967. (b) Expansion space. Oil tank expansion space must be provided so that— (1) Each oil tank used with a reciprocating engine has an expansion... used with a turbine engine has an expansion space of not less than 10 percent of the tank capacity;...

  7. 14 CFR 23.1013 - Oil tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Expansion space. Oil tank expansion space must be provided so that— (1) Each oil tank used with a reciprocating engine has an expansion space of not less than the greater of 10 percent of the tank capacity or 0.5 gallon, and each oil tank used with a turbine engine has an expansion space of not less than...

  8. 14 CFR 29.1013 - Oil tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... oil tank installation must meet the requirements of § 29.967. (b) Expansion space. Oil tank expansion space must be provided so that— (1) Each oil tank used with a reciprocating engine has an expansion... used with a turbine engine has an expansion space of not less than 10 percent of the tank capacity;...

  9. Extended service 5w-40 motor oil

    SciTech Connect

    Schiemen, R.D.

    1983-09-06

    An extended drain 5W-40 motor oil composition for internal combustion engines comprises a base oil component of one or more solvent extracted mineral oils and a high refractory mineral oil, a V.I. improver, and preferably other suitable lube oil additives. The finished oil formulation has characteristics of minimal viscosity at low temperatures, low volatility at higher temperatures, and stable viscosity over extended use.

  10. Repellent effect of plant essential oils against Aedes albopictus.

    PubMed

    Yang, Pin; Ma, Yajun

    2005-12-01

    Six essential oils: asteraceae oil, rutaceae oil, mentha piperta oil, carvacryl oil, citronella oil, and eucalyptus oil were tested for evaluation of their repellent effects against Aedes albopictus mosquitoes under laboratory conditions. Only citronella oil and eucalyptus oil were tested with human beings. There was considerable protection for mice. Carvacryl oil (7%) provided 100% protection for mice after 7 h. Eucalyptus oil (15%) gave protection to humans for least 3 h; the protection time was prolonged to 5 h after adding 5% vanillin. The mixture could be developed into a practical product after the field evaluation. PMID:16599157

  11. Products from vegetable oils

    SciTech Connect

    Bagby, M.O.

    1995-12-01

    Vegetable oils serve various industrial applications such as plasticizers, emulsifiers, surfactants, plastics and resins. Research and development approaches may take advantage of natural properties of the oils. More often it is advantageous to modify those properties for specific applications. One example is the preparation of ink vehicles using vegetable oils in the absence of petroleum. They are cost competitive with petroleum-based inks with similar quality factors. Vegetable oils have potential as renewable sources of fuels for the diesel engine. However, several characteristics can restrict their use. These include poor cold-engine startup, misfire and for selected fuels, high pour point and cloud point temperatures. Other characteristics include incomplete combustion causing carbon buildup, lube oil dilution and degradation, and elevated NO{sub x} emissions. Precombustion and fuel quality data are presented as a tool for understanding and solving these operational and durability problems.

  12. 78 FR 54385 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration... directive (AD) for various aircraft equipped with Rotax Aircraft Engines 912 A Series Engine. This AD...; phone: +43 7246 601 0; fax: +43 7246 601 9130; Internet: http://www.rotax-aircraft-engines.com . You...

  13. Effect of ZnO nanoparticles in R290/R600a (50/50) based vapour compression refrigeration system added via lubricant oil on compressor suction and discharge characteristics

    NASA Astrophysics Data System (ADS)

    Kumar, Ravinder; Singh, Jagdev

    2016-10-01

    The primary source of energy consumption in a vapour compression refrigeration system is a compressor. The possibility of a reduction in the work of compression may leads to enhance the compressor suction and discharge characteristics and the overall performance of the refrigeration system. The present experimental investigation based upon the study of ZnO nanoparticles in a vapour compression refrigeration system using hydrocarbon blend R290/R600a (50/50) as a refrigerant. The zinc oxide nanoparticles are appended with system refrigerant via compressor lubricating oil. The results observed that by using different weight concentrations of nanoparticles in R290/R600a refrigeration system, both the compressor suction and discharge pressures and temperatures were reduced compared to conventional system. The viscosity of mineral oil with the addition of nanoparticles increases. The compressor energy consumption was reduced by 7.48 % using (0.2-1.0) wt% concentrations of nanoparticles. The COP of the refrigeration system has been increased by about 46 % with the addition of nanoparticles. Thus, the ZnO nanoparticles worked efficiently in the R290/R600a refrigeration system.

  14. What Value "Value Added"?

    ERIC Educational Resources Information Center

    Richards, Andrew

    2015-01-01

    Two quantitative measures of school performance are currently used, the average points score (APS) at Key Stage 2 and value-added (VA), which measures the rate of academic improvement between Key Stage 1 and 2. These figures are used by parents and the Office for Standards in Education to make judgements and comparisons. However, simple…

  15. Assessment of remaining recoverable oil in selected major oil fields of the Permian Basin, Texas and New Mexico

    USGS Publications Warehouse

    Tennyson, Marilyn E.; Cook, Troy A.; Charpentier, Ronald R.; Gautier, Donald L.; Klett, Timothy R.; Verma, Mahendra K.; Ryder, Robert T.; Attanasi, E.D.; Freeman, P.A.; Le, Phoung A.

    2012-01-01

    The U.S. Geological Survey (USGS) recently completed an estimate of technically recoverable, conventional oil in selected oil fields in the Permian Basin in west Texas and southeastern New Mexico. The mean total volume of potential additional oil resources that might be added using improved oil-recovery technologies was estimated to be about 2.7 billion barrels of oil.

  16. Canola, corn and vegetable oils as alternative for wheat germ oil in fruit fly liquid larval diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four wheat germ oil alternatives (corn oil, vegetable oil, canola oil with 10% vitamin E, and canola oil with 20% vitamin E) purchased from a Hawaii local supermarket were added into a fruit fly liquid larval diet as a supplement for rearing fruit fly larvae and were evaluated for the possibility to...

  17. Introducing ADS Labs

    NASA Astrophysics Data System (ADS)

    Accomazzi, Alberto; Henneken, E.; Grant, C. S.; Kurtz, M. J.; Di Milia, G.; Luker, J.; Thompson, D. M.; Bohlen, E.; Murray, S. S.

    2011-05-01

    ADS Labs is a platform that ADS is introducing in order to test and receive feedback from the community on new technologies and prototype services. Currently, ADS Labs features a new interface for abstract searches, faceted filtering of results, visualization of co-authorship networks, article-level recommendations, and a full-text search service. The streamlined abstract search interface provides a simple, one-box search with options for ranking results based on a paper relevancy, freshness, number of citations, and downloads. In addition, it provides advanced rankings based on collaborative filtering techniques. The faceted filtering interface allows users to narrow search results based on a particular property or set of properties ("facets"), allowing users to manage large lists and explore the relationship between them. For any set or sub-set of records, the co-authorship network can be visualized in an interactive way, offering a view of the distribution of contributors and their inter-relationships. This provides an immediate way to detect groups and collaborations involved in a particular research field. For a majority of papers in Astronomy, our new interface will provide a list of related articles of potential interest. The recommendations are based on a number of factors, including text similarity, citations, and co-readership information. The new full-text search interface allows users to find all instances of particular words or phrases in the body of the articles in our full-text archive. This includes all of the scanned literature in ADS as well as a select portion of the current astronomical literature, including ApJ, ApJS, AJ, MNRAS, PASP, A&A, and soon additional content from Springer journals. Fulltext search results include a list of the matching papers as well as a list of "snippets" of text highlighting the context in which the search terms were found. ADS Labs is available at http://adslabs.org

  18. The toxicity of commercial jet oils.

    PubMed

    Winder, Chris; Balouet, Jean-Christophe

    2002-06-01

    Jet oils are specialized synthetic oils used in high-performance jet engines. They have an appreciable hazard due to toxic ingredients, but are safe in use provided that maintenance personnel follow appropriate safety precautions and the oil stays in the engine. Aircraft engines that leak oil may expose others to the oils through uncontrolled exposure. Airplanes that use engines as a source of bleed air for cabin pressurization may have this source contaminated by the oil if an engine leaks. Examination of the ingredients of the oil indicates that at least two ingredients are hazardous: N-phenyl-1-naphthylamine (a skin sensitizer) and tricresyl phosphate (a neurotoxicant, if ortho-cresyl isomers are present). Publicly available information such as labels and MSDS understates the hazards of such ingredients and in the case of ortho-cresyl phosphates by several orders of magnitude.

  19. The toxicity of commercial jet oils.

    PubMed

    Winder, Chris; Balouet, Jean-Christophe

    2002-06-01

    Jet oils are specialized synthetic oils used in high-performance jet engines. They have an appreciable hazard due to toxic ingredients, but are safe in use provided that maintenance personnel follow appropriate safety precautions and the oil stays in the engine. Aircraft engines that leak oil may expose others to the oils through uncontrolled exposure. Airplanes that use engines as a source of bleed air for cabin pressurization may have this source contaminated by the oil if an engine leaks. Examination of the ingredients of the oil indicates that at least two ingredients are hazardous: N-phenyl-1-naphthylamine (a skin sensitizer) and tricresyl phosphate (a neurotoxicant, if ortho-cresyl isomers are present). Publicly available information such as labels and MSDS understates the hazards of such ingredients and in the case of ortho-cresyl phosphates by several orders of magnitude. PMID:12123648

  20. 14 CFR 27.1011 - Engines: General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... not above that safe for continuous operation. (b) The usable oil capacity of each system may not be... circulation and cooling. Instead of a rational analysis of endurance and consumption, a usable oil capacity of... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine...

  1. 14 CFR 27.1011 - Engines: General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... not above that safe for continuous operation. (b) The usable oil capacity of each system may not be... circulation and cooling. Instead of a rational analysis of endurance and consumption, a usable oil capacity of... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine...

  2. 14 CFR 27.1011 - Engines: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... not above that safe for continuous operation. (b) The usable oil capacity of each system may not be... circulation and cooling. Instead of a rational analysis of endurance and consumption, a usable oil capacity of... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine...

  3. World oil

    NASA Astrophysics Data System (ADS)

    Sweeney, J. L.

    1982-06-01

    Results obtained through the application of 10 prominent world oil or world energy models to 12 scenarios are reported. These scenarios were designed to bound the range of likely future world oil market outcomes. Conclusions relate to oil market trends, impacts of policies on oil prices, security of oil supplies, impacts of policies on oil security problems, use of the oil import premium in policymaking, the transition to oil substitutes, and the state of the art of world oil modeling.

  4. Emission profile of 18 carbonyl compounds, CO, CO 2, and NO x emitted by a diesel engine fuelled with diesel and ternary blends containing diesel, ethanol and biodiesel or vegetable oils

    NASA Astrophysics Data System (ADS)

    Guarieiro, Lílian Lefol Nani; de Souza, Amanda Figueiredo; Torres, Ednildo Andrade; de Andrade, Jailson B.

    The impact of vehicular emissions on air depends, among other factors, on the composition of fuel and the technology used to build the engines. The reduction of vehicular emissions requires changes in the fuel composition, and improving the technologies used in the manufacturing of engines and for the after-treatment of gases. In general, improvements to diesel engines have targeted not only emission reductions, but also reductions in fuel consumption. However, changes in the fuel composition have been shown to be a more rapid and effective alternative to reduce pollution. Some factors should been taken into consideration when searching for an alternative fuel to be used in diesel engines, such as emissions, fuel stability, availability and its distribution, as well as its effects on the engine durability. In this work, 45 fuel blends were prepared and their stability was evaluated. The following mixtures (v/v/v) were stable for the 90-day period and were used in the emission study: diesel/ethanol - 90/10%, diesel/ethanol/soybean biodiesel - 80/15/5%, diesel/ethanol/castor biodiesel - 80/15/5%, diesel/ethanol/residual biodiesel - 80/15/5%, diesel/ethanol/soybean oil - 90/7/3%, and diesel/ethanol/castor oil - 90/7/3%. The diesel/ethanol fuel showed higher reduction of NO x emission at a lower load (2 kW) when compared with pure diesel. The other fuels showed a decrease of NO x emissions in the ranges of 6.9-75% and 4-85% at 1800 rpm and 2000 rpm, respectively. The combustion efficiencies of the diesel can be enhanced by the addition of the oxygenate fuels, like ethanol and biodiesel/vegetable oil, resulting in a more complete combustion in terms of NO x emission. In the case of CO 2 the decreases were in the ranges of 5-24% and 4-6% at 1800 rpm and 2000 rpm, respectively. Meanwhile, no differences were observed in CO emission. The carbonyl compounds (CC) studied were formaldehyde, acetaldehyde, propionaldehyde, acrolein, acetone, crotonaldehyde, butyraldehyde

  5. Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass.

    PubMed

    Fabbri, Daniele; Torri, Cristian

    2016-04-01

    Biogas is a mixture of CO2 and CH4 produced by a consortia of Bacteria and Archeae operating in anaerobic digestion (AD) plants. Biogas can be burnt as such in engines to produce electricity and heat or upgraded into biomethane. Biomethane is a drop-in fuel that can be injected in the natural gas grid or utilised as a transport fuel. While a wide array of biomass feedstock can be degraded into biogas, unconverted lignin, hemicellulose and cellulose end up in the co-product digestate leaving a large portion of chemical energy unutilised. Pyrolysis (Py) transforms in a single step and without chemical reagents the lignocellulose matrix into gaseous (syngas), liquid (bio-oil, pyrolysis oil) and solid (biochar) fractions for the development of renewable fuels and materials. The Py route applied downstream to AD is actively investigated in order to valorise the solid digestate presently destined only for soil applications. Coupling Py upstream to AD is an emerging field of research aimed at expanding the feedstock towards biologically recalcitrant substrates (wood, paper, sludge). The biomethanation potential was demonstrated for gaseous (H2/CO) and water soluble pyrolysis products, while the influence of insoluble pyrolytic lignin remains fairly unexplored. Biochar can promote the production of biomethane by acting as a support for microorganism colonisation, conductor for direct interspecies electron transfer, sorbent for hydrophobic inhibitors, and reactant for in situ biogas upgrading. Enhancing the advantages (carbon source) over the side effects (toxicity) of Py fractions represents the main challenge of Py-AD. This can be addressed by increasing the selectivity of the thermochemical process or improving the ecological flexibility of mixed bacterial consortia towards chemically complex environments.

  6. Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass.

    PubMed

    Fabbri, Daniele; Torri, Cristian

    2016-04-01

    Biogas is a mixture of CO2 and CH4 produced by a consortia of Bacteria and Archeae operating in anaerobic digestion (AD) plants. Biogas can be burnt as such in engines to produce electricity and heat or upgraded into biomethane. Biomethane is a drop-in fuel that can be injected in the natural gas grid or utilised as a transport fuel. While a wide array of biomass feedstock can be degraded into biogas, unconverted lignin, hemicellulose and cellulose end up in the co-product digestate leaving a large portion of chemical energy unutilised. Pyrolysis (Py) transforms in a single step and without chemical reagents the lignocellulose matrix into gaseous (syngas), liquid (bio-oil, pyrolysis oil) and solid (biochar) fractions for the development of renewable fuels and materials. The Py route applied downstream to AD is actively investigated in order to valorise the solid digestate presently destined only for soil applications. Coupling Py upstream to AD is an emerging field of research aimed at expanding the feedstock towards biologically recalcitrant substrates (wood, paper, sludge). The biomethanation potential was demonstrated for gaseous (H2/CO) and water soluble pyrolysis products, while the influence of insoluble pyrolytic lignin remains fairly unexplored. Biochar can promote the production of biomethane by acting as a support for microorganism colonisation, conductor for direct interspecies electron transfer, sorbent for hydrophobic inhibitors, and reactant for in situ biogas upgrading. Enhancing the advantages (carbon source) over the side effects (toxicity) of Py fractions represents the main challenge of Py-AD. This can be addressed by increasing the selectivity of the thermochemical process or improving the ecological flexibility of mixed bacterial consortia towards chemically complex environments. PMID:26948108

  7. Regulatory steps associated with use of value-added recombinant proteins and peptides screened in high-throughput for expression in genetically engineered starch and cellulosic fuel ethanol yeast strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant proteins expressed in animals have been a public concern as a perceived risk to the consumer. Animals are currently being treated with genetically engineered biologicals, such as growth hormone, or fed genetically modified plants. Similarly, various commercially-valuable proteins or pe...

  8. LD in AD 2000.

    ERIC Educational Resources Information Center

    Smith, Bert Kruger

    The author discusses potential problems and benefits for learning disabled (LD) students in the year 2000. Considered are developments in three areas: human engineering (such as the role of amniocentesis in prevention of disabilities), education (including new audiovisual technology and a restructuring of secondary education), and human…

  9. Permanent oil shock

    SciTech Connect

    Ivanhoe, L.F.

    1987-05-01

    The two basic factors of the world's oil supply are (1) geologic (discoveries) and (2) economic (distribution). Petroleum geologist have done such a good job of finding oil that it looks as easy as growing crops, and their engineers deliver the petroleum like clockwork. Consequently, the public and many planners consider global distribution to be the only supply problem and attribute all price swings to simple economics. They erroneously ignore critical long-term geological facts and assume that cash spent = oil found. This premise is invalid where no oil exists or where prospects are poor. Most people are unaware that the global quality of geological/oil prospects has declined so much that the amount of new oil found per wildcat well has dropped 50% since a 1969 peak. Discoveries of the most critical but easiest to find giant fields (each with over 500 million bbl of recoverable oil) are now stalled at 315 known worldwide. They are simply no longer finding enough new crude oil to replace the world's huge consumption of 20 billion bbl (840 billion gal) per year. OPEC oil price shocks no. 1 (1973) and no. 2 (1979) were relatively easy to handle. During the 1960s, several new giant non-OPEC oil fields and provinces were discovered worldwide offshore and in Arctic Alaska by the exploratory breakthrough of electronic digital seismic surveys, and engineers perfected the requisite marine production technology. By lucky coincidence, these virgin giant fields came on stream at just the right time during the 1970s, and the OPEC nations were temporarily brought to heel. But the 1986 oil glut reconfirmed that Saudi Arabia can make - or break - the price of any fuel in the world - at will. Non-OPEC oil production is now topping out and will be declining virtually everywhere within 10 years.

  10. Integrated palm oil processing

    SciTech Connect

    Compere, A.L.; Griffith, W.L.; Googin, J.M.

    1983-01-01

    Tree palms are a promising source of fuel extenders and substitutes. They are perennials which bear oil for a period of two to three decades after a roughly four year preliminary growth period. Tree palms are now one of the most efficient energy crops: the best modern varieties can provide up to 6 tonnes per hectare per year of mesocarp and kernal oils. Palms are particularly attractive in areas where more conventional farming would pose a significant threat of laterization of cause major ecological problems. Technology for palm oil production is can range between village level manual operations and highly industrialized mills. Process energy is often supplied by combustion of byproducts. Although palm oil is a good energy crop, its physical and combustion properties preclude most use in conventional diesel engines, although palm oil could be directly blended with residual fuel oils for use in some large engines. At present, two uses for palm oil as a diesel fuel extender or substitute appear attractive: microemulsion blends using palm soapstock and monoesters produced by exchanging small alcohols for the glycerol in triglycerides. The amount of alcohols required for conversion of a substantial fraction of palm oil or palm oil soapstock to fuel extenders or substitutes is proportionately small, and, to a major extent, can be supplied by palm processing waste materials. Fermentation and gasification produced alcohols in the one to four carbon range are suitable for use in formulating palm oil based fuels. On a stoichiometric basis, it appears that the value of the palm oil and alcohols are very close to their value as export items. Use of these palm oil fuels could help to decrease balance of payments problems for developing countries, as well as provide a secure market for agricultural products and improved rural employment.

  11. Two Virasoro symmetries in stringy warped AdS3

    NASA Astrophysics Data System (ADS)

    Compère, Geoffrey; Guica, Monica; Rodriguez, Maria J.

    2014-12-01

    We study three-dimensional consistent truncations of type IIB supergravity which admit warped AdS3 solutions. These theories contain subsectors that have no bulk dynamics. We show that the symplectic form for these theories, when restricted to the non-dynamical subsectors, equals the symplectic form for pure Einstein gravity in AdS3. Consequently, for each consistent choice of boundary conditions in AdS3, we can define a consistent phase space in warped AdS3 with identical conserved charges. This way, we easily obtain a Virasoro × Virasoro asymptotic symmetry algebra in warped AdS3; two different types of Virasoro × Kač-Moody symmetries are also consistent alternatives.

  12. Rheological properties of heavy oils and heavy oil emulsions

    SciTech Connect

    Khan, M.R.

    1996-06-01

    In this study, the author investigated the effects of a number of process variables such as shear rate, measurement temperature, pressure, the influence of pretreatment, and the role of various amounts of added water on the rheology of the resulting heavy oil or the emulsion. Rheological properties of heavy oils and the corresponding emulsions are important from transportation and processing standpoints.

  13. Why ceramic engines?

    NASA Technical Reports Server (NTRS)

    Stadler, H. L.

    1984-01-01

    Oil is still a problem for the U.S. and its allies. Transportation uses 61 percent of U.S. oil and its share is increasing, so more efficient technology should be concentrated there. Trucks' share of oil use is increasing because they are already much more efficient than autos. The primary truck opportunities are streamlining, more efficient engines, and shifting freight to railroads. More efficient engines are possible using ceramics to allow elimination of cooling systems and better use of waste exhaust heat. A 60 percent improvement seems possible if ceramics can be made tough enough and durable enough.

  14. [Three-Iindex-Value Method for Rapid Screening Unqualified Vegetable Oil].

    PubMed

    He, Wen-xuan; Hong, Gui-shui; Fang, Run; Cai, Xian-chun; Huang, Sheng

    2015-04-01

    In the present study, by measuring the A3 005 (representing unsaturation), A985 (representing conjugated fatty acids), A960 + A985 (representing trans-fatty acid ) of southern common vegetable oils (peanut oil, corn oil, canola oil, soybean oil, sunflower oil, tea seed oil and olive oil), "waste oil" and overdue vegetable oils, the pass-setting-range of these three index values for the vegetable oils was obtained. On this basis, a method for rapid screening unqualified vegetable oil (expired, adding low-cost oil, adding "waste oil") was established. The method effectively improved the monitoring efficiency of vegetable oil. With this method of screening a number of suspected substandard oils were proved unqualified by determination of fatty acid composition and 11, 12, 13, 17 fatty acid content. Through the combination of several detection methods, the causes for disqualification of vegetable oils can be further inferred. PMID:26197591

  15. [Three-Iindex-Value Method for Rapid Screening Unqualified Vegetable Oil].

    PubMed

    He, Wen-xuan; Hong, Gui-shui; Fang, Run; Cai, Xian-chun; Huang, Sheng

    2015-04-01

    In the present study, by measuring the A3 005 (representing unsaturation), A985 (representing conjugated fatty acids), A960 + A985 (representing trans-fatty acid ) of southern common vegetable oils (peanut oil, corn oil, canola oil, soybean oil, sunflower oil, tea seed oil and olive oil), "waste oil" and overdue vegetable oils, the pass-setting-range of these three index values for the vegetable oils was obtained. On this basis, a method for rapid screening unqualified vegetable oil (expired, adding low-cost oil, adding "waste oil") was established. The method effectively improved the monitoring efficiency of vegetable oil. With this method of screening a number of suspected substandard oils were proved unqualified by determination of fatty acid composition and 11, 12, 13, 17 fatty acid content. Through the combination of several detection methods, the causes for disqualification of vegetable oils can be further inferred.

  16. Leading Change, Adding Value.

    PubMed

    Evans, Nick

    2016-09-12

    Essential facts Leading Change, Adding Value is NHS England's new nursing and midwifery framework. It is designed to build on Compassion in Practice (CiP), which was published 3 years ago and set out the 6Cs: compassion, care, commitment, courage, competence and communication. CiP established the values at the heart of nursing and midwifery, while the new framework sets out how staff can help transform the health and care sectors to meet the aims of the NHS England's Five Year Forward View. PMID:27615573

  17. Treatment of vegetable oils

    SciTech Connect

    Bessler, T.R.

    1986-05-13

    A process is described for preparing an injectable vegetable oil selected from the group consisting of soybean oil and sunflower oil and mixtures thereof which comprise: (a) first treating the vegetable oil at a temperature of 80/sup 0/C to about 130/sup 0/C with an acid clay; (b) deodorizing the vegetable oil with steam at a temperature of 220/sup 0/C to about 280/sup 0/C and applying a vacuum to remove volatilized components; (c) treating the deodorized vegetable oil, at a temperature of from about 10/sup 0/C to about 60/sup 0/C, with an acid clay to reduce the content of a member selected from the group consisting of diglycerides, tocopherol components, and trilinolenin and mixtures thereof, wherein the acid clay is added in a weight ratio to the deoderized vegetable oil of from about 1:99 to about 1:1; and (d) thereafter conducting a particulate filtration to remove a substantial portion of the acid clay from the vegetable oil, wherein the filtration is accomplished with filters having a pore size of from about 0.1 to 0.45 microns, thereby obtaining the injectable oil.

  18. Technical assessment of an oil-fired residential cogeneration system

    SciTech Connect

    McDonald, R.J.

    1993-01-01

    The definition of cogeneration, within the context of this project, is the simultaneous production of electricity and heat energy from a single machine. This report will present the results of an engineering analysis of the efficiency and energy-conservation potential associated with a unique residential oil-fired cogeneration system that provides both heat and electric power. The system operates whenever a thermostat signals a call for heat in the home, just as a conventional heating system. However, this system has the added benefit of cogenerating electricity whenever it is running to provide space heating comfort. The system is designed to burn No. 2 heating oil, which is consumed in an 11-horsepower, two cylinder, 56.75-cubic-inch, 1850-RPM diesel engine. This unit is the only pre-production prototype residential No. 2 oil-fired cogeneration system known to exist in the world. As such, it is considered a landmark development in the field of oil-heat technology.

  19. Co-processing of carbonaceous solids and petroleum oil

    DOEpatents

    Gupta, Avinash; Greene, Marvin I.

    1992-01-01

    In a process for producing distillates from coal by a first stage thermal liquefaction followed by a catalytic hydrogenation, liquefaction solvent is added at points spaced over the length of the thermal liquefaction heater. Coal may be co-processed with petroleum oil by adding pre-hydrogenated oil to the first stage or unhydrogenated oil to the second stage.

  20. Corn oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn oil is a popular vegetable oil in the US and in many other countries. Because of its pleasant nutty flavor, its good stability, and its popularity for making margarines, corn oil has long been considered a premium vegetable oil. Among all of the vegetable oils, corn oil ranks tenth in terms of ...

  1. Nonlinear realization of local symmetries of AdS space

    SciTech Connect

    Clark, T.E.; Love, S.T.; Nitta, Muneto; Veldhuis, T. ter

    2005-10-15

    Coset methods are used to construct the action describing the dynamics associated with the spontaneous breaking of the local symmetries of AdS{sub d+1} space due to the embedding of an AdS{sub d} brane. The resulting action is an SO(2,d) invariant AdS form of the Einstein-Hilbert action, which in addition to the AdS{sub d} gravitational vielbein, also includes a massive vector field localized on the brane. Its long wavelength dynamics is the same as a massive Abelian vector field coupled to gravity in AdS{sub d} space.

  2. Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: essential oil (thyme oil) and cationic surfactant (lauric arginate).

    PubMed

    Chang, Yuhua; McLandsborough, Lynne; McClements, David Julian

    2015-04-01

    The influence of a cationic surfactant (lauric arginate, LAE) on the physical properties and antimicrobial efficacy of thyme oil nanoemulsions was investigated. Nanoemulsions prepared from pure thyme oil were highly unstable due to Ostwald ripening, but they could be stabilized by adding a ripening inhibitor (corn oil) to the oil phase prior to homogenisation. The loading capacity and antimicrobial efficacy of thyme oil nanoemulsions were significantly increased by adding LAE. In the absence of LAE, at least 60 wt% corn oil had to be added to the lipid phase to inhibit Ostwald ripening; but in the presence of 0.1 wt% LAE, only 30 wt% corn oil was needed. LAE addition substantially increased the antimicrobial efficacy of the thyme oil nanoemulsions: 200 μg/ml thyme oil was needed to inhibit growth of a spoilage yeast (Zygosaccharomyces bailii) if LAE was added, whereas ⩾ 400 μg/ml was needed in the absence of LAE.

  3. 78 FR 1728 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    .... SUMMARY: We are adopting a new airworthiness directive (AD) for all Thielert Aircraft Engines GmbH (TAE... the following new AD: 2012-26-12 Thielert Aircraft Engines GmbH: Amendment 39-17307; Docket No. FAA... Thielert Aircraft Engines (TAE) TAE 125- 02-99 and TAE 125-02-114 reciprocating engines. (d) Reason This...

  4. Dressing phases of AdS3/CFT2

    NASA Astrophysics Data System (ADS)

    Borsato, Riccardo; Ohlsson Sax, Olof; Sfondrini, Alessandro; Stefański, Bogdan, Jr.; Torrielli, Alessandro

    2013-09-01

    We determine the all-loop dressing phases of the AdS3/CFT2 integrable system related to type IIB string theory on AdS3×S3×T4 by solving the recently found crossing relations and studying their singularity structure. The two resulting phases present a novel structure with respect to the ones appearing in AdS5/CFT4 and AdS4/CFT3. In the strongly coupled regime, their leading order reduces to the universal Arutyunov-Frolov-Staudacher phase as expected. We also compute their subleading order and compare it with recent one-loop perturbative results and comment on their weak-coupling expansion.

  5. Bubbling geometries for AdS2× S2

    NASA Astrophysics Data System (ADS)

    Lunin, Oleg

    2015-10-01

    We construct BPS geometries describing normalizable excitations of AdS2×S2. All regular horizon-free solutions are parameterized by two harmonic functions in R 3 with sources along closed curves. This local structure is reminiscent of the "bubbling solutions" for the other AdS p ×S q cases, however, due to peculiar asymptotic properties of AdS2, one copy of R 3 does not cover the entire space, and we discuss the procedure for analytic continuation, which leads to a nontrivial topological structure of the new geometries. We also study supersymmetric brane probes on the new geometries, which represent the AdS2×S2 counterparts of the giant gravitons.

  6. Envera Variable Compression Ratio Engine

    SciTech Connect

    Charles Mendler

    2011-03-15

    the compression ratio can be raised (to as much as 18:1) providing high engine efficiency. It is important to recognize that for a well designed VCR engine cylinder pressure does not need to be higher than found in current production turbocharged engines. As such, there is no need for a stronger crankcase, bearings and other load bearing parts within the VCR engine. The Envera VCR mechanism uses an eccentric carrier approach to adjust engine compression ratio. The crankshaft main bearings are mounted in this eccentric carrier or 'crankshaft cradle' and pivoting the eccentric carrier 30 degrees adjusts compression ratio from 9:1 to 18:1. The eccentric carrier is made up of a casting that provides rigid support for the main bearings, and removable upper bearing caps. Oil feed to the main bearings transits through the bearing cap fastener sockets. The eccentric carrier design was chosen for its low cost and rigid support of the main bearings. A control shaft and connecting links are used to pivot the eccentric carrier. The control shaft mechanism features compression ratio lock-up at minimum and maximum compression ratio settings. The control shaft method of pivoting the eccentric carrier was selected due to its lock-up capability. The control shaft can be rotated by a hydraulic actuator or an electric motor. The engine shown in Figures 3 and 4 has a hydraulic actuator that was developed under the current program. In-line 4-cylinder engines are significantly less expensive than V engines because an entire cylinder head can be eliminated. The cost savings from eliminating cylinders and an entire cylinder head will notably offset the added cost of the VCR and supercharging. Replacing V6 and V8 engines with in-line VCR 4-cylinder engines will provide high fuel economy at low cost. Numerous enabling technologies exist which have the potential to increase engine efficiency. The greatest efficiency gains are realized when the right combination of advanced and new technologies

  7. [Value-Added--Adding Economic Value in the Food Industry].

    ERIC Educational Resources Information Center

    Welch, Mary A., Ed.

    1989-01-01

    This booklet focuses on the economic concept of "value added" to goods and services. A student activity worksheet illustrates how the steps involved in processing food are examples of the concept of value added. The booklet further links food processing to the idea of value added to the Gross National Product (GNP). Discussion questions, a student…

  8. Action growth for AdS black holes

    NASA Astrophysics Data System (ADS)

    Cai, Rong-Gen; Ruan, Shan-Ming; Wang, Shao-Jiang; Yang, Run-Qiu; Peng, Rong-Hui

    2016-09-01

    Recently a Complexity-Action (CA) duality conjecture has been proposed, which relates the quantum complexity of a holographic boundary state to the action of a Wheeler-DeWitt (WDW) patch in the anti-de Sitter (AdS) bulk. In this paper we further investigate the duality conjecture for stationary AdS black holes and derive some exact results for the growth rate of action within the Wheeler-DeWitt (WDW) patch at late time approximation, which is supposed to be dual to the growth rate of quantum complexity of holographic state. Based on the results from the general D-dimensional Reissner-Nordström (RN)-AdS black hole, rotating/charged Bañados-Teitelboim-Zanelli (BTZ) black hole, Kerr-AdS black hole and charged Gauss-Bonnet-AdS black hole, we present a universal formula for the action growth expressed in terms of some thermodynamical quantities associated with the outer and inner horizons of the AdS black holes. And we leave the conjecture unchanged that the stationary AdS black hole in Einstein gravity is the fastest computer in nature.

  9. Lubrication from mixture of boric acid with oils and greases

    SciTech Connect

    Erdemir, A.

    1995-07-11

    Lubricating compositions are disclosed including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

  10. Lubrication from mixture of boric acid with oils and greases

    SciTech Connect

    Erdemir, Ali

    1995-01-01

    Lubricating compositions including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

  11. 14 CFR 25.1013 - Oil tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... oil tank installation must meet the requirements of § 25.967. (b) Expansion space. Oil tank expansion... expansion space of not less than the greater of 10 percent of the tank capacity or 0.5 gallon, and each oil tank used with a turbine engine must have an expansion space of not less than 10 percent of the...

  12. 14 CFR 25.1013 - Oil tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... oil tank installation must meet the requirements of § 25.967. (b) Expansion space. Oil tank expansion... expansion space of not less than the greater of 10 percent of the tank capacity or 0.5 gallon, and each oil tank used with a turbine engine must have an expansion space of not less than 10 percent of the...

  13. 14 CFR 25.1013 - Oil tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... oil tank installation must meet the requirements of § 25.967. (b) Expansion space. Oil tank expansion... expansion space of not less than the greater of 10 percent of the tank capacity or 0.5 gallon, and each oil tank used with a turbine engine must have an expansion space of not less than 10 percent of the...

  14. Active site engineering of the epoxide hydrolase from Agrobacterium radiobacter AD1 to enhance aerobic mineralization of cis-1,2-dichloroethylene in cells expressing an evolved toluene ortho-monooxygenase.

    PubMed

    Rui, Lingyun; Cao, Li; Chen, Wilfred; Reardon, Kenneth F; Wood, Thomas K

    2004-11-01

    Chlorinated ethenes are the most prevalent ground-water pollutants, and the toxic epoxides generated during their aerobic biodegradation limit the extent of transformation. Hydrolysis of the toxic epoxide by epoxide hydrolases represents the major biological detoxification strategy; however, chlorinated epoxyethanes are not accepted by known bacterial epoxide hydrolases. Here, the epoxide hydrolase from Agrobacterium radiobacter AD1 (EchA), which enables growth on epichlorohydrin, was tuned to accept cis-1,2-dichloroepoxyethane as a substrate by accumulating beneficial mutations from three rounds of saturation mutagenesis at three selected active site residues, Phe-108, Ile-219, and Cys-248 (no beneficial mutations were found at position Ile-111). The EchA F108L/I219L/C248I variant coexpressed with a DNA-shuffled toluene ortho-monooxygenase, which initiates attack on the chlorinated ethene, enhanced the degradation of cis-dichloroethylene (cis-DCE) an infinite extent compared with wild-type EchA at low concentrations (6.8 microm) and up to 10-fold at high concentrations (540 microm). EchA variants with single mutations (F108L, I219F, or C248I) enhanced cis-DCE mineralization 2.5-fold (540 microm), and EchA variants with double mutations, I219L/C248I and F108L/C248I, increased cis-DCE mineralization 4- and 7-fold, respectively (540 microm). For complete degradation of cis-DCE to chloride ions, the apparent Vmax/Km for the Escherichia coli strain expressing recombinant the EchA F108L/I219L/C248I variant was increased over 5-fold as a result of the evolution of EchA. The EchA F108L/I219L/C248I variant also had enhanced activity for 1,2-epoxyhexane (2-fold) and the natural substrate epichlorohydrin (6-fold).

  15. Superstring theory in AdS(3) and plane waves

    NASA Astrophysics Data System (ADS)

    Son, John Sang Won

    This thesis is devoted to the study of string theory in AdS 3 and its applications to recent developments in string theory. The difficulties associated with formulating a consistent string theory in AdS3 and its underlying SL(2, R) WZW model are explained. We describe how these difficulties can be overcome by assuming that the SL(2, R) WZW model contains spectral flow symmetry. The existence of spectral flow symmetry in the fully quantum treatment is proved by a calculation of the one-loop string partition function. We consider Euclidean AdS 3 with the time direction periodically identified, and compute the torus partition function in this background. The string spectrum can be reproduced by viewing the one-loop calculation as the free energy of a gas of strings, thus providing a rigorous proof of the results based on spectral flow arguments. Next, we turn to spacetimes that are quotients of AdS 3, which include the BTZ black hole and conical spaces. Strings propagating in the conical space are described by taking an orbifold of strings in AdS3. We show that the twisted states of these orbifolds can be obtained by fractional spectral flow. We show that the shift in the ground state energy usually associated with orbifold twists is absent in this case, and offer a unified framework in which to view spectral flow. Lastly, we consider the RNS superstrings in AdS 3 x S3 x M , where M may be K3 or T 4, based on supersymmetric extensions of SL(2, R) and SU(2) WZW models. We construct the physical states and calculate the spectrum. A subsector of this theory describes strings propagating in the six dimensional plane wave obtained by the Penrose limit of AdS3 x S3 x M . We reproduce the plane wave spectrum by taking J and the radius to infinity. We show that the plane wave spectrum actually coincides with the large J spectrum at fixed radius, i.e. in AdS3 x S3. Relation to some recent topics of interest such as the Frolov-Tseytlin string and strings with critical tension

  16. Compression relief engine brake

    SciTech Connect

    Meneely, V.A.

    1987-10-06

    A compression relief brake is described for four cycle internal-combustion engines, comprising: a pressurized oil supply; means for selectively pressurizing a hydraulic circuit with oil from the oil supply; a master piston and cylinder communicating with a slave piston and cylinder via the hydraulic circuit; an engine exhaust valve mechanically coupled to the engine and timed to open during the exhaust cycle of the engine the exhaust valve coupled to the slave piston. The exhaust valve is spring-based in a closed state to contact a valve seat; a sleeve frictionally and slidably disposed within a cavity defined by the slave piston which cavity communicates with the hydraulic circuit. When the hydraulic circuit is selectively pressurized and the engine is operating the sleeve entraps an incompressible volume of oil within the cavity to generate a displacement of the slave piston within the slave cylinder, whereby a first gap is maintained between the exhaust valve and its associated seat; and means for reciprocally activating the master piston for increasing the pressure within the previously pressurized hydraulic circuit during at least a portion of the expansion cycle of the engine whereby a second gap is reciprocally maintained between the exhaust valve and its associated seat.

  17. Entanglement entropy for free scalar fields in AdS

    NASA Astrophysics Data System (ADS)

    Sugishita, Sotaro

    2016-09-01

    We compute entanglement entropy for free massive scalar fields in anti-de Sitter (AdS) space. The entangling surface is a minimal surface whose boundary is a sphere at the boundary of AdS. The entropy can be evaluated from the thermal free energy of the fields on a topological black hole by using the replica method. In odd-dimensional AdS, exact expressions of the Rényi entropy S n are obtained for arbitrary n. We also evaluate 1-loop corrections coming from the scalar fields to holographic entanglement entropy. Applying the results, we compute the leading difference of entanglement entropy between two holographic CFTs related by a renormalization group flow triggered by a double trace deformation. The difference is proportional to the shift of a central charge under the flow.

  18. Asymptotically AdS spacetimes with a timelike Kasner singularity

    NASA Astrophysics Data System (ADS)

    Ren, Jie

    2016-07-01

    Exact solutions to Einstein's equations for holographic models are presented and studied. The IR geometry has a timelike cousin of the Kasner singularity, which is the less generic case of the BKL (Belinski-Khalatnikov-Lifshitz) singularity, and the UV is asymptotically AdS. This solution describes a holographic RG flow between them. The solution's appearance is an interpolation between the planar AdS black hole and the AdS soliton. The causality constraint is always satisfied. The entanglement entropy and Wilson loops are discussed. The boundary condition for the current-current correlation function and the Laplacian in the IR is examined. There is no infalling wave in the IR, but instead, there is a normalizable solution in the IR. In a special case, a hyperscaling-violating geometry is obtained after a dimensional reduction.

  19. New massive gravity and AdS(4) counterterms.

    PubMed

    Jatkar, Dileep P; Sinha, Aninda

    2011-04-29

    We show that the recently proposed Dirac-Born-Infeld extension of new massive gravity emerges naturally as a counterterm in four-dimensional anti-de Sitter space (AdS(4)). The resulting on-shell Euclidean action is independent of the cutoff at zero temperature. We also find that the same choice of counterterm gives the usual area law for the AdS(4) Schwarzschild black hole entropy in a cutoff-independent manner. The parameter values of the resulting counterterm action correspond to a c=0 theory in the context of the duality between AdS(3) gravity and two-dimensional conformal field theory. We rewrite this theory in terms of the gauge field that is used to recast 3D gravity as a Chern-Simons theory. PMID:21635026

  20. Detailed ultraviolet asymptotics for AdS scalar field perturbations

    NASA Astrophysics Data System (ADS)

    Evnin, Oleg; Jai-akson, Puttarak

    2016-04-01

    We present a range of methods suitable for accurate evaluation of the leading asymptotics for integrals of products of Jacobi polynomials in limits when the degrees of some or all polynomials inside the integral become large. The structures in question have recently emerged in the context of effective descriptions of small amplitude perturbations in anti-de Sitter (AdS) spacetime. The limit of high degree polynomials corresponds in this situation to effective interactions involving extreme short-wavelength modes, whose dynamics is crucial for the turbulent instabilities that determine the ultimate fate of small AdS perturbations. We explicitly apply the relevant asymptotic techniques to the case of a self-interacting probe scalar field in AdS and extract a detailed form of the leading large degree behavior, including closed form analytic expressions for the numerical coefficients appearing in the asymptotics.

  1. Holography and AdS4 self-gravitating dyons

    NASA Astrophysics Data System (ADS)

    Lugo, A. R.; Moreno, E. F.; Schaposnik, F. A.

    2010-11-01

    We present a self-gravitating dyon solution of the Einstein-Yang-Mills-Higgs equations of motion in asymptotically AdS space. The back reaction of gauge and Higgs fields on the space-time geometry leads to the metric of an asymptotically AdS black hole. Using the gauge/gravity correspondence we analyze relevant properties of the finite temperature quantum field theory defined on the boundary. In particular we identify an order operator, characterize a phase transition of the dual theory on the border and also compute the expectation value of the finite temperature Wilson loop.

  2. AdS box graphs, unitarity and operator product expansions

    NASA Astrophysics Data System (ADS)

    Hoffmann, L.; Mesref, L.; Rühl, W.

    2000-11-01

    We develop a method of singularity analysis for conformal graphs which, in particular, is applicable to the holographic image of AdS supergravity theory. It can be used to determine the critical exponents for any such graph in a given channel. These exponents determine the towers of conformal blocks that are exchanged in this channel. We analyze the scalar AdS box graph and show that it has the same critical exponents as the corresponding CFT box graph. Thus pairs of external fields couple to the same exchanged conformal blocks in both theories. This is looked upon as a general structural argument supporting the Maldacena hypothesis.

  3. Phases of global AdS black holes

    NASA Astrophysics Data System (ADS)

    Basu, Pallab; Krishnan, Chethan; Subramanian, P. N. Bala

    2016-06-01

    We study the phases of gravity coupled to a charged scalar and gauge field in an asymptotically Anti-de Sitter spacetime ( AdS 4) in the grand canonical ensemble. For the conformally coupled scalar, an intricate phase diagram is charted out between the four relevant solutions: global AdS, boson star, Reissner-Nordstrom black hole and the hairy black hole. The nature of the phase diagram undergoes qualitative changes as the charge of the scalar is changed, which we discuss. We also discuss the new features that arise in the extremal limit.

  4. The forecaster's added value

    NASA Astrophysics Data System (ADS)

    Turco, M.; Milelli, M.

    2009-09-01

    skill scores of two competitive forecast. It is important to underline that the conclusions refer to the analysis of the Piemonte operational alert system, so they cannot be directly taken as universally true. But we think that some of the main lessons that can be derived from this study could be useful for the meteorological community. In details, the main conclusions are the following: - despite the overall improvement in global scale and the fact that the resolution of the limited area models has increased considerably over recent years, the QPF produced by the meteorological models involved in this study has not improved enough to allow its direct use, that is, the subjective HQPF continues to offer the best performance; - in the forecast process, the step where humans have the largest added value with respect to mathematical models, is the communication. In fact the human characterisation and communication of the forecast uncertainty to end users cannot be replaced by any computer code; - eventually, although there is no novelty in this study, we would like to show that the correct application of appropriated statistical techniques permits a better definition and quantification of the errors and, mostly important, allows a correct (unbiased) communication between forecasters and decision makers.

  5. Diesel Engine Idling Test

    SciTech Connect

    Larry Zirker; James Francfort; Jordon Fielding

    2006-02-01

    In support of the Department of Energy’s FreedomCAR and Vehicle Technology Program Office goal to minimize diesel engine idling and reduce the consumption of millions of gallons of diesel fuel consumed during heavy vehicle idling periods, the Idaho National Laboratory (INL) conducted tests to characterize diesel engine wear rates caused by extended periods of idling. INL idled two fleet buses equipped with Detroit Diesel Series 50 engines, each for 1,000 hours. Engine wear metals were characterized from weekly oil analysis samples and destructive filter analyses. Full-flow and the bypass filter cartridges were removed at four stages of the testing and sent to an oil analysis laboratory for destructive analysis to ascertain the metals captured in the filters and to establish wear rate trends. Weekly samples were sent to two independent oil analysis laboratories. Concurrent with the filter analysis, a comprehensive array of other laboratory tests ascertained the condition of the oil, wear particle types, and ferrous particles. Extensive ferrogram testing physically showed the concentration of iron particles and associated debris in the oil. The tests results did not show the dramatic results anticipated but did show wear trends. New West Technologies, LLC, a DOE support company, supplied technical support and data analysis throughout the idle test.

  6. The N.A.C.A. Photographic Apparatus for Studying Fuel Sprays from Oil Engine Injection Valves and Test Results from Several Researches

    NASA Technical Reports Server (NTRS)

    Beardsley, Edward G

    1928-01-01

    Apparatus for recording photographically the start, growth, and cut-off of oil sprays from injection valves has been developed at the Langley Memorial Aeronautical Laboratory. The apparatus consists of a high-tension transformer by means of which a bank of condensers is charged to a high voltage. The controlled discharge of these condensers in sequence, at a rate of several thousand per second, produces electric sparks of sufficient intensity to illuminate the moving spray for photographing. The sprays are injected from various types of valves into a chamber containing gases at pressures up to 600 pounds per square inch. Several series of pictures are shown. The results give the effects of injection pressure, chamber pressure, specific gravity of the fuel oil used, and injection-valve design, upon spray characteristics.

  7. Infrared Spectroscopy of Bilberry Extract Water-in-Oil Emulsions: Sensing the Water-Oil Interface.

    PubMed

    Kiefer, Johannes; Frank, Kerstin; Zehentbauer, Florian M; Schuchmann, Heike P

    2016-01-01

    Water-in-oil (w/o) emulsions are of great interest in many areas of the life sciences, including food technology, bioprocess engineering, and pharmaceuticals. Such emulsions are complex multi-component systems and the molecular mechanisms which lead to a stable emulsion are yet to be fully understood. In this work, attenuated total reflection (ATR) infrared (IR) spectroscopy is applied to a series of w/o emulsions of an aqueous anthocyanin-rich bilberry extract dispersed in a medium chain triglyceride (MCT) oil phase. The content of the emulsifier polyglycerin-polyricinoleat (PGPR) has been varied systematically in order to investigate whether or not its concentration has an impact on the molecular stabilization mechanisms. The molecular stabilization is accessed by a careful analysis of the IR spectrum, where changes in the vibrational frequencies and signal strengths indicate alterations of the molecular environment at the water/oil interface. The results suggest that adding emulsifier in excess of 1% by weight does not lead to an enhanced stabilization of the emulsion. PMID:27089376

  8. Potential for oil mining at Elk Basin oil field, Wyoming-Montana

    SciTech Connect

    Ayler, M.F.; Brechtel, C.

    1987-08-01

    By using the teachings of two US Patents, 4,458,945 and 4,595,239, it is possible to place mine workings below the Frontier sands of the Elk basin field, drill upward safely into the reservoir, and produce by gravity added to any present drive system. The patents describe equipment and a way of drilling upward with all cuttings and fluids flowing into a closed pipeline system for surface discharge. A final casing can be cemented into place and the well completed, again with all production into a closed pipeline. This system would permit field pressure control and maintenance with gravity drainage. Wells could be placed on one-acre spacing or less, thus producing much of the oil normally lost between surface wells. An analysis will be presented of probable mining costs for development of the Elk basin oil field on one-acre spacing. Petroleum engineers will then be able to estimate for themselves which method has the most profit potential and maximum recovery - the present systems or oil recovery by mining.

  9. Infrared Spectroscopy of Bilberry Extract Water-in-Oil Emulsions: Sensing the Water-Oil Interface

    PubMed Central

    Kiefer, Johannes; Frank, Kerstin; Zehentbauer, Florian M.; Schuchmann, Heike P.

    2016-01-01

    Water-in-oil (w/o) emulsions are of great interest in many areas of the life sciences, including food technology, bioprocess engineering, and pharmaceuticals. Such emulsions are complex multi-component systems and the molecular mechanisms which lead to a stable emulsion are yet to be fully understood. In this work, attenuated total reflection (ATR) infrared (IR) spectroscopy is applied to a series of w/o emulsions of an aqueous anthocyanin-rich bilberry extract dispersed in a medium chain triglyceride (MCT) oil phase. The content of the emulsifier polyglycerin-polyricinoleat (PGPR) has been varied systematically in order to investigate whether or not its concentration has an impact on the molecular stabilization mechanisms. The molecular stabilization is accessed by a careful analysis of the IR spectrum, where changes in the vibrational frequencies and signal strengths indicate alterations of the molecular environment at the water/oil interface. The results suggest that adding emulsifier in excess of 1% by weight does not lead to an enhanced stabilization of the emulsion. PMID:27089376

  10. D-branes on AdS flux compactifications

    NASA Astrophysics Data System (ADS)

    Koerber, Paul; Martucci, Luca

    2008-01-01

    We study D-branes in Script N = 1 flux compactifications to AdS4. We derive their supersymmetry conditions and express them in terms of background generalized calibrations. Basically because AdS has a boundary, the analysis of stability is more subtle and qualitatively different from the usual case of Minkowski compactifications. For instance, stable D-branes filling AdS4 may wrap trivial internal cycles. Our analysis gives a geometric realization of the four-dimensional field theory approach of Freedman and collaborators. Furthermore, the one-to-one correspondence between the supersymmetry conditions of the background and the existence of generalized calibrations for D-branes is clarified and extended to any supersymmetric flux background that admits a time-like Killing vector and for which all fields are time-independent with respect to the associated time. As explicit examples, we discuss supersymmetric D-branes on IIA nearly Kähler AdS4 flux compactifications.

  11. Dyonic AdS black holes from magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Caldarelli, Marco M.; Dias, Óscar J. C.; Klemm, Dietmar

    2009-03-01

    We use the AdS/CFT correspondence to argue that large dyonic black holes in anti-de Sitter spacetime are dual to stationary solutions of the equations of relativistic magnetohydrodynamics on the conformal boundary of AdS. The dyonic Kerr-Newman-AdS4 solution corresponds to a charged diamagnetic fluid not subject to any net Lorentz force, due to orthogonal magnetic and electric fields compensating each other. The conserved charges, stress tensor and R-current of the fluid are shown to be in exact agreement with the corresponding quantities of the black hole. Furthermore, we obtain stationary solutions of the Navier-Stokes equations in four dimensions, which yield predictions for (yet to be constructed) charged rotating black strings in AdS5 carrying nonvanishing momentum along the string. Finally, we consider Scherk-Schwarz reduced AdS gravity on a circle. In this theory, large black holes and black strings are dual to lumps of deconfined plasma of the associated CFT. We analyze the effects that a magnetic field introduces in the Rayleigh-Plateau instability of a plasma tube, which is holographically dual to the Gregory-Laflamme instability of a magnetically charged black string.

  12. AdS Branes from Partial Breaking of Superconformal Symmetries

    SciTech Connect

    Ivanov, E.A.

    2005-10-01

    It is shown how the static-gauge world-volume superfield actions of diverse superbranes on the AdS{sub d+1} superbackgrounds can be systematically derived from nonlinear realizations of the appropriate AdS supersymmetries. The latter are treated as superconformal symmetries of flat Minkowski superspaces of the bosonic dimension d. Examples include the N = 1 AdS{sub 4} supermembrane, which is associated with the 1/2 partial breaking of the OSp(1|4) supersymmetry down to the N = 1, d = 3 Poincare supersymmetry, and the T-duality related L3-brane on AdS{sub 5} and scalar 3-brane on AdS{sub 5} x S{sup 1}, which are associated with two different patterns of 1/2 breaking of the SU(2, 2|1) supersymmetry. Another (closely related) topic is the AdS/CFT equivalence transformation. It maps the world-volume actions of the codimension-one AdS{sub d+1} (super)branes onto the actions of the appropriate Minkowski (super)conformal field theories in the dimension d.

  13. Worldsheet dilatation operator for the AdS superstring

    NASA Astrophysics Data System (ADS)

    Ramírez, Israel; Vallilo, Brenno Carlini

    2016-05-01

    In this work we propose a systematic way to compute the logarithmic divergences of composite operators in the pure spinor description of the AdS 5 × S 5 superstring. The computations of these divergences can be summarized in terms of a dilatation operator acting on the local operators. We check our results with some important composite operators of the formalism.

  14. 14 CFR 23.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil strainer or filter. 23.1019 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer...

  15. 14 CFR 29.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil strainer or filter. 29.1019 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all...

  16. 14 CFR 25.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil strainer or filter. 25.1019 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of...

  17. 14 CFR 29.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil strainer or filter. 29.1019 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all...

  18. 14 CFR 27.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil strainer or filter. 27.1019 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of...

  19. 14 CFR 25.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil strainer or filter. 25.1019 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of...

  20. 14 CFR 29.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil strainer or filter. 29.1019 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all...

  1. 14 CFR 27.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil strainer or filter. 27.1019 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of...

  2. 14 CFR 29.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil strainer or filter. 29.1019 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all...

  3. 14 CFR 25.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil strainer or filter. 25.1019 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of...

  4. 14 CFR 23.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil strainer or filter. 23.1019 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer...

  5. 14 CFR 23.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil strainer or filter. 23.1019 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer...

  6. 14 CFR 25.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil strainer or filter. 25.1019 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of...

  7. 14 CFR 23.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil strainer or filter. 23.1019 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer...

  8. 14 CFR 27.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil strainer or filter. 27.1019 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of...

  9. Holographic heat engines

    NASA Astrophysics Data System (ADS)

    Johnson, Clifford V.

    2014-10-01

    It is shown that in theories of gravity where the cosmological constant is considered a thermodynamic variable, it is natural to use black holes as heat engines. Two examples are presented in detail using AdS charged black holes as the working substance. We notice that for static black holes, the maximally efficient traditional Carnot engine is also a Stirling engine. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. We first propose a precise picture of how the traditional thermodynamic dictionary of holography is extended when the cosmological constant is dynamical and then conjecture that the engine cycles can be performed by using renormalization group flow. We speculate about the existence of a natural dual field theory counterpart to the gravitational thermodynamic volume.

  10. Engine monitoring display study

    NASA Technical Reports Server (NTRS)

    Hornsby, Mary E.

    1992-01-01

    The current study is part of a larger NASA effort to develop displays for an engine-monitoring system to enable the crew to monitor engine parameter trends more effectively. The objective was to evaluate the operational utility of adding three types of information to the basic Boeing Engine Indicating and Crew Alerting System (EICAS) display formats: alphanumeric alerting messages for engine parameters whose values exceed caution or warning limits; alphanumeric messages to monitor engine parameters that deviate from expected values; and a graphic depiction of the range of expected values for current conditions. Ten training and line pilots each flew 15 simulated flight scenarios with five variants of the basic EICAS format; these variants included different combinations of the added information. The pilots detected engine problems more quickly when engine alerting messages were included in the display; adding a graphic depiction of the range of expected values did not affect detection speed. The pilots rated both types of alphanumeric messages (alert and monitor parameter) as more useful and easier to interpret than the graphic depiction. Integrating engine parameter messages into the EICAS alerting system appears to be both useful and preferred.

  11. Entanglement temperature and perturbed AdS3 geometry

    NASA Astrophysics Data System (ADS)

    Levine, G. C.; Caravan, B.

    2016-06-01

    Generalizing the first law of thermodynamics, the increase in entropy density δ S (x ) of a conformal field theory (CFT) is proportional to the increase in energy density, δ E (x ) , of a subsystem divided by a spatially dependent entanglement temperature, TE(x ) , a fixed parameter determined by the geometry of the subsystem, crossing over to thermodynamic temperature at high temperatures. In this paper we derive a generalization of the thermodynamic Clausius relation, showing that deformations of the CFT by marginal operators are associated with spatial temperature variations, δ TE(x ) , and spatial energy correlations play the role of specific heat. Using AdS/CFT duality we develop a relationship between a perturbation in the local entanglement temperature of the CFT and the perturbation of the bulk AdS metric. In two dimensions, we demonstrate a method through which direct diagonalizations of the boundary quantum theory may be used to construct geometric perturbations of AdS3 .

  12. Comparisons of Biodiesel Produced from Oils of Various Peanut Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is a renewable, clean burning alternative fuel that can be used in standard diesel engines with no engine modification and no perceptible loss in engine performance. Biodiesel production typically involves the transesterification of a seed oil feedstock, with soybean oil being the primary...

  13. 77 FR 1626 - Airworthiness Directives; Various Aircraft Equipped With Rotax Aircraft Engines 912 A Series Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... Equipped With Rotax Aircraft Engines 912 A Series Engine AGENCY: Federal Aviation Administration (FAA), DOT... various aircraft equipped with Rotax Aircraft Engines 912 A series engine. This AD results from mandatory... Rotax Aircraft Engines BRP has issued Alert Service Bulletin ASB- 912-059 and ASB-914-042...

  14. 76 FR 42609 - Airworthiness Directives; Lycoming Engines Model TIO 540-A Series Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... inspection of external fuel injector lines on Lycoming Engines model TIO 540-A series reciprocating engines... inspections of external fuel lines, on all affected Lycoming Engines reciprocating engines. We incorporated by reference Lycoming Engines Mandatory SB No. 342E, dated May 18, 2004, in AD 2008-14-07 (73 FR 39574, July...

  15. Oil Spill!

    ERIC Educational Resources Information Center

    Ansberry, Karen Rohrich; Morgan, Emily

    2005-01-01

    An oil spill occurs somewhere in the world almost every day of the year, and the consequences can be devastating. In this month's column, students explore the effects of oil spills on plants, animals, and the environment and investigate oil spill clean-up methods through a simulated oil spill. The activities described in this article give students…

  16. Commercialization of coal diesel engines for non-utility and export power markets

    SciTech Connect

    Wilson, R.P.; Balles, E.N.; Rao, K.; Benedek, K.R.; Benson, C.E.; Mayville, R.A.; Itse, D.; Kimberley, J.; Parkinson, J.

    1993-11-01

    The basic motivation behind this project is to develop coal-burning heat engine technology primarily for 10-100 MW modular stationary power applications in the late 1990`s and beyond, when oil and gas prices may return to the $5--7/MMBtu range. The fuel is a low-cost, coal-based liquid with the consistency of black paint, composed of 12-micron mean size premium 2% ash coal dust mixed 50/50 with water. The Clean Coal Diesel Plant of the future is targeted for the 10-100 MW non-utility generation (NUG) and small utility markets, including independent power producers (IPP) and cogeneration. A family of plant designs will be offered using the Cooper-Bessemer 3.8, 5.0, and 6.3 MW Model LS engines as building blocks. In addition, larger plants will be configured with an engine in the 10-25 MW class (Cooper will license the technology to other large bore stationary engine manufacturers). The reciprocating engine offers a remarkable degree of flexibility in selecting plant capacity. This flexibility exists because the engines are modular in every sense (fuel cell stacks have similar modularity). Scale-up is accomplished simply by adding cylinders (e.g., 20 vs 16) or by adding engines (4 vs 3). There is no scale-up of the basic cylinder size. Thus, there is essentially no technical development needed to scale-up the Cooper-Bessemer Clean Coal Diesel Technology all the way from 2 MW (one 6-cylinder engine) to 50 MW (eight 20-cylinder engines), other than engineering adaptation of the turbocharger to match the engine.

  17. 14 CFR 29.1011 - Engines: general.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... temperature not above that safe for continuous operation. (b) The usable oil capacity of each system may not... consumption, a usable oil capacity of one gallon for each 40 gallons of usable fuel may be used for... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1011 Engines: general. (a) Each...

  18. 14 CFR 29.1011 - Engines: general.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... temperature not above that safe for continuous operation. (b) The usable oil capacity of each system may not... consumption, a usable oil capacity of one gallon for each 40 gallons of usable fuel may be used for... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1011 Engines: general. (a) Each...

  19. 14 CFR 29.1011 - Engines: general.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... temperature not above that safe for continuous operation. (b) The usable oil capacity of each system may not... consumption, a usable oil capacity of one gallon for each 40 gallons of usable fuel may be used for... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1011 Engines: general. (a) Each...

  20. Effective Ad-Hoc Committees.

    ERIC Educational Resources Information Center

    Young, David G.

    1983-01-01

    Ad-hoc committees may be symbolic, informational, or action committees. A literature survey indicates such committees' structural components include a suprasystem and three subsystems involving linkages, production, and implementation. Other variables include size, personal factors, and timing. All the factors carry implications about ad-hoc…

  1. Lorentzian AdS geometries, wormholes, and holography

    SciTech Connect

    Arias, Raul E.; Silva, Guillermo A.; Botta Cantcheff, Marcelo

    2011-03-15

    We investigate the structure of two-point functions for the quantum field theory dual to an asymptotically Lorentzian Anti de Sitter (AdS) wormhole. The bulk geometry is a solution of five-dimensional second-order Einstein-Gauss-Bonnet gravity and causally connects two asymptotically AdS spacetimes. We revisit the Gubser-Klebanov-Polyakov-Witten prescription for computing two-point correlation functions for dual quantum field theories operators O in Lorentzian signature and we propose to express the bulk fields in terms of the independent boundary values {phi}{sub 0}{sup {+-}} at each of the two asymptotic AdS regions; along the way we exhibit how the ambiguity of normalizable modes in the bulk, related to initial and final states, show up in the computations. The independent boundary values are interpreted as sources for dual operators O{sup {+-}} and we argue that, apart from the possibility of entanglement, there exists a coupling between the degrees of freedom living at each boundary. The AdS{sub 1+1} geometry is also discussed in view of its similar boundary structure. Based on the analysis, we propose a very simple geometric criterion to distinguish coupling from entanglement effects among two sets of degrees of freedom associated with each of the disconnected parts of the boundary.

  2. One-loop diagrams in AdS space

    SciTech Connect

    Hung Lingyan; Shang Yanwen

    2011-01-15

    We study the complex scalar loop corrections to the boundary-boundary gauge two-point function in pure AdS space in Poincare coordinates, in the presence of boundary quadratic perturbations to the scalar. These perturbations correspond to double-trace perturbations in the dual CFT and modify the boundary conditions of the bulk scalars in AdS. We find that, in addition to the usual UV divergences, the one-loop calculation suffers from a divergence originating in the limit as the loop vertices approach the AdS horizon. We show that this type of divergence is independent of the boundary coupling; making use of this we extract the finite relative variation of the imaginary part of the loop via Cutkosky rules as the boundary perturbation varies. Applying our methods to compute the effects of a time-dependent impurity to the conductivities using the replica trick in AdS/CFT, we find that generally an IR-relevant disorder reduces the conductivity and that in the extreme low frequency limit the correction due to the impurities overwhelms the planar CFT result even though it is supposedly 1/N{sup 2} suppressed. We also comment on the more physical scenario of a time-independent impurity.

  3. Bioremediating oil spills in nutrient poor ocean waters using fertilized clay mineral flakes: some experimental constraints.

    PubMed

    Warr, Laurence N; Friese, André; Schwarz, Florian; Schauer, Frieder; Portier, Ralph J; Basirico, Laura M; Olson, Gregory M

    2013-01-01

    Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98%) of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity.

  4. Bioremediating oil spills in nutrient poor ocean waters using fertilized clay mineral flakes: some experimental constraints.

    PubMed

    Warr, Laurence N; Friese, André; Schwarz, Florian; Schauer, Frieder; Portier, Ralph J; Basirico, Laura M; Olson, Gregory M

    2013-01-01

    Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98%) of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity. PMID:23864952

  5. Bioremediating Oil Spills in Nutrient Poor Ocean Waters Using Fertilized Clay Mineral Flakes: Some Experimental Constraints

    PubMed Central

    Warr, Laurence N.; Friese, André; Schwarz, Florian; Schauer, Frieder; Portier, Ralph J.; Basirico, Laura M.; Olson, Gregory M.

    2013-01-01

    Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98%) of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity. PMID:23864952

  6. Process for converting heavy oil deposited on coal to distillable oil in a low severity process

    DOEpatents

    Ignasiak, Teresa; Strausz, Otto; Ignasiak, Boleslaw; Janiak, Jerzy; Pawlak, Wanda; Szymocha, Kazimierz; Turak, Ali A.

    1994-01-01

    A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

  7. Kolmogorov-Zakharov spectrum in AdS gravitational collapse.

    PubMed

    de Oliveira, H P; Pando Zayas, Leopoldo A; Rodrigues, E L

    2013-08-01

    We study black hole formation during the gravitational collapse of a massless scalar field in asymptotically D-dimensional anti-de Sitter AdS(D) spacetimes for D = 4, 5. We conclude that spherically symmetric gravitational collapse in asymptotically AdS spaces is turbulent and characterized by a Kolmogorov-Zakharov spectrum. Namely, we find that after an initial period of weakly nonlinear evolution, there is a regime where the power spectrum of the Ricci scalar evolves as ω(-s) with the frequency, ω, and s ≈ 1.7 ± 0.1.

  8. ADS: The Next Generation Search Platform

    NASA Astrophysics Data System (ADS)

    Accomazzi, A.; Kurtz, M. J.; Henneken, E. A.; Chyla, R.; Luker, J.; Grant, C. S.; Thompson, D. M.; Holachek, A.; Dave, R.; Murray, S. S.

    2015-04-01

    Four years after the last LISA meeting, the NASA Astrophysics Data System (ADS) finds itself in the middle of major changes to the infrastructure and contents of its database. In this paper we highlight a number of features of great importance to librarians and discuss the additional functionality that we are currently developing. Our citation coverage has doubled since 2010 and now consists of over 10 million citations. We are normalizing the affiliation information in our records and we have started collecting and linking funding sources with papers in our system. At the same time, we are undergoing major technology changes in the ADS platform. We have rolled out and are now enhancing a new high-performance search engine capable of performing full-text as well as metadata searches using an intuitive query language. We are currently able to index acknowledgments, affiliations, citations, and funding sources. While this effort is still ongoing, some of its benefits are already available through the ADS Labs user interface and API at http://adslabs.org/adsabs/.

  9. Heavy oil recovery process: Conceptual engineering of a downhole methanator and preliminary estimate of facilities cost for application to North Slope Alaska

    SciTech Connect

    Not Available

    1990-01-01

    Results from Tasks 8 and 9 are presented. Task 8 addressed the cost of materials and manufacturing of the Downhole Methanator and the cost of drilling and completing the vertical cased well and two horizontal drain holes in the West Sak reservoir. Task 9 addressed the preliminary design of surface facilities to support the enhanced recovery of heavy oil. Auxiliary facilities include steam reformers for carbon dioxide-rich natural gas reforming, emergency electric generators, nitrogen gas generators, and an ammonia synthesis unit. The ammonia is needed to stabilize the swelling of clays in the reservoir. Cost estimations and a description of how they were obtained are given.

  10. Semiclassical Virasoro blocks from AdS3 gravity

    NASA Astrophysics Data System (ADS)

    Hijano, Eliot; Kraus, Per; Perlmutter, Eric; Snively, River

    2015-12-01

    We present a unified framework for the holographic computation of Virasoro conformal blocks at large central charge. In particular, we provide bulk constructions that correctly reproduce all semiclassical Virasoro blocks that are known explicitly from conformal field theory computations. The results revolve around the use of geodesic Witten diagrams, recently introduced in [1], evaluated in locally AdS3 geometries generated by backreaction of heavy operators. We also provide an alternative computation of the heavy-light semiclassical block — in which two external operators become parametrically heavy — as a certain scattering process involving higher spin gauge fields in AdS3; this approach highlights the chiral nature of Virasoro blocks. These techniques may be systematically extended to compute corrections to these blocks and to interpolate amongst the different semiclassical regimes.

  11. AdS6 solutions of type II supergravity

    NASA Astrophysics Data System (ADS)

    Apruzzi, Fabio; Fazzi, Marco; Passias, Achilleas; Rosa, Dario; Tomasiello, Alessandro

    2014-11-01

    Very few AdS6 × M 4 supersymmetric solutions are known: one in massive IIA, and two IIB solutions dual to it. The IIA solution is known to be unique; in this paper, we use the pure spinor approach to give a classification for IIB supergravity. We reduce the problem to two PDEs on a two-dimensional space Σ. M 4 is then a fibration of S 2 over Σ; the metric and fluxes are completely determined in terms of the solution to the PDEs. The results seem likely to accommodate near-horizon limits of ( p, q)-fivebrane webs studied in the literature as a source of CFT5's. We also show that there are no AdS6 solutions in eleven-dimensional supergravity.

  12. Conserved higher-spin charges in AdS4

    NASA Astrophysics Data System (ADS)

    Gelfond, O. A.; Vasiliev, M. A.

    2016-03-01

    Gauge invariant conserved conformal currents built from massless fields of all spins in 4d Minkowski space-time and AdS4 are described in the unfolded dynamics approach. The current cohomology associated with non-zero conserved charges is found. The resulting list of charges is shown to match the space of parameters of the conformal higher-spin symmetry algebra in four dimensions.

  13. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    SciTech Connect

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; William Raatz; Cari Breton; Stephen C. Ruppel; Charles Kerans; Mark H. Holtz

    2003-04-01

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Information System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

  14. On information loss in AdS3/CFT2

    DOE PAGES

    Fitzpatrick, A. Liam; Kaplan, Jared; Li, Daliang; Wang, Junpu

    2016-05-18

    We discuss information loss from black hole physics in AdS3, focusing on two sharp signatures infecting CFT2 correlators at large central charge c: ‘forbidden singularities’ arising from Euclidean-time periodicity due to the effective Hawking temperature, and late-time exponential decay in the Lorentzian region. We study an infinite class of examples where forbidden singularities can be resolved by non-perturbative effects at finite c, and we show that the resolution has certain universal features that also apply in the general case. Analytically continuing to the Lorentzian regime, we find that the non-perturbative effects that resolve forbidden singularities qualitatively change the behavior ofmore » correlators at times t ~SBH, the black hole entropy. This may resolve the exponential decay of correlators at late times in black hole backgrounds. By Borel resumming the 1/c expansion of exact examples, we explicitly identify ‘information-restoring’ effects from heavy states that should correspond to classical solutions in AdS3. Lastly, our results suggest a line of inquiry towards a more precise formulation of the gravitational path integral in AdS3.« less

  15. 13. Engine room, view of Ames aniflow (engine #1). 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Engine room, view of Ames aniflow (engine #1). 4 cylinder-1953, centrifuge oil separator in foreground, doorway to machine shop on right in background, taken from southeast - East Boston Pumping Station, Chelsea Street at Chelsea Creek, Boston, Suffolk County, MA

  16. Engine lubricating system

    SciTech Connect

    Kurio, N.; Yoshimi, H.; Shigemura, T.; Shono, Y.

    1988-10-04

    This patent describes engine lubricating system comprising a lubricating oil supply means having a plunger member adapted to be reciprocated in the axial direction in response to an engine output shaft to discharge lubricating oil, a control pin which is adapted to abut against the plunger member and is movable to change the stroke of the plunger member, thereby changing the amount of the lubricating oil to be discharged in each stroke of the plunger member, and an electric actuator which moves the control pin to change the stroke of the plunger member; a control means which receives the electric signal from the operating condition detecting means and outputs an electric control signal for controlling the electric actuator; the actuator comprising a stepping motor and the control means outputting an electric control signal representing the number of steps by which the stepping motor is to be operated; the operating condition detecting means comprising an intake volume detecting means which detects the amount of intake air introduced into the cylinder of the engine per one engine revolution, and the control means outputs and electric signal to the stepping motor which controls the stepping motor to drive the control pin to increase the amount of the lubricating oil to be discharged in each stroke of the plunger member as the amount of intake air increases.

  17. Engineering Encounters: Engineering Adaptations

    ERIC Educational Resources Information Center

    Gatling, Anne; Vaughn, Meredith Houle

    2015-01-01

    Engineering is not a subject that has historically been taught in elementary schools, but with the emphasis on engineering in the "Next Generation Science Standards," curricula are being developed to explicitly teach engineering content and design. However, many of the scientific investigations already conducted with students have…

  18. Technical Seminar: Oil-Free Turbomachinery for Rotorcraft

    NASA Video Gallery

    Rotorcraft engines are among the most demanding applications for conventional oil-lubricated bearings because they must operate with extreme reliability and the highest possible power density. Rece...

  19. Stirling engine with pressurized crankcase

    DOEpatents

    Corey, John A.

    1988-01-01

    A two piston Stirling engine wherein the pistons are coupled to a common crankshaft via bearing means, the pistons include pad means to minimize friction between the pistons and the cylinders during reciprocation of the pistons, means for pressurizing the engine crankcase, and means for cooling the crankshaft and the bearing means eliminating the need for oil in the crankcase.

  20. 14 CFR 33.84 - Engine overtorque test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of take-off or OEI ratings longer than 2 minutes. (3) For engines incorporating a reduction gearbox, a gearbox oil temperature equal to the maximum temperature when the maximum engine overtorque could occur in service; and for all other engines, an oil temperature within the normal operating range. (4)...